
Presumably Correct Undersampling

Gonzalo Nápoles1(B) and Isel Grau2,3

1 Department of Cognitive Science and Artificial Intelligence, Tilburg University,
Tilburg, The Netherlands

g.r.napoles@uvt.nl
2 Information Systems, Eindhoven University of Technology, Eindhoven, The

Netherlands
3 Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of

Technology, Eindhoven, The Netherlands

Abstract. This paper presents a data pre-processing algorithm to tackle
class imbalance in classification problems by undersampling the major-
ity class. It relies on a formalism termed Presumably Correct Decision
Sets aimed at isolating easy (presumably correct) and difficult (pre-
sumably incorrect) instances in a classification problem. The former are
instances with neighbors that largely share their class label, while the
latter have neighbors that mostly belong to a different decision class. The
proposed algorithm replaces the presumably correct instances belonging
to the majority decision class with prototypes, and it operates under the
assumption that removing these instances does not change the bound-
aries of the decision space. Note that this strategy opposes other methods
that remove pairs of instances from different classes that are each other’s
closest neighbors. We argue that the training and test data should have
similar distribution and complexity and that making the decision classes
more separable in the training data would only increase the risks of
overfitting. The experiments show that our method improves the gener-
alization capabilities of a baseline classifier, while outperforming other
undersampling algorithms reported in the literature.

Keywords: Pattern Classification · Class Imbalance ·
Undersampling · Presumably Correct Decision Sets

1 Introduction

Class imbalance is a prevailing challenge in pattern classification, where the dis-
tribution of classes is heavily skewed, leading to a scarcity of instances in the
minority class relative to the majority class. The class imbalance poses significant
difficulties for machine learning algorithms, as they tend to be biased towards
the majority class, resulting in suboptimal performance. In real-world scenarios,
such as fraud detection or disease diagnosis, where the minority class represents
critical instances of interest, accurate prediction becomes crucial. Several tech-
niques have been proposed to address the issue of class imbalance in classification
c© Springer Nature Switzerland AG 2024
V. Vasconcelos et al. (Eds.): CIARP 2023, LNCS 14469, pp. 420–433, 2024.
https://doi.org/10.1007/978-3-031-49018-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49018-7_30&domain=pdf
https://doi.org/10.1007/978-3-031-49018-7_30

Presumably Correct Undersampling 421

problems by amending the dataset. These techniques can be broadly categorized
into undersampling, oversampling, and hybrid approaches.

Undersampling methods aim to reduce the number of instances in the major-
ity class. For example, this can be achieved through random undersampling (RU)
[12], where randomly selected instances from the majority class are removed.
Alternatively, informed variants of undersampling select instances based on spe-
cific criteria or clustering algorithms. For example, Cluster Centroid Undersam-
pling (CCU) [12] utilizes k-means clustering to discover clusters of instances
from the majority class and replaces the clusters of majority samples with the
cluster centroids. Meanwhile, Edited Nearest Neighbors (ENN) [19] undersam-
ples the majority class by removing samples that are not similar enough to their
neighbors. Tomek Links Undersampling (TLU) method [18] identifies pairs of
instances from different classes that are close to each other and removes the
majority class instances. The Condensed Nearest Neighbor (CoNN) rule [8] is
also used in the context of undersampling by iterating over the examples in the
majority class and keeping them only if they cannot be classified correctly by the
already selected instances. Due to the initial random selection, CoNN method
is sensitive to noise. As a solution, One-Sided Selection (OSS) [10] uses Tomek
Links to remove noisy instances after applying the CoNN rule. Other undersam-
pling techniques include the NearMiss method [14], which selects majority class
instances based on their proximity to minority class instances.

On the other hand, oversampling methods focus on increasing the number
of instances in the minority class by replicating or generating synthetic samples
[6]. Similar to random undersampling, random oversampling duplicates instances
from the minority class randomly. In contrast, synthetic oversampling methods
generate synthetic samples with different rules. The most prominent example
of synthetic oversampling is the Synthetic Minority Over-sampling Technique
(SMOTE) [4]. This method creates new instances by interpolating between the
minority class instances and their neighbors. One drawback of SMOTE is that
it can generate instances between the inliers and outliers of a class, effectively
creating a suboptimal decision space. Several variants of SMOTE try to correct
this problem by focusing on samples near the border of the optimal decision
function or harder instances from the minority class [7,9,11,16].

Hybrid methods combine both undersampling and oversampling techniques
to achieve a balanced dataset. For example, using SMOTE method for oversam-
pling the minority class and then applying an undersampling technique to clean
the data is the most common approach. In [2] the authors used Tomek Links,
whereas in [1] they propose ENN for the undersampling step. Overall, oversam-
pling methods do not cause data loss, but they are prone to lead to overfitting
for the majority of machine learning approaches [3]. Undersampling methods, on
the other side, use different heuristics to counteract the data loss from random
undersampling. The main advantage of these methods is their ability to reduce
the computational complexity of training machine learning models, leading to
faster training times and improved efficiency, even when such reduction might
not lead to improved algorithms’ performance on the fresh data. For example,

422 G. Nápoles and I. Grau

the increasingly popular SHAP (SHapley Additive exPlanations) method [13] for
generating explanations for machine learning algorithms is one of the methods
that benefits from operating with smaller datasets.

In this paper, we tackle the class imbalance problem in machine learning by
undersampling the majority class. The proposed method is based on the intro-
duced presumably correct decision sets [15], a set formalism to analyze uncer-
tainty in pattern classification problems. In particular, it focuses on determining
which instances are easy (presumably correct) or difficult (presumably incorrect).
The former category consists of instances whose neighbors mostly share the same
class label, whereas the latter includes instances whose neighbors predominantly
belong to a different decision class. The proposed algorithm comprises two main
steps. Firstly, we modify the definitions of presumably correct and incorrect
instances by using a complete inclusion operator to ensure that all neighbors of
presumably correct and incorrect instances are contained in the decision classes
being analyzed. Secondly, we cluster the presumably correct instances associated
with the majority class into groups and replace them with prototypes. Both steps
ensure that the majority class is reduced while preserving the decision bound-
aries that define the classification problem, translating into reporting the same
or improved prediction rates on unseen data.

This paper is organized as follows. Section 2 describes the fundamentals of
the presumably correct decision sets, while Sect. 3 presents our method to under-
sample the majority class in classification problems. Section 4 conducts numerical
simulations and performs a comparative analysis between our algorithmic pro-
posal and state-of-the-art undersampling methods. Section 5 provides concluding
remarks and some future research avenues.

2 Presumably Correct Decision Sets

Let P = (X,F ∪y) be a structured classification problem where X is a non-empty
finite set of instances, while F is a non-empty finite set of features describing
these instances. The decision feature, denoted by y /∈ F , gives the class label for
each instance. For example, if x ∈ X is associated with the i-th decision class,
then we can denote the whole instances as a tuple (x, yi) where yi ∈ Y , with Y
being the set of possible decision classes. The decision feature induces a partition
X = {X1, . . . , Xi, . . . , Xm} of the universe where Xi contains instances labeled
with the i-th decision class, with m being the number of decision classes. Note
that this partition satisfies the conditions ∪iXi = X and ∩iXi = ∅. Moreover,
let us assume that g : X → Y is the ground-truth function such that g(x) = yi
if and only if x ∈ Xi. This function returns the decision class of the instance
as observed in the dataset. Similarly, the neighborhood function f : X → Y
determines the decision class of an instance given its neighborhood, and sev-
eral implementations of this function lead to different algorithms. The certainty
degree of such assignment is given by a membership function μ : X × Y → [0, 1]
where μ(x, i) denotes the extent to which x belongs to the i-th decision class as
determined by the neighborhood function. In the remainder of this paper, we
will refer to μ(x, i) as μi(x) for convenience.

Presumably Correct Undersampling 423

The rationale of this method is as follows. Let us suppose an instance x ∈ Xi

belongs to the i-th decision class. If most of its neighbors also belong to the i-th
decision class, then x is categorized as presumably correct. In contrast, if the
majority of its neighbors are labeled with the l-th decision class (where l �= i),
then x is considered to be presumably incorrect, even when the ground truth
indicates that it is labeled with the i-th decision class in the dataset. In this
approach, the membership function quantifies the extent to which the instance
resembles the instances in its neighborhood.

Equations (1) and (2) portray the presumably correct and incorrect sets,
respectively, associated with the i-th decision class,

β-Ci = {x ∈ Xi : x ∈ β-Si ∧ g(x) = f(x)} (1)

β-Ii = {x ∈ Xi : ∃l ∈ {1, . . . , m}, x ∈ β-Sl �=i ∧ g(x) �= f(x)} (2)

where β-Si is referred to as the β−strong region and contains instances with a
high membership degree to the i-th decision class according to the neighborhood
function. These instances are likely members of the target decision class since
they are strong members of a neighborhood dominated by instances labeled with
that class. Equation (3) mathematically formalizes this region,

β-Si = {x ∈ X : μi(x) ≥ β} (3)

such that α, β ∈ [0, 1] is a parameter to be specified by the user. Setting β
close to one will cause most instances to be excluded from the presumably cor-
rect/incorrect analysis, while setting β close to zero will cause most instances to
be considered as strong members of their neighborhood.

The β-presumably correct region β-Ci contains instances that must satisfy
two primary properties. Firstly, these instances have membership degrees in
the i-th strong region that meet the constraints imposed by the β parameter.
Secondly, the decision classes determined by the function f(x) for these instances
align with those computed by the function g(x) (x ∈ Xi implies g(x) = yi).
Instances belonging to the strong region β-Sl �=i but having f(x) �= g(x) are
considered presumably incorrect (assuming f(x) = yl). Finally, instances that do
not possess membership values fulfilling the membership constraint are neither
labeled as presumably correct nor incorrect.

3 Presumably Correct Undersampling

In this section, we present the contributions of our paper, named the Presumably
Correct Undersampling (PCU) method. This procedure starts with the assump-
tion that there is a highly imbalanced classification problem with a clearly dis-
tinguished majority class. The intuition behind the PCU formalism is that we
can safely replace instances that are considered presumably correct members
of the majority decision class by prototypes. These instances do not define the
decision boundaries of the classification problem, and their removal should not

424 G. Nápoles and I. Grau

affect the discriminatory power of the data. Note that this assumption opposes
the strategy used by the TLU method (Tomek, 1976), which removes pairs of
instances from different classes that are each other’s closest neighbors. By remov-
ing such instances, the TLU method improves class separability and addresses
challenges arising from overlapping or misclassified instances. However, while this
brings evident benefits during the classifier’s training process, it may increase
the difficulty of accurately classifying challenging instances when applying the
classifier to unseen data. Similarly to the approach used by the TLU method, our
algorithm could also remove the presumably incorrect instances belonging to the
majority class. These instances are strong members of some other region, accord-
ing to the neighborhood function, yet are labeled with the majority decision
class. Therefore, they can be considered noisy instances rather than borderline
instances, as they strongly belong to their respective neighborhoods. However,
this paper focuses on the presumably correct instances only. Let us break the
proposed algorithm into two main steps related to isolating the presumably cor-
rect instances and replacing them with prototypes.
Step 1. Determining the presumably correct and incorrect instances, as defined
in Eqs. (1) and (2), requires defining a neighborhood function. In the original
paper, Nápoles et al. [15] defined this function as the k-nearest neighbor classifier.
Hence, an instance x ∈ X will be included in β-Ci if g(x) = i, x ∈ β-Si and
|Nk(x) ∩ Xi|/|Xi| is maximal for the i-th decision class, with Nk(x) being the
k closest neighbors of x. The last condition might bring some issues for our
algorithm since it is not required for the Nk(x) to be entirely included in Xi. In
other words, x has some neighbors that do not belong to the i-th decision class.
Let us redefine the concepts of presumably correct and incorrect sets based on a
neighborhood function ensuring the full inclusion degree of Nk(x) in Xi. Hence,
Eqs. (1) and (2) can be rewritten as follows:

β-Ci = {x ∈ Xi : x ∈ β-Si ∧ Nk(x) ⊆ Xi}, (4)

β-Ii = {x ∈ Xi : ∃l ∈ {1, . . . , m}, x ∈ β-Sl �=i ∧ Nk(x) ⊆ Xl}. (5)

Moreover, the membership function needed to define β-Si can be formalized
in terms of the k-nearest neighbors as follows:

μi(x) =

∑
z∈Nk(x)

1
d(x,z) · φ(g(x) = g(z))

∑
z∈Nk(x)

φ(g(x) = g(z))
(6)

such that

φ(g(x) = g(z)) =

{
1, if g(x) = g(z)
0, otherwise

. (7)

Notice that simultaneously fulfilling that Nk(x) ⊆ Xi and x ∈ β-Si is key
in the proposed method. The former ensures that all neighbors of the instance
being analyzed belong to the majority class, while the latter ensures that the
instance itself is a strong member of its neighborhood. Both constraints lead to
pure and cohesive presumably correct decision sets.

Presumably Correct Undersampling 425

Step 2. Once we have isolated the presumably correct instances associated with
the class to be undersampled, we can gather them into p clusters using any
clustering method. This procedure requires specifying the number of clusters in
advance, although it can be automatically estimated using a clustering validation
measure such as the Davies-Bouldin Index or the Silhouette Coefficient. As a rule
of thumb, the number of clusters can be estimated as p = �(1−r) · |β-Ci|, where
r ∈ [0, 1] is the imbalance ratio computed as the number of minority instances
divided by the number of majority instances. Finally, the presumably correct
instances are removed from the dataset and replaced p prototypes obtained from
the discovered clusters, meaning that there will be a prototype per cluster. The
prototypes will be either the cluster centers themselves or the instances reporting
the closest distances to their cluster centers.

Figure 1 depicts the intuition of our algorithm for a three-class classification
problem where the first decision class is represented by 100 instances, and the
other two classes are represented by 50 instances each. Therefore, the purpose
is to undersample the majority class as much as possible without damaging the
decision space characterizing the problem. The algorithm first finds the presum-
ably correct instances and then clusters them into p groups according to their
similarity. Note that we only analyze instances belonging to the presumably
correct region associated with the majority class.

Fig. 1. Visual depiction of the proposed PCU algorithm for a toy example. Presumably
correct instances belonging to the majority class are enclosed in colored circles. Note
that these similarity classes or neighborhoods only contain instances that belong to the
decision class to be undersampled.

426 G. Nápoles and I. Grau

Overall, the proposed PCU algorithm requires three parameters. The first
parameter is the number of neighbors k used to build the neighborhood function
Nk(x). The larger the number of neighbors, the fewer the number of presumably
correct instances since finding pure neighborhoods will become more difficult.
The second parameter, denoted as β ∈ [0, 1], specifies the minimum membership
degree of an instance to be considered a strong member of its neighborhood. The
last parameter concerns the reduction ratio r ∈ [0, 1], which indicates how many
prototypes will be built from the isolated presumably correct instances. In short,
larger values of this parameter translate into fewer prototypes. If r = 1.0 then all
presumably correct instances will be deleted without building any prototypes. If
r = 0.0 then each presumably correct instance will be deemed a prototype, thus
inducing no modification to the dataset.

4 Experimental Simulations

In this section, we will conduct numerical simulations to validate the correctness
of the proposed PCU method and contrast its performance against state-of-the-
art algorithms devoted to undersampling the majority class.

First, let us illustrate the inner workings of our method in a two-dimensional
dataset with three decision classes. In this problem, the majority class consists
of 500 samples, the second largest decision class comprises 100 samples, and the
third class contains 50 instances. Following the application of our undersam-
pling method, the majority decision class is reduced to 130 instances, while the
sizes of the other classes remain unchanged. Figures 2 and 3 show the instance
distribution and the decision spaces for several classifiers, respectively.

Fig. 2. Imbalanced three-class classification problem described by two numerical fea-
tures. In the original problem, the first decision class is represented by 500 instances,
the second by 100, and the third by 50. After applying our algorithm, the majority
decision class narrows down to 130 instances.

Presumably Correct Undersampling 427

Fig. 3. Decision space of different classifiers for a three-class imbalanced problem before
and after applying our algorithm. The number on the top of each sub-figure denotes
Cohen’s kappa score on the test set.

428 G. Nápoles and I. Grau

Figure 3 shows the decision of several classifiers before and after undersam-
pling. This toy dataset is split into training (80%) and test (20%) such that the
former part is used to plot the decision spaces while the latter is used to test
the classifiers’ generalization capabilities. It goes without saying that only the
training data is undersampled and that the test data is kept untouched. The
classifiers used in this simulation are Gaussian Naive Bayes, Random Forests
with 100 estimators, Support Vector Machine classifier with a radial kernel and
regularization parameter c = 1.0, and Logistic Regression with �2 regularization.
As for the hyperparameter values of our algorithm, we arbitrarily set the number
of neighbors as k = 10, the confidence threshold as β = 0.8, and the reduction
ratio as r = 0.8. In this experiment, we evaluate performance using Cohen’s
kappa score [5], which is deemed a robust metric for imbalanced classification
tasks. The results show that the modifications on the decision spaces of Support
Vector Machine and Logistic Regression led to increased performance on the test
set. Equally important is the fact that none of these classifiers reported any loss
in performance after applying our undersampling method. Note that simplify-
ing the dataset while keeping its properties is also valuable when it comes to
improving the efficiency of machine learning methods.

Next, we will expand this experiment to a benchmarking set of imbalanced
data. The initial step in our experimental methodology consists of generating 50
synthetic datasets with varying complexity levels. To generate these datasets,
we resort to the make classification function provided in the scikit-learn
library [17]. This function creates datasets with clusters of normally distributed
data points positioned around the vertices of a hypercube.

The general characteristics of the synthetic dataset are selected randomly
from predefined intervals of possible values. The number of decision classes m
is uniformly selected from the range [2,5], while the number of samples s is
selected from [5000, 10000]. The total number of features n is obtained from
the multiplication of the number of decision classes m with a random factor
uniformly selected from [5,10]. From the total number of features, the number
of informative features (n 1) is calculated as the floor of pi × n, where pi is
uniformly sampled from [0.4, 0.8]. Similarly, the number of redundant features
(n 2) is determined as the floor of pr × (n − n 1), with pr uniformly sampled
from [0.2, 0.4]. The number of repeated features (n 3) is set to zero since these
are covered by the redundant ones in our experiment.

Moreover, the number of clusters per class c is uniformly selected from the
interval [1,5]. To introduce class imbalance in the dataset, the proportion of
samples assigned to the majority class is set to 80%, while the remaining deci-
sion classes are equally represented. This function also provides the flexibility to
add noise to the decision class through the flip y parameter, which is assigned
a value from the interval [0.0, 0.1]. The hypercube parameter takes random
boolean values indicating whether the clusters are at the vertices of the hyper-
cube or a random polytope. The dimension of the hypercube is determined by
the number of informative features n 1. The length of the hypercube’s sides is

Presumably Correct Undersampling 429

twice the value of the parameter class sep, which is randomly selected from
[1, 2] and controls the spread of the decision classes.

The second step in our experimental methodology is to contrast the perfor-
mance of a baseline classifier before and after the undersampling process. The
selected baseline classifier is a Random Forest using the default hyperparameter
values as reported in the scikit-learn library [17]. This setting allows us to
compare the proposed PCU method against well-established undersampling tech-
niques, such as Random Undersampling (RU), Cluster Centroids Undersampling
(CCU), Edited Nearest Neighbors (ENN), Tomek Links Undersampling (TLU),
and One-Sided Selection (OSS). For RU and CCU the method removes the 80%
of the majority class, while for ENN, TLU, and OSS, we specify that the under-
sampling is only performed on the majority class. In the case of our algorithm,
we use the same hyperparameter values as described above.

Figure 4 shows Cohen’s kappa scores (after performing 5-fold cross-
validation) for all datasets before and after applying the undersampling methods.
Besides coloring the scores to represent performance decrease (in red) or other-
wise (in blue), we show the average score across all datasets reported for each
method on the top of each violin plot. Our method reports the best performance
overall, with the second smallest standard deviation after ENN. However, ENN
is on par with TLU and OSS in terms of performance, while RU and CCU are
more prone to lose performance after undersampling. It is worth mentioning that
the average Cohen’s kappa score associated with the original datasets is 0.68,
thus confirming the added value of using the PCU method.

Fig. 4. Cohen’s kappa scores (denoted as colored dots) computed by each algorithm
for the synthetic datasets used for simulation. Red dots mean that the performance
decreased compared to the baseline, while blue dots mean that the performance
improved or remained unchanged. (Color figure online)

430 G. Nápoles and I. Grau

In order to test whether there are statistically significant differences in per-
formance among the undersampling algorithms, we apply the non-parametric
Friedman test. The null hypothesis H0 for this test is that the algorithms result
in negligible performance differences. The resulting p-value = 0.0 after round-
ing, meaning that there are statistically significant differences in the group
of algorithms being compared. Subsequently, we use a Wilcoxon signed-rank
test to determine whether the significant differences come from our undersam-
pling method compared to each of the other methods. The null hypothesis H0

asserts that there are no notable variances in the algorithm’s performance among
datasets, whereas the alternative hypothesis H1 suggests the presence of signifi-
cant differences. In addition, we use the Bonferroni-Holm post-hoc procedure to
adjust the p-values produced by the Wilcoxon signed-rank test. This correction
aims to control the family-wise error rate when performing a pairwise analysis
by adjusting the p-values obtained in each comparison.

Table 1 portrays the results concerning the Wilcoxon test coupled with
Bonferroni-Holm correction using the proposed PCU algorithm as the control
method. In the table, R− indicates the number of datasets for which PCU reports
less performance than the compared algorithm, while R+ gives the number of
datasets for which the opposite behavior is observed. The corrected p-values
computed by Bonferroni-Holm advocate for rejecting the null hypotheses in all
cases for a significance level of 0.05 (corresponding to a 95% confidence interval).
The fact that the proposed PCU method reports the largest R+ values and that
the null hypotheses are rejected in all pairwise comparisons allows us to conclude
the superiority of our proposal for the generated datasets.

Table 1. Results concerning the Wilcoxon pairwise test with Bonferroni-Holm correc-
tion using PCU as the control algorithm.

Algorithm Wilcoxon R− R+ Holm Null Hypothesis

ENN 9.38E-04 11 33 9.38E-04 Reject

TLU 1.12E-06 2 32 3.37E-06 Reject

OSS 1.59E-06 2 31 3.37E-06 Reject

CCU 1.54E-11 3 47 7.72E-11 Reject

RU 6.54E-08 3 44 2.62E-07 Reject

As the last experiment, we show the reduction ratio for all datasets in Fig. 5
after applying undersampling. The area denotes the reduction percentage across
all datasets (the larger the area, the smaller the undersampled dataset). Firstly,
it is clear that the PCU method reduces a larger number of instances than the
ENN algorithm without affecting the classifier’s performance, as we concluded
before. Secondly, although RU and CCU lead to the largest areas, they computed
the worst prediction rates. Finally, TL and OSS barely modified the datasets,
which explains their steady prediction rates.

Presumably Correct Undersampling 431

Fig. 5. Reduction ratio of instances that belong to the majority class reported by
selected undersampling algorithms for each dataset. The numbers on the outer axis
denote the indexes of synthetic datasets.

432 G. Nápoles and I. Grau

5 Concluding Remarks

This paper addressed the class imbalance problem in pattern classification using
a data pre-processing algorithm that focuses on undersampling the majority
class. The foundation of the proposed algorithm relies on the Presumably Cor-
rect Decision Sets, which differentiate between presumably correct instances
(those with neighbors sharing the same class label), and presumably incorrect
instances (those with neighbors belonging to a different decision class). By replac-
ing the presumably correct instances from the majority class with prototypes,
the algorithm aims to better balance the classes without significantly altering
the decision boundaries. Reducing the majority class and retaining the decision
boundaries would allow a classifier to increase its generalization capabilities. This
approach contrasts with methods that remove pairs of instances from different
classes that are closest neighbors. Overall, the algorithm provides a tool for mit-
igating class imbalance and offers potential improvements for the generalization
capabilities of pattern classification models.

The simulations using 50 imbalanced problems confirmed that the PCU algo-
rithm can effectively reduce the number of instances associated with the major-
ity class. More importantly, we observed that the performance on unseen data
remained unchanged or improved after undersampling. The observed reduction
in the number of instances belonging to the majority class ranged from 8% to
60%, with certain cases exhibiting performance improvements of up to 28%. It is
worth noting that achieving a substantial reduction in the dataset without sacri-
ficing performance still holds great value, as it directly translates into improved
efficiency when training classifiers or implementing post-hoc explanation meth-
ods. Furthermore, the findings indicate that the proposed algorithm outperforms
existing state-of-the-art undersampling methods since these methods tend to
either remove too many instances, leading to performance degradation or have
minimal impact on the training data.

The primary limitation of our study concerns the lack of hyperparameter
tuning since it will help improve the performance of all undersampling methods
(ours included). In addition, conducting a sensitivity analysis to determine the
impact of changing the number of neighbors, the confidence threshold, and the
reduction ratio on the algorithm’s performance is paramount. We conjecture
that tuning the reduction ratio and the confidence threshold can effectively be
done with binary search instead of grid search. For instance, if the performance
decreases for a given reduction ratio, it will continue to do so for values greater
than such a cutting point. Finally, it will be interesting to study how different
classifiers benefit from the proposed PCU method.

Presumably Correct Undersampling 433

References

1. Batista, G.E., et al.: Balancing training data for automated annotation of key-
words: a case study. Wob 3, 10–8 (2003)

2. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several
methods for balancing machine learning training data. ACM SIGKDD Explorat.
Newslett. 6(1), 20–29 (2004)

3. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance
problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

5. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur.
20(1), 37–46 (1960)

6. Fernández, A., Garćıa, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Learn-
ing from imbalanced data sets. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98074-4

7. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang,
G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005).
https://doi.org/10.1007/11538059 91

8. Hart, P.: The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory
14(3), 515–516 (1968)

9. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach
for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328.
IEEE (2008)

10. Kubat, M., et al.: Addressing the curse of imbalanced training sets: one-sided
selection. In: ICML, vol. 97, p. 179. Citeseer (1997)

11. Last, F., Douzas, G., Bacao, F.: Oversampling for imbalanced learning based on
k-means and smote. arXiv preprint arXiv:1711.00837 2 (2017)

12. Lemâıtre, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res.
18(17), 1–5 (2017)

13. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
Adv. Neural Inf. Process. Syst. 30 (2017)

14. Mani, I., Zhang, I.: KNN approach to unbalanced data distributions: a case study
involving information extraction. In: Proceedings of Workshop on Learning from
Imbalanced Datasets, vol. 126, pp. 1–7. ICML (2003)

15. Nápoles, G., Grau, I., Jastrzȩbska, A., Salgueiro, Y.: Presumably correct decision
sets. Pattern Recognit. 141, 109640 (2023)

16. Nguyen, H.M., Cooper, E.W., Kamei, K.: Borderline over-sampling for imbalanced
data classification. Int. J. Knowl. Eng. Soft Data Paradigms 3(1), 4–21 (2011)

17. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

18. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Cybernet. 6, 769–
772 (1976)

19. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE Trans. Syst. Man Cybern. 3, 408–421 (1972)

https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1007/11538059_91
http://arxiv.org/abs/1711.00837

	Presumably Correct Undersampling
	1 Introduction
	2 Presumably Correct Decision Sets
	3 Presumably Correct Undersampling
	4 Experimental Simulations
	5 Concluding Remarks
	References

