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Abstract. The progress in computer vision has allowed the develop-
ment of a diversity of precision agriculture systems, improving the effi-
ciency and yield of several processes of farming. Among the different
processes, crop monitoring has been extensively studied to decrease the
resources consumed and increase the yield, where a myriad of computer
vision strategies has been proposed for fruit analysis (e.g., fruit counting)
or plant health estimation. Nevertheless, the problem of fruit ripeness
estimation has received little attention, particularly when the fruits are
still on the tree. As such, this paper introduces a strategy to estimate
the maturation stage of fruits based on images acquired from handheld
devices while the fruit is still on the tree. Our approach relies on an image
segmentation strategy to crop and align fruit images, which a CNN sub-
sequently processes to extract a compact visual descriptor of the fruit. A
non-linear regression model is then used for learning a mapping between
descriptors to a set of physicochemical parameters, acting as a proxy of
the fruit maturation stage. The proposed method is robust to the vari-
ations in position, lighting, and complex backgrounds, being ideal for
working in the wild with minimal image acquisition constraints. Source
code is available at https://github.com/Diogo365/WildFruiP.

Keywords: Fruit Physicochemical Parameters · Computer Vision ·
Maturation Stage

1 Introduction

The agricultural industry is a vital sector of the global economy and plays a
crucial role in the human food supply. Food production is constantly evolving,
and technology has been a significant ally in this process. Vision-based systems
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and artificial intelligence have enabled significant improvements in quality and
productivity. In this context, this work aims to develop a computer vision strat-
egy for automatically estimating fruit maturation stages from a single photo
acquired by handheld devices. This will allow for a more accurate and efficient
evaluation of the fruit production process, reducing resource waste and increas-
ing agricultural sector productivity.

While computer vision systems have provided valuable information for crop
monitoring, the assessment of fruit ripeness has received limited attention. Exist-
ing systems primarily rely on drone-based monitoring methods, which do not
allow for the determination of the specific maturation stage of each fruit. Alter-
natively, some researchers have developed systems to classify the maturation
stage of fruit after harvesting, which may not be particularly useful for farmers.

Considering the importance of determining fruit ripeness for optimal harvest-
ing decisions, we introduce a method for determining the maturation stage of
fruits using a single photo acquired from handheld devices while the fruit is still
on the tree. The proposed method relies on an image segmentation model to crop
and align the fruit, which a CNN subsequently analyses for extracting a visual
descriptor of the fruit (illustrated in Fig. 1). The maturation stage is defined by
a set of physicochemical parameters that are inferred from the visual descrip-
tor using a regression model. To allow the learning of the image segmentation
and regression model, we collected a dataset of 400 images of figs and prickly
pears and their corresponding physicochemical parameters. To the best of our
knowledge, this is the first dataset comprising both visual and physicochemical
data, and we expect it to be of particular interest to the research community for
carrying out studies of the relationship between the chemical properties of fruits
and their visual appearance. The dataset used in this work is publicly available
on https://github.com/Diogo365/WildFruiP.

Our main contributions in this work are as follows:

– We introduce a strategy for fruit ripeness estimation capable of operating in
images acquired in the wild while the fruit is still in the tree.

– We assessed the performance of the proposed method in determining a set
of physicochemical parameters of a fruit using a single image obtained in the
visible light spectrum.

– To foster the research on the problem of fruit ripeness estimation from visual
data, we introduce a dataset comprising 400 images from two fruit species
and their respective physicochemical parameters, which serve as a proxy to
the fruit maturation stage.

2 Related Work

2.1 Detection Methods

Object detection in images is a crucial task in computer vision, which had a
tremendous progress in the last years due to the emergence of deep learning.

https://github.com/Diogo365/WildFruiP
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Several works have taken advantage of this progress for fruit detection. In [12],
Parvathi et al. proposed an enhanced model of Faster R-CNN [10] for detecting
coconuts in images with complex backgrounds to determine their ripeness. The
performance of the model was evaluated on a dataset containing real-time images
and images from the Google search engine. The results showed that the improved
Faster R-CNN model achieved better detection performance compared to other
object detectors such as SSD [7], YOLO [9], and R-FCN [2].

2.2 Segmentation Methods

Image segmentation is crucial for fruit image analysis, as it allows separating
fruits from other parts of the image, such as leaves or background. Mask R-
CNN [4] is an instance segmentation method that has proven effective in object
segmentation tasks and has been extensively used for fruit analysis applications.

Siricharoen et al. [13] proposed a three-phase deep learning approach [13]
to classify pineapple flavor based on visual appearance. First, a Mask R-CNN
segmentation model was used for extracting pineapple features from the YCbCr
color space. Then, a residual neural network pre-trained on COCO and ImageNet
datasets was utilized for flavor classification. The authors concluded that their
model successfully captured the correlation between pineapple visual appearance
and flavor.

Ni et al. [8] developed an automated strategy for blueberry analysis. They
employed a deep learning-based image segmentation method using the Mask
R-CNN model to count blueberries and determine their ripeness. The results
indicated variations among the cultivars, with ‘Star’ having the lowest blueberry
count per cluster, ‘Farthing’ exhibiting less ripe fruits but compact clusters,
and ‘Meadowlark’ showing looser clusters. The authors highlighted the need for
objective methods to address fruit ripeness inconsistency caused by annotation
inconsistencies in the trained model.

2.3 Methods for Estimating Fruit Ripeness in Images

Several strategies have been introduced to enable pre-harvest in-field assessment
of fruit ripeness using handheld devices [6]. However, most approaches rely on
the non-visible light spectrum, requiring thus dedicated hardware [11].

Regarding the approaches devised for visible light spectrum, most of them
use CNNs for the estimation of fruit ripeness. Appe et al. [1] proposed a model for
tomato ripeness estimation using transfer learning. They relied on the VGG16
architecture, where the top layer was replaced with a multilayer perceptron
(MLP). The proposed model with fine-tuning exhibited improved effectiveness
in tomato ripeness detection and classification. In another work, Sabzi et al. [12]
developed an innovative strategy for estimating the pH value of oranges from
three different varieties. A neural network was combined with the particle swarm
optimization [5] to select the most discriminative features from a total of 452
features obtained directly from segmented orange images. This approach was
able to rely on a subset of six features to obtain an accurate estimation of the
pH values across different orange varieties.
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In short, few approaches were devised for addressing the problem of fruit
ripeness estimation from visual data, ranging from traditional extraction of hand-
crafted features to deep-learning-based methods.

3 Proposed Method

The proposed approach can be broadly divided into three principal phases: the
detection and segmentation of fruits in an image, the alignment and cropping of
the fruit, and the determination of the physicochemical parameters of the fruit.
The pipeline of this method is presented in Fig. 1.

3.1 Fruit Detection and Segmentation

This phase aims at removing the spurious information from the image keeping
only the fruit region. Accordingly, the fruit is segmented automatically using
the Mask R-CNN [4] allowing the prediction of a binary mask containing the
pixels where exists a specific type of fruit. Considering the specificity of this
task, the Mask R-CNN was fine-tuned on the proposed dataset, allowing thus it
to generalize to the fruits targeted in this problem. To address the problem of
multiple fruits in the image, we establish that the fruit to be analysed should be
in the center of the image, and thus the remaining masks are discarded.

Figure 2 depicts the results obtained by applying Mask R-CNN to both figs
and prickly pears.

3.2 Image Alignment

Considering that fruit orientation varies significantly in the images, it is particu-
larly important to enforce a standard alignment to ease the learning of the fruit
analysis model.

Considering the general shape of fruits, we propose to approximate their
silhouette using an ellipse. Also, we concluded that the silhouette of the fruit
can be modeled using the segmentation mask obtained from the previous phase.

Let M be the segmentation mask, and consider the general equation of the
ellipse:

((x − x0) cos θ + (y − y0) sin θ)2

a2
+

(−(x − x0) sin θ + (y − y0) cos θ)2

b2
= 1, (1)

where (x0, y0) are the coordinates of the ellipse’s center, a and b are the
horizontal and vertical semi-axes, respectively and θ is the ellipse orientation,
with θ ∈ [−π

2 , π
2

]
. The boundary of M is determined using the convex hull of

the (x, y) points of M , and least square fitting [3] is used to determine x0, y0,
a, b, and θ. The rotation angle θ is then used to rotate the original image and
crop the fruit region based on the minimum bounding box containing the ellipse
obtained. The results of the fruit alignment can be observed in Fig. 3.
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3.3 Determination of Physicochemical Parameters

In the third phase, a CNN model is used to learn a visual descriptor which can
encode the discriminative information regarding the physicochemical parameters
of the fruit. A multi-layer perceptron is used as a regression model to infer the
nine physicochemical parameters from the visual descriptors. The CNN and the
regression model were trained in an end-to-end manner using the mean-squared
error loss, and a k-fold cross-validation technique was adopted due to the reduced
amount of training data.

4 Dataset

Considering the unavailability of public datasets comprising fruit images
and their corresponding maturation stage or physicochemical parameters, we
acquired 4 photos each from 60 figs and 40 prickly pears from local farmers. The
fruits were subsequently harvested and analysed in the lab to extract 9 charac-
teristics that are typically correlated with the maturation state of the fruit. The
physical and chemical parameters obtained are listed in Table 1.

Table 1. Range of values for the physicochemical parameters used in this project.

Attribute Range of Values

TSS ( o
¯ Brix) [13.5;19.0]

Hardness (N) [1.1;61.4]

pH [4.2;6.2]

mass (g) [24.3;209.6]

L [21.1;56.7]

a [-16.4;23.2]

b [2.6;26.8]

length (cm) [59.6;110.0]

diameter (cm) [39.0;62.9]

To allow the development of a custom image segmentation model, we anno-
tated the complete set of 400 images using the CVAT tool. An exemplar from
each of the fruit species and its corresponding annotations can be observed in
Fig. 4. To foster the research on the problem of estimating fruit ripeness from
visual data, we make our dataset publicly available1.

1 https://github.com/Diogo365/WildFruiP.

https://github.com/Diogo365/WildFruiP
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5 Experiments

This section reports the performance of the proposed method for the problem
of physicochemical parameter estimation from images of figs and prickly pears
acquired using handheld devices. Tests are conducted using the aligned, and
misaligned/cropped dataset using different neural networks. Also, we compare
the proposed approach with a state-of-the-art method devised for inferring fruit
physicochemical parameters from visual data.

5.1 Implementation Details

Detection and Segmentation. The backbone of the Mask R-CNN was a
Residual Neural Network (ResNet), specifically the ResNet50 variant integrated
into the PyTorch framework. Prior annotations were necessary for each fruit,
including bounding boxes, labels, and masks to train the model. The data aug-
mentation transformations were resizing, horizontal flipping, brightness and con-
trast adjustment. After defining the necessary transformations for data process-
ing, the annotated initial dataset was split into 80% for training and 20% for
testing. Finally, with the separated datasets and processed data, the model was
trained for 50 epochs using the stochastic gradient descent optimizer with a
learning rate of 0.001.

Determination of Physicochemical Parameters. The training data con-
sisted of a set of images and their corresponding physicochemical parameters.
Each parameter was normalized using a linear transformation estimated from the
training data. A lightweight CNN architecture (ResNet18) was used for extract-
ing 2048 dimensional visual descriptors from the aligned fruit images and a multi-
layer perceptron was exploited for the estimation of nine parameters from the
visual descriptors. The configurations used are presented in Table 2. All models
were trained for a maximum of 100 epochs using the Early Stopping regular-
ization technique and all of our experiments were conducted on PyTorch with
NVIDIA GeForce RTX 3060 GPU and with Intel(R) Core(TM) i7-10700 CPU
@ 2.90GHz. The inference times reported in Table 3 were obtained by executing
the model on this hardware configuration.

Table 2. Configuration used for
training the CNN.

Batch Size 16

Epochs 100

Learning Rate 0.001

Optimizer Adam

Image Size 320× 320

Table 3. Inference time and total size of the dif-
ferent models.

Models Inference Time Storage Size

MobileNetV2 10.1 ms 8.7 MB

ResNet-18 10.2 ms 89.9 MB
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5.2 Metrics

To assess the performance of the proposed model, four metrics were employed,
mean squared error (MSE), mean absolute error (MAE), mean absolute percent-
age error (MAPE), and the coefficient of determination (R2). They are defined
as follows:

MSE =
1
n

n∑

i=1

(yi − ŷi)2, (2)

MAE =
1
n

n∑

i=1

|yi − ŷi|, (3)

MAPE =
1
n

n∑

i=1

∣
∣
∣
∣
yi − ŷi

yi

∣
∣
∣
∣ × 100, (4)

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(5)

In these equations, n represents the total number of data points or observa-
tions in the evaluation set, yi denotes the true value of the dependent variable
for the ith observation, ŷi represents the predicted value of the dependent vari-
able for the ith observation, ȳ denotes the mean value of the dependent variable
across all observations.

Table 4. Performance of the proposed approach. The R2 value (mean ± std) deter-
mined for both species denotes a strong predictive power for some physicochemical
parameters. Also, the comparison with the approach of Sabzi et al. [12], evidences a
clear improvement in all parameters.

Attributes Sabzi et al. [12] Proposed Method

Prickly Pears Figs Prickly Pears Figs

TSS (o¯ Brix) −0.81±0.04 - 0.18±0.07 -

Hardness (N) −2.66 ± 0.70 −1.13± 0.66 0.51±0.08 0.68±0.03

pH −1.26 ± 0.27 - 0.13±0.11 -

mass (g) −0.83 ± 0.14 - 0.22±0.11 -

Color L −3.39 ± 0.84 −3.26± 0.01 0.25±0.09 0.75±0.04

a −6.71 ± 0.03 −5.96± 1.73 0.83±0.03 0.87±0.01

b −4.63 ± 0.71 −3.23± 0.69 0.42±0.08 0.79±0.03

length −0.17 ± 0.14 −0.04± 0.08 −0.03± 0.08 0.40±0.03

diameter −0.65 ± 0.28 −0.49± 0.34 0.37±0.07 0.28±0.04
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5.3 Performance of the Proposed Approach

The proposed method was assessed in the evaluation split of both prickly pear
and fig images using k-fold validation and repeating the training and evaluation
process 10 times. The results are reported in Table 4.

The analysis of the results with respect to prickly pears shows a moderate
correlation (refer to R2) between some physicochemical parameters and the pre-
dictions of the network obtained from the fruit image. All parameters showed
a positive correlation except for the length. Insufficient relevant information in
the image might explain the lack of correlation with the prickly pear’s length.
Visual features such as shape, color, or texture are not informative about the
length of a fruit. A strong predictive power was obtained for the ‘a’ parameter,
hardness, and ‘b’ parameters, with correlations of 0.83, 0.51, and 0.42, respec-
tively. The ‘a’ parameter represented the fruit chromaticity from green to red,
which is strongly correlated with the fruit ripeness. Hardness also corresponds
to ripeness, as riper figs are typically less firm. However, the sugar content, mea-
sured by the TSS (o¯Brix) had a weak correlation possibly due to the dataset
small size.

Table 5. Results obtained by the proposed model with the misaligned, and aligned
datasets using prickly pears.

Attributes R2 MSE MAE MAPE

Misaligned Image Aligned Image Misaligned Image Aligned Image Misaligned Image Aligned Image Misaligned Image Aligned Image

TSS (o¯ Brix) −0.29± 0.42 0.18±0.07 0.94± 0.25 0.63±0.04 0.78± 0.10 0.65±0.03 5.13± 0.64 4.27±0.16

Hardness (N) 0.41± 0.13 0.51±0.08 6.97± 1.46 5.89±0.95 2.07± 0.21 1.92±0.19 12.12± 1.15 11.25±1.43

pH −0.18± 0.25 0.13±0.11 0.01± 0.00 0.01±0.00 0.09± 0.01 0.08±0.00 1.50± 0.14 1.31±0.06

mass (g) 0.05± 0.15 0.22±0.11 1022.83± 162.76 854.54±131.64 25.10± 1.94 23.06±1.56 21.95± 1.75 20.50±1.33

Color L −0.18± 0.31 0.25±0.09 17.61± 5.07 10.55±1.03 3.20± 0.40 2.45±0.15 6.71± 0.82 5.14±0.30

a 0.65± 0.11 0.83±0.03 27.50± 8.16 13.50±2.39 4.03± 0.46 2.93±0.24 193.38± 54.40 130.26±21.16

b 0.15± 0.15 0.42±0.08 5.02± 0.86 3.43±0.52 1.79± 0.17 1.44±0.10 8.39± 0.85 6.80±0.47

length −0.37± 0.21 −0.03± 0.08 127.65± 21.27 97.24±8.54 8.92± 0.83 7.80±0.33 11.02± 1.17 9.72±0.41

diameter 0.08± 0.21 0.37±0.07 28.70± 6.02 19.96±2.41 4.22± 0.42 3.57±0.23 8.34± 0.87 7.03±0.51

Regarding the performance attained on figs, only six out of nine parameters
were evaluated due to insufficient data for TSS (o¯ Brix), pH, and mass. Nev-
ertheless, our approach demonstrated a better aptitude for estimating physic-
ochemical parameters in this fruit species (figs), likely due to the disparity in
dataset sizes.

Regarding the comparison with the state-of-the-art, the method of Sabzi et
al. [12] significantly underperformed when compared with our approach. The
main justification for this difference is the fact that the method of Sabzi et al.
[12] was originally intended to analyse fruit images in controlled scenarios (the
method was devised for pH estimation of oranges in a uniform background).
However, the images obtained when the fruits are still on the tree are inher-
ently more challenging due to the varying pose, lighting, and complexity of the
background.
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5.4 Impact of Alignment Phase

In this experiment, the model was trained using misaligned/cropped, and aligned
images for the nine physicochemical parameters.

Prickly Pears. Upon analyzing Table 5, it was observed that ablating the align-
ment of the images, as expected, led to worst results, making the difference
between negative and positive values of R2 as is the case of the TSS (o¯Brix), pH
and L parameters.

Table 6. Results obtained by the proposed model with the misaligned, and aligned
datasets using figs.

Attributes R2 MSE MAE MAPE

Misaligned Image Aligned Image Misaligned Image Aligned Image Misaligned Image Aligned Image Misaligned Image Aligned Image

TSS (o¯ Brix) - - - - - - - -

Hardness (N) 0.72± 0.05 0.68± 0.03 77.39± 12.30 88.20± 9.20 6.40± 0.78 6.76± 0.46 137.34± 29.17 138.02± 21.14

pH - - - - - - - -

mass (g) - - - - - - - -

Color L 0.73± 0.06 0.75± 0.04 17.95± 4.04 16.55± 2.25 3.31± 0.37 3.17± 0.23 9.61± 0.99 9.18± 0.66

a 0.87± 0.01 0.87± 0.01 11.20± 1.16 11.01± 1.20 2.63± 0.18 2.61± 0.16 84.93± 12.27 97.79± 8.78

b 0.77± 0.03 0.79± 0.03 10.30± 1.12 9.39± 1.24 2.50± 0.15 2.40± 0.18 25.21± 1.34 23.89± 3.05

length 0.47± 0.04 0.40± 0.03 46.36± 3.48 53.68± 2.58 5.34± 0.19 5.87± 0.15 7.03± 0.32 7.75± 0.24

diameter 0.38± 0.08 0.28± 0.04 8.42± 0.96 9.47± 0.53 2.27± 0.12 2.38± 0.07 4.85± 0.26 5.12± 0.16

Figs. Regarding figs, upon analyzing Table 6 it was observed that the aligned
dataset yielded slightly better results compared to the misaligned dataset.
The aligned dataset led to improved training results for the color parameters,
while the misaligned dataset performed better for shape features (diameter and
length).

The diameter parameter proved challenging but outperformed the worst
parameter in the prickly pear experiment.

5.5 Impact of Model Architecture

Considering that the proposed approach is planned to work in handheld devices
with low computational resources, the proposed method is based on a lightweight
architecture. To determine the best architecture for the problem, we compared
the impact of the architecture on the performance of the proposed approach, as
well as, on the inference time.

Therefore, for this experiment, we assessed the performance of our approach
using two lightweight architectures: MobileNetV2 and ResNet18. The compari-
son of the model size and inference time of the different architectures is provided
in Table 3, while Table 7 reports the performance of our approach along the dif-
ferent architectures.

It is interesting to observe that ResNet18 was able to consistently attain
the best results over all parameters and simultaneously for both fruit species.
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Despite its larger size, we claim that the superior predictive power obtained
justifies its use in this problem. Also, it is important to note that the inference
time is equivalent for both models.

5.6 Hard Samples

To further explain the obtained results, an additional test was conducted to
identify figs where the proposed method significantly deviated from the correct
physicochemical parameters using the MAE metric (less sensitive to outliers than
MSE). Figure 5 shows the images of the two fruit species where the proposed
approach had the largest MAE.

Table 7. Results obtained for the R2 metric on prickly pears and figs utilizing the
ResNet18 and MobileNetv2.

Attributes Prickly Pears Figs

MobileNetV2 ResNet18 MobileNetV2 ResNet18

TSS (o¯ Brix) 0.15± 0.08 0.18±0.07 - -

Hardness (N) 0.49± 0.06 0.51±0.08 0.62± 0.03 0.68±0.03

pH 0.06± 0.10 0.13±0.11 - -

mass (g) 0.07± 0.07 0.22±0.11 - -

Color L 0.08± 0.09 0.25±0.09 0.64± 0.03 0.75±0.04

a 0.76± 0.04 0.83±0.03 0.80± 0.02 0.87 ± 0.01

b 0.28± 0.09 0.42±0.08 0.68± 0.03 0.79±0.03

length −0.10± 0.10 −0.03±0.08 0.24± 0.03 0.40±0.03

diameter 0.26± 0.05 0.37±0.07 0.16± 0.06 0.28±0.04

Fig. 1. Pipeline of the proposed approach. The fruit image is given to an image
segmentation approach, which determines the fruit mask. Using the mask, a fitting
process is performed to enclose the fruit in an ellipse, and the rotation angle of the
ellipse is used to align the fruit in the image. Afterwards, the fruit is cropped using the
bounding boxes also extracted from the segmentation mask. The cropped fruit is fed
into a CNN for extracting a visual descriptor which is subsequently mapped to a set
of physicochemical parameters through a regression model.
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Several factors affect the performance of the model, including luminosity
differences, blur, variations in fig shapes (length, diameter, and mass), and lim-
itations in training due to a lack of examples of unripe figs.

Fig. 2. Fruit detection and segmentation. The Mask R-CNN was fine-tuned to
provide a rough segmentation of the fruit allowing to discard irrelevant regions of the
image in the analysis of the data. Even though the masks are not so accurate in the
border, it is important to note that the accuracy of the segmentation mask is not
crucial for the overall approach.

Fig. 3. Proposed alignment process. The fruit is approximated using an ellipse,
which allows to obtain the rotation angle for image alignment and cropping the aligned
fruit. The alignment process is depicted for the two fruit species considered in this study.

Fig. 4. Samples from the proposed dataset. Our dataset comprises 400 images of
two fruit species and their corresponding physicochemical parameters. Also, we pro-
vide the location of fruit in the image using manually annotated bounding boxes and
segmentation masks.
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Fig. 5. Hard to predict samples. The five samples from the two fruit species that
have the highest absolute error over the nine physicochemical parameters.

6 Conclusion and Future Work Prospects

In this work, we introduced an approach for estimating the maturation stage
of fruit images acquired in the wild using handheld devices. The proposed app-
roach relied on an innovative alignment strategy that increased the robustness
to pose variations. Also, we introduced a novel dataset containing images with
significant variations in lighting, and diversity of the background. The experi-
mental validation of the proposed approach showed a strong correlation with
some physicochemical parameters, which can serve as a proxy to determine
the maturation stage of the fruits considered in this study. On the other hand,
our approach was capable of remarkably surpassing a state-of-the-art approach
specifically designed for fruit maturation estimation. To further validate the
proposed method, we carried out several experiments, which showed that the
alignment phase increased the performance of the method. Also, the analysis of
the most challenging image samples evidenced that blur and brightness variation
were the major causes of failure. In the future, we expect that our approach can
be incorporated into a mobile application, providing farmers with an easy-to-use
fruit ripeness estimation tool for efficient control and informed decision-making
in agriculture.
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