
Vallipuram Muthukkumarasamy
Sithu D. Sudarsan
Rudrapatna K. Shyamasundar (Eds.)

LN
CS

 1
44

24

19th International Conference, ICISS 2023
Raipur, India, December 16–20, 2023
Proceedings

Information Systems
Security

Lecture Notes in Computer Science 14424
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Vallipuram Muthukkumarasamy ·
Sithu D. Sudarsan · Rudrapatna K. Shyamasundar
Editors

Information Systems
Security
19th International Conference, ICISS 2023
Raipur, India, December 16–20, 2023
Proceedings

Editors
Vallipuram Muthukkumarasamy
Griffith University
Gold Coast, QLD, Australia

Rudrapatna K. Shyamasundar
Indian Institute of Technology Bombay
Mumbai, India

Sithu D. Sudarsan
Centre for Development of Advanced
Computing (C-DAC)
Bangalore, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-49098-9 ISBN 978-3-031-49099-6 (eBook)
https://doi.org/10.1007/978-3-031-49099-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-6787-6379
https://orcid.org/0000-0001-6966-0507
https://doi.org/10.1007/978-3-031-49099-6

Preface

This book comprises the proceedings of the 19th International Conference on Informa-
tion Systems Security (ICISS 2023), held at the National Institute of Technology (NIT)
Raipur, India, between December 16 and 20, 2023. The conference received a total of
129 submissions from authors across the world. This year we followed a double-blind
review process. Each submission was reviewed by at least four members from the Pro-
gram Committee (PC), which consisted of 68 eminent international researchers working
in different sub-areas of information security. The PC involved 37 external sub-reviewers
in the double-blind review process. The PC Chairs evaluated and discussed the reviews
and after a careful consideration of the merits of the papers, accepted 18 full papers
and 10 short papers. The net acceptance rate was approximately 22%. A wide range
of topics in systems security and privacy are covered, both in theory and in practice.
The Program is broadly organized into six technical session tracks: i) Systems Secu-
rity, ii) Network Security, iii) Privacy, iv) Cryptography, v) Security Using AI/ML, and
vi) Blockchains. In addition to the accepted papers, the conference program featured
the following Keynotes and Invited Talks by distinguished researchers in the area of
information systems security:

1. hinTS: Threshold signatures with silent setup
by Sanjam Garg, University of California, Berkeley, USA

2. How to train & use AI models on sensitive data without compromising privacy?
by Nishanth Chandran, Microsoft Research, India

3. Follow the money
by Thomas Silkjœr, XRP Ledger Foundation, Denmark

4. Covert & side stories: Threat evolution in traditional & modern technologies
by Mauro Conti, University of Padua, Italy and TU Delft, The Netherlands

We would like to wholeheartedly thank the experts for delivering their Keynote and
Invited talks and our thanks go to Nishant Chandran who also contributed a paper to the
proceedings. Further, the conference had the following tutorials:

1. Overview of applications of machine learning in encrypted traffic analysis for
cybersecurity
by Debapriyay Mukhopadhyay, Vehere Technology, USA

2. Osquery: A tool for system visibility and threat hunting
by Manjesh Kumar Hanawal and Atul Kabra, IIT Bombay, India

3. Data anonymization techniques
by Vishwas Patil, IIT Bombay, India

In addition to theTutorials session, ICISS2023had aPhDForumand aDemosession.
It is a pleasure to record our thanks to the session chairs for facilitating the conduct
of sessions, the participants from industry, the organizers, and the PC members for
contributing their invaluable time and expertise in the review process.We are indebted to
the tireless efforts put forth by Vishwas Patil towards assisting the PC and in compilation

vi Preface

of the proceedings. ICISS 2023 would not have been possible without the contributions
of the numerous volunteers who gave their time and energy to ensure the success of
the conference and its associated events. Our special thanks go to the local organizing
committee headed by Jatoth Chandrashekar, as well as the faculty, staff, and students
at the National Institute of Technology Raipur, for all their efforts and support for the
smooth running of the conference.

It is our pleasure to express our gratitude to Springer Nature for assisting us in dis-
seminating the proceedings of the conference in the LNCS series. We also extend our
sincere thanks to NIT Raipur, IIT Bombay, C-DAC, and NTPC for their generous spon-
sorship, SERB for sponsoring the travel grants, and IDRBT Hyderabad for sponsoring
the best paper award. Last but certainly not least, we would like to thank all the authors
who submitted their papers and the attendees. We hope you find the proceedings of
ICISS 2023 interesting, stimulating, and inspiring for future research.

December 2023 Vallipuram Muthukkumarasamy
Rudrapatna K. Shyamasundar

Sithu D. Sudarsan

Organization

Advisory Steering Committee

Venu Govindaraju University at Buffalo, SUNY, USA
Sushil Jajodia George Mason University, USA
Somesh Jha University of Wisconsin-Madison, USA
Atul Prakash University of Michigan, USA
Pierangela Samarati University of Milan, Italy
R. K. Shyamasundar IIT Bombay, India

Patron

N. V. Ramana Rao (Director) NIT Raipur, India

General Chair

R. K. Shyamasundar IIT Bombay, India

Program Committee Chairs

V. Muthukkumarasamy Griffith University, Australia
Sithu D. Sudarsan CDAC Bangalore, India

Organising Executive Committee

Venkata Badarla IIT Tirupati, India
Neminath Hubbali IIT Indore, India
Chandrashekar Jatoth NIT Raipur, India
Jayaprakash Kar LNMIIT, India
Vishwas Patil IIT Bombay, India
Somnath Tripathy IIT Patna, India

viii Organization

Tutorial Chairs

Shachee Mishra IBM Research, India
Vishwas Patil IIT Bombay, India

PhD Forum and Posters Chairs

Radhika B. S. IIIT Dharwad, India
Shachee Mishra IBM Research, India
Vishwas Patil IIT Bombay, India
Sangitha Roy Thapar University, India
Jeyakumar Samantha Tharani Griffith University, Australia

Demo/Industry Track Chairs

Praveen Gauravaram TCS, Australia
Amrendra Kumar DRDO, India
Vinod Panicker Wipro, India
Vishwas Patil IIT Bombay, India

Publicity Chairs

Vishwas Patil IIT Bombay, India
Balaji Rajendran CDAC Bengaluru, India

Web Chair

Vishwas Patil IIT Bombay, India

Local Organising Committee

N. V. Ramana Rao NIT Raipur, India
Prabhat Diwan NIT Raipur, India
Shirish Verma NIT Raipur, India
Rakesh Tripathi NIT Raipur, India
Rajesh Doriya NIT Raipur, India

Organization ix

Chandrashekar Jatoth NIT Raipur, India
T. P. Sahu NIT Raipur, India
Sudhkar Pandey NIT Raipur, India
S. P. Sahu NIT Raipur, India
Sanjay Kumar NIT Raipur, India
Suvendu Rup NIT Raipur, India
Pavan Kumar Mishra NIT Raipur, India
Mridu Sahu NIT Raipur, India
R. R. Janghel NIT Raipur, India
Govind P. Gupta NIT Raipur, India
Gyanendra Verma NIT Raipur, India

Program Committee

Abhishek Bichhawat IIT Gandhinagar, India
Adwait Nadkarni William & Mary, USA
Alessandro Brighente University of Padova, Italy
Angelo Spognardi Sapienza Università di Roma, Italy
Aniket Kate Purdue University, USA
Anirban Basu Hitachi R&D, Japan
Anish Mathuria DAIICT Gandhinagar, India
Anoop Singhal NIST, USA
Atul Prakash University of Michigan, USA
Ayantika Chatterjee IIT Kharagpur, India
Babu Pillai Southern Cross University, Australia
Balaji Palanisamy University of Pittsburgh, USA
Barsha Mitra BITS-Pilani Hyderabad, India
Bheemarjuna Reddy Tamma IIT Hyderabad, India
Bodhisatwa Mazumdar IIT Indore, India
Claudio Ardagna University of Milan, Italy
Debadatta Mishra IIT Kanpur, India
Dhiman Saha IIT Bhilai, India
Donghoon Chang IIIT Delhi, India
Giovanni Russello University of Auckland, New Zealand
Haibing Lu Santa Clara University, USA
Hyoungshick Kim Sungkyunkwan University, South Korea
Indranil Sen Gupta IIT Kharagpur, India
K. Gopinath Plaksha University, India
Kai Rannenberg Goethe University Frankfurt, Germany
Kamanashis Biswas Australian Catholic University
Kannan Srinathan IIIT Hyderabad, India

x Organization

Kapil Vaswani Microsoft Research, India
Laszlo Szekeres Google, USA
Lorenzo DeCarli University of Calgary, Canada
Luigi V. Mancini Sapienza University of Rome, Italy
Mahesh Tripunitara University of Waterloo, Canada
Mainack Mondal IIT Kharagpur, India
Manik Lal Das DAIICT Gandhinagar, India
Maurantonio Caprolu Hamad Bin Khalifa University, Qatar
Murtuza Jadliwala University of Texas at San Antonio, USA
N. Subramanian SETS Chennai, India
Neminath Hubballi IIT Indore, India
Peng Liu Pennsylvania State University, USA
Phu Phung University of Dayton, USA
Puneet Goyal IIT Ropar, India
R. Sekar Stony Brook University, USA
Radhika B. S. IIIT Dharwad, India
Rajat Subhra IIT Kharagpur, India
Ram Krishnan University of Texas at San Antonio, USA
Rinku Dewri University of Denver, USA
Sabrina De Capitani di Vimercati University of Milan, Italy
Salil Kanhere UNSW Sydney, Australia
Sambuddho Chakravarty IIIT Delhi, India
Sandeep Shukla IIT Kanpur, India
Sangita Roy Thapar University, India
Sanjay Rawat University of Bristol, UK
Sanjit Chatterjee IISc, India
Sanjiva Prasad IIT Delhi, India
Sathya Peri IIT Hyderabad, India
Shachee Mishra IBM Research, India
Silvio Ranise Fondazione Bruno Kessler, Italy
Simone Soderi Scuola IMT Alti Studi Lucca, Italy
Somitra Sanadhya IIT Jodhpur, India
S. P. Suresh Chennai Mathematical Institute, India
Srinivas Vivek IIIT Bangalore, India
Srinivasu Bodapati IIT Mandi, India
Subhabrata Samajder IIIT Delhi, India
Subhamoy Maitra ISI Kolkata, India
Subidh Ali IIT Bhilai, India
Sushmita Ruj UNSW Sydney, Australia
Vijay Atluri Rutgers Business School, USA
Vinay Riberio IIT Bombay, India

Organization xi

External Reviewers Invited by the PC

Abdulrahman Alhaidari
Amir Hossein Jafari
Andrea Flamini
Ankit Ravish
Anshu S. Anand
Chinmay Kapkar
Domenico Siracusa
Fabio De Gaspari
Fan Zhang
Frédéric Tronnier
Gurudatta Verma
Jaynarayan T. Tudu
Jingzhe Wang
Joseph Spracklen
Laltu Sardar
Latifur Khan
Lisa Facciolo
Maryam Abbasihafshejani
Morteza Sargolzaeijavan

Munawar Hasan
Nathan Joslin
Nisha Vinayaga-Sureshkanth
Pei-Yu Tseng
Piduguralla Manaswini
Rahma Mukta
Raveen Wijewickrama
Sabrine Ennaji
Samuel Karumba
Saurabh Sharma
Shyam Murthy
Srinidhi Madabhushi
Stefano Berlato
Sugandh Pargal
Tapas Pandit
Thirasara Ariyarathna
Tikaram Sanyashi
Xiaoyan Sun

Abstracts of Invited Talks
and Tutorials

hinTS: Threshold Signatures with Silent Setup

Sanjam Garg

University of California, Berkeley
https://people.eecs.berkeley.edu/~sanjamg

Abstract. In this talk, I will describe hinTS— a new threshold signature
scheme built on top of the widely used BLS signatures. This scheme
achieves the following desirable features:

– A silent setup process where the joint public key of the parties is
computed as a deterministic function of their locally computed public
keys.

– Support for dynamic choice of thresholds and signers, after the silent
setup, without further interaction.

– Support for general access policies and native support for weighted
thresholds with zero additional overhead over standard threshold
setting.

– Strong security guarantees, including proactive security and forward
security.

This scheme is practical with aggregation time for 1000 signers
under 0.5 seconds, while both signing and verification are constant time
algorithms, taking 1 ms and 17.5 ms, respectively.

(Based on joint work with Abhishek Jain, Pratyay Mukherjee, Rohit
Sinha, Mingyuan Wang, and Yinuo Zhang)

How to Train and Use AI Models on Sensitive Data
without Compromising Privacy?

Nishanth Chandran

Microsoft Research
https://www.microsoft.com/en-us/research/people/nichandr/

Abstract. AI models have the potential to revolutionize many domains,
but they also pose serious privacy risks. How can we ensure that our
data is not exposed or misused when we train or use these models? How
can we protect the intellectual property of the model publishers and the
privacy of the data owners?

In this talk, I will introduce EzPC, a system developed by Microsoft
Research that enables privacy preserving machine learning. I will show
how EzPC leverages cryptographic techniques to allow secure and effi-
cient computation on encrypted data, without revealing any information
to any party. Iwill also present someof the recent advances and challenges
in this exciting area of research.

Follow the Money

Thomas Silkjær

XRP Ledger Foundation
https://www.linkedin.com/in/silkjaer/

Abstract.Wewill learn how theXRPLedger Foundation appliesproperty
graph databases to map blockchain activity to protect users from scams
and counter money laundering.

This presentation will unravel the intricate relationship between com-
pliance and the XRPL, showcasing the XRP Forensics initiative that has
been integral to the XRPL ecosystem since 2018. Initially focusing on
collecting account addresses associated with scams and thefts. The ini-
tiative now operates with a robust graph database, compiling comprehen-
sive transaction and account history of the XRPL network. This expan-
sive database includes vital information about VASP (Virtual Asset Ser-
vice Provider) affiliations and records instances of illicit involvements,
thereby empowering real-time monitoring of suspicious accounts and
transactions.

Through visual examples, and insightful analysis, this presentation
offers a deeper understanding of howproperty graph databases and proac-
tive monitoring can revolutionize blockchain security. By showcasing
the XRP Ledger Foundation’s commitment to enhancing transparency,
thwarting illicit activities, and collaborating with the broader compliance
and blockchain community, this discussion encourages a collective effort
towards a safer and more regulated blockchain landscape.

Covert & Side Stories: Threats Evolution in Traditional
and Modern Technologies

Mauro Conti

University of Padua and TU Delft
https://www.math.unipd.it/~conti/

Abstract. Alongside traditional Information and Communication Tech-
nologies,more recent ones like Smartphones and IoTdevices also became
pervasive. Furthermore, all technologies manage an increasing amount
of confidential data. The concern of protecting these data is not only
related to an adversary gaining physical or remote control of a victim
device through traditional attacks, but also to what extent an adversary
without the above capabilities can infer or steal information through side
and covert channels!

In this talk, we survey a corpus of representative research results pub-
lished in the domain of side and covert channels, ranging fromTIFS 2016
to more recent Usenix Security 2022, and including several demonstra-
tions at Black Hat Hacking Conferences.We discuss threats coming from
contextual information and to which extent it is feasible to infer very spe-
cific information. In particular, we discuss attacks like inferring actions
that a user is doing on mobile apps, by eavesdropping their encrypted
network traffic, identifying the presence of a specific user within a net-
work through analysis of energy consumption, or inferring information
(also key one like passwords and PINs) through timing, acoustic, or video
information.

Overview of Applications of Machine Learning
in Encrypted Traffic Analysis for Cyber Security

Debapriyay Mukhopadhyay

Vehere Technology
debapriyaym@gmail.com

Abstract. This tutorial is aimed to cover a broad area of Cyber Secu-
rity called Encrypted Traffic Analysis (ETA). With the growing use of
encrypted traffic, the traditional or known approaches to Network Vis-
ibility and Network Forensics started to face a tremendous amount of
challenges in isolating or detecting suspicious network activities. Finger-
printing of SSL Client Hello and SSL Server Hello messages have gained
significant attention in recent years because of its utility in detecting mal-
wares over encrypted channel. But, new techniques like cipher stunting
have been devised to defeat this fingerprinting based malware detection.
With wide-spread adoption of TLS 1.3 over TLS 1.2, we will miss out
getting many information like validity, issuer and subject information of
the certificate.

Thus machine learning based approaches have become an important
direction for encrypted malicious traffic detection and its containment.
Network traffic analysis requires different pieces of information or prob-
lems to be solved to satisfy different cyber security use cases. These use
cases can be broadly classified into four different types of problems such
as – i) Protocol or Application Identification; ii) Network Intrusion and
Malware Detection; iii) Device/OS identification and PII leakage detec-
tion and iv) VPN tunnel detection, Webpage Fingerprinting, etc. Overall
agenda of this tutorial is to discuss on the feature engineering aspects of
solving problems from the above use case areas using machine learning.
The tutorial will also discuss the ML techniques used and will reveal the
interesting results obtained so far.

Keywords: SSL/TLS · Cyber Security · Encrypted Traffic Analysis ·
Network Forensics · Machine Learning.

Osquery: A Tool for System Visibility and Threat Hunting

Manjesh Kumar Hanawal and Atul Kabra

IIT Bombay
mhanawal@iitb.ac.in, atul.kabra.20@gmail.com

Abstract. Continuous monitoring and proactive threat detection help
organizations to protect themselves against malicious cyberattacks. As
threat detection entirely relies on the available system activity logs
(henceforth referred to as simply logs), it is crucial that we have good
visibility of the system and high-quality logs are collected. Moreover,
collected logs should be made available in a form that is easily accessi-
ble, parsable, and co-relatable, for effective processing. In this tutorial,
we will discuss Osquery, a tool supported by the Linux Foundations for
gathering and processing logs. Osquery allows viewing operating as a
database and processing them using OS-independent platforms like SQL,
thus making it convenient for use in system monitoring, threat detection,
and event correlation.

Osquery supports logs collection from most of the OS like Windows,
Linux, and MacOS, which are made available in the form of tables. It
provides a set of default tables and allows more tables to be added for
logs collected by any other mechanism through Extensions. SQL queries
can be scheduled to gather required information from the tables which
can be stored locally or sent to a remote server for analysis. Thus Osquery
provides a complete telemetry for processing logs.

The tutorial will cover the basics of Osquery and its various fea-
tures. We will highlight how Osquery is useful in threat-hunting. We will
demonstrate a Vajra that is built using Osquery for managing the nodes
and threat hunting at scale.

Data Anonymization Techniques

Vishwas Patil

IIT Bombay
https://sites.google.com/site/ivishwas/

Abstract. Data anonymization is a process of transforming a verbatim
dataset into a dataset that does not include any direct or indirect reference
for a uniquely identifiable entity. The entity can be a person, a computer,
an object, or a combination of these. The anonymization process may
involve a set of techniques, each adding to the level of anonymization.
The anonymized dataset is said to be acceptable when a query ran on
it returns an output as close to the output that is obtained on the verba-
tim data. Data anonymization is challenging because it simultaneously
expects two orthogonal properties: anonymity and utility. The utility of
the anonymized dataset is inversely proportional to the anonymity guaran-
tees. Therefore, it is crucial to find a balance between these two properties
while performing anonymization. Anonymization becomes even more
challenging when the dataset transformation is expected to be privacy-
preserving; which is a stricter type of data transformation process where
the transformed data must not contain record(s) identifying a natural
person.

In this tutorial, we will explore numerous data transformation tech-
niques along with their algorithms. Some of these techniques are generic
and can be used for any data type, whereas others are data-specific. We
will explore application of these techniques to healthcare or network
dataset anonymization, depending on the background of the audience.

Contents

Systems Security

A Security Analysis of Password Managers on Android . 3
Abhyudaya Sharma and Sweta Mishra

The Design and Application of a Unified Ontology for Cyber Security 23
Khandakar Ashrafi Akbar, Fariha Ishrat Rahman, Anoop Singhal,
Latifur Khan, and Bhavani Thuraisingham

Big Data Forensics on Apache Kafka . 42
Thomas Mager

A Survey on Security Threats and Mitigation Strategies for NoSQL
Databases: MongoDB as a Use Case . 57

Surabhi Dwivedi, R. Balaji, Praveen Ampatt, and S. D. Sudarsan

Theoretical Enumeration of Deployable Single-Output Strong PUF
Instances Based on Uniformity and Uniqueness Constraints 77

Venkata Sreekanth Balijabudda, Kamalesh Acharya,
Rajat Subhra Chakraborty, and Indrajit Chakrabarti

Network Security

Detection and Hardening Strategies to Secure an Enterprise Network 91
Preetam Mukherjee, Sabu M. Thampi, N. Rohith,
Bishwajit Kumar Poddar, and Ipshita Sen

Attack Graph Based Security Metrics for Dynamic Networks 109
Ayan Gain and Mridul Sankar Barik

An Energy-Conscious Surveillance Scheme for Intrusion Detection
in Underwater Sensor Networks Using Tunicate Swarm Optimization 129

Sunil Kumar Kammula, Veena Anand, and Deepak Singh

Security Using AI/ML

STN-Net: A Robust GAN-Generated Face Detector . 141
Tanusree Ghosh and Ruchira Naskar

xxx Contents

MDLDroid: Multimodal Deep Learning Based Android Malware Detection 159
Narendra Singh and Somanath Tripathy

A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced
Deep Neural Networks . 178

David Rodriguez and Ram Krishnan

Secure KNN Computation on Cloud . 197
Tikaram Sanyashi, Nirmal Kumar Boran, and Virendra Singh

A Multi-stage Multi-modal Classification Model for DeepFakes
Combining Deep Learned and Computer Vision Oriented Features 217

Arnab Kumar Das, Soumik Mukhopadhyay, Arijit Dalui,
Ritaban Bhattacharya, and Ruchira Naskar

Privacy

Security and Privacy in Machine Learning . 229
Nishanth Chandran

Attack on the Privacy-Preserving Carpooling Service TAROT 249
Meghana Vargheese and Srinivas Vivek

Democracy in Your Hands!: Practical Multi-key Homomorphic E-Voting 259
Tanusree Parbat, Aniket Banerjee, and Ayantika Chatterjee

Cryptography

Secured Collaboration with Ciphertext Policy Attribute Based
Signcryption in a Distributed Fog Environment for Medical Data Sharing 275

G. A. Thushara and S. Mary Saira Bhanu

Verifiable Timed Accountable Subgroup Multi-signatures 295
Duygu Özden and Oğuz Yayla

Escrow and Pairing Free CP-ABE Scheme with Forward and Backward
Secrecy for Healthcare Internet of Things . 306

Sourabh Bhaskar, Keyur Parmar, and Devesh C. Jinwala

Blockchains

Ensuring Data Security in the Context of IoT Forensics Evidence
Preservation with Blockchain and Self-Sovereign Identities 319

Cristian Alves dos Santos, Leandro Loffi, and Carla Merkle Westphall

Contents xxxi

Analysis of Optimal Number of Shards Using ShardEval, A Simulator
for Sharded Blockchains . 339

Vishisht Priyadarshi, Sourav Goel, and Kalpesh Kapoor

SoK: Digital Signatures and Taproot Transactions in Bitcoin 360
Anubha Jain and Emmanuel S. Pilli

BCTPV-NIZK: Publicly-Verifiable Non-interactive Zero-Knowledge
Proof System from Minimal Blockchain Assumptions . 380

Nimish Mishra and S. K. Hafizul Islam

Proof-of-Variable-Authority: A Blockchain Consensus Mechanism
for Securing IoT Networks . 396

Lenoah Chacko, Pavithra Rajan, Varun Anilkumar, and Vinod Pathari

An Efficient Two-Party ECDSA Scheme for Cryptocurrencies 411
Habeeb Syed, Arinjita Paul, Meena Singh, and MA Rajan

Secure Smart Grid Data Aggregation Based on Fog Computing
and Blockchain Technology . 431

Kamalakanta Sethi, Aniket Agrawal, and Padmalochan Bera

Crypto-Ransomware Detection: A Honey-File Based Approach Using
Chi-Square Test . 449

Ajith Arakkal, Shehzad Pazheri Sharafudheen, and A. R. Vasudevan

PSDP: Blockchain-Based Computationally Efficient Provably Secure Data
Possession . 459

Jayaprakash Kar

Private and Verifiable Inter-bank Transactions and Settlements
on Blockchain . 469

Harika Narumanchi, Lakshmi Padmaja Maddali, and Nitesh Emmadi

Author Index . 481

Systems Security

A Security Analysis of Password
Managers on Android

Abhyudaya Sharma(B) and Sweta Mishra

Shiv Nadar University, Greater Noida, India
{as388,sweta.mishra}@snu.edu.in

https://snu.edu.in

Abstract. Password Managers are software tools designed to help users
easily store and access credentials across devices while also reducing, if
not eliminating, reuse of passwords across different service providers. Pre-
vious research has identified several security vulnerabilities with desktop
and browser-based password managers; however, aside from research on
possibilities of phishing, the security of password manager applications
on mobile devices had never been investigated comprehensively prior to
this paper. We present a study of three of the most popular password
managers on the Google Play Store including but not limited to their
password generators, vault and metadata storage, and autofill capabil-
ities. By building upon past findings, we identify several weaknesses in
password managers including generation of weak and statistically non-
random passwords, unencrypted storage of metadata and application
settings, and possibilities for credential phishing. In addition, we sug-
gest several improvements to mobile password managers, other Android
applications, and the Android operating system that can improve the
user experience and security of password managers on Android devices.
From our observations, we also determine areas for future research that
can help improve the security of password managers.

Keywords: password manager · android · security · reverse
engineering

1 Introduction

From ancient Rome to the present day, passwords have been used as a common
form of authentication. With the advent of computers and the internet, pass-
words have become a necessary evil. Despite their popularity and apparent ease
of use for both the users as well as the application developers, password-based
authentication systems have several known issues. Previous research has shown
that reuse of passwords across different websites service providers is common-
place [10,11]. If a user’s credentials for one of these websites get leaked through a
data breach, an attacker can potentially gain access to the user’s other accounts.
Moreover, past research has shown that it is difficult for people to remember

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 3–22, 2023.
https://doi.org/10.1007/978-3-031-49099-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_1

4 A. Sharma and S. Mishra

passwords that are unlikely to be brute-forced in the foreseeable future [1]. It
has also been observed that most people, including technologically savvy users,
cannot reliably distinguish between strong and weak passwords [30]. In addi-
tion, common policies that require users to include digits and special characters
or ones that necessitate a password change after a given period can lead to a
reduction in the overall quality of passwords [17,24,36].

Password managers promise to mitigate these inherent weaknesses of
password-based authentication systems. A password manager is a software tool
that is designed to securely store user credentials and other sensitive informa-
tion. When using a password manager, a user is only required to remember one
password, the master password. All other credentials are stored in an encrypted
database, referred to as the vault. The database is encrypted using a key that is
derived from the master password. Assuming that the encryption algorithm is
secure and if the master password is strong against current and predicted future
brute-force attacks, it would not be feasible for an attacker with access to an
encrypted vault to retrieve user credentials from it. Moreover, one’s cognitive
burden reduces when using a password manager since only one password needs
to be remembered.

Modern password managers are complex pieces of software that include many
features other than just storing user credentials. Browser-based and desktop
password managers have been extensively analysed in the past several security
vulnerabilities have been found. Li et al. [20] found significant vulnerabilities in
popular web-based password managers. Silver et al. [33] found security issues
with autofill implementations. In 2020, Oesch et al. [26] found several security
issues and insecure defaults in many desktop password managers. Although work
has been done on analysing the usability of [32] and possibilities of phishing [5]
on password managers on mobile devices, and concerns have been raised about
mobile password managers using the system clipboard [13,37] in 2013 and 2014,
to the best of our knowledge, no research has been carried out on the complete
password manager life-cycle. Moreover, password managers have considerably
evolved over the past eight years and now use autofill capabilities built into the
operating system that have not been comprehensively investigated earlier. With
more and more people accessing the internet through mobile devices [25], the
security risks of using password managers remain unknown for a large fraction
of the society.

In this paper, we examine in detail three of the most popular password man-
agers on the most popular mobile operating system, Android, including the qual-
ity of generated passwords, storage of the encrypted vault and the corresponding
metadata, autofill capabilities, and features specific to each application. In addi-
tion to building up on previous work, we make use of reverse engineering as an
effective tool to evaluate password managers. We generate over 35 million pass-
words and analyse them using established techniques such as the chi-squared and
password strength estimators. We also identify several implementation issues by
observation and manual review of the application source. Furthermore, we dis-
cover issues that are unique to password managers on mobile devices and provide
suggestions to improve the security of password manager applications.

A Security Analysis of Password Managers on Android 5

Our contributions include:

1. A comprehensive analysis of modern password managers on mobile devices.
Our work includes an analysis of password generators, autofill functionality,
vault and metadata storage, and unique features of each application. We dis-
cover that additional features increase the potential attack surface for security
vulnerability and that the evaluation of these features is just as important as
the password management interface itself.

2. We generate over 35 million passwords from the three password managers
using automation of user interactions and reverse engineering application
sources. Using previously used password strength evaluation tools (χ2 test
and password strength meters like zxcvbn), we discover issues in the quality
of random passwords. In some configurations, we observe that the strength
of generated passwords could be several orders of magnitude lower than what
the user expects.

3. We confirm that password generators on Android may still be vulnerable
to security issues discovered by past research. We find applications making
use of unencrypted metadata which, if obtained by an attacker, can expose
personally identifiable information. We find several instances of production of
non-random passwords. Our study is the first study on password generation
that attributes the cause of this non-randomness to issues in the application
source.

4. Our work identifies several areas of improvement for password managers on
mobile devices. We suggest better default settings and improvements that can
prevent accidental leakage of user credentials. We also discover that password
managers on Android are often limited by the APIs offered by the operating
system. We also determine potential areas for future research that can help
improve the security and usability of password managers on mobile devices.

2 Background

This section considers the duties of an ideal password manager and how a pass-
word manager can protect its users against data breaches and cyberattacks. We
also discuss past research that has been carried out on password managers and
how it relates to this work.

2.1 Password Managers

Password managers are designed as tools that simplify users’ lives by reducing
the number of passwords they need to remember. Most password managers are
designed around the premise that it is difficult for one person to remember
multiple strong passwords, but it is possible to remember one strong password.
Password managers refer to this one password that the users must remember as
the master password [20].

Password managers use symmetric cryptographic primitives to encrypt
secrets (for example, login credentials or SSH keys) under a encryption key that

6 A. Sharma and S. Mishra

can only be derived using the master password. If the encryption algorithm is
secure under current and predicted future hardware capabilities, the encrypted
contents must be secure. However, such abstractions do not do justice to the
flexibility and security provided by modern password managers.

A good password manager can not only help users reduce the number of
passwords needed to be remembered, but they can also help in significantly
increasing the quality of passwords. The average length of passwords is between
8 and 10 characters [10]. In contrast, most websites allow users to have consid-
erably longer passwords. Since the strength of passwords increases as the length
increases, allowing users to store much longer passwords in the encrypted storage
when combined with autofill can result in much stronger credentials.

In addition, most password managers now offer built-in random password
generators [26], which can further reduce the amount of work required to be done
by the user. Password manager applications can start flagging duplicate logins,
ensuring that users no longer reuse credentials across the internet. Furthermore,
password managers can autofill user credentials using methods that do not make
use of the system clipboard. This is necessary since several popular applications
have been known to read user clipboards potentially to steal passwords [6].

2.2 Related Work

The security and usability of password managers has been analysed several times
before.

Security Analysis of Web-Based Password Managers. Li et al. [20] analysed five
web-based password managers in 2014: LastPass, RoboForm, My1login, Pass-
wordBox, and NeedMyPassword. The authors found critical vulnerabilities in
all applications. In four of the five password managers, an attacker could steal
arbitrary credentials from the user’s encrypted password database. The vulner-
abilities ranged anywhere from logical errors, cross-site request forgery (CSRF),
cross-site scripting (XSS), and misunderstandings about the browser security
model. The authors also found vulnerabilities regarding handling of <iframe>s.

Phishing Attacks on Android Password Managers. In 2018, Aonzo et al. [5] eval-
uated the possibility of phishing attacks on four Android password managers as
well as the built-in Google smart lock. The authors evaluated the legacy a11y
framework, OpenYOLO and the then nascent Autofill framework. The authors
found out that mobile password managers could not create a secure mapping
between application package names and web domain names. The authors discov-
ered that password managers could suggest credentials associated with arbitrary
attacker-chosen websites. The authors asserted that the proof-of-concept attacks
were made more practical by Android’s instant apps.

Analysis of Autofill Functionality. Silver et al. [33] examined ten password man-
agers in 2014 regarding their autofill functionality. The authors were able to
obtain user credentials from password managers by spoofing authentic websites,

A Security Analysis of Password Managers on Android 7

highlighting the potential that any attacker in a coffee shop could get hold of
users’ passwords by simple methods like ARP spoofing. The authors also found
that the password managers were vulnerable to clickjacking and the user could
authorize autofill to a malicious website without ever realizing it. The authors
suggested password managers to not fill credentials without user interaction and
to use Content Security Policy headers to prevent JavaScript injection and XSS
attacks.

Similar research on XSS attacks has also been carried out by Stock and Johns
[35]. Google’s Project Zero team also discovered a vulnerability in the LastPass
Browser extension where an attacker could create an <iframe> that uses the
extension’s public HTML files as source and gain credentials to the previously
visited webpage [27]. The issue was responsibly reported to the LastPass team
and was soon fixed.

Usability of Password Managers. Pearman et al. [28] analysed the use of pass-
word managers in 2019. The authors concluded that the reason for a small
percentage of the population actually using password managers correctly was
related to a lack of awareness and confusion about the prompts provided by
web browsers and third-party password managers. The authors noted that par-
ticipants were regularly frustrated with the user experience of using password
managers and instead went back to memorizing weak passwords.

Seiler-Hwang et al. [32] conducted a survey of 80 users analysing the usabil-
ity of mobile password managers. The authors concluded that the usability con-
cerns noted on desktop and browser-based password managers are also present
on mobile devices. The authors noted that there is poor integration between
password managers and other applications and browsers.

Evaluation of Browser-Based Password Managers. Oesch et al. [26] evaluated
the most popular browser-based password managers in 2019 and discovered sev-
eral flaws in the implementation. This was the most detailed security study on
password managers in over five years and the authors were able to find sev-
eral security issues with desktop and browser-based password extensions. The
authors evaluated five browser extensions and six password managers integrated
directly into web browsers. They concluded that compared to previous studies,
password managers had considerably improved. However, they found that some
of the passwords generated by password managers were so weak that they could
pose a security risk for users. They also suggested that password manager appli-
cations develop stronger policies for master passwords and not allow users to set
weak master passwords.

Analysis of Storage. In 2017, Gasti and Rasmussen [16] analysed the database
format used by password managers. The authors discovered several vulnerabil-
ities which could lead to attackers gaining sensitive information. This included
unencrypted metadata storage as well as leaking information from the encrypted
vaults.

8 A. Sharma and S. Mishra

Third-Party Trackers in Android Password Managers. In March of 2021, Mike
Kuketz analysed several popular Android password managers for embedded
third-party trackers [19]. The author discovered eight third-party tracking
libraries in the Avira password manager, seven in LastPass, four in Dashlane, two
each Kaspersky Password Manager and Bitwarden, and one in Enpass. Accord-
ing to the author, it could be possible that decrypted credentials are sent to
these trackers.

Relation to this Work. Previous analysis of password managers provide us
insights into potential vulnerabilities that could be present in mobile password
managers. The results of the usability studies help us to determine the security
issues that password managers could face if changes are made according to user
feedback.

3 Analysed Password Managers

In this paper, we analysed three of the most popular password manager appli-
cations on the Google Play Store:

– LastPass (version 4.11.1; over 10 million users)
– Dashlane (version 6.2102.0-x86; over 5 million users)
– Bitwarden (version 2.80; over 1 million users)

Although there are over one hundred password manager applications avail-
able on the Google Play Store, we chose these password managers for our stud-
ies since they represent the broad spectrum of password manager applications
available: LastPass is one of the oldest and most popular password managers,
Dashlane was released in 2012 and won the People’s Voice Webby Award in 2017
for Services & Utilities in Mobile Sites & Apps, and Bitwarden is an open-source
application first made available in 2016, currently recommended by CNET, Life-
hacker, and U.S. News & World Report as the best password manager [9,18]. All
three password managers feature syncing encrypted password databases (com-
monly referred to as the vault) across multiple devices.

The three applications allow us to evaluate password managers created in
different technological stacks. LastPass and Dashlane run on the Java virtual
machine (JVM) while the Bitwarden app is written in C# using Microsoft’s
Xamarin. Though LastPass and Dashlane can appear to be similar, the Dashlane
Android application is mostly written in Kotlin while the bulk of the LastPass
application is written in Java. Since Bitwarden’s mobile application, server-side
application, web extension, and desktop application are all open-source, it is pos-
sible to self-host Bitwarden. This is not possible with the other two applications.
Moreover, since Bitwarden is open-source, several other server-side implementa-
tions of the Bitwarden protocol have been created by the community, the most
notable one being bitwarden rs [15], an open-source server compatible with
Bitwarden client software which is written in Rust.

https://play.google.com/store/search?q=password%20manager&c=apps

A Security Analysis of Password Managers on Android 9

Vault Encryption. All three password managers use AES256-CBC for encrypt-
ing the vault. For key derivation, Bitwarden and LastPass only support using
PBKDF2 to derive the encryption key from the master password [7,21]. In addi-
tion to supporting PBKDF2, Dashlane defaults to using Argon2D to derive the
encryption key [12]. Table 1 highlights the default key derivation iterations used
by the three applications.

Table 1. Default key derivation iterations

Application PBKDF2 Argon2D

Dashlane 200,000 3 (32 MB memory)

Bitwarden 100,001 Not supported

LastPass 100,100 Not supported

4 Password Generation

All three applications studied feature a random password generator. LastPass
also allows users to generate pronounceable passwords while Bitwarden allows
users to generate passphrases (as described in [24]).

4.1 Collecting Passwords

To collect passwords from the three applications, we used two different
approaches – automating user interactions, and reverse engineering the source
code to find the password generation algorithm. We used the official Android
Emulator with a virtual Google Pixel 3a (Android 11) running on a Windows
10 Home (Version 20H2, Build 19042.928) laptop with an i7-8705G processor
@3.10 GHz and 16 gigabytes of RAM. Alongside the VM, we also used LG V30+
ThinQ running Android 9.0 on Linux Kernel 4.4.153.

Automating User Interactions. To interact with the running app, we used
Appium, an automation platform created by Sauce Labs which allowed devel-
opers to test their applications (Android, iOS, Windows, Web, etc.) via the
Selenium WebDriver Protocol.

We initially started with collecting passwords from the Dashlane Android
application. We used the recommended UiAutomator2 driver which internally
uses Google’s UI Automator. Applications interacting with Appium for Android
devices can request the appWaitActivity capability and specify an activity to
wait for. We gained information about the displayed activities on the screen using
adb shell dumpsys window windows command while the Dashlane application
was running. After automating unlocking the vault and opening the password
generator, we could generate passwords reliably from the Dashlane with a pro-
gram written in TypeScript using WebDriverIO.

https://appium.io/
https://github.com/webdriverio/webdriverio

10 A. Sharma and S. Mishra

However, the process to scrape passwords was quite resource-heavy and slow.
The rate of password extraction using this method was a meagre 88 passwords
per minute. It would have taken us eight days to generate one million passwords.
In addition, reverse engineering was potentially a better choice since if we could
successfully reconstruct the password generation algorithm, we could perform a
manual review of the source code.

Adventures in Reverse Engineering. The first step of our reverse engineering
process was to get our hands on the application binaries. Android applications
are distributed in Android Package Files (APK) [2]. The bytecode is stored in
classesN.dex files at the root of the decompressed APK where N is either an
empty string or a number greater than or equal to two. We downloaded the apps
from the Play Store on to our emulators. To extract the application’s APK, we
made use of ADB. We used adb shell pm path <package.name> to first find
the path to the APK. The APK was then copied to the host using adb pull.

We used the open-source tool JADX to decompile the DEX bytecode
extracted from the APK to Java source code. During the compilation of Java
or Kotlin source code to Dalvik bytecode under release configurations, the
androidgradle-plugin transforms the source by inlining methods, obfuscating
method names, rearranging methods across classes, etc. Though JADX can per-
form basic deobfuscation and use Kotlin metadata, we still needed to spend a
considerable amount of effort to rename variables, methods, and classes accord-
ing to their use in the source. Matters were complicated by boilerplate added
by Kotlin libraries and coroutines, especially in the decompiled Dashlane source
code.

For Dashlane, we were eventually able to find the class containing the source
of the password generator, b.a.a.x0.f. Using associated Kotlin metadata, we
resolved it to be com.dashlane.ui.util.PasswordGeneratorAndStrength.

We observed that the LastPass app was slightly less obfuscated than Dash-
lane. Using the decompiled code, we discovered the class LPPasswordGenerator
inside the package com.lastpass.lpandroid.domain. This class contained the
source for both the pronounceable password generator as well as the random
password generator.

Both Dashlane and LastPass use java.security.SecureRandom, a crypto-
graphically secure pseudorandom number generator, to generate random integers
for the password generators. Bitwarden uses RandomNumberGenerator through
the open-source PCLCrypto library.

We did not need to decompile the Bitwarden application since it is open-
source and we could obtain the source of the password generator from GitHub.

After that, we cleaned up the decompiled source to ensure that it could
run on any JVM while ensuring that the behaviour remained the same. We
created a custom runner that interacted with the obtained source. The passwords
were generated on an i7 8705G Windows 10 machine running OpenJDK 11.
All generated passwords were stored in an SQLite database for analysis. Over
various configurations, we generated over 35 million passwords from the three
applications.

https://github.com/skylot/jadx
https://android-doc.github.io/tools/building/plugin-for-gradle.html
https://github.com/AArnott/PCLCrypto
https://github.com/bitwarden/mobile/blob/ab04759b0e96fcca1254411c2dd354e108414044/src/Core/Services/PasswordGenerationService.cs

A Security Analysis of Password Managers on Android 11

4.2 Observations

Fig. 1. LastPass’ Pronounce-
able Password Generator

Among the password managers, we were able to
observe several cases of non-random password
generation. If an attacker learns about this infor-
mation, it becomes possible to guess possible pass-
words more efficiently, decreasing the strength
of the password. To determine if the characters
in the passwords were randomly distributed, we
used Pearson’s chi-squared test for randomness
[29] with a 95% confidence interval, as has been
done in previous research [26].

LastPass. LastPass’ pronounceable password gen-
erator was, in our opinion, the biggest offender
when it comes to producing strong passwords. We
discovered that the pronounceable password gen-
erator could generate passwords of lengths smaller
than what the user specified. This can be seen
replicated in Fig. 1; the generator is configured to
produce passwords of length 14 but the generated
password is of length 6. We observed that approx-
imately one percent of passwords had lengths
smaller than expected.

From the produced passwords, we could deter-
mine that if the generator is configured to produce

passwords of length x, the lengths of the generated passwords lie in the range
3 to x. To make matters worse, the character distribution of passwords is far
from random. The generator also does not follow the English language character
frequency distribution (p-value = 0). In addition, out of the 263 = 17576 pos-
sible trigrams using the lowercase alphabet, the generator would only produce
5804. Further reducing the strength was the fact that just 500 distinct trigrams
make up over half of all produced trigrams. The non-randomness in character
and trigram frequency distribution is highlighted in Fig. 2.

The random password generator also did produce non-random character dis-
tribution of passwords in some cases; however, we could not identify the cause
of this observed non-randomness from the source code.

Dashlane. Dashlane’s password generator is unique among the three password
managers in that it does not allow users to create passwords that are not mixed
case. We observed that Dashlane’s password generator did produce statistically
random passwords when ambiguous characters were included in the character
set of the passwords to be produced. However, when ambiguous characters were
excluded from the character set, the app did not produce random passwords
(p-value = 0). We noticed that the output of the generator was biased towards
producing more uppercase characters than lowercase characters (see Fig. 3).

12 A. Sharma and S. Mishra

By examining the source code, we determined the cause of this bias. The
number of non-ambiguous upper-case characters, according to Dashlane, is 20
while the number of non-ambiguous lowercase characters is 22. The app tries to
insert one uppercase and one lowercase character in every password. This has
the consequence that uppercase characters are noticeably more frequent.

Fig. 2. Character frequency and trigram distribution for LastPass’ pronounceable pass-
word generator

Fig. 3. Character distribution of passwords generated by Dashlane and Bitwarden

Bitwarden. Bitwarden’s password generator performed slightly better than Last-
Pass’ password generator and similar to Dashlane’s password generator, espe-
cially when producing smaller length ambiguous passwords. We found that in
our generated password database, the password generator easily produced ran-
dom passwords according to the chi-squared test whenever the generator was
set to produce ambiguous passwords. However, we did see some cases when the
computed p-values were below 0.05. This was especially true for passwords of
lengths between 12 and 16 characters that were non-ambiguous and contained
both uppercase and lowercase letters. One such instance is visualized in Fig. 3.
Unlike Dashlane, we were not able to find a distinctive error in the distribution
or in the source code.

A Security Analysis of Password Managers on Android 13

Filtering Weak Passwords. Oesch et al. [26] recommended that password man-
agers should detect and filter out weak passwords. We noticed that none of these
password managers has implemented filtering of weak passwords and that it is
still possible for generated passwords to be weak against attacks. Instead, Dash-
lane and LastPass now show the strengths of the produced passwords calculated
using zxcvbn [36] on the password generator. In contrast, Bitwarden does not
inform users about the strength of the passwords even though it includes the
C# port of zxcvbn as a dependency.

5 Vault and Metadata Storage

As observed by Gasti and Rasmussen [16] and reiterated by Oesch et al. [26],
access to unencrypted metadata can result in leakage of personally identifiable
information like usernames, website URLs, account creation times, etc. Hence,
encryption of all data produced by the password managers is necessary.

Using the unzipped APKs for Dashlane and LastPass, we were able to find
the native libraries that these applications make use of. Applications that run on
the Java Virtual Machine can access native code, including any cryptographic
primitives provided by the hardware, using Java Native Interface (JNI) [2]. The
Android Operating system creates a new user for each application. The OS
ensures that the application is only run as that user and that the application
data directory is only readable by that user. Although filesystem permissions
can, assuming that no vulnerabilities exist in the Linux kernel, prevent other
applications from reading data, it is not a replacement for encryption. If an
attacker gets access to a device whose storage is not encrypted at rest, the
attacker can still read the application data.

Since an ideal password manager should not store any data unencrypted [26],
we expect the password managers to not store anything on the disk other than
the encrypted vault file.

LastPass. We discovered that LastPass depends on three native libraries, lib-
lastpass.so, liblastpass pbkdf2.so, and libtool-checker.so. We found
that the LastPass application also includes a fallback PBKDF2 implementation
written in Java in case the implementation typically accessed through JNI is not
available. From the reverse engineered source, we were able to conclude that the
LastPass application uses a SQLite database for storing the vault, autofill entries,
app icons, and the application cache. SQLite is a popular open-source embedded
database that has bindings for various languages, including the Android JVM.
However, we discovered that lpcache.db stores the URLs visited by the user in
plaintext. If an attacker is able to gain access to this database, he can figure out
the user’s visited pages, the title of each visited page, and the time at which the
page was last accessed.

Bitwarden. Bitwarden is unique among the three password managers in that it
does not use a SQL database for storing passwords. We could conclude that the

https://github.com/trichards57/zxcvbn-cs
https://sqlite.org/index.html

14 A. Sharma and S. Mishra

application makes use of LiteDB, an embedded NoSQL database for .NET lan-
guages. We also found that the application uses the C# Bouncy Castle APIs
for providing cryptographic functions like PBKDF2. Although LiteDB sup-
ports AES encryption, Bitwarden does not use that functionality. We sus-
pect that this is because of LiteDB’s lack of options to customize the encryp-
tion parameters. One security issue we discovered was that Bitwarden uses
Xamarin.Essentials.Preferences to store application preferences. These pref-
erences are not encrypted by Android and are stored in plain text [23].

Dashlane. Dashlane is the only application for which we could not find infor-
mation about the app being stored in plaintext. This is because the app makes
use of SQLCipher, an open-source extension to SQLite that provides transpar-
ent AES-256 encryption. When using SQLCipher, applications can unlock the
database by providing the encryption key and then run SQL commands like they
normally would. By using SQLCipher, the Dashlane app can ensure that the data
is encrypted at all times on the disk while also making it easy for developers to
interact with the database using standard SQL commands.

5.1 Biometric Authentication and root

Biometric authentication is one of the more prominent features of Android pass-
word managers and we expect that most users enable it to improve usability.
However, it has been discovered that popular forms of biometric authentica-
tion like fingerprint sensors are not as secure as generally perceived [31]. Even
if we assume that a sensor is 100% accurate, enabling biometric authentication
increases the attack surface for all studied password managers. All three pass-
word managers make use of the Android keystore system [4] to store encryption
keys when biometric authentication is enabled. If an attacker is powerful enough
to obtain root access, he will be able to access the encryption key to the vault.
Since the attacker can now also access the encrypted vault files, he can obtain
all data stored in the vault.

6 Autofill

On Android, the autofill capability is provided by the registered Autofill-
Service. The AutofillService is a part of the Autofill Framework [3] and
is required to be set by the user in the device settings. No app can set itself
as the autofill provider for the device without requiring user interaction with
the settings. When an application is showing a login page, the application can
request the operating system to pass the current Views on screen to the reg-
istered AutofillService. The autofill service implementation can then parse
the contents of the Views and then return a response with the user credentials.
The credentials returned by the autofill service are displayed on the screen by
the operating system. The user can select the ones he wishes to use. These are
then filled in the form. All applications discussed have the capabilities to autofill
using the Autofill Service.

https://www.litedb.org/
https://www.bouncycastle.org/csharp/
https://www.zetetic.net/sqlcipher/

A Security Analysis of Password Managers on Android 15

To test the autofill implementations, we created sample HTML login pages
to test the behaviour of the applications when presented with different protocols
and application structures. These webpages were served over a local network
with differences in protocols (HTTP/HTTPS), validity of the certificates for
HTTPS, and browsers. For our investigations, we used the latest versions of
Chrome, Firefox, and Edge downloaded from the Play Store.

Autofill failed to work on Firefox reliably. Firefox for Android does provide
users with the ability to install the Bitwarden browser extension which is the
same as on PC. On PC, for convenience at the risk of an increased attack sur-
face, the extension integrates with the operating system to provide biometric
authentication. However, on Firefox on Android, biometric authentication is not
supported.

Previous studies on browser extension based password managers have found
several clickjacking and XSS vulnerabilities [20,26,33,35]. We could ascertain
that these applications are not prone to clickjacking attempts since the aut-
ofill menu makes use of Android’s accessibility framework and draws over the
application window. The application cannot interact with the accessibility menu.
Moreover, user interaction is always required before autofilling. XSS attacks are
made impossible with the operating system not being written in JavaScript and
the application having no way to communicate with the autofill service other
than request autofill.

Unfortunately, we found that none of the three password manager applica-
tions, except for the LastPass when using the built-in LastPass browser, show
a warning when visiting insecure websites (served via HTTP or with an invalid
TLS certificate) via a browser. Using techniques like ARP spoofing and in the
absence of HTTP Strict Transport Security or when a user is visiting a web page
for the first time on a device, an attacker can easily phish credentials without
warning from password managers. This is not a limitation of Android’s autofill
framework; password managers can get information about the scheme that is uti-
lized to visit a web page using AssistStructure.ViewNode#getWebScheme().
However, none of the three make use of this method.

We would expect the password managers to at least warn the users that
an attacker can see their login information in plaintext. We understand that it
is not possible to return warnings from the autofill framework at the time of
writing. Therefore, we suggest the Android developers to make it possible for
password managers to send a warning in such situations. We also believe that the
AutofillService should allow the applications requesting autofill using the aut-
ofill manager to provide the application either the complete certificate chain or
at least the validity of the certificate. These changes would enable password man-
agers to warn users about insecure transport and invalid or changed certificates.

7 Other Security Issues

Modern password managers are complex applications that have considerably
evolved from simple credential stores. LastPass includes a built-in browser, the
LastPass browser, that promises secure browsing; Dashlane includes a VPN in

16 A. Sharma and S. Mishra

the premium plans that connects to hosts using OpenVPN; Bitwarden includes
‘Send’, a URL-based file sharing service. These features undoubtedly add to the
attack surface of the application and it becomes imperative to evaluate the safety
of these features.

LastPass Browser. The LastPass Browser is a feature not present in the browser
extension. This browser makes use of Android’s System WebView. A signifi-
cant security issue with the browser is that it leaks user searches through DNS
requests. On entering any token x into the search bar without a space charac-
ter, the browser navigates to www.x.com, making a DNS request with the token
x in plaintext. Even if the user makes use of an encrypted DNS protocol like
DNS over HTTPS or DNS over TLS, the plaintext domain will be visible to
the trusted recursive resolver. The plaintext may also be visible on the network
through TLS SNI if the queried domain resolves to an IP.

Master Password Strength. We found that the master password policies of two
of the applications were not up to the mark. Bitwarden had the weakest master
password policy, with the only requirement being that its length is more than
eight characters. This allows users to set extremely weak passwords, for instance
password, as the master password. LastPass is slightly better, requiring one
uppercase character, one lowercase character, one digit, and a minimum length of
12. However, we could set an extremely weak password, aaaaaaaaaaA1, without
any warning. This password has a zxcvbn [36] strength of just 1

4 and is estimated
to be broken after 104.53148 guesses, significantly weaker than the 106 guesses
needed to be resistant against an online attack as estimated by Florêncio et al.
[14]. This is a cause for concern since passwords created by most users are not
secure and that most users cannot adequately distinguish between strong and
weak passwords [30].

The only app with an acceptable master password policy is Dashlane. The
app measures the strength of the password using zxcvbn and requires that the
score is at least 3

4 . Although zxcvbn may not give the true estimation of password
strength [22], we believe that this is better than letting users choose passwords
themselves and improves overall security.

Allowing Screenshots. A user may mistakenly take a screenshot of the application
and leak credentials through the saved image. On Android devices, it is possible
for application developers to request the operating system to not display the
contents of a window in a screenshot or on a non-secure display by setting the
FLAG SECURE flag. LastPass and Dashlane allow users to capture screenshots
of the apps. Moreover, this setting is persistent in both apps. If the developers
do decide to enable screenshots, in our opinion, the setting should only have
effect for the current session. Users may not remember that the setting is active
and may end up capturing a screenshot that contains one or more passwords.

Failing to Detect Duplicate Passwords. Reused passwords are one of the
biggest problems with password-based authentication. The LastPass Android

https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#FLAG_SECURE

A Security Analysis of Password Managers on Android 17

app includes a password health monitoring tool which is supposed to detect
reused passwords. In our investigations, we manually created two logins with
the same password. Even after several tries, the application failed to detect
duplicates. On the other hand, Dashlane reliably and clearly displayed the num-
ber of times a password was present in the vault. Bitwarden does not include
duplicate password detection in the mobile app.

JavaScript Injection in Dashlane’s Password Strength Check. Although the
Dashlane application is mostly written in Kotlin, we found one potential instance
of JavaScript injection. We discovered from the source code that instead of using
a port of zxcvbn for the JVM, Dashlane uses Dropbox’s original JavaScript
implementation by loading it inside an Android WebView. The WebView loads
an HTML file that uses a <script> tag to import Dropbox’s JavaScript imple-
mentation of zxcvbn. When the WebView is ready, JavaScript is enabled. The
applications then calls WebView’s evaluateJavascript() function as follows:

webView.evaluateJavascript("zxcvbn(’" + password + "’)");

Since the password is not escaped, this is a potential JavaScript injection
vulnerability. Thankfully, the password generator produces neither the single
quote character (’) nor the backslash (\) character. Therefore, the application is
safe from arbitrary random JavaScript code execution from randomly generated
passwords. However, the issue still exists when checking strengths of passwords
in the vault.

Automatic Clipboard Clearing. Prior to the introduction of the Autofill frame-
work, all password managers made use of the system clipboard to fill into appli-
cations and browsers. This is dangerous since all applications have access to
the clipboard and many applications have been known to scrape the clipboard
for passwords [6,13,37]. Dashlane and Bitwarden have taken steps to reduce the
likelihood of other apps gaining access to the clipboard contents by offering users
to automatically wipe the clipboard (set the clipboard to an empty string) after
a specified interval. However, this is not the default setting and must be enabled
manually. We recommend that clipboard clearing becomes the default behaviour
and that other password managers should implement it as well.

In addition, on Android, several applications and keyboards like the
SwiftKey keyboard keep track of the clipboard history. As a result, even after
clearing the clipboard, the password is still present in plaintext on the device.
Android’s clipboard API does not indicate how the clipboard contents should
be handled by applications keeping track of the clipboard history. As a result,
password manager apps cannot prevent storage by other applications.

8 Discussion

In our research, we performed a comprehensive analysis of the complete password
manager life-cycle for three of the most popular password managers on the Play

https://www.microsoft.com/en-us/swiftkey

18 A. Sharma and S. Mishra

Store. We discovered that password managers on Android suffer from many
of the same issues that plague browser-based and desktop password managers
[20,26]. Previously reported issues of copying passwords to clipboard [13,37] have
largely been ameliorated thanks to Android’s Autofill framework. Developers of
Bitwarden and Dashlane have tried to reduce the likelihood of passwords being
read by other applications by setting the clipboard to an empty string after a
few seconds. However, because of limitations of the clipboard API, clipboard
history apps still store passwords in plaintext.

Storage of unencrypted metadata on the disk has long been a cause for con-
cern [16]. In 2020, Oesch et al. observed that most password managers did store
metadata correctly. However, we found that this was not true for LastPass which
stores visited URLs unencrypted. Furthermore, attacks first published in 2014
[33] are still possible with all studied password managers on Android devices.
We now provide recommendations that can help improve password managers
and suggest areas for possible future research.

8.1 Recommendations

Better Clipboard APIs. Limitations in Android’s clipboard API can result in
credentials being stored unencrypted on the device. In addition to the sugges-
tions made by previous studies [13,37], we suggest the Android developers to
follow a design similar to the Windows Cloud Clipboard API. If an application
sets up a ‘sensitive data’ flag when setting the clipboard, an operating system
window could be drawn over the application on screen, similar to the autofill
prompt. An application gets the clipboard data iff the user consents. Otherwise,
an empty string is returned. Such a solution would prevent third-party applica-
tions from storing credentials in the clipboard history and eliminate the concerns
of snooping by malicious applications.

Differentiate Between HTTP and HTTPS URLs. As it currently stands, it
remains possible for passwords to be phished by spoofing HTTP connections. To
rectify this, when autofilling credentials, password managers should not consider
HTTP to be the same as HTTPS. If a website is known to use HTTPS through
either a public list of HTTPS domains or through prior use of the password
manager and if the current webpage uses HTTP, the password managers should
ideally not allow autofill. At the very least, users should be clearly warned that
the form is insecure. This security feature could even be implemented at the OS
level to reduce the responsibilities of password manager developers.

Filter Weak Passwords. As recommended by Oesch et al. [26], password man-
agers should filter out weak passwords. In our observations, this has not been
implemented by password managers yet. We suggest that password managers
take a look into implementing this using existing tools like zxcvbn [36] that they
already make use of in other places. Until this can be implemented, we recom-
mend Bitwarden to display the strength of generated passwords to allow users
to manually filter out weak passwords.

https://docs.microsoft.com/en-us/windows/win32/dataxchg/clipboard-formats#cloud-clipboard-and-clipboard-history-formats

A Security Analysis of Password Managers on Android 19

Strict Master Password Policies. In two of the three apps, we discovered that
policies for master passwords were not up to the mark. Compared to the obser-
vations made by Oesch et al. [26], Dashlane and LastPass now uses a stricter
master password policy. However, LastPass’ policy does not prevent users from
setting weak passwords. Bitwarden, on the other hand, has made no changes and
users can still set extremely weak master passwords without warning. Given the
low quality of passwords created by users [10] and their inability to distinguish
between weak and strong passwords [30], password managers should reevaluate
their master password policies.

8.2 Scope for Future Work

iOS Password Managers. Our studies concentrated solely on Android Password
Manager applications. With approximately 72% of all mobiles sold on our planet
being Android devices [34], we felt the need to prioritise the study of Android
password managers. Since most password managers are native applications with
different codebases, password managers on iOS could suffer from completely
different security issues. With the rest of the mobile market belonging to iOS
devices, we believe it is necessary to have a detailed study on iOS password
managers.

Evaluating Security of Server-Side Software. Almost all studies on password
managers have exclusively been concentrated on the client side of password
managers. Since these password managers depend on software running on the
developers’ servers for password sharing and syncing of the vault across multiple
devices, there is a definite need for investigating security of that software.

Better Password Strength Meters. As shown in Subsect. 4.2, LastPass’ pro-
nounceable password generator produces passwords that are much weaker than
expected. Most password strength meters like ZXCVBN [36] and neural network-
based strength estimators [36] do not compensate for known character frequency
distributions. As a result, the strength displayed in these applications is overesti-
mated. Therefore, there is a need for building efficient password strength meters
that can take into account the character and n-gram distributions of produced
passwords.

Analysis of Information Collected by Third-Party Libraries. As discovered by
Mike Kuketz [19], password managers include third-party tracking libraries that
collect usage statistics and crash reports. During our investigations, we confirmed
that all three applications include the tracking libraries detected by Kuketz. In
addition, we discovered that the Dashlane application includes sentry-native, an
error reporting library. Since these libraries run in the same application sandbox
as the password managers, there is a possibility for decrypted credentials in the
process memory to be read by these libraries. Thus, it is necessary to investigate
whether decrypted credentials can ever be collected and transferred over the
network through these libraries.

https://github.com/getsentry/sentry-native

20 A. Sharma and S. Mishra

9 Conclusion

Although Android’s autofill framework has eliminated the possibility of several
issues that have earlier been found in desktop and browser-based password man-
agers [35], passwords managers on Android devices still suffer from issues like
storage of unencrypted metadata, generation of non-random passwords, weak
master password policies, and leaking credentials through other channels. We
observe that users are still responsible for configuring their password managers
correctly and that failure to do so may open them up to attacks [26]. With
increased media coverage and advertising [8,18], we believe that password man-
agers will continue to increase in popularity. Hence, we encourage future research
that helps improve both the security and usability aspects of password managers.

Disclosure. All vulnerabilities and issues have been responsibly disclosed to the devel-

opers of the password managers. We hope that these issues will be resolved soon and

help improve the security of password managers.

References

1. Adams, A., Sasse, M.A.: Users are not the enemy. Commun. ACM 42(12), 40–46
(1999)

2. Android Developers: Application fundamentals (2021). https://developer.android.
com/guide/components/fundamentals. Accessed 10 Feb 2021

3. Android Developers: Autofill framework (2021). https://developer.android.com/
guide/topics/text/autofill. Accessed 18 March 2021

4. Android Developers: Android keystore system (2022). https://developer.android.
com/training/articles/keystore. Accessed 14 Jan 2022

5. Aonzo, S., Merlo, A., Tavella, G., Fratantonio, Y.: Phishing attacks on modern
android. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, pp. 1788–1801. Association for Computing
Machinery, New York (2018)

6. Bakry, T.H., Mysk, T.: Popular iPhone and iPad apps snooping on the pasteboard
(2020)

7. Bitwarden Inc.: How Bitwarden Works (2021). https://bitwarden.com/products/#
how-bitwarden-works. Accessed 13 March 2021

8. Broida, R.: Need a LastPass alternative? This is the best free password manager
we’ve found (2021). https://www.cnet.com/news/need-a-lastpass-alternative-
bitwarden-is-the-best-free-password-manager-we-found-2021/. Accessed 2 Apr
2021

9. Business Wire Inc.: Bitwarden Selected as Best Password Manager by US
News & World Report (2021). https://www.businesswire.com/news/home/
20210113005308/en/. Accessed 2 Apr 2021

10. CSID: Consumer survey: Password habits (2012). https://www.csid.com/wp-
content/uploads/2012/09/CS PasswordSurvey FullReport FINAL.pdf. Accessed
10 Mar 2021

https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://bitwarden.com/products/#how-bitwarden-works
https://bitwarden.com/products/#how-bitwarden-works
https://www.cnet.com/news/need-a-lastpass-alternative-bitwarden-is-the-best-free-password-manager-we-found-2021/
https://www.cnet.com/news/need-a-lastpass-alternative-bitwarden-is-the-best-free-password-manager-we-found-2021/
https://www.businesswire.com/news/home/20210113005308/en/
https://www.businesswire.com/news/home/20210113005308/en/
https://www.csid.com/wp-content/uploads/2012/09/CS_PasswordSurvey_FullReport_FINAL.pdf
https://www.csid.com/wp-content/uploads/2012/09/CS_PasswordSurvey_FullReport_FINAL.pdf

A Security Analysis of Password Managers on Android 21

11. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: Network and Distributed System Security Symposium (2014)

12. Dashlane Inc.: Dashlane security white paper (2020). https://www.dashlane.com/
download/Dashlane SecurityWhitePaper November2020.pdf. Accessed 12 Mar
2021

13. Fahl, S., Harbach, M., Oltrogge, M., Muders, T., Smith, M.: Hey, you, get off of
my clipboard. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 144–161.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 12

14. Florêncio, D., Herley, C., van Oorschot, P.C.: An administrator’s guide to internet
password research. In: 28th Large Installation System Administration Conference
(LISA14), pp. 44–61. USENIX Association, Seattle (2014)

15. Garćıa, D.: bitwarden rs: Unofficial Bitwarden compatible server written in Rust
(2021). https://github.com/dani-garcia/bitwarden rs. Accessed 14 Apr 2021

16. Gasti, P., Rasmussen, K.B.: On the security of password manager database formats.
In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp.
770–787. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-
1 44

17. Habib, H., et al.: User behaviors and attitudes under password expiration policies.
In: Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018), pp.
13–30. USENIX Association, Baltimore (2018)

18. Henry, A., Fitzpatrick, J., Hesse, B.: The Best Password Managers (2019). https://
lifehacker.com/the-five-best-password-managers-5529133. Accessed 12 Apr 2021

19. Kuketz, M.: Wie tracking in apps die sicherheit und den datenschutz
unnötig gefährdet (2021). https://www.kuketz-blog.de/wie-tracking-in-apps-die-
sicherheit-und-den-datenschutz-unnoetig-gefaehrdet. Accessed 10 Mar 2021

20. Li, Z., He, W., Akhawe, D., Song, D.: The emperor’s new password manager:
security analysis of web-based password managers. In: Proceedings of the 23rd
USENIX Conference on Security Symposium, SEC 2014, pp. 465–479. USENIX
Association, USA (2014)

21. LogMeIn Inc.: Enterprise Security Model—LastPass (2021). https://www.lastpass.
com/enterprise/security. Accessed 17 Feb 2021

22. Melicher, W., et al.: Fast, lean, and accurate: modeling password guessability using
neural networks. In: 25th USENIX Security Symposium (USENIX Security 2016),
pp. 175–191. USENIX Association, Austin (2016)

23. Microsoft Inc.: Xamarin documentation - Xamarin—Microsoft Docs (2021).
https://docs.microsoft.com/en-us/xamarin/. Accessed 4 Apr 2021

24. Munroe, R.: Password strength (2011). https://xkcd.com/936. Accessed 3 Mar
2021

25. Oberlo: What percentage of internet traffic is mobile? (2021). https://www.oberlo.
com/statistics/mobile-internet-traffic. Accessed 10 Apr 2021

26. Oesch, S., Ruoti, S.: That was then, this is now: a security evaluation of password
generation, storage, and autofill in browser-based password managers. In: 29th
USENIX Security Symposium (USENIX Security 2020), pp. 2165–2182. USENIX
Association (2020)

27. Ormandy, T.: Issue 1930: lastpass: bypassing do popupregister() leaks creden-
tials from previous site (2019). https://bugs.chromium.org/p/project-zero/issues/
detail?id=1930. Accessed 15 Apr 2021

28. Pearman, S., Zhang, S.A., Bauer, L., Christin, N., Cranor, L.F.: Why people (don’t)
use password managers effectively. In: Fifteenth Symposium On Usable Privacy and
Security (SOUPS 2019), pp. 319–338. USENIX Association, Santa Clara (2019)

https://www.dashlane.com/download/Dashlane_SecurityWhitePaper_November2020.pdf
https://www.dashlane.com/download/Dashlane_SecurityWhitePaper_November2020.pdf
https://doi.org/10.1007/978-3-642-39884-1_12
https://github.com/dani-garcia/bitwarden_rs
https://doi.org/10.1007/978-3-642-33167-1_44
https://doi.org/10.1007/978-3-642-33167-1_44
https://lifehacker.com/the-five-best-password-managers-5529133
https://lifehacker.com/the-five-best-password-managers-5529133
https://www.kuketz-blog.de/wie-tracking-in-apps-die-sicherheit-und-den-datenschutz-unnoetig-gefaehrdet
https://www.kuketz-blog.de/wie-tracking-in-apps-die-sicherheit-und-den-datenschutz-unnoetig-gefaehrdet
https://www.lastpass.com/enterprise/security
https://www.lastpass.com/enterprise/security
https://docs.microsoft.com/en-us/xamarin/
https://xkcd.com/936
https://www.oberlo.com/statistics/mobile-internet-traffic
https://www.oberlo.com/statistics/mobile-internet-traffic
https://bugs.chromium.org/p/project-zero/issues/detail?id=1930
https://bugs.chromium.org/p/project-zero/issues/detail?id=1930

22 A. Sharma and S. Mishra

29. Pearson, K.: X. on the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. London Edinburgh Dublin Philos.
Mag. J. Sci. 50(302), 157–175 (1900)

30. Pittman, J.M., Robinson, N.: Shades of perception- user factors in identifying
password strength (2020)

31. Roy, A., Memon, N., Ross, A.: MasterPrint: exploring the vulnerability of partial
fingerprint-based authentication systems. IEEE Trans. Inf. Forensics Secur. 12(9),
2013–2025 (2017)

32. Seiler-Hwang, S., Arias-Cabarcos, P., Maŕın, A., Almenares, F., Dı́az-Sánchez, D.,
Becker, C.: “I don’t see why i would ever want to use it”: analyzing the usabil-
ity of popular smartphone password managers. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, pp.
1937–1953. Association for Computing Machinery, New York (2019)

33. Silver, D., Jana, S., Boneh, D., Chen, E., Jackson, C.: Password managers: attacks
and defenses. In: 23rd USENIX Security Symposium (USENIX Security 2014), pp.
449–464. USENIX Association, San Diego (2014)

34. Statcounter: Mobile Operating System Market Share Worldwide (2022). https://
gs.statcounter.com/os-market-share/mobile/worldwide. Accessed 5 Aug 2022

35. Stock, B., Johns, M.: Protecting users against XSS-based password manager abuse.
In: Proceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security, ASIA CCS 2014, pp. 183–194. Association for Computing
Machinery, New York (2014)

36. Wheeler, D.L.: zxcvbn: low-budget password strength estimation. In: 25th USENIX
Security Symposium (USENIX Security 2016), pp. 157–173. USENIX Association,
Austin (2016)

37. Zhang, X., Du, W.: Attacks on android clipboard. In: Dietrich, S. (ed.) DIMVA
2014. LNCS, vol. 8550, pp. 72–91. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08509-8 5

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.1007/978-3-319-08509-8_5
https://doi.org/10.1007/978-3-319-08509-8_5

The Design and Application of a Unified
Ontology for Cyber Security

Khandakar Ashrafi Akbar1(B), Fariha Ishrat Rahman1, Anoop Singhal2,
Latifur Khan1, and Bhavani Thuraisingham1

1 The University of Texas at Dallas, Richardson, USA
{khandakarashrafi.akbar,farihaishrat.rahman,lkhan,bxt043000}@utdallas.edu

2 National Institute of Standards and Technology, Gaithersburg, USA
anoop.singhal@nist.gov

Abstract. Ontology enables semantic interoperability, making it highly
valuable for cyber threat hunting. Community-driven frameworks like
MITRE ATT&CK, D3FEND, ENGAGE, CWE and CVE have been
developed to combat cyber threats. However, manually navigating these
independent data sources is time-consuming and impractical in high-
stakes situations. By adopting an ontology-based approach, these cyber-
security resources can be unified, enabling a holistic view of the threat
landscape. Additionally, leveraging semantic query languages empowers
analysts to make the most of existing data sources. This paper explores
how through the application of a semantic query language (SPARQL)
on a unified cybersecurity ontology, analysts can effectively exploit the
information contained within these resources to strengthen their defense
strategies against cyber threats.

Keywords: Ontology · OWL · SPARQL · Cybersecurity

1 Introduction

In an era of unprecedented network expansion, the ever-growing scale of com-
puter networks has paved the way for malicious entities to orchestrate large-scale
attacks, posing a substantial risk to the individuals and organizations that rely
on these interconnected systems. Compounding this threat is the relentless inge-
nuity of attackers, who seek out novel methods to infiltrate and compromise sys-
tems, requiring constant vigilance and robust defensive strategies to safeguard
against these evolving cyber risks.

Advanced Persistent Threats (APTs) represent a category of highly sophisti-
cated cyber threats carried out by known groups of actors, who have been identi-
fied by the tactics, techniques, and procedures (TTPs) they use [20]. While APTs
pose significant challenges due to their evolutionary nature [10], the security com-
munity remains committed to its ongoing effort to improve defense against these
attacks. Information sharing plays a crucial role in this effort; knowledge about

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 23–41, 2023.
https://doi.org/10.1007/978-3-031-49099-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_2

24 K. A. Akbar et al.

the perpetrators, their methods, and targets is disclosed through various gov-
ernment and industry channels [20]. The frameworks and data sources, MITRE
ATT&CK, D3FEND, ENGAGE, CWE and CVE offer valuable insights into the
tactics and techniques employed by threat actors, the weaknesses and vulner-
abilities they exploit, and effective countermeasures. However, the information
pertaining to APTs is scattered across these different resources, highlighting
the need for consolidation to facilitate effective analysis and improve mitigation
strategies.

Technical contextualization in cybersecurity is necessary for a prompt, suc-
cessful cyber threat response. Particularly in post-compromise scenarios, the
effectiveness of defending against adversarial behavior significantly improves
when analysts can efficiently narrow down their focus, disregarding irrelevant
information through analytics [21]. The key challenge faced by analysts is the
overwhelming volume of information they need to access in order to effectively
analyze incoming attacks. This information gap can significantly impede ana-
lysts when responding to time-sensitive threats. In our proposal, we introduce
a tool that aims to bridge the information gap by providing analysts with rele-
vant knowledge quickly and efficiently. This is achieved through the creation of
an ontology, which streamlines the process of accessing pertinent information in
just a few steps.

Ontologies are formal representations of knowledge about a domain, and they
provide a structured way to represent the components and relationships of a net-
work. By using ontologies, it is possible to gain a deeper understanding to aid
in identifying and preventing the spread of attacks. We developed a knowledge
base (KB) in the form of an ontology. This knowledge base (KB) serves to estab-
lish connections between various components within the cybersecurity domain.
It links ATT&CK tactics and techniques, weaknesses documented in the Com-
mon Weakness Enumeration (CWE) database, vulnerabilities listed in the Com-
mon Vulnerabilities and Exposures (CVE) database, defensive solutions outlined
in MITRE’s D3FEND framework, and adversary engagement techniques from
MITRE’s ENGAGE framework.

By linking these different elements, the KB provides a comprehensive under-
standing of the relationships between attack techniques, weaknesses, vulnerabil-
ities, defensive solutions, and adversary engagement techniques. This integrated
information allows for a more holistic approach to cybersecurity, enabling organi-
zations to identify potential threats, assess their impact, develop effective defen-
sive strategies, and employ adversary engagement techniques to better under-
stand and counteract adversaries.

Without proper inference capabilities provided by an existing KB, security
analysts may struggle to extract the necessary information for pre-offensive and
defensive tasks. Therefore, our ontology’s inferential capability proves valuable
in cybersecurity scenarios, such as detecting ongoing attack tactics or techniques
and identifying the vulnerabilities that may have contributed to the situation. By
utilizing the association information within our ontology, analysts can identify
and remove the responsible application from other systems, mitigating potential
repercussions.

The Design and Application of a Unified Ontology for Cyber Security 25

To demonstrate the utility of our ontology, we can explore the following sce-
nario. The APT kill chain unfolds in stages, and each stage can be linked to
one or more tactics from the ATT&CK framework. Once the current stage of an
APT campaign is identified, we can leverage SPARQL queries on our ontology to
infer the potential tactics and techniques that might be utilized in the subsequent
stages. This information enables us to make additional inferences and retrieve
all the defensive countermeasures associated with these attack techniques. In
the event that a specific attack technique is identified, we can retrieve the corre-
sponding CVE tags, which can further assist in narrowing down the search for
suitable countermeasures. Additionally, by retrieving a list of affected products
that exhibit these vulnerabilities, we can proactively address and remedy the
potential security issues.

Our ontology, coupled with the utilization of SPARQL queries and the inte-
gration of multiple data sources, facilitates a faster response to cybersecurity
incidents.

Our contribution can be summarised as follows:

1. Construction of a Unified Ontology that serves as a comprehensive Knowl-
edge Base encompassing APT tactics/techniques, weaknesses, vulnerabilities,
adversary engagement techniques, and defense countermeasures.

2. Investigation of semantic queries (SPARQL) to extract relevant context and
relationships from the Ontology, which can be utilized to draw meaningful
inferences and accelerate the response process.

The rest of the paper is structured into six sections. Section 2 provides an
introduction to semantic web technologies and the data sources utilized in build-
ing the ontology. In Sect. 3, the construction process of our ontology is explained.
In Sect. 4, we demonstrate the practical use case of our ontology through example
SPARQL queries that extract valuable insights. Section 5 discusses related work
in the field, while Sect. 6 outlines potential areas for future research. Finally,
Sect. 7 presents the conclusion of the study.

2 Background

In this section, we provide an introduction to the semantic web technologies
employed for building and exploring our ontology. Subsequently, we present an
overview of the data sources utilized in constructing the ontology.

2.1 Semantic Web Technologies

RDF [26], or the Resource Description Framework, is a versatile framework
designed to represent interconnected data on the web. It provides a simple
data model based on subject-predicate-object triples, allowing the description of
relationships between resources. RDF’s capacity to integrate data from diverse
sources makes it a comprehensive proposition language, capable of unifying and
consolidating heterogeneous data from multiple origins [23]. OWL [24] is an

26 K. A. Akbar et al.

expressive language for creating ontologies. It extends RDF by providing addi-
tional constructs and vocabulary to define classes, properties, and relationships
in a more structured and semantically rich manner. OWL allows for the specifi-
cation of logical constraints, reasoning capabilities, and inference rules to enable
automated reasoning and deduction over the ontology. SPARQL [25], a semantic
query language for databases, is specifically designed to query and manipulate
data stored in the Resource Description Framework (RDF) format. It has been
employed to execute queries on the RDF data generated from the ontology.

2.2 Data Sources

The ontology is developed using cyber threat intelligence sourced from the fol-
lowing MITRE frameworks and datasources – ATT&CK (Adversarial Tactics,
Techniques, and Common Knowledge), D3FEND (Detection, Denial, and Dis-
ruption Framework Empowering Network Defense), ENGAGE, CWE(Common
Weakness Enumeration), and CVE(Common Vulnerabilities and Exposures).

ATT&CK [6] is a comprehensive knowledge base that focuses on adversary
behavior and tactics observed in real-world cyber attacks. It categorizes various
tactics, techniques, and sub-techniques used by threat actors, providing insights
into their strategies and methodologies. The enterprise attack matrix has served
as a foundational resource for constructing our ontology. This matrix provides an
overview of 14 attack tactics, which are further categorized into 196 techniques
and 411 sub-techniques. APT attacks follow a seven-stage kill chain [27], includ-
ing Initial Compromise, Establish Foothold, Escalate Privileges, Internal Recon-
naissance, Move Laterally, Maintain Presence, and Complete Mission. Attackers
employ tactics from the MITRE ATT&CK framework throughout these stages.
Understanding these stages and tactics helps organizations defend against APT
attacks.

D3FEND [4] is designed to complement ATT&CK by focusing on defensive
techniques and countermeasures. The D3FEND matrix describes 6 defensive tac-
tics, which are further categorized into 22 techniques and 154 sub-techniques.
These defensive tactics and techniques are directly linked to Digital Artifact
Objects (DAOs), which, in turn, are connected to offensive techniques. The rela-
tionship between offensive techniques and defensive countermeasures is estab-
lished through these DAOs.

ENGAGE [7] provides a framework that aligns defenders, vendors, and
decision-makers by capturing real-world adversary behavior and guiding strate-
gic cyber outcomes. The ENGAGE Matrix is composed of three main com-
ponents: Goals, Approaches, and Activities. When adversaries exhibit specific
behaviors or techniques from the ATT&CK framework, they inadvertently
expose vulnerabilities or weaknesses. By understanding these weaknesses, we

The Design and Application of a Unified Ontology for Cyber Security 27

can devise engagement activities that exploit these vulnerabilities and enhance
our defensive capabilities. Mapping the engagement activities in MITRE Engage
to specific ATT&CK techniques ensures that each activity is directly informed
by observed adversary behavior. For instance, if an adversary demonstrates the
Remote System Discovery technique (T1018), they may be vulnerable to col-
lecting, observing, or manipulating deceptive system artifacts or information.
Armed with this knowledge, defenders can strategize and employ tactics such as
using lures to elicit desired behaviors from the adversary, leveraging additional
or advanced capabilities against the target, or influencing the adversary’s dwell
time within the compromised environment [5].

CWE [3] is a collection of weaknesses found in software and hardware. These
weaknesses can arise in various aspects such as architecture, design, code, or
implementation, and can potentially lead to exploitable security vulnerabilities.
The purpose of CWE is to provide a standardized language for describing these
weaknesses, serving as a benchmark for security tools targeting these weaknesses,
and establishing a common standard for identifying, mitigating, and preventing
weaknesses. In essence, a weakness refers to a condition in a software, firmware,
hardware, or service component that, in specific circumstances, could contribute
to the introduction of vulnerabilities.

CVE [9] is a comprehensive list of publicly known vulnerabilities. Each entry in
the Common Vulnerabilities and Exposures (CVE) database, includes an iden-
tification number, a description, and references to publicly known cybersecurity
vulnerabilities. The entries may also provide additional information such as fixes,
severity scores, impact ratings based on the Common Vulnerability Scoring Sys-
tem (CVSS), and links to exploit and advisory information. Weaknesses are
errors that can lead to vulnerabilities [3], therefore, a connection can be estab-
lished between CWE and CVE entries. This relationship between CVE and CWE
implies that the Vulnerability is an example of the (type of) Weakness [11].

3 Ontological Design

Our ontology builds upon the work presented by Akbar et al. [2] and extends its
scope by incorporating the MITRE D3FEND and ENGAGE framework. Fur-
thermore, in contrast to their approach of associating vulnerability information
solely through the CVETag property, our work takes it a step further by integrat-
ing CWE weaknesses and CVE vulnerabilities as distinct classes. This expansion
provides access to additional properties such as CVSS scores and information
about specific products affected by the vulnerabilities. By incorporating these
elements, our approach offers a more comprehensive representation of weak-
nesses, vulnerabilities, countermeasures and adversary engagements, enhancing
the overall knowledge representation within the ontology.

28 K. A. Akbar et al.

Fig. 1. Conceptual Representation of the Unified Ontology

3.1 WAVED: Unified Ontology

Figure 1 illustrates the conceptual representation of our proposed ontology –
WAVED (Weakness, Att&ck, Vulnerability, Engage, D3fend). Our extended
ontology encompasses a total of 14 classes – Stages, Tactics, Techniques, Sub-
Techniques, CWE, CVE, Products, DAO (Digital Artifact Object), Defensive

The Design and Application of a Unified Ontology for Cyber Security 29

Tactics, Countermeasures, Sub Countermeasures, Engagement Goals, Engage-
ment Approaches and Engagement Activities. These classes represent different
entities within the ontology and are linked to each other. Table 1 provides an
overview of the classes that were used to build the ontology and the number of
instances for each class. Table 2 provides an overview of the object properties
that links these classes together.

The relationships among the instances of these classes are defined below:

1. uses: APT attack employs attack tactics in different stages of the kill chain.
2. has: Each attack tactic can be accomplished via different attack techniques.
3. contains: Each attack technique may or may not contain sub-techniques.
4. relatesTo: This relationship links offensive techniques and sub-techniques

to Digital Artifact Objects (DAOs).
5. isRelatedTo: Countermeasures and sub-countermeasures are linked to

DAOs through this relationship.
6. isPartOf: Digital Artifact Objects (DAOs) form a hierarchical structure,

with certain DAOs being part of other DAOs.
7. analyzes: This provides a direct link between defensive countermeasures/

sub-countermeasures and offensive techniques/sub-techniques.
8. hasSubclass: Countermeasures are a subclass of defense tactics.
9. includes: Countermeasures may be further specified into sub-

countermeasures.
10. exploits: Offensive techniques/sub-techniques exploit vulnerabilities docu-

mented in the CVE.
11. affects: A product is affected by one or more vulnerabilities listed in the

CVE.
12. specifies: This relationship links CWE entries to CVE entries.
13. mapsTo: Engagement activities are mapped to attack techniques/sub-

techniques.
14. comprisesOf: Engagement activities are organized under engagement

approaches.
15. involves: Engagement approaches are organized under engagement goals.

30 K. A. Akbar et al.

Table 1. Overview of Ontology classes.

Class Instances Description

Stages 7 The seven stages of the APT kill chain: 1) Initial

Compromise, 2) Establish Foothold, 3) Escalate

Privileges, 4) Internal Reconnaissance, 5) Move

Laterally, 6) Maintain Presence, and 7) Complete

Mission

Tactics 14 Refers to tactics from the attack matrix. An attack

tactic refers to a high-level category or strategy used

by threat actors to achieve their objectives. It
represents a broad approach or methodology
employed in a cyber attack

Techniques 196 The means by which threat actors achieve their
tactical objectives. These techniques represent
specific actions, methods, or tools used by adversaries
to carry out their attacks. Each technique is
associated with a particular tactic

Sub-Techniques 411 ATT&CK techniques can be further categorized into
sub-techniques

Defensive Tactics 6 The elements of the D3FEND matrix are classified
into six high-level categories: Model, Harden, Detect,
Isolate, Deceive, and Evict. These categories serve as
a framework for organizing and classifying the various
techniques and countermeasures available to
defenders

Countermeasures 22 Each defensive tactic contains several techniques that
describe how to implement appropriate strategies to
counter cyber threats

Sub-
Countermeasures

154 Countermeasures can be further classified into
sub-countermeasures

DAO 521 The D3FEND matrix uses the concept of digital
artifacts to establish connections between the
defensive techniques with the offensive techniques
from the ATT&CK framework

CWE 1395* List of publicly known weaknesses found in software
and hardware

CVE 206798* List of publicly known cybersecurity vulnerabilities

Products 37465* List of products that are affected by one or more
vulnerabilities documented in the CVE database

Engagement Goals 3 ENGAGE matrix provides 3 engagement goals –
Expose, Affect, and Elicit that describe the desired
outcomes of adversary engagement operations

Engagement
Approaches

7 High-level methods or strategies used to engage the
adversary

Engagement
Activities

23 Concrete techniques or actions used to implement the
engagement approaches

* To demonstrate the use case of our ontology, only a subset of these instances were
utilized in its construction.

The Design and Application of a Unified Ontology for Cyber Security 31

Table 2. Object Properties of the Ontology

Property Domain Range

uses Stages Tactics

has Tactics Techniques

contains Techniques Sub-techniques

relatesTo Techniques, Sub-Techniques DAO

isRelatedTo Countermeasures,
Sub-Countermeasures

DAO

isPartOf DAO DAO

hasSubclass Defensive-Tactics Countermeasures

includes Countermeasures Sub-Countermeasures

analyzes Countermeasures,
Sub-Countermeasures

Techniques, Sub-Techniques

exploits Techniques, Sub-Techniques CVE

affects CVE Products

specifies CWE CVE

mapsTo Engagement-Activities Techniques, Sub-Techniques

comprisesOf Engagement-Approaches Engagement-Activities

involves Engagement-Goals Engagement-Approaches

4 Querying Ontology for Security Insights

Semantic query language can be used to explore and make inferences from the
ontology. In this section, we showcase examples of sparql queries that can be
applied to our unified ontology to gain security insight and help analysts combat
cyber threats.

SPARQL is a valuable tool for querying ontologies due to its capabilities in
handling complex joins and relationships among entities and properties within
the ontology. It enables the execution of analytic query operations, such as joins,
sorting, aggregation, and filtering. SPARQL’s flexibility and functionality make
it well-suited for querying ontologies and extracting meaningful insights from
the data they represent.

4.1 Simple Queries

In this section, we will explore some simple SPARQL queries that can be used to
retrieve information from classes of a single datasource or to retrieve combined
information by joining two datasources. An overview of these queries are pre-
sented in Table 3. The first column presents the queries expressed in English,
while the second column presents the corresponding queries implemented in
SPARQL.

32 K. A. Akbar et al.

Table 3. Examples of simple SPARQL queries

Query SPARQL

Q1. Retrieve CVE
tags for a certain
adversarial
technique
(Command and
Scripting
Interpreter)

PREFIX WAVED: <ontologyURI>
SELECT ?technique ?value
WHERE {

?technique WAVED:CVETag ?value.
FILTER(?technique=<ontologyURI

#Command and Scripting Interpreter>).
}

Q2. Retrieve
products that
might contain a
particular
vulnerability
(CVE-2022-24663)

PREFIX WAVED: <ontologyURI>
SELECT ?CVE ?Products
WHERE {

?CVE WAVED:affects ?Products.
FILTER(?CVE=<ontologyURI#CVE-2022-24663>).}

Q3. Retrieve
specifics of a
certain product
(Chrome)

PREFIX WAVED: <ontologyURI>
SELECT ?Products ?Product Type ?Vendor ?Product

?Edition ?Language ?Version ?Update
WHERE {

?Products WAVED:Product Type ?Product Type.
?Products WAVED:Vendor ?Vendor.
?Products WAVED:Product ?Product.
?Products WAVED:Version ?Version.
?Products WAVED:Update ?Update.
?Products WAVED:Edition ?Edition.
?Products WAVED:Language ?Language.
FILTER(?Products=<ontologyURI#Chrome>).

}
Q4. Retrieve APT
stage, tactic,
technique/
sub-technique
associated with a
specific CVE Tag
(CVE-2019-1943)

PREFIX WAVED: <ontologyURI>
SELECT ?stage ?tactic ?technique ?sub-technique
WHERE {

?stage WAVED:uses ?tactic.
?tactic WAVED:has ?technique.
?technique WAVED:contains ?sub-technique.
?technique WAVED:CVETag “CVE-2019-1943”.

}

Q5. Retrieve
defensive
countermeasures
that are related to
the same attack
technique

PREFIX WAVED: <ontologyURI>
SELECT ?countermeasure1 ?attack technique1
WHERE {

?countermeasure1 WAVED:analyzes ?attack technique1
{

SELECT ?countermeasure2 ?attack technique2
WHERE {

?countermeasure2 WAVED:analyzes
?attack technique2.

}
}
FILTER(?attack technique1= ?attack technique2).

}
(continued)

The Design and Application of a Unified Ontology for Cyber Security 33

Table 3. (continued)

Query SPARQL

Q6. Retrieve all
defensive
countermeasures
for a certain
attack technique
(Boolkit)

PREFIX WAVED: <ontologyURI>
SELECT ?countermeasures
WHERE {

?technique WAVED:analyzes ?attack techniques.
FILTER(?attack techniques =<ontologyURI

#Boolkit>).
}

Q7. Retrieve all
connected attack
techniques to a
defensive
countermeasure
(Bootloader
Authentication)

PREFIX WAVED: <ontologyURI>
SELECT ?attack techniques
WHERE {

?countermeasures WAVED:analyzes ?attack techniques.
FILTER(?countermeasures =<ontologyURI

#Bootloader Authentication>).
}

Q8. Associate
defensive
countermeasures
with attack
techniques
through DAOs

PREFIX WAVED: <ontologyURI>
SELECT ?countermeasure ?attack technique
WHERE {

?countermeasure WAVED:isRelatedTo ?dao.
?attack technique WAVED:relatesTo ?dao.

}
Q9. Retrieve
countermeasures
when a specific
attack technique is
detected (Valid
Accounts)

PREFIX WAVED: <ontologyURI>
SELECT ?attack techniques
WHERE {

?countermeasures WAVED:analyzes ?attack techniques.
FILTER(?attack techniques=<ontologyURI

#Valid Accounts>).
}

Q10. Retrieve
engagement
activity mapped to
a certain
adversarial
technique (Remote
System Discovery)

PREFIX WAVED: <ontologyURI>
SELECT ?technique ?engagement-activity
WHERE {

?technique WAVED:mapsTo ?engagement-activity.
FILTER(?technique=<ontologyURI

#Remote System Discovery>).
}

Q11. Retrieve
CWE entry
associated to a
specific CVE
(CVE-2009-1699)

PREFIX WAVED: <ontologyURI>
SELECT ?CWE ?CVE
WHERE {

?CWE WAVED:specifies ?CVE.
FILTER(?CVE=<ontologyURI#CVE-2009-1699>).

}
Q12. Retrieve all
CVE entries
associated to a
specific CWE
(CWE-611)

PREFIX WAVED: <ontologyURI>
SELECT ?CWE ?CVE
WHERE {

?CWE WAVED:specifies ?CVE.
FILTER(?CWE=<ontologyURI#CWE-611>).

}

34 K. A. Akbar et al.

Q1 demonstrates how our ontology enables us to query and retrieve vulner-
abilities that are susceptible to specific adversarial techniques. Conversely, we
can also perform reverse queries to obtain information about adversarial stages,
tactics, techniques, and sub-techniques linked to a particular CVE tag, as demon-
strated in Q4 using the example “CVE-2019-1943”. The result of this query is
presented in Table 4. This highlights the bidirectional nature of our ontology
in providing insights into the relationship between adversarial techniques and
vulnerabilities.

Table 4. Result from SPARQL Query Q4

Stage Tactic Technique Sub-Technique

Completed Mission Impact Data Manipulation Transmitted Data Manipulation

Completed Mission Impact Data Manipulation Stored Data Manipulation

Completed Mission Impact Data Manipulation Runtime Data Manipulation

....

Our ontology also enables the identification of products that may be affected
by specific vulnerabilities. Q2 exemplifies this by querying for such products. By
delving deeper into the information, as shown in Q3, security analysts can obtain
comprehensive details about the involved products. This knowledge empowers
them to evaluate whether a specific version of a product is present in their system
and take appropriate actions if any vulnerability associated with that version is
detected.

Q5 provides a comprehensive list of defensive countermeasures organized by
attack techniques. This query can be further refined to focus on specific attack
techniques of interest. For example, Q6 retrieves the countermeasures associ-
ated with the “Boolkit” attack technique. By reviewing the list of defensive
countermeasures linked to a particular attack technique, security analysts can
explore alternative approaches if one countermeasure proves ineffective. This
query empowers analysts to make informed decisions and adapt their defensive
strategies based on the available options and their effectiveness in countering
specific attack techniques. Conversely, Q7 focuses on retrieving all attack tech-
niques connected to a specific defensive countermeasure, specifically those asso-
ciated with “Bootloader Authentication”. Table 5 presents a subset of the list
of attack techniques linked to this defensive countermeasure, providing valuable
insights into the potential threats that this countermeasure aims to mitigate.

The Design and Application of a Unified Ontology for Cyber Security 35

Table 5. Result from SPARQL Query Q7

Attack Techniques

Software Packing

AppCert DLLs

Dynamic-Link Library Injection

Thread Execution Hijacking

File Deletion

Application Layer Protocol

...

The ontology leverages Digital Artifact Objects (DAOs) to establish connec-
tions between defensive countermeasures or sub-countermeasures and offensive
techniques or sub-techniques. Q8 is designed to retrieve this mapping, showcas-
ing the relationship between countermeasures and attack techniques. A snippet
of the result from this query is provided in Table 6, offering a glimpse into the
interconnectedness of defensive measures and offensive techniques within the
ontology.

Table 6. Result from SPARQL Query Q8

Countermeasures Attack Techniques

Credential Compromise Scope Analysis OS Credential Dumping

Authentication Cache Invalidation Additional Cloud Credentials

Credential Revoking Unsecured Credentials

Decoy Session Token Unsecured Credentials

.....

By correlating engagement activities in MITRE Engage with specific
ATT&CK techniques, we can determine the appropriate engagement activity
to exploit vulnerabilities demonstrated by adversaries. Q10 demonstrates this
by retrieving the engagement activity associated with the use of the Remote
System Discovery technique by adversaries.

A CWE entry is associated with a collection of CVE vulnerability entries.
This connection allows for the identification of similar vulnerabilities across dif-
ferent operating systems and applications, which can occur due to shared soft-
ware development practices or coding styles. When anticipating an upcoming
attack stage, it is crucial to not only focus on individual vulnerabilities but
also understand the underlying weaknesses present in the system. By analyzing
the weakness associated with a vulnerability, it becomes possible to proactively
assess the potential presence of other vulnerabilities that may stem from the

36 K. A. Akbar et al.

same weakness. This holistic approach, rather than addressing vulnerabilities in
isolation, allows for a more comprehensive understanding of the system’s secu-
rity landscape. By querying the ontology, Q11 demonstrates how the weakness
associated with a specific vulnerability can be retrieved, while Q12 showcases
how all vulnerabilities organized under a particular weakness can be retrieved.
These capabilities enable security analysts to take preemptive actions and miti-
gate potential risks before they can be exploited.

4.2 Advanced Queries

To fully unlock the potential of our ontology, having access to a complete and
comprehensive context is vital. This underscores the importance of being able
to execute a single query that can instantly retrieve information from multiple
data sources. In this section, we explore complex queries that facilitate such
capabilities.

The primary use case of our ontology is focused on detecting and mitigating
Advanced Persistent Threat (APT) campaigns. When a specific stage of an APT
campaign is detected in a system, it indicates that the attacker may advance
to the next stage at any time. To effectively mitigate these threats, prompt
identification and patching of vulnerabilities in the system is essential. It is not
only crucial to identify the vulnerabilities that may be exploited but also to
identify appropriate analysis tools to defend against or mitigate an imminent
attack.

Figure 2 illustrates an example query in which the adversary has already
established a foothold in the system. The next stage anticipated is “Escalate
Privileges”. By using this query, we can retrieve information about the vulnera-
bilities that the adversary is likely to exploit in the next stage. Additionally, the
query allows us to identify the appropriate countermeasures that can be taken
to defend against these vulnerabilities and hinder the adversary’s progress.

Fig. 2. Retrieve Vulnerabilities and Countermeasures associated with the APT Stage
“Escalate Privileges”

The Design and Application of a Unified Ontology for Cyber Security 37

However, with the proliferation of technology across various domains, the
number of vulnerabilities has significantly increased, posing a challenge in deter-
mining which vulnerabilities should be addressed without significant delays. Our
ontology addresses this challenge by providing a list of associated vulnerabilities
that require immediate attention. By extending the ontology to include severity
scores of CVEs and information on software prone to these vulnerabilities, secu-
rity analysts can prioritize and address the most critical vulnerabilities promptly.

Figure 3 demonstrates how when a weakness (CWE-125) is identified within a
system, we can retrieve the vulnerability, attack technique and countermeasures
associated with it in descending order of CVSS Score so that the most critical
vulnerabilities may be tackled first.

In summary, our ontology plays a vital role in detecting APT campaigns,
prioritizing vulnerability patching, identifying appropriate analysis tools, and
selecting defensive countermeasures and engagement activities to effectively
defend against sophisticated cyber threats. Its holistic approach to vulnerability
management and threat mitigation enhances the effectiveness of cybersecurity
efforts in addressing complex and evolving threats.

Fig. 3. Retrieve CVE, Attack Techniques and Countermeasures for a given weakness
(CWE-125) in descending order of CVSS Score

5 Related Work

Ontologies have proven to be effective and robust solutions for representing
domain-specific knowledge, integrating data from diverse sources, and enabling
various semantic applications [19]. This is evident in various domains, includ-
ing the Internet of Things (IoT) [16] and Information Selection [13,14], where
ontology-based approaches have been applied to enhance data integration,
knowledge representation, and semantic reasoning.

According to the study conducted by JASON [8], constructing a common
language and a set of basic concepts within the cybersecurity research community

38 K. A. Akbar et al.

is vital for making significant progress in the field. As cybersecurity deals with
adversaries, these concepts may evolve over time, but having a shared language
and agreed-upon experimental protocols will facilitate hypothesis testing and
concept validation.

Threat intelligence plays a crucial role in enhancing security operations by
providing evidence-based knowledge about current and potential cyber threats.
This leads to improved efficiency and effectiveness in detecting and preventing
such threats. To effectively organize and represent this knowledge, tools like
taxonomies, sharing standards, and ontologies are used. However, upon analyzing
existing taxonomies, sharing standards, and ontologies, it becomes apparent that
a comprehensive threat intelligence ontology is lacking [15]. This underscores the
need for the development of a more encompassing ontology to address this gap
and enable more cohesive and coherent cybersecurity research efforts.

In the domain of network security, several existing ontologies have been devel-
oped to capture domain-specific concepts and relationships. Obrst et al. [17]
proposed a methodology for creating ontologies based on well-defined ones that
can be used as modular sub-ontologies. They emphasized the usefulness of exist-
ing schemas, dictionaries, glossaries, and standards as a means of knowledge
acquisition for defining an ontology.

Oltramari et al. [18] introduced a three-layer cyber security ontology called
CRATELO with the goal of improving the situational awareness of security
analysts and enabling optimal operational decisions through semantic represen-
tation. They built upon existing ontologies, extending them to include security-
related middle-level ontology (SECCO) and low-level sub-ontology (OSCO) for
capturing domain-specific scenarios related to threats, vulnerabilities, attacks,
countermeasures, and assets.

STUCCO [12] is another notable example of a network security ontology
that collects data from security systems and integrates it into a network secu-
rity knowledge graph. It consolidates information from various structured data
sources and establishes relationships among different entity types, such as soft-
ware, vulnerabilities, and attacks.

The Unified Cybersecurity Ontology (UCO) [22], developed by Syed et
al., focuses on integrating various cybersecurity ontologies, heterogeneous data
schemes, and common cybersecurity standards to facilitate the sharing and
exchange of cyber threat intelligence. UCO aims to unify the representation
of threat and vulnerability data within knowledge graphs and ontologies.

Similarly, BRON [11] utilizes a single bidirectional graph to connect entries
from different sources, ranging from tactics to vulnerable software. This rela-
tional approach enables the representation and analysis of various aspects of
network security.

Our ontology improves upon existing implementations by integrating a more
diverse and comprehensive range of data sources. It goes beyond just capturing
attacks and vulnerabilities to include countermeasures and adversary engage-
ment techniques, providing a broader scope for analysis. Additionally, our paper
highlights how our ontology enriches the context and enhances inferential capa-

The Design and Application of a Unified Ontology for Cyber Security 39

bilities by leveraging semantic query language to explore the extensive and
diverse data sources integrated within the ontology.

6 Limitations and Future Work

This paper primarily focuses on the modeling and querying of a cybersecurity
ontology. However, there is room for future work beyond the scope of this paper
that could explore semi-automating the construction process of the ontology.
The manual effort required for establishing associations between classes within
the ontology, such as defensive and offensive techniques, as well as linking attack
techniques with CVE tags, does come with its limitations. It’s worth noting
that even existing frameworks like D3FEND rely on manual knowledge base
generation, which demands significant human effort. The challenge becomes more
evident when trying to associate new defensive techniques with existing attack
techniques or zero-day attack methods. This underscores the pressing need for
automation in the association process, where machine learning and data-driven
approaches could offer substantial assistance [1].

Additionally, there may be gaps and missing links within the ontology that
require attention. This presents an opportunity for future enhancement by incor-
porating natural language processing (NLP) techniques. The automation poten-
tial of NLP can prove invaluable in predicting and establishing these missing links
within the ontology, significantly boosting its overall completeness and accuracy.
Moreover, NLP can be leveraged to extract pertinent information from diverse
sources such as reports, blogs, and threat report websites. By doing so, we can
enrich the ontology with up-to-date insights and data. Through the synergistic
integration of NLP and diverse data sources, the ontology can be expanded and
improved upon.

To bolster the paper’s contributions and provide tangible evidence of the
ontology’s effectiveness in real-world cybersecurity scenarios, empirical studies
are imperative. At present, empirical validation is an aspect that remains unad-
dressed, yet it is absolutely vital for gauging the practical applicability of the
proposed ontology. Looking ahead, we have concrete plans to take action in this
regard. Specifically, we are committed to releasing an all-encompassing tool that
incorporates our current ontology. This tool will be meticulously designed to
assist security analysts in their day-to-day tasks. This practical tool will enable
us to collect empirical evidence regarding the utility and real-world impact of
our ontology.

7 Conclusion

The importance of curated knowledge in the cybersecurity field cannot be over-
stated. In the face of attack incidents that demand immediate and impactful
actions, effective knowledge management plays a crucial role in providing guid-
ance to security analysts. Whether it is an individual or an organization, mini-
mizing the damage caused by cyber attacks hinges on the proper dissemination

40 K. A. Akbar et al.

of information. Our ontology serves as a valuable tool for curating knowledge
and assisting security analysts in effectively mitigating the continued spread of
ongoing cyber attacks.

Acknowledgement. The research reported herein was supported in part by NIST
Award # 60NANB23D007, NSF awards DMS-1737978, DGE-2039542, OAC-1828467,
OAC-1931541, and DGE-1906630, ONR awards N00014-17-1-2995 and N00014-20-1-
2738.

Disclaimer. Certain equipment, instruments, software, or materials are identified in

this paper in order to specify the experimental procedure adequately. Such identifi-

cation is not intended to imply recommendation or endorsement of any product or

service by NIST, nor is it intended to imply that the materials or equipment identified

are necessarily the best available for the purpose.

References

1. Akbar, K.A., Halim, S.M., Hu, Y., Singhal, A., Khan, L., Thuraisingham, B.:
Knowledge mining in cybersecurity: from attack to defense. In: Sural, S., Lu, H.
(eds.) DBSec 2022. LNCS, vol. 13383, pp. 110–122. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-10684-2 7

2. Akbar, K.A., Halim, S.M., Singhal, A., Abdeen, B., Khan, L., Thuraisingham, B.:
The design of an ontology for ATT&CK and its application to cybersecurity. In:
Proceedings of the Thirteenth ACM Conference on Data and Application Security
and Privacy [Poster Presentation], pp. 295–297 (2023)

3. MITRE Corporation: Common weakness enumeration. https://cwe.mitre.org/
4. MITRE Corporation: A knowledge graph of cybersecurity countermeasures.

https://d3fend.mitre.org/
5. MITRE Corporation: Mapping the engage matrix to MITRE ATT&CK. https://

engage.mitre.org/wp-content/uploads/2022/05/Mapping-Engage-to-ATTCK.pdf
6. MITRE Corporation: MITRE ATT&CK. https://attack.mitre.org/
7. MITRE Corporation: MITRE engage. https://engage.mitre.org/
8. MITRE Corporation: Science of cyber-security. https://irp.fas.org/agency/dod/

jason/cyber.pdf
9. MITRE Corporation: The ultimate security vulnerability data source. https://

www.cvedetails.com
10. NIST CSRC: Advanced persistent threat. https://csrc.nist.gov/glossary/term/

advanced persistent threat
11. Hemberg, E., et al.: Linking threat tactics, techniques, and patterns with defensive

weaknesses, vulnerabilities and affected platform configurations for cyber hunting.
arXiv preprint arXiv:2010.00533 (2020)

12. Iannacone, M., et al.: Developing an ontology for cyber security knowledge graphs.
In: Proceedings of the 10th Annual Cyber and Information Security Research Con-
ference, pp. 1–4 (2015)

13. Khan, L., McLeod, D., Hovy, E.: Retrieval effectiveness of an ontology-based model
for information selection. VLDB J. 13, 71–85 (2004)

https://doi.org/10.1007/978-3-031-10684-2_7
https://doi.org/10.1007/978-3-031-10684-2_7
https://cwe.mitre.org/
https://d3fend.mitre.org/
https://engage.mitre.org/wp-content/uploads/2022/05/Mapping-Engage-to-ATTCK.pdf
https://engage.mitre.org/wp-content/uploads/2022/05/Mapping-Engage-to-ATTCK.pdf
https://attack.mitre.org/
https://engage.mitre.org/
https://irp.fas.org/agency/dod/jason/cyber.pdf
https://irp.fas.org/agency/dod/jason/cyber.pdf
https://www.cvedetails.com
https://www.cvedetails.com
https://csrc.nist.gov/glossary/term/advanced_persistent_threat
https://csrc.nist.gov/glossary/term/advanced_persistent_threat
http://arxiv.org/abs/2010.00533

The Design and Application of a Unified Ontology for Cyber Security 41

14. Luo, F.: Ontology construction for information selection. In: 2002 Proceedings
of the 14th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2002), pp. 122–127. IEEE (2002)

15. Mavroeidis, V., Bromander, S.: Cyber threat intelligence model: an evaluation of
taxonomies, sharing standards, and ontologies within cyber threat intelligence. In:
2017 European Intelligence and Security Informatics Conference (EISIC), pp. 91–
98. IEEE (2017)

16. Mozzaquatro, B.A., Agostinho, C., Goncalves, D., Martins, J., Jardim-Goncalves,
R.: An ontology-based cybersecurity framework for the internet of things. Sens.
(Basel Switz.) 18(9), 3053 (2017). https://doi.org/10.3390/s18093053

17. Obrst, L., Chase, P., Markeloff, R.: Developing an ontology of the cyber security
domain. In: Semantic Technologies for Intelligence, Defense, and Security (STIDS),
pp. 49–56 (2012)

18. Oltramari, A., Cranor, L.F., Walls, R.J., McDaniel, P.D.: Building an ontology of
cyber security. In: Semantic Technologies for Intelligence, Defense, and Security
(STIDS), pp. 54–61 (2014)

19. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Birukou, A., Osborne,
F., Motta, E.: The computer science ontology: a comprehensive automatically-
generated taxonomy of research areas. Data Intell. 2(3), 379–416 (2020)

20. Shlapentokh-Rothman, M., Kelly, J., Baral, A., Hemberg, E., O’Reilly, U.M.:
Coevolutionary modeling of cyber attack patterns and mitigations using public
datasets. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pp. 714–722 (2021)

21. Strom, B.E., et al.: Finding cyber threats with ATT&CK-based analytics. The
MITRE Corporation, Bedford, MA, Technical report No. MTR170202 (2017)

22. Syed, Z., Padia, A., Finin, T., Mathews, L., Joshi, A.: UCO: a unified cybersecurity
ontology. UMBC Student Collection (2016)

23. Tomaszuk, D., Hyland-Wood, D.: RDF 1.1: knowledge representation and data
integration language for the web. Symmetry 12(1), 84 (2020)

24. World Wide Web Consortium (W3C): OWL web ontology language guide. Tech-
nical report, World Wide Web Consortium (2004). https://www.w3.org/TR/owl-
guide/

25. World Wide Web Consortium (W3C): SPARQL query language for RDF. Technical
report, World Wide Web Consortium (2008). https://www.w3.org/TR/rdf-sparql-
query/

26. World Wide Web Consortium (W3C): Resource description framework (RDF).
Technical report, World Wide Web Consortium (2014). https://www.w3.org/
RDF/

27. Zou, Q., Sun, X., Liu, P., Singhal, A.: An approach for detection of advanced
persistent threat attacks. Computer 53(12), 92–96 (2020)

https://doi.org/10.3390/s18093053
https://www.w3.org/TR/owl-guide/
https://www.w3.org/TR/owl-guide/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/RDF/
https://www.w3.org/RDF/

Big Data Forensics on Apache Kafka

Thomas Mager(B)

Bonn, Germany

kafkaforensics@tom84.anonaddy.com

Abstract. There is a growing demand for information exchange in the
age of the Internet of Things. One common scenario involves transferring
data from distributed devices in the field to central servers or cloud envi-
ronments. However, little research has been done on the possibilities for
forensic investigation of supporting infrastructure such as Apache Kafka,
which plays a crucial role in modern big data architectures.

In this paper, we present our work on the forensic investigation of
Apache Kafka. We use methodologies of reverse engineering to infer the
data formats that Apache Kafka uses server-side. The results help us to
implement a new module that is able to read Apache Kafka log files. An
investigator can load the module in the open-source forensic platform
“Autopsy”. We highlight possibilities and limitations regarding encryp-
tion and data retention in Apache Kafka and suggest to store data decen-
tralized when it comes to sensitive data. As a result of these measures,
applications become more resilient to attacks and are able to provide
increased security, ethical standards, and freedom for the application
users. This can be a unique selling point in future data driven applica-
tions.

1 Introduction

In our new world of the Internet of Things, there is an ever increasing demand
for information exchange. A typical scenario is to transfer data from distributed
devices in the field to either central servers on-premises or to cloud environments.
However, currently, there is little research about the possibilities for forensic
investigation of the supporting infrastructure. We shed light on methods and
possibilities for forensic investigation of one essential component in nowadays
architectures: Apache Kafka. This enables forensic specialists to perform inves-
tigations and leads to approaches that are legally sound and withstand challenges
before the court.

Originally developed at LinkedIn [32], the Apache Kafka platform offers func-
tionality not only to process data transfers with extremely high throughput but
also provides a way to ease coupling between application components. It can
play the role of a software bus where data consumers and producers can join
and leave the system at any time and, hence, be the backbone for world wide
data movement. Compared to some of its alternatives, such as RabbitMQ, Rock-
etQM, ActiveMQ, or Pulsar, it offers much greater throughput [1] with great
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 42–56, 2023.
https://doi.org/10.1007/978-3-031-49099-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_3

Big Data Forensics on Apache Kafka 43

ability to scale. Also for its reliability and ability to run on common hardware,
Apache Kafka is a component of high value in modern big data infrastructures.
It is used in the areas of the automotive industry, banks, insurances, logistic
services, media, retail, and in the public sector [2]. In a common scenario, Kafka
is connected upstream to other big data systems for distributed storage and
processing. This includes S3 object storage or HDFS, as well as setups for ana-
lytics and artificial intelligence such as the Hadoop ecosystem, Apache Spark
[38], TensorFlow, and Keras [37].

In this paper, we provide insights into Apache Kafka’s storage internals and
enable investigators to perform forensic inspections of clusters running the soft-
ware.

We first show in Sect. 2 related work in the area of digital infrastructure inves-
tigation. Subsequently, in Sect. 3 we give an overview on the general architectural
concepts of Apache Kafka. Section 4 outlines our methodologies for reverse engi-
neering Apache Kafka data formats, as well as providing internals of the files
holding message payloads. This transparency is crucial for investigators to inter-
pret confiscated data effectively. We discuss security features of Apache Kafka
for data in transit and at rest in Sect. 5. In addition, we describe the capabilities
and limitations related to deleting messages within the system in Sect. 6.1. We
introduce our new Autopsy module for forensic investigation in Sect. 7, followed
by a conclusion in Sect. 8.

2 Related Work

There are numerous publications in the area of forensic analysis of database
systems, including work by Wagner et al. [3] on relational database forensics
with a focus on page-based data storage mechanisms. Khanuja et al. [5] have
developed a framework specifically for MySQL database forensic analysis, while
Beyers et al. [6] have focused on PostgreSQL databases. Pereira [4] has published
approaches to recover deleted entries from SQLite databases used in many user
applications such as Mozilla Firefox. Chivers et al. [7] have investigated the
recovery of database records of Windows Search. Yoon et al. [8] have conducted
a forensic case study on the distributed NoSQL database MongoDB.

For general storage analysis e.g. The Sleuth Kit [9] and other tools offer
functionality for many file systems. There are also numerous books and studies
available specifically for particular file systems, including FAT [11], NTFS [10],
EXT2/3/4 [12–15], or XFS [12,16–18].

For forensic analysis of big data systems, Asim et al. [25] have published a
detailed approach for the widely used Hadoop Distributed File System (HDFS).
While files in HDFS can easily be browsed, viewed, hashed and exported in an
operating cluster via HDFS command line, the open source project “Hadoop dis-
tributed file system forensics toolkit (HDFS FTK)” [19] also provides insights
into a cluster that is offline. HDFS FTK relies not only on the acquired data
of Hadoop data nodes, but also requires the metadata stored on name nodes.
However, as these studies have focused on the open source release of Hadoop, the

44 T. Mager

work does not consider the implications of the administrative tooling used for
cluster rollout and management, such as Apache Ambari [45] or Cloudera Man-
ager. Vulnerabilities of such tool potentially might allow intruders full access
[43,43] to the cluster and its data. Bhathal et al. [21] have assessed the secu-
rity of Hadoop in their conclusion by stating “there is a need to upgrade the
complete Hadoop system released with all security features without installing
and to configure it separately”. The complexity and the missing [21] security
features of countless components within Hadoop’s ecosystem, its international
open source nature dating back to 2005, suggest inconsistency between holding
personal-related data within this system and meeting region specific laws such
as the GDPR standards of 2018. As of 2023, we have not found any scientific
studies or final discussions [20] that contradict the international concerns on
the technical security of Hadoop. While a firewall around all involved compo-
nents improves security, it doesn’t offer complete separation between different
tenants or their respective processes operating within the cluster. For investigat-
ing HDFS, secure deletion tools [23] should be taken into account. Additionally,
when dealing with large amounts of data, ethical considerations become relevant
and require responsible political and judicial discourse [22].

There are several publications that explain Apache Kafka’s general architec-
ture [29,33,36]. Among various use cases described by its inventors back in 2011
[32], numerous papers have used Apache Kafka as an infrastructure component
in their system setups for a variety of applications such as recommender sys-
tems [31], Security Information and Event Management (SIEM) systems [30],
Industrial IoT installations [35], and forensic image classification systems [34].

Despite its widespread use in various applications and systems, to our knowl-
edge there is no study that specifically focuses on forensic inspection of an Apache
Kafka cluster.

In general, forensic investigations are likely to involve systems that fall under
shadow IT within an organisation. Mallmann et al. [24] provide a comprehensive
overview on this topic.

3 Architectural Overview on Apache Kafka

The software Apache Kafka typically runs on several interconnected hosts which
we call Kafka brokers. Together these brokers form one Kafka cluster that pro-
vides a unified and highly available platform for processing real-time data feeds.
Bare-metal systems for brokers are a popular setup to increase performance in
deployment scenarios with high throughput. As exemplified in Fig. 1, an arbi-
trary number of producers send messages to the cluster while an arbitrary num-
ber of consumers read messages from the cluster. Apache Kafka offers developers
a basic unit called topic to help group and manage similar types of messages. Top-
ics have unique names for identification, given at the time of their creation. As
Kafka persists the messages on disk, producers and consumers are not required
to be connected with Kafka at the same time.

Big Data Forensics on Apache Kafka 45

Fig. 1. Exemplary data flow from producers to consumers via Kafka topics

Apache Kafka allows developers to add messages to a topic using an
immutable appending operation but does not provide functionality for selec-
tive removal or modification of existing messages in place. As a result, topics in
Apache Kafka can also be referred to as distributed append-only logs.

3.1 Data Placement Strategy in Kafka

For forensic investigation it is essential to know where Kafka stores its data
within the cluster. This section provides an overview of the data placement
strategy as indicated in the Apache Kafka online documentation [27], which will
help us better comprehend the internal data placement strategy used by Kafka
for fast and scalable data processing.

In Fig. 2 Kafka broker 0 to b form a single distributed cluster that stores
message data for one exemplary topic A. Kafka splits the data of the topic into
partitions 0 to n and elects one broker as a leader from which other brokers, the
so-called followers, receive a replica of the partition. Depending on the require-
ments for broker failure tolerance and performance, a developer can specify the
individual number of partitions and replicas for a topic at topic creation time.
By default, Kafka creates a total of three partition replicas on different brokers
within the same cluster. As a result of this placement strategy and depending on
the parameters used by the developer, each broker stores zero or more partitions
per topic. In Kafka, producers create messages in the form of tuples consisting
of keys and values. An application can use the key to group messages e.g. by an
identifier for the origin source of a message. By default, the Kafka producer first
calculates the hash value of such key. This hash value modulo the total number
of partitions deterministically results in the partition in which Kafka stores the
message [28]. In case there is no key provided with a message, Kafka falls back
to a round robin approach for partitioning.

Each message within a partition has a unique sequence number, called offset.
The offset allows to sustain the order of arriving messages. Kafka stores this
offset together with the message and a timestamp for creation time.

Kafka employs message serialization as a means of storing and transfer-
ring messages. By avoiding additional copies in memory, also known as “zero-
copying”, data can be passed directly from the read buffer to the socket buffer for

46 T. Mager

transmission via TCP. By using this method, it is possible to achieve improved
performance and reduced latency through reducing the number of unnecessary
copies.

Fig. 2. Exemplary Partition Placement for One Topic in Kafka

4 Kafka Forensics

In this section, we describe our methodological approach for investigating the
inner workings of Apache Kafka and identifying relevant data, which enables us
to provide insight into its underlying data structures.

4.1 Methodological Approach

In the following we outline our system setup we use to infer our insights. To
facilitate our investigation, we utilize CentOS within VirtualBox, allowing us to
easily return the system to its original state. Our test system starts a Kafka clus-
ter with three brokers, which is a common setup for production scenarios. Our
test system is configured to run Kafka 3.0.0, using the standard configuration.
We deploy Apache ZooKeeper for failover handling and specify dedicated ports
for each Kafka broker. We perform our analysis on the open source version of
Apache Kafka. In our analysis we do not cover vendor specific tools for cluster
management (c.f. Sect. 2), Kafka clients, and specific Kafka features involving
additional setups such as Kafka Streams or KSQL.

For data generation we use different bash scripts. The first script creates an
empty topic with three partitions and two replicas. Subsequently, another script
acts as a Kafka producer for the topic and generates iterative data input with
incremental key-value pairs.

After the scripts complete, we check the local data folders of the bro-
kers for changes. With the help of a hex editor we inspect the created
data via binary reverse engineering. We further utilize the shell script
kafka-run-class.sh that Apache Kafka provides. Together with the Java class

Big Data Forensics on Apache Kafka 47

kafka.tools.DumpLogSegments the script prints the content of the Kafka data
files to console. This output allows the comparison with the binary view. Addi-
tionally, we perform verifications against the source code [26] of Apache Kafka.

4.2 Data of Interest

Depending on the replication setting of topics, one Kafka broker potentially
holds all data required for investigation. If no disk encryption is in place, it is
possible to power off a broker and remove it from the cluster, while the cluster
continues operating. Always securing the data of all Kafka brokers, however, is
recommended. We identify the following files and folders of particular interest
to secure for investigation:

– The file zookeeper.properties holds the configuration of ZooKeeper, e.g. its
data directory and listening port

– Folder dataDir as specified in zookeeper.properties (default is /tmp/zookeeper)
– The file server.properties holds the configuration of a Kafka server such as log

directory and listening port
– Folder log.dirs as specified in server.properties (default is /tmp/kafka)

The file meta.properties in the log.dirs contains a unique cluster identifier with a
length of 22 Bytes.

We further investigate data of Zookeeper in order to determine all brokers of
a Kafka cluster. Zookeeper stores its metadata about the cluster in the log-file
within the dataDir directory. This file contains JSON-formatted data. We can
search the file for the keyword “host” to find all broker hostnames of the Kafka
cluster. The keyword “topics” provides us with the names of the topics which
the cluster holds.

Since Kafka version 2.8 we see the preview of the new consensus mode KRaft,
which will render an additional Zookeeper setup obsolete. With the release of
Kafka version 3.6 KRaft will be production ready. When we see our setup uses
KRaft, we can inspect the dedicated topic “ cluster metadata” to get the topic
and hostname information of the cluster. We can do so via the script kafka-dump-
log.sh that comes with Kafka and pass the option –cluster-metadata-decoder.
Alternatively we inspect the log file of the topic as described in the following
section.

4.3 Kafka Storage Internals

In the data directory of a Kafka broker we find a folder for each topic in the form
“[topic-name]-[partition-number]”. Within such partition folder, Kafka generates
files for segments with a maximum size, which an administrator can configure
via log.segment.bytes. The file names of such segment contain the offset of the
first message within the file. We call this offset of a segment its base offset which
reaches a high value in case of high throughput. As we outline more detailed in
the following, each segment consists of a log file, an index file, and a timeindex
file.

48 T. Mager

Log File

Field description Length (Bytes)

Batch headers (multiple per log file)

Base offset 8

Batch length 4

Partition leader epoch 4

Magic number 1

CRC-32C of following bytes in batch 4

Attributes (e.g. compression type) 2

Last offset in batch 4

Create time first record 8

Create time batch 8

Producer identifier 8

Producer epoch 2

Base sequence 4

Number of records in batch 4

Record entries (multiple per batch)

Record length × 2 1

Sequence of 0xFF 1

Time offset in ms 1

Offset from base offset 1

Length of key runlength-encoded

Key content variable length

Length of value runlength-encoded

Value content variable length

Sequence of 0x00 1

Log Files. The log file holds the data of messages that a Kafka topic stores in
a segment. Kafka tries to write several messages to a log file in a batch. This
avoids disk seeks and therefore increases the write performance of Kafka. In the
following table we provide an overview on the different fields we find in a log
file. In a log file we see batch headers which hold the metadata of batches. The
metadata supports seeking and verifying data within the log file by providing
information such as offsets, lengths, and a CRC checksum. Kafka achieves data
consistency in failover scenarios by using epoch information for partition lead-
ers and producers. By default, Kafka operates with disabled compression and
persists keys and values in the same binary representation as they arrive from
a receiver. After a batch header we find multiple record entries which hold the
actual payload of messages together with its offset and time information.

Big Data Forensics on Apache Kafka 49

Index Files. The index files enable fast data retrieval from specific topic offsets.
They serve as a mapping table of offsets to absolute positions within the log file
of the same segment. By default, Kafka adds an offset entry to the index file for
every 4 KiB of data in the corresponding log file. Because the offsets in the index
file are sorted by design, binary searches within the file enable fast lookups.

Index File

Field description Length (Bytes)

Offset 4

Position in log file 4

Timeindex Files. Timeindex files allow fast lookups of messages with specific
timestamps. They provide a mapping table of timestamps to offsets within the
same segment. Kafka adds entries to the timeindex file at fixed time intervals.
As Kafka writes entries ordered in time, binary searches are possible within the
file. After Kafka locates the offset corresponding to a timestamp, it leverages
the index file to determine the absolute position within the log file of the same
segment.

Timeindex File

Field description Length (Bytes)

Timestamp 8

Offset 4

5 Data Security

In this section we will explore the various methods available to secure Apache
Kafka, including data transmission encryption and encryption at rest. The avail-
ability of these features may be critical for effective investigation and analysis
following an external security breach or incident.

5.1 Encryption in Transit

Apache Kafka supports classic SSL/TLS encryption for data transfer between
participants. As TCP/UDP protocols do not provide authentication and autho-
rization, we need a secure setup for the following tasks and components:

– certificate/key distribution and management

50 T. Mager

– a certificate authority (CA)
– a Kerberos setup (KDC)
– management of service users and their Kerberos keytabs
– maintenance of access control lists (ACLs) for topic specific permissions
– drawing and renewing Kerberos ticket-granting tickets (TGTs) with Kerberos

keytabs

Apache Kafka falls short in providing these features which increase the system
complexity significantly. Vendor-specific Kafka cluster management tools, such
as those offered by Cloudera [51], can support the ACL maintenance. Never-
theless, we require additional effort for automation or manual intervention. The
individual infrastructure environment also determines if and how e.g. privileged
remote system access via SSH can be used for the distribution of keys and cre-
dentials.

With activated encryption via SSL/TLS, Kafka suffers a small loss in perfor-
mance as it cannot profit from zero-copying anymore [50].

If there are unencrypted ports in a distributed software such as Apache Kafka,
the system has high exposure to advanced persistent threats (APT): malicious
actors may use a man-in-the-middle attack to infiltrate the cluster and move
from one broker to another. When combined with privilege escalation, mali-
cious actors can gain complete access and potentially obscure any trace of their
actions. In this situation, the data stored on the brokers of the cluster loses its
consistency and security properties and can only be seen as circumstantial evi-
dence. We therefore denote it negligent to hold sensitive personal-related data
in such environment. These considerations are especially relevant if the unen-
crypted ports affect the cluster management system with its full control over the
cluster brokers. As a countermeasure, full isolation via perimeter security and
tenant separation can enhance data security.

5.2 Encryption at Rest

Encryption at rest is a standard measure when it comes to storing confidential or
sensitive personal-related data. Unfortunately, Kafka does not provide means for
data encryption at rest. Using whole volume encryption as part of the infrastruc-
ture is an option, however, primarily reserved to public cloud infrastructures with
other security constraints [40,44]. Vendor-specific management systems can also
support in providing encrypted folders, where Kafka may transparently store its
data. These solutions share a common challenge related to managing encryption
keys [39,41].

As promoted at Kafka Summit Europe 2021 [42], client-side encryption of all
messages can be an option. It provides data privacy to customers and compli-
ance with data protection laws to system owners. Furthermore, with client-side
encryption, a data thief can not obtain the data of all system participants at
once. This significantly reduces the risk for system owners concerning extortion
attempts in case data gets in control of criminals.

Big Data Forensics on Apache Kafka 51

With client-side encryption, for a server-side forensic analysis, we can only
focus on the origin, size and timing of messages. We can not inspect the message
contents in this case.

6 Data Removal in Kafka

This section explains how and why messages are deleted from Kafka topics, as
well as the potential locations where forensic investigators may be able to find
remaining traces.

6.1 Data Retention

One of Kafka’s main features is the possibility to specify data retention for
topics. After reaching the retention criteria, messages are eventually removed
from a topic. This gives the system engineer a measure to limit the overall size
of a Kafka cluster and e.g. meet performance requirements. Generally, Kafka
deletes a message after a certain time or topic size limit, which we can specify
via log.retention.[ms,minutes,hours] or log.retention.bytes. However, some details
related to deletion are important when it comes to forensic analysis.

First, Kafka does only remove whole segments from disks, not single mes-
sages. Kafka will not remove a message from the segment it currently writes to,
even if the message meets the deletion criteria.

Second, when a segment is complete, Kafka will only delete it after the last
message within the segment meets the deletion criteria. Meanwhile, older mes-
sages still reside on disk.

Further, the setting log.retention.check.interval.ms specifies how frequent
Kafka performs retention checks. The setting defaults to five minutes which
implies that data resides on disk during this time window.

Finally, even when Kafka deletes a segment, there is a period the segment
remains available on disk. Before Kafka deletes a segment, it adds the string
“.deleted” to the segments filename. The file is released in the file system only
after the period log.segment.delete.delay.ms, which defaults to one minute.

We see that Kafka might also be used as a long term storage system, com-
parable to a database [46]. It is technically feasible to store virtually infinite
amounts of data in Kafka [47]. This is extended by features like tiered storage
[48] which allows to decrease storage costs as it supports cheap and scalable
object storage. For less frequently accessed data, such as historical data, the
costs are even lower.

6.2 Limited Capabilities for Targeted Deletion

Kafka does not provide targeted deletion capabilities, which are relevant for
ensuring the “right to be forgotten”, as enforced by the European GDPR and
similar privacy laws [52,53]. The design of Kafka does not prioritize meeting these
requirements for deleting messages in a targeted and timely manner, especially

52 T. Mager

with longer retention times or high topic sizes. Due to the focus on fast sequential
reads and writes, Kafka brokers do not offer delete operations to consumers or
producers.

In certain application architectures, activating log compaction [49] via the
setting log.cleanup.policy can be used to eventually remove messages from Kafka
topics. However, this option is inactive by default due to its limitations and
high performance requirements. When active, selective message removal from a
topic partition is possible for producers through appending a new message with
corresponding key and a null value (called tombstone-message). Previous records
with same key and the tombstone record will be eventually deleted on the broker
during a subsequent log compaction process. Removal by key only works at the
partition level, not the topic level. Additionally, consumers may miss a tombstone
message if they are disconnected for longer than log.cleaner.delete.retention.ms,
which defaults to one day. The compaction process sequentially operates on
every segment, but it is unable to remove records from the most recent segment
because of potential write conflicts with incoming messages.

Messages that are still present in the system can be accessed and analyzed
through the log files.

7 Autopsy Module

The forensic software “The Sleuth Kit” [9] and the related project “Autopsy”
have an extensible architecture. An author can create a new module by imple-

Fig. 3. Autopsy Plugin

Big Data Forensics on Apache Kafka 53

menting Java classes and compiling them into a NetBeans Module (NBM) pack-
age. With the knowledge from our analysis above, we implement a first file
content viewer module for Kafka log files. The module parses a Kafka log file by
iterating over batches and extracting properties of contained messages.

The module allows to view basic features for forensic investigation such as
the message timestamp, the key-value-pair in string format, and calculates a
checksum. For binary data, a hex view is available at the bottom of the screen.
For subsequent analysis and archival, the investigator can export values of any
type from the user interface into a file.

Figure 3 shows Autopsy running our module on an exemplary Kafka log file.
We contribute the plugin to the public by releasing the code as open source.

8 Conclusion

In this paper, we have discussed various aspects related to the use of Apache
Kafka in big data processing systems and its role as a software bus for worldwide
data movement. We have also highlighted the importance of forensic investiga-
tion of supporting infrastructure in modern architectures and proposed methods
and possibilities for investigating an Apache Kafka cluster.

We believe that this paper can contribute to a deeper understanding of
Apache Kafka’s role in big data processing systems, as well as its potential value
for forensic investigations.

We also hope that our findings and our Autopsy module will be useful for both
researchers and practitioners, and we encourage ongoing collaboration through
the sharing of experience.

Although Apache Kafka has less components and therefore a lower complex-
ity than Apache Hadoop, we draw a conclusion similar to Bhathal et al. [21]:
there is a need to upgrade Apache Kafka with complete security features and
bundle them together into one release. Additionally, implementing an “in place”
delete operation can help project managers meet compliance standards.

Meanwhile, in order to increase system resilience against any issues with secu-
rity, availability, and confidentiality, we strongly encourage to use decentralized
system designs for applications with sensitive data. If a single-point-of-failure
cannot be avoided to provide certain application features, we recommend to
consider data minimisation and, whenever possible, to use client-side encryption.
This approach is not only in the interest of users to protect them as individuals
against data leakage and unintentionally being part of potential artificial intel-
ligence applications, it can also be a unique selling point for organisations when
made transparent. If public institutions like to support ethical [22] transparency
in this matter, applications reaching a certain number of affected users could
be rated based on criteria such as the complexity of central components, data
center location, measures for internal tenant isolation, and amount of data that
is accessible to operators and scientists, e.g. for artificial intelligence.

Acknowledgement. We would like to extend our heartfelt appreciation to all those
who have supported us throughout this work.

54 T. Mager

References

1. Fu, G., Zhang, Y., Yu, G.: A fair comparison of message queuing systems. IEEE
Access 9, 421–432 (2021)

2. Zelenin, A., Kropp, A.: Apache Kafka: Von den Grundlagen bis zum Produktivein-
satz, 1st edition. Carl Hanser Verlag (2021)

3. Wagner, J., Rasin, A., Grier, J.: Database forensic analysis through internal struc-
ture carving. Digit. Investig. 14, S106–S115 (2015)

4. Pereira, M.: Forensic analysis of the Firefox 3 Internet history and recovery of
deleted SQLite records. Digit. Investig. 5, 93–103 (2009)

5. Kaur, K., Adane, D.: A framework for database forensic analysis. Comput. Sci.
Eng.: Int. J. 2, 27–41 (2012)

6. Beyers, H., Olivier, M., Hancke, G.: Assembling metadata for database forensics.
In: Peterson, G., Shenoi, S. (eds.) DigitalForensics 2011. IAICT, vol. 361, pp. 89–
99. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24212-0 7

7. Chivers, H., Hargreaves, C.: Forensic data recovery from the windows search
database. Digit. Investig. 7, 114–126 (2011)

8. Yoon, J., Jeong, D., Kang, C., Lee, S.: Forensic investigation framework for the
document store NoSQL DBMS: MongoDB as a case study. Digit. Investig. 17,
53–65 (2016)

9. Carrier, B., et al.: The Sleuth Kit/Autopsy (2021). https://www.sleuthkit.org
10. Lin, X.: Introductory Computer Forensics: A Hands-On Practical Approach.

Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00581-8
11. Arnes, A.: Digital Forensics. Wiley, Hoboken (2018)
12. Kim, H., Kim, S., Shin, Y., Jo, W., Lee, S., Shon, T.: Ext4 and XFS file system

forensic framework based on TSK. Electronics 2021, 10 (2021)
13. Lee, S., Shon, T.: Improved deleted file recovery technique for Ext2/3 filesystem.

J. Supercomput. 2014(70), 20–30 (2014)
14. Fairbanks, K.: An analysis of Ext4 for digital forensics. Digit. Investig. 9, S118–S13

(2012)
15. Lee, S., Jo, W., Eo, S., Shon, T.: ExtSFR: scalable file recovery framework based

on an Ext file system. Multimed. Tools Appl. 79, 16093–16111 (2019)
16. Ahn, J., Park, J., Lee, S.: The research on the recovery techniques of deleted files

in the XFS filesystem. JKII Secur. Cryptol. 24, 885–896 (2014)
17. Park, Y., Chang, H., Shon, T.: Data investigation based on XFS file system meta-

data. Multimed. Tools Appl. 75, 14721–14743 (2015)
18. Majore, S., Lee, C., Shon, T.: XFS file system and file recovery tools. Int. J. Smart

Home 7 (2013)
19. Lim, E., et al.: Hadoop Distributed File System Forensics Toolkit (HDFS FTK)

(2018). https://github.com/edison0xyz/hadoop ftk
20. Big Data Community Forum (2017). https://archive.today/qpHBt
21. Bhathal, G., Singh, A.: Big Data: Hadoop framework vulnerabilities, security issues

and attacks. Array 1-2 (2019)
22. Zuber, N., Kacianka, S., Gogoll, J.: Big data ethics, machine ethics or information

ethics? Navigating the maze of applied ethics in IT. arXiv:2203.13494 (2022)
23. Agrawal, B., Hansen, R., Rong, C., Wiktorski, T.: SD-HDFS: secure deletion in

hadoop distributed file system. In: IEEE BigData Congress 2016, pp. 181–189
(2016)

https://doi.org/10.1007/978-3-642-24212-0_7
https://www.sleuthkit.org
https://doi.org/10.1007/978-3-030-00581-8
https://github.com/edison0xyz/hadoop_ftk
https://archive.today/qpHBt
http://arxiv.org/abs/2203.13494

Big Data Forensics on Apache Kafka 55

24. Mallmann, G.L., de Vargas Pinto, A., Maçada, A.C.G.: Shedding light on shadow
IT: definition, related concepts, and consequences. In: Ramos, I., Quaresma, R.,
Silva, P., Oliveira, T. (eds.) Information Systems for Industry 4.0. LNISO, vol. 31,
pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14850-8 5

25. Asim, M., McKinnel, D.R., Dehghantanha, A., Parizi, R.M., Hammoudeh, M.,
Epiphaniou, G.: Big data forensics: hadoop distributed file systems as a case
study. In: Dehghantanha, A., Choo, K.-K.R. (eds.) Handbook of Big Data and
IoT Security, pp. 179–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-10543-3 8

26. Apache Kafka Contributors. Apache Kafka Git Repository (2021). https://github.
com/a0x8o/kafka

27. Apache Software Foundation. Apache Kafka Online Documentation (2022).
https://kafka.apache.org/documentation/

28. Confluent Inc. Confluent Developer Portal (2023). https://developer.confluent.io/
learn-kafka/apache-kafka/partitions/

29. Raptis, T., Passarella, A.: On efficiently partitioning a topic in apache Kafka. In:
CITS 2022, pp. 1–8 (2022)

30. Vielberth, M., Pernul, G.: A security information and event management pattern.
SLPLoP 2018 Chile (2018)

31. Choudhary, C., Singh, I., Kumar, M.: A real-time fault tolerant and scalable rec-
ommender system design based on Kafka. In: IEEE I2CT 2022 India (2022)

32. Kreps, J., Narkhede, N., Rao, J.: Kafka: a distributed messaging system for log
processing. In: NetDB Workshop 2011 (2011)

33. Dobbelaere, P., Esmaili, K.: Kafka versus RabbitMQ: a comparative study of two
industry reference publish/subscribe implementations: industry Paper. In: ACM
DEBS 2017, Spain, pp. 19–23 (2017)

34. Silva, I., Valle, J., Souza, G., Budke, J.: Using micro-services and artificial intel-
ligence to analyze images in criminal evidences. In: DFRWS 2021 USA, Digital
Investigation, vol. 37 (2021)

35. Braunisch, N., Schlesinger, S., Lehmann, R.: Adaptive industrial IoT gateway using
Kafka streaming platform. In: INDIN 2022 Australia (2022)

36. Narkhede, N., Shapira, G., Palino, T.: Kafka: The Definitive Guide: Real-time Data
and Stream Processing at Scale. O’Reilly (2017)

37. Google Brain Team. Robust machine learning on streaming data using Kafka and
Tensorflow-IO (2022). https://www.tensorflow.org/io/tutorials/kafka

38. Apache Software Foundation. Apache Spark - Kafka Integration Guide (2022).
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.
html

39. Kamaraju, A., Ali, A., Deepak, R.: Best practices for cloud data protection and key
management. In: Arai, K. (ed.) FTC 2021. LNNS, vol. 360, pp. 117–131. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-89912-7 10

40. Alouffi, B., Hasnain, M., Alharbi, A., et al.: A systematic literature review on cloud
computing security: threats and mitigation strategies. IEEE Access 9, 57792–57807
(2021)

41. Giblin, C., Rooney, S., Vetsch, P., Preston, A.: Securing Kafka with encryption-
at-rest. In: IEEE International Conference on Big Data (2021)

42. Barnes, R.: Kafka Summit 2021. https://www.confluent.io/events/kafka-summit-
europe-2021/encrypting-kafka-messages-at-rest-to-secure-applications/

43. Hashemi, S., Zarei, M.: Internet of Things backdoors: resource management issues,
security challenges, and detection methods. Trans. Emerg. Telecommun. Technol.
32(2), e4142 (2021)

https://doi.org/10.1007/978-3-030-14850-8_5
https://doi.org/10.1007/978-3-030-10543-3_8
https://doi.org/10.1007/978-3-030-10543-3_8
https://github.com/a0x8o/kafka
https://github.com/a0x8o/kafka
https://kafka.apache.org/documentation/
https://developer.confluent.io/learn-kafka/apache-kafka/partitions/
https://developer.confluent.io/learn-kafka/apache-kafka/partitions/
https://www.tensorflow.org/io/tutorials/kafka
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://doi.org/10.1007/978-3-030-89912-7_10
https://www.confluent.io/events/kafka-summit-europe-2021/encrypting-kafka-messages-at-rest-to-secure-applications/
https://www.confluent.io/events/kafka-summit-europe-2021/encrypting-kafka-messages-at-rest-to-secure-applications/

56 T. Mager

44. FISA Report of the Research Section of the German Federal
Parliament 2020. https://www.bundestag.de/resource/blob/796102/
ea53ffe8e08a9ab11e270719263d8c53/WD-3-181-20-pdf-data.pdf

45. Apache Software Foundation. Apache Ambari (2022). https://ambari.apache.org
46. Kleppmann, M.: Is Kafka a database. Kafka Summit London 2019 Keynote (2019).

https://www.youtube.com/watch?v=BuE6JvQE CY
47. Confluent Inc., Blog. It’s Okay to Store Data in Kafka (2017). https://www.

confluent.io/blog/okay-store-data-apache-kafka/
48. Confluent Inc., Blog. Infinite Storage in Confluent Platform (2020). https://www.

confluent.io/blog/infinite-kafka-storage-in-confluent-platform/
49. Apache Software Foundation. Apache Kafka Online Documentation on Compaction

(2023). https://kafka.apache.org/documentation/#compaction
50. Ismael Juma (Confluent Inc.) on Twitter (2019). https://twitter.com/

StephaneMaarek/status/1161173028627202049
51. Cloudera Inc.: Kafka Security (2021). https://docs.cloudera.com/documentation/

enterprise/latest/topics/kafka security.html
52. Official Journal of the European Union. Right to be forgotten. GDPR, Chapter

3, Section 2 (2016). https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?
uri=CELEX:32016R0679#d1e2606-1-1

53. National Privacy Commission Philippines. Data Privacy Act of 2012
(2016). https://privacy.gov.ph/implementing-rules-regulations-data-privacy-act-
2012/#34

https://www.bundestag.de/resource/blob/796102/ea53ffe8e08a9ab11e270719263d8c53/WD-3-181-20-pdf-data.pdf
https://www.bundestag.de/resource/blob/796102/ea53ffe8e08a9ab11e270719263d8c53/WD-3-181-20-pdf-data.pdf
https://ambari.apache.org
https://www.youtube.com/watch?v=BuE6JvQE_CY
https://www.confluent.io/blog/okay-store-data-apache-kafka/
https://www.confluent.io/blog/okay-store-data-apache-kafka/
https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/
https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/
https://kafka.apache.org/documentation/#compaction
https://twitter.com/StephaneMaarek/status/1161173028627202049
https://twitter.com/StephaneMaarek/status/1161173028627202049
https://docs.cloudera.com/documentation/enterprise/latest/topics/kafka_security.html
https://docs.cloudera.com/documentation/enterprise/latest/topics/kafka_security.html
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e2606-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e2606-1-1
https://privacy.gov.ph/implementing-rules-regulations-data-privacy-act-2012/#34
https://privacy.gov.ph/implementing-rules-regulations-data-privacy-act-2012/#34

A Survey on Security Threats and Mitigation
Strategies for NoSQL Databases

MongoDB as a Use Case

Surabhi Dwivedi(B), R. Balaji, Praveen Ampatt, and S. D. Sudarsan

Centre for Development of Advanced Computing (C-DAC), 68-Electronic City,
Bengaluru 560100, India

{surabhi,balaji,apraveen,sds}@cdac.in

Abstract. With the advent of IoT devices, cloud computing, accessible mobile
devices, social networking sites and other advancements in technology a huge
amount of data is being generated. NoSQL databases were evolved to provide
a better storage capability, scalability, improved performance for read and write
operations for the enormous data generated by various systems which are contin-
uously being read and written by large number of users. Initially it was believed to
provide better security in comparison to the traditional relational database man-
agement system (RDBMS), but in due course of time NoSQL databases were also
exposed to various security breaches and vulnerabilities. In this paper we studied
in detail the various security vulnerabilities of MongoDB, along with the need to
secure the interfaces being used to access MongoDB. We analyzed the prevention
and mitigation strategies for the same. The study of this paper can be used as a
best practice to secure NoSQL or MongoDB database. It suggests how to secure
the queries and all the interfaces that are being used to access the database.

Keywords: NoSQL ·MongoDB · NoSQL Injection · Data Masking

1 Introduction

Due to technological advancements, there are varieties of data, of different sizes avail-
able from diverse possible resources like IoT devices, social networking, mobile devices,
cloud computing etc. There is also a significant decrease in storage cost, due to which
more data is available. Data is available in different shapes and sizes like structured,
semi-structured, or unstructured. It was realized that traditional relational database man-
agement systems (RDBMS) are not able to cater to the immense requirements of scala-
bility, high availability, dynamic schema design, elasticity and high performance. It gave
rise to the popularity of NoSQL databases which, is also called as ‘Not only SQL’ or
‘Non-SQL’ database. Along with providing storage capability for the modern applica-
tion it provides lots of flexibility for the developers to store huge amounts of data. It is
very adaptable to the rapidly changing agile requirements. Any new requirements can
be easily incorporated in these databases without affecting the high availability of the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 57–76, 2023.
https://doi.org/10.1007/978-3-031-49099-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_4

58 S. Dwivedi et al.

databases. The RDBMS systems are based on ACID properties namely atomicity, con-
sistency, isolation and durability. The NoSQL databases are based on BASE properties
which are defined as basically available, soft state and eventual consistent. The NoSQL
databases do not require any standard languages like structured query language (SQL) of
RDBMS. Data manipulation can happen via object-oriented application programming
interface (API). Though each NoSQL database has their own query language interface
with a syntax like any popular programming languages.

The CAP theorem for databases was introduced for by Portland [1]. According to
this theorem a distributed system can deliver two of the following three properties at
any given point of time. 1) Consistency (C): All clients should see the same data at
the given time; 2) Availability (A): If a client makes a request for data, it should get a
response, even if one or more nodes are down. System can run even if parts have failed
via replication; 3) Partitions Tolerance (P): The database cluster must continue to work
despite any number of communication breakdowns between nodes in the system.

Based on the above three properties there are different types of databases like CP
database, CA database and AP database. Most of the RDBMS databases like Post-
greSQL, MySQL etc. are CA databases. CA databases are non-fault tolerant and deliver
consistency and availability across all connected nodes. NoSQL Databases like Mon-
goDB, Redis, HBase are CP databases. CP databases, deliver consistency and partition
tolerance at the expense of availability. When a partition occurs between any two nodes,
the system shuts down the non-consistent node (i.e., make it unavailable) until the par-
tition is resolved. Some NoSQL databases like Cassandra, CouchDB [37] and Riak are
AP databases. AP databases forego consistency to provide availability and partition tol-
erance. In case of partition all the nodes will be available and the one at the wrong end
of partition will continue to return the old version of data.

NoSQLdatabases are broadly categorized into four different types namely 1)Column
oriented databases 2) Document oriented databases 3) Key value databases 4) Graph
databases.

Though NoSQL (Not only SQL) are very efficient to handle the structured and
unstructured data generated from real time applications but there is still a lack of stan-
dard security mechanism in NoSQL. Although the query model of NoSQL databases
makes the known SQL injection attack irrelevant, attackers now try with new vulnerable
codes to breach. In this work we are analyzing the security features of NoSQL databases
with an example of MongoDB database, which is a document-oriented database. Mon-
goDB is the most popular NoSQL database and fifth most popular database as per a
survey [2]. Many popular companies including eBay, Foursquare, Adobe, Uber, and
LinkedIn etc., have adopted MongoDB. In this study we will use MongoDB to illustrate
the NoSQL security attacks, prevention and mitigation strategies. MongoDB stores the
information in collections and documents. Collections and documents are analogous to
tables and rows respectively ofRDBMS.MongoDB is available in community, enterprise
(commercial edition) and Atlas (multi-cloud developer data platform) editions.

This study is based on extensive analysis of 18 quality research papers, MongoDB
manuals and experiments. Section 2 explains the similar study done by the other authors
and the motivation to write this paper; Sect. 3 discusses various NoSQL database-based
security breach incidences that happened during the last five years. Section 4 and its

A Survey on Security Threats and Mitigation Strategies 59

subsections explain the various NoSQL security breaches techniques followed by the
attackers. Section 5 explains about the various strategies andmeasures to preventNoSQL
security attacks. Section 6 concludes the paper.

2 Literature Survey

There are many research work highlighting the significant security issues in NoSQL
databases. Okman et al. [3] reviewed the most popular NoSQL databases, MongoDB
(document oriented), Cassandra (column family) and analyzed the security features such
as authentication, authorization, auditing, and injection attacks etc. The research work
done by Sicari et al. [4] analyses the security and privacy solutions of NoSQL databases,
particularly Redis, Cassandra, MongoDB, and Neo4j and analyses the security require-
ments in terms of authentication, authorization, access control, privacy, policy enforce-
ment, integrity, and confidentiality. Fahd et al. in the research paper [5] also studies
the security issues of Redis, Cassandra, MongoDB and Neo4j in terms of authentica-
tion/authorization, auditing, encryption andNoSQL injection attack scenarios. They also
propose a framework for NoSQL database security. Ron et al. [6] have also analyzed
NoSQL vulnerabilities and mitigation mechanism.

There is no comprehensive study available which analyses to secure all the interface
being used to access MongoDB along with the security issues of MongoDB. It is impor-
tant to have the overall security requirements of MongoDB along with securing the API
being used to access the database, network interfaces, prevention of NoSQL injections,
required data privacy and encryption techniques, authentication and role-based access
control mechanism etc., to provide a comprehensive solution for theMongoDB database
security. This work will provide an exhaustive detail of the possible NoSQL injection
scenarios, the available authentication mechanisms in MongoDB, strength of available
cypher suites, certificates, protocols, requirements of data masking for data privacy and
security along with securing the API being used to access the database.

3 Attack Incidences on NoSQL Databases

As Zdnet news [7] reported that 590 million resumes’ were leaked by a company.
Most of the resume’ leaks occurred because of poorly secured MongoDB databases
and Elasticsearch servers that have been left exposed online without a password.

Onemedia streaming platform also reported a data breach, where a 72GBMongoDB
JSON dump containing information of almost 44 million users and7,455,926 unique
email addresses, were leaked over a social network [8].

Another incident was identified in April 2019 where almost 275 million records con-
taining detailed personally identifiable informationwere exposed byMongoDBdatabase
[9].

Toyota connected service faced a decade long data leak, spanning from January 2012
to April 2023, which exposed 2.15 million customers data and it was based on NoSQL
database [10].

The distribution of exposed data by RDBMS and NoSQL database is shown in Fig. 1
[11]. The major portion of the exposed data is from Redis 37.5% and MongoDB 30.9%
and Elasticsearch 29.3%, all are NoSQL database.

60 S. Dwivedi et al.

98%

2%

NoSQL RDBMS

Fig. 1. Distribution of exposed Databases by type [11]

4 NOSQL Security Breaches

This section describes various scenarios where NoSQL database can be vulnerable.

4.1 NoSQL Injection Vulnerabilities

NoSQL-Injection is a security vulnerability where the attackers take control of database
queries through the unsafe use of user input or appending a malicious code/query to
a legal NoSQL query statement [12]. Although it is believed that SQL injections are
hard to perform on NoSQL databases as these databases use different query language
than traditional SQL. NoSQL, queries and data are mostly represented in JSON format,
which is better than SQL in terms of security because it is well defined, very simple to
encode/decode and has good native implementations in most of the programming lan-
guage [13]. Still, it is being exploited bymany attackers to append amalicious script into a
query statement. Injection for NoSQL database is same as injection in SQL database, the
difference is only in the syntax [14]. It can affect the database significantly by reducing
the system performance, making unauthorized changes, modifying the user privileges
and permissions.

Malicious queries can be injected using the input boxes of web applications or in
the URL of web applications. The paper [6] describes the five types of malicious query
injections 1) Tautology expression 2) NoSQL OR injections 3) Java script injection 4)
Piggybacking queries.

Tautologies Expressions: Tautology expressions are generated in a conditional state-
ment which is always true. It can facilitate authentication bypass. The attackers can
access the database without valid credentials. The following JSON input is an example
of malicious code.

{
“Username”: {“$ne”: “1”}, “Password”: {“$ne”: “1 ”}
}

Malicious Query:

A Survey on Security Threats and Mitigation Strategies 61

The above statement compares password with an empty string for $ne function,
which will always be true and so login authentication will be bypassed.

Table 1 describes some more operators that can be used to bypass the authentication.
In place of valid credentials, the login authentication will be bypassed by using these
operators as payloads which will always be evaluated as true.

Table 1. Vulnerable MongoDB payloads

$ne Not equal to

$eq Equal to

$gt Greater than

$lt Less than

$regex regular expression

NoSQL OR Injections: Another form of malicious queries are NoSQL OR injections
or Union queries. AnOR condition will be used to bind an empty expression to the input.
Since an empty expression is always valid, it renders the password check ineffective.
The following example illustrates a scenario [15].

Original Query:
{ username: ‘admin’,password: ‘welcome’ }

Injection Query :
{
username= ‘admin’, $or:[{},{‘a’:‘a’, password=‘’}],
$comment:‘successful MongoDB injection’
}

The above query will succeed if the username is correct, the password part will
become redundant. The empty query will always be true, and unauthorized access will
be granted to the system.

Java Script Injections For NoSQL databases JavaScript enables to query the database.
A web application becomes vulnerable if $where query operator is being used and user
inputs are not validated. It exposes illegal data extraction or alteration and can also
introduce denial of service attacks by making the server inaccessible for a given time.
The following example demonstrates the scenario of such vulnerability. The following
example illustrate a vulnerable query, to fetch the name [16]

62 S. Dwivedi et al.

Original Query:
db.students.find({
$where: function ()
{return (this.name == $Name)}});

The above query will search for a document in student collection, java script function
is used as the value of $where field. The function compares name field in each document
with a variable/parameter called $Name.

The following query will inject a sleep function call within the $where java script
function. It will pause the server for 8 s if the injection was successful.

Injection Query:

db.collection.find({$where: function()

{return (this.name == 'test'; sleep(8000)) } });

It can introduce denial-of-service (DoS) attacks, by making the server unavailable
by the specified time. Use of other operators like MapReduce, group by of MongoDB
can also enable Java Script injection if query is not sanitized.

The following example demonstrates a vulnerable code while using a group by
operator of MongoDB.

Original Query :
db.orders.aggregate([
{ $group: { _id: "$items",totalQuantity: { $sum: "$quantity" } } }]);

The above query performs aggregation on orders collection. It groups the documents
by the “item” field and calculates the total quantity for each product using the $sum. In
this example, the query will become vulnerable if the input values product and quantity
are provided from user without a proper validation. The following example illustrate an
injection query.

Injection Query :
var injectionInput = "item'; db.orders.deleteMany({}) //";
db.orders.aggregate([{
 $group: { _id: injectionInput, totalQuantity: { $sum: "$quantity" }
 } }]);

The injection input has the value “item’; db.orders.deleteMany({})//”. This input
contains a potential injection payload. The _id field in the $group stage will set to the
value of insecure Input. The insecure input “item’; db.orders.deleteMany({}) //” code
will delete all documents in the “orders” collection, which can be highly destructive.

A Survey on Security Threats and Mitigation Strategies 63

Piggybacked Queries: Piggybacked queries can be used by attackers to inject
additional queries or commands within a legitimate query.

Escape sequences and special characters like carriage return [CR], line feed [LF],
closing braces, semicolons can be used to end a query and then insert additionalmalicious
queries. Following example explains a scenario of piggybacked query [15].

Original Query:
db.student.find({ username: ‘testuser’});

Injection Query:
db.student.find({ username: ‘testuser’}); db.dropDatabase();
db.insert({username: ‘malicious ’, password: ‘malicioustext’});

The injection query injects additional malicious query after a semicolon. Which will
drop the database if user access management is not taken care of, and it will also insert
a new malicious user.

4.2 Absence of Strong Authentication and Authorization

Authorization and authentication are not enabled by default in MongoDB. It exposes
the vulnerability to anyone who has access to the database server and then could modify
the database and its content. Some malicious queries (as explained in Sect. 4.1) like
tautology and union queries can be used to gain unauthorized access to the database.
In absence of strong authentication login can be bypass for MongoDB on PHP, NodeJS
and JAVA Script [17].

4.3 Insecure REST API

NoSQL databases expose HTTP REST APIs so that applications can use this database
without need of any additional driver for the programming languages.

The exposure of REST API also introduces various risks if it’s not configured prop-
erly, and queries are not sanitized. The risk includes Cross-Site Request Forgery (CSRF)
attack, click jacking attack etc.Anyonewho has access to the secure network can perform
queries against the database. The attacker uses the victim’s browser to generate requests
which are considered genuine by the application/server. As a response to these requests,
the application can return unauthorized data or can execute various data manipulation
task [18].

Cross site scripting introduces a harmful or malicious script to a vulnerable web
application using a malicious link. The user information can be affected by stealing
cookies, phishing, or attacking an organization’s entire network [19].

The cross-side scripting attacks can be categorized into stored and reflected cat-
egories. The stored type of attack stores the malicious scripts into the database and
whenever the stored information is requested, malicious scripts are returned to the vic-
tim. Reflected kind of attacks reflects the injected scripts on the web servers in the form
of error message or search result.

64 S. Dwivedi et al.

Figure 2 explains CSRF attack, it is derived from “NoSQL No Injection” [13]. 1) A
victimbrowses amaliciouswebsite 2) Injection script gets executed and it submitsHTML
from with an action URL of a NoSQL database which is internal to the organization 3)
The action will get executed as employee has access to the internal network and it can
reset the values of the database.

These attacks can be executed provided following conditions are satisfied [6].

• The attacker controls the website either from exploiting a vulnerable website or it is
hosted by the attacker.

• Trick the victim either by phishing technique or injecting a malicious script into a
site that victim visits frequently.

• Another very common API based attack is click jacking attack. If the content of the
main website is embedded into another website using <frame>, <iframe> or <
embed> option, it can trick the main website users to unwillingly click on malicious
links. If a user clicks on these links the attackers get the confidential information and
access the database as well.

Fig. 2. CSRF via NoSQL API [13]

4.4 Vulnerable Database Access Security

The clients and servers, including the database servers, are connected to each other over
a network. The secure socket layer (SSL) and Transport layer security (TLS), secure
the data between the client and the database server in a network. It is very important to
provide a safe mechanism to access the database.

Vulnerable Cipher Suites. A cipher suite consists of the following [20].

A Survey on Security Threats and Mitigation Strategies 65

1) Encryption protocol (e.g., Data encryption standard (DES), Rivest Cipher4 (RC4),
Advance encryption standard (AES) etc.)

2) Encryption key length (e.g., 40, 56, or 128 bits)
3) Hash algorithm (e.g., SHA, MD5) used for integrity checking.

As per OWASP [20] any one of the following conditions can constitute a weak cipher
suite combination.

1) Less than 128 bits encryption key length
2) Not NULL ciphers suite
3) Absence of encryption
4) Weak protocols like SSLv2 etc.

If the database is not configuredwith a strong cipher suite, it will be vulnerable to attacks.
Table 2 describes a set of vulnerability for encryption protocols and the hash algorithms.

VulnerableCertificate. If certificates are not obtained from a valid source, or certificate
management is not appropriate such as self-signed or expired, it can also introduce
vulnerabilities. The certificate key length must be strong and must be signed with secure
hashing algorithms. If non secure algorithms like md5 (as discussed in the previous sub
section) are used for signing, it can introduce vulnerability.

Table 2. Protocols/Algorithms Vulnerability

Protocol/ Algorithms Vulnerability

MD5 Known collision attacks [21]

RC4 Crypto Analytical attack [22]

SSL v2 Weakness in protocol design

DES Brute force attacks

AES Brute force attacks, Man in the middle attack

Absence of StrongEncryption. Data encryption plays a crucial role for data protection.
Encryption facilitates the security of data at rest and data in motion. MongoDB encrypts
the network traffic (data-in-transit) using TLS/SSL. The community edition does not
have encryption available for data-at rest [23].

4.5 Meow Attack

The insecure installation ofMongoDB is prone toMeow attack also known as automated
attack. As per a study [24] 4000 unsecured databases were deleted by this attack. This is
a scripted bot attack that scrambles the data& indexes of victimMongoDB by overriding
it with numbers and appending the string ‘meow’. [25]. There could be several reasons
for this kind of attack such as 1) The firewall being used is not secure 2) SSL encrypted
mechanism is not being used appropriately, 3) Public access port of the database is open

66 S. Dwivedi et al.

without proper authentication settings, 4) Plain clear text to access the password. As per
the report [26] “meow” attacks only affected the free Community version of MongoDB
database, not the MongoDB Enterprise Advanced or MongoDB Atlas products.

5 NOSQL Attacks – Prevention and Mitigation

5.1 Enable Access Control and Authentication

Authentication should always be enabledwhenever using anyNoSQLdatabase including
MongoDB and appropriate access should be given to the identified users based on their
identified roles.

Access control policies are mainly classified into three well-known categories, as
following [27].

• Discretionary Access Control (DAC): Individual users can be the owner of some
resources and objects. They grant or revoke privileges to the other users, for the
object or resources own by them.

• Mandatory Access Control (MAC): This is used in a high security environment.
Access decisions are made by the administrator. It restricts access to resources based
on the security classification of the resources and the clearance level of the users or
processes attempting to access them.

• Role Based Access Control (RBAC): The users will be granted permission based on
the organizational roles assigned to users.

MongoDB provides built-in roles in addition to the user defined roles. The various
options for different roles are shown in Table 3 [28].

The MongoDB supports the following authentication mechanism:

• SCRAM-SHA-256 (MongoDB 4.0 and later)
• SCRAM-SHA-1 (MongoDB 3.0, 3.2, 3.4, and 3.6)
• MONGODB-CR (MongoDB 2.6 and earlier)
• MongoDB-AWS
• X.509

SCRAM-SHA-256 and SCRAM-SHA-1 uses username and password and encrypt
it with SHA-256 and SHA-1 algorithm respectively to authenticate the users.
MOGNOGODB-CR uses username and password for authentication. MONGODB-
AWS authentication mechanism uses Amazon Web Services Identity and Access Man-
agement (AWS IAM) credentials to authenticate the user. The X.509 authentica-
tion mechanism uses TLS with X.509 certificates to authenticate the users [28]. The
enterprise edition of MongoDB supports additional authentication mechanisms like
GSSAPI/Kerberos, LDAP (Plain).

Appropriate InputValidations. Proper input validations should be added to all the user
inputs. User field should be carefully analyzed to give privilege for appropriate strings,
integers or date type to prevent the input of anymalicious and unwanted characters along
with the user inputs.

A Survey on Security Threats and Mitigation Strategies 67

Table 3. MongoDB Built-in roles

Users Built-in Roles

DB user read, readWrite

DB administrator dbAdmin, dbOwner, userAdmin

Cluster Administration clusterAdmin,clusterManager, clusterMonitor,
hostManager

Backup and Restoration backup, restore

All database roles readAnyDatabase,readWriteAnyDatabase,
userAdminAnyDatabase,dbAdminAnyDatabase

Super user roles Root

String manipulation can be avoided by type casting of the input parameters. The
following example illustrates a method of type casting.

{'password': req.param.password.toString()}.

5.2 Enable Collection/Document Level Access

MongoDB offers collection-level access control. A role will be specific to a collection
in a particular database. This can limit the user’s privilege to a specific collection. So,
depending upon the requirements, the users should be exposed to limited collections.

The following code snippet defines the collection level access control for a particular
database [29].

privileges: [
{resource: { db: "course", collection: "student" },
 actions: ["find", "update", "insert"] },
{resource: { db: "course", collection: "faculty" }, actions: ["find"] }]

The above example defines find, update and insert on student collection and find
privilege on faculty collection of a database named as course.

MongoDB also provides field level restrictions. This will restrict the contents of a
document based on the information stored in the document itself. Multiple access levels
for the same data are enabled via an access field, best set to an array of arrays. Each
array element contains a required set of tags that a user needs to have to be allowed to
access the data.

68 S. Dwivedi et al.

5.3 Output Encoding

If the application has any regular texts in the user generated content, it should be properly
encoded before it is displayed in HTML templates or dynamically generated web pages.
The encoding will convert the characters into a format that can be transmitted over the
internet. Any unsafe characters can be replaced by % followed by two hexadecimal
digits. It will prevent any potential interpretation of data.

5.4 Query Sanitizations

Query sanitization is a process to validate the user supplied data before using it in
software application. Any special characters that can introduce vulnerability should be
avoided.

To prevent Java script injection the MongoDB versions 4.4 onwards, use of $where
is not supported [29]. MongoDB operators like where, mapReduce, or group with user
supplied data can be avoided. Where clauses should be re-written as normal queries,
using the expr operator, that does not use JavaScript. JavaScript enabled options can be
set to false in mongod.conf, to disable JavaScript execution in MongoDB instance and
prevent these kinds of attacks. It is available for both mongod (server component) as
well as mongos (used for sharded cluster).

Fig. 3. Failed NoSQL injection with sanitized user input field.

Figure 3 shows an output where injections were tried to perform using the fields in
the JSON format on a NodeJS application. Username is an email which is a validated
field which should satisfy the criteria of e-mail validation and the password should be
of string, minimum length 4 and blank space and $ not allowed as a filed.

{ "username": "admin@xyz.com"}, "password": { "$ne": "1"}}

Since the input was sanitized we got the output as shown in Fig. 3, while testing
with loopback API explorer. So unauthorized access can be prevented at this portal with
appropriate user input sanitizations and validations.

A Survey on Security Threats and Mitigation Strategies 69

5.5 Data Masking Techniques

Data masking is a popular technique used to protect sensitive data and along with being
useable.Althoughpersonal identifiable information or financial data can be hiddenbyuse
of data masking technique. This will hide the original data with some random character
or data. The authors [30] describes five laws of data masking.

1. Masking must not be reversible. The original sensitive data should not be retrieved
by use of masking.

2. The data should resemble the original data so that functionality of the application
remains the same even after masking the data.

3. Referential integrity must be maintained. If any field is declared as a primary key and
it is linked as data referencing, all the referred data should also be masked.

4. It is only advisable to mask the sensitive data rather than masking everything.
5. The development and test data should be close to the real production data.

Some of the popular data masking techniques are described as following [31].

1. Substitution: Replace original value with the other value and the replaced data should
not have any correlation with the original data.

2. Shuffling: This technique uses existing data for masking. For example, replacing one
row of a particular column with the data of the other row of the same column. This
technique is useful when the data is large.

3. Number and Date variance: Numeric or number data can be masked using this tech-
nique. The data is increased by some randompercent of the original data. For example,
the birthdates can be increased by ± 80 days.

4. Masking Out: This is a very popular technique to replace the original data with some
mask characters. For example, the credit card numbers are masked with some XXX
characters.

5. Hashing: This technique takes data and creates hash of the data. The hash of a given
data will always be same. This is used in storing passwords.

6. Tokenization: Using tokenization sensitive data will be replaced with randomly gen-
erated tokens. The mapping between the original data and tokens is maintained in a
secure lookup table or service.

Data masking can be further described using the following example taken from
gitHub [32]. The sample collection contains some dummy payment related information.
Figure 4 shows the collection beforemasking and themasked collection is show in Fig. 5.

The collection has beenmasked usingMongoDB aggregation pipeline. The sensitive
information ismasked using various techniques like 1)Name andCard number ismasked
out using partial obfuscation by retaining the last word and characters 2) Card expiry
date is masked by taking the current date time and adding a random amount up to one
year 3) Transaction date is obfuscated by adding or subtracting a random time amount
up to one hour max 4) Transaction amount is masked by partial number obfuscation by
adding or subtracting a random percent of its value, up to 10% max 5) Transaction id is
masked by using md5 of its hash value.

70 S. Dwivedi et al.

Fig. 4. MongoDB collection before data masking

5.6 Ensure the REST API Security.

The API which is being used to access the database should also be secure to prevent any
unauthorized access to the database. Allow trusted resource for Cross origin resource
sharing (CORS). It will enable only the listed resource to execute JavaScript and interact
with the page [33]. If CORS configuration is not secure any website can send requests
with the user’s credentials and perform malicious activities.

X-XSS-Protection Header is responsible for toggling off the XSS filter implemented
bymost current browsers [34]. It should be disabled to prevent cross side scripting (XSS)
attack, as discussed in Sect. 4.3. The setup of appropriate content security policy prevents
cross side scripting (XSS) attack and click jacking attack.

Strict-Transport-Security (HSTS) header should be enabled to access the website
only using HTTPS. It will allow secure access to the website.

X-Frame response header can be set appropriate options ofDENYor SAMEORIGIN
access to prevent any click jacking attack.

Table 4 describes the preventive measures by setting appropriate security header
option to prevent a vulnerability using API’s.

A Survey on Security Threats and Mitigation Strategies 71

Fig. 5. MongoDB collection after data masking

Table 4. Security Header Options for API security

Threats HTTP Security Header Options

Cross side scripting (XSS) Content Security Policy (CSP)

X-XSS-Protection Header- disable

Click jacking attack Content Security Policy (CSP)

X-Frame response header options

Insecure access Strict-Transport-Security (HSTS) header

5.7 Use Strong Network Security and Encryption Techniques

Weaker cipher suites as discussed in Sect. 4.4 should be avoided, to protect the vul-
nerability of data at rest and data in motion. This will also prevent the recent Meow
attack. Encryption of stored data and the data floating across the network can protect the
relevant accounts, passwords, and encryption keys.

72 S. Dwivedi et al.

The support of TLS1.0 encryption (weaker technique) is disabled in the latest version
of MongoDB. MongoDB’s TLS/SSL encryption only allows use of strong TLS/SSL
ciphers with a minimum of 128-bit key length for all connections.

In MongoDB encryption is available only in the Enterprise edition. The default
encryption mode is the AES256-CBC via OpenSSL. AES-256 uses a symmetric key,
i.e. the same key to encrypt and decrypt text [28].

Table 5 describes various provisions available for network security in MongoDB in
version 6.0.

Table 5. Network Security in MongoDB [35]

Forward Secrecy Ephemeral Elliptic Curve
Diffie-Hellman (ECDHE)

A new session key gets generated
for each message of the
communication. Once the
communication is over key
cannot be used to decrypt a
message

Ephemeral
Diffie-Hellman (DHE)

Certificate Expiry Warning A warning is issued if x.509 certificate is about to expire in next
30 days

OCSP (Online Certificate
Status Protocol)

The use of OCSP eliminates the need to periodically download
certificate revocation list

MongoDB supports Client-Side Field Level Encryption (CSFLE) to encrypt data the
application before sending it over the network. MongoDB community edition supports
explicit encryption to perform encrypted read and write operations through MongoDB
driver’s encryption library. The developer needs to specify the logic for encryption in
the application. [36]. Table 6 describes the overall security features and their availability
in MongoDB version 6.0.

5.8 Prevention of Meow Attack

Meow kind of automated attack can be prevented by taking care of appropriate authen-
tication mechanism, encryption technique and security as discussed in Sect. 5.1 and 5.7
respectively. The database should use strong password and encryption. Use firewall and
access controlmechanism to allowonly authorized users to access the database.Database
auditing and monitoring mechanisms should be placed appropriately to monitor any
unauthorized behaviors.

A Survey on Security Threats and Mitigation Strategies 73

Table 6. MongoDB Security Features and Status

Security Features Status

Encryption at rest Only available for enterprise edition. WiredTiger Storage
Engine

Authentication SCRAM, X.509(Community Edition)

LDAP proxy, Kerberos(Enterprise edition)

Authorization Not enabled by default
Can be enabled using the --auth or the securty.authorization
setting [29]

Role base access control (RBAC) Built-in and user defined roles are available if
authentication is enabled

Audit log Available on only in enterprise edition

6 Conclusion

In this paper we studied in detail the NOSQL database security vulnerability and pre-
vention strategies. We took examples of the most popular NoSQL database MongoDB
for illustrations of various security breaches and prevention strategies. We can leverage
the benefits of NoSQL databases and MongoDB by following the appropriate mitiga-
tion strategies. With each version of the NoSQL databases, security features are being
enhanced. One can use the study of this paper to secure all the interface being used to
access theNoSQLdatabases like prevent theNoSQL injection vulnerabilities using Input
validation, query sanitization, output encoding and data masking techniques. Secure the
channels being used to access the database by using strong cipher suites, appropriate
certificates and certificates policies, use strong encryption, authentication and authoriza-
tion. If the REST API is being used to access the database, appropriate security headers
should be enabled to prevent any kind of vulnerabilities. Table 7 summarizes the various
possible security breaches and prevention strategies using MongoDB database.

74 S. Dwivedi et al.

Table 7. Summary of Security Threats and Mitigation Strategies of NoSQL Databases

Security Threats Mitigation Strategy

Injection Vulnerabilities Tautologies expressions Input validation
Query Sanitization
Dynamic code analysis
Output encoding
Data masking and anonymization

NoSQL OR Injections

JavaScriptInjections

Piggybacked queries

Access control, Authentication/Authorization Enable Authentication

Enable Role based access control

REST API Security X-Frame response header

Enable CSP

X-XSS-Protection Header

Strict-Transport-Security (HSTS)

White listing of IP

Cryptographic Security Vulnerable Cipher Strong Ciphers - Forward Secrecy

Vulnerable certificate OCSP, Certificate expiry policy, Use
of strong hashing algorithm

Absence of Strong Encryption AES256-CBC (Enterprise edition)

Client-Side Field Level Encryption

References

1. Brewer, E.A.: Towards robust distributed systems. In: PODC, vol. 7 (2000)
2. Db engines. https://db-engines.com/en/ranking. Accessed 02 Sept 2022
3. Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., Abramov, J.: Security Issues in NoSQL

Databases. In: 10th International Conference on Trust, Security and Privacy in Computing
and Communications, Changsha, China, 2011 (2011)

4. Sicari, S., Rizzardi, A., Coen-Porisini, A.: Security& privacy issues and challenges in NoSQL
databases. Comput. Netw. Int. J. Comput. Telecommun. Netw. 206(C), 341 (2022)

5. Fahd, K., Venkatraman, S., Hammeed, F.K.: A comparative study of NOSQL system
vulnerabilities with big data. Int. J. Managing Inf. Technol. (IJMIT), 11(4), 1–19 (2019)

6. Ron, A., Shulman-Peleg, A., Puzanov, A.: Analysis and mitigation of NoSQL injections.
IEEE Secur. Priv. 14(2), 30–39 (2016)

7. Zdnet. https://www.zdnet.com/article/chinese-companies-have-leaked-over-590-million-res
umes-via-open-databases/. Accessed 02 July 2023

8. Bleeping computer. https://www.bleepingcomputer.com/news/security/russian-streaming-
platform-confirms-data-breach-affecting-75m-users/. Accessed 09 July 2023

9. Bleeping computer. https://www.bleepingcomputer.com/news/security/over-275-million-rec
ords-exposed-by-unsecured-mongodb-database/. Accessed 09 July 2023

10. Cpomagazine. https://www.cpomagazine.com/cyber-security/toyota-connected-service-dec
ade-long-data-leak-exposed-2-15-million-customers/. Accessed 18 July 2023

11. Bleeping computer. https://www.bleepingcomputer.com/news/security/redis-mongodb-and-
elastic-2022-s-top-exposed-databases/. Accessed 18 July 2023

https://db-engines.com/en/ranking
https://www.zdnet.com/article/chinese-companies-have-leaked-over-590-million-resumes-via-open-databases/
https://www.bleepingcomputer.com/news/security/russian-streaming-platform-confirms-data-breach-affecting-75m-users/
https://www.bleepingcomputer.com/news/security/over-275-million-records-exposed-by-unsecured-mongodb-database/
https://www.cpomagazine.com/cyber-security/toyota-connected-service-decade-long-data-leak-exposed-2-15-million-customers/
https://www.bleepingcomputer.com/news/security/redis-mongodb-and-elastic-2022-s-top-exposed-databases/

A Survey on Security Threats and Mitigation Strategies 75

12. Imam, A.A., Basri, S., González-Aparicio, M.T., Balogun, A.O., Kumar, G.: NoInjec-
tion: preventing unsafe queries on NoSQL-document-model databases. In: 2nd International
Conference on Computing and Information Technology (ICCIT) (2022)

13. Ron, A., Shulman-Peleg, A., Bronshtein, E: No SQL, No Injection? Examining NoSQL
Security

14. Hou, B., Qian, K., Li, L., Shi, Y., Tao, L., Liu, J.: MongoDB NoSQL Injection Analysis and
Detection. In: IEEE 3rd International Conference on Cyber Security and Cloud Computing
(CSCloud), 2016 (2016)

15. A survey on detection and prevention of SQL and NoSQL injection attack on server-side
applications. Int. J. Comput. Appl. (0975 - 8887), 183 (2021)

16. Invicti. https://www.invicti.com/blog/web-security/what-is-nosql-injection/. Accessed 07
Nov 2022

17. Spiegel, P.: NoSQL injection fun with objects and arrays (2022). https://owasp.org/www-pdf-
archive/GOD16-NOSQL.pdf

18. Databases security issues - a short analysis on the emergent security problems generated by
NoSQL databases. Economic Computation and Economic Cybernetics Studies and Research
53(3) (2019)

19. Rodríguez, G.E., Torres, J.G., Flores, P., Benavides, D.E.: Cross-site scripting (XSS) attacks
and mitigation: a survey. Comput. Netw. 166, 106960 (2020)

20. OWASP. https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Applic
ation_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_SSL_
TLS_Ciphers_Insufficient_Transport_Layer_Protection. Accessed 28 July 2023

21. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639_2

22. Qualys. https://blog.qualys.com/product-tech/2013/03/19/rc4-in-tls-is-broken-now-what.
Accessed 09 July 2023

23. Zugaj,W., Beichler, A.S.: Analysis of standard security features for selected NoSQL systems.
Am. J. Inf. Sci. Technol. (2019)

24. Meow attack. https://www.bleepingcomputer.com/news/security/new-meow-attack-has-del
eted-almost-4-000-unsecured-databases/. Accessed 02 Oct 2023

25. Hackernoon. https://hackernoon.com/learnings-from-the-meow-bot-attack-on-our-mon
godb-databases-y22q3zs8. Accessed 12 Oct 2023

26. Techtarget. https://www.techtarget.com/searchsecurity/news/252486971/Meow-attacks-con
tinue-thousands-of-databases-deleted. Accessed 9 Oct 2023

27. Osborn, S.L., Servos, D., Shermin, M.: Issues in access control and privacy for big data. In:
Meyers, R.A. (eds.) Encyclopedia of Complexity and Systems Science, pp. 1–9. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-642-27737-5_752-1

28. MongoDB docs. https://www.mongodb.com/docs/drivers/go/current/fundamentals/auth/.
Accessed 22 June 2023

29. MongoDB manual. https://www.mongodb.com/docs/manual/. Accessed 22 June 2023
30. Ajayi, O.O., Adebiyi, T.O.: Application of data masking in achieving information privacy.

IOSR J. Eng. (IOSRJEN) 4(2), 13–21 (2014)
31. Cuzzocrea, A., Shahriar, H.: Data masking techniques for NoSQL database security: a sys-

tematic review. In: 2017 IEEE International Conference on Big Data (Big Data), Boston, MA,
USA (2017)

32. Git hub Data masking. https://github.com/pkdone/mongo-data-masking. Accessed 06 July
2023

33. Mozilla docs. https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS.Accessed18 July
2023

https://www.invicti.com/blog/web-security/what-is-nosql-injection/
https://owasp.org/www-pdf-archive/GOD16-NOSQL.pdf
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_SSL_TLS_Ciphers_Insufficient_Transport_Layer_Protection
https://doi.org/10.1007/11426639_2
https://blog.qualys.com/product-tech/2013/03/19/rc4-in-tls-is-broken-now-what
https://www.bleepingcomputer.com/news/security/new-meow-attack-has-deleted-almost-4-000-unsecured-databases/
https://hackernoon.com/learnings-from-the-meow-bot-attack-on-our-mongodb-databases-y22q3zs8
https://www.techtarget.com/searchsecurity/news/252486971/Meow-attacks-continue-thousands-of-databases-deleted
https://doi.org/10.1007/978-3-642-27737-5_752-1
https://www.mongodb.com/docs/drivers/go/current/fundamentals/auth/
https://www.mongodb.com/docs/manual/
https://github.com/pkdone/mongo-data-masking
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

76 S. Dwivedi et al.

34. Lavrenovs, A., Melón, F.J.R.: HTTP security headers analysis of top one million websites.
In: 10th International Conference on Cyber Conflict (CyCon), Tallinn, Estonia (2018)

35. MongoDB manual. https://www.mongodb.com/docs/manual/core/security-transport-encryp
tion/. Accessed 04 July 2023

36. MongoDB manual, CSFLE. https://www.mongodb.com/docs/manual/core/csfle/. Accessed
16 July 2023

37. CouchDB homepage. https://couchdb.apache.org/. Accessed 19 June 2023

https://www.mongodb.com/docs/manual/core/security-transport-encryption/
https://www.mongodb.com/docs/manual/core/csfle/
https://couchdb.apache.org/

Theoretical Enumeration of Deployable
Single-Output Strong PUF Instances
Based on Uniformity and Uniqueness

Constraints

Venkata Sreekanth Balijabudda1(B), Kamalesh Acharya2,
Rajat Subhra Chakraborty1, and Indrajit Chakrabarti1

1 Indian Institute of Technology Kharagpur, West Bengal, India
sreekanthbv@iitkgp.ac.in, rschakraborty@cse.iitkgp.ac.in,

indrajit@ece.iitkgp.ac.in
2 VIT Chennai, Tamil Nadu, India

Abstract. Uniqueness and Uniformity are two important quality met-
rics that determine the practical usability of a strong Physically Unclon-
able Function (“strong PUF”) instance, or an ensemble of strong PUF
instances. In this paper, we consider the strong PUF instance as a
Boolean function, and theoretically enumerate the total number of
usable single-output practical strong PUF instances, assuming commonly
acceptable thresholds of the Uniqueness and Uniformity metrics. We have
computed the number of possible strong PUF instances with ideal Uni-
formity (= 0.50), and Uniformity within an acceptable range of the ideal
value, and the same for Uniqueness. Additionally, given an ideal Uni-
formity, we have enumerated the number of strong PUF instances with
ideal Uniqueness (= 0.50), and Uniqueness within an acceptable range.
Our analysis is completely generic and applicable to any PUF variant,
independent of its structure and operating principle.

Keywords: Boolean function · Combinatorics · Physically Unclonable
Function · Uniformity · Uniqueness

1 Introduction

A semiconductor Physical Unclonable Function (PUF) [5,10] is an electronic
circuit embedded in a physical device, which has (ideally) unclonable instance-
specific output characteristics. A PUF instance acts as digital “fingerprint gener-
ator”, where the fingerprint consists of either a bit-string obtained automatically
on power-on without the application of any input stimuli for a “weak PUF”,
or the input-output (“challenge-response”) truth-table of the PUF instance for
a “strong PUF”. PUF circuit behavior is the manifestation of unpredictable
and unavoidable manufacturing process variations for modern nanometre-scale
CMOS devices. PUF has emerged as an important hardware security primitive,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 77–87, 2023.
https://doi.org/10.1007/978-3-031-49099-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_5

78 V. S. Balijabudda et al.

and have found widespread application in numerous problems, ranging from inte-
grated circuit (IC) identification to device authentication [4,7]. PUFs are partic-
ularly suitable for resource-constrained platforms such as the Internet of Things
(IoTs), where they help to efficiently substitute computationally-expensive cryp-
tographic operations.

Unfortunately, in practice, not all PUF instances are usable. For example, if
the power-on signature of a weak PUF instance is 1 in all the bits or 0 in all the
bits, i.e. 1111 · · · 11111 or 0000 · · · 0000, it is not usable because of low-entropy.
However, the issue of determining whether a given PUF instance is usable in
practice is more complicated for a strong PUF, since whether a strong PUF
instance is usable or not can be decided only after extensive experimental char-
acterization. A strong PUF instance with n-bit input challenges and m-bit out-
put responses can be considered to be a Boolean function f : {0, 1}n → {0, 1}m.
Given that typically n ≥ 64 in practice, exhaustive enumeration of the truth
table for each of the m outputs of a given strong PUF instance is practically
infeasible. Hence, the challenge-response characterization is limited to a small
subset of the truth table, typically building a database of only a few thou-
sand challenge-response pairs (CRPs). Additional experimental characterization
is performed to evaluate several statistical performance metrics of the PUF.
Some of these metrics – e.g. Uniformity which measures the fraction of 1 s in
the truth table of a PUF instance, are applicable for an individual strong PUF
instance, while some metrics, e.g. Uniqueness which measures the distinguisha-
bility of individual PUF instances, apply to an ensemble of PUF instances of the
same type (precise definition of these metrics are given later in the paper). The
practical acceptability of a given strong PUF instance, or a strong PUF ensem-
ble, is based on the obtained metric values. Those PUF instances or a PUF
ensemble with the individual metric values within specified limits are accepted
for practical deployment, while the others are rejected. For example, a strong
PUF instance with Uniformity value in the range [0.45, 0.55] and a strong PUF
ensemble with Uniqueness value in the same range can be considered suitable
for practical deployment for most application scenarios.

In this paper, we aim to solve the interesting open problem of theoretically
estimating the number of practically deployable instances of a given strong PUF
variant, based on its experimentally determined Uniformity and Uniqueness met-
rics. Our treatment is based purely on combinatorial arguments, while
being completely agnostic of the physical nature, electrical character-
istics, operating principle, and type of a given PUF design.

These estimates are useful in taking a call about the degree of practical
usefulness of a proposed new PUF variant, or an ensemble of an existing PUF
variant, based on a count of deployable PUF instances. We expect this work
would make estimation of the number of deployable unique instances an impor-
tant consideration while deciding upon a PUF choice.

Theoretical Enumeration of Deployable Single-Output Strong PUF Instances 79

2 Background

2.1 Related Works and Motivation

The idea of Physical one-way functions for cryptography applications was intro-
duced in [12]. More useful constructions of PUF circuits which are economical
to widely available devices are proposed in [5]. Mathematical representations of
these PUF circuits are established in [2,3]. Nevertheless, it is the authors of [13]
who had proposed the first theoretical study exploring the sampling spaces of
Boolean functions and PUF models. However, a drawback of this incomprehen-
sive study is that, although the security of arbiter PUF in a restricted domain of
Boolean functions is provided from [11], a combinatorial analysis of the usable
PUF instances based on their performance metrics (i.e., range of Boolean func-
tions) is not performed. In our work, we overcome this drawback and perform a
detailed combinatorial analysis of the total usable PUF instances with ideal and
practical quality metrics. An emphasis on Uniformity and Uniqueness metrics
is laid in choosing the PUF instances from the space of Boolean functions. The
results are obtained for any n-bit PUF, also encompassing the noise in real-world
scenarios.

Most current works usually consider the robustness of a given strong PUF
variant to Model Building Attacks [9], as the most important factor in deciding
the practical acceptability of a PUF. However, to the best of our knowl-
edge, combinatorial analysis of PUFs to enumerate the number of
practically deployable PUF instances based on statistical performance
metrics have not been attempted.

2.2 PUF Performance Metrics

The performance of any PUF implementation is evaluated using several statis-
tical performance metrics [8]. Among them, two of the most commonly used
metrics are Uniformity and Uniqueness, and are defined below (for simplicity,
we assume the PUF has a single output bit, i.e. m = 1).

The Uniformity of a strong PUF instance measures the relative frequency
of 1’s in its response. It is given by:

Uniformity = 1
R

∑R
l=1 rl (1)

where R is the total number of applied challenges for which the PUF instance
was characterized, and rl ∈ {0, 1} is the response obtained for the l-th challenge.
Its ideal value is 0.50 (or 50%).

The Uniqueness metric, on the other hand, provides a measure of distin-
guishability among two PUF instances of the same type. Consider an ensemble
of k strong PUFs of the same type, two separate PUF instances i and j belonging
to this ensemble, and each PUF instance of the ensemble have been characterized
for the same set of R challenges. Then, the Uniqueness metric is defined as:

Uniqueness = 2
k(k−1)

∑k−1
i=1

∑k
j=i+1

HD(Ri,Rj)
R (2)

80 V. S. Balijabudda et al.

where Ri and Rj represent the R-bit concatenated responses to the R-applied
challenges for the i-th and j-th PUF instances, and HD() represents the Ham-
ming Distance between two R-bit vectors. Again, ideal Uniqueness value for an
ensemble of strong PUFs is 0.50 (or 50%).

It should be noted that in practical implementations, usually these ideal
values of the performance metrics are not attained. Hence, we have to consider
ranges of values that are close to ideal, in general in the range [0.50 − ε, 0.50 +
ε], where ε is a small positive constant, whose value is decided based on the
application scenario.

3 Enumeration of Deployable PUF Instances Based on
Uniformity and Uniqueness

Each strong PUF instance with n-bit challenge and a single-bit response can
be represented by an n-variable Boolean function. Hence, the terms “Boolean
function” and “PUF instance” have been used interchangeably below.

3.1 PUF Instances with Ideal Uniformity

Theorem 1. The total number of possible PUF instances with n-bit challenges
and Uniformity = 0.50 is

(
2n

2n−1

)
.

Proof. For Uniformity to be 0.50, the number of 1’s in the truth table of a
strong PUF instance with n-bit challenges should be exactly 2n/2 = 2n−1. There
are exactly

(
2n

2n−1

)
distinct choices of 2n−1 entries in a truth table of size 2n.

Hence, the number of distinct PUF instances with Uniformity value exactly 0.5
is

(
2n

2n−1

)
. ��

3.2 PUF Instances with Uniformity in the Range [0.50− ε, 0.50 + ε]

Before proceeding to the next major result, a useful recursion is proved below:

Lemma 1. Let N and r be positive integers with r < N and

f(N, r) =
(
N
0

)
+

(
N
1

)
+ . . . +

(
N

r−1

)
, r < N (3)

Then, f(N, r) = 2f(N − 1, r) − (
N−1
r−1

)
(4)

Proof. Applying Pascal’s Identity [6],
(

N
k

)
=

(
N−1
k−1

)
+

(
N−1

k

)
, k > 0, repeatedly,

and since
(
N
0

)
=

(
N−1
0

)
= 1, we get,

f(N, r) =
(
N
0

)
+

(
N
1

)
+

(
N
2

)
+ . . . +

(
N

r−1

)

= 2
[(

N−1
0

)
+

(
N−1
1

)
+ . . . +

(
N−1
r−1

)] − (
N−1
r−1

)

= 2f(N − 1, r) − (
N−1
r−1

)
(5)

Theoretical Enumeration of Deployable Single-Output Strong PUF Instances 81

Theorem 2. Assuming 2n−1(1 − 2ε) to be a positive integer for an ε > 0, the
number of n-bit PUF instances with Uniformity in the range [0.50 − ε, 0.50 + ε]
is given by:

X =
(

2n

2n−1(1−2ε)

)
+

(
2n

2n−1(1−2ε)+1

)
+ . . . +

(
2n

2n−1

)
+

. . . +
(

2n

2n−1(1+2ε)

)
= 2N − 2f(N, r) (6)

where N = 2n, r = (N/2) · (1 − 2ε) and f(N, r) is given by Eq. (3).

Proof. For an Uniformity value 0.50 − ε, we need 2n(0.50 − ε) = 2n−1(1 − 2ε)
number of 1’s in the PUF instance’s truth table. Hence, the number of such
Boolean functions, i.e. distinct PUF instances is

(
2n

2n−1(1−2ε)

)
. Similarly, for a

Uniformity value 0.50+ ε, we need 2n(0.50+ ε) = 2n−1(1 + 2ε) number of 1’s in
the PUF instance’s truth table. Hence, the number of such Boolean functions are(

2n

2n−1(1+2ε)

)
. Extrapolating in the same way, the total number of PUF instances

with Uniformity in the range [0.50 − ε, 0.50 + ε] is given by:

X =
(

2n

2n−1(1−2ε)

)
+

(
2n

2n−1(1−2ε)+1

)
+ . . . +

(
2n

2n−1

)
+ . . . +

(
2n

2n−1(1+2ε)

)
(7)

Let 2n = N and r = (N/2) · (1 − 2ε); then, the above expression can be
written as:

X =
(
N
r

)
+

(
N

r+1

)
+ . . . +

(
N

N/2

)
+ . . . +

(
N

N−r

)
(8)

Let X1 =
[(

N
r

)
+ . . . +

(
N

N/2

)]
. Using the basic identity

(
N
i

)
=

(
N

N−i

)
, 0 ≤ i ≤ N ,

Eq. (8) can be rewritten as:

X = 2
[(

N
r

)
+ . . . +

(
N

N/2

)] − (
N

N/2

)
= 2X1 − (

N
N/2

)
(9)

We now derive an expression for X1 as follows: Since,

(
N
0

)
+

(
N
1

)
+ . . . +

(
N

N/2

)
+

(
N

N/2+1

)
+ . . . +

(
N
N

)
= 2N

⇒ 2
[(

N
0

)
+

(
N
1

)
+ . . . +

(
N

N/2

)] − (
N

N/2

)
= 2N (10)

After some rearrangement of terms,

[(
N
r

)
+ . . . +

(
N

N/2

)]
= 2N−1 + 1

2

(
N

N/2

) − f(N)

⇒ X1 = 2N−1 + 1
2

(
N

N/2

) − f(N, r) (11)

82 V. S. Balijabudda et al.

Substituting this value of X1 in Eq. (9), we have the total number of PUF
instances as,

X = 2
[
2N−1 + 1

2

(
N

N/2

) − f(N, r)
]

− (
N

N/2

)
= 2N − 2f(N, r) �� (12)

3.3 PUF Instances Having Ensemble Uniqueness = 0.50

We assume that each PUF instance in the ensemble is exhaustively enumerated,
i.e. number of applied challenges R = 2n, where each challenge is n-bit long. We
consider the following cases: the first case of exact analysis for a small ensemble
of only two PUF instances (k = 2), and the second case of a more general analysis
with more instances (k > 2).

k = 2: To obtain an Uniqueness value of 0.50 in an ensemble of k = 2 PUF
instances, we need to have the Hamming distance to be R/2, i.e., the responses
bitstrings for the two PUF instances must differ at exactly R/2 positions. Note
that R/2 distinct positions in a R-bit bitstring can be chosen in

(
R

R/2

)
ways.

These distinct positions can be covered in (2R/2)/2 ways (either all-ones or all-
zeros, resulting in the division by 2), while the remaining positions have 2R/2

different choices. Hence, the total number of possible PUF instances is:

Yk=2 = (R
R/2)2R/2(2R/2)

2 =
(

R
R/2

)
2R−1 (13)

k > 2: Let M =
(
k
2

)
/2. To achieve Uniqueness 0.50, we can rewrite Eq. (2):

1

(k2)

∑k−1
i=1

∑k
j=i+1HD(Ri,Rj)

R = 0.50 ⇒
k−1∑

i=1

k∑

j=i+1

HD(Ri, Rj) =
R(k2)
2 = M · R

(14)

where HD(Ri, Rj) represents the Hamming distance between two PUF R-bit
response strings Ri and Rj , for PUF instances i and j respectively. Note that this
Hamming distance for a pair of distinguishable PUF instances lies in the range
[1, R]. There are 2M Hamming distances, corresponding to 2M PUF instance
pairs. To get the sum of these Hamming distances to be MR is equivalent to
obtaining the solution of the equation a1 + a2 + . . . + a2M = M · R, for the
2M unknowns a1, a2, . . . a2M ∈ [1, R]. Let us consider the polynomial (x1+x2+
. . . xR)2M . It contains terms of the form ci · xa1+a2+...a2M , where ci is a positive
integer. Hence, the total number of solutions to the equation a1+a2+. . .+a2M =
M · R, which is also the required number of PUF instances, is:

Yk>2 = coefficient of xMR in (x1 + x2 + . . . + xR)2M

= coefficient of xMR in (1 − x)2M (x1 + x2 + . . . + xR)2M/(1 − x)2M

= coefficient of xMR in (1 − xR)2Mx2M (1 − x)−2M

Theoretical Enumeration of Deployable Single-Output Strong PUF Instances 83

Fig. 1. Number of n-bit PUF Instances with various performance metrics.

The results for a few values of n and k are plotted in Fig. 1a. It must be
noted that an exact numerical result is derived for k = 2, while a lower bound
or minimum usable instances is obtained for k > 2. This relaxation applies to
all successive evaluations.

3.4 PUF Instances with Uniqueness In Range [0.50 − ε, 0.50 + ε]

As previously done, we consider two separate cases, for different ensemble sizes.
k = 2: To achieve a Uniqueness value of 0.50 − ε, the response strings for

two PUF instances must have Hamming distance m1 = (R/2)(1 − 2ε), where
R is the number of applied challenges and ε > 0. Hence, the number of such
cases is

(
R

m1

)
2R−1. Similarly, to have Uniqueness 0.50 + ε, the response strings

must have Hamming distance m2 = (R/2)(1+ 2ε). Thereby, the number of such
cases is

(
R

m2

)
2R−1. Hence, the total number of PUF instances is

∑m2
i=m1

(
R
i

)
2R−1,

assuming m1 and m2 are positive integers, and R = 2n.

k > 2: To obtain Uniqueness in the range of [0.50 − ε, 0.50 + ε], the value of
∑k−1

j=1

∑k
i=j+1HD(Ri, Rj) must lie in the range [M · r1,M · r2], where M =

1
2

(
k
2

)
, r1 = R(1− 2ε), r2 = R(1+2ε). From the analysis presented in Sect. 3.3 for

the case k > 2, it is apparent that if
∑k−1

i=1

∑k
j=i+1HD(Ri, Rj) is M ·R, then the

approximate number of possible choices are (assuming r1 and r2 are integers):

=
(

MR−1
MR−2M

) − (
2M
1

)(
(M−1)R−1)
(M−1)R−2M

)
+ . . . (M terms). (15)

Hence adding all such choices in the range of [M ·r1,M ·r2], we have the approx-
imate number of total PUF instances as:

=
(

Mr1−1
Mr1−2M

) − (
2M
1

)(
(M−1)r1−1

(M−1)r1−2M

)
+

(
2M
2

)(
(M−2)r1−1

(M−2)r1−2M

)
. . .

+
(

Mr2−1
Mr2−2M

) − (
2M
1

)(
(M−1)r2−1

(M−1)r2−2M

)
+

(
2M
2

)(
(M−2)r2−1

(M−2)r2−2M

)
. . .

=
Mr2∑

i=Mr1

(
i−1

i−2M

) − (
2M
1

) (M−1)r2∑

i=(M−1)r1

(
i−1

i−2M

)
+ . . . (M terms) (16)

84 V. S. Balijabudda et al.

The above function for a few values of challenge lengths (n) have been plotted
in Fig. 1b for varying ε, and two values of k = 2 and k = 3.

3.5 PUF Instances Each with Uniformity = 0.50 and Ensemble
Uniqueness = 0.50

Again, we consider two different cases: (a) ensemble size k = 2, and, (b) ensemble
size k > 2. We again assume exhaustive enumeration, i.e. R = 2n.

k = 2: Let PUFA and PUFB represent two PUF instances with Uniformity =
0.50 individually, and Uniqueness of the ensemble {PUFA, PUFB} being 0.50.
Suppose, C1A be the set of challenges for instance PUFA for which its response
is 1, and C0A = {0, 1}n \ C1A be the set of challenges for instance PUFA for
which its response is 0. Similarly, let C1B and C0B = {0, 1}n \ C1B be the cor-
responding challenge sets for PUF instance PUFB. Then, given the Uniformity
and Uniqueness values of 0.50 each, and k = 2, we have the following properties:

1. |C1A| = |C0A| = |C1B | = |C0B | = R/2
2. |C1A \ C1B | = |C0A \ C0B | = R/4

The second property can be argued based on the fact that for every challenge
c1 ∈ C1A \ C1B , there must be exactly one challenge c2 ∈ C1B \ C1A, to ensure
property-1. Considering all possible ways to construct sets C1A, C0A, C1B and
C0B , and remembering that the number of possible n-variable Boolean functions
with Uniformity = 0.50 is

(
R

R/2

)
2R−1, the total number of possible PUF instances

in this case is:

Zk=2 =
(
R/2
R/4

)(
R/2
R/4

)(
R

R/2

)
2R−1 =

(
R/2
R/4

)2(R
R/2

)
2R−1 (17)

k > 2: Let M = 1
2

(
k
2

)
. To achieve Uniqueness as 0.50, we must have (from

Eq. 14):

⇒
k−1∑

i=1

k∑

j=i+1

HD(Ri, Rj) =
R(k2)
2 = M · R (18)

Note that since we are considering PUF instances each of which have an even
number (= R/2 = 2n−1, n > 1) of 1’s and 0’s in its truth table (because of
Uniformity = 0.50), Hamming distance between each pair must be even, i.e.
HD(Ri, Rj) ∈ {2, 4, . . . R}, i 	= j. There are 2M possible PUF instance pairs.
Finding the choices for all the Hamming Distance values which sum to M · R is
equivalent to obtaining a solution to the equation a1 + a2 + . . . + a2M = M · R,
where a1, a2, . . . a2M values lies in {2, 4, . . . , R}. Let us consider the polyno-
mial (x2 + x4 + . . . xR)2M . It contains terms of the form ci · xa1+a2+...a2M and
its co-efficient will give the required result. Hence, the approximate number of
PUF instances is = coefficient of xMR in (x2 + x4 + . . . + xR)2M = coefficient of
XMR/2 in (1−X)2M (X1 + X2 . . . + XR/2)2M/(1−x)2M = coefficient of XMR/2

in (1 − XR/2)2MX2M (1 − X)−2M

The results for a few values of n are shown in Fig. 1c for different number of
k instances in the ensemble.

Theoretical Enumeration of Deployable Single-Output Strong PUF Instances 85

3.6 PUF Instances Each with Uniformity 0.50 and Ensemble
Uniqueness in the Range [0.50 − ε, 0.50 + ε]

Again, we consider two separate cases, as follows:

k = 2: Given Uniformity of 0.50, we had earlier derived the number of PUF
instances with Uniqueness 0.50, in Eq. (17), as

(
R/2
R/4

)2(R
R/2

)
2R−1. Let T1 =

(
R

R/2

)
2R−1. Similarly, for Uniqueness = 0.50 − ε it would be

(
R/2
l1

)2
T1 and for

Uniqueness = 0.50 + ε it would be
(
R/2
l2

)2
T1, where l1 = R(0.50 − ε)/2, and

l2 = R(0.50 + ε)/2. Hence for Uniqueness [0.50 − ε, 0.50 + ε], the total number
of functions are:

(
R/2
l1

)2
+ . . . +

(
R/2
R/4

)2
+ . . . +

(
R/2
l2

)2
=

∑l2
i=l1

(
R/2

i

) · T1. (19)

k > 2: To obtain Uniqueness in [0.50 − ε, 0.50 + ε], the value of
∑M

i=j+1

∑M−1
j=1 HD(Pi, Pj) must lie in [MR1,MR2] where, M = 1

2

(
k
2

)
, R1 =

R(1 − 2ε), and R2 = R(1 + 2ε). From previous result, it is apparent that if
∑M

i=j+1

∑M−1
j=1 HD(Pi, Pj) is MR, then the approximate number of possible

cases are:

=
(

MR/2−1
MR/2−2M

) − (
2M
1

)(
(M−1)(R/2)−1)
(M−1)(R/2)−2M

)
+ . . . (M terms). (20)

Hence. adding all such choices in the range of [MR1,MR2], we have the
approximate number of total PUF instances as:

=
(

MR1/2−1
MR1/2−2M

) − (
2M
1

)(
(M−1)(R1/2)−1

(M−1)(R1/2)−2M

)
. . . (M terms) +

(
MR2/2−1

MR2/2−2M

) − (
2M
1

)(
(M−1)(R2/2)−1

(M−1)(R2/2)−2M

)
. . . (M terms)

=
MR2/2∑

i=MR1/2

(
i−1

i−2M

) − (
2M
1

) (M−1)(R2/2)∑

i=(M−1)(R1/2)

(
i−1

i−2M

)
+ . . .

+(−1)l−1
(
2M
l−1

) (M−(l−1))(R2/2)∑

i=(M−(l−1))(R1/2)

(
i−1

i−2M

)
+ . . . (M terms). (21)

Note that if some (M − (l − 1))(Ri/2) − (2M) < 0, where 1 ≤ l ≤ M , and
i ∈ {1, 2}, then we will not add that corresponding term. It is obvious that the
number of terms is less than or equal to M (except the k = 3 case where there
are
M� terms).

4 Discussions

To make our analysis mathematically tractable, we were forced to make an
impractical assumption that each PUF instance is characterized exhaustively for

86 V. S. Balijabudda et al.

all its possible input challenges. However, our analysis should also be approx-
imately valid for PUF implementations where each instance has undergone a
more common incomplete characterization (for only a small subset of the possi-
ble challenges). Although closed-form expressions are not provided for those cases
involving the Uniqueness metric, the coefficient results can be easily obtained
using computer algebra systems like SAGE or MAPLE, from which exact numer-
ical values can be obtained by evaluating the expressions.

Practical validation of the derived results through analysis of actual data
obtained from silicon PUF implementations is difficult, because while we have
control over the number of challenges, given the very characteristics of PUFs, we
have no a priori control over the nature of the Boolean function that corresponds
to an implemented strong PUF instance.

5 Conclusions

We have theoretically derived the total number of deployable n-bit strong PUF
instances, based on constraints set by Uniformity and Uniqueness values. Such
analysis is useful in deciding the relative usability of different PUF variants while
being independent of the nature of the PUF in practical scenarios. This work
has produced a valuable metric to evaluate the yield of a PUF design, especially
during the manufacturing process. Our future work would be directed toward
extending our analysis to include other common performance metrics such as
Bit-aliasing [1] and Reliability.

References

1. Feiten, L., Sauer, M., Becker, B.: On metrics to quantify the inter-device uniqueness
of PUFs. Cryptology ePrint Archive, Paper 2016/320 (2016). https://eprint.iacr.
org/2016/320

2. Ganji, F.: On the Learnability of Physically Unclonable Functions. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76717-8

3. Ganji, F., Tajik, S., Fäßler, F., Seifert, J.-P.: Strong machine learning attack against
PUFs with no mathematical model. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES
2016. LNCS, vol. 9813, pp. 391–411. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53140-2_19

4. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random
functions. In: 18th Annual Computer Security Applications Conference, 2002. Pro-
ceedings, pp. 149–160 (2002). https://doi.org/10.1109/CSAC.2002.1176287

5. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the Design Automation Conference
(DAC) (2007)

6. Harne, S., Badshah, V., Verma, V.: Fibonacci and Lucas polynomial identities,
binomial coefficients and pascal’s triangle. Int. J. Math. Res. 7(1), 7–13 (2015)

7. Herder, C., Yu, M.D., Koushanfar, F., Devadas, S.: Physical unclonable functions
and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)

https://eprint.iacr.org/2016/320
https://eprint.iacr.org/2016/320
https://doi.org/10.1007/978-3-319-76717-8
https://doi.org/10.1007/978-3-662-53140-2_19
https://doi.org/10.1007/978-3-662-53140-2_19
https://doi.org/10.1109/CSAC.2002.1176287

Theoretical Enumeration of Deployable Single-Output Strong PUF Instances 87

8. Hori, Y., Yoshida, T., Katashita, T., Satoh, A.: Quantitative and statistical per-
formance evaluation of arbiter physical unclonable functions on FPGAs. In: 2010
International Conference on Reconfigurable Computing and FPGAs, pp. 298–303
(2010)

9. Lim, D., Devadas, S.: Extracting secret keys from integrated circuits. S.M. The-
sis, Massachusetts Institute of Technology (2004). https://hdl.handle.net/1721.1/
18059

10. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 13(10), 1200–1205 (2005)

11. Maitra, S., Mandal, B., Martinsen, T., Roy, D., Stănică, P.: Analysis on Boolean
function in a restricted (Biased) domain. IEEE Trans. Inf. Theory 66(2), 1219–
1231 (2020). https://doi.org/10.1109/TIT.2019.2932739

12. Ravikanth, P.S., Benton, S.A.: Physical one-way functions. Science 297, 2026–2030
(2001)

13. Roy, A., Roy, D., Maitra, S.: How do the arbiter PUFs sample the Boolean function
class? In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 111–130.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4_6

https://hdl.handle.net/1721.1/18059
https://hdl.handle.net/1721.1/18059
https://doi.org/10.1109/TIT.2019.2932739
https://doi.org/10.1007/978-3-030-99277-4_6

Network Security

Detection and Hardening Strategies to
Secure an Enterprise Network

Preetam Mukherjee(B) , Sabu M. Thampi , N. Rohith,
Bishwajit Kumar Poddar, and Ipshita Sen

Digital University Kerala, Thiruvananthapuram, Kerala, India

preetam.mukherjee@duk.ac.in

Abstract. In today’s IT enterprises, security strategy determination
has become exponentially complex with the increasing complexity of the
network infrastructure. Various types of defenses are available with a
security administrator, viz., harden, detect, isolate, deceive, and evict.
These defenses have their specific purposes. Separate strategies are
required for implementing each type of defense in the context of an enter-
prise network. The existing defense strategy selection schemes do not
have explicit strategies for different classes of defenses. In this paper, we
propose two separate strategies to determine the point of deployment of
harden and detect defenses. These strategies would be useful in providing
a better return on security investments.

Keywords: Attack Graph · Mitre D3FEND · Mitre ATT&CK ·
Defense Strategies

1 Introduction

Cyber security has become an essential nonfunctional requirement in the modern
day scenario. Organizations are investing a large portion of their budget to secure
assets from cyber attackers. Accurate distribution of this security budget as per
the requirements is a real challenge considering the large number of vulnerabili-
ties and their complex causal relationships. Understanding these relationships is
essential for effectively mitigating vulnerabilities and preventing attacks. It also
helps to implement best security practices and develop comprehensive defense
strategies.

Causal relationship among the vulnerabilities can be modelled using various
attack modelling techniques like, attack tree, attack graph [1,22,23,26,27]. One
can use these techniques to describe the attackers’ reachability in an enterprise
network. The generated models can be analyzed to find the crucial most attack
points that need immediate attention from the security team. These crucial attack
points need to be secured to get the best return on security investment [7,8,35].

Security administrators follow one interesting thumb rule in big enterprises.
They made the core networks more secure than the outer or perimeter networks.
In contrast, administrators put more effort into monitoring the perimeter net-
works than the core network. The logic behind this is “Late detection is equiv-
alent to not detecting the case at all.” As detecting and reacting to a security
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 91–108, 2023.
https://doi.org/10.1007/978-3-031-49099-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_6&domain=pdf
http://orcid.org/0000-0003-2549-6578
http://orcid.org/0000-0001-6453-5520
https://doi.org/10.1007/978-3-031-49099-6_6

92 P. Mukherjee et al.

incident takes time, security administrators always want to detect the problem
at the earliest. On the other hand, in the case of hardening, the goal is to secure
all the valuables. Even company insiders may launch attacks on the company’s
core data centre. To deal with such risks it is crucial to concentrate on the core,
to protect the valuables. This approach will also reduce the financial burden of
implementing security, as the core network will have a limited attack surface.

Existing research uses various optimization techniques to find the best pos-
sible defenses within budget [2,5,7,8,13,19,23,25,29,30,35], but they have not
included the “hardened core and monitored perimeter” in the strategy. Due to
that deficiency, those methods will fall short in choosing the best defenses.

This paper has formulated two different types of crucial attack point identi-
fication techniques for enterprise networks. One type requires strict monitoring,
and the other requires hardening of the security. The contribution of this paper
is threefold,

– identification of critical vulnerabilities for which hardening is required
– identification of vulnerabilities in urgent need of monitoring/detection
– mapping of vulnerability to the proper type of defense technique(s)

The rest of the paper is structured as follows, Sect. 2 discusses the related
research in attack-defense modeling, security metrics, various knowledge bases,
etc. Section 3 discusses various repositories and their relationships. Attack mod-
eling is elaborated in Sect. 4. Section 5 presents hardening and detection strate-
gies, illustrated with examples and accompanied by a high-level algorithm.
Section 6 elaborates on the defense strategy determination with a detailed exam-
ple. Section 7 contains the discussion, and Sect. 8 concludes the paper.

2 Related Work

Vulnerability databases like CVE1, CWE2 are used to find the vulnerabili-
ties/weaknesses associated with IT assets. These databases help find the possible
attacks on the network of concern. For the last few years, security researchers
started using the latest knowledge repositories like Mitre ATT&CK3, Mitre
D3FEND4, Mitre CREF navigator5, etc. [12,28,32,36]. A lot of effort is going
into mapping these knowledge bases, which would be helpful in case of analysis
and for taking actionable decisions [9,15].

The vulnerabilities identified in an enterprise network can be causally con-
nected. Various attack modeling techniques viz. attack graph [1,22,27], attack
trees [26], bayesian attack graph [23] are available to capture these causal depen-
dencies. Attack modeling languages like meta attack language (MAL) [11] are
also developed to simulate attacks in the modeled networks.
1 cve.mitre.org.
2 cwe.mitre.org.
3 attack.mitre.org.
4 d3fend.mitre.org.
5 crefnavigator.mitre.org/navigator.

https://cve.mitre.org/
https://cwe.mitre.org/
https://attack.mitre.org/
https://d3fend.mitre.org/
https://crefnavigator.mitre.org/navigator

Detection and Hardening Strategies to Secure an Enterprise Network 93

Different security metrics are generated to help find the critical path from
the generated attack models. A few metrics count the number of vulnerabilities
between the attacker and target to compute the security strength of a path.
These metrics are called Counting metrics, viz. shortest path metric [20,22],
weakest-adversary security metric [21]. While computing these metrics, the dif-
ficulty of exploiting the vulnerabilities is not considered. Another set of metrics,
called Difficulty based metrics, includes difficulty values. A few example diffi-
culty based metrics are attack resistance [34], probabilistic security [33], attack
difficulty [16], and diversity metric [4].

Adding the defenses in the attack model to show the possible way of coun-
tering the attack steps is the obvious next step toward security related decision
making. Attack-defense tree [14], attack countermeasure tree [24], protection
tree [6], defense tree [3] are a few example modeling schemes where possible
defenses are also included along with the attacks. Attack modeling languages
are also extended to add defense mechanisms with the corresponding attack
steps. With this extension, it is possible to simulate attack models along with
the defense suggestions for the given network.

Adding defenses to the attack model will help identify the defenses quickly
but do not provide us with much decision making power. A security officer
requires an optimal strategy by using which (s)he can implement the best secu-
rity within budget (or best return on investment). Existing processes use a vari-
ety of optimization techniques to solve the problem of defense strategy identi-
fication. In [30] authors proposed a heuristic approach for selecting the coun-
termeasures. A cost-impact analysis-based countermeasure selection approach is
proposed in [29]. The selection of optimal countermeasures can be represented
as a single and multi-objective optimization problem [23] or a min-max opti-
mization problem [13]. Authors also use mixed integer linear programming to
solve the optimization problem for selecting the best defense strategy [25]. In
[37], the authors take maximum vulnerability coverage as the main factor, and
a stochastic programming-based solution is proposed. Countermeasures can be
selected in such a way that the maximum number of attacks can be countered in
the high risk attack paths [7,8,35]. Business scenarios can also be added to find
out the impact of attacks. Business impact analysis can help determine the net-
work’s riskiest assets. Research studies are combining the attack modeling with
the business impact analysis [17,18,31] to increase the decision making capacity
of security officers.

Even though there is a lot of exciting research ongoing to find the optimal
set of defenses within budget, these studies are not including the fundamental
idea of securing the core first.

Monitoring strategies should also be set according to the attack scenarios.
Positioning properly configured intrusion detection systems (IDS) and other
monitoring devices will help detect malicious activities in the initial phases of the
attack. Optimal placement of detection mechanisms is a well-researched problem
[2,5]. Optimal placement of IDS sensor devices according to attack modelling is
also studied [19]. In the existing research works, researchers mainly focused on

94 P. Mukherjee et al.

finding a minimum set of detection systems covering the whole network but they
have not included the necessity of early detection of the attack.

3 Background

This section has elaborated on several critical knowledge bases that assist secu-
rity practitioners in making informed security-related decisions.

3.1 CVE

The common vulnerabilities and exposures (CVE) system provides a reference
method for publicly disclosed cybersecurity vulnerabilities. It is used to identify,
define and catalog vulnerabilities. Each security flaw is assigned a CVE ID num-
ber. National Vulnerability Database (NVD) assigns the CVE Ids and maintains
the list of vulnerabilities6.

3.2 MITRE ATT&CK

Mitre ATT&CK is a knowledge base of adversary tactics and techniques. The
ATT&CK knowledge base is used as a foundation for the generation of threat
models for real-life attack scenarios. Mitre ATT&CK offers a standard knowl-
edge base for various types of attacks on enterprise assets (viz. Windows, Linux,
MacOS, cloud systems, networks, and containers), mobile assets (viz. Android,
iOS), and industrial control systems. Attack techniques are classified into sep-
arate tactics like reconnaissance, initial access, execution, persistence, privilege
escalation, lateral movement, command and control.

3.3 MITRE D3FEND

Mitre D3FEND7 is a framework of a countermeasure knowledge base. A coun-
termeasure can be any process that counteracts or neutralizes cyber attacks.
D3FEND has managed to classify all possible countermeasures into five differ-
ent Tactics.

– Harden: It is used to increase the cost of the exploitation or attack and is
generally conducted before a system is online and operational, like application
configuration hardening, message encryption, etc.

– Detect: This tactic is used to identify malicious activities on computer net-
works, like dynamic file analysis, operating system monitoring, etc.

– Isolate: The isolation tactic creates logical or physical barriers which reduce
the further access/activities of the attacker in a system/network, like IO port
restriction or network traffic filtering.

6 nvd.nist.gov.
7 d3fend.mitre.org.

https://nvd.nist.gov/
https://d3fend.mitre.org/

Detection and Hardening Strategies to Secure an Enterprise Network 95

– Deceive: Deceiving is based on the fact of attracting potential attackers and
giving them entrance to a monitored or restricted environment, like the imple-
mentation of honeynet, decoy session tokens, etc.

– Evict: The eviction tactic is used to remove an adversary from a computer
network, like account locking or process termination.

According to the Mitre D3FEND knowledge base, every tactic listed above
can have a variety of techniques and sub-techniques.

3.4 Mappings

CVE to MITRE ATT&CK. A vulnerability (identified by the CVE Id) can
be exploited by one or more exploitation techniques. A diverse set of attack tech-
niques are enumerated in the Mitre ATT&CK. Thus we can map the CVE record
to corresponding ATT&CK techniques which is/are used to exploit the same.
For example, CVE-2019-15976 is a vulnerability in the authentication mecha-
nisms of the Cisco data center network manager (DCNM) that could allow an
unauthenticated, remote attacker to bypass authentication and execute arbi-
trary actions with administrative privileges on an affected device. The Mitre
ATT&CK technique for the corresponding CVE record is T1190 (exploit public-
facing application). Various researcher groups have taken initiatives to map the
CVE Ids to Mitre ATT&CK techniques like Centre for Threat-Informed Defense
(Mitre Engenuity)8, Voyager18 (Vulcan)9.

MITRE ATT&CK to MITRE D3FEND. After the CVE - Mitre ATT&CK
mapping, we can map the Mitre ATT&CK techniques to Mitre D3FEND, which
allows defenders to check for suitable countermeasures based on the cyber secu-
rity situation. Mitre D3FEND is already mapped to the ATT&CK techniques;
recently, Mitre has taken another initiative to accurately map attacks to defenses
using ATT&CK extractor10, but it is under development. The ATT&CK tech-
nique T1190, taken in the earlier example, can be detected by the D3FEND
techniques D3-RTSD (remote terminal session detection), D3-ISVA (inbound
session volume analysis), etc. The mapping will also provide possible harden-
ing, isolation, deceiving or eviction techniques for the corresponding ATT&CK
techniques.

4 Attack Modeling

In a general scenario, an attacker from the internet can’t exploit a vulnerability
in the data centre directly due to obvious access restrictions. The attacker may
only reach the goal by exploiting multiple causally connected vulnerabilities on

8 github.com/center-for-threat-informed-defense/attack to cve.
9 vulcan.io/voyager18/mitre-mapper.

10 d3fend.mitre.org/tools/attack-extractor.

https://github.com/center-for-threat-informed-defense/attack_to_cve
https://vulcan.io/voyager18/mitre-mapper
https://d3fend.mitre.org/tools/attack-extractor/?q=5B5D

96 P. Mukherjee et al.

its way. Attack modeling techniques will help security administrators figure out
all possible paths using which an attacker can reach valuable assets. XploitMAP
is a software solution developed to generate attack models represented as attack
graphs.

4.1 Attack Graph

An Attack Graph is a graphical representation that shows an attacker’s possible
ways to reach the target. It represents the relationships among the asset vul-
nerabilities. An attacker who gains the required preconditions for attacking a
vulnerability can attempt to exploit the vulnerability. After a successful exploit,
the attacker may gain new conditions to perform further exploit(s). The attacker
continues the process until it reaches the goal. An Attack Graph can model these
multihop attack sequences. It can investigate the potential dangers to a given
asset and the range of possible outcomes if an attack is successful [22].

Fig. 1. Example network

4.2 Tool: XploitMAP

A web-based, interactive security application called XploitMAP is developed to
generate and visualize an attacker’s reachability to the target. Attack graphs
generated by the XploitMAP tool can be used for a multitude of security analy-
ses. Network topology, firewall rules, and the list of vulnerabilities on every host
machine are fed to the XploitMAP for generating an attack graph.

Detection and Hardening Strategies to Secure an Enterprise Network 97

Figure 1 represents a simplistic enterprise network with a few servers and
computers for running a SCADA testing and reporting platform. The Firewall
restricts connectivity from the internet to the Internal network, but the Linux
server in DMZ is accessible from outside. Connectivity is also allowed between
the Linux server and the Internal network. Software applications running in the
infrastructure have multiple vulnerabilities, as shown in Table 1.

Table 1. List of vulnerabilities of the software running in the example enterprise
network

Host ID Software CVE ID

(1) Linux (Kernel version 3.15) CVE-2015-1805

(2) Acrobat Adobe Reader 8.1 CVE-2008-0655

(3) Windows 7 SP1 CVE-2014-4077

(3) LAquis SCADA 4.3 CVE-2019-10980

Connectivity and vulnerability information for this simple network is fed to
the XploitMAP tool for generating all possible attack scenarios. Figure 2 shows
a snapshot from the tool. In the figure, vulnerabilities are shown in blue and
conditions in yellow. The directed arrows connect the required precondition(s)
to the vulnerabilities and vulnerabilities to the post-condition(s). The conditions
are various access levels (generally user or root access) in the software running
on the networked servers and computers. User access to the Linux OS running on
the host(1) is the default initial condition here and the goal condition is to get the
User access to the LAquis SCADA software on the host(3). Host(3) is the most
important asset in the network as it supports the most crucial business activity of
the SCADA testing platform. Possible paths following which an outside attacker
can reach the goal condition starting from the initial condition are shown in the
figure.

5 Methodology

This paper proposes a scheme for finding the crucial vulnerabilities in the gener-
ated attack graph. Two types of vulnerabilities are identified 1) Critical vulner-
abilities, which are in need of Harden defenses, and 2) Vulnerabilities in urgent
need of Detect defenses. The whole process, along with the generation of the
attack graph using XploitMAP, is shown in Fig. 3.

5.1 Hardening Defense

Identification of Critical Vulnerabilities Which Need Hardening. Bud-
get constraints make it impossible to plug all the vulnerabilities in an enter-
prise. Finding critical vulnerabilities would be very important from the security

98 P. Mukherjee et al.

Fig. 2. Attack Graph generated by XpolitMAP tool

Fig. 3. Process of selecting necessary defenses

analysis point of view. Plugging a critical vulnerability may make the system
more secure than plugging multiple non-critical vulnerabilities. By using the
XploitMAP tool, it is possible to identify the most critical vulnerability in the
generated attack graph.

To compute the criticality of a vulnerability, a criticality metric is proposed.

– Let A be the set of all the assets in the target network.
– Let C be the set of all possible user access levels in assets, e.g. user, admin, etc.

These access levels can be initial access conditions from where the attacker
may start the multihop attack, e.g. the user of a public web server (anyone
from the internet can become a user). After executing an attack successfully,

Detection and Hardening Strategies to Secure an Enterprise Network 99

an attacker may gain new access conditions. These derived conditions are also
included in set C.

– Num is a function mapping an access level to the corresponding numeric
value. These values will be given by experts, e.g. root access may get a numeric
value of 2, and user access may get a numeric value of 1.5. One may refer to the
common vulnerability scoring system (CVSS)11 or any information security
risk management standards like ISO 27005 [10] to check how numeric values
are allocated for qualitative parameters related to security.

– Let V be the set of all the vulnerabilities in the assets.
– Imp is a function mapping an asset to the importance levels; generally, we use

three levels high(H), medium(M), and none(N) depending on their business
impact. Experts can set the corresponding numeric values, e.g. high will get
a value of 3, medium 2, and none 1. All the assets in an enterprise network
are not important. Security officers’ priority should be to defend the most
important/valuable assets; like in an IT enterprise, the assets in a data centre
are considered the most valuable.

– Dist is a function, and it will measure the distance between two points in
an attack graph. The meaning of distance may vary; it can be as simple
as counting the number of vulnerabilities on the shortest path between the
source and the destination and will provide a positive integer value. Complex
distance measures may include the difficulty of exploiting the vulnerabilities.

In the simplest case, let’s assume there is only one initial access permission
(cI ∈ C) from which the attacker can start a multihop attack and only one
important asset (a ∈ A) is there with a single reachable access level (ca ∈ C). It
is also assumed that the generated attack graph includes both cI and ca.

To fulfil our goal of hardening the core, we propose two different metrics
for any vulnerability, Impact value and Criticality value. Impact value
(vImpact) represents the effect if the vulnerability (v) is exploited. It depends
on the reachability of various access permissions of the important assets from
the vulnerability v. By normalizing the impact value depending on the vul-
nerability’s reachability from the initial access conditions, we can compute the
criticality value (vCriticality).

For a vulnerability v (v ∈ V) on the attack graph,

vCriticality =
vImpact

Dist(cI , v)

and, vImpact =
Imp(a) × Num(ca)

eDist(v, ca)

therefore, vCriticality =
Imp(a)×Num(ca)

eDist(v, ca)

Dist(cI , v)

11 www.first.org/cvss/specification-document.

https://www.first.org/cvss/specification-document

100 P. Mukherjee et al.

The closer the vulnerability to an important asset, the more the requirement
for hardening. Accordingly, while computing the Criticality, we divide the
value by e raised to the power of the distance between the vulnerability and
target access level.

In the case of multiple important assets,

vImpact =
∑

i

Imp(ai) × Num(cai
)

eDist(v, cai
)

(1)

In the case of multiple initial access conditions,

vCriticality =
∑

j

vImpact

Dist(cj , v)
=

∑

j

∑
i

Imp(ai)×Num(cai
)

eDist(v, cai
)

Dist(cj , v)
(2)

The vulnerability with the highest vCriticality will be taken as the critical
most vulnerability, and the corresponding asset needs hardening.

Example. One example attack graph is shown in Fig. 4 developed in the
XploitMAP tool to elaborate the concept. To explain the concept properly in
the example attack graph, only conditions are shown, not vulnerabilities. We are
finding the most critical conditions instead of the most critical vulnerabilities.
All other calculations will remain the same. Initial conditions are shown with
Ij ; four initial conditions are in the example attack graph. Goal conditions are
represented with Gi, and three goal conditions are in the graph. The importance
of all the assets (with goal conditions) is high (H) and has a numeric value of 3.
The access levels of all the goal conditions have a numeric value 2. Distance is
calculated by counting the number of vulnerabilities on the shortest path from
source to destination. The calculation shows red colored nodes are the most crit-
ical and require hardening. vCriticality value for these conditions are as follows,
(G2) : 7.1, (G3) : 6.8, (8) : 4.41.

Counter Measure Selection. Following the procedure above, we can identify
the critical vulnerabilities. Once the vulnerabilities are identified, the security
administrator would like to remove/neutralize them from the system. In the
attack graph created by the XploitMAP tool, vulnerabilities are represented
by CVE Ids. In Sect. 3.4, we discussed how CVE Ids could be mapped to the
Mitre ATT&CK Techniques. We also discussed how to map Mitre ATT&CK
and Mitre D3FEND. Using these two mappings, it is possible to find the possible
defense technique(s) that can be implemented to counter the attack technique(s)

Detection and Hardening Strategies to Secure an Enterprise Network 101

Fig. 4. Critical nodes in the example attack graph requiring hardening

exploiting the critical vulnerabilities. These defense techniques will be essentially
from the Harden tactic in the D3FEND knowledge base.

There are a number of security hardening techniques. One may harden appli-
cations, credentials, messages, or platforms depending on the need.

5.2 Detection Defense

Identification of the Vulnerabilities in Urgent Need of Attack Detec-
tion. Attack monitoring involves checking out for attackers’ activity on net-
works and systems. As we discussed earlier, any security administrator needs
early detection of the attack. We are proposing two different metrics for any vul-
nerability, Proximity value and Urgency value. Proximity value (vProximity)
will represent the effect if the vulnerability (v) is not detected. Urgency value
(vUrgency) can be calculated by normalizing the proximity value with the dis-
tance of the vulnerability from the initial attack conditions.

102 P. Mukherjee et al.

For a vulnerability v (v ∈ V) on the attack graph,

vProximity =
∑

i

Imp(ai) × Num(cai
)

Dist(v, cai
)

(3)

vUrgency =
∑

j

vProximity

eDist(cj , v)
=

∑

j

∑
i

Imp(ai)×Num(cai
)

Dist(v, cai
)

eDist(cj , v)
(4)

Our goal is to detect attacks in their early stage. Monitoring is more urgent
for the vulnerabilities closer to the initial conditions. For the same reason, we
divided the Urgency value of the vulnerability by e raised to the power of distance
value from the initial conditions.

The asset corresponding to the vulnerability with the highest value of
vUrgency needs urgent attack detection capability.

Example. In Fig. 5, the same example attack graph used in case of hardening
defense (Fig. 4) is used again. In this case, the red colored nodes are in urgent
need of attack detection capability. vUrgency value for these conditions are as
follows, (I3) : 6.3, (I2) : 4, (I4) : 3.6, (I1) : 3.4, (9) : 2.94.

Fig. 5. Crucial nodes in the example attack graph requiring urgent detection capability

Detection and Hardening Strategies to Secure an Enterprise Network 103

Attack Detection Techniques. Successful prevention of an attack requires
timely and efficient detection mechanisms. It is not possible to detect all types of
attacks using a single detection technique. Security officers need to select proper
detection mechanisms from the multitude of mechanisms available.

Just like hardening defense (Subsect. 5.1), in case of detection, we can use
the mappings between CVE to Mitre ATT&CK and Mitre ATT&CK to Mitre
D3FEND. For monitoring, we need to use defenses from the Detect tactic. File
analysis, identifier analysis, message analysis, network traffic analysis, platform
monitoring, process analysis, and user behaviour analysis are the example detec-
tion approaches.

5.3 Algorithm

A high level algorithm is presented for computing the criticality and urgency
values for vulnerabilities of the attack graph.

Algorithm 1. Computation of criticality and urgency of vulnerabilities
Input

Attack Graph
Initial conditions
Goal conditions

Output
Vulnerabilities annotated with vCriticality and vUrgency

while new initial condition exists do
depth first search (DFS) starting from that initial condition

� traversing the attack graph in the given directions
for each vulnerability that can be reached from the initial condition do

� possible to reach a vulnerability following different paths
store the shortest distance (hop count) from the specific initial condition

end for
end while
while new goal condition exists do

depth first search (DFS) from that goal condition
� traversing the attack graph in the opposite directions

for each vulnerability that can be reached from the goal condition do
� possible to reach back to a vulnerability following different paths

store the shortest distance (hop count) from the specific goal condition
end for

end while
while new vulnerabilities left to annotate do

calculate the value of vImpact, vCriticality, vProximity, vUrgency

end while

104 P. Mukherjee et al.

6 Practical Example

We are using the attack scenario illustrated in Fig. 6 to show the implementable
harden and detect defenses against the CVE Ids.

Fig. 6. Selection of defense in the example attack scenario

Each CVE Id used in the attack graph is first mapped to the exploitation
techniques of the Mitre ATT&CK, shown in Table 2. The exploitation tech-
niques are then mapped to the harden and detect defense techniques from Mitre
D3FEND.

Table 2. Example mapping of CVE ID - MITRE ATT&CK - MITRE D3FEND

CVE ID Exploitation Technique Harden Technique Detect Technique

CVE-2015-1805 T1068 D3-PSEP D3-DA

CVE-2014-4077 T1553 D3-DLIC –

CVE-2019-10980 T1203 D3-EHPV D3-SSC

CVE-2008-0655 T1068 D3-SU –

In Fig. 6 the vulnerability CVE-2019-10980 (execute code vulnerability in
the SCADA software LAquis SCADA) is the vulnerability with the highest

Detection and Hardening Strategies to Secure an Enterprise Network 105

Criticality value. To counter this vulnerability or to make the system hard-
ened, D3-EHPV, i.e. exception handler pointer validation defense can be imple-
mented. According to the attack graph, CVE-2015-1805 (denial of service vul-
nerability in the Linux kernel) is the vulnerability having the highest Urgency
value. To detect the exploitation efforts to this vulnerability, D3-DA, i.e.
dynamic analysis can be implemented in the sandbox environment to detect
files with malicious programs.

7 Discussion

Hardening the core and monitoring the perimeter is the proposed idea. While
identifying the point of deploying the hardening or detection defenses, we gave
weightage to the reachability of those points from the initial conditions and the
reachability of the goal conditions from those points. In the described method-
ology, the distance between two nodes is computed by counting the number of
hops between them. More complex metrics like attack resistance, probabilistic
security, or attack difficulty can also be used to include other allied factors along
with the hop count. DFS is used for traversing the generated attack graphs;
in future, more intelligent and better-performing algorithms can be used while
computing the criticality and urgency values. The computation also includes the
importance of the target assets and the reachable access labels. The importance
of an asset is a crucial factor for security-related decision-making.

Different interesting scenarios will come up with the varying importance of
the harden and detect mechanism deployment, within a fixed budget. Business
impact analysis is another factor that can also be added while making decisions.
A defensive mechanism negatively impacting the business of the enterprise may
not be implemented in a normal condition.

8 Conclusion

This paper proposed two main concepts, the first is identifying the critical attack
points that need to be hardened immediately, and the second is identifying
the attack points that urgently need attack detection capability. Earlier works
regarding defense strategy selection have not considered two security thumb
rules; one is detection should be done as early as possible, and the other one
is protection should be done as close to the valuable assets as possible. The
paper has also elaborated on the way of identifying applicable defenses from the
vulnerability identifiers. Existing knowledge bases can be used to find suitable
defense techniques.

In this work, we are not considering the cases of disjunction or conjunction
of multiple attack paths to propose this new idea in an uncomplicated man-
ner. In the future, we will include AND/OR scenarios in the attack graph and
modify the equations for calculating criticality and urgency accordingly. The
paper elaborates on the methodology of applying Harden and Detect defenses.
We would also like to extend the present work to include other defense tactics

106 P. Mukherjee et al.

from Mitre D3FEND, i.e. isolate, deceive, and evict, to develop comprehensive
defense strategies.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-
ability analysis. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security, Washington, DC, USA, pp. 217–224. ACM (2002)

2. Anjum, F., Subhadrabandhu, D., Sarkar, S., Shetty, R.: On optimal placement of
intrusion detection modules in sensor networks. In: First International Conference
on Broadband Networks, pp. 690–699. IEEE (2004)

3. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense trees for economic evaluation of
security investments. In: First International Conference on Availability, Reliability
and Security (ARES’06), pp. 8-pp. IEEE (2006)

4. Bopche, G.S., Rai, G.N., Mehtre, B.M.: Inter-path diversity metrics for increasing
networks robustness against zero-day attacks. In: Thampi, S.M., Madria, S., Wang,
G., Rawat, D.B., Alcaraz Calero, J.M. (eds.) SSCC 2018. CCIS, vol. 969, pp. 53–66.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5826-5 4

5. Chen, H., Clark, J.A., Shaikh, S.A., Chivers, H., Nobles, P.: Optimising IDS sen-
sor placement. In: 2010 International Conference on Availability, Reliability and
Security, pp. 315–320. IEEE (2010)

6. Edge, K.S., Dalton, G.C., Raines, R.A., Mills, R.F.: Using attack and protection
trees to analyze threats and defenses to homeland security. In: MILCOM 2006–2006
IEEE Military Communications Conference, pp. 1–7. IEEE (2006)

7. Fila, B., Wide�l, W.: Exploiting attack-defense trees to find an optimal set of coun-
termeasures. In: Proceedings of the 33rd IEEE Computer Security Foundations
Symposium, CSF 2020, Boston, MA, USA, 22–26 June 2020, pp. 395–410. IEEE
(2020)

8. George, G., Thampi, S.M.: A graph-based security framework for securing indus-
trial IoT networks from vulnerability exploitations. IEEE Access 6, 43586–43601
(2018)

9. Grigorescu, O., Nica, A., Dascalu, M., Rughinis, R.: CVE2ATT&CK: BERT-based
mapping of CVEs to MITRE ATT&CK techniques. Algorithms 15(9), 314 (2022)

10. Information security, cybersecurity and privacy protection - Guidance on managing
information security risks. Standard, ISO/IEC, Geneva, CH, October 2022

11. Johnson, P., Lagerström, R., Ekstedt, M.: A meta language for threat modeling and
attack simulations. In: Proceedings of the 13th International Conference on Avail-
ability, Reliability and Security, ARES 2018, Hamburg, Germany, 27–30 August
2018, pp. 38:1–38:8. ACM (2018)

12. Kaloroumakis, P.E., Smith, M.J.: Toward a knowledge graph of cybersecurity coun-
termeasures. Corporation, Editor (2021)

13. Khouzani, M.H.R., Liu, Z., Malacaria, P.: Scalable min-max multi-objective cyber-
security optimisation over probabilistic attack graphs. Eur. J. Oper. Res. 278(3),
894–903 (2019)

14. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6

https://doi.org/10.1007/978-981-13-5826-5_4
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6

Detection and Hardening Strategies to Secure an Enterprise Network 107

15. Kuppa, A., Aouad, L., Le-Khac, N.A.: Linking CVE’s to MITRE ATT&CK tech-
niques. In: The 16th International Conference on Availability, Reliability and Secu-
rity, pp. 1–12 (2021)

16. Mukherjee, P., Mazumdar, C.: Attack difficulty metric for assessment of network
security. In: Proceedings of the 13th International Conference on Availability, Reli-
ability and Security, pp. 1–10 (2018)

17. Mukherjee, P., Mazumdar, C.: “Security Concern” as a metric for enterprise busi-
ness processes. IEEE Syst. J. 13(4), 4015–4026 (2019)

18. Mukherjee, P., Sengupta, A., Mazumdar, C.: “Security Gap” as a metric for enter-
prise business processes. Secur. Priv. 5(6), e263 (2022)

19. Noel, S., Jajodia, S.: Optimal IDS sensor placement and alert prioritization using
attack graphs. J. Netw. Syst. Manag. 16, 259–275 (2008)

20. Ortalo, R., Deswarte, Y., Kaâniche, M.: Experimenting with quantitative evalu-
ation tools for monitoring operational security. IEEE Trans. Softw. Eng. 25(5),
633–650 (1999)

21. Pamula, J., Jajodia, S., Ammann, P., Swarup, V.: A weakest-adversary security
metric for network configuration security analysis. In: Proceedings of the 2nd ACM
Workshop on Quality of Protection, pp. 31–38 (2006)

22. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: Proceedings of the 1998 Workshop on New Security Paradigms, pp. 71–79
(1998)

23. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
Bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74
(2011)

24. Roy, A., Kim, D.S., Trivedi, K.S.: Cyber security analysis using attack counter-
measure trees. In: Proceedings of the Sixth Annual Workshop on Cyber Security
and Information Intelligence Research, pp. 1–4 (2010)

25. Sawik, T.: Selection of optimal countermeasure portfolio in IT security planning.
Decis. Support Syst. 55(1), 156–164 (2013)

26. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
27. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated gen-

eration and analysis of attack graphs. In: Proceedings of the IEEE Symposium
on Security and Privacy, Berkeley, California, USA, pp. 273–284. IEEE Computer
Society (2002)

28. Shin, Y., Kim, K., Lee, J.J., Lee, K.: Focusing on the weakest link: a similarity
analysis on phishing campaigns based on the ATT&CK matrix. Secur. Commun.
Netw. 2022, 1–12 (2022)

29. Soikkeli, J., Muñoz-González, L., Lupu, E.: Efficient attack countermeasure selec-
tion accounting for recovery and action costs. In: Proceedings of the 14th Interna-
tional Conference on Availability, Reliability and Security, pp. 1–10 (2019)

30. Stan, O., et al.: Heuristic approach towards countermeasure selection using attack
graphs. arXiv preprint arXiv:1906.10943 (2019)

31. UcedaVelez, T., Morana, M.M.: Risk Centric Threat Modeling: Process for Attack
Simulation and Threat Analysis. John Wiley & Sons, Hoboken (2015)

32. van Leeuwen, R.: Cyber-Attack Containment through Actionable Awareness. Doc-
toral dissertation, Master’s thesis. Technical University of Eindhoven (2022)

33. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based
probabilistic security metric. In: Atluri, V. (ed.) DBSec 2008. LNCS, vol. 5094, pp.
283–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70567-
3 22

http://arxiv.org/abs/1906.10943
https://doi.org/10.1007/978-3-540-70567-3_22
https://doi.org/10.1007/978-3-540-70567-3_22

108 P. Mukherjee et al.

34. Wang, L., Singhal, A., Jajodia, S.: Measuring the overall security of network config-
urations using attack graphs. In: Barker, S., Ahn, G.-J. (eds.) DBSec 2007. LNCS,
vol. 4602, pp. 98–112. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73538-0 9

35. Widel, W., Mukherjee, P., Ekstedt, M.: Security countermeasures selection using
the meta attack language and probabilistic attack graphs. IEEE Access 10, 89645–
89662 (2022)

36. Xiong, W., Legrand, E., Åberg, O., Lagerström, R.: Cyber security threat modeling
based on the MITRE enterprise ATT&CK matrix. Softw. Syst. Model. 21(1), 157–
177 (2022)

37. Zheng, K., Albert, L.A., Luedtke, J.R., Towle, E.: A budgeted maximum multiple
coverage model for cybersecurity planning and management. IISE Trans. 51(12),
1303–1317 (2019)

https://doi.org/10.1007/978-3-540-73538-0_9
https://doi.org/10.1007/978-3-540-73538-0_9

Attack Graph Based Security Metrics
for Dynamic Networks

Ayan Gain(B) and Mridul Sankar Barik

Jadavpur University, Kolkata, India

ayan.gain2010@gmail.com, mridulsankar.barik@jadavpuruniversity.in

Abstract. Evaluating network attack graphs in today’s dynamic net-
works poses a challenge. Conventional metrics used for attack graph
based risk assessment are inadequate due to their inability to consider
temporal evolution of networks. To address this limitation, we introduce
the notion of temporal attack graph, which incorporates the temporal
characteristics of network configurations and vulnerabilities. It provides
a notion for risk assessment by providing a more precise depiction of the
network’s security state over time. In addition, we introduce two security
metrics based on temporal attack graphs. By effectively capturing the
temporal features of dynamic networks, these metrics enable accurate
measurement of network security over time. Path-based metrics analyze
whether an attacker can reach a target along a specific temporal path.
These metrics help in evaluating overall robustness of the network and
adopting appropriate security counter measures beforehand.

Keywords: Dynamic Networks · Temporal Attack Graph · Security
Metrics · Path Based Metrics

1 Introduction

Today’s enterprise networks are highly dynamic, i.e. their configurations fre-
quently change over time. As a result, keeping track of changing security pos-
ture of such networks is challenging. Attack graph is a widely used formalism
for enumerating all possible attack paths of a given network configuration. Also,
different attack graph based security metrics help in determining both qualita-
tive and quantitative security measures of the network. But these metrics are
computed based on a static view of a network at any point of time and hence fail
to capture its dynamic and evolving nature. Among the state-of-the-art in attack
graph based security analysis [1–4], very few works have considered dynamic or
evolving nature of enterprise networks.

Also, in recent years, intensive research in understanding the properties of
dynamic systems such as delay-tolerant networks, opportunistic-mobility net-
works, social networks etc. have produced solid theoretical foundation around
time varying graphs (also known as evolving graphs or temporal graphs). Exist-
ing metrics based on static graphs are not able to capture the temporal features
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 109–128, 2023.
https://doi.org/10.1007/978-3-031-49099-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_7&domain=pdf
http://orcid.org/0009-0009-2629-0927
http://orcid.org/0000-0001-6322-5336
https://doi.org/10.1007/978-3-031-49099-6_7

110 A. Gain and M. S. Barik

of dynamic networks, whereas temporal graph metrics represent a powerful tool
for analyzing such real world networks.

The primary contribution of this paper is to introduce the idea of temporal
attack graphs, and to introduce the concept of temporal attack paths. Addition-
ally, we have introduced two security metrics i.e. characteristic temporal attack
path length and shortest temporal attack path length in temporal attack graphs.
Furthermore, in this paper we provide evaluation of the proposed security met-
rics by analyzing them on an example network.

This paper is organized as follows: In Sect. 2, we review the existing litera-
ture and discuss its limitations in analyzing the security of complex computer
systems within dynamic networks and the concept of temporal metrics. We look
into the various formalisms of temporal graphs and temporal networks in Sect. 3.
In Sect. 4 we discuss the previously proposed metrics of temporal graphs. The
concepts proposed by various researchers about attack graphs are discussed in
Sect. 5. Section 6 introduces the concept of temporal attack graphs, including
temporal attack paths along with a detailed example of a network and it’s cor-
responding temporal attack graph. Section 7 presents the notion of temporal
security metrics, Results of applying the metrics along with the interpretation
of temporal paths and path-based temporal metrics are given in Sect. 8. Con-
cluding remarks are provided in Sect. 9, followed by a discussion on the future
scope of our work in Sect. 10.

2 Related Works

Numerous significant concepts have been identified in assessing dynamic net-
works, often assigned specific names and occasionally formally defined. A grow-
ing realization indicates that these concepts are intricately intertwined. In sev-
eral cases, disparate concepts labeled differently by various researchers are, in
fact, synonymous. For instance, the concept of temporal distance, as outlined
in [5], aligns with reachability time, information latency, and temporal proxim-
ity. Similarly, the notion of a journey has been alternatively referred to as a
schedule-conforming path, time-respecting path, and temporal path. Hence, the
discoveries stemming from these investigations can be perceived as constituent
components of a unified conceptual topic, while the existing formalisms aimed
at expressing specific concepts can be regarded as fragments of a broader, all-
encompassing formal description of this topic.

Static security metrics fail to capture the changing security posture, adapt
to evolving threats and network conditions - hence, they are inadequate for
assessing security of dynamic enterprise networks. To effectively address security
challenges, dynamic enterprise networks require adaptable and scalable security
metrics and strategies that can capture real-time changes and emerging threats.
Dynamic security metrics, leveraging continuous monitoring, threat intelligence,
and adaptive security controls, offer a more accurate and up-to-date view of the
network’s security state [6,7].

Attack Graph Based Security Metrics for Dynamic Networks 111

A pivotal commonality across various domains in the context of enterprise
networks is the temporal variability inherent in the system’s structure, specif-
ically the dynamic nature of the network topology. Furthermore, the rate and
magnitude of these fluctuations generally surpass the previous notion that when
network faults or failures occur then only the network needs to be looked at. In
these systems, changes are not anomalies but rather an inseparable and integral
element intricately woven into the fabric of the system’s essence. Time plays a
vital role in shaping network topologies. The mathematical formalism used to
describe time-evolving networks is a critical issue to address.

To effectively allocate security resources and optimize network harden-
ing, security analysts require vital information about vulnerabilities and their
enabling conditions. Recent research focuses on obtaining hardening recommen-
dations from attack graphs [8].

However, previously proposed attack graph-based security metrics [9–11] do
not measure the temporal variation in the network, which is essential to identify
problems early and take corrective actions. Without proper metrics to detect
variation in attack graphs, significant network or security events causing change
in the network will remain undetected, preventing analysts from gaining aware-
ness of the temporal aspects of network security. Therefore, it is imperative to
develop metrics that can detect variation in the attack surface and enable ana-
lysts to gain timely insight into network security [12–14].

The attack graph of the network is subject to constant change due to the dis-
covery of new vulnerabilities, misconfigured hardware or software components,
and loose access control policies. Neglecting the temporal aspects of security
poses significant risks. To ensure optimal network security, regular monitoring is
recommended by guidelines such as [15] and [16]. Appropriate metrics are vital
for assessing the security state of the network which may be impacted by events
resulting in compromise of critical resources.

3 Temporal Graphs

A number of formalisms have emerged to capture the essence of evolving net-
works (not necessarily information networks), while retaining their complete
informational content. Notable among them are: temporal networks [17], time-
varying graphs [18–20], interaction networks [21,22], link streams and stream
graphs [23,24], which have gained significant popularity. In this context, various
authors have adopted the term “temporal networks” as an umbrella term encom-
passing all these formalisms. Temporal networks serve as models for dynamic
structures where nodes and edges appear and vanish over time.

According to Rossetti et al. [22] the definition to establish a formal under-
standing of temporal graphs is as follows: In the topic of network representation,
a temporal network is defined as a graph denoted by G = (V,E, T), where V
constitutes a set of triplets in the form (v, ts, te). In this context, v represents
a vertex within the graph, while ts and te, belonging to the set T , signify the
initial and final timestamps of the associated vertices, adhering to the condition

112 A. Gain and M. S. Barik

ts ≤ te. Furthermore, E represents a set of quadruplets (u, v, ts, te), where u and
v are vertices from V , and ts and te, also belonging to T , indicate the initial and
final timestamps of the corresponding edge, satisfying the condition ts ≤ te.

Undirected temporal networks (TNs) or directed temporal networks (DTNs)
can be dealt with depending on the interaction semantics. The high-level defini-
tion proposed encompasses nodes and edges with or without duration (if ts = te).
Often, a strong distinction is made between these two categories. Networks with-
out edge durations are often referred to as contact sequences, and those with
durations are referred to as interval graphs [25].

Frequently, the history of a network is divided into a sequence of snapshots,
where each snapshot represents either the network’s state at a specific time
(referred to as a relation network) or the collection of observed interactions
during a particular period (referred to as an interaction network).

Rossetti et al. [22] also put forward the concept of a snapshot graph Gτ as
characterized by an ordered set of snapshots G1, G2...Gt, where each snapshot
Gi = (Vi, Ei) is uniquely identified by the node set Vi and edge set Ei.

Basically a temporal graph is a mathematical representation that depicts the
evolving nature of a network across time. It comprises a sequence of snapshots
or “time slices” that portray the network’s topology at various time points. Put
simply, a temporal graph is a collection of graphs, each of which characterizes
the network at a specific time instance [19,26].

4 Temporal Metrics

In the following subsections, we will explore several metrics that are employed
to quantify temporal distances. Holme and Saramaki [25] presents an overview
of these metrics used in the analysis of temporal networks. Additionally, Tang et
al. [20] offer a detailed exploration of the potential applications for these metrics.

4.1 Path Based Temporal Metrics

Based on the definition provided in [19,27], the concept of a temporal path in a
directed temporal graph can be summarized as follows:

Temporal Path: A temporal path, represented as ph
ij = (nW0

0 , . . . , n
Wη
η), origi-

nates from node i = n0 and terminates at node j = nη within the time interval
specified in the temporal graph Gw(tmin, tmax). This path comprises a series of
η number of edges through different nodes nWa

a at specific time windows Wa,
where a node na is considered part of the path only if there exists a directed
edge between na−1 and na at time window Wa−1 ≤ Wa, with 0 ≤ Wa < τ [19],
where τ is the maximum delivery time in the temporal graph.

Let Qij denote the set comprising all temporal paths connecting nodes i and
j. In the absence of a temporal path between i and j, i.e., when Qij = ∅, it can
be inferred that the node pair (i, j) is temporally disconnected, and thus the
distance is assigned an infinite value, represented as lij = ∞.

Attack Graph Based Security Metrics for Dynamic Networks 113

Introducing the function D(pij), which represents the estimated time dura-
tion to traverse a given path pij within the time window Wη, we can calculate
the shortest temporal path length, denoted as dij , between nodes i and j. This
corresponds to the minimum delivery time among all feasible paths pij in the
set Qij . This approach enables the identification of the most efficient delivery
route that satisfies the temporal constraints of the problem. Specifically, it can
be expressed as the length of the shortest path:

dij = min(D(pij)),∀ pij εQij (1)

Given that Qij represents the set containing all feasible paths connecting
nodes i and j, due to the potential non-uniqueness of the shortest temporal
path, we define the set Sij to encompass all such shortest temporal paths from
node i to node j. More precisely, Sij can be expressed as:

Sij = {pij εQij : (D(pij) = dij)} (2)

The concept of temporal shortest path length, in terms of efficiency, is dis-
cussed in [28]. The temporal efficiency Eij between nodes i and j is defined to
avoid potential divergence and is given as follows:

Eij =
1

dij + 1
(3)

Characteristic Temporal Path Length: The temporal shortest path refers
to the shortest path between node i and node j in terms of time duration. It
is the path that connects i to j and has the minimum duration. Similarly, the
temporal distance dij represents the duration of the shortest temporal path from
i to j.

In the context of time-varying graphs, the characteristic temporal path length
is an extension of the average geodesic distance. It is calculated by averaging the
temporal distances between all pairs of nodes in the graph. This concept is
defined as the average temporal distance over the entire set of node pairs in
the graph, as explained in [29,30]. The equation of characteristic temporal path
length L, where N is the number of nodes in the temporal graph, is given as:

L =
1

N(N − 1)

∑

ij

dij (4)

In general, it is assumed that information has a finite lifespan. Hence, when
nodes i and j become disconnected over a time duration, a value of dij = wτ ,
where w is the length of each time window and τ is the maximum delivery time
in the temporal graph.

If a node j is not reachable from node i in terms of time, the temporal dis-
tance dij is considered to be infinity, and as a result, the characteristic temporal
path length becomes divergent. To prevent this divergence, the temporal global

114 A. Gain and M. S. Barik

efficiency of a time-varying graph has been defined. This concept is formulated
as follows [28]:

E =
1

N(N − 1)

∑

ij

1
dij

(5)

The work presented in Tang et al. [19] highlights important differences
between static and temporal analyses of shortest paths. Their findings show that
static graphs, which do not consider the ordering of time, tend to overestimate
the availability of links and underestimate the actual lengths of shortest paths.
Interestingly, the research also reveals a counter-intuitive discovery, indicating
that even networks with slow evolution can exhibit properties that enable rapid
information dissemination between nodes in temporal networks.

5 Attack Graph

Understanding the various ways in which the attackers can compromise our cyber
infrastructures is crucial in adopting different proactive and reactive security
measures. Researchers have proposed many attack modelling techniques for this
purpose [31]. Attack graphs and attack trees [32] are the two most popularly
used graphical attack modelling techniques.

Attack graphs provide a representation of existing knowledge about vulnera-
bilities, their dependencies, and network connectivity. There are two approaches
to representing an attack graph. The first approach involves explicitly listing
all possible sequences of vulnerabilities that an attacker can exploit to reach
their target, encompassing all potential attack paths. However, this method can
result in a large number of attack paths, leading to a combinatorial explosion.
The second approach to attack graph representation employs a monotonicity
assumption, assuming that an attacker never loses acquired capabilities. This
representation captures vulnerability dependencies and preserves implicit attack
paths, retaining all information while avoiding duplicate vertices. As a result,
the size of this attack graph is polynomial, meaning it is proportional to the
number of vulnerabilities multiplied by the number of connected pairs of hosts
[33].

Attack graphs serve to depict system states and attacker actions. They are
generated using model checking algorithms like SMV [34] or NuSMV [2]. How-
ever, as the size of the system increases, the graphs grow exponentially. To
mitigate this issue, the monotonicity assumption [1] proposes that one attack
cannot invalidate the precondition of another. However, it is important to note
that this assumption is not always valid, as certain vulnerabilities rely on others.
For instance, if an attacker exploits a network service vulnerability, rendering
it unavailable, other vulnerabilities that depend on that service become unex-
ploitable.

The tool TVA (Topological Vulnerability Analysis) [35,36] automates the
construction of an attack graph by utilizing attack scenarios, a collection of
identified vulnerabilities in the system, and network models. Vulnerabilities can

Attack Graph Based Security Metrics for Dynamic Networks 115

be automatically identified using scanning tools such as Nessus [37] or Retina
[38]. The attack graph consists of nodes representing exploits and the security
conditions accessible to the attacker. Edges connecting precondition nodes to
vulnerability nodes indicate the necessary conditions for exploiting the vulner-
ability. Conversely, an arc from a vulnerability node to a condition node repre-
sents the impact of vulnerability exploitation. The size of the attack graph grows
quadratically in relation to the system’s size.

The MulVAL [39] (Multihost, multistage Vulnerability Analysis) framework
generates an attack graph using a list of system vulnerabilities, asset configura-
tions, user access rights, and potential interactions and policies. The system is
modeled using the Datalog language [40], while interactions are represented by
Horn clauses. The XSB [41] environment is utilized to derive new information
about the system state.

According to the definition provided in [4], an attack graph, denoted as G,
is a directed graph G = (E ∪ C,Rr ∪ Ri). The vertex set E ∪ C represents
the collection of exploits and security conditions, while the edge set Rr ∪ Ri

represents the require and imply relations. Here, Rr ⊆ C × E and Ri ⊆ E × C.
Exploits are represented as v(hs, hd), for exploits on local hosts, they are denoted
as v(h).

Security conditions are predicates of the form c(hs, hd), which signify the
fulfillment of a security-related condition c involving the source host hs and the
destination host hd. In cases where the condition only pertains to a single host,
it is represented as c(h). Examples of security conditions include existence of
vulnerabilities on a specific host or connections between two hosts etc.

Vulnerability scanner tools like OVAL [42] automatically detects vulnerabil-
ities in a network and links them to the elements in the network environment.
But, the decision on the frequency of its usage should be determined by the
network administrator as these tools inflict considerable overhead in terms of
additional network traffic. The reports generated by the vulnerability scanner
tool form one of the input to the attack graph generation tool.

6 Temporal Attack Graph

Present day enterprise networks comprise of resources that are provisioned
dynamically, on-demand. These are mostly cloud based virtual resources i.e.
compute, network, storage etc. which are made available on the fly. New com-
pute nodes with services and network connectivity as per the application require-
ments are provisioned dynamically through software. Conglomeration of such on-
premise and off-premise resources evolve continuously with time. Attack graph
based security analysis must consider such time evolving nature of the networks.
The notion of temporal attack graph takes into consideration such time depen-
dent features.

Definition 1 (Temporal Attack Graph).
A Temporal Attack Graph Ga(tmin, tmax) is defined as a sequence of graphs

(G0, G1, . . . , Gτ−1), such that:

116 A. Gain and M. S. Barik

– Gt = (Vt, Et) is an attack graph AGt of the snapshot of the network taken at
time instance t

– τ = ((tmax − tmin)/w) = | Ga(tmin, tmax) | is the number of graphs in the
sequence or the number of time windows

– w is the duration of each time window
– |E ∪ C| =

∑τ
w=1 |Ew ∪ Cw| is the total number of vertices across all time

windows in the temporal Attack Graph Ga;
– |Rr ∪ Ri| =

∑τ
w=1 |Rw

r ∪ Rw
i | is the total number of edges across all time

windows in the Temporal Attack Graph Ga.
–

(
Ew ∪ Cw

)
is the vertex set and

(
Rw

r ∪ Rw
i

)
is the edge set of attack graph at

time window w;

We assume that, the system parameters are sampled and the corresponding
attack graphs are generated (or incrementally updated) at the beginning of each
time window, i.e. at time instances t0, t1, . . . tτ−1, where t0 = tmin and tτ = tmax

and ti = tmin + w × i, for 0 < i < τ .
It may be noted that the window size (w) depends on number of factors,

like: how frequently the network configuration changes, the cost of attack graph
generation etc. The security administrator has to consider all these facts and
choose the window length accordingly.

6.1 A Motivating Example

Let us consider a simplified example network depicted in Fig. 1. The internal
network consists of a File Server, along with Hosts A, B, and C. Host C holds
significant importance as it serves as the main server. In this scenario, there is
a malicious entity, referred to as an attacker who is operating from the external
network. The attacker’s objective is to obtain root-level privileges on Host C.
Therefore, our main concern is whether the attacker can achieve this goal. To mit-
igate potential threats, firewalls have been placed in strategic locations, which
allow all internal to external connection requests. However, inbound requests
are only permitted to access the file server. In simpler terms, the FIREWALL
1 grants access to any unidentified user solely for the purpose of accessing ser-
vice(s) running on the file server. Access to all other services running on different
machines is denied or blocked. The internal hosts within the network, including
the File Server, Hosts A, B, and C, are restricted to connecting only to specific
ports or services based on the firewall policies outlined in Table 1. These policies
define the limitations on connectivity. The term “All” indicates that a source
host is allowed to connect to a destination host on any port to access the ser-
vices running on those ports. Conversely, “None” indicates that a source host is
forbidden from accessing any services on the destination host. In our example
network, we assume that the hosts initially have certain vulnerabilities, which
are summarized in Table 2 along with time windows in which they exist and
indexed by their CVE numbers.

Within our example network, the File Server is open to access by all uniden-
tified external users. Additionally, it possesses a vulnerability of the SAP ser-
vice known as CVE-2021-44235. If this vulnerability is successfully exploited, an

Attack Graph Based Security Metrics for Dynamic Networks 117

Fig. 1. An Example Network

attacker can gain root-level privileges on the File Server. Host C has a host based
firewall which has such a policy that it only allows to connect to a particular port
and the particular service running on that port can only be exploited from only
Host B at the particular time window w2. Figure 2 presents an attack graph for
this particular network configuration, showcasing all the possible attack paths
an intruder can take to reach the desired target, which is Host C. The graph
illustrates these attack paths across different time windows, namely w0, w1, and
w2.

Table 1. Firewall policies of the network depicted in Fig. 1

Host Attacker File Server HostA HostB HostC

Attacker localhost All None None None

File Server All localhost All Kaspersky Cisco Router None

HostA All All localhost Vmware None

HostB All All All localhost All

HostC All All All All localhost

In Fig. 2 we can see the temporal attack graph of three time windows
w0, w1, w2. The graph is color coded in such a way that the attack graph gener-
ated at 3 timestamps are represented together. To give a better idea:

– For w0 the attack graph consists of the black and blue colored edges and
vertices only

– For w1 the attack graph consists of the black, blue and red colored edges and
vertices only

118 A. Gain and M. S. Barik

– For w2 the attack graph consists of the black and green colored edges and
vertices only

Table 2. Vulnerabilities in the network depicted in Fig. 1

Host Services Vulnerabilities CVE ID Time Window

File Server SAP SAP exec code CVE-2021-44235 w0, w1, w2

Host A Netfilter subsystem bof linuxkernell CVE-2023-0179 w0, w1

Host B VMware Horizon Agent root priv CVE-2022-22964 w0, w1

Cisco Router admin priv exec code CVE-2021-40120 w1

Kaspersky Anti-Virus root priv CVE-2017-9811 w2

Host C Linux kernel root priv mem corr CVE-2020-14386 w2

At time w0, the attacker can exploit vulnerabilities in the File server, Host
A, and Host B, thereby obtaining root access to all of them. At time w1, despite
these vulnerabilities still existing, a new service starts in Host B, introducing
the CVE-2021-40120 vulnerability, which can only be exploited from the File
service. Consequently, a new attack path is created to gain root access to Host
B. Moving to time w2, all previously existing vulnerabilities in Host A and Host B
have been patched. However, a new Kaspersky Antivirus service running on Host
B introduces the CVE-2017-9811 vulnerability, which allows the attacker to gain
root access to Host B. Additionally, at this timestamp, the firewall policy permits
the attacker to access the vulnerability in Host C’s Linux kernel service, identified
as CVE-2020-14386, thereby granting root access to Host C. Ultimately, the
attacker successfully achieves the objective of gaining root access to Host C.

In general, the starting point in an attack graph corresponds to the assumed
initial location of the attacker and the ending point corresponds to the location
of any critical resource in the network. And, there has to exist some initial
conditions before an attack graph is generated. Because the first exploitation of
a vulnerability is enabled by the initial conditions only. It generates intermediate
conditions which in combination with other initial conditions may further enable
more exploits.

6.2 Temporal Attack Paths

Definition 2 (Temporal Attack Path).
A temporal attack path, pa

ij = (nW0
0 , . . . , nWk

η−1), starting at node i = n0

and finishing at node j = nη−1 is defined over a Temporal Attack Graph
Ga(tmin, tmax) as a sequence of η hops via distinct nodes n

Wp

h at time window
Wp, node nh is visited if and only if there is an edge between nh−1 and nh at
time window Wp−1 ≤ Wp; and 0 ≤ Wp < τ .

Qa
ij is the set of all temporal attack paths between nodes i and j. If a temporal

attack path between i and j does not exist, i.e., Qa
ij = φ we can deduce that

(i, j) is a temporally disconnected node pair, and we set the distance laij = ∞.

Attack Graph Based Security Metrics for Dynamic Networks 119

Fig. 2. Temporal Attack Graph of the network shown in Fig. 1 (Color figure online)

120 A. Gain and M. S. Barik

The function Da(pa
ij) denotes the set of nodes in a given temporal attack

path pa
ij . To calculate the shortest temporal path length between two points i

and j, we define da
ij as the minimum number of hops among all feasible paths

pa
ij in the set Qa

ij . This allows us to identify the most efficient attack path that
meets the temporal constraints of the problem. Specifically, it can be expressed
as the temporal shortest attack path length:

da
ij = min(|Da(pij)|),∀ pij εQa

ij (6)

where Qa
ij is the set of all possible attack paths between i and j. Since the

shortest temporal attack path may not be unique, we define the set Sa
ij of all

shortest temporal attack paths from node i to j as:

Sa
ij =

{
pij εQa

ij :
(
Da(pij) = da

ij

)}
(7)

Now we define Temporal shortest attack path length in terms of efficiency,
temporal efficiency Ea

ij between nodes i and j can be expressed as given as:

Ea
ij =

1
da

ij + 1
(8)

Table 3. Example of Temporal Attack Paths Present in the network depicted in Fig. 1
and in its corresponding temporal attack graph in Fig. 2.

Attack Path Time Windows

20, 19, 9, 5, 2, 1 w0, w1, w2

20, 19, 16, 15, 12, 5, 2, 1 w0, w1, w2

6.3 Simplifying Assumption

We have considered only attack graphs wherein the number of nodes across all
time windows may vary, or remain the same and the number of edges may also
vary. We will be referring to the set of nodes in a temporal attack graph as
V a = Vw,∀ε

[
0, τ

)
, hence the number of nodes is N = |V a|.

We assume that when an attacker has exploited a vulnerability and has
gained root/user access on a host/server/workstation etc, even if the vulnerabil-
ity is patched at a later timestamp the attacker would still retain the capabilities
and privileges he had acquired by exploiting the vulnerability earlier.

7 Temporal Metrics for Temporal Attack Graphs

In static graphs, the shortest path length metric gives the number of hops
between any two nodes. But, the shortest temporal path length gives an idea

Attack Graph Based Security Metrics for Dynamic Networks 121

about the speed (in terms of number of time intervals) at which the attacker can
reach from a source node to a destination node.

Previously in Sect. 4 we saw how Temporal Metrics for normal temporal
graphs was defined by various other authors, now we will define temporal metrics
for attack graphs.

7.1 Characteristic Temporal Attack Path Length

From the above temporal metrics, we define the characteristic temporal attack
path length La as:

La =
1

N(N − 1)

∑

ij

da
ij (9)

where N is the total number of nodes across all time windows in the attack
graph and it is to be mentioned that there maybe no link between two nodes in
the Temporal Attack Graph (even considering the temporal aspect) those nodes
may be called as unreachable nodes from a particular node, then in this case
the value of da

ij = τ representing the maximum time windows in the Temporal
Attack Graph i.e. if there are 2 time windows and a node is unreachable from i
then its da

ij = 2.
Temporal global efficiency of the Temporal Attack Graph Ga to prevent

potential divergence may be defined as:

Ea =
1

N(N − 1)

∑

ij

1
da

ij

(10)

8 Results and Discussions

For the temporal attack graph of three time windows depicted in Fig. 2 we have
used the Mulval [39] tool for attack graph generation and then loaded the graphs
into Neo4j1 graph database for calculation of the proposed metrics.

It may be noted that a temporal attack graph is defined as a sequence of
attack graphs corresponding to a series of network configurations in defined time
windows. We assume that attack graphs in different time windows are faithfully
generated using existing tools like MulVAL. Hence, there is no need of a separate
temporal attack graph generation tool.

8.1 Generating Temporal Attack Graphs

We have used the MulVAL [39] tool to generate an attack graph at a particu-
lar timestamp. The input information on network topology, vulnerabilities, fire
rules etc. are coded in an input file as required by MulVAL. The generated
attack graph is produced in many forms, i.e. a pdf file for visualization, xml/csv

1 https://neo4j.com/.

https://neo4j.com/

122 A. Gain and M. S. Barik

files containing the graph information. We have taken the two output csv files:
one containing node data and another containing information about edges. We
have then loaded the sequence of attack graphs into the Neo4j graph database
and labeled them as w0, w1, . . . , wn−1 i.e. the time window at which they were
generated. Finally we have used cypher graph queries over this database of the
attack graphs to compute the proposed security metrics.

However, if for a given network configuration the final attack goal cannot
be reached, then the corresponding attack graph would not be generated. This
is true for all attack graph generation tools, including MulVAL. Our work is
based on a particular attack goal which remains fixed through out all the time
windows.

The reason for using the Neo4j graph database as a storage for the tempo-
ral attack graph is that we can use Neo4j’s built-in query language cypher for
efficient computation of the proposed security metrics. Cypher supports queries
related to various graph analytic tasks.

8.2 Pre-processing of Temporal Attack Graph

Before loading the temporal attack graph generated by MulVAL [39], we need to
do some pre-processing as we need not load all the nodes and edges for applying
our metrics.

The nodes in the temporal attack graphs representing initial security condi-
tions may be ignored for the purpose of computing temporal metrics as they may
result in large anomalies in the desired results. We can observe that in charac-
teristic temporal attack path length La, when we are calculating

∑
ij da

ij we are
basically calculating the sum of shortest temporal attack path length from every
node to every other node in the temporal attack graph. Now the said nodes are
always unreachable as they have no incoming edges. Hence, they always will have
the value τ , thus effectively increasing the characteristic temporal attack path
length proportionately. In the context of attack graphs these nodes are security
conditions which act as pre-conditions for a vulnerability to be exploited. So we
are ignoring these nodes and omitting them before loading them into Neo4j for
calculation of various metrics. We assume that these pre-conditions are satisfied
to get the values of our metrics in correct order, so that they can be interpreted
correctly for further applications and use.

8.3 Importing Data into Neo4j

To load the temporal attack graph into Neo4j graph database, we have used
the csv output file generated by the MulVAL tool and invoked cypher queries
to import the nodes and edges into the database. We have labelled each attack
graph as w0, w1, . . . , wn−1 - thus, we have a temporal attack graph in Neo4j
graph database. We have implemented the temporal metric computation as a
Python module.

The temporal attack graph depicted in Fig. 2 after preprocessing and loading
into the Neo4j Graph database is shown in Fig. 3 and Table 3.

Attack Graph Based Security Metrics for Dynamic Networks 123

Fig. 3. Temporal Attack Graph represented in Graph Database Neo4j for network
depicted in Fig. 1, Cyan depicts w0, Red depicts w1 and Blue depicts w2 (Color figure
online)

8.4 Temporal Attack Graph of Three Time Windows

In this part we have taken a temporal attack graph of three time windows, the
same is depicted in Fig. 2.

Here the temporal attack graph Ga(t0, t3) consists of attack graphs starting
at time window w0 and ending at time window w2. The visualisation of Temporal
Attack Graph loaded into and extracted from Neo4j database is shown in Fig. 3.
After loading our temporal attack graphs into the graph database we compute
the metrics given previous sections and the results are recorded and they are
shown in Table 4.

124 A. Gain and M. S. Barik

Table 4. Temporal Attack Graph Metrics for Ga(t0, t3)

Metric Time Windows Score

Characteristic Temporal Path Length La w0, w1, w2 2.63

Temporal Global Efficiency Ea w0, w1, w2 0.45

8.5 Discussion

Our temporal metrics for temporal attack graphs include the calculation of key
measures: shortest temporal attack path length, characteristic temporal attack
path length, and temporal attack path length efficiency. Each of these metrics
provides unique insights into the security state of a system.

The temporal shortest attack path length helps security providers identify
the earliest occurrence of an attack path between a pair of nodes in the attack
graph. It determines the initial time window when the shortest attack path
is first observed. This information enables prompt identification of a possible
multistage attack path to a given critical resource within the network, so that
corresponding vulnerabilities may be patched or network configuration can be
modified to prevent such an attack instance.

The temporal characteristic path length represents the overall path length
of the temporal attack graph across all time windows. It indicates the extent of
vulnerabilities present in the network over time. A higher temporal characteristic
path length suggests a network with a greater number of unique vulnerabilities.
When attack graphs are viewed as a sequence, we may observe highly clustered
large-world networks, where the path length (denoted as La) increases linearly
with the number of nodes (denoted as N). Conversely, random networks exhibit
poorly clustered small-world networks, where the path length increases logarith-
mically with the number of nodes. From our results, we can see that the moti-
vating example had a considerate number of vulnerabilities spread out across all
time windows, and that resulted in a fairly higher temporal characteristic path
length of 2.63. It is to be noted that this value is always within the threshold of
the number of time windows present in a temporal attack graph.

Temporal global efficiency provides insight into the network’s overall robust-
ness. It is inversely related to the temporal attack path length (La), meaning
that low values of La correspond to high values of efficiency (Ea), and vice versa.
Thus, a network with fewer vulnerabilities over time exhibits greater temporal
efficiency, indicating a higher level of security. In our results, we can see that
high La resulted in an efficiency value of 0.45 (45%) which indicates the over-
all robust nature of the given network and the same is also in sync with the
mathematical formulations.

9 Conclusion

Attack graph-based security metrics are a valuable approach for assessing the
security of enterprise networks. These metrics provide insights into potential

Attack Graph Based Security Metrics for Dynamic Networks 125

attack routes and vulnerabilities within the network. Temporal attack graph
based metrics offer significant advantages in evaluating network security. They
account for the dynamic nature of modern networks, which continuously evolve
in terms of topology and configurations. By considering these changes over time,
these metrics provide a more accurate and up-to-date assessment of a network’s
security.

The path-based metrics introduced in this paper offer a new perspective for
analyzing dynamic networks, effectively filling the existing gap in assessing their
security. Nonetheless, in order to unlock their full potential, it is imperative to
apply these metrics to real-world datasets and make necessary adaptations to
account for distinct network characteristics and unique security requirements.
By doing so, we can harness the true power of these metrics and obtain compre-
hensive insights into the dynamics and vulnerabilities of real-world networks.

10 Future Work

The security metrics proposed in this paper hold immense promise for advancing
network security evaluation. However, their efficacy needs to be rigorously tested
through empirical studies, and appropriate algorithms should be developed to
facilitate their implementation. We could not evaluate our proposal due to non-
availability of public dataset of attack graphs. One possible avenue of future
work would involve generation of synthetic attack graphs to test the efficacy of
the proposed security metrics.

Furthermore, it is worth exploring the potential of centrality-based temporal
attack graph metrics, as they could provide deeper insights into the security
of dynamic networks. By delving into these areas, we can further enhance our
understanding and assessment of network security in dynamic environments.

Acknowledgement. Authors would like to express their sincere thanks to the anony-
mous reviewers for their invaluable feedback.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-
ability analysis. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS 2002, pp. 217–224. Association for Computing
Machinery, New York (2002). https://doi.org/10.1145/586110.586140

2. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated gen-
eration and analysis of attack graphs. In: Proceedings 2002 IEEE Symposium on
Security and Privacy, pp. 273–284 (2002)

3. Albanese, M., Jajodia, S., Pugliese, A., Subrahmanian, V.S.: Scalable analysis
of attack scenarios. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol.
6879, pp. 416–433. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23822-2 23. http://dl.acm.org/citation.cfm?id=2041225.2041255

4. Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hard-
ening using attack graphs. In: IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2012), pp. 1–12 (2012)

https://doi.org/10.1145/586110.586140
https://doi.org/10.1007/978-3-642-23822-2_23
https://doi.org/10.1007/978-3-642-23822-2_23
http://dl.acm.org/citation.cfm?id=2041225.2041255

126 A. Gain and M. S. Barik

5. Xuan, B.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14, 267–285 (2003)

6. Yusuf, S.E., Ge, M., Hong, J.B., Alzaid, H., Kim, D.S.: Evaluating the effec-
tiveness of security metrics for dynamic networks. In: 2017 IEEE Trust-
com/BigDataSE/ICESS, pp. 277–284 (2017)

7. Enoch, S.Y., Ge, M., Hong, J.B., Alzaid, H., Kim, D.S.: A systematic evaluation of
cybersecurity metrics for dynamic networks. Comput. Netw. 144, 216–229 (2018).
https://www.sciencedirect.com/science/article/pii/S1389128618306285

8. Bopche, G.S., Mehtre, B.M.: Attack graph generation, visualization and analysis:
issues and challenges. In: Mauri, J.L., Thampi, S.M., Rawat, D.B., Jin, D. (eds.)
SSCC 2014. CCIS, vol. 467, pp. 379–390. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44966-0 37

9. Noel, S., Jajodia, S.: A suite of metrics for network attack graph analytics. In:
Wang, L., Jajodia, S., Singhal, A. (eds.) Network Security Metrics, pp. 141–176.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66505-4 7

10. Frigault, M., Wang, L., Jajodia, S., Singhal, A.: Measuring the overall network
security by combining CVSS scores based on attack graphs and Bayesian networks.
In: Wang, L., Jajodia, S., Singhal, A. (eds.) Network Security Metrics, pp. 1–23.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66505-4 1

11. Noel, S., Jajodia, S.: Metrics suite for network attack graph analytics. In: Proceed-
ings of the 9th Annual Cyber and Information Security Research Conference, CISR
2014, pp. 5–8. Association for Computing Machinery, New York (2014). https://
doi.org/10.1145/2602087.2602117

12. Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S.: k -zero day safety: evaluating
the resilience of networks against unknown attacks. In: Wang, L., Jajodia, S.,
Singhal, A. (eds.) Network Security Metrics, pp. 75–93. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66505-4 4

13. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based
probabilistic security metric. In: Atluri, V. (ed.) DBSec 2008. LNCS, vol. 5094, pp.
283–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70567-
3 22

14. Enoch, S.Y., Hong, J.B., Ge, M., Kim, D.S.: Composite metrics for network security
analysis. CoRR abs/2007.03486 (2020). https://arxiv.org/abs/2007.03486

15. ISO/IEC 27005: Information technology-security techniques-information security
risk management. ISO/IEC 44 (2008)

16. Popov, O.: Priorities for research on current and emerging network technologies.
ENISA (European Network and Information Security Agency) (2010)

17. Holme, P.: Network reachability of real-world contact sequences. Phys. Rev. E 71,
046119 (2005). https://doi.org/10.1103/PhysRevE.71.046119

18. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. CoRR abs/1012.0009 (2010). http://arxiv.org/abs/1012.
0009

19. Tang, J.K.: Temporal network metrics and their application to real world networks.
Ph.D. thesis, Robinson College, University of Cambridge (2011)

20. Tang, J., et al.: Applications of temporal graph metrics to real-world networks. In:
Holme, P., Saramäki, J. (eds.) Temporal Networks, pp. 135–159. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-36461-7 7

21. Rossetti, G., Guidotti, R., Pennacchioli, D., Pedreschi, D., Giannotti, F.: Inter-
action prediction in dynamic networks exploiting community discovery. In: Pro-
ceedings of the 2015 IEEE/ACM International Conference on Advances in Social

https://www.sciencedirect.com/science/article/pii/S1389128618306285
https://doi.org/10.1007/978-3-662-44966-0_37
https://doi.org/10.1007/978-3-662-44966-0_37
https://doi.org/10.1007/978-3-319-66505-4_7
https://doi.org/10.1007/978-3-319-66505-4_1
https://doi.org/10.1145/2602087.2602117
https://doi.org/10.1145/2602087.2602117
https://doi.org/10.1007/978-3-319-66505-4_4
https://doi.org/10.1007/978-3-540-70567-3_22
https://doi.org/10.1007/978-3-540-70567-3_22
https://arxiv.org/abs/2007.03486
https://doi.org/10.1103/PhysRevE.71.046119
http://arxiv.org/abs/1012.0009
http://arxiv.org/abs/1012.0009
https://doi.org/10.1007/978-3-642-36461-7_7

Attack Graph Based Security Metrics for Dynamic Networks 127

Networks Analysis and Mining 2015, ASONAM 2015, pp. 553–558. Association
for Computing Machinery, New York (2015). https://doi.org/10.1145/2808797.
2809401

22. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey.
ACM Comput. Surv. 51, 1–37 (2018). https://doi.org/10.1145/3172867

23. Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams.
Theor. Comput. Sci. 609, 245–252 (2016)

24. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the mod-
eling of interactions over time. Soc. Netw. Anal. Min. 8, 1–29 (2018). https://doi.
org/10.1007/s13278-018-0537-7

25. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012).
https://www.sciencedirect.com/science/article/pii/S0370157312000841

26. Casteigts, A., Meeks, K., Mertzios, G.B., Niedermeier, R.: Temporal graphs: struc-
ture, algorithms, applications (dagstuhl seminar 21171). In: Dagstuhl Reports, vol.
11. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

27. Grindrod, P., Parsons, M.C., Higham, D.J., Estrada, E.: Communicability across
evolving networks. Phys. Rev. E 83, 046120 (2011)

28. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev.
Lett. 87, 198701 (2001). https://doi.org/10.1103/PhysRevLett.87.198701

29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393, 440–442 (1998)

30. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance
and reachability in mobile and online social networks. ACM SIGCOMM Comput.
Commun. Rev. 40, 118–124 (2010)

31. Noel, S.: A review of graph approaches to network security analytics. In: Samarati,
P., Ray, I., Ray, I. (eds.) From Database to Cyber Security. LNCS, vol. 11170, pp.
300–323. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04834-1 16

32. Lallie, H.S., Debattista, K., Bal, J.: A review of attack graph and attack tree
visual syntax in cyber security. Comput. Sci. Rev. 35, 100219 (2020). https://
www.sciencedirect.com/science/article/pii/S1574013719300772

33. Wang, L., Liu, A., Jajodia, S.: Using attack graphs for correlating, hypothesizing,
and predicting intrusion alerts. Comput. Commun. 29, 2917–2933 (2006). https://
doi.org/10.1016/j.comcom.2006.04.001

34. Ritchey, R.W., Ammann, P.: Using model checking to analyze network vulnerabil-
ities. In: Proceeding 2000 IEEE Symposium on Security and Privacy, S&P 2000,
pp. 156–165. IEEE (2000)

35. Jajodia, S., Noel, S.: Topological vulnerability analysis: a powerful new approach
for network attack prevention, detection, and response. In: Algorithms, Architec-
tures and Information Systems Security, pp. 285–305. World Scientific (2009)

36. Jajodia, S., Noel, S., O’berry, B.: Topological analysis of network attack vulnera-
bility. In: Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats:
Issues, Approaches, and Challenges, vol. 5, pp. 247–266. Springer, Boston (2005).
https://doi.org/10.1007/0-387-24230-9 9

37. A Nessus scanner. https://www.tenable.com/products/nessus
38. A Retina IoT (RIoT). https://sss.gd/uvAbx
39. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security

analyzer. In: Proceedings of the 14th Conference on USENIX Security Symposium,
SSYM 2005, vol. 14, p. 8. USENIX Association (2005)

40. Ceri, S., Gottlob, G., Tanca, L., et al.: What you always wanted to know about
datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1, 146–166 (1989)

https://doi.org/10.1145/2808797.2809401
https://doi.org/10.1145/2808797.2809401
https://doi.org/10.1145/3172867
https://doi.org/10.1007/s13278-018-0537-7
https://doi.org/10.1007/s13278-018-0537-7
https://www.sciencedirect.com/science/article/pii/S0370157312000841
https://doi.org/10.1103/PhysRevLett.87.198701
https://doi.org/10.1007/978-3-030-04834-1_16
https://www.sciencedirect.com/science/article/pii/S1574013719300772
https://www.sciencedirect.com/science/article/pii/S1574013719300772
https://doi.org/10.1016/j.comcom.2006.04.001
https://doi.org/10.1016/j.comcom.2006.04.001
https://doi.org/10.1007/0-387-24230-9_9
https://www.tenable.com/products/nessus
https://sss.gd/uvAbx

128 A. Gain and M. S. Barik

41. Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database engine.
ACM SIGMOD Rec. 23, 442–453 (1994)

42. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern net-
work attacks and countermeasures using attack graphs. In: 2009 Annual Computer
Security Applications Conference, pp. 117–126 (2009)

An Energy-Conscious Surveillance Scheme
for Intrusion Detection in Underwater Sensor
Networks Using Tunicate Swarm Optimization

Sunil Kumar Kammula(B), Veena Anand, and Deepak Singh

Department of Computer Science and Engineering, National Institute of Technology Raipur,
Raipur, Chhattisgarh, India

{kskumar.phd2020.cse,vanand.cs,dsingh.cs}@nitrr.ac.in

Abstract. The underwater environment is crucial for various scientific appli-
cations, including naval bases, offshore installations, and military surveillance.
Precise intruder detection in such environments via underwater acoustic sen-
sor networks (UASN) with minimal network resources is quite challenging in
safeguarding the territorial marine environment. Moreover, the unavailability of
GPS, poor visibility, and diverging network scenarios make it more complicated
than terrestrial sensor networks. Hence, this article addresses an energy-efficient
surveillance scheme using only one beacon -node for intrusion detection subject
to location precision, energy restrictions, and network overhead constraints. The
proposed energy-conscious surveillance scheme monitors the chosen region of
interest (ROI) with a single beacon node using its Boolean perception probability
to find an intruder node in its area of responsibility. Next, a low-cost centroid
technique is applied to calculate the estimated location coordinates of the intruder
node. Estimated intruder coordinates are further enhanced using a rapid conver-
gent Tunicate swarm algorithm (TSO). Thorough findings from simulations reveal
that the proposed technique reduces the overhead of employing numerous beacon
nodes while substantially improving the intruder position accuracy compared to
its contemporary schemes.

Keywords: Energy efficient · Surveillance scheme · Target detection · UASN

1 Introduction

UASNs consist of underwater sensors and nodes using acoustic waves for communica-
tion. They’re tailored for aquatic settings due to the limitations of RF wireless communi-
cation. Vital for naval, offshore, and defense applications, UASNs enhance border secu-
rity by detecting intruders in maritime and coastal areas [1]. The sensors in an intrusion
detection network only need to be able to spot the intruder once they enter the monitored
area rather than at every step along the journey. The spatial identification of intruder posi-
tion has become a crucial factor in improving situational awareness, decision-making,
and secure usage of the aquatic environment. Identified location information assists in
preventing illicit or unauthorized fishing, poaching, and other activities [2] that exploit

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 129–138, 2023.
https://doi.org/10.1007/978-3-031-49099-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_8

130 S. K. Kammula et al.

underwater resources. Precise marine localization aids responsible resource manage-
ment, prevents overfishing, and aids in emergencies, benefiting research, conservation,
and protection efforts [3–5].

Earlier works have put a substantial amount of effort into solving the sensor node’s
resource utilization problem using a variety of genetic algorithms. Numerous beacon
nodes can enhance UASN detection precision and coverage [6]. However, such solutions
have adverse cost, energy, communication, and deployment effects. To stay in place and
communicate, beacon nodes must run continually [7]. As beacon nodes rise, network
energy usage does, too. This may shorten the network lifespan. Many beacon nodes
might strain the constrained resources, impacting the network’s overall performance.
Therefore, for optimized energy requirements andoverhead complications, the suggested
methodology uses a single beacon node architecture with the assistance of the centroid
technique. In addition, this article also proposes a quick convergent and robust explorative
Tunicate Swarm Optimization (TSO) -based intrusion detection mechanism for IoUT
applications, which solves the issue of maximizing the accuracy of target node detection
while minimizing energy consumption.

The article makes the following contributions:

• The proposed single beacon-node surveillance scheme seeks to increase intruder
nodes’ identification precision by minimizing the number of reference nodes.

• To estimate the location coordinates of the intruder, a centroid technique that is less
susceptible to chaotic measurements is utilized.

• A novel fitness function based on TSO is developed with residual energy, precision,
and proximity to estimated coordinates for more precise intruder accuracy.

• We have combined the beacon node scheme with the TSO method to attain precise
accuracy by reducing the network’s complexity.

2 Related Works

Localization and target tracking in underwater acoustic sensor networks are interdepen-
dent, as accurate localization aids intruder detection, and effective tracking enhances
localization precision.

Several surveillance schemes for UASNs have been devised based on measurements
of localization techniques. For example, to perform continuous tracking and quantization
of the local estimates, a surveillance scheme using an extended Kalman filter (EKF)
and global nearest neighbor (GNN) mechanism was proposed in [8]. The technique
uses optimal quantization of the sensed information over linear quantization to address
bandwidth and computational load constraints. To address the expedition of limited
energy sources of a sensor node during the accurate localization of intruder nodes,
Inam and Chenn [7] presented a range-free localization scheme using angle-based and
distance-basedmetrics. The procedure helps reduce the localization error gap to improve
the detection process’s accuracy.

Previous works have considered localization schemes using some machine learning
algorithms to detect the intruder nodes in the underwater environment precisely. In [9], a
privacy-preserving localization technique using deep reinforcement learning (DRL) has
been proposed to conceal the private location coordinates of the anchor and target nodes.

An Energy-Conscious Surveillance Scheme 131

Muhammad Irshad et al. [10] have used a decision tree method by improving the J48
algorithm to assess localization accuracy, precision, and computational cost parameters.
The information gain and entropy values are calculatedwith the help of the J48 algorithm
for efficient splitting of the decision trees. In [11], an efficient method for localization of
the target nodes using Support Vector Regression (SVR) is proposed. The SVR scheme
only uses the proposed methodology to identify static target nodes, leaving the mobility
constraints behind.

Energy efficiency for target detection or tracking in UASNs has been the subject
of numerous previous studies. In reference [12], an energy-efficient intruder tracking
system with asynchronous clocks and Bayesian filtering is presented, enhancing sensor
network longevity through duty cycles. In [13], the adverse effect of reference node fail-
ure because of natural calamities and obstacles on limited energy reserves is addressed.
Reference [14] introduces a self-adaptive AUV-based scheme for target node detec-
tion, enhancing identification accuracy while reducing computational overhead in sparse
networks.

The literature review highlights existing solutions for intruder node detection, sug-
gesting a novel, resource-efficient UASN surveillance scheme that balances accuracy
and energy efficiency using a minimal number of anchor nodes.

3 Preliminaries

3.1 Node Sensing and Distribution Model

The sensor nodes’ perception ability in UASNs allows it to detect, sense, or perceive an
event or phenomenon occurring in their surroundings. Considerations for node percep-
tion probability include the detecting capability of each deployed node, the quality of
the sensor itself, the state of the environment, and the overall reliability of the nodes’
capacity to communicate with the centralized base station [15]. In this article, only the
sensing range (Rs) of a sensor node is used to detect and perceive the surrounding area
in its vicinity. Manhattan distance [13] is used as a catalyst in determining the spatial
gap separating the beacon node and the event or intruder. Whenever an event e occurs
within the sensing range of the beacon node [16], the perception probability of the sensor
(si) for the event e is 1; otherwise, the perception probability is 0. This phenomenon is
called the Boolean perception probability model, and the mathematical representation
is shown in Eq. 1

f (e, si) =
{
1 d(e, si) ≤ Rs

0 d(e, si) > Rs
(1)

where f(e, si) represents the probability of a sensor node detecting the event happened
in its sensing range and d(e, si) denotes the distance between event e and node si.

3.2 Tunicate Swarm Optimization Algorithm

The algorithm draws inspiration from tunicates’ jet propulsion, swarm behavior, and
remarkable survival skills in deep ocean environments. Tunicates locate food underwater,

132 S. K. Kammula et al.

aided by their unique attributes and interconnected gelatinous tunics [17]. The four stages
mentioned below explain the jet propulsion behaviors of tunicates [18].

Conflict Free Distribution of Search Agents: Vector M guides new agent positions,
minimizing conflicts and sensing overlap while optimizing node placement in the ROI.
The new position can be represented as given below.

�M = �G
�F (2)

�G = a2 + a3 − �W (3)

�F = 2.a1 (4)

where �M stands for a vector of new agent locations, �G stands for gravity, �W for deep
ocean water flow, and a1 through a3 stands for three random quantities [19]. In deep
oceans there exists some internal force amongst agents because of external factors, those
forces will be stored in a new vector �Y , denoted by:

�Y = [Zmi + a1.Zma − Zmi] (5)

In the equation Zmi = 1 and Zma = 4 talk about first and second subordinate speeds,
which help to make social interaction, respectively.

Converging Toward the Best Neighbor: Each particle advances to the best neighbor-
ing particle after averting the collision with neighboring particles.

−→
PD =

∣∣∣−→LF − rrnd .
−−−→
Pp(x)

∣∣∣ (6)

In the above equation
−→
PD is the separation value between location of the food source

and the current particle. The parameter x describes the current iteration and
−→
LF is the

current global optimal solution specifying about the position of the food sources. Simi-

larly,
−−−→
Pp(x) denotes the current position of tunicate and a random number in between 0,1

is represented by rrnd . The particles move in such a way that, they reduce the distance
between estimated and actual coordinates of the intruder node.

Moving to Global Optimum: In each iteration, search agents will keep moving in the
direction of the optimal position, which is described by using the below equation.

−−−→
Pp(x) =

{−→
LF + �M .

−→
PD, if rrnd ≥ 0.5−→

LF − �M .
−→
PD, if rrnd < 0.5

(7)

At iteration x, Eq. 7 gives the updated locations of the agent as
−−−→
Pp(x) in comparison

to the optimal scored location
−→
LF . The continuous movement of these particles towards

the optimal position helps in identify the intruder coordinates more precisely.

An Energy-Conscious Surveillance Scheme 133

Swarm Behavior: Initial two solutions become current best. Others adjust positions
based on ideal particle coordinates using specified equations [20].

−−−−−−→
Pp(x + 1) =

−−−→
Pp(x) + −−−−−−→

Pp(x + 1)

2 + a1
(8)

The last position would be at random, either a cylindrical or cone-shaped region
defined by tunicate position. A few crucial aspects of the TSA algorithm are as follows:

• The modifications in vectors M, G, and F provide the potential for enhanced
exploration and exploitation phases.

• The tunicate’s jet propulsion and swarm behavior in a particular ROI describe the
proposed TSA algorithm’s collaborative behavior.

4 Energy Conscious a Single Beacon Node-Based Intrusion
Detection Mechanism for IoUT Application

In UASN intrusion detection, pinpointing intruders in their area of responsibility is
essential to prevent exploitation of location methods. Intruders may seek unauthorized
access for nefarious activities like illegal fishing or environmental harm. To counter this,
a single beacon node with known coordinates monitors the chosen ROI using Boolean
perception probability, accurately identifying intruders during the invasion through a
defined procedure.

4.1 Precise Detection of the Intruder Node Through the Calculation of Spatial
Coordinates

The spatial coordinates of the intruder node can be calculated by using the following
procedure: A single beacon node empowered with an initial energy of 50 units and
threshold energy of 10 units is initialized in the 15 * 15 grid for surveillance of the
chosen ROI. The spatial coordinates of the beacon node are considered as (5.5, 5.5) to
assist in the identification of intruder nodes. Also, three intruder nodes were deployed
in the same ROI with distinctive sensing and transmission ranges compared to beacon
node. Regarding intrusion detection, it is not necessary to identify moving objects at all
times along the trajectory; instead, it is sufficient that the beacon detects the intruder in
its ROI. The beacon node is fixed in the environment with known spatial coordinates,
and intruder nodes will exhibit a random movement within the considered ROI. The
underwater environment’s ocean currents, tidal waves, and noise characteristics will
continuously relocate the target nodes from their initial positions. When intruder nodes
come under the vicinity of the beacon’s sensing range, a position estimation process is
initiated to calculate the computed coordinates of the intruder. Manhattan distance and
a centroid technique are used along with the known location coordinates of the beacon
node to estimate the intruder coordinates.

Manhattan distance d = |xb − xi| + |yb − yi| (9)

134 S. K. Kammula et al.

In the above formula (xi, yi), (xb, yb) are the spatial coordinates of the intruder and
beacon node respectively. Two emulated beacon nodes are also deployed in the ROI with
the same d distance to estimate the intruder nodes’ position precisely.

Ecological conditions, poor visibility, and the noise generated from the hostile envi-
ronment of the UASN will affect the accuracy of intruder nodes position. The distance
calculation between beacon and target node pair also considers the ecological noise
during the deployment of the emulated anchor nodes. But, throughout the surveillance
scheme this noise is considered as a gaussian noise for simplicity.

(xm, ym) =
(
xb + xea1 + xea2

3
,
yb + yea1 + yea2

3

)
(10)

Here, (xm, ym) indicate the calculated centroid coordinates with the assistance of emu-
lated anchor nodes. Similarly, (xb, yb), (xea1, yea1), and (xea2, yea2) represents the beacon
and two emulated anchor node position coordinates.

The calculated centroid coordinates (xm, ym), are used as initial guess during the
estimation of intruder node coordinates. Tunicate particles are distributed around the
centroid coordinates to assist in the calculation of estimated coordinates. Intruder nodes,
whenever entered into the sensing range of the beacon node will localize itself by finding
its coordinates as f

(
xq, yq

)
by executing tunicate particles iteratively. The ultimate goal is

to reduce the error in estimated sensor node placements relative to their real locations

Fitness function
(
f
(
xq, yq

)) = 1

r

∑r

a=1

(√
(xet − xb)2 + (yet − yb)2 − d

)2

(11)

where (xet, yet) represents the estimated coordinates of the intruder node and (xb, yb) are
the spatial coordinates of the beacon node. The Manhattan distance between beacon and
intruder node is given by d and the minimum number of required beacon and emulated
beacon nodes to estimate the intruder coordinates is given by r. Figure 1 describes the
intruder node estimation process using the centroid technique and tunicate particles.
Minimizing the spatial gap between estimated and actual intruder coordinates enhances
precise intruder detection and identification.

Fig. 1. Intruder node estimation process with the assistance of tunicate particles

An Energy-Conscious Surveillance Scheme 135

5 Simulation Analysis

In this section, the efficacy of the proposed methodology in identifying the position
coordinates of the intruder node is examined using MATLAB R2021a. The proposed
methodology considered a single beacon nodewith known location coordinates (5.5, 5.5)
and three intruder nodeswith unknown locations. The beacon node is deployed randomly
on a 15 * 15 gird sensing region, with fixed nature in the environment, whereas intruder
nodes will exhibit a random displacement. Table 1 indicates the simulation parameters
used for the evaluation purpose.

Simulation process for the intruder position estimation: The effectiveness of the
proposed intrusion detection mechanism, as presented in Sect. 4.1, is examined here to
identify the intruder coordinates. The deployed tunicate particles around the estimated
node position help reduce the distance gap between the intruder node and the calculated
node. Only 30 tunicate particles were deployed in the process, and the simulation ran for
40 iterations to acquire the intruder coordinates preciously. By executing Eq. 3 at each
iteration, particles converge towards the best neighbor by reducing the separation value d.
Also, the propagation probability (Pp) of 0.5 is considered in the network to mimic the
ocean environment drifting nature towards the installed nodes while addressing the
detection of intruder node positions.

Table 1. Simulation parameters

Parameter Values

Monitoring Area (ROI) 15 * 15 Grid

Sensing Range 75 m

No of Beacon node 1

No of Intruder nodes 3

Initial Energy 50 J

Simulation Time 150 s

Min and Max drifting of the nodes 0 to 3 m/s

Propagation Probability (Pp) 0.5

The initial population of 30 tunicates around the estimated node is shown in Fig. 2(a)
and 2(b). During execution, when the process is evaluated for 40 iterations, the interme-
diate results of the estimated node moving towards the global optimum of the intruder
node are represented in Fig. 2(c) to Fig. 2(j). Figure 2(k) and 2(l) indicate the total con-
vergence of tunicate particles towards the global optimum estimated node for the precise
detection of the intruder node. In this case, the separation distance value d, as mentioned
in Eq. 9, becomes zero at the 29th iterationwith a convergence time of 0.8329 s to exactly
match the coordinate values.

Analysis of the accurate position estimation of the proposed methodology is
described in Fig. 3. Here, a single beacon node which is static in the environment

136 S. K. Kammula et al.

Fig. 2. Precise detection of the intruder node with the assistance of tunicate particles at various
iteration phases.

An Energy-Conscious Surveillance Scheme 137

with position coordinates of (5.5, 5.5), and three intruder nodes which are dynamic with
some random mobility, are considered. The beacon nodes’ Boolean perception ability
helps identify intruder node entries in their surrounding area. Minimized fitness function
value at each iteration, defined in Eq. 11, will reduce the spatial differentiation between
authentic and computed coordinates so that there exists an exact match between both
coordinates to give precise coordinates of the intruder. Here a sample of only three
intruder nodes and one beacon node with a sensing range of 75 m were considered to
illustrate the effectiveness of the proposed methodology. Increased sensing range of the
beacon node may help in enhancing the surveillance scheme, but it will adversely affect
the nodes’ energy levels, which eventually leads to a reduced network lifetime.

Fig. 3. Identification of location coordinates of three intruder nodes at different places using a
single beacon node.

6 Conclusion

The article tackles intruder detection in underwater acoustic sensor networks (UASNs)
through the use of the TSO application. It introduces a centroid-based identification
approach for estimating intruder node positions during an intrusion. To enhance accuracy,
a rapid-convergence TSO algorithm is applied to improve the estimated coordinates,
minimizing the gap between estimated and true positions. The method also addresses
energy conservation by utilizing a single beacon node in the region of interest, extending
network longevity. This strategy strikes a balance between precise intruder detection and
reduced energy consumption, crucial in UASNs. Future work could expand the scheme
for continuous 3D tracking of intruders in complex underwater environments.

References

1. Luo, J., Yang, Y., Wang, Z., Chen, Y.: Localization algorithm for underwater sensor network:
a review. IEEE Internet Things J. 8(17), 13126–13144 (2021)

2. Kumar, M., Mondal, S.: Recent developments on target tracking problems: a review. Ocean
Eng. 236, 109558 (2021)

138 S. K. Kammula et al.

3. Zade,N., Deshpande, S., Kamatchi Iyer, R.: Target tracking based on approximate localization
technique in deterministic directional passive sensor network. J. Ambient Intell. Human.
Comput. 12(11), 10171–10181 (2021). https://doi.org/10.1007/s12652-020-02783-5

4. Nain, M., Goyal, N.: Energy efficient localization through node mobility and propagation
delay prediction in underwater wireless sensor network. Wireless Pers. Commun. 122(3),
2667–2685 (2021). https://doi.org/10.1007/s11277-021-09024-8

5. Feng, H., Cai, Z.: Target tracking based on improved square root cubature particle filter via
underwater wireless sensor networks. IET Commun. 13(8), 1008–1015 (2019)

6. Ullah, I., Liu, Y., Su, X., Kim, P.: Efficient and accurate target localization in underwater
environment. IEEE Access 7, 101415–101426 (2019)

7. Ullah, I., Chen, J., Su, X., Esposito, C., Choi, C.: Localization and detection of targets
in underwater wireless sensor using distance and angle-based algorithms. IEEE Access 7,
45693–45704 (2019)

8. Reddy, B.B., Pardhasaradhi, B., Srinath, G., Srihari, P.: Distributed fusion of optimally quan-
tized local tracker estimates for underwater wireless sensor networks. IEEE Access 10,
38982–38998 (2022)

9. Yan, J.,Meng, Y., Yang, X., Luo, X., Guan, X.: Privacy-preserving localization for underwater
sensor networks via deep reinforcement learning. IEEE Trans. Inf. Forensics Secur. 16, 1880–
1895 (2020)

10. Irshad, M., Liu, W., Wang, L., Khalil, M.U.R.: Cogent machine learning algorithm for indoor
and underwater localization using visible light spectrum. Wireless Pers. Commun. 116(2),
993–1008 (2019). https://doi.org/10.1007/s11277-019-06631-4

11. Singh, A., Kotiyal, V., Sharma, S., Nagar, J., Lee, C.C.: A machine learning approach to
predict the average localization error with applications to wireless sensor networks. IEEE
Access 8, 208253–208263 (2020)

12. Yan, J., Zhao, H., Pu, B., Luo, X., Chen, C., Guan, X.: Energy-efficient target tracking with
UASNs: a consensus-based Bayesian approach. IEEE Trans. Autom. Sci. Eng. 17(3), 1361–
1375 (2019)

13. Kumari, S., Mishra, P.K., Anand, V.: Fault-resilient localization using fuzzy logic and NSGA
II-based metaheuristic scheme for UWSNs. Soft. Comput. 25(17), 11603–11619 (2021).
https://doi.org/10.1007/s00500-021-05975-z

14. Ojha, T., Misra, S., Obaidat, M.S.: SEAL: self-adaptive AUV-based localization for sparsely
deployed Underwater Sensor Networks. Comput. Commun. 154, 204–215 (2020)

15. Yan, J., Zhao, H., Luo, X., Wang, Y., Chen, C., Guan, X.: Asynchronous localization of
underwater target using consensus-based unscented Kalman filtering. IEEE J. Oceanic Eng.
45(4), 1466–1481 (2019)

16. Kumari, S., Gupta, G.P.: Target localization algorithm in a three-dimensional wireless sensor
networks. In: Smys, S., Bestak, R., Chen, J.-Z., Kotuliak, I. (eds.) International Conference
on Computer Networks and Communication Technologies. LNDECT, vol. 15, pp. 33–42.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-8681-6_5

17. Kaur, S., Awasthi, L.K., Sangal, A.L., Dhiman, G.: Tunicate Swarm Algorithm: a new bio-
inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90,
103541 (2020)

18. Srinivas, P., Swapna, P.: Quantum tunicate swarm algorithm-based energy aware clustering
scheme for wireless sensor networks. Microprocess. Microsyst. 94, 104653 (2022)

19. Li, J., Li, G.C., Chu, S.C., Gao, M., Pan, J.S.: Modified parallel tunicate swarm algorithm and
application in 3D WSNs coverage optimization. J. Internet Technol. 23(2), 227–244 (2022)

20. Lin, Y., Zhang, Z., Najafabadi, H.E.: Underwater source localization using time difference
of arrival and frequency difference of arrival measurements based on an improved invasive
weed optimization algorithm. IET Sig. Process. 16(3), 299–309 (2022)

https://doi.org/10.1007/s12652-020-02783-5
https://doi.org/10.1007/s11277-021-09024-8
https://doi.org/10.1007/s11277-019-06631-4
https://doi.org/10.1007/s00500-021-05975-z
https://doi.org/10.1007/978-981-10-8681-6_5

Security Using AI/ML

STN-Net: A Robust GAN-Generated
Face Detector

Tanusree Ghosh(B) and Ruchira Naskar

Department of Information Technology, Indian Institute of Engineering Science and
Technology, Shibpur 711103, India

2021itp001.tanusree@students.iiests.ac.in, ruchira@it.iiests.ac.in

Abstract. Massive advancements in Generative Artificial Intelligence
in the recent years, have introduced hyper-realistic fake multimedia con-
tent. Where such technologies have become a boon to industries such as
entertainment and gaming, malicious uses of the same in disseminating
fabricated information eventually have invited serious social perils. Gen-
erative Adversarial Network (GAN) generated images, especially non-
existent human facial images, lately have widely been used to dissemi-
nate propaganda and fake news in Online Social Networks (OSNs), by
creating fake OSN profiles. Being visually indistinguishable from authen-
tic images, GAN-generated image detection has become a massive chal-
lenge to the forensic community. Even though countermeasure solutions
based on various Machine Learning (ML) and Deep Learning (DL) tech-
niques have been proposed recently, most of their performance drops
significantly for OSN-compressed images. Also, DL solutions based on
Convolutional Neural Networks (CNN) tend to be highly complex and
time-consuming for training.

This work proposes a solution to these problems by introducing STN-
Net, a CNN classifier with an extremely reduced set of parameters, which
adopts a carefully crafted minimal image feature set, computed based on
Sine Transformed Noise (STN). Despite having a much-reduced feature
set compared to other State-of-the-Art (SOTA) CNN-based solutions,
our model achieves very high detection accuracy (average ≥ 99%). It
also achieves promising detection performance on post-processed images,
which mimic real-world OSN contexts.

1 Introduction

Although the origins of image forgery and manipulation can be traced in history
as far back as the 1840s [19], contemporary technological advancements have
eased forgery creation to a great extent. The invention of Generative Adversar-
ial Networks (GANs) in 2014 [9] is considered one of the milestones in artificial
image generation. Eventually, other GAN architectures like PGGAN [13], Style-
GAN [15], StyleGAN2 [16], StyleGAN3 [14] etc. have further advanced the capa-
bilities of GANs in generating hyper-realistic and high-quality images. Through
easily accessible interfaces1, anyone can generate synthetic images in a matter of
1 https://thispersondoesnotexist.com/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 141–158, 2023.
https://doi.org/10.1007/978-3-031-49099-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_9&domain=pdf
http://orcid.org/0009-0001-3729-6429
http://orcid.org/0000-0001-6826-940X
https://thispersondoesnotexist.com/
https://doi.org/10.1007/978-3-031-49099-6_9

142 T. Ghosh and R. Naskar

seconds. Whereas such technologies have brought immense progress in various
fields like the entertainment and gaming industries, illicit uses of the same have
also raised concerns regarding the authenticity and trustworthiness of digital
content2. Moreover, the prevalence of fake images has become a significant issue
due to the ever-increasing presence of Online Social Networks (OSNs) in our
daily lives. Illicit users often utilize OSN to spread disinformation and propa-
ganda, potentially harming individuals and society as a whole3,4.

While earlier AI-generated face detection was highly dependent on visual
inconsistency, like different eye colours in both eyes, asymmetric face shapes,
irregular pupil shapes, etc. [5], with the technological advancements of Style-
GAN, such artifacts have been largely omitted. A recent study [21] found that
regular human observers find AI-generated faces more trustworthy than real
faces. Having human accuracy of identifying synthetic faces around ≈50%–60%
makes them highly vulnerable to trusting fake content online. Hence, to identify
GAN-generated images, automated detectors that rely on apparently ‘hidden’
characteristics of visually indistinguishable hyper-realistic GAN-generated syn-
thetic images are of paramount need in the multimedia forensics community.

A few successful detectors have already been proposed in the literature.
Most of them almost accurately (average detection accuracy as high as 99%)

detect synthetic faces in the lab environment, where the training and testing
dataset is pre-known [4,7]. However, deploying these detectors in real-world sce-
narios remain challenging, as they often face performance degradation for OSN-
circulated images. It happens due to the fact that images circulated through
OSNs go through various compression algorithms and transformations, which
can alter their statistical features and make them more difficult to detect using
traditional methods. The specific operations performed by any OSN on images
are usually unknown, posing a challenge for designing detectors that can suc-
cessfully handle various image modifications encountered in real-life situations.
A few recent works [22,23,31] have addressed this issue and studied the perfor-
mance of their solutions on post-processed images. They use complex feature
sets with deep CNN-based classifiers, which makes them hard to implement in
resource-constrained platforms like edge devices. In this work, we formulate the
synthetic image detection problem as a binary classification problem between
real and fake faces. We propose a solution based on a hand-crafted feature set
followed by a well-designed CNN. Our solution achieves a high average accu-
racy of 99.53% for images from our test set. We evaluate the performance of our
solution on post-processed images to understand its real-world usability. Con-
sisting of a minimal feature set compared to SOTA CNN-based solutions, our
solution performs well in the context of post-processed images. Specifically, the
main contributions of this paper are:

2 https://www.npr.org/2022/12/15/1143114122/ai-generated-fake-faces-have-
become-a-hallmark-of-online-influence-operations.

3 https://edition.cnn.com/2020/02/28/tech/fake-twitter-candidate-2020/index.html.
4 https://edition.cnn.com/2020/02/20/tech/fake-faces-deepfake/index.html.

https://www.npr.org/2022/12/15/1143114122/ai-generated-fake-faces-have-become-a-hallmark-of-online-influence-operations
https://www.npr.org/2022/12/15/1143114122/ai-generated-fake-faces-have-become-a-hallmark-of-online-influence-operations
https://edition.cnn.com/2020/02/28/tech/fake-twitter-candidate-2020/index.html
https://edition.cnn.com/2020/02/20/tech/fake-faces-deepfake/index.html

STN-Net 143

Fig. 1. Example of Real and GAN-generated images from dataset (https://github.
com/NVlabs/ffhq-dataset), (https://github.com/NVlabs/stylegan2), (https://github.
com/NVlabs/stylegan3)

– We introduce a novel feature set Sine Transformed Noise (STN) that
enhances differentiating features between real and synthetic images. Our fea-
ture set, STN is of size m×n×1 for an RGB image of size m×n×3. STN is
the minimal-sized feature map compared to existing feature sets for detecting
fake images using any CNN-based network.

– We introduce STN-Net, a CNN-based detector utilising STN feature set and
augmented STN feature set, which uses very few parameters compared to
existing CNN-based detectors while maintaining high detection accuracy. We
compare STN-Net with several well-known CNN detectors in the field.

– Proposed STN-Net is tested on various post-processing conditions such as
Median filtering, Gaussian Noise addition, Contrast Limited Adaptive His-
togram Equalization (CLAHE), Average Blurring, Gamma Correction and
Resizing with different parameters, as well as JPEG compression. Our exten-
sive experimental results prove the effectiveness of the proposed network in
the presence of such post-processing operations that images undergo in real-
world scenarios.

The rest of this paper is organised as follows. Section 2 reviews the relevant
related works in the field of GAN image detection. Section 3 presents the pro-
posed STN-Net approach, including the generation of the STN feature set and
the architecture of the proposed CNN-based detector. Section 4 presents the
experimental setup and evaluation results, comparing STN-Net with other state-
of-the-art detectors, while Sect. 5 concludes the paper and provides directions for
future research in the field.

2 Related Works

While the primary GAN model [9] was able to generate synthetic images that
were identifiable with bare eyes, the advanced GAN model StyleGAN and their
variants [14–16] generated images have become visually hardly distinguishable

https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan3
https://github.com/NVlabs/stylegan3

144 T. Ghosh and R. Naskar

from authentic images. The existing community of Digital Image Forensics
started synthetic image detection. GAN image detection is considered a binary
classification problem, similar to binary detection of forged images [28]. Having
a strong similarity with traditional image forgery detection, most of the earlier
solutions consisted of steganalysis-based features like Co-occurrence matrix [20],
SRM [17] etc. Later, semantic inconsistency-related features like Corneal spec-
ular highlight [18], Landmark locations [32], Irregular pupil shape [11] etc. were
explored to identify GAN-faces. Once explored, such artefacts could be used by
regular users in their daily lives to some extent to identify fakes. However, with
improvements in GAN architecture, such visual inconsistency-based artefacts
have been reduced to a great extent, making synthetic images hard to detect.

Another approach to GAN-image detection is purely deep neural network-
based. Automatically learned features by DL-based classifiers [4] have been
proven to be very successful in detecting synthetic faces. However, a major hurdle
for such classifiers is the architectural setting of GAN models. GANs simultane-
ously use a generator and a discriminator network to learn the data distribution
of real datasets and mimic them to generate new data. If a purely DL-based GAN
image detector is used as a discriminator inside GAN architecture, eventually,
the generator module of GAN will be trained to fool the discriminator, making
the DL-based detector useless. As a result, using hand-crafted features in con-
junction with deep neural networks (DNN) has gained traction as a prevalent
solution method in contemporary contexts [3,22,23]. Spatial domain features
are primarily used in such solutions. From a different perspective, symmetries
in GAN-faces in the frequency domain have also been explored [7,30].

However, even though progress in GAN image detection is gaining momen-
tum lately, the performance of existing GAN-image detectors in real-world sce-
narios remains a big challenge. Marra et al. [17] first explored the problem of
performance degradation of synthetic image detectors while tested on OSN-like
compressed images. Recently, Chen et al. [3] proposed the inclusion of two mod-
ules from multiple colour domains, named block attention module and a multi-
layer feature aggregation module, into the Xception model to increase robust-
ness against such post-processing degradation. Lately, another problem domain
related to GAN-image detection has been explored: The generalisation problem
[6]. In real-world scenarios, guessing the exact source model of any GAN image is
difficult. Hence, any practical detector should be capable of detecting fake faces
even though the training and test datasets mismatch. The work [10] contains a
performance comparison between existing solutions.

Recently, the study of anti-forensics in the context of detecting GAN-
generated images has gained significance. Carlini et al. [1] explored the anti-
forensics aspect of GAN-generated image detectors. They explored five white-
box and black-box attack scenarios that severely degraded the performance of
GAN-image detection. As our scope for this work is to propose a GAN-image
detector that performs well in OSN-context, we consider only common OSN-
specific perturbations, as discussed in earlier similar studies [22,23]. The study

STN-Net 145

of the detector’s robustness against additional white-box and black-box attacks
is reserved for future research endeavours.

We can infer from the high detection performance of existing solutions that
detecting GAN faces is not a big hurdle these days while training and testing
dataset matches. The bigger problem remains maintaining the detection perfor-
mance while test images have different statistical characteristics due to unknown
manipulation. Hence, we aim to propose a GAN-generated face detection solution
robust to image manipulations. In that direction, we design a reliable GAN-face
detector combining hand-crafted features with a DNN-based classifier, imple-
mentable in real-world scenarios.

3 Proposed Methodology

As shown in Fig. 2, our proposed solution consists of two major blocks of oper-
ations: Preprocessing and Feature Extraction followed by Deep-Learning-based
Classifier.

Fig. 2. Proposed Framework

3.1 Preprocessing

Given an input RGB image I(x, y), which represents the intensity of the image at
coordinates x and y in the spatial domain, we first convert it to grayscale using
the Eq. 1. The grayscale value at a pixel location (x, y) is denoted as Igray(x, y),
and it is calculated as a weighted sum of the red, green, and blue channels.

Igray(x, y) = 0.2989 × R(x, y) + 0.5870 × G(x, y) + 0.1140 × B(x, y) (1)

where R(x, y), G(x, y), and B(x, y) are the red, green, and blue intensity values
of the pixel at coordinates (x, y), respectively.

Although a few earlier works [2,8,20,22] have explored strong discriminat-
ing features in colour-domain statistics, such methods usually have large fea-
ture sizes. We convert a three-channel RGB image to a one-channel grayscale
image based on the finding in Fig. 3, which we explain below. Here, we calculate
pixel-wise mean values from 400 real images (Fig. 3a), 400 StyleGAN2 generated

146 T. Ghosh and R. Naskar

images (Fig. 3b) and 400 StyleGAN3 generated images (Fig. 3c). As all synthe-
sised images use the same FFHQ dataset for generating synthetic images, it
is trivial that generated photos from both generative architectures look simi-
lar to originals, as depicted in Fig. 1. However, as shown in Fig. 3, there are
visible differences between the three mean images. GAN-generated images pos-
sess much more structure than real ones, especially the mean of StyleGAN2
images, which have a visible common structure. This hints towards the presence
of model-specific similar high-frequency components in each type of GAN, which
are different from other GAN models and real images. Hence, it is shown that
even single-channel grayscale images possess visually discriminating features.

Fig. 3. Pixel-wise average of grayscale images

In light of the insights gathered from this discourse, we focus on identifying
robust feature representations with high-frequency content in grayscale images
generated by GANs. Laplacian of Gaussian (LoG) is a well-known method in
image processing for high-frequency image feature extraction in the context of
faces [24,29].

Hereby, we employ Gaussian Blur with kernel size 3 × 3 and 0 standard
deviation (σ) followed by Laplacian kernel to extract high-frequency information.
Gaussian kernel, as shown in Eq. 2, is computed using the Gaussian distribution
formula. Smoothened image Ismoothed(x, y) is generated by convolving this kernel
with Igray(x, y), using Eq. 3, where i and j are the indices of the kernel’s rows
and columns, respectively. Here Gaussian blur is used to mitigate the influence
of random high-frequency noise on images.

kernel(i, j) =
1

2πσ2
exp

(
− i2 + j2

2σ2

)
(2)

Ismoothed(x, y) =
1∑

i=−1

1∑
j=−1

Igray(x + i, y + j) × kernel(i, j) (3)

On smoothened image Ismoothed(x, y), the Laplacian operator is applied to
compute the Laplacian Response, which denotes the second order derivative of

STN-Net 147

the image intensity, for the spatial coordinates x and y, hence obtaining rate of
intensity change.

Mathematically, the Laplacian kernel (L) is defined as:

L =

⎡
⎣0 1 0

1 −4 1
0 1 0

⎤
⎦

The Laplacian response (Ilaplacian(x, y)) at a pixel location (x, y) is calculated
by convolving the smoothened image Ismoothed(x, y) with the Laplacian kernel
using Eq. 4.

Ilaplacian(x, y) =
1∑

i=−1

1∑
j=−1

Ismoothed(x + i, y + j) × L(i, j) (4)

Fig. 4. Visualisation of STN-Feature evolution: (a) Input RGB Image; (b) Grayscaled
Image; (c) Gaussian Blurred Image; (d) Laplacian Transformed Image; (f) Sine Trans-
formed Feature

3.2 Sine-Transformed Noise

Primarily, sine transformations are used in the frequency domain accompanied
by Fourier Transform. However, we use sine transformation on direct pixel values
obtained by Ilaplacian(x, y) using Eq. 5. As shown in Fig. 4, Sine transformation
preserves texture and high-frequency information at the pixel level. After exten-
sive experiments with different frequencies, we found the best performance with
frequency ten. We have shown a visual representation of feature ISTN (x, y) in
Fig. 5 for varying frequencies from 1 to 50.

ISTN (x, y) = sin
(

2π × frequency × Ilaplacian(x, y)
255.0

)
(5)

We utilize the normalized form of the ISTN (x, y) as feature, as shown in Eq. 6.

ISTNNormalized
(x, y) =

ISTN (x, y) − min(ISTN (x, y))
max(ISTN (x, y)) − min(ISTN (x, y))

× 255.0 (6)

Given an RGB image, the evolution of feature ISTN (x, y) is pictorially shown
in Fig. 4.

148 T. Ghosh and R. Naskar

It is evident from the visualisation that for frequency 1, the feature set visu-
ally depicts merely high-frequency edge information. As the frequency increases
to 10, the features get much more accentuated.

Fig. 5. Visualisation of STN-feature for various frequency values

3.3 Classifier

Convolutional Neural Networks (CNN) are conventionally used for image clas-
sification for their efficient capability of extracting features hierarchically. As
shown in Fig. 6, our proposed CNN-based classifier consists of five convolution
blocks. Each block consists of a Convolutional Layer with 3 × 3 sized kernel,
followed by a Batch Normalization layer and Max Pooling Layer with window
size 2×2. The batch Normalization layer is used to increase stability in training,
whereas the Max Pooling Layer is used to downsample the feature size after each
convolution for computational efficiency.

The number of filters in the convolutional layer varies in each block. Block 1
has 8 filters, Block 2 has 16 filters, Block 3 has 32 filters, Block 4 has 64 filters,
and Block 5 has 128 filters. It is because, with deeper levels, the network needs
to capture more complex and abstract features, which require a larger number
of filters. In each block, ‘ReLU’ is used as an activation function to induce
non-linearity. The last convolution block is followed by a flattening layer, which
reshapes the high-dimensional feature maps into a one-dimensional vector, then
connected to a fully connected (dense) layer with 64 neurons. The final dense
layer consists of a single neuron, representing the output layer of the classifier
with the sigmoid activation function.

STN-Net 149

Fig. 6. STN-Net Architecture

4 Experimental Results and Analysis

We study the detection performance of our solutions on two versions of
StyleGAN-generated images. StyleGAN2-generated images are widely available
throughout the OSN and easily accessible to ordinary people, whereas Style-
GAN3 is the improved version of StyleGAN2, with exceptionally good hyper-
photorealism. Detection of both StyleGAN model-generated images is essential
in identifying manipulated or fake images on online social networks in current
time.

4.1 Solution Models

We experiment with our proposed feature set and CNN in three different settings:

– In the Baseline configuration, our proposed CNN model is utilized for binary
classification without preprocessing. In this case, the input provided to our
model consists of only grayscaled image Igray(x, y). The performance of this
model serves as an indicator of the effectiveness and quality of our CNN
framework. It is further mentioned as ‘Only CNN’ setting.

– In the second case, we examine the influence of various preprocessing stages:
Gaussian Blurring (GB), Laplacian Transformation (LT) and Sine Trans-
formation (ST) separately. In all cases, the classifier is fixed. It is further
mentioned as ‘Feature + CNN’ setting.

• GB + ST: Sine Transformation is directly applied on Gaussian Blur oper-
ated grayscaled image.

• LT + ST: The input grayscaled image undergoes two transformations:
the Laplacian Transformation and the Sine Transformation.

• GB + LT: The grayscaled image undergoes Gaussian blur and subsequent
Laplacian transformation without any sine transformation applied.

• GB + LT + ST: Input image in preprocessed with all above-discussed
operations. Along with CNN, this model is STN-Net (Single Layer).

150 T. Ghosh and R. Naskar

– In the last case, input to CNN consists of two layers of GB + LT + ST feature
set stacked together. While all other preprocessing parameters are kept the
same, the kernel for the Gaussian Blur of the second layer is set to 5. It is
further mentioned as ‘Augmented Feature + CNN’ setting. We call this model
STN-Net (Dual Layer).

4.2 Dataset

– For StyleGAN2 face detection, we select 20,000 random real-face images from
the FFHQ dataset [15] and 20,000 random synthetic face images from the
StyleGAN2 dataset [16]. We divide these 40,000 images: 28,000 for training,
8,000 for validation and 4,000 for testing. We consider image size 256 × 256
for all experiments.

– For StyleGAN3 face detection, we select 1,592 StyleGAN3 face images gener-
ated from the FFHQ dataset, provided by official dataset [14], and we collect
the same number of images from the FFHQ dataset as real face images. We
further divide these images: 2,228 for training, 638 for validation and 318 for
testing. We use 256 × 256 sized images in all experiments.

4.3 Settings

We use the ‘Adam’ optimizer and ‘Binary Cross-Entropy’ loss function for all
experiments. We train our classifier for 40 epochs for each case of StyleGAN2
and 100 epochs for StyleGAN3 detector. We use a Learning Rate (LR) scheduler
for efficient convergence. For the first ten epochs, LR is set to 1 × 10−3; for the
subsequent ten epochs, LR is multiplied by 1×10−1; while for the last 20 epochs,
LR is multiplied by 1 × 10−3.

4.4 Performance Evaluation

For detection performance evaluation, we consider five metrics: Accuracy, Area
Under the ROC Curve (AUC) Score, Precision, Recall and F-1 Score. Accuracy,
the most common metric for classification tasks, is the ratio of correctly pre-
dicted instances to the total number of instances in the test dataset. Precision
is the ratio of correctly predicted positive instances, called true positives to the
total number of predicted positive instances (sum of true positives and false
positives). Recall, also known as Sensitivity or True Positive Rate, is the ratio
of correctly predicted positive instances (true positives) to the total number of
actual positive instances (sum of true positives and false negatives). The ROC
curve plots the True Positive Rate (Recall) against the False Positive Rate. AUC
measures the area under this curve, providing a single value that represents the
overall discriminative power of a model. An AUC of 1 indicates perfect sepa-
ration between the classes, while an AUC of 0.5 indicates random guessing. In
the context of our problem of detecting real and synthetic images, as discussed
earlier, we utilize a balanced dataset for training and testing our models. Hence,

STN-Net 151

accuracy is considered a suitable metric. However, as our main focus is not to
misclassify any fake images as real, ‘Recall’ is chosen as a metric. Higher precision
signifies fewer ‘fake’ predictions that are ‘real’.

As shown in Table 1, our baseline model, with only grayscaled image as input,
performs quite well in discriminating StyleGAN2 images from Real images with
an average accuracy greater than 91%, while performing exceptionally well in

Table 1. Detection Performances

Detector

type
GB LT ST

StyleGAN2 StyleGAN3

Accuracy AUC Precision Recall F1-Score Accuracy AUC Precision Recall F1-Score

Baseline

(Gray)
- - - 91.79 97.51 94.04 89.49 91.47 80.90 88.70 75.64 89.96 81.77

1-layer

(Gray)

Y - Y 98.19 99.80 98.11 98.31 98.14 80.80 90.90 77.78 86.21 81.31

- Y Y 89.89 95.86 92.23 85.34 88.33 80.77 86.66 80.25 81.63 80.54

Y Y - 98.39 99.88 98.97 97.76 98.26 81.38 84.53 77.15 89.23 82.37

Y Y Y 99.38 99.96 99.45 99.08 99.24 84.21 92.34 82.14 87.35 84.28

2-layer

(Augmented)
Y Y Y 99.53 99.97 99.55 99.28 99.43 83.49 93.17 80.18 88.71 83.85

Fig. 7. ROC curve for Single Layer and Dual Layer STN-Net: (a) and (b) for Style-
GAN2 dataset, (c) and (d) for StyleGAN3 dataset

152 T. Ghosh and R. Naskar

terms of Precision and Recall for StyleGAN3 images. As discussed earlier, this
result proves the strength of our designed CNN.

It is very evident from Table 1 that models with Gaussian Blur transfor-
mation bring significant performance enhancement to CNN model. While Sine
transformation is constant in the first two cases of ‘Feature + CNN’ setting, only
LT transformed models face sharp performance degradation, compared with only
GB models for both StyleGAN2 and StyleGAN3. We may take the insight that
LT alone enhances high-frequency components, many of which may be unneces-
sary, while GB smoothens them, making CNN learn more generalised features.
GB + LT performs slightly better than GB + ST in most of the metrics for
StyleGAN2 images. For StyleGAN3 we perform similar tests. Even though GB
+ LT performed well together compared to their single transformation perfor-
mance, GB + LT + ST outperformed them, proving the effectiveness of the pro-
posed Sine Transformation on synthetic image detection. For StyleGAN3 image
detection, this feature pipeline achieves the best performance with an average
accuracy of 84.21%.

Following the earlier result proving the effectiveness of GB transformation, in
‘Augmented Feature + CNN’ case, we use two layers of GB + LT + ST feature
as discussed earlier. It achieves the best performance for all metrics with 99.53%
average accuracy for StyleGAN2 case. For StyleGAN3, two layers of GB + LT
+ ST feature achieve best AUC score.

We show ROC curve for STN-Net for both StyleGAN2 and StyleGAN3
datasets in Fig. 7.

4.5 Performance Comparison with Other Solutions

Table 2 compares detection performance for StyleGAN2 images with other State-
of-the-art (SOTA) solutions. Our best model performs better than most SOTA
models, only slightly less than the solution proposed by Qiao et al. [23]. How-
ever, our model attains such performance with the minimum size feature set
of 1 grayscale channel compared with other solutions. While their solution [23]
utilizes colour domain information with ten channels through a CNN, other
works [20,22] utilize co-occurrence and cross co-occurrence metrics with three
channels and six channels features respectively. Chen et al. [3] fuse information
from multiple colour domains with a six channels-sized feature set. Frank et
al. [7] use frequency domain artefacts.

Table 2. Performance comparison with SOTA

Metric Ours (Best

Model)

Qiao [23] Nowroozi [22] Nataraj [20] Chen [3] Frank [7]

Accuracy (%) 99.53 99.80 99.33 96.11 97.70 98.58

As shown in Fig. 8, we compare the performance of our two models, STN-Net
(Single-Layer) and STN-Net (Dual-Layer) with other available transfer-learning-
based models: XceptionNet [4], ResNet50 [12], VGG-16 [25], InceptionV3 [26]

STN-Net 153

Fig. 8. Comparison with other CNNs

and EfficientNetB0 [27] for StyleGAN2 image detection. In all these cases, we
import pre-trained models from the Keras library. We use weights from ‘ima-
genet’. For all these models, on top of base pre-trained models, we add a Global
Average Pooling Layer followed by a Fully Connected Layer with 256 neurons.
The final layer of the model is added, consisting of a single neuron, which is
activated using the sigmoid activation function. Raw RGB image is provided as
input in every case. All models are compiled using the Adam optimizer and the
binary cross-entropy loss function.

In Fig. 8, Accuracy is multiplied by 0.1 for better visibility in the chart.
Parameters are shown in millions, and the Average time to train per epoch is
shown in minutes. Among transfer learning models, ResNet50 performs best with
the detection accuracy of 98.33%, having the largest number of parameters, 24.11
million and three channels of feature space. Our model having ≈1.61% parame-
ters of ResNet50, with grayscale images, achieves 99.53% detection accuracy.

As shown in Table 3, we further compare the computational complexity of
the above-mentioned transfer learning-based models with our proposed solutions
regarding Floating point operations (FLOPs) and Average Latency. We have
calculated the Average Latency as the average inference time for 500 test samples
in all cases. Further, for both our solutions, we have calculated latency with the
preprocessing steps included, i.e., the calculation of the STN feature. It is evident
from both Fig. 8 and Table 3 that our solutions obtain excellent performance
despite having the lowest number of model parameters, training time, FLOPs
and output latency.

154 T. Ghosh and R. Naskar

Table 3. Computational Complexity Comparison with other CNN models

Model FLOPs (Billion) Latency
(Only DL model)
[Millisecond]

Latency (With
Preprocessing)
[Millisecond]

STN-Net (Single Layer) 0.06 31.30 32.87

STN-Net (Dual Layer) 0.07 33.36 34.46

Xception 5.95 35.11 –

VGG-16 20.05 36.48 –

InceptionV3 3.85 36.95 –

EfficientNetB0 0.51 60.88 –

Resnet50 5.04 87.74 –

Table 4. Detection performance on post-processed images

Operations Parameters Baseline

Model

STN-Net Dual layer

STN-Net

CSC-Net

[23]

Co-Net

[20]

CC-Net

[22]

Median Filter 3 × 3 91.62 96.92 98.78 99.35 81.48 85.13

5 × 5 91.12 63.77 78.92 93.80 75.98 83.65

Gaussian

Noise

1.0 91.82 99.21 99.38 94.43 76.35 93.68

2.0 91.84 99.28 99.33 74.25 76.73 96.80

CLAHE 3 × 3 85.54 97.10 98.99 94.70 51.43 50.32

Average

Blurring

3 × 3 91.37 86.11 94.84 97.30 93.68 86.90

5 × 5 90.40 50.12 53.77 82.68 88.23 76.63

Gamma

Correction

0.8 90.10 99.28 99.26 95.08 82.28 83.15

0.9 91.69 99.23 99.45 98.00 87.23 90.98

1.2 89.56 99.40 99.36 96.90 87.20 85.53

Resizing 0.5 91.42 72.40 86.31 79.80 57.93 92.47

Average – 90.58 87.53 91.67 91.48 78.04 84.11

4.6 Performance in the Context of OSN

As previously discussed, the exact operations of OSN platforms on images are
unknown but must be investigated further by the research community to develop
any solution for fake image detection in practical cases. Hence, to check the
robustness of our solutions, we apply common post-processing operations like
Median filtering, Gaussian Noise addition, Contrast Limited Adaptive Histogram
Equalization (CLAHE), Average Blurring, Gamma Correction and Resizing with
different parameters on StyleGAN2 dataset as shown in Table 4. The best per-
formance of each operation is marked in bold, and the second-best performance
is underlined. We examine performances in terms of detection accuracy for our
three models: Baseline (Only CNN), STN-Net (Single Layer) and STN-Net (Dual
Layer). Our model STN-Net (Dual Layer) achieves the best average accuracy of

STN-Net 155

91.67%, closely followed by CSC-Net [23]. Both versions of STN-Net perform
exceptionally well on Gaussian noise-added images. While for Gaussian noise
with a standard deviation of 2.0, Single layer STN has a performance drop of
0.10%, Dual-Layer STN has 0.20% performance drops. Interestingly, our base-
line model has a much smaller performance drop than others. Detailed results
are shown in Table 4.

4.7 Performance in the Context of JPEG Compression

As discussed earlier, even though mostly GAN-generated images are by default
in PNG format, they are commonly converted into JPEG format while uploaded
or downloaded to or from OSNs. Unlike lossless PNG images, JPEG images use
lossy compression, which enables discarding of some image data to reduce file
size. This can lead to a loss of image quality and a change in the statistical
properties of images.

Table 5. Performance on JPEG Compression

Quality
Factor

Base
Model

STN-Net Dual-Layer
STN-Net

CSC-Net
[23]

Cross
Co-Net [22]

Co-Net [20]

90 91.38 99.33 99.33 97.53 94.50 95.58

80 91.37 98.71 99.08 97.44 88.66 94.93

70 91.29 97.99 98.69 97.23 83.50 94.03

60 91.34 96.90 98.26 96.83 94.00 94.65

50 91.22 96.88 97.89 96.51 80.05 96.66

CNN models learn abstract information from provided training data. Most
CNN-based GAN-image detectors face performance drop issues when training
data is from PNG images and testing data from JPEG images. We check the
performance of our models on JPEG quality factors: 90, 80, 70, 60 and 50 and
compare their performance with SOTA solutions. As shown in Table 5, the Dual
layer variant of our proposed STN model performs best for all mentioned JPEG
compression levels.

4.8 Generalization Performance

We further explore the generalization capability of our proposed solutions: STN-
Net with both single-layer and dual-layer variations. We show results using ROC
curve, as shown in Fig. 9. Firstly, we test StyleGAN3-generated faces on models
trained on the StyleGAN2 dataset (Fig. 9a, Fig. 9b). Next, we test StyleGAN2-
generated faces on models trained on StyleGAN3 dataset (Fig. 9c, Fig. 9d). As
shown in Fig. 9, while the training set is from StyleGAN3, in both single-layer and
dual-layer versions, detection performance for StyleGAN2 images is satisfactory

156 T. Ghosh and R. Naskar

Fig. 9. Generalization Performance: (a) and (b) trained on StyleGAN2 while tested on
StyleGAN3, (c) and (d) trained on StyleGAN3 while tested on StyleGAN2

with AUC score ≥ 80%. While the training set is from StyleGAN2, in both
single-layer and dual-layer versions, the detection performance for StyleGAN3
images is worse than the previous case. However, it still performs better than
random guesses.

We may infer that StyleGAN3-trained models learn more generalised fea-
tures than StyleGAN2-trained models. StyleGAN3 is an improved version of
StyleGAN2. Hence, it is possible that models that learn statistical features of
StyleGAN3 images naturally cover many of StyleGAN2 features.

5 Concluding Remarks

In this work, we propose a solution to identify authentic and GAN-generated
face images in the context of OSNs. Hence, we test our proposed detector’s per-
formance against standard perturbation in OSN. However, we have not included
the study of other sophisticated black-box and white-box attacks [1] like adaptive
attacks in this work. We wish to include such studies in future work.

In this work, we introduce a feature Sine Transformed Noise (STN) that
is highly capable of discriminating between real and GAN images. Accompa-
nied by a well-designed deep neural network, STN is capable of performing at

STN-Net 157

par with SOTA solutions in ideal scenarios and achieves prominent performance
for post-processed and compressed images. Compared with other SOTA solu-
tions, STN-Net uses lightweight CNN with fewer parameters, lesser computa-
tional complexity and high inference time. All these advantages make STN-Net
very usable in real-world scenarios.

References

1. Carlini, N., Farid, H.: Evading deepfake-image detectors with white-and black-box
attacks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 658–659 (2020)

2. Chen, B., Ju, X., Xiao, B., Ding, W., Zheng, Y., de Albuquerque, V.H.C.: Locally
GAN-generated face detection based on an improved Xception. Inf. Sci. 572, 16–28
(2021)

3. Chen, B., Liu, X., Zheng, Y., Zhao, G., Shi, Y.Q.: A robust GAN-generated face
detection method based on dual-color spaces and an improved Xception. IEEE
Trans. Circ. Syst. Video Technol. 32(6), 3527–3538 (2021)

4. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1251–1258 (2017)

5. Ciftci, U.A., Demir, I., Yin, L.: FakeCatcher: detection of synthetic portrait videos
using biological signals. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://
doi.org/10.1109/TPAMI.2020.3009287

6. Cozzolino, D., Gragnaniello, D., Poggi, G., Verdoliva, L.: Towards universal GAN
image detection. In: 2021 International Conference on Visual Communications and
Image Processing (VCIP), pp. 1–5. IEEE (2021)

7. Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leverag-
ing frequency analysis for deep fake image recognition. In: International Conference
on Machine Learning, pp. 3247–3258. PMLR (2020)

8. Fu, Y., Sun, T., Jiang, X., Xu, K., He, P.: Robust GAN-face detection based on
dual-channel CNN network. In: 2019 12th International Congress on Image and
Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–
5. IEEE (2019)

9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, vol. 27 (2014)

10. Gragnaniello, D., Cozzolino, D., Marra, F., Poggi, G., Verdoliva, L.: Are GAN
generated images easy to detect? A critical analysis of the state-of-the-art. In:
2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6.
IEEE (2021)

11. Guo, H., Hu, S., Wang, X., Chang, M.C., Lyu, S.: Eyes tell all: irregular pupil
shapes reveal GAN-generated faces. In: ICASSP 2022–2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2904–2908.
IEEE (2022)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

13. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

https://doi.org/10.1109/TPAMI.2020.3009287
https://doi.org/10.1109/TPAMI.2020.3009287
http://arxiv.org/abs/1710.10196

158 T. Ghosh and R. Naskar

14. Karras, T., et al.: Alias-free generative adversarial networks. In: Advances in Neural
Information Processing Systems, vol. 34, pp. 852–863 (2021)

15. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4401–4410 (2019)

16. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

17. Marra, F., Gragnaniello, D., Cozzolino, D., Verdoliva, L.: Detection of GAN-
generated fake images over social networks. In: 2018 IEEE Conference on Mul-
timedia Information Processing and Retrieval (MIPR), pp. 384–389. IEEE (2018)

18. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deep-
fakes and face manipulations. In: 2019 IEEE Winter Applications of Computer
Vision Workshops (WACVW), pp. 83–92. IEEE (2019)

19. Mishra, M., Adhikary, F.: Digital image tamper detection techniques-a compre-
hensive study. arXiv preprint arXiv:1306.6737 (2013)

20. Nataraj, L., et al.: Detecting GAN generated fake images using co-occurrence
matrices. arXiv preprint arXiv:1903.06836 (2019)

21. Nightingale, S., Agarwal, S., Härkönen, E., Lehtinen, J., Farid, H.: Synthetic faces:
how perceptually convincing are they? J. Vis. 21(9), 2015–2015 (2021)

22. Nowroozi, E., Mekdad, Y.: Detecting high-quality GAN-generated face images
using neural networks. In: Big Data Analytics and Intelligent Systems for Cyber
Threat Intelligence, pp. 235–252 (2023)

23. Qiao, T., et al.: CSC-Net: cross-color spatial co-occurrence matrix network for
detecting synthesized fake images. IEEE Trans. Cogn. Dev. Syst. (2023). https://
doi.org/10.1109/TCDS.2023.3274450

24. Sharif, M., Mohsin, S., Javed, M.Y., Ali, M.A.: Single image face recognition using
Laplacian of Gaussian and discrete cosine transforms. Int. Arab J. Inf. Technol.
9(6), 562–570 (2012)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

26. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

27. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning, pp. 6105–6114. PMLR
(2019)

28. Verdoliva, L.: Media forensics and deepfakes: an overview. IEEE J. Sel. Top. Sig.
Process. 14(5), 910–932 (2020)

29. Wan, J., He, X., Shi, P.: An iris image quality assessment method based on Lapla-
cian of Gaussian operation. In: MVA, pp. 248–251 (2007)

30. Wang, B., Wu, X., Tang, Y., Ma, Y., Shan, Z., Wei, F.: Frequency domain filtered
residual network for deepfake detection. Mathematics 11(4), 816 (2023)

31. Xia, Z., Qiao, T., Xu, M., Zheng, N., Xie, S.: Towards DeepFake video forensics
based on facial textural disparities in multi-color channels. Inf. Sci. 607, 654–669
(2022)

32. Yang, X., Li, Y., Qi, H., Lyu, S.: Exposing GAN-synthesized faces using land-
mark locations. In: Proceedings of the ACM Workshop on Information Hiding and
Multimedia Security, pp. 113–118 (2019)

http://arxiv.org/abs/1306.6737
http://arxiv.org/abs/1903.06836
https://doi.org/10.1109/TCDS.2023.3274450
https://doi.org/10.1109/TCDS.2023.3274450
http://arxiv.org/abs/1409.1556

MDLDroid : Multimodal Deep Learning
Based Android Malware Detection

Narendra Singh(B) and Somanath Tripathy

Department of Computer Science and Engineering, Indian Institute of Technology
Patna, Dayalpur Daulatpur, India

{narendra 2021cs21,som}@iitp.ac.in

Abstract. In the era of Industry 5.0, there has been tremendous usage
of android platforms in several handheld and mobile devices. The open-
ness of the android platform makes it vulnerable for critical malware
attacks. Meanwhile, there is also dramatic advancement in malware
obfuscation and evading strategies. This leads to failure of traditional
malware detection methods. Recently, machine learning techniques have
shown promising outcome for malware detection. But past works uti-
lizing machine learning algorithms suffer from several challenges such
as inadequate feature extraction, dependency on hand-crafted features,
and many more. Thus, existing machine learning approaches are ineffi-
cient in detecting sophisticated malware, thus require further enhance-
ment. In this paper, we extract behavioural characteristics of system calls
and dynamic API features using our proposed multimodal deep learn-
ing model (MDLDroid). Our model extracts system call features using
LSTM layers and extracts dynamic API features using CNN. Further,
both the features are fused in a vector space which is finally classified for
benign and malign categories. Comparison with several state-of-the-art
approaches on two dataset shows a significant improvement of 4–12% by
the metric accuracy.

Keywords: Android · Malware detection · Dynamic Analysis ·
System call · Dynamic API

1 Introduction

There is a surge in uses and applications of Android platforms. There are more
than 2.5 billion active android devices [4] which are used by users of different
demography. Android development platforms are open platforms which makes
it prone to several security threats such as confidential information leakage and
device hijacking. Often, android users do not pay heed to security permissions
and warnings and end up installing malicious applications which expose not only
the user but also other connected users. It is reported [1] that over 12,000 new
malware incidents are reported daily.

At this, there has been signification advances in detecting malicious appli-
cations such as Google Bouncer, Google Play Protect [2] and many more to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 159–177, 2023.
https://doi.org/10.1007/978-3-031-49099-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_10

160 N. Singh and S. Tripathy

detect malicious applications on android. These approaches often fail due to ever-
sophisticating android malware. There are many signature based and heuristics
based approaches which are also ineffective for malware with integrated evasion
methods [32,37].

Recently, machine learning based approaches have shown promising results
in identifying malware. The effectiveness of machine learning based approaches
is highly dependent on the considered features and the quality of extracted fea-
tures. The feature can be categorized in three categories i. static ii. dynamic,
and iii. hybrid. The past approaches [20,34,36] relying on static features under-
perform for obfuscated malware. Past approaches using [6,21,37] dynamic and
hybrid features are more promising as compared to static feature. But appropri-
ate representation of features is challenging. There is still a scope of improvement
in representation of these features which can boost the performance of malware
detection.

In this paper, we propose a multi-modal deep learning model MDLDroid,
which uses dynamic features composed of system call features and dynamic API
features. The analysis of system call sequences embedded in a running applica-
tion is essential for understanding the dynamic behavior of the application. This
natural language-based information can be harnessed to distinguish between
malicious and harmless applications. We adopt the Word2Vec concept to con-
struct system call embedding for each system call. This feature vector not only
encompasses the co-occurrence patterns of system calls but also encapsulates
their semantic significance. We also utilize dynamic API features as API call
sequences which contain all the activities that take place during application exe-
cution. However, in order to initiate malicious behavior, a substantial volume
of investigative operations is essential. These operations will generate notably
extensive API call sequences. A sliding window method is used to construct
N-grams from the extracted API sequences and finaly generated feature image.

We propose MDLDroid, a Multimodal Deep Learning framework that better
captures inherent features of android malware and fuses relevant information to
accurately detect unknown malwares. We observed that our proposed method-
ology outperforms the state-of-the-art by 4–12% by accuracy.

The key contributions are as follows.

– We propose MDLDroid, a multi-modal deep learning framework uses the run-
time behavior features (N-grams) from dynamic APIs and fuses with System
Call embedding feature. These fuses vector help to classify the behavior of
unseen malware effectively.

– We created several malicious payloads and embedded into benign android
apps to generate obfuscated backdoors. We could observe that the existing
detection mechanisms in Virustotal fail to detect our created obfuscated back-
doors, but, MDLDroid is successful to identify those backdoors.

– On experimentation with two dataset, we observe a significant improvement
of 4–12% as compared to existing approaches. Our proposed model outper-
form static feature capturing approaches as well as hybrid feature capturing
approaches.

MDLDroid : Multimodal Deep Learning Based Android Malware Detection 161

The remaining part of this article is organized as follows. In Sect. 2, the
existing research works on android malware detection are discussed. The pro-
posed method is described in Sect. 3. Section 4 discusses the experimental results.
Section 5 concludes this work.

Table 1. Summary of existing malware detection method

Similar Work Feature

Type

Feature Used Algorithm

Used

Dataset Used with

Accuracy

UMDR

Chatchai et al.

[26]

Static N-gram MLP/C4.5/

SVM

VX Heavens Virus

Collection\96.64%
✗

Daniel Arp et

al. [8]

Static Hardware components

Restricted API call

SVM Drebin\94% ✗

Santanu et al.

[13]

Dynamic System Calls SVM with

Conformal

Pred

Genome Project,

Drebin\94%
✗

Hou et al. [19] Static API Calls DBN Comodo Cloud Security

Center\96.66%
✓

Kim el at. [22] Static Permission Opcode, API

String, Shared library

Multimodal

(DNN)

VirusShare Google Play

Store Malgenome

project\98%

✗

Arora et al. [7] Hybrid Network Traffic

Permissions

FP-Growth

Algorithm

Genome FP-Growth

Algorithm dataset\94.2%
✗

Kelkar et al.

[21]

Dynamic HTTP-based information ✗ Trustlook repository ✗

Wang et al.

[41]

Dynamic Network Traffic Multi-level

Network

Drebin\97.89% ✓

Fan et al. [14] Dynamic API Unsupervised

Leraning

Genome project

Drebin\ . . .

✗

Lou et al. [29] Static Data Flow(source, sink) SVM Drebin dataset Google

Play Store

Contagio\93.7%

✗

Alzaylaee et

al. [6]

Hybrid Permission, API call w-FM for

DL-Droid

McAfee Security

Labs\98.82%
✓

Millar et al.

[31]

Static Permission Opcode, API multi-view

CNN

AMD dataset Drebin

dataset\99.29%
91%

MDLDroid

(Prop.)

Dynamic Multimodal LSTM+CNN System Call

Dynamic APIs

Andozoo Dataset

CICMalDroid2020\99.23%
98.45%

UMDR: Unseen Malware Detection Rate

2 Related Work

Our work is based on three broad category of past works namely i. Static Analysis
ii. Dynamic Analysis iii. Multi-modal Learning. Next we give overview of these
categories of past works.

2.1 Static Analysis Techniques

Static analysis a technique that design the features of the application by exam-
ining the code and properties without executing it. A large set of literature
has used static analysis to detect malware as this is comparatively simple and

162 N. Singh and S. Tripathy

straightforward. Static analysis consists of extraction of static feature, which are
fed into different types of classifier for predicting malign and non-malign appli-
cations. Past works have used machine learning based classifiers, deep learning
based classifiers, and graph based classifiers for classifying the static features of
an applications.

Machine Learning Based Classification: There are a number of past
works [24,44] which uses static feature and a machine learning algorithms to
detect malware. The idea is to treat the problem as a classification problem
and classify in two classes of malware and non-malware. There is a heavy use
of off the shelf machine learning classifiers like SVM [29], Decision Trees [33],
Bagging [27] are used for classification. However, the advances in deep learning
has surpassed the prediction results. next, we present past works utilizing deep
learning.

2.2 Deep Learning Based Approaches

For efficient feature capturing, many past deep learning models [8,10,19,22]
have helped. The work by Drebin et. al. [8] is a simple approach for detection of
malicious applications on mobile devices. It collects as many characteristics as
possible from an Android application and embeds them into a single feature vec-
tor so that common features of malicious applications can be extracted. Another
study [10] utilize the behaviour of data flow of malicious applications on sensitive
sources of benign applications. The motivation behind this is that the malicious
applications act differently as compared to benign applications in terms of sen-
sitive sources of benign applications. So, the data flow from sensitive sources of
benign Android applications is mined and compared with the data flows iden-
tified in malicious applications to find similarities. Millar et al. [31] proposed
a multi-view deep learning model composed of Convolutional Neural Network
(CNN) using only static analysis to detect android malware. It uses features
from permissions, opcode, and android API package. We also mention that the
use of deep learning models are not limited to static features only. The works by
Kim et al. [22] utilizes a vast range of features such as string, method opcode,
method API, shared library function opcode, permission, App component and
environmental features. The use of deep learning technique for malware detec-
tion of is not limited to android devices but have wide applicability for IOT
devices [9,28]. Additionally, graph-based malware detection algorithms [14,16]
have also got attention in past works for delivering good performance.

2.3 Dynamic Analysis Techniques

There are malicious applications which do have any static specifications and
hence cannot be detected using static analysis. So, there have been a quest to
utilize run-time behaviours of the applications known as dynamic analysis. In
dynamic analysis, run-time behaviour of applications are captures by execut-
ing them suing emulators. Using dynamic features requires additional work, so

MDLDroid : Multimodal Deep Learning Based Android Malware Detection 163

the utilization of dynamic feature is grey zoned in past literature. However, a
few past works [15,18,45] have utilized dynamic features showing outstanding
improvement in prediction accuracy. Riskranker [15] proposed a dynamic anal-
ysis based technique which observes whether a given application acts harmful
behavior with root exploits or sending SMS messages in the background. This
output is then used to prioritize reduced applications for further examination.
[25] takes advantage of bytecode to facilitate detection of android malware. The
bytecode of an app includes accurate information on the program’s behavior,
which can offer sufficient information about the application’s intended behavior.
Similarly, malicious apps have a common pattern of bytecodes that distinguishes
them from benign applications. Droiddetector [45] uses deep neural networks to
analyse three distinct sets of features, including necessary permissions, sensitive
APIs, and dynamic behaviour. Hou et al. [18] developed Deep4MalDroid, an
automated Android malware detection system that uses the Genymotion emu-
lator to dynamically retrieve system calls. DroidScribe [13] is another dynamic
analysis technique, which demonstrates how supervised classification algorithms
can be utilized to automatically identify Android malware into different malware
families based on their runtime behavior, without the need for any additional
training data. As system calls alone do not give adequate semantic information
for classification on Android systems, it employs a lightweight virtual machine to
recreate inter-process communication on Android systems to do successful anal-
ysis. Kelkar et al. [21] developed a method for detecting malicious Android appli-
cations that exfiltrate data through HTTP. They focused on the leaked informa-
tion, locations to which it had been exfiltrated, and the relationships between
these factors and categories of sensitive information. There a few unsupervised
approaches also which help predicting malwares. GefDroid [14] carried out graph
embedding using unsupervised learning. In order to abstract program seman-
tics, they use a fine-grained behavioral model to create sub-graphs that evaluate
analysis of android malware family. Wang et al. [41] implemented a multi-level
network traffic analysis, aggregating and combining network characteristics with
machine learning algorithm that can identify Android malware accurately.

Hybrid Analysis. In order to utilize the key features from static as well as
dynamic analysis past works [6,12,30] have also used hybrid analysis. The DL-
Droid [6] framework employed stateful input generation with the commonly used
stateless approach for deep learning-based android malware classification. They
observed a performance boost by including both the features as compared to
either static or dynamic features. [30] have used a fusion of both the feature
and also a ensemble classifier for predicting malware. There is also a comprehen-
sive study [12] claiming that use of hybrid feature boosts performance only in a
few cases. Recently, there has been significant advancement in machine learning
which can help removing this bottleneck. We present an overview of a few past
research works highlighting the used features, types of features, used method-
ology and the dataset in Table 1. In this paper, we use multi-modal machine
learning on hybrid features in order to deliver a consistent better performance.

164 N. Singh and S. Tripathy

Fig. 1. The figure shows 1. Our Proposed Methodology 2. Data pre-processing steps
3. Proposed Multi-Modal Deep Learning Model Architecture

2.4 Multi-modal Learning

A malware is characterized by multiple static and dynamic features. For a better
identification of malware, multiple features needs to be captured simultaneously.
Multi-modal deep learning models [39,42,43] have achieved a great success in
capturing better feature representation for scenario of multiple category of fea-
tures. Motivated from this a few recent approaches [17,23] also applied multi-
modal models for malware detection. However, to the best of our knowledge we
can there is still a chance of improvement prediction results using a multi-modal
model. In this, paper we propose a multi-modal model capturing dynamic API
features and system call features.

3 MDLDroid: The Proposed Malware Detection
Technique

The overview of our proposed methodology is shown in Fig. 1-1. For predicting
whether an unknown app is malign or benign, we first extract relevant fea-
tures(system call and dynamic API) of the app. Then we feed these features to
our proposed MDLDroid model for predicting the category of the app. Next, we
elaborate the steps of feature extraction and our proposed MDLDroid model.

3.1 Feature Extraction

In this paper, we propose to use multiple behavioural features of apps. As found
from the past works [30], dynamic features can be indicative of a malware. So,

MDLDroid : Multimodal Deep Learning Based Android Malware Detection 165

we use features composed of static system calls and dynamic API calls of an app.
Next we detail the feature extraction methodology of both the type of feature.

Behaviour Based Feature Extraction. The analysis of Android APK files
is automated using a script. The Genymotion emulator is run on a Windows 10
desktop. Consequently, an APK file folder is established as the sample reposi-
tory for analysis. Finally, an output repository folder containing analysis results
from files is obtained. After the initialization step, a python script is run to
handle all the analysis operations to provide runtime environment with all the
necessary commands. The Android Debug Bridge (ADB) communicates between
the python script and the runtime environment. Following the initialization, the
python script executes for each android application to collect dynamic charac-
teristics.

System Call Extraction. During the execution of an Android application,
we use the Linux strace tool to record system call invocations to capture the
behavior of android application. Genymotion is an emulator of the Android OS
that we use to analyze Android applications dynamically. Following that, we run
a sequence of user interaction events using the Monkey framework provided by
Android SDK. While the app is running, we also engage in other activities like
making phone calls and sending SMS.

In order to record system call invocation, an android APK file is selected from
the input repository and installed in the genymotion emulator. pidof command
is run to retrieve the zygote process’s PID. Simultaneously, strace command is
run to record zygote and descendant process system calls. The zygote process is
a common task that runs in the Dalvik Virtual Machine which is a part of the
Android OS. When an application is executed in the emulator, zygote creates
an associated process for the application, assigns it a PID, and records dynamic
characteristics (system calls) of all the android samples that will start later from
the instance then the zygote has been created. The application is executed on
the emulator for 200 s uninterruptedly. Next, obtain the application PID and
package name using pidof command, and start capturing the system calls. In
parallel, user interactions are simulated with monkey tool kit, producing 100
random events, including touches, motions, trackballs, navigation, system key
events, and activity launches. We also simulate phone call events and send SMS
events for 300 s. The strace process is terminated, and the output logs are saved
to the output repository.

Dynamic APIs Extraction. Frida1 is a dynamic instrumentation framework
for monitoring user-selected APIs, during app execution. User can choose to
monitor a predefined list of APIs as shown in Table 2. It stores the invoked API,
the parameters, the return value, and the file from which it was called. For this,

1 https://frida.re/.

https://frida.re/

166 N. Singh and S. Tripathy

Table 2. Dynamic API listed under various categories.

Sno. Dyanmic API # of API Sno. Dynamic API # of API

1 Device Data 12 10 DeviceInfo 9

2 Shared Preferences 14 11 IPC 6

3 SMS 2 12 Database 19

4 System Manager 4 13 SharedPreferences 3

5 Base64 encode/decode 3 14 WebView 11

6 Dex Class Loader 6 15 Java Native Interface 2

7 Network 8 16 Command 3

8 Crypto - Hash 4 17 Process 3

9 Binder 3 18 FileSytem - Java 4

we use the latest version of ‘frida-server’ 2 for the arm64 architecture. This file is
extracted, and pushed to the genymotion emulator for execution. Each android
app is placed into the emulator using adb command. Next, push Frida server
into the emulator, change its permission, and execute it. Now, start importing
the Frida library and retrieve device id. Then, invoke the spawn() function to
start the messenger to extract the application PID. Finally, create a Frida session
using PID and Hook JavaScript code to monitor specified Dynamic API during
the application execution.

3.2 Feature Vector Generation

System Call Embedding. Word embedding is the the process of incorporating
words into vectors, preserving the syntactic and semantic relationships between
words. Our work is motivated by TWEET2VEC [40] and ATTACK2VEC [38],
which use word embedding approach to convert tweets, assaults, and system call
(word) to feature vectors.

Since the system calls are in string format, they cannot be directly fed into
the LSTM network. So we convert each system call (Represent as xi in Fig. 2)
into numerical vectors. The word2vec (Continuous Bag Of Word algorithm) tech-
nique is used to obtain the vector representation, which captures the semantic
significance. Here for example, inter related system calls (“send” and “receive”)
would have similar vector representations.

To implement the Continuous Bag Of Word (CBOW) algorithm, an exhaus-
tive system calls vocabulary (V) is created, which comprises with 113 distinct
system calls. Then a one-hot encoded vector for each system call in V is gen-
erated. For each system call, the input layer receives 113-dim one-hot encoded
vector. The hidden layer contains 100 neurons that simply transfers the input’s
weighted sum to the output layer. Let W (113×100) and W‘ (100×113) are the
weight matrices that transfer the input x (113 × 100 dimension matrix) to the
2 https://github.com/frida/frida/releases.

https://github.com/frida/frida/releases

MDLDroid : Multimodal Deep Learning Based Android Malware Detection 167

hidden layer and outputs to the final output layer (100× 113 dimension matrix)
receptively. The softmax computations are in the output layer of a 113-dim vec-
tor, as shown in Fig. 2.

Fig. 2. System call embedding Fig. 3. N-gram File and Image Gener-
ation

Feature Image Generation. a. N-gram Pair Generation: N-grams are
sequences [35] of ‘N’ consecutive bytes, where ‘N’ is the predetermined number
of bytes. In the proposed approach, we made successive pairs of the dynamic API
sequence, as in Fig. 3. A sliding window method is used to construct N-grams
from the extracted API sequences. Each N-grams is considered as a feature. The
repeated N-grams would affect the amount of space available, the processing time
required, and the classifier’s effectiveness. So duplicates N-gram are removed.

b. Feature Image Generation: The image is generated based on whether an
N-gram is present or absent in the N-gram pairs (‘0’ indicates the absence of
an N-gram, whereas ‘255’ indicates its presence). The generated image is used
to test the effectiveness of the proposed method. As shown in Figs. 4 and 5, the
generated images of malware applications have visual similarities, and they differ
significantly from the images that belong to benign applications.

3.3 MDLDroid Model

MDLDroid Architecture: It uses two feature vectors, each of which is input
into the initial networks, including Long Short-Term Memory (LSTM) and Con-
volutional Neural Network (CNN). Both networks are independent of each other,
and their final layers are connected to the merger layer, which is the first layer
of the final network. Multilayer Perceptron (MLP) is the final network that
categorizes benign and malignant applications.

LSTM network input layer uses the embedding matrix generated by the
word2vec algorithm, instead of learning weights for mapping each system call

168 N. Singh and S. Tripathy

into its vector representation. We assume that the input X has 3000-time steps
and reshape the input accordingly. The data for each time step X(i) is supplied
into the LSTM cell. Notably, each inner fully connected layer of the LSTM cell
has thirty-two hidden units. Additionally, we examine the system call distri-
bution in our dataset during the data preparation phase and choose 3000-time
steps for the LSTM model.

In the Convolutional Neural Network, each input image is processed by a
convolutional layer, a max-pooling layer and two fully connected layers. The
convolution operation is accomplished using 32 learnable filters with 4× 4. Fur-
ther, it uses a stride size of 2× 2 throughout the max-pooling procedure, which
reduces the number of training parameters. After the max-pooling layer, the
resulting vector map was flattened and joined to a dense layer with dimensions
of 1600 and 400 respectively.

The final layers of LSTM and CNN are connected to the first layer of the final
network, which is also called the merging layer. The output layer of the MLP
network generates the classification results. Each neuron in the output layer
employs the sigmoid function to determine whether an input program is malware
or not. ReLU activation function is used, as it avoids the vanishing gradient
problem during training and significantly increases the computing efficiency of
our model.

Fig. 4. Generated Malware Images Fig. 5. Generated Benign Images

MDLDroid Training: MDLDroid is a multimodal deep learning-based
Android malware detector which discovers inherent information of android mal-
ware and fuses complementary information. In MDLDroid, LSTM (Long Short
Term Memory) is used to learn from System Call Embedding features, while
CNN (Convolution Neural Network) is used to learn from images of N-gram
pairs, as shown in Fig. 1. This multimodal learning strategy improves the overall
performance of MDLDroid and helps to detect unseen malware effectively.

Hyperparameters are tuned through several experiments with different learn-
ing rates. The dataset is split into train and test data, and then the training data
is divided into training and validation using scikit Stratified Shuffle Split to gen-
erate random training and validation sets. The proposed framework is trained on
the training set and evaluated with the validation dataset for each learning rate,
maintaining the batch size of 32. We find that 0.001 was the best learning rate.
Dropout regularization [11] is used on our multimodal deep learning model to
prevent overfitting. During the hyperparameter tuning process, we determined
that the optimal dropout rate for our proposed model is 0.3.

MDLDroid : Multimodal Deep Learning Based Android Malware Detection 169

Table 3. Performance comparison(Androzoo)

Methodology Performance
Metric

System
Call

Dynamic
API

System Call and
Dynamic API

[22] Acc.(%) 94.72 91.94 94.16

Pre.(%) 96.80 92.59 91.42

Rec.(%) 91.42 89.60 94.45

F1-Sc(%) 93.97 91.04 93.64

Time(Sec.) 0.412 0.219 0.443

[19] Acc.(%) 94.72 91.94 92.77

Pre.(%) 96.80 92.59 91.46

Rec.(%) 91.42 89.62 92.23

F1-Sc(%) 93.97 91.04 92.18

Time(Sec.) 0.420 0.331 0.502

[41] Acc.(%) 94.16 92.50 92.22

Pre.(%) 96.18 93.25 90.85

Rec.(%) 90.81 90.20 92.63

F1-Sc(%) 93.35 91.66 91.56

Time(Sec.) 0.389 0.293 0.391

[6](S.F) Acc.(%) 95.00 92.77 91.4

Pre.(%) 97.75 93.34 90.08

Rec.(%) 91.42 90.81 92.02

F1-Sc(%) 94.42 92.01 91.26

Time(Sec.) 0.510 0.341 0.532

[6] (S.L) Acc.(%) 94.12 92.22 91.94

Pre.(%) 96.80 93.19 91.34

Rec.(%) 91.42 89.60 91.42

F1-Sc(%) 93.97 91.33 91.20

Time(Sec.) 0.473 0.431 0.492

MDLDroid Acc.(%) 96.11 94.72 99.23

Pre.(%) 96.94 96.26 99.56

Rec.(%) 94.50 92.02 98.62

F1-Sc(%) 95.64 94.01 99.05

Time(Sec.) 0.671 0.491 1.481

4 Experimental Analysis

4.1 Data Collection

In order to train MDLDroid, we use AndroZoo [5] dataset, which continues to
grow with over 12 million applications at last count. Out of these, 28,805 android

170 N. Singh and S. Tripathy

samples are selected randomly from AndroZoo’s repository, where 13,469 are
benign and 15336 are malware, as identified by VirusTotal. Further, CICMal-
Droid3 2020 Android Malware dataset is used only for testing as unseen malware
samples. We have used 11,598 Android samples for CICMalDroid, in which 1795
are benign samples, while the rest are malign samples.

Data Description. We used 28,805 android applications from AndroZoo data
repository [5]. Each application is labelled through VirusTotal [3], which gen-
erates a JSON file that contains reports from 62 anti-malware vendors. If no
anti-malware program in VirusTotal identifies an application as dangerous, it
is considered to be benign. Thus, 13,469 apps were identified as benign, and
15336 were classified as malware. We used the CICMalDroid 20204 dataset, for
testing as unseen samples. This dataset contains 9803 Android malware samples
classified into four categories: Adware, Banking, SMS malware, and Riskware.
The benign sample contained 1795 applications from popular application genres
such as life, leisure, and social commerce.

The System Call and Dynamic API features were extracted from the android
application, as explained in Sects. 3.1 and 3.1. As System calls are sequential in
nature, we opted word2vec (continuous bag of word) embedding algorithm and
set the dimension to 100. The Dynamic API features were extracted from each
android application. We generated 81 N-gram pairs and constructed an image
with 81/times81 dimensions using the Dynamic API features.

Evaluation Setup: We used Anaconda5, Scikit-learn, Keras6, and TensorFlow7

libraries. We configured Windows 10 with Processor Intel® Core™i7-7700 CPU
E3-1225 v5 @ 3.30GHz, and 8 GB RAM with 1 TB Memory.

Evaluation Metrics: Accuracy, F-measure, precision, and recall were used to
evaluate the proposed approach against state of art android model. Precision is
the ratio of true positives to actually positive. Recall is the ratio of predicted
positive to predicted correctly. F-measure gives a single value: the harmonic
mean of precision and recall. Accuracy is the ratio of predicted data which
points correctly to total data points.

Precision(Pre.) =
TP

(TP + FP)
(1)

Recall(Rec.) =
TP

(TP + FN)
(2)

F −measure(F1 − sc) = 2 × Pre.×Rec.

(Pre. + Rec.)
(3)

3 https://www.unb.ca/cic/datasets/maldroid-2020.html.
4 https://www.unb.ca/cic/datasets/maldroid-2020.html.
5 https://docs.anaconda.com/anaconda/install/index.html.
6 https://anaconda.org/conda-forge/keras.
7 https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/.

https://www.unb.ca/cic/datasets/maldroid-2020.html
https://www.unb.ca/cic/datasets/maldroid-2020.html
https://docs.anaconda.com/anaconda/install/index.html
https://anaconda.org/conda-forge/keras
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

MDLDroid : Multimodal Deep Learning Based Android Malware Detection 171

Table 4. Performance Comparison(CICMalDroid2020)

Methodology Performance
Metric

System
Call

Dynamic
API

System Call and
Dynamic API

[22] Acc.(%) 87.7 86.34 84.02

Pre.(%) 86.36 83.45 84.73

Rec.(%) 88.94 90.52 83.15

F1-Sc(%) 87.55 86.71 83.64

Time(Sec.) 0.530 0.341 0.552

[19] Acc.(%) 87.61 86.34 85.05

Pre.(%) 86.36 83.45 86.03

Rec.(%) 88.94 90.52 83.68

F1-Sc(%) 87.55 86.71 84.58

Time(Sec.) 0.450 0.381 0.492

[41] Acc.(%) 86.58 85.31 84.27

Pre.(%) 85.07 81.99 84.77

Rec.(%) 88.42 90.52 83.68

F1-Sc(%) 86.57 85.88 83.91

Time(Sec.) 0.519 0.377 0.397

[6](S.F) Acc.(%) 86.58 85.31 84.54

Pre.(%) 85.07 81.99 85.96

Rec.(%) 88.42 90.52 82.63

F1-Sc(%) 86.57 85.88 83.90

Time(Sec.) 0.479 0.317 0.518

[6] (S.L) Acc.(%) 87.87 86.07 84.53

Pre.(%) 86.17 83.85 84.85

Rec.(%) 90.00 89.47 84.21

F1-Sc(%) 87.91 86.32 84.22

Time(Sec.) 0.499 0.301 0.528

MDLDroid Acc.(%) 88.66 88.90 98.45

Pre.(%) 86.73 91.33 99.46

Rec.(%) 91.05 85.78 97.26

F1-Sc(%) 88.75 88.35 98.30

Time(Sec.) 0.395 0.539 1.109

Accuracy(Acc.) =
(TP + TN)

(TP + TN + FN + FP)
(4)

Results: It can be observed from Table 3, that the proposed approach achieves
accuracy, precision, recall, and F-Measure values of 99.23%, 99.56%, 98.62%,
and 99.05%, respectively for combined features. On the other hand, the existing

172 N. Singh and S. Tripathy

methodology like Kim el at. [22], Hou et al. [19], Wang et al. [41], and Alzaylaee
et al. [6] achieve accuracy of 94.16%, 92.77%, 92.22%, and 91.40%, respectively,
using the combined system call embedding and N-grams pairs features. The
Kim el at. [22] achieves the best accuracy among the above proposed methods,
with Precision, Recall, and F-Measure values of 96.80%, 91.42%, and 93.77%,
respectively.

Table 4 presents the experimental observations over CICMalDroid 2020
dataset as unseen data. We compare our model with similar existing Android
malware detection models, which illustrates that the proposed method out-
performs the state-of-the-art methodologies. The Hou et al. [19] achieves a
higher accuracy of 85.05% among the other existing Android malware detec-
tion models when the combine feature is used, along with Precision, Recall,
and F-Measure value of 86.03%, 83.68%, and 84.58% respectively. Meanwhile,
MDLdroid achieves accuracy, precision, recall, and F-Measure values of 98.45%,
99.46%, 97.26%, and 98.30%, respectively for unseen malware.

We further evaluated the time taken by MDLDroid for identifying malicious
behaviour. We considered 1000 applications of different sizes in range of (1 KB–
100 KB), (100 KB–1 MB) and (1 MB–72 MB) separately, the average detection
time for them are found to be 0.432, 0.578 and 0.793 respectively. Table 5 lists
down the time consumed for pre-processing (APK to System Call Embedding
and Image File Conversion) and detection. WE noticed athat MDLDroid requires
nearly 0.5 s to analyse small applications, while up to 1.5 s to analyse large
applications.

Table 5. Time to detect unknown applications of different size by MDLdroid.

Process step/Apk Size Time (Sec) taken

1 KB–100 KB 100 KB–1 MB 1 MB–72 MB

APK to System Call Embedding 0.080 0.116 0.318

APK to Image File Conversion 0.160 0.346 0.618

Avg. detection Time 0.432 0.578 0.793

Total Time 0.592 0.924 1.411

Detection Efficiency Against Obfuscated Backdoor: To find the efficiency
of MDLdroid and other existing techniques, we created 1700 backdoor applica-
tions using Msfvenom8 as shown in Fig. 6. Msfvenom is a command-line utility
of Metasploit that is used to create malicious payloads in different format and
encode them using other encoder modules. A benign APK file is downloaded and
extracted from Google Play Store. Both malicious payload and original APK files
are decompiled, using the APK tool9. The required permissions are embedded
into the original APK. Then APK is reassembled with embedded payload via
apktool. The recompiled application (backdoor) is installed on an android device.
8 https://www.offensive-security.com/metasploit-unleashed/msfvenom/.
9 https://ibotpeaches.github.io/Apktool/.

https://www.offensive-security.com/metasploit-unleashed/msfvenom/
https://ibotpeaches.github.io/Apktool/

MDLDroid : Multimodal Deep Learning Based Android Malware Detection 173

Fig. 6. Backdoor Creation

Table 6. Backdoor Analysis for 100 application

D-Rate AV D-Rate AV D-Rate AV D-Rate AV

57% AhnLab-V3 26% eScan 0% NANO-

Antivirus

39% Arcabit

50% Avast 41% ESET-NOD32 0% Rising 21% Emsisoft

40% Avast-Mobile 3% F-Secure 0% TACHYON 0% Panda

42% Avira (nocloud) 27% Gridinsoft 0% TrendMicro-

Housec

60% AVG

3% Ad-Aware 27% GData 0% Tencent 46% Fortinet

0% Alibaba 0% Jiangmin 17% Trellix

(FireEye)

0% TrendMicro

0% ALYac 43% K7GW 0% Trustlook 0% Antiy-AVL

58% BitDefenderFalx 0% K7AntiVirus 39% Sophos 51% Kaspersky

0% Baidu 0% Kingsoft 0% Symantec

Mobile

33% Sangfor Engine

Zero

42% CAT-QuickHeal 0% MAX 0% VirlT 2% BitDefenderTheta

63% Cynet 0% MaxSecure 0% VBA32 0% Lionic

0% Cyren 0% Microsoft 0% ViRobo 0% SUPERAntiSpyware

0% Comodo 0% McAfee 0% Zillya 0% ClamAV

36% DrWeb 0% McAfee-GW-Edit

ion

2% ZoneAlarm 0% Yandex

0% Malwarebytes 98.98% MDLDroid(Our

Method)

174 N. Singh and S. Tripathy

The obfuscated backdoors are submitted to VirusTotal, which generates a
report (a JSON file) from 57 mobile anti-malware programs. The generated back-
doors10 successfully bypass all anti-malware programs in VirusTotal. Further,
creating a Metasploit session between victim and attacker shows that all anti-
malwares fail to detect malicious payloads compromising android device security
fortunately, MDLdroid successfully categorizes the created backdoor as a mali-
cious application. The backdoor analysis report is listed in Table 6 of Appendix.
It can be observed that the backdoor detection rates of existing mobile antivirus
vendors are nearly half of the proposed approach.

5 Conclusion

We propose MDLDroid, a multi-modal deep learning framework uses the runtime
behavior features (N-grams) from dynamic APIs and fuses with System Call
embedding feature. These fuses vector help to classify the behavior of unseen
malware effectively. In this work, we proposed a Multimodal Deep Learning-
based android malware detection framework called MDLDrroid which uses the
runtime behaviour features (N-grams) from dynamic APIs and fuses with System
Call embedding feature. To measure the effectiveness of our proposed approach,
Various experiments were carried out with a total of 40,403 samples(Androzoo +
CICMalDroid 2020 dataset). We observe a significant improvement of 4–12% as
compared to existing approaches. Our proposed model outperforms static feature
capturing approaches as well as hybrid feature capturing approaches. Further,
we created a backdoor app which could fool all 57-antimalware programs used
in Virustotal, but could successfully detect the generated backdoors.

Acknowledgment. We acknowledge the Government of India, Ministry of Home
Affairs, Bureau of Police Research and Development for funding this research.

References

1. Cyber attacks on android devices on the rise 11 July 2018. https://www.
gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-
the-rise

2. Global smartphone shipments by OS 2016–2022, statistic. google play protect.
android2018 (2018). https://android-developers.googleblog.com/2019/02/google-
play-protect-in-2018-new-updates.html

3. Operating system market share worldwide. https://gs.statcounter.com/os-market-
share. Accessed 12 June 2019

4. Stephanie cuthbertson - director, android - google I/0 2019 keynote speech. https://
www.youtube.com/watch?v=lyRPyRKHO8M. Accessed Apr 2020

5. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: collecting millions
of android apps for the research community. In: 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), pp. 468–471. IEEE (2016)

10 md5 hash: 9428c569daddeaf815d48768e259ee27.

https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://android-developers.googleblog.com/2019/02/google-play-protect-in-2018-new-updates.html
https://android-developers.googleblog.com/2019/02/google-play-protect-in-2018-new-updates.html
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share
https://www.youtube.com/watch?v=lyRPyRKHO8M
https://www.youtube.com/watch?v=lyRPyRKHO8M

MDLDroid : Multimodal Deep Learning Based Android Malware Detection 175

6. Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: DL-droid: deep learning based android
malware detection using real devices. Comput. Secur. 89, 101663 (2020)

7. Arora, A., Peddoju, S.K.: Ntpdroid: a hybrid android malware detector using net-
work traffic and system permissions. In: 2018 17th IEEE International Confer-
ence on Trust, Security and Privacy in Computing and Communications/12th
IEEE International Conference on Big Data Science and Engineering (Trust-
Com/BigDataSE), pp. 808–813. IEEE (2018)

8. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
Drebin: effective and explainable detection of android malware in your pocket. In:
NDSS, vol. 14, pp. 23–26 (2014)

9. Asam, M., et al.: IoT malware detection architecture using a novel channel boosted
and squeezed CNN. Sci. Rep. 12(1), 15498 (2022)

10. Avdiienko, V., et al.: Mining apps for abnormal usage of sensitive data. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1,
pp. 426–436. IEEE (2015)

11. Baldi, P., Sadowski, P.J.: Understanding dropout. Adv. Neural. Inf. Process. Syst.
26, 2814–2822 (2013)

12. Damodaran, A., Troia, F.D., Visaggio, C.A., Austin, T.H., Stamp, M.: A compar-
ison of static, dynamic, and hybrid analysis for malware detection. J. Comput.
Virol. Hacking Tech. 13, 1–12 (2017)

13. Dash, S.K., et al.: Droidscribe: classifying android malware based on runtime
behavior. In: 2016 IEEE Security and Privacy Workshops (SPW), pp. 252–261.
IEEE (2016)

14. Fan, M., et al.: Graph embedding based familial analysis of android malware using
unsupervised learning. In: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE), pp. 771–782. IEEE (2019)

15. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accu-
rate zero-day android malware detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, pp. 281–294 (2012)

16. Gülmez, S., Sogukpinar, I.: Graph-based malware detection using opcode
sequences. In: 2021 9th International Symposium on Digital Forensics and Security
(ISDFS), pp. 1–5. IEEE (2021)

17. Guo, J., Xu, Y., Xu, W., Zhan, Y., Sun, Y., Guo, S.: Mdenet: multi-modal
dual-embedding networks for malware open-set recognition. arXiv preprint
arXiv:2305.01245 (2023)

18. Hou, S., Saas, A., Chen, L., Ye, Y.: Deep4maldroid: a deep learning frame-
work for android malware detection based on linux kernel system call graphs. In:
2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops
(WIW), pp. 104–111. IEEE (2016)

19. Hou, S., Saas, A., Chen, L., Ye, Y., Bourlai, T.: Deep neural networks for automatic
android malware detection. In: Proceedings of the 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2017, pp. 803–810
(2017)

20. Kang, B., Yerima, S.Y., McLaughlin, K., Sezer, S.: N-opcode analysis for android
malware classification and categorization. In: 2016 International Conference on
Cyber Security and Protection of Digital Services (cyber Security), pp. 1–7. IEEE
(2016)

21. Kelkar, S., Kraus, T., Morgan, D., Zhang, J., Dai, R.: Analyzing HTTP-based infor-
mation exfiltration of malicious android applications. In: 2018 17th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing and Communica-

http://arxiv.org/abs/2305.01245

176 N. Singh and S. Tripathy

tions/12th IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE), pp. 1642–1645. IEEE (2018)

22. Kim, T., Kang, B., Rho, M., Sezer, S., Im, E.G.: A multimodal deep learning
method for android malware detection using various features. IEEE Trans. Inf.
Forensics Secur. 14(3), 773–788 (2018)

23. Li, S., Li, Y., Wu, X., Al Otaibi, S., Tian, Z.: Imbalanced malware family classifica-
tion using multimodal fusion and weight self-learning. IEEE Trans. Intell. Transp.
Syst. (2022)

24. Li, W., Ge, J., Dai, G.: Detecting malware for android platform: an SVM-based
approach. In: 2015 IEEE 2nd International Conference on Cyber Security and
Cloud Computing, pp. 464–469. IEEE (2015)

25. Liang, S., Du, X.: Permission-combination-based scheme for android mobile mal-
ware detection. In: 2014 IEEE International Conference on Communications (ICC),
pp. 2301–2306. IEEE (2014)

26. Liangboonprakong, C., Sornil, O.: Classification of malware families based on n-
grams sequential pattern features. In: 2013 IEEE 8th Conference on Industrial
Electronics and Applications (ICIEA), pp. 777–782. IEEE (2013)

27. Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.: A review of android malware
detection approaches based on machine learning. IEEE Access 8, 124579–124607
(2020)

28. Liu, X., Du, X., Zhang, X., Zhu, Q., Wang, H., Guizani, M.: Adversarial samples
on android malware detection systems for IoT systems. Sensors 19(4), 974 (2019)

29. Lou, S., Cheng, S., Huang, J., Jiang, F.: TFDroid: android malware detection by
topics and sensitive data flows using machine learning techniques. In: 2019 IEEE
2nd International Conference on Information and Computer Technologies (ICICT),
pp. 30–36. IEEE (2019)

30. Mart́ın, A., Lara-Cabrera, R., Camacho, D.: Android malware detection through
hybrid features fusion and ensemble classifiers: the andropytool framework and the
omnidroid dataset. Inf. Fusion 52, 128–142 (2019)

31. Millar, S., McLaughlin, N., del Rincon, J.M., Miller, P.: Multi-view deep learning
for zero-day android malware detection. J. Inf. Secur. Appl. 58, 102718 (2021)

32. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Twenty-Third Annual Computer Security Applications Conference (ACSAC
2007), pp. 421–430. IEEE (2007)

33. Peiravian, N., Zhu, X.: Machine learning for android malware detection using per-
mission and API calls. In: 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence, pp. 300–305. IEEE (2013)

34. Rahali, A., Lashkari, A.H., Kaur, G., Taheri, L., Gagnon, F., Massicotte, F.:
Didroid: android malware classification and characterization using deep image
learning. In: 2020 the 10th International Conference on Communication and Net-
work Security, pp. 70–82 (2020)

35. Reddy, D.K.S., Pujari, A.K.: N-gram analysis for computer virus detection. J.
Comput. Virol. 2(3), 231–239 (2006)

36. Rosmansyah, Y., Dabarsyah, B., et al.: Malware detection on android smartphones
using API class and machine learning. In: 2015 International Conference on Elec-
trical Engineering and Informatics (ICEEI), pp. 294–297. IEEE (2015)

37. Shan, Z., Wang, X.: Growing grapes in your computer to defend against malware.
IEEE Trans. Inf. Forensics Secur. 9(2), 196–207 (2013)

38. Shen, Y., Stringhini, G.: Attack2vec: leveraging temporal word embeddings to
understand the evolution of cyberattacks. In: 28th {USENIX} Security Symposium
{USENIX} Security 2019), pp. 905–921 (2019)

MDLDroid : Multimodal Deep Learning Based Android Malware Detection 177

39. Suzuki, M., Matsuo, Y.: A survey of multimodal deep generative models. Adv.
Robot. 36(5–6), 261–278 (2022)

40. Vosoughi, S., Vijayaraghavan, P., Roy, D.: Tweet2vec: learning tweet embeddings
using character-level CNN-LSTM encoder-decoder. In: Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval, pp. 1041–1044 (2016)

41. Wang, S., Chen, Z., Yan, Q., Yang, B., Peng, L., Jia, Z.: A mobile malware detection
method using behavior features in network traffic. J. Netw. Comput. Appl. 133,
15–25 (2019)

42. Xu, P., Zhu, X., Clifton, D.A.: Multimodal learning with transformers: a survey.
IEEE Trans. Pattern Anal. Mach. Intell. (2023)

43. Yang, Z., et al.: i-code: an integrative and composable multimodal learning frame-
work. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37,
pp. 10880–10890 (2023)

44. Yerima, S.Y., Sezer, S., Muttik, I.: Android malware detection using parallel
machine learning classifiers. In: 2014 Eighth International Conference on Next
Generation Mobile Apps, Services and Technologies, pp. 37–42. IEEE (2014)

45. Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware characterization and
detection using deep learning. Tsinghua Sci. Technol. 21(1), 114–123 (2016)

A Cycle-GAN Based Image Encoding
Scheme for Privacy Enhanced Deep

Neural Networks

David Rodriguez(B) and Ram Krishnan(B)

Department of Electrical and Computer Engineering, University of Texas at San
Antonio, San Antonio, TX 78249, USA

david.rodriguez3@my.utsa.edu, ram.krishnan@utsa.edu

Abstract. Deep learning model training on cloud platforms typically
require users to upload raw input data. However, uploading raw image
data to cloud service providers raises serious privacy concerns. To
address this problem, we propose a Cycle-Gan based-image transfor-
mation scheme that leverages convolutional autoencoder image encod-
ing for domain translation. Our Cycle-GAN based image transforma-
tion scheme enhances privacy of deep neural networks while preserving
model utility. In this paper, we demonstrate that our Cycle-GAN based
image transformation scheme protects visual feature information of sen-
sitive image data. We evaluate the effectiveness of our proposed method
to preserve model utility using classification accuracy and robustness
against reconstruction attacks using structural similarity index measure
(SSIM). The classification accuracy of encoded images using our pro-
posed method is 92.48, 91.05, 90.37 for Chest X-ray, Dermoscopy and
OCT datasets, respectively. The SSIM scores for reconstruction attacks
where the attacker only has access to the encoded data and correspond-
ing labels are 0.1002, 0.0995 and 0.0329 for Chest X-ray, Dermoscopy
and OCT datasets, respectively. Our results demonstrate that the Cycle
GAN based encoding scheme effectively enhance privacy while preserving
model utility.

Keywords: Cycle-GAN · Deep Neural Networks · Convolutional
Autoencoder · Privacy · Utility

1 Introduction

The amount of data generated by worldwide data sources has increased expo-
nentially. Nevertheless, the utilization of big data is suboptimal without proper
computing resources to extract patterns and vital information from zetabytes of
data. Consequently, many businesses have switched to cloud service providers
for computationally expensive tasks using large and complex datasets [1,2]. As a

Research supported in part by NSF CREST Grant HRD-1736209 (RK) and NSF
CAREER Grant CNS-1553696 (RK).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 178–196, 2023.
https://doi.org/10.1007/978-3-031-49099-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_11&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_11

A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced DNNs 179

Dataset

(MLaaS)

Data Owner

Local Remote

Upload Data

Cycle-GAN
Encoder

Model Design Model Training Model Deployment

Fig. 1. Cycle-GAN based image transformation for privacy enhanced DNNs. Where X
is the data owner’s original dataset and {Z, Y } are the data owner’s encoded images
and corresponding class labels. The encoded images and labels are uploaded to MLaaS
provider for DNN model development and deployment while keeping the original image
data private.

result, there has been a surge in the demand for cloud services. Cloud services are
often categorized into Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) and IaaS offers infrastructure such as
servers, virtual machines (VMs), storage, networks, operating systems on a pay-
as-you-go basis. PaaS offers on-demand environments for developing, testing,
delivering, and managing software applications. SaaS offers on-demand software
applications over the internet which are typically on a subscription basis.

Additionally, machine learning-as-a-service (MLaaS) includes a variety of
machine learning tools offered by cloud service providers such as Amazon, Google
and Microsoft. MLaaS enables efficient model development and deployment at
low cost. However, the adoption of MLaaS raises several data privacy concerns.
This is especially true with sensitive image data e.g., suppose that a data owner
uploads sensitive image data to an MLaaS provider for the purpose of developing
a deep learning model but a curious MLaaS developer may also want to learn
some additional sensitive information that could lead to identity theft, financial
fraud, disease misdiagnosis [3–5]. Therefore, sensitive image data privacy plays
an essential role in the deep learning life cycle.

The deep learning life cycle includes a training phase for model development
and a testing phase for model deployment. Deep learning is susceptible to several
attack methods during training and testing phase such as data poisoning attacks,
model extraction attacks, model inversion attacks and adversarial attacks. How-
ever, in this work, we focus on protecting the privacy of sensitive image data
for privacy enhanced deep neural networks (DNNs) during the training phase.
Several image transformation methods have been proposed to protect the pri-
vacy of image data during the training phase of a deep learning life cycle [6–8].
However, a major challenge in transforming image data to enhance the privacy
of DNNs is the trade-off between privacy and utility [9]. Typically, DNN model
performance on original images degrades as images are transformed for privacy
protection. To address this problem, we evaluate the effectiveness of Cycle-GAN
[10] to preserve model utility using classification accuracy and robustness against
reconstruction attacks using structural similarity index measure (SSIM).

180 D. Rodriguez and R. Krishnan

In this paper, we propose a Cycle-GAN based image transformation scheme
to enhance privacy of DNN model development and deployment on MLaas plat-
forms as depicted in Fig. 1. Our Cycle-GAN method leverages autoencoder obfus-
cated images for domain translation. First, the autoencoder is trained to out-
put visually unrecognizable versions of the original input image. Second, Cycle-
GAN is trained to translate original images to the corresponding encoded image
domain. We evaluate the robustness of our Cycle-GAN method to reconstruction
attacks. In our results, we demonstrate that the proposed Cycle-GAN method
enhances the privacy of image data while preserving model utility using Chest
X-ray, Dermoscopy and OCT datasets.

In summary our contributions are as follows:

– We develop a Cycle-GAN based image transformation scheme for privacy
enhanced deep neural networks.

– We enhance privacy of sensitive image data while maintaining classification
accuracy.

The remainder of this paper is organized as follows. In Sect. 2, we provide an
overview of related works for privacy enhancing methods in machine learning.
In Sect. 3, we discuss the proposed Cycle-GAN method formulation and loss
function. In Sect. 4, we describe the data sets, network architecture and training
procedure. In Sect. 5, we evaluate our proposed Cycle-GAN method by analyzing
the trade-off between privacy-utility and robustness to reconstruction attacks.
Finally, we conclude our paper in Sects. 6.

2 Related Works

The security and privacy of machine learning models is usually concerned with
the model’s input, the model’s output or the model itself. There are many pro-
posed methods in the literature e.g., secure multi-party computation, homomor-
phic encryption, federated learning, visual image protection and learnable image
encryption. Secure multi-party computation is a set of cryptographic protocols
that allow multiple parties to evaluate a function to perform computation over
each parties private data such that only the result of the computation is released
among participants while all other information is kept private [11]. Secure multi-
party computation methods have been applied in machine learning among multi-
ple parties by computing model parameters using gradient descent optimization
without revealing any information beyond the computed outcome [12–15]. The
proposed Cycle-GAN image encoding scheme does not require multiple parties
to compute the gradient descent of each model individually which is computa-
tionally expensive but instead enables users to encode private data individually
and develop privacy enhanced deep neural networks with greater efficiency.

Homomorphic encryption is a type of encryption that allows multiple par-
ties to perform computations on its encrypted data without having access to the
original data [16–18]. It provides strong privacy but is computationally expensive
requiring significant overhead to train machine learning models [19–21]. The pro-
posed Cycle-GAN image encoding method does not use computationally expen-
sive encryption operations or specialized primitives during model development.

A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced DNNs 181

Federated learning allows multiple parties to train a machine learning model
without sharing data [22–24]. For example, in centralized federated learning a
central server sends a model to multiple parties to train locally using their own
data, then each participant sends it’s own model update back to the central
server to update the global model which is again sent to each party to obtain
the optimal model without access to the local data by iterating through this
process [25]. Essentially, federated learning builds protection into the model.
Nevertheless, federated learning requires that each user have enough computing
resources to train locally using their own data. The proposed Cycle-GAN image
encoding method allows multiple parties to share obfuscated data for model
training without the computational resource requirement of each participant.

Visual image protection methods transform plain images to unrecognizable
encoded images while preserving important feature information for model utility.
A few examples are pixelation, blurring, P3 [26], InstaHide [27] and NueraCrypt
[28] which aim at preserving privacy and utility—a model trained on an encoded
dataset should be approximately as accurate as a model trained on the original
dataset [29,30]. InstaHide mixes multiple images together with a linear pixel
blend and randomly flips the pixel signs. NeuraCrypt encodes data instances
through a neural network with random weights and adds position embeddings
to keep track of image structure then shuffles the modified output in blocks
of pixels. However, [31] showed that position information, permutation order
and image-encoding pairs could be learned given an unordered set of images
and corresponding encodings. The proposed Cycle-GAN image encoding method
inherently generates encoded images by learning a mapping function between
original images and distorted images while reducing data leakage during domain
translation.

Learnable image transformation methods obfuscate image data such that the
encoded versions are useful for classification [6–8,32,33]. However, in some cases
network adjustments are required to process learnable image transformations
such as blockwise adaptation [6]. Our proposed Cycle-GAN encoding scheme
does not require any particular changes to the network to develop models using
the encoded data. Our work is most closely related to [34] but instead of trans-
forming image data using adversarial perturbations for domain translation we
develop our encoding model leveraging obfuscated autoencoder output. The key
benefit in our method is that the autoencoder is specifically optimized to gen-
erate transformed images that retain image features that are useful for model
utility.

3 Cycle-GAN Image Transformation Formulation

We aim to transform image data using a Cycle-GAN based approach to obfus-
cate sensitive feature information while preserving classification accuracy. The
proposed method allows participants within a network to share sensitive image
data while protecting privacy and maintaining model utility. We consider fea-
tures that do not highly contribute to the classification task as sensitive features.

182 D. Rodriguez and R. Krishnan

For example, in chest x-ray images the features that do not highly contribute
to the classification of the pneumenia disease are considered sensitive features.
On the other hand, we consider features that highly contribute to the classi-
fication task as non-sensitive features. For example, in chest x-ray images the
features that highly contribute to the classification of the pneumenia disease are
considered non-sensitive features. Our goal is to transform image data such that
non-sensitive features are preserved for image classification. We aim to preserve
classification accuracy of transformed images similar to original images.

Our goal is to enhance the privacy of deep neural networks by transforming
image data using Cycle-GAN for image-encoding domain translation. Let X be
the set of all images in the data domain, X ⊆ X is the local subset of private
images and Y is the corresponding label set. Given the private image dataset
{xi}Ni=1 where xi ∈ X, the images are transformed using the private Cycle-GAN
encoding function GZ(x). The encoded images and corresponding labels can be
safely uploaded to remote MLaaS providers for deep learning model develop-
ment using visibly unrecognizably images. The proposed Cycle-GAN method
is similar to [34] but instead of transforming image data using adversarial per-
turbations for domain translation we develop our encoding model leveraging
modified autoencoder output. The proposed method consists of a classification
model to distinguish between non-sensitive features. Additionally, our methods
consists of an autoencoder model for initial image transformation. Finally, the
encoding network consists of a Cycle-GAN model for final image transformation.
The training objective is to optimize the model parameters of generator GZ to
transform original images into encoded images.

3.1 Overview

First, the classification model is trained to classify original images using a con-
structed dataset that follows the probability distribution of the original dataset
and their respective class labels. Our objective function for the classification
model has a loss term for classifying non-sensitive features. The goal is to clas-
sify non-sensitive features of a given image with high classification accuracy.
Second, the classification model loss function is used to optimize the model
parameters of a randomly initialized autoencoder network given it’s output to
generate distorted versions of the input image while preserving important fea-
ture information for model utility. Third, the Cycle-GAN network is used to
transform original images to the distorted images. Our Cycle-GAN based image
transformation final objective function follows original Cycle-GAN [10] objective
which contains three loss terms: adversarial loss for mapping original images to
encoded images, adversarial loss for mapping encoded images to original images
and cycle consistency loss to prevent the learned mappings from contradicting
each other. We aim to learn a mapping function from original images to distorted
images to transform private data while preserving important feature information
for model utility.

Our proposed Cycle-GAN image transformation scheme consists of a non-
sensitive feature loss, distortion loss, adversarial loss and cycle consistency loss.

A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced DNNs 183

Fig. 2. Image classification model training phase. Where XA is the developer’s con-
structed data set that follows the probability distribution of the original dataset and YA

are the corresponding class labels. Standard DNN image classification model training
is conducted to predict the labels of non-sensitive image features.

First, we develop a classification model to classify non-sensitive features using
a non-sensitive feature loss as depicted in Fig. 2. Second, we develop an autoen-
coder model to distort images using an image distortion loss as depicted in Fig. 3.
The networks are trained using a constructed dataset that follows the probability
distribution of the original dataset i.e., xa ∼ pdata(x). The non-sensitive feature
loss is used to minimize the error between the true label and the classifier’s
predicted label for non-sensitive features. For example, the true label of a chest
x-ray image is the correct class assigned to the image which specifies whether
the image has pneumonia disease or not. The distortion loss is used to minimize
the error between the true label and the pre-trained classifier’s predicted output
label given the autoencoder distorted image for each sample in the constructed
dataset. The aim is to distort image data and classify non-sensitive features with
high classification accuracy. Third, we train Cycle-GAN to using adversarial loss
and cycle consistency loss to learn a mapping function from images to distorted
images as depicted in Fig. 4.

3.2 Non-sensitive Feature Loss

The non-sensitive feature loss function Ln uses cross-entropy to measure the
performance of the image classifier I which is trained to classify non-sensitive
features.

Ln(I,XA, YA) = − 1
N

N∑

i=1

YAi
log(I(XAi

)) (1)

where XAi
is the ith image and YAi

is the corresponding ground truth identity
label. I(XAi

) is the image classifier’s predicted output for the ith image.

184 D. Rodriguez and R. Krishnan

Encoder Latent
Space Decoder

Developer
Data

Autoencoder (A)

Freeze Weights

Developer
Dataset

Image Classifier (I*) Distorted
Image

Cross-Entropy
Loss

Predicted
Label

Update Parameters

Fig. 3. Distortion model training phase. An autoencoder network A is optimized to
generate distorted images that preserve important feature information for model utility
given the developer input data. The pre-trained classifier I∗ model parameters are
frozen to ensure they remain constant during the distortion model training. The error
between the predicted output label of I∗ given distorted images and the true label is
minimized. The model parameters of the A are updated based on the gradient of the
crossentropy loss.

3.3 Non-sensitive Feature Loss Objective

The goal is to find the classification model I parameters that minimize the error
between the true label and predicted label.

We aim to solve:
I∗ = argmin

I
Ln(I,XA, YA) (2)

3.4 Distortion Loss

The distortion loss function Ld uses cross-entropy to distort feature information
in sensitive image data.

Ld(A, I∗,XA, YA) = − 1
N

N∑

i=1

YAi
log(I∗(A(XAi

))) (3)

where A is a randomly initialized autoencoder network and I∗ is a pre-trained
image classification function. I(A(XAi

)) is the image classifier’s predicted output
given the ith distorted image.

3.5 Distortion Loss Objective

The goal is to find the autoencoder model A parameters that minimize the error
between the true label and the image classifier I predicted output given the ith

distorted image i.e., I∗(A(XAi
)).

We aim to solve:

A∗ = argmin
A

Ld(A, I∗,XA, YA) (4)

A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced DNNs 185

Fig. 4. Cycle-GAN based image transformation for privacy enhanced DNNs. Where XA

is the developer data set and ZA is the corresponding distorted image generated using
the pre-trained distortion model A∗. Generator GZ learns a mapping function from
XA to ZA and generator GX learns a mapping function from ZA to XA. Discriminator
DX distinguishes between real and fake images while discriminator DZ distinguishes
between real and fake distorted images.

3.6 Adversarial Loss

The full adversarial loss consists of a loss term from generators (GZ , GX) and
discriminators (DZ ,DX). The following equations describe the adversarial loss
term.

LGAN (GZ ,DZ ,XA, ZA) = Eza∼penc(za)[log DZ(za)]
+Exa∼pdata(xa)[log(1 − DZ(GZ(xa)))]

(5)

where GZ tries to generate encoded images GZ(xa) that are similar to dis-
torted autoencoder images i.e., za = A∗(xa). DZ distinguishes between real
autoencoder distorted images za and generated encoded images GZ(xa). GZ

minimizes the objective while DZ maximizes the objective, minGZ
maxDZ

LGAN (GZ ,DZ ,XA, ZA).

LGAN (GX ,DX , ZA,XA) = Exa∼pdata(xa)[log DX(xa)]
+Eza∼penc(za)[log(1 − DX(GX(za)))]

(6)

where GX tries to images GX(za) that are similar to original images xa, while
DX distinguishes between the real original images and generated images GX(za).
GX minimizes the objective while DX maximizes the objective, minGX

maxDX

LGAN (GX ,DX , ZA,XA).

3.7 Cycle Consistency Loss

The cycle consistency loss term is computed using generator GZ and generator
GX . First, the original images X are translated into the distorted image domain
ZA using generator GZ . Then the generated distorted image is translated back

186 D. Rodriguez and R. Krishnan

into the original image domain using generator GX i.e., forward cycle. Second,
the autoencoder distorted image ZA is translated into the original image X
domain using generator GX . Then the generated original image is translated
back into distorted image domain using generator GZ i.e., backward cycle. The
mean absolute error between the original images and the forward cycled images
is computed. The mean absolute error between the distorted images and the
backward cycled images is computed.

The computed cycle consistency loss values for the original images and dis-
torted images are summed together below.

Lcyc(GZ , GX) = Exa∼pdata(xa)[||GX(GZ(xa)) − xa||1]
+Eza∼penc(za)[||GZ(GX(za)) − za||1]

(7)

GX(GZ(xa)) is the forward cycled original image and GZ(GX(za)) is the
backward cycled distorted image. The error between the cycled images and real
images is minimized and summed to compute the total cycle consistency loss.

3.8 Cycle-GAN Encoding Full Objective

The adversarial and cycle consistency loss terms are summed together for the
full objective. The full objective for the Cycle-GAN encoding loss consists of an
adversarial loss term and cycle consistency loss term.

The full objective is:

L(GZ , GX ,DX ,DZ) = LGAN (GZ ,DZ ,XA, ZA)
+LGAN (GX ,DX , ZA,XA)

+λLcyc(GZ , GX)
(8)

where λ controls the importance of the objectives. We solve the following opti-
mization problem:

G∗
Z , G∗

X = argmin
GZ ,GX

max
DZ ,DX

L(GZ , GX ,DX ,DZ) (9)

4 Methods

4.1 Dataset

In this work, we use three publicly available medical image datasets to develop
our Cycle-GAN encoding scheme, which include Chest X-Ray, Dermoscopy and
Optical Coherence Tomography (OCT). The Chest X-ray dataset [35] consists
of 5,863 grayscale chest radiograph images used to diagnose thorax disease. It
includes two classes, where each image is labeled as “Pneumonia” or “Nor-
mal”. The Dermoscopy dataset [36] contains 17.8K color images of skin lesions,
which are used to diagnose melanoma skin cancer. It includes two classes, where
each image is labeled as “Melanoma” or “NotMelanoma”. We consider all non-
melanoma images to be part of the NotMelanoma class [37]. The OCT dataset

A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced DNNs 187

[35] consists of 84,495 grayscale images with four classes—including “Choroidal
Neovascularization (CNV)”, “Drusen”, “Diabetic macular edema (DME)”, and
“Normal”. It utilizes light waves to take cross-section imagery of the retina to
assist in diagnosing retina disease and disorders in the optic nerve.

4.2 Network Architecture

The Cycle-GAN based image encoding architecture consists of three parts: a
Resnet-50 for image classification, a standard convolutional autoencoder (CAE)
for image distortion and a Cycle-GAN for image encoding. Resnets are large
state-of-the-art DL architectures that consist of several blocks of residual mod-
ules and skip connections [38]. The classification model architecture consists of
a Resnet-50 network trained to classify non-sensitive features i.e., features that
highly contribute to the classification task. The CAE network consists of three
convolution layers with 32, 64 and 128 filters, respectively. The kernel size is
3 × 3 with a stride of 2 and a latent space of 128. Each convolution layer consists
of a leaky relu activation function with alpha 0.2 followed by a batch normaliza-
tion layer. The decoder network consists of three transposed convolution layers
with 128, 64 and 32 filters, respectively. The kernel size is 3 × 3 with a stride of 2
and output size of 224 × 224 × 3. Each transposed convolution layer consists of a
leaky relu activation function with alpha 0.2 followed by a batch normalization
layer.

The Cycle-GAN network consists of two generators (GZ , GX), two discrimi-
nators (DZ ,DX). The generator networks contain three convolutions, 9 residual
blocks [38], two transpose convolutions and one convolution that maps features
to RGB. Also, we use instance normalization [39]. Similar to [10] we use 70 ×
70 PatchGANs for the discriminator networks. Generator GZ is used to trans-
late original images to the distorted image domain and generator GX is used to
translate distorted images to original image domain. Discriminator DZ is used
to distinguish between real and fake distorted images and discriminator DX is
used to distinguish between the real and fake original images.

4.3 Training Procedure

Image Classification Model. Our training procedure consists of an image
classification phase to classify non-sensitive features, an image distortion phase
to obfuscate sensitive image data and an image encoding phase to reduce the
risk of data leakage. First, in the image classification phase we train a Resnet-50
model from randomly initialized parameters using the original image dataset
and corresponding class labels for non-sensitive features. We train using binary
crossentropy loss function for dataset with two classes. Additionally, we train
using categorical crossentropy loss function for dataset with more than two
classes. We wish to classify non-sensitive features for a given data set i.e., fea-
tures that are strongly correlated with the class label. The classification model
loss function is used to optimize our image distortion model.

188 D. Rodriguez and R. Krishnan

Image Distortion Model. Second, in the image distortion phase we ran-
domly initialize the CAE model parameters and add its output to the pre-trained
Resnet-50 classification model input for each of the given original images. We
freeze the Resnet-50 classifier model parameters to ensure that the weights do
not change during training for the image distortion phase. During training we
use the classification model loss function to find the CAE model parameters
that minimize the error between the true label and the image classifier predicted
label given the distorted image for the original image dataset. We wish to pre-
serve non-sensitive feature information while reconstructing an unrecognizable
version of the original image. The reconstructed image is a distorted version of
the original image that is useful for classification. It is generated to obfuscate
sensitive image data. To obfuscate sensitive image data we use the output of the
image classifier to optimize the CAE model with crossentopy loss function.

Cycle-GAN Encoding Model. Third, in the Cycle-GAN encoding phase
we learn a mapping function between original images and distorted images.
The distorted images are generated using the pre-trained autoencoder i.e.,
ZA = A∗(XA). The Cycle-GAN adversarial loss is computed using generator GZ ,
generator GX , discriminator DZ and discriminator DX . Generator GZ is used as
a mapping function from the original image domain XA to the distorted image
domain ZA. Discriminator DZ is a binary classifier used to distinguish between
real distorted images ZA and generated distorted images GZ(XA). Generator GZ

wishes to minimize the probability of GZ(XA) being classified as generated dis-
torted images by discriminator DZ while DZ aims to maximize the probability
of the real distorted images ZA being classified as real and generated distorted
images GZ(XA) being classified as fake. The aim is to learn a generator GZ that
translates original images XA into the distorted image domain.

Discriminator DX is a binary classifier used to distinguish between real and
generated original images. We obtain generated original images using generator
GX given distorted images as input to generator GX , i.e. GX(ZA). Generator
GX wishes to minimize the probability of GX(ZA) being classified as a generated
original image by discriminator DX while DX aims to maximize the probability
of the real original images XA being classified as a real and generated original
images GX(ZA) being classified as fake. As a result, we learn a generator that
translates original images into the distorted image domain.

Generator GZ and generator GX are used to compute the cycle consistency
loss. The original images are translated into the distorted image domain and
then back to the original image domain which is called a forward cycle i.e.,
GX(GZ(XA)). Then the distorted images are translated into the original image
domain and then back to the distorted image domain which is called a backward
cycle i.e., GZ(GX(ZA)). The mean absolute error between the original images
and the forward cycled images is computed. The mean absolute error between
the distorted images and the backward cycled images is computed. Both values
are summed to ensure that the real and generated images remain similar.

A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced DNNs 189

All networks were trained using the adam optimizer with a batch size of
32. We utilize check points to save the model with the highest validation accu-
racy during model development. The classification and autoencoder models were
trained for 100 epochs and Cycle-GAN network was trained for 200 epochs. Dur-
ing Cycle-GAN training we set λ = 10. All images were resized to 224 × 224 and
normalized between 0 and 1. Each dataset was randomly shuffled and split ten
times to generate multiple subsets of the train, test and validation set. Each net-
work was trained ten times for a given dataset to assess the average performance
of all models across multiple subsets of the data.

5 Evaluation

5.1 Evaluating Privacy/Utility Trade-Off

We develop classification models using Resnet-50 architecture as described in
Sect. 4.2 and encoded images generated by the proposed Cycle-GAN encod-
ing scheme. Additionally, we also develop classification models using Resnet-50
architecture and original images to evaluate the trade-off between privacy and
model utility, i.e. we measure the change in classification accuracy for a network
trained with original images compared to a network trained with encoded images.
First, we transform the original images using our Cycle-GAN image transforma-
tion method. Second, we compare the classification accuracy of original images
and the transformed images. The classification accuracy of networks trained
using Cycle-GAN transformed images exhibits a slight performance decrease
compared to networks trained using original images. To quantify the trade-off
between privacy and utility we measure the reduction in classification accu-
racy for the network trained using original images and the network trained
using encoded images. Additionally, we measure the SSIM score between orig-
inal images and encoded images. SSIM measures similarities within pixels i.e.,
it checks whether the pixels in the images line up and or if the images have
similar pixel density values. In our experiments, we demonstrate that the pro-
posed Cycle-GAN method allows us to maintain high classification accuracy of
92.48 ± 1.53%, 91.05 ± 1.10%, 90.37 ± 2.06% for Chest X-ray, Dermoscopy and
OCT datasets, respectively, compared to models trained using plain images with
classification accuracy of 96.90 ± 1.26%, 95.20 ± 0.85%, 95.20 ± 2.71% for Chest
X-ray, Dermoscopy and OCT datasets, respectively which is similar to original
images as shown in Table 1. Additionally, we demonstrate that the proposed
Cycle-GAN method enhances privacy using SSIM scores between original and
encoded images. The SSIM scores closer to zero indicate that the images are
highly dissimilar. The SSIM scores in our privacy versus utility experiments
were 0.0935, 0.0582, 0.0277 for Chest X-ray, Dermoscopy and OCT datasets,
respectively,

190 D. Rodriguez and R. Krishnan

Table 1. Trade-off between privacy and model utility for medical image deep learning
models. Classification accuracy slightly decreases for networks trained using encoded
medical images compared to networks trained using plain images i.e., original images.
The proposed scheme enhances privacy of medical image DNNs while preserving model
utility.

Encoding Scheme Classification Acc.%

Chest X-ray Dermoscopy OCT

Plain Images 96.90± 1.26 95.20± 0.85 95.20± 2.71

Proposed Method 92.48± 1.53 91.05± 1.10 90.37± 2.06

5.2 Evaluating Robustness to Attacks

Model Stealing Attack. We evaluate the robustness of our proposed Cycle-
GAN based image encoding method against reconstruction attacks given the
assumption that the data owner’s Cycle-GAN encoder is publicly available to
an attacker. The goal of an attacker is to learn GX given GZ . In this case,
the attacker begins training Cycle-GAN by querying GZ using his own con-
structed dataset XB to obtain the predicted output. GZ(XB) is used to train
the attacker’s generator FX which is a randomly initialized version of GX . Addi-
tionally, the attacker randomly initializes two discriminators QX to distinguish
between real and fake images and QZ to distinguish between real and fake dis-
tortions. Following the previously discussed Cycle-GAN standard training proce-
dure, the attacker learns a mapping function F ∗

X to reconstruct the data owner’s
original image dataset. During training, we freeze the weights of the data owner’s
original encoder GZ .

Model Stealing Attack Results. We evaluate the performance of the model
stealing attack using structural similarity index measure (SSIM). The SSIM
values that are closer to 1 indicate that the reconstructed images are similar
to the original images and values closer to 0 indicate that reconstructed images
are poor quality compared to original images. The model stealing attack SSIM
scores are shown in row 1 of Table 2. The model stealing attack SSIM scores
for Chest X-ray, Dermoscopy and OCT datasets are 0.6064, 0.7783 and 0.5981,
respectively. It is evident from our SSIM results that the attacker can reconstruct
the data owner’s original dataset with poor quality given that he has access
to data owner’s original encoder GZ . The model stealing attacks is a baseline
attack method with the strong assumption that an attacker has access to the
data owner’s original encoding function.

Minimal Data Subset Attack. We evaluate the robustness of our proposed
Cycle-GAN image encoding method against minimal data subset attacks where
the adversary is granted access to a subset of the data owner’s original image

A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced DNNs 191

Table 2. Proposed Cycle-GAN image reconstruction attack SSIM results. SSIM scores
near 1 indicate high quality image reconstruction whereas scores closer to 0 indicate
poor quality imge reconstruction.

Attack Method Attacker’s
Knowledge

SSIM Score

Chest X-ray Dermoscopy OCT

Model Stealing GZ , Z, Y 0.6064 0.7783 0.5981

Min. Data Subset (FT) X,Z, Y 0.7582 0.8154 0.7109

Min. Data Subset (RI) X,Z, Y 0.7461 0.8033 0.7082

Cycle GAN Recon Z, Y 0.1002 0.0995 0.0329

dataset and corresponding encoded images. The goal is to develop a deep learn-
ing model to reconstruct original images given encoded images. The attack
is performed by incrementally updating the model parameters using a single
image-encoding pair from the data owner’s original dataset and corresponding
encoded images i.e., {X,Z}. Image-encoding pairs are gradually included dur-
ing the training process until SSIM saturates. The image reconstruction model
parameters are updated by minimizing the mean squared error between original
images and reconstructed images given the encoded samples. At the conclusion
of each training step, we measure the SSIM score of the data owner’s original
images and the reconstructed images. First, the attacker develops a randomly
initialized (RI) reconstruction model with a subset of the data owner’s origi-
nal image-encoding pair. Second, the attacker pre-trains a reconstruction model
using his constructed dataset XB and later fine-tunes the network (FT) with a
subset of the data owner’s original image-encoding pair. Afterwards, the recon-
struction model is used to reconstruct the data owner’s original image dataset.

Minimal Data Subset Attack Results. The reconstruction model perfor-
mance is evaluated using SSIM. The SSIM results reflect the model performance
as SSIM scores begins to saturate. The fine-tuned reconstruction model SSIM
scores are shown in row 2 of Table 2. The fine-tuned SSIM scores for Chest
X-ray, Dermoscopy and OCT datasets are 0.7582, 0.8154 and 0.7109, respec-
tively. The randomly initialized reconstruction model SSIM scores are shown in
row 3 of Table 2. The fine-tuned SSIM scores for Chest X-ray, Dermoscopy and
OCT datasets are 0.7461, 0.8033 and 0.7082, respectively. The SSIM scores are
indicative of good quality image reconstruction. The minimal data subset attack
is a baseline attack method in which the attacker has access to a subset of the
original image-encoding pairs.

Reconstruction Cycle GAN Attack. We evaluate the robustness of our
proposed method against Cycle-GAN reconstruction attacks. In this case, an
attacker constructs a dataset that follows the probability distribution of the

192 D. Rodriguez and R. Krishnan

data owner’s original dataset i.e., xb ∼ pdata(x) and attempts to reconstruct
the original dataset by learning his own mapping function using a Cycle-Gan
based approach. First, the attacker develops his own image classification model
using the constructed dataset and corresponding class labels by following the
previously mentioned procedure from our proposed method. Second, the attacker
develops a distortion model using the constructed dataset and corresponding
class labels by following the previously mentioned procedure from our proposed
method. Third, the attacker develops a Cycle-GAN encoding model using the
constructed dataset and corresponding class labels by following the previously
mentioned procedure from our proposed method. The goal is to learn a mapping
function between the attacker’s constructed dataset and the attacker’s distorted
dataset. We assume an attacker only has access to the data owner’s encoded
dataset and corresponding labels.

The attacker’s reconstruction Cycle-GAN attack network consists of the same
components of the proposed method i.e., two generators (FZ , FX), two discrim-
inators (QZ , QX). The attacker’s distorted dataset ZB is generated using pre-
trained distortion model ZB = A∗

B(XB). Generator FZ is used to translate the
attacker’s constructed images to the distorted image domain and generator FX is
used to translate distorted images to the attacker’s constructed image domain.
Discriminator QZ is used to distinguish between the real and fake distorted
images and discriminator QX is used to distinguish between the attacker’s real
and fake constructed images.

Reconstruction Cycle-GAN Adversarial Loss. The adversarial loss term is
computed using generator FZ , generator FX , discriminator QZ and discriminator
QX . Discriminator QZ is a binary classifier used to distinguish between the
distorted set ZB and the generated distorted set FZ(XB). First, generator FZ is
used as a mapping function from the attacker’s constructed image domain to the
distorted image domain Z ′

B = FZ(XB). Generator FZ wishes to minimize the
probability of Z ′

B being classified as a generated distorted image by discriminator
QZ while QZ aims to maximize the probability of the real distorted images ZB

being classified as real and generated distorted images Z ′
B being classified as

fake. The attacker learns a generator FZ that translates constructed images XB

into the distorted image domain.
Discriminator QX is a binary classifier used to distinguish between real and

generated constructed images. We obtain X ′
B using generator FX given the dis-

torted set as input to generator FX , i.e. X ′
B = FX(ZB). Generator FX wishes to

minimize the probability of X ′
B being classified as a generated construct image

by discriminator QX while QX aims to maximize the probability of real con-
structed images XB being classified as a real and generated constructed images
X ′

B being classified as fake. The attacker learns a generator FX that translates
distorted images into the attacker’s constructed image domain.

The full adversarial loss consists of a loss term from generators (FZ , FX) and
discriminators (QZ , QX). The following equations describe the adversarial loss
term.

A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced DNNs 193

LGAN (FZ , QZ ,XB , ZB) = Ezb∼penc(zb)[log QZ(zb)]
+Exb∼pdata(xb)[log(1 − QZ(FZ(xb)))]

(10)

where FZ tries to generate distorted images FZ(xb) that are similar to the
real distorted images zb, while QZ distinguishes between real distorted images
zb and generated distorted images FZ(xb). FZ minimizes the objective while QZ

maximizes the objective, minFZ
maxQZ

LGAN (FZ , QZ ,XB , ZB).

LGAN (FX , QX , ZB ,XB) = Exb∼pdata(xb)[log QX(xb)]
+Ezb∼penc(zb)[log(1 − QX(FX(zb)))]

(11)

where FX tries to generate constructed images FX(zb) that are similar to
the attacker’s constructed images xb, while QX distinguishes between the
attacker’s real constructed data and generated FX(zb) constructed data. FX

minimizes the objective while QX maximizes the objective, minFX
maxQX

LGAN (FX , QX , ZB ,XB).

Reconstruction Cycle-GAN Cycle Consistency Loss. Next, we compute
the cycle consistency loss terms using generator FZ and generator FX . First,
the attacker translates his constructed data set XB into the distorted image
domain using generator FZ . Then the generated distorted image is translated
back into the attacker’s constructed image domain using generator FX . Sec-
ond, the attacker translates distorted images ZB into the constructed image
domain using generator FX . Then the generated construct image set is trans-
lated back into distorted image domain using generator FZ . The mean absolute
error between the constructed images and the cycled constructed images are
computed. Additionally, the mean absolute error between the distorted images
and the cycled distorted images are computed.

The computed cycle consistency loss values for the constructed and distorted
data are summed together below.

Lcyc(FZ , FX) = Exb∼pdata(xb)[||FX(FZ(xb)) − xb||1]
+Ezb∼penc(zb)[||FZ(FX(zb)) − zb||1]

(12)

FX(FZ(xb)) is the attacker’s cycled constructed data and FZ(FX(zb)) is the
attacker’s cycled distorted data. The error between the cycled constructed data
and real constructed data is minimized. Also, the error between the cycled dis-
torted data and real distorted data is minimized. Both values are combined to
compute the total cycle consistency loss.

Reconstruction Cycle-GAN Attack Full Objective. All of the previously
discussed loss terms are summed together for the full objective. The full objective
for the attack consists of two adversarial loss terms and a cycle consistency loss
term.

194 D. Rodriguez and R. Krishnan

The full objective is:

L(FZ , FX , QX , QZ) = LGAN (FZ , QZ ,XB , ZB)
+LGAN (FX , QX , ZB ,XB)

+λLcyc(FZ , FX)
(13)

where λ controls the importance of each objective. In our experiments, λ = 10.
We solve the following optimization problem:

F ∗
Z , F ∗

X = argmin
FZ ,FX

max
QZ ,QX

L(FZ , FX , QX , QZ) (14)

Reconstruction Cycle-GAN Attack Results. The reconstruction Cycle-
GAN attack results demonstrate an attacker’s ability to reconstruct the data
owner’s original image dataset using the learned mapping function F ∗

X given the
data owner’s encoded dataset Z i.e., F ∗

X(Z). Generator F ∗
X was optimized to

translate encoded images to plain images. The translated images are expected
to consist of inherent features from the distorted image domain as Cycle-GAN
learns a mapping from one domain to another. Thus, we translate the data
owner’s encoded set to the attacker’s constructed plain image domain FX(Z)
to reconstruct the data owner’s original image given the data owner’s encoded
images. The SSIM score between the reconstructed images and the original
images are shown in row 5 of Table 2. We report SSIM scores using X and FX(Z)
for Chest X-ray, Dermoscopy and OCT datasets. Our results demonstrate that
image reconstruction exhibits poor quality given that only the encoded set and
corresponding labels are available to an attacker. Consequently, given that an
attacker’s knowledge is restricted to {Z, Y } it is evident that the reconstructed
images consist of poor quality when compared to original private images.

6 Conclusion

We proposed a Cycle-GAN image transformation scheme that leverages autoen-
coder image encoding for domain translation to enhance the privacy of deep
neural networks. The visible image feature information is encoded using autoen-
coder and Cycle-GAN to reduce the risk of information leakage. The impor-
tant feature information is retained for image classification while obfuscating
the sensitive image features. In this paper, we demonstrated that the proposed
Cycle-GAN image encoding method successfully enhances the privacy of sensi-
tive image data while preserving model utility with high classification accuracy.
In our experiments, we evaluated the effectiveness of our Cycle-GAN encoding
scheme by assessing the privacy versus model utility trade-off using classifica-
tion accuracy. Additionally, we show that our proposed method is robust against
reconstruction attacks when an attacker only has access to encoded data and
corresponding class labels using SSIM.

A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced DNNs 195

References

1. Atallah, M.J., Pantazopoulos, K.N., Rice, J.R., Spafford, E.E.: Secure outsourc-
ing of scientific computations. In: Advances in Computers, vol. 54, pp. 215–272.
Elsevier (2002)

2. Yuan, X., Wang, X., Wang, C., Squicciarini, A., Ren, K.: Enabling privacy-
preserving image-centric social discovery. In: Proceedings of the 2014 IEEE 34th
International Conference on Distributed Computing Systems, ser. ICDCS 2014, pp.
198–207. IEEE Computer Society, USA (2014). https://doi.org/10.1109/ICDCS.
2014.28

3. Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-
view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal.
Mach. Intell. 39(2), 209–226 (2016)

4. Packhäuser, K., Gündel, S., Münster, N., Syben, C., Christlein, V., Maier, A.: Is
medical chest X-ray data anonymous? arXiv preprint arXiv:2103.08562 (2021)

5. Ma, X., et al.: Understanding adversarial attacks on deep learning based medical
image analysis systems. Pattern Recognit. 110, 107332 (2021). https://doi.org/10.
1016/j.patcog.2020.107332

6. Tanaka, M.: Learnable image encryption. In: 2018 IEEE International Conference
on Consumer Electronics-Taiwan (ICCE-TW), pp. 1–2 (2018)

7. Sirichotedumrong, W., Maekawa, T., Kinoshita, Y., Kiya, H.: Privacy-preserving
deep neural networks with pixel-based image encryption considering data augmen-
tation in the encrypted domain. In: 2019 IEEE International Conference on Image
Processing (ICIP), pp. 674–678 (2019)

8. Sirichotedumrong, W., Kiya, H.: A GAN-based image transformation scheme for
privacy-preserving deep neural networks (2020). https://arxiv.org/abs/2006.01342

9. Li, T., Li, N.: On the tradeoff between privacy and utility in data publishing. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 517–526 (2009)

10. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks (2020)

11. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science (SFCS 1982), pp. 160–164. IEEE (1982)

12. Chase, M., Gilad-Bachrach, R., Laine, K., Lauter, K., Rindal, P.: Private collabo-
rative neural network learning. Cryptology ePrint Archive (2017)

13. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38 (2017)

14. Wagh, S., Gupta, D., Chandran, N.: Securenn: 3-party secure computation for
neural network training. Proc. Priv. Enhancing Technol. 2019(3), 26–49 (2019)

15. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Sym-
posium on Security and Privacy, pp. 334–348 (2013)

16. Aono, Y., Hayashi, T., Trieu Phong, L., Wang, L.: Scalable and secure logistic
regression via homomorphic encryption. In: Proceedings of the Sixth ACM Con-
ference on Data and Application Security and Privacy, pp. 142–144 (2016)

17. Bonte, C., Vercauteren, F.: Privacy-preserving logistic regression training. BMC
Med. Genomics 11(4), 13–21 (2018)

18. Crawford, J.L.H., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work with
FHE: the case of logistic regression. Cryptology ePrint Archive, Paper 2018/202
(2018). https://eprint.iacr.org/2018/202

https://doi.org/10.1109/ICDCS.2014.28
https://doi.org/10.1109/ICDCS.2014.28
http://arxiv.org/abs/2103.08562
https://doi.org/10.1016/j.patcog.2020.107332
https://doi.org/10.1016/j.patcog.2020.107332
https://arxiv.org/abs/2006.01342
https://eprint.iacr.org/2018/202

196 D. Rodriguez and R. Krishnan

19. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1–21. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37682-5 1

20. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X., et al.: Secure logistic regression
based on homomorphic encryption: design and evaluation. JMIR Med. Inform.
6(2), e8805 (2018)

21. Nandakumar, K., Ratha, N., Pankanti, S., Halevi, S.: Towards deep neural net-
work training on encrypted data. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (2019)

22. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, meth-
ods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

23. Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc.
Mach. Learn. Syst. 1, 374–388 (2019)

24. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-IID data, arXiv preprint arXiv:1806.00582 (2018)

25. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: strategies for improving communication efficiency (2016). https://
arxiv.org/abs/1610.05492

26. McPherson, R., Shokri, R., Shmatikov, V.: Defeating image obfuscation with deep
learning, arXiv preprint arXiv:1609.00408 (2016)

27. Huang, Y., Song, Z., Li, K., Arora, S.: InstaHide: instance-hiding schemes for
private distributed learning. In: Daume III, H., Singh, A. (eds.) Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, vol. 119, pp. 4507–4518. PMLR (2020). https://proceedings.
mlr.press/v119/huang20i.html

28. Yala, A., et al.: Neuracrypt: hiding private health data via random neural networks
for public training (2021). https://arxiv.org/abs/2106.02484

29. Carlini, N., et al.: Is private learning possible with instance encoding? (2020).
https://arxiv.org/abs/2011.05315

30. Raynal, M., Achanta, R., Humbert, M.: Image obfuscation for privacy-preserving
machine learning (2020). https://arxiv.org/abs/2010.10139

31. Carlini, N., Garg, S., Jha, S., Mahloujifar, S., Mahmoody, M., Tramer, F.: Neu-
racrypt is not private (2021)

32. Sirichotedumrong, W., Kinoshita, Y., Kiya, H.: Pixel-based image encryption with-
out key management for privacy-preserving deep neural networks. IEEE Access 7,
177844–177855 (2019)

33. Chen, Z., Zhu, T., Xiong, P., Wang, C., Ren, W.: Privacy preservation for image
data: a GAN-based method. Int. J. Intell. Syst. 36(4), 1668–1685 (2021)

34. Sirichotedumrong, W., Kiya, H.: A GAN-based image transformation scheme for
privacy-preserving deep neural networks (2020)

35. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by
image-based deep learning. Cell 172(5), 1122–1131 (2018)

36. Scarlat, A.: dermoscopic pigmented skin lesions from ham10k (2019). https://www.
kaggle.com/drscarlat/melanoma. Accessed 02 May 2020

37. Rasul, M.F., Kumar Dey, N., Hashem, M.: A comparative study of neural network
architectures for lesion segmentation and melanoma detection (2020)

38. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015). https://arxiv.org/abs/1512.03385

39. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingre-
dient for fast stylization (2017)

https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-642-37682-5_1
http://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1609.00408
https://proceedings.mlr.press/v119/huang20i.html
https://proceedings.mlr.press/v119/huang20i.html
https://arxiv.org/abs/2106.02484
https://arxiv.org/abs/2011.05315
https://arxiv.org/abs/2010.10139
https://www.kaggle.com/drscarlat/melanoma
https://www.kaggle.com/drscarlat/melanoma
https://arxiv.org/abs/1512.03385

Secure KNN Computation on Cloud

Tikaram Sanyashi1(B) , Nirmal Kumar Boran2 , and Virendra Singh3

1 Department of Information Security and Communication Technology, NTNU,
Trondheim, Norway

tikaram.sanyashi@ntnu.no
2 Department of Computer Science and Engineering, NIT Calicut, Kozhikode, India

nirmalkboran@nitc.ac.in
3 Department of Computer Science and Engineering, IIT Bombay, Mumbai, India

viren@cse.iitb.ac.in

Abstract. Cloud computing has emerged as a trend of outsourcing
database and query services to a powerful cloud to ease local storage and
computing pressure. However, private data storage and computation in
the cloud come with a risk of losing the privacy and confidentiality of
the data. Thus, sensitive applications running on the cloud require to be
encrypted before storing it in the cloud. Additionally, to run some data
mining algorithms, viz., k-NN requires the data to be in the encrypted
domain computation-friendly ciphertext form. Thus, data are encrypted
using a searchable encryption scheme before outsourcing it into the cloud.
Asymmetric scalar-product-preserving encryption (ASPE) scheme pro-
vides secure k-nearest neighbors computation that is designed to provide
both Data Privacy and Query Privacy. However, this scheme assumed
that the query users were trusted entities. Enhancements to this work
further showed that trusted query user assumption is no longer neces-
sary if we use the Paillier cryptosystem. In this work, we have shown
that even if we do not use the Paillier cryptosystem, query privacy in
the cryptosystem can be achieved using the ASPE technique alone. Using
ASPE for query encryption reduces the query encryption time, further
improving the practicality of the encryption scheme.

Keywords: Privacy preserving · k-NN · Cloud computing · Encrypted
Data

1 Introduction

The rapid progress of cloud computing has sparked a burgeoning movement
towards migrating databases to cloud-based environments. The cloud also pro-
vides users with a query service to ease the cloud storage and computing pres-
sure. Typically, a data owner delegates their databases to a cloud service for
management, leveraging the cloud’s resources and flexibility to decrease database
maintenance expenses [1,15,16]. The cloud performs both database maintenance
and outsourced computation. Nonetheless, this presents a challenge concerning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 197–216, 2023.
https://doi.org/10.1007/978-3-031-49099-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_12&domain=pdf
http://orcid.org/0000-0002-7434-0468
http://orcid.org/0000-0003-3942-7899
http://orcid.org/0000-0002-7035-7844
https://doi.org/10.1007/978-3-031-49099-6_12

198 T. Sanyashi et al.

data security and privacy. As a result, safeguarding data privacy in external-
ized databases has gained significant attention in recent times, driving intensive
research efforts in this domain.

Considering a practical scenario involving location-based services, a local ser-
vice provider (LSP) hosts an extensive geospatial database containing compre-
hensive information about numerous locations. In this setup, a user can transmit
her current location to the LSP, prompting the LSP to furnish query results such
as the top five closest hotels. A prevalent approach among LSPs is to entrust
their geospatial database to a robust public cloud, thereby availing geospa-
tial database storage and location-based query processing capabilities. Cloud
computing, acknowledged as the next-generation computing paradigm, promises
LSPs many advantages, including reduced operational costs and enhanced per-
formance.

However, this adoption of cloud services introduces a conundrum regarding
data security and privacy. The act of outsourcing geospatial data to a public
cloud deprives LSPs of direct data control, consequently giving rise to security
concerns that impede the widespread adoption of this novel computing paradigm.
One pressing issue is the potential for the cloud to gather and track the location
of the data user (i.e., the querier), thereby compromising user privacy. Moreover,
the ominous possibility of a cloud breach exists, leading to the unauthorized
exposure of stored data. Such a breach could empower malicious actors with
commercial gains or unfair advantages.

To safeguard the data privacy of LSPs, it becomes imperative to encrypt
geospatial data before transmitting it to the cloud. This, however, introduces a
pertinent question: which encryption schemes should be employed for this pur-
pose? Traditional encryption methods lack the ability to perform computations
in the encrypted domain, and while homomorphic encryption schemes exist, their
efficiency for real-world data computations might be questionable [14].

In such places, searchable encryption [2,4,7,18,19,23] plays a significant role
viz., a client encrypts a collection of sensitive data for privacy protection and
delegates the encrypted database to a server capable of effectively responding to
search queries without requiring decryption of the database. Established method-
ologies address intricate and comprehensive queries [7,8] within the structural
encryption (STE) conceptual framework [5]. More information can be obtained
from the survey paper by Fuller et al. [9].

Computation of k-nearest neighbor (k-NN) of a given query vector finds
wide application in many fields, such as location-based services, data mining, e-
healthcare, etc. The (k-NN) query seeks to identify the closest k neighbors to a
specified query vector. Nevertheless, the outcome of a k-NN query is intimately
tied to a user’s preferences and interests. Consequently, scholarly exploration
has been into devising secure k-NN query processing algorithms that simulta-
neously uphold data privacy and query confidentiality. One such scheme is the
asymmetric scalar-product-preserving encryption (ASPE) technique introduced
by Wong et al. [23]. It finds many applications in secure cloud computation,
including k-NN, fuzzy keyword search, content-based image retrieval, keyword
matching, etc.

Secure KNN Computation on Cloud 199

In [23], Wong treated the cloud as an untrusted entity while the query users
as a trusted entity; thus, the data encryption key is shared with them, which
in real-world scenarios may not be an acceptable assumption to consider. Later,
Zhu et al. [26] addressed this issue and presented a way to achieve query privacy
without sharing the secret key with the query users. However, they used the
help of Paillier cryptosystem, which requires comparatively higher encryption
and decryption time for query encryption and decryption. This work replaces
the Paillier encryption scheme using the ASPE technique and has shown that
query privacy of the encryption can also be achieved using the ASPE technique.
The use of ASPE reduces the query encryption time, making the encryption
scheme more efficient and practical at the same time.

The rest of the paper is organized as follows: Sect. 2 introduces the back-
ground, and Sect. 3 related work. Section 4 presents the system model, while
Sect. 5 presents the proposed encryption scheme. Section 6 presents the perfor-
mance evaluation of the proposed encryption scheme, and Sect. 7 presents the
proposed work’s empirical evaluation. Finally, Sect. 8 concludes the paper.

Mathematical notations used in the paper can be found in Table 1.

2 Background

This section will briefly review the ASPE encryption scheme [26]. In the ASPE
encryption scheme, given a database D = (p1,p2, · · · ,pm) of d-dimension with
ith tuple as (pi1 , pi2 , · · · , pid

). The database is encrypted first and stored in
the cloud as D′ = (p′

1,p
′
2, · · · ,p′

m). ASPE encryption scheme increases the
dimension of each data vector by (1+c+ε)-dimension. Thus given a d-dimensional
data vector (pi1 , pi2 , · · · , pid

) the encrypted data vector results into (d+1+c+ε)-
dimensional vector as (p′

i1
, p′

i2
, · · · , p′

i(d+1+c+ε)
). Positive integers c and ε are the

dimensions added to maintain the security of the encryption scheme.
ASPE encryption scheme can be modularized into four modules: key gener-

ation, data encryption, query encryption, and query processing. Below, we have
covered each of these modules in brief.

Key Generation: In this step, the data owner (DO) generates the data encryption
key as follows

– s = (s1, s2, · · · , sd+1) ∈ R
d+1 and τ ∈ R

c, fixed long-term secrets.
– vi ∈ R

ε is a per-tuple ephemeral secret while r(q) ∈ R
c and βq ∈ R are

per-query ephemeral secrets.
– M is an invertible matrix with (d+1+c+ε) rows/columns and with elements

drawn uniformly at random from R.
– π a secret permutation function of length (d + 1 + c + ε).
– The resultant secret key consist of (M , s, τ ,π).

200 T. Sanyashi et al.

Table 1. Table of Notations

Notation Meaning

A - Z matrices

a - z vectors

a - z constants

D database of vectors

pi ith data vector

q query vector

d dimension of data and query vector

p′
i encrypted data vector pi

D′ database D in encrypted form

p′′
i computed from p′

i for k-NN computation

D′′ database created for k-NN computation

q̇ encrypted query vector by Query User

q̂ encrypted query vector by Data Owner

q̃vec query encrypted for k-NN computation

Mη×η
base invertible base secret matrix

Mη×η
t invertible temporary secret matrix

Eη×η error matrix used for encryption

Nd×d diagonal matrix used for query encryption by QU

N′η×η diagonal matrix used for query decryption by QU

ED(pi) = ‖pi‖
√∑d

l=0 p2
il

ED(pi, q)
√∑d

l=0(pil − ql)2

c, ε security parameters > 0

η = (d + 1 + c + ε) encrypted data/query vector length

s (d + 1)-dimensional vector of reals

w c-dimensional fixed real vector

z ε-dimensional data encryption ephemeral vector

x c-dimensional query encryption ephemeral vector

β1, β2 random real numbers used for encryption

Data Encryption: In this step, the database of vectors is encrypted row-wise.
For encryption, the following steps are performed.

– It starts by shifting each tuple of data vector pi by the shifting vector s later
augmented by two secrets, long-term secret τ and per tuple ephemeral secret
vi creating the shifted data vector as

p̂i = (s1 − 2pi1 , · · · , sd − 2pid
, sd+1 + ‖pi‖2, τ ,vi)

Secure KNN Computation on Cloud 201

– The shifted vector is later encrypted using the secret encryption matrix as

p′
i = p̂iM̂

−1

Here, M̂ = π(M), is the matrix obtained by permuting the columns of M
using the permutation function π.

Query Encryption: For query encryption, interaction between the DO and query
user (QU) is needed. The query user performs the first step of query encryption.
In this step, QU encrypts the query vector using the Paillier cryptosystem and
forwards it to the DO for its encryption. In the second step, DO re-encrypts the
encrypted query vector and reverts it to the QU. QU performs the third and
final step of query encryption. In this step, QU removes his encryption layer and
forwards the encrypted query vector encrypted with only DO’s secret key to the
cloud service provider (CSP) for k-NN computation. The encryption scheme pre-
sented in this work removes the Paillier encryption scheme for query encryption
and uses the ASPE techniques instead. Thus, understanding the query encryp-
tion of Zhu et al. [26] in detail is optional for the present work. In general, the
encrypted query q′

enc have a form of

q′
enc = βq.M̂q̂∗

where q̂∗ = (q1, q2, · · · , qd, 1, r(q),0(ε))

k-NN Computation: In its simplest form, solving the k-nearest neighbors problem
involves computing the distance, D(pi, q) between the query vector, q and each
database vector, pi. However, in the current context, we are dealing with an
encrypted query vector and an encrypted database. Fortunately, a comparison
between the distances, D(pi, q) and D(pj , q) reduces to a simple comparison in
the encrypted domain as derived below:

D(pi, q) > D(pj , q)

⇔ ‖pi − q‖2 > ‖pj − q‖2
⇔ ‖pi‖2 − 2piq + ‖q‖2 > ‖pj‖2 − 2pjq + ‖q‖2

⇔ −2
d∑

k=1

pikqk + ‖pi‖2 > −2
d∑

k=1

pjkqk + ‖pj‖2

⇔
d∑

k=1

(sk − 2pik)qk + sd+1 + ‖pi‖2 + τ .r(q)

>

d∑

k=1

(sk − 2pjk)qk + sd+1 + ‖pj‖2 + τ .r(q)

⇔ p′
iq

′ > p′
jq

′

Thus, as presented above, we can safely compute the k-NN in the encrypted
domain using the ASPE technique.

202 T. Sanyashi et al.

This completes the brief description of the ASPE encryption scheme and is
sufficient to understand the work in this paper.

3 Related Work

This section reviews the existing works on privacy-preserving secure k-NN
computation. Privacy-preserving secure k-NN computation – retrieval of top-k
database records satisfying the smallest distances to a given query vector in the
encrypted domain. It finds many applications in various fields, viz., data mining,
pattern recognition, e-healthcare, location-based services, and signal processing,
to name a few. Due to its ubiquitous application in various fields, it finds consid-
erable attention from both industries and academia. Thus, it remains an active
field of research in the outsourced computation environment, preserving data
and query privacy.

In literature, different k-NN computing techniques are available, viz., matrix
encryption, homomorphic encryption, private information retrieval, and other
privacy preservation techniques. ASPE based on matrix multiplication initially
presented by Wong et al. [23] in 2009 is used to realize k-NN computation. It
focuses on the privacy of the database and query vector from the CSP while the
QUs are treated as trusted users; thus, the data encryption key is shared with
them for query encryption, which might not be a reasonable assumption to con-
sider. Zhu et al. [26] improved the encryption scheme by treating query users as
non-trusted entities and provided a privacy-preserving k-NN query computation
using the Paillier encryption scheme. The scheme requires the DO’s active par-
ticipation in the query encryption process. Over time, many privacy-preserving
schemes have been designed based on the ASPE scheme.

Additionally, many similarity range query schemes have also been proposed
viz., [3,11,20,21,24,26]. Later, it was shown that such a scheme could not resist
known-plaintext attacks as mentioned in [13]. The key confidentiality claim of
the encryption scheme [26] is later breached by the work of [17]. However, [17]
also present a way to enhance the scheme and a technique to restrict known
plaintext attack on the encryption scheme and shows a way to securely compute
k-NN queries, keeping data privacy and query privacy intact. A variant of the
k-NN problem is the reverse k-NN problem that produces k data vectors whose
query vector is the k-NN. Li et al. [12] used the ASPE technique and other
methods to realize the same.

Meanwhile, many schemes leverage homomorphic encryption techniques to
protect data and query privacy viz., [10,25]. In addition, some privacy-preserving
k-NN query computing schemes [6,22] were also designed by employing other pri-
vacy preservation techniques, e.g., private information retrieval. ASPE, however,
still finds an active place in all these techniques due to its computation speed in
the encrypted domain.

Secure KNN Computation on Cloud 203

4 System Model

The security model of secure k-NN computation consists of three entities: a
data owner (DO), a cloud service provider (CSP), and a group of query users
(QU). Here, the DO encrypts its database intended to be stored in the cloud
using a searchable encryption scheme and stores it in the cloud as shown in
Fig. 1. A QU intending to compute k-NN of its query vector encrypts its query
vector using the encryption scheme mentioned in Sect. 5 and sends it to DO for
query re-encryption by the DO’s secret key. On receiving the query vector from
a QU, DO re-encrypts it using the procedure mentioned in Sect. 5 and sends
it back to the QU. On receiving an encrypted query vector from the DO, QU
removes his encryption layer as mentioned in Sect. 5 and sends the encrypted
query vector for k-NN computation to the CSP. CSP checks the user id and
uses the corresponding data for k-NN calculation. The data prepared using the
temporary secret key Mt uses the Euclidean distance as the distance metric to
obtain k data vector. The computed k data labels are later forwarded to the
QU as the obtained k-NN. The data labels may correspond to different disease
names in the case of healthcare data and nearby restaurant names in the case
of LSP and usually depend on the data type and query under consideration.

Fig. 1. Secure k-NN computation model in the cloud computation environment. In
the figure, DO represents the data owner, QU represents the query users, and CSP
represents the cloud service provider.

A semi-honest threat model has been considered in the proposed encryption
scheme. Here, the cloud is the semi-honest adversary (a.k.a., honest-but-curious),
viz., it does not deviate from the defined protocol. However, it uses the legiti-
mately received data to infer other private or sensitive information. For instance,
the cloud may want to infer the DO’s geospatial data and the QU’s query loca-
tions.

204 T. Sanyashi et al.

Consequently, to protect the DO’s geospatial location data and QU’s query
location data, both the geospatial data and query location should be encrypted
before sending it to the public cloud. The QU also behaves as a semi-honest
entity; however, to gain information about the secret key used for data encryp-
tion, he tries to frame queries of his choice. Here, we assume that the CSP and
QU are non-colluding entities.

5 Proposed Scheme

This section will discuss the proposed enhanced encryption scheme. The pro-
posed encryption scheme can be modularized into the following four modules,
similar to the previous work: key generation, data encryption, query encryption,
and secure k-NN computation. Query encryption is performed in three steps:
query encryption by QU, query encryption by DO, and finally, query encryption
by QU. The encrypted query is later sent to the CSP for secure k-NN compu-
tation. The CSP computes the k-NN in the encrypted domain and reverts the
obtained label to the query user. Below, each module mentioned above has been
discussed in more detail.

Key Generation: In this step, the DO having a database D of n vectors with
d-dimension generates the public parameters c and ε and computes η as η =
d + 1 + c + ε. Samples the base secret matrix Mbase of η × η-dimension, here we
have termed the secret matrix as base secret matrix; the reason behind this will
be discussed later. Furthermore, a long-term secret vector s of length (d + 1) is
also generated; it is used to hide the data vector by shifting each data vector by
this secret vector. DO also generates a fixed vector w of length c uniformly at
random for each data vector to be encrypted.

The secret key of the encryption scheme is (s,Mbase,w).

Data Encryption: In this step, DO samples a ephemeral secret vector z of length
ε and pre-processes each data vector to obtain a pre-processed data vector as

p̃i = (s1 − 2pi1, · · · , sd − 2pid, sd+1 + ||pi||2,w, z)

The pre-processed data vector is later encrypted by performing vector-matrix
multiplication with base secret matrix Mbase as shown in Eq. 1.

p′
i = p̃iM

−1
base (1)

Encrypted data vectors are later stored in the cloud, where the rest of
the query computations are performed. DO also computes the Euclidean
norm (EN) of data vectors and stores the maximum norm as Max norm =
Max(EN(ppp1), · · · , EN(pppm)), which will be used for query encryption later.

Performing the computation as mentioned above and storing the database in
the cloud, DO can drop the database D from the local storage. In the future, if
the database is needed, he can download it from the cloud and decrypt it to get
the database in the plaintext format.

Secure KNN Computation on Cloud 205

Query Encryption: Interaction between the QU and the DO is required to per-
form query encryption. Different steps performed by the DO and the QU are
divided into three steps. Each of these three steps has been covered below.

– Step 1: QU performs the first step of query encryption. A QU having a query
vector q of d-dimension samples a diagonal matrix Nd×d of real numbers and
computes the encrypted query q̇ as

q̇ = β1 · q · N
Here, β1 is an encryption constant and is a real number. The encrypted
query q̇ obtained above is later sent to the DO along with query user id
as (user id, q̇) to obtain a doubly encrypted query vector q̂. This completes
step 1 of query encryption.

– Step 2: This step of query encryption is performed by the DO. Here the DO
at first computes the largest number present in the encrypted query vector
q̇ as qmax = max(q̇). Next, it samples a temporary secret matrix Mη×η

t ,
with all elements except the diagonal elements of matrix Mt uniformly at
random larger than qmax. In contrast, the diagonal elements are sampled
uniformly at random larger than Max norm. Later, matrix Mt is multiplied
with Mbase to obtain a temporary secret matrix for the query encryption as
Msec = MtMbase.
The obtained query vector q̇ is appended to obtain a new query vector q′ of
η-dimension as

q′ = (q̇, 1,x,0ε)

where x is an ephemeral integer vector of length c and 0ε is a zero vector
of length ε. Next it uses the operator Oe to convert vector q′ into a η × η
dimensional diagonal matrix qηη as follows

Oe : q′ → qηη with qii = q′
i

Next, it performs computation as presented by Eq. 2 below

q̂ = β2(Msecqηη + E) (2)

Here the error matrix Eη×η is used to hide the secret matrix Msec from QU
and the real number β2 is a DO encryption constant. Elements of the error
matrix E are sampled uniformly at random larger than qmax. The reason is
that the QU should not learn any content of the secret matrix by looking
into the obtained doubly encrypted query vector. It is to be noted that the
elements of the matrix E are sampled in such a way that the correctness of
the k-NN computation remains intact; in the later section, we will discuss it
further.
DO returns the doubly encrypted query matrix q̂ to the QU and send the
temporary secret matrix and user id to the CSP as (user id,Mt). The CSP
prepares the temporary database D′′ for the query user user id for computing
k-NN computation as

p′′
i = p′

iM
−1
t

p′′
i = p̃iM

−1
baseM

−1
t

206 T. Sanyashi et al.

This completes the step 2 of query encryption.
– Step 3: This step of query encryption is performed by the QU. In this step,

QU removes his encryption layer to obtain q̃enc. QU constructs a diagonal
matrix N′η×η with first d diagonal elements same as that of the matrix Nd×d

and rest all 1. Computes its inverse and uses it to remove his encryption layer
as follows

q̃enc = q̂N′−1

= β2(Msecq′′
ηηN

′ + E) · N′−1

= β2(Msecq′′
ηη + E · N′−1)

where q′′
ηη is a diagonal matrix with diagonal element (β1q, 1,x,0ε).

The encrypted query matrix q̃enc is converted to a vector q̃vec using an oper-
ator Or as presented below.

Or : q̃enc → q̃vec

Here q̃vecj
=

∑η
i=1 q̃encji

, for j ∈ {1, η} viz., the jth element of vector q̃vec

is obtained by adding all columns of row j of matrix q̃enc. In short

q̃vec = β2(Msecq′′
η + err)

where q′′
η is a vector of η elements as (β1q, 1,x,0ε) and err is a vector obtained

by computing Row Sum(E ·N′−1). The encrypted vector q̃vec is later sent to
the CSP for k-NN computation. This completes stage 3 of query encryption
and, as a whole, query encryption as well.

Decryption: Decryption of encrypted data vectors is straightforward and is per-
formed as

p̃i = p′
iMbase

From p̃i data tuples are recovered by following

pij = sj − p̃ij

k-NN Computation: The cloud performs the k-NN computation by performing
multiplication of encrypted data vectors p′′

i from the temporary database D′′

and an encrypted query vector q̃enc as follows

p′′
i q̃vec = β2[p̃iM

−1
baseM

−1
t (Msecq′′

η + err)]

= β2(p̃iq
′′
η + p̃i · M−1

baseM
−1
t · err)

= β2(p̃iq
′′
η + err′

i) [err′
i = p̃i · M−1

baseM
−1
t · err]

The proposed encryption scheme performs correct k-NN computation pro-
vided it satisfies

(p̃i − p̃j)q
′′
η > (err′

i − err′
j)

This is ensured by selecting parameters as discussed in step 2 of query encryption.

Secure KNN Computation on Cloud 207

5.1 Correctness Analysis

The correctness of the encryption scheme needs two-fold proof. First, we need
to show that the decryption of the encrypted data produces consistent plaintext
data. This has already been shown in the decryption part above. Second, we
must show that the encryption scheme produces correct k-NN computation in
the encrypted domain. For this, it is sufficient to prove the Lemma 1 presented
below.

Lemma 1. Comparison of multiplication result of encrypted data vector p′′
i and

encrypted query vector q̃vec is sufficient for k-NN computation.

Proof. The encrypted data vector p′′
i when multiplied with encrypted query

vector q̃vec it gives rise to

p′′
i q̃vec = β2(p̃iq

′′
η + err′

i)

Here,

p′′
i q̃vec = β1β2[(s1q1 + · · · + sdqd + sd+1) − 2(pi1q1 + · · · + pidqd) + ||pi||2]

+ β2 · wx + β2 · err′
i

Similarly,

p′′
j q̃vec = β1β2[(s1q1 + · · · + sdqd + sd+1) − 2(pj1q1 + · · · + pjdqd) + ||pj ||2]

+ β2 · wx + β2 · err′
j

Thus,

(p′′
i − p′′

j)q̃vec = β1β2[(||pi||2 − 2pi1q1 − · · · − 2pidqd + ||q||2)
− (||pj ||2 − 2pj1q1 − · · · − 2pjdqd + ||q||2)] + β2(err′

i − err′
j)

= β1β2[(pi1 − q1)2 − (pj1 − q1)2 + · · · + (pid − qd)2 − (pjd − qd)2]
+ β2(err′

i − err′
j)

The above term evaluates to correct comparison provided it satisfies the inequal-
ity given below

(err′
i − err′

j) < β1[(pi1 − q1)2 − (pj1 − q1)2 + · · · + (pid − qd)2 − (pjd − qd)2]

β1(p̃i − p̃j)q
′′
η > (p̃i − p̃j)M

−1
baseM

−1
t · err

β1q′′
η > M−1

baseM
−1
t · Row Sum(E · N′−1) (3)

In Eq. 3 above, by choosing elements of E and Mt as mentioned in step
2 of query encryption makes M−1

baseM
−1
t · Row Sum(E · N−1) negligible. This

is because elements of matrix Mt are large, making elements of matrix M−1
t

quite small. Furthermore, it further gets multiplied with elements of matrix
M−1

base making overall multiplication negligible, which when multiplied with vec-
tor Row Sum(E ·N′−1), the resultant vector have negligibly large values. Thus
the overall result becomes quite small, which enforces the evaluation of correct
k-NN.

208 T. Sanyashi et al.

5.2 Security Analysis

The proposed encryption scheme is claimed to hold following properties: Key
Confidentiality, Data Privacy, Query Privacy and Known Plaintext Attack. We
will discuss each of these properties one by one below.

Data Privacy: DO outsource its database in the encrypted form to the CSP.
Thus, CSP can access the DO’s private data other than the DO. Privacy of the
DO’s private data remains intact if encrypted data does not leak any information
about the plaintext data. So, it is sufficient to prove Lemma 2 presented below.

Lemma 2. Without the knowledge of secret matrix Mbase, encrypted database
D′ behaves as a random number.

Proof. In the presented encryption scheme an encrypted data vector p′
i is

obtained by performing computation as

p′
i = p̃iM

−1
base

where the initial data vector pi is pre-processed to obtain p̃i as

p̃i = (s1 − 2pi1, · · · , sd − 2pid, sd+1 + ||pi||2,w, z)

In the pre-processed data vector p̃i, an ephemeral random vector z of length
ε is used. The use of ephemeral random vector z for encrypting pi makes it
random even if the same data vector is encrypted for the second time, resulting
in a semantically secure encryption scheme. Thus, no information about the
plaintext data can be derived from the ciphertext data unless the secret key of
the encryption scheme is known. This completes the proof of the lemma.

Query Privacy: Query Privacy of the encryption scheme needs to be established
from the DO and the CSP. We will discuss each of these two cases separately.

– Case1: Query privacy against DO – It is established by encrypting the data
vector by the QU. The encrypted query vector q̇ received by the DO have a
form of

q̇ = β1 · q · N

Here query vector q is multiplied with a diagonal random matrix N and a
real number β1 to obtain the encrypted query vector q̇. Each element of query
vector q̇ looks something like

q̇i = β1 · qi · nii

In the above equation, the i-th diagonal element nii and β1 are unknown real
numbers. Without their knowledge, retrieval of qi is infeasible.

Secure KNN Computation on Cloud 209

– Case2: Query privacy against CSP – It comes from the query encryption
performed by the DO. The query vector sent for k-NN computation to the
CSP has a form of

q̃vec = β2(Msecq′′
η + err) (4)

where q′′
η = (β1q, 1,x,0ε) and err is a vector obtained by computing

Row Sum(E · N′−1). The ith element of q̃vec is computed as

q̃veci
= β2(Mseci

q′′
η + erri) (5)

From Eq. 4 and 5, it is clear that retrieval of q′′
η from q̃vec requires the knowl-

edge of β2, Msec and erri. Thus, without the knowledge of β2, Msec and erri

retrieval of the plain query is infeasible. In short, encryption performed by
the DO can successfully withstand the query privacy against the CSP.

Key Confidentiality: Key confidentiality of the encryption scheme means the
data encryption key should not be revealed to anyone and should remain confi-
dential. Key confidentiality of the encryption scheme from CSP is straightforward
as the DO only stores its encrypted database in the CSP, which looks completely
random. Furthermore, for each query user interested in performing k-NN com-
putation, a temporary key Mt is sent to the CSP to prepare data for the query
user. This new temporary key Mt keeps on changing for each new k-NN compu-
tation request and is entirely independent of Mbase. Thus, by looking into the
random-looking encrypted database and Mt, no information about the base key
Mbase can be derived.

Additionally, as discussed in the query privacy part above, CSP can not figure
out the data encryption key used for database encryption by looking into the
encrypted database D′ this is due to the use of the ephemeral secret vector z,
which makes the encrypted data vector pseudorandom. Thus by using database
D′ and query q̃enc only k-NN can be computed, and no further information
about the secret key matrix Mbase can be obtained unless the error term err
and constant β1 and β2 are known.

Key confidentiality against the QU comes from the fact that the encrypted
query vector sent to the QU is of the form of Eq. 2. When QU multiplies matrix
N′−1 to Eq. 2 the equation evaluates to

q̂N′−1 = β2(Msecq′′
ηη + E · N′−1) (6)

Here q′′
ηη is a diagonal matrix with diagonal elements (β1q, 1,x,0ε).

In Eq. 6, query user knows matrix q′′
ηη and N′−1. As the QU can ask queries of

any form, he can construct a query of his choice to extract maximum information
about the secret key matrix used for the data encryption. Below we tried to cover
each possible queries a QU can frame and tried to analyze key confidentiality
against the query user.

210 T. Sanyashi et al.

– Case 1: Query user constructs a query with all query elements set to 1 and
send the query vector as shown below for encryption

q̇ = 1N

The received query after the removal of N will be of the following form

q̃ = β2(Msec1 + EN′−1)

Here the value of E and β2 are unknown to the QU. So he can not get
meaningful information about the secret key matrix Msec.

– Case 2: The QU constructs a query by setting the first element to non-zero,
rest all zeros, and sends it for encryption. On the received encrypted query,
when the QU removes his encryption layer by multiplying N′−1, the obtained
query has a form as shown below.

q̃ = β2

⎛

⎜⎜⎜⎝

m11 m12 · · · m1η

m21 m22 · · · m2η

...
...

. . .
...

mη1 mη2 · · · mηη

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
0
...
0

⎞

⎟⎟⎟⎠ + β2

⎛

⎜⎜⎜⎝

E11N
−1
11 E12N

−1
22 · · · E1ηN−1

ηη

E21N
−1
11 E22N

−1
22 · · · E2ηN−1

ηη
...

...
. . .

...
Eη1N

−1
11 Eη2N

−1
22 · · · EηηN−1

ηη

⎞

⎟⎟⎟⎠

= β2

⎛

⎜⎜⎜⎝

m11 + E11N
−1
11 E12N

−1
22 · · · E1ηN−1

ηη

m21 + E21N
−1
11 E22N

−1
22 · · · E2ηN−1

ηη
...

...
. . .

...
mη1 + Eη1N

−1
11 Eη2N

−1
22 · · · EηηN−1

ηη

⎞

⎟⎟⎟⎠ (7)

From Eq. 7 without the knowledge of error matrix E and constant β2 no
information about the secret matrix Mbase can be retrieved. Furthermore,
for each new query secret matrix Msec keeps on changing making the secret
key retrieval impossible.

Known Plaintext Attack: Assuming a CSP with an encrypted database has access
to a polynomial number of plaintext data vectors, he can perform a known
plaintext attack as shown in [13]. However, the same attack is not possible in
the proposed encryption scheme; this is because in [13], ASPE computes the
exact value of pi · q to compare k-NN, which is later exploited using known
plaintext data vectors to break the query confidentiality and later data privacy
of the encryption scheme. However, extending this to the proposed encryption
scheme is impossible because we do not compute the exact distance to compute
k-NN in the proposed encryption scheme. In the proposed encryption scheme,
only the relative distance is compared to find the k-NN, as shown below.

(p′′
i − p′′

j)q̃vec = β1β2[(||pi||2 − 2pi1q1 − · · · − 2pidqd + ||q||2) − (||pj ||2 − 2pj1q1

− · · · − 2pjdqd + ||q||2)] + β2(err′
i − err′

j)

= β1β2[||pi||2 − 2pi1q1 − · · · − 2pidqd + 2pj1q1 + · · · + 2pjdqd

− ||pj ||2] + β2(err′
i − err′

j)

Secure KNN Computation on Cloud 211

From the above equations, without the knowledge of β1, β2 and (err′
i −err′

j),
the CSP can not frame linear equations to retrieve the query vector q uniquely.
Thus, we can not retrieve q from the above equations.

6 Performance Evaluation

This section will analyze the cost of our proposed encryption scheme, viz., the
computation and communication costs.

6.1 Computation Cost

The computational complexity of different steps of the proposed encryption
scheme is presented in Table 2. DO generates different secrets for the key gen-
eration step, including the secret matrix Mbase. Thus, the computational com-
plexity of the KeyGen step of the proposed encryption evaluates to O(η2). For
the database encryption, DO multiplies m data vectors–each enhanced to η-
dimensional vector for security, with the secret matrix M−1

base. Thus, the total
computational complexity of database encryption evaluates to O(mη2).

Query encryption is performed in three steps, with QU performing the first
step. In this step, the QU samples the diagonal matrix N and multiplies it with
the query vector. This requires multiplication of d diagonal elements with d-
dimensional query vector. So, the total computational cost evaluates to O(d).
The DO performs the second step of the query encryption by sampling a secret
matrix Mt and multiplying it with the base secret key matrix Mbase, which is
later multiplied with the query vector – enhanced to η dimension. Thus, the
total computational complexity of this step evaluates to O(η3). The third and
final step of query encryption is performed by the QU, which multiplies N′−1 to
the received query vector, evaluating the total computational cost of this step
to O(η3). Thus, the overall computational complexity of the query encryption
evaluates to O(η3).

The computational cost of k-NN evaluation using the proposed encryption
scheme evaluates to O(mη log k). This is because it requires the multiplication
of m data vectors with η-dimension with a query vector of the same dimension
and comparing the distances to figure out the k-NN.

Table 2. Computation complexity of the proposed encryption scheme

Process DO QU CSP Total

Key Generation O(η2) O(1) - O(η2)

Database Encryption O(mη2) - - O(mη2)

Query Encryption O(η3) O(η3) - O(η3)

k-NN Computation - - O(mη log k) O(mη log k)

212 T. Sanyashi et al.

6.2 Communication Cost

Considering the proposed encryption scheme’s communication cost, the initial
key generation and database encryption involve only DO. Thus, zero communi-
cation cost is required in this step. Considering each tuple of encrypted query
vectors as log n bits, QU sends d-dimensional encrypted query to the DO. DO
encrypts it and sends the encrypted matrix of η2 elements. Thus, the total com-
munication cost between DO and QU equals O(η2 log n) bits. The encrypted
query vector is then sent to CSP for k-NN computation with a communication
cost of O(η log n) bits. Finally, CSP returns computed k-NN result with com-
munication cost equivalent to O(kc) bits, where c = �log(L)�, here L represents
the total number of labels in the database.

7 Empirical Evaluation

This section will cover the empirical performance of the proposed encryption
scheme presented in Sect. 5, it also covers performance analysis in detail with
respect to the earlier encryption schemes, viz. Zhu et al. [26] for varying dimen-
sions and the number of samples considering synthetic database generated using
some computer programs.

7.1 Experiment Setup

We have implemented the encryption scheme proposed in Sect. 5 and Zhu et al.
[26] in Python. The security parameters of both the encryption schemes have
been fixed to c = 5 and ε = 5. Paillier encryption scheme with a key size of
1024 bits is used to maintain query privacy between QU and DO in the case
of Zhu et al. All experiments are performed on an Intel Core i7 − 8700 CPU
@3.20GHz × 12 with 32 GB RAM running Ubuntu 22.04.

7.2 Experiments Performed

To better analyze the encryption scheme, we have performed five experiments.
Each of these experiments has been covered in detail below.

Encryption Time-Varying Dimension: To compare the encryption time of the
proposed encryption schemes, we have created a database for varying dimensions
starting from 10 up to 100 in a step of 10, keeping the number of samples fixed
to 100, 000. The behavior of the encryption schemes has been plotted and is
shown in Fig. 2a. The figure shows that the run time of the proposed encryption
scheme increases linearly with dimension and behaves almost similarly to that
of the Zhu encryption scheme. The minute difference in the figure is caused by
removing the permutation function used in the Zhu et al. [26].

Encryption Time Varying Samples: To compare the data encryption time of
the proposed encryption scheme, we have kept the dimension of the encryption

Secure KNN Computation on Cloud 213

Fig. 2. Comparison of the data encryption time of the proposed encryption scheme
with that of the Zhu encryption scheme for varying dimensions with data samples
fixed to n = 100, 000 (a) and varying number of data samples with data dimension
fixed to d = 10 (b).

scheme fixed as 10 and varied the number of samples starting from 100, 000 to
1, 000, 000 in the step of 100, 000. The behavior of the encryption scheme has been
plotted and is shown in Fig. 2b. From Fig. 2b, it is clear that with an increase in
the number of samples keeping the dimension fixed, both the encryption schemes
behave similarly, and the slight difference in the encryption time between the
two is caused by the permutation function used in the Zhu encryption scheme.

Query Encryption Time-Varying Dimension: The main contribution of this work
lies in query encryption; thus, it is most important to show the outcome of the
new way of encrypting the query vector. Figure 3 shows the same for varying
dimensions in a step of 10. From Fig. 3, it is clear that the new way of encrypt-
ing the query vector significantly reduces the query encryption time compared
to the earlier encryption scheme. This is because it involves simple matrix mul-
tiplication operations, compared to the operation involved in the Zhu et al. [26],
which requires query encryption by the Paillier encryption scheme.

k-NN Computation Time for Varying Number of Samples and Dimensions:
Figure 4a and 4b shows the secure k-NN computation time for varying number
of samples and dimensions and is also compared with that of the plaintext k-NN
computation time. The figures show that k-NN computation in the encrypted
environment remains almost similar for both encryption schemes and is slightly
higher than that of the plaintext computation time. From Fig. 4a and 4b, it
is clear that the computational overhead of computing k-NN in the encrypted
domain is negligible in comparison to the plaintext domain. Thus, the proposed
encryption scheme perfectly suits for the practical applications.

214 T. Sanyashi et al.

Fig. 3. Query encryption time comparison of the proposed encryption scheme with the
Zhu encryption scheme for varying dimensions in a step size 10.

Fig. 4. k-nearest neighbor computation time for a varying number of data samples
keeping dimension fixed to d = 10 (a) and varying number of data dimensions keeping
data samples fixed to n = 100, 000) (b) for k = 20.

8 Conclusion

The work presented in this paper suggests performing query encryption in an
untrusted query user setting of the ASPE encryption scheme without compro-
mising the query privacy of the QU. The new way of performing query encryption
replaces the Paillier encryption technique used in the earlier work, which required
comparatively higher computation time; as a result, it may not be suggestable for
real-world applications. This work tries to fix this issue by removing the Pailler
cryptosystem used for query encryption and using the ASPE technique instead.
Using the ASPE technique for query encryption increases the overhead of CSP’s
computation in the cloud, which requires preparing a temporary database for k-
NN computation. However, this step can be avoided by directly multiplying the
query obtained from the QU with the temporary matrix and using the obtained
vector for k-NN computation. The work of this paper shows that query pri-

Secure KNN Computation on Cloud 215

vacy using ASPE alone is achievable, and the experimental result indicates a
considerable reduction in query encryption time. Using the ASPE technique for
query encryption instead of the Paillier Cryptosystem performs better and is
achievable without compromising the security requirements.

Acknowledgments. This work was supported by AI powered adaptive cyber defense
framework and solution for national critical information infrastructure, National Cyber
Security Council, Government of India.

References

1. Ahmad, A., et al.: Parallel query execution over encrypted data in database-as-a-
service (DaaS). J. Supercomput. 75, 2269–2288 (2019)

2. Bost, R.:
∑

oϕoς: forward secure searchable encryption. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
1143–1154 (2016)

3. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1),
222–233 (2013)

4. Cash, D., et al.: Dynamic searchable encryption in very-large databases: data struc-
tures and implementation. Cryptology ePrint Archive (2014)

5. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

6. Choi, S., Ghinita, G., Lim, H.S., Bertino, E.: Secure KNN query processing in
untrusted cloud environments. IEEE Trans. Knowl. Data Eng. 26(11), 2818–2831
(2014)

7. Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis,
M.: Practical private range search revisited. In: Proceedings of the 2016 Interna-
tional Conference on Management of Data, pp. 185–198 (2016)

8. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich
queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A.,
Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 123–145. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24177-7 7

9. Fuller, B., et al.: SoK: cryptographically protected database search. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 172–191. IEEE (2017)

10. Guan, Y., Lu, R., Zheng, Y., Shao, J., Wei, G.: Toward oblivious location-based k-
nearest neighbor query in smart cities. IEEE Internet Things J. 8(18), 14219–14231
(2021)

11. Li, H., Yang, Y., Luan, T.H., Liang, X., Zhou, L., Shen, X.S.: Enabling fine-grained
multi-keyword search supporting classified sub-dictionaries over encrypted cloud
data. IEEE Trans. Dependable Secure Comput. 13(3), 312–325 (2015)

12. Li, X., Xiang, T., Guo, S., Li, H., Mu, Y.: Privacy-preserving reverse nearest neigh-
bor query over encrypted spatial data. IEEE Trans. Serv. Comput. 15(5), 2954–
2968 (2021)

13. Lin, W., Wang, K., Zhang, Z., Chen, H.: Revisiting security risks of asymmetric
scalar product preserving encryption and its variants. In: 2017 IEEE 37th Inter-
national Conference on Distributed Computing Systems (ICDCS), pp. 1116–1125.
IEEE (2017)

https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-319-24177-7_7

216 T. Sanyashi et al.

14. Liu, J., Wang, C., Tu, Z., Wang, X.A., Lin, C., Li, Z.: Secure KNN classification
scheme based on homomorphic encryption for cyberspace. Secur. Commun. Netw.
2021, 1–12 (2021)

15. Oh, D., Kim, I., Kim, K., Lee, S.M., Ro, W.W.: Highly secure mobile devices
assisted with trusted cloud computing environments. ETRI J. 37(2), 348–358
(2015)

16. Raja, J., Ramakrishnan, M.: Confidentiality-preserving based on attribute encryp-
tion using auditable access during encrypted records in cloud location. J. Super-
comput. 76, 6026–6039 (2020)

17. Sanyashi, T., Menezes, B.: Secure computation over encrypted databases. CoRR
abs/2308.02878 (2023). https://doi.org/10.48550/arXiv.2308.02878

18. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceeding 2000 IEEE Symposium on Security and Privacy, S&P 2000,
pp. 44–55. IEEE (2000)

19. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. Cryptology ePrint Archive (2013)

20. Sun, W., et al.: Privacy-preserving multi-keyword text search in the cloud support-
ing similarity-based ranking. In: Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security, pp. 71–82 (2013)

21. Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy
search over encrypted data in the cloud. In: IEEE INFOCOM 2014-IEEE Confer-
ence on Computer Communications, pp. 2112–2120. IEEE (2014)

22. Wang, B., Hou, Y., Li, M.: Practical and secure nearest neighbor search on
encrypted large-scale data. In: IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, pp. 1–9. IEEE (2016)

23. Wong, W.K., Cheung, D.W.l., Kao, B., Mamoulis, N.: Secure KNN computation
on encrypted databases. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pp. 139–152 (2009)

24. Yu, J., Lu, P., Zhu, Y., Xue, G., Li, M.: Toward secure multikeyword top-k retrieval
over encrypted cloud data. IEEE Trans. Dependable Secure Comput. 10(4), 239–
250 (2013)

25. Zheng, Y., Lu, R., Shao, J.: Achieving efficient and privacy-preserving k-NN query
for outsourced ehealthcare data. J. Med. Syst. 43, 1–13 (2019)

26. Zhu, Y., Huang, Z., Takagi, T.: Secure and controllable k-NN query over encrypted
cloud data with key confidentiality. J. Parallel Distrib. Comput. 89, 1–12 (2016)

https://doi.org/10.48550/arXiv.2308.02878

A Multi-stage Multi-modal Classification
Model for DeepFakes Combining Deep
Learned and Computer Vision Oriented

Features

Arnab Kumar Das(B), Soumik Mukhopadhyay, Arijit Dalui,
Ritaban Bhattacharya, and Ruchira Naskar

Department of Information Technology, Indian Institute of Engineering Science and
Technology, Shibpur 711103, India

{2020itp008 arnab,510819102.soumik,510819100.arijit,510819101.ritaban}
@students.iiests.ac.in, ruchira@it.iiests.ac.in

Abstract. Recent advances in deep learning have empowered media
synthesis and alteration to achieve levels of realism that were previ-
ously unheard of. Artificial intelligence is a potent tool that may be
used to modify digital data, such as images, videos, and audio files,
through the use of emerging deepfake technologies. Deepfake technol-
ogy has the potential to significantly affect the reliability of multimedia
data through the synthesis of fake media. Significant ramifications arise
from this for individuals, organizations, and society at large. With the
pace and accessibility of social media, convincing deepfakes can swiftly
reach millions of people and adversely influence public opinion. To this
end, we propose a multi-modal feature-based classification model that
can distinguish between deepfake and real videos efficiently. We have
used prefabricated image features as well as a variety of Convolutional
Neural Network (CNN) model-generated features, including ResNet50,
ResNet101, VGG16, and VGG19. The fake videos are taken up for further
investigation to detect their source of origin. We propose a CNN-based
classifier for deepfake detection and also explore the efficiency of multi-
ple feature-based classifiers in this respect. This enables us to evaluate
the comparative performance of both. The proposed model achieves an
accuracy of 99.06% on deepfake classification and 98.75% on source iden-
tification when tested on a publicly available FaceForensics++ dataset.

Keywords: Artificial Intelligence · Convolutional Neural Network ·
Digital Forensics · Deepfakes · Faceforensics

1 Introduction

Digital manipulation of human facial images or videos involves superimposing
artificial or synthetic features or expressions onto the face of an individual to

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 217–226, 2023.
https://doi.org/10.1007/978-3-031-49099-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_13&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_13

218 A. K. Das et al.

generate a synthetic image or video of the person. This is done using power-
ful artificial intelligence (AI) tools and techniques, preliminary among which
in today’s date is Generative Adversarial Network (GAN) based tools. One of
the most popular GAN-based synthetic video creation tools in today’s date is
DeepFake, which is capable of superimposing an individual’s facial movement
and speech onto another [1]. Such synthetic videos are prone to be misused in
personal defamation cases, child pornography-related crimes, and in misleading
court cases and the society at large. Deepfakes were born in 2017 when a Reddit
user of the same name posted doctored porn clips on the site [2]. The videos
swapped the faces of celebrities - Gal Gadot, Taylor Swift, Scarlett Johansson,
and others - onto porn performers. Deepfake videos have recently been reported
to have been used as a political weapon during elections. During the run-up to
the 2020 US elections, Facebook banned Deepfake and its synthesized videos in
order to stop the spread of misinformation [3]. Shin et al. [4] showed how the
use of deepfake video, as opposed to genuine video in a news piece, influences
the behavior common mass. For stakeholders, the fraudulent, false, and abusive
use of this technology has created more risks than opportunities and this was
studied by Kwok et al. in [5].

Among the recent studies on challenges of deepFake detection, the one by
Lyu [6] is among one of the most noteworthy. With the metaverse gaining pop-
ularity rapidly, concerns about the adverse impacts of deepfakes have grown
paramount. Tariq et al. in [7], have explored the effects of deepfakes on the meta-
verse including security risks and impersonations in online meetings. Researchers
in recent times have started exploring possibilities of detecting deepfakes from
multiple modes. On similar lines, among the very recent works, Yang et al. [8]
proposed an audio-visual joint learning platform for detecting deepfakes, where
the authors have adopted a temporal-spatial encoder for deepfake detection.

In this paper, we present a blind deepFake video detection system, where
we investigate the efficiency of both feature-based and deep neural network-
based classifiers. For this purpose, we propose a multimodal detection technique
by combining an efficient set of prefabricated Histogram of Oriented Gradients
(HOG) based features, and a set of features automatically learned by Convolu-
tional Neural Networks (CNNs). Our contributions in this paper may be summa-
rized as follows: (1) Development of a multimodal DeepFake detection scheme
combining both deep learning and traditional computer vision techniques, hence
optimizing performance efficiency. (2) We propose a multi-stage classification
approach, for identifying a DeepFake video, followed by identifying its source
network using the above set of features. (3) We explore and investigate the roles
of both deep neural network-based and feature-based classifiers.

The rest of the paper is organized as follows. The proposed multi-stage multi-
modal deepfake classification architecture is presented in Sect. 2. Experimental
results and discussion are presented in Sect. 3. The paper is concluded in Sect. 4.

A Multi-stage Multi-modal Classification Model 219

Fig. 1. Workflow of the proposed method having 4 stages. (A) Data Pre-processing:
Extracts frames from a video and resize them into 64 × 128 pixels. (B) Feature
Extraction: Extract features from the frames using HOG and CNN models. (C
and D) Classification using Machine Learning and Proposed Deep Learn-
ing approaches: A binary classifier followed by a multi-class classifier to distinguish
between a real and a fake image and further identify the fake as Deepfakes, Face2Face,
FaceSwap, or NeuralTextures.

2 Proposed Multi-stage Multi-modal DeepFake Video
Identification

We have divided the present task of identifying DeepFakes, into two distinct
stages. The first stage consists of detecting whether a contentious video is fake
or real; and the second stage of investigation involves identifying the source of a
video, in case the video has been detected to be fake. In this paper, we consider
four sources of deepfake videos provided by the FaceForensics++ [9] dataset,
viz. DeepFake [10], NeuralTexture [11], FaceSwap [12], and Face2Face [12].

Summarily, in order to accurately determine if a video is real or fraudulent,
we construct a feature extraction module and classification module, to operate
on individual video frames (Module I). If this module predicts that the test video
is fake, we combine the feature extraction module from Module I with a second
multilevel classification module to accurately identify the type of fake video
(Deepfake, NeuralTexture, FaceSwap, or Face2Face video). The architecture and
major components of the modposed modules have been presented Fig. 1.

220 A. K. Das et al.

2.1 Feature Extraction Module

As evident from Fig. 1, we use a feature extraction block to create a feature
map from a video. In this work, we combine both deep-learned features as well
as conventional prefabricated image features for deepfake detection. We use the
Histogram of Oriented Gradients (HOG) [13] feature descriptors, along with
four different Convolutional Neural Network (CNN) based feature extractors
for this purpose. The CNN architectures explored in this work are: ResNet-50
[14], ResNet-101 [15], VGG-16, and VGG-19 [16]. Our aim in this work is to
investigate the effectiveness of both prefabricated image features (as the HOG)
and deep CNN-learned features in deepfake detection. HOG features have been
prevalently used in the literature for determining the distribution of image gra-
dient orientations in focused areas of an image [13]. HOG features are capable
of identifying patterns and texture information in an image, by computing the
magnitude and orientation of gradients of the pixels. It calculates the image gra-
dient. Combining the image is magnitude and angle yields the gradient. GR(x)
and GR(y) are initially calculated for each pixel in a block of 3×3 pixels. IM is
for an image, while r,c stands for the respective row and column. Equation 1 is
used to compute GR(x) and GR(y) first for each pixel value, and then magnitude
(MA) and angle (Θ) of each pixel are calculated using Eq. 2.

GR(x) = IM(r, c+1)−IM(r, c−1);GR(y) = IM(r−1, c)−IM(r+1, c) (1)

MA =
√
GR(x)2 + GR(y)2;Θ =

∣∣∣∣tan−1
GR(y)
GR(x)

∣∣∣∣ (2)

The next mode of feature extraction in this work is the features learned in
an automated way by deep CNNs. The ResNet architecture involves a number
of residual blocks, each of which has a batch normalization layer, a Rectifier
Linear Unit (ReLU) [17] activation function, and one or more convolutional lay-
ers. ResNet50 [14] and ResNet101 [15] are 50- and 101-layer deep convolutional
neural network architectures, respectively. Deep convolutional neural network
architectures VGG-16 and VGG-19 [16], combine a deep stack of convolutional
layers with tiny filters. These models can capture both local and global features
in an image, including edges, textures, and object forms, making them useful
for feature extraction in synthesized frames. The above CNNs are used here as
feature extractors by removing the last classification layer and passing test video
frames through the network, to obtain a fixed-length feature vector. This fea-
ture vector is later used in our classification step, to distinguish between fake
and authentic videos.

2.2 Feature Based Classification

The classification module is responsible for performing a binary classification
between fake and real videos, as well as for detecting the source of a deepfake

A Multi-stage Multi-modal Classification Model 221

Fig. 2. Proposed CNN. [A] Model for deepFake detection. [B] Model for source clas-
sification.

video by performing a four-way classification. The proposed classification module
uses five different classifiers - Polynomial Kernel SVM [18], Random Forest [19],
Decision Tree [20], K Nearest Neighbor (KNN) [21], Logistic Regression [22]. In
this paper, we introduced two different CNN models for binary and multiclass
classification purposes. We also highlight the distinctions between the proposed
CNN model classifier and the machine learning classifier.

For classification, we use the feature maps generated by the CNNs presented
in Sect. 2.1 as well as the HOG features. Once the model determines a frame to be
fake, it undergoes multi-way classification to determine whether it is Deepfake
[10], Face2Face [23], FaceSwap [12] or NeuralTextures [11]. Our experimental
results with related discussions are presented next.

2.3 Deep Learning-Based Classification

For deepfake classification as well as source identification, we adopt a one-
dimensional convolutional neural network (CNN) shown in Fig. 2. We use the
“glorot uniform” as a kernel initializer for deepfake detection and source clas-
sification. During training, vanishing and exploding gradients can be an issue;
“glorot uniform” helps to alleviate this. Gradients in deep neural networks can
become extremely small (vanishing) or extremely huge (exploding), which makes
training difficult. The weights are kept within a range using “glorot uniform”,
which helps to prevent these problems. In both classification techniques, we use
the 3 × 3 kernel size. For deepfake detection, we employed three hidden layers,
the “ReLu” activation function, and the “SoftMax” function at the final output.
The loss function used is “Categorical Cross Entropy”, and the optimizer used
is “Adam” optimizer, in our model. In deepfake classification, we use batch sizes
16 and 50 epochs. For source classification, we employed five hidden layers, the

222 A. K. Das et al.

“ReLu” activation, and the “SoftMax” function for the final output layer in order
to perform multiway classification. Similar to the binary classification, here also,
we employed the “Adam” optimizer and the “Categorical Cross Entropy” loss
function. The batch size here is 32, and the number of epochs is 100.

3 Experiments and Results

3.1 Data Preprocessing

The benchmark FaceForensics++ [9] dataset is used to assess the efficacy of
the proposed method. The FaceForensics++ dataset comprises real videos, from
which four subcategories of fake videos, viz. Deepfakes, Face2Face, FaceSwap,
and NeuralTextures were synthesized. The dataset was divided into training
and test sets in the ratio 80:20, for each class. Ten contiguous frames from each
video were used in our experiments. Contiguous frame sequences were used so
as to exploit the synchronization factor of frame edges. Among the two different
compression rates available, we have chosen the c23 version here. The frames
were further downsized from their original 720× 1080 resolution to 64× 128.

3.2 Feature Extraction

We generate a feature map containing 3780 features per video frame using HOG.
The retrieved features from ResNet and VGG were substantially more numerous
and may have had several outliers. In order to extract principle features in each
of these extracted feature maps, we reduced the dimensionality using PCA [24] to
1500, while keeping computational power constraints and outliers in mind. PCA
maximizes the variance along each axis, or principle component, by transforming

Fig. 3. Confusion Matrices of best results of Fake Video Detection. [A] HOG Polyno-
mial SVM [B] ResNet101 Polynomial SVM [C] ResNet50 Random Forest [D] VGG16
Random Forest [E] VGG19 Random Forest [F] Proposed CNN Classifier.

Fig. 4. Confusion Matrices of best results of Source Classification. [A] HOG Polyno-
mial SVM [B] ResNet101 Logistic Regression [C] ResNet50 Logistic Regression [D]
VGG16 Logistic Regression [E] VGG19 Logistic Regression [F] Proposed CNN Clas-
sifier.

A Multi-stage Multi-modal Classification Model 223

Table 1. Feature-based binary classification results for fake vs. real video detection.

Extractor Polynomial kernel SVMDecision Tree Random Forest Logistic RegressionKNN

AccuracyFI-Score AccuracyFI-ScoreAccuracyFI-ScoreAccuracyFI-Score AccuracyFI-Score

HOG 98.91% 98.12 94.87% 95.93 95.75% 97.49 92.11% 92.13 98.25% 99.37

VGG-16 98.59% 99.69 97.56% 96.87 98.91% 99.37 96.68% 98.68 96.62% 95.92

VGG-19 98.09% 98.44 96.88% 95.61 98.44% 100 98.03% 98.02 96.72% 96.55

ResNet 50 98.59% 99.69 97.69% 97.81 98.81% 98.44 98.68% 96.68 98.62% 97.81

ResNet 10198.91% 98.13 98.00% 98.00 98.75% 99.37 96.08% 96.07 98.22% 97.81

Table 2. Feature-based multi-way classification results for source detection of fake
videos.

Extractor Polynomial kernel SVMDecision Tree Random Forest Logistic RegressionKNN

AccuracyFI-Score AccuracyFI-ScoreAccuracyFI-ScoreAccuracyFI-Score AccuracyFI-Score

HOG 98.56% 97.18 71.86% 74.28 95.56% 94.99 68.61% 69.26 69.79% 66.50

VGG-16 81.74% 79.24 81.11% 81.45 97.50% 97.48 98.44% 97.49 84.24% 82.36

VGG-19 58.79% 22.14 60.48% 61.50 87.49% 9.60 95.12% 95.62 78.42% 76.23

ResNet 50 70.54% 68.52 55.29% 57.22 82.74% 88.77 95.31% 94.97 79.11% 77.33

ResNet 10166.29% 64.70 58.72% 59.88 83.62% 86.24 94.93% 93.73 76.30% 76.89

the data into a new coordinate system. To ascertain which is best, the resulting
feature maps were examined using both binary and multi-class classifiers using
different types of machine learning models and proposed deep learning models.

3.3 Fake Video Detection and Source Classification

Feature-Based Detection and Classification Results. The classification
results for both stages, binary and four-way, are presented in Table 1 and Table 2,
respectively. All results presented are outcomes of a 15-fold cross-validation. The
best results were seen obtained for binary fake vs. actual video classification with
the Polynomial SVM classifier on HOG and Resnet-101 extracted features, with
an accuracy of 98.91% and F1-score of 98.12 and 98.13 respectively. For source
identification, that is four-way classification, the best results were obtained with
the Polynomial SVM classifier on HOG extracted features, with an accuracy of
98.56% and F1-score of 97.18.

To further analyze the performance of the best classification models with the
most efficient sets of features in our work, we present the confusion matrices
generated through our experiments for select sets of classifiers with the best
feature sets in Fig. 3 and Fig. 4. Also, a comparison of performances of the above
classifier-feature pairs has been presented in the form of a bar chart in Fig. 5.

Classification Results Obtained by Proposed CNN Model. The perfor-
mance evaluation results of the proposed deep neural network have been pre-
sented in Table 3. We found that the ResNet101 feature extraction strategy pro-
duced the best results for deepfake detection in our model with an accuracy
of 99.06% and F1 score of 99.06. For source classification, the VGG19 feature

224 A. K. Das et al.

Fig. 5. Comparing the best results obtained in binary classification and source detec-
tion models for each feature extractor. [A] Accuracy Comparison [B] F1-Score Com-
parison

Fig. 6. Performance of proposed deep CNN model vs. the best classifier for corre-
sponding feature set. [A] Deepfake detection performance. [B] Source classification
performance.

Table 3. Proposed deep learning model’s performance for both fake video identification
and source classification.

Problem Extractor

ResNet101 ResNet50 VGG19 VGG16

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Deepfake

Detection

99.06% 99.06 98.44% 98.38 98.75% 98.75 98.44% 98.42

Source

Classification

95.94% 95.62 94.38% 94.37 98.75% 98.75 98.44% 98.44

extractor produced the best results in our model, with an accuracy of 98.75%
and F1 score of 98.75. The confusion matrices for fake video detection and source
classification are presented in Fig. 3 and Fig. 4, respectively. The comparison of
the best feature-based classifier against the proposed CNN classifiers (both fed
on CNN generated features), is done and reported in Fig. 6.

A Multi-stage Multi-modal Classification Model 225

4 Conclusion

In this paper, we propose a multi-stage approach for detecting deepfake media
followed by its source generator network investigation, using a combination of
deep network learned and prefabricated image features. We employ both fea-
ture based classification, as well as deep learning based CNN to solve the above
problems. Our observation is that the proposed CNN model outperforms the
feature based classifier, in most cases. However, with the HoG texture features,
the polynomial SVM classifier obtains the best performance. Our experiments
show that different feature extraction methods can successfully recover local and
global image data, including texture and structural elements that are helpful in
differentiating between real and synthetic media. Additionally, we demonstrate
different classifiers’ and proposed CNN model’s strengths in learning compli-
cated decision boundaries in the given problem, in a high-dimensional feature
space. We have performed 15-fold cross-validation to overcome over-fitting. The
future scope of work in this direction will include the development of dedicated
recurrent neural network for investigating features enabling the classification of
deepfakes generated by newer classes of generative adversarial network-based
synthetic media-generating models.

References

1. Goodfellow, I.J., et al.: Generative adversarial networks (2014)
2. Flynn, A., Clough, J., Cooke, T.: Disrupting and preventing deepfake abuse: explor-

ing criminal law responses to AI-facilitated abuse. In: Powell, A., Flynn, A., Sug-
iura, L. (eds.) The Palgrave Handbook of Gendered Violence and Technology, pp.
583–603. Palgrave Macmillan, Cham (2021). https://doi.org/10.1007/978-3-030-
83734-1 29

3. Temir, E.: Deepfake: new era in the age of disinformation & end of reliable jour-
nalism. Selçuk İletişim 13(2), 1009–1024 (2020)

4. Shin, S.Y., Lee, J.: The effect of deepfake video on news credibility and corrective
influence of cost-based knowledge about deepfakes. Digit. Journal. 10(3), 412–432
(2022)

5. Kwok, A.O.J., Koh, S.G.M.: Deepfake: a social construction of technology perspec-
tive. Curr. Issue Tour. 24(13), 1798–1802 (2021)

6. Lyu, S.: Deepfake detection: current challenges and next steps. In: 2020 IEEE
International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6.
IEEE (2020)

7. Tariq, S., Abuadbba, A., Moore, K.: Deepfake in the metaverse: security impli-
cations for virtual gaming, meetings, and offices. arXiv preprint arXiv:2303.14612
(2023)

8. Yang, W., et al.: Avoid-DF: audio-visual joint learning for detecting deepfake.
IEEE Trans. Inf. Forensics Secur. 18, 2015–2029 (2023)

9. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
forensics++: learning to detect manipulated facial images. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 1–11 (2019)

10. Westerlund, M.: The emergence of deepfake technology: a review. Technol. Innov.
Manag. Rev. 9(11) (2019)

https://doi.org/10.1007/978-3-030-83734-1_29
https://doi.org/10.1007/978-3-030-83734-1_29
http://arxiv.org/abs/2303.14612

226 A. K. Das et al.

11. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis
using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

12. Korshunova, I., Shi, W., Dambre, J., Theis, L.: Fast face-swap using convolutional
neural networks. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 3677–3685 (2017)

13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

14. Koonce, B.: Convolutional Neural Networks with Swift for Tensorflow: Image
Recognition and Dataset Categorization. Springer, Cham (2021). https://doi.org/
10.1007/978-1-4842-6168-2

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

17. Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint
arXiv:1803.08375 (2018)

18. Patle, A., Chouhan, D.S.: SVM kernel functions for classification. In: 2013 Interna-
tional Conference on Advances in Technology and Engineering (ICATE), pp. 1–9.
IEEE (2013)

19. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
20. Rokach, L., Maimon, O.: Decision trees. In: Data Mining and Knowledge Discovery

Handbook, pp. 165–192 (2005)
21. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in

classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS,
vol. 2888, pp. 986–996. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39964-3 62

22. Abramovich, F., Grinshtein, V., Levy, T.: Multiclass classification by sparse multi-
nomial logistic regression. IEEE Trans. Inf. Theory 67(7), 4637–4646 (2021)

23. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face:
real-time face capture and reenactment of RGB videos. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2387–2395
(2016)

24. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent devel-
opments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202
(2016)

https://doi.org/10.1007/978-1-4842-6168-2
https://doi.org/10.1007/978-1-4842-6168-2
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1803.08375
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62

Privacy

Security and Privacy in Machine Learning

Nishanth Chandran(B)

Microsoft Research, Bengaluru, India

nichandr@microsoft.com

Abstract. Machine learning technologies have the potential to trans-
form and revolutionize various industries, such as drug discovery by
finding new molecules, medical diagnosis by analyzing images and sig-
nals, fraud prevention by detecting anomalies, and security by recogniz-
ing faces and objects. However, training and utilizing machine learning
models requires handling large volumes of sensitive and private data. In
this article, we discuss some of the security and privacy challenges in
this process. We focus mainly on how we can securely compute machine
learning algorithms over sensitive data, but we also describe data privacy
problems in this domain and how we can mitigate them.

1 Introduction

Machine learning (ML) is a powerful technology that enables computers to learn
from data and perform tasks that normally require human intelligence [5]. ML
has applications in various domains, such as healthcare, finance, and governmen-
tal, where it can help improve diagnosis, treatment, prevention, and management
of diseases [61]; optimize trading strategies, risk assessment, and fraud detec-
tion [46]; and enhance public services, security, and policy making [85]. However,
ML also poses significant challenges for the security and privacy of data, as it
often relies on sensitive and personal information from patients, customers, and
citizens [94]. In this article, we will explore some of the main challenges and
some solutions for ensuring the security and privacy of data for use in ML. We
will specifically focus on secure computation [57,122] for machine learning and
will also highlight some of the open challenges in ensuring a secure and private
end-to-end machine learning pipeline.

One of the key challenges in ML is data sharing. Data is the fuel of ML,
and more data usually leads to better performance and generalization. However,
data sharing also entails risks of data leakage, misuse, or abuse. For example, in
healthcare, data sharing can enable collaborative research and innovation among
different hospitals, clinics, or researchers. However, it can also expose patients’
confidential medical records or genomic data to unauthorized parties or mali-
cious attacks. Similarly, in finance, data sharing can facilitate cross-border trans-
actions and regulatory compliance. However, it can also compromise customers’
financial information or transaction history. In governmental applications, data
sharing can improve public administration and decision making. However, it can

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 229–248, 2023.
https://doi.org/10.1007/978-3-031-49099-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_14

230 N. Chandran

also violate citizens’ privacy rights or reveal sensitive national security informa-
tion. Therefore, there is a need for secure and privacy-preserving ML techniques
that can enable data sharing without compromising data security or privacy.

1.1 Data Protection At-Rest and In-Transit

Traditional security techniques such as encryption and authentication [102] can
provide data protection at-rest (e.g. while the data is stored on local machines
or in the cloud) or while in-transit (e.g. while moving data from one machine to
another). Authenticated Encryption [13] ensures that, as long as the decryption
key is kept hidden, an attacker can neither learn anything about the contents of
the message nor modify the contents of the message. Symmetric-key encryption
mechanisms such as AES-128, AES-256 [36] are used when the two end points
for communication can share the same key that is used both for encryption and
decryption. On the other hand, public-key encryption such as RSA [10,105] and
elliptic curve cryptography (ECC) [74] are used when the sender only has the
recipient’s public encryption key.

1.2 Data Protection for Machine Learning Tasks

While data protection at-rest and in-transit is a minimum requirement to protect
data used in machine learning applications, there are several other considerations
when computation on sensitive data must be performed. We first outline some
of these security issues below:

1. ML Training. Typically, multiple entities contribute data to train a machine
learning model. In the consumer context this could be end users (e.g. while
training a model for auto completion [30]), while in the enterprise context this
could be customers pooling in their data to derive better insights (e.g. while
training a model for healthcare from multiple hospitals [92]). While training
a model using data from such multiple sources, several security and privacy
questions arise. Some of these include: a) where will the model be trained? b)
is that compute region trusted by all entities?; and c) what does the model
trained reveal about the raw data?

2. ML Inference. Once an ML model is trained, one would like to offer this
model for inference to multiple entities. However, here too there are data secu-
rity concerns. E.g. typically model publishers would not want to reveal their
models in the clear to external entities in order to protect their intellectual
property. At the same time, model consumers want the inference results of the
model on sensitive input data. Hence, an important question is: can model
publishers offer inference-as-a-service to model consumers while protecting
their intellectual property while at the same time offering input privacy to
the consumers [17,80,89]?

3. Evaluation. An intermediate step between training and inference is that of
evaluation. While an ML model may have been trained on data from one
geography (or one type of data), one may eventually want to use it in a

Security and Privacy in Machine Learning 231

different geography or domain. In order to do this, one may have to choose the
best model from many different models. To choose a good model, consumers
would need to validate or evaluate the accuracy of the ML model on test
datasets that they have curated. However, this test dataset itself may have to
be kept private for several reasons (e.g. it may contain sensitive data or the
consumer may be concerned about the model being contaminated with the
test dataset itself). Hence, another question is: can models be evaluated on
private datasets while protecting the intellectual property of the model [110]?

1.3 Security and Privacy Techniques

Security, in the context of machine learning applications, deals with protect-
ing sensitive information from unauthorized access while computing certain
desired outcomes or functions. For example, if multiple entities pool in data
to train an ML model, then a requirement could be that the entities all
only learn the final trained model and that no entity learns anything beyond
this [67,73,89,98,115,120]. This constitutes providing data security. Another
example in the context of inference is to ensure that the model consumer
only learns the inference output on its input data point and nothing else
about the model, while model publishers learn nothing about the input data
point [17,80,89,101]. Examples of techniques that aim to provide security guar-
antees include enclave-based confidential computing (such as Azure Confiden-
tial Computing [86], Amazon Nitro Enclaves [6]), fully homomorphic encryp-
tion [52,93,108], and secure multi-party computation [17,57,89,101,122].

Privacy, in the context of ML applications, deals with providing guarantees
on what can be learned by attackers from the end-results of the computations
above. For example, when multiple entities pool in data to train an ML model,
what does the ML model itself reveal about individual user’s data present with
the entities [35,103]? Can guarantees be provided to users about this informa-
tion? Examples of techniques that aim to provide privacy guarantees include
differential privacy [1,48,97].

An orthogonal technique, that can help with reducing information leakage
when training machine learning models over sensitive data, is that of federated
learning [75]. Federated learning, while itself not a privacy or security technique,
indirectly aids in the process of protecting sensitive data, as only aggregate
information about data (and not the raw data itself) is used in computations (e.g.
in the training of ML models). This technique is often combined with security [15]
and privacy [121] techniques to provide better guarantees to user data.

1.4 Organization

The rest of this article will be organized as follows. In Sect. 2, we shall describe
some of the security and privacy challenges in ML computations and formally
define the goals that we wish to achieve. Section 3 will provide a broad overview
of the security and privacy techniques. In Sect. 4, we will specifically focus on
the problem of securing computation in ML workloads (during training, inference

232 N. Chandran

and evaluation). Section 5 will conclude by briefly discussing a few aspects not
covered in this article and presenting some important open challenges.

2 ML Security and Privacy Goals

One can abstract out the main challenges in protecting data in machine learning
applications into security and privacy goals. We describe them below.

2.1 Security Goals

To provide data security, at a very high level, multiple entities P1, · · · Pn have
private inputs x1, · · · xn respectively. They wish to compute a function w =
M(x1, · · · , xn), where, typically M is a publicly agreed upon function or model
architecture. They wish to do so in such a way that only w is revealed to the
parties (or a subset of the parties). For example, in the context of machine
learning training, P1, · · · , Pn are n parties, each having training data (in the
same format) – Pi holds xi. They wish to train some machine learning model
M (e.g. a neural network, decision tree, or transformer) on this data to obtain
the weights of the model w and only w must be learned by Pi, for all i ∈ [n].
This problem is known as the problem of secure training, which is a specific
case of the well-studied problem of secure multi-party computation [57,122]. In
the context of ML inference, P1 holds a pre-trained ML model with weights
w. The model architecture/function M (i.e. the neural network structure, or
decision tree structure etc.) are known to both P1 and a party P2 who holds a
private input x. P1 and P2 wish to compute y = M(w, x), which is the inference
results of model M with weights w on input x. The output results should be
revealed to P2 (and perhaps also P1). P2 should learn nothing else, while P1

should learn nothing. Formalizing the notion that P2 learns nothing more than
y is non-trivial and was first done so in the seminal works of [56,57]. In order to
formalize security, one first needs to specify what the adversary can do and we
shall go into this into a bit more detail in the next section. An important take
away here is that security goals protect the computation itself with an end goal
of collaboratively computing some function without sharing the raw data with
untrusted entities.

2.2 Privacy Goals

At a very high level, privacy addresses the question: “Was my data used in the
training of an ML algorithm?”. In more detail, say that an ML algorithm M has
been trained on data points x1, x2, · · · , x�, to obtain the weights of the model w.
Can an adversary, who has some form of access to M (either given its weights w
or given black-box inference access to the model M with weights w), tell whether
a particular data point xj was used in the training process? Informally, privacy
guarantees ensure that an adversary cannot determine this. This guarantee for
examples assures an individual patient that their data was not revealed through

Security and Privacy in Machine Learning 233

access to an ML model trained on data (including theirs). Furthermore, one may
also want to provide such a privacy guarantee to a collection of users. That is, we
want to ensure that an adversary cannot determine whether a collection of data
points xt1 , · · · , xtk was used to obtain the model M with weights w. Typically
privacy guarantees are provided through the technique of differential privacy [48]
and we shall formalize these guarantees in the next section.

3 Techniques for Security and Privacy

In this section, we shall provide an overview of the various security and privacy
techniques deployed in the context of machine learning.

3.1 Security Techniques

Security techniques can broadly be divided into two categories – enclave based
security and cryptographic techniques. At a very high level, enclave based secu-
rity provides security guarantees through restricting access to the computation
from the adversary, while cryptographic solutions transform the computation
mathematically and are based on cryptographic hardness assumptions.

Enclave Based Security. Enclaves can be of different varieties - confiden-
tial virtual memories (VMs) [7,32], Intel SGX [65], and so on. At a high level,
enclaves are protected computation regions that cannot be accessed by even the
operating system of the machine on which the region is hosted. In this secu-
rity technique, the enclave holds a (private, public) key pair for a public-key
encryption system – denote this key pair by (pk, sk), while every party holds a
corresponding key pair (pki, ski). Now, every party Pi will encrypt xi with pk to
produce ci = Enc(pk, xi) and sends this to the enclave. The enclave will decrypt
ci for all i ∈ [n], compute w = M(x1, · · · , xn), encrypt w under pki and send
it to Pi. Furthermore, in order to ensure that the outputs of the computation
are indeed correct, that Pi’s input was faithfully used and so on, further checks
are put in place. For example, every entity (parties and the enclave) also have
a verification key/signing key pair (vk, σ) for a signature scheme. Additionally,
party Pi will sign ci using σ and this signature will be verified inside the enclave.
Furthermore, the enclave will sign the results of the computation (along with
all the signed and encrypted inputs it received from the n parties) as well as
the description of the function, M , to provide a guarantee that the computation
was indeed done correctly and on the right inputs provided by the parties. Since
enclaves can be susceptible to different types of side channel attacks (such as
read access patterns, timing and so on), various techniques are also sometimes
employed to protect against these. For more details on enclave based security
techniques, we refer the read to [91,106,115,116].

234 N. Chandran

Homomorphic Encryption. Homomorphic encryption is a special kind of
encryption that supports computations on encrypted data. While earlier homo-
morphic encryption schemes supported limited types of computations (e.g. either
only additions or only multiplications), Gentry [52] provided the first construc-
tion of a fully homomorphic encryption scheme that supports arbitrary polyno-
mial time computations. We first present the formal definition of homomorphic
encryption schemes and then outline how it can be used in the context of pro-
viding security for machine learning applications. κ is the cryptographic security
parameter (typically set to 128).

Definition 1. A homomorphic encryption scheme for a function family F, HE =
(HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) is a set of four probabilistic polynomial
time algorithms as follows:

– HE.KeyGen(1κ) outputs (pk, sk, evk), where pk is the public key, sk is the secret
key and evk is the evaluation key.

– c = HE.Enc(pk, x) is the (randomized) ciphertext produced while encrypting
message x with public key pk.

– x′ = HE.Dec(sk, c) is the decryption of ciphertext c with secret key sk to
produce x′.

– For a function f ∈ F, cf = HE.Eval(evk, f, c1, · · · , c�) is the output of the
evaluation algorithm on � ciphertexts (with ci encrypting xi) on function f
using the evaluation key evk.

The scheme satisfies the following two properties:

– Correctness. For all functions f ∈ F and for ci = HE.Enc(pk, ci),∀i ∈ [�], we
have that HE.Dec(sk,HE.Eval(evk, f, c1, · · · , c�)) = f(x1, · · · , x�), except with
probability negligible in κ. Furthermore, the size of HE.Eval(evk, f, c1, · · · , c�)
is required to be independent of the size of f as well as �.

– Security. The standard notion of semantic security applies. That is for any
two adversarially chosen x0 and x1, no adversary (given pk, evk) can distin-
guish between HE.Enc(pk, x0) and HE.Enc(pk, x1) with probability significantly
better than 1

2 .

When only 2 participants have inputs to the computation (e.g. in the infer-
ence scenario described earlier where P1 has weights w to an ML model and
P2 has input x), then homomorphic encryption can be used directly to provide
security. P2 encrypts x using pk (public key of a homomorphic encryption scheme
for which only P2 knows sk) and provides P1 with c = HE.Enc(pk, x) and pk, evk.
P1 computes d = HE.Enc(pk, w) and z = HE.Eval(evk,M, c, d) and sends back
z to P2. P2 computes y = HE.Dec(sk, z) which is M(w, x). This provides secu-
rity as long as we trust P1 to perform the right computation (and also trust P2

to compute c correctly). When more than 2 parties are involved, the protocol
to provide security is more complex and based on threshold fully homomorphic
encryption [16]. At a high level, this allows the n parties to sample a pk, evk
for a homomorphic encryption scheme such that no subset of these parties learn

Security and Privacy in Machine Learning 235

anything about sk. Then, all participants can create encryptions of their inputs
which can be provided to one of the parties to perform the encrypted computa-
tion and produce the encrypted results of the computations. Using the properties
of the threshold encryption scheme, all participants can collectively decrypt the
results to obtain the results of the computation.

While homomorphic encryption has been used in machine learning appli-
cations [14,41,47,53,54,72], typically it is efficient only if the underlying ML
operations are purely arithmetic in nature (e.g. matrix multiplications or convo-
lutions) and non-linear activation functions, such as ReLU (defined as ReLU(x) =
max(x, 0)), have to be approximated using some polynomial. This can sometimes
affect the underlying accuracy of the ML model.

Multi-party Computation. Secure multi-party computation (or MPC for
short) is a cryptographic technique introduced through the seminal works of
Yao [122] and Goldreich, Micali, and Wigderson [57]. At a high level, MPC allows
n parties P1, · · · , Pn with Pi having private input xi to collectively compute a
publicly agreed upon function, M to obtain the output w = M(x1, · · · , xn)
through an interactive protocol. In this interactive protocol, every party per-
forms computation, exchanges messages with other participants and this process
continues several times iteratively. At the end of this interaction, participants
are guaranteed to only learn the outputs of the computation. MPC is an area
that has seen rich and extensive research over the last 40 years. Papers have
explored its round complexity (i.e., how many times do the participants have to
talk back and forth with each other) [9,11,39,50], its communication complexity
(how much information must the parties exchange with each other) [21,33,52],
and various notions of security. Some variants of security include considering -
the threshold of corrupted parties, semi-honest, malicious, static, and adaptive.
Typically in an n-party computation, it is assumed that up to t < n of the
participants, known as the threshold, can be corrupted. These t parties can col-
lectively coordinate and try to figure out something more about the information
that the remaining n − t honest parties hold (beyond the function output w
itself) or they may simply try to disrupt the computation and force the honest
parties to compute some other function. Semi-honest (or passive) adversaries are
adversaries that are assumed to follow the protocol specification faithfully, but
may try to learn additional information about the honest parties’ inputs, while
no such assumptions are made about malicious adversaries. Protocols that are
secure only against static adversaries assume that the list of corrupted parties
is specified by the adversary at the beginning of the protocol while protocols
secure against adaptive adversaries make no such assumptions.

MPC Security. Defining each of these notions of security is beyond the scope
of this article; however, we shall provide a formal definition of security against
static, semi-honest adversaries below. The popular paradigm to define security is
that of the simulation paradigm [27,56,79]. In this paradigm, security is modeled
through two worlds - a real world and the ideal world. In the real world, all

236 N. Chandran

participants interact with each other through the MPC protocol π. The adversary
A is allowed to corrupt a set C of parties (of size up to t < n) of the parties
and observe their complete internal state - this includes inputs, outputs, any
randomness sampled during the protocol execution and all messages sent and
received by these t parties. This is known as the view of the adversary, denoted
by viewreal,κ,C for security parameter κ. In the ideal world, all participants in
the protocol provide their inputs to a trusted ideal functionality that computes
the functionality faithfully and provides the participants with the outputs of the
functionality. In the above scenario, this functionality would take as inputs xi

from Pi, compute w = M(x1, · · · , xn) and provide w to every Pi. The adversary,
in this world known as the simulator S observes the inputs and outputs of the t
corrupted parties. This is the view of the adversary in the ideal world, denoted
by viewideal,κ,C .

Definition 2. We say that a protocol π securely realizes functionality M (which
takes x1, · · · , xn as inputs from parties P1, · · · , Pn respectively and outputs w =
M(x1, · · · , xn) to all parties) in the presence of semi-honest adversaries if for all
probabilistic polynomial time adversaries A, for all corrupted sets C, there exists a
simulator S, such that the views viewreal,κ,C and viewideal,κ,C are indistinguishable
to any environment denoted by Z (except with probability negligible in κ).

3.2 Privacy Techniques

At a high level, privacy in machine learning addresses the question of what can
an adversary learn about data used to train a machine learning model if they had
access to the model in some form? In this section, we shall present a high level
overview of the technique of differential privacy that helps address questions of
this form. We shall also briefly discuss some methodologies that are applied to
attack machine learning models so as to understand what an adversary can learn
from them.

Differential Privacy. The technique of differential privacy was introduced
in the seminal work of Dwork, McSherry, Nissim, and Smith [48]. The setting
is as follows: say an entity holds a dataset D comprising of n records. This
entity wishes to release some aggregate statistics about the data that can pro-
vide insights about the entire set of n records (a machine learning model is a
(complex) example of such an aggregate statistic). By releasing a noisy version of
this statistic, differential privacy focusses on ensuring that the privacy of individ-
ual records in this database are preserved. We shall present the formal definition
of ε-differential privacy below.

Definition 3. Let ε > 0 and let M be a randomized algorithm that takes as
input a dataset D and outputs values in the image of M, denoted by ̂M. Algo-
rithm M is said to provide ε-differential privacy if for all datasets D1 and D2

that differ on a single record, and all subsets S ∈ ̂M,

Security and Privacy in Machine Learning 237

Pr[M(D1) ∈ S] ≤ exp(ε) Pr[M(D2) ∈ S]

where the probability is over the randomness of M.

At a high level, this definition says that if we considered an individual record
in a dataset (corresponding to an individual user’s data) and an adversary could
only observe the output of M on the dataset, then whatever they could tell about
the dataset cannot differ by more than exp(ε) whether the individual record
was present in the dataset or not. Hence, no individual’s data can be “leaked”
through this process. Analyzing differential privacy for simple functions such
as aggregates and so on are relatively easier, while doing so for more complex
algorithms such as machine learning training algorithms [1] require an analysis
invoking the composition theorem for differential privacy [84].

Attacks. While not a privacy technique as such, several works have also con-
sidered what information can an adversary obtain given some form of access to
an ML model. For example, given either black-box access to or the weights of a
model M trained on data points x1, · · · xn, can an adversary determine whether
a specific data point x∗ was used to train M or not? Or in other words, was
x∗ = xj for some j ∈ [n]? The process of attacking an ML model to determine
this is known as a membership inference attack (see [109] for more details). The
reader may recognize that the technique of differential privacy described earlier
can be used as a defence mechanism to protect against membership inference
attacks. Another form of attack is where an adversary, given only black-box
access to the model M (i.e. can make only inference queries to the model), tries
to then develop another model that has the same performance characteristics
(say, inference accuracy) as the original model. This attack is known as a model
extraction attack [113]. A data poisoning attack aims to provide an ML model
with corrupted data during training such that the ML model so obtained then
underperforms in some specific way [12], while evasion attacks aim to provide a
pretrained ML model with artificially created data for inference that may lead
the model to perform in undesired ways [37,82].

4 Secure Computation for Machine Learning

In this section, we will provide an overview of various works on securely com-
puting ML algorithms based on cryptographic techniques (some of these works
are based on homomorphic encryption, some on secure multi-party computation,
and others combine the two techniques as well). We will split this section into
3 parts covering the problems of inference, evaluation, and training. While the
computations that must be supported by these 3 problems are not fundamentally
very different, works in the literature have considered these problems separately.
Unless explicitly specified, the works here considered the threat model of semi-
honest secure adversaries. In the two party setting (naturally) at most one party
can be corrupt, while in the multi-party setting various thresholds of corruptions
have been considered.

238 N. Chandran

4.1 Inference

In secure inference, a model owner holds the weights w of a pre-trained model
with public architecture M , while a model consumer holds an input point x. The
goal is for the consumer to learn y = M(w, x) and nothing else, while the owner
should not learn anything. While generic secure computation protocols [34,40,
57,122] can be used to solve the problem of secure inference, much gains can
be obtained by considering specialized cryptographic protocols for the task of
machine learning inference.

Decision Trees. Perhaps the first work that considered such protocols in the
context of machine learning was that of Lindell and Pinkas [80] with a focus on
decision tree algorithms for training and classification. While this work provided
a theoretical analysis of the efficiency of their protocol, perhaps the first work to
show a concretely efficient implementation of secure machine learning classifica-
tion was that of Bost et al. [17]. Their focus was also on decision trees and Näıve
Bayes classification. A long line of works have considered such secure computa-
tion of decision trees (see [2,3,38,42]) with the currently most efficient protocol
being that due to Hamada et al. [62]. Since decision tree algorithms typically
traverse a path of the tree (during classification) that depends on the input, this
traversal must be kept hidden from both model owner and consumer (to provide
security). Hence, the techniques for computing decision tree algorithms securely
rely on techniques such as oblivious RAM and oblivious shuffle [58].

Neural Networks. On the other hand, neural networks typically have an uniform
access pattern (that is independent of the input data point) and hence the tech-
niques to compute such algorithms securely are a bit different. The first work
to consider the secure inference of neural networks was that of SecureML [89]
who provided a generalization of the Beaver multiplication triples [8] to matrices
that helped bring down the overheads of computing linear layers securely. They
showed how to evaluate 3-layer networks securely over the MNIST dataset [45].
Furthermore, cleartext machine learning algorithms are typically written using
floating-point arithmetic [90], while secure multi-party computation is much
more efficient when computation is over fixed-point numbers (with a fixed
bitwidth and precision). The work of SecureML also showed how to emulate ML
algorithms written in floating point using fixed-point arithmetic (albeit with loss
of accuracy). The work of EzPC [29] showed how to create a programmable C-
like framework for computing various algorithms (including ML inference) and
used it in conjunction with the ABY cryptographic backend [43], showing bet-
ter performance than SecureML. ABY3 [88] and SecureNN [118] considered the
problem of secure inference (as well as training) in the weaker threat model
where there is an additional party in the computation (with no input) that is
trusted not to collude with either the model owner or the consumer. In this
setting, they showed (naturally) more performant protocols for similar kinds of
benchmarks from SecureML. A long line of works have also explored the setting
of secure computation with more number of parties (e.g. 4 or 5) [26,76,96], but

Security and Privacy in Machine Learning 239

these have an even weaker threat model (assuming that no party colludes with
another).

CrypTFlow [77] was the first work to demonstrate secure inference at the
scale of real world ML benchmarks (e.g. ImageNet [44] scale). This work also
assumed an additional party in the computation. It provided protocols for
semi-honest secure computation as well as a generic compiler to convert any
semi-honest protocol into a malicious secure protocol while assuming hardware
enclaves. This work provided the first framework to compile ML inference algo-
rithms written in TensorFlow directly into secure computation protocols (while
also accounting for bitwidth and precision through an automatic compiler). Fal-
con [119] improved upon the works of [77,88,118] and provided better secure
inference protocols (via better comparison protocols) once again in the setting
with an additional party. The work of Gazelle [68] focussed on specialized 2-
party protocols based on homomorphic encryption for computing convolutional
layers while Delphi [87] optimized the computation of non-linear layers through
the modification of the underlying ML algorithms. CrypTFlow2 [101] gave new
specialized protocols for comparisons, ReLUs, and truncations (required in fixed-
point arithmetic) and through these gave improved 2-party secure inference pro-
tocols. While being the first 2-party work to execute ImageNet scale bench-
marks securely, CrypTFlow2 also provided support to compute the linear layers
through either oblivious transfer based protocols [81,89] or homomorphic encryp-
tion based protocols [68,87] (along with their corresponding non-linear layer pro-
tocols) thus offering flexibility when running the protocols in various bandwidth
settings (e.g. homomorphic encryption protocols being more communication fru-
gal perform better in low bandwidth settings). Cheetah [64] improved upon
CrypTFlow2 and showed how to eliminate expensive rotations that were required
when computing linear layers through homomorphic encryption in [68,87,101]
and further optimized the non-linear computations as well through the use of
Silent OTs [19]. An orthogonal line of work has explored modifying the under-
lying ML algorithms to make them either more MPC friendly or suitable for
computation using homomorphic encryption (see e.g. [41,54,104]).

The first work to consider secure inference of recurrent neural networks was
SiRNN [100]. The main challenge in handling such networks was in the design
of precise and secure protocols for computing transcendental functions such
as exponentiation, reciprocal square root, sigmoid and tanh. SiRNN designed
approximations for these functions that were both precise (formally defined
through the notion of Unit-in-the-Last-Place (ULP) error [55]) as well as had low
computing cost through MPC protocols. The works of Muse [78] and SIMC [28]
consider a setting wherein the model consumer could potentially be malicious
(and is not assumed to be semi-honest). Finally, an orthogonal line of work
shows how to emulate floating-point arithmetic securely in the two-party set-
ting [99] including for machine learning inference. For a somewhat recent survey
on the state-of-the-art in secure inference (not covering works below), we refer
the reader to [83].

240 N. Chandran

Preprocessing model. A popular model for secure 2-party computation is that of
the preprocessing model - in this there are 2 phases: 1) The preprocessing/offline
phase: Here, the 2 parties obtain correlated randomness (either through a pre-
processing secure computation protocol or through a dealer party) that is inde-
pendent of all inputs to the computation. 2) The online phase: Here, the 2 parties
use their inputs (as well as the correlated randomness from the preprocessing
phase) to run the secure computation of the function required. Several works have
explored the cost of 2PC in such a setting [31,70,89,95]. A new line of work shows
how to construct secure 2-party computation protocols [18,23] in the preprocess-
ing model using the technique of function secret sharing (FSS) [20,22].Through
these class of protocols, overheads of 2-party secure computation protocols shift
from communication to computation. The work of [18] show how to build secure
computation protocols for emulating fixed-point arithmetic. Llama [60] and Ari-
aNN [107] show how to build an end-to-end secure inference library based on
FSS techniques (with Llama also providing support for evaluating transcen-
dental functions and hence recurrent neural networks, thus improving upon
SiRNN [100]). Pika [117] showed how to use lookup tables to compute transcen-
dental functions at the expense of larger compute using FSS techniques, while
Grotto [111] showed how to do the same without such an increase in compute.
The works of CrypTen [73], CryptGPU [112] and Piranha [120] showed how to
accelerate MPC protocols on GPUs. A very recent system, Orca [67] shows how
to accelerate FSS-based MPC protocols and for this system, the online time
overheads of running secure inference (over the corresponding cleartext code)
can be as low as 2×. The work of Iron [63], building upon [100], showed how to
construct secure computation protocols for transformer models [114], while most
recently, Sigma [59] shows how to provide FSS-based secure computation pro-
tocols for large transformer models such as Generative Pre-trained Transformer
(GPT) models [24,25].

4.2 Evaluation

In the problem of model evaluation (also known as AI validation), a dataset
owner wishes to evaluate a model from a model publisher on its dataset to
evaluate its accuracy. The dataset owner does not wish to make the dataset
public (for fear of model contamination and/or to protect the privacy of the
dataset), while the model publisher does not want to reveal the model to the
dataset owner. At a very high level, let M be the model architecture (that
is public), let w be the weights of this model held by the model owner, let
(x1, �1), · · · , (xt, �t) be the private set of t points in the dataset along with their
labels. Let f be an evaluation metric that takes as input yj = (xj , �j ,M(w, xj))
for all j ∈ [t] and outputs a score. For example an evaluation metric could simply
be one that counts the number of datapoints on which M(w, xj) and �j agree
(i.e., yj = 1 iff �j = M(w, xj) and f(y1, · · · , yt) =

∑t
j=1 yj). We want to design a

secure computation protocol for this task. The reader may observe that this task
is fairly similar to performing secure inference – except that the outputs from the
secure inference must be fed in a secure manner into another secure computation

Security and Privacy in Machine Learning 241

(that is the computation of the function f). Secure AI validation was explored in
the work of Soin et al. [110] through an experiment performed between Stanford
University hosting the CheXpert model [66] and CARING Research hosting a
test dataset of 500 chest x-ray images. The evaluation metric used was the Area
Under the Receiver Operating Characteristics (AUROC) score and the model
was shown to have a score of 0.9 (out of a maximum of 1) on the test dataset.

4.3 Training

In the context of decision trees, training algorithms are somewhat different in
structure from their classification counterparts. The works discussed above [2,
62,80] all consider the training of decision tree algorithms that are practical
up to a small tree depth and a small number of attributes. Neural network
training algorithms were considered in the works of SecureML [89], ABY3 [88],
SecureNN [118], Quotient [4,69], and Piranha [120] to name a few. The work
of Keller and Sun [71] provides an overview of the various methods used in
fixed-point secure machine learning training algorithms. The current state-of-
the-art to train ML models in the two-party setting is Orca [67]. The work of
Beacon [98] shows how to train ML models in the two-party setting over floating-
point arithmetic.

5 Conclusion

In this article, we discussed some of the privacy and security challenges in
machine learning. We described various security techniques in detail - enclave
based security, homomorphic encryption, and secure multi-party computation
and focussed on cryptographic works that have aimed to provided solutions to
the problems of secure inference, evaluation and training. We also briefly outlined
the technique of differential privacy that helps protect the privacy of individual
data in ML training. There are topics not addressed in this work - e.g. the
notion of federated learning. Federated learning is a technique in which n enti-
ties, each holding some amount of training data, iteratively train an ML model
by locally training models on their data and then exchanging some information
(e.g. the collective gradients) in order to combine the models. Federated learn-
ing, by itself, does not provide privacy guarantees. However, since raw data is
not directly used while interacting with other data providers, this technique may
provide some attractive properties. Furthermore, while individual gradients from
participants can be protected through techniques such as secure aggregation [15]
when there are many data providers involved, such techniques provide absolutely
no guarantees when the number of data providers is small (e.g. say with 2 data
providers). Furthermore data privacy techniques described in this article only
protect the privacy of individuals in the data, but do not help prove anything
about information that may be leaked about a collection of individuals present
in a dataset (while differential privacy can also be used in this context, the noise
added to obtain reasonable privacy bounds is too high to derive utility from the

242 N. Chandran

function being computed). To see the dangers of information leakage from a col-
lection of data points, consider an ML model trained for auto completion from
2 different enterprise customers A and B. If this model were to auto complete
a sentence for an employee in B based on sensitive information from a collec-
tion of employees in A, then this could have disastrous consequences. Providing
training mechanisms that can guarantee no such information leakage is one of
the greatest unsolved challenges today. Finally, data regulation today (such as
GDPR [49] and Data Protection Act [51]) does not consider various types of
privacy and security techniques described in this article. By relying on the latest
technologies, regulation can potentially be amended to provide stronger privacy
and security guarantees to end users.

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24–28 October 2016, pp. 308–318. ACM (2016)

2. Abspoel, M., Escudero, D., Volgushev, N.: Secure training of decision trees with
continuous attributes. Proc. Priv. Enhancing Technol. 2021(1), 167–187 (2021)

3. Adams, S., et al.: Privacy-preserving training of tree ensembles over continuous
data. Proc. Priv. Enhancing Technol. 2022(2), 205–226 (2022)

4. Agrawal, N., Shahin Shamsabadi, A., Kusner, M.J., Gascón, A.: QUOTIENT:
two-party secure neural network training and prediction. In: CCS (2019)

5. Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and
Machine Learning). MIT Press, Cambridge (2004)

6. AWS. AWS Nitro Enclaves (2023). https://aws.amazon.com/ec2/nitro/nitro-
enclaves/

7. Microsoft Azure. DCasv5 and ECasv5 series confidential VMs (2023). https://
learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-
overview

8. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

9. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, 13–17, May 1990, Baltimore, Maryland,
USA, pp. 503–513. ACM (1990)

10. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1994).
https://doi.org/10.1007/bfb0053428

11. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round obliv-
ious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 17

12. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines. In: Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012.
icml.cc/Omnipress (2012)

https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/bfb0053428
https://doi.org/10.1007/978-3-319-78375-8_17

Security and Privacy in Machine Learning 243

13. Black, J.: Authenticated encryption. In: van Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, 2nd edn., pp. 52–61. Springer, Boston
(2011). https://doi.org/10.1007/978-1-4419-5906-5 548

14. Blatt, M., Gusev, A., Polyakov, Y., Rohloff, K., Vaikuntanathan, V.: Optimized
homomorphic encryption solution for secure genome-wide association studies.
IACR Cryptol. ePrint Arch., p. 223 (2019)

15. Bonawitz, K.A., et al.: Practical secure aggregation for privacy-preserving
machine learning. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.)
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pp. 1175–1191. ACM (2017)

16. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

17. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

18. Boyle, E., et al.: Function secret sharing for mixed-mode and fixed-point secure
computation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021.
LNCS, vol. 12697, pp. 871–900. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-77886-6 30

19. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive
secure computation. In: CCS (2019)

20. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

21. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

22. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: CCS (2016)

23. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via func-
tion secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol.
11891, pp. 341–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36030-6 14

24. Brown, T.B., et al.: Language models are few-shot learners. In: Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H.T. (eds.) Advances in Neural
Information Processing Systems, vol. 33. Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, virtual (2020)

25. Brown, T.B., et al.:. Language models are few-shot learners (2020)
26. Byali, M., Chaudhari, H., Patra, A., Suresh, A.: FLASH: fast and robust frame-

work for privacy-preserving machine learning. Proc. Priv. Enhancing Technol.
2020(2), 459–480 (2020)

27. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13, 143–202 (2000)

28. Chandran, N., Gupta, D., Obbattu, S.L.B., Shah, A.: SIMC: ML inference secure
against malicious clients at semi-honest cost. In: USENIX Security Symposium
(2022)

https://doi.org/10.1007/978-1-4419-5906-5_548
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.1007/978-3-030-36030-6_14

244 N. Chandran

29. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EzPC: pro-
grammable and efficient secure two-party computation for machine learning.
In:2019 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
496–511 (2019)

30. Chen, M.X., et al.: Gmail smart compose: real-time assisted writing. In: Teredesai,
A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019, pp. 2287–2295. ACM
(2019)

31. Chen, V., Pastro, V., Raykova, M.: Secure computation for machine learning with
SPDZ. In: Workshop on PPML at NeurIPS (2018)

32. Google Cloud. Confidential Computing concepts (2023). https://cloud.google.
com/confidential-computing/confidential-vm/docs/about-cvm

33. Couteau, G.: A note on the communication complexity of multiparty computa-
tion in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11477, pp. 473–503. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17656-3 17

34. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient
MPC mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 26

35. De Cristofaro, E.: A critical overview of privacy in machine learning. IEEE Secur.
Priv. 19(4), 19–27 (2021)

36. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES). Information Security and Cryptography, 2nd edn. Springer, Heidel-
berg (2020). https://doi.org/10.1007/978-3-662-60769-5

37. Dalvi, N., Domingos, P., Mausam, Sanghai, S., Verma, D.: Adversarial classifica-
tion. In: Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.) Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Seattle, Washington, USA, 22–25 August 2004, pp. 99–108. ACM
(2004)

38. Damg̊ard, I., Escudero, D., Frederiksen, T., Keller, M., Scholl, P., Volgushev, N.:
New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy, SP 2019,
San Francisco, CA, USA, 19–23 May 2019, pp. 1102–1120. IEEE (2019)

39. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

40. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

41. Dathathri, R., et al.: CHET: an optimizing compiler for fully-homomorphic
neural-network inferencing. In: PLDI (2019)

42. de Hoogh, S., Schoenmakers, B., Chen, P., op den Akker, H.: Practical secure
decision tree learning in a teletreatment application. In: Christin, N., Safavi-
Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 179–194. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45472-5 12

43. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-45472-5_12

Security and Privacy in Machine Learning 245

44. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-
scale hierarchical image database. In: CVPR (2009)

45. Deng, L.: The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

46. Dixon, M.F., Halperin, I., Bilokon, P.: Machine Learning in Finance. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-41068-1

47. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: Manual for using homomorphic encryption for bioinformatics. Proc. IEEE
105(3), 552–567 (2017)

48. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

49. European Commission. Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation) (Text
with EEA relevance) (2016)

50. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

51. Gazette of India. The digital personal data protection act (2023)
52. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,

M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pp. 169–178.
ACM (2009)

53. Geva, R., et al.: Collaborative privacy-preserving analysis of oncological data
using multiparty homomorphic encryption. In: IACR Cryptol. ePrint Arch., p.
1203 (2023)

54. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
CryptoNets: applying neural networks to encrypted data with high throughput
and accuracy. In: Balcan, M.F., Weinberger, K.Q. (ed.) ICML (2016)

55. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23, 5–48 (1991)

56. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, Cambridge (2004)

57. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC (1987)

58. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
rams. J. ACM 43(3), 431–473 (1996)

59. Gupta, K., et al.:. SIGMA: secure GPT inference with function secret shar-
ing. Cryptology ePrint Archive, Paper 2023/1269 (2023). https://eprint.iacr.org/
2023/1269

60. Gupta, K., Kumaraswamy, D., Chandran, N., Gupta, D.: Llama: a low latency
math library for secure inference. In: PETS (2022)

61. Habehh, H., Gohel, S.: Machine learning in healthcare. 22(4), 291–300 (2021)
62. Hamada, K., Ikarashi, D., Kikuchi, R., Chida, K.: Efficient decision tree training

with new data structure for secure multi-party computation. Proc. Priv. Enhanc-
ing Technol. 2023(1), 343–364 (2023)

63. Hao, M., Li, H., Chen, H., Xing, P., Guowen, X., Zhang, T.: Iron: private inference
on transformers. In: NeurIPS (2022)

https://doi.org/10.1007/978-3-030-41068-1
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://eprint.iacr.org/2023/1269
https://eprint.iacr.org/2023/1269

246 N. Chandran

64. Huang, Z., Lu, W.J., Hong, C., Ding, J.: Cheetah: lean and fast secure two-party
deep neural network inference. In: USENIX Security Symposium (2022)

65. Intel. Intel Software Guard Extensions (2020). https://www.intel.com/content/
www/us/en/developer/tools/software-guard-extensions/overview.html

66. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty
labels and expert comparison. In: The Thirty-Third AAAI Conference on Arti-
ficial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Arti-
ficial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pp. 590–597. AAAI Press (2019)

67. Jawalkar, N., Gupta, K., Basu, A., Chandran, N., Gupta, D., Sharma, R.: Orca:
FSS-based secure training with GPUs. In: IEEE S&P (2024)

68. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency
framework for secure neural network inference. In USENIX Security Symposium
(2018)

69. Kelkar, M., Le, P.H., Raykova, M., Seth, K.: Secure poisson regression. In:
USENIX Security Symposium (2022)

70. Keller, M.: MP-SPDZ: a versatile framework for multi-party computation. In:
CCS (2020)

71. Keller, M., Sun, K.: Secure quantized training for deep learning. In: ICML (2022)
72. Kim, M., Lauter, K.E.: Private genome analysis through homomorphic encryp-

tion. BMC Med. Inform. Decis. Mak. 15-S(5), 1–12 (2015)
73. Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim, M., van der

Maaten, L.: CrypTen: secure multi-party computation meets machine learning.
In: NeurIPS (2021)

74. Koblitz, A.H., Koblitz, N., Menezes, A.: Elliptic curve cryptography: the serpen-
tine course of a paradigm shift. In: IACR Cryptol. ePrint Arch., p. 390 (2008)

75. Konečný, J., McMahan, B., Ramage, D.: Federated optimization: distributed opti-
mization beyond the datacenter. CoRR, abs/1511.03575 (2015)

76. Koti, N., Pancholi, M., Patra, A., Suresh, A.: SWIFT: super-fast and robust
privacy-preserving machine learning. In: USENIX Security Symposium (2021)

77. Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., Sharma, R.:
CrypTflow: secure tensorflow inference. In: IEEE S&P (2020)

78. Lehmkuhl, R., Mishra, P., Srinivasan, A., Popa, R.A.: Muse: secure inference
resilient to malicious clients. In: USENIX Security Symposium (2021)

79. Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique. In:
Tutorials on the Foundations of Cryptography. ISC, pp. 277–346. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57048-8 6

80. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206
(2002)

81. Liu, J., Juuti, M., Yao, L., Asokan, N.: Oblivious neural network predictions via
MiniONN transformations. In: CCS (2017)

82. Lowd, D., Meek, C.: Adversarial learning. In: Grossman, R., Bayardo, R.J., Ben-
nett, K.P. (eds.) Proceedings of the Eleventh ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, 21–24
August 2005, pp. 641–647. ACM (2005)

83. Mann, Z.A., Weinert, C., Chabal, D., Bos, J.W.: Towards practical secure neural
network inference: the journey so far and the road ahead. In: IACR Cryptol.
ePrint Arch., p. 1483 (2022)

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://doi.org/10.1007/978-3-319-57048-8_6

Security and Privacy in Machine Learning 247

84. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul,
N. (eds.) Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July
2, 2009, pp. 19–30. ACM (2009)

85. Mehr, H.: Artificial intelligence for citizen services and government. Harvard
Kennedy School (2017)

86. Microsoft. Azure confidential computing (2023). https://azure.microsoft.com/en-
in/solutions/confidential-compute/

87. Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: DELPHI: a
cryptographic inference service for neural networks. In: USENIX Security Sym-
posium (2020)

88. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: CCS (2018)

89. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: IEEE S&P (2017)

90. Muller, J.M., et al.: Handbook of Floating-Point Arithmetic. 2nd edn. Springer,
Cham (2018)

91. Ohrimenko, O., et al.: Oblivious multi-party machine learning on trusted proces-
sors. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, 10–12 August 2016, pp. 619–636. USENIX Asso-
ciation (2016)

92. Oldenhof, M., et al.:. Industry-scale orchestrated federated learning for drug dis-
covery. In: Williams, B., Chen, Y., Neville, J. (eds.) Thirty-Seventh AAAI Confer-
ence on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA,
7–14 February 2023, pp. 15576–15584. AAAI Press (2023)

93. OpenFHE. OpenFHE (2022). https://www.openfhe.org/
94. Papernot, N., McDaniel, P., Sinha, A., Wellman, M.P.: SoK: security and privacy

in machine learning. In: 2018 IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2018, London, United Kingdom, 24–26 April 2018, pp. 399–414.
IEEE (2018)

95. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: improved mixed-
protocol secure two-party computation. In: USENIX Security Symposium (2021)

96. Patra, A., Suresh, A.: BLAZE: blazing fast privacy-preserving machine learning.
In: NDSS (2020)

97. Ponomareva, N., et al.: How to DP-FY ML: a practical guide to machine learning
with differential privacy. J. Artif. Intell. Res. 77, 1113–1201 (2023)

98. Rathee, D., Bhattacharya, A., Gupta, D., Sharma, R., Song, D.: Secure floating-
point training. In: 32nd USENIX Security Symposium (USENIX Security 23),
pp. 6329–6346. USENIX Association, Anaheim, CA (2023)

99. Rathee, D., Bhattacharya, A., Sharma, R., Gupta, D., Chandran, N., Rastogi,
A.: SecFloat: Accurate floating-point meets secure 2-party computation. In: IEEE
S&P (2022)

100. Rathee, D., et al.: SIRNN: a math library for secure inference of RNNs. In: IEEE
S&P (2021)

101. Rathee, D., et al.: CrypTFlow2: practical 2-party secure inference. In: CCS (2020)
102. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446

(2018)

https://azure.microsoft.com/en-in/solutions/confidential-compute/
https://azure.microsoft.com/en-in/solutions/confidential-compute/
https://www.openfhe.org/

248 N. Chandran

103. Microsoft Research. Privacy preserving machine learning: maintaining confiden-
tiality and preserving trust (2021). https://shorturl.at/guFLM

104. Riazi, M.S., Samragh, M., Chen, H., Laine, K., Lauter, K., Koushanfar, F.:
XONN: XNOR-based Oblivious Deep Neural Network Inference. In: USENIX
Security (2019)

105. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

106. Russinovich, M., et al.: Toward confidential cloud computing. Commun. ACM
64(6), 54–61 (2021)

107. Ryffel, T., Pointcheval, D., Bach, F.: ARIANN: Low-interaction privacy-
preserving deep learning via function secret sharing. In: PETS (2022)

108. Microsoft SEAL (release 4.1) (2023). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA

109. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 3–18. IEEE Computer
Society (2017)

110. Soin, A., et al.: Multi-institution encrypted medical imaging AI validation without
data sharing (2021)

111. Storrier, K., Vadapalli, A., Lyons, A., Henry, R.: Grotto: screaming fast (2+1)-pc
for Z2n via (2, 2)-DPFs. In: CCS (2023)

112. Tan, S., Knott, B., Tian, Y., Wu, D.J.: CryptGPU: fast privacy-preserving
machine learning on the GPU. In: IEEE S&P (2021)

113. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIs. In: Holz, T., Savage, S. (eds.) 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016,
pp. 601–618. USENIX Association (2016)

114. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
115. Vaswani, K., et al.: Confidential computing within an AI accelerator. In: Lawall,

J., Williams, D. (eds.) 2023 USENIX Annual Technical Conference, USENIX ATC
2023, Boston, MA, USA, 10–12 July 2023, pp. 501–518. USENIX Association
(2023)

116. Volos, S., Vaswani, K., Bruno, R.: Graviton: trusted execution environments on
GPUs. In: Arpaci-Dusseau, A.C., Voelker, G. (eds.) 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
8–10 October 2018, pp. 681–696. USENIX Association (2018)

117. Wagh, S.: Pika: secure computation using function secret sharing over rings. In:
PETS (2022)

118. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for
neural network training. PoPETs 2019, 26–49 (2019)

119. Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: Fal-
con: honest-majority maliciously secure framework for private deep learning. In:
PoPETs (2021)

120. Watson, J.-L., Wagh, S., Popa, R.A.: Piranha: a GPU platform for secure com-
putation. In: USENIX Security Symposium (2022)

121. Yang, Y., Hui, B., Yuan, H., Gong, N., Cao, Y.: PrivateFL: accurate, differentially
private federated learning via personalized data transformation. In: 32nd USENIX
Security Symposium (USENIX Security 23), pp. 1595–1612. USENIX Association,
Anaheim, CA (2023)

122. Yao, A.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

https://shorturl.at/guFLM
https://github.com/Microsoft/SEAL

Attack on the Privacy-Preserving
Carpooling Service TAROT

Meghana Vargheese(B) and Srinivas Vivek

IIIT Bangalore, Bengaluru, India
{meghana.pv,srinivas.vivek}@iiitb.ac.in

Abstract. The widespread popularity of carpooling services has
brought about several privacy concerns, including the collection and use
of user location data by service providers. To address these concerns,
various carpooling service schemes based on homomorphic encryption
have been proposed. TAROT, proposed by Xu et al. (IEEE IOT Jour-
nal 2022), aims to be an efficient, accurate, and privacy-preserving car-
pooling service scheme. In this paper, we show that there is a leakage of
location data for users in TAROT. Specifically, we examine a Goldwasser-
Micali (homomorphic encryption scheme)-based Equality Determination
Algorithm (GMEDA) used in TAROT and propose passive attacks,
where honest-but-curious users collude to steal the location information
of other users.

Keywords: Privacy-preserving · Carpooling services · TAROT ·
Homomorphic encryption · Hamming weight

1 Introduction

Ride-Hailing Services (RHS) are a type of transportation services that aim to
connect passengers and drivers through a mobile app, by allowing passengers
to request a ride, and nearby drivers to accept or reject the offered ride. These
services offer convenient, affordable, and flexible transportation options to users,
and have become increasingly popular in recent years. Examples of popular ride-
hailing services include Uber, Lyft, DiDi, and Ola, among others.

Apart from RHS, carpooling services also exist, which allow passengers trav-
elling on the same route to connect with each other and share vehicles and
transportation costs. The main advantages of these services are that they are
economical and ecological. It not only saves money for the individuals involved,
but it also helps reduce traffic congestion and decrease carbon emissions. Some
popular carpooling services include Waze Carpool, BlaBlaCar, Scoop, etc.

In this paper, we consider carpooling services and examine one particular
privacy-preserving protocol called TAROT [10]. TAROT is one among many
recent privacy-preserving carpooling service protocols proposed. In any carpool-
ing service, there are mainly two entities, the Carpooling Service Provider (CSP)
and the Carpooling Users (CUs). Initially, CUs send carpooling queries to the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 249–258, 2023.
https://doi.org/10.1007/978-3-031-49099-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_15&domain=pdf
http://orcid.org/0009-0003-3372-4451
http://orcid.org/0000-0002-8426-0859
https://doi.org/10.1007/978-3-031-49099-6_15

250 M. Vargheese and S. Vivek

CSP and in return, the CSP sends the carpooling group matching. Using this
result, CUs finally get a group of matching users to share the ride. The car-
pooling queries sent by the CUs contain private location information of the CUs
such as starting points, destinations, travel routes, and others. This might lead
to privacy leakage. Therefore, it is challenging to design a privacy-preserving
carpooling service scheme. The goal is to provide a convenient and secure way
for people to carpool with one another, without compromising their privacy.
Aiming at these goals, in 2022, Xu et al. [10] proposed an efficient, accurate,
and privacy-preserving route matching scheme for carpooling services named
TAROT.

In TAROT, Xu et al. propose a Dissimilar Route Filter Algorithm [10, Algo-
rithm 2] to filter the dissimilar routes and outputs a list of candidate CUs. They
also propose an Accurate Similarity Computation Algorithm (ASCA) [10, Algo-
rithm 3] to compute the accurate similarity between two routes in a privacy-
friendly manner. This algorithm further uses Goldwasser-Micali (GM) based
Equality Determination Algorithm (GMEDA) [10, Algorithm 1]. The GM algo-
rithm [3] is a probabilistic public-key encryption algorithm that encrypts only
one bit at a time and satisfies the XOR homomorphic property. GMEDA is used
to determine whether the location points of two users are identical or not in
a privacy-friendly manner. The users apply the GM algorithm to encrypt their
respective location points. One of the users performs a Hadamard product on
both encrypted points, where the Hadamard product of two vectors is defined to
be the element-wise multiplication of the two vectors, and permutes the elements
to preserve privacy and sends the result to the other user. On decryption, the
other user can determine whether their respective location points are identical or
not. By employing this method, a user can identify if their location point matches
that of the other user, without directly knowing the other user’s location point.

1.1 Threat Model

We consider the same threat model as in TAROT [10] where the CSP and
CUs are honest in executing the protocol. The CUs send legitimate requests by
encrypting their precise location points to the CSP during the query phase and
to other CUs to compute the accurate similarity between their corresponding
routes. Also, the CSP will honestly adhere to the protocol when providing CUs
with carpooling query services. The CSP and CUs are both honest but have
a sense of curiosity within the protocol. The CSP wants to learn more about
the CUs’ private location information, while the CUs want to know more about
other CUs’ private location information.

The TAROT protocol aims to preserve the location privacy of CUs from both
the CSP and from other CUs. The authors assume that there is no collusion
between the CSP and CUs in TAROT as otherwise it would be possible for the
CSP to learn about the location of other CUs in a straightforward way. Our
passive attacks on GMEDA utilizes the fact that the honest-but-curious CUs
collude within themselves to steal the location information of other CUs. These
colluding CUs can include anyone taking part in the TAROT protocol and not

Attack on the Privacy-Preserving Carpooling Service TAROT 251

just the CUs who have already matched successfully. Therefore, our attacks are
valid in the threat model considered in [10]. We stress that honest-but-curious
CUs that collude is a realistic threat as an adversary could always hire two or
more CUs to work for it.

1.2 Our Contribution

The authors in [10] claim that GMEDA preserves the privacy of CUs. In Sect. 2,
we present two variants of passive attacks on GMEDA where some of the honest-
but-curious CUs collude to steal the sensitive location details of other CUs. In
the first variant, the colluding adversary CUs choose location points of their
choice. The second variant is a more efficient attack where the location points of
the colluding adversary CUs are arbitrarily placed. That is, these location points
may be placed anywhere, which may not always be of the CUs’ choice.

As mentioned previously, in the GMEDA protocol, one of the users performs
a Hadamard product on both the encrypted location points and permutes the
elements. However, this leaks the Hamming weight of the XOR values of the
location points of both users. We make use of this fact to mount passive attacks
on GMEDA. We model the passive attacks where colluding CUs are considered
adversaries and the goal is to recover the location information of the target
user. Our Attack-1 uses l+1 honest-but-curious adversary CUs in collusion and
Attack-2 uses at least l honest-but-curious adversary CUs in collusion, where l is
the number of bits in the bit representation of the location points of the users. We
provide algorithms for the proposed Attack-1 and Attack-2 in Algorithm 2 and
Algorithm 3, respectively. Our experiments show that we can recover the secret
location points of all the users with a 100% success rate in both Attack-1 and
Attack-2. Our Attack-1 algorithm runs in O(nl) time and the Attack-2 algorithm
runs in O(nLl) time, where n is the number of users in the post-filtering stage
of the TAROT protocol, l is the number of bits in the bit representation of the
location points of the users and L is the number of users in collusion.

In our attacks on GMEDA, we make use of the leaked Hamming weights of
the XOR values of the location points of the users. Interestingly, problems related
to the extraction of values using the Hamming weights have been addressed in
a different context in the side-channel implementations. For instance, in [11] the
authors use the Hamming weight of the intermediate values of the ARX-based
block cipher’s state to analyse the standard side-channel leakage from the power
consumption or electromagnetic radiation of the cipher’s execution. The paper
[2] discusses a side-channel analysis of multiplications in GF(2128). The authors
show that the secret multiplier can be efficiently recovered by utilizing the least
significant bit of the Hamming weight of the multiplication result. As a follow-up
work, the paper [1] presents a novel side-channel attack against the multiplication
in GF(2128) which utilizes the most significant bits of the Hamming weight of the
multiplication result. However, the variant in our attacks utilizing the Hamming
weights does not seem to be investigated to the best of our knowledge.

The attack we present in this work is another addition to the recent crypt-
analytic attacks in [4–9] on PP-RHS protocols.

252 M. Vargheese and S. Vivek

1.3 Outline of the Paper

Section 2 describes the preliminaries required to understand GMEDA - a privacy-
preserving equality determination algorithm used in the TAROT protocol and
provides two variants of passive attacks on GMEDA.

2 GMEDA - Privacy-Preserving Equality Determination
Algorithm

This section briefly explains the steps involved in TAROT. It also provides a
detail explanation of the steps involved in GMEDA, a privacy-preserving equal-
ity determination algorithm used in TAROT and proposes passive attacks on
GMEDA, where honest-but-curious users collude to steal the private location
information of other users.

2.1 TAROT

In this section, we briefly explain the steps involved in the TAROT protocol [10].
In TAROT, each route is represented by a set of location points, which is also
considered as a vector and each location is represented as a point on a grid. The
following are the steps involved in TAROT:

1. Initialization: In this step, the CSP publishes the public parameters, and
each user publishes their respective public keys.

2. Query Token Generation: In this step, each user generates their carpooling
queries and sends them to the CSP.

3. Dissimilar Route Filter: On receiving the carpooling query tokens, the
CSP uses Dissimilar Route Filter Algorithm (DRFA) [10, Algorithm 2] to
filter the dissimilar routes among the CUs and outputs a list of candidate
CUs for further analysis.

4. Accurate Similarity Computation: Accurate Similarity Computation
Algorithm (ASCA) [10, Algorithm 3] is run between the candidate CUs to
accurately compute the similarities between their respective routes. After the
computations, the CUs send their corresponding results to the CSP.

5. CU Grouping: Based on the results sent by the CUs, the CSP outputs the
CU grouping results.

2.2 GMEDA

In the fourth step of TAROT, the candidate CUs use Accurate Similarity Com-
putation Algorithm (ASCA) to compute their corresponding route similarities.
This algorithm further uses, Goldwasser-Micali-based Equality Determination
Algorithm (GMEDA). GMEDA is an algorithm proposed by Xu et al. [10] to
determine whether two location points are identical. It is based on Goldwasser-
Micali (GM), a probabilistic public-key encryption algorithm that encrypts only
one bit at a time. The GM algorithm satisfies the XOR homomorphic property.

Attack on the Privacy-Preserving Carpooling Service TAROT 253

That is, Enc(m1) × Enc(m2) → Enc(m1 ⊕ m2). The GMEDA protocol involves
two users CUi and CUj who each have an integer value A and B, respectively,
encoded as an l-bit integer, and want to determine whether A equals B. The
steps in GMEDA are as follows and are given in Algorithm 1.

1. Let, [[]] represent encryption in the GM algorithm.
2. CUi generates public key pki and secret key ski as in GM algorithm. CUi

uses pki to encrypt A as [[A]].
3. CUi sends pki and [[A]] to CUj .
4. CUj generates [[B]] by encrypting B with pki.
5. CUj computes the Hadamard product of [[A]] and [[B]], denoted by [[A]] ◦ [[B]].
6. CUj then randomly permutes the elements of [[A]] ◦ [[B]] to obtain [[A]][[B]],

and sends it to CUi.
7. CUi decrypts each element of [[A]][[B]] using ski and outputs A = B if the

decryption result is 0, and A �= B otherwise.

Algorithm 1. GMEDA [10, Algorithm 1]
1: procedure ENC � by CUi

2: (pki, ski) ← KeyGen(κ) � public and private key
3: A ← 〈a1, a2, . . . , al〉2 � express A in binary
4: [[A]] = ([[a1]], [[a2]], . . . , [[al]]) � encrypt A with pki

5: send [[A]] to CUj

6: end procedure

7: procedure Multienc � by CUj

8: B ← 〈b1, b2, . . . , bl〉2 � express B in binary
9: [[B]] = ([[b1]], [[b2]], . . . , [[bl]]) � encrypt B with pki

10: [[A]] ◦ [[B]] ← ([[a1]] × [[b1]], [[a2]] × [[b2]], . . . , [[al]] × [[bl]])
11: [[A]][[B]] ← randomly permute [[A]] ◦ [[B]]
12: send [[A]][[B]] to CUi

13: end procedure

14: procedure GetEquality � by CUi

15: for e ∈ [[A]][[B]] do
16: if Dec(ski, e) = 1 then
17: send A �= B to CUj

18: end if
19: end for
20: if all Dec(ski, e) = 0 then
21: send A = B to CUj

22: end if
23: end procedure

As mentioned earlier, TAROT uses GMEDA to compute the accurate simi-
larity between two routes. In [10, Section IV A] the authors claim that the step

254 M. Vargheese and S. Vivek

where the user CUj permutes the elements in the Hadamard product of [[A]] and
[[B]] in GMEDA is the key to achieving privacy preservation. However, it is a
practical possibility that CUs can collude with each other to steal other CUs’
private location information. In this regard, we consider a case where some of the
honest-but-curious CUs collude to steal the location information of other CUs
and propose passive collusion attacks. We consider the following two variants of
the passive attacks:

1. Attack-1: In this variant, the honest-but-curious CUs collude and choose
location points of their choice.

2. Attack-2: In this variant, the honest-but-curious CUs collude and their loca-
tion points are arbitrarily placed.

Consider the step in the GMEDA protocol where CUj sends the permuted
elements of the Hadamard product of [[A]] and [[B]]. In practice if User CUi is
honest-but-curious, then it could choose zero as its location point. Suppose CUi

encrypts zero and sends it to CUj . Then, CUj outputs [[0]][[B]] by randomly
permuting the elements of the Hadamard product of [[0]] and [[B]]. Because of the
XOR homomorphic property of the GM algorithm, [[0]][[B]] is equivalent to the
result obtained by permuting the elements of [[0 ⊕ B]], which is the same as the
permuted elements of [[B]]. On decryption, the user CUi determines the number
of 1 s in B. Hence, CUi learns the Hamming weight of B. Our goal is to recover
B considering CUj as the target user for any j.

Both our attacks assume that there are sufficiently many honest-but-curious
adversaries who pass the dissimilar route filtering stage in TAROT. This is
feasible in practice since the colluding adversaries may possess knowledge of the
general area in which the target user resides, even if they do not have precise
location information. By positioning attackers in proximity to the known area, it
becomes feasible to gather a sufficient number of attackers to potentially bypass
the filtering stage.

2.3 Attack on GMEDA (Attack-1)

In this section, we consider a passive collusion attack where honest-but-curious
CUs collude and choose the location points of their choice. Suppose the location
point of the target user is an l-bit string k, we need l + 1 honest-but-curious
CUs in collusion to recover the secret location point k. Our attack is similar to a
key recovery attack in the Chosen Plaintext Attack (CPA) model for encryption
schemes.

For each i, 0 ≤ i ≤ l, let mi represent the location point chosen by the
colluding user CUi. During the query phase of the GMEDA protocol, each CUi

encrypts mi and sends it to the target user CUj . In return, CUj sends the
randomly permuted elements of the Hadamard product of [[mi]] and [[k]], which
is equivalent to the randomly permuted elements of [[mi ⊕ k]] due to the XOR
homomorphic property of the GM algorithm. Upon decryption, each CUi in
collusion learns the Hamming weight of mi ⊕ k denoted as HW(mi ⊕ k). To
recover the unknown location k the CUs in collusion use the following strategies:

Attack on the Privacy-Preserving Carpooling Service TAROT 255

1. CU0 sends the encryption of zero as its query to the target user CUj . As a
result, CU0 learns HW(0 ⊕ k) = HW(k) and denotes it as c0.

2. For each i, 1 ≤ i ≤ l, CUi sends the encryption of ei to the target user CUj ,
where ei has 1 in the ith position and zeroes everywhere else. As a result,
each CUi learns HW(ei ⊕ k) and denotes it as ci, 1 ≤ i ≤ l.

Note that HW(ei ⊕k) < HW(k) if k has a 1 in the ith position, and HW(ei ⊕
k) > HW(k) if k has a 0 in the ith position. Therefore, by comparing c0 with
each ci, where 1 ≤ i ≤ l, the colluding CUs can recover the secret location point
k of the target user CUj . The algorithm to recover the secret location point k
using Attack-1 is given in Algorithm 2. It is clear from the algorithm that, if
l+1 users collude, then they can recover the location points of all the users with
100% success rate. Our algorithm is efficient and runs in O(nl) time, where n is
the number of users in the post-filtering stage of the TAROT protocol and l is
the number of bits in the bit representation of the location points of the users.

Algorithm 2. Attack-1
1: procedure
2: Input : K ← {0, 1}l � Location point of any target user CUj

3: Output : K′ such that K = K′

4: M ← null � List to store the queries mi

5: temp ← list of zeroes of length l
6: for i ← 1 to l do � Generating ei bit strings
7: temp[i] = 1
8: Add temp to M
9: temp ← list of zeroes of length l � Re-initializing to 0

10: end for
11: return M
12: C ← list of zeroes of length l + 1 � List to store the result of GMEDA
13: C[0] ← HW(K)
14: for i ← 1 to l do
15: C[i + 1] ← HW(M [i] ⊕ K) � Computing the result of GMEDA
16: end for
17: K′ ← list of zeroes of length l � List to store the recovered secret
18: for i ← 1 to l do
19: if C[i + 1] < C[0] then
20: K′[i] = 1
21: else
22: K′[i] = 0
23: end if
24: end for
25: return K′ � The recovered location point
26: end procedure

256 M. Vargheese and S. Vivek

2.4 A More Efficient Attack on GMEDA (Attack-2)

In this section, we consider a passive collusion attack where honest-but-curious
CUs collude and their location points are arbitrarily placed. Let the location
point of the target user CUj be an l-bit string k. Let L many honest-but-curious
users collude to recover the secret location point k. In this collusion attack,
when the CUs collude they know their arbitrarily placed l-bit location points mi

and their corresponding results obtained at the end of the GMEDA protocol,
ci = HW(mi ⊕ k). Our goal is to recover the secret location point k with the
knowledge of these known pair of values (mi, ci), 1 ≤ i ≤ L. Our attack is
similar to the Known Plaintext Attack (KPA) model on encryption schemes. In
this attack model, the adversary is weaker than the adversary in Attack-1, hence
this is a more powerful attack.

For each i, 1 ≤ i ≤ L, ci is the sum of XOR of each bit of mi ⊕ k. Let
ci = 〈ci1, ci2, . . . , cil〉2, mi = 〈mi1,mi2, . . . ,mil〉2 and k = 〈k1, k2, . . . , kl〉2 be the
bit representations of ci, mi and k, respectively. Then,

ci = HW(mi ⊕ k) =
l∑

j=1

(mij ⊕ ki).

Here, mij ’s and ci’s are known, and the ki’s are unknown. That is, we have L
equations in l unknowns. Solving these equations, if possible, reveals the secret k.
Each equation contains both a Boolean sum and an integer sum which makes it
tricky to solve them. To simplify solving these equations, we rewrite the Boolean
sum as an integer sum as follows:

ci =
l∑

j=1

(mij ⊕ ki) =
L∑

j=1

((−1)mijkj + mij),∀1 ≤ i ≤ L.

Now, we have L linear system of equations over integers in l unknowns.
Solving this system of equations, if possible, recovers the unknown location point
k completely. The variable L has to be at least l for a unique solution to the
above system of equations to exist. That is, we require at least l users to collude
to recover the secret location point of the target user. This is practically possible
since the number of bits in the bit representation of the location points is not
large.

We represent the above system of equations in the matrix form AK ′ = B,
where A represents the coefficient matrix, K ′ represents the variable matrix
and B represents the constant matrix. We use the Row-Reduced Echelon Form
method to solve the system AK ′ = B. The algorithm to recover the secret
location point k using Attack-2 is given in Algorithm 3. Our algorithm is efficient
and runs in O(nLl) time, where n is the number of users in the post-filtering
stage of the TAROT protocol, l is the number of bits in the bit representation
of the location points of the users and L is the number of users in collusion.

Let us consider the following example to understand Attack-2. Let, k = 〈1, 0〉2
be the location point of the target user, and m1 = 〈1, 1〉2 and m2 = 〈0, 1〉2 be

Attack on the Privacy-Preserving Carpooling Service TAROT 257

the location points of the colluding users CU1 and CU2, respectively. Then, A =[−1 −1
1 −1

]
, B =

[−1
1

]
. Now, solving the system, AK ′ = B, we get, K ′ =

[
1
0

]
= k,

the location point of the target user.

Algorithm 3. Attack-2
1: procedure
2: Input : K ← {0, 1}l � Location point of any target user CUj

mi
$←− {0, 1}l, 1 ≤ i ≤ L � Location point of the adversary user CUi

ci ← HW(mi ⊕ k), 1 ≤ i ≤ L � Result sent by CUj in the GMEDA
3: Output : K′ such that K = K′

4: K ← 〈k1, k2, . . . , kl〉2 � Bit representation of K
5: mi ← 〈mi1, mi2, . . . , mil〉2 for each 1 ≤ i ≤ L � Bit representation of mi

6: ci ← HW(mi ⊕ k) =
∑l

j=1(mij ⊕ kj)

7: ci ← ∑l
j=1((−1)mijkj + mij) � Re-writing Boolean sum as integer sum

8: A ← (aij) such that aij = (−1)mij � Coefficient matrix of order L × l
9: B ← (bi) such that bi = ci − HW(mi) � Constant matrix of order L × 1

10: K′ ← (k′
i) � Variable matrix of order l × 1

11: Solve AK′ = B
12: return K′ � The recovered location point
13: end procedure

Since the location points mi are randomly generated, in certain cases, even
when L ≥ l, the system AK ′ = B may become undetermined or yield multiple
solutions. This occurrence is attributed to the presence of dependent rows in the
augmented matrix [A : B], resulting in non-pivot columns and, consequently,
multiple solutions. As the number of rows, denoted as L, increases, the likelihood
of non-pivot columns decreases, thereby enhancing the success rate. To estimate
the number of colluding users required to completely recover the secret location
point k of the target user CUj , we ran experiments for different values of l and
L. For each value of L, we considered 100 runs and estimated the success rate.
From Table 1, it is clear that in all the cases, we could recover k with a success
rate close to 100. Therefore, for an appropriate L, if L ≥ l users collude, then
they can recover the location points of all the users with 100% success rate.

Table 1. Estimate of Success for Attack-2

L l = 10 l = 11 l = 12

10 11 12 13 11 12 13 14 12 13 14 15

Success rate (%) 92 95 97 100 84 97 100 100 88 99 100 100

258 M. Vargheese and S. Vivek

Acknowledgements. This work was funded by the Infosys Foundation Career Devel-
opment Chair Professorship grant for Srinivas Vivek.

References

1. Beläıd, S., Coron, J.-S., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Prouff, E.:
Improved side-channel analysis of finite-field multiplication. In: Güneysu, T., Hand-
schuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 395–415. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 20

2. Beläıd, S., Fouque, P.-A., Gérard, B.: Side-channel analysis of multiplications in
GF(2128). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
306–325. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8
17

3. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984). https://doi.org/10.1016/0022-0000(84)90070-9

4. Kumaraswamy, D., Murthy, S., Vivek, S.: Revisiting driver anonymity in ORide. In:
AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 25–46. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99277-4 2

5. Kumaraswamy, D., Vivek, S.: Cryptanalysis of the privacy-preserving ride-hailing
service TRACE. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT
2021. LNCS, vol. 13143, pp. 462–484. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92518-5 21

6. Murthy, S., Vivek, S.: Driver locations harvesting attack on pRide. In: Yuan, X.,
Bai, G., Alcaraz, C., Majumdar, S. (eds.) NSS 2022. LNCS, vol. 13787, pp. 633–
648. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23020-2 36

7. Murthy, S., Vivek, S.: Passive triangulation attack on ORide. In: Beresford, A.R.,
Patra, A., Bellini, E. (eds.) CANS 2022. LNCS, vol. 13641, pp. 167–187. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-20974-1 8

8. Vivek, S.: Attacks on a privacy-preserving publish-subscribe system and a ride-
hailing service. In: Paterson, M.B. (ed.) IMACC 2021. LNCS, vol. 13129, pp. 59–71.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92641-0 4

9. Vivek, S.: Attack on “a privacy-preserving online ride-hailing system without
involving a third trusted server”. In: Proceedings of the 18th International Con-
ference on Availability, Reliability and Security, ARES 2023, pp. 59:1–59:3. ACM
(2023). https://doi.org/10.1145/3600160.3605040

10. Xu, Q., Zhu, H., Zheng, Y., Zhao, J., Lu, R., Li, H.: An efficient and privacy-
preserving route matching scheme for carpooling services. IEEE Internet Things
J. 9(20), 19890–19902 (2022). https://doi.org/10.1109/JIOT.2022.3168661

11. Yan, Y., Oswald, E., Vivek, S.: An analytic attack against ARX addition exploiting
standard side-channel leakage. In: Mori, P., Lenzini, G., Furnell, S. (eds.) Proceed-
ings of the 7th International Conference on Information Systems Security and
Privacy, ICISSP 2021, pp. 89–97. SCITEPRESS (2021). https://doi.org/10.5220/
0010223600890097

https://doi.org/10.1007/978-3-662-48324-4_20
https://doi.org/10.1007/978-3-662-45608-8_17
https://doi.org/10.1007/978-3-662-45608-8_17
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1007/978-3-030-99277-4_2
https://doi.org/10.1007/978-3-030-92518-5_21
https://doi.org/10.1007/978-3-030-92518-5_21
https://doi.org/10.1007/978-3-031-23020-2_36
https://doi.org/10.1007/978-3-031-20974-1_8
https://doi.org/10.1007/978-3-030-92641-0_4
https://doi.org/10.1145/3600160.3605040
https://doi.org/10.1109/JIOT.2022.3168661
https://doi.org/10.5220/0010223600890097
https://doi.org/10.5220/0010223600890097

Democracy in Your Hands! : Practical
Multi-key Homomorphic E-Voting

Tanusree Parbat1(B) , Aniket Banerjee2, and Ayantika Chatterjee1

1 Indian Institute of Technology Kharagpur, Kharagpur, India
tanusree.parbat@iitkgp.ac.in

2 Indian Institute of Engineering Science and Technology, Shibpur, Shibpur, India

Abstract. Digitization of elections demands end-to-end security of the
overall process and hence, cyber security for elections is an important
issue. Distributed blockchain technology in e-voting can only provide
verification advantages. However, voters’ authenticity, data confidential-
ity, and intermediaries represent other major concerns in this regard.
Existing secure voting frameworks either provide final voting results
with the help of trusted intermediaries or provide vote verifiability in
an unencrypted domain. At present, there is no such realistic mecha-
nism to assure full security of vote casting and result declaration from
cyber threats. Even Microsoft’s ElectionGuard is not free from post-
quantum attacks due to additive ElGamal cryptosystem. To achieve
effective guards against cyberattacks, we propose a voting framework,
which reduces vote transmission overhead on a per-voter basis and sup-
ports post-quantum secure automated vote counting and winner selection
without any manual intervention with the aid of multi-key homomorphic
encryption. Along with suitable preventive measures against double vot-
ing, vote rigging, and coercion effects, we include a secure result decipher-
ing process evading the possibility of result alteration using multi-key
approach. Though our scheme is scalable for smaller as well as large orga-
nizations/communities, encrypted processing is inherently performance-
costly. Hence, to reduce the overall timing overhead, encrypted hierar-
chical processing with zonal segregation and parallel computation have
been incorporated. Our proposed scheme demonstrates party-specific
vote counting without rank generation within 4 days and 22 h and vote
counting with winner rank calculation within 5 days (for four candidates
and one hundred thousand voters) without any manual intervention with
the support of suitable distributed computing.

Keywords: E-voting · Security · Privacy · Homomorphic Encryption ·
Multi-key

1 Introduction

Security is a major concern for both online and offline voting. Secret vote suf-
frage and vote transmitting to the server through internet may be convenient and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 259–271, 2023.
https://doi.org/10.1007/978-3-031-49099-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_16&domain=pdf
http://orcid.org/0000-0002-0618-9591
http://orcid.org/0000-0001-6368-0718
https://doi.org/10.1007/978-3-031-49099-6_16

260 T. Parbat et al.

appealing in both voting systems, but they come with added concern of security.
In fact, traditional ballot-based voting is also not free from device exploita-
tion, through which attackers gain access to voting-related critical information.
Recent research shows that blockchain-based security solutions only provide vote
or voter verifiability, which is not enough to provide minimal election security
requirements like ballot secrecy and contestability [18].

Several research works [1,5,13,16] have explored the e-voting scheme with
blockchain to resolve the security issues in existing paper-based voting schemes,
but they are either lacking integrity [1] or confidentiality. In 2021, Mccrory et
al. [16] proposed an end-to-end secure e-voting over blockchain but this work
suffers from scalability issues. Some online voting platforms like “Follow My
Vote”, “Polyas”, “Luxoft”, “Voatz”, “Polys”, “Agora” etc., are already adapted
by several countries like US and Europe. These platforms encounter a lack of
voters’ authenticity and scalability issues due to the usage of blockchain tech-
nology in a straightforward way. From a recent study [20], it is known that
“Voatz” mobile app suffers from severe security flaws that allow attackers to
observe the vote casting and alter the ballot. Few other research efforts [6,17]
provide solutions for voter-verifiability, and contestability but ballot secrecy is
not supported in those schemes. In this work, we implement a practical voting
framework in encrypted domain that supports ballot confidentiality and vot-
ing result computation without any manual intervention. In case of traditional
encryption, encrypted plaintext must be decrypted before processing over it. So,
data may be leaked during computation because of intermediate decryption. To
provide outsourced data security during computation without any intermediate
decryption, homomorphic encryption (HE) [12] is a conventional solution, which
is adapted in this case. Along with providing security, proposed framework is also
meaningful to reduce the gross overhead of manual vote counting. Moreover, our
proposed solution can also be easily adapted for traditional EVM-based vote
counting with the support of additional processing hardware like Raspberry Pi.

Limitations of Additive Homomorphic-Based Voting Framework

Existing few works proposed secure e-voting scheme with automated vote count-
ing by additive homomorphic encryption [2,14,19]. Recently, Microsoft Elec-
tionGuard [15] has proposed end-to-end vote verifiability and homomorphic
aggregation of votes using ElGamal cryptosystem. However, there are some
recent reported attacks against additive homomorphic schemes like Paillier,
ElGamal cryptosystem as they are not post-quantum secure [10]. Chillotti et
al. [10] proposed a post-quantum resistant e-voting scheme which offers a pub-
licly verifiable ciphertext trapdoor instead of zero-knowledge proof and inter-
mediate processing assuming an honest bulletin board. Here, we highlight more
technically the limitations of additive homomorphic encryption-based YES-NO
elections where ‘YES’ means 1 and ‘NO’ means 0. Let us consider there is a
� number of election candidates. While a voter selects his/her preferred candi-
date, it is considered as 1, whereas the remaining (� − 1) candidates’ votes are

Democracy in Your Hands! : Practical Multi-key Homomorphic E-Voting 261

automatically considered to be 0. Now, all these votes are encrypted and trans-
mitted to respective homomorphic adders in the server. According to the vote
aggregation, only Total vote count of selected candidate (whose received vote is
encrypted 1) will be added with 1 and other (�−1) candidates’ Total vote count
will be added with 0. This method requires transmitting all encrypted votes for
each candidate for every voter, leading to increased transmission overhead as the
number of candidates grows. To reduce this overhead, a more efficient approach
involves transmitting only the selected candidate’s ID as the vote for each voter.

Fig. 1. System model for voting

In this context, our motivation is to develop a secure automated voting sys-
tem using multi-key homomorphic encryption (MK-HE), eliminating the need
for transmitting � encrypted votes per voter. Instead of YES-NO votes, we assign
binary codes (candidate’s ID) to each candidate and transmit only the chosen
candidate’s encrypted code as the vote. In the subsequent section, we will detail
this decoding framework to process the encrypted vote in server and discuss the
associated overhead. Our framework is generic and can be adapted for smaller
organizations as well as can be scaled for larger organizations/requirements with
suitable parallelization techniques. We specifically choose MK-TFHE library [9]
to alleviate the requirement of intermediate trusted authority with the support of
multi-key encryption. This MK-TFHE scheme follows a number of polynomial-
time algorithms: Setup(), KeyGen(), Enc(), Eval(), PartDec(), and Merge() to
process multi-key computation (see the reference [8] for more details). However,
the main challenge in this work is to implement the circuit-based representation
of vote count and final winner declaration using basic supported gates, specifi-
cally MK-TFHE-based NAND gates (MKHE NAND). Our contributions are as
follows:

1. To maintain the ballot secrecy we propose a new voting scheme with multi-key
homomorphic encryption. Instead of YES-NO voting, we transmit only the

262 T. Parbat et al.

encrypted code of the selected candidate to the server. Now, server follows a
circuit-based homomorphic decoding with MKHE NAND operations to iden-
tify encrypted votes, reducing performance overhead in decision-making.

2. Second, We propose an optimized addition method for counting votes auto-
matically. As encrypted votes passes through the decoding technique, it gener-
ates a 1-bit vote (i.e., Encrypted 0 for all candidates except chosen candidate
who received Encrypted 1) for each candidate. So, we require to add this 1
bit vote with k bits total vote count for each candidate. But its circuit-based
representation is challenging in homomorphic domain. To address this, we use
a bit-wise half-adder circuit design, leveraging MKHE NAND operations for
the desired vote count addition. Additionally, we apply homomorphic sorting
technique in MK-HE domain to declare rank-wise winner selection.

3. Finally, we present a secure result deciphering process using multi-key com-
putation, where the server sends encrypted results to all parties, including
candidates and the election commission. Each party decrypts the result par-
tially with its secret key, adds a smudging noise for security, and shares it
with others. After receiving these partially decrypted outputs, each party
computes the final voting results.

The remaining paper is organized as follows. We introduce our system model and
threat model in Sect. 2. Section 3 presents our scheme followed by performance
evaluation in Sect. 4. Finally, we draw our conclusion in Sect. 5.

2 System Model and Threat Model

Our system model consists of four significant entities - 1) Election Commission
(EC), 2) Number of Voters, denoted as ν = {ν1, . . . νn}, 3) Election candidate,
denoted as ξ = {ξ1, . . . ξ�}, and 4) Vote Server. Figure 1 depicts our proposed
system model. Election Commission (EC) is responsible for voter valida-
tion, tracking voter status, and announcing the election winner. In this model,
EC shares a common security parameter with election candidates to generate
their key pairs. It forms a joint public key (j pk) from all candidates’ public
keys, including its own, and a joint evaluation key (j ek). EC stores j pk in an
encryption unit (EU)/encryption module (EM) for vote encryption and sends
j ek to the vote server for homomorphic evaluation. Encrypted votes are then
transmitted from EU/EM to the server for further processing. Voters receive a
ballot board with a list of election candidates {ξ1, . . . ξ�}, including correspond-
ing candidate IDs, to cast their votes after proving their authenticity. Before
casting their votes, they need to confirm their authenticity with the help of
unique identification number (UIN) and fingerprint template following proposed
validation protocol. Election Candidates ξi share their pki and eki sequen-
tially with EC to form a j pk and j ek keeping secret keys private with them.
Each candidate will participate to decrypt voting results by combining partially
decrypted results from all other parties (whose pk is involved in j pk). Vote
Server is only responsible for adding a casting vote with the appropriate candi-
date’s vote under homomorphic environment and storing this computed result.

Democracy in Your Hands! : Practical Multi-key Homomorphic E-Voting 263

Our proposed solution is adaptable to both offline and online voting systems.
In offline voting, a Raspberry Pi-based hardware encryption unit (EU) can be
added to traditional EVMs for encryption. In online voting, individuals can cast
their votes using mobile devices or laptops with a software-based encryption
module (EM) integrated into the voting platform. The output from the hard-
ware encryption unit or software encryption module is then transmitted to the
vote server for processing and result generation.

Based on the key generation by participating candidates, EC forms a joint
public key and joint evaluation key after receiving public and evaluation keys
sequentially from the candidates. This assumption is reasonable due to multi-key
processing over the encrypted vote count in the server. In this model, EC, vote
server, election candidates are considered to be semi-honest, which means they
follows the proposed scheme but may be curious to know private information.
However, like traditional paper voting, our model ensures that voters cannot
cast multiple votes during the same voting session to prevent coercion.

3 Encrypted Voting Framework Implementation

Our proposed scheme improves the voting system by enhancing the security
requirements of six phases related to traditional voting framework. Subsequent
sections describe the phases in detail.

3.1 Key Generation Phase

In this phase, EC generates two types of keys - MK-HE related key (joint pub-
lic key j pk = [pkEC , {pk1, pk2, . . . , pk�}pki|� ∈candidate] and joint evaluation key
j ek = [ekEC , {ek1, ek2,. . . ,ek�}eki|� ∈candidate]) for encrypted computation and
ECC-based key (EC’s public EpkEC and private key EskEC)) for confidential
data transmission. In general, to avoid MK-HE based transmission overhead
and ciphertext-related memory requirement we use ECC encryption with low
overhead for securely storing voter information.

EC also chooses a hash function H(.), which follows H : {0, 1}∗ −→ {0, 1}.
At the end of key generation, public keys (EpkEC , base point of ECC curve
Ep i.e. P and hash function H(.) are publicly available for ECC-based data
transmission.

3.2 Voter Registration Phase

In this phase, before applying for voter registration, a citizen should have a
unique identification number (UIN) and key-token (S1) from unique identifica-
tion number validation center (UINVC). If a citizen doesn’t have it, s/he applies
for a UIN number with his/her fingerprint template (which will be collected
by UINVC using MINDTCT tool [21]). UINVC derives fingerprint key (fk)
from fingerprint template [3] along with generating UIN number and a k-bit
random number for the applicant. UINVC encrypts UIN and DOB separately

264 T. Parbat et al.

Fig. 2. Voter registration and login phase

by fk using AES encryption technique. It stores (fk||k), AES Encfk(UIN),
AES Encfk(DOB) and key-token S1 after dividing k bit number into S1 and
S2. Here, UINVC stores these information as per applicant encrypted by its
public key i.e., pkUINV C = skUINV C .P (where skUINV C indicates secret key
of UINVC). At last, it sends UIN and key-token S1 to the applicant. While a
citizen applies for voter registration with fingerprint template and the key-token
i.e., (f ′

k||S′1), the registration process follows the steps depicted in Fig. 2a.

3.3 Voter Verification Phase

Aim of this phase is to authenticate the voters, resist double voting issues, and
avoid vote rigging and coercion effects. This phase requires a finger sensing
module (MINDTCT) to capture the fingerprint template. Figure 2b depicts the
voter authenticity validation protocol, which will be followed to verify a voter in
both online/offline voting systems. In offline voting system, voter verification is
performed in the polling booth following Fig. 2b. In online voting, voter login to
the voting portal with UIN and DOB along with fingerprint template captured by
MINDTCT. Fingerprint key fk is extracted from fingerprint template following
algorithm [3] at login portal.

3.4 Vote Casting Phase

In this phase, eligible voters can choose their preferred candidates upon success-
ful login, using a ballot board displaying candidate code numbers. Voters select
one choice, and the chosen candidate code is encrypted with jpk in EU/EP
and sent to the vote server. Simultaneously, a randomly generated passcode is
sent to EC and the voter, updating the voter’s status in the database. This
passcode confirms the successful addition of the vote and prevents coercion or
rigging. Our method ensures data confidentiality through multi-key encryption
and maintains an encrypted voting record as a chain of blocks using blockchain
technology. Block generation follows an exponential distribution model, optimiz-
ing block creation based on time requirements. Unlike traditional blockchains,

Democracy in Your Hands! : Practical Multi-key Homomorphic E-Voting 265

our vote-counting process is independent of block creation, ensuring efficiency.
The vote server receives encrypted votes before generating a new block and ini-
tiates automated vote counting. We aim to preserve immutable voting records
in the blockchain, facilitating future vote recounts. Detailed descriptions of the
circuit-based secure vote counting and result deciphering process are provided
in subsequent sections.

Fig. 3. Vote counting and winner selection

3.5 Automated Vote Counting Phase

In this phase, a vote bank stores total vote count information for each election
candidate, initially encrypted as zeros (i.e., Enc(0, . . .)). To implement vote
counting efficiently, our scheme encrypts only the chosen candidate’s code as a
vote for each voter, reducing transmission overhead. The server’s responsibility
is to increment the selected candidate’s vote count by 1 while leaving other
vote counts unchanged. However, identifying the selected candidate’s vote in the
encrypted domain is challenging and performance-intensive. Therefore, we focus
on designing an encrypted decoder module to identify the selected candidate’s
vote and increment the party-specific vote count.

Decoder-Based Automated Vote Count

1. Identification of Selected candidate: In order to find out the vote
recipient party, generally, we require costly encrypted decision-making mod-
ules (MKHE MUX). To alleviate the requirement, we implement an m × �
encrypted MKHE Decoder using the basic MKHE NAND operations to
reduce the performance overhead, where 2m = �, and m represents number of
bits present in encrypted candidate ID (i.e., Party ID), and � indicates a num-
ber of election candidate. Once the server receives an encrypted input vote

266 T. Parbat et al.

(Enc(V ote)), it follows a bit-wise decoder implementation (shown in Fig. 3a)
in encrypted domain. Bit-wise vote input (i.e.,V ote bit[0], . . . , V ote bit[m]) is
fed into MKHE Decoder as decoder inputs. Based on the given vote input
Enc(V ote), one of the � output lines of encrypted decoder will be activated
i.e., Output bit[i] = Enc(1) (where 0 ≤ i ≤ �) that indicates the given vote is
only for that specific i-th candidate, whereas remaining output lines will be
low i.e., Enc(0). In this case, only the i-th candidate vote will be increased,
but Enc(0) will be added to other candidates’ total votes. Figure 4 shows
implementation details of 2 × 4 MKHE Decoder with 2-bits vote represen-
tation for four election candidates. Here, we require only 12 MKHE NAND
operations to identify the selected candidate’s vote.

2. Optimized MKHE Addition for vote counts: After getting all � outputs
from the decoder, server will perform bitwise � homomorphic addition with
existing candidate vote counts using MKHE Addition module. Here, 1 bit
of decoder output (Enc(1) or Enc(0)) will be added with k number of bits
of Total V oteξi

for a i-th candidate ξ. Therefore, we do not require costly
two k bits of ciphertexts addition module. For this case, We implement an
improved MKHE Addition module which will add 1 bit ciphertext with k
bits of ciphertext. Figure 4 shows our optimized MKHE Addition module in
comparison to full adder MKHE Addition using 5 MKHE NAND operations.
In this case, only a specific candidate’s (for which decoder Output bit[i] =
Enc(1)) Total V oteξi

will be increased by 1. For other candidates, Enc(0) will
be added with previous vote count results V outξ�−i

. However, total execution
time for per vote counting is 4(12×2.19675)+4(5×2.19675×k) = (105.444+
43.935k) sec. At the end of the voting session, server will obtain Total V oteξi

for each candidate (shown in Fig. 3a) and send this result to all candidates
including EC to disclose the voting result.

Automated Vote Count with Winner Selection

The objective of our election scheme is to find out the winner among the can-
didates. This phase discloses encrypted rank of candidates, which assures the
correctness of the decrypted voting result. If some parties collude to decrypt
wrong result, they also have to alter all ranks to produce the proof because
two candidates may not have same rank. Here, to find out the respective rank
of multiple candidates, server will re-arrange Total V oteξi

homomorphically in
sorted order. As it is proven in [7], partition-based sort incurs extra overhead
in the encrypted domain than comparison-based sort. In this implementation,
we consider comparison-based sorting technique to finalize the winner, second
winner, and subsequent positions of the parties following Fig. 3b.

3.6 Result Deciphering Phase

EC and candidates will receive all Total V oteξi
from the server to reveal the can-

didates’ vote. But, Only EC will receive rank-wise winner list in encrypted form.

Democracy in Your Hands! : Practical Multi-key Homomorphic E-Voting 267

Fig. 4. 2 × 4 MKHE Decoder and Vote Aggregation

Our proposed model employs a multi-key computation procedure to decrypt
these encrypted votes, with all candidates’ secret keys, including EC’s, needed
to retrieve the results. The idea is that each party performs partial decryp-
tion of encrypted result by its secret key ski and then transmits that partially
decrypted result to all other parties. If there is χ number of parties (includ-
ing EC), each party computes result′ = ParDec(result, ski) in their local
system and adds a small smudging noise esmi

such that [err < esmi
< 1]

(where err indicates the error attached with an input ciphertext) to avoid the

Table 1. Execution time of vote count with and without winner rank generation

No. of
votes

CPU (MK-TFHE) (sec) CPU ‖ (MK-TFHE) with 4 cores (sec)

Encrypted
party specific
Vote count
computation

Encrypted
vote count
with rank
declaration

Encrypted
party specific
Vote count
computation

Encrypted
vote count
with rank
declaration

16 1642.62 2233.82 919.866 1224.55

32 3946.18 4669.27 2299.58 2662.02

64 9219.52 10053.62 5346.85 5776.59

128 21224.7 22210.65 12462.9 12960.1

256 48729.7 49902.6 28604.9 29166.6

512 111017 112242.99 63488.4 64116.5

1024 182300.8 183646.462 140880 141582

268 T. Parbat et al.

secret key leakage before transmitting to other parties. So after adding esmi
,

result′ = result−aiski+esmi
(mod 1) is sent to other (χ−1) parties. This partial

decryption process requires χ(χ − 1) data transmissions to obtain final voting
results. At last, each party computes: final result =

∑χ
i=1 result′i|χ ∈ party

and obtains the same voting results. After that, EC sends encrypted rank-wise
candidate list to all candidates along with its partial decrypted result. All candi-
dates follow the same process to decrypt candidate ranks and verify whether vot-
ing result appears according to rank or not. If decrypting voting result matches
with rank, EC discloses voting results publicly.

4 Result Analysis

The proposed framework has been implemented in Ubuntu 16.04.3 platform
where 64 bit Intel(R) core(TM) i7-7700CPU clock speed 3.60 GHz, with 64 GB
memory. In this experiment, we consider 4 election candidates and variable num-
ber of voters in the voting system. Table 1 shows execution time of party-specific
vote count and vote count with rank generation with respect to number of vot-
ers. It is clear from Table 1 that if the number of voters increases, the bit-size of
Total Voteξi

for each candidate also increases, leading to performance challenges
in a homomorphic environment. To address these issues, zonal segregation-based
vote counting with the support of multiple vote servers is an effective solution to
overcome these bottlenecks. In this approach, we divide voters into polling zones,
each of polling zones is associated with zone-specific vote server. With n vot-
ers and p polling zones, each zone handles n/p votes concurrently. Furthermore,
if each server has k cores, they process votes in parallel within multi-core plat-
forms. After the voting session, each server produces encrypted total vote counts,
Total V outξi

, specific to its polling zone and candidate IDs, which are then sent
to a central server for aggregation and homomorphic sorting. The central server
generates a sorted encrypted voting result, which is later decrypted by individ-
ual parties. Using this method, our scheme takes approximately 4 days and 22 h
for party-specific 100000 vote counts without ranking, and 5 days for counting
100000 votes with candidates’ rank generation, adding 25 polling zone-specific
4-core vote servers. With the support of zonal segregation-based vote counting, if
we increase the polling vote servers to perform parallel execution, our proposed
mechanism will be scalable for large election. Figure 5b illustrates the execution
time for zonal-specific votes in single and multi-core systems. MK-TFHE [9] sup-
ports homomorphic computations over multi-key-encrypted ciphertexts, which
is extension of TFHE library [11]. But under LWE assumption, MK-HE compu-
tations become noisy as the number of parties increases. The library defines a
bootstrapping key’s standard deviation parameter, bk stdev, as 3.72e-9 [9] for a
1-bit MKHE NAND operation. Due to this standard deviation, the bootstrap-
ping phase is unable to reduce the noise within a certain threshold range for more
than certain consecutive bit operations and produces erroneous results. Experi-
mentally we set bk stdev = 1.27e-9 to perform arbitrary error-free homomorphic
computations for one hundred thousand votes. We have shown a comparison

Democracy in Your Hands! : Practical Multi-key Homomorphic E-Voting 269

Fig. 5. Zonal-segregated voting

Table 2. Comparison of our scheme with other schemes

E-voting Scheme Underlying
Technology

Vote
privacy

Voter
privacy

Rank-
wise
Winner

Post
quan-
tum
secure

Limitations

Shinde et al. [19] Additive
homomorphic
encryption

� X X X security issues

Anggriane et al.
[2]

Paillier homomorphic
encryption

� X X X Single key issue

Mccory et al. [16] Blockchain � X X X Privacy and
Scalability issues

Bistarelli et al.
[4]

Blockchain � poor X X No dataconfiden-
tiality

Jabbar et al. [14] Homomorphic
encryption

X poor X X Double voting
issue

Chillotti et al.
[10]

Fully Homomorphic
encryption

� � X � Follows honest
bulletin board

Microsoft
ElectionGuard
[15]

ElGamal encryption � � X X vote verifiability

Our scheme Multi-key
homomorphic
encryption and
blockchain

� � � � No information
leakage except
Performance
issue

Table 2, which demonstrates that our scheme supports end-to-end confidential-
ity. All the complex computations are implemented using basic MKHE gates
underneath from the standard library [8], hence security assumptions of this
framework also follow the security analysis given in [8].

5 Conclusion

This work introduces an MKHE-supported voting framework with multi-key
decryption to address security concerns in e-voting systems. The framework

270 T. Parbat et al.

ensures data confidentiality, secret suffrage, and automated voting result calcu-
lation. However, the performance is constrained by the bootstrapping phase of
homomorphic encryption. Leveraging leveled HE (LHE) for a known or restricted
number of voters can significantly improve efficiency. The proposed scheme is
flexible enough to be merged with existing secure e-voting solutions for verifia-
bility. This direction will be explored in our future work.

References

1. Anane, R., Freeland, R., Theodoropoulos, G.: E-voting requirements and imple-
mentation. In: The 9th IEEE International Conference on E-Commerce Technol-
ogy and The 4th IEEE International Conference on Enterprise Computing, E-
Commerce and E-Services (CEC-EEE 2007), pp. 382–392. IEEE (2007)

2. Anggriane, S.M., Nasution, S.M., Azmi, F.: Advanced e-voting system using paillier
homomorphic encryption algorithm. In: 2016 International Conference on Infor-
matics and Computing (ICIC), pp. 338–342. IEEE (2016)

3. Barman, S., Chattopadhyay, S., Samanta, D.: Fingerprint based symmetric cryp-
tography. In: 2014 International Conference on High Performance Computing and
Applications (ICHPCA), pp. 1–6. IEEE (2014)

4. Bistarelli, S., Mantilacci, M., Santancini, P., Santini, F.: An end-to-end voting-
system based on bitcoin. In: Proceedings of the Symposium on Applied Computing,
pp. 1836–1841 (2017)

5. Blaze, M., Braun, J., Hursti, H., Jefferson, D., MacAlpine, M., Moss, J.: DEF
CON 26 voting village: Report on cyber vulnerabilities in us election equipment,
databases, and infrastructure. DEF CON 26 (2018)

6. Boyen, X., Haines, T., Müller, J.: Epoque: practical end-to-end verifiable post-
quantum-secure e-voting. In: 2021 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 272–291. IEEE (2021)

7. Chatterjee, A., Sengupta, I.: Sorting of fully homomorphic encrypted cloud data:
can partitioning be effective? IEEE Trans. Serv. Comput. 13(3), 545–558 (2020)

8. Chen, H., Chillotti, I., Song, Y.: Multi-Key homomorphic encryption from TFHE.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp.
446–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 16

9. Chillotti, I.: https://github.com/ilachill/MK-TFHE
10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based

E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–
265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 16

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

12. Gentry, C.: A fully homomorphic encryption scheme. Stanford University (2009)
13. Hardwick, F.S., Gioulis, A., Akram, R.N., Markantonakis, K.: E-voting with

blockchain: an e-voting protocol with decentralisation and voter privacy. In: 2018
IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1561–1567.
IEEE (2018)

14. Jabbar, I., Alsaad, S.N.: Design and implementation of secure remote e-voting
system using homomorphic encryption. Int. J. Netw. Secur. 19(5), 694–703 (2017)

15. Masiarek, A., lprichar, L.R.: https://github.com/microsoft/electionguard

https://doi.org/10.1007/978-3-030-34621-8_16
https://github.com/ilachill/MK-TFHE
https://doi.org/10.1007/978-3-319-29360-8_16
https://github.com/microsoft/electionguard

Democracy in Your Hands! : Practical Multi-key Homomorphic E-Voting 271

16. Mccorry, P., Mehrnezhad, M., Toreini, E., Shahandashti, S.F., Hao, F.: On secure
e-voting over blockchain. Digit. Threats Res. Pract. (DTRAP) 2(4), 1–13 (2021)

17. Olembo, M.M., Renaud, K., Bartsch, S., Volkamer, M.: Voter, what message will
motivate you to verify your vote. In: Workshop on Usable Security, USEC (2014)

18. Park, S., Specter, M., Narula, N., Rivest, R.L.: Going from bad to worse: from
internet voting to blockchain voting. J. Cybersecur. 7(1), tyaa025 (2021)

19. Shinde, S.S., Shukla, S., Chitre, D.: Secure e-voting using homomorphic technology.
Int. J. Emerg. Technol. Adv. Eng. 3(8), 203–206 (2013)

20. Specter, M.A., Koppel, J., Weitzner, D.: The ballot is busted before the blockchain:
a security analysis of voatz, the first internet voting application used in {US}.
Federal elections. In: 29th USENIX Security Symposium (USENIX Security 2020),
pp. 1535–1553 (2020)

21. Watson, C.I., et al.: User’s guide to NIST biometric image software (NBIS) (2007)

Cryptography

Secured Collaboration with Ciphertext
Policy Attribute Based Signcryption
in a Distributed Fog Environment

for Medical Data Sharing

G. A. Thushara(B) and S. Mary Saira Bhanu

Department of CSE, National Institute of Technology Tiruchirappalli,
Tiruchirappalli 620015, Tamil Nadu, India

thusharagopinath25@gmail.com, msb@nitt.edu

Abstract. Smart hospitals are leveraging cloud computing as a prac-
tical platform for storing and sharing medical data, enhancing medi-
cal analyses. However, entrusting sensitive medical data to third par-
ties poses risks to patient privacy. Cloud-based data sharing also leads
to many hazards, including latency challenges and bandwidth concerns
when accessing data through cloud storage. To address these security
flaws inherent in centralized cloud systems, this study proposes employ-
ing ciphertext policy-sensitive attribute-based signcryption with verifi-
able designcryption within a spatially distributed fog environment. This
method signs messages using sensitive attributes and access entitlements,
organized in a tree structure alongside non-sensitive attributes. The
proposed approach integrates attribute-based encryption, ensuring fine-
grained access control and digital signatures to guarantee data authen-
ticity and secrecy. Unlike conventional cloud computing, the data distri-
bution occurs in fog computing, facilitating swift data analysis. Spatial
data distribution via fog nodes offers advantages such as low latency,
optimized bandwidth usage, offline capabilities, enhanced privacy and
security, scalability, and improved redundancy. These benefits position
fog computing as a crucial element in real-time, location-based data pro-
cessing for data sharing applications. The proposed method incorporates
secure data authentication, access controls, and resistance against mes-
sage attacks. To assess its effectiveness, a comparative analysis is con-
ducted with existing methods, focusing primarily on computational effi-
ciency. This scientific evaluation aims to offer insights into the advantages
and limitations of the proposed approach.

Keywords: Data sharing · Security · Access control · Signcryption ·
Fog computing

1 Introduction

The cloud computing combines resources for secure medical data sharing to
enhance medical analysis due to open-source nature. Computing servers assert
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 275–294, 2023.
https://doi.org/10.1007/978-3-031-49099-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_17&domain=pdf
http://orcid.org/0000-0002-7134-5642
http://orcid.org/0000-0001-8509-4461
https://doi.org/10.1007/978-3-031-49099-6_17

276 G. A. Thushara and S. M. S. Bhanu

control over user data storage and processing, reducing operational cost, main-
tenance expenses, and optimizes energy usage [1]. However, cloud servers often
outsource the management of confidential medical data to some third parties,
compromising patient privacy [2]. Cloud-based data sharing poses various risks,
including security, latency, and bandwidth issues when accessing data through
cloud storage. To address these concerns, in 2015, Cisco launched a fog comput-
ing environment [3] positioned between data users and the cloud. Fog comput-
ing brings information processing and connectivity closer to the user, improving
network performance [4]. By situating computation nearer to the information
source, fog computing reduces latency and optimizes bandwidth usage, partic-
ularly beneficial in scenarios with resource-limited sensors, such as in Internet
of Things (IoT) applications [5]. Data sharing has become crucial in various
fields, especially in shared medical systems. Imagine a scenario where a patient
and doctor are geographically distant, but the doctor can access the patient’s
data through data sharing. In this situation, the doctor can make informed
decisions about patient’s treatment. By exchanging data, doctors can ensure
patients receive appropriate tests and treatments while avoiding unnecessary or
ineffective ones. However, when data is transferred to the cloud or processed by
fog nodes, the data owner loses control, potentially leading to the unauthorized
disclosure of the sensitive information.

Attribute-based signcryption (ABSC) offers advantages in sharing sensitive
information, as it combines an access policy with the efficiency of digital signa-
ture and the adaptability of attribute-based encryption (ABE) [7]. Signcryption
is a secure method that combines encryption with signatures, providing with
low processing and transmission costs, enabling primary data verification, and
ensuring secrecy [8]. However, basic ABSC has significant drawbacks that limit
its use in resource-constrained systems. ABSC processes are more expensive to
designcrypt than to encrypt because they involve several comparing and compu-
tational operations for evaluation and conversion back to the original plaintext.
Signed messages need to be re-encrypted when adding or revoking a user or
attribute from the system, requiring the redistribution of the user secret key by
a trusted authority [9]. To address these issues, the proposed method divides the
signcrypted file into blocks and distributes them among different fog nodes. The
technique utilizes a master fog node (MFN), which maintains the file’s metadata,
and worker fog nodes (WFN), which store chunks of files using an indexed-based
allocation and designcrypt the file upon request from the MFN. During the sys-
tem’s intended activation phase, the data owner gathers medical files and cate-
gorizes file attributes into two groups: sensitive (e.g., medical history, medication
records, HIV/AIDS status) for the signature phase and non-sensitive attributes
(e.g., patient age group, blood type, gender) for constructing the encryption
phase’s predicate. This approach enhances security in medical data sharing by
employing multiple predicates for signing and encryption rather than relaying
on a single set of attributes.

Traditional data sharing methods involves sending data to a centralized cloud
server for processing and analysis, which can strain network bandwidth, espe-

Secured Collaboration with Ciphertext Policy Attribute Based Signcryption 277

cially with large datasets. The proposed approach tackles this problem by dis-
tributing computing resources across various fog nodes. Locally on these fog
nodes, data can be pre-processed, filtered, and aggregated, reducing the volume
of data that needs transmission to the cloud. This optimized data transmis-
sion decreases bandwidth, easing network congestion. Distributed fog comput-
ing offers advantages, including reduced latency, optimized bandwidth usage,
offline capabilities, edge intelligence, improved privacy and security, scalability,
flexibility, and redundancy compared to cloud computing. Coupled with cipher-
text policy-attribute-based signcryption (CP-ABSC) and index-based file-block
storage and access, an additional layer of security is provided for medical data
sharing.

Summary of the proposed approach:

– Access Control: The proposed method explores the possibility of integrating
CP-ABSC in a distributed fog environment to provide authorized granular
access control, scalability, and efficiency. It also enables index-based storage
and access of file blocks.

– Complex predicate: The attributes are categorized into two different classes
(sensitive and non-sensitive) to generate two different predicate for both sig-
nature and encryption process.

– Data Confidentiality: The proposed approach ensures confidentiality for
encrypted data, by allowing only authorized users who meet specified
attribute conditions to verify, decrypt, and access the data.

– Data Integrity: The signcryption component of ABSC offers the ability to
verify the integrity of data, ensuring it has not been tampered with dur-
ing sharing or storage. This safeguard protects the data from unauthorized
modifications and guarantees its authenticity.

– Low Latency: Unlike sending files to a centralized cloud server, fog nodes
minimize the latency that files must traverse. Due to their proximity, the
communication of medical data occurs more rapidly and with better band-
width.

– Bandwidth Optimization: Distributing file blocks across fog nodes helps opti-
mize network bandwidth usage. Files can be cached and replicated across
multiple fog nodes, reducing the need for repetitive file transfer over the net-
work. This optimized file distribution minimizes bandwidth requirements and
helps for fast and secure medical data sharing.

The paper is structured as follows: Sect. 2 summarizes relevant studies on
secure medical data sharing in a cloud and fog environment. Section 3 describes
The system design and security requirements for medical data sharing in a dis-
tributed fog environment. The security proof and effectiveness of the proposed
method evaluates in detail in Sect. 4 and Sect. 5, respectively. Section 6 concludes
with reflections on the findings and offer recommendations for future research
trajectories.

278 G. A. Thushara and S. M. S. Bhanu

2 Literature Review

To securely communicate medical records with multiple professionals in a dis-
tributed storage setting, Yang et al. [10] introduced a blockchain-assisted veri-
fiable outsourced ABSC system (BVOABSC). This system revealed the secret
of crucial medical records and ensured the patient’s safety by employing pub-
lic blockchain and property-based attribute encoding algorithms. Cloud experts
completed the cipher model computation, and clients validated the ciphertext
produced for the flawed cipher design. Evaluators could jointly verify the validity
of the modified medical records by evaluating their overall productivity within
a comparative context. However, concerns regarding its falsity and leakage have
arisen. Deng et al. [11] provides an ABSC method that uses broadcast encryp-
tion and key division technologies to achieve user revocation. Under specific
plaintext attacks, it also proves to be unforgeable and confidential. Along with
user revocation, consideration might be given to attribute revocation. Bao et
al. [6] introduced a secure method for sharing medical data, addressing the
issue of encrypted data retrieval inconvenience for data users. They achieved
this by employing attribute-based searchable encryption, enabling access con-
trol for data users and provided them with the capability to perform keyword
searches. However, it is important to note that this system does not verify data
authenticity, and its substantial storage requirements could pose challenges when
implementing IoT systems.

In a separate study by Bao et al. [21], proposed a solution for access control
and keyword-based searching in medical data sharing. Their approach includes
a revocation mechanism to deter unauthorized access and introduces a unique
pseudo-identity-based signature for data authenticity. While this scheme success-
fully guarantees data privacy and authenticity, it is worth noting that it incurs
a relatively high transmission cost, which may not be practical in real time sce-
narios. Liu et al. [22] proposed a privacy-preserving data aggregation method to
address security issues in sharing multidimensional health data within IoT sys-
tems. This approach, utilizing multi-secret sharing and symmetric homomorphic
cryptography, enhances data security and privacy. However, it does not verify the
retrieved data, leaving data authenticity unverified. Elayan et al. [23] introduced
a novel deep federated learning framework to tackle the challenge of safeguarding
data privacy amid the dispersion of medical data and the decentralized struc-
ture commonly found in existing models used for medical data monitoring and
analysis. Yu et al. [12] revised the lightweight hybrid policy ABSC (LH-ABSC)
employing the CP-ABE and key policy- attribute based signature (KP-ABS).
The data owner can directly decode the details based on the attributes embed-
ded in the ciphertext. LH-ABSC responds to open accounting and maintains a
consistent signature size, essential for IoT devices.

For a cloud-based medical data sharing system offering fine-grained access
control and public verifiability, Rao et al. [13] proposed a provably secure CP-
ABSC approach. However, frequent pairing and modular exponentiation opera-
tions result in significant computational costs during the CP-ABSC designcryp-
tion process. Deng et al. [14] devised a transfer strategy to address the issue of

Secured Collaboration with Ciphertext Policy Attribute Based Signcryption 279

the designcryption process’ low performance and high computational cost. They
developed a system that transforms plaintext into a ciphertext during a por-
tion of the process, requiring the user of medical records to perform additional
processing to enhance security. Hong et al. [15] combined CP-ABE and ABSC
to create an efficient data sharing scheme with a linear secret-sharing system
instead of a tree structure, eliminating the need for repeated iterations of the
recursive method. Nevertheless, this effort must handle with attribute revoca-
tion more skillfully. In 2020, Yu et al. [16] proposed a lightweight ABSC that
combines CP-ABE and KP-ABS and maintains a constant signature size. Their
primary objective was to make IoT devices’ connectivity costs more affordable.
However, there is a fully trusted centralized authority raises potential security
issues in the future. As medical data must be shared with several organizations
for cloud storage, this could threaten patient privacy by making it accessible to
unauthorized individuals or groups. To address this security vulnerability, Liu et
al. [17] suggest a possible strategy that employs attribute-based signature (ABS)
and CP-ABE to tackle attribute revocation challenges and thwart message and
ciphertext assaults. The gaps in research identified through the literature review
are outlined below.

– Transferring data between cloud layer and IoT devices proves to be a time-
consuming endeavor, making it unsuitable for medical data sharing that
require real-time responsiveness. The delay in data transmission hampers the
seamless flow of information, hindering the effectiveness of treatment that
relies on instant data processing and analysis.

– In order to maintain high confidentiality levels for sensitive data, it is imper-
ative to have fine-grained accessibility and analysis capabilities. Traditional
encryption methods do not support detailed access control, creating chal-
lenges in managing encryption keys during data transmission.

– In addition to innovative encryption methods, digital signatures are also
essential for ensuring the authenticity of authorized users.

– Relying on centralized cloud server systems for data sharing poses a significant
risk due to the potential occurrence of centralized failures. In such a scenario,
where all data is stored and managed in one central location, any failure in
this system could lead to a complete loss of data that might be unrecoverable.

– Areas with limited network access necessitate local, resource-efficient com-
puting for processing and transmitting data. Implementing efficient data dis-
tribution through fog computing is crucial for enhancing fault tolerance and
mitigating various network-related threats.

3 Proposed Methodology

3.1 Preliminaries

The following features are part of the CP-ABSC scheme.

– Key Generation: The key authority (KA) generates the master key pMKq and
the public parameters pPP q for the CP-ABSC scheme. The KA also generates
attribute-based secret keys pSKq for each user based on their access policies.

280 G. A. Thushara and S. M. S. Bhanu

– Signcryption: The data owner (DO) wants to signcrypt a pMKq with a spe-
cific access policy A and attributes. The DO uses the CP-ABSC algorithm
to signcrypt the message by combining hashing and ABE techniques. It gen-
erates a ciphertext that includes both the encrypted message and a digital
signature over the message.

– Encryption: The CP-ABSC algorithm takes the pMq, A, pPP q, and pSKq as
inputs. It generates a signciphertext pCT q that is associated with the specified
A and signed by the DO. The pCT q contains the encrypted message, the access
structure information, and the digital signature.

– Key Extraction: Data users (DU) who want to access the pCT q request a
pSKq from the KA. The KA verifies the user’s attributes and generates a
corresponding pSKq for the DU.

– Decryption and Verification: A DU with a valid pSKq can attempt to decrypt
and verify the pCT q. The decryption process involves evaluating the A against
the DU’s attributes to recover the encrypted message. The DU can then verify
the digital signature using the DO’s public key.

3.2 Architecture Overview

The following entities are involved in the proposed system architecture shown in
Fig. 1: DO, KA, Cloud Server(CS), Master Fog Node (MFN), Worker Fog Nodes
(WFNs) and a group of DU.

– KA: System keys are distributed and managed by KA for all system entities.
In the event of a security compromise, the KA enables the revocation of the
system’s public and private keys, preventing any entity from accessing the
service. The KA typically generates a public-private key pair in the proposed
work for each authorized piece of equipment in the proposed work. The public
key is widely disseminated and accessible to all system entities. The device
protects the privacy of the private key and uses it to verify the legitimacy of
requests for system services.

– DO: The DO gathers patient-submitted or IoT device-collected data for
healthcare use. After being signcrypted, the CT is shared and sent to the
appropriate MFN with the proper A. The DO uses the KA to design the A

for an authorized DU. The data is encrypted with the proper A and signed
with an attribute-generated key before being sent to the MFN.

– MFN and WFNs: Both the MFN and WFNs possess the capability to transmit
and store medical data. The technologies utilized by MFN and WFNs for
data processing are well-established. Metadata can be added to the CS after
a predetermined amount of time by MFN. The CT blocks are created and
separated by MFN, then stored in the authorized WFNs. The file blocks
follow an index-based allocation in each WFN.

– CS: The CS is a remote server owned by a third party with substantial storage
capacity. The metadata sent by the MFN is managed and tracked by the CS.
An MFN can only store metadata temporarily before seamlessly sharing it
with the CS. Any modified files on the CS will impact the corresponding
MFN.

Secured Collaboration with Ciphertext Policy Attribute Based Signcryption 281

– DU: Medical experts, academics, insurance businesses, and pharmaceutical
firms are examples of DU. Their user-specific attributes enable access to the
ciphertext. Data exchange is crucial for institutions to acquire medical data
and offer medical services. For system access, each DU must register with
KA using their ID. They can utilize their properties to get the CT from the
nearby MFN. The CT can only be accessed when the group key and attribute
of the DU meet the necessary conditions.

Fig. 1. System Architecture.

3.3 System Description

This section introduces the system design and provides an overview of the pro-
posed work. The proposed system comprises six entities: the Data Owner (DO),
Master Fog Node (MFN), Worker Fog Nodes (WFNs), Cloud Server (CS), Key
Authority (KA), and Data Users (DUs). In the system architecture depicted in
Fig. 1, the first scenario involves centralized servers, including the cloud and fog

282 G. A. Thushara and S. M. S. Bhanu

layers. Communication within the fog layer is limited to a single cloud envi-
ronment, while the data layer is confined to a single MFN. Medical data is
transmitted through e-hospitals and other medical-related organizations, such
as research institutions and pharmaceutical firms, for comprehensive medical
analysis. Data sharing processes are expedited as all entities operate within a
unified fog environment. The DO, situated in the data layer, employs a CP-ABSC
scheme to perform signcryption and generate a CT before transmitting the data
to the MFN. The MFN periodically updates its metadata, which is subsequently
transferred to the CS for long-term archival purposes. Alongside the CT , the DO
creates user-specific policy attributes A. To decrypt the CT , the DU must pro-
vide the necessary sensitive attributes, aligning with the defined access policies.
By integrating fog computing, the system optimizes the use of local computing
resources within the fog layer, minimizing latency and enhancing responsiveness.
The cornerstone of the system’s security lies in the adoption of the CP-ABSC
scheme. This cryptographic technique provides robust safeguards for ensuring
the confidentiality and integrity of transmitted data. It combines encryption and
digital signature functionalities, enabling data to be both securely encrypted and
digitally signed before transmission. This ensures that only authorized parties
with the appropriate decryption keys and attributes can access and decipher the
data, protecting it from unauthorized disclosure or tampering.

Inaccuracies in the CS metadata can trigger changes in the associated MFN.
The DO has the capability to construct an encryption policy based on user-
specific attributes and encrypt the plain text pPT q using the designated access
structure (A). Only DUs possessing the required attributes can successfully
decrypt the CT . The CP-ABESC scheme employed in this context enables fine-
grained access control, offering greater flexibility and expressiveness compared
to conventional encryption methods. The distributed fog environment plays a
vital role in facilitating flexible and secure data sharing, where an MFN and
WFNs exist within the fog layer. To access data on the WFNs, DUs initiate
requests to the neighboring MFN. The MFN checks the metadata to confirm if
the requested data is accessible. If it is, the MFN directs the requests to the
relevant WFNs. The MFN maintains essential details such as location identi-
fiers, file names, and WFNs identifications for each file. Before retrieving data
from the MFN, DUs from different locations must authenticate their identities.
In essence, the proposed approach leverages the CP-ABESC scheme for precise
access control and harnesses the capabilities of the distributed fog environment
for secure and adaptable data sharing. The collaboration between MFN and
WFNs, coupled with appropriate authentication mechanisms, ensures efficient
management and retrieval of data within the distributed fog architecture.

Secured Collaboration with Ciphertext Policy Attribute Based Signcryption 283

Algorithm 1. System Setup
Input: 1λ

Output: MK, PP

1: Generate the pairing, e : G1 ˚ G1 Ñ G2

2: Consider two random variables a, b P ZP̊

3: Generate a hash function H : p0, 1q˚ Ñ ZP̊

4: Generate public parameter pPP q from the above assumption.
5: PP “ pG1, G2q, g1, g2, P, λ, H, u “ ga

1 , v “ epg1, g2qb
6: The master key pMKq of the system which KA keep secret is:
7: MK “ pbλ, ga

2 q

3.4 System Design

System Setup:
Algorithm 1 represents the system initialization process overseen by a trusted
KA. The setup procedure requires a security parameter λ as input. The system
employs two multiplicative cyclic groups, G1 and G2, which are mathematical
structures with specific properties and operations and an attribute universe (W).
The groups are defined within the system with generators indicated as g1 and
g2, respectively. Algorithm 1 describes a cryptographic system based on bilinear
pairings and prime order groups. The system involves generating two random
variables, a and b, from a set of integers with prime order pZp̊q. A hash function
(H) is utilized to generate a cryptographic hash from input data. Public param-
eters (PP) are then computed, including elements from the groups, G1 and G2,
along with generator elements pg1, g2q, a large prime number (P), pλq, and the
H. The master key (MK), kept confidential by the KA, consists of two parts:
pbλq and ppg2qaq. These components are crucial for ensuring the security and
confidentiality of the system. The algorithm’s security relies on the complexity
of certain mathematical problems, particularly those related to bilinear pair-
ings and the discrete logarithm problem in the prime order groups. Algorithm 1
involves several key operations. Pairing generation, which depends on the size of
involved groups, is denoted as OpfpNqq. Random variable generation and hash
function creation have constant time complexity (Op1q). Public parameter and
master key generation also depend on the group size (OpfpNqq). The overall
time complexity of Algorithm 1 is OpfpNqq, where N represents the size of the
groups involved.

Key Generation:
During the key generation phase, outlined in Algorithm 2, the KA is tasked with
assigning each user with their unique user identification puidq for system access
and a file-specific secret key pSkq. The puidq enables individuals to authenticate
themselves and access the system, while the pSkq is employed by the DO to
provide authenticity and integrity for specific files. Additionally, the KA gener-
ates two important keys: the decryption key pDkq and the verification key pVkq.
The Dk is derived from the non-sensitive attributes associated with a user. Each
non-sensitive attribute t from the attribute universe T has been used to gener-

284 G. A. Thushara and S. M. S. Bhanu

ates a components of Dk, named as Rt and R
′
t. This key is utilized to decrypt

encrypted data and access the corresponding information based on the user’s
attribute set. The Vk is generated from the sensitive attributes associated with
a user to verify the authenticity and integrity of data. The time complexity of
the Algorithm 2 is determined by the size of the attribute set (|T|), making it
O(|T|).

Algorithm 2. Key Generation
Input: PP, MK, T
Output: Sk, Dk, Vk

1: Choose two random numbers r1, r2 P ZP̊

2: Calculate the uid “ pgpa`r1q{b
2 q

3: Calculate the Sk “ pgpa`r2q{b
2 q

4: while t P T do
5: Choose a random number Rt “ pgpr1q

2 ˚ g
pHptq˚rtq
2 q

6: Consider R
′
t “ grt

2

7: end while
8: Calculate the Dk “ pSk, @t P T : Rt, R

′
tq

9: Calculate the Vk “ g
pr2q
2

File Uploading:
To securely share data with external entities, the DO employs the “signcrypt”
process as part of the encryption procedure. This process combines signing and
encryption operations to provide confidentiality, integrity, and authenticity for
the shared data. The inputs for the signcryption process include the PP , which
helps ensure the security and correctness of the signcryption process, the message
M that the DO intends to encrypt and share with external parties, and the access
policy pρq defines the set of attributes or conditions that external entities must
possess or fulfill to access the encrypted data. This policy establishes a fine-
grained access control mechanism, enabling the DO to specify who can decrypt
and access the shared information based on their attributes or other criteria.
The Sk is generated from the sensitive attributes, used for signing the message
(M). By signing the M , the DO provides a digital signature that ensures the
authenticity and integrity of the file content. This helps verify that the data
has not been tampered with during transmission and that it originates from the
DO. The final product of signcryption must be signed ciphertext CTsign. The
Algorithm 3 selects a polynomial P px) that fulfills the specified access policy
(ρ). For each non-sensitive attribute (t), a random variable (ri) is chosen and
assigned such that it makes Prpxq “ t. To fully describe the polynomial P pxq,
another random variable rj is selected from ZP̊ . The use of multiple random
variables in the polynomial allows for a more flexible and complex access control
policy. The time complexity of this Algorithm 3 is polynomial and depends on
the size of the attribute set p|T |q and the complexity of the access tree predicate

Secured Collaboration with Ciphertext Policy Attribute Based Signcryption 285

Θ. Specifically, it can be expressed as Op|T |kq, where k represents the degree of
the polynomial used in the algorithm.

The CT) is generated along with the access tree predicate Θ, where the
encryption randomness ρ is crucial to ensure that each encryption of the same
plaintext (M) yields a different CT , enhancing security. M

′
represents the CT

obtained by XOR M with the attribute set t. t
′′

is the result of applying a
cryptographic hash function H to t. This can be useful when it is not necessary
to reveal the exact attribute value, but its presence is required for access control
decisions. For each attribute t in the attribute universe T , the polynomial’s
constant term Pxp0q is encrypted using a generator g1 from group G1, ensuring
that each attribute in the access tree has an associated ciphertext component. M

′
t

represents the ciphertext component for each attribute t, but with an additional
step. Here, the constant term Pxp0q is hashed using H before being encrypted
with the generator g1 from group G1. This extra hashing step further conceals the
specific attribute values in the ciphertext, providing an added layer of security.

Algorithm 3. File Uploading
Input: PP, M, ρ, Sk

Output: CTsign

1: Choose a polynomial P pxq which satisfies the ρ.
2: Select a random variable ri P ZP̊ and sets Prp0q “ t @t P T
3: Select another random variable rj P ZP̊ to fully describe the P pxq
4: The CT can be generated depends on the access tree predicate Θ.
5: CT “ pρ, M

′ “ M
À

t, M
′′ “ Ht, @t P T : Mt “ g

Pxp0q
1 , M

′
t “ g

HpPxp0q
1 qq

6: Calculate Δa “ Hpρ|Mq and Δb “ g2 ˚ ri ˚ Δa

7: CTsign “ pρ, M
′
, M

′′
, @t P T : Mt, M

′
t , Y “ pg1 ˚ Sk, Δa, Δbqq

File Distribution:
Upon receiving the CTsign from the DO, the MFN stores its metadata, including
details such as the file name, size, number of blocks, and hashed index values.
The neighboring WFNs hold the CTsign after it gets converted to various blocks.
A hash value is generated for each block to ensure the integrity of the contents.
During retrieval, the MFN can utilize these hash values to verify the consistency
of the blocks. The unique block identifiers (hash values) and their respective
storage locations are connected through a mapping that the MFN maintains and
keep up-to-date. MFN stores this mapping in a separate index file during block
distribution. MFN duplicates the blocks across WFNs to handle redundancy and
data replication based on the desired level of fault tolerance.

File Downloading: The MFN needs to query the WFNs when it receives a
request from DU, after verifying the file location and index values. Once the
user attributes are confirmed, the MFN sends the CT to the respective DU as
outlined in Algorithm 4. The verification process conducted by the MFN reduces
the overhead for the DU. M represents the decrypted plaintext, obtained by

286 G. A. Thushara and S. M. S. Bhanu

decrypting the CT using the decryption key Dk. Here, M
′
denotes the result of

a bilinear pairing operation between the CT and the decryption key Dk, with the
additional input of the plaintext M . The equation ρ

′ “ pepCT,Δaqq{epCT, Vkq ˚
M

′
involves the calculation of a new value ρ

′
in a cryptographic context. The

equation combines the results of two bilinear pairings and multiplies it by M
′
.

The first bilinear pairing epCT,Δaq involves the CT and Δa from the Algorithm
3, which serves to introduce additional factors or constraints in the cryptographic
scheme. The second bilinear pairing epCT, Vkq involves elements CT and Vk,
where Vk is derived from the Algorithm 2. The overall complexity of Algorithm
4 is Op|CTsign| ` |M |q, where |CTsign| is the size of the ciphertext and |M | is
the size of the processed data.

Algorithm 4. File Downloading
Input: CTsign, Dk, Vk

Output: CT, M

1: M “ DecpCT, Dkq
2: M

′ “ epCT, Dk|Mq
3: Compute ρ

′ “ pepCT, Δaqq{epCT, Vkq ˚ M
′

4: if Hpρ′ |M “ Δbq then
5: Allow for downloading
6: else
7: Reject the request
8: end if

4 Security Proof

In accordance with the indistinguishable nature of chosen plaintext attack (CPA)
and chosen ciphertext attack (CCA), the proposed approach for secure medical
data sharing in a distributed fog environment is secure from CPA and CCA. To
prove that CP-ABSC in a distributed fog environment is CPA secure, the pro-
posed system illustrates that even when an adversary has access to an encryption
oracle, cannot differentiate between two ciphertexts corresponding to different
plain texts. Here’s a high-level outline of the proof for both CPA and CCA:

CPA Security Proof:

– Assume that there exists an adversary A that can distinguish between two
ciphertexts CT and CT

′
corresponding to different plain texts PT and PT

′

with a non-negligible advantage.
– Proposed system use A to construct an adversary pBq that can break the

security of the underlying encryption or signature scheme (on which CP-
ABSC is built), which contradicts the assumed security of the underlying
schemes.

Secured Collaboration with Ciphertext Policy Attribute Based Signcryption 287

– A receives a public key and attribute set from the KA of the system and can
act as encryption oracle, where it encrypts any plain texts of its choice using
the proposed scheme.

– If A can distinguish between CT and CT
′
, corresponding to different PT and

PT
′
, pBq will be able to break the security of the underlying encryption or

signature scheme. This would imply that either the encryption or signature
scheme is insecure, which contradicts proposed approach’s assumption of their
security. It will be more challenging to produce the same ciphertext for the
same plaintext even if the proposed method, unlike the existing CP-ABSC
scheme, uses two different sets of attributes for the signature and encryption
process.

– Assisted signature verification by MFN with input Attribute a revoked from
the attribute set S, uid

– Initialization Phase: p1δ Ñ pp,mskq
Assumed that the security variable pδq would provide both the master secret
key msk and the public parameters pp.

– Key Generation Phase: ppp,msk, sq
In this stage, the specified algorithm generates three unique private keys for
each user. To produce the sign secret key pskq, decryption secret key pdkq, and
verification secret key pvkq, consider the random numbers q1, q2, q3, andq4 P
Zp. The probability of creating the correct secret key is reduced by random-
ness.

– Signcryption Phase: ppp, sk, s, λi, λj ,Mq Ñ M
′

It is executed by the DO with public parameter pPP q, sk, attribute set psq,
predicate formed from the sensitive attributes λi, predicate formed from the
non-sensitive attributes λj , and plaintext M . It generates a signed ciphertext
M

′
.

– Predicate Updating Phase: Update ppp, s
′
,M

′
, ξq: This phase runs by the

MFN on demand from the DO.
Calculate ξ “ revokepaq and s

′
be the updated attribute set for new predi-

cates.
Then sX s

′ “ 0 if ξ “ addpaq@a P s. Otherwise s ⊂ s
′
if ξ “ revokepaq@a P s.

CCA Security Proof:

– Assume that there exists an adversary A that can distinguish between two
ciphertexts corresponding to different plain texts with a non-negligible advan-
tage, even with access to a decryption oracle.

– A can construct an adversary B that can break the security of the underlying
encryption or signature scheme which contradicts the assumed security of the
underlying schemes.

– B can acts as decryption oracle for getting the CT and CT
′
, returns to A

– This can be formalized as:

pBq “ |PrrApcq “ 1|c “ EncpPK,PT,CT qs ´ PrrApcq “ 1|c “ EncpPK,PT
′
, CT

′ qs|

288 G. A. Thushara and S. M. S. Bhanu

– By the assumption that A can distinguish CTand CT
′
corresponding to dif-

ferent PT and PT
′

with a non-negligible advantage, B > ε for some non-
negligible ε.

– Data Accessing Phase: ppp, uid, λiq Ñ Q This phase achieved through MFN
with a set of attributes attains λi. Then MFN generates the transformation
key Q “ pQp, Qqq identified with uid and available publically.

– Designcryption Phase: ppp,Qi, λi, λj ,M
′ Ñ M

′′q
This phase executes by the pBq. DecpQj ,M

′′ Ñ pM ′ ´ uidqq, this performs
decryption to recover M . pBq partially process the data M

′′
as input addition

and outputs M . Since attributes are not matching, M
′′

and M shows the
corruption.

5 Performance Evaluation

To assess the performance of the proposed method, signature and encryption
values were calculated and compared against the average system. The proposed
solution employed the Java pairing-based cryptography library (JPBC) and the
Netbeans 8.1 IDE for the system implementation. Utilizing pairing on an elliptic
curve, y2 “ x3 ` x over a field Fq, where q 3 mod 4 is some prime, the JPBC
technique created a bilinear map. This pairing is symmetric as G1 and G2 are
collections of points from EpFqq. The length of the parameter p, representing
the relationship between G1 and G2, was set at 160 bits. The system expanded
the number of attributes in the access policy, ranging from 2 to 20 with a step
length of 2, to determine the average time taken by each technique. The sys-
tem was designed to handle different types of data, including text, images, and
multimedia, in various sizes and formats. During testing, the proposed method
employed file sizes ranging from 1 MB to 500 MB, allowing for a comprehensive
evaluation of its performance across different data sizes. The experiments were
conducted on a 64-bit Linux Professional system with specific hardware speci-
fications. The computer utilized in the testing equipped an Intel(R) Core(TM)
i5-4210U processor running at clock speeds of 1.70GHz and 2.40GHz, supported
by 8 GB of DDR3 RAM.

Figures 2, 3, 4 and 5 provides insights into the expressiveness and perfor-
mance of the proposed CP-ABESC scheme compared to other existing schemes
[18,19], and [20]. Figure 2 specifically focuses on illustrating the access policy’s
expressiveness by using the proposed CP-ABESC scheme alongside the men-
tioned schemes. The Fig. 2 visually represents how the proposed scheme offers
a high degree of flexibility and granularity in defining access policies for secure
medical data sharing. The signcryption time for a file is plotted against the
number of attributes in the system in Fig. 3. As seen in the Fig. 3, the system
has a little shorter signcryption time than the [18,19], and [20] schemes. The
amount of time required for designcryption versus the number of attributes used
is shown in Fig. 4. It illustrates how close the designcryption time is to that of
[20]. Since users rather than fog nodes must decrypt in the schemes [18], and [19],

Secured Collaboration with Ciphertext Policy Attribute Based Signcryption 289

the designcryption algorithms have higher processing costs. The figures demon-
strate that the designcryption procedure takes longer than the signcryption pro-
cess. In Fig. 5, the impact of the number of attributes on the authentication time
for various procedures is investigated. The Fig. 5 reveals that the authentication
process is not significantly affected by the number of system attributes. Regard-
less of the range of attributes considered, from 2 to 20, the average time for
authentication remains consistent at 200 milliseconds. The signcryption, design-
cryption and authentication time for the proposed method and the existing meth-
ods during execution is represented in the table data that is attached to each
fig. [20] introduced a CP-ABSC based encryption technique to achieve secure
fine-grained access control for multi-recipient communication between the util-
ity control center and a collection of smart meters with a pairing-free elliptic
curve cryptosystem. The proposed system achieved relative computing speed
in the authentication, signcryption, and designcryption processes owing to the
distributed fog nodes, even if [20] used faster elliptic curve point multiplication
operations instead of the complicated bilinear pairing procedures.

Fig. 2. Performance Efficiency of the Proposed System.

290 G. A. Thushara and S. M. S. Bhanu

Fig. 3. Signcryption Time Analysis

Fig. 4. Designcryption Time Analysis

Secured Collaboration with Ciphertext Policy Attribute Based Signcryption 291

Fig. 5. Authentication Time Analysis

Latency “ a · PS ` b · dR ` c · pS, @a, b, c are constants (1)

Latency “
(

PS
Network speed

)
` dR (2)

Apart from the algorithm execution time, examining the fog server performance
is essential, especially when considering varying delay ratios, processing speeds.
The system being studied evaluates packet sizes (PS) ranging from 1000 bytes to
10,000 bytes to evaluate overall performance. In this study, the fog server count is
set at four times the number of cloud servers plus one, denoted as Nfs “ 4˚Ncs`1.
The ratio of 1:4 between cloud servers and fog servers in edge computing is a flex-
ible configuration choice, not a strict standard. It is often used due to its effective-
ness in distributing data processing tasks. Cloud servers handle high-level process-
ing, while fog servers manage localized tasks, ensuring reduced latency, redun-
dancy, scalability, resource optimization, and cost efficiency. The specific ratio
varies based on factors such as the fault tolerances, network conditions, and geo-
graphic distribution of devices. Their processing power is merely 10 percent of
their cloud counterparts pPfs “ Pcs ˚ 0.1q. The average delay ratio (dR) is varied
from 0.01 to 0.75. Figure 6 illustrates the latency outcomes of the proposed system
based on the Eq. 1. It is evident that as the average delay ratio increases from 0.01
to 0.75, fog latency rises until it surpasses cloud latency. This suggests that relying
solely on cloud servers for data sharing is not suitable for real-time applications.
Fog servers need to be easily accessible to users, indicating they should be closer
than cloud servers. In the analysis of processing speed, based on the Eq. 2, the

292 G. A. Thushara and S. M. S. Bhanu

Fig. 6. Comparing fog and cloud latency while varying the average delay.

average delay, denoted as D, is 0.01. The processing speed (pS) varies at rates of
0.03, 0.05, 0.07, 0.1, and 0.2. According to the results depicted in Fig. 7, reducing
the processing speed ratio from 0.2 to 0.03 leads to an increase in latency for fog
nodes. Eventually, it reaches a point where it surpasses the latency of cloud nodes.
This indicates that fog servers exhibit slow processing capabilities. Despite their
proximity to the edge compared to cloud resources, fog servers result in higher
latency due to their sluggish processing speeds.

Fig. 7. Compare fog and cloud latency while varying the processing speed in the fog
layer.

Secured Collaboration with Ciphertext Policy Attribute Based Signcryption 293

6 Conclusion

This paper introduces a novel scheme designed to ensure authenticity, fine-
grained access control, and confidentiality for secure medical data exchange in
a distributed fog environment. The scheme utilizes a cryptographic technique
known as CP-ABSC, which is extensively presented and discussed in this study.
In a fog environment, requiring minimal computing and communication com-
pared to a cloud-based infrastructure, the proposed method leverages bilinear
pairing-based CP-ABSC to achieve its security objectives. By employing this
technique, the research demonstrates how the proposed approach effectively
addresses the security requirements of confidentiality and integrity, surpassing
the limitations of CPA and CCA scenarios. Furthermore, an efficiency analysis
of the proposed scheme indicates its suitability for resource-constrained Inter-
net of Things (IoT) contexts. This suggests that the proposed approach can
be successfully implemented in environments with limited computational and
communication resources while still ensuring robust security measures. In future
work, it is recommended to explore and evaluate the indistinguishability features
of the proposed approach to further demonstrate its value. Additionally, efforts
should be made to simplify the implementation of bilinear pairing through the
use of elliptic curve cryptography. By doing so, the overall complexity of the
cryptographic operations involved in the scheme can be reduced, enhancing its
practicality and efficiency.

References

1. Debnath, S., Nunsanga, M.V.L., Bhuyan, B.: Study and scope of signcryption for
cloud data access control. In: Biswas, U., Banerjee, A., Pal, S., Biswas, A., Sarkar,
D., Haldar, S. (eds.) Advances in Computer, Communication and Control. LNNS,
vol. 41, pp. 113–126. Springer, Singapore (2019). https://doi.org/10.1007/978-981-
13-3122-0_12

2. Iqbal, J., Umar, A.I., Amin, N., Waheed, A.: Efficient and secure attribute-
based heterogeneous online/offline signcryption for body sensor networks based
on blockchain. Int. J. Distrib. Sens. Netw. 15(9) (2019)

3. Zahmatkesh, H., Al-Turjman, F.: Fog computing for sustainable smart cities in the
IoT era: caching techniques and enabling technologies-an overview. Sustain. Cities
Soc. 59, 102139 (2020)

4. Alli, A.A., Alam, M.M.: The Fog cloud of things: a survey on concepts, architecture,
standards, tools, and applications. Internet Things 9, 100177 (2020)

5. Jalali, F., Hinton, K., Ayre, R., Alpcan, T., Tucker, R.S.: Fog computing may help
to save energy in cloud computing. IEEE J. Sel. Areas Commun. 34(5), 1728–1739
(2016)

6. Bao, Y., Qiu, W., Cheng, X.: Secure and lightweight fine-grained searchable data
sharing for IoT-oriented and cloud-assisted smart healthcare system. IEEE Internet
Things J. 9(4), 2513–2526 (2021)

7. Wang, Y., Pang, H., Deng, R.H., Ding, Y., Wu, Q., Qin, B.: Securing messaging
services through efficient signcryption with designated equality test. Inf. Sci. 490,
146–165 (2019)

https://doi.org/10.1007/978-981-13-3122-0_12
https://doi.org/10.1007/978-981-13-3122-0_12

294 G. A. Thushara and S. M. S. Bhanu

8. Lin, X.J., Sun, L., Qu, H.: Generic construction of public key encryption, identity-
based encryption and signcryption with equality test. Inf. Sci. 453, 111–126 (2018)

9. Zhang, R., Wang, J., Song, Z., Wang, X.: An enhanced searchable encryption
scheme for secure data outsourcing. Sci. China Inf. Sci. 63(3) (2020)

10. Yang, X., Li, T., Xi, W., Chen, A., Wang, C.: A blockchain-assisted verifiable
outsourced attribute based signcryption scheme for EHRs sharing in the cloud.
IEEE Access 8, 170713–170731 (2020)

11. Deng, F., Wang, Y., Peng, L., Lai, M., Geng, J.: Revocable cloud-assisted attribute-
based signcryption in personal health system. IEEE Access 7, 120950–120960
(2019)

12. Yu, J., Liu, S., Wang, S., Xiao, Y., Yan, B.: LHABSC: a lightweight hybrid
attribute-based signcryption scheme for cloud-fog assisted IoT. IEEE Internet
Things J. 7(9), 7949–7966 (2020)

13. Rao, Y.S.: A secure and efficient ciphertext-policy attribute-based signcryption for
personal health records sharing in cloud computing. Future Gener. Comput. Syst.
67, 133–151 (2017)

14. Deng, F., Wang, Y., Li Peng, H., Xiong, J.G., Qin, Z.: Ciphertext-policy attribute-
based signcryption with verifiable outsourced designcryption for sharing personal
health records. IEEE Access 6, 39473–39486 (2018)

15. Hong, H., Sun, Z.: An efficient and secure attribute based signcryption scheme
with LSSS access structure. Springerplus 5(1), 1–10 (2016)

16. Yu, J., Liu, S., Wang, S., Xiao, Y., Yan, B.: LH-ABSC: a lightweight hybrid
attribute-based signcryption scheme for cloud-fog-assisted IoT. IEEE Internet
Things J. 7(9), 7949–7966 (2020)

17. Liu, J., Huang, X., Liu, J.K.: Secure sharing of personal health records in cloud
computing: ciphertext-policy attribute-based signcryption. Futur. Gener. Comput.
Syst. 52, 67–76 (2015)

18. Belguith, S., Kaaniche, N., Mohamed, M., Russello, G.: C-ABSC: cooperative
attribute based signcryption scheme for internet of things applications. In: IEEE
International Conference on Services Computing (SCC), pp. 245–248. IEEE (2018)

19. Alsharif, A., Shafee, A., Nabil, M., Mahmoud, M., Alasmary, W.: A multi-authority
attribute-based signcryption scheme with efficient revocation for smart grid down-
link communication. In: International Conference on Internet of Things and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1025–
1032. IEEE (2019)

20. Khasawneh, S., Kadoch, M.: ECS-CP-ABE: a lightweight elliptic curve signcryp-
tion scheme based on ciphertext-policy attribute-based encryption to secure down-
link multicast communication in edge envisioned advanced metering infrastructure
networks. Trans. Emerg. Telecommun. Technol. 32(8), e4102 (2021)

21. Bao, Y., Qiu, W., Tang, P., Cheng, X.: Efficient, revocable, and privacy-preserving
fine-grained data sharing with keyword search for the cloud-assisted medical IoT
system. IEEE J. Biomed. Health Inf. 26(5), 2041–2051 (2021)

22. Liu, H., Gu, T., Shojafar, M., Alazab, M., Liu, Y.: OPERA: optional dimensional
privacy-preserving data aggregation for smart healthcare systems. IEEE Trans.
Ind. Inform. 19(1), 857–866 (2022)

23. Elayan, H., Aloqaily, M., Guizani, M.: Sustainability of healthcare data analysis
IoT-based systems using deep federated learning. IEEE Internet Things J. 9(10),
7338–7346 (2021)

Verifiable Timed Accountable Subgroup
Multi-signatures

Duygu Özden(B) and Oğuz Yayla

Middle East Technical University, Çankaya, 06800 Ankara, Turkey

duyguozden91@gmail.com, oguz@metu.edu.tr

Abstract. Accountable subgroup multi-signature (ASM) is a form of
multi-signature scheme that permits any subgroup of a group to sign
a message on behalf of the group while ensuring that the signers are
accountable for the multi-signature. Since the accountability principle
cannot be provided in many multi-signature schemes, an ASM algorithm
makes a difference by providing this feature. ASM has many application
areas, especially due to its practical and efficient usage in blockchain
or legacy systems. On the other hand, timed signatures allow one to
send information to the future which is also necessary for many applica-
tions such as blockchain, secure communication, or proof of ownership.
In this paper, we propose a timed version of a multi-signature scheme
with the help of linearly homomorphic time-lock puzzles (LHTLP) using
the method constructed by Thyagarajan et al. Also, we slightly modified
the ASM scheme constructed by Boneh et al. to adapt it to the verifiable
timed commitment schemes.

Keywords: accountable · multi-signature · proof of ownership · timed
signatures · verifiable

1 Introduction

Cryptography applications heavily rely on digital signature schemes. Perhaps one
of the most important of these is the role of digital signatures in the blockchain
mechanism, which has many application areas in today’s world. They are a way
of providing proof of ownership of the messages used in underlying construction.
There are many known types of digital signature algorithms and the preferred
type varies according to the usage area or need. Multi-signature schemes are
an important type of digital signature that enables multiple parties to jointly
produce a signature that is used to sign a shared document, transaction, etc.
In a standard way of creating a digital signature, a single private key is used to
sign messages or authenticate data. However, in many real-world applications, a
single key may not be sufficient enough to provide the required security features.
For example, in a corporate business, multiple people/departments/executives
may need to sign off on a document; in a distributed system, multiple nodes
may need to approve information. Multi-signature schemes solve these types
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 295–305, 2023.
https://doi.org/10.1007/978-3-031-49099-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_18&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_18

296 D. Özden and O. Yayla

of scenarios by allowing multiple parties to collaborate in generating a multi-
signature. Similar to other digital signature schemes, it generally has a public
key that can be used to verify signatures created by any member of the group. In
such a scheme, each member provides their own signature on a pre-agreed mes-
sage. The signatures are aggregated into a single signature verifiable by anyone
using the public key. However, not all multi-signature schemes provide account-
ability which is a very important security principle to make signers responsible
for their activities. Accountable subgroup multi-signature (ASM) schemes are
a type of multi-signature scheme in which a subgroup of a group can sign a
document instead of whole members of the group while ensuring accountability.
When we consider a transaction or a mechanism involving multiparty computa-
tion, it is possible to say that ASM brings accountability and efficiency which
are desired properties for most such systems. Although there are various ASM
constructions, the ASM scheme recently introduced by Boneh et al. [1] is quite
efficient and the subgroup selection is possible after users generate their individ-
ual signatures. A timed commitment, on the other hand, is another important
cryptographic construction. It allows one party to deliver information to the
future. It guarantees that the receiver can extract the committed information
after some predetermined time T . One of the most important security prop-
erties for timed commitments is the notion of “verifiability” to ensure that the
construction of timed commitment holds reliable information and is well-formed.

Our Motivation and Contribution. This paper concentrates on the signif-
icance and effectiveness of timed structures in applications that utilize multi-
signatures. We introduce a timed version of an ASM, that holds considerable
potential for real-world implementations. We also show that the design we con-
structed is sound, private, and unforgeable as the desired security features of
timed signatures and multi-signatures. Also, as the underlying scheme is pairing-
based, we calculated the computational complexity of our scheme to be able to
show it with the VT-BLS [3] which is also a pairing-based algorithm. To the
best of our knowledge, there is currently no version of the multi-signature that
incorporates a time component that would be applicable to schemes containing
information intended for future use. For this reason, the performance calculation
with VT-BLS is made to see the extra calculation required to produce multi-
signatures under the same conditions, rather than comparing, since VT-BLS is
not a multi-signature.

Organization. The rest of the paper is organized as follows: In Sect. 2, we pro-
vide the algorithms and protocols used in our construction. In Sect. 3, we explain
our proposed designs to be used in real-world applications. In Sect. 4, we discuss
the computational complexity to be able to evaluate the performance. Finally,
in Sect. 5, we provide the conclusion and possible future work opportunities.

Verifiable Timed Accountable Subgroup Multi-signatures 297

2 Preliminaries

2.1 Accountable Subgroup Multi-signatures (ASM)

An accountable subgroup multi-signature scheme is a type of multi-signature
in which a message m can be signed by any subgroup S of a group G, and
the signatories from the subgroup S are responsible for the signature. ASM
was defined first time in 2001 [2]. One of the most important improvements in
ASM schemes is the ASM scheme constructed by Boneh et al. [1]. The objective
of developing this “short” ASM scheme was to reduce its size which makes it
efficient and easily applicable in the blockchain applications. In this algorithm,
“short” means the signature size is O(λ)-bits, where λ is the security constant.
This ASM scheme showed that it is very practical and applicable to blockchain
cryptosystems.

ASM by Boneh et al. Boneh et al.’s ASM scheme [1] consists of 5 tuples:
KeyGen, Group Setup, SignatureGen, Signature Aggregation (Signature Aggr),
and Verification. These steps are explained below. PK is defined as the collection
of public keys belonging to the members of group G, denoted by pk1, . . . , pkn.

– KeyGen: Every user i ∈ G gets a random secret key ski ← Zq and calculates
public key pki ← gski

2 where g2 is the generator of the group G2

– Group Setup: Every user performs group setup using one round interactive
protocol.

• He/she is responsible for computing the group’s aggregated public key
apk as: apk =

∏n
i=1 pkai

i where ai = H1(pki, PK).
• He/she sends

μji := H2(apk, j)aiski (1)

to the j-th member within n users. Note that, j �= i.
• i-th user receives μij , he calculates μii = H2(apk, i)aiski .
• For a user i, the membership key is mki =

∏n
j=1 μij .

– SignatureGen: A signer calculates his/her individual signature as

si = H0(apk,m)ski · mki

and delivers si to the combiner.
– Signature Aggr: Initially, the combiner establishes the set of signers denoted

as S ⊆ G. Subsequently, she calculates the aggregated subgroup multi-
signature σ = (s, pk) where s =

∏
i∈S si, pk =

∏
i∈S pki.

– Verification: The signature σ = (s, pk) can be verified by anyone in posses-
sion of par, apk, S,m, σ by checking if:

e(s, g2) = e(H0(apk,m), pk).e(
∏

j∈S

H2(apk, j), apk)

298 D. Özden and O. Yayla

2.2 Verifiable Timed Commitments (VTC)

The pairing-based verifiable timed version of a signature algorithm is given as
VT-BLS in [3]. The authors also presented different designs for committing a
value in a time-dependent manner. For example, verifiable timed commitment
(VTC) or verifiable timed dlog (VTD) [4] is used to generate a timed commit-
ment for a secret value x ∈ Z

∗
q satisfying h = gx where h is a publicly known

value and g is a generator of G, which is a group of order q. This structure of
VTC is similar to VTS in terms of steps followed. In this study, we plan to use
VTC to construct our timed version of the multi-signature.

– Setup phase: Run ZKSetup(1λ) to generate crsrange, generate public
parameters

pp ← LHTLP.PuzzleSetup(1λ, T)

and output
crs := (crsrange, pp).

– Commit and prove phase: For a given (crs, wit), follow the steps:

- wit := x, crs := (crsrange, pp), h := gx.

- ∀i ∈ [t − 1], sample xi ← Zq and fix hi = gxi .

- For all i ∈ t, . . . , n compute

xi =

⎛

⎝x −
∑

j∈[t]

xj .lj(0)

⎞

⎠ .li(0)−1 (2)

and

hi =

⎛

⎝ h
∏

j∈[t] h
lj(0)
j

⎞

⎠

li(0)
−1

, (3)

where li is the i-th Lagrange polynomial basis.

- For i ∈ [n]:

ri ← {0, 1}λ
, Zi ← LHTLP.PuzzleGeneration(pp, xi; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, a, b, T), (xi, ri)).
- Calculate

I ← H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

- Output the commitment C := (Z1, . . . , Zn, T) and corresponding range
proof

π := ({hi, πrange,i}i∈[n], I, {xi, ri}i∈I).

- Final output is (h,C, π).

Verifiable Timed Accountable Subgroup Multi-signatures 299

– Verification phase: Given (crs, h, C, π), the Vrfy works as follows:

- Let C := (Z1, . . . , Zn, T) , crs := (crsrange, pp) and

π := ({hi, πrange,i}i∈[n], I, {xi, ri}i∈I).

- If any of the below conditions are correct, the Vrfy algorithm outputs 0.
Therefore, it is expected that these conditions are wrong.
1. There is j /∈ I satisfying

∏

i∈I

h
li(0)
i .h

lj(0)
j �= h.

2. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, a, b, T), πrange,i) �= 1.

3. There is i ∈ I satisfying Zi �= LHTLP.PuzzleGeneration(pp, xi; ri) or
hi = gxi .

4. I �= H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).
– Open phase: The result of the open phase is opening the commitment and

receiving (x, {ri}i∈[n]). The committer is expected to open at least the puzzles
for the challenge set I chosen by the verifier.

– ForceOp (forced open) phase: This phase takes C := (Z1, . . . , Zn, T) and:

- Calculates xi ← LHTLP.PuzzleSolve(pp, Zi) for i ∈ [n] to retrieve all key
shares. It should be observed that, given the committer has revealed t − 1
puzzles, the ForceOp step will only involve solving (n − t + 1) puzzles.

- Output x :=
∑

j∈[t](xj).lj(0) by considering the first t signature shares are
the expected ones.

2.3 Security Requirements

Security Requirements for VTC. The main security properties of the VTC
[3] scheme are soundness and privacy. Soundness promises the user that the
ForceOpen algorithm will reveal the committed value after T time, under the
given commitment C. Privacy, on the other hand, means that all Parallel Ran-
dom Access Machine (PRAM) algorithms with run-time less than T can reveal
the committed value using commitment and proof with only a negligible proba-
bility. The formal security definitions are explained in detail in article [3].

Security Requirement for an ASM. As an expected security property, the
unforgeability of multi-signatures is important because it enhances security by
preventing unauthorized parties from creating valid signatures. It ensures that
transactions require the consensus and cooperation of multiple parties, reducing
the risk of fraud, enabling distributed trust, and providing accountability in
digital transactions.

300 D. Özden and O. Yayla

Definition 1 (Unforgeability). We define an opponent A as a (τ, qS , qH , ε)-
forger for a multi-signature if it can successfully complete the following game
within time τ . They can make qS-many signing queries, qH-many random oracle
queries, and they win with a probability of ε as a bare minimum. We say that a
multi-signature is (τ, qS , qH , ε)-unforgeable if there is no such individual capable
of forging.

Although different security requirements to protect multi-signatures from
attacks can be examined, only unforgeability is discussed in this paper.

3 Proposed Schemes

In this section, we construct a modified ASM, namely mASM, by slightly mod-
ifying Boneh et al.’s ASM scheme, which is useful for constructing VTC on
membership keys. Thus, we made ASM compatible with VTC.

3.1 Modified Accountable Subgroup Multi-signature Scheme
(mASM)

Boneh et al. showed that their ASM construction is efficient and applicable in
blockchain cryptosystems. In this section, a modified version of ASM is intro-
duced. The modified version of the ASM scheme, namely mASM, is similar to
the ASM scheme until individual signature generation.

mASM: Individual signatures in the mASM scheme are calculated as follows:

– SignatureGen: Let H3 be defined as an additional function that maps elements
from G1 to Zq. A signer i calculates his own signature as:

si = H0(apk,m)ski·H3(mki) (4)

and delivers si and pk
H3(mki)
i to the combiner. Note that, the aim of this

modification is creating a similar structure with VT-BLS to make it easily
adaptable to the timed version.

– Signature Aggregation: The individual signatures let the combiner construct
the set of signers S ⊆ G. After that, the combiner calculates the ASM σ =
(s, pk) where s =

∏
i∈S si and pk =

∏
i∈S pk

H3(mki)
i .

– Verification: With having (par, apk, S,m, σ), anyone can check if:

e(H0(apk,m), pk) = e(s, g2)

– Theorem 1 (Unforgeability). mASM is an unforgeable multi-signature
scheme under the computational co-Diffie-Hellman problem in the random-
oracle model.

The proof Theorem 1 is similar to the proof of ASM [1].

Verifiable Timed Accountable Subgroup Multi-signatures 301

3.2 VTC with mASM (VT-MASM)

VTC usage in mASM allows a user to send her membership key to the com-
biner so that the combiner can only receive individual membership keys after
some predefined time T . In this way, membership keys will not be public at the
beginning of the protocol but a combiner will be able to use them to construct a
multi-signature on behalf of a group of n people. The following steps show how a
user sends her mk with VTC. For simplicity, assume that a user has membership
key mk and membership key shares are defined as mki.

– Setup phase: Same as VTC Setup phase.
– Commit: For input (crs, wit):

- Parse wit := sk · H3(mk), crs := (crsrange, pp), h := gsk·H3(mk).

- ∀i ∈ [t − 1], sk′
i

$← Zq and set h′
i = gsk′

i .

- ∀i ∈ t, . . . , n, compute

sk′
i =

⎛

⎝sk · H3(mk) −
∑

j∈[t]

sk′
j .lj(0)

⎞

⎠ .li(0)−1

and

h′
i =

⎛

⎝ h
∏

j∈[t] h
′lj(0)
j

⎞

⎠

li(0)
−1

,

where li is the i-th Lagrange polynomial basis.

- For i ∈ [n], calculate puzzles and corresponding range proofs:

ri ← {0, 1}λ
, Zi ← LHTLP.PuzzleGeneration(pp, sk′

i; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, a, b, T), (sk′
i, ri)).

- Set
I ← H ′(pk, (h′

1, Z1, πrange,1), . . . , (h′
n, Zn, πrange,n)).

- Output the commitment C := (Z1, . . . , Zn, T) and corresponding range
proof which is

π := ({h′
i, πrange,i}i∈[n], I, {sk′

i, ri}i∈I).

- Final output is (h,C, π).

302 D. Özden and O. Yayla

– Vrfy: By using (crs, h, C, π), the Vrfy algorithm works as follows:

- Let C := (Z1, . . . , Zn, T),
crs := (crsrange, pp) and π := ({h′

i, πrange,i}i∈[n], I, {sk′
i, ri}i∈I).

- If any of the below conditions are correct, the Vrfy algorithm outputs 0.
Therefore, the expectation is that these conditions are wrong.
1. There is j /∈ I satisfying

∏

i∈I

h
′li(0)
i .h

′lj(0)
j �= h.

2. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, a, b, T), πrange,i) �= 1.

3. There is i ∈ I satisfying Zi �= LHTLP.PuzzleGeneration(pp, sk′
i; ri) or

hi = gsk′
i .

4. I �= H ′(pk, (h′
1, Z1, πrange,1), . . . , (h′

n, Zn, πrange,n)).
– Open: The result of the open phase is opening the commitment and receiving

(sk·H3(mk), {ri}i∈[n])). The combiner is expected to open at least the puzzles
for the challenge set I chosen by the verifier.

– ForceOp: This phase takes C := (Z1, . . . , Zn, T) and then performs the
following steps.

- Calculates sk′
i ← LHTLP.PuzzleSolve(pp, Zi) for i ∈ [n] to retrieve all

membership key shares. It should be observed that, given the committer has
revealed t − 1 puzzles, the ForceOp step will only involve solving (n − t + 1)
puzzles.

- Publish sk · H3(mk) :=
∑

j∈[t] sk
′
j .lj(0) by considering that the initial t

shares are correct.

In this scenario, a combiner cannot change the membership keys as they are
received within a verifiable commitment and are related to the user’s secret keys.
Also, a combiner cannot create an invalid multi-signature on behalf of a group of
n people, as verification of the multi-signature requires aggregated public keys
of users which can be verified by any person. Note that, since the combiner
needs to choose subgroup S to create mASM, she does not have to calculate all
individual signatures of users. She can only calculate the signatures of a subgroup
which decreases computational load. Also, since multi-signature is defined as
the multiplication of individual signatures in the subgroup, the combiner can
first calculate the sum of membership keys of the chosen subgroup and use it
to calculate multi-signature. This method can be considered a delegated multi-
signature scheme. VT-mASM can also be reconstructed if the subgroup is known
from the beginning of the protocol. Figure 1 shows the high-level construction of
VT-mASM.

Verifiable Timed Accountable Subgroup Multi-signatures 303

Fig. 1. VT-mASM

Security of VT-MASM

– Theorem 2 (Soundness). If LHTLP is a time-lock puzzle with perfect cor-
rectness, then VT-mASM illustrated in Fig. 1 meets the soundness require-
ments set forth in Definition 1, assuming the random oracle model.

– Theorem 3 (Privacy). If LHTLP is a secure time-lock puzzle, then VT-
mASM outlined in Fig. 1 meets the privacy requirements outlined in Defini-
tion 2.

Due to the strict page limitations, the complete proofs for all our theorems
are in the full version of this paper.

4 Performance Evaluation

In this section, we calculate the time complexity of the VT-BLS algorithm [3]
and our proposed VT-based accountable subgroup multi-signature scheme. The
complexity of VT-BLS was calculated with our notation to understand how
much more calculation would be needed to create a verifiable timed version of
an accountable subgroup multi-signature using the method in a pairing-based
setup. This comparison makes sense since our proposed VT-based scheme is also
pairing-based and considering pairing is an expensive operation compared to
other digital signature schemes (Schnorr, ECDSA, etc.) decreasing the pairing
amount is an important improvement. Some operations are assumed to have
relatively low computational complexity and are therefore ignored.

304 D. Özden and O. Yayla

Table 1. Computational complexity of VT-BLS and proposed VT-mASM scheme

Algorithm Total Complexity Additional Cost

VT-BLS (Thyagarajan
et al., 2020)

TH .TExp1 + Tpair +
TV TSC + TV TSV

N/A

VT-mASM TH .max(TMExp2 +
2TExp1) + TG.(n−
1)TExp1 +
TS .(TMExp2 + TExp1) +
Tpair + 3TMExp1 +
n.(TV TCC + TV TCV)

TH .max(TMExp2 +
2TExp1) + TG.(n−
1)TExp1 +TS .(TMExp2 +
TExp1)+3TMExp1 +(n−
1).(TV TCC + TV TCV)

Note that, n is the number of users to join multi-signature and s is the
subgroup size for ASM. TH is the total hash queries for H0,H1,H2,H3. TG

is the time complexity for group set-up queries. TS is the time complexity for
signing queries. Tpair is the time complexity for pairing operation for e. TExp1 is
the time complexity for exponentiation in G1. TExp2 is the time complexity for
exponentiation in G2. TMExp1 is the time complexity for multi-exponentiation
in G1. TMExp2 is the time complexity for multi-exponentiation in G2. TV TCC

is the time complexity for VTC Commit and Prove phase. TV TCV
is the time

complexity for the VTC Verification phase. Table 1 illustrates the extent to which
our construction introduces additional costs to convert a VT-based signature into
a VT-based multi-signature.

5 Conclusion and Future Work

Timed signature algorithms benefit many current applications especially when
they are easily verifiable. In this study, we aim to construct the first timed version
of an ASM scheme. We propose a modified version of an existing ASM scheme
so that it provides relevant input for VTC construction. Regarding future work,
our objective is to explore and examine the proposed scheme for known attacks
like the Rogue key attack. In addition, implementing our VT-based scheme to
see applicability is in our roadmap. Analysis of the efficiency of timed multi-
signatures for blockchain-based payment channels would be interesting future
work as well.

References

1. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

2. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures. In: Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security,
pp. 245–254 (2001)

https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15

Verifiable Timed Accountable Subgroup Multi-signatures 305

3. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder,
D.: Verifiable timed signatures made practical. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1733–1750
(2020)

4. Thyagarajan, S.A., Malavolta, G., Moreno-Sanchez, P.: Universal atomic swaps:
secure exchange of coins across all blockchains. In: 2022 IEEE Symposium on Secu-
rity and Privacy (SP), pp. 1299–1316. IEEE (2022)

Escrow and Pairing Free CP-ABE Scheme
with Forward and Backward Secrecy
for Healthcare Internet of Things

Sourabh Bhaskar(B), Keyur Parmar, and Devesh C. Jinwala

Department of Computer Science and Engineering, S. V. National Institute
of Technology, Surat 395007, Gujarat, India

sourabhb440@gmail.com, keyur@coed.svnit.ac.in, dcj@svnit.ac.in

Abstract. Healthcare Internet of Things (HIoT) systems are a step for-
ward in improving the efficiency and quality of patients’ vital informa-
tion. The HIoT system collects, encrypts, and outsources the patients’
sensitive data over the cloud server for storage and sharing purposes.
Pairing-free ciphertext-policy attribute-based encryption (PF-CPABE)
is the prominent solution to provide lightweight and fine-grained access
control over shared encrypted healthcare data. However, the existing PF-
CPABE constructions suffer from one or more limitations, including a
key escrow problem and inefficient user revocation while achieving back-
ward and forward secrecy. In this paper, we propose an Escrow and Pair-
ing Free CP-ABE Scheme (EPFCS) with forward and backward secrecy
for HIoT. The proposed EPFCS ensures a key escrow-free HIoT system,
facilitates the secure distribution of users’ secret keys without using the
secure channel in PF-CPABE, and enables efficient user revocation while
achieving forward and backward secrecy even in dynamic healthcare sce-
narios. The security analysis confirms that the proposed EPFCS ensures
confidentiality, key escrow freeness, forward and backward secrecy, and
resistance against key collusion attacks. Furthermore, the performance
analysis demonstrates that the proposed EPFCS is more effective and
efficient in aspects of communication and computation costs than the
existing schemes.

Keywords: Attribute-based encryption · Pairing-free · Elliptic curve
cryptography · Key escrow · Access control · Data security ·
Healthcare IoT

1 Introduction

Healthcare Internet of Things (HIoT) comprises smart devices equipped with
medical sensors, such as heart rate, SpO2, and blood pressure, aiding health mon-
itoring and resolving medical queries [6]. Medical devices in HIoT record patient
vital signs into the healthcare data, while a gateway encrypts and stores the data
on cloud servers. The encrypted healthcare data is accessible to medical profes-
sionals, workers, relatives, and family members via a third-party cloud server [6].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 306–316, 2023.
https://doi.org/10.1007/978-3-031-49099-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_19&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_19

EPFCS 307

In the context of the HIoT system, several data security and privacy challenges
need to be considered, such as confidentiality, integrity, and fine-grained access
control (FGAC) [3,6]. The lack of addressing these concerns can result in the
disclosure of healthcare data to unauthorized third parties. Therefore, attribute-
based encryption (ABE) comes with the intrinsic capability of enforcing FGAC,
while traditional encryption focuses on basic requirements of security and pri-
vacy [3]. Due to costly bilinear pairing operations in the pairing-based ABE
scheme [3], researchers have proposed pairing-free ABE schemes [6,12,13,15],
using Elliptic Curve Cryptography (ECC) and Rivest-Shamir-Adleman (RSA)
to overcome ABE’s less feasibility challenges in resource-constrained environ-
ments. However, these schemes are vulnerable to the key escrow problem and
inefficient user revocation to manage forward and backward secrecy in dynamic
healthcare scenarios. Authors proposed multi-authority and collaboration-based
PF-CPABE schemes [6,13] to address the key escrow problem. However, these
schemes rely on secure channels for key distribution and can be vulnerable to
key generation authority collusion. Thus, the key escrow issue remains partially
addressed. Existing schemes for forward and backward secrecy (FBS) [1,5,7,9] in
dynamic healthcare scenarios incur high computational costs. To address these
challenges, we propose an EPFCS, Escrow and Pairing Free CP-ABE Scheme
with forward and backward secrecy for HIoT.

2 Related Work

This section discusses the existing literature on the key escrow problem and FBS.

A. Eliminating Key Escrow
Hur [8] proposed an escrow-free key generation protocol that provides the FGAC
and executes between the cloud storage center and the KGC. However, two semi-
trusted parties executing key generation protocol can collude. Therefore, the
system [8] partially solves the key escrow problem. Authors [4,6] proposed the
multi-authority-based CP-ABE scheme that provides the FGAC over the shared
data and resists the key escrow problem. However, the security of multi-authority
schemes relies on the trustworthiness of multiple authorities. If a certain number
of authorities are compromised, the entire system can be compromised as well.
The mentioned scheme’s [4,8] construction is based on pairing-based cryptogra-
phy that uses expensive bilinear pairing operations. Thus, these schemes are not
applicable to resource-constrained environments for practical implementation.
Therefore, researchers [12,15] proposed the PF-CPABE schemes that provide
efficient computation cost compared to pairing-based CP-ABE schemes. Odelu
et al. [12] proposed the RSA-based PF-CPABE scheme that provides cipher-
text of constant size. However, the exponentiation operation of RSA are slightly
higher than the scalar multiplication of ECC and encounter the issue of key
escrow. The ECC-based schemes [6,13,15] were proposed to make the system
lightweight and use a fully trusted entity to generate all the secret keys. How-
ever, schemes were vulnerable to key escrow problem and used secure channel
for key distribution. Sowjanya et al. [13] proposed a key management scheme

308 S. Bhaskar et al.

based on ECC to address the key escrow problem. However, scheme [13] makes
the assumption that semi-trusted entities that are part of the key generation
process cannot collude, and keys distribute through a secure channel. Thus, the
key escrow is partially solved in scheme [13].

B. Forward and Backward Secrecy
The FBS addressed in state-of-the-art literature uses well-known schemes, such
as proxy re-encryption (PRE) [9], public key update [7], broadcast encryption [1],
and proxy assisted decryption [5]. Broadcast encryption and public key updates
do not support the backward secrecy of a revoked user. The PRE and proxy-
assisted decryption techniques facilitate forward and backward secrecy. The PRE
requires high computation cost for re-encrypting the number of ciphertexts (that
belong to a revoked user’s group) and the re-distribution and updation of secret
keys [9]. The proxy-assisted decryption depends on third-party proxy servers,
which can be malicious intentions that can lead to the failure of user revocation
[5].

3 The Proposed EPFCS System and Threat Model

This section presents the system architecture of the proposed EPFCS. In addi-
tion, we discuss all aspects of the threat model.

A. System Architecture
The subsection introduces the system architecture depicted in Fig. 1. The archi-
tecture comprises five entities, namely, the hospital infrastructure provider
(HIP), the cloud server (CS), the data owner (DO), the data user (DU), and
the key generation center (KGC).

Data Owner: The patient acts as the data owner in the HIoT system, defining
FGAC policies to protect healthcare data. The DOs receive medical assistance
from the HIP. HIoT monitors and collects the patient’s sensitive healthcare data,
including vital signs, which the gateway device aggregates, encrypts according to
the access policy, and uploads to the CS via the public channel. In cases where
the DO, such as an elderly patient, lacks the knowledge to define their healthcare
data access policy, they can seek the help of their doctor within the HIP.

Data User: DUs, such as doctors, nurses, medical staff in the HIP, or family
members, register with the HIP to acquire the users’ system identity (UID)
with a certificate (Cert). DUs can request access to encrypted healthcare data
from the CS and decrypt it if the DUs’ attribute secret keys meet access policy
requirements.

Cloud Server: The CS provides computing capabilities and extensive storage
for ciphertext data belonging to DOs. CS grants access to authorized DUs and
performs ciphertext re-encryption upon HIP’s request, sending the re-key to HIP.

Hospital Infrastructure Provider: The HIPs are the clinical foundations or
hospitals that provide the HIoT infrastructure to the data owners (i.e., patients).

EPFCS 309

The HIP is responsible for user revocation, serve as a registration authority, and
issue certificates and UIDs to authorized DUs. When a DU leaves, HIP updates
re-encryption keys for the remaining users in the same attribute group. A group
defines the DUs possessing a similar kind of attribute set. HIP assigns attributes
to DUs based on their roles.

Key Generation Center: The KGC validates DUs via certificates and follows
the key distribution protocol. The KGC generates public parameters and the
master secret key (MSK) and uses a secure key distribution protocol to compute
the user’s secret keys. A KGC can generate partial secret keys. However, KGC
is unable to generate complete secret keys for DUs.

Fig. 1. System architecture of the proposed EPFCS.

B. Threat Model
In our threat model, HIP is a trusted entity that registers the DUs and provides
the certificate. The HIP manages all the DUs’ groups. The KGC is a semi-
trusted entity characterized by being honest but curious that generates all public
parameters and a MSK that keeps itself confidential. The DUs are semi-trusted
entities. DUs always try to gain access to data beyond their authorized access
rights. The DOs are considered trusted entities as they generate healthcare data
and define the access policies.

4 The Proposed EPFCS

This section presents the concrete construction algorithms for EPFCS. The pro-
posed EPFCS comprises a registration phase and five algorithms: setup, encryp-
tion, re-encryption, key generation, and decryption.

310 S. Bhaskar et al.

Setup Algorithm. The KGC executes the setup Algorithm 1. Here, the elliptic
curve E is defined over Fp, and G is a base point in E with a large prime order
q, generating a cyclic subgroup of E. The λ is the security parameter.

Algorithm 1. Setup
Input: (1λ)
Output: (PK, PKi) and (MSK)

1. KGC picks a random integer n ∈ Zq as the MSK and generates PK = n.G as
public key of KGC.

2. KGC selects a random integer ki ∈ Zq for each attribute i in the system and
publishes the attribute public key PKi = ki.n.G.

Registration Phase. Figure 2 depicts the registration phase process for DUs in
the proposed EPFCS. The ID represents the real identity of DU. When Q′

u
?= Qu

does not match, the DU resends the registration request to the HIP.

Fig. 2. Process of registration phase.

Key Generation Algorithm. The DU initiates the key generation process by
sending their UID′ and Cert to the KGC. The KGC then authenticates the
user’s identity by validating their certificate and UID′.

Cert′ = PK + H(UID′)PH

Cert′ = n.G + H(UID′)KH .G

KGC checks if Cert′ ?= Cert for DU authentication. Unauthorized DUs cannot
proceed with the secure key distribution protocol. HIP pseudonymizes DU IDs

EPFCS 311

Algorithm 2. Secure key distribution
Input: KeyGenuser(Ut) ←→ KeyGenKGC(Ki, n)
Output: SKi,UID

1. KGC first authenticate data user uj .
2. KGC and DU participate in a secure key distribution protocol, utilizing the KGC’s

secret input (Ki, n) and the DU’s secret input (Ut) for the computation.
3. The secure key distribution protocol uses a secure two-party protocol that yields

a confidential output x = (Ut
n

+ Ki)
1
n

to DU.
4. DU picks σ ∈ Zq then computes A =

x

σ
and sends A to the KGC.

5. KGC computes B = A.n2/d and sends B to DU.
6. DU computes a personalized key component k′ = B.σ.

to create irreversible pseudonyms known as UID, ensuring user identity con-
fidentiality and preventing direct re-identification in the EPFCS system. KGC
and CS interact with DUs using UID.

Let ut ∈ Zq be the private value of DU and ki, n be the private value of KGC.
Then, the DU computes Ut = ut.d

2 and the KGC computes Ki = ki.d, where d =
H(UID). The KeyGenuser(Ut) ←→ KeyGenKGC(Ki, n) are two interactive
algorithms [8] that execute a secure key distribution protocol between each DU
(uj) such that j = {1, 2, . . . , t} and the KGC. The notation ←→ represents the
interaction between two algorithms. The DU outputs k′ as given in Algorithm2.
We simplify k′ as follows: k′ = B.σ = A.n2σ/d = x

σ .n2σ/d = (Ut

n +Ki) 1n .n2 1
d =

(ut.d + ki.n). Therefore, the final user’s secret key is SKi,UID = (ut.d + ki.n).

Encryption Algorithm. The DO executes the encryption Algorithm 3 and
encrypts the message M based on the access policy (A, ρ) [2].

Algorithm 3. Encryption
Input: M, (A, ρ), PKρ(x)

Output: CT = [Ca, Cb,x, Cc,x]

1. Plaintext data maps into point M on E(Fq).
2. DO chooses the random integer s ∈ Zq and computes Ca = M + s.G.
3. The encryption algorithm employs the access policy established by the DO and

produces matrix A of dimensions n × l with mapping function ρ to map the rows
to attributes.

4. DO selects a random vector v ∈ Zl
q, with s as its first entry. Assume λx denote the

result of multiplying row x of matrix A with vector v, denoted as Ax.v.
5. DO selects a random vector u ∈ Zl

q, with 0 as its first entry. Assume wx denote
the result of multiplying row x of matrix A with vector w, denoted as Ax.u.

6. Then, the Do computes the ciphertext Cb,x = λx.G +wxPKρ(x), Cc,x = wx.G, ∀x.

Re-encryption Algorithm. The CS executes the re-encryption algorithm at
the request of HIP. The CS uses a random integer cs to re-encrypt the ciphertext

312 S. Bhaskar et al.

CT as outputs CT ′ and then provides cs to the HIP as the re-key. The HIP sends
the re-key to the group of DUs who have not been revoked from the system.

Decryption Algorithm. The DU executes the Algorithm 4 to decrypt the
ciphertext data. The DUs with a sufficient attribute set to meet the access policy
requirements can decrypt and access the plaintext data.

Algorithm 4. Decryption
Input: CT ′, cs, SKi,UID

Output: M

1. The DU uses re-key cs for obtaining CT from CT ′.
2. The DU computes (Cc,x, ρ(x)) as:∑

Cc,xSKρ(x),UID =
∑

(wx.G.(ut.H(UID) + kρ(x).n))∑
Cc,xSKρ(x) =

∑
(wx.ut.H(UID).G + wx.kρ(x).n.G)

3. Then DU computes
∑

Cb, x − ∑
Cc,xSKρ(x)

=
∑

(λx.G + wxPKρ(x)) − ∑
(wx.ut.H(UID).G + wx.kρ(x).n.G)

=
∑

(λx.G + wx.ki.n.G) − ∑
(wx.ut.H(UID).G + wx.ki.n.G)

=
∑

(λx.G) − ∑
(wx.H(UID).ut.G).

4. DU chooses the constants kx ∈ Zq such as
∑

kx.Ax = (1, 0, ..., 0) and computes:∑
kx(λx.G − wx.H(UID).ut.G) = s.G.

5. Given vectors v and u, as v.(1,0,...,0)=s and u.(1,0,...,0)=0.
6. Ultimately, Ca − s.G = M .

5 Security and Performance Analysis

This section provides a comprehensive analysis of the security and performance
analysis of the proposed EPFCS.

5.1 Security Analysis

In this subsection, we discuss a security analysis of the proposed EPFCS.

Key Escrow-Free. To ensure user key security, the DU generates their secret
key through a secure key distribution protocol involving the KGC and the DU.
In this protocol, both parties engage in secure 2PC with their private inputs,
preserving their underlying secrets. KGC’s private input is (ki, n), and DU’s is
ut. The KGC generates a partial key, and DU then forms the complete secret
key, preventing anyone from generating it alone, ensuring key escrow freeness.

Forward Secrecy. To achieve forward secrecy, the proposed EPFCS re-encrypts
the subsequent ciphertext and assigns the re-encryption key to group users whose
access has not been revoked.

Backward Secrecy. To achieve backward secrecy, we use an additional numeric
attribute that denotes as a timestamp (TS). The timestamp attribute is assigned
to each data user as TSut when he or she joins the system. The ciphertext
timestamp TScn is assigned when the ciphertext is generated. If TScn < TSut

EPFCS 313

(for the numeric attribute comparison refer [14]), then grant the access; oth-
erwise, the error symbol is for not satisfying the access policy. Here, TScn =
{TSc1, ..., TScn} and TSut = {TSu1, ..., TSut}.

Collusion Resistance. We associate the (UID) with their secret keys
to prevent a collusion attack. Charlie and Katie cannot collude because
H(UIDCharlie) �= H(UIDKatie), and they cannot find kx ∈ Zq such that∑

x kx.Ax = (1, 0, ..., 0) workable. In this manner, the proposed EPFCS achieves
collusion resistance.

5.2 Performance Analysis

In this subsection, we analyze and compare the efficiency of the proposed EPFCS
with existing key escrow-free schemes [6,8,11,13] in terms of communication and
computation costs.

A. Communication Cost. The parameters used for comparison include cipher-
text (CT) size, public key (PK) size, and secret key (SK) size in Table 1. We
assume that all schemes compare at an equivalent level of security and under
the same set of attributes. We consider the standard 160 bit ECC to provide an
equivalent level of security strength as RSA’s 1024 bit [15]. The RSA is taken
into consideration in bilinear pairing-based cryptographic schemes due to its
use of similar exponentiation operations. According to the comparison strategy,
the ECC point, represented as 2μ, comprises (160+160) bits corresponding to
its x and y coordinates. ECC secret key consists of 160 bits, represented as μ.
Similarly, the sizes of the access tree and attribute set are considered as μ. For
bilinear pairing-based schemes, the PK and SK have a size of 1024 bits, which
is equivalent to 6.4μ. The sizes of elements in groups G1 and G2 are 1024 bits
(6.4μ) and 2048 bits (12.8μ), respectively. We consider the same for EPFCS as
the study [13] sets the parameter values as number of leaf nodes in the access tree
l = 10, the size of users’ attribute set u = 5, and the total number of attributes
in the system n = 30.

We can conclude from Table 1 that the CT size of the EPFCS is smaller than
schemes [8,11,13] and equal to scheme [6]. Similarly, the EPFCS has a smaller
PK size than schemes [6,8,11,13]. In addition, the SK size of our EPFCS is
smaller than schemes [8,11,13] and equal to scheme [6]. Therefore, the proposed
EPFCS has lower communication costs than existing key escrow-free schemes
[6,8,11,13].

B. Computation Cost. The computation time for operations involved in com-
putation costs is considered to be similar to the study [10]. The platform of the
work [10] comprises a PIV 3-GHz processor, 512 MB of memory, and a Windows
operating system. As the work [10], the execution time of pairing operation Pb

takes 20.04ms, the execution time of exponentiation operation E takes 5.31ms,
and the execution time of scalar multiplication operation Sm takes 2.21ms. We
can infer from Table 2 and Fig. 3 that the proposed EPFCS has the lowest com-
putational costs compared to existing schemes [6,8,11,13].

314 S. Bhaskar et al.

Table 1. Communication costs comparison.

Scheme CT size (in
bits)

PK size (in
bits)

SK size (in
bits)

Hur [8] (2l + 1)6.4μ +
12.8μ + μ ≈
148.2μ

38.4μ (2u+2)6.4μ ≈
76.8μ

Lin et al. [11] (l + 1)6.4μ +
12.8μ + μ ≈
84.2μ

(l + 1)6.4μ +
12.8μ ≈
83.2μ

μ + (u +
2)6.4μ ≈
45.8μ

Sowjanya et al. [13] (6 + 2l)μ ≈
26μ

(4+n)μ ≈ 34μ (2u + 4)μ ≈
14μ

Das and Namasudra [6] (2l + 1)μ ≈
21μ

(2n + 2)μ ≈
62μ

(u)μ ≈ 5μ

Proposed EPFCS (2l + 1)μ ≈
21μ

(n+2)μ ≈ 32μ (u)μ ≈ 5μ

Table 2. Computation costs comparison.

Scheme Setup Encryption Decryption

Hur [8] (Pb + 3E) Pb + (3 + l)E 3Pb

Lin et al. [11] (Pb + 2E) Pb + (3 + l)E 3Pb

Sowjanya et al. [13] 2Sm (4l + 1)Sm (u + 2)Sm

Das and Namasudra [6] (2n + 1)Sm (4l + 1)Sm (u + 1)Sm

Proposed EPFCS (n + 1)Sm (3l + 1)Sm (u + 1)Sm

Fig. 3. Execution time (in milliseconds) for (a) Encryption (b) Decryption.

EPFCS 315

6 Conclusions and Future Works

In this paper, we proposed an EPFCS, escrow and pairing free CP-ABE
scheme with FBS for HIoT. The proposed EPFCS facilitates FGAC over shared
encrypted healthcare data, key escrow freeness, and secure key distribution with-
out using a secure channel through our secure key distribution protocol. The pro-
posed EPFCS achieves user revocation while ensuring FBS in dynamic healthcare
scenarios. The security analysis confirms that the proposed EPFCS is resilient
against compromising confidentiality, the key escrow problem, and key collu-
sion attacks while ensuring efficient FBS. In addition, the performance analysis
indicates that the proposed EPFCS is efficient and suitable for deployment in
resource-limited environments. In the future, researchers can focus on developing
formal security models and proofs for PF-CPABE schemes.

Acknowledgements. This research was a part of the project “Design and Analysis of
Secure and Efficient Smart Contracts Using Blockchain Technology”. It was partially
supported by the SEED Money/Research Grant of the author, Dr. Keyur Parmar,
Department of Computer Science and Engineering, S. V. National Institute of Tech-
nology (NIT), Surat, India.

References

1. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1_16

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. disser-
tation, Technion-Israel Institute of technology (1996)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Symposium on Security and Privacy, SP 2007, pp. 321–334. IEEE (2007).
https://doi.org/10.1109/SP.2007.11

4. Chaudhary, C.K., Sarma, R., Barbhuiya, F.A.: RMA-CPABE: a multi-authority
CPABE scheme with reduced ciphertext size for IoT devices. Futur. Gener. Com-
put. Syst. 138, 226–242 (2023). https://doi.org/10.1016/j.future.2022.08.017

5. Cui, H., Deng, R.H., Li, Y., Qin, B.: Server-aided revocable attribute-based encryp-
tion. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS
2016. LNCS, vol. 9879, pp. 570–587. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45741-3_29

6. Das, S., Namasudra, S.: Multiauthority CP-ABE based access control model for
IoT-enabled healthcare infrastructure. Trans. Ind. Inform. 19(1), 821–829 (2023).
https://doi.org/10.1109/TII.2022.3167842

7. Fan, C.I., Huang, V.S.M., Ruan, H.M.: Arbitrary-state attribute-based encryption
with dynamic membership. Trans. Comput. 63(8), 1951–1961 (2014). https://doi.
org/10.1109/TC.2013.83

8. Hur, J.: Improving security and efficiency in attribute-based data sharing. Trans.
Knowl. Data Eng. 25(10), 2271–2282 (2013). https://doi.org/10.1109/TKDE.2011.
78

9. Hur, J., Noh, D.K.: Attribute-based access control with efficient revocation in
data outsourcing systems. Trans. Parallel Distrib. Syst. 22(7), 1214–1221 (2011).
https://doi.org/10.1109/TPDS.2010.203

https://doi.org/10.1007/978-3-642-03298-1_16
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1016/j.future.2022.08.017
https://doi.org/10.1007/978-3-319-45741-3_29
https://doi.org/10.1007/978-3-319-45741-3_29
https://doi.org/10.1109/TII.2022.3167842
https://doi.org/10.1109/TC.2013.83
https://doi.org/10.1109/TC.2013.83
https://doi.org/10.1109/TKDE.2011.78
https://doi.org/10.1109/TKDE.2011.78
https://doi.org/10.1109/TPDS.2010.203

316 S. Bhaskar et al.

10. Karati, A., Amin, R., Biswas, G.P.: Provably secure threshold-based ABE scheme
without bilinear map. Arab. J. Sci. Eng. 41, 3201–3213 (2016). https://doi.org/
10.1007/s13369-016-2156-9

11. Lin, G., Hong, H., Sun, Z.: A collaborative key management protocol in cipher-
text policy attribute-based encryption for cloud data sharing. Access 5, 9464–9475
(2017). https://doi.org/10.1109/ACCESS.2017.2707126

12. Odelu, V., Das, A.K., Khurram Khan, M., Choo, K.K.R., Jo, M.: Expressive CP-
ABE scheme for mobile devices in IoT satisfying constant-size keys and ciphertexts.
Access 5, 3273–3283 (2017). https://doi.org/10.1109/ACCESS.2017.2669940

13. Sowjanya, K., Dasgupta, M., Ray, S.: A lightweight key management scheme for
key-escrow-free ECC-based CP-ABE for IoT healthcare systems. J. Syst. Architect.
117, 102–108 (2021). https://doi.org/10.1016/j.sysarc.2021.102108

14. Xue, K., Hong, J., Xue, Y., Wei, D.S., Yu, N., Hong, P.: CABE: a new comparable
attribute-based encryption construction with 0-encoding and 1-encoding. Trans.
Comput. 66(9), 1491–1503 (2017). https://doi.org/10.1109/TC.2017.2693265

15. Yao, X., Chen, Z., Tian, Y.: A lightweight attribute-based encryption scheme for
the internet of things. Futur. Gener. Comput. Syst. 49, 104–112 (2015). https://
doi.org/10.1016/j.future.2014.10.010

https://doi.org/10.1007/s13369-016-2156-9
https://doi.org/10.1007/s13369-016-2156-9
https://doi.org/10.1109/ACCESS.2017.2707126
https://doi.org/10.1109/ACCESS.2017.2669940
https://doi.org/10.1016/j.sysarc.2021.102108
https://doi.org/10.1109/TC.2017.2693265
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1016/j.future.2014.10.010

Blockchains

Ensuring Data Security in the Context
of IoT Forensics Evidence Preservation
with Blockchain and Self-Sovereign

Identities

Cristian Alves dos Santos(B), Leandro Loffi, and Carla Merkle Westphall

Computer Science, Federal University of Santa Catarina (UFSC), PO Box 476,
Florianopolis, SC 88040-970, Brazil

{cristian.alves,leandro.loffi}@posgrad.ufsc.br,
carla.merkle.westphall@ufsc.br

Abstract. As Internet of Things (IoT) networks expand, significant
challenges related to the secure management of data generated by these
devices emerge. The integrity and reliability of this data are critical in
sensitive sectors, such as forensic evidence preservation. In this context,
we present an innovative architecture based on Self-Sovereign Identity
(SSI) tailored for resource-constrained IoT devices.

Our proposal addresses the intrinsic limitations of current systems,
which often fail to ensure the integrity, reliability, and traceability of
data originating from IoT devices. To tackle this issue, we propose using
decentralized identifiers (DIDs) to establish unique identities for IoT
devices, accompanied by verifiable credentials (VCs) that attest to data
ownership. To implement this solution, we have developed an applica-
tion that serves as a gateway for resource-constrained devices, typically
certified and connected to a broker. Our application utilizes Hyperledger
Aries and Indy libraries, providing essential resources to address these
challenges. Furthermore, we conducted comprehensive simulations and a
performance analysis to validate the effectiveness of our approach. Inte-
grating these technologies enables the certification of data collected by
IoT devices, offering a robust framework for the data custody chain.
Consequently, this substantially contributes to preserving this data’s
integrity, reliability, and traceability in critical environments.

Keywords: Internet of Things · Self-sovereign identity · Decentralized
identifiers · Verifiable credentials

1 Introduction

With the rapid growth and continuous evolution of intelligent devices and sys-
tems, also known as the Internet of Things (IoT), new services drive complex
interactions among these devices, services, and people. However, this growth and
the exponential increase in the number of connected IoT devices generating and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 319–338, 2023.
https://doi.org/10.1007/978-3-031-49099-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_20&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_20

320 C. A. dos Santos et al.

processing massive volumes of data raise significant concerns about the security
of this information [1,2].

In this context, the traceability and verification of data generated by these
devices play a crucial role in managing the data custody chain to preserve foren-
sic evidence. Digital forensic investigation plays a pivotal role in virtually all
criminal investigations, given the abundance of available information and the
opportunities presented by electronic data to investigate and substantiate crimes.
However, during legal proceedings, these electronic pieces of evidence are often
met with extreme suspicion and uncertainty, although in some situations, they
are justified. The use of scientifically unproven forensic techniques is widely crit-
icized in current legal procedures. Furthermore, electronic data’s highly distinct
and dynamic characteristics, combined with existing legislation and privacy laws,
continue to pose significant challenges to the systematic presentation of evidence
in a court of law [3].

Throughout all phases of forensic investigation, digital evidence is susceptible
to external influences and contact with various factors. The legal admissibility
of digital evidence is the capacity for this evidence to be accepted as proof in
a court of law. The probative value of digital evidence can only be preserved if
it is possible to establish that the records are accurate, meaning who created
them, when they were created, and that no alterations have occurred [4].

Therefore, it is imperative to establish unequivocal device identification and
ensure the integrity and authenticity of the generated data. These objectives can
be achieved by adopting technologies based on decentralized identifiers (DIDs) [5]
for identification and using verifiable credentials to certify the authenticity of
measurements sent by IoT devices. This approach is essential in instilling trust
and integrity in communications and transactions, bridging a significant gap in
existing systems, and providing an additional layer of security and reliability in
interactions between IoT devices and the systems to which they are connected.

By adopting Self-Sovereign Identity (SSI), IoT devices can be securely and
reliably identified, establishing a unique identity and ensuring that transactions
and communications are conducted authentically and immutably. This approach
is particularly relevant in the face of significant challenges related to the sharing
and preserving of forensic data in technological, legal, and operational terms.
Demonstrating data integrity is crucial to ensure its validity and admissibility
in legal proceedings.

However, IoT devices often have limited resources in terms of low processing
power, storage, memory, and limited battery life [1]. This imposes a limitation
on the use of DIDs and renders them incapable of storing digital wallets, running
an agent, or maintaining the necessary protocol stack to enable SSI capabilities.
Furthermore, IoT devices require cryptographic solutions to meet security, pri-
vacy, and trust requirements, which are crucial for enabling the use of DIDs and
Verifiable Credentials (VCs) [6].

This limitation can pose a challenge in adopting these advanced technologies
on resource-constrained devices, necessitating alternative approaches to ensure
the security and integrity of communications and transactions in this specific

IoT Forensics Evidence Preservation with Blockchain and SSI 321

context. One practical solution is to securely outsource processing to a more
powerful external device to reduce the computational cost of cryptographic cal-
culations and maintain data confidentiality.

To address these issues, we propose an SSI Gateway for IoT to identify and
certify data emitted by these devices. Our approach seeks to establish means
for managing the custody chain of data issued in the context of forensic evi-
dence preservation. This architecture utilizes a blockchain-based SSI model [7]
to safeguard the privacy of data collected from IoT devices.

This approach allows an IoT device, whether an emitter or connected to an
emitter in a certified manner, to sign the data at its source when transmitting
it, making it tamper-proof and verifiable, potentially rendering it trustworthy
as long as the emitter is reliable. Consequently, the involved parties can pre-
serve ownership of the collected information, enabling the sharing of verifiable
credentials certifying the integrity and origin of data collection.

In summary, our main contributions are as follows:

1. We implemented an SSI Gateway architecture designed for IoT networks.
2. We developed a system for issuing verifiable credentials to ensure the integrity

and traceability of data from IoT devices.
3. We implemented decentralized identifiers to strengthen the identification of

devices within the architecture, thereby enhancing data custody chain secu-
rity.

In our experiments, we utilized the Hyperledger Indy Software Development
Kit (SDK) [8] to generate DIDs for device identification. We utilized Hyper-
ledger Aries Cloud Agent Python (ACA-Py) [9] as a cloud agent for issuing
VCs and establishing connections with other parties. The Von Network [10] was
adopted as a permissioned blockchain to anchor DIDs, credential metadata, and
verification keys. To assess the performance of the proposed architecture, we
conducted simulations and, through performance testing during the DIDs regis-
tration and VCs issuance process, analyzed the results and identified potential
areas for optimization.

The remaining part of the article is organized as follows: In Sect. 2, we provide
the essential background. Next, Sect. 3 discusses related works and the techniques
they address. In Sect. 4, we present an overview of the proposed architecture.
Subsequently, Sect. 5 delves into the detailed performance test results and ana-
lyzes these findings. Finally, in Sect. 6, we discuss the conclusions drawn from
this study and explore potential future research directions.

2 Background

2.1 Self-Sovereign Identities

Self-sovereign identity is a concept that describes an individual’s ability to con-
trol and manage their digital identity in a decentralized manner. [11] first pro-
posed the idea of self-sovereign identity and has been referenced by various

322 C. A. dos Santos et al.

authors in the literature. While there still needs to be a consensus on SSI, the
widely accepted concept is described as a system where individuals can claim
and manage their identity without needing a centralized trusted party [12].

SSI allows users to choose which identity information to share and with
whom, as well as granting them access to their identity information at any time.
Instead of relying on third parties, such as companies or governments, to manage
and store their identity information, users can create, store, and control their
digital identities through decentralized technologies like blockchain.

Decentralized Identifiers. Decentralized Identifiers are globally unique iden-
tifiers that enable an entity’s verifiable and persistent identification for as long as
the DID controller desires without relying on a centralized registry [13]. Just as
there are various types of URIs complying with the URI standard, there is also a
variety of DID methods, all of which must adhere to the DID standard [5]. Each
DID method specification should define the name of the DID method, which
should appear between the first and second colons (e.g., did:method:unique-
identifier), the structure of the unique identifier following the second colon, and
the technical specifications outlining how a DID resolver can implement opera-
tions to create, read, update, and deactivate a DID document using that method.

Fig. 1. Overview of DID architecture and the relationship of the essential components.

Figure 1 depicts a conceptual diagram of the W3C-proposed [5] DID archi-
tecture. A DID is linked to a DID document containing relevant DID-related
information. This DID document can be accessed by resolving the DID itself.
Within this document, essential elements for authentication and verification,
including the DID itself and associated public key information, can be found.
Hence, the DID document is pivotal in conducting secure authentication and
verification processes using DID.

A DID points to a DID document, a JavaScript Object Notation (JSON) file
with a format defined explicitly in the DID specification, and a set of information

IoT Forensics Evidence Preservation with Blockchain and SSI 323

describing the DID subject. This document includes cryptographic public keys
that the DID subject and a DID delegate can use to authenticate and verify
their connection to the DID.

Each entity possesses one or more DIDs, which can be resolved through a
DID Resolver, much like the Domain Name System (DNS) functioning in the
context of SSI. When a valid DID is provided to a DID Resolver software, it
operates as a browser, receiving a Uniform Resource Locator (URL), resolving
the DID, and providing a DID document in response [14].

Verifiable Credentials. A verifiable credential is a digital representation of
information typically found in physical credentials but with enhanced security
and reliability, thanks to digital signatures. A credential comprises claims made
by an entity, a person, an institution, or a machine, and metadata such as issuer,
expiration date, representative image, and public key for verification [6].

A verifiable credential is founded upon a “triangle of trust,” wherein the
issuer trusts the subject, the subject trusts the verifier, and the verifier trusts
the issuer. Depending on the context, this trust relationship can be established
concerning individuals, institutions, or machines. The process of a verifiable
credential consists of essential steps:

1. Recording the DID and Public Key on the Blockchain: The issuer or entity
issuing credentials writes the DID along with its public key onto a blockchain
or another trusted public service. This establishes a connection between the
issuer and their DID.

2. Issuance of Verifiable Credentials: The issuer uses their private key to sign
a verifiable credential digitally. This credential is then issued to a qualified
subject, who stores it in their digital wallet.

3. Request for Proof by the Verifier: A verifier seeking to confirm the identity
or specific information of the subject requests digital proof of the credentials
from the subject. If the subject agrees, they generate and send the proofs to
the verifier from their digital wallet.

4. Verification of Proofs by the Verifier: The proofs contain the issuer’s DID.
The verifier uses this DID to retrieve the issuer’s public key and other cryp-
tographic data from the blockchain. Subsequently, the verifier utilizes the
issuer’s public key to ascertain the validity of the proofs and whether the
digital credential has been tampered with.

In the context of verifiable credentials, the blockchain serves as a registry
where issuers publish cryptographic keys and credential metadata. This enables
credential holders to generate presentations that verifiers can cryptographically
verify. However, it is crucial to emphasize that, to ensure data privacy and secu-
rity, storing the credentials themselves on the blockchain is not recommended.
Instead, the standard practice is to store only the public keys of the issuer and
the holder on the blockchain linked to their respective DIDs. Credentials con-
taining personal information are securely kept in a private digital wallet. The
availability of these keys is sufficient to verify the credentials, eliminating the
need to store them on the blockchain [14].

324 C. A. dos Santos et al.

Zero Knowledge Proof. Zero-knowledge proof (ZKP) is a cryptographic tech-
nique that allows one to prove possession of certain information without reveal-
ing its content, ensuring data privacy and transaction security. The Verifiable
Credentials model combines the implementations of zero-knowledge proofs and
verifiable credentials to reduce data and increase privacy. With this combination,
provers can present proofs without disclosing sensitive and personal data to ver-
ifiers. In order to enhance privacy and security, the claims present in a verifiable
credential can be exposed as a predicate or selective disclosure of zero-knowledge
proof [15].

2.2 Relationship with Blockchain Technology

Blockchain exhibits characteristics that align with the desired properties of SSI.
For instance, blockchain provides a decentralized domain that is not controlled
by any single entity. Data stored on any blockchain is readily available to any
authorized entity. The owner of specific data has complete control over it and
determines how it can be shared with other users within the blockchain domain,
thus satisfying the principle of ownership and disclosure.

In this context, Hyperledger Indy is one of the most advanced technologies
concerning self-sovereign identity. This platform provides robust and innovative
solutions for secure and decentralized digital identity management. In Hyper-
ledger Indy, private content is not stored on the blockchain, ensuring enhanced
privacy preservation in solutions utilizing this distributed ledger technology.
The blockchain maintains only the public DIDs, schemas, credential definitions,
and revocation records. This approach ensures that sensitive information is not
exposed to the network, making the architecture more resistant to potential
attacks or future vulnerabilities [15].

2.3 Use of Agents

Agents can represent individuals, organizations, or devices in SSI ecosystems.
They are software responsible for securely managing and using DIDs and VCs
stored in digital identity wallets. These software entities require access to the
wallet to perform cryptographic operations on behalf of the represented entity.
Their responsibilities encompass various essential tasks such as message send-
ing and receiving, information encryption and decryption, digital signature on
behalf of the entity, wallet management, and backup/restoration of informa-
tion. Additionally, some agents can interact with the ledger, enabling the adop-
tion of verifiable data models [15,16]. Among the existing agents, Hyperledger
Aries [17] stands out as an advanced and comprehensive solution. It implements
the Hyperledger Ursa [18] cryptographic library, ensuring a high level of security
in cryptographic operations.

3 Related Work

From a research perspective, only a few studies have proposed the application
of the SSI paradigm to IoT. Following a search for relevant keywords such as

IoT Forensics Evidence Preservation with Blockchain and SSI 325

“Internet of Things,” “Self-Sovereign Identity,” “Decentralized Identifiers,” “Ver-
ifiable Credentials,” and “Distributed Ledger Technology” in prominent research
sources, several works were identified that briefly mentioned the intersection of
SSI and IoT. While these studies provide an overview, they do not delve into
credential exchange protocols or technical details. However, there are standout
studies known for their specific proposals:

Initially, authors [19] explored the SSI paradigm for IoT, introducing DIDs
and VCs for IoT. They also analyzed SSI’s application in IoT ecosystems, con-
vincingly demonstrating that this approach surpasses traditional certificates such
as Pretty Good Privacy (PGP) and X.509 regarding privacy and effectiveness.

SSI can leverage a decentralized registry to store information such as DIDs,
DID documents, and verifiable credential metadata. This registry can be imple-
mented using Distributed Ledger Technology (DLT), enhancing the system’s
overall security while ensuring the integrity and availability of stored informa-
tion. In this regard, several studies have conducted research.

For instance, authors [20] introduced an SSI scheme based on IOTA as a DLT
to implement decentralized identity. They underscored its permissionless nature,
absence of transaction costs, and scalability advantages. However, a significant
limitation of this proposal lies in IOTA’s need for complete decentralization, as
it still relies on a coordinator, a centralizing element in the consensus process.

Some authors introduced concepts related to SSI and illustrated specific use
cases for industrial IoT (IIoT). [21] proposed a protocol for device identity
management based on Hyperledger Indy but did not provide implementation
details. [22] suggested a digital identity framework for devices using a combi-
nation of Hyperledger Indy and Ethereum. However, the authors should have
comprehensively addressed scalability issues, as the Ethereum platform entails
costs that could pose significant challenges when dealing with increasing demand.

Other studies delve into the SSI paradigm for Medical Internet of Things
(MIoT) devices. The authors [23] conducted a study on authentication mech-
anisms for medical devices. However, the proposal must discuss results and
address performance and scalability issues. Some studies have addressed IoT as
a service. For instance, the authors [24] introduced an SSI-based identity man-
agement system for the IoT-as-a-Service (IoTaaS) business model. However, the
tests were conducted on specific devices with memory and processing capacity
without considering the limitations of resource-constrained devices.

Table 1 compares our proposal, and various related works in the field of SSI
applied to IoT. Each row represents a different study, identifying the authors,
the application domain of the work, and the addressed problem. The first four
criteria are vital indicators for analyzing the solution’s suitability for constrained
IoT devices and data integrity. It also considers scalability and performance
evaluation. Our proposal stands out comprehensively and successfully addresses
all these essential aspects.

Regarding devices with limited resources, the authors [25] proposed using
DIDs as identifiers for IoT devices and conducted a precise examination of the
requirements for IoT devices to implement an SSI-based identity management

326 C. A. dos Santos et al.

Table 1. Comparison between related works and our proposal.

Authors Application

Domain

Issue Addressed Constrained

IoT devices

Data

Integrity

Verifica-

tion

Scalability Performance

Evaluation

[19] IoT devices Digital Identity × × × ×
[20] IoT devices Data accessing – × � �
[21] IoT Industrial Data accessing × � × ×
[22] IoT Industrial Efficiency of data

sharing

× × × �

[23] IoT Medical Access control × � × ×
[24] IoT Services Secure

transactions

× � × �

[25] IoT devices Digital Identity � � – ×
[26] IoT devices Digital Identity � × – ×
[27] IoT vehicles Data integrity × � – ×
[28] IoT vehicles Data security × � – ×
This work IoT Data Data integrity

verification

� � � �

system. They also put forward a proxy-based approach. Other authors [26] have
also proposed proxy-based approaches, such as IoT Exchange, to establish the
connection between IoT devices and users. However, it is worth noting that this
proposal does not provide a concrete specification for implementing VCs for
IoT, primarily focusing on analyzing DIDs as suitable identifiers for this specific
environment.

In the study by [27], a framework was introduced to verify the authenticity
of vehicle emission values through a decentralized authentication and autho-
rization system utilizing blockchain technologies (Hyperledger Fabric and Indy).
However, it is essential to consider the presence of central entities, including
Registration Authorities (RAs), which raise questions about the actual degree
of decentralization and control within the ecosystem. On the other hand, [28]
presented a model for secure software updates in the ecosystem of embedded
devices in vehicles, using a decentralized architecture with Hyperledger Indy.
Nevertheless, the study needs more in-depth technical implementation details.

In this regard, it is essential to note that none of these studies addresses the
specific nuances related to the data custody chain, which are crucial to ensur-
ing data integrity, validity, and traceability, especially in resource-constrained
devices. Furthermore, few research efforts have been dedicated to performance
evaluation in similar contexts, making it challenging to draw comparisons to
enhance this critical aspect within the IoT context.

4 System Overview

The proposal we present has as its primary objective the issuance of verifiable
credentials to present and substantiate claims regarding data emitted by IoT

IoT Forensics Evidence Preservation with Blockchain and SSI 327

devices. Furthermore, we propose identifying IoT devices and the traceability of
the data they generate using Decentralized Identifiers anchored in a blockchain
infrastructure. Both features aim to strengthen the integrity and validity of data
from its source, thus contributing to a more robust and reliable chain of custody.

4.1 Definition of Tools and Technologies

We have used the Sovrin method [29] for DIDs, identifying each device and reg-
istering each data emission. Furthermore, we employ VCs in the AnonCreds [30]
format to establish a robust foundation of verifiable evidence based on the data
collected by IoT devices.

To implement these features, we used Hyperledger Indy and Aries. When
evaluating platforms for SSI, we considered fundamental criteria such as the
scalability of the permissioned blockchain and coverage of concepts grounded in
SSI.

In Hyperledger Indy, unlike other DLTs, incentives are not required. As a
result, all transactions encompassing various operations, such as the creation of
DIDs, key rotation, credential schema creation, credential definition, and other
functionalities, can exhibit improved performance [31]. Regarding the consensus
algorithm, Indy employs Practical Byzantine Fault Tolerance (PBFT), enabling
a high transaction rate [32]. The performance results presented in [33] demon-
strate that Indy meets the criteria for global scalability in terms of record query
speed.

We employ Hyperledger Aries as the agent for our Gateway, which provides
capabilities such as interacting with other agents and the blockchain, supplying
libraries for cryptographic wallet implementation, sending event notifications,
and receiving instructions from the controller.

To facilitate communication with constrained devices, we utilize the Message
Queuing Telemetry Transport (MQTT) protocol, designed for resource-limited
devices [34]. For these devices, typically connected to a broker, we use Mosquitto.
Both the devices and our application establish secure and certified connections
to interact with messages transmitted by the broker.

These platforms and tools stand out as suitable choices for our architecture,
aiming to meet the demands of the data custody chain in forensic scenarios.

4.2 Gateway-Based Approach for Constrained IoT Devices

Our approach is built upon an architecture structured into three interconnected
and collaborative layers: Edge, Fog, and Cloud Computing. Figure 2 illustrates
these layers along with their respective entities.

The Edge layer encompasses a variety of IoT devices, such as sensors, medi-
cal devices, surveillance cameras, and other manually embedded devices. In this
context, the broker is crucial in receiving and transmitting data from these con-
strained devices.

The Gateway acts as an intermediary between the Edge and Cloud layers in
the Fog Computing layer. At the core of the Gateway, the controller provides

328 C. A. dos Santos et al.

Fig. 2. Layered overview of the proposed architecture.

essential resources such as storage, processing capacity, and sources of entropy
for cryptographic key generation through the functionalities of the Indy library,
which also enables the implementation of DIDs and access to blockchains. Addi-
tionally, the Gateway performs the functions of a cloud agent controller, estab-
lishing secure connections with other agents and implementing features related
to VCs.

In the Cloud Computing layer, ACA-Py is responsible for registering on
the blockchain the schemas and credential definitions previously established in
the previous layer. Registering DIDs previously set on the blockchain makes
it possible to verify credentials using public keys. This enables decentralized
verification of digital identities associated with devices and the data they emit
in our architecture.

4.3 Use Case in Evidence Preservation

In the context of a use case scenario, our proposed architecture aims to establish
a chain of custody for data originating from restricted devices. This approach
seeks to create an environment that ensures forensic evidence’s effective and
reliable preservation.

Generally, the identification of devices connected to the broker is carried
out at the Gateway. A unique DID is generated using the “did: sov” method

IoT Forensics Evidence Preservation with Blockchain and SSI 329

when a new device is added to the system. This DID is subsequently registered
on the blockchain with its alias: a serial number, UUID (Universally Unique
Identifier), or MAC address (Media Access Control). This association establishes
an immutable relationship between the device and its identification.

Optionally, when the broker receives data, the Gateway captures this data
and creates a DID using the same method, which is then registered on the
blockchain. This enables the identification and tracking of the collected evidence.

Subsequently, a verifiable credential is generated for the stakeholder, which
can be a regulatory authority, regulatory entity, or a court. Another use case
scenario involves on-demand credential issuance, with the data securely stored
in a database and the credential issued upon request.

With this framework, it becomes possible to generate verifiable credentials
containing information derived from IoT devices, where each attribute is given
a signature. This approach ensures that the credential provides a tamper-proof
and secure representation of the collected data. Interested parties can verify the
authenticity and integrity of the data through a distributed ledger using the
issuer’s public key, enhancing trust in IoT applications and data sharing.

In the usage scenario depicted in Fig. 3, the intention is to present an archi-
tecture in which an application serves as a proxy between resource-constrained
IoT devices and the cloud agent ACA-Py, which has communication capabilities
with stakeholders and credential issuance abilities.

Fig. 3. Overview of the Proposed Architecture.

330 C. A. dos Santos et al.

The following steps describe the sequence of the proposed architecture:

1. In the Edge Computing layer, devices establish secure connections using cer-
tificates and transmit data to the broker using the MQTT protocol.

2. In our application in the Fog Computing layer, we establish a secure connec-
tion with the broker using certificates and perform a prior subscription to the
broker’s message topic to receive data.

3. The received data is stored in an internal database to facilitate queries.
4. In the same layer, devices are registered. The DID and the device’s serial

number are registered once on the blockchain for identification and tracking.
Additionally, another registration is conducted on the blockchain to identify
each data collection associated with the corresponding device’s DID.

5. After the device emits the data, a package is assembled, incorporating this
information, the timestamp, device type, location, issuing entity, and collected
data. In the data flow context, a generated file that cannot be directly included
in the credential can be identified through a hash, verifying its integrity.
Additionally, both the hash and the link to the corresponding storage location
are recorded in the credential.

6. The Gateway, acting as a controller, uses Application Programming Interfaces
(APIs) to access the cloud agent’s resources and issue the credentials. The
credential is issued to the stakeholder and stored in their wallet.

7. In this context, the Indy wallet is implemented using a PostgreSQL database.
It stores cryptographic keys, DIDs, VCs, and other sensitive information nec-
essary for interaction with the network.

8. The agent interacts with the blockchain to record the necessary transactions,
known as NYM, which enable the creation of DIDs, ATTRIB, schema, and
credential definitions. This interaction ensures the consistency and security of
transactions within the proposed architecture, enabling the verification and
validation of issued credentials.

9. Authorized users linked to the issuer can query the issued credentials. Holders
can store these credentials and present them to the verifier or generate zero-
knowledge proofs when compiling verifiable presentations before transmission.
Interested entities can verify authenticity whenever necessary by querying
the blockchain through the public key to which the credential was signed
and verify integrity through the signature hash of each credential attribute.
Furthermore, tracing the DID of the collection and device on the blockchain
is possible, providing an additional layer of security to ensure data custody.

Thus, the Gateway enables secure and efficient communication between IoT
devices and other domains. The utilization of VC resources in this context can
be employed to preserve the integrity and authenticity of information.

In Fig. 4, we present a small portion of the JSON structure that comprises
the issued credential based on telemetry data collected from IoT devices. This
data includes the DID previously assigned to the device, the DID associated
with each transmission, timestamps, device location, and the transmitted sensor
readings.

IoT Forensics Evidence Preservation with Blockchain and SSI 331

Fig. 4. JSON Format Credential Proposal.

In the sequence diagram of the proposed architecture, depicted in Fig. 5, it
is possible to observe the interactions among different parts of the architecture,
highlighting the interactions between entities across all phases.

In this context, a mutual authentication process is conducted to establish
secure communication with other agents, where both parties need to demonstrate
possession of the signature keys corresponding to the paired DIDs. Following
the successful completion of mutual authentication, credentials are signed using
the verification keys and sent to other agents, ensuring the confidentiality of
transmitted information.

4.4 Security Considerations

It is crucial to consider critical aspects related to the security and privacy of the
proposed architecture.

Protecting cryptographic keys in the wallet is essential in the signing pro-
cesses and data custody management. This protection can be strengthened
through the use of Secure Enclaves [35].

To ensure the privacy of device attributes and collected data, one can uti-
lize the Zero-Knowledge Proof technique when compiling verifiable presenta-

332 C. A. dos Santos et al.

Fig. 5. Sequence diagram of the proposed architecture.

tions before sharing them with stakeholders. Another crucial aspect is aggrega-
tion, which occurs when stakeholders gather information from the same device,
requesting various verifiable presentations. This can pose privacy challenges, but
ZKPs can address this by concealing unnecessary data.

Moreover, when dealing with data custody involving IoT devices and the cre-
ation of VCs, it is crucial to consider security risks. Various types of side-channel
attacks can be employed to obtain information about VCs. For instance, mech-
anisms on the Internet may track IoT devices and the data they generate, such
as cookies, device fingerprints, or location information. The proposed scheme
cannot prevent the use of these tracking technologies if they have been installed
on the devices or the broker.

Another risk arises when links are embedded in VCs. While the credential
itself is protected against tampering, its external content is not, making the
links vulnerable to modifications by attackers. One way to mitigate this risk is
by generating a hash of the external data and incorporating it into the credential.
Another option to explore is using a private blockchain to store the data.

5 Experiments, Results, and Analysis

In this section, we present the results of the simulation tests and performance
analysis conducted to assess the efficiency of our architecture.

IoT Forensics Evidence Preservation with Blockchain and SSI 333

5.1 Implementation

We utilized Java libraries for the implementation of our application. For the enti-
ties interacting with our application, we employed containers using Docker and
Docker Compose [36] and Python scripts to generate telemetry data simulations.
Below, we present the list of technologies employed.

1. Libraries to implement our application:
– ACA-Py Java client [37] for instantiating cloud agent resources.
– Indy SDK for creating DIDs and registering them on the blockchain.
– Bouncy Castle [38] for secure connections with the broker using certifi-

cates.
– Java Paho MQTT client [39] for subscribing to MQTT topics/messages.

2. Docker and Docker Compose for creating and running containers for entities:
– The issuer agent, holder, and wallet in a PostgreSQL [40] database created

using the ACA-Py library.
– Von Network is like an Indy blockchain with four nodes and the ledger

browser.
– MongoDB [41] for storing data from IoT devices.
– MQTT broker using Mosquitto [42].

3. Python scripts to simulate devices sending messages to the Mosquitto broker.

Through the developed application, it is possible to collect data via the
broker while automatically issuing credentials. Additionally, we can store these
collection-related pieces of information in a database, create DIDs that identify
devices and collected data, and register them on the blockchain. Furthermore, the
application enables connections with other agents and creates and lists schemas
and credential models. We have implemented an API encompassing all these
functionalities to streamline performance measurement tests. The application
was developed using the Java programming language, and its source code is
available on GitHub [43].

5.2 Results and Analysis

To conduct the tests, we utilized a single computer system equipped with an
Intel Core i7-11700 processor, 16 GB of RAM, and running the Windows 11 Pro
operating system. In this configuration, we measure the time required to register
the DIDs of data collection on the Von network’s blockchain. The registration
of DIDs for devices follows a similar process, but it occurs only once for each
device, unlike data registration, which can be resource-intensive. For this reason,
we include this process in our tests. Subsequently, we record the time spent on
credential issuance.

We conducted two independent tests, each involving the collection of 1000
samples. We calculated the means and standard deviations for each case. In
the first test, we recorded DIDs on the blockchain for evidence identification,
while the second test focused exclusively on credential issuance to another agent,
excluding the registration of DIDs from the first scenario. Our objective was

334 C. A. dos Santos et al.

to analyze the impact of blockchain registration on the architecture and how
credentials behave without this additional process. Our evaluations encompassed
measuring the time required for each process and monitoring RAM and CPU
usage in both tests.

The results obtained are summarized in Table 2 below.

Table 2. Experimental Results

Test Measure Value

DID registration Average Response Time 1503.059 ms

Standard deviation 868.355 ms

Average CPU usage 0,3%

Average RAM usage 131 MB

VCs exchange Average Response Time 18.891 ms

Standard deviation 9.494 ms

Average CPU usage 0.4 %

Average RAM usage 171 MB

The CPU utilization percentages were measured using the Netbeans Pro-
filer [44]. The request simulation was conducted using JMeter [45]. The first
scenario took approximately 50 min and 7 s, while the second required 36 s. CPU
and RAM usage monitoring was carried out during these periods. To establish
a baseline, the application startup, which loads the libraries mentioned in Sub-
sect. 5.1 and establishes connections with the agent, broker, and blockchain, took
approximately 3 s, consumed 121 MB of RAM, and utilized 8% of CPU capacity.

Based on these results, we can highlight the following conclusions:

– Considerably longer times were observed in the DID registration processes,
indicating a significant overhead on the ledger nodes when handling multiple
requests.

– Regarding RAM and CPU usage, we observed that it is not resource-intensive.
Therefore, even with an increase in the number of devices sending data, the
application should be able to perform these operations without significant
issues.

– Based on our experiments, we found that the maximum RAM required was
approximately 180 MB. Furthermore, tests conducted with multiple creden-
tial exchanges in parallel do not significantly impact CPU and RAM usage.

In conclusion, the credential exchange process in the Gateway proved to be
significantly faster when the DIDs registration in the data collection blockchain
was not performed. This is because, in the credential issuance process, once the
schema and credential definition are created and registered on the blockchain,
this procedure does not need to be repeated. It can be executed only once to

IoT Forensics Evidence Preservation with Blockchain and SSI 335

generate numerous credentials, which will be signed with the public key stored
in the wallet.

It is essential to note that our assessment does not address network latency
since the tests are conducted on the same computer. Furthermore, outcomes may
vary depending on the individual resources of each computer.

As a result, we conclude that the blockchain registration overhead will be the
primary factor affecting performance. If evidence registration on the blockchain
is necessary to compose the credential, this may pose a scalability challenge.
Therefore, it is essential to evaluate the necessity of this step or consider alter-
native proposals aimed at reducing the overhead on the distributed ledger. How-
ever, the presented results are promising and suggest that issuing credentials on
a large scale for IoT devices is feasible.

6 Conclusion

This study proposed an innovative Gateway architecture to integrate IoT devices
with limited resources in Self-Sovereign Identity (SSI) technologies. The archi-
tecture enables data certification by facilitating the issuance of verifiable cre-
dentials (VCs) based on data collected from IoT environments and utilizing a
distributed verifiable registry to identify devices. These attributes position it as
a relevant solution with significant potential for applications requiring data own-
ership assurance in these environments. As a result, the proposed architecture
ensures reliability, integrity, and traceability of information, crucial factors for
data custody, especially in scenarios involving forensic areas and IoT devices.

Compared to the vast array of related works presented, our study stands out
as a comprehensive solution for verifying data integrity in IoT devices, explicitly
focusing on applying SSI to address these challenges. While numerous studies
have tackled specific issues related to IoT, such as security, access control, and
communication efficiency in various scenarios [19–28], our approach is unique in
its exclusive concentration on the challenges related to resource-constrained IoT
devices and data custody in these environments. This enables us to provide a
reliable solution to enhance IoT applications and facilitate secure data sharing.

The robustness of the results and insights obtained from the performance
metrics analysis validates the effectiveness and reliability of our architecture, as
well as provides guidelines for future optimizations. In addition, future studies in
this field will focus on implementing a client for our application running directly
on IoT devices, exploring ways to optimize energy consumption and network
utilization. Additionally, we consider the possibility of comparing our propos-
als with solutions in other domains and conducting scalability and application
analyses in real-world scenarios.

References

1. Algarni, S., et al.: Blockchain-based secured access control in an IoT system. Appl.
Sci. (Switzerland) 11(4), 1–16 (2021). https://doi.org/10.3390/app11041772

https://doi.org/10.3390/app11041772

336 C. A. dos Santos et al.

2. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a
vision, architectural elements, and future directions. Futur. Gener. Comput. Syst.
29(7), 1645–1660 (2013). https://doi.org/10.1016/j.future.2013.01.010

3. Arshad, H., Jantan, bin, A., Abiodun, O.I.: Digital forensics: review of issues in
scientific validation of digital evidence. J. Inf. Process. Syst. 14(2), 346–376 (2018).
https://doi.org/10.3745/JIPS.03.0095

4. Shah, M., Saleem, S., Zulqarnain, R.: Protecting digital evidence integrity and
preserving chain of custody. J. Digit. Forensics Secur. Law (2017). https://doi.
org/10.15394/jdfsl.2017.1478

5. Sporny, M., Longley, D., Allen, C., Sabadello, M., Reed, D.: Decentralized iden-
tifiers (DIDs) v1.0. W3C, W3C Working Draft (2019). https://www.w3.org/TR/
did-core/. Accessed 29 Sept 2023

6. Sporny, M., Noble, G., Burnett, D., Zundel, B., Longley, D.: Verifiable credentials
data model 1.0. W3C, W3C Recommendation. https://www.w3.org/TR/vc-data-
model. Accessed 29 Sept 2023

7. Hyperledger Indy. Hyperledger Foundation Projects INDY. https://www.
hyperledger.org/projects/hyperledger-indy. Accessed 26 Sept 2023

8. Indy SDK. Hyperledger Foundation Projects INDY. https://github.com/
hyperledger/indy-sdk. Accessed 20 Sept 2023

9. Hyperledger Aries. Hyperledger Aries Cloud Agent Python. https://github.com/
hyperledger/aries-cloudagent-python. Accessed 29 July 2023

10. Verifiable Organizations Network (VON). https://github.com/bcgov/von-network.
Accessed 02 Oct 2023

11. Allen, C.: The Path to Self-Sovereign Identity. [S.l.] (2016). http://www.
lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html. Accessed
29 June 2023

12. Brunner, C., Gallersdörfer, U., Knirsch, F., Engel, D., Matthes, F.: DID and VC:
Untangling Decentralized Identifiers and Verifiable Credentials for the Web of Trust
(2021). https://doi.org/10.1145/3446983.3446992

13. Peer Did Method Specification. W3C. https://identity.foundation/peer-did-
method-spec/index.html. Accessed 26 Sept 2023

14. Curran, S., Howard, C.: Becoming a Hyperledger Aries Devel-
oper. [S.l.] (2021). https://learning.edx.org/course/course-v1:
LinuxFoundationX+LFS173x+3T2021/. Accessed 4 Dec 2022

15. Curran, S., Howard, C.: Introduction to Hyperledger Sovereign Identity Blockchain
Solutions: Indy, Aries and Ursa. [S.l.] (2021). https://learning.edx.org/course/
course-v1:LinuxFoundationX+LFS172x+2T2021. Accessed 1 Nov 2022

16. SOVRIN Foundation. Self-Sovereign Identity and IoT. [S.l.] (2020). https://sovrin.
org/wp-content/uploads/SSI-and-IoT-whitepaper.pdf. Accessed 1 Oct 2022

17. Hyperledger Aries Explainer. Hyperledger Aries. https://github.com/hyperledger/
aries. Accessed 29 Sept 2023

18. Hyperledger Ursa Explainer. Hyperledger Ursa. https://github.com/hyperledger/
ursa. Accessed 23 July 2023

19. Fedrecheski, G., Rabaey, J.M., Costa, L.C.P., Calcina Ccori, P.C., Pereira, W.T.,
Zuffo, M.K.: Self-sovereign identity for iot environments: a perspective. In: Pro-
ceedings of the Global Internet of Things Summit, GIoTS 2020 (2020). https://
doi.org/10.1109/GIOTS49054.2020.9119664

20. Luecking, M., Fries, C., Lamberti, R., Stork, W.: Decentralized identity and trust
management framework for Internet of Things. In: IEEE International Conference
on Blockchain and Cryptocurrency, ICBC 2020 (2020). https://doi.org/10.1109/
ICBC48266.2020.9169411

https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.3745/JIPS.03.0095
https://doi.org/10.15394/jdfsl.2017.1478
https://doi.org/10.15394/jdfsl.2017.1478
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model
https://www.w3.org/TR/vc-data-model
https://www.hyperledger.org/projects/hyperledger-indy
https://www.hyperledger.org/projects/hyperledger-indy
https://github.com/hyperledger/indy-sdk
https://github.com/hyperledger/indy-sdk
https://github.com/hyperledger/aries-cloudagent-python
https://github.com/hyperledger/aries-cloudagent-python
https://github.com/bcgov/von-network
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://doi.org/10.1145/3446983.3446992
https://identity.foundation/peer-did-method-spec/index.html
https://identity.foundation/peer-did-method-spec/index.html
https://learning.edx.org/course/course-v1:LinuxFoundationX+LFS173x+3T2021/
https://learning.edx.org/course/course-v1:LinuxFoundationX+LFS173x+3T2021/
https://learning.edx.org/course/course-v1:LinuxFoundationX+LFS172x+2T2021
https://learning.edx.org/course/course-v1:LinuxFoundationX+LFS172x+2T2021
https://sovrin.org/wp-content/uploads/SSI-and-IoT-whitepaper.pdf
https://sovrin.org/wp-content/uploads/SSI-and-IoT-whitepaper.pdf
https://github.com/hyperledger/aries
https://github.com/hyperledger/aries
https://github.com/hyperledger/ursa
https://github.com/hyperledger/ursa
https://doi.org/10.1109/GIOTS49054.2020.9119664
https://doi.org/10.1109/GIOTS49054.2020.9119664
https://doi.org/10.1109/ICBC48266.2020.9169411
https://doi.org/10.1109/ICBC48266.2020.9169411

IoT Forensics Evidence Preservation with Blockchain and SSI 337

21. Regueiro, C., Gutierrez-Agüero, I., Agüero, A., Anguita, S., de Diego, S., Lage,
O.: Protocol for identity management in industrial IoT based on hyperledger Indy.
Int. J. Comput. Digit. Syst. 12(1), 2210142 (2022). https://doi.org/10.12785/ijcds/
120153

22. Dixit, A., Smith-Creasey, M., Rajarajan, M.: A decentralized IIoT identity frame-
work based on self-sovereign identity using blockchain. In: Proceedings of Confer-
ence on Local Computer Networks, LCN, pp. 335–338 (2022). https://doi.org/10.
1109/LCN53696.2022.9843700

23. De Diego, S., Regueiro, C., Macia-Fernandez, G.: Enabling identity for the IoT-as-
a-service business model. IEEE Access 9, 159965–159975 (2021). https://doi.org/
10.1109/ACCESS.2021.3131012

24. Kortesniemi, Y., Lagutin, D., Elo, T., Fotiou, N.: Improving the privacy of IoT
with decentralised identifiers (DIDs). J. Comput. Netw. Commun. 2019 (2019).
https://doi.org/10.1155/2019/8706760

25. Berzin, O., Ansay, R., Kempf, J., Sheikh, I., Hendel, D.: A troca de IoT.
arXiv:2103.12131 (2021)

26. Terzi, S., Savvaidis, C., Votis, K., Tzovaras, D., Stamelos, I.: Securing emission data
of smart vehicles with blockchain and self-sovereign identities. In: Proceedings of
2020 IEEE International Conference on Blockchain, Blockchain 2020, pp. 462–469
(2020). https://doi.org/10.1109/BLOCKCHAIN50366.2020.00067

27. Theodouli, A., Moschou, K., Votis, K., Tzovaras, D., Lauinger, J., Steinhorst, S.:
Towards a blockchain-based identity and trust management framework for the IoV
ecosystem. In: Proceedings of the Global Internet of Things Summit, GIoTS 2020
(2020). https://doi.org/10.1109/GIOTS49054.2020.9119623

28. Fotopoulos, F., Malamas, V., Dasaklis, T.K., Kotzanikolaou, P., Douligeris, C.:
A blockchain-enabled architecture for IoMT device authentication. In: 2nd IEEE
Eurasia Conference on IOT, Communication and Engineering 2020, ECICE 2020,
pp. 89–92 (2020). https://doi.org/10.1109/ECICE50847.2020.9301913

29. Sovrin DID Method Specification. https://sovrin-foundation.github.io/sovrin/
spec/did-method-spec-template.html. Accessed 27 Sept 2023

30. AnonCreds Specification. https://hyperledger.github.io/anoncreds-spec/.
Accessed 29 Sept 2023

31. Official Documentation for the Indy SDK. Hyperledger Foundation Projects INDY.
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/. Accessed
01 Oct 2023

32. Masood, F., Faridi, A.R.: Distributed ledger technology for closed environment. In:
2019 6th International Conference on Computing for Sustainable Global Develop-
ment (INDIACom), New Delhi, India, pp. 1151–1156 (2019)

33. Lux, Z.A., Beierle, F., Zickau, S., Göndör, S.: Full-text search for verifiable cre-
dential metadata on distributed ledgers. In: 2019 Sixth International Conference
on Internet of Things: Systems, Management and Security (IOTSMS), Granada,
Spain, pp. 519–528 (2019). https://doi.org/10.1109/IOTSMS48152.2019.8939249

34. Light, R.A.: Mosquitto: server and client implementation of the MQTT protocol.
J. Open Source Softw. 2(13), 265 (2017). https://doi.org/10.21105/joss.00265

35. Aries RFC 0050: Wallets. https://github.com/hyperledger/aries-rfcs/blob/main/
concepts/0050-wallets/README.md. Accessed 25 Sept 2023

36. Docker Community. https://www.docker.com/community/. Accessed 25 July 2023
37. ACA-Py Java Client Library. https://github.com/hyperledger-labs/acapy-java-

client. Accessed 20 Sept 2023
38. The Bouncy Castle Crypto APIs. The Legion of the Bouncy Castle. https://www.

bouncycastle.org/. Accessed 15 Sept 2023

https://doi.org/10.12785/ijcds/120153
https://doi.org/10.12785/ijcds/120153
https://doi.org/10.1109/LCN53696.2022.9843700
https://doi.org/10.1109/LCN53696.2022.9843700
https://doi.org/10.1109/ACCESS.2021.3131012
https://doi.org/10.1109/ACCESS.2021.3131012
https://doi.org/10.1155/2019/8706760
http://arxiv.org/abs/2103.12131
https://doi.org/10.1109/BLOCKCHAIN50366.2020.00067
https://doi.org/10.1109/GIOTS49054.2020.9119623
https://doi.org/10.1109/ECICE50847.2020.9301913
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://hyperledger.github.io/anoncreds-spec/
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/
https://doi.org/10.1109/IOTSMS48152.2019.8939249
https://doi.org/10.21105/joss.00265
https://github.com/hyperledger/aries-rfcs/blob/main/concepts/0050-wallets/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/concepts/0050-wallets/README.md
https://www.docker.com/community/
https://github.com/hyperledger-labs/acapy-java-client
https://github.com/hyperledger-labs/acapy-java-client
https://www.bouncycastle.org/
https://www.bouncycastle.org/

338 C. A. dos Santos et al.

39. Java Paho MQTT Client. Eclipse Paho Project. https://www.eclipse.org/paho/.
Accessed 02 June 2023

40. PostgreSQL. PostgreSQL Global Development Group. https://www.postgresql.
org/. Accessed 2 Ago 2023

41. MongoDB. https://www.mongodb.com/. Accessed 4 Ago 2023
42. Eclipse Mosquitto. https://mosquitto.org/. Accessed 2 June 2023
43. Self-Sovereign Identity Gateway for the Internet of Things. https://github.com/

cristiandossantos/iot-ssi-gateway. Accessed 03 Oct 2023
44. Apache Software Foundation. Apache NetBeans. https://netbeans.org/. Accessed

02 July 2023
45. Apache Software Foundation. JMeter. https://jmeter.apache.org/. Accessed 06

July 2023

https://www.eclipse.org/paho/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.mongodb.com/
https://mosquitto.org/
https://github.com/cristiandossantos/iot-ssi-gateway
https://github.com/cristiandossantos/iot-ssi-gateway
https://netbeans.org/
https://jmeter.apache.org/

Analysis of Optimal Number of Shards
Using ShardEval, A Simulator

for Sharded Blockchains

Vishisht Priyadarshi(B), Sourav Goel, and Kalpesh Kapoor

Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati,
Assam, India

{vishisht,sourav18a}@alumni.iitg.ac.in, kalpesh@iitg.ac.in

Abstract. Blockchain-based networks have found increasing usage in
various fields due to their distributed nature, immutability, public verifi-
ability, and zero trust requirement. Monolithic blockchain systems such
as Bitcoin and Ethereum are not scalable. Sharding is a promising app-
roach among the various solutions that have been proposed in the lit-
erature to improve the scalability of such monolithic systems. However,
designing, testing, and identifying critical parameters of sharding-based
protocols for blockchain networks is challenging. We present ShardEval, a
simulator to evaluate sharding-based protocols for blockchain networks.
We have used ShardEval to identify critical parameters of a sharded
blockchain network. In particular, we determine the optimal number of
shards in a network with a fixed percentage of cross-shard transactions.
The simulation results are validated against the rigorous theoretical anal-
ysis, confirming the correctness under reasonable assumptions. Using the
insights gained from simulation and theoretical analysis, we introduce
Lookup Table to improve the transaction throughput further. The the-
oretical framework and simulator bridge the gap between designing and
testing sharding-based protocols.

Keywords: Blockchain · Sharding · Throughput · Simulation

1 Introduction

Blockchain is a distributed ledger technology. It is a peer-to-peer network that
utilizes techniques, such as Proof-of-Work [4], to record transactions that can
be publicly verified and are difficult to forge. Bitcoin [13], the first practical
blockchain network, significantly impacted the adoption of blockchains, and they
have found numerous applications in different fields, especially Decentralized
Finance (DeFi) [5]. It has also led to the development of numerous cryptocur-
rencies and altcoins.

Sharding is a well-known technique for scaling databases [21]. In blockchains,
sharding is introduced by partitioning the network into smaller parts, or shards,
and allowing each shard to take on an independent set of tasks. Designing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 339–359, 2023.
https://doi.org/10.1007/978-3-031-49099-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_21&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_21

340 V. Priyadarshi et al.

sharding-based protocols and networks for blockchain is a challenging task. It
requires several key parameters to be identified and managed to keep the system
running. One such parameter is the optimal number of shards. There is minimal
discussion in the literature [9] regarding this parameter and how to adjust it to
gain maximum performance in terms of throughput.

Another aspect of the sharding-based protocol is to observe its behavior,
usually done using a test deployment. Such methodology is used in protocols
like ELASTICO [12] and OmniLedger [10], where nodes have been deployed on
cloud and actual machines. As expected, this approach is not only expensive but
also requires a significant amount of effort and time. Also, it becomes exceedingly
difficult to ascertain the performance of protocols when deployed in an actual
environment instead of a test network due to considerable differences between
their size.

An alternative approach to observing the behavior of protocols is to use a
simulator. Apart from solving the problems mentioned earlier, the simulator
also brings in test-driven development to verify and establish the correctness
of the protocol. However, a generic simulator that can be used with different
sharding-based protocols has not been sought out in the literature. There are a
few simulators, such as Shargri-La [15], for sharding that are still under devel-
opment and have limited use cases. There is very little progress in creating a
generalized sharding-based blockchain simulator. So far, none of them has used
their simulator to provide an optimal shard number along with the theoretical
agreement.

In this paper, we introduce a generic simulator for sharded blockchains and
identify the optimal number of shards using this simulator. We find that the
established theoretical results are per the empirical observations obtained after
the simulations. In summary, this paper makes the following contributions:

(i) A simulator tool and modular simulation framework for sharded blockchain
networks to execute operations at the transaction level.

(ii) Theoretical setup and analysis to evaluate the optimal number of shards for
a given protocol/architecture.

(iii) Evaluation of the optimal number of shards for a fixed percentage of cross-
shard transactions.

The remainder of the paper is organized as follows: Sect. 2 offers a review of
the background and prior work. Section 3 introduces our simulator, ShardEval,
detailing its architecture. Section 4 outlines the simulator workflow, while Sect. 5
conducts a theoretical study on the optimal number of shards. Empirical anal-
ysis, including simulations and insights, is presented in Sect. 6. Building upon
the insights from both simulation and theoretical analysis, Sect. 7 introduces
a method to optimize network throughput. Lastly, Sect. 8 provides the paper’s
conclusions.

Analysis of Optimal Number of Shards 341

2 Background and Related Work

Blockchain is a distributed database that sequentially stores a chain of data
packaged into blocks, in a secure and tamper-proof way [1]. The data is a trans-
action, the atomic unit of a blockchain. The transaction represents the transfer
or creation of an entity [7]. New blocks are added to the blockchain after they
get validated by the network using some distributed consensus protocol. Widely
used consensus algorithms include Proof-of-Work [4] and Proof-of-Stake [14].
They are sometimes collectively referred to as Proof-of-X protocols.

There are various approaches to improve the scalability of monolithic
blockchain networks [2], such as sharding, Directed Acyclic Graph (DAG), pay-
ment channels, and sidechains. DAG is a blockchain structure that is a network
of individual transactions linked to multiple other transactions [8]. Some proto-
cols which utilize DAG are IOTA [16], Spectre [19] and PHANTOM [20]. The
payment channel is a temporary off-chain trading channel, which transfers some
transactions to this channel. This reduces the main chain’s transaction volume
while improving the entire system’s transaction throughput [27]. Sidechain [8]
proposes the concept of having another blockchain beside the main blockchain,
that is, a sidechain beside the mainchain, for parallel processing.

In a sharded blockchain system, the nodes in the network are dynamically
partitioned into subsets known as shards, where each shard performs storage,
communication, and computation tasks without fine-grained synchronization
with each other [11]. Sharding achieves scalability since adding newer nodes and
creating more shards will lead to more task processing and better parallelism.
In monolithic blockchain networks, every node stores the complete state, and
each block is shared with every node before reaching a consensus. As a result, as
the number of nodes in the network increases, the overhead increases, thereby
decreasing the throughput. Sharding improves upon this overhead by dividing
the network into smaller shards, resulting in efficient computation, storage, and
data transmission [6]. Sharding was first introduced for blockchains by ELAS-
TICO [12] to scale the transaction rates. Since ELASTICO, many sharding-
based protocols such as OmniLedger [10], CycLedger [26], RapidChain [25] and
Monoxide [23] have been proposed in the literature.

We now discuss the simulators related to our work. BlockEval [7] is a mod-
ular blockchain simulator to test the performance of non-sharding blockchain
networks. It proposes a novel validation method and has been tested with Bit-
coin statistics. Shargri-La [15] is a transaction-level sharded blockchain simulator
that simulates Ethereum transfer. It analyzes users’ behaviors and their effect
on transaction fees.

Shyam et al. [9] proposed a sharding scheme for the OptiShard, a hierarchical
blockchain architecture. The technique utilized the parameters such as perfor-
mance and correctness of transaction validation to determine an optimal shard
size for their architecture.

342 V. Priyadarshi et al.

3 Architecture of ShardEval

First, we present the underlying details of ShardEval. In the following subsec-
tions, we will discuss the architecture, design structures, and various components
of ShardEval. The source code of the simulator is made available in a public
repository on GitHub [17].

3.1 Framework

For the simulation framework, Python is selected as the programming language.
In particular, the discrete-event simulation is performed using the SimPy [18]
library. The choice of programming language and simulation framework is pri-
marily made following BlockEval [7] since ShardEval is built on top of BlockEval
and utilizes several of its basic key components.

3.2 Network Components

The entire network of the simulator is modeled with the help of a Network
object, consisting of Transaction Factory, Network Pipes, and Full Nodes (Prin-
cipal Committee, Shard Nodes, and Shard Leaders). Each of these components
represents real-world objects.

Transaction Factory: The Transaction factory is implemented as a generator
function [18], which gets called when the network is initialized. Every node of
the network participates in the transaction generation, and the transactions are
broadcast to its neighbors. Each transaction generation event is followed by a
random cooldown period, calculated using a probability distribution based on
user-specified parameters.

Transaction Pool: Every node has a transaction pool in which the transactions
received from its neighbors are kept with some priority. The priority defined
here is the reward associated with each transaction. It implies that transactions
with higher rewards are preferred over transactions with lower rewards. So, the
transaction pool behaves as a priority queue of transactions, and acts as a storage
medium for the propagation of transactions across the network (representation
of mempools).

Network Pipes: Pipes model the propagation channels among nodes. Each
Pipe object consists of a source and a destination location representing the con-
necting nodes. It also has a propagation delay based on the real-world locations
of the associated nodes. As a result, the destination node receives the object
(block or transaction) sent from the source node, using pipe, after a timeout
value. A Pipe object is implemented using SimPy Store resource.

Full Nodes: The nodes taking part in the network are generated at different
geographical locations (per user-defined parameters in the JSON configuration
file). These nodes are termed as Participating Nodes. The participating nodes
undergo a filtering process via Sybil Resistance Mechanism (see Sect. 3.3) to

Analysis of Optimal Number of Shards 343

become a Full Node. Full Nodes are divided into principal committee nodes and
shard nodes.

Principal Committee: Principal Committee consists a set of full nodes chosen
to ensure that the shards do not behave in a byzantine manner. It collects infor-
mation regarding the transactions from all the shards, undergoes a consensus
process to determine their validity, and takes part in the final block generation
process.

Transaction Block: Transaction Block (Tx-block) is a data structure contain-
ing the transactions generated by the shard nodes. The shard leader publishes a
transaction block (object) depending upon the nature of transactions - Intra-
shard Tx-block containing intra-shard transactions and Cross-shard Tx-block
containing cross-shard transactions. The Intra-shard Tx-block is received by the
current shard nodes, while the leaders of the other shards receive the Cross-shard
Tx-block.

Mini Block: Mini Block contains all the validated transactions agreed upon
by the shards. In particular, it is generated by the shard leader and has all
the consensed upon transactions from that shard. Each shard produces its Mini
Block, which is sent to the Principal Committee for final consensus.

3.3 Functional Components

ShardEval contains the following major functional components, which act in
conjunction with the network components:

Sybil Resistance Mechanism: It is utilized in the ShardEval to simulate
techniques to prevent a Sybil Attack and keep the system running. Sybil attack
is a type of attack on a computer network service in which an attacker subverts
the service’s reputation system by creating a large number of pseudonymous
identities and uses them to gain a disproportionately large influence [3].

ShardEval allows the flexibility to add suitable mechanisms and layers to
prevent the Sybil attacks, such as Proof-of-X (where X can be anything). Cur-
rently, for the sake of simplicity, the nodes are filtered probabilistically by making
suitable changes to the parameters specified in the configuration file.

Streaming Leader Selection: “Streaming” stands for continuous flow of some
process/event. In our context, Streaming Leader Selection implies that the lead-
ers of the shards are continuously being selected at every slot of an epoch.
Currently, at the beginning of a slot, the leader of a shard is assigned proba-
bilistically from the shard nodes. Provisions have been made to employ a better
leader selection algorithm using techniques like stake or other Proof-of-X mecha-
nisms. The leaders need to be streamingly selected to simulate the scenario when
the shard leader can disrupt the process by behaving in a byzantine manner.

Transactions Pre-processing: The leader of the shards collects the transac-
tions generated by the shard nodes and performs a pre-processing step on top
of it. The pre-processing step is required to determine whether the transactions

344 V. Priyadarshi et al.

are intra-shard or cross-shard. Also, the pre-processing step coupled with the
Proof-of-History [24] can be used for faster execution of the consensus process.

Voting-based Consensus Algorithm: ShardEval uses voting-based algorithm
for achieving consensus on the validation of transactions. Since Sybil resistance
mechanisms are in place, identities of the nodes remain preserved, and no Sybil
identities get created. As a result, voting can be used as a consensus mechanism.

The consensus on the transactions is required at two different levels - shards
and the principal committee. The shard leader leads the voting in each shard
and finalizes the voting process (on the Intra-shard Tx-block). At the level of
the principal committee, there also exists a leader responsible for handling the
voting process and generating the final block (as per the achieved consensus)
containing validated transactions.

4 Simulator Workflow

A generic sharding-based protocol is implemented on ShardEval for our study.
The general protocol is motivated by the work on sharding blockchain sys-
tems by Yizhong et al. [11]. The implemented protocol takes various pieces
and components from the protocols such as ELASTICO [12], OmniLedger [10],
CycLedger [26], and Elrond [22] to make it as generic as possible. Note that each
step in the protocol can be changed in the simulator as per user requirements
to create and test different sharding-based protocols.

The simulation for the protocol begins by instantiating an object of the
Network class, using the input parameters specified in a configuration file. Table 1
contains details of those parameters. The diagrammatic flow has been depicted
in Fig. 1.

Fig. 1. Workflow of the simulator

4.1 Network Configuration

The simulator proceeds in epochs and slots. An epoch is the fixed time interval
between the events of network reconfiguration in which nodes get allotted to

Analysis of Optimal Number of Shards 345

different shards, and the principal committee is formed. Each epoch consists of
multiple slots. Selection of a new shard leader (handled by Streaming Leader
Selection) marks the beginning of a new slot.

At the beginning of every epoch, network configuration takes place. The par-
ticipating nodes are instantiated and added to the network. Then they undergo
a Sybil resistance mechanism to confirm their identities and get converted to the
full nodes. After the full nodes are established, the principal committee is formed,
followed by the formation of shards and leaders. Currently, the nodes are ran-
domly selected to become principal committee nodes, but a suitable mechanism
such as Proof-of-Stake or a reputation-based system can be easily utilized.

On completion of these events, the network connections are established
through the Pipe instances. The principal committee forms a completely con-
nected graph, that is, each node of the committee is connected to every other
committee node. Next, the shard leaders connect with the principal committee
nodes. But this time, the degree of every shard leader is fixed at �n/2�, where n
is the total number of principal committee nodes. Here, the degree is only con-
sidered for connecting shard leader nodes and principal committee nodes. The
constraint, degree ≥ n/2, guarantees a connected graph.

Following this, the connections are established between each shard leader.
Same as the previous one, here also the (local) degree for a leader node is fixed
at �n/2� (here, n = total number of shard leaders). Now for every shard, the con-
nections are established among the shard nodes. A spanning tree is constructed
among the shard nodes to facilitate the guided movement of messages between
them and their leader.

4.2 Transactions and Tx-Blocks Generation

After the network configuration, the shard nodes initiate the generation of trans-
actions. The shard nodes send the generated transactions to the shard leader
for pre-processing and generation of the Tx-block. The transactions propagate
through the network (see Fig. 2) and reach the transaction pool of the shard
leader which is handled by the transaction factory.

Fig. 2. Propagation of Transactions in a shard

The shard leaders collect these transactions and filter them on the basis of
them being cross-shard or intra-shard. When sufficient number of transactions

346 V. Priyadarshi et al.

(a user-defined parameter) have reached the leader, the leader performs a pre-
processing step on them and create an Intra-shard Tx-block or Cross-shard Tx-
block. These tx-blocks are then sent out in the same shard (Fig. 3) or other shard
leaders (Fig. 4), respectively, for reaching a consensus on them through voting.

Fig. 3. Propagation of Intra-shard Tx-block in a shard

4.3 Voting on Tx-Blocks

First, we will discuss the voting on the Intra-shard Tx-blocks. Shard leader
propagates the Tx-block to its nodes. Upon receiving the Tx-block, the node
checks whether the voting process is completed or not. If it isn’t complete, it
implies that the node has not cast a vote due to the nature of the spanning
tree route. The node will then verify the transactions and cast the votes as
Accept/Reject for each of the transactions present in the block. After doing so,
it will propagate the Tx-block further in the network (away from the leader)
for other nodes to do the same. If the node observes that the voting has been
completed, it will send the voted Tx-block towards the leader (using spanning
tree route). In this manner, the voting takes place, and the Tx-block returns to
the leader after voting.

Fig. 4. Propagation of Cross-shard Tx-block across shards

Next, we will look at the voting on the Cross-shard Tx-block. The transac-
tions in such blocks need verification from the nodes of other shards. The leader

Analysis of Optimal Number of Shards 347

of the originating shard propagates the Tx-block to other neighboring shard lead-
ers. When another shard leader receives such a block, it will propagate the Tx-
block for voting in its shard. If the transactions present in the Tx-block are not
relevant for this shard, the nodes will vote Unknown; otherwise, Accept/Reject
vote is cast. After the voting is complete, the shard leader, upon receiving the
voted Cross-shard Tx-block, will send the block to the originating shard for the
final processing.

4.4 Mini-Blocks Generation

Upon receiving the voted Tx-blocks (Intra-shard and Cross-shard), the shard
leaders verify the votes cast on the transactions by the shard nodes and filter
the transactions which are voted a majority. These transactions are packed into
a Mini-block while the rest of the transactions are rejected. Then the Mini-block
is sent to the Principal Committee for the final consensus.

4.5 Consensus by Principal Committee

The Principal Committee receives the Mini Blocks generated by the shard lead-
ers. On receiving the Mini Blocks, the consensus process is initiated by the leader
of the principal committee. The consensus process is similar to the already dis-
cussed voting-based consensus algorithm. On achieving consensus, the leader
begins the block generation step.

4.6 Blocks Generation

After the final consensus, the Principal Committee includes all the agreed-
upon transactions in a single block and publishes the block across the network
through the shard leaders. Upon receiving the block, the shard nodes update
their blockchain and pass on the block further in the network.

5 Analysis on Optimal Number of Shards

As discussed earlier, we assume the generic sharding-based protocol to do a the-
oretical analysis and implement the same protocol in our simulator ShardEval.
The results are then compared as a part of the empirical analysis in Sect. 6. The
simulation proceeds in rounds, or epochs, in which shard nodes start transac-
tion generation and all events occur. The analysis has been restricted to a single
epoch, without leader re-election and shard reconfiguration.

We start our analysis assuming all the connections are made, and all nodes are
ready to generate transactions. Throughout the study, we will consider the nodes
to be active. The main aim of our analysis is to find the network’s throughput
change as the number of shards increases. We keep our focus limited to necessary
variables and will not dive deeper into the low-level delays. Also, we are not

348 V. Priyadarshi et al.

considering the temporary/permanent unresponsiveness or byzantine behavior
by network nodes.

Table 1 lists various variables representing the network parameters considered
in this study. Note that there are only two types of transactions, viz. cross-
shard and intra-shard, rcs + ris = 1. Therefore, the total number of cross-shard
and intra-shard transactions generated by all the full nodes are rcs · ntx and
(1 − rcs) · ntx, respectively.

Table 1. Parameters for the study

Parameter Variable Condition

Total number of nodes in the network n

Number of Shards in the network nsh

Total number of transactions generated by the network ntx

Cross-shard transaction ratio rcs 0 ≤ rcs ≤ 1

Intra-shard transaction ratio ris 0 ≤ ris ≤ 1

Count of intra-shard transactions included in an
intra-shard Tx-block

fis

Network Delay δnet

Delay incurred by all the Intra-shard Tx-blocks δis

Delay incurred by all the Cross-shard Tx-blocks δcs

Delay for a single Intra-shard Tx-block dis

Delay for a single Cross-shard Tx-block dcs

Network Throughput T

5.1 Computation of Delay and Throughput

Intra-shard Transactions. We will assume that the intra-shard transactions
are uniformly distributed among the shard nodes (this is because all the shard
nodes, including the shard leader, are alike in terms of transaction generation).
Therefore, the number of intra-shard transactions per shard is ris · ntx

nsh
. This

implies that the number of intra-shard blocks published by a shard (leader) is
ris · ntx
nsh · fis

.
For a single Intra-shard Tx-block published by a shard, the shard leader must

first broadcast it to all the shard nodes for verification and voting. Let FIS(sh)
be a deterministic function, which takes the number of shards as a parameter and
returns the overall delay incurred by a single Intra-shard Tx-block, published by
some shard A. Since the function FIS is fixed for a particular value of nsh; let
us denote it by dis. Here dis is the delay for a single Intra-shard Tx-block and
includes the broadcast delay by a shard leader and the voting/verification delay
by the nodes in Shard A. Now the intra-shard Tx-block delay incurred by all the
Intra-shard Tx-blocks published by a particular shard A is ris · ntx

nsh · fis
· dis.

Analysis of Optimal Number of Shards 349

Hence, the Intra-shard Tx-block delay by all the Intra-shard blocks published
by all shards in the network is given by the Eq. (1).

δis =
ris · ntx

fis
· dis (1)

Cross-Shard Transactions. Again, we will be assuming that the cross-shard
transactions are uniformly distributed among shards and also uniformly dis-
tributed among shard nodes (this is because shard formation is a uniform ran-
dom function). Therefore, the number of Cross-shard transactions per shard is
rcs · ntx

nsh
.

This, in turn, implies that the number of Cross-shard Tx-blocks published
by a shard (shard-leader) is rcs · ntx

nsh · fcs
.

For a single Cross-shard Block published by a shard, the shard leader has to
broadcast it to all the other shards for verification and voting. Let FCS(sh) be
a deterministic function, which takes the number of shards as a parameter and
returns the overall delay incurred by a single Cross-shard Tx-block, published
by some shard A, in a single shard B. Since the function Fcs is fixed for a
particular value of nsh let us denote it by dcs. Here the delay dcs is for a single
Cross-shard Tx-block and includes the broadcast delay by a shard leader (say of
shard A) to some other shard (say B), block receive latency by shard B and the
voting/verification delay by the nodes in shard B.

Now for a single Cross-shard Block published by a single shard A, the overall
delay incurred before it comes back to A is dcs · (nsh − 1).

This implies, Cross-shard block delay by all the Cross-shard Tx-blocks pub-
lished a particular shard A is rcs · ntx

nsh
· dcs · (nsh − 1).

We conclude that the Cross-shard Tx-block delay by all Cross-shard Tx-
blocks as published by the shards in the network is rcs · ntx

nsh
· dcs · (nsh − 1) ·nsh.

δcs =
rcs · ntx

fcs
· dcs · (nsh − 1) (2)

The total network delay (δnet) incurred by ntx transactions when the number
of shards is nsh is the sum of individual delays, δis and δcs.

δnet = ntx ·
(

ris

fis
· dis +

rcs

fcs
· dcs · (nsh − 1)

)
(3)

The throughput (T) for nsh number of shards is defined as the ratio between
ntx and δnet.

T =
fis · fcs

ris · fcs · dis + rcs · fis · dcs · (nsh − 1)
(4)

5.2 Variation with Change in Number of Shards

We now change the number of shards from nsh to n
′
sh where n

′
sh = nsh + c,

and c is a positive integer. The total number of transactions ntx, the cross-shard

350 V. Priyadarshi et al.

transaction ratio rcs and the values fcs, fis remain invariant as they are inde-
pendent of the number of shards (since all the full nodes generate transactions).
The delay variables (dis and dcs) change (recall that we renamed FCS as dcs and
FIS as dis where both FCS and FIS are functions of the number of shards).

We know that dcs is a function of the number of shards in the network. Earlier
in our definition of dcs, we said that it includes various delays and latencies
incurred by a single Cross-shard Tx-block published by some shard. It is evident
that out of all the latencies/delays, the dominating delay is the voting delay
by the shard nodes. For simplifying the calculations, we assume that δvoting �
δothers (where δothers refers to the smaller delays such as block receive latency).
This gives us dcs ∼ δvoting, that is, Cross-shard block voting delay.

The δvoting is directly dependent on the number of nodes in a shard. δvoting ∼
1

nsh
, and ∴ dcs ∼ 1

nsh
.

Using the above relations, we get d
′
cs · n

′
sh = dcs · nsh implying that d

′
cs =

dcs · nsh

n
′
sh

. Similarly we get, d
′
is = dis · nsh

n
′
sh

.

The delay and the throughput are given by Eqs. (5) and (6), respectively.

δ
′
net =

nsh · ntx

n
′
sh

(
ris

fis
· dis +

rcs

fcs
· dcs · (n

′
sh − 1)

)
(5)

T
′
=

n
′
sh · fis · fcs

nsh(ris · dis · fcs + rcs · dcs · fis · (n′
sh − 1))

(6)

Using the previous results, we find the ratio, R, between throughput T
′
and

T . Putting rcs = r, ris = 1 − r, we get:

R =
n

′
sh

nsh

(
(1 − r) · fcs · dis + r · fis · dcs · (nsh − 1)
(1 − r) · fcs · dis + r · fis · dcs · (n′

sh − 1)

)
(7)

The above ratio R is the fractional change in the throughput observed when
the number of shards is changed, keeping the number of nodes constant.

We analyse the ratio R for c = 1, which means we find the change in through-
put by increasing the shard count by one, that is, n

′
sh = nsh +1. Also we assume

that fis = fcs. This is a fair assumption, keeping in mind that the transaction
block architecture is not specific to the type of transaction.

However, first, for simplicity in calculations, we try to establish relation
between dcs and dis. Since dis is Intra-shard delay, it does not directly con-
cern with the number of shards present in the system, while dcs directly
depends on the number of shards in the network. So we can safely assume
dcs = dis · G(nsh), where G(nsh) is a real function which takes the number
of shards as a parameter and returns a positive real number. Also, G follows the
inequality G(nsh) > 1; this is taking into consideration the real-life situations
where Intra-shard delay will always be lesser than Cross-shard delay. So we can
rewrite G(nsh) as 1 + H(nsh) where H(nsh) > 0. For simplicity in calculations,
we take H(nsh) = α · nsh. Using the above assumptions, we get the simplified

Analysis of Optimal Number of Shards 351

final value of R as:

R =
nsh + 1

nsh

(
(1 − r) + r · G(nsh) · (nsh − 1)
(1 − r) + r · G(nsh + 1) · nsh

)
(8)

5.3 Optimal Shard Value for a Fixed Cross-Shard Transaction Ratio

We will find an optimal value of the number of shards using the throughput
ratio R. For a given cross-shard transaction ratio r, such that after that optimal
value, an increase in the number of shards leads to a decrease in the throughput.
We check this by comparing the value of R, for a fixed value of r, against nsh.
If the value of R > 1 for some fixed value of r will mean that an increase in the
number of shards increases the throughput and vice-versa.

We plot the graph of R against nsh, while fixing r, along with the plot y = 1.
The points where the graph of R is below y = 1 represent the region of decreasing
throughput, and the points where the graph of R exceeds y = 1 represent the
region of increasing throughput.

In order to plot the graph of R, we take G(x) = 1+H(x), where H(x) = α ·x,
this definition for G(x) ensures that G > 1, and the function H ensures that
there is an implicit dependence on the number of shards. We will keep α very
small so that g is nearly constant. We do not want dcs to be very high than dis

when the number of shards is high as that would be impractical.
Therefore the graphical equation for R against nsh can be expressed as:

y =
x + 1

x

(
(1 − r) + r · G(x) · (x − 1)
(1 − r) + r · G(x + 1) · (x)

)
(9)

and G(x) = 1 + H(x) with H(x) = α · x.
Now we show the plot for the above graphical equation.

Fig. 5. Theoretical plot for the ration, R, against the number of shards, nsh, for r =
0.25 and α = 0.4

352 V. Priyadarshi et al.

The graph in Fig. 5 represents the ratio of throughput on increasing a single
shard against the number of shards. The line y = 1 is kept as a reference point
to observe the behaviour of the ratio R. It is noteworthy that to the left of
abscissa x = 2, the graph is strictly greater than 1; this signifies that the ratio
R > 1, which means that throughput increases and in the right neighbourhood
of abscissa x = 2, the graph goes below the co-ordinate y = 1. R < 1 signifies
that the throughput decreases as we increase the number of shards. Therefore
we can conclude that the point where the graph of R cuts line y = 1 is the
point of optimal shard number; let us call this point OPT. After the point OPT,
the throughput will decrease monotonically with an increase in the number of
shards, but as the graph suggests, the decrease would be gradual as the shards
increase and the throughput would almost become constant after a certain large
number of shards and would not decrease much.

6 Simulations and Observations

Simulations were run for varying input parameters on an Ubuntu 18.04 machine
with 4 cores and 8 GB RAM. The simulated data are presented for the scenario
when the number of nodes in the network is 100. ShardEval generates a log of all
the events in the simulation and produces several key output parameters such
as Transactions Per Second (TPS), length of blockchain, and the total number
of transactions generated and processed, including intra-shard and cross-shard
transactions.

TPS is the primary metric of our interest. It reflects the throughput of the
network and is a representation of the efficiency of the sharded system. The
key point to be noted here is that the TPS metric is different from the TPS in
a real-life scenario. This is because a single time unit simulated in the Simpy
environment is not equivalent to the unit of wall-clock time.

6.1 TPS Versus Number of Shards

In this section, we will analyze the plots for TPS vs the Number of Shards for the
different ratios of cross-shard and intra-shard transactions. First, we will look
into the plot where r = 0, implying that there are no cross-shard transactions
generated by the network and all the transactions are intra-shard transactions.
In the ideal scenario, the throughput should increase monotonically with the
number of shards. This is because the more the number of shards in the network,
the more the parallelism will be and the lesser the delay. It implies the fact that
dis is directly dependent on the number of nodes in a shard, and as we increase
the number of shards, keeping the number of nodes the same, the number of
nodes per shard decrease, thereby decreasing the voting delay and increasing
the throughput.

Figure 6 represents the observed behaviour for this scenario. As we can see,
there is an increase in the throughput as we increase the number of shards.
This is in line with our theoretical analysis, wherein if we put r = 0, we get

Analysis of Optimal Number of Shards 353

Fig. 6. TPS vs. Number of shards for num nodes = 100 with cross-shard transactions
ration r = 0 and 0.4

y = x+1
x ; this indicates that the throughput will be higher for a higher number

of shards, as observed in the figure. For a higher number of shards, the graph
becomes almost constant. This is because the number of transactions generated
remains fixed (the time for which we run the simulation is fixed). On increasing
the number of shards, the transactions processed gradually catch up with the
total number of transactions generated.

We now compare the plot for r = 0.4 alongside the plot with r = 0. In Fig. 6,
in the graph with r = 0.4, we see a peak somewhere at around shard value 6,
after which the TPS decreases with an increase in the number of shards. This
behavior implies the existence of an optimal value for the number of shards in
the network for a fixed value of r. The throughput of the network is maximum
at this optimal shard value and decreases in the vicinity of this value.

Fig. 7. TPS vs Number of shards for num nodes = 100

354 V. Priyadarshi et al.

Let us now look into the graph with higher values of r. Figure 7 is a combined
comparison among graphs of TPS against number of shards for different values
of r. Note that when r is very high, 0.7 means when 70 % of the transactions are
cross-shard in nature, the throughput decreases monotonically and converges to
a constant with an increase in the number of shards. This is where we see a
realistic representation of our simulator following the real world. A higher cross-
shard transaction percentage implies that the network should get congested with
cross-shard transaction blocks propagating for being voted upon and choke the
intra-shard transactions since their population is large.

6.2 TPS Versus Fraction of Cross-Shard Transactions

Figure 8 presents the plot for TPS against the cross-shard transaction fraction
r, for different number of shards. It shows that if the percentage of Cross-shard
transactions in the network increases for a fixed number of shards, a decrease in
throughput is observed. This is within our expectations because the intra-shard
transactions get choked, and since cross-shard transactions incur more delay,
their higher percentage leads to a decrease in the throughput.

Fig. 8. TPS vs Fraction of cross-shard transactions for num nodes = 100

7 Optimization Using Lookup Table

In this section, we present an optimization in the throughput of cross-shard
transactions by implementing a first-level check through a Lookup Table. As
we know, every shard receives a Cross-shard Tx-block for voting and verifica-
tion purposes, but this block may not contain any shard node as the receiver
of any of the transactions present in the Cross-shard block. In this case, if the
Cross-shard Tx-block enters into the shard for voting, it would lead to unnec-
essary overhead in the network. So we introduce the idea of having a lookup

Analysis of Optimal Number of Shards 355

table in the receiver shard node (the shard leader in our case) to check the rele-
vancy of the Cross-shard Tx-block and broadcast to shard nodes or mark it as
non-applicable accordingly. The theoretical analysis follows the same notation
and architecture as in Sect. 5. However, it involves a probabilistic approach to
compute the relevance of a Cross-shard Tx-block for a particular shard. As a
result, the deterministic delay, δcs, changes to a probabilistic delay. An empirical
analysis follows the theoretical analysis of the same architecture analyzed using
ShardEval by changing its implementation to accommodate the lookup table
optimization.

7.1 Probabilistic Modeling of Lookup Table

We first calculate the relevancy of a Cross-shard block to a particular shard. Note
that we assume all the distributions and generations are uniformly randomly
distributed and all the nodes are healthy and generate transactions.

Let Pcs = P (Cross-shard Tx-block relevant to a shard B for voting).
So, Pcs = 1 − P (Cross-shard Tx-block rejected by a shard B for voting).
This implies Pcs = 1 − Prejection.
Now, we will calculate Prejection. Since the transaction generation is a uni-

form random process, the receiver of a cross-shard transaction can be from any
of the nsh −1 shards present in the network. Note that in real-life situations, the
receiver of a transaction may follow a specific distribution. In that case, we can
consider that distribution in the probability calculation. This analysis is based
on the uniform distribution of cross-shard transactions.

So, P (A transaction does not belong to some Shard B) = 1 - 1
nsh − 1 .

Now, a Cross-shard Tx-block contains fcs transactions. So,
Prejection = P (No transaction of a cross-shard Tx-block belongs to Shard B).

This implies, Prejection =
(
1 − 1

nsh − 1

)fcs

, and

Pcs = 1 − Prejection = 1 −
(

1 − 1
nsh − 1

)fcs

(10)

Since this is the probability of a Cross-shard Tx-block incurring a delay in
some shard, the corresponding delay is given by the Eq. (11).

δcs =
rcs · ntx

fcs
· Pcs · dcs · (nsh − 1) (11)

Note that the probabilistic model changes only the Cross-shard delay, while
the Intra-shard delay remains the same. The total network delay and the
throughput of the lookup table model are given by Eqs. (12) and (13), respec-
tively.

δnet = ntx ·
(

ris

fis
· dis +

rcs

fcs
· Pcs · dcs · (nsh − 1)

)
(12)

T =
fis · fcs

ris · fcs · dis + rcs · fis · Pcs · dcs · (nsh − 1)
(13)

356 V. Priyadarshi et al.

The relation between dcs and dis is the same as discussed in Sect. 5.2, that
is, dcs = dis · G(nsh). We choose the function dis(nsh) = β

nsh
for this case (since

the delay is inversely proportional to the number of shards in the network; this
is reasonable assumption). So, the throughput now takes the form as shown in
Eq. (14).

T =
nsh · fis · fcs

β · (ris · fcs + rcs · fis · Pcs · G(nsh) · (nsh − 1))
(14)

Fig. 9. Theoretical plot for throughput, T , against number of shards, nsh, with LUT
(r = 0.7, α = 0.1, fis = fcs = 5, β = 1)

We plot the curve for throughput against the number of shards in Fig. 9.
From the plot, we can conclude that given the values and under reasonable
assumptions of our currently implemented protocol with LUT, the throughput
initially decreases and then increases when 70% of the transactions are Cross-
shard.

Fig. 10. Experimental plot for throughput, T , against number of shards, nsh, with
LUT for r = 0 and 0.7

Analysis of Optimal Number of Shards 357

7.2 Observations

Let us now check the empirical results of the same protocol implemented on
ShardEval by changing the code of the simulator to accumulate the LUT change.
The orange plot in Fig. 10 represents the experimental result obtained from
ShardEval. It can be observed that the TPS decreases initially and then increases
with the number of shards. This happens because an increase in the number
of shards decreases dis, it does increase dcs, but the decrease in Pcs balances,
thereby increasing the overall throughput.

Therefore we conclude that ShardEval behaves correctly (in accordance with
the developed theory), and we have established that lookup table is a signifi-
cant improvement in the overall TPS of sharded-blockchain systems. Further,
we emphasize the generic nature of our simulator, to include practically any
protocol/algorithm (lookup table, for example) with minimal code changes and
giving correct results to analyze and test several sharding-based protocols before
their deployment.

8 Conclusions

Sharding is one of the promising solutions to the scalability problem faced by
blockchain networks. A generic simulator to evaluate those protocols becomes
necessary to analyze the sharding-based protocols. In this direction, a novel simu-
lator, ShardEval, is presented for the sharded blockchain systems. The simulator
offers a unified approach to comparing and benchmarking various sharding-based
protocols.

Along with this, the theoretical study regarding the behavior of the sharding-
based protocols in the presence of cross-shard transactions is carried out. The
simulation results, backed by the theory, suggest that for a fixed percentage of
cross-shard transactions, there exists an optimal value for the number of shards,
and on deviating from this value, the performance of the sharded blockchain
systems begins to degrade. With properly tuned parameters, the simulator can
be used to determine this optimal number of shards.

References

1. Andrian, H.R., Kurniawan, N.B., Suhardi: Blockchain technology and implemen-
tation: a systematic literature review. In: 2018 International Conference on Infor-
mation Technology Systems and Innovation (ICITSI), pp. 370–374 (2018)

2. bitsCrunch: Monolithic to modular - solving the scalability trilemma (2022).
https://www.bitscrunch.com/blogs/modular-vs-monolithic-blockchain

3. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45748-8 24

4. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

https://www.bitscrunch.com/blogs/modular-vs-monolithic-blockchain
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-48071-4_10

358 V. Priyadarshi et al.

5. Ethereum: Decentralized finance (DeFi) (2014). https://ethereum.org/en/defi/
6. Multivac Foundation: Multivac: a high-throughput flexible public blockchain

based on trusted sharding computation (2018). https://www.mtv.ac/assets/file/
MultiVAC Tech Whitepaper.pdf

7. Gouda, D.K., Jolly, S., Kapoor, K.: Design and validation of BlockEval, a
blockchain simulator. In: International Conference on COMmunication Systems
NETworkS (COMSNETS), pp. 281–289. IEEE (2021)

8. Hafid, A., Hafid, A.S., Samih, M.: Scaling blockchains: a comprehensive survey.
IEEE Access 8, 125244–125262 (2020)

9. Kantesariya, S., Goswami, D.: OptiShard: an optimized and secured hierarchical
blockchain architecture. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FTC 2020.
AISC, vol. 1289, pp. 393–411. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-63089-8 26

10. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: Symposium
on Security and Privacy (SP), pp. 583–598. IEEE (2018)

11. Liu, Y., et al.: Building blocks of sharding blockchain systems: concepts,
approaches, and open problems (2021). https://arxiv.org/abs/2102.13364

12. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2016, pp. 17–30.
Association for Computing Machinery, New York (2016)

13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://
bitcoin.org/bitcoin.pdf

14. Nguyen, C.T., Hoang, D.T., Nguyen, D.N., Niyato, D., Nguyen, H.T., Dutkiewicz,
E.: Proof-of-stake consensus mechanisms for future blockchain networks: funda-
mentals, applications and opportunities. IEEE Access 7, 85727–85745 (2019)

15. Okanami, N., Nakamura, R.: Shargri-la: a transaction-level sharded blockchain
simulator (2020). https://ethresear.ch/t/shargri-la-a-transaction-level-sharded-
blockchain-simulator/7936

16. Popov, S.: The tangle (2018). http://www.descryptions.com/Iota.pdf
17. Priyadarshi, V., Goel, S., Kapoor, K.: ShardEval: Sharding-based Blockchain Sim-

ulator (2022). https://github.com/vishishtpriyadarshi/ShardEval
18. SimPy: “SimPy Documentation” (2022). https://simpy.readthedocs.io/en/latest/
19. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: Spectre: a fast and scalable cryp-

tocurrency protocol. Cryptology ePrint Archive, Paper 2016/1159 (2016). https://
eprint.iacr.org/2016/1159

20. Sompolinsky, Y., Wyborski, S., Zohar, A.: Phantom and GhostDAG: a scalable
generalization of Nakamoto consensus. Cryptology ePrint Archive, Paper 2018/104
(2018). https://eprint.iacr.org/2018/104

21. Stonebraker, M.: The case for shared nothing. IEEE Database Eng. Bull. 9(1), 4–9
(1986)

22. TE Team: Elrond: a highly scalable public blockchain via adaptive state shard-
ing and secure proof of stake (2019). https://elrond.com/assets/files/elrond-
whitepaper.pdf/

23. Wang, J., Wang, H.: Monoxide: scale out blockchain with asynchronous consensus
zones. Cryptology ePrint Archive, Paper 2019/263 (2019). https://eprint.iacr.org/
2019/263

24. Yakovenko, A.: Solana: a new architecture for a high performance blockchain
v0.8.13 (2017). https://solana.com/solana-whitepaper.pdf

https://ethereum.org/en/defi/
https://www.mtv.ac/assets/file/MultiVAC_Tech_Whitepaper.pdf
https://www.mtv.ac/assets/file/MultiVAC_Tech_Whitepaper.pdf
https://doi.org/10.1007/978-3-030-63089-8_26
https://doi.org/10.1007/978-3-030-63089-8_26
https://arxiv.org/abs/2102.13364
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethresear.ch/t/shargri-la-a-transaction-level-sharded-blockchain-simulator/7936
https://ethresear.ch/t/shargri-la-a-transaction-level-sharded-blockchain-simulator/7936
http://www.descryptions.com/Iota.pdf
https://github.com/vishishtpriyadarshi/ShardEval
https://simpy.readthedocs.io/en/latest/
https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2018/104
https://elrond.com/assets/files/elrond-whitepaper.pdf/
https://elrond.com/assets/files/elrond-whitepaper.pdf/
https://eprint.iacr.org/2019/263
https://eprint.iacr.org/2019/263
https://solana.com/solana-whitepaper.pdf

Analysis of Optimal Number of Shards 359

25. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, pp. 931–948. Association for Computing
Machinery, New York (2018). https://doi.org/10.1145/3243734.3243853

26. Zhang, M., Li, J., Chen, Z., Chen, H., Deng, X.: CycLedger: a scalable and secure
parallel protocol for distributed ledger via sharding (2020). https://arxiv.org/abs/
2001.06778

27. Zhou, Q., Huang, H., Zheng, Z., Bian, J.: Solutions to scalability of blockchain: a
survey. IEEE Access 8, 16440–16455 (2020)

https://doi.org/10.1145/3243734.3243853
https://arxiv.org/abs/2001.06778
https://arxiv.org/abs/2001.06778

SoK: Digital Signatures and Taproot
Transactions in Bitcoin

Anubha Jain(B) and Emmanuel S. Pilli

Malaviya National Institute of Technology, Jaipur 302017, India
{2018rcp9114,espilli.cse}@mnit.ac.in

Abstract. Bitcoin has emerged as one of the most disruptive innova-
tions since the advent of the internet. Its core principle of decentralization
has not only revolutionized the way transactions are made but also paved
the way for development of an entirely new blockchain industry. Its secu-
rity is achieved through the implementation of cryptographic constructs
based on elliptic curve cryptography. In this paper, we delve into use of
digital signatures in Bitcoin. We provide an overview of Elliptic Curve
Digital Signature Algorithm (ECDSA) and the recently adopted Schnorr
signatures. Furthermore, we discuss Taproot, a soft fork introduced in
Bitcoin, which enhances Bitcoin’s versatility for complex applications.
With Taproot, multiparty transactions can be designed with greater pri-
vacy for all parties involved, as well as for the underlying contracts. This
paper offers a comprehensive review of both the ECDSA and Schnorr
signature schemes, shedding light on their scripting capabilities within
the Bitcoin ecosystem.

Keywords: Bitcoin · Digital signature · ECDSA · Schnorr signature ·
Taproot

1 Introduction

Bitcoin is one of the widely adopted cryptocurrency, with its ever-increasing
transaction volume and user base per day. It is a decentralized ledger used to
facilitate the transfer of funds between entities without any intermediaries. Users
can identify themselves in the system using cryptographic keys which can be used
to receive or spend bitcoins. As there is no centralized authority, the verification
of transfer of funds is performed by the users. This is done by using cryptographic
tools such as digital signatures to verify any claim to spend bitcoins. Two or more
parties can enter a contract to mention or claim the spendability of their funds
using the scripting capabilities of Bitcoin. The strong security assumptions of
Bitcoin are based on the security of its underlying elliptic curve.

Other than the standard exchange of bitcoins between users, it can also
be used to create escrows, hashed time lock contracts (HTLCs) [24], betting
contracts, DeFi contracts, payment agreement from a multiparty wallet [1], etc.
A recent upgrade in Bitcoin scripting capabilities, called Taproot [27,28], has
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 360–379, 2023.
https://doi.org/10.1007/978-3-031-49099-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_22&domain=pdf
http://orcid.org/0000-0002-6056-1147
https://doi.org/10.1007/978-3-031-49099-6_22

SoK: Digital Signatures and Taproot Transactions in Bitcoin 361

included Schnorr digital signature [28]. This enhances the security of the system
and the privacy of user agreements. The bitcoins can now be more privately
locked for a combination of public keys and multiple conditions in a transaction.
Spending these bitcoins have also become more secure and private with the use
of new signature and transaction capabilities.

When two parties communicate over a network that is not reliable and the
parties do not trust one another, we require certain mechanisms in place to ensure
the security of the communication. Digital signatures are used in communication
systems to ensure this requirement. Suppose that Alice wants to send a message
to Bob, and when Bob receives the message he wants to be certain that the
message is indeed from Alice. To ensure this, Alice can use a secure hash function,
such as SHA256, to generate a hash value for the message. The hash value,
signed by Alice’s private key serves as a digital signature. Alice sends the message
attached with the signature. On receiving the message from Alice, Bob calculates
the hash value for the message and ensures that it is indeed same as the message
hash signed by Alice. Using Alice’s public key, Bob can also check if the signature
is valid, as no one else has Alice’s private key. So using a digital signature, the
message is authenticated both in terms of its sender and its integrity.

While many studies on blockchains focus on their potential applications, oth-
ers emphasize their security and scalability. However, only a handful delve into
the cryptographic security underpinning blockchains. Ullah et al. [25] discuss
elliptic curve cryptography’s advancements and challenges. One of the focus of
their work is the analysis of ECDSA in cryptosystems. Raikar et al. [21] presents
a SoK of the existing and upcoming cryptographic concepts used in blockchains.
None of these works delve in the details of application of digital signatures in
Bitcoin. An analysis of the use of ECDSA and Schnorr in different type of trans-
actions to build simpler to complex contracts is not provided. In this work, we
have systematically reviewed the scripting capabilities of Bitcoin. We have pre-
sented the requirement of digital signatures and how these are used with various
conditions on which funds are transferred. We’ve analyzed both ECDSA and
Schnorr signatures in Bitcoin transactions. Additionally, we’ve delved into the
Taproot upgrade, highlighting its components and Schnorr’s role within Tap-
root. To the best of our knowledge, this is the first systematization of knowledge
that gives a complete picture of the existing digital signatures used in Bitcoin.

The paper is divided into six sections: Sect. 2 is an introduction to the digital
signature and its requirements. It explores the elliptic curve cryptography used
in Bitcoin. Section 3 covers the usage of ECDSA in Bitcoin transactions. It also
mentions the limitations and challenges of ECDSA on security and privacy when
used in Bitcoin. Section 4 is an introduction to Schnorr signatures and its features
that overcomes the limitations of ECDSA. In Sect. 5, details of Taproot upgrade
are covered. It explains how Bitcoin transactions uses Taproot and Schnorr for
complex multi-signature contracts. We have presented the security and privacy
enhancements as well as the limitations of using Schnorr. Section 6 summarizes
the key findings, emphasizing the use of Schnorr in Bitcoin transactions.

362 A. Jain and E. S. Pilli

2 Digital Signatures Used in Bitcoin

Techniques such as digital signature, identity authentication, and time stamping
are applied in Bitcoin transactions to provide integrity of the message. So if
Alice has sent some bitcoins to Bob, he cannot create a different transaction
and claim that it came from Alice. Neither can he update any information like
the amount of Bitcoins transferred to him. Digital signatures also provide non-
repudiation which means that participants cannot deny sending transactions. So
Alice cannot deny sending a message to Bob as her private key is used to sign the
transaction. Similarly, Bob cannot claim that he did not receive the transaction.
In such situations when the sender and receiver do not trust the other party,
digital signatures are required to resolve such disputes.

2.1 ECC in Bitcoin

Digital signatures in Bitcoin are based on Elliptic Curve Cryptography
(ECC) [9]. It makes use of an elliptic curve whose variables and coefficients are
all restricted to elements of a finite field. The elliptic curve chosen by Satoshi
Nakamoto, denoted by secp256k1 over a finite field Fp is specified in Eq. 1:

y2 = x3 + 7 mod p (1)

where p = 2256 − 232 − 977 = 115792089237316195423570985008687907853269
984665640564039457584007908834671663
This defines an elliptic curve of order q = 11579208923731619542357098500868
7907852837564279074904382605163141518161494337
The coordinates of generator point G for this curve are: (x0 = 550662630222773
43669578718895168534326250603453777594175500187360389116729240, y0 =
32670510020758816978083085130507043184471273380659243275938904335757337
482424).
In bitcoin, the key pairs to receive and send bitcoins are generated with the help
of this elliptic curve. The key pair (sk, pk) is made of a secret key, sk and a
corresponding public key, pk. Here, Public key is a point on the curve, derived
from the secret key using Eq. 2:

Pk = sk ∗ G (2)

To receive Bitcoins, public keys are provided in transactions, and to spend bit-
coins the private key is used to digitally sign these transactions. Interested read-
ers can refer to [9] for more details on ECC.

2.2 ECDLP and ECDSA

The Elliptic Curve Discrete Logarithm Problem (ECDLP) forms the basic
assumption for the security of ECC. Given an elliptic curve E and points P
and Q on the curve, the ECDLP is defined as finding an integer n such that

SoK: Digital Signatures and Taproot Transactions in Bitcoin 363

n ∗ P = Q. This is the point addition (P + P + P + unto n times),
which is easy to solve. However, the inverse of the problem (point division to cal-
culate P given n and Q) is not known to be easy. Despite knowing P, Q and curve
E, there is no known method to calculate n efficiently for large numbers. This
means that for sufficiently large inputs it is computationally infeasible to solve
the problem. This one way nature of ECDLP makes ECC secure. An attacker
who knows P and Q would not be able to compute n which is the private key
corresponding to point Q on the curve.

Algorithm 1: ECDSA - Message Signing Algorithm
Input: m(message), nA(Alice’s private key), k(random integer), G(Generator

Point), q (order of the elliptic curve group)
Output: s, r

1 Compute the point (R, Y) = k * G on the elliptic curve;
2 Compute r = R mod q;
3 Compute s = k−1 (hash(m) + nA ∗ r) mod q;
4 If s or r is 0, return to step 1;
5 Alice sends the signature (r, s) along with the message m to Bob;

So far, to prove ownership of funds, Bitcoin has relied on the Elliptic Curve
Digital Signature Algorithm (ECDSA). As ECDLP is hard to solve, bitcoin can
only be spent by using the secret key. This proves the ownership of bitcoins and
the ability to spend them.

Algorithm 2: ECDSA - Signature Verification Algorithm
Input: m0(received message), s0(received signature component), r0(received

signature component), G(generator point), q(order of the elliptic curve
group), KA(Alice’s public key)

Output: Valid or Invalid
1 Bob verifies that r0 and w0 are integers in the interval [1, q-1]. If not, the

signature is Invalid;
2 Bob calculates the hash of the received message, h = hash(m0);

3 Calculate the modular inverse of the signature proof: s1 = s−1
0 (mod) n;

4 Computer u1 = (h ∗ w) (mod) q, u2 = (r0 ∗ w) (mod) q;
5 Calculate the point (x1, y1) = u1 ∗ G + u2 ∗ KA on the elliptic curve;
6 If (x1, y1) is the point at infinity, then the signature is Invalid;
7 Signature is valid if x1 (mod) q is equal to r0 Otherwise, it is Invalid;

When a bitcoin transaction is created, it requires a valid signature, which
can only be generated with valid digital keys, therefore anyone with a copy of
both public and private keys has control of those bitcoins. So when Alice sends
bitcoins to Bob she would sign the input in the transaction before transmitting

364 A. Jain and E. S. Pilli

it in the network. On receiving the transaction, miners in the network can verify
and accept the transaction as valid and ensure that the bitcoins are indeed owned
by Alice at the time of transfer. In Bitcoin, when Alice signs a transaction m,
the public key KA is created using her private key nA. Alice uses Algorithm 1 to
digitally sign the message, using her key pair. Here q is the order of the elliptic
curve. On receiving (m0, s0, r0), Bob uses Algorithm 2 to validate the signature.

3 Implementation of ECDSA in Bitcoin

3.1 Encoding of Keys and Signature

In ECC, public keys correspond to a point on the elliptic curve. The secp256k1
curve used by Bitcoin uses 32-byte numbers to represent x and y coordinates of
a point. In ECDSA, these coordinates are encoded as per a standard defined in
the SEC [4]. An uncompressed SEC format for representing a public key includes
a one-byte prefix to indicate the uncompressed format, followed by the public
key’s 32 bytes x-coordinate and 32 bytes y-coordinate. It requires 65 bytes for a
public key. Meanwhile, the more common representation, the compressed SEC
format, reduces the size of encoding significantly by only including public key’s
x-coordinate. The corresponding y-coordinate can be derived using the curve
equation from its x-coordinate. Each x-coordinate can have a positive and a
negative y-coordinate. To resolve the ambiguity concerning the y-coordinate, its
sign is also included in the encoding. So the compressed SEC format encodes
public keys with only 33 bytes.

ECDSA signatures for the secp256k1 curve consist of two 32-byte numbers,
r, and s. It follows the Distinguished Encoding Rules (DER) [15] for signature
encoding. As per DER, each of the numbers, r, and s, is prefixed by two bytes:
one to indicate the signed integer; the other to indicate the size of the following
data which is 32 bytes for the values r and s. This makes for a total overhead
of four bytes. There are two bytes at the beginning of each DER signature: one
to indicate that the signature consists of two objects (r and s), and another to
indicate the total size of the encoding. Finally, an additional byte at the end
of the signature indicates the signature hash type, which is used by Bitcoin to
determine which parts of a transaction to use when creating a signature.

Overall, this results in seven extra bytes to encode the two 32-byte values r
and s [15]. This should result in a total signature size of 71 bytes. But sometimes
for r or s values with their most significant bit (MSB) set, their encodings require
an additional one-byte zero padding so they are not interpreted as negative
numbers. So the ECDSA signature size can go up to 73 bytes.

3.2 Transactions Using ECDSA

In most bitcoin transactions, the sender needs to provide a digital signature in
order to spend a transaction output. This condition is specified when the bitcoins
are locked to the receivers’ address in the form of locking script also known as

SoK: Digital Signatures and Taproot Transactions in Bitcoin 365

scriptPubKey. Each transaction input is a Unspent Transaction output (UTXO)
that had been created in a previous transaction. To spend these bitcoins, digital
signature of the spending party is required. This is provided in the unlocking
script of the transaction input, also known as the scriptSig. In SegWit transac-
tions, the signature is provided in the witness section of the transaction [6]. In
Fig. 1, the structure of each of these transaction constructs are mentioned.

Fig. 1. Transaction Structure

Following are the types of non-segwit bitcoin outputs and inputs which
require ECDSA signatures in order to be spent along with their locking and
unlocking scripts:

• Pay-to-Public-Key (P2PK): A P2PK output is used to lock Bitcoins with
the public key of the recipient. It is the most basic transaction type. P2PK
input can be unlocked using a signature corresponding to the public key
mentioned in the locking script.

• Pay-to-Public-Key-Hash (P2PKH): A Pay-to-Public-Key-
Hash (P2PKH) output locks the bitcoins using the hash of the recipient’s
public key. P2PKH output consists of both signature and public key.

• Multisignature: Before the Taproot upgrade, in order to create multi-
signature transactions, OP CHECKMULTISIG script instruction was avail-
able. Various m-of-n or n-of-n variants could be created in order to cap-
ture threshold and full multi-party contracts respectively [3]. The unlock-
ing script provided with each multisig input when spending it has OP 0, a
dummy Bitcoin Script instruction to address a bug in the implementation
of OP CHECKMULTISIG; sizes and encodings of signatures along with m
signatures.

• Pay-to-Script-Hash (P2SH): Locking script of a Pay-to-Script-Hash
(P2SH) output consists of the hash of redeem script [3]. If a multi-signature
transaction is built using P2SH, its input script will have the data corre-
sponding to the signatures required to satisfy the redeem script; the size of
the redeem script; and the redeem script. Here data is the unlocking script
for a multi-signature transaction and the redeem script is the multi-signature
locking script.

366 A. Jain and E. S. Pilli

• Hashlock: A Hashlock is a condition that can be mentioned in the output
which locks it until a specified data is revealed [14]. It is used in applications
like atomic swaps where both parties cannot swap their funds until a secret
is exchanged between them. It can also be used in situations where multiple
outputs are locked by the same Hashlock. By relieving the secret, all such
outputs become spendable at the same time. A Hashlock is generally applied
along with a public key hash. To spend the transaction the sender has to
reveal the secret such that its hash results in the hash mentioned in the
output lock along with the signature.

• Timelock: A timelock on an output restricts spending it until a specified
time or a block height. It can be used to lock bitcoins as an investment until
a point in time. It is locked using OP CHECKLOCKTIMEVERIFY [19]. The
funds can only be spent by signing the output with the specified public key
mentioned in the script.

The output and input scripts along with their size requirements for non-segwit
transactions are presented in Table 1. We take the average signature size to be
72 Bytes and the use of compressed public keys which are 33 Bytes in size.

Table 1. Input and Output Scripts for non-SegWit transactions

Transaction
Type

Locking Script Unlocking Script Locking
Script Size

Unlocking Script
Size

Pay-to-PubKey <length of public key> <public
key> OP CHECKSIG

<size of signature>
<signature>

35 Bytes 73 Bytes

Pay-to-
PubKey-Hash

OP DUP OP HASH160 <length
of hash> <hash>
OP EQUALVERIFY
OP CHECKSIG

<Size of signature>
<Signature> <Size of public
key> <Public key>

25 Bytes 107 Bytes

MultiSig
(m-of-n
scheme)

OP m <length of 1st pubkey>
<1st pubkey> <length of 2nd

pubkey> <2nd

pubkey>...<length of nth

pubkey> < nth pubkey> OP n
OP CHECKMULTISIG

OP 0 <Size of 1st signature>
<1st signature> <Size of 2nd

signature> <2nd signature>
... <Size of nth signature>
< nth signature>

34n + 3
Bytes

73m + 1 Bytes

Pay-to-
ScriptHash
(m-of-n
multisig)

OP HASH160 <length of redeem
script hash> <redeem script
hash> OP EQUAL

OP 0 <Size of 1st signature>
<1st signature> <Size of 2nd

signature> <2nd signature>
... <Size of nth signature>
< nth signature> <Size of the
redeem script> OP m <length
of 1st pubkey> <1st pubkey>
<length of 2nd pubkey> <2nd

pubkey> ... <length of nth

pubkey> < nth pubkey> Op n
OP CHECKMULTISIG

23 Bytes 73m + 34n + 5
Bytes

HashLock OP HASH160 <Hash value>
OP EQUALVERIFY OP DUP
OP HASH160 <hash of public
key> OP EQUALVERIFY
OP CHECKSIG

<Size of signature>
<Signature> <Public key>
<secret>

45 Bytes 106 + x Bytes

where
size(secret) =
x Bytes

TimeLock
(Locking funds
in a escrow)

<expiry time>
OP CHECKLOCKTIMEVERIFY
OP DROP OP DUP
OP HASH160 <pubKeyHash>
OP EQUALVERIFY
OP CHECKSIG

<signature> <pubKey> 30 Bytes 105 Bytes

SoK: Digital Signatures and Taproot Transactions in Bitcoin 367

Different types of segwit transactions [12] that can be built using ECDSA
are:

• Pay-to-Witness-Public-Key-Hash (P2WPKH): A Pay-to-Witness-
Public-Key-Hash (P2WPKH) output locking script has a witness version 0
along with hash of the public key of the receiver [18]. For P2WPKH, the data
to satisfy the locking script resides in the witness, leaving the unlocking script
empty. A P2WPKH witness contains the data used for unlocking the inputs:
Public key hash and its corresponding signature.

• Pay-to-Witness-Script-Hash (P2WSH): The Pay-to-Witness-Script-
Hash (P2WSH) is a segwit compatible transaction of type P2SH [18]. Its
locking script consists of OP 0 to indicate a version zero witness program
and SHA256 hash of the script to lock the output. Its unlocking script is
empty. In case the transaction is to unlock a multisig P2WSH transaction,
then the witness will have data and witness script. Data contains the signa-
tures corresponding to the multisig public keys. The witness script will be
the actual script whose hash was used to lock the outputs.

The output and witness scripts along with their size requirements for segwit
transactions are presented in Table 2.

Table 2. Output Scripts and Witness for SegWit transactions

Transaction
Type

Locking Script Witness Locking
Script Size

Witness Size

Pay-to-witness-
publickeyhash

OP 0 OP HASH160 <length of
public key hash> <public key
hash>

<No. of items> <length of
signature> <Signature>
<length of the pub key>

22 Bytes 108 Bytes

Pay-to-Witness-
Script-Hash
(multisig)

OP 0 OP HASH160 <length of
redeem script hash> <redeem
script hash> OP EQUAL

<No. of witness items> OP 0
<Size of 1st signature> <1st

signature> ... <Size of mth

signature> < mth signature>
OP m <length of 1st public
key> <1st public key> ...
<length of nth public key>
< nth public key> OP n
OP CHECKMULTISIG

23 Bytes 73m + 34n + 6
Bytes

3.3 Issues in ECDSA

The usage of ECDSA signatures in Bitcoin is very fragile and its vulnerabilities
have been exploited previously as well. Following are a few of the challenges with
the use of ECDSA in Bitcoin transactions:

• Nonce Reuse Vulnerability: One of the biggest challenges with ECDSA
is the vulnerability associated with the reuse of random numbers, or nonces.
If the same nonce is used for different messages for the same key, it can lead
to the exposure of private key [2].

• Signature Malleability: ECDSA signatures are malleable, meaning that
given a valid signature for a message, it is possible to generate another valid
signature for the same message [5].

• Lack of Formal Security Proof: Security of ECDSA is not as formally
established, which can be a concern in certain applications [10].

368 A. Jain and E. S. Pilli

• Single-Bit Nonce Bias Attacks: It is vulnerable to attacks that exploit a
bias in the least significant bit of the nonce [2]. If the nonce is not perfectly
random, an attacker can potentially recover the private key.

• Lack of Support for Aggregation: It does not support key aggregation.
Aggregation allows multiple signatures to be combined into one, reducing the
size of the transaction data on chain and improving efficiency.

• Lack of Full Privacy for Multi-Signature Use Cases: ECDSA does not
provide full privacy for multi-signature use cases. It’s easy to identify multi-
signature transactions because they have multiple distinct keys and signatures
on chain, which could be a concern for users who desire privacy.

• Lack of Batch Verification: ECDSA does not support batch verification,
a feature that allows multiple signatures to be verified at once for efficiency.
Each signature in ECDSA must be verified individually.

4 Schnorr Signatures

Taproot upgrade [26] has built-in the use of Schnorr signature [28] when spending
an output for a Pay-to-Taproot (P2TR) transaction. Schnorr signature [23] also
uses the elliptic curve, secp256k1 as used in ECDSA. The security assumptions
for the elliptic curve remain the same in Schnorr. Users can choose their secret
keys and generate their public keys and addresses just like earlier.

In order to sign a message m using private key k, public key P, Schnorr
digital signature mechanism requires the signer to choose a random integer, r.
The corresponding point R on the elliptic curve is created as R = r ∗ G, where
G is the generator point for the curve. To compute the signature, message m is
added to the random point on the curve as shown in Eq. 3.

e = hash(R || m) (3)

The signer calculates the signature s using Eq. 4. The sender then sends the
signature (s,R) along with the message m. For verification, anyone having infor-
mation about the public key and generator point can verify the signature if the
Eq. 5 holds.

s = r + e ∗ k (4)

s ∗ G = R + hash(R || m) ∗ P (5)

In order to be employed as a secure signing mechanism for Bitcoin transactions,
a few adjustments have been made in the signing process. One of these is to
protect against the related-key attack [16]. The public key is prefixed along with
the message and nonce commitment, R in e = hash(R || P || m). If e is
calculated using Eq. 3, then the signature (R,s) valid for public key P can be
converted in signature (R, s + x ∗ e) for public key (P + x ∗ G) for the
same message m and a random number x. This random number x can be an
additive tweak to the signing key. It results in insecure signatures when keys are
generated by tweaking the keys in taproot transactions.

SoK: Digital Signatures and Taproot Transactions in Bitcoin 369

To mitigate the related-key attack, the public key is prefixed to the message
in the challenge hash input so that an additive tweak x to the public key and
not the challenge hash by an attacker will result in an invalid signature. The
signature is calculated using Eq. 6.

s = r + hash(R || P || m) ∗ k (6)

The signature can be verified using Eq. 7.

s ∗ G = R + hash(R || P || m) ∗ P (7)

4.1 Comparison Between ECDSA and Schnorr Signature

The limitations of ECDSA are addressed by the Schnorr scheme which makes
it a preferable choice for signing messages. While ECDSA signatures are non-
linear, Schnorr signatures have a linearity property that allows for the creation of
multisignatures, threshold signatures, and adaptor signatures. ECDSAs are less
computationally efficient, particularly during the signature verification process
due to multiple point multiplication operations. However, the Schnorr signa-
ture verification requires fewer computational steps compared to ECDSA, which
makes it faster and less resource-intensive. In ECDSA, if a transaction requires
signatures from multiple parties, each party must add their signature separately.
This increases the size of the transaction data and can make the verification
process slow and complex. Schnorr signatures natively support multisignature
operations [13,17]. This means that multiple parties can collectively produce a
single signature that validates the transaction. This single signature is indistin-
guishable from a single-signer signature, which enhances the privacy for involved
parties. Table 3 lists the advantages of Schnorr over the limitations of ECDSA.

The nonce reuse vulnerability exists in Schnorr signatures as well, but the
nonce in Schnorr signature is generated by hashing a concatenation of random
number, message and the secret key. This makes the nonce deterministic and
is less likely to be reused. A deterministic nonce use is also proposed in RFC
6979 [20] for ECDSA which is being used by some bitcoin wallet implementations.
But the solution is vulnerable to lattice-based attacks to recover secret key [22].

4.2 Features of Schnorr Signature

Linearity
Schnorr signatures are linear which allows easy aggregation of multiple signatures
into one signature. This makes it usable to create multisignature contracts as
the size of more complex transactions can be reduced when multiple parties are
involved in a contract. Schnorr signature follows the linearity of the elliptic curve
points. It allows key aggregation of public keys using musig [13] from multiple
parties as follows:

Let A and B be two parties with their respective private keys as da and db.
Their corresponding public keys are points on the curve, Pa and Pb. They both

370 A. Jain and E. S. Pilli

Table 3. Differences between ECDSA and Schnorr Signatures

Feature ECDSA Signature Schnorr Signature

Security Vulnerable when random
nonces are reused

Nonces are deterministically
derived from the private key
and message being signed

Security
Proof

Lacks formal security proof Existing security proof in the
random oracle model [8]

Non-
malleability

Malleable Non-malleable

Linearity Non-linear Linear

Efficiency Less computationally efficient Faster and less
resource-intensive

sign a message using their private keys and respective nonce values ka and kb,

sa = ka + e ∗ da sb = kb + e ∗ db

If we add these signatures as shown in Eq. 8, we get

sa + sb = ka + kb + e ∗ (da + db) (8)

Let k′ = ka + kb and d′ = da + db, we get the combined signature mentioned in
Eq. 9:

s′ = k′ + e ∗ d′ (9)

S’ is itself a valid Schnorr signature created using a public key which is
the addition of A and B’s public keys and addition of their individual nonce
points. Thus parties can together sign transactions by aggregating their public
keys in multiparty contracts. Using the linearity of Schnorr signatures, more
transactions can be included in the same block size as transaction signatures
can be aggregated.

For multisignature scheme, an adjustment is made in the key aggregation
algorithm by adding a coefficient to each public key. This is done to mitigate the
Key Cancellation Attack, also know as Rouge Key Attack [7], where a user can
choose its key based on the other user’s key in order to be able to sign a multisig
transaction without the involvement of other party. For example, if Alice has
key pair (xA,XA) and Bob has (xB ,XB), then Bob can claim his public key to
be X ′

B = XB − XA. The aggregate key in this case will be XA + X ′
B , which

only requires Bob’s private key for spending. To mitigate this from happening,
in musig, the aggregate key is calculated as a sum of multiples of participant
keys, where the multiplication factor depends on a hash of all participating keys.

Tagged Hashes: Schnorr signature uses the same hash function as ECDSA.
When creating and verifying Schnorr signatures, different tagged versions of hash

SoK: Digital Signatures and Taproot Transactions in Bitcoin 371

functions are used in different contexts. This greatly reduces the possibility of
hash collisions across these contexts. Tagged hashes prefix the data to be hashed
with SHA256(tag)||SHA256(tag) [26]. Now the Schnorr signature should satisfy
the Eq. 10.

s ∗ G = R + tagged hash (R || P || m) ∗ P (10)

Non-malleability: Traditional Bitcoin transactions are malleable. When a
transaction is broadcasted in the network, a malicious recipient can alter the sig-
nature included in the transaction without the need of a private key as ECDSA
signature can be modified. This changes the transaction id as it is a function of
the signatures included in it. This way the recipient can make a claim to the
sender of not receiving any fund. The sender when searches the blockchain with
the original transaction id does not find it there as it has been changed without
the sender noticing it. The sender can be tricked this way to send the funds again
to the malicious receiver. The funds once sent are not revertible. This effectively
means the sender effectively pays twice to the receiver.

SegWit introduced in BIP141 [12], addressed this transaction malleability by
separating the signature from the transaction. The witnesses of all transactions’
inputs are placed in a separate witness structure. In a segwit transaction, if a
recipient modifies the signature, it does not alter the transaction id.

Schnorr signatures are inherently non-malleable as it is not possible to alter
an existing signature into another valid signature on the same key and same
message. Schnorr signature is secure against the chosen message attack (SUF-
CMA). This ensures that the Schnorr signature cannot be modified and still be
valid without knowledge of the secret key.

4.3 Encoding of Keys and Signature

Public keys in Schnorr signature correspond to a point on the underlying elliptic
curve. Encoding of public keys in ECDSA follows the SEC standards in which
a point in compressed format is stored as a 33-byte value. In Schnorr, a custom
encoding is used [28], which includes only a point’s x-coordinate. As per the
elliptic curve, each x coordinate can have two corresponding y coordinates. So
to resolve the ambiguity concerning the y-coordinate, its parity is defaulted to
the even y value. The encoding of Schnorr public keys thus has a size of 32 bytes.

Schnorr signature consists of a curve point and a 32-byte value. To save
space, the signature only contains P’s 32-byte x-coordinate from which the cor-
responding y-coordinate can be derived (the y-coordinate can only be even).
Unlike ECDSA signatures which follow DER encoding, in Schnorr, the two 32-
byte values, r, and s, are encoded back to back with a total size requirement of
64 bytes.

In the transaction output incorporating Schnorr signature, only x-coordinate
of the public key is included. The corresponding even y-coordinate is chosen as
a valid point. This results in a 32-byte representation of the public key with a
signature size of 64 Bytes.

372 A. Jain and E. S. Pilli

5 Taproot

At block height 709632 (midnight 11 August 2021 UTC), Bitcoin rolled out a
major upgrade called Taproot. The traditional Bitcoin transaction outputs can
be distinguished based on their spending conditions as pay to a public key or
pay to a script hash. Taproot represents these separate transaction outputs in
the same way so that they are indistinguishable from each other. An output can
have multiple script paths and a key path available to spend it. If it is unlocked
using the key-based spending path, the possibility of spending through a script
path is not even revealed. In case a particular script path is used to unlock
an output, the other scripts are not revealed. This saves space and fee on the
unused conditions in the transaction. This also increases the privacy of a contract
between parties. Following are the features introduced in Taproot upgrade:

• Indistinguishable locking and unlocking using key or script path: When used
properly, an observer will not be able to distinguish between a public key and
a script-type transaction spending as they are detectable in P2PKH or P2SH
transaction.

• Alternative signature scheme: Taproot upgrade introduces Schnorr signature
scheme to create Bitcoin transactions. Using this, multiple public keys can be
combined into one, making it indistinguishable from a single-party signing.
This considerably reduces the signature size and verification time.

• Specifying spending paths in Merkelized Abstract Syntax Tree(MAST) [11]:
The conditions tied to spending bitcoins can be hidden at the time of locking.
When unlocking, only the condition which is used to spend the bitcoin is
revealed, while others are not specified.

In the Taproot upgrade, a new transaction type is introduced, called Pay-to-
Taproot (P2TR). This includes an output with a segregated witness version 1
and a 32-byte witness program. Its locking and unlocking conditions use modi-
fied opcodes, OP CHECKSIG and OP CHECKSIGVERIFY to allow Schnorr
signatures [27]. A new opcode, OP CHECKSIGADD is introduced to allow
multiple keys in an output. To create multisig transactions, traditionally used
OP CHECKMULTISIG and OP CHECKMULTISIGVERIFY opcodes are dis-
abled. Taproot also introduces a new hashtype called SIGHASH DEFAULT to
sign over all transaction inputs. It is implicitly applied in a taproot transaction
unless any other hashtype is specified. Including SIGHASH DEFAULT commits
to all of the usual things committed to by SIGHASH ALL in current Bitcoin
transactions, but additionally commits to all of the transaction outputs being
spent by the transaction being signed.

5.1 Transactions Using Schnorr Signature

In the following section, we will look at different steps when signing a transaction
using Schnorr. We will begin with the construction of a taproot output. It is
locked with scriptPubKey as mentioned in format 11.

<witness version 1><32Byte encoding of point Q> (11)

SoK: Digital Signatures and Taproot Transactions in Bitcoin 373

Point Q, called Taproot output key, is computed using both the key path and
script path conditions using Eq. 12.

Q = P + hash(P || M) ∗ G (12)

Here,
P = Taproot internal key corresponding to key path spending.
M = Root of Merkle tree whose leaves represent possible ways to unlock the
locked bitcoins.

Each leaf of the script tree is represented as <leaf version> <script>. To
spend this output, a signature for Q has to be provided, along with revealing:

• Taproot internal key, P.
• Leaf version of the script and the script which is spent.
• Inputs for the script which satisfies when it is executed.
• Merkle path from the script leaf to the merkle tree root so that presence of

Q in the merkle tree can be confirmed.

In order to construct Q from P, to construct inner nodes of the script tree, and for
the Schnorr signature, tagged hashes are used. The same public key generation
mechanism for ECDSA is used in Schnorr signatures. The previous private keys
can be used directly. The usual 33-byte compressed public keys can be used in
Schnorr scheme by dropping their first byte.

When a user wants to lock funds in a taproot output, she will send the bitcoins
to a taproot address which is formed from tweaking the internal public key with
zero or more conditional statements written as Bitcoin scripts and each script
arranged as a merkle tree leaf. Depending on the locking conditions, different
locking mechanisms can be created as described in the following sections.

Key Path Locking: If the funds can be locked by only the public key P of
the recipient, it is kept as the taproot internal key. If no script path is specified,
then it becomes evident from the locking script that this output can be spent
only with a public key. It can be either a single key or multiple keys aggregated
as a single key and specified as taproot key. So it is advised to specify a script
path even if it does not exist as an unspendable script as shown in Eq. 13.

Final taproot output key point, Q = P + (hashTapTweak(P)) ∗ G (13)

Here, P is the internal public key and G is curve generator point.

Script Path Locking: If funds can be locked with more than one condition,
they can be split into multiple scripts (if-else conditional statements). Each script
corresponds to one possible execution path specified as a merkle tree leaf. If all
the conditions are equally likely to appear, they can be arranged in a balanced
tree. In case the conditions are not equally probable, then they can be arranged
as per their probability in a Huffman tree.

374 A. Jain and E. S. Pilli

5.2 Script Tree

Script paths for a Taproot output are specified in a merkle tree [11]. Consider
four possible scripts to spend an output, with equal probability to be used for
spending the funds. Each condition is a script that is stored as a leaf in the
merkle tree as shown in Eq. 14:

Leaf node of script tree = hashTapLeaf (leaf version, size of script, script)
(14)

Here ‘TapLeaf’ is used as the tag for leaf nodes. Other than leaves, nodes of the
merkle tree are created by hashing the child nodes. These nodes are computed
as a tagged hash of their children in lexicographical order. In Fig. 2, a merkle
tree arrangement for the script path A, B, C, and D are shown. Here A, B, C,
and D are represented at level 0 as a tagged hash of version no, the size of the
script, and the spending condition specified as a script. The leaf version serves
as a versioning mechanism for the scripting language used in Bitcoin. Having
a version bit associated with a leaf would allow nodes to distinguish between
the old Script and the new ones There are a total of 41 possible leaf versions
including (0xc0) for future upgrades. As per BIP 342, currently, the leaf version
used is 0xc0.

Fig. 2. Script Tree for four equally likely scripts

At level 1, the parent nodes AB and CD are calculated as a tagged hash
of their respective children. Here ‘TapBranch’ is used as the tag for calculating
hash as these are internal nodes. Note that at each level when creating a tap
branch, its child nodes are hashed in lexicographical order.

The root node of the script merkle tree, ABCD is hashed with the internal
public key, P to get the Taproot output key. Here, ‘TapTweak’ is used as the tag
for hashing. This is called tweaking the internal public key with the merkle tree
root hash. The scriptPubKey used to lock the taproot output is specified as

0X51 0X20 <output public key>

SoK: Digital Signatures and Taproot Transactions in Bitcoin 375

Here 0X51 represents the segwit version 1. 0X20 represents the size of the public
key (32 bytes) and the output public key is the x-coordinate of the taproot
output key created using taproot internal key and the script tree.

5.3 Spending Taproot Input

In order to spend a taproot input, the secret key corresponding to the internal
public key used in taproot output is also tweaked with the factor corresponding to
the script tree mentioned in the taproot output. Only a secret key corresponding
to an even y-coordinate is used, if not, the secret key corresponding to the
internal public key is negated before applying the tweak.

Schnorr Signature. When singing a Taproot input, Schnorr signature algo-
rithm, Sign(sk, m) is applied as follows:

1. Calculate the tweaked secret key. If the public key point P for the private key
doesn’t have an even y-coordinate, negate the secret key

2. Compute the random nonce r as a tagged hash of the Public key, message,
and private key

3. Compute the Elliptic curve point R corresponding to this random nonce. If
R doesn’t have an even y-coordinate, negate it

4. Compute e as int(hashBIP0340/challenge(R || P || m)
5. Calculate Schnorr signature, s = r + e * sk

The signature sig = (R || s) is attached with the message m.

Signature Verification. The algorithm Verify(pk, m, sig) is defined as:

1. From sig, extract r and s.
2. Compute e as hashBIP0340/challenge(r || P || m)
3. Calculate R as s * G - e * P
4. Verify if the y-coordinate of R is even
5. Confirm if R is the same as the one received in sig

Witness Validation Rules. Now in order to verify the witness associated
when spending a taproot input is correct, the following steps are followed:

1. Fail if 0 elements in witness stack
2. Key path spending: If the witness stack has only one entry, it is considered

as a signature corresponding to taproot public key q. It is verified as per
Schnorr signature verification algorithm.

3. Script path spending: If the witness stack has more than one element.

The components of witness stack are as shown in format 15 and 16

Witness stack : <script><control block> (15)

376 A. Jain and E. S. Pilli

Control block = <leaf version><taproot internal key, p><Tap branches
to calculate merkle tree root> (16)

From the control block’s contents, it is verified whether the script mentioned in
the script tree is satisfied or not. It follows the process mentioned:

1. Tagged hash of tapleaf is calculated as hashTapLeaf (leaf version || size of
script || script).

2. Calculate merkle tree root using tap branches and tap leaf spent. Tap
branches included in the control block along with the tap leaf calculated
above are used to calculate the merkle tree root hash.

3. Taproot output key is calculated as the ‘TapTweak’ tagged hash of taproot
internal key and the merkle tree root hash calculated above.

4. Taproot output key calculated here is checked with the output key as men-
tioned in the locking script of the input. If they are the same then proceed.

5. Execute the script mentioned in the witness stack using the witness stack
elements.

5.4 Use of Schnorr Signature in Multisignature Transactions

If the output requires signatures from multiple parties when spending, the key
aggregation technique aggregates the multiple public keys in one key used for
locking [13,17]. The aggregated key is specified as the internal key. The following
possibilities can occur when combining keys:

– If a n-of-n signature scheme has to be built then only the key path spending
which requires signatures from all involved n parties is mentioned.

– If a m-of-n signature scheme has to be built then both the key path and script
path exist. Taking a scenario where a user uses a multiparty wallet provided
by a cryptocurrency exchange. There are 3 keys, key 1 held by the user, key
2 by the crypto exchange, and key 3 is a backup key held by a key recovery
service. Backup keys are generally stored in an offline system and only be used
when one of the other keys is lost or not available to sign the transaction.
There can be the following scenarios for spending the funds locked by this
arrangement:

• Key path spending: Key 1 + Key 2
• Script path spending:

Script1: Key1 + Key3 Script2: Key2 + Key3

Taproot output key is built using the scenario as shown in the Fig. 3. The scripts
used to lock funds are as follows:

ScriptSig of MuSig Key, Km = OP 1 Km OP CHECKSIG

Script 1: <Key1> OP CHECKSIGVERIFY <Key3> OP CHECKSIG

Script 2: <Key2> OP CHECKSIGVERIFY <Key3> OP CHECKSIG

Now depending upon the situation, in an m-of-n multisig contract, there can
be (m choose n) spending paths in the script tree. The scripts can also involve
complicated conditions like time locks, hashlocks, etc.

SoK: Digital Signatures and Taproot Transactions in Bitcoin 377

Fig. 3. Script Tree for a Multisig Transaction

5.5 Security and Privacy in Schnorr Signature

In non-taproot transactions, it’s immediately revealed during the locking phase
whether the transaction is spendable by a public key or a script. While in taproot,
even if there is a script, the locking is done by the final taproot output key. So
when spending a taproot output, it happens through the taproot output key. This
obfuscates the observers from realizing if internally a key path or a script path is
used as the spending condition. Within taproot, a key path can be payment to
a single user or a multi-signature wallet, or any multi-party or multi-conditional
contract. Taproot provides more privacy than earlier transaction types, as when
it is spent, all possible conditions for spending an output are not mentioned.
Instead, only the condition which is used for spending the output is published.
Hash of the rest of the conditions is provided as the merkle tree path.

But when using a script path, it leaks the information that for unlocking, the
key path is not used, instead the script path is being used. It also provides an
estimate for the minimum depth of the tree giving an idea about the number of
alternate spending conditions.

6 Conclusion and Future Work

Bitcoin provides multiple scripting options to create transactions involving sim-
ple money transfers as well as complicated contracts which can involve multiple
entities. Both ECDSA and Schnorr digital signature schemes employed in these
transactions are studied and analyzed for their usage, security, and enhance-
ments they bring to the cryptosystem. The different types of transactions cre-
ated in Bitcoin along with their locking and unlocking conditions are covered.

378 A. Jain and E. S. Pilli

The mechanism of creating Taproot transactions and using Schnorr signature
is also provided. This paper also shows the complex multi-signature contracts
which can be created using Taproot and Schnorr. In the future, we look forward
to implementing these complex contracts on the Bitcoin network.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L: Secure multi-
party computations on bitcoin. Commun. ACM 59(4), 76–84 (2016)

2. Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., Yarom, Y.: LadderLeak:
breaking ECDSA with less than one bit of nonce leakage. In: Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, pp.
225–242 (2020)

3. Bistarelli, S., Mercanti, I., Santini, F.: An analysis of non-standard bitcoin trans-
actions. In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT),
pp. 93–96. IEEE (2018)

4. Brown, D.: Standards for efficient cryptography, sec 1: elliptic curve cryptography.
Released Standard Version 1 (2009)

5. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 18

6. Delgado-Segura, S., Pérez-Solà, C., Navarro-Arribas, G., Herrera-Joancomart́ı, J.:
Analysis of the bitcoin UTXO set. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol.
10958, pp. 78–91. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-
58820-8 6

7. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE
Symposium on Security and Privacy (SP), pp. 1084–1101. IEEE (2019)

8. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
512–531. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 27

9. Hankerson, D., Menezes, A.: Elliptic curve cryptography. In: Jajodia, S., Samarati,
P., Yung, M. (eds.) Encyclopedia of Cryptography, Security and Privacy, pp. 1–2.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-642-27739-9 245-2

10. Hartmann, D., Kiltz, E.: Limits in the provable security of ECDSA signatures.
Cryptology ePrint Archive (2023)

11. Lau, J.: BIP 114: Merkelized abstract syntax tree (2016). https://github.com/
bitcoin/bips/blob/master/bip-0114.mediawiki

12. Lombrozo, E., Lau, J., Wuille, P.: BIP 141: segregated witness (2015). https://
github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

13. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. Des. Codes Crypt. 87(9), 2139–2164 (2019)

14. McCorry, P., Möser, M., Shahandasti, S.F., Hao, F.: Towards bitcoin payment
networks. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp.
57–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40253-6 4

15. Mitra, N.: Efficient encoding rules for ASN. 1-based protocols. AT&T Tech. J.
73(3), 80–93 (1994)

https://doi.org/10.1007/978-3-319-11212-1_18
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-642-27739-9_245-2
https://github.com/bitcoin/bips/blob/master/bip-0114.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0114.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://doi.org/10.1007/978-3-319-40253-6_4

SoK: Digital Signatures and Taproot Transactions in Bitcoin 379

16. Morita, H., Schuldt, J.C.N., Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the Schnorr signature scheme and DSA against related-key attacks. In: Kwon,
S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 20–35. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30840-1 2

17. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round Schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp.
189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 8

18. Pérez-Solà, C., Delgado-Segura, S., Herrera-Joancomartı, J., Navarro-Arribas, G.:
Analysis of the SegWit adoption in bitcoin (2019). https://deic-web.uab.cat/
guille/publications/papers/2018.recsi.segwit.pdf

19. Pieter, A.: Bip65: Op checklocktimeverify (2014). https://github.com/bitcoin/
bips/blob/master/bip-0065.mediawiki

20. Pornin, T.: Deterministic usage of the digital signature algorithm (DSA) and ellip-
tic curve digital signature algorithm (ECDSA). Technical report (2013)

21. Raikwar, M., Gligoroski, D., Kralevska, K.: SoK of used cryptography in
blockchain. IEEE Access 7, 148550–148575 (2019)

22. Rowe, D., Breitner, J., Heninger, N.: The curious case of the half-half bitcoin
ECDSA nonces. Cryptology ePrint Archive (2023)

23. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4, 161–174
(1991)

24. Thyagarajan, S.A., Malavolta, G., Moreno-Sanchez, P.: Universal atomic swaps:
secure exchange of coins across all blockchains. In: 2022 IEEE Symposium on
Security and Privacy (SP), pp. 1299–1316. IEEE (2022)

25. Ullah, S., Zheng, J., Din, N., Hussain, M.T., Ullah, F., Yousaf, M.: Elliptic curve
cryptography; applications, challenges, recent advances, and future trends: a com-
prehensive survey. Comput. Sci. Rev. 47, 100530 (2023)

26. Wuille, A.P., Nick, J., Towns, A.: BIP341: taproot: SegWit version 1 spending rules
(2020). https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki

27. Wuille, Nick, J., Towns, A.: BIP342: validation of taproot scripts (2020). https://
github.com/bitcoin/bips/blob/master/bip-0342.mediawiki

28. Wuille, P., Nick, J., Ruffing, T.: BIP 340: Schnorr signatures for sec256k1 (2020).
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

https://doi.org/10.1007/978-3-319-30840-1_2
https://doi.org/10.1007/978-3-030-84242-0_8
https://deic-web.uab.cat/guille/publications/papers/2018.recsi.segwit.pdf
https://deic-web.uab.cat/guille/publications/papers/2018.recsi.segwit.pdf
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

BCTPV-NIZK: Publicly-Verifiable
Non-interactive Zero-Knowledge Proof

System from Minimal Blockchain
Assumptions

Nimish Mishra(B) and S. K. Hafizul Islam

Department of Computer Science and Engineering, Indian Institute of Information
Technology Kalyani, Kalyani 741235, West Bengal, India

neelam.nimish@gmail.com

Abstract. Non-interactive publicly-verifiable zero-knowledge proofs
(PV-NIZKs) are essential to modern cryptography. However, historically,
literature has used dependencies like the need for absolute trust in a third
party or the existence of a truly random oracle to construct such proofs.
Recently, the focus has shifted to exploiting the decentralized trust foun-
dation of a generic Proof-of-Stake (PoS) blockchain to build such proofs.
However, such proposals make unrealistic assumptions on the blockchain
itself: static adversaries, assumptions on the future behavior of the play-
ers, and the existence of first-time miners in any given sequence of n hon-
estly mined blocks. While aiding good proofs, such assumptions under-
mine the practical adaption of such proof systems. This paper introduces
a blockchain-based PV-NIZK (BCTPV-NIZK) system from standard
blockchain assumptions. It assumes the existence of a publicly-verifiable,
secret randomness generation scheme (widely studied in literature and
requires no further assumptions on trust).

Keywords: Blockchain · Cryptography · Proof-of-Stake · Trust ·
Zero-knowledge proof

1 Introduction

Generally, publicly-verifiable zero-knowledge proof in a non-interactive setting
(PV-NIZK) needs some intermediary that helps to establish to commonly shared
string. The literature used heuristic assumptions (e.g., random oracle model) or
a trusted third party to develop the Common Random String (CRS). However,
very recently, Goyel and Goyel [9] merged the concepts of NIZK and blockchain,
wherein the blockchain and its public-verifiability and immutability properties
were used to establish a CRS. They made assumptions on the future behav-
ior of both honest and adversarial parties in the blockchain. Blockchain is very
dynamic, and assuming static adversaries is far-fetched. This shortcoming was
discussed in [12] and [13], where Scafuro et al. [13] presented new construction of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 380–395, 2023.
https://doi.org/10.1007/978-3-031-49099-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_23&domain=pdf
http://orcid.org/0000-0002-8585-9425
http://orcid.org/0000-0002-2703-0213
https://doi.org/10.1007/978-3-031-49099-6_23

BCTPV-NIZK 381

a NIZK over a Proof-of-Stake (PoS) blockchain using components from existing
literature and [12]. Scafuro et al. [13] offer the latest advancement in developing
a NIZK over the blockchain. They do not shy away from restricting generalized
assumptions on the blockchain. We formally treat these restrictions later and
informally state them here. It is expected that out of any n length of blocks in
a blockchain, at least α are from honest parties. This is an informal statement
of the standard chain quality assumption. Scafuro et al. restrict this assumption
by assuming the existence of a blockchain wherein any sequence of d blocks has
at least n blocks which first-time miners have mined, and the majority of those
first-time miners are honest. We relax this restriction and propose a PV-NIZK
over blockchain without amending the standard chain quality assumption.

1.1 Motivations

We start with the assumption that we have a generic PoS blockchain wherein
we make no amendments to the standard chain quality and chain consistency
properties. We assume an adaptive adversary and make no assumption on the
future behavior of either the adversary or the honest player. Under these informal
assumptions, we summarize our contributions. First, we give a general, informal
idea regarding the constructions of PV-NIZK, why certain design decisions were
made, and how we approached constructing the PV-NIZK over a generic PoS
blockchain.

The way zero-knowledge proofs (ZKP) are treated in literature involves using
a simulator. Suppose a polynomial-time verifier cannot distinguish proofs gener-
ated from an honest prover or a simulator. In that case, it is said the proof has
leaked no knowledge of its origin, thereby branding it zero-knowledge. Another
component used widely is witness-indistinguishable proofs (WIP). In such proof,
there exists a statement to be proved (x ∈ L where L is some language to which
the statement belongs, and w1, w2 are witnesses that are, quite literally, witness
to the truth of the statement x. Under a WIP, a verifier cannot discern whether
w1 or w2 was used as the witness to create the proof.

Like [13], we follow the FLS paradigm (Feige - Lapidot - Shamir) [2,7]. FLS
paradigm looks to convert a WIP to a ZKP by providing a fake witness to the
black-box simulator such that the verifier cannot discern whether it interacted
with the actual honest prover or the simulator. The key point that will be useful
in analyzing and designing NIZKs over the blockchain is that a polynomial-time
prover does not access the simulator’s witness. Concretely, the FLS approach
proves the OR of two statements: either x ∈ L OR an intractable problem’s
solution is verifiably proved. The intractable problem can only be proved with a
fake witness available to the simulator and not to the prover. In the case of [13],
this intractable problem was to predict the majority of honest blocks beforehand
for the next d-blocks. In the case of [9], this intractable problem was to generate a
long fork of the PoS blockchain. Informally, in our case, this intractable problem
is to reliably predict the output of high-entropy pseudo-random generators and
find collisions in secure hash functions.

382 N. Mishra and S. K. Hafizul Islam

A natural question at this point is to ask: what gives the simulator the witness
to an intractable problem. The answer lies in [5]. The core idea is the simulator
has privileged access to the blockchain, which it uses as a trapdoor theorem to
generate a witness to the intractable problem in the proof. In Goyel ad Goyel [9],
and Scafuro et al. [13], the simulator is allowed to control all honest parties of
the blockchain, thereby knowing the information private to each honest player
and using this knowledge to generate the proof. Evidently, any dishonest prover
will not have access to the simulator’s fake witness since the prover can’t control
all the honest parties in a generic PoS blockchain.

1.2 Contributions

Since we have all components discussed, we are discussing our contribution now.
In [13], a special high-entropy string is attached to each block in the chain, and
pristine blocks are defined as the blocks whose high-entropy string is unseen
before in the chain. Since the simulator controlled all the honest parties, it could
predict, in advance, the majority of pristine blocks added to the blockchain. The
simulator extracted the high entropy string of most pristine blocks and generated
the proof. Verification succeeded if (1) the commitments to predictions were
published on the blockchain, (2) a majority of blocks in a given length of the
chain after the publication of the predictions were pristine, and (3) the proof
was honestly generated. A question in progression naturally arises: Why the
assumption that α ≥ 0.5 (wherein α is the fraction of honest blocks in a given
length of the chain)? For a generic PoS blockchain, we assume an adversary
cannot control most of the nodes. In that scenario, if α is set to anything greater
than or equal to 0.5, standard blockchain assumptions force the correctness of
the proofs. However, suppose α was arbitrary. In that case, it may be possible
that an adversary’s control of the network (let’s call it β) is such that β > α,
in which case, the adversary would be able to predict > α number of pristine
blocks thereby fooling an honest verifier. Moreover, the restriction that every
sequence of d blocks must observe a sequence of n pristine blocks out of which
at least �n

2 �+1 blocks should be mined by first-time, honest miners is not valid in
modern practical blockchains. This is because the number of miners in a network
is limited, and by the given assumption in [13], a single miner can take part in
generating a NIZK only once, thereby greatly limiting the flexibility as well as
the number of proofs that can be generated in a given chain. We remove this
amendment by requiring a one-time, publicly-verifiable, secret randomness. As
long as the standard chain quality assumption holds (i.e., arbitrary α number of
blocks in a given portion of the chain are honest), we reason that the problem of
predicting all the secret randomness is intractable to an adversary and tractable
to a simulator controlling all honest parties. A verifier verifies if all randomness
is correctly predicted; if not, verification fails.

BCTPV-NIZK 383

2 Background

The reason for separate stateB and stateP is that we assume a general execution
of a blockchain wherein different parties will have different recent forks (or the
tail of the local copies shall differ). Stability is achieved as time passes and the
parties synchronize on the tail post, in which new blocks are added, thereby
extending the tail and desynchronizing it once again. The cycle repeats itself.
We list all the notations used in this study in Table 1.

Table 1. Notations used

Notation Meaning

λ Security parameter

O Big-Oh notation

stateB General state of the ledger

stateP State of a party P

P Prover in the ZKP system

V Verifier in the ZKP system

PpvWI Prover in the WIP system

VpvWI Verifier in the WIP system

RA Randomness authority

s Transient secret of miner

d Number of blocks after which s is made public

n Number of blocks to observe after posting commitments

u Scalar such that u × n is the number of commitments to make

rand Randomness generated by RA for each miner

rand′ Randomness used as block identifier

Definition 1 (Negligible Function). A function ε(λ) : N → R is said to be
negligible if, for every integer v > 0, there exists an integer u such that ε(k) ≤ 1

λv

holds ∀λ ≥ u

2.1 Blockchain Protocols

We follow the same formalism of a blockchain as done in [9,12,13].

Definition 2 (Validity Predicate). Validity predicate is defined as semantic
check V(B) that outputs a binary decision b ∈ {0, 1}, where B represents a
sequence of blocks whose validity needs to be determined.

Validity predicate as defined in Definition 2 is used to abstract semantics of
the blockchain including, but not limited to, checking honest mining, prevent-
ing double-spending, dishonest behavior, and so on. A validity parameterizes
a blockchain protocol predict V and consists of the following polynomial-time
algorithms:

384 N. Mishra and S. K. Hafizul Islam

– GetRecords(stateB, 1λ): Upon inputting the security parameter λ, and the
state stateB of the ledger B to this algorithm, it outputs the sequence of valid
blocks in B.

– GenerateBlock(1λ, x, stateP , stateB): Upon inputting the transaction
x, stateP of the player P , and stateB of B to this algorithm, it invokes
GetRecords(stateB, λ), and outputs a latest addition to B that satisfies
the validity of V .

– Broadcast(1λ, m): Input to this algorithm are λ, and a message m, it broad-
casts m to the network. This step is equivalent to synchronizing stateP ′ , for
all players P ′ in the network, with stateP for player P who generated a new
block.

– UpdateState(1λ, stateP): Upon inputting λ, and stateP of P , it updates
stateP . This corresponds to listening to the broadcast for incoming messages
and updating the local state accordingly.

Definition 3 (Blockchain Compromise). We define compromising of the
blockchain as the situation wherein an adversary A has generated a local state
stateA that:

– violates V(B)
– is able to influence stateB

We now define standard tools used to evaluate security of a generic blockchain.

Definition 4 (Chain Consistency). We define a chain consistency predicate
CC(n) such that for any two distinct stateP and stateP ′ (where P and P ′ are
honest parties), with overwhelming probability, the local copies of the ledger with
P and P ′ differ in at most n recent blocks at the tail of the blockchain.

Definition 5 (Chain Quality). We define a chain quality predicate CQ(n, α)
such that for every sequence of n consecutive blocks in the blockchain B and for
every stateP (where P is an honest player), at least α × n blocks are mined by
honest players with overwhelming probability.

To relieve the restrictive assumption described in [13], we require an addi-
tion to the algorithm GenerateBlock(·). Concretely, we need an acquisition of
a high-entropy publicly-verifiable short-lived random string to be appended to
each block. This string is generated by the party running the algorithm Gen-
erateBlock(·). Although we dwell on the details later, it is immediately clear
how we relax the assumption on the chain quality suggested in [13]. As long
as a minimal α fraction of blocks in a suitable chain of length, n is honest, no
adversary or dishonest prover can reliably guess random strings of α × n blocks,
thereby providing us with the trapdoor theorem to formulate the proposed PV-
NIZK protocol. The details follow in later Sections. In the proposed construction,
we assume a generic PoS blockchain wherein participants can execute arbitrary
smart contracts, and the consensus protocol is both sound and correct.

BCTPV-NIZK 385

2.2 Publicly-Verifiable Randomness

An essential ingredient in our construction is the notion of publicly-verifiable
randomness that we borrow from [8]. Briefly, it’s a blockchain-based randomness
generator wherein the randomness generator authority (RA) is not required to
be honest. We mold it to our requirements.

Assumption 1. For every honest execution of GenerateBlock(·), we use a
high-entropy, private random string as the block identifier, which is made
publicly-verifiable post d blocks in the future after generation of the current block.
In other words, every user intending to generate a block needs to repeat this pro-
cedure for every block they generate.

Assumption 1 enforces the use of publicly-verifiable randomness in the block
generation procedure and also provides a core component in our construction.
Note that this assumption can be easily materialized through minor changes in
how modern practical blockchains generate blocks: the miner appends this ran-
domness to the block they have mined, and d blocks later reveal the randomness
such that it is publicly-verifiable. Considering � ∈ N and a publicly known post-
quantum hash-function H : {0, 1}∗ → {0, 1}�, the procedure is enumerated as
follows for a miner M:

– M chooses a secret s ∈ {0, 1}k for k > �.
– M sends a signed request tuple (MID, usage info, H(s)) to RA, where MID

is the unique identifier identifying this user in the context of the blockchain,
usage info is a commitment to a description of the usage of the random-
ness (for instance, appending to the newly generated block from Generate-
Block(·).

– RA posts the request on a public platform where anyone can verify the digital
signature of M using its public key.

– RA submits a transaction Tx = [MID,H(usage info),H(s)] to B.
– Suppose b is the verified block where Tx appears and b′ is the verified block

following b. RA sends back to m the following randomness: rand = H(Tx ‖
H(b′)).

– M uses the randomness rand′ = rand ⊕ H(s ‖ Mid).
– d blocks post GenerateBlock(·), M runs Broadcast(1λ, s) and becomes

eligible to mine/generate another block in the future. Now everyone can use
this s to verify if rand′ and the block identifier of the block from Generate-
Block(·) are the same.

2.3 Publicly-Verifiable WIP (PV-WIP)

Another essential ingredient in our construction is the use of PV-WIP. We define
ΠpvWI = (PpvWI ,VpvWI) as the tuple of algorithms for the prover and the
verifier exchanging a PV-WIP.

Definition 6 (Witness). The proof for x ∈ L proceeds by finding a witness w
such that (x,w) ∈ R for some relation R. We note:

386 N. Mishra and S. K. Hafizul Islam

– ‖ x ‖∈ O(1λ) and ‖ w ‖∈ O(1λ)
– Given a published witness w, verification can be done in polynomial-time
– L = {x | ∃w : (x,w) ∈ R} is a NP language

Definition 7 (PV-WIP). Given λ, a string x ∈ L, and two witnesses w1 and
w2 such that (x,wi) ∈ R for i ∈ {1, 2} as inputs, a PV-WIP is given over the
execution of PpvWI(x, λ,wi) for i ∈ {1, 2} such that a polynomial-time verifier
VpvWI is unable to computationally distinguish whether w1 or w2 was used in
the proof.

The pvWI proof system used as a component here is a delayed input system,
which means the inputs x and w are used to compute the last message of the
proof, directly implying that the all-except-last messages can be computed offline
(before any knowledge of x and w). Note how this property greatly reduces
the amount of computation required to compute each proof. We rely on the
pvWI proofs discussed in [12] in our construction and thus directly inherit their
properties, discussions, and formal proofs regarding the pvWI component of our
construction. The extra assumption because of this inheritance is: for any given
sequence of t consecutive blocks, there is at least a triple that is generated by
honest execution of GenerateBlock(·). This is a natural extension of the chain
quality assumption; the chain quality assumption with arbitrary α guarantees
that α × t number of blocks shall be from honest players; thus, this assumption
is very valid for a careful value set for t. Another property of pvWI construction
from [12] (and corresponding proofs in [13]) is that the proof holds in the presence
of blockchain failure.

2.4 NIZK System

The main goal of any zero-knowledge proof (ZK) system is to systematically
prove that a string x belongs to a language L. In the case of a non-interactive
zero-knowledge proof (NIZK) system, the prover, and verifier share a common
random string (CRS). The probabilistic polynomial-time (PPT) prover publishes
a proof for x ∈ L, and the PPT verifier verifies its validity against the CRS.
The existence of the CRS is what makes such proofs non-interactive. However,
the process of establishing a CRS can be interactive or semi-interactive (which
we support here). We now formalize our discussion.

Definition 8 (ZK Argument). A zero-knowledge argument, on input security
parameter λ, a string x ∈ L, and a witness w (refer Sect. 7 for details) to the
prover such that

– The prover and verifier engage in an exchange that enables them to share a
common random string σ.

– Using a witness indistinguishable argument of knowledge, the prover proves
the knowledge of a witness w such that (x,w) ∈ R (refer Definition 6 for R)
OR knowledge of a witness w′ such that (σ,w′) ∈ S, where S ∈ NP or
higher complexity.

BCTPV-NIZK 387

The design of ZKP system as given in Definition 8 is such that if the verifier
is honest, then (σ,w′) �∈ S. If the verifier is dishonest, then the simulator shall
be able to prove (σ,w′) �∈ S. Any ZKP system exhibits two main properties:
completeness and soundness. Informally, completeness implies the proof system
can prove any true statement with overwhelming probability. Soundness implies
that whatever the system proves is true (an untrue statement can’t be proved
with the proof system, with overwhelming probability). We demonstrate both of
these properties for our proof system later.

3 Proposed BCTPV-NIZK System

In this section, we proposed a publicly-verifiable non-interactive zero-knowledge
proof system from minimal blockchain assumptions (BCTPV-NIZK). We now
present the proposed BCTPV-NIZK system Π = (P ,V). Note that the assump-
tion of the simulator controlling all the honest parties in the network does not
extend to the simulator predicting which fork will remain in the blockchain when
the chain stabilizes. Hence, the simulator can’t provide tight predictions of the
next n blocks; the simulator thus provides predictions of the next u × n (u > 1)
blocks, where u is experimentally defined. The entire workflow is schematically
depicted in Fig. 1.

– Prover setup
• Compute (commitmenti, decommitmenti) ← Com(0�) for i ∈

{1, 2, · · · , u × n} where � is the length of rand′ as defined in Sect. 2.2.

Fig. 1. Workflow of BCTPV-NIZK System.

388 N. Mishra and S. K. Hafizul Islam

• Delete all decommitment for i ∈ {1, 2, · · · , u × n}.
• Run stateP = UpdateState(1λ, stateP) to get the latest state of the

ledger.
• Run Broadcast(1λ, (commitment1, commitment2, · · · ,

commitmentu×n)) to update the network with the u × n commitments.
• Run GetRecords(stateB, 1λ) and receive n additional blocks to the

chain.
– Prover procedure P(x,w) s.t. (x,w) ∈ R

• Let rand′
i ∈ {1, 2, · · · , n} be the publicly verifiable, secret randomness

used in GenerateBlock(·) procedures to generate the n blocks follow-
ing publication of the commitments and let MIDj

be the identity as
defined in Sect. 2.2. Then input xΠ to the prover procedure becomes (x,
(commitment1, commitment2, · · · , commitmentu·n), (rand′

1, rand′
2, · · · ,

rand′
n), (MID1 , MID2 , MID3 , · · · , MIDn

))
• The k messages of Π are computed as follows:

∗ π1 = PpvWI(1λ, l)
∗ π2 = PpvWI(π1)
∗ π3 = PpvWI(π2)

...
∗ πk = PpvWI(πk−1, xΠ , w)

• Output the proof ΠP = {(π1, π2, π3, · · · , πk), xΠ}
– Verifier procedure V(ΠP)

• Parse ΠP as (π1, π2, π3, · · · , πk) and xΠ .
• Parse xΠ as (x, (commitment)i, (rand′)j , (MID)j) where (string)i/j

is notational abuse for (string1, string2, · · · , stringj) for i ∈
{1, 2, 3, · · · , u × n} and j ∈ {1, 2, 3, · · · , n}.

• Verify presence of (commitment)i on the blockchain through UpdateS-
tate(1λ, stateV) and GetRecords(stateB, 1λ). Let b∗ be the block where
the commitments are transacted.

• For b∗ + n blocks, extract (rand′)j for j ∈ {1, 2, 3, · · · , n}.
• For b∗ +n+d blocks, match where (MID)j have made public their secret

information sj and extract it. Extract (rand)j from records of RA (use
MID to match records).

• Verify if
∗ ∗ (rand′)j = randj ⊕ H(sj ‖ (MID)j) for j ∈ {1, 2, 3, · · · , n}
∗ ∗ VpvWI(xΠ ,ΠP , UpdateState(1λ, stateV)) = 1

4 Formal Proofs

For all subsequent subsections, we treat the proof system Π given in Sect. 3 as
a complex construction of simpler building blocks: non-interactive commitment
scheme Πcom = (commitment, decommitment) that is statistically binding
and a non-interactive, delayed input publicly verifiable witness indistinguishable
proof system ΠpvWI .

BCTPV-NIZK 389

4.1 Completeness

Theorem 1 (Completeness). The BCTPV-NIZK system Π from minimal
blockchain assumptions described in Sect. 3 is complete.

Proof. Completeness of Π follows directly from the completeness of Πcom and
the completeness of ΠpvWI . We defer the proof of the latter to [13].

4.2 Soundness

Theorem 2 (Soundness). The BCTPV-NIZK system Π from minimal
blockchain assumptions is sound, i.e., the bound on the probability of an adver-
sary fooling a verifier is bounded by a negligible function.

Proof. Assume an adversary A can prove an false statement. Then the challenger
C inherits a subset of the simulator’s powers: mainly C has access to all rand′

of all the parties in the ledger. We define a game between A and C as follows:

– C stores all rand′ of the players in B.
– C maintains a set of k · l private coins, where � is the length of rand′, and k

is the maximum number of queries submitted to C, and A have agreed upon
before playing the game. Note that k is polynomially related to u.

– For each request made by A, C tosses � coins and returns the bit-string
generated

– After A has made at most k requests to C, A outputs it’s guess of the n
number of randomness rand′, say (rand′

A)1, (rand′
A)2, · · · , (rand′

A)n.

Recall from our discussion in Sect. 1.1, the general structure of the proof is
either x ∈ L OR the solution of an intractable problem is verifiably proved.
Since the objective of A is to fool a verifier into accepting a proof for x �∈ L, the
only choice A has is to prove the latter part of the statement. Recall again from
Sect. 1.1 that the intractable problem in our case was to predict the output of
high-entropy pseudo-random generators (concretely, predict the values of secret
rand′ used even before the blocks are added to the blockchain and the secret is
made public according to the procedure described in Sect. 2.2).

A wins the game iff A correctly predicts rand′ for the next n blocks fol-
lowing the block where the commitments are posted. Recall that Πcom is a
perfectly binding commitment scheme, implying the commitments map back to
just the original message; this implies once the commitments are posted, the
scheme prohibits any induced confusion about the original message used to cre-
ate those commitments. Therefore, A has no choice but to tightly predict all
u × d commitments that an honest prover would have generated.

From the standard chain quality assumption, α×u×d blocks in a consecutive
sequence of u×d blocks are from honest execution of GenerateBlock(·). A has
no choice but to predict tightly α × u × d high-entropy pseudo-random strings.
From the game described above, A receives the correct value of one rand′ among
α×u×d high-entropy pseudo-random strings with probability 1

2� . Since all rand′

390 N. Mishra and S. K. Hafizul Islam

are mutually independent, the probability of A winning the game is (1
2�)α×u×d.

It is straightforward to see how this is bounded by some negligible function ε.
Moreover, as shown in [13], this negligible probability directly contradicts the
soundness property of ΠpvWI defined in [13] (which is also used verbatim in our
construction) thereby contradicting the assumption that A is successful.

4.3 Zero Knowledge

Theorem 3 (Zero knowledge). The delayed input BCTPV-NIZK system Π
is zero-knowledge assuming:

– validity of chain consistency and chain quality predicates,
– Πcom is statistically binding,
– ΠpvWI is delayed input witness indistinguishable proof that is complete and

sound, and
– Assumption 1 holds.

Proof. We introduce three entities: verifier V , simulator S, and prover P . We
define the view of V as follows:

Definition 9 (V t
V(X)). V t

V is defined as the view of V at any given instant t.
V t
V comprises of:

– stateB,
– stateV = UpdateState(1λ, stateV), and
– ΠX , where X is the party that created the proof, i.e. X ∈ {P ,S}.

The proof system Π can be said to be zero-knowledge iff the view of V is
statistically indistinguishable for either value of X . For notational convenience,
let V t

V(X) = 1 imply that X has indeed generated the proof ΠX . Concretely,
the following relations holds:

Pr[(VpvWI(xΠ ,ΠP ,UpdateState(1λ, stateV)) = 1,and, V t
P = 1)−

VpvWI(xΠ ,ΠS ,UpdateState(1λ, stateV)) = 1,and, V t
S = 1)] ≤ ε(k)

where ε(k) is some negligible function and Pr denotes probability. Informally,
we mean that if a verifier V cannot distinguish who generated the proof with
non-negligible probability, the proof system is zero-knowledge. To show this is
indeed true, we first note the steps S follows that is different from P and then
reason how the two distributions are statistically indistinguishable. S follows the
following steps to generate the proofs:

– Simulator setup
• For all i = {1, 2, · · · , n}, S samples secret si and the identity mIDi

of
the miner M uniformly at random from {0, 1}∗

• Compute (commitmenti, decommitmenti) ← Com(0�) for i ∈ {1, 2, · · · ,
u × n}, where � is the length of rand′ as defined in Sect. 2.2

• Delete all decommitment for i ∈ {1, 2, · · · , u × n}

BCTPV-NIZK 391

• Get the latest state of the ledger stateP = UpdateState(1λ, stateP)
• Update the network with the u × n commitments Broadcast(1λ,

(commitment1, commitment2, · · · , commitmentun))
• Get n additional blocks of the chain GetRecords(stateB, 1λ)

– Simulator prover procedure P(x,w), s.t. (x,w) ∈ R
• Let rand′

i ∈ {1, 2, · · · , n} be the randomness computed by S using
si sampled earlier and randi received from RA as usual. S runs
GenerateBlock(·) on the behalf of each honest player in the net-
work using corresponding values of rand′s computed. Then input xΠ

to the prover procedure becomes (x, (commitment1, commitment2, · · · ,
commitmentun), (rand′

1, rand′
2, · · · , rand′

n), (MID1 , MID2 , MID3 ,
· · · , MIDn

))
• The k messages of Π are computed as follows:

∗ π1 = PpvWI(1λ, �)
∗ π2 = PpvWI(π1)
∗ π3 = PpvWI(π2)

...
∗ πk = PpvWI(πk−1, xΠ , w)

• Output the proof ΠS = {(π1, π2, π3, · · · , πk), xΠ}
Informally, the difference between S and P lies in the way rand′s are gen-

erated. S has access to rand′ of all honest parties and thus has the witness to
the second part of the FLS (Feige - Lapidot - Shamir) [2]- [7]: either x ∈ L OR
the solution of an intractable problem is verifiably proved where the intractable
problem in our case was to predict the output of a high-entropy pseudo-random
generator and find collisions in collision-resistant hash functions.

How? Ideally, the intractable problem in our case is to know a witness to
knowledge of all rand′ in the upcoming n blocks after publication of the com-
mitments. Through rand′ = rand ⊕ H(s ‖ MID), there are two ways to know
rand′, either

– Predict rand′ directly, which means predict the output of a high-entropy
pseudo-random generator, OR

– With rand being public information, find collisions in the collision-resistant
hash function H(·) such that A knows s′ for which the following holds for
each i ∈ {1, 2, · · · , n}:

rand′
i = randi ⊕ H(s′

i)
= randi ⊕ H(si ‖ (MID)i)

Since both these paths have been shown to be computationally hard and are
common knowledge (based on the choice of the hash function and the random-
ness generator), the hardness argument is valid. Moreover, there is no statistical
difference between S’s and P ’s generation of rand′ since both use RA’s aid
to generate rand and use the same distribution to generate si. We thus have

392 N. Mishra and S. K. Hafizul Islam

that there is no statistical difference in the way S and P generate ΠS and ΠP
respectively, which directly implies the indistinguishability of these two from V t

X
for X ∈ {P ,S}.

5 A Note on Blockchain Collapse

Since we assumed an adaptive adversary that can corrupt anyone anytime, some
adjustments need to be made. However, since the corruption portion of the proof
system is similar to the one elaborated in [13], namely, removing the decommit-
ment information to keep the view of the adversary same in case of corrupted
and non-corrupted simulator/prover. The idea is that after the proof has been
published, the decommitment information is no longer available with the player
who generated the proof. This directly implies that even if the adversary, in the
future, corrupts the player, the commitments can not be decommited. This is the
core idea of secure erasure mentioned in [13], which we avoid going into detail
here for brevity.

6 Experiments

We used NoKnow protocol [1] as the core of the sigma protocol. NoKnow protocol
is based on [4], and [10] as Πcom. However, since both sigma protocols and Πcom

used are external modules to our construction and not internal design, one could
easily replace these with any other construction, and they would also work. We
experimented with Rinkeby, Ethereum’s test network for blockchain. Our results
are briefed in Table 2. We parameterized n = 20, u = 5, and d = 10. All
experiments were run on MacBook Air running macOS High Sierra v10.13.6
with 1.8 GHz Intel Core i5 processor, 8 GB 1600 MHz DDR3 memory, and Intel
HD Graphics 6000 1536 MB graphics.

Table 2. Experimental results

Operation Projected time Execution time

(second)

Ethereum mining (1 block) TB 14.57

Block retrieval TR 2

Commitment generation

(10 KB)

(Πcom)com 5.247635841369629

Commitment verification

(10 KB)

(Πcom)ver 6.466604709625244

Prover setup (Πcom)com + (Πcom)ver + TB + nTR 70.34

Prover procedure 2τ(Πcom)com + 2TB +dTR + O(1) 1307.60

Verifier procedure (n + d)TR + O(1) +(Πcom)ver 776.79

In Table 2, TB denotes the average time elapsed between submitting a trans-
action and it appearing on the blockchain. TR is the time to retrieve a block

BCTPV-NIZK 393

from the blockchain, assuming that the block already exists. In the prover pro-
cedure, we set τ = 10!

3!(10−3)! . O(1) denotes the upper bound on the cumulation of
constant-time operations like parsing, hashing, string concatenation, and so on,
for which we do separately denote projected time. In Table 3, a sample Rinkeby
block is tabulated to illustrate the information posted in each transaction.

Table 3. This is a sample Rinkeby transaction added to the chain.

Key Value

Transaction Hash 0x9c77ee08356b526671af6e846ab80fb2dd· · ·
6a79e3e00d0bc270a36071b07aee6a

Status Success

Block 9198392

Timestamp 1min ago (Aug-29-2021 06:18:05 AM +UTC)

From 0xa500b2427458d12ef70dd7b1e031ef99d1cc09f7

To Contract 0xc0fa6c4377cea5bde5bdc57cac9f8380d2d97f7a

Value 0.01 Ether ($ 0.00)

Transaction fee 0.810559 Ether

Gas Price 0.000000001 Ether (1 Gwei)

Gas Limit 21,000

Gas Used by Transaction 21,000 (100%)

Base Fee per gas 8 wei (0.000000008 Gwei)

Burnt fees 0.000000000000168 Ether

Nonce 49703

Input Data 0x (message call or contract creation)

7 Conclusion

Practical BCTPV-NIZK systems are becoming increasingly crucial as use-cases
arise wherein the prover-verifier interaction is not feasible. It becomes essen-
tial thus to make advances in this field. However, due to stringent constraints
on NIKZ, like the existence of a true random oracle or trusted third party,
the research community has moved to consider decentralized sources of trust:
blockchains. The community is advancing to improve the security of such con-
structions while reducing the extra assumptions on generic blockchains. This
work loosens such stringent assumptions like requiring a certain number of new
miners in every sub-chain of a certain length, requiring static adversaries, or
requiring fixed behavior from blockchain players in the foreseeable future. We
provide a delayed-input, BCTPB-NIZK system that uses the concept of publicly
verifiable, secret randomness as block identifiers. By also tying the source of this
publicly verifiable randomness to blockchain, we also prevent the scope of any

394 N. Mishra and S. K. Hafizul Islam

direct attack onto this randomness, thereby guaranteeing its security, and tran-
sitively, the security of our NIZK system. We provide proofs of various desirable
properties from the proof systems and experimentally validate the same.

Future works can add to this idea and develop homomorphic proof systems
that combine proof from two sources and generate a piece of combined evidence.
Doing so in the setting we used in this paper is still an open problem.

Finally, we conclude by highlighting practical use-cases of NIZK, where works
like ours can pave way to better privacy-preserving constructions. For instance,
NIZKs have been used to develop privacy-preserving authentication schemes in
the context of Internet of Things [6,11], wherein user identity is not revealed.
Likewise, NIZKs have also been used for digital signatures as well [3]. In such
use cases, by extending NIZKs to PoS blockchains, the use case also leverages
the security guarantees of a blockchain.

References

1. Archer, A.: noknow PyPI. https://pypi.org/project/noknow/. Accessed 20 Aug
2021

2. Barak, B.: How to go beyond the black-box simulation barrier. In: Proceedings
42nd IEEE Symposium on Foundations of Computer Science, pp. 106–115. IEEE
(2001)

3. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 19

4. Chatzigiannakis, I., Pyrgelis, A., Spirakis, P.G., Stamatiou, Y.C.: Elliptic curve
based zero knowledge proofs and their applicability on resource constrained devices.
In: 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor
Systems, pp. 715–720. IEEE (2011)

5. Choudhuri, A.R., Goyal, V., Jain, A.: Founding secure computation on blockchains.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 351–380.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 13

6. Dwivedi, A.D., Singh, R., Ghosh, U., Mukkamala, R.R., Tolba, A., Said, O.: Pri-
vacy preserving authentication system based on non-interactive zero knowledge
proof suitable for internet of things. J. Ambient Intell. Humaniz. Comput. 1–11
(2021)

7. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string. In: Proceedings [1990] 31st Annual Symposium
on Foundations of Computer Science, pp. 308–317. IEEE (1990)

8. Goldwasser, S., Klein, S., Mossel, E., Tamuz, O.: Publicly verifiable randomness
(2018)

9. Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using
blockchains. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
529–561. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 18

10. Kelkboom, E.J., Breebaart, J., Kevenaar, T.A., Buhan, I., Veldhuis, R.N.: Prevent-
ing the decodability attack based cross-matching in a fuzzy commitment scheme.
IEEE Trans. Inf. Forensics Secur. 6(1), 107–121 (2010)

https://pypi.org/project/noknow/
https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1007/978-3-030-17656-3_13
https://doi.org/10.1007/978-3-319-70500-2_18

BCTPV-NIZK 395

11. Mart́ın-Fernández, F., Caballero-Gil, P., Caballero-Gil, C.: Authentication based
on non-interactive zero-knowledge proofs for the internet of things. Sensors 16(1),
75 (2016)

12. Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly verifiable proofs from blockchains.
In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 374–401. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 13

13. Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly verifiable zero knowledge from
(collapsing) blockchains. IACR Cryptology ePrint Archive 2020/1435 (2020)

https://doi.org/10.1007/978-3-030-17253-4_13

Proof-of-Variable-Authority: A
Blockchain Consensus Mechanism

for Securing IoT Networks

Lenoah Chacko, Pavithra Rajan(B), Varun Anilkumar, and Vinod Pathari

National Institute of Technology, Calicut, Kozhikode 673601, India
lenoahchacko@gmail.com, pavithra.rajan01@gmail.com,

varunca2001@gmail.com, pathari@nitc.ac.in

Abstract. In today’s world, Internet of Things (IoT) has become an
integral part of our daily lives. As IoT networks continue to gain impor-
tance, the need for efficient network management mechanisms becomes
crucial. Currently, the prevalent approach involves utilizing a centralized
server as the core management device, along with interfaces provided
by major corporations. In this paper, we explore blockchain technology
for IoT network management, aiming to empower individuals to retain
control over their data and eliminate the risks associated with a single
point of failure. However, implementing a consensus mechanism for IoT
devices in distributed systems is challenging due to the high computa-
tional demands of existing options. This poses a significant challenge in
securing IoT networks, especially when most devices are low-powered.
To overcome this challenge, we propose modification to the Proof-of-
Authority (PoA) consensus mechanism by introducing a decentralized
approach to the original solution.

Keywords: Blockchain · Internet of Things · Consensus Mechanism

1 Introduction

The emergence of IoT devices has led to the creation of interconnected networks,
revolutionizing various domains such as education, health care, economy and
many more. By sharing information with each other, IoT systems are capable of
performing numerous tasks, highlighting its importance in our society. However,
this exponential growth of IoT devices has led to significant communication chal-
lenges amongst the vast array of inter-connected devices. Consequently, the need
for a robust dynamic identity management solution has become important [2].

Effective IoT device management is essential to ensure the reliability, security,
and performance of IoT networks. It enables organizations to ensure that devices
are properly configured, patched, and updated to prevent security vulnerabili-
ties. It can also help organizations to scale their IoT networks more efficiently.
Additionally, verifying the authenticity of device state changes initiated by IoT

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 396–410, 2023.
https://doi.org/10.1007/978-3-031-49099-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_24&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_24

Proof-of-Variable-Authority 397

devices is essential for maintaining the integrity and reliability of IoT networks,
as any unauthorized modifications or transaction errors could result in significant
financial and operational risks [2].

This paper aims to provide a comprehensive overview of our approach to
secure IoT networks using blockchain. Section 2 describes the motivation for
our work, highlighting the challenges and needs in this domain. Section 3 pro-
vides a detailed background of the existing literature, focusing on current modes
of securing IoT systems. Section 4 presents the design of our proposed sys-
tem, including its architecture, components, process flow and functionalities.
Section 5 explores the potential scenarios within an IoT network and outlines
the expected outcomes with our proposed work, assessing theoretical applicabil-
ity and resilience. Section 6 describes how our proposed design has been imple-
mented. Finally, in Sect. 7, we analyse the performance of the proposed work in
contrast to existing ones and detail the factors to be considered while scaling.

2 Motivation

At present, numerous instances exist where centralized IoT device management
platforms are deployed. The introduction of smart city infrastructure paved the
way for significant advancements in citizen services, guaranteeing modern ameni-
ties for safety and efficient coordination of events [1]. In such an infrastructure,
a centralized platform can manage devices such as traffic sensors, streetlights,
and waste management systems. The platform can monitor the devices’ perfor-
mances and detect issues, such as a malfunctioning traffic sensor or a filled waste
bin. This information can be used to schedule maintenance and repairs, reducing
downtime and improving the system’s overall efficiency. Furthermore, the plat-
form can provide remote access to the devices, enabling administrators to control
the devices’ settings and configurations from a single interface, such as adjusting
the brightness of streetlights, changing traffic signal timings, or altering waste
collection schedules.

However, the utilization of such centralized servers raises conventional secu-
rity issues. Some of the potential risks include [1]:

– Single Point of Failure: In a centralized network, all the data is stored on
a central server, making it vulnerable to a single point of failure. Any breach
in the server can compromise the entire network.

– Message Forgery and Tampering: The central entity that manages data
is susceptible to being compromised by an attacker. Passive monitoring of
the network communication enable malicious actors to tamper with or forge
messages and re-transmit them.

– Access Control: A smart city is monitored by numerous IoT devices. Main-
taining individual privacy and security becomes challenging when dealing
with publicly used IoT devices. Furthermore, in a smart city, it is extremely
challenging to manage access for different users, especially when dealing with
diverse needs and multiple services.

398 L. Chacko et al.

To mitigate these risks, it is essential that applications of IoT device man-
agement systems, for instance, smart city systems, are designed with privacy
and security in mind. The following section discusses the design of one such
centralized platform for IoT device management and outlines methods to miti-
gate the risks mentioned earlier. This section also focuses on different consensus
mechanisms for distributed systems.

3 Background

The introduction of the IoT Central Hub Project [11] proved to be path-
breaking for home automation. Though there were similar centralized device
management platforms in existence earlier, this project solved the issues of high
installation requirements and usability complexity. This yielded more flexibility
to home users. As a primary requirement, this prototype mandated an initial con-
nection and authentication of data to be performed by a local network. Wireless
technology connectivity facilitated the identification of these devices. Once the
devices were paired, communication was carried out by parameters sent from one
gateway to another. The application served as the server and permitted users to
change or modify the functionality of applications. All the data flowed through
the central hub, allowing it to record it for the purpose of surveillance [11].

By adopting standard protocols for structuring data models, the IoT Cen-
tral Hub Project enabled seamless integration and extensibility with various
systems. Its notable achievement was in simplifying the configuration processes
and eliminating the necessity for technical specialists to operate it effectively.
Furthermore, the installation of the platform was straightforward and direct,
without extraneous configuration steps. This offered home users the convenience
of installing the application seamlessly. Ultimately, the development focus of
this prototype was to ensure full functionality and ease of testing. However, this
opened up a few security concerns. Having a single point of failure allowed an
unauthorized actor to potentially tamper with the recorded data. Additionally,
rogue devices could be connected to the network, and their prevention solely
depended on the security conventions of the network. In addition to this, the
ability of users to make changes to functionalities without adequate validation
was a concern.

The advent of blockchain technologies has provided a method to enhance
data-sharing while preserving trust. Blockchain preserves data trustworthiness
through its principles and mechanisms that is inherent to its design. Each block
in a blockchain is a cryptographic hash of the previous block. It is impossible to
alter a block’s content without changing the subsequent blocks. The immutability
of blockchain ensures that once data is recorded, it cannot be tampered with [9].

The flaws mentioned in the previous section for centralized IoT device man-
agement platforms can be solved by incorporating the immutable, auditable,
transparent features of blockchain.
– Immutable and Tamper-proof Ledger: In a blockchain-based IoT net-

work, all the devices are registered and verified on the network. The regis-
tration process ensures that only authorized devices can participate in the

Proof-of-Variable-Authority 399

network. When a device sends data to the network, the transaction is ver-
ified and recorded on the blockchain. This ensures that the data shared on
the network is authentic and trustworthy. Moreover, as the blockchain is
an immutable and tamper-proof ledger, it becomes impossible for any rogue
device to modify the data without being detected [9].

– No Central Point of Failure: The decentralized nature of blockchain
ensures that there is no central point of failure. All the devices in the network
store a copy of the blockchain, making it almost impossible for any hacker to
compromise the entire network [9].

– Transparent Access Control: In a blockchain-based IoT network, no sin-
gle company or device has complete control over the network, making it fair
for all the devices in the network. This is because blockchain technology
ensures that all devices have equal access to the network’s resources, and the
information on the network is transparent to everyone. This is vital in IoT
networks like Smart Cities for safeguarding individual privacy and security. In
Smart Cities, a multitude of IoT devices are distributed in public areas. Effi-
cient access control measures deter unauthorized users from tampering with
these devices, ensuring their proper functioning and reducing the potential
for misuse or harm. Given the interconnected nature of Smart Cities, effec-
tive access control becomes imperative to safeguard critical infrastructures
like power grids, transportation systems, and healthcare facilities.

Additionally, the use of a Certificate Authority (CA) ensures the integrity of
the devices that can communicate in the IoT network [4].

When dealing with an IoT system where there may be network failures and
latency issues, we must have an algorithm which takes these problems into
account when reaching a consensus in the blockchain. In [7], the Byzantine
Generals Problem is introduced, which demonstrates how reaching a consen-
sus is difficult in a distributed system. Algorithms that are able to address this
problem, with some assumptions and constraints, are known as Byzantine Fault
Tolerant (BFT) algorithms.

Among the BFT algorithms, Proof-of-Work (PoW) is the most used algo-
rithm in blockchain with proven reliability. However, PoW algorithms have faced
immense criticism as they consume a lot of power [15]. Considering that we have
devices which could be power constrained, we have to be conservative about
using its resources. Hence, PoW is a poor match for an IoT system.

Proof-of-Authority (PoA) is an algorithm that is energy efficient and
resistant to Sybil attacks [12,14]. Sybil attacks involve creating multiple fake
identities to control or manipulate a network, which can be used maliciously.
However, critics point out that PoA is not a truly decentralized algorithm. This
is because everyone is aware of the identities of the Deciding Agents (DA). This
makes it vulnerable to third-party manipulation. Additionally, these DAs are
pre-defined. Hence, it is a form of decentralized delegated centralization [8].
The next section discusses how the PoA algorithm can be modified to be more
decentralized, making it more suitable for an IoT system, which is the crux of
our work.

400 L. Chacko et al.

4 Design

We begin the design with a few assumptions regarding the system. First, we
define the entities in this system:

– Device: This can be any IoT device that seeks to be part of the network
containing the verified IoT devices. We are assuming that these devices can
generate their own private-key public-key pair.

– Node: This is a logical entity which is an IoT device that has been verified
and added to the network. Each node possesses an identifier called “Digital
Profile”.

– Digital Profile: This is a unique global identifier used to issue device cer-
tificates. To generate the Digital Profile, a minimal set of its attributes is
concatenated and hashed using Keccak hashing function to yield a 160-bit
Digital Profile ID. The minimal set of attributes contains the device serial
number, manufacturer name, MAC address and product name [10].

– Certificate Authority (CA): CA is a trusted entity that issues certificates
to devices to confirm their validity. Devices are valid only if they possess a
certificate from the valid root CA.

– Blockchain: Blockchain is a shared, immutable ledger that facilitates the
process of recording state changes and nodes in a network. From here on, the
term blockchain refers to a private blockchain.

– Smart Contracts: These are programs that are executed when specific
conditions are met. These are usually used to automate the implementation
of an agreement. Smart Contracts are stored on a blockchain.

We primarily use two methods to keep rogue devices out of our information
channels.

– A digital certificate issued by the CA is used to prove that a device is from
the chain of trust.

– The private key of the device can be used to sign the Digital Profile so that
the nodes on the network can verify whether the device broadcasting the state
is a rogue device or not.

While certificates are distributed in a centralized fashion, their verification
is done in a distributed way to prevent single-point attacks. The addition of
devices to the network and the recording of state changes are decentralized.

There are two main types of transactions that we discuss in this paper:

– Registration of a device in the network
– Broadcasting a sender’s state to other listeners on the network

The sender, a device in the network, has a message it wants to share with the
other devices on the network. This message can be a state change. The listener
refers to all the devices listening for a state change in the network. Figure 1
depicts the architecture diagram of the various components of our proposed
design.

Proof-of-Variable-Authority 401

Fig. 1. Architecture diagram of various components of PoVA

PoA consensus algorithm exhibits energy efficiency and facilitates low-latency
transactions, making it well-suited for IoT systems that are operating with con-
strained resources. Given these advantages, our research endeavours to enhance
PoA’s decentralization by building upon its foundation. To address this, we intro-
duce Proof-of-Variable-Authority (PoVA), where each node in the network
receives a reputation score, enabling it to get promoted as an authority node.
This creates a system to demote inactive authority nodes and promote candidate
nodes that vote in consensus with the authority nodes. The details pertaining
to the three different types of nodes that we referenced here are as follows:

– Follower Nodes (FN): Any node that does not take part in the consensus
is marked as FNs. They receive a copy of the updated ledger after consensus
is attained.

– Authority Nodes (AN): When a node has a reputation score greater than
a certain threshold, it becomes an AN. These nodes take part in the voting
process, and they seal and propagate new blocks. All ANs must vote often in
order to keep their status.

402 L. Chacko et al.

– Primary Authority Node (AP): The AP is chosen in a round-robin fashion
from the ANs. An AP retains its role for a fixed number of transactions
which can be defined through the properties of the blockchain. The purpose
of the AP is to receive the votes regarding the incoming transaction. Based
on majority votes of the ANs, it validates the blockchain. Upon successful
validation of the block by the AP, the candidate nodes that voted in consensus
with the ANs, increase their reputation score by a certain amount. All the
votes sent to the AP are signed to ensure that the votes have come from a
valid node. The AP then propagates the latest blockchain to all the nodes.

– Candidate Nodes (CN): CNs can vote to the AP on what the next block
should be. By voting in consensus with the ANs, the CNs can increase their
reputation score by a certain value. When they acquire a threshold reputation
score, they can be promoted to be an AN.

Fig. 2. Sequence diagram of device registration

4.1 Registration

If an IoT device wants to join a network, it must first generate its own pri-
vate/public key pair using ECDSA. Then it generates a Certificate Signing

Proof-of-Variable-Authority 403

Request (CSR), using the public key and the device serial number to send to the
CA for requesting a certificate. This certificate is used to prove that the device is
valid. Once it receives the certificate from the CA, it sends a registration request
to all the nodes in the network.

A smart contract is executed once the request reaches all the nodes. If the
majority of the ANs decide that the device’s certificate is valid, then the device’s
public details are added to the registry of AP. The AP then sends the updated
registry to all the nodes in the network. The device may register as an FN or
CN. It holds a copy of the registry too. Figure 2 shows the sequence diagram for
registration of an IoT device in a network. Apart from the sequence flow shown
above, these are a few additional flows:

– The updated registry is sent to the FNs as well.
– The CNs that voted in consensus with the ANs receive an increase in their

reputation. The CNs that voted contrary to the consensus of the ANs will be
penalized. However, the CNs that could not vote will not be penalized. This
is because CNs may experience intermittent periods of inactivity and have
the ability to commence operations at any given moment.

– The ANs that voted in consensus also receive an increase in reputation. ANs
that did not vote at all receive a decrease in reputation. However, ANs that
voted contrary to the consensus will not be penalised. This is due to the fact
that ANs significantly influence the consensus which necessitates continuous

Fig. 3. Sequence diagram of broadcasting and verification

404 L. Chacko et al.

activity to uphold the integrity of the consensus mechanism. It is possible that
an AN votes differently from the majority. This is not considered unexpected
behaviour and may be the result of a number of factors such as physical
distance and network latency spikes.

– A CN may be promoted to an AN only a limited number of times, beyond
which it is prevented from being promoted.

– During validation, if an AP is found to disobey the consensus and add another
block of its choice to the ledger, it is permanently blacklisted from the net-
work. This validation is performed by the remaining ANs. This is to enhance
the resilience of the system as it will eradicate the risk of a node getting the
privilege of adding multiple erroneous blocks to the blockchain as an AP.

4.2 Broadcasting and Verification

From here on, a node that wishes to update its state in the blockchain is referred
to as a sender. There are listeners on the network waiting for a state update.
Initially, the sender broadcasts its state change signed with its private key to
all the listeners on the network. The listeners can then verify the identity of
the sender. An AN votes in favour of the first incoming state change. If a state
change receives votes from more than half of the ANs, then it is added to the
ledger by the AP. The AP then sends the updated ledger to all the nodes in the
network. Figure 3 shows the sequence diagram for broadcasting a sender’s state
to verified listeners on the network.

5 Security Aspects

In Table 1, we detail the possible scenarios that can take place in the IoT network
and the expected outcomes of the PoVA consensus mechanism. This addresses
its applicability and robustness from a practical view point.

6 Implementation

6.1 Proof-of-Concept

We have implemented a Proof-of-Concept of the aforementioned design. The
CA has been developed using HashiCorp’s Vault [6]. Vault’s PKI Secrets Engine
facilitates the generation of X.509 device certificates. Using HVAC, which is a
Python client to interact with Vault, an interface to generate certificates has
been implemented. The Digital Profile is used in the payload of the CSR for
generating the certificate.

We have simulated a blockchain in Python with the consensus mechanism
devised. This blockchain can accept a device certificate, and depending upon the
consensus of the pre-added nodes in the network, the new device can be added
to the network. A Flask server that facilitates the verification of the device
certificate with the CA chain has been deployed. A request is made by each

Proof-of-Variable-Authority 405

Table 1. Analysis of potential scenarios and their outcomes

SL. No Scenario Expected Outcome

1 A single AP controlled by a malicious
actor attempts to defy the consensus
and add an erroneous block to the
blockchain

After the block is signed by the AP, the
ANs validate the block to ensure its
integrity. If the added block is found to
be erroneous, the block is ignored and
the AP is blacklisted from the network

2 A single or a few ANs are taken over
by a malicious actor. The actor
attempts to make the consensus arrive
at an invalid state

Arriving at a consensus requires a
majority of the ANs to vote similarly. A
few ANs cannot force the consensus to
an invalid state

3 Majority of the ANs are taken over by
a malicious actor. The actor attempts
to make the consensus arrive at an
invalid result

As consensus is determined by the
majority of the ANs, it is possible for
an actor controlling a majority of the
ANs to control the blockchain. However,
the distributed nature of the blockchain
makes this a difficult task

4 A single or a few ANs fail at once Arriving at a consensus requires a
majority of the ANs to vote similarly. A
few ANs not voting will not halt the
consensus

5 Majority of the ANs fail at once If the majority of the ANs fail at once,
the blockchain halts as consensus
cannot be reached as the majority of the
ANs do not vote in favour of anything

6 Majority of the ANs fail gradually A failed AN is not able to vote for the
consensus and receives a penalty (a
deduction in reputation score) for not
voting. Over a defined period, varying
in duration based on the penalty size,
ANs are gradually demoted to CNs.
Each node has a limited number of
opportunities to be elevated to an AN,
after which it will no longer receive such
promotions. This enables the network to
avoid the situation where majority of
the ANs are in a failed state, making it
impossible to reach a consensus

7 A malicious actor without access to
the Certificate Authority attempts to
spoof another node using its digital
profile and issue a transaction

Every broadcasted transaction requires
a verification of identity as a
preliminary step. Hence, the malicious
transaction will be invalid

voting node with the X.509 device certificate and CA chain as data. Table 2
indicates the input-output specification for the registration of a device to the
network.

As specified in the design, the nodes can fetch a state change broadcast
through the network. The AP adds it to the blockchain depending on the result
of the consensus. To simulate real-world conditions, we have introduced network

406 L. Chacko et al.

noise that affects the propagation of the state to different nodes and their voting.
Subsequently, the nodes are rewarded based on the specifications detailed in the
design. Table 3 depicts the input-output specification of the broadcasting and
verification scheme.

Table 2. I/O specification for the registration of a device to the network

Utility Actors Input Output

Key Pair
Generation

Devices Initialization Vector Private Key, Public Key

Digital Profile
Creation

Devices MAC Address,
Manufacturer Name,
Device Name

Unique ID for the device

Generate CSR Devices Device ID, TTL, Root
Domain Name

Certificate request
protocol sent to CA

Certificate
Generator

Root CA,
Intermediate
CAs

Device ID, TTL, Root
Domain Name

Generated Certificate,
Private Key

Node
Registration
Request

Devices Public Key, Digital Profile,
Certificate, Ethereum
Address

Joint registration
protocol

Certificate
Verification

Nodes Certificate, Chain of
trusted certificates

Bool (T or F)

Registration
(Consensus)

Nodes Joint registration protocol Approved/Rejected
consensus

Add Transaction
to Blockchain

AP Transaction Vote Merkle tree with new
transaction block

Increment
Reputation

AP Node, Reputation to
increase

Node reputation
increased

Decrement
Reputation

AP Node, Reputation to
decrease

Node reputation
decreased

Test
Trustworthiness

AP Votes of the CNs, Next
transaction (already
selected)

If CN voted correctly,
increase reputation. If
CN voted incorrectly,
decrease reputation

Updated Ledger
Propagation

AP FNs, CNs, ANs, New
Device, Updated Ledger

Nodes receive updated
ledger

6.2 Geth Implementation

We have utilized Go-Ethereum (Geth) [5], which is an Ethereum execution client,
to handle transactions and deploy smart contracts. Geth utilizes Clique [13]
which is an implementation of PoA. When using Clique, the genesis block is
configured via the genesis.json file consisting of various attributes that have
been modified for Clique from the primary PoW consensus implementation.

Proof-of-Variable-Authority 407

Table 3. I/O specification of the broadcast and verification scheme

Utility Actors Input Output

Decide Order of
Transactions (ANs)

ANs Transaction Transaction vote
(consensus)

Add Transaction to
Blockchain

AP Transaction Vote Merkle tree with new
transaction block

Verify Blockchain ANs New Merkle tree, Old
Merkle tree

Reputation decreased if
invalid. Reputation
increased if valid

Decide Order of
Transactions (CNs)

CNs Broadcasted transaction Vote of the transaction
(candidate vote protocol)

Increment Reputation AP Node, Reputation to
increase

Node reputation
increased

Decrement Reputation AP Node, Reputation to
decrease

Node reputation
decreased

Test Trustworthiness AP Votes of the CNs, Next
transaction (already
selected)

If CN votes correctly,
increase reputation. If
CN votes incorrectly,
decrease reputation

Similarly, we have tailored each of these attributes for our design to use Geth
for the consensus devised. The template for the important values in the genesis
block is given below.

{
"config": {

"chainId": <Unique Chain identifier>,
"clique": {

"period": <Block Period>,
"epoch": <Number of blocks in Epoch>

}
},
"difficulty": "1",
"extradata": "<Extra Vanity> <Signer Addresses> <Extra Seal>",
"alloc": {

<account addresss 1>: { "balance": <Initial balance 1> },
<account addresss 2>: { "balance": <Initial balance 2> },
...
<account addresss n>: { "balance": <Initial balance n> },
"0000000000000000000000000000000000000001": {

"balance": "10000000000000000000",
"data": <Contract Bytecode>

}
}

}

408 L. Chacko et al.

The votes of the nodes are recorded by a smart contract. This can be com-
piled using Truffle [3] or any alternative Solidity compilers. When a block is
sealed, the AP facilitates rewarding all the nodes that have voted to match the
consensus. Once the reputation has been updated, the votes are reset. If a signer
is below a certain threshold reputation, it is removed from the list of signers.
Consequently, if CNs have a reputation greater than the threshold, they are
added to the list of signers. However, only a limited number of transitions are
permitted for each node. Additionally, we have extended the web3 library to
include methods to query the blockchain from a JavaScript client for the PoVA
consensus mechanism. The code demonstrating the proposed design as a Proof-
of-Concept along with the Geth implementation can be found at https://github.
com/PoVA-Consensus.

7 Performance Analysis

In Table 4, we compare PoW and PoA with PoVA on the basis of energy effi-
ciency, susceptibility to Sybil attacks, level of decentralization and scalability.

Table 4. Comparison of PoVA with PoW and PoA

Algorithm Energy efficiency Susceptibility to

Sybil attacks

Decentralization Scalability

PoW Energy intensive

due to high

computational

requirements

Susceptible High level of

decentralization

Not highly scalable

as computational

requirements

increase as more

nodes become a part

of the network

PoA Energy efficient

with low block

creation times

Resistant Low level of

decentralization as

validators are

predetermined

Scalable until the

hardware of the

validators cannot

handle more

requests

PoVA Energy efficient Resistant High level of

decentralization as any

of the nodes can

become validators

provided they have the

computational capacity

to do so

Highly scalable as

more nodes can

become validators

dynamically

In the attempt to attain higher levels of decentralization, PoVA introduces
additional steps which leads to increased overhead when compared with con-
ventional centralized systems. When implementing this design on a larger scale,
various factors come into play that impact the overall latency of the blockchain
system.

https://github.com/PoVA-Consensus
https://github.com/PoVA-Consensus

Proof-of-Variable-Authority 409

Network speed and congestion, physical distance between devices, block size,
block time, and smart contract execution time for maintaining the reputation
system increase the latency of the system. Congested or slower networks can
increase confirmation times, thereby increasing latency. Subsequently, the geo-
graphic distribution of nodes can introduce delays due to longer information
propagation times. Optimal block size and block time trade-offs are necessary
to minimize latency. Execution of smart contracts can cause delays in trans-
action confirmation and contribute to overall latency. These factors should be
considered for implementing PoVA at scale.

8 Conclusion

This paper demonstrates the use of blockchain technology for mitigating security
vulnerabilities in IoT networks. The objective to modify the PoA algorithm to be
more decentralized while being suitable for an IoT system is achieved through the
proposed PoVA consensus algorithm. PoVA introduces a reputation-based sys-
tem where each node is capable of validating blocks to become Authority Nodes.
The reward mechanism for honest nodes results in a more dynamic and resilient
system. Additionally, the use of device certificates issued by a trusted Certificate
Authority ensures the validation of new devices, thus preventing malicious activ-
ities. The implementation of this system maintains a distributed ledger among
blockchain network nodes, recording and validating the state changes while pre-
venting unauthorized access and tampering.

References

1. Biswas, S., et al.: Interoperability benefits and challenges in smart city services:
blockchain as a solution. Electronics 12(4), 1036 (2023)

2. Bouras, M.A., Lu, Q., Dhelim, S., Ning, H.: A lightweight blockchain-based IoT
identity management approach. Future Internet 13(2), 24 (2021)

3. ConsenSys Software Inc.: Truffle suite: The most comprehensive suite of tools for
smart contract development. https://trufflesuite.com/. Accessed Jan 2023

4. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: RFC 5280:
Internet X. 509 public key infrastructure certificate and certificate revocation list
(CRL) profile (2008). Accessed Nov 2022

5. Ethereum Foundation: Go ethereum (2017). https://github.com/ethereum/go-
ethereum. Accessed Jan 2023

6. HashiCorp: Build your own certificate authority (ca): Vault: Hashicorp devel-
oper. https://developer.hashicorp.com/vault/tutorials/secrets-management/pki-
engine. Accessed Oct 2022

7. Shostak, R., Pease, M., Lamport, L.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

8. Manolache, M.A., Manolache, S., Tapus, N.: Decision making using the blockchain
proof of authority consensus. Procedia Comput. Sci. 199, 580–588 (2022)

9. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus.
Rev. 21260 (2008)

https://trufflesuite.com/
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://developer.hashicorp.com/vault/tutorials/secrets-management/pki-engine
https://developer.hashicorp.com/vault/tutorials/secrets-management/pki-engine

410 L. Chacko et al.

10. Omar, A.S., Basir, O.: Identity management in IoT networks using blockchain and
smart contracts. In: 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pp. 994–1000. IEEE (2018)

11. Rodrigues, A.: Centralized management IoT platform. In: Rocha, Á., Fajardo-Toro,
C.H., Riola, J.M. (eds.) Developments and Advances in Defense and Security, pp.
65–75. Springer, Cham (2023). https://doi.org/10.1007/978-981-19-7689-6 6

12. Sheikh, S., Azmathullah, R.M., Rizwan, F.: Proof-of-work vs proof-of-stake: a com-
parative analysis and an approach to blockchain consensus mechanism. Int. J. Res.
Appl. Sci. Eng. Technol. 6(12), 786–791 (2018)

13. Szilágyi, P.: EIP-225: clique proof-of-authority consensus protocol. Ethereum
Improvement Proposals (2017)

14. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

15. Yadav, A.K., Singh, K.: Comparative analysis of consensus algorithms and issues
in integration of blockchain with IoT. In: Tiwari, S., Trivedi, M.C., Mishra, K.K.,
Misra, A.K., Kumar, K.K., Suryani, E. (eds.) Smart Innovations in Communica-
tion and Computational Sciences. AISC, vol. 1168, pp. 25–46. Springer, Singapore
(2021). https://doi.org/10.1007/978-981-15-5345-5 3

https://doi.org/10.1007/978-981-19-7689-6_6
https://doi.org/10.1007/978-981-15-5345-5_3

An Efficient Two-Party ECDSA Scheme
for Cryptocurrencies

Habeeb Syed(B), Arinjita Paul, Meena Singh, and MA Rajan

TCS Research and Innovation, Tata Consultancy Services, Chennai, India
{habeeb.syed,arinjita.paul,meena.s1,rajan.ma}@tcs.com

Abstract. Threshold signatures have emerged as a promising solu-
tion to secure cryptocurrencies. While some signature algorithms like
Schnorr, BLS, EdDSA are threshold-friendly, the structure of ECDSA
makes it challenging to construct such schemes. As such the known
threshold ECDSA schemes use complex zero-knowledge proofs. How-
ever, these impact their performance negatively. Further, these schemes
have attempted to achieve efficiency in signature computation part while
accepting complexity in the key generation. To be more specific, in the
known 2-of-2 schemes the two parties need to perform key generation
together to be able to run signature computation. In this work, we pro-
pose an efficient two-party ECDSA protocol that enables two parties to
“aggregate” their ECDSA signature (on a single message) without par-
ticipating in any kind of key generation process. Our protocol is based
on additive sharing of (ECDSA) private keys and homomorphic prop-
erties of Paillier encryption. All the zero-knowledge proof we use are
non-interactive. As a result, our key generation is 7x faster than state-
of-the-art. In terms of overall time complexity, our scheme is comparable
with state of the art 2-of-2 ECDSA scheme.

Keywords: Pailler · ECDSA · Cryptocurrency · Two Party Protocol ·
Threshold Signature

1 Introduction

The current popularity and widespread acceptance of cryptocurrencies have led
to frequent cryptocurrency thefts. As per recent survey reports [6], a total of 14
billion dollars equivalent of cryptocurrencies have been stolen as of 2021. Pri-
vate (aka secret) keys are critical components for securing cryptocurrencies and
users must be able to protect the keys from unauthorized access. Typically, a
digital signature requires only one signatory (one private key) per transaction.
However, such a technique is vulnerable to single point of failure such as loss
or compromise of device. As a solution to the problem, multi-signatures [17]
were introduced, which require multiple parties to authorize a single transac-
tion. A multi-signature scheme allows n different signers with distinct public
keys pk1, · · · , pkn to collectively sign a message m, yielding a multi-signature σ
that certifies m under all public keys pk1, · · · , pkn simultaneously. The down-
side of multi-signatures is that they require multiple signatures from each party
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 411–430, 2023.
https://doi.org/10.1007/978-3-031-49099-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_25&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_25

412 H. Syed et al.

involved for every transaction. Consequently, these signatures take more space
and require public keys of all cosigners to verify signatures. It is desirable to have
schemes that give advantages of multisignatures without any of their downsides.
Threshold signatures seem to be best fit in this scenario. These schemes also
require multiple parties to sign a transaction. However, the parties share a single
signing key, instead of each one having a separate key. The output of a thresh-
old signature is same as the one generated by standard signature algorithm and
hence verification algorithm remains the same. Thus threshold schemes have all
the advantages of multi-signatures without any of its downsides.

A (t, n)−threshold signature scheme enables n parties to share a private key
such that any subset of t + 1 players can sign, but any smaller subset cannot.
The main advantage of threshold schemes is that an adversary needs to compro-
mise at least the threshold number of parties to forge a signature, which is hard
compared to one party case. Threshold signature schemes have emerged as an
important component in cryptocurrency security toolkit. Elliptic Curve Digital
Signature Algorithm (ECDSA) [18] is part of a wide range of applications. Com-
pared to other versions of digital signature algorithms, it has the advantage of
being efficient (requires much shorter key lengths), making it a better candidate
for several applications such as TLS [16], DNSSec [16], and cryptocurrencies like
Ethereum [22]. Despite its popularity, few attempts have been made at design-
ing an efficient threshold signature scheme for ECDSA, unlike other schemes
such as Schnorr and RSA signatures. This can be attributed to the difficulty
involved in designing a threshold signature protocol for ECDSA. To give some
details, the scheme requires the distributed computation of (a random) k, k-1

modulo a prime by multiple parties without any party knowing the value of k
[see Sect. 6]. On the top of this any threshold protocol must be secure against
malicious parties. At the least it must ensure that if a (threshold number of)
parties are malicious then they cannot obtain correct output from the protocol.
For such checks and balances, existing threshold ECDSA schemes rely on tools
like interactive zero-knowledge proofs and large-modulus exponentiation com-
putations, adding considerable overheads. In this work we consider the problem
of designing 2-of-2 threshold ECDSA signature scheme. Our aim is to enable
two parties to perform signature computation without first participating in key
generation. This will enable two parties who already have their ECDSA keys to
produce a valid signature together [see Sect. 5.1].

Related Work and Contribution

Threshold Signatures Schemes for ECDSA. Though threshold signature
schemes have been around for a long time [21] there has been a resurgence of
interest in the last few years mainly due to their use in cryptocurrencies. Unlike
other popular signature algorithms such as Schnorr, the design of the ECDSA
signatures poses a unique challenge to the construction of an efficient threshold
scheme. In the last few years, several threshold ECDSA schemes have been pro-
posed. Some of these solutions are aimed at solving general (t, n)-case [3,5,8,11–
13,20] while others are focused on 2-of-2 cases. Each of these schemes has its

An Efficient Two-Party ECDSA Scheme for Cryptocurrencies 413

own pros and cons. For instance the scheme proposed by Gennaro et al. [13] uses
threshold Paillier. It is a known fact that distributed key generation for Pail-
lier is very costly and impractical. In [11] Gennaro and Goldfeder constructed a
general (t, n) threshold ECDSA using an efficient technique that converts multi-
plicative shares of a key into additive shares. A distinct feature of their scheme
is the way they address the problem of malicious parties. Instead of using any
zero-knowledge proofs [as is usually done] the authors instead conjecture that
even if some of the parties behave maliciously private information of honest par-
ties is not leaked. For a comprehensive survey on the state-of-the-art threshold
ECDSA schemes we refer to [1].

From a practical application perspective, 2-of-2 schemes seem to be more
attractive [4,9,19,21,23]. Of these, Lindell’s scheme [19] has an efficient signa-
ture generation protocol with reported throughput of 100 signatures per second.
However, their key generation protocol is computationally complex. In the pro-
tocol one of the parties encrypts its key-share (with Paillier) and shares the
ciphertext with the other party along with a range-proof that proves in zero-
knowledge that the ciphertext is encryption of a random number ≤ q/3. This
range proof is “expensive”, mainly because it is interactive. Authors claim that
since key generation happens only once this does not matter. However, in prac-
tice, we must refresh the key shares1 frequently to maintain the security level.
And, whenever this happens the parties have to run the interactive range proof.
Thus, the key generation protocol impacts the overall complexity of the scheme.
Furthermore, in [2] Aumasson and Shlomovits present an attack on the key
refresh protocol as implemented in one of the commercial deployments of [13].
The attack allows one of the parties (participating in signature) to recover private
key bits of another party. Another efficient scheme is due to Doerner et al. [9]
in the two-party setting secure under the hardness of the Computational Diffie
Hellman assumption. Their protocol employs a novel two-party multiplication
method to generate the signatures, based upon semi-honest Oblivious Trans-
fer (OT). Although the scheme demonstrate very high efficiency, given the fast
operations for generating the threshold signature, its dependence on OT leads
to multiple rounds of interaction between the parties during the key generation
and signature generation phases, which may not be desirable in applications with
communication constraints.

Our Contribution. In this work, we propose a new efficient two-party thresh-
old scheme for ECDSA. The main features of our scheme are

• We use a mix of key sharing methods: The private keys are shared additively
while session keys are shared multiplicatively.

• All the zero-knowledge proofs are non-interactive, which makes our scheme
highly efficient.

• Each of the parties locally compute partial signature then use homomorphic
properties of Paillier to aggregate and obtain the final output.

1 Replace key shares with new random ones such that the public key remains the
same.

414 H. Syed et al.

• Our scheme is particularly useful in the scenario where two parties want to
use their existing ECDSA keys to jointly sign a document or a transaction
(see Sect. 5.1).

• Our construction is secure against malicious adversaries in the hybrid model.
• Key generation is 7 times faster as compared to the best known scheme 5.

This is an important factor in cryptocurrency scenario where reusing keys is
considered to be a bad practice and hence new keys are required for every
transaction.

2 Preliminaries

A digital signature scheme π is a triple of algorithms (KeyGen, Sig, V er). These
algorithms are assumed to be efficient, in the sense that their running is bounded
by polynomials in terms of parameters. KeyGen is the key generator algorithm:
on input the security parameter κ, it outputs a pair (y, x), such that y is the
public key and x is the secret key of the signature scheme. Sig is the signing
algorithm: on input a message m and the secret key x, it outputs σ, a signature of
the message m. Since Sig can be a randomized algorithm, there might be several
valid signatures σ of a message m under the key x; let Sig(m,x) denote the set
of such signatures. V er is the verification algorithm. On input a message m, the
public key y, and a string σ, it checks whether σ is a proper signature of m, i.e. if
σ ∈ Sig(m,x). The strongest notion of security for signature schemes is captured
by the following definition of existential unforgeability against adaptively chosen
message attack.

Definition 1. We say that a signature scheme π = (KeyGen, Sig, V er) is
unforgeable if no PPT adversary A who is given the public key y generated
by KeyGen, and the signatures of k messages m1, · · · ,mk adaptively chosen,
can produce the signature on a new message m (i.e., m �∈ {m1, · · · ,mk}) with
non-negligible (in κ) probability.

We define an experiment Exp-SignA,π(κ) to present a game-based definition for
the security of a digital signature scheme π = (KeyGen, Sig, V er), which we
shall use while proving the security of our protocol, presented for the sake of
completeness:

1. (vk, sk) ← KeyGen(κ)
2. (m∗, σ∗) ← ASignsk(·)(κ, vk)
3. Let Q be the set of all messages m queried by A to its oracle. Then, the

output of the experiment equals 1 IFF m∗ �∈ Q and V erifyvk(m∗, σ∗) = 1

2.1 Threshold Signature

Let π = (KeyGen, Sig, V er) be a signature scheme. A (t, n)-threshold signature
scheme Π for π is a pair of protocols (ThreshKeyGen, ThreshSig) for a set
of players P1, · · · , Pn. ThreshKeyGen is a distributed key generation protocol

An Efficient Two-Party ECDSA Scheme for Cryptocurrencies 415

used by the parties to jointly generate a pair (y, x) of public/private keys on
input a security parameter κ. At the end of the protocol, the private output of
player Pi is a value xi such that the values (x1, ..., xn) form a (t, n)-threshold
secret sharing of private key x. The public output of the protocol contains the
public key y. Public/private key pairs (y, x) are produced by ThreshKeyGen
algorithm with the same probability distribution as if they were generated by the
KeyGen protocol of the regular signature scheme π. ThreshSig is the distributed
signature protocol. The private input of Pi is the value xi. The public inputs
consist of a message m and the public key y. The output of the protocol is a value
σ ∈ Sig(m,x). The security model for threshold signature schemes is analogous
to the notion of existential unforgeability under chosen message attack as defined
by Goldwasser, Micali and Rivest [14] and is defined as below.

Definition 2. We say that a (t, n)-threshold signature scheme given by Π =
(ThreshKeyGen, ThreshSig, V er) is unforgeable, if no malicious adversary who
corrupts at most t players can produce, with non-negligible probability (in κ), the
signature on any new (i.e., previously unsigned) message m, given the view of
the protocols ThreshKeyGen and ThreshSig on input messages m1, · · · ,mk

chosen adaptively by the adversary.

2.2 Security Model

Given our contribution in the two-party threshold signature setting, we define
the security for a distributed signing protocol in the context of two parties
by an experiment Exp-DistSigb

A,Π(κ), which captures the concurrent signing
executions under the assumption that if an abort occurs, all executions abort
immediately, termed as concurrent executions with instantaneous global
abort [19].

The experiment Exp-DistSigb
A,Π(κ) considers that the adversary A controls

party Pb in the protocol Π for the two-party distributed signature generation,
where b ∈ {1, 2}. Πb(·, ·) is a stateful oracle that executes the instructions of
honest party P3−b in our protocol Π. The adversary A can choose which messages
are to be signed and can concurrently interact with multiple instances of party
P3−b to generate signatures. The oracle is defined such that the distributed
key generation phase is first run once, followed by multiple signing protocols
executing concurrently between two parties. A can query the oracle with two
inputs: the first input is a session identifier (sid) and the second is either an
input or a next incoming message. The oracle works as follows:

• Upon receiving a query (0, 0) for the first time, P3−b instructs the oracle to
initialise a machine M . If party P3−b sends the first message in the distributed
key generation protocol, then the oracle replies with this message.

• Upon receiving a query (0,m), if the key generation phase has not been
executed, then the oracle hands the machine M with the message m as the
next incoming message and returns the output of M . If the key generation
phase has been executed, the oracle returns ⊥.

416 H. Syed et al.

• If a query (sid,m) is received such that sid �= 0, and the key generation phase
with M has not been executed, then the oracle returns ⊥.

• If a query (sid,m) is received and the key generation phase has been executed
and this is the first oracle query with the given identifier sid, then P3−b

instructs the oracle to invoke a new machine Msid with identifier sid and
input message m to be signed. Msid is initialised with the key share and any
state that is stored by M at the end of the key generation phase. If party
P3−b sends the first message in the signing protocol, then this message is the
oracle reply.

• Upon receiving a query (sid,m), if the key generation phase has been executed
and this is not the first oracle query with the identifier sid, the oracle hands
Msid with the incoming message m and returns the next output sent by Msid.
If Msid completes, the output obtained by Msid is returned.

• If any query (sid,m) results in Msid sending abort, then the oracle returns
abort and halts all executions.

The security experiment is formalized by providing A who controls party
Pb with an oracle access to Πb. If the adversary A can forge a signature on a
message that has not been queried in the oracle queries, then A wins. Note that
A can concurrently run multiple executions of the signing protocol.

Definition 3. A protocol Π is a secure two-party distributed signature gener-
ation protocol if for every probabilistic polynomial-time adversary A and every
b ∈ {0, 1}, there exists a negligible function ε such that for every κ,

Pr[Exp-DistSignb
A,Π(κ) = 1] ≤ ε(κ)

3 Our Proposed Scheme

3.1 Technical Overview of Construction

In this section we give a technical overview of our protocols and give a proof
of correctness. For simplicity we consider two users Alice and Bob as the two
parties involved in the protocols, viz., distributed key generation protocol and
the 2 party signature computation protocol. For the sake of completeness we
have included description of standard ECDSA algorithm in Appendix 1.

Pailler Key Generation. Note that Paillier modulus is given by N which is
product two primes generated using standard RSA assumptions. However, if we
want to use additive homomorphic properties of Paillier then we must ensure that
GCD(N, φ(N)) = 1. To generate such primes one can use the proof techniques
described in [15].

System Parameters. Based on security parameter λ Alice and Bob choose
system parameters (pr, E, G, q) where
• Fpr is the finite field
• E is the elliptic curve defined over Fpr

• G is a fixed point on E that generates a cyclic group of prime order q.

An example of parameter set are the Bitcoin curve.

An Efficient Two-Party ECDSA Scheme for Cryptocurrencies 417

Distributed Key Generation. The distributed key generation algorithm
ThreshKeyGen consists of the following steps:

1. Alice generates private key share a1
$←− Zq and computes A1 = a1 G

2. Alice shares A1 with Bob
3. Bob generates a2

$←− Zq and computes A2 = a2 G
4. Bob shares A2 with Alice
5. Each party locally computes public key A = A1 + A2 = (a1 + a2) G and share

their output with other.
6. If all the locally computed values of public key are same then parties output

the public key otherwise they abort and restart the process.

Distributed Signature Generation. The distributed signatures computation
algorithm ThreshSigis explained in detail here. Recall that a signature on mes-
sage m is given by a tuple σm = (r, s). In this tuple r is referred to as session
key and s as signature part. In the following first we explain computation of r
and then move to s part.

1. Alice generates k1
$←− Zq, computes R1 = k1 G and shares it with Bob

2. Bob generates k2
$←− Zq computes R2 = k2 G and shares it with Alice

3. Alice and Bob locally (and independently) compute R as follows:

Alice : R = k1R2 = k G and Bob : R = k2 R1 = k G

where k = k1 k2 (mod q)
4. Alice and Bob exchange respective values of R and compare it with locally

computed value. if there are not same then they abort and restart.
5. Alice and Bob set r = xR = x−coordinate of the point R.

Next task is to compute intermediate value s = k-1[m + (a1 + a2) r] (mod q)
without leaking information about shares of k and a. Our proposed method
works as follows:

Alice performs the following steps:

6. Generates k̃
$←− Zq and computes R̃ = k̃R1

7. compute the following:

s1 = k̃-1k-1
1 (m + a1r) (mod q) and

X = −k̃-1k-1
1 a1 (mod q) (1)

8. Obtains ciphertext Enc2 C = Enc(X, pkA)
9. Alice sends s1, R̃,C to Bob.

10. Bob keeps s2, α ready, where

s2 = k-1
2 (m + a2r) (mod q) and

α = k-1
2 a2r

2 (mod q).
(2)

2 Partially Homomorphic Encryption using Alice Paillier keys.

418 H. Syed et al.

11. Bob computes

Y1 = Enc(s1s2, pkA) and Y2 = Cα mod N2 (3)

and then multiplies Y1, Y2 modulo the Paillier modulus N2

Z = [Y1 ∗ Y2] mod N2 (4)

Finally Bob sends Z back to Alice.

Before proceeding further, we explain connection between Z and final output
value of s. Using the homomorphic properties of Pailler it is easy to see that the
values of Y1, Y2 are encryptions of

Y1 = Enc[k̃-1k-1
1 (m + a1r) · k-1

2 (m + a2r) (mod N)]
Y2 = Enc[(−k̃-1k-1a1 a2 r2) (mod N)]

Recall that all the encryptions are under the Paillier public key of Alice so
we skip adding pkA here. Thus the value of Z (again using the Homomorphic
property of Paillier) is given by

Z = Enc(k̃ k-1(m + a1r) · (m + a2r) − k̃-1k-1 a1 a2r
2

︸ ︷︷ ︸

T

(mod N)). (5)

It is easy to see that upon simplification this becomes

Z = Enc[(m · k̃-1s + T) (mod N) − T (mod N)] (6)

The values of m, s ∈ Zq and hence their values satisfy 0 < m, s < q. We need
to choose Paillier modulus N such that N > q2 to ensure that the value of s
does not wrap around it. However, the values of m · s + T (and T) can be larger
than N and may wrap around N during decryption. We need to choose correct
decryption of Z. Suppose s′ = Dec(Z, skA) · k̃ m-1 (mod q). Then the value of s
is given by

s =

{

s′ if m · s + T (mod N) > T (mod N)
N − s′ otherwise

(7)

However, Alice does not know which one of the values is the correct one. So, she
needs to test the validity of signature (r, s) by considering both values for s as
in (7) and choose the correct one. With this explanation we go back to next step
in signature computation.

12. Alice computes s′ = [Dec(Z, skA)] · m-1 (mod q)
13. Alice verifies signature given by (r, (N − s′) (mod q)). If it is valid then she

outputs σ = (r, s) as signature on the message m and ends protocol.
14. Alice verifies signature given by (r, s′). If it is valid then she outputs σ = (r, s)

as signature on the message m and ends protocol.
15. Alice outputs the message “Signature computation failed” and aborts.

An Efficient Two-Party ECDSA Scheme for Cryptocurrencies 419

3.2 Proof of Correctness

Let us assume that Alice and Bob have private keys a1, a2 (respectively) such
that the full private key is a1 + a2. While computing signature each party holds
one of the partial session keys k1, k2 and also know the session key r as described
in steps 3 and 4 in the previous section. If the Paillier modulus N satisfies N > q2

and both parties follow the protocol then it follows from the previous section
that Alice and Bob obtain correct signature output (r, s) on any message m. For
example if we are using NIST P-256 curves then size of q is 256 bits. In this case
if we choose a 2048 bit RSA modulus then our protocol generates valid signature
values.

3.3 Construction

We prove our threshold protocol secure in a hybrid model with ideal functionali-
ties Fzk,Fcom−zk that securely compute the zero-knowledge and non-interactive
zero-knowledge functionalities for a relation S respectively as shown below:

• Fzk : On an input (prove, sid, x, y) from a user Pi, where i ∈ {1, 2}: if
(x, y) �∈ S, or session key sid has been utilized previously, ignore the mes-
sage. Otherwise, send (proof, sid, x) to user P3−i.

• Fcom−zk : On an input (com-prove, sid, x, y) from a user Pi, where i ∈ {1, 2}: if
(x, y) �∈ S, or session key sid has been utilized previously, ignore the message.
Otherwise, store (sid,i,x) and send (proof-receipt, sid) to user P3−i. On receipt
of (decom-prove, sid) from a user Pi, where i ∈ {1, 2}, if (sid, i, x) has been
stored, then send (decom-proof, sid, x) to user P3−i.

Commitments are required in the following two scenarios:

• Distributed Key Generation: During this step, Alice must provide a commit-
ment of its partial public key share A1 and provide a zero-knowledge proof
of knowledge of a1 (discrete logarithm of A1). Same applies for user Bob.

• Distributed Signature Generation: During this step, Alice and Bob may pro-
vide commitment of the partial intermediate signing values and provide a
zero-knowledge proof of the discrete log values as well.

We present our two proposed protocols: Protocol 1 ThreshKeyGen and Pro-
tocol 2 ThreshSig in the following pages.

3.4 Security Proof

Our scheme is secure against malicious adversaries based on the assumption that
ECDSA is secure. For the sake of simplicity in proofs we use P1, P2 (instead of
Alice and Bob) to denote the two parties.

Theorem 1. Given that the Paillier encryption scheme is indistinguishable
under chosen-plaintext attacks and ECDSA scheme is existentially-unforgeable
under chosen-message attacks, then our distributed two-party signature genera-
tion protocol for ECDSA is secure in the (Fcom−zk,Fzk) hybrid model.

420 H. Syed et al.

Proof Sketch.. We prove the security of our protocol in the (Fcom−zk,Fzk)
hybrid model for the discrete logarithm relation S, for the setting of concur-
rent executions with instantaneous global support. In our distributed protocol,
if the adversary A can break the protocol in hybrid model with probability ε(κ),
then it can break the real protocol with probability at most ε′(κ) for some neg-
ligible function ε′ under concurrent executions. We prove security for the case
of a corrupted party P1 and a corrupted P2 separately for our two-party signing
protocol.

Protocol 1 ThreshKeyGen: The distributed key generation protocol

Inputs. Elliptic curve parameters, finite field size p base point G, group size q.
Goal. The two parties Alice and Bob generate their (private) key share and
together compute public key.
The protocol:

1. Alice generates a1
$←− Zq and computes A1 = a1 G.

2. Alice sends commitment and proof of knowledge as (com-prove, 1, A1, a1) to
FS

com−zk.
3. Bob receives (proof-receipt,1) from FS

com−zk.

4. Bob generates a2
$←− Zq and computes A2 = a2 G.

5. Bob sends (prove, 2, A2, a2) to FS
zk.

6. Alice receives (proof, 2, A2) from FS
zk. It sends (decom-proof, 1) to FS

com−zk.
7. Each party locally computes A = A1 + A2 = (a1 + a2) G and send the other

party.
8. Each party compares the value of public key it received (from the other party)

with the public key it has computed. If they are not same, it “aborts” the
protocol and both parties go back to step 1.

9. Both parties broadcast A as the public key.

In the above Algorithm the point T is given by T = (m + a1 r) G. If Alice
has computed the value of s1 as per protocol then tmp = s-11 = k1(m + a1r)-1.
Thus tmp · T = k1 (m + a1 r) (m + a1 r)-1G = k1 G and in Step 4 the comparison
R1 == T should return TRUE. For any adversary A attacking the protocol, we
can construct an adversary S who can forge the ECDSA signature as per exper-
iment Exp-SignS,π(κ) (See Sect. 2.1, Definition 1) with probability negligibly
close to the probability with which A can forge a signature as per experiment
Exp-DistSignb

A,Π(κ) (See Sect. 3.1, Definition 3). Formally, we prove that, if the
Paillier encryption system is secure against chosen-plaintext attacks, then for all
PPT adversaries A and every b ∈ {1, 2}, there exists a PPT algorithm S and a
negligible function ε′ such that ∀κ:

|Pr[Exp-SignS,π(κ)] − Pr[Exp-DistSignb
A,Π(κ)]| ≤ ε′(κ), (8)

where Π denotes our threshold signature protocol and π denotes the ECDSA
signature scheme.

An Efficient Two-Party ECDSA Scheme for Cryptocurrencies 421

Proof Given P1 is Corrupted (b=1). Let A be a probabilistic polynomial
time adversary in Exp-DistSign1

A,Π(κ) who can forge a signature using our
threshold signing protocol; we construct a probabilistic polynomial time adver-
sary denoted by S for experiment Exp-SignS,π(κ) who can forge an ECDSA
signature. The adversary S simulates the execution of the adversary A as for-
mally shown below:

• In Exp-Sign, the adversary S receives public parameters (κ,A), where A
denotes the public verification key of ECDSA scheme.

• S invokes A on input κ and simulates oracle Π for A in Exp-DistSign, by
responding as described below:
1. S replies with a ⊥ to all queries of A of the form (sid, ·) to Π by A before

the key-generation phase is executed. S replies with a ⊥ to all queries
from A before it queries (0, 0).

2. Once A sends query (0, 0) to Π, the adversary S receives (0,m1) as P1’s
first message in the distributed key generation phase. S computes the
oracle reply as follows:
(a) S parses m1 into the form (com-prove, 1, A1, a1) that P1 sends to

FS
com−zk in the hybrid model.

(b) S verifies that A1 = a1 · G. If it holds, it computes A2 = (a1)−1 · A;
else, S just chooses a random A2.

(c) S sets the oracle response of Π as (proof, 2, A2) and sends it to A.
3. S receives the next message of the form (0,m2), which it processes as

follows:
(a) S parses m2 into the form (decom-proof, sid||1) which is the message

that A would send to FS
com−zk.

(b) If A1 �= a1 · G, then S simulates an abort and the experiment con-
cludes. If S does not abort, the distributed key generation phase is
completed.

4. Once S receives a query of the form (sid,m), where sid is a new session
identifier never queried before, S queries the signing oracle in experiment
Exp-Sign with message m and receives back signature (r, s) from the
signing oracle. Next, using the ECDSA verification algorithm, S computes
the Elliptic curve point R. Once S receives queries from A with identifier
sid, they are processed as follows:
(a) The first message (sid,m1) is processed by parsing the message m1

as (com-prove, sid||1, R1, k1, R̃, k̃). If R1 = k1 ·G and R̃ = k̃ ·R1, then
S sets R2 = k−1

1 · R, otherwise it chooses R2 at random. S sets the
oracle reply to A with message (proof, sid||2, R2) which A expects in
return.

(b) The second message (sid,m2) is processed by first parsing m2 =
(decom-proof, sid||1) from A. If R1 �= k1 · G, then S simulates P2

aborting and the experiment ends.
(c) The third message (sid,m3) is processed by first parsing m3 =

(com-prove, sid||3, C, k̃−1k−1
1 (−a1)) from A.

If C �← Enc(k̃−1(k1)−1(−a1), pk1), by means of ZKP verification

422 H. Syed et al.

using (C, pk1) then S simulates P2 to abort and the experiment con-
cludes.

(d) The fourth message (sid,m4) is processed by first parsing m4 =
(com-prove, sid||3, S1, k̃

−1k1
−1(m + a1r)) from A. Now S verifies

(S1, R̃)) is valid ECDSA signature, incase it is invalid then S simulates
P2 to abort and the experiment concludes. Else, S computes cipher-
text Z ← Enc(s · m, pk), wherein s is calculated using (k2,m, a2, S1)
and sets the oracle reply to A as Z.

• Whenever A halts and outputs a pair (m∗, σ∗), the adversary S outputs
(m∗, σ∗) and halts.

Next, we proceed to prove that Eq. 8 holds. In the distributed key generation
phase, the only difference between the simulation and real execution lies in the
generation of A2. During the simulation with A, S generates the public key equal
to the public key A received from experiment Exp − Sign. Note that, S defines
A2 = (a1)−1 ·A, and A is committed to A1 = a1 ·G. Therefore, the public key is
defined as a1 · A2 = a1 · (a1)−1 · A = A as required. Therefore, the view between
the real execution and simulation of A is identical, and the public verification
key is A.

Next, we show that the view of A in the simulation above is statistically
close to the view in the real execution of our protocol in the distributed sig-
nature generation phase. The only difference between the real execution and
simulation of A is the generation of ciphertext Z. R is generated from ECDSA,
and hence the distribution of k−1

1 · R and k2 · G is identical. Similarly, the
zero-knowledge proofs and verifications are also identically distributed in the
Fzk,Fcom−zk hybrid model. In the ECDSA signature, s = k−1 · (m + ar)
mod q = (k−1(m + a1r) · (m + a2r) − k−1a1a2r

2) · m−1. Therefore, there exists
some l ∈ Zq such that (k−1(m+a1r) · (m+a2r)−k−1a1a2r

2) ·m−1 = s ·m+ l ·q.
Thus, the distribution of Z in the real execution and simulation is statisti-

cally close. The pair (m∗, σ∗) output by A is a valid signature with negligible
probability in the simulation and experiment Exp-DistSign. Since the public
key in the simulation is the same public key that S receives in Exp-Sign, a valid
forgery by A in Exp-Sign implies a valid forgery by S in Exp-Sign. Thus, Eq. 8
follows.

Proof Given P2 is Corrupted (b=2). We follow the same proof technique as
for the case where P1 is corrupted, by constructing a simulator S that simulates
the view of A while interaction as per experiment Exp-SignS,π(κ). The only
difference in the simulation is the case where the last message from P2 to P1 is
an encryption Z, which may be maliciously constructed by A and the simulator
fails to detect it. In order to solve this, we construct S such that S simulates P1

aborting at some random point. Let S choose i ∈ {1, 2, · · · , p(κ) + 1} randomly,
where p(κ) is the upper bound of the number of queries made by A.

An Efficient Two-Party ECDSA Scheme for Cryptocurrencies 423

Protocol 2 ThreshSig: The distributed signature generation protocol

Inputs.

• A hash value m = HASH(M), where M is a message string.
• Paillier modulus N.
• Unique session id sid that has not been used before.

Goal. The two parties Alice and Bob compute a valid signature (r, s) on m or output
abort.
The protocol:

1. Alice generates k1
$←− Zq, computes R1 = k1 G.

2. Alice sends commitment and proof of knowledge as
(com-prove, sid ||1, R1, k1) to FS

com−zk.
3. Bob receives (proof-receipt, sid ||1) from FS

com−zk.

4. Bob generates k2
$←− Zq, computes R2 = k1 G.

5. Bob sends (prove, sid ||2, R2, k2) to FS
zk.

6. Alice receives (proof, sid ||2, R2) from FS
zk. If not, it aborts.

7. Alice sends (decom-proof, sid ||1) to FS
com−zk.

8. Bob receives (decom-proof, sid ||1, R1) to FS
com−zk.

9. Alice computes R = k1R2 and Bob computes R = k2R1.
10. Alice and Bob locally compute r = xR (mod q).

11. Alice generates k̃
$←− Zq, computes R̃ = k̃ R1.

12. Alice computes s1 = k̃-1k1
-1 (m + a1 r) (mod q)

13. Alice computes and C = Enc(k̃-1k1
-1(−a1), pkA)

14. Alice computes NIZK-proof Π5 (See Appendix A) which states the following:
• That C is a valid encryption of under the public key of Alice.

15. Alice sends (s1, R̃, C, Π5) to Bob.
16. Bob verifies that the value of s1 is computed using valid keys and agreed

value of m. For this he verifies that σ1(s1, R̃) is a valid signature (with Alice
private keys) on m.

17. Bob verifies Π5 and aborts if not valid.
18. Bob computes s2 = k2

-1 · (m + a2 · r) (mod q)
19. Bob computes α = k2

-1 a2 r2 (mod q)
20. Bob computes

Y1 = Enc(s1 · s2, pkA) Y2 = Cα mod N2 (9)

and then multiplies them

Z = (Y1 ∗ Y2) mod N2 (10)

which is sent back to Alice.
21. Alice computes s′ = [Dec(Z, skA) · k̃m-1] (mod q)
22. Exactly one of the two values (r, s′) or (r, (N − s′) (mod q)) is valid signature.

Alice verifies both values and chooses s accordingly.
23. Alice outputs σ = (r, s) as signature on the message m.

424 H. Syed et al.

Since S’s choice of i is correct with a probability 1
p(κ)+1 , therefore S can

simulate A’s view with a probability 1
p(κ)+1 . This means that, S can forge a sig-

nature in Exp-SignS,π(κ) with probability at least 1
p(κ)+1 times the probability

with which A can forge a signature in Exp-DistSign2
A,Π(κ). Let A be a PPT

adversary. S proceeds to simulate the query response of A as follows:

• In Exp-Sign, adversary S receives public parameter (κ,A), where A is the
public key for ECDSA.

• Let p(·) be an upper bound on the number of queries made by A to Π. S
chooses a random i ∈ {1, · · · , p(n) + 1}.

• S invokes A on input κ and simulates oracle Π for A in experiment
Exp-DistSign by responding to the queries as shown below:
1. S replies with a ⊥ to all queries of the form (sid, ·) to Π by A before

the key-generation phase has completed. Before a query sent of the form
(0, 0), S replies with a ⊥ to all queries from A.

2. Once A sends a query (0, 0), adversary S responds with (proof −
receipt, 1) as expected by A.

3. S processes the next message (0,m1) as follows:
(a) S parses m1 into the form (prove, 2, A2, a2) that P2 sends to FS

com−zk

in the hybrid model.
(b) S verifies if A2 is a non-zero point on the curve and A2 = a2 · G. If

the verification fails, S simulates P1 aborting and halts.
(c) S sets the oracle response to A to be (decom-proof, 1, A1) where A1 =

(a2)−1·A. S stores (a2, A) and the key distribution phase is concluded.
4. Upon receipt of a query (sid,m) where sid is a new session identifier never

queried before, S computes the oracle reply as (proof-receipt, sid||1) as
expected by A and sends to A.
Next, S queries the signing oracle in experiment Exp−Sign with message
m and receives signature (r, s). S uses the ECDSA verification algorithm
to compute the Elliptic curve point R, and responds to the queries from
A with identifier sid as shown below:

• S parses the first message (sid,m1) as (prove, sid||2, R2, k2) that A
sends to FS

zk. S verifies that R2 = k2 ·G and R2 is a non-zero point on
the curve. If not, it simulates P1 and aborts the protocol. S computes
R1 = k−1

2 · R and sets the oracle reply as (decom − proof, sid||1, R1)
as expected from FS

com−zk.
• The second message (sid,m2) is processed by S by parsing m2 as Z.

If this is the ith call to the oracle by A, then S simulates P1 aborting,
else it continues.

• Whenever A halts and outputs a pair (m∗, σ∗), the adversary S also outputs
(m∗, σ∗) and halts.

Let j be the first query to oracle Π of the form (sid,m2), and P1 does
not obtain a valid signature σ = (r, s) corresponding to the public key A. If

An Efficient Two-Party ECDSA Scheme for Cryptocurrencies 425

j = i, then the difference between the distribution of the simulation and the real
execution lies in the ciphertext C. Therefore, we can show that,

|Pr[Exp-SignS,π(κ) = 1|i = j] − Pr[Exp-DistSign2
A,Π(κ) = 1]| ≤ ε′(κ).

Therefore,

Pr[Exp-DistSign2
A,Π(κ) = 1] ≤ Pr[Exp-SignS,π(κ) = 1]

1/(p(κ) + 1)
+ ε′(κ)

That is,

Pr[Exp-SignS,π(κ) = 1] ≥ Exp-DistSign2
A,Π(κ) = 1

1/(p(κ) + 1
− ε′(κ)

The above implies that if A forges a signature using our threshold signing
algorithm in Exp-DistSign2

A,Π with a non-negligible probability, then S forges a
general ECDSA signature in Exp-SignS,π with non-negligible probability, which
contradicts the assumed security of ECDSA. This completes the proof of the
theorem.

4 Experiments

We have simulated our protocols and measured their performance (in terms of)
time taken for key generation and signature generation. The experimental setup
includes two parties viz. Alice and Bob on two different machines connected over
WAN. They follow steps and jointly compute the shared secret key and signature
in the key generation and signature generation protocols respectively. We have
used the 2048 bits Paillier modulus and ECDSA defined on the standard Bitcoin
curve (SECP256k1). The entire code base is built in C using the openssl based
ECC library for the elliptic curve operations and MPZ library for all the number
theoretic operations. The ECDSA signature generated by our two party scheme
can be verified by any ECDSA verification algorithm. The experiments were run
on nodes running on Intel I5 pro processor with 8 cores each with processor
speed of 1.7 Ghz. The Random Access Memory (RAM) of the machine is 16 GB
with Ubuntu 18.0 operating system. Our implementation was optimized with
multithreads. Of all the known 2-of-2 schemes our scheme has the most efficient
key generation protocol. In case of cryptocurrencies where key generation hap-
pens for every transaction our method seems to be suitable. If we consider the
overall performance, our scheme is comparable with the state of the art.

Some other two party ECDSA schemes include a scheme by Castgnoes et al.
[4] which generalizes Lindell’s approach. In terms of timings, this scheme (on
P256 curve) takes about 5521 ms, 101 ms for key gen and signing respectively.
More recent two party ECDSA is by Haiyang et al. [23] which proposed a scheme
based on online-offline techniques. Main idea in the scheme is to delegate most of
the computations to offline phase while minimising computations and communi-
cations during signing phase. Their scheme has two varieties, one using Paillier
and another using OT based techniques. In Paillier based technique their scheme
takes about 141 ms in offline phase while 0.2 ms in online phase (cf. Table 1).

426 H. Syed et al.

Table 1. Comparison of Timings

Key Generation Signature Computation

Time in Milliseconds

Lindell [19] 2435 36.8

Doerner et al. [9] 44.32 2.27

Our Scheme 5.1 39

5 Efficiency Comparison

In the known two party ECDSA schemes the most efficient one are by Lindell [19]
and Doerner et al. [9]. The protocol by Lindell requires the following number
of operations. The key generation protocol in [19] appears to be very expen-
sive with approximately 350 numbers of Paillier encryptions/exponentiations
by each party. The cost is primarily dominated by Paillier exponentiations and
range proofs for Paillier encryptions. For the signing protocol in [19], party P1

computes 7 Elliptic curve multiplications and 1 Paillier decryption, while party
P2 computes 5 Elliptic curve multiplications, 1 Paillier encryption, 1 homomor-
phic scalar multiplication and 1 Paillier homomorphic addition. The protocol by
Doerner et al. requires the following number of operations. The key generation
protocol requires 10 exponentiations. In their signing protocol, both the parties
compute 17 modular exponentiations.

Our protocol remarkably improves the efficiency of the key generation algo-
rithm with each party computing only 4 Elliptic curve multiplications inclusive
of the zero-knowledge proofs. For our signing algorithm, party P1 computes 11
Elliptic curve multiplications (including the computations in the zero-knowledge
proofs), 1 Paillier encryption and 1 Paillier decryption, while party P2 performs
5 Elliptic curve multiplications, 1 Paillier encryption and 2 Paillier scalar mul-
tiplication. Table 1 shows a comparison analysis of our scheme against the two
existing efficient threshold signature scheme. From the table we see that our key
generation protocol is very efficient as compared to the existing two schemes
and overall, is as efficient as the state-of-the-art efficient scheme due to Doerner
et al. [9].

5.1 Efficient ECDSA Semi-aggregation Property

Signature aggregation means combining two or more (independent) signatures
into a single one that can be verified using a single (aggregated) public key.
It is well known that such aggregation can be very useful. Our proposed two
party ECDSA scheme has “semi-aggregation” property that comes very close
to aggregation. Suppose there are two parties P1, P2 who already have their
ECDSA keys (a1, A1), (a1, A2) (respectively). Using these keys the parties can
sign on any message (hash) m by running Protocol 2 [Signature Computation
protocol]. The output signature can be verified using the public key given by

An Efficient Two-Party ECDSA Scheme for Cryptocurrencies 427

A1 +A2. In contrast the known protocols like [9,19] require that the parties first
run key generation protocol and then compute signature. This is a useful tool,
especially in cryptocurrencies. Example use case scenarios where our proposed
two party scheme is useful are as follows:

• In blockchain scenario usually digital assets [like cryptocurrencies] are bound
to public keys. If two different users are pooling their currencies from two
different addresses then the transaction will include two signatures along
with two public keys. Considering the fact that the size of block is fixed,
this overhead affects the number of transactions processed per each block.
By our signature aggregation the user can append only one signature (and
corresponding public key). In such scenario the two party ECDSA scheme
proposed in this paper is most suitable.

5.2 Extension to General (t, n) Threshold Scheme

A 2-of-n threshold signature scheme is one in which the private key is distributed
among n parties such that any two of them can compute signature. It is a
known fact that any 2-of-n threshold scheme can be extended to a 2-of-n scheme.
The only modification needed to achieve this is to let each party distribute its
private key using a (2, n) threshold (verifiable) secret sharing scheme. Note that
verifiable secret sharing schemes (as against simple secret sharing ones) can be
used in a trustless set up. A more challenging task is to extend our two party
ECDSA scheme to a general (t, n) threshold scheme. Currently this work is in
progress.

6 Conclusion

The design of ECDSA algorithm makes it particularly challenging and unsuitable
for threshold schemes. Consequently, most of the known solutions involve com-
plex cryptographic tools, making them inefficient for practice. This work presents
a novel threshold ECDSA scheme in the two-party setting, based on the hardness
of the ECDSA scheme in the random oracle model. Our scheme uses additive
sharing of ECDSA keys with multiplicative sharing of session keys and this com-
bination gives very efficient key generation protocol. Empirical analysis shows
that our scheme is as efficient as the state-of-the-art design by Doerner et al.. An
additional advantage of our scheme is that it enables two parties to aggregate
their signature easily without requiring any key generation [or exchange] proto-
col. Our scheme can be easily extended to a (2, n) threshold scheme. However,
extending it to a general (t, n) scheme seems to be more challenging. This work
is currently in progress.

Appendix 1. Elliptic Curve Digital Signature Algorithm

The ECDSA algorithm is parameterized by a group G of order q generated by a
point G on an elliptic curve over the finite field Zq of integers modulo a prime q.

428 H. Syed et al.

The curve coordinates and scalars are represented in κ = |q| bits, which is also
the security parameter. The algorithm makes use of a hash function which we
denote by HASH. The ECDSA scheme consists of the following algorithms:

• KeyGen: The key generation algorithm consists of the following steps:
• Select private-key: a

$←− Zq

• Compute public-key as the point (on G) given by A = a · G.
• Sig: The signature generation algorithm takes as input a message M and

computes the signature as below:
• Hash M onto Zq: m ←− HASH(M).

• Generate nonce: k
$←− Zq.

• Compute k · G = R = (xR, yR, 1) and set r = xR (mod q).
• Set: s = k-1 · (m + a · r) ∈ Zq.
• Output σ = (r, s) as a signature on M

• Ver: The signature verification algorithm takes as input a message M and
signature σ = (r, s) and verifies it as below:

• Compute s-1 (mod q) [= k (m + ar)-1]
• Obtain hash of M: m ←− HASH(M).
• Set R′ ←− s-1m · G + s-1 r a · G (which simplifies to kG)
• If xR′ = r then return ‘signature valid’ else return ‘signature not valid’.

Appendix 2. NIZK Proof of Knowledge of Plaintext using
Paillier Encryption

We use a NIZK protocol from [7] to prove knowledge of plaintexts X1 and X2

in zero knowledge, in Sect. 3.3, under ThreshSig algorithm. The following
∑

-
protocol provides a non-interactive ZKP that the prover has knowledge of the
plaintext without revealing the plaintext to the approver. Let the input encryp-
tion be C1 = X1 · G + N · r mod N2, where X1 is encrypted using randomness
r. The proof proceeds as below:

1. Prover P chooses x ∈ ZN , u ∈ Z
∗
N2 at random and computesthefollowing and

sends to the verifier:

A = x · G + N · u mod N2

2. The verifier picks a random challenge e and sends to the prover P .
3. The prover P computes the following and sends to the verifier:

w = x + eX1 mod N, z = u + e · r mod N2

4. The verifier checks the following:

w · G + N · z
?= A + e · C1 mod N2

The verifier accepts the proof if and only if the above check passes.
The above

∑

protocol proves knowledge of X1, r such that C1 = X1 ·G+N ·r.
A similar protocol is run to prove the knowledge of the plaintext X2 for
ciphertext C2 with zero knowledge.

An Efficient Two-Party ECDSA Scheme for Cryptocurrencies 429

Appendix 3. Schnorr’s ZKP for Discrete Log

We give a zero-knowledge proof of discrete logarithm [10] given as input the
description of a prime-order group G of order q and a generator G, and a group
element h. The prover has a witness a value x ∈ Zq such that x · G = h. The
proof of discrete log without revealing the logarithm value proceeds as below:

1. Prover P picks r ∈ Zq, computes the value ρ = r · G and e = HASH(ρ,G, h).
2. Next, it computes d = e · x + r mod q and sends (d, ρ, h) to the verifier.
3. The verifier computes f = HASH(ρ,G, h) and accepts the proof if and only if

the following check is satisfied:

d · P
?= f · h + ρ

The protocol proves the verifier that the prover knows the discrete log of h in
zero knowledge.

References

1. Aumasson, J.-P., Hamelink, A., Shlomovits, O.: A survey of ECDSA threshold
signing. IACR Cryptol. ePrint Arch. 2020, 1390 (2020)

2. Aumasson, J.P., Shlomovits, O.: Attacking threshold wallets. Cryptology ePrint
Archive, Report 2020/1052 (2020). https://ia.cr/2020/1052

3. Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: UC non-
interactive, proactive, threshold ECDSA with identifiable aborts. Cryptology
ePrint Archive, Paper 2021/060 (2021). https://eprint.iacr.org/2021/060

4. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party
ECDSA from hash proof systems and efficient instantiations. Cryptology ePrint
Archive, Paper 2019/503 (2019). https://eprint.iacr.org/2019/503

5. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-
efficient threshold EC-DSA revisited: Online/offline extensions, identifiable aborts,
proactivity and adaptive security. Cryptology ePrint Archive, Paper 2021/291
(2021). https://eprint.iacr.org/2021/291

6. Chainalysis. https://blog.chainalysis.com/reports/2022-crypto-crime-report-
introduction/. Accessed 9 Feb 2022

7. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

8. Damg̊ard, I., Jakobsen, T.P., Nielsen, J.B., Pagter, J.I., Østergaard, M.B.: Fast
threshold ECDSA with honest majority. In: Galdi, C., Kolesnikov, V. (eds.) SCN
2020. LNCS, vol. 12238, pp. 382–400. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-57990-6 19

9. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy
(SP), pp. 980–997 (2018)

10. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

https://ia.cr/2020/1052
https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2019/503
https://eprint.iacr.org/2021/291
https://blog.chainalysis.com/reports/2022-crypto-crime-report-introduction/
https://blog.chainalysis.com/reports/2022-crypto-crime-report-introduction/
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-030-57990-6_19
https://doi.org/10.1007/978-3-030-57990-6_19
https://doi.org/10.1007/3-540-47721-7_12

430 H. Syed et al.

11. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1179–1194 (2018)

12. Gennaro, R., Goldfeder, S.: One round threshold ECDSA with identifiable abort.
IACR Cryptol. ePrint Arch. 2020, 540 (2020)

13. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi,
A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 9

14. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

15. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and
threshold Paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27954-6 20

16. Hoffman, P., Wijngaards, W.C.: Elliptic curve digital signature algorithm (DSA)
for DNSSEC. RFC 6605, 1–8 (2012)

17. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Res. Dev. 71, 1–8 (1983)

18. Johnson, D., Menezes, A., Vanstone, S.A.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Sec. 1(1), 36–63 (2001)

19. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 21

20. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (2018)

21. MacKenzie, P., Reiter, M.K.: Two-party generation of DSA signatures. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 137–154. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 8

22. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)

23. Xue, H., Au, M.H., Xie, X., Yuen, T.H., Cui, H.: Efficient online-friendly two-
party ECDSA signature. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pp. 558–573 (2021)

https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/3-540-44647-8_8

Secure Smart Grid Data Aggregation
Based on Fog Computing and Blockchain

Technology

Kamalakanta Sethi1(B), Aniket Agrawal2, and Padmalochan Bera2

1 Indian Institute of Information Technology, Sri City, Chittoor, India
kamalakanta.s@iiits.in

2 Indian Institute of Technology, Bhubaneswar, Bhubaneswar, India

aa22@iitbbs.ac.in, plb@iitbbs.ac.in

Abstract. As part of the fourth industrial revolution, it is projected
that a huge number of Internet of Things (IoT) devices would be sup-
plied and employed. However, the preexisting Internet may not appro-
priately address concerns about information security in an unfamiliar
setting. Therefore, for the smart grid application, we propose a privacy-
preserving data aggregation scheme under a permissioned blockchain
based fog system architecture. First, the user data is acquired with a
specific frequency through the IoT meters deployed at the industrial,
commercial and residential locations. Second, the users leverage the mod-
ified ElGamal homomorphic cryptosystem to enable the additive com-
putability and secrecy of their extracted energy information. Here, the
encryption is performed using the public key of the district aggregator fog
node as well as the user secret share. Fog nodes employ a private enter-
prise blockchain framework called Hyperledger Fabric to facilitate the
user transaction record consistency, validation and traceability for their
respective districts. Then, the resulting electricity consumption cipher-
text is progressively aggregated throughout the day as it journeys from
the end-user grid edge device to the power supply company (PS) in the
cloud via the fog layer. We ensure robustness towards major cyberattacks
and integrity of the data while in transit through pairing-based modi-
fied Boneh-Lynn-Shacham short signature, time-stamping and hashing
function (SHA-256). Lastly, demand response is vital to maximize the
benefits of diverse parties by promoting a shift of the energy consumption
from higher-priced peak hours of the day with maximum power demand
to leaner demand periods when power supplies can be relatively inexpen-
sive. It is essential on a broad scale to minimize the blackout risk when
demand threatens to surpass supply and trip the power lines. There-
fore, our advocated fog cryptosystem premised on a modular blockchain
ensures secure and tamperproof data processing from multiple partici-
pants in a decentralized setup.

Keywords: Smart grid · IoT meter · Fog computing · Blockchain ·
Hyperledger Fabric · ElGamal homomorphic encryption · Shamir secret
sharing · Demand response · Price elasticity · Clustering

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 431–448, 2023.
https://doi.org/10.1007/978-3-031-49099-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_26&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_26

432 K. Sethi et al.

1 Introduction

In the 21st century, the Fourth Industrial Revolution (Industry 4.0, 4IR) aims
to define a forthcoming factory ecosystem featuring smart automation through
interconnectedness of the industrial system components. Internet of Things (IoT)
can play a vital role in this revolution for the energy consumption data collection
and analysis under the advanced metering infrastructure (AMI). The created IoT
framework can be used to provide “smart” communication and computation
functionalities at all meter nodes by installing resources fewer than a standard
computer [1]. Nevertheless, the application of IoT in industrial settings is still in
its infancy. Therefore, Industrial IoT (IIoT) emphasizes more on the real time
integration of computational and the physical elements also referred to as cyber
physical system (CPS).

IIoT will act as one of the core elements of Industry 4.0 which anticipates
significant changes in technology employed by CPS [2]. One such critical CPS,
smart grid AMI employs networked digital meters and communication architec-
ture that are technologically more superior and advanced than their traditional
predecessors. This next-generation electrical grid enables the power utility firm
to significantly improve their electricity generation and dissemination, digital
consumption information collection and analysis, and power system manage-
ment [3]. But, the energy consumption data collected through the AMI network
can be used by power supply companies for prediction related to the usage
pattern and, as a direct consequence, reception of information related to the
behaviour of various types of consumers by tracking their equipment power use
throughout the day [4]. Conversely, it may also be used to investigate burglary
or other criminal activity, as well as to conduct demand response programs to
guarantee grid stability.

In nutshell, such data driven insights are indeed a fundamental benefit of the
smart grid and a major risk in terms of user privacy breach [5]. Furthermore,
false data injection (FDI) and cyber tampering might well be detrimental, poten-
tially as a result of malicious users and cyber-terrorists forging massive volumes
of energy consumption statistics for their illegitimate benefits [6]. Also, utili-
ties may delegate information management to a third party, resulting in some
loss of control over the sensitive user data. Undoubtedly, the privacy-enhanced
technologies resilient to typical grid attacks [1,7] are essential for reconciling the
aforementioned goals associated with the data sensitivity prior to aggregation [8].

For the smart grid CPS, Industry 4.0 as a double-edged sword, has a potential
to introduce some unknown and unprecedented cybersecurity challenges, because
of which the users and power supply companies may have to incur massive
financial losses. Therefore, the privacy-preserving smart grid data aggregation
(PPSGDA) technique is needed for the energy consumption ciphertext at various
geographical levels and frequencies.

PPSGDA 433

1.1 Contributing Features

The majority of PPSGDA works do not support the integration of fog computing,
blockchain and other essential functionalities. The primary design goal of our
novel scheme is to architect a robust and practical mechanism equipped with
combination of the following characteristics:

1) Platform and Software as a service (PaaS + SaaS) Cloud Comput-
ing model: Under the fog computing architecture, it is essential to securely
connect, manage and aggregate the power data of a plethora of IoT devices
as part of the AMI network. In Indian context, the number of such gadgets
might be in the order of millions or crores. It is also crucial to store, maintain
and analyze massive volumes of data fast and securely via parallellization.
Therefore, to achieve scalability, we have leveraged the data storage services,
computational capabilities, and other products of Google Cloud Platform
(GCP), which is one of the largest and popular cloud service providers world-
wide. In the performance analysis section, we have explained the services used
and the obtained results in great detail.

2) Enhanced Security and Performance: To accomplish this, exponential
ElGamal homomorphic cryptosystem and modified BLS short digital signa-
ture with timestamps are employed. This allows the energy supplier and
intermediate district fog nodes to perform additive operations on, verify the
integrity and authenticate the source of the ciphertext. The random share
generated via Shamir secret sharing along with their efficient updates offer
an additional layer of security to remedy the individual data privacy issue.
The costly overall aggregation is parallellized and optimized via treatment of
each fog node as a thread.

3) Decentralized Architecture: We have integrated the fog computing and
Hyperledger Fabric blockchain technologies in order to decentralize, expedite
and make our PPSGDA cryptosystem more practical. In the proposed config-
uration, a subscriber is expected to submit a data transaction record to the
AMI network nodes belonging to his/her district. Then, this is verified by the
mining fog node who further reports the endorsement results. The obtained
transactions are written into the ledger and a newly generated block is broad-
casted in the concerned channel. In this way, each fog node aggregates the
user data upon incremental database updates for the district participants
under its control.

4) Demand Response: Power supply company determines the consumer elec-
tricity price by how much and when electricity is to be used to maintain
the grid stability. For this, it mathematically quantifies the user response
using the concepts of microeconomics. Specifically, we emphasize more on the
demand elasticity with regard to the changes in the electricity price rather
than the user income. We use a renowned and unsupervised machine learning
(ML) algorithm called k-means++ clustering in order to recognize and filter
out the right participants for the specific time frame.

434 K. Sethi et al.

2 Related Work

In literature, several schemes [9–14,39] achieved PPSGDA through fog
devices [15] which can be utilised for reduction and redistribution of the com-
putational and storage overhead of its cloud-based equivalent designs [16] to the
edge of the devices at the end-point. The fogging functionality assists in making
the cloud computing services accessible to the end users through their extension
to the network edge. But, when a huge volume of grid data is transferred to the
parent node, queuing delay due to network congestion impacts the prerequisites
for a real-time response. Homomorphic cryptography is extensively used in this
regard to enhance the secure data aggregation technology across various channels
by minimizing communication cost and conserve bandwidth [17]. However, its
malleability allows an attacker and consumers to counterfeit data by generating
new ciphertext which decrypts to another pertinent plaintext through compu-
tational operations in the considered encrypted domain. Also, encryption when
used solely may ensure data security but not privacy. Therefore, it is important
to prevent the internal/external adversary from jeopardizing individual data pri-
vacy through a differential attack all across the data aggregation procedure [18].
A few schemes achieved differential privacy to remedy the mentioned issue [12–
14]. The majority of the mentioned PPSGDA cryptosystems were centered on
the additive homomorphic nature of Paillier encryption [19,20] while some need-
ing one extra multiplication as well (mostly, for computing the encrypted dot
product) have employed Boneh-Goh-Nissim (BGN) scheme [21,22]. A few works
have used ElGamal encryption also [23,24] which is reported to be more effi-
cient than its Paillier counterpart. But, additive ElGamal also necessitates a
computable discrete logarithm, which culminates in a far more time-consuming
decryption. [25]. Fortunately, several square root-related methods coupled with
a decent computation capability make this calculation eminently practicable.

Ciphertext aggregation techniques require optimization as homomorphic
encryption is slow by design. Numerous works have leveraged a well-known num-
ber theorem called Chinese remainder theorem (CRT) for speeding up encryption
and decryption procedures [24,26,27]. For additive ElGamal, using CRT can be
beneficial for reducing the time required to find the discrete logarithm. But,
millions of users have to transmit multiple ciphertexts taking into consideration
the modulus w.r.t. divisors of the original number. This significantly raises the
total communication overhead and the required encryption time for millions of
users merely to optimize single decryption by fog node in a specific time period.
Therefore, we focus more on parallellization and inclusion of other essential fea-
tures rather than exploiting the properties of the known mathematical techniques
for optimization. A few works employed different versions of map-reduce tech-
niques [28,29] to decomposed a large problem into smaller sub-problems that
can be addresses concurrently. Some schemes facilitated functionalities such as
anonymous authentication through blind and short randomizable signature tech-
niques [11]. Data unforgeability, source authentication and non-repudiation were
ensured in some PPSGDA schemes by adopting bilinear pairing based signa-
ture [7,30]. Several schemes also leveraged blockchain technology in order to deal

PPSGDA 435

with fairness and trust issues while performing secure multi-party computation
(SMPC). For SMPC, blockchain [38,40] has been extensively utilised to ensure
tamperproof records in a decentralized architecture in finance, IoT, healthcare
and so on without necessitating the involvement of a trusted central authority.
In paper [31], authors segregated the users into different groups, each with their
own private blockchain. In paper [32], authors advocated a PPSGDA scheme for
multidimensional data collection in the consortium blockchain. To overcome the
limitations associated with public and permissionless blockchain lacking modu-
larity, a few works relied on Hyperledger Fabric to enable involvement of peers,
partial transparency of the user data and spatial collaboration [33]. In addition
to the security concepts outlined above, maintaining the stability of the electric
grid is also critical for its successful operation.

Partial power outages (brownouts) for temporary period and complete elec-
tricity shutdown (blackouts) occur for a variety of causes. For example, the
world’s first large-scale blackout, Ukraine power grid hack, occurred in 2015 due
to a cyberattack whereas for the 2012 India blackout, which affected nearly 63
crore people of northern and eastern parts of India, it was speculated that a few
north Indian states drawing power beyond the permissible limits was a major
cause. In the former scenario, most of the system vulnerabilities can be miti-
gated by using advanced cryptographic protocols outlined earlier. We examine
the latter case, wherein the excess consumption induces a demand-supply imbal-
ance tripping the transmission lines with a cascading effect. One of the poten-
tial solutions, demand response (DR) has emerged as a viable research area for
maintaining stability while billing in the smart grid AMI network. It targets
the intended adjustments in energy consumption pattern to better match the
user temporal electricity demand with the supply profile [14,19]. Offering suit-
able incentive methods for electricity grid businesses and customers is critical to
maximise the benefits of various players. Here, the households are encouraged
to reduce their total peak period consumption by shifting some loads from peak
hours to off-peak hours. This is achieved through imposition and distribution
of relatively higher and lower electricity prices when their demand should be
decreased and increased throughout the day, respectively [34,35]. However, con-
sidering the large diversity in the industrial, residential, commercial and other
consumers to be served in India, a variety of DR modules need to be prepared
to cater to their diverse needs. Large scale industries can be the most impor-
tant participants as they can alter their consumption to a great extent. But, a
section of industrial users may have slow demand-response characteristics and
less influenceable demand depending upon the nature of their business or indus-
trial activity. For eg, power demand for a solar plant needing daytime sunlight
for its operation must be high during day time. On the other hand, some res-
idential households’ demand profile may be influenced easily as they can use
their appliances according to their needs at any time which is not fixed by any
constraints. So, both kinds of the users can together help in achieving the desired
total demand as flexibility shown by one kind of users by adjusting their con-
sumption can be used to over compensate other’s rigid and flat demand profile.

436 K. Sethi et al.

Therefore, when different types of subscribers are incentivized to utilise energy
in coordination with the distributor needs, it may create a win-win situation for
all sides.

3 Proposed Scheme Methodology

Fig. 1. Our Proposed PPSGDA System Model.

The smart grid cryptosystem is organized and shown pictorially in Fig. 1. The
participating entities are the different types of consumers (U), share distributors
(SD) and district fogging aggregators (DA) defining the fog layer at level 1 (L1),
Hyperledger Fabric (HLF) for DAs, and the cloud power supplier (PS) at the
final level (L2). It is assumed that there are n districts in total with district
i having ti users. {SDi}0≤i<n generates secret shares for the users residing in
district i {Ui,j}0≤j<ti whose data is aggregated and verified by {DAi}0≤i<n.
The step-wise system architecture is depicted pictorially in Fig. 1 from right to

PPSGDA 437

Fig. 2. Operational System Flow Diagram.

left, beginning with periodic data retrieval from various level 0 smart meters
on an hourly basis. This is followed by aggregation of the encrypted data and
decryption by DA fog mining nodes at L1. The aggregate is re-encrypted and
block is create corresponding to it. Lastly, PS at L2 reads the chain for final
decryption, processing, and analysis. This is followed by a elasticity and cluster-
ing based demand response (DR) program conducted in iterative manner. For
better understanding, operational system and flow diagrams are shown in Fig. 2.
Implementation of the majority of algorithms such as share distribution, key
generation, data processing such as encryption, re-encryption and decryption is
in off-chain mode, whereas data validation and aggregate block write and read
by DA and PS, respectively, are secure on-chain computational transactions.
The timing of the processes is shown through a sequence diagram in Fig. 3. The
following detailed algorithms present the methodology chronologically through
theoretical and mathematical formulation:

1) System Setup(1κ) → GPP: PS generates the system parameters with
input as a security parameter 1κ. It selects a 512-bit cyclic group G having a
prime number q as its order and a generator g (G, q, g, g) and a collision-
resistant hash function H : {0, 1}∗ → Z

∗
q . It initializes the price vector

P = {pk}k∈[24] describing the electricity cost for 24 h. Global public parame-
ters GPP = {G,H, q, g, P} are published.

2) SecretCreation(GPP): All the participating cryptosystem entities are
involved in either secret key generation or share distribution and updation.

2.1) Key Generation(GPP): PS with identifier IDPS chooses xPS ran-
domly from Z∗

q and computes its secret key as H(IDPS)xPS and public
key hPS := gxPS . DAi chooses its private key xDAi

from Z∗
q randomly

and computes its public key hDAi
:= gxDAi . Each user of every district

{Ui,j}0≤i<n,0≤j<ti chooses a random xi,j ∈ Z∗
q and generate their own

public key hi,j := gxi,j .

438 K. Sethi et al.

2.2) Share Distribution(P): Here, {SDi}0≤i<n distributes 24 ∗ ti 10-bit ZS
secret shares {uzi,j,k}0≤i<ti,k∈[24] ∈ Z∗

q via (ki, ti)-Shamir S3 among users
{Ui,j}0≤j<ti residing in district i satisfying district share ZS (DSZS)
equality

∑ki−1
j=0 uzi,j,k = 0. These secret shares also satisfy price weighted

ZS (PWZS) equality
∑23

k=0 uzi,j,k ∗ pk = 0 ∀ i ∈ [ti].
2.3) Share Update(P,P′,uzi,j,k) → uz′

i,j,k: After the announcement of new
price vector P ′ = {p′

k}k∈[24] by PS, {SDi}0≤i<n finds {ppk =
pk ∗ p′−1

k }k∈[24]. It updates zero secret shares as {uz′
i,j,k = uz′

i,j,k ∗
ppk}k∈[24],0≤i<ti for district i residents {Ui,j}0≤j<ti . This satisfies the
PWZS constraint

∑23
k=0 uz′

i,j,k ∗ p′
k = 0 ∀ i ∈ [ti] as given

∑23
k=0 uzi,j,k ∗

pk = 0,
∑23

k=0 uzi,j,k ∗ pk ∗ p′−1
k ∗ p′

k =
∑23

k=0 uz′
i,j,k ∗ p′

k = 0 ∀ i ∈ [ti].
Also, DSZS equality

∑ki−1
j=0 uz′

i,j,k =
∑ki−1

j=0 uzi,j,k ∗pk ∗p′−1
k = pk ∗p′−1

k ∗
∑ki−1

j=0 uzi,j,k = ppk ∗ 0 = 0 is satisfied.

Fig. 3. Sequence Diagram.

3) Encrypt(L1)(GPP,mi,j,k,uzi,j,k) → CPi,j,k : Consider district i, where
each consumer {Ui,j}j∈[ti] encrypts its reading mi,j,k at timestamp TSk.
This is repeated on an hourly basis throughout the day. For this, it chooses

PPSGDA 439

24 random constants uzi,j,k ∈ Z∗
q such that the price dot product vanishes

∑23
k=0 uzi,j,k∗pk = 0. Then, it also selects yi,j,k ∈ Z∗

q at random and computes
Ci,j,k = Enc(mi,j,k) = c1 {i,j,k}||c′

2 {i,j,k} = gyi,j,k ||gmi,j,k+uzi,j,k · hDAi

yi,j,k

using the public key of DAi.
4) Signature for ciphertext integrity check: The mining node is responsi-

ble for validating the data transaction records. Here, DAi enables data non-
repudiation and source authentication via an aggregable digital signature.

4.1) BLS Signature(GPP,xi,j,Ci,j,k,TSk) → σi,j,k: At TSk timestamp,
Ui,j creates σi,j,k = (H(Ci,j,k||TSk))xi,j as per the modified BLS short
signature algorithm.

4.2) Verify (GPP,TSk, {Ci,j,k, σi,j,k}) → (True/False): Now, DAi vali-
dates the source and integrity of the collected ciphertexts {Ci,j,k}j∈[ti]

at timestamp TSk. It is achieved via batch verification of the signatures
{σi,j,k}j∈[ti] for all the users {Ui,j}j∈[ti]. An equality check is performed
whether e(

∏ti−1
j=0 σ

ρj

i,j,k, g) == (
∏ti−1

j=0 e(H(Ci,j,k||TSk), hρj

i,j)). Its validity
ensures the accuracy of the concatenated ciphertext. It indicates that
rogue public key, FDI and replay attacks are not launched on Ci,j,k with
high probability.

Equality : LHS = e(
ti−1∏

j=0

σ
ρj

i,j,k, g) =
ti−1∏

j=0

(e(σρj

i,j,k, g) =

e(H(Ci,j,k||TSk)xi,j∗ρj , g) = e(H(Ci,j,k||TSk), gxi,j∗ρj))

=
ti−1∏

j=0

e(H(Ci,j,k||TSk), hρj

i,j) = RHS

Note: If this temporal district batch verification equality does not hold, it
implies that the value of at least one of the ciphertexts or timestamps was fabri-
cated, assuming that the operation is carried out correctly and legitimately. In
this situation, all signatures must be verified independently or using a divide and
conquer approach by redoing the same technique for various subsets to ascertain
the origin of the faulty data.

5) Power Billing: DAi receives data from every user Ui,j 24 times per day.
Daily price vector P is used to bill the electricity consumption of Ui,j . Tem-
poral electricity consumption throughout the day is processed for billing.

5.1) Day Cost(P, {Ci,j,k}k∈[24]) → PDi,j: For a user Ui,j from the district i,
DAi segregates the ciphertext Ci,j,k collected for TSk = {TSk}k∈[24] to
extract two parts c1 {i,j,k} and c2 {i,j,k}. It aggregates all the user ciphers
CTi,j =

∏23
k=0(c2 {i,j,k}/c

xDAi

1 {i,j,k})
p′
k .

5.2) Final Calculation(CTi,j) → DCi,j: DAi decrypts CTi,j to get Ui,j ’s
daily bill PDi,j = Dec(CTi,j) =

∑23
k=0 mi,j,k ∗ p′

k +
∑23

k=0 uzi,j,k ∗ pk =
∑23

k=0 mi,j,k ∗ p′
k.

440 K. Sethi et al.

Correctness : CTi,j =
23∏

k=0

(c2 {i,j,k}/c
xDAi

1 {i,j,k})
p′
k

=
23∏

k=0

(gmi,j,k+uzi,j,k · hDAi

yi,j/gyi,j∗xDAi)p′
k

=
23∏

k=0

(gmi,j,k+uzi,j,k · gyi,j∗xDAi /gyi,j∗xDAi)p′
k =

23∏

k=0

(gmi,j,k+uzi,j,k)p′
k

=
23∏

k=0

(gmi,j,k.p′
k+uzi,j,k.p′

k) = g
∑23

k=0(mi,j,k.p′
k+uzi,j,k.p′

k) =

g(
∑23

k=0 mi,j,k∗p′
k+

∑23
k=0 uzi,j,k∗pk) = g

∑23
k=0 mi,j,k∗p′

k (Take DL)

6) District level aggregation: Each DAi decrypts and re-encrypts the data
not using the same homomorphic method. This is because the total message
is not allowed to exceed 230 or have more than 30 bits as additive variant of
Elgamal encryption requires a calculable discrete log forcing a certain bound
on the message. The fog DAi mining node creates a block for the re-encrypted
aggregate for its district. PS reads the chain for further computation and
analysis for demand response.

6.1) User data aggregation (L1)({Ci,j,k}j∈[ki]) → Mi,k,0 : Power cipher-
text is aggregated for some users of a specific district at the same times-
tamp for demand response. For a user Ui,j from the district i, DAi

segregates the ciphertext Ci,j,k to extract the two parts c1 {i,j,k} and
c2 {i,j,k}. It aggregates all the user ciphers CPi,k,0 =

∏ki−1
j=0 c2 {i,j,k}/ =

(
∏ki−1

j=0 c1 {i,j,k})xDAi on day 0. Then, it decrypts the district aggregate
energy consumption using its secret key xDAi

, Dec(CPi,k) = Mi,k,0. This
day 0 plaintext is utilised to commence the analysis and initiate the gran-
ular demand response program.

Correctness : Dec(CPi,k,0) =
ki−1∏

j=0

(c2 {i,j,k}/c
xDAi

1 {i,j,k})

=
ki−1∏

j=0

(gmi,j,k+uzi,j,k · gyi,j∗xDAi /gyi,j∗xDAi) =
ki−1∏

j=0

(gmi,j,k+uzi,j,k)

= g
∑ki−1

j=0 (mi,j,k+uzi,j,k) = g(
∑ki−1

j=0 mi,j,k+
∑ki−1

j=0 uzi,j,k)

= g
∑ki−1

j=0 mi,j,k = gMi,k,0

PPSGDA 441

6.2) Re − encrypt(L2)(gMi,k,0) → EMi,k,0,Hi,k,0: For day 0, DAi computes
Ki = e((gxPS)xDAi ,H(IDPS)) and a hash Hi,k,0 = H(gMi,k,0 ||TSk,0).
Here, TSk,0 refers to the kth timestamp of day 0. Then, it re-encrypts
Mi,k,0 as EMi,k,0 = gMi,k,0 .Ki

TSk,0 . For day 0, DAi computes a hash
Hi,k,0 = H(gMi,k,0 ||TSk,0). Here, TSk,0 refers to the kth timestamp of
day 0. DAi creates a block for {EMi,k,0,Hi,k,0} as shown in Fig. 4.

6.3) Decrypt(EMi,k,0,Hi,k,0) → Mi,k,0: PS reads the chain as shown in
Fig. 4. Power data is analyzed and aggregated for all the districts at
the same timestamp for demand response. For block corresponding to
DAi, PS computes Ki = e(gxDAi ,H(IDPS)xPS)TSk,0 and decrypts
gMi,k,0 = EMi,k.K−1

i . It verifies message integrity via an equality check
Hi,k,0 = H(gMi,k,0 ||TSk,0). It computes the discrete logarithm Mi,k,0 =
DL(gMi,k,0).

6.4) District data aggregate (L2)({Mi,k,0}i∈[n]) → FMk,0: Power plain-
text is aggregated for all districts at timestamp TSk{k∈[23]} for demand
response on day 0,

∑n−1
i=0 {Mi,k,0} = FMk,0.

Fig. 4. District Blockchain for PPSGDA System.

Note: Here, taking DL is even more time consuming as the aggregate data
FMk,0 is allowed to have at the most 30 bits. Therefore, from the next day
onwards, only the data difference between two consecutive days is taken into
account which is allowed to have at the most 25 bits. This concept is similar to

442 K. Sethi et al.

differential pulse code modulation (DPCM) which is used to save bits in data
compression in multimedia systems.

7) Demand Response: For this, PS analyzes the individual data to perform
clustering to filter the right participants for a particular time frame. It uses
the aggregate data for the districts i ∈ [n] wherein ki clients are assumed
to participate in the demand response program. A vector SPd is declared
where spk,d represents the daily power supply differential desired between
timestamps TSk−1 and TSk on day d. The optional correction factors αk are
declared which come into action from the second iteration onwards if required.
These are meant to tune the expression aggressively for price declaration
next day so that desired district demand profile is achieved more quickly. If
negative εP and constant Y are assumed, negative/positive spk,d value should
mandate proportionate increase/decrease in day 0 price pk,0 at timestamp
TSk wrt desired decrease/increase in FMk,0, respectively.

7.1) Price Publish (P0,SP0,FM0) → P1: Inputs taken on day 0 are 24 ele-
ment vectors P , SP and FM . Intuitively, the consumer Ui,j with con-
stant income Yi,j will like to keep his/her daily cost DCi,j almost same.
So, the new prices for day 1 are published using a simple formula as
pk,1 = pk,0 ∗ (1 − SPk,0/FMk,0). This completes 0th iteration.

7.2) DifferenceEncrypt(L2)(gMi,k,0 ,gMi,k,1) → Hi,k,1, DMi,k,1: For day 1,
DAi computes DMi,k,1 = Dec(Enc(gMi,k,1))/gMi,k,0 = gMi,k,1−Mi,k,0

It computes DEMi,k,0 = gMi,k,1−Mi,k,0 .Ki
TSk,0 and a hash Hi,k,1 =

H(gMi,k,1−Mi,k,0 ||TSk,1).
7.3) Demand Elasticity(DEMi,k,0 → εk,e): PS computes gMi,k,1−Mi,k,0 =

EMi,k.K−1
i and takes DL to get Diffi,k,1 = Mi,k,1 − Mi,k,0. For day

e, it aggregates all such differences to get
∑n−1

i=0 Mi,k,e − Mi,k,e−1 =
FMk,e − FMk,e−1. The temporal consumer behaviour can be quanti-
fied via calculation of price elasticity εk,e = ((FMk,e − FMk,e−1) ∗
pk,e−1)/((pk,e − pk,e−1) ∗ Qk,e−1).

7.4) Price Declare(αk,e, εk,e) → pk,e+1: For calculating new price pk,e+1

using old elasticity εk,e, correction factor αk,e can be used as (1 + αk,e) ∗
spk,1 = εk,1 ∗ FMk,1 ∗ (pk,2 − pk,1)/pk,1. Now, publish prices pk,2 such
that pk,2 = (1 + αk) ∗ spk,1 ∗ pk,1/(εk,1 ∗ FMk,1) + pk,1. So, prices for eth

iteration is pk,e = (1 + αk) ∗ spk,e−1 ∗ pk,e−1/(εk,e−1 ∗ FMk,e−1) + pk,e−1.
Go back to algorithm 7.2.

7.5) Clustering(Diffi,j,1) → CL: PS creates a 24*n sized energy differential
matrix CL and populates it such that CL[i][j] = Diffi,j,1. Clusters are
created and the districts belonging to the same cluster have similar power
consumption pattern. Consequently, it is decided that for the next day
(here, day 2), which districts should be focused upon for a particular
subset of 24 hourly time frames.

4 Performance Analysis

In the proposed scheme, we have used additive ElGamal PHC which mandates
efficient discrete logarithm calculation. For this, we assume that the maximum

PPSGDA 443

length of the user bill and aggregate district energy consumption are 20 and
30 bits, respectively. If the power measurements are transmitted on an hourly
basis, we assume that the transmitted consumption falls in the [0-1] kWh range
for an average Indian household and commercial arena smart meter. For small
to large-scale industries, the average hourly range can be assumed to be [0-4]
kWh. In Z∗

n, representing such ranges needs 10 bits for residential and commer-
cial smart meters. The requirement rises to 12 bits for industrial smart meters.
We have already assumed that the hourly energy consumption of a district does
not exceed 230 kWh. So, a bound needs to be placed on the number of partici-
pants in the demand response program or k as in Shamir (k,n) S3. The districts
primarily consisting of residential and commercial sites are assumed to have
roughly k = 220 ≈ 106 (1 million = 10 lakhs) participating meters at the most.
However, for their industrial counterparts, the maximum allowable number is
k = 218 ≈ 2.5 ∗ 105 or 2.5 lakh participants. These participants, though, low
in number are capable of changing their demand profile, significantly. We need
to also ensure that bits required for user’s daily bill which is computed by DA
does not exceed 20. It is given that the maximum hourly consumption for a res-
idential/commercial user does not require more than 10 bits. We also know that
in the worst case, the 10-bit power needs to be taken 24 times in consideration
for price aggregation on daily basis. Now, the maximum number bits allowed for
price is �log2(210/24)� = 5. So, a bijective mapping can be established between 25

points of domain {0, 1,, 31} and hourly price range {0|, 0.25|, 0.5|, · · · , 7.75|}
in rupees (|). The final obtained price simply needs to be divided by four in order
to get the final user bill.

4.1 System Configuration, Tools and Platform

For the proposed PPSGDA scheme, experiments are conducted on a Ubuntu
20:04:2 LTS WSL system having an Intel Core(TM) i3-5005U CPU @ 2.00 GHz
x64-based processor, 4.00 GB RAM. For bilinear map operations (pairing based
cryptography) specifically, we used the Charm crypto platform which is an exten-
sible Python language-based framework for rapid prototyping advanced cryp-
tosystems [37]. We employ a symmetric curve with a 512-bit base ‘SS512’. Group
(G) used is a 512-bit multiplicative cyclic prime order group. We used Google
Colab Notebook to perform all the non-pairing based cryptographic operations.
For inverse and power modulus operations, ‘gmpy2’ module is used as it sup-
ports fast multiple-precision arithmetic. A few simulation experiments are run
on Google Cloud Platform (GCP) as well to manage and automate the created
scalable architecture. For deployment of Hyperledger Fabric on GCP, Python
software development kit (SDK) for HLF is used.

4.2 Theoretical Implementation Analysis

We assume our cryptosystem to have n districts, |DAi| district users and ki DR
program participants. For daily billing of district i members, the total trans-
mitted data size between all the district users and the DAi fog node per day is

444 K. Sethi et al.

= 24∗|DAi|∗(|Ci,j,k|+ |si,j,k|) = 24∗|DAi|∗(|c1{i,j,k}|+ |c′
2{i,j,k}|+ |s{i, j, k}|) =

24 ∗ |DAi| ∗ (512 + 512 + 512) = 24 ∗ |DAi| ∗ 1536 bits = 4608.|DAi| bytes. For
demand response, the hourly transmitted data size between all the district users
and the DAi fog node is = |ki| ∗ (|Ci,j,k| + |si,j,k|) = |ki| ∗ (512 + 512 + 512) =
|ki| ∗1536 bits = 192.|ki| bytes. The size of hourly re-encrypted data transmitted
by the DAi fog node to PS is the sum of sizes of the pairing and the message
hash |EMi,k,0| + |Hi,k,0| = (512 + 512)bits = 128 bytes.

4.3 Practical Implementation Analysis

We have conducted 50 trials and the results shown graphically reflect the aver-
age. The semi-log line graph (left) shown in Fig. 5, exhibits the time complexity
for inverse operation for decryption, table creation and discrete logarithm com-
putation using BSGS technique w.r.t. the maximum length of the underlying
message in bits. The line graph towards right in the same figure shows the time
complexities for the average encryption, re-encryption through bilinear pairing
and aggregation procedures w.r.t. the number of district users.

Fig. 5. Performance of various algorithms w.r.t. various parameters.

Observation and Inference: In the left plot, the decryption performed by
district IoT smart meter via an inverse operation is not dependent on the mes-
sage length as the group size is fixed at 512 bits beforehand. It can be easily
seen that the table creation and discrete logarithm search processes of BSGS are
time-consuming and the computation time varies exponentially as the message
range is squared for both procedures. In the right plot, the encryption and re-
encryption performed by district IoT smart meter and DA fog node, respectively,
are not dependent on the number of district nodes. Therefore, their time com-
plexities vary, abruptly. It is intuitive that the aggregation time required rises
in a linear manner with linear increase in the number of district smart meters,
i.e., ≈ 0.033.(|DAi| − 1)ms.

PPSGDA 445

4.4 Experimental Execution

As already mentioned, IIoT has real-time CPS monitoring and maintenance as
one of its major agendas. As components of the technology stack employed for
simulation, following are the GCP products used for their specified purposes.

1) GCP IoT core and Cloud Pub/Sub: Several organizations have or are
planning to employ it for a multitude of their smart applications including pre-
vention of unplanned downtime for globally dispersed smart grid meters [36].
Here, it is just used for a basic simulation where the DA fog nodes manage the
registration, authentication, and authorization of IoT smart meters of their
concerned districts. The meters use a standard data-centric lightweight com-
munication protocol called MQTT (Message Queuing Telemetry Transport)
to establish two-way device connection with their respective DAs. The prod-
uct also allows creation of gateways to enable offline operation capabilities
and device registry to group the similar devices.

2) GCP BigTable: It is a fully managed and mutable NoSQL database service
for large scale data analytics. Traditional row-based relational databases are
designed and optimized to handle and process the data in form of rows. But,
for our purpose, the primary focus is the column storing user meter read-
ing data which can be zipped together with sensor IDs to create a columnar
family for aggregation. Therefore, we use BigTable as a wide columnar and
sparsely populated data storage because not all of the sensors are assumed to
transmit their readings each hour. To integrate it with our IoT framework,
we connect Pub/Sub to BigTable via Dataflow template. This is used by
DA to store the ElGamal PHC encrypted data streamed from lakhs of IoT
meters corresponding to their unique sensor IDs and the 24 hourly times-
tamps. When the table gets fully populated, this data is used for billing
purposes for each sensor on a daily basis. The created table is also used for
L1 aggregation and analysis to obtain the values which are passed to PS
for the demand response (DR) program. The columnar configuration ren-
ders the SQL queries more challenging but the concerned subcolumns can
be exposed as subfields. For example, a sample query to compute the count
of active residential participants at a specific timestamp from a district tak-
ing into account consumer column family will be like SELECT COUNT(1)
FROM ‘dataset.table’ WHERE consumer.type.cell.value=“residential” AND
consumer.time.cell.value=“01-04-22 14:00”.

3) GCP BigQuery ML: BigQuery is a serverless, highly scalable, flexi-
ble and persistent SQL data warehouse which facilitates efficient query-
ing of voluminous and complex datasets. When PS reads the data
blocks uploaded by the DAs for all the timestamps from the Fog HLF
(blockchain) deployed using python SDK, it stores them in a table for
performing district level clustering. For this, k-means++ initialization
and Euclidean distance are chosen as parameters in the query CREATE
MODEL ‘dataset.model’ OPTIONS (MODEL TYPE=‘KMEANS’, NUM
CLUSTERS=6,KMEANS INIT METHOD=‘KMEANS++’,DISTANCE
TYPE =‘EUCLIDEAN’) AS SELECT * FROM ‘dataset.table’.

446 K. Sethi et al.

5 Outlook and Conclusion

In this paper, we proposed a PPSGDA cryptosystem which features a decen-
tralized fogging architecture premised on a private and permissioned blockchain
(Hyperledger Fabric). We maintain the confidentiality of the user power reading
data prior to aggregation by fog node through use of additive ElGamal PHC.
We enable the data privacy on an individual basis in a flexible manner via
the provision of secret shares which can be updated efficiently. In addition, our
scheme achieves ciphertext integrity, non-repudiation and resilience in face of
major cyberattacks through timestamps, hashing and digital signature. Along
with security, ensuring grid stability is also crucial for which we propounded a
simple distributed demand response mechanism. The Western world has reaped
benefits from the adoption of innovative technology in the form of enhanced
grid CPS stability and security. India, however, has smart grid AMI network
in its nascent stages and may emulate the aforementioned merits in the coming
decades. It is known that the restoration of human hands and brains into the
industrial framework is expected to be the emphasis of Industry 5.0. For this, the
proposed scheme may have laid the foundation for a smart grid CPS where man
and machine harmonize and identify effective strategies to collaborate under the
IIoT ecosystem.

References

1. Saleem, A., et al.: FESDA: fog-enabled secure data aggregation in smart grid IoT
network. IEEE Internet Things J. 7(7), 6132–6142 (2020)

2. Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios.
In: Proceedings of the 49th Annual Hawaii International Conference on System
Sciences, HICSS 2016, pp. 3928–3937 (2016)

3. Serizawa, Y., Ohba, E., Kurono, M.: Present and future ICT infrastructures for a
smarter grid in Japan. In: Innovative Smart Grid Technologies, pp. 1–5 (2010)

4. Yu, L., Li, H., Feng, X., Duan, J.: Non-intrusive appliance load monitoring for
smart homes: recent advances and future issues. IEEE Instrum. Meas. Mag. 19,
56–62 (2016)

5. Prasad, V.K., Bhavsar, M., Tanwar, S.: Influence of montoring: fog and edge com-
puting. Scalable Comput. Pract. Exp. 20(2), 365–376 (2019)

6. Guo, Y., Ten, C.-W., Jirutitijaroen, P.: Online data validation for distribution oper-
ations against cybertampering. IEEE Trans. Power Syst. 29(2), 550–560 (2014)

7. Fan, H., Liu, Y., Zeng, Z.: Decentralized privacy-preserving data aggregation
scheme for smart grid based on blockchain. Sensors 20(18), 5282 (2020)

8. Zhang, Y., Wu, A., Zheng, D.: Efficient and privacy-aware attribute-based data
sharing in mobile cloud computing. J. Ambient Intell. Hum. Comput. 9, 1039–
1048 (2018)

9. Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homo-
morphic encryption. In: 2010 First IEEE International Conference on Smart Grid
Communications (SmartGridComm), pp. 327–332. IEEE (2010)

10. Ni, J., Zhang, K., Alharbi, K., Lin, X., Zhang, N., Shen, X.S.: Differentially private
smart metering with fault tolerance and range based filtering. IEEE Trans. Smart
Grid 8(5), 2483–2493 (2017)

PPSGDA 447

11. Zhu, L., et al.: Privacy-preserving authentication and data aggregation for fog-
based smart grid. IEEE Commun. Mag. 57, 80–85 (2019)

12. Bao, H., Lu, R.: DDPFT: secure data aggregation scheme with differential privacy
and fault tolerance. In: IEEE International Conference on Communications (ICC),
pp. 7240–7245 (2015)

13. Guan, Z., Si, G., Du, X., Liu, P., Zhang, Z., Zhou, Z.: Protecting user privacy based
on secret sharing with fault tolerance for big data in smart grid. In: 2017 IEEE
International Conference on Communications (ICC), pp. 1–6 (2017). https://doi.
org/10.1109/ICC.2017.7997371

14. Knirsch, F., Eibl, G., Engel, D.: Multi-resolution privacy-enhancing technologies
for smart metering. EURASIP J. Inf. Secur. 2017, 6 (2017)

15. Gao, C.Z., Cheng, Q., He, P., Susilo, W., Li, J.: Privacy-preserving Naive Bayes
classifiers secure against the substitution-then-comparison attack. Inf. Sci. 444,
72–88 (2018)

16. Wang, H., Wang, Z., Domingo-Ferrer, J.: Anonymous and secure aggregation
scheme in fog-based public cloud computing. Futur. Gener. Comput. Syst. 78,
712–719 (2018)

17. Zhang, Y., Lang, P., Zheng, D., Yang, M., Guo, R.: A secure and privacy-aware
smart health system with secret key leakage resilience. Secur. Commun. Netw.
2018, 7202598 (2018)

18. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

19. Xue, K., et al.: PPSO: a privacy-preserving service outsourcing scheme for real-time
pricing demand response in smart grid. IEEE Internet Things J. 6(2), 2486–2496
(2019). https://doi.org/10.1109/JIOT.2018.2870873

20. Agrawal, A., Sethi, K., Bera, P.: IoT-based aggregate smart grid energy data
extraction using image recognition and partial homomorphic encryption. In: IEEE
International Conference on Advanced Networks and Telecommunications Systems,
pp. 322–327 (2021)

21. Liu, H., Gu, T., Liu, Y., Song, J., Zeng, Z.: Fault-tolerant privacy-preserving
data aggregation for smart grid. Wirel. Commun. Mob. Comput. 2020, Article
ID 8810393, 10 p (2020)

22. Khan, H., Khan, A., Jabeen, F., Rahman, A.: Privacy preserving data aggregation
with fault tolerance in fog-enabled smart grids. Sustain. Urban Areas 64, 102522
(2021)

23. Cui, J., Shao, L., Zhong, H., et al.: Data aggregation with end-to-end confidentiality
and integrity for large-scale wireless sensor networks. Peer-to-Peer Netw. Appl. 11,
1022–1037 (2018). https://doi.org/10.1007/s12083-017-0581-5

24. Ziad, M.T.I., Alanwar, A., Alkabani, Y., El-Kharashi, M.W., Bedour, H.: Homo-
morphic data isolation for hardware trojan protection. In: 2015 IEEE Computer
Society Annual Symposium on VLSI, pp. 131–136 (2015)

25. Knirsch, F., Unterweger, A., Unterrainer, M., Engel, D.: Comparison of the Pail-
lier and ElGamal cryptosystems for smart grid aggregation protocols. In: ICISSP
(2020)

26. Hu, Y., et al.: Enhanced Flexibility for Homomorphic Encryption Schemes via CRT
(2012)

27. Shafagh, H., Hithnawi, A., Burkhalter, L., Fischli, P., Duquennoy, S.: Secure shar-
ing of partially homomorphic encrypted IoT data. In: Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems (SenSys 2017), Article 29, pp.

https://doi.org/10.1109/ICC.2017.7997371
https://doi.org/10.1109/ICC.2017.7997371
https://doi.org/10.1007/11787006_1
https://doi.org/10.1109/JIOT.2018.2870873
https://doi.org/10.1007/s12083-017-0581-5

448 K. Sethi et al.

1–14. Association for Computing Machinery, New York (2017). https://doi.org/10.
1145/3131672.3131697

28. Dong, Y., Milanova, A., Dolby, J.: SecureMR: secure mapreduce using homomor-
phic encryption and program partitioning. SIGPLAN Not. 53(1), 389–390 (2018).
https://doi.org/10.1145/3200691.3178520

29. http://hdl.handle.net/123456789/32016
30. Guan, Z., et al.: APPA: an anonymous and privacy preserving data aggregation

scheme for fog enhanced IoT. J. Netw. Comput. Appl. 125, 82–92 (2019)
31. Guan, Z., et al.: Privacy-preserving and efficient aggregation based on blockchain

for power grid communications in smart communities. IEEE Commun. Mag. 56,
82–88 (2018)

32. Fan, M., Zhang, X.: Consortium blockchain based data aggregation and regulation
mechanism for smart grid. IEEE Access 7, 35929–35940 (2019)

33. Yao, S., Tian, X., Chen, J., Xiong, Y.: Privacy preserving distributed smart grid
system based on Hyperledger Fabric and Wireguard. Int. J. Netw. Manag. 33,
e2193 (2021)

34. Gellings, C.W.: The Smart Grid: Enabling Energy Efficiency and Demand
Response. The Fairmont Press Inc., Atlanta (2009)

35. Palensky, P., Dietrich, D.: Demand side management: demand response, intelligent
energy systems, and smart loads. IEEE Trans. Industr. Inf. 7(3), 381–388 (2011)

36. https://cloud.google.com/customers/kiwigrid
37. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems.

J. Cryptogr. Eng. 3, 111–128 (2013)
38. Mengelkamp, E., et al.: A blockchain-based smart grid: towards sustainable local

energy markets. Comput. Sci.-Res. Dev. 33, 207–214 (2018)
39. Caprolu, M., et al.: Increasing renewable generation feed-in capacity leverag-

ing smart meters. In: 2020 IEEE Green Energy and Smart Systems Conference
(IGESSC). IEEE (2020)

40. Agung, A.A.G., Handayani, R.: Blockchain for smart grid. J. King Saud Univ.-
Comput. Inf. Sci. 34(3), 666–675 (2022)

https://doi.org/10.1145/3131672.3131697
https://doi.org/10.1145/3131672.3131697
https://doi.org/10.1145/3200691.3178520
http://hdl.handle.net/123456789/32016
https://cloud.google.com/customers/kiwigrid

Crypto-Ransomware Detection: A
Honey-File Based Approach Using

Chi-Square Test

Ajith Arakkal, Shehzad Pazheri Sharafudheen, and A. R. Vasudevan(B)

Hardware and Security Group, Department of Computer Science and Engineering,
National Institute of Technology, Calicut, Kozhikode, Kerala, India

ajith1202@gmail.com, shehzadps@gmail.com, vasudevanar@nitc.ac.in

Abstract. Ransomware is a type of malware that restricts access to
the data or computing device and threatens to sell the data or keep
it inaccessible unless the victim pays the attacker a ransom. Crypto-
ransomware is a type of ransomware that encrypts the files of the vic-
tim and demands a ransom to decrypt the files. Existing techniques
for addressing crypto-ransomware attacks include detection using honey-
pots, monitoring kernel-level system routines, techniques using machine
learning, monitoring network activities, system resources and system
usage among others. Such detection techniques are unable to distinguish
between the genuine process and a ransomware process, and requires
frequent user intervention in killing a ransomware process. Also, high
false alarms render such techniques ineffective. In this paper we propose
a solution for crypto-ransomwares by incorporating the chi-square test
on the entropy of user files in a honeypot environment. The proposed
design also automates the solution in the kernel/user level. The empiri-
cal results of chi-square test on common file types are computed resulting
in reduced false alarms.

Keywords: Crypto-Ransomware · Honeypots · File-analysis

1 Introduction

Ransomware, a malicious software, intrudes a system through phishing tech-
niques or malicious links. It then encrypts the user files using cryptographic
techniques (crypto-ransomware) or just locks the system (locker ransomware).
A ransom note is displayed to the user on the user’s desktop. It demands pay-
ment in crypto-currency from the user, with the promise of giving them the
decryption key. This key is used to decrypt the encrypted files and recover the
system back to normal.

Among the existing anti-ransomware solutions, honeypot-based solution
caters to a wide range of ransomwares because it just relies on the basic func-
tionality of crypto-ransomware which is to encrypt files and folders, unlike the
network-based, that relies on the ransomware establishing a connection with the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 449–458, 2023.
https://doi.org/10.1007/978-3-031-49099-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_27&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_27

450 A. Arakkal et al.

C&C server. However, the current honeypot approaches are not fully practical
in normal user systems owing to false detections and hence we aim to make the
whole process automated and more accurate.

2 Problem Statement

Honeypot-based solutions for ransomware detection are efficient in preventing
zero-day ransomware attacks. However, the existing approaches lack practical-
ity, owing to their high false positive rates. Such techniques fail to distinguish
between user processes and ransomware processes. In this paper we aim to
address these issues by incorporating the chi-square test for file encryption anal-
ysis and propose a full-fledged honeypot-based anti-ransomware solution.

3 Literature Survey

Based on the study done on various detection and recovery techniques for crypto-
ransomwares, it can be broadly categorized into three categories.

3.1 Detection Using Honeypots

Honeypots are a set of dummy/decoy files placed in the file-system of the user
so as to detect the action of ransomware on those files. This comes from the
notion that no other user program may attempt to access these “honeyfiles”. A
few different approaches for detection have been proposed on the basis of specific
use-cases.

R-Locker: R-Locker [1] not only detects crypto-ransomware, but also halts the
execution. It uses named pipes to implement honey-files that act as a regular
file and establishes a communication channel between the reading and writing
processes; causing a ransomware process to be blocked by the kernel once it
starts to read the contents of the file. R-Locker reduces the overhead by using a
single trap/honey-file and populates all the user directories with symbolic links
(soft links) of the same.

3.2 Network Analysis

Most ransomware variants communicate with a Command and Control (C&C)
server for obtaining asymmetric encryption keys used for the encryption process.
Cabaj and Mazurczyk [2] proposed an SDN based approach on the basis of a
study on CryptoWall, a popular ransomware. The technique is based on dynamic
blacklisting of C&C servers and their proxies. Once a packet has been found to
travel to and from a malicious domain name, the connection is blocked, thereby
preventing encryption of the user files.

Crypto-Ransomware Detection 451

3.3 File Analysis

Crypto-ransomwares usually overwrite a large number of the user’s files during
the process of encryption. These changes can be monitored in order to detect a
possible ransomware attack. Some prominent metrics used to detect file system
changes are described below:

File Entropy: Scaife et al. [3] employed file entropy and other metrics to detect
ransomware. Shannon’s Entropy, a popular entropy calculation technique, when
calculated, takes values from 0 - no randomness, to 8 - totally random. If a file
is encrypted, it would have a considerably higher entropy than that which is
not encrypted. Even though Shannon’s entropy is used widely in literature, its
inability to differentiate between the encrypted and non-encrypted counterparts
of even the popular file types like PDFs, JPGs, DOCs and so on, makes it a
non-viable metric for normal user file-systems.

File Type: Ransomwares usually tend to change the type/extension of the files
it encrypts. Huge changes in file extensions in a short time can be used as a
method to detect ransomware. Menen [4] applied this concept to monitor large
number of files with the same extension. Scaife et al. [3] describes magic number
as a way to get information about file type and says that the file utility program
can compare and track the change in file types using the magic database, which
contains hundreds of type signatures. However, file type changes alone cannot
be used to detect ransomwares as software updates could also change the file
formats of many files.

4 Proposed Design

For ransomware detection, we propose a honeypot based approach combined
with file entropy analysis. Usual honeypot approaches incur high false positive
rates, because honey files, even though hidden, may not be accessed only by ran-
somwares; it can be accessed by benign user programs such as, copying a folder
or folder compression techniques. So, the proposed method not only detects ran-
somwares using honeyfiles, but also ensures lower false positive rates by clearly
distinguishing the access of honey files by ransomwares and user processes using
chi-square test on files. The detailed flowchart of the proposed design is shown
in Fig. 1

4.1 Honeypot

Initially for monitoring the honey-files, we setup the auditd daemon in the root
directory of the user file-system. Then the honeypot executable creates the root
honey-file, after which symbolic links to the root file are populated recursively
to all sub-directories in the user file-system.

452 A. Arakkal et al.

Fig. 1. Low-level design of the proposed solution.

The next step is to write some random bytes to the root honey-file. This acts
as a writing process for the named pipe, which essentially gets blocked by the
kernel until a corresponding reading process tries to access the file.

Once a suspicious process or a benign user process accesses the honey-file
or any of its symlinks populated across the file-system, we extract the PID of
the corresponding process. Once the PID is obtained, we pause the process by
sending a SIGSTOP signal to the process using the kill command. This is
to avoid any suspicious/harmful activity by the process while we check for its
genuiness.

Once the checks are completed and the results are sent over by the Entropy
monitoring module, we kill the process using a SIGKILL signal, or continue
execution of the process using a SIGCONT signal depending on whether the
process is malicious or not.

Crypto-Ransomware Detection 453

4.2 Entropy Montoring

The Entropy monitoring module checks for the genuineness of the process under
consideration by the honeypot executable. It aims to achieve this by maintaining
a FIFO queue of size k, which contains details of the last k file writes in the user’s
file-system.

The queue entries only include the numbers 1 and -1, signifying encryption
and non-encryption operations respectively. The module checks for any changes
to the file-system using the watchdog module in python based on the inotify
utility. Once a change is detected, two handlers are present - one for handling
deletions, the other for handling creations, modifications, renaming and moving
of files and folders.

If the change detected is a create/modify event, the chi-square values are
calculated for the corresponding files. This is followed by the enqueueing of a
specific value into the queue, depending on whether the file was encrypted or
not.

The chi-square goodness of fit test is done by comparing the chi-square value
of each file with the critical chi-square value. This critical value is calculated
by taking 255 degrees of freedom (corresponding to 256 possible byte values),
and a significance level of 0.01 (1%), which gives the value as 310.46. If the
chi-square value of a file is less than this critical chi-square value of 310.46, it
is considered encrypted, and if its greater, non-encrypted. This is done on the
basis that encrypted files are similar to a file with equal frequencies of all byte
values.

If the chi-square value of a file turns out to be greater than the critical value
of 310.46, the value -1 is added to the queue, corresponding to a non-encrypted
content write in file. On the other hand, if it turns out to be less that 310.46,
the value 1 is added to the queue, signifying an encryption operation.

4.3 Integration

Once the honeypot executable pauses the process using the SIGSTOP signal,
it transfers control over to the entropy monitoring module. The module with
the help of the FIFO queue which is constantly updated, calculates the average
value of the queue entries.

If the queue average turns out to be greater than zero, it signifies that more
than half of the last k file writes have resulted in encryption. Consequently, a
notification is sent to the honeypot executable to kill the corresponding process.
Whereas if the queue average turns out to be less than or equal to zero, it signifies
that the process accessing the honey-file is a benign user process. As a result, a
similar notification is sent to the honeypot executable to continue the execution
of the process. The communication between honeypot executable and entropy
monitoring module is done through socket programming.

454 A. Arakkal et al.

4.4 Optimisations

Design and implementation level optimisations have been incorporated so as
to improve the detection of ransomwares and reduce false positives in terms of
multiple symlinks and inclusion of timestamp.

Multiple Honey-Files per Folder: To improve the chances of honey-file
access by ransomware, multiple symlinks to the root honey-file are created in
each folder. This increases the likelihood of the ransomware accessing the honey-
file and speeds up detection compared to having only one symlink per folder.

Timestamp: Timestamp variable is introduced to mitigate false positive case
when a user downloads or copies encrypted files (or generally, files with chi-
square value less than the critical value). If the number of such files is more than
half the size of our FIFO queue, this means more than half of the queue entries
are flagged with 1s and if by chance a honeypot is accessed (maybe by a user or
any process), the process will be killed, falsely assuming its a ransomware.

To mitigate this problem, we rely on the fact that most ransomwares encrypt
files consecutively within a short span of time. So, the honey-file access by ran-
somware happens within very short time from it’s previous encryptions. Users do
not tend to access the honey-file this way, and we leverage on that. So, what we
did is, anytime a honey-file is accessed, the entropy monitoring module checks
the time difference between the last encryption operation (which is stored in
a timestamp variable) and the honey-file access time. If it is greater than a
threshold, the process is deemed a user process and let go. Else, the process is
sent to further countermeasure checking like queue average, as described in the
Integration section before.

5 Experimental Results

5.1 Chi-Square Analysis

We have performed a detailed analysis of chi-square as a metric. This was mainly
done to check the suitability of using chi-square calculation on files to distinguish
encrypted files from non-encrypted files. Since this chi-sqaure concept was vital in
our whole solution to detect ransomware encryption using encrypted file writes,
we performed a thorough analysis using more than 40,000 files of commonly used
file types.

The data was obtained from the NapierOne [5] mixed file data set. It consisted
of 16 most common file-types. For each file type, we also encrypted it to get their
encrypted counterparts. For instance, 1000 pdf files obtained from the data set
were all encrypted to get the total count of encrypted and non-encrypted versions
of pdf files to be 2000.

Crypto-Ransomware Detection 455

Table 1. Analysis on common file-types using Chi-square (CS) Test.

Median

CS
File

Type

No. of

files

analysed
Enc Non-Enc

Avg CS

for

Enc

Max CS

for

Enc

% of

wrongly

detected

Enc files

% of wron-

gly detected

Non-Enc

files

% of

wrongly

detected

files

pdf 2000 257.02 43115.18 258.43 415.16 1.50 0.00 0.75

mp3 2000 256.99 62021.32 257.27 326.58 1.50 0.00 0.75

rar 2000 268.42 2810.98 270.51 460.46 9.10 3.00 6.05

tar 2000 265.12 1165758.19 268.68 434.86 8.10 0.00 4.05

zip 2000 254.10 3193.47 255.02 324.49 0.80 0.00 0.40

pptx 2000 253.69 147929.42 255.19 329.85 0.80 0.00 0.40

txt 2000 254.86 25727.58 258.98 630.19 2.50 1.70 2.10

xlsx 2000 255.41 57994.32 255.65 339.40 1.79 0.00 0.89

docx 2000 256.32 73122.94 256.36 322.03 0.80 0.00 0.40

exe 2000 255.33 1311368.26 259.66 1121.71 3.60 0.00 1.80

webp 1600 257.10 2204.32 257.76 336.52 2.00 30.50 16.25

jpg 12000 254.31 8429.79 255.15 342.13 1.00 0.00 0.50

png 12000 259.56 20121.44 260.16 355.22 2.12 0.00 1.06

mp4 2000 260.70 104376.94 261.80 337.70 2.00 0.00 1.00

mkv 2000 260.83 81404.24 261.31 337.03 1.80 0.00 0.90

gzip 2000 252.63 3396.65 253.90 333.81 1.20 1.60 1.40

Table 1 shows the detailed analysis of chi-square values for each file type,
along with the percentage of misclassifications. The misclassifications and correct
classifications are what is more important to us from the table. The following bar
graphs will visualize the False Positive Rates (FPR) and False Negative Rates
(FNR) for all 16 file types.

The bar graph in Fig. 2 shows that the file-type webp has the highest false
positive rate (30.5%). This may be due to the high compressibility feature of
webp that gives good quality images with small size. The paper [8] also mentions
this high FPR of chi-square test on webp files as an issue. However, this FPR
is not flagged as a serious issue in the proposed design because the normal
download/write of webp files by a user will not be flagged as a ransomware
activity even though it is misclassified as encrypted file writes. This is handled by
the timestamp variable as explained in the Optimisation section of the proposed
design.

Figure 2 also shows the false negative rates (classification of encrypted files
as non-encrypted), almost all the types give satisfiable results except for rar and
tar. For these types, using Serial Byte Correlation Coefficient method [6] can
be advantageous to reduce misclassification.

456 A. Arakkal et al.

Fig. 2. False Positive and False Negative Rates for various File-types.

6 Design-Based Comparison with Existing Solutions

6.1 R-Locker

R-locker also deploys honeypot to detect ransomware activity. However, once
the honeypot is accessed in R-locker, the user receives a prompt and has to
manually provide the command to kill or continue the process. In contrast, in
our proposed solution, once the honeypot is accessed, the Entropy Monitoring
Module automatically decides whether to kill or continue the process based on
the chi-square analysis of the last few file writes. This automatic check enhances
the practicality of the proposed solution.

Another feature of the proposed design is the incorporation of multiple sym-
links per folder that increases the probability of honeypot access when the files
are randomly accessed by the ransomware. Also, these multiple symlinks to the
honeypot are provided with different names, in case the ransomware accesses
the files in alphabetical order. However, the R-Locker installs one symlink per
folder thereby resulting in an increase in the encryption of user files.

6.2 Data Aware Defence

Data Aware Defence (DaD) [7] is one of the anti-ransomware solutions that
incorporates chi-square test on files as a metric. Application of chi-square test
on files to distinguish encrypted files and non-encrypted file writes is the common
factor between DaD and the proposed solution. DaD is implemented as a mini-
filter driver that installs between the user area and the kernel and all system
calls for file write operations are diverted through that driver. DaD constantly
keeps track of a sliding window of chi-square values for the last 50 file writes and
maintains a sliding median. Once the sliding median is lesser than the critical
chi-square value, the process states are dumped and then the malicious process
is killed.

Crypto-Ransomware Detection 457

Table 2. Design comparison between the proposed solution and existing solutions.

Feature Comparison R-Locker DaD Proposed Design

Operating System Linux Windows Linux

Human Intervention Yes No No

Operation mode Kernel mode Driver mode Kernel mode

Type of solution
Honeypot

based

File analysis

based

Honeypot and File

analysis based

Symlinks per folder Single Not Applicable Multiple

Statistical metric NIL Chi-square Chi-square

Significance level Not Applicable 0.05 0.01

6.3 Design Comparison

The proposed design is compared with the existing solutions, R-Locker and DaD,
based on the design features incorporated in building the system. Table 2 shows
the design comparison between the anti-ransomware solutions discussed.

The proposed solution monitors the queue and finds the queue average only
when the honeypot is accessed, thereby reducing the overhead in communica-
tion between the honeypot and the entropy monitoring module. The difference
between our solution and DaD is that in the proposed solution the significance
level for chi-square test is 0.01 while in DaD it is 0.05. A chi-square test was
conducted with both the significance levels and it was noticed that changing the
significance level to 0.01 reduced the misclassification rate of chi-square test on
files.

7 Conclusion

This paper proposed a solution for detecting ransomware attacks and improved
upon the existing detection techniques. The proposed design was implemented
in a Unix-based system. The main contribution in the proposed solution is the
incorporation of chi-square test of files in a honeypot environment. The proposed
design relied on the automated detection of changes to the files and folders in
the system the crypto-ransomware initiates rather than solely relying on the
communication with the C&C server or specific functional calls to the cryp-
tographic modules the traditional anti-ransomware solutions provide. Keeping
honeypots (or honeytraps) throughout the user file-system enabled the detec-
tion of the ransomware at the instance of the encryption operation. Our solution
automated and improved upon the existing honeypot-based techniques with the
help of chi-square test on files.

For future work, the implementation of the proposed design can be extended
to Windows-based systems. The scope of other prominent statistical measures
can also be studied for reducing false-positive rates for certain file types.

458 A. Arakkal et al.

References

1. Gómez-Hernández, J., Álvarez González, L., Garćıa-Teodoro, P.: R-locker: thwarting
ransomware action through a honeyfile-based approach. Comput. Secur. 73, 389–398
(2018)

2. Cabaj, K., Mazurczyk, W.: Using software-defined networking for ransomware mit-
igation: the case of cryptowall. IEEE Netw. 30(6), 14–20 (2016)

3. Scaife, N., Carter, H., Traynor, P., Butler, K.R.: Cryptolock (and drop it): stop-
ping ransomware attacks on user data. In: IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), pp. 303–312. IEEE 2016 (2016)

4. Ramesh, G., Menen, A.: Automated dynamic approach for detecting ransomware
using finite-state machine. Decis. Support Syst. 138, 113400 (2020)

5. NapierOne: a modern mixed file data set alternative to Govdocs1. Forensic Sci. Int.
Digit. Invest. 40, 301330 (2022)

6. Davies, S.R., Macfarlane, R., Buchanan, W.J.: Comparison of entropy calculation
methods for ransomware encrypted file identification. Entropy 24(10), 1503 (2022)

7. Palisse, A., Durand, A., Le Bouder, H., Le Guernic, C., Lanet, J.-L.: Data aware
defense (DaD): towards a generic and practical ransomware countermeasure. In:
Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS, vol. 10674,
pp. 192–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70290-2 12

8. Pont, J., Arief, B., Hernandez-Castro, J.: Why current statistical approaches to
ransomware detection fail. In: Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R.
(eds.) ISC 2020. LNCS, vol. 12472, pp. 199–216. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-62974-8 12

https://doi.org/10.1007/978-3-319-70290-2_12
https://doi.org/10.1007/978-3-030-62974-8_12
https://doi.org/10.1007/978-3-030-62974-8_12

PSDP: Blockchain-Based
Computationally Efficient Provably

Secure Data Possession

Jayaprakash Kar(B)

Centre for Cryptology, Cybersecurity and Digital Forensics,
Department of Computer Science and Engineering, The LNM Institute

of Information Technology, Jaipur, Rajasthan, India

jayaprakashkar@lnmiit.ac.in

Abstract. Provable Data Possession is a protocol that helps the client
to verify the integrity of the data that has been stored in cloud or a
remote server. It allows the client to verify that the data possessed by the
server is not modified, damaged or lost i.e. the data is original in all forms
without retrieving it. Probabilistic proof of possession are constructed
by the model by performing random sampling to choose random blocks
of data from the remote server. To verify this, client maintains a data
of fixed volume. This reduces the input and output costs drastically.
We have constructed an efficient and lightweight provably secure Data
Possession (PSDP) using Elliptic Curve Digital Signature Algorithm
(ECDSA) in the signing process in this paper.

Keywords: Data possession · Provable security · Cloud server ·
ECDSA · Blockchain

1 Introduction

Now a day with the increasing development of advanced network technology and
requirement of computer resources, the enterprises would like the outsourcing
their storage and computing needs. In order to decrease the load of maintain-
ing the data and saving cost of purchase, increasing the number of people and
enterprises prefer to store their data on the remote cloud. This makes the user’s
compatibility for accessing and sharing files. Due to rapid growth of business, a
numerous of could service provider (CSP) such as Dropbox, SkyDrive, OneDrive,
ZipCloud etc. have emerged to provide data outsourcing. With respect to secu-
rity, reliability, speed and price, the user can select a CSP. The stored data of
the users might be confidential and have the expensive value. The data stored
on remote serve is not under the control of the corporate or enterprise. If some
information stored in the server is modified or lost, these enterprises will have to
bear great loss. The malicious cloud server will hide their mistake to save itself
from compensating the damaged enterprises. So authenticity and integrity of
remote data is a very serious issues in storing data on untrusted remote server.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 459–468, 2023.
https://doi.org/10.1007/978-3-031-49099-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_28&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_28

460 J. Kar

PDP performs random sampling on a set of file blocks stored in the server
and executes the a probabilistic proof of possession. This allows the verifier to
ensure the integrity of the remote data that is present with a remote server
without downloading or retrieving the data. Therefore the cost of input and
output reduces drastically by this method. To check for the authenticity and the
integrity of data, the client submits the queries in the form of challenges, the
remote server performs the verification of the output generating the responses
against the query (challenges). The protocol comprises four actions namely pre-
process, inquiry, confirmation and verification. During the pre-processing, the
client splits the file F into a number of blocks say n and forms a metadata
considered as auxiliary data. This is used to ensure that the data in a remote
server or cloud is the original data and the that it’s integrity is maintained. The
auxiliary data represents block tags and shows the properties of files and blocks.
To reduce the space taken up by the data, before uploading on the server, client
may alter the file say F

′
and delete the original file from his local PC. The server

stores the altered file F
′
so that storage space would be Ω(n) for all blocks while

the storage space at the client is O(1). To verify the ownership of a file, the client
sends a random challenge γ to the remote server, then the server designs a proof
of data possession and transfers it to the client as a response. Upon receiving the
response, client compares it with the stored auxiliary data in his local PC. To
confirm the successful storage of the file by the server, client performs the data
possession challenge before the process of deletion the file’s local copy stored
in it. Encryption of the file can be done by the clients before out-sourcing for
security reasons [4]. The basic structure is depicted in the following Fig. 1.

Fig. 1. A generic structure of blockchain

Provably Secure Data Possession 461

1.1 Related Work

The paradigm of PDP (Provable data possession) was introduced by Atenies et
al. in 2007 [1], The goal of PDP scheme is used for integrity of the remote data
of the client that is stored in a remote server. It is a probabilistic approach. They
constructed two PDP schemes which are provably secure. Subsequently Ateniese
et al. introduced a dynamic PDP scheme where operation of insertion cannot
be performed [2]. In 2009, Erway et al [5] designed a full-dynamic PDP scheme
using authenticated flip table which support insert operation. A numerous of
authors [7,9] have proposed various PDP schemes. Hao et al. [7] gave a PDP
scheme to ensure public verifiability and data dynamic which means that it
preserved the privacy of the data. A mechanism to verify the stored file using
RSA based hash function for remote server [3] was designed by Deswarte et al.
Subsequently similar kind of technique was provided by Filho et al. [6]. These
schemes allow the client to use the same metadata to perform different challenges
on it. In this case the storage and communication complexities are O(1). The
algorithm’s drawback is the complexity on the computational level at the server,
which grows exponentially according to the file size because we need to access all
file blocks. Recently, Yannan et al. [8] proposed an blockchain-based PDP in the
name “IntegrityChain” for decentralized storage. The files to peers are stored in
a blockchain network by the system model and is formalized as the data owner.
The integrity is to be checked periodically by paying bitcoins and the remote
server can earn the money if it provides the storage serves honestly. However
the scheme does not provide reliability and a stable decentralized outsourcing
storage.

1.2 Contribution

Data privacy and integrity is very crucial and challenging for outsourcing storage.
In order to preserve these security goals, we have developed a very efficient PDP
namely PSDP with provable security. The proposed scheme uses blockchain
which stores the metadata for client. The data irreversibility of blockchain helps
the client to check the integrity of the remote data. Listed below are our contri-
butions:

1. We introduce an efficient and provably secure data possession PSDP using
blockchain technology which contains the metadata and signature. The meta-
data is to be queried and verified by the client.

2. We perform formalization of the two models- 1. system model and 2. the
security/adversary model for PSDP, where we include blockchain as one
entity so as to check the integrity of remote data.

3. The construction of PSDP uses the signing algorithm ECDSA, an cyclic
group (additive in nature) of a large prime order μ and blockchain for checking
of remote data integrity (Table 1).

462 J. Kar

Table 1. Nomenclature

Nomenclature Description

n A large prime number(≥ 2160-bits)

p Odd prime ≥ 3

Zp {0, 1, 2 . . . p − 1}
Z

∗
p {0, 1, 2 . . . p − 1}/{0}

E Elliptic curve defined over Zp

G Additive cyclic group n

H Collision resistant hash function

P A generator of group G of order n

R Any arbitrary element of G

Rx x-coordinate of point R ∈ G

(d,Q) Private and public key pair, where Q = d · P
O Point at infinity

2 System and Protocol Model

The proposed protocol works with a system model which is made up of four
participating entities Client: C, Cloud Server: S, Blockchain and System
Administrator. The communications between these entities are illustrated in
Fig. 2. It is discussed as bellows:

1. Client: An entity regarded as data owner which has massive data would like
to store on cloud for maintenance and computation. The file is divided and
metadata is created along with the signature. Then Client uploads the file
on the Cloud server. The metadata and signature are being sent to the
Blockchain at the same moment. The challenge is generated by the entity
who might be individual consumer or corporate and sends it to both the
Cloud Server and the Blockchain. Upon receiving the responses, these are
verified by the Client. Verification is considered successful if the remote data
is considered as integer and unsuccessful if it is considered as non-integer.

2. Cloud Server: The cloud service provider maintains a cloud server with high
computational capability and storage space. This stores the Client’s data.
So Cloud Server is one of the entity in the system model.

3. Blockchain: It is the entity which stores the client metadata that is later
used to ensure the integrity of the data stored in a remote server. When
Blockchain receives the Client’s challenge, it performs some computation
using the metadata present with it and then sends it to the Client. Due to
the data i properties of blockchain, the remote data integrity is checked.

4. System Administrator: An entity which is a trusted third party (TTP)
which creates or generates both public and private system parameters of the
Client and Cloud Server. The public parameters are being published where
as the secret parameters are kept secret. The secret parameters are sent to
corresponding entities through a secure channel using TLS protocol.

Provably Secure Data Possession 463

All the above steps are depicted in the following Fig. 2.

Fig. 2. System model

3 Provable Data Possession Based on Blockchain

This section presents a generic framework of blockchain-based PDP which com-
prises six polynomial-time algorithms namely KeyGen, SignBlock, Challenge,
GenProof, VerProof and Compensation. These are described as follows:

1. KeyGen: This algorithms execute in a probabilistic polynomial time. A value
k is taken as an input and matching public and private keys are generated
using it forming a pair of keys. This is performed by the client to setup and
does the setting. Formally we can represent as

KeyGen(1k) → (pk, sk).

2. SignBlock: The client runs this algorithm in a probabilistic polynomial time.
This takes the public parameters i.e the public key pk and secret (private)
key sk as input and the file blocks are uploaded. This generates the metadata
corresponding to the uploaded file. The file is then uploaded to the Cloud
Server and the metadata to the Blockchain via a secure channel using TLS
protocol. Formally we can represent as

SignBlock(pk, sk, F1, F2 . . . Fn) → σF .

Where the file F has been divided into n blocks F1, F2 . . . Fn of equal sizes.
3. Challenge: It is a random nonce generated by the Client to make sure the

integrity in the data is maintained and is sent to the Cloud Server and
Blockchain.

464 J. Kar

4. GenProof: When the Cloud Server receives challenge, it computes a values
from the data stored as a Proof of Possession and send this value to Client
as response. The following algorithm is run by the Cloud Server. It takes
the public key pk, a file block collection F = {F1, F2 . . . Fn} in an ordered
fashion, a challenge chal and the ordered metadata Ψ corresponding to each
of the blocks in F as input and outputs a proof of possession η. Formally

GenProof(pk, F, chal, Ψ) → η.

5. VerProof: This algorithm is run by the Client for the validation of the proof
of possession. The input parameters are the public key pk, a secret key sk,
a challenge chal and a proof of possession η. Additionally, it submits the
query to the blockchain, then it executes the algorithm and obtains some
metadata. Finally, Client uses the metadata, response and verifies the remote
data integrity. It returns “success” or “failure”, based on whether η is a
appropriate proof of possession for the file blocks which is determined by chal.
Formally, we can represent as

VerProof(pk, sk, chal, η) → “1”/“0”.

Where “success” or “failure” are denoted by 1 and 0 respectively.
6. Compensation: In case some data is improper or broken then the Client

communicates with the Cloud Server and can ask for a compensation from
Cloud Server.

Definition 1. Unforgeability: In random oracle model, there exist an prob-
abilistic polynomial time adversary A i.e dishonest Cloud Server which has
negligible probability to go safely through the verification process if the data
that is challenged to the server is either altered or lost.

The game takes place between the adversary A and the challenger C with
following phases:

– Setup: Secret value k is taken as input and the KeyGen algorithm is run
on it by the challenger. The challenger also computes the public and private
key pairs (pk, sk). The public key pk is sent to A and private key sk is kept
by the challenger secretly.

– Phase-I Queries: The adversary submits the signing and hash queries to
the challenger C in an adaptive manner. C answers each queries. Here a
random oracle is how the hash function has been modelled. It chooses a block
F1 and sends it to C . Similarly A continues to submit the queries to the
challenger C for verification of metadata σi, for all i = 2 . . . n for other files
F2 . . . Fn respectively. C runs the SignBlock algorithms and computes σFi

i.e. SignBlock(pk, sk, Fi) → σF1 . Then A stores the block files as an order
of collection F = (F1, F2 . . . Fn), along with the corresponding metadata
σF1 , σF2 . . . σFn

for verification.

Provably Secure Data Possession 465

– Challenge:A challenge chal is generated by C and C then constructs chal-
lenged blog-tag pairs. Then requests for a proof of possession to A for the
blocks Fi1 , Fi2 . . . Fic determined by chal, for all 1 ≤ ij ≤ n, 1 ≤ j ≤ c,
1 ≤ c ≤ n.

– Phase-II Queries: This is similar to phase-I queries. Here there exist a
minimum of one challenge-block pair which hasn’t been queried by A .

– Forge: A gives the proof of possession or response η for the file blocks that
are shown by chal, returns η and send it to C .

A is considered as the winner if the verification equation holds for the proof of
possession η in the data possession game. Formally

CheckProof(pk, sk, chal, η) → “1”

Where “1” indicates for success.
A obtains a bit δ

′
and wins the DPG when δ

′
= δ. The A ’s advantages is

given as

AdvUF
PSDP(A) = |2Pr[δ′ = δ] − 1|,

where Pr[δ′ = δ] denotes the probability that δ′ = δ.

4 Construction of Data Possession Scheme

The scheme consists of six polynomial solvable algorithms namely KeyGen,
SignBlock, Challenge, GenProof, VerProof and SignVer. Let the stored file
is denoted by F . The file may be either plaintext or ciphertext. If it needs the
privacy, the file can be stored in the form of ciphertext otherwise, it is in plain-
text. Let without lost of generality, the file F is divided into multiple blocks
of the same size i.e. n number of blocks as {F1, F2 . . . Fn}. The algorithms are
described below:

– KeyGen: This algorithm constructs the signing and verification keys. The sys-
tem sets the following parameters

• E be the elliptic curve defined over prime field Zp. The total number of
points in E(Zp) should be divisible a prime μ.

• Select P ∈ E(Zp) of order μ i.e O(P) = μ.
• Select d ∈ [1, μ−1] at random which is statistically unbiased and unique.
• Signer’s public key is (E,P, μ,Q), where Q = d · P .

In addition, it chooses pseudo random function φ and pseudo-random per-
mutation ψ to generate of proof which are defined as:

φ : Z∗
p × {1, 2 . . . n} → Z

∗
p.

ψ : Z∗
p × {1, 2 . . . n} → {1, 2 . . . n}.

– SignBlock: The client runs this algorithm on the given blocks {F1, F2 . . . Fn}
using his own private key d. The signing process follows the Algorithm 1.

466 J. Kar

Algorithm 1
Input: {F1, F2 . . . Fn, d, P}
Output: σ = (r, s)
1: for i = 1 to n do
2: Compute fi = Fi mod n and Qi = fi · P .
3: end for
4: Select k ∈ [1, n − 1] randomly.
5: Compute R = k · P .
6: r ← Rx mod n.
7: Computes (H(Q1, Q2 . . . Qn), fh) and convert it to integer e.
8: Compute s = k−1{e + dr} mod n.
9: if s = 0 then

10: goto 5
11: end if
12: return σ = (r, s).

After obtaining the signature, the protocol performs the following steps
1. Upload {Q1, Q2 . . . Qn}, hashed value hf = H(F) and the signature σ to

Blockchain. At the same time upload the n blocks {F1, F2 . . . Fn} and
the hashed value hf to Cloud Server.

2. Upon receiving {F1, F2 . . . Fn} and hf , Cloud Server verifies whether
hf = H(F) holds.

3. Cloud Server also verifies whether hf has been uploaded to
Blockchain. The n blocks and the {F1, F2 . . . Fn} and the hashed value
fh are accepted by the Cloud Server if both the conditions hold true.

– Challenge: Client chooses the tuples (c, t1, t2) as his challenge, where c ∈
[1, n] and t1, t2 ∈ Z

∗
p. Let it is denoted by γ. The challenge γ is then sent to

the Cloud Server.
– GenProof: The Cloud Server performs the following steps after it receives

the challenge γ from the Client,and then it computes F ∗.
1. αi = ψt1(i) and βi = φt2(i), for all i ∈ [1, c].
2. Computes F ∗ =

∑c
i=1 βiFαi

.
3. Forwards F ∗ to Client.

– VerProof: Client performs the following steps, after receiving F ∗.
1. For the received challenge γ, computes αi = ψt1(i) and βi = φt2(i), for

all i ∈ [1, c].
2. Computes f̄ = F ∗ mod μ.
3. Submits query to Blockchain and obtains {Qα1 , Qα2 . . . Qαn

}.
4. In the given group G, check the following equation holds:

c∑

i=1

βi · Qαi = f̄ · P (1)

and it returns “Success”, or “failure” accordingly.

Provably Secure Data Possession 467

– SignVer: When the data stored in the server is altered, then the Cloud
Server verifies or compensates for Client. Hence for the verification that
the data present in the server belongs to Client, the Cloud Server runs the
Algorithm 2 and check the signature σ = (r, s).

Algorithm 2
Input: σ = (r, s).
Output: “ 1” or “0”
1: if r, s ∈ [1, μ − 1] then
2: return “1”
3: end if
4: Compute ω = s−1 mod μ
5: Compute u1 = eω mod μ and u2 = rω mod μ
6: Compute R = u1P + u2Q
7: if R = O then
8: return ‘‘0’’

9: else
10: Convert Rx to R̄x as integer
11: v = R̄x mod μ.
12: end if
13: return “1” or “0” ⇐⇒ v = r

4.1 Proof of Correctness
∑c

i=1 βi · Qαi∑c
i=1 βi · (fαiP)∑c
i=1 βi · (FαiP)

= F ∗ · P
= f̄ · P
The proof of correctness of verification/compensation is presented below:
s = k−1{e + dr} mod μ
Taking inverse both sides, we obtain
s−1 = k{e + dr}−1 mod μ.
So ω = k{(e + dr}−1 mod μ.
=⇒ ω{(e + dr} mod μ = k
=⇒ (ωe + ωdr)P = kP
Hence u1P + u2Q = kP = R.

5 Conclusion

Confidentiality and data integrity is very essential and challenging for cloud
storage. We have constructed an blockchain-based PDP using ECDSA which
requires smaller keys to provide equivalent security. Our scheme PSDP is based

468 J. Kar

on blockchain technology. Due to i of blockchain, the scheme ensures the remote
data integrity. The proposed scheme PSDP also protect the Client’s anonymity.
Since the schemes proposed by Huaqun et al. [10], Ateniese’s scheme [1] works on
RSA-1024 bit whereas our scheme works on ECC-160 bit achieving same level
of security not Analysing the performance of our technique, we observe that
our scheme is more efficient in term of computation cost and have the security
properties confidentiality, unforgeable, public and batch audible. Further, for
improving the efficiency with respect to key escrow and certificate management,
the scheme that we have proposed can be designed by using certificate-less public
key cryptography (CL-PKC).

References

1. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proceedings
of the 14th ACM Conference on Computer and Communications Security, pp.
598–609 (2007)

2. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Proceedings of the 4th International Conference on Secu-
rity and Privacy in Communication Networks, pp. 1–10 (2008)

3. Deswarte, Y., Quisquater, J.-J., Säıdane, A.: Remote integrity checking. In: Jajo-
dia, S., Strous, L. (eds.) Integrity and Internal Control in Information Systems
VI. IIFIP, vol. 140, pp. 1–11. Springer, Boston (2004). https://doi.org/10.1007/1-
4020-7901-X 1

4. Dhakad, N., Kar, J.: EPPDP: an efficient privacy-preserving data possession with
provable security in cloud storage. IEEE Syst. J. 16(4), 6658–6668 (2022)

5. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. ACM Trans. Inf. Syst. Secur. (TISSEC) 17(4), 1–29 (2015)

6. Gazzoni Filho, D.L., Barreto, P.S.L.M.: Demonstrating data possession and
uncheatable data transfer. IACR Cryptology ePrint Archive 2006, 150 (2006)

7. Hao, Z., Zhong, S., Yu, N.: A privacy-preserving remote data integrity checking
protocol with data dynamics and public verifiability. IEEE Trans. Knowl. Data
Eng. 23(9), 1432–1437 (2011)

8. Li, Y., Yu, Y., Chen, R., Du, X., Guizani, M.: Integritychain: provable data pos-
session for decentralized storage. IEEE J. Sel. Areas Commun. 38(6), 1205–1217
(2020)

9. Sebé, F., Domingo-Ferrer, J., Martinez-Balleste, A., Deswarte, Y., Quisquater, J.J.:
Efficient remote data possession checking in critical information infrastructures.
IEEE Trans. Knowl. Data Eng. 20(8), 1034–1038 (2008)

10. Wang, H., He, D., Fu, A., Li, Q., Wang, Q.: Provable data possession with out-
sourced data transfer. IEEE Trans. Serv. Comput. 14, 1929–1939 (2019)

https://doi.org/10.1007/1-4020-7901-X_1
https://doi.org/10.1007/1-4020-7901-X_1

Private and Verifiable Inter-bank
Transactions and Settlements

on Blockchain

Harika Narumanchi1(B), Lakshmi Padmaja Maddali1, and Nitesh Emmadi2

1 Tata Consultancy Services, Hyderabad, India
{h.narumanchi,lakshmipadmaja.maddali}@tcs.com

2 Hyderabad, India
niteshemmadi@gmail.com

Abstract. Blockchain based inter-bank payments enhance accountabil-
ity, transparency and ensure faster payments by recording transactions on
a shared ledger, eliminating reconciliation needs. However, a blockchain
network can only validate that a bank (or a user) transacts with another
bank (or another user). It records only a portion of transactions and can-
not verify debits/credits between sender/receiver bank as balances are pri-
vate to the banks. In this paper, we propose a solution based on permis-
sioned blockchain to address privacy concern of customer financial infor-
mation such as balances, while providing cryptographic guarantees for
transaction debits and credits without revealing customer balances and
transaction amounts. Our solution offers fully auditable inter-bank pay-
ments as well as faster end-of-cycle settlements using cryptographic prim-
itives such as bilinear pairings for enhancing customer privacy. Bilinear
pairings such as BLS are used to create verifiable proofs, called the authen-
ticators, for transaction amounts and customer balances, striking a bal-
ance between user privacy and transaction auditability. These BLS sig-
natures (authenticators) are stored on blockchain act as global proof for
enabling verifiable audits. Furthermore, blockchain ensures data trans-
parency among banking entities and enables automation of settlement
process through smart contracts. We demonstrate practical performance
and security guarantees through evaluation.

Keywords: Blockchain · Private Auditable Transactions · Private
Auditable Inter-Bank Settlements · BLS Signature

1 Introduction

Traditional inter-banking systems maintain confidential transactions between
relevant parties but often share sensitive customer data with third-party service
providers, such as marketing firms or data brokers, raising privacy concerns.
For example, customer information is shared with credit bureaus to compute
credit scores, and in such systems, customer balances and transaction amounts
are accessible to bank employees, increasing the risk of data breaches. Moreover,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 469–479, 2023.
https://doi.org/10.1007/978-3-031-49099-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49099-6_29&domain=pdf
https://doi.org/10.1007/978-3-031-49099-6_29

470 H. Narumanchi et al.

banks store vast amounts of customer sensitive data, making them attractive
targets for attackers who could gain unauthorized access and potentially manip-
ulate it. For instance, in 2018, a data breach at HSBC exposed sensitive customer
information [4], leading to severe financial consequences and extensive monitor-
ing of financial transactions, potentially infringing on customer privacy [1]. Tradi-
tional banking systems lack transparency in financial and customer information,
requiring explicit reconciliation. The banking and financial sector is among the
industries most affected by data breaches [1], emphasizing the critical impor-
tance of safeguarding customer data. The potential applications of blockchain
extend far beyond cryptocurrencies. Industries such as finance, supply chain,
healthcare, and more are exploring and adopting blockchain to enhance security,
privacy, efficiency, and accountability in their operations [14,17].

Blockchain-based inter-bank payment systems [16], address privacy concerns
in traditional banking by storing customer information on an immutable global
ledger accessible only to authorized entities like banks and regulators. This tam-
per evident system reduces the risk of unauthorized data disclosure. Blockchain
also enables the use of smart contracts, eliminating the need for correspondent
banking relationships and associated settlement delays. Furthermore, the trans-
parency provided by blockchain allows auditing authorities to easily validate
transactions and detect anomalies or fraud, eliminating the need for explicit rec-
onciliation, enhancing process efficiency and enabling faster near real-time settle-
ments. These systems offer several advantages but have limitations. They mainly
validate transactions between banks, without verifying the actual debit/credit
at the sender/receiver. Essentially, blockchain only records a part of the transac-
tion. Figure 1a depicts blockchain network and Fig. 1b illustrates the transaction
process involving two customers, CA and CB , from different banks, Bank A and
Bank B. For instance, when CA from Bank A initiates a transfer to CB from
Bank B, the blockchain records the transaction but can’t ensure Bank A debited
CA and Bank B credited CB correctly since balances UA and UB are private.
Furthermore, regulatory authorities like RBI can access customer data, and there
is a lack of privacy during audits. Also, current settlements are long and require
access to all transactions.

Fig. 1. a) The Problem: Transaction Completeness b) Blockchain Network

Private and Verifiable Inter-bank Transactions and Settlements 471

In this paper, we propose a blockchain-based system called “Private and Ver-
ifiable Inter-bank Transactions and Settlements” that enables banks to verify
transactions while preserving privacy. Our protocol offers cryptographic guaran-
tees for transaction debits and credits without revealing customer information
(balances). The proposed protocol is based on Hyperledger Fabric (HLF) [5,10]
permissioned blockchain and bilinear pairing cryptographic primitives [6], that
enhance transaction privacy and auditability while ensuring transparency and
transaction integrity using blockchain. We use bilinear pairings to authenticate
and verify individual transactions and end-of-cycle settlements while preserving
customers’ and banks’ privacy. Blockchain secures customer information against
tampering and allows trusted public verification. We provide simulation results
demonstrating practical performance while enabling strong privacy guarantees.

The paper is organized as follows: Sect. 2 reviews existing inter-bank
blockchain-based protocols. Section 3 briefly covers the Boneh-Lynn-Shacham
(BLS) signature scheme, a key component of our protocol. Section 4 presents
our main contributions, and Sect. 5 evaluates the protocol’s performance.

2 Related Work

With the increased awareness of privacy and stringent data privacy regulations
across the globe such as GDPR, maintaining privacy of customer information in
any application is crucial for all business firms to run successfully. The impact
of privacy breach is even more crucial in sectors such as banking and financial
services and plays a crucial role in maintaining trusted relationship with the
financial institutions. In banking sector, one of the most fundamental opera-
tion is performing inter-bank transactions and settlement systems. The problem
of protecting privacy of customer information while performing audits, in the
context of banking and finances is well studied in literature and is addressed
by several research works such as [7,8,11–13]. Hereafter, we review state-of-the-
art protocols that mention privacy preserving auditable and verifiable transac-
tions. Jeong et al. [11] proposed a system that enables verifiable and auditable
transactions while preserving transaction privacy in blockchain based systems by
leveraging Zero-Knowledge Proofs (ZKP). This is achieved through generation
of proofs using ZKP protocols and verifier verifying these proofs to ensure the
auditability without learning anything about transaction details. Androulaki et
al. [7] designed a system that proves validity of token payments in a privacy
preserving manner without revealing details such as transaction amount or the
recipient. Authors use ZKP to generate verifiable proofs for the token payments
which can be used while auditing to successfully audit the transaction. Kang et
al. [12] proposed a system Fabzk that ensures data privacy while executing the
smart contracts while enabling auditor to verify the transaction validity. Fabzk
also uses ZKP to enable auditability of transactions. Banerjee et al. [8] build
an auditablity solution in the context of outsourcing large files to cloud servers.
Here, the authors prevent adversaries from cheating and colluding in case of dis-
putes and implement a practical auditing solution using bilinear pairings in case

472 H. Narumanchi et al.

of file audits. Narula et al. [13] proposed a system based on non-interactive ZKP
to protect privacy of participants and to efficiently reconcile inter-organization
transactions. This protocol does not require a trusted third party, rely on widely
used cryptography building blocks for their construction.

While there have been significant advancements in privacy-preserving
auditable transactions and settlements using blockchain, there are still notable
research gaps. Many existing solutions rely on computationally intensive ZKP,
that demands enormous computing resources. Additionally, the current end-of-
cycle settlement process could potentially expose sensitive financial data, like
customer account balances, to regulatory authorities like the RBI (Reserve Bank
Of India). The banks may either share complete transaction histories for a partic-
ular cycle with RBI, compromising financial data privacy, or handle settlements
themselves in turn hampering the overseeing authority of governing body. Our
approach solves these problems as discussed in the following sections.

3 Preliminaries: BLS Signature

KeyGen(1λ): Key generation algorithm takes security parameter λ as input, out-
puts public and private key pair (pk, sk). Let e : G × G → GT be a bilinear
map, where G, GT are groups of prime order rp. Let g be the generator of G
and H : {0, 1}∗ → G is a BLS hash function. The algorithm randomly selects
private key, α

R← Zp, such that 0 < α < rp. Public key v is calculated as v = gα

[9,15]. We use type A pairing with group order 160-bits and order of base field
is 512-bits and pairings are constructed on the curve y2 = x3 + x over the field
Fq for some prime q = 3 mod 4. Public and private key pair is (pk, sk) = (v, α).

Sign(sk,Cred): Sign algorithm takes secret key and set of inputs to generate
set of signatures. Given a secret key α and inputs c1 . . . cn where each input is
an element of Zp where p is a λ-bit prime, signatures σ1 . . . σn are created as
follows: ∀x ∈ n, σx = (H(cx).ucx)α where u

R← G
GenProof(P,V): GenProof is an interactive proof between prover and verifier.

Verifier sends challenges {i, ri} where i is index of input to be verified and ri

is a challenge corresponding to the input i. These challenges are sent to prover
to prove some claim. Prover authenticates the challenges and performs selective
disclosure of inputs represented by cj and signatures represented σj , where j ∈
J which are a subset of claims and signatures respectively, received from the
verifier. Prover creates a proof using signatures of inputs as below and sends
proof cj and μ, σ to verifier for verification.

μ =
∑

j∈J

rjcj σ =
∏

j∈J

σ
rj

j

VerifyProof(pk, {cj}, μ, σ, u): VerifyProof takes public key v, u, generator
g and inputs cj , proof μ, σ from prover. From this, verifier computes hash of
desired claims and runs verification algorithm. Verification algorithm outputs
the verification result. Verification is carried out as follows:

e(σ, g) ?= e(
∏

j∈J

H(cj)rj .uμ, v)

Private and Verifiable Inter-bank Transactions and Settlements 473

4 Proposed Protocol

Our proposed permissioned blockchain protocol ensures fully auditable inter-
bank payments and faster end-of-cycle settlements while protecting customer
privacy. Our protocol leverages Hyperledger Fabric platform and primitive such
as bilinear pairings (such as BLS) to create verifiable auditable proofs safeguard-
ing sensitive customer information. BLS signatures enable privacy-preserving
data signing, allowing verifiers to authenticate data without accessing sensitive
information. Verifiers receive proofs on sensitive data will verify signatures using
BLS public key and data hashes, ensuring data integrity. We choose HLF as
it offers practical setup with modular architecture without the additional over-
head of maintaining cryptocurrency assets or tracking the gas consumption as
opposed to other blockchain platforms yet get the benefits of blockchain required
for inter-bank settlements. In our protocol, BLS signatures preserves privacy
while verifying transaction correctness without revealing transfer amounts and
customer balances. It also enables the verification of financial information under
the oversight of regulatory bodies.

Key features of our proposed solution are as follows:

– Auditable transactions with customer’s information (balances) privacy.
– Verifiable cryptographic guarantees for debits and credits.
– Data transparency among banking entities using Blockchain.
– Automation of settlement process through smart contracts.
– Faster privacy enabled inter-bank settlements.
– Controlled access to transaction data by governing authority
– Reusable cryptographic proofs for audits

4.1 Solution Setup

This section outlines the entities, the network topology, and the onboarding
process for entities, in our proposed system.

Entities: In our system, we have distinct entities, including financial institutions
(banks), customers, regulators, and auditors/verifiers. Banks handle transaction
validations, securely store customer balances on private data collection (PDC).
Customers use the blockchain for financial operations. Regulators oversee com-
pliance and regulatory aspects, while auditors/verifiers independently verify and
audit transactions and records on the blockchain(BC).

Network Topology: In our system, banks form a consortium and establish a
unified permissioned blockchain network for conducting transactions collectively
and seamlessly perform audits. We choose HLF, a permissioned blockchain plat-
form, with all network entities having verified identities. Our network topology
uses HLF’s channel [2] and PDC [3] features. We bootstrap a BC network with
single channel and multiple PDCs to efficiently handle customer information pri-
vately and share it as needed among counter-party banks, authorized verifiers,
and customers. Maintaining PDCs in a single channel reduces administrative

474 H. Narumanchi et al.

complexity and improves practicality. Each counter-party banks maintain their
PDCA for bankA and PDCB for bankB containing customer balance data and
there’s a common PDCAB shared between bankA and bankB to store transac-
tion amounts (individual credits and debits) for inter-bank settlements. Addi-
tionally, PDCABR involves counter-party banks and the governing authority
(e.g., RBI) to store settlement amounts, consolidating total credits and debits
over a predefined time interval. Through PDCs, our solution adds an additional
layer of data protection, ensuring that sensitive customer information is only
accessible to authorized banks and regulatory authorities as needed.

Onboarding Entities: The onboarding process involves registering entities to
the BC network, enabling them to engage in transactions and interact with other
network entities. Each entity within the BC network generates a random BLS
signing key pair, consisting of a public key (spk) and a private key (ssk). These
key pairs are registered on the BC and each entity selects a random α

R← Zp,
computes v = gα, and maintains α as a secret. The secret key sk is represented
as (α, ssk), while the public key pk is represented as (v, spk). The entity’s public
key (pk) is stored on the blockchain and used for generating signatures.

4.2 Inter Bank Fund Transfer Transaction Flow

In the scenario of transferring funds between two customers (CA and CB) from
different banks (Bank A and Bank B), as depicted in Fig. 1a, the inter-bank
fund transfer process includes the following steps:

1. Transaction Initiation: The customer of Bank A (CA) initiates a transac-
tion (t1) to transfer funds (T) to the customer of Bank B (CB). This trans-
action proposal may include sender and receiver information, the transfer
amount, and other transaction-specific details. The proposal is sent to rele-
vant blockchain nodes for endorsements. t1 : CA

T−→ CB

2. Transaction Validation: The transaction (t1) is validated by nodes of Bank
A, deducts T from current balance UA of CA and stores the new balance U ′

A in
bankA’s private data collection PDCA: UA − T = U ′

A. Similarly, t1 proposal
is also validated by BankB, adds T to the current balance UB of customer of
Bank B, CB and stores the new balance U ′

B in bank B’s PDCB : UB+T = U ′
B .

Figure 2 depicts authenticator creation.
Authenticator Generation: Each of the banks A and B generate authenti-
cators separately at their end. Bank A and Bank B choose a random element
uA and uB respectively from G and stores uA and uB privately. The nodes
of each bank computes authenticators for their customers (CA, CB) and new
balances(U ′

A and U ′
B) with timestamps ts as follows:

σ(UA) = (H(UA||ts).u(UA||ts)
A)αA σ(−U ′

A) = (H(−U ′
A||ts).u(−U ′

A||ts)
A)αA

σ(U ′
B) = (H(U ′

B ||ts).u(U ′
B ||ts)

B)αB σ(−UB) = (H(−UB ||ts).u(−UB ||ts)
B)αB

Private and Verifiable Inter-bank Transactions and Settlements 475

Fig. 2. Authenticator Generation, Proof Generation and Verification

These signatures σ(UA), σ(−U ′
A), σ(−UB), σ(U ′

B) and hashes H(UA||ts),
H(−U ′

A||ts), H(−UB ||ts), H(U ′
B ||ts) are stored on blockchain. Timestamp ts

is stored on banks PDCs (PDCA and PDCB).
3. Proof Generation: Bank A and Bank B creates a proof for transaction t1

i.e. UA − U ′
A = T for customer CA, and U ′

B − UB = T , for customer CB

respectively as follows:

μA = (UA||ts) − (U ′
A||ts) μB = (U ′

B ||ts) − (UB ||ts)

During audit, bank A and bank B shares uμA

A and uμB

B respectively to the
regulatory authority or verifiers.

4. Proof Verification: The verifier, such as RBI verifies the correctness of
transaction histories by challenging banks. After receiving the proofs (uμA

A ,
uμB

B) from Bank A and Bank B, correctness of the transaction is verified by
the verifier as follows:

e(σA, gA)
?= e(H(UA||ts).H(−U ′

A||ts).uμA

A , vA)

e(σB , gB) ?= e(H(U ′
B ||ts).H(−UB ||ts).uμB

B , vB)

Here, σA and σB in LHS are computed from σ(UA), σ(−U ′
A), σ(−UB), σ(U ′

B)
retrieved from blockchain acts as global immutable proof as follows:

σA = σ(UA).σ(−U ′
A) σB = σ(U ′

B).σ(−UB)

476 H. Narumanchi et al.

The verification result is either success or failure. If the verification is success
it guarantees the correctness of transaction. If the verification is failure, dis-
putes have to be settled between the counter-party banks. This verification
result is reused by other verifiers during the audit.

4.3 Private Settlement Between Banks

Inter-bank settlement involves banks reconciling their transactions and balances
with each other at the end of a specific period (end of month/year). This rec-
onciliation process checks transaction history and compares balances to iden-
tify discrepancies. In this context, we focus on private settlement, where each
bank maintains its transactions and customer balances privately throughout the
settlement period. The process begins with one bank initiating the settlement
proposal, and counter-party banks independently consolidate their credits and
debits. In this process, TAD and TAC represent the sum of debits and sum of
credits respectively at BankA, while TBD and TBC represent the same for BankB.

Settlement Proof Generation: Banks A create authenticator for the settle-
ment amount and shares with Bank B and vice versa.

σTAD−TAC
= (H(TAD).uTAD

A .H(−TAC).u−TAC

A)αA

σTBD−TBC
= (H(TBD).uTBD

B .H(−TBC).u−TBC

B)αB

Settlement Proof Verification: Bank B verifies the settlement using their
debits and credits against the proof received from Bank A and vice versa.

e(σTAD−TAC
, g) ?= e(H(TBC).uTBC

A ∗ H(−TBD).u−TBD

A , vA)

e(σTBD−TBC
, g) ?= e(H(TAC).uTAC

B ∗ H(−TAD).u−TAD

B , vB)

LHS of the above equations are proofs (σTAD−TAC
, σTBD−TBC

) received from
Bank A and Bank B respectively, which are verified against the consolidated
debits and consolidated credits of Bank B (TBC , TBD) and Bank A (TAC , TAD)
on RHS. After the settlement transactions are executed, the settlement along
with the proofs are stored on PDCABR shared with governing authority, while
the transaction details are stored on blockchain network.

5 Results

System Setup: We implemented our protocol as a proof-of-concept on Hyper-
ledger Fabric version 2.3. Our test setup ran on a system with an Intel Core
i7-8565U CPU @ 1.80GHz, 8GB RAM, and Ubuntu 20.04.4 LTS. Our network
architecture uses a single channel to facilitate seamless communication between
multiple banks, authorized verifiers, and customers. The network consists of 2
organizations, represented as banks (Bank A and Bank B), each maintaining

Private and Verifiable Inter-bank Transactions and Settlements 477

two peer nodes and a Certificate Authority (CA). We employed CouchDB as
state database and raft consensus for transaction ordering. To ensure customer
privacy, each bank has its designated PDCs (PDCA, PDCB) for storing cus-
tomer balances. In our test setup, bank nodes, the orderer, CouchDB, CAs,
and the chaincode ran on separate docker containers on the same host machine.
End-users interacted with the BC ledger through chaincode, implemented in the
golang. We integrated a pairing-based library from Stanford University [6] to
leverage cryptographic properties, specifically using the BLS signature scheme
for authenticators, proof generation, and verification. To streamline integration
between the chaincode and the external library, we developed a dedicated service
called pbc_service, running on each node. This service allowed the chaincode to
perform required cryptographic operations via socket connections.

5.1 Performances

In this section, we provide detailed timings for authenticator generation, proof
generation and proof verification processes. These timings help us to evaluate the
efficiency and practicality of the proposed protocol. The compressed signature
size for creating authenticator for one customer balance using bi-linear pairing
primitive leveraging the pairing-based cryptography library is 128 bits, achieved
within a time-frame of 13 s.

Table 1. Timings: Authenticator, Proof Generation & Verification

Function Time (ms)

Authenticator Creation 26
Proof Generation 7.17
Proof Verification 18.83

In Table 1, authenticator functionality involves the process of signature cre-
ation for updated balances of bank A and bank B customer’s (CA and CB). These
authenticators are further used in proof generation and verification process to
validate on the transaction correctness (debits and credits of Bank A and Bank
B customers) and settlements (consolidated debits and credits of Bank A and
Bank B). On average, the authenticator creation process takes approximately
26ms, while the proof generation process is completed in around 7.17ms. And
the proof verification step, takes an average time of approximately 18.83ms.
These values were obtained by conducting multiple trials and calculating the
average time for each of the mentioned functionalities. The timings obtained
here indicate the performance without using blockchain. When these functional-
ities are executed by integrating with blockchain, we observed an average over-
head of 570–600ms. These performance metrics provides a detailed insight into
the efficiency and feasibility of our protocol. By analyzing the timings associ-
ated with authenticator creation, proof generation, and proof verification, our

478 H. Narumanchi et al.

solution offers practical performance metrics making it suitable for real-world
inter-bank settlements and enables transaction auditability. Its efficiency and
reliability ensures fast and seamless transactions between banks enhancing the
overall inter-bank transaction and settlement process.

6 Conclusion and Future Works

In this paper, our main contribution is the design of protocol for privacy pre-
serving, auditable, and verifiable inter-bank transactions and settlements. Our
protocol enables third-party auditors to verify the authenticity of credits and
debits in inter-bank transactions without accessing sensitive customer informa-
tion, such as balances. We achieve this by leveraging two key cryptographic
primitives: bilinear pairings and the blockchain. Bilinear pairings enable ver-
ifiable proofs without revealing the actual data, while the blockchain ensures
transparency and maintains an immutable global record of proof for verifiers
to access as needed. We believe that the use of bilinear pairings for generating
verifiable proofs is of significant interest to the research community for designing
efficient protocols. Additionally, bilinear pairings simplify the system compared
to existing state-of-the-art that use zero-knowledge proofs, making it more effi-
cient.

As a part of future work, we aim to enhance the protocol’s resource utiliza-
tion efficiency by exploring alternative ways to store customer data. We also
plan to investigate computationally lighter primitives that maintain practical
performance while preserving privacy.

References

1. Banking and finance data breaches: costs, risks and more to know. https://
securityintelligence.com/articles/banking-finance-data-breach-costs-risks/

2. HLF channels. https://hyperledger-fabric.readthedocs.io/en/latest/channels.html
3. HLF Collections. https://hyperledger-fabric.readthedocs.io/en/latest/private-

data/private-data.html
4. HSBC bank USA admits breach exposing account numbers and transaction history.

https://www.forbes.com/sites/daveywinder/2018/11/06/hsbc-bank-usa-admits-
breach-exposing-account-numbers-and-transaction-history/?sh=3ebaa0885af3

5. Hyperlegder fabric. https://www.hyperledger.org/use/fabric
6. Pairing based cryptography. https://crypto.stanford.edu/pbc/
7. Androulaki, et al.: Privacy-preserving auditable token payments in a permissioned

blockchain system. In: Proceedings of the 2nd ACM Conference on Advances in
Financial Technologies, pp. 255–267 (2020)

8. Banerjee, et al.: Blockchain enabled privacy preserving data audit. arXiv preprint
arXiv:1904.12362 (2019)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1_30

https://securityintelligence.com/articles/banking-finance-data-breach-costs-risks/
https://securityintelligence.com/articles/banking-finance-data-breach-costs-risks/
https://hyperledger-fabric.readthedocs.io/en/latest/channels.html
https://hyperledger-fabric.readthedocs.io/en/latest/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/latest/private-data/private-data.html
https://www.forbes.com/sites/daveywinder/2018/11/06/hsbc-bank-usa-admits-breach-exposing-account-numbers-and-transaction-history/?sh=3ebaa0885af3
https://www.forbes.com/sites/daveywinder/2018/11/06/hsbc-bank-usa-admits-breach-exposing-account-numbers-and-transaction-history/?sh=3ebaa0885af3
https://www.hyperledger.org/use/fabric
https://crypto.stanford.edu/pbc/
http://arxiv.org/abs/1904.12362
https://doi.org/10.1007/3-540-45682-1_30

Private and Verifiable Inter-bank Transactions and Settlements 479

10. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for
permissioned blockchains. In: Proceedings of the Thirteenth EuroSys, pp. 1–15.
EuroSys (2018)

11. Jeong, et al.: Azeroth: auditable zero-knowledge transactions in smart contracts.
IEEE Access (2023)

12. Kang, et al.: FabZK: supporting privacy-preserving, auditable smart contracts in
hyperledger fabric. In: 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 543–555. IEEE (2019)

13. Narula, et al.: zkLedger: privacy preserving auditing for distributed ledgers. In:
15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 2018), pp. 65–80 (2018)

14. Emmadi, N., et al.: Practical deployability of permissioned blockchains. In: Inter-
national Conference on Business Information Systems conference, pp. 229–243. BIS
(2018)

15. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–369. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_23

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Busi-
ness Review (2008)

17. Wust, K., Gervais, A.: Do you need a blockchain? IACR Cryptology ePrint Archive,
pp. 229–243 (2017)

https://doi.org/10.1007/3-540-45708-9_23

Author Index

A
Acharya, Kamalesh 77
Agrawal, Aniket 431
Akbar, Khandakar Ashrafi 23
Ampatt, Praveen 57
Anand, Veena 129
Anilkumar, Varun 396
Arakkal, Ajith 449

B
Balaji, R. 57
Balijabudda, Venkata Sreekanth 77
Banerjee, Aniket 259
Barik, Mridul Sankar 109
Bera, Padmalochan 431
Bhanu, S. Mary Saira 275
Bhaskar, Sourabh 306
Bhattacharya, Ritaban 217
Boran, Nirmal Kumar 197

C
Chacko, Lenoah 396
Chakrabarti, Indrajit 77
Chakraborty, Rajat Subhra 77
Chandran, Nishanth 229
Chatterjee, Ayantika 259

D
Dalui, Arijit 217
Das, Arnab Kumar 217
dos Santos, Cristian Alves 319
Dwivedi, Surabhi 57

E
Emmadi, Nitesh 469

G
Gain, Ayan 109
Ghosh, Tanusree 141
Goel, Sourav 339

H
Hafizul Islam, S. K. 380

J
Jain, Anubha 360
Jinwala, Devesh C. 306

K
Kammula, Sunil Kumar 129
Kapoor, Kalpesh 339
Kar, Jayaprakash 459
Khan, Latifur 23
Krishnan, Ram 178

L
Loffi, Leandro 319

M
Maddali, Lakshmi Padmaja 469
Mager, Thomas 42
Mishra, Nimish 380
Mishra, Sweta 3
Mukherjee, Preetam 91
Mukhopadhyay, Soumik 217

N
Narumanchi, Harika 469
Naskar, Ruchira 141, 217

O
Özden, Duygu 295

P
Parbat, Tanusree 259
Parmar, Keyur 306
Pathari, Vinod 396
Paul, Arinjita 411

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
V. Muthukkumarasamy et al. (Eds.): ICISS 2023, LNCS 14424, pp. 481–482, 2023.
https://doi.org/10.1007/978-3-031-49099-6

https://doi.org/10.1007/978-3-031-49099-6

482 Author Index

Pazheri Sharafudheen, Shehzad 449
Pilli, Emmanuel S. 360
Poddar, Bishwajit Kumar 91
Priyadarshi, Vishisht 339

R
Rahman, Fariha Ishrat 23
Rajan, MA 411
Rajan, Pavithra 396
Rodriguez, David 178
Rohith, N. 91

S
Sanyashi, Tikaram 197
Sen, Ipshita 91
Sethi, Kamalakanta 431
Sharma, Abhyudaya 3
Singh, Deepak 129
Singh, Meena 411
Singh, Narendra 159
Singh, Virendra 197

Singhal, Anoop 23
Sudarsan, S. D. 57
Syed, Habeeb 411

T
Thampi, Sabu M. 91
Thuraisingham, Bhavani 23
Thushara, G. A. 275
Tripathy, Somanath 159

V
Vargheese, Meghana 249
Vasudevan, A. R. 449
Vivek, Srinivas 249

W
Westphall, Carla Merkle 319

Y
Yayla, Oğuz 295

	 Preface
	 Organization
	Abstracts of Invited Talks and Tutorials
	 hinTS: Threshold Signatures with Silent Setup
	 How to Train and Use AI Models on Sensitive Data without Compromising Privacy?
	 Follow the Money
	 Covert & Side Stories: Threats Evolution in Traditional and Modern Technologies
	 Overview of Applications of Machine Learning in Encrypted Traffic Analysis for Cyber Security
	 Osquery: A Tool for System Visibility and Threat Hunting
	 Data Anonymization Techniques
	 Contents

	Systems Security
	A Security Analysis of Password Managers on Android
	1 Introduction
	2 Background
	2.1 Password Managers
	2.2 Related Work

	3 Analysed Password Managers
	4 Password Generation
	4.1 Collecting Passwords
	4.2 Observations

	5 Vault and Metadata Storage
	5.1 Biometric Authentication and root

	6 Autofill
	7 Other Security Issues
	8 Discussion
	8.1 Recommendations
	8.2 Scope for Future Work

	9 Conclusion
	References

	The Design and Application of a Unified Ontology for Cyber Security
	1 Introduction
	2 Background
	2.1 Semantic Web Technologies
	2.2 Data Sources

	3 Ontological Design
	3.1 WAVED: Unified Ontology

	4 Querying Ontology for Security Insights
	4.1 Simple Queries
	4.2 Advanced Queries

	5 Related Work
	6 Limitations and Future Work
	7 Conclusion
	References

	Big Data Forensics on Apache Kafka
	1 Introduction
	2 Related Work
	3 Architectural Overview on Apache Kafka
	3.1 Data Placement Strategy in Kafka

	4 Kafka Forensics
	4.1 Methodological Approach
	4.2 Data of Interest
	4.3 Kafka Storage Internals

	5 Data Security
	5.1 Encryption in Transit
	5.2 Encryption at Rest

	6 Data Removal in Kafka
	6.1 Data Retention
	6.2 Limited Capabilities for Targeted Deletion

	7 Autopsy Module
	8 Conclusion
	References

	A Survey on Security Threats and Mitigation Strategies for NoSQL Databases
	1 Introduction
	2 Literature Survey
	3 Attack Incidences on NoSQL Databases
	4 NOSQL Security Breaches
	4.1 NoSQL Injection Vulnerabilities
	4.2 Absence of Strong Authentication and Authorization
	4.3 Insecure REST API
	4.4 Vulnerable Database Access Security
	4.5 Meow Attack

	5 NOSQL Attacks – Prevention and Mitigation
	5.1 Enable Access Control and Authentication
	5.2 Enable Collection/Document Level Access
	5.3 Output Encoding
	5.4 Query Sanitizations
	5.5 Data Masking Techniques
	5.6 Ensure the REST API Security.
	5.7 Use Strong Network Security and Encryption Techniques
	5.8 Prevention of Meow Attack

	6 Conclusion
	References

	Theoretical Enumeration of Deployable Single-Output Strong PUF Instances Based on Uniformity and Uniqueness Constraints
	1 Introduction
	2 Background
	2.1 Related Works and Motivation
	2.2 PUF Performance Metrics

	3 Enumeration of Deployable PUF Instances Based on Uniformity and Uniqueness
	3.1 PUF Instances with Ideal Uniformity
	3.2 PUF Instances with Uniformity in the Range [0.50-,0.50+]
	3.3 PUF Instances Having Ensemble Uniqueness = 0.50
	3.4 PUF Instances with Uniqueness In Range [0.50 -, 0.50 +]
	3.5 PUF Instances Each with Uniformity = 0.50 and Ensemble Uniqueness = 0.50
	3.6 PUF Instances Each with Uniformity 0.50 and Ensemble Uniqueness in the Range [0.50 -, 0.50 +]

	4 Discussions
	5 Conclusions
	References

	Network Security
	Detection and Hardening Strategies to Secure an Enterprise Network
	1 Introduction
	2 Related Work
	3 Background
	3.1 CVE
	3.2 MITRE ATT&CK
	3.3 MITRE D3FEND
	3.4 Mappings

	4 Attack Modeling
	4.1 Attack Graph
	4.2 Tool: XploitMAP

	5 Methodology
	5.1 Hardening Defense
	5.2 Detection Defense
	5.3 Algorithm

	6 Practical Example
	7 Discussion
	8 Conclusion
	References

	Attack Graph Based Security Metrics for Dynamic Networks
	1 Introduction
	2 Related Works
	3 Temporal Graphs
	4 Temporal Metrics
	4.1 Path Based Temporal Metrics

	5 Attack Graph
	6 Temporal Attack Graph
	6.1 A Motivating Example
	6.2 Temporal Attack Paths
	6.3 Simplifying Assumption

	7 Temporal Metrics for Temporal Attack Graphs
	7.1 Characteristic Temporal Attack Path Length

	8 Results and Discussions
	8.1 Generating Temporal Attack Graphs
	8.2 Pre-processing of Temporal Attack Graph
	8.3 Importing Data into Neo4j
	8.4 Temporal Attack Graph of Three Time Windows
	8.5 Discussion

	9 Conclusion
	10 Future Work
	References

	An Energy-Conscious Surveillance Scheme for Intrusion Detection in Underwater Sensor Networks Using Tunicate Swarm Optimization
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Node Sensing and Distribution Model
	3.2 Tunicate Swarm Optimization Algorithm

	4 Energy Conscious a Single Beacon Node-Based Intrusion Detection Mechanism for IoUT Application
	4.1 Precise Detection of the Intruder Node Through the Calculation of Spatial Coordinates

	5 Simulation Analysis
	6 Conclusion
	References

	Security Using AI/ML
	STN-Net: A Robust GAN-Generated Face Detector
	1 Introduction
	2 Related Works
	3 Proposed Methodology
	3.1 Preprocessing
	3.2 Sine-Transformed Noise
	3.3 Classifier

	4 Experimental Results and Analysis
	4.1 Solution Models
	4.2 Dataset
	4.3 Settings
	4.4 Performance Evaluation
	4.5 Performance Comparison with Other Solutions
	4.6 Performance in the Context of OSN
	4.7 Performance in the Context of JPEG Compression
	4.8 Generalization Performance

	5 Concluding Remarks
	References

	MDLDroid: Multimodal Deep Learning Based Android Malware Detection
	1 Introduction
	2 Related Work
	2.1 Static Analysis Techniques
	2.2 Deep Learning Based Approaches
	2.3 Dynamic Analysis Techniques
	2.4 Multi-modal Learning

	3 MDLDroid: The Proposed Malware Detection Technique
	3.1 Feature Extraction
	3.2 Feature Vector Generation
	3.3 MDLDroid Model

	4 Experimental Analysis
	4.1 Data Collection

	5 Conclusion
	References

	A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced Deep Neural Networks
	1 Introduction
	2 Related Works
	3 Cycle-GAN Image Transformation Formulation
	3.1 Overview
	3.2 Non-sensitive Feature Loss
	3.3 Non-sensitive Feature Loss Objective
	3.4 Distortion Loss
	3.5 Distortion Loss Objective
	3.6 Adversarial Loss
	3.7 Cycle Consistency Loss
	3.8 Cycle-GAN Encoding Full Objective

	4 Methods
	4.1 Dataset
	4.2 Network Architecture
	4.3 Training Procedure

	5 Evaluation
	5.1 Evaluating Privacy/Utility Trade-Off
	5.2 Evaluating Robustness to Attacks

	6 Conclusion
	References

	Secure KNN Computation on Cloud
	1 Introduction
	2 Background
	3 Related Work
	4 System Model
	5 Proposed Scheme
	5.1 Correctness Analysis
	5.2 Security Analysis

	6 Performance Evaluation
	6.1 Computation Cost
	6.2 Communication Cost

	7 Empirical Evaluation
	7.1 Experiment Setup
	7.2 Experiments Performed

	8 Conclusion
	References

	A Multi-stage Multi-modal Classification Model for DeepFakes Combining Deep Learned and Computer Vision Oriented Features
	1 Introduction
	2 Proposed Multi-stage Multi-modal DeepFake Video Identification
	2.1 Feature Extraction Module
	2.2 Feature Based Classification
	2.3 Deep Learning-Based Classification

	3 Experiments and Results
	3.1 Data Preprocessing
	3.2 Feature Extraction
	3.3 Fake Video Detection and Source Classification

	4 Conclusion
	References

	Privacy
	Security and Privacy in Machine Learning
	1 Introduction
	1.1 Data Protection At-Rest and In-Transit
	1.2 Data Protection for Machine Learning Tasks
	1.3 Security and Privacy Techniques
	1.4 Organization

	2 ML Security and Privacy Goals
	2.1 Security Goals
	2.2 Privacy Goals

	3 Techniques for Security and Privacy
	3.1 Security Techniques
	3.2 Privacy Techniques

	4 Secure Computation for Machine Learning
	4.1 Inference
	4.2 Evaluation
	4.3 Training

	5 Conclusion
	References

	Attack on the Privacy-Preserving Carpooling Service TAROT
	1 Introduction
	1.1 Threat Model
	1.2 Our Contribution
	1.3 Outline of the Paper

	2 GMEDA - Privacy-Preserving Equality Determination Algorithm
	2.1 TAROT
	2.2 GMEDA
	2.3 Attack on GMEDA (Attack-1)
	2.4 A More Efficient Attack on GMEDA (Attack-2)

	References

	Democracy in Your Hands!: Practical Multi-key Homomorphic E-Voting
	1 Introduction
	2 System Model and Threat Model
	3 Encrypted Voting Framework Implementation
	3.1 Key Generation Phase
	3.2 Voter Registration Phase
	3.3 Voter Verification Phase
	3.4 Vote Casting Phase
	3.5 Automated Vote Counting Phase
	3.6 Result Deciphering Phase

	4 Result Analysis
	5 Conclusion
	References

	Cryptography
	Secured Collaboration with Ciphertext Policy Attribute Based Signcryption in a Distributed Fog Environment for Medical Data Sharing
	1 Introduction
	2 Literature Review
	3 Proposed Methodology
	3.1 Preliminaries
	3.2 Architecture Overview
	3.3 System Description
	3.4 System Design

	4 Security Proof
	5 Performance Evaluation
	6 Conclusion
	References

	Verifiable Timed Accountable Subgroup Multi-signatures
	1 Introduction
	2 Preliminaries
	2.1 Accountable Subgroup Multi-signatures (ASM)
	2.2 Verifiable Timed Commitments (VTC)
	2.3 Security Requirements

	3 Proposed Schemes
	3.1 Modified Accountable Subgroup Multi-signature Scheme (mASM)
	3.2 VTC with mASM (VT-MASM)

	4 Performance Evaluation
	5 Conclusion and Future Work
	References

	Escrow and Pairing Free CP-ABE Scheme with Forward and Backward Secrecy for Healthcare Internet of Things
	1 Introduction
	2 Related Work
	3 The Proposed EPFCS System and Threat Model
	4 The Proposed EPFCS
	5 Security and Performance Analysis
	5.1 Security Analysis
	5.2 Performance Analysis

	6 Conclusions and Future Works
	References

	Blockchains
	Ensuring Data Security in the Context of IoT Forensics Evidence Preservation with Blockchain and Self-Sovereign Identities
	1 Introduction
	2 Background
	2.1 Self-Sovereign Identities
	2.2 Relationship with Blockchain Technology
	2.3 Use of Agents

	3 Related Work
	4 System Overview
	4.1 Definition of Tools and Technologies
	4.2 Gateway-Based Approach for Constrained IoT Devices
	4.3 Use Case in Evidence Preservation
	4.4 Security Considerations

	5 Experiments, Results, and Analysis
	5.1 Implementation
	5.2 Results and Analysis

	6 Conclusion
	References

	Analysis of Optimal Number of Shards Using ShardEval, A Simulator for Sharded Blockchains
	1 Introduction
	2 Background and Related Work
	3 Architecture of ShardEval
	3.1 Framework
	3.2 Network Components
	3.3 Functional Components

	4 Simulator Workflow
	4.1 Network Configuration
	4.2 Transactions and Tx-Blocks Generation
	4.3 Voting on Tx-Blocks
	4.4 Mini-Blocks Generation
	4.5 Consensus by Principal Committee
	4.6 Blocks Generation

	5 Analysis on Optimal Number of Shards
	5.1 Computation of Delay and Throughput
	5.2 Variation with Change in Number of Shards
	5.3 Optimal Shard Value for a Fixed Cross-Shard Transaction Ratio

	6 Simulations and Observations
	6.1 TPS Versus Number of Shards
	6.2 TPS Versus Fraction of Cross-Shard Transactions

	7 Optimization Using Lookup Table
	7.1 Probabilistic Modeling of Lookup Table
	7.2 Observations

	8 Conclusions
	References

	SoK: Digital Signatures and Taproot Transactions in Bitcoin
	1 Introduction
	2 Digital Signatures Used in Bitcoin
	2.1 ECC in Bitcoin
	2.2 ECDLP and ECDSA

	3 Implementation of ECDSA in Bitcoin
	3.1 Encoding of Keys and Signature
	3.2 Transactions Using ECDSA
	3.3 Issues in ECDSA

	4 Schnorr Signatures
	4.1 Comparison Between ECDSA and Schnorr Signature
	4.2 Features of Schnorr Signature
	4.3 Encoding of Keys and Signature

	5 Taproot
	5.1 Transactions Using Schnorr Signature
	5.2 Script Tree
	5.3 Spending Taproot Input
	5.4 Use of Schnorr Signature in Multisignature Transactions
	5.5 Security and Privacy in Schnorr Signature

	6 Conclusion and Future Work
	References

	BCTPV-NIZK: Publicly-Verifiable Non-interactive Zero-Knowledge Proof System from Minimal Blockchain Assumptions
	1 Introduction
	1.1 Motivations
	1.2 Contributions

	2 Background
	2.1 Blockchain Protocols
	2.2 Publicly-Verifiable Randomness
	2.3 Publicly-Verifiable WIP (PV-WIP)
	2.4 NIZK System

	3 Proposed BCTPV-NIZK System
	4 Formal Proofs
	4.1 Completeness
	4.2 Soundness
	4.3 Zero Knowledge

	5 A Note on Blockchain Collapse
	6 Experiments
	7 Conclusion
	References

	Proof-of-Variable-Authority: A Blockchain Consensus Mechanism for Securing IoT Networks
	1 Introduction
	2 Motivation
	3 Background
	4 Design
	4.1 Registration
	4.2 Broadcasting and Verification

	5 Security Aspects
	6 Implementation
	6.1 Proof-of-Concept
	6.2 Geth Implementation

	7 Performance Analysis
	8 Conclusion
	References

	An Efficient Two-Party ECDSA Scheme for Cryptocurrencies
	1 Introduction
	2 Preliminaries
	2.1 Threshold Signature
	2.2 Security Model

	3 Our Proposed Scheme
	3.1 Technical Overview of Construction
	3.2 Proof of Correctness
	3.3 Construction
	3.4 Security Proof

	4 Experiments
	5 Efficiency Comparison
	5.1 Efficient ECDSA Semi-aggregation Property
	5.2 Extension to General (t,n) Threshold Scheme

	6 Conclusion
	References

	Secure Smart Grid Data Aggregation Based on Fog Computing and Blockchain Technology
	1 Introduction
	1.1 Contributing Features

	2 Related Work
	3 Proposed Scheme Methodology
	4 Performance Analysis
	4.1 System Configuration, Tools and Platform
	4.2 Theoretical Implementation Analysis
	4.3 Practical Implementation Analysis
	4.4 Experimental Execution

	5 Outlook and Conclusion
	References

	Crypto-Ransomware Detection: A Honey-File Based Approach Using Chi-Square Test
	1 Introduction
	2 Problem Statement
	3 Literature Survey
	3.1 Detection Using Honeypots
	3.2 Network Analysis
	3.3 File Analysis

	4 Proposed Design
	4.1 Honeypot
	4.2 Entropy Montoring
	4.3 Integration
	4.4 Optimisations

	5 Experimental Results
	5.1 Chi-Square Analysis

	6 Design-Based Comparison with Existing Solutions
	6.1 R-Locker
	6.2 Data Aware Defence
	6.3 Design Comparison

	7 Conclusion
	References

	PSDP: Blockchain-Based Computationally Efficient Provably Secure Data Possession
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 System and Protocol Model
	3 Provable Data Possession Based on Blockchain
	4 Construction of Data Possession Scheme
	4.1 Proof of Correctness

	5 Conclusion
	References

	Private and Verifiable Inter-bank Transactions and Settlements on Blockchain
	1 Introduction
	2 Related Work
	3 Preliminaries: BLS Signature
	4 Proposed Protocol
	4.1 Solution Setup
	4.2 Inter Bank Fund Transfer Transaction Flow
	4.3 Private Settlement Between Banks

	5 Results
	5.1 Performances

	6 Conclusion and Future Works
	References

	Author Index

