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Abstract. Deep learning has made significant advances in recent years,
and as a result, it is now in a stage where it can achieve outstanding
results in tasks requiring visual understanding of scenes. However, its
performance tends to decline when dealing with low-quality images. The
advent of super-resolution (SR) techniques has started to have an impact
on the field of remote sensing by enabling the restoration of fine details
and enhancing image quality, which could help to increase performance
in other vision tasks. However, in previous works, contradictory results
for scene visual understanding were achieved when SR techniques were
applied. In this paper, we present an experimental study on the impact of
SR on enhancing aerial scene classification. Through the analysis of dif-
ferent state-of-the-art SR algorithms, including traditional methods and
deep learning-based approaches, we unveil the transformative potential
of SR in overcoming the limitations of low-resolution (LR) aerial imagery.
By enhancing spatial resolution, more fine details are captured, opening
the door for an improvement in scene understanding. We also discuss the
effect of different image scales on the quality of SR and its effect on aerial
scene classification. Our experimental work demonstrates the significant
impact of SR on enhancing aerial scene classification compared to LR
images, opening new avenues for improved remote sensing applications.

Keywords: Super-resolution · Scene classification · Deep learning ·
Aerial images · Remote sensing

1 Introduction

Super-resolution (SR) techniques aim to generate a detailed and sharp high-
resolution (HR) image from low-resolution (LR) images. The goal of SR is to
improve the quality of images by enhancing the information they contain. This
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is especially useful in some applications where obtaining HR images is difficult
due to the environment (i.e., satellite imaging) or excessive costs (i.e., hardware
for HR image acquisition is expensive) [15].

SR, as many other tasks in computer vision, has benefited from the rapid
development of deep learning (DL), leading to an impressive improvement in
performance in terms of image quality [2]. It seems plausible that improving
the quality of input images could improve other subsequent high-level vision
tasks and enhance their results. Indeed, some previous works have explored
this hypothesis in low-visibility scenarios for object detection [24], and object
classification [20]. The conclusions of these studies show that while the prepro-
cessing approaches tested can enhance performance in some scenarios, in others
the results can even degrade. Some other works have focused on the impact of
SR on specific tasks, obtaining some contradictory results. SR improves object
detection results [16], has a very limited favorable impact on object classification
[26], but has no positive effect on human pose estimation [6]. Therefore, we can
conclude that the impact of SR on other high-level vision tasks is not as clear as
could be expected and is highly dependent on the specific task at hand. Among
the different image classification problems, scene classification on aerial images
could really benefit from an improvement in resolution. This task is particularly
challenging due to two main factors. First, the way images are acquired, usually
from a camera on an aircraft or satellite, implies that images often have very low
resolution. This fact implies that important regions in the image have low detail,
and valuable information from the complex spatial distribution of the scene is
lost. Second, images are sometimes acquired in tough environmental conditions
(rain, clouds, etc.). These factors cause some images from different classes to be
very similar (i.e., inter-class similarity), while some images from the same class
are quite different (i.e., intra-class difference). Examples of these problems are
shown in Fig. 1. Hence, improving the image resolution of such images could allow
the detection of fine-grained details that might facilitate accurate and reliable
scene classification.

Fig. 1. Examples of (a) inter-class similarity, and (b) intra-class diversity. Images from
AID [23], NWPU-RESISC45 [3], and RSSCN7 [27] datasets (left to right in each row).
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In this paper, we present a comparative study to test the hypothesis that
increasing image resolution can improve the results of aerial scene classification.
The aim of this study is to complement previous works that studied the impact
of SR on high-level tasks and to evaluate the impact of SR in the field of aerial
scene classification. To achieve this goal, we have conducted experiments on
(1) different SR models, from the traditional bicubic algorithm to convolutional
neural networks (CNNs) and vision transformers (ViTs), (2) different state-of-
the-art classifiers based on DL, (3) different benchmark datasets of aerial scenes
with complex classes, and (4) simulated LR images with different scaling factors
(×0.5 and ×0.25).

2 Super-Resolution

A number of SR methods have been proposed in the last few decades. Initially,
traditional methods were based on interpolation, optimization, and learning.
However, in terms of resolution and restoration quality, these methods have
been superseded by DL approaches [4]. In recent years, different models based
on CNNs have been applied to SR tasks. Dong et al. [5] proposed the first SR
model based on CNN (SRCNN). It is a simple model trained to learn an end-to-
end mapping between LR and HR image pairs. Later, Tai et al. [18] proposed a
Deep Recursive Residual Convolution Neural Network (DRRCNN) consisting of
52 convolution layers with residual connections. They also proposed a memory
network (MemNet) [19] based on a recursive and a gate units for explicitly mining
persistent memory through an adaptive learning process.

Generative adversarial networks (GANs) have also been used in SR tasks.
Ledig et al. [11] proposed SRGAN, a general GAN for SR, and Sajjadi et al. [14]
presented EnhanceNet GAN, which uses automatic texture synthesis and per-
ceptual loss to build realistic textures without focusing on ground truth pixels.
Wang et al. [21] proposed the Enhanced Super-Resolution Generative adversar-
ial network (ESRGAN) which includes a residual-in-residual dense block based
on the original residual dense block [25].

Indeed, the development of residual dense blocks has shown a potential in
the SR field. Following this idea, the 3DRRDB model [8] was designed to stack
large number of features and bypass them between network layers which helps
in generating a good HR image.

Finally, after the success of ViTs in different vision tasks, it was also adopted
in the SR field [12,13]. Currently, the leading ViTs architecture in SR is SwinIR
[12] that has a superior performance in image SR. In the following sections, we
review in detail the methods used in our study.

2.1 Super-Resolution Convolution Neural Network (SRCNN)

SRCNN [5] was the first successful super-resolution CNN, and it pioneered many
subsequent approaches. SRCNN structure is simple, consisting only of three con-
volution layers, each of which (except for the last layer) is followed by a rectified
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Fig. 2. Modified 3D Residual-in-residual dense block (m3DRRDB) with illustration of
dense block.

linear unit (ReLU) non-linearity. The first convolution layer, referred to as fea-
ture extraction, is responsible for creating feature maps from the input images.
The second convolution layer, known as non-linear mapping, is responsible for
converting the feature maps into high-dimensional feature vectors. Finally, the
last convolution layer combines the feature maps to produce the final HR image.
Despite its simple architecture, SRCNN surpassed all classical SR techniques
becoming a real breakthrough in the field.

2.2 Modified 3D Residual-in-Residual Dense Block (m3DRRDB)

The 3D residual-in-residual block model (3DRRDB) [8] was introduced for
remote sensing SR and proposes a method to combine several LR images to
generate a HR image. This scheme can be recast to estimate a HR multi-band
(RGB) image from one LR RGB image by just substituting the 3D convolutions
of its pipeline with 2D convolutions. We denote this modified model m3DRRDB.

The key values of this architecture are: (1) The usage of dense blocks that
stack large amounts of 2D feature maps and establish maximum information
flow between blocks, and (2) fusion of global and local residual connections
with residual scaling that solves the problem of vanishing gradient and stabilize
training. As shown in Fig. 2, the pipeline of m3DRRDB is composed of eight
Residual Dense Blocks (RDBs) [25] with a convolution layer (CONV) with kernel
of 3 × 3. The model has a global residual connection that connects the input
to the output of the network before the upsampling layer. The importance of
the global residual connection is to pass the information from the input to the
output of the last RDB to avoid any gradient losses. In turn, as illustrated in
lower part of Fig. 2, each RDB block consists of a dense block and a local residual
connections that connect input of the dense block to its output after multiplying
it by a residual scaling factor. Moreover, each dense block is composed of five
convolutions (the first four convolutions are followed by ReLU) where the output
of each CONV layer is fed as input to all subsequent CONV layers.
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Fig. 3. SwinIR transformer architecture with illustration of RSTB block.

2.3 SwinIR Transformer

ViTs-based SwinIR [12] offers various advantages over CNN-based image restora-
tion models which are: (1) Interactions between image content and attention
weights that can be interpreted as spatially variable convolution which allows
global interaction between contexts, and (2) the shifted window mechanism
in SwinIR allows long-term dependencies modelling to avoid local interaction
between image patches that happens in transformers.

As shown in Fig. 3, the pipeline of SwinIR starts with shallow feature extrac-
tion, followed by deep feature extraction, and ends with High-Quality (HQ)
image reconstruction. The model has a skip connection that concatenates the
inputs to deep features extraction phase to its output. In the shallow feature
extraction phase, features are extracted from LR patches of size 64×64×3 with
a convolution layer, CONV , with kernel size 3 × 3 as shown in Eq. 1.

FSF = CONV (LR), (1)

where FSF is the output of shallow feature phase.
For the deep feature extraction phase the Residual Swin Transformer blocks

(RSTB) are used. This phase output, FDF , is the output of six RSTB fol-
lowed by CONV layer with 3× 3 kernel where intermediate feature is presented
as F1, F2, . . . , F6. Equation 2 represents the complete scenario of deep feature
extraction phase.

Fi = RSTBi(Fi−1), i = 1, 2, . . . , 6,

FDF = CONV (F6),
(2)

where RSTBi is the ith RSTB.
For the HQ image reconstruction phase can be noted as shown in Eq. 3

IHR = HREC(FSF + FDF ), (3)

where IHR is the super-resolved image, and HREC is the reconstruction module.
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As shown in Fig. 3, the RSTB consists of six swin transformer layers (STL)
followed by a CONV layer. A residual connection connects the input of the first
STL to output of CONV layer to avoid gradient losses. Each STL is composed
of 2 blocks. The first block is composed of a normalization Layer followed by
a multi-headed self-attention (MSA) layer, with a residual connection between
the input to the normalization layer and the output of the MSA layer. STLs
are alternating between having a shifted window MSA or a regular window
MSA. The second block is composed of a normalization layer followed by a
multi-layer perceptron (MLP), with a residual connection between the input to
normalization layer and the output of MLP.

3 Scene Classification

CNNs are widely used DL models for extracting high-quality representations
and delivering robust results on different classification tasks [1,3]. From the
pioneering Alexnet [10], several CNN models have been proposed for general
object classification. Among them, VGG16 [17], and ResNet-101 [7] have been
the most used CNNs for classification and also as a backbone for other tasks.
For this reason, we have adopted these two models in our experiments on scene
classification.

The VGG16 [17] architecture showed good performance, and this has been
attributed to its small kernel size (3×3) and its number of trainable parameters,
which aid in increasing the CNN’s depth to extract more features [1]. The VGG16
model is made up of five groups. The first two groups consist of two convolution
layers with ReLU activation function, and a single max pooling layer after the
activation function. The last three groups include three convolution layers with
ReLU activation function and a single max pooling layer. Finally three fully
connected layers that also use a ReLU activation function. The last layer of the
model is a softmax.

ResNet-101 [7] was proposed to solve the problem of vanishing gradients in
previous deep CNNs. It is composed of 101 residual blocks, where each block
consists of a pipeline of three convolutions. First, it starts with a convolution
with multiple kernels, each of size 1 × 1, followed by ReLU activation function.
Second, a convolution layer with multiple kernels, each of size 3 × 3, followed
by ReLU activation function. Third, a convolution layer with multiple kernels,
each of size 3× 3. Finally, the input to the block is added to output of the third
convolution and passes through ReLU activation function. The model ends with
a fully connected layer for classification.

4 Experiments

To assess and quantify the impact of SR on aerial scene classification, we con-
ducted two experiments applying different SR models before evaluating two CNN
classifiers, namely VGG16 and ResNet-101, on three standard datasets of aerial
images. In this section, we provide a general overview of the two experiments,
explain the datasets used, and list the experimental settings.
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Experiment 1: Ranking of SR Models. The goal of this experiment was
to rank the different SR methods used in the classification experiments (see
Experiment 2) and have an evaluation of them in terms of image quality. The
models evaluated are the bicubic method (used as baseline in most SR works in
the literature), SRCNN [5] (the first CNN proposed for SR), m3DRRDB [8] (a
CNN model based on the idea of residual dense blocks), and SwinIR [12] (based
on ViTs and the current state-of-the-art for SR). These models are evaluated
using the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index
Measure (SSIM) which are the quantitative metrics mainly used to assess image
quality in SR trials [22].

Experiment 2: Impact of SR on Aerial Scene Classification. In this
experiment we asses the impact of the evaluated super-resolution (SR) methods
on aerial scene classification across various low-resolution (LR) image scales and
with different scene classification methodologies.

We utilized two well-known CNN-based classifiers, namely VGG16 [17] and
ResNet-101 [7], and compared their performance on LR images at different scales
to their performance on super-resolved images generated by different SR tech-
niques. We also computed the classification results on HR original versions of
the images to obtain the theoretical best possible result from the classifiers. A
summary of the scenarios evaluated in this experiment is depicted in Fig. 4. The
models were evaluated using four quantitative metrics [9]: accuracy, precision,
recall, and F1-score. These metrics were computed for each class in each dataset
and averaged across all classes.

Fig. 4. Different experimental scenarios proposed on the three benchmark datasets.
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4.1 Datasets

Experiments are conducted on three well-known benchmark aerial datasets:
AID [23], NWPU-RESISC45 [3], and RSSCN7 [27]. Dataset details are listed
in Table 1. The datasets are downscaled using the bicubic method to simulate
LR images at scales of ×0.5 and ×0.25 for SR and scene classification experi-
ments. The downsampling occured by adding blur to the HR images and after
that downsampling them to the required scale.

Table 1. Comparison between the used datasets, AID [23] dataset, NWPU-RESISC45
[3] dataset, and RSSCN7 [27] dataset.

Datasets Total Images Scene Classes No. of Scenes/Class Spatial Resolution (m/pixel) Image Sizes Year

AID [23] 10,000 30 ∼220 to 420 8 to 0.5 600 × 600 2017

NWPU [3] 31,500 45 700 30 to 0.2 256 × 256 2017

RSSCN7 [27] 2,800 7 400 unspecified 400 × 400 2015

4.2 Experimental Settings

All the experiments were run on machines with a 3.80 GHz Core i7 processor, 32
GB of RAM, and an NVIDIA RTX 3090 with 24 GB of bandwidth. Moreover,
the models are implemented using Python language and PyTorch DL framework.
Each dataset used in the SR and classification experiments is divided into three
portions as 78% for training, 2% for validation and 20% for testing.

Settings for Super-Resolution Methods. The training dataset is cropped
to patches of size 64 and feed to the SR networks as batches of 16. The training
data is augmented (on the fly) using random rotation, horizontal flip, and verti-
cal flip before feeding it to SR networks. The SR models are trained for 600,000
iterations with learning rate of 0.0003 using a scheduler that decreases the learn-
ing rate to half at [250K, 400K, 450K, 475K] to avoid models overfitting during
training. Adam optimizer is used with the parameters β1 = 0.9 and β2 = 0.99.

Settings for Classification Methods. The training data is batched into 32
samples and undergoes on-the-fly augmentation, including random horizontal
and vertical flips, random rotations, and normalization before being fed into the
classification network. Models are trained for 200 epochs with a learning rate of
0.001 using a cosine annealing scheduler and Adam optimizer with parameters
β1 = 0.9 and β2 = 0.99. For VGG16, we employ a pretrained model from the
Imagenet dataset and fine-tune the last three groups and three fully connected
layers while freezing the first two groups. For ResNet-101, we utilize a pretrained
ResNet-101 model from the Imagenet dataset and fine-tune the last 50 residual
blocks while freezing the first 51 residual groups.
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Table 2. Quantitative Results for different SR models on AID [23] dataset, NWPU-
RESISC45 [3] dataset, and RSSCN7 [27] dataset, in terms of PSNR and SSIM.

Method Scale AID NWPU RSSCN7

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×2 32.17 0.8623 29.81 0.8173 29.80 0.7923

SRCNN ×2 34.46 0.9011 31.86 0.8697 31.56 0.8385

m3DRRDB ×2 35.41 0.9152 32.67 0.8871 32.21 0.8538

SwinIR ×2 36.91 0.9323 33.28 0.9217 33.18 0.8688

Bicubic ×4 28.72 0.7358 26.88 0.6686 26.82 0.6323

SRCNN ×4 29.22 0.7443 27.42 0.6912 27.48 0.6712

m3DRRDB ×4 30.38 0.7779 28.19 0.7332 28.12 0.6823

SwinIR ×4 31.49 0.8123 29.05 0.8992 28.92 0.6881

5 Results and Discussion

In this section, we present the results of the experiments described in Sect. 4.

5.1 Experiment 1: Ranking of Super-Resolution Methods

Table 2 lists the results of Experiment 1. It arranges the SR models according to
their quantitative results on the three benchmark datasets [3,23,27]. The results
are organized according to the two upscaling factors (×2 and ×4). As can be
seen in Table 2, the results obtained by the SR models agree with the previously
reported results on other datasets [12]: SwinIR outperforms the other meth-
ods, obtaining the best PSNR and SSIM results at different scales on the three
benchmark datasets, and the model based on residual dense blocks, m3DRRDB,
overcomes SRCNN. The bicubic method obtained the lowest results in all the
tested scenarios. Moreover, as could be expected, all the SR models get better
results at scale (×2) than at scale (×4) in both PSNR and SSIM. Figure 5 shows
qualitative results of the SR methods for ×4 scale on AID [23] dataset.

5.2 Experiment 2: Impact of Super-Resolution on Aerial Scene
Classification

The results of Experiment 2, highlighting the impact of SR on aerial scene clas-
sification, are summarized in Tables 3 (results for VGG16) and 4 (results for
ResNet-101). In each table, the four metrics (i.e., accuracy, precision, recall, and
F1-score) are given for each evaluated scenario. For each dataset, we present the
results on the LR images downsampled at two different scales, ×0.5 and ×0.25,
and the corresponding results of the SR methods, with upsampling ×2 and ×4.
For each dataset, we provide the results on the original HR images (i.e., before
downsampling) as the theoretical best result achievable.

From the results in the tables, we can state that, overall, SR enhances the
results on aerial scene classification. In the experiments, all the SR methods
consistently yielded better classification performance in all the metrics compared
to the results on LR images. Such improvement is achieved across all scales,
classification methods, and datasets. Additionally, the scale of upsampling has an
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Fig. 5. Qualitative comparison of ×4 SR on AID [23] dataset.

Table 3. VGG16 classification results for different SR models on AID [23] dataset,
NWPU-RESISC45 [3] dataset, and RSSCN7 [27] dataset in terms of mean accuracy,
mean precision, mean recall, and mean F1-score.

Dataset Method Scale Classification Metric

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

AID LR ×0.5 74.20 74.88 74.14 74.51

Bicubic ×2 75.45 76.28 75.23 75.75

SRCNN ×2 77.85 78.38 77.42 77.90

m3DRRDB ×2 78.40 78.86 77.89 78.37

SwinIR ×2 79.90 79.86 79.47 79.66

LR ×0.25 73.50 74.33 73.47 73.90

Bicubic ×4 74.90 75.78 74.74 75.25

SRCNN ×4 76.60 77.35 76.36 76.85

m3DRRDB ×4 77.20 77.83 76.90 77.36

SwinIR ×4 77.90 78.44 77.47 77.95

HR – 81.25 81.03 80.78 80.91

NWPU-RESSIC45 LR ×0.5 85.89 86.79 86.93 86.86

Bicubic ×2 86.14 87.00 87.11 87.06

SRCNN ×2 87.60 88.16 88.48 88.32

m3DRRDB ×2 88.30 88.52 89.02 88.77

SwinIR ×2 89.73 89.79 90.18 89.98

LR ×0.25 85.73 86.64 86.82 86.73

Bicubic ×4 85.95 86.82 86.99 86.90

SRCNN ×4 87.40 87.96 88.34 88.15

m3DRRDB ×4 87.21 87.78 88.10 87.94

SwinIR ×4 88.44 88.66 89.11 88.88

HR – 90.10 89.99 90.60 90.29

RSSCN7 LR ×0.5 73.75 74.18 73.84 74.01

Bicubic ×2 74.46 74.95 74.56 74.75

SRCNN ×2 75.71 76.16 75.85 76.00

m3DRRDB ×2 76.07 76.51 76.19 76.35

SwinIR ×2 76.79 77.23 76.88 77.05

LR ×0.25 71.96 72.74 72.11 72.42

Bicubic ×4 73.93 74.75 74.01 74.38

SRCNN ×4 74.82 76.04 74.92 75.48

m3DRRDB ×4 75.71 77.06 75.83 76.44

SwinIR [12] ×4 75.18 76.44 75.28 75.86

HR – 78.21 79.28 78.27 78.77
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Table 4. ResNet-101 classification results for different SR models on AID [23] dataset,
NWPU-RESISC45 [3] dataset, and RSSCN7 [27] dataset in terms of mean accuracy,
mean precision, mean recall, and mean F1-score.

Dataset Method Scale Classification Metric

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

AID LR ×0.5 81.75 81.95 81.53 81.74

Bicubic ×2 82.25 82.55 82.04 82.30

SRCNN ×2 83.45 83.76 83.28 83.52

m3DRRDB ×2 84.60 84.75 84.35 84.55

SwinIR ×2 85.35 85.53 85.13 85.33

LR ×0.25 80.85 81.77 80.77 81.27

Bicubic ×4 81.45 81.98 81.72 81.85

SRCNN ×4 82.50 83.03 82.61 82.82

m3DRRDB ×4 83.20 83.47 83.05 83.26

SwinIR ×4 84.80 85.01 84.58 84.80

HR – 88.65 88.69 88.34 88.51

NWPU-RESSIC45 LR ×0.5 86.68 86.42 87.10 86.76

Bicubic ×2 87.49 87.27 87.81 87.54

SRCNN ×2 88.71 88.46 89.08 88.77

m3DRRDB ×2 89.35 89.02 89.74 89.38

SwinIR ×2 90.22 89.96 90.54 90.25

LR ×0.25 85.89 85.78 86.44 86.10

Bicubic ×4 86.30 86.11 86.71 86.41

SRCNN ×4 88.05 87.79 88.49 88.14

m3DRRDB ×4 87.38 87.15 87.75 87.45

SwinIR ×4 88.86 88.55 89.15 88.85

HR – 92.13 91.95 92.27 92.11

RSSCN7 LR ×0.5 82.68 83.21 82.68 82.94

Bicubic ×2 83.75 84.40 83.75 84.07

SRCNN ×2 84.11 84.64 84.11 84.37

m3DRRDB ×2 84.82 85.21 84.82 85.02

SwinIR ×2 85.71 85.93 85.71 85.82

LR ×0.25 82.32 82.85 82.32 82.59

Bicubic ×4 83.21 83.83 83.21 83.52

SRCNN ×4 83.93 84.43 83.93 84.18

m3DRRDB ×4 83.39 84.02 83.39 83.7

SwinIR ×4 84.82 85.21 84.82 85.02

HR – 87.32 87.65 87.32 87.49

Fig. 6. Fine-tunned VGG16 missclassification example: Airport scene missclassified as
Farm Land with illustration of degradation in RoI (note: PSNR/SSIM is for the full
super-resolved image not the RoI region only).
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impact on the classification metrics, with classifiers yielding better metrics when
SR methods are applied to upsample at ×2 scale compared to the corresponding
results at ×4 scale. This scale effect is consistent across all benchmark datasets.

Tables 3 and 4 also reveal that for the ×2 scale, SwinIR demonstrates the best
performance as a SR method in terms of producing super-resolved images which
obtain the highest classification results across all three benchmark datasets. This
result is also observed at the ×4 scale for ResNet-101 (Table 4) for on the three
datasets, and for VGG16 (Table 3) on the AID and NWPU-RESISC45 datasets.
However, in the case of VGG16 on the RSSCN7 dataset, SwinIR super-resolved
images do not achieve the best classification results, and m3DRRDB is the
best SR method instead. Additionally, in the ×4 scale, SRCNN super-resolved
images slightly outperform m3DRRDB super-resolved images in classification for
NWPU-RESISC45 dataset using VGG16 (Table 3), and also for both NWPU-
RESISC45 and RSSCN7 datasets using ResNet-101 (Table 4). Hence, we can
observe that in some cases the ranking of SR methods obtained in terms of
PSNR and SSIM in Experiment 1 is not kept when we evaluate them according
to the improvement they provide on classification. This highlights the limita-
tions of PSNR and SSIM as metrics for predicting the impact of SR methods on
other tasks. Thus, from our results, we can conclude that achieving the highest
PSNR and SSIM results does not guarantee the highest performance in aerial
scene classification. This could be due to the fact that these metrics evaluate
overall scene clarity rather than a specific region of interest (RoI) within the
scene, which sometimes can be more relevant for a given task.

This possibility is illustrated in Fig. 6 which shows a missclassification exam-
ple where the image represents class “airport”. We hypothesize that inside the
RoI (an aircraft that can be crucial to identify the class of the image) a lot of
detail is lost in the LR image, and bicubic, SRCNN, and SwinIR can not recover
it in the super-resolved images, which leads to wrongly classify the image as class
“farm land”. However, it is classified correctly as class “airport” with m3DRRDB
which obtains a super-resolved image where details of the RoI are much clearer
and more similar to the HR image. In this example, the full scene scored high-
est PSNR/SSIM of 35.23/0.9543 using SwinIR but it is missclassifed while it is
correctly classified with m3DRRDB (second best PSNR/SSIM of 34.63/0.9487).

6 Conclusion

In this paper, we have studied the effect of different SR methods on aerial
scene classification. We have first ranked different types of SR methods (tra-
ditional, CNN-based, and ViTs-based) in terms of image quality on two sim-
ulated LR image scales (×0.5 and ×0.25) from three benchmark datasets on
aerial scene classification. Then, we have assessed how pre-processing images
with SR techniques affects aerial scene classification by two well-known CNN
classifiers (VGG16 and ResNet-101). This second experiment included aerial
scene classification comparisons between simulated LR images at different scales
(×0.5, ×0.25) and different super-resolved images obtained from the considered
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SR methods. The extensive experimental work shows that SR methods consis-
tently improve aerial scene classification compared to LR images for all the SR
methods, all the scales, all the datasets, and all the classifiers tested.

Furthermore, we proved that the performance of a SR method in terms of
PSNR and SSIM is not always directly related to the degree of improvement on
aerial scene classification, especially when working with small LR scale images
(×0.25). We draw the hypothesis that this result is due to the fact that PSNR
and SSIM are metrics designed to measure the overall clarity of the image rather
than that of specific RoIs, which can be determinants for a given task. In aerial
scene classification, with the challenging inter-class similarity and intra-class
diversity of aerial images, details of a certain RoI can be especially valuable
for a correct classification. Moreover, we also hypothesize that sometimes SR
of LR images with very small scales (×0.25) can amplify artifacts that affect
the classification results. However, more experiments are needed to prove these
hypothesis. As a future work, the presented study can be extended to test the
effects of SR on other tasks such as image segmentation and object detection on
specific datasets. Moreover, further studies on smaller scales (×8 and ×16) are
needed to test if the reported improvement on classification performance holds
for lower resolutions, where the effects of artifacts and image degradation can
be increasingly challenging.
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