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Abstract. The Affective Computing community commonly uses dimensional
models of emotions to rate conscious emotional perceptions in emotion elicitation
tasks. Although several structures of affect have been introduced in the litera-
ture, the valence and arousal dimensions have had the most impact. In this study,
we compared Watson and Tellegen’s Positive-Negative Affect model to Russell’s
Valence-Arousal plane. We used the publicly available Continuously Annotated
Signals of Emotions (CASE) dataset, which provides ratings along the valence and
arousal dimensions continuously annotated while watching video clips eliciting
four emotions: scariness, amusement, relaxation, and boredom. We derived the
Positive and Negative Affect time series from the valence and arousal time series
through a 45° rotation of Russell’s plane. We calculated the median values and
Fuzzy Entropy for each time series and video clip to investigate their linear and
nonlinear dynamics. Our analysis showed that Watson and Tellegen’s model had
fewer statistically significant differences between emotions than Russell’s model
when considering the median values. However, when investigating the dynamic
evolution of perceptions, the Positive Affect dimension showed the highest dis-
criminative power, identifying the time series traced during the boring stimuli as
the most regular and statistically different from all others. Our findings suggest
that further acquisitions of continuously annotated ratings in several experimental
settings, and the investigation of the nonlinear coupling betweenmore dimensions,
could significantly improve real-time emotion recognition.

Keywords: Affective computing · Continuously annotated ratings · Emotion
discrimination · Valence-arousal plane · Positive-negative affect model · Fuzzy
entropy · Nonlinear time series analysis

1 Introduction

In the Affective Computing field, emotion elicitation and recognition are topics strictly
influenced by the complexity of the definition of consciously experienced affective states
[24]. According to the previous literature, models of emotions were broadly organised
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into two categories [12, 13, 23, 24]: discrete and dimensional models. The former essen-
tially aimed at determining a set of primary and innate emotions, leading to prototypical
responses when elicited [9, 12]. On the other hand, dimensional models emerged from
exploring core dimensions [24, 31] that described more than a single discrete emotional
state at once. Furthermore, more recent and sophisticated models were proposed, e.g.
the “appraisal-based models”, but they are still unsuited for the experimental assessment
of emotions [13].

Currently, themostwidespread dimensionalmodel is theCircumplexmodel of Affects
proposed by Russell [23]. It consists of a plane with two orthogonal and bipolar dimen-
sions: valence and arousal. The former denotes the hedonic dimension, i.e. the degree of
the pleasantness of the perceived emotion, ranging fromunpleasant to pleasant. The latter
describes the intensity of the emotion felt that is represented by the arousal degree, rang-
ing from low to high arousal. Alternative interpretations of the structure of affects were
proposed [5], such as the Positive-Negative Affect model defined by Watson and Tel-
legen [31]. They proposed two novel dimensions, namely Positive Affect (thereinafter
PA) and Negative Affect (thereafter NA), which they considered to be the subjective
expression of the two fundamental behavioural systems of approach and with drawal,
respectively [31]. Therefore, paralleling Russell’s work, they portrayed a novel Affect
Circumplex entailing four bipolar dimensions spaced 45° apart [31]: pleasantness, PA,
engagement, and NA. Being largely independent and negatively correlated, the authors
emphasised the PA and NA as essential dimensions for the structure of affects, which
they measured throughout the PANAS scale, one of the most widely used psychometric
scales by the Affective Computing community [30]. Throughout this work, we will refer
to the circumplex model defined by PA and NA as the PA-NA plane.

Lately, innovative annotation tools deployed in experimental protocols have allowed
participants to rate perceived emotions in more than a single dimension at once. In
particular, the experimental setup of the Continuously Annotated Signal of Emotion
(CASE) dataset [26] was specifically devised to continuously record self-assessed rat-
ings of arousal and valence dimensions in real-time, during video elicitation sessions.
In a previous study [11], we investigated the dynamics of the arousal annotation data
considering two video stimuli only, the relaxing and the scary. An experimental com-
parison between the time-continuous emotion ratings in the valence-arousal plane and
the rearranged values in the PA-NA plane has not yet been presented in the literature.

In this study, we used nonlinear time series analysis techniques to investigate the
dynamics of the CASE dataset time-varying ratings in the valence-arousal plane and
their transformation in the PA-NA plane. Previous works in the domain of physiological
time series analysis highlighted the importance of taking advantage of nonlinear analysis
approaches to account for the dynamics of these signals and characterise the autonomic
[17–19] and the central nervous system activities for emotion recognition tasks [10]. We
investigated the dynamics of all four dimensions of emotions (i.e., valence, arousal, PA,
and NA) using Fuzzy Entropy (hereinafter FuzzyEn), which was developed to measure
physiological time series regularity [7].Moreover, we calculated themedian of each time
series as a reference averaged time-domain metric. Then, we focused on the statistical
differences between the four emotions (scariness, amusement, relaxation, and boredom)
elicited by the CASE video stimuli.
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2 Materials and Methods

2.1 The Continuously Annotated Signal of Emotion (CASE) Dataset

The publicly-available CASE dataset [25, 26] provides continuously annotated ratings
of emotions, recorded from 30 young adults (15 females, aged 25.71± 3.1 years, and 15
males, aged 28.6 ± 4.8 years). The arousal and valence ratings were collected by asking
each participant to view eight emotional video clips with duration in the range [119, 197]
s and continuously rate his/her emotional state in real-time [25, 26]. The videos were
singled out to induce four distinct emotional states (relaxation, scariness, amusement,
and boredom, with two clips for each emotion) and presented in pseudo-randomized
order.

The CASE dataset is distinct from other datasets furnishing continuous ratings of
emotions [1, 21, 22] since each subject evaluated its emotional state along the valence
and arousal dimensions in real-time while viewing the emotion eliciting video clips. A
custom joystick-based interface [3, 27] allowed a simultaneous annotation along both
affective dimensions. Specifically, the joystick interface was connected to a graphic
interface that appeared on the upper right corner of the screen where the video clip was
played [3]. The graphic interface was based on Russell’s plane [23] and was enhanced
by placing the icons of the Self-Assessment Manikin [6] on each axis to simplify the
annotation task. Before the elicitation, a practice session of five short videos endowed
participants with familiarising themselves with the task and the annotation interface.
The annotation data were acquired with a sampling frequency of 20 Hz [26].

2.2 The Positive and Negative Affect (PA-NA) Plane

From the original valence and arousal data, we generated a novel dataset made by the PA
and NA annotation data, to compare the four annotated data types (arousal, valence, PA,
and NA) and investigate their emotion discrimination capability. Specifically, in [31] a
novel structure of affect was proposed based on two dimensions: PA and NA. A unique
affect circumplex, containing four bipolar axes (i.e., pleasantness, engagement, PA, and
NA), was depicted with dimensions spaced 45° apart [31].

From a geometric perspective, since the PA-NA plane concerns a 45° rotation of the
valence-arousal plane, our idea was to apply a rotation to the original data collected in
the valence and arousal plane to make them fit the PA-NA plane. Valence and arousal
data were rated in the [0.5, 9.5] range. Therefore, to obtain the PA and NA data, we
first removed the origin (i.e., [6, 6]) of the valence-arousal plane. To rotate the data,
we applied a rigid transformation to each data vector of valence and arousal time series
through a standard rotation matrix, with rotation angle θ equal to 45°, according to:

(
pa(t)
na(t)

)
=

[
cos θ sin θ

− sin θ cos θ

](
v(t)− v0
a(t)− a0

)
(1)

with pa(t) and na(t) being the time series along the PA and NA dimensions, v(t) and a(t)
represent the original valence and arousal time series, and v0 and a0 are the values of
the origin for the valence and arousal time series, respectively. We applied this operation



Comparing Valence-Arousal and Positive-Negative 89

for all eight video types by coupling the annotated valence and arousal time series.
Therefore, for each video type, through this transformation, we gained two additional
annotation types along the PA and NA dimensions.

2.3 Phase Space Reconstruction and Fuzzy Entropy Analysis

The first step for computing nonlinear indexes of the annotated ratings was the phase
space reconstruction for each of the four dimensions. We used the Takens embedding
theorem [28] to reconstruct the so-called embedded vectors, which describe each time
series’s trajectory in the phase space.We computed two parameters for each time series to
construct the relative embedded vectors: the time delay τ and the embedding dimensions
m. The first parameter is the time lag to plot the time series against itself; the second one
represents the dimension of the phase space, i.e., the dimension of the embedded vectors.
According to [2], we calculated τ as the first minimum of the auto-mutual information
function, estimated through the kernel density estimation approach described in [29].
Additionally, we computed the value of m applying the False Nearest Neighbors (FNN)
algorithm, proposed in [14].

Based on the parameters τ and m, we defined the states of the valence, arousal, PA,
and NA dynamical systems in their own phase spaces throughout the coordinates of
their embedded vectors. Specifically, from the original N dimensional time series x =
[x(1), x(2),…, x(N)], we computed the N − (m − 1)τ embedded vectors in Rm. The i-th
embedded vector ui was calculated as ui = [x(i), x(i + τ ),…, x(i + (m − 1)τ )], with i ∈
[1, N − (m − 1)τ ].

Following the reconstruction of the phase spaces of the four affective dimensions, we
characterised their information content by employing information theoretic approaches.
We used the FuzzyEn as a measure of regularity of the reconstructed dynamics [7]. In
contrast to other entropy indexes, such as Sample Entropy and Approximate Entropy
[20], FuzzyEn is not based on a binary comparison with a fixed threshold to estimate the
similarity between points in the phase space. It is rather established on the broader con-
cept of fuzzy sets to measure the closeness between points. Consequently, each distance
between two vectors contributes to the estimate of trajectory similarity.

Practically, the first step for the computation of the FuzzyEn relies on the computation
of the Chebyshev distance between each pair of embedded vectors ui and uj in the phase
space, with i �= j to exclude self-matches, as follows:

d
(
ui, uj

) = max
k=1,...,m

{∣∣xi+(k−1)τ − xj+(k−1)τ
∣∣} (2)

An exponential function is employed as amembership degree function,which assigns
a value in the continuous range [0, 1] for each distance value d(ui, uj). Specifically, this
distance value is used to compute the similarity degree Dm

ij (n, r) between embedded
vector ui to uj, according to the following equation:

with m being the embedding dimension; n and r are parameters linked to the width
and the gradient of the boundary of the exponential function, respectively. According to
previous

Dm
ij (n, r) = exp(−[

dm(ui, uj
]n

/r) (3)
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work in physiological time series analysis [7], for our preliminary analysis we set r
equal to 20% of the standard deviation of each time series and n equal to 2. Based
on the FuzzyEn algorithm, the sample correlation measure Am(n, r) is defined as the
similarity degree value accounting for all vectors in the phase space, normalized by the
total number of vectors N − mτ , as in the following equation:

Am(n, r, τ ) = 1

N − mτ

N−mτ∑
i=1

⎡
⎣ 1

N − mτ − 1

N−mτ∑
i=1,i �=j

Dm
ij (n, r)

⎤
⎦ (4)

Afterwards, the value of the embedding dimension is increased from m to m + 1
and the values of Dm+1

ij (n, r) are computed for each new pair of (m + 1)-dimensional
vectors in the phase space, according to Eq. (3). Then, as shown in Eq. (4), we computed
the new value of the sample correlation measure Am+1(n, r). Finally, we computed the
value of FuzzyEn according to the following formula:

FuzzyEn(n, r,m, τ ) = −ln(
Am+1(n, r)

Am(n, r)
) (5)

As a reference measure in the time domain, to compare the emotion discrimination
capability along each dimension, we computed the median of the time series as an
average measure.

2.4 Statistical Analysis

In this work, for each of the four annotation data types (i.e., arousal, valence, PA, NA),
we averaged across the same subject the FuzzyEn and median values computed for the
two videos with the same emotional content. Therefore, we obtained a single subject-
dependent measurement of FuzzyEn and median for each emotion type. For all four
annotation data types, we tested independently the FuzzyEn and the median through
a within-subject statistical comparison between the four emotions. We performed a
non-parametric Friedman test to check any difference between the medians of the four
different emotion types for each measure and each annotation data type. If we found
a significant difference, we applied the Wilcoxon signed-rank test for paired samples
as the multiple comparison test. We set the statistical significance level at α = .05
and applied the Bonferroni correction when testing for multiple comparisons. We used
non-parametric statistical tests due to the non-gaussianity of the sample distributions,
demonstrated by testing each sample with the Shapiro-Wilk test. According to the sig-
nal quality, all the statistical tests were performed on 26 subjects. We executed all the
analyses with the software Matlab (Release 2021b, Mathworks Inc., Natick, MA).

3 Results

The FuzzyEn presented the lowest median (± median absolute deviation, i.e., MAD)
value for the boring stimulation compared to all the other emotion stimulation types, as
highlighted by the violin plots in Fig. 1a. In particular, for the arousal annotation data,
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the FuzzyEn of the boring stimulation (0.181 ±0 .085) resulted significantly lower than
the amusing (0.302 ± 0.090, p = 0.0050) and the scary (0.263 ± 0.041, p = 0.0476)
ones. Similarly, for the valence annotation data, the FuzzyEn for the boring (0.193 ±0
.062) stimulation was significantly lower than the amusing (0.328 ±0 .065, p =0 .0096)
and the scary (0.254±0 .007, p= 0.0045) clips. Regarding the PA data, the FuzzyEn for
the boring (0.138±0 .052) stimulation was significantly lower than all the other induced
emotions: fear (0.243 ± 0.053, p = 0.0007), amusement (0.259 ± 0.053, p = 0.0002),
and relaxation (0.229 ± 0.078, p = 0.0176). However, for the annotations along the NA
dimension, the FuzzyEn for the boring (0.160 ± 0.058) stimulation came about to be
significantly lower than the amusing (0.233 ±0 .029, p = 0.0131) only.

Concerning the analysis of the median, by looking at Fig. 1b we can appreciate
that for the arousal data, all pairwise comparisons were significantly different, whereas,
for the valence data, the only non-significant comparison was between amusing (6.308
± .539) and relaxing (5.879 ± 0.733) stimulations. However, a different picture was
unveiled when dealing with the median of the derived annotation data PA and NA. More
in detail, for themedian of thePAannotation data, the amusing stimulation is significantly
higher than all the others, as well as the boring has the lowest median (−0.673 ±0 .695)
compared to the others: relaxing (0.056 ± 0.431, p = 0.0022), scary (0.391 ± 0.407,
p = 0.0002), and amusing (1.140 ± 0.546, p � .0001). Regarding the NA data, the
fear-inducing stimulation presents a higher median (2.248 ± .870) than the others: the
amusing (−0.719 ± 0.373, p � 0.0001), the relaxing (−0.876 ±0 .513, p � 0.0001),
and the boring (−0.823 ±0 .401, p � 0.0001), but there is no difference among the last
three.

4 Discussion and Conclusions

In this computational study, we conducted a preliminary investigation into the dynamics
of four conscious emotions that were collected through continuous recordings of self-
assessed ratings during an emotion-eliciting task. We utilized the arousal and valence
annotated signals provided by the CASE dataset to derive the Positive Affect (PA) and
Negative Affect (NA) dimensions due to their mutual connections [30, 31]. In our previ-
ous work, we explored the possibility of distinguishing between relaxation and scariness
using entropy indexes [11]. However, no previous study has compared emotions based
on a nonlinear analysis of their dynamics according to two different emotion models:
Russell’s valence arousal plane [23] and Watson and Tellegen’s PA-NA plane [31].

To assess the dynamics’ regularity, we utilized FuzzyEn, given its robustness against
short time series. Pairwise comparisons of the PA andNA time series highlighted the pos-
sibility of successfully distinguishing boredom from the other three emotions (scariness,
amusement, and relaxation) using the PA data. When comparing the statistical findings
obtained by applying nonlinear analysis techniques to the four emotion dimensions, PA
emerged as the unique scale capable of completely discriminating one emotion (bore-
dom). In contrast, the FuzzyEn for the valence and arousal dimensions did not differenti-
ate between relaxation and boredom.We also analyzed the median of the annotated time
series. Although almost all four emotions were differentiated by the valence and arousal
annotation median, the same did not hold for the PA and NA annotations. Specifically,
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Fig. 1. Violin plots depicting the dispersion of Fuzzy Entropy (FuzzyEn) a and median b values
for the arousal (top left), valence (top right), positive arousal (PA, bottom left), and negative
arousal (NA, bottom right) annotation data. Values reported were obtained by averaging for the
same subject two entropy indexes a andmedian values b, calculated by starting from the annotated
time series (i.e., arousal, valence, PA, andNA) of each of the two videos inducing the same emotion
category. Statistically significant p-values, corrected by the number of multiple comparisons, are
reported in accordance with the following legend: ∗ p ≤ .050; ∗∗ p ≤ .010; ∗∗∗ p ≤ .001.
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the median of PA annotations demonstrated superior discrimination power compared to
NA, with the latter being useful only for differentiating scariness. Therefore, combining
the average and the nonlinear entropy index would increase the emotion discrimination
capability in the PA-NA plane.

One limitation of this study is the data transformation from the valence arousal plane
to the PA-NA plane. Specifically, users were trained to rate their emotional state in the
valence-arousal plane only. Since the CASE dataset did not contain annotations along
the PA and NA dimensions, we derived these data. Additionally, the original annotated
data were collected in a rectangular valence-arousal plane, constraining the boundaries
of the rotated space.

We plan to validate our results in future studies with other validated entropy met-
rics (e.g., Distribution Entropy [16]). This will allow us to thoroughly characterize the
dynamics of these novel annotation signals and unleash their potential for real-time emo-
tion classification tasks. An essential step in that direction would be to investigate the
emotion discrimination capabilities by coupling annotated signals along different dimen-
sions in a multivariate analysis. Specifically, several psychological models of emotion
suggest that bidimensional models might fail to capture subtle differences between emo-
tions. Therefore, as in [8], we could couple more than two dimensions. Furthermore,
according to [31], we applied a rotation to the valence-arousal plane of 45 degrees.
However, our future research will investigate how different rotation angles impact the
emotion discrimination capabilities of these annotated data.

Given the considerable amount of studies showing the discriminative power of non-
linear analysis of physiological signals [7, 10, 15–19], we believe that combining this
informationwith the study of annotated signals could remarkably disclose still unnoticed
connections between consciously experienced emotions and unconscious physiological
processes.
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