
Heuristic Search Optimisation Using
Planning and Curriculum Learning

Techniques

Leah Chrestien(B), Tomás̆ Pevný, Stefan Edelkamp, and Antońın Komenda

Czech Technical University in Prague, Jugoslávských partyzán̊u 3, 160 00 Praha,
Czech Republic

leah.chrestien@aic.fel.cvut.cz, {pevnytom,stefan.edelkamp}@fel.cvut.cz,
antonin.komenda@agents.fel.cvut.cz

Abstract. Learning a well-informed heuristic function for hard plan-
ning domains is an elusive problem. Although there are known neural
network architectures to represent such heuristic knowledge, it is not
obvious what concrete information is learned and whether techniques
aimed at understanding the structure help in improving the quality
of the heuristics. This paper presents a network model that learns a
heuristic function capable of relating distant parts of the state space via
optimal plan imitation using the attention mechanism which drastically
improves the learning of a good heuristic function. The learning of this
heuristic function is further improved by the use of curriculum learn-
ing, where newly solved problem instances are added to the training set,
which, in turn, helps to solve problems of higher complexities and train
from harder problem instances. The methodologies used in this paper far
exceed the performances of all existing baselines including known deep
learning approaches and classical planning heuristics. We demonstrate its
effectiveness and success on grid-type PDDL domains, namely Sokoban,
maze-with-teleports and sliding tile puzzles.

Keywords: Planning · Optimizing heuristic functions · Deep learning

1 Introduction

Classical Planning has always relied on strong heuristic functions to approximate
distances to the nearest goal [3]. Its quality is measured by how well it performs
when used inside a planner, i.e., it depends on the quality of the solution and the
time taken to generate it. A major drawback of classical planning is the need to
formulate problems by extensively capturing information from the environment.
Recent years observe a progress in using visual representations to capture the
specifics of a problem [2]. Yet, there is still a big gap between the length of
optimal plans and the plans found by planners using learnt heuristic functions.

A significant amount of importance is given to developing deep networks that
are able to learn strong heuristics [5] and policies [22]. In learning for planning,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Moniz et al. (Eds.): EPIA 2023, LNAI 14115, pp. 495–507, 2023.
https://doi.org/10.1007/978-3-031-49008-8_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49008-8_39&domain=pdf
https://doi.org/10.1007/978-3-031-49008-8_39

496 L. Chrestien et al.

the methods rely heavily on either hand-coded logical problem representations
[26] or deep convolution neural networks [8] that learns to imitate an expert.
While there exists successful approaches in training neural networks (NNs) to
learn heuristic estimates of various problem domains [8,25], designing a mean-
ingful NN architecture to extract the relevant information from the data set is
still an open-ended problem.

This work extends the work by [8,16] by addressing limitations of convolu-
tional neural network, which capture only local dependencies. We propose to
use self-attention and position encoding [24], as we believe a strong heuristic
function needs to relate “distant” parts of the state space.

In our default experimental settings, NNs realizing heuristic functions are
trained on plans of small problem instances created by classical planners. While
this allows us to generalize across more difficult instances such that we can
measure distances to optimal plan lengths, they do not achieve the best results
for two reasons. First, even though the generalization of A*-NN is surprisingly
good as will be seen below, there is still a scope of large-scale improvement
on previously unseen, larger and more complex environments. Second, classical
domain independent planners can solve only small problem instances anyway,
which means that obtaining plans from large ones is difficult. We demonstrate
that this problem can be partially mitigated by curriculum learning [4], where the
NN is retrained/fine-tuned using plans from problems it has previously solved.

The proposed approach is compared to state-of-the-art domain-independent
planners, namely SymBA*[21], Lama [15], and Mercury [10] and to currently
best combination of A* and CNNs [8] on three grid domains: (1) Sokoban
where each maze consists of walls, empty spaces, boxes, targets and an agent;
the goal is to push the boxes to target locations; the boxes can only be pushed
and not pulled in the game; (2) Maze-with-Teleports where the goal for an
agent is to reach the goal position via interconnected teleports; (3) Sliding-Tile
where blocks are moved to achieve an end configuration.

The paper is organised as follows. We first discuss the prior art in deep
learning for planning, especially on problems where state can be represented as
a tensor. Next, we review formal basics of classical planning. Then, we highlight
the shortcomings of a prior state of the art and propose a solution that addresses
some of these shortcomings. Here, we introduce the basics of the attention mech-
anism from NLP and explain the role of positional encoding in learning distances.
Finally, the proposed networks are compared to other state of the art methods.
In the last section, we discuss a few possible extensions of our work.

2 Related Work

The application of learning algorithms to improve planning dates back to the
original STRIPS planner [6], which learned triangle tables or macros that could
later be exploited by the planner. This approach attracted more interest as
machine learning algorithms and has gained a steady popularity since. Earlier
uses of NN to learn policies and heuristics for deducing strategic positions and

Heuristic Search Optimisation using Planning 497

moves known to us considered chess boards [20] and backgammon [19]. Their use
in Go [18] raised a considerable interest in public once it beat the top players
in the game. Heuristic functions were also learnt for single agent games such as
Sokoban [8,14] and Rubik’s cube [1]. In 2011, a special learning track was intro-
duced in the international planning competition (IPC), which concluded that the
performance of NNs is promising in learning heuristic functions. A perpendicu-
lar approach to the above is to learn functions combining a portfolio of existing
heuristic function [25] or to select a heuristic function from a portfolio [11]. A
very interesting problem is to learn a transition operator as in [2] together with
a visual execution of the plan, but this is outside the scope of our work.

Our work differs from the above as it focuses on (i) identifying good building
blocks of the neural networks for grid domains and (ii) discusses the difficult
and importance of a training set and shows that curriculum learning can be of
a great help. The resulting networks are general and their performance exceeds
that of prior art including SOTA classical planners.

3 Classical Planning

We construct our problem domains in a classical setting, i.e. fully observable and
deterministic.

In classical planning, a STRIPS [6] planning task is defined by a tuple Π =
〈F,A, I,G〉. F denotes a set of facts which can hold in the environment (for
instance, in Sokoban, a particular box at a particular position is a fact). A state
s of the environment is defined as a set of facts holding in that particular s, i.e.
s ⊆ F . The set of all states is, therefore, defined as all possible subsets of F as
S = 2F . I ∈ S is the initial state of the problem and G ⊆ F is a goal condition
comprising facts which has to hold in a goal state. An action a, if applicable and
applied, transforms a state s into a successor state s′ denoted as a(s) = s′ (if the
action is not applicable, we assume it returns a distinct failure value a(s) = ⊥).
All actions of the problem are contained in the action set A, i.e. a ∈ A. The sets
S and A define the state-action transition system.

Let π = (a1, a2, . . . , al), we call π a plan of length l solving a planning task Π
iff al(. . . a2(a1(I)) . . .) ⊇ G. We assume a unit cost for all actions, therefore the
plan length and plan cost are equal. Moreover, let πs denote a plan from a state
s, not I. An optimal solution (plan) is defined as a minimal length solution of a
problem Π and is denoted as π∗ together with its length l∗ = |π∗|.

A heuristic function h is defined as h : S → R≥0 and provides an approxima-
tion of the optimal plan length from a state s to a goal state sg ⊇ G, formally
h(s) ≈ l∗, where l∗ = |π∗

s |.
In our experiments, we choose domains encoded in PDDL [7], where a plan-

ning problem is compactly represented in a lifted form based on predicates and
operators. This representation is grounded into a STRIPS planning task Π, which
is subsequently solved by the planner using a heuristic search navigating in the
state-action transition system graph and resulting in a solution plan π.

498 L. Chrestien et al.

4 Planner’s Architecture

Given the initial state I, each partial plan π = (a1, a2, . . . , ak), k < l induces a
sequence of states (s0 = I, s1, s2, . . . , sk) with sk = ak(. . . a2(a1(I)).

States are for the purpose of the the neural network encoded as a binary
values of all prepositions, which are in case of grid domains arranged in the
same grid. The input to a neural network encoding a state is therefore a binary
tensor, which is very well suited for contemporary deep learning libraries and
execution on GPU. The output of the network is the heuristic value provided
by the value head, which is in some cases supplemented by the distribution on
all possible next actions provided by the policy head (the rationale for policy
head is that according to [8], it improves the quality of the learnt heuristic). The
training sets for neural networks consists of optimal plans for selected problem
instances, which were generated by the optimal planner SymBA* [21]. More
precisely, given the plans in the training set, we generate pairs (si, δ(si)), where
δ is cost of an optimal plan from si to the goal. For the sake of simplicity,
δ(si) is the distance l − i of the state si to the goal sl in the optimal plan
(s0 = I, s1, s2, . . . , si, . . . , sl). Evaluating the network for a given state, directly
serves as an estimator in our heuristic search planner. In curriculum learning,
the training set with the optimal plans is augmented by newly found plans on
more difficult problem instances. These newly found plans do not have to be
optimal but are typically very close to being so.

For some domains (e.g. Sokoban), where the policy head is useful, the plans
also contain the action input (si−1, ai) needed to train the policy head. Since our
aim is finding (close-to-)optimal plans, we used A* [9] as the search algorithm
for exploring the planning state space. The training used ADAM [12] variant of
stochastic gradient descent with default settings and a batch-size of 500.

5 The Proposed Neural Network

The best architecture of NN implementing a heuristic function for Sokoban
known to us was proposed by Groshev [8]. We believe its biggest drawback
is that it relies solely on convolution (which is strictly a local operator) thus
limiting the neural network in synthesizing information from two distant parts
of the maze. To understand the aforementioned statement, let us introduce some
formal notations.

Let the input to the neural network be denoted by x ∈ Rh,w,d0 , where h and w
is the height and width of the maze respectively, and d0 varies with the number of
channels as explained above. Intermediate outputs are denoted by z i = Li(z i−1),
where L is some neural network layer (consisting of convolution C etc.) and for
the sake of convenience, we set z 0 = x . All z · are three dimensional tensors, i.e.
z i ∈ Rh,w,di . Notice that all intermediate outputs z i have the same width and
height as the maze (ensured by padding), while the third dimension which is the
number of output filter(s) differs. Value z i

u,v denotes a vector created from z i

as (z i
u,v,1, z

i
u,v,2, . . . , z

i
u,v,di

). Below, this vector will be called a hidden vector at
position (u, v) and can be seen as a description of the properties of this position.

Heuristic Search Optimisation using Planning 499

Fig. 1. The structure of our neural network. A current state s and a goal state sg are
fed into a variable number of pre-processing convolution (pre-conv) layers, P1..Pn. In
our case, we use 7 pre-conv layers. All convolution filters in the pre-conv layers are of
the same shape 3 × 3 with 64 filters. Then the network splits into two branches and
each branch has four blocks, each block containing a convolution layer (C) followed by
a multi head attention operation with 2 heads (A) and a positional encoding layer (E).
There are 180 filters in each of these convolution layers in the blocks. At all stages, the
original dimension of the input is preserved through padding. The output from block
4 is flattened by applying a 1 × 1 window around the agent’s location before being
passed onto the fully connected layers (FC1) and the action prediction output (FC2-A)
and a single output for heuristic prediction (FC2-H). For the sake of picture clarity,
skip connections are not shown in the neural network.

In Groshev’s architecture [8] consisting of only convolution layers, the hidden
vector zi+1

u,v,· is calculated from hidden vectors {ziu′,v′,·|u′ ∈ {u − 1, u, u + 1}, v′ ∈
{v − 1, v, v +1}}, where the convolution has dimensions 3× 3 and therefore uses
information from a close neighborhood. Yet, we believe that any good heuristic
requires features that relay information from different parts of the maze since
Sokoban, Sliding-Tile and Maze-with-Teleports are all non-local problems. To
address this issue, our network (see Fig. 1) features two additional types of layers,
namely, the attention and the positional encoding layer, described below.

Convolution, Attention, and Position Encoding: The self-attention mecha-
nism, [24] first introduced in NLP, allows to relate distant parts of input together.
The output of self-attention from zi is calculated in the following manner. At
first, the output from previous layer zi is divided into three tensors of the same
height, width, and depth, i.e.

k = zi·,·,j j ∈
{

1, . . . ,
di
3

}

q = zi·,·,j j ∈
{

di
3

+ 1, . . . ,
2di
3

}

v = zi·,·,j j ∈
{

2di
3

+ 1, . . . , di

}

500 L. Chrestien et al.

then, the output zi+1 at position (u, v) is calculated as

z i+1
u,v =

h,w∑
r=1,s=1

exp(qu,v · kr,s)∑h,w
r′=1,s′=1 exp(qu,v · kr′,s′)

· vr,s (1)

Self attention, therefore, makes a hidden vector zj+1
u,v dependent on all hidden

vectors {zjr,s|r ∈ {1, . . . , h}, s ∈ {1, . . . , w}}, which is aligned with our intention.
The self-attention also preserves the size of the maze. A multi-head variant of
self-attention means that zi is split along the third dimension in multiple ks, qs,
and vs. The weighted sum is performed independent of each triple (k, q, z) and
the resulting tensors are concatenated along the third dimension. We refer the
reader for further details to [24].

While self-attention captures information from different parts of the maze, it
does not have a sense of a distance. This implies that it cannot distinguish close
and far neighborhoods. To address this issue, we add positional encoding, which
augments the tensor zi ∈ Rh,w,di with another tensor e ∈ Rh,w,de containing
outputs of harmonic functions along the third dimension. Harmonic functions
were chosen, because of their linear composability properties [24].1 Because our
mazes are two dimensional, the distances are split up into row and column dis-
tances where p, q ∈ [0, di/4) assigns positions with sine values at even indexes
and cosine values at odd indexes. The positional encoding tensor e ∈ Rh,w,de

has elements equal to

eu,v,2p = sin (θ(p)u) eu,v,2p+1 = cos (θ(p)u)
eu,v,2q+ de

2
= sin (θ(q)v) eu,v,2q+1+ de

2
= cos (θ(q)v) ,

where θ(p) = 1

10000
4p
de

. On appending this tensor to the input zi along the third

dimension, we get
zi+1
u,v,· = [ziu,v,·, eu,v,·].

With respect to the above, we propose using blocks combining Convolution,
Attention, and Position encoding, in this order (we call them CoAt blocks),
as a part of our NN architecture. The CoAt blocks can therefore relate hidden
vectors from a local neighborhood through convolution, from a distant part of the
maze through attention, and calculate distances between them through position
encoding, as has been explained in [23]. Since CoAt blocks preserve the size of
the maze,2 they are “scale-free” in the sense that they can be used on a maze of
any size.

The input to the network is the current state of the game and a goal state, s
and sg, respectively. Each state is represented by a tensor of dimensions equal to

1 The composability of harmonic functions is based on the following property cos(θ1 +
θ2) = cos(θ1) cos(θ2) − sin(θ1) sin(θ2) = (cos(θ1), sin(θ1)) · (sin(θ1), sin(θ2)), where ·
denotes the inner product of two vectors, which appears in Eq. (1) in inner product
of qu,v and kr,s.

2 Convolution layers are appropriately padded to preserve sizes.

Heuristic Search Optimisation using Planning 501

width and height (fixed to 10×10 for Sokoban, 15×15 for Maze-with-Teleports,
and 5 × 5 for Sliding-Tile) of the maze × objects. The objects stand for one-hot
encoding of the object states on a grid position (e.g., for Sokoban, we have wall,
empty, box, agent and box target, for Maze-with-Teleport agent, wall, floor, goal
and teleports 1–4, for sliding tile, we have a channel for each number, all of which
can be derived automatically from the grounded representation.

6 Curriculum Learning

The second contribution of our work is to promote curriculum learning [4]. One
of the drawbacks in learning the heuristic functions for planning is that when
generating training set with existing planners, we quickly hit the limit of their
capability in solving more complex problems. This can limit the learnt heuristic
function in solving more complex problems. To further improve our heuristic
function to scale to bigger problems, we re-train our network on an extended
training set, which includes harder problem instances.

The protocol used in the experimental section of this paper is as follows. We
first train the heuristic network on a training set containing problem instances
that are quickly solvable by an optimal planner. Then we use this NN as a
heuristic function inside A* search to solve more difficult problem instances.
Their solutions are used to extend the training set on which the neural network
is re-trained. By doing so, the NN is gradually trained on more difficult problem
instances which improves its quality. As this procedure is fairly intuitive and yet
computationally expensive, we demonstrate its effects on the Sokoban domain.

7 Experimental Results

This section first briefly describes the details of training the NN and then
presents the experimental results on the selected benchmark domains: Sokoban,
Sliding Tile and Maze-with-Teleports. For all the three domains, we use the out-
put from the heuristic network inside A* to generate solutions. A* algorithms
with learnt heuristic functions realized by the proposed convolution-attention-
position networks (further denoted as A*-CoAt) are compared to A* with learned
heuristic function realized by convolutional networks as proposed in [8] (denoted
as A*-CNN), and to the state of the art planners LAMA [15], SymBA* [21],
and Mercury [10]. We emphasize that A*-CNN and A*-CoAt uses vanilla A*
search algorithm [9] without any additional tweaks. In case of Sokoban, we also
compare our planner to a solution based on Reinforcement Learning [14].

On all the compared domains, we analyse the strength of our learnt heuris-
tic and generalization property by solving grid mazes of increasing complexi-
ties, approximated by the number of boxes in Sokoban, grids of higher dimen-
sions in Sliding-Tile and Maze-with-Teleports, and rotated mazes in Maze-with-
Teleports.

502 L. Chrestien et al.

7.1 Training

Sokoban: The training set for Sokoban was created by randomly generating 40000
Sokoban instances using gym-sokoban [17]. Each instance has dimension 10×10
and it always contains only 3 boxes (and an agent). In each plan trajectory,
the distance from a current state to the goal state is learned as the heuristic
value, h(si). In line with [8], the neural network also uses the policy head during
training.

Maze-with-Teleports: The training set contained 10000 maze problems of dimen-
sion 15 × 15, generated by using a maze creator.3 Random walls were broken
to create teleports. We added a total of 4 pairs of teleports that connect differ-
ent parts of the maze inside each training sample. The mazes for training were
generated such that the initial position of the agent was in the upper-left corner
and the goal was in the lower-right corner. Later, in our evaluations, we rotate
each maze to investigate whether the heuristic function is rotation independent.

Sliding puzzle: The training set contained 10000 puzzles of size 5×5. These puz-
zles were generated using.4 During evaluation, we test our approach on puzzles
of higher dimensions such as 6 × 6 and 7 × 7, all of which were generated with.5

We ensured that all the puzzles in the test and train set are solvable.

7.2 Comparison to Prior State-of-the-Art

Sokoban: The evaluation set consists of 2000 mazes of dimensions 10 × 10 with
3, 4, 5, 6 or 7 boxes (recall that the training set contains mazes with only
3 boxes). Unless said otherwise, the quality of heuristics is measured by the
relative number of solved mazes, which is also known as coverage. Table 1 shows
the coverage of compared planners, where all planners were given 10 minutes to
solve each Sokoban instance. We see that the classical planners solved all test
mazes with 3 and 4 boxes but as the number of boxes increase, the A*-NN starts
to have an edge. On problem instances with 6 and 7 boxes, A*-CoAt achieved the
best performance, even though it was trained only on mazes with 3 boxes. Thus,
the NNs have successfully managed to extrapolate to environments with more
complex problems. The same table shows, that A*-CoAt offers better coverage
than A*-CNN, and we can also observe that curriculum learning (see column
captioned curr.) significantly improves the coverage.

We attribute SymBA*’s poor performance to its feature of always returning
optimal plans while we are content with sub-optimal plans. LAMA had even
lower success in solving more complicated mazes than SymBA*, despite having
the option to output sub-optimal plans. To conclude, with an increase in the
complexity of the mazes, the neural networks outshine the classical planners
which makes them a useful alternative in the Sokoban domain.

3 https://github.com/ravenkls/Maze-Generator-and-Solver.
4 https://github.com/levilelis/h-levin/.
5 https://github.com/YahyaAlaaMassoud/Sliding-Puzzle-A-Star-Solver.

https://github.com/ravenkls/Maze-Generator-and-Solver
https://github.com/levilelis/h-levin/
https://github.com/YahyaAlaaMassoud/Sliding-Puzzle-A-Star-Solver

Heuristic Search Optimisation using Planning 503

Table 1. Fraction of solved Sokoban mazes (coverage, higher is better) of SymBA*
(SBA*), Mercury (Mrcy), LAMA, A*-CNN (caption CNN) and the proposed A*-CoAt
(caption CoAt). A*-CNN and A*-CoAt (with caption normal) use networks trained on
mazes with three bozes; A*-CoAt (with caption curr.) used curriculum learning. The
quality of plans (not shown here) generated by CoAt are very close to the optimal
while in the case of CNN, it is not always so.

Normal curr.

#b SBA* Mrcy LAMA CNN CoAt CoAt

3 1 1 1 0.92 0.94 0.95

4 1 1 1 0.87 0.91 0.93

5 0.95 0.75 0.89 0.83 0.89 0.91

6 0.69 0.60 0.65 0.69 0.76 0.85

7 0.45 0.24 0.32 0.58 0.63 0.80

CoAt network without curriculum learning is also on par with Deep Mind’s
implementation of Reinforcement Learning (DM-RL) in solving Sokoban [14].
Instead of re-implementing DM-RL by ourselves, we report the results on their
test set6 containing 10 × 10 Sokoban mazes with 4 boxes. While DM-RL had
a coverage of 90%, our A*-CoAt (trained on mazes with three boxes) has a
coverage 87%. A*-CoAt with curriculum learning has a coverage of 98.29%,7

which greatly improves over the DM-RL. Taking into account that DM-RL’s
training set contained 1010 state-action pairs from mazes with 4 boxes, A*-
CoAt achieves higher coverage using a training set which is several orders of
magnitude smaller.

Maze-with-Teleports: The evaluation set contains a total of 2100 training samples
of dimensions 15×15, 20×20, 30×30, 40×40, 50×50, 55×55 and 60×60. Each
maze in the evaluation set contains 4 pairs of teleports that connect different
parts of the maze. From Table 2, we see that the performance of A*-CNN and A*-
CoAt (initially trained on 15×15 mazes) is the same as SymBA*8 for dimensions
up to 40 × 40 and is consistently better for problem instances of size 50 × 50,
55 × 55 and 60 × 60.

All “No Rotation” mazes were created such that the agents start in the top
left corner and the goal is in the bottom right corner. This allows us to study to
which extent the learnt heuristic is rotation-independent (domain independent
planners are rotation invariant by default). The same Table therefore reports
fraction of solved mazes that have been rotated by 90◦, 180◦ and 270◦. The
results clearly show that the proposed heuristic function featuring CoAt blocks
generalizes better than the one utilizing only convolutions, as the solved rotated

6 Available at https://github.com/deepmind/boxoban-levels.
7 https://github.com/deepmind/boxoban-levels/blob/master/unfiltered/test/000.

txt.
8 The planners and NNs were given 10 minutes to solve each maze instance.

https://github.com/deepmind/boxoban-levels
https://github.com/deepmind/boxoban-levels/blob/master/unfiltered/test/000.txt
https://github.com/deepmind/boxoban-levels/blob/master/unfiltered/test/000.txt

504 L. Chrestien et al.

Table 2. Fraction of solved mazes with teleports (coverage) of SymBA*, A* algo-
rithm with convolution network [8] (denoted as CNN) and that with the proposed
Convolution-Position-Attention (CoAt) network. Only non-rotated mazes (No Rota-
tion) of size 15 × 15 were used to train the heuristic function. On mazes rotated by
90◦, 180◦, 270◦, the heuristic function has to extrapolate outside its training set.

No Rotation 90◦ rotation 180◦ rotation 270◦ rotation

Size SBA* CNN CoAt CNN CoAt CNN CoAt CNN CoAt

15 × 15 1 1 1 1 1 1 1 1 1

20 × 20 1 1 1 1 1 1 1 1 1

30 × 30 1 1 1 1 1 1 1 1 1

40 × 40 1 1 1 1 1 1 1 1 1

50 × 50 0.92 0.94 1 0.91 1 0.92 1 0.91 1

55 × 55 0.55 0.78 0.89 0.71 0.85 0.70 0.87 0.69 0.87

60 × 60 – 0.73 0.76 0.68 0.75 0.66 0.74 0.68 0.75

Table 3. Fraction of solved Sliding-tile mazes (coverage, higher is better) of SymBA*
(SBA*), Mercury (Mrcy), LAMA, A*-CNN (caption CNN) and the proposed A*-CoAt
(caption CoAt). A*-CNN and A*-CoAt (with caption normal) use networks trained on
mazes with three different dimensions; A*-CoAt (with caption curr.) used curriculum
learning.

Normal Curr.

Size SBA* Mrcy LAMA CNN CoAt CoAt

5 × 5 0.54 0.32 0.89 0.72 0.83 0.92

6 × 6 0.21 – 0.25 0.56 0.72 0.81

7 × 7 – – – 0.35 0.41 0.62

instances of A*-CoAt network are comparable to the non-rotated case. Rotating
mazes have no effect on SymBA* (the complexity is solely dependent on the grid
size) and the coverage rate stays unaffected.

From the results in Table 2, it can be concluded that the CoAt blocks (1)
improve detection of non-local actions (teleports) compared to state-of-the-art
planners such as SymBA*; (2) learn ‘useful’ information from the mazes which
makes the network robust to rotations; (3) learn to approximate distances inside
the mazes which results in a scale-free heuristic function.
Sliding-Tile: The evaluation set contains a total of 200 test samples of dimensions
5 × 5, 6 × 6 and 7 × 7. From Table 3, we see that the performance of A*-CNN
and A*-CoAt (initially trained on 5 × 5 mazes) consistently outperforms the
performance of planners.9 SymBA* is the most reliable of all the planners but
performs poorly when compared to the NNs. Of the NNs, the CoAt network

9 The planners and NNs were given 10 minutes to solve each maze instance.

Heuristic Search Optimisation using Planning 505

solves a larger number of instances as compared to the CNN network and records
an even higher improvement in coverage after curriculum learning.

8 Conclusion and Future Work

We have proposed a building blocks of neural network able to learn strong heuris-
tic function for PDDL domains with an underlying grid structure without the
need for any specific domain knowledge. It is to be noted that even though we
have generated training data from a classical planner on small problem sizes, our
proposed architecture is able to generalize and successfully solve more difficult
problem instances, where it surpasses classical domain-independent planners,
while improving on previously known state-of-the-art.

Our experiments further suggest that the learnt heuristic can further improve,
if it is retrained/fine-tuned on problem instances it has previously solved. This
form of curriculum learning aids the heuristic function in solving mainly large
and more complex problem instances that are otherwise not solvable by domain
independent planners within 10 minutes.

As future work, our next goal would be to better understand if the learnt
heuristic function is similar to something that is already known, or something so
novel that it can further enrich the field; i.e., what kind of underlying problem
structure we can learn by which network type, possibly in the form of studying
generic types [13].

We believe that an improvement in the heuristic function is tied to the gener-
ation of problem instances that inherently possess the right level of difficulty, by
which we mean that they have to be just on the edge of solvability, such that the
plan can be created and added to the training set. We are fully aware that the
problem instance generation itself is a hard problem, but we cannot imagine the
above solution to be better than specialized domain-dependent Sokoban solvers
without such a generator (unless the collection of all Sokoban mazes posses this
property).

We also question the average estimation errors minimized during learning
of the heuristic function. It might put too much emphasis on simple problem
instances that are already abundant in the training set while neglecting the
difficult ones. We wish to answer some of the above question in the future in an
endeavour to generate strong, scale-free heuristics.

Acknowledgments. This work has been supported by project numbers 22-
32620S and 22-30043S from Czech Science Foundation and OP VVV project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”.

506 L. Chrestien et al.

References

1. Agostinelli, F., McAleer, S., Shmakov, A., Baldi, P.: Solving the rubik’s cube with
deep reinforcement learning and search. Nature Mach. Intell. 1(8), 356–363 (2019)

2. Asai, M., Fukunaga, A.: Classical planning in deep latent space: Bridging the
subsymbolic-symbolic boundary. arXiv preprint arXiv:1705.00154 (2017)

3. Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1–2), 5–33
(2001)

4. Elman, J.L.: Learning and development in neural networks: the importance of
starting small. Cognition 48(1), 71–99 (1993)

5. Ernandes, M., Gori, M.: Likely-admissible and sub-symbolic heuristics. In: Pro-
ceedings of the 16th European Conference on Artificial Intelligence, pp. 613–617
(2004)

6. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2(3–4), 189–208 (1971)

7. Fox, M., Long, D.: Pddl2. 1: An extension to pddl for expressing temporal planning
domains. J. Artif. Intell. Res. 20, 61–124 (2003)

8. Groshev, E., Goldstein, M., Tamar, A., Srivastava, S., Abbeel, P.: Learning gener-
alized reactive policies using deep neural networks. arXiv:1708.07280 (2017)

9. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

10. Katz, M., Hoffmann, J.: Mercury planner: Pushing the limits of partial delete
relaxation. In: IPC 2014 Planner Abstracts, pp. 43–47 (2014)

11. Katz, M., Sohrabi, S., Samulowitz, H., Sievers, S.: Delfi: Online planner selection
for cost-optimal planning. In: IPC-9 Planner Abstracts, pp. 57–64 (2018)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.
arXiv:1412.6980 (2014)

13. Long, D., Fox, M.: Automatic synthesis and use of generic types in planning. In:
AAAI, pp. 196–205. AAAI Press (2000)

14. Racanière, S., Weber, T., Reichert, D., Buesing, L., Guez, A., Jimenez Rezende,
D., Puigdomènech Badia, A., Vinyals, O., Heess, N., Li, Y., et al.: Imagination-
augmented agents for deep reinforcement learning. Adv. Neural. Inf. Process. Syst.
30, 5690–5701 (2017)

15. Richter, S., Westphal, M.: The lama planner: Guiding cost-based anytime planning
with landmarks. J. Artif. Intell. Res. 39, 127–177 (2010)

16. Schaal, S.: Is imitation learning the route to humanoid robots? Trends Cogn. Sci.
3(6), 233–242 (1999)

17. Schrader, M.P.B.: gym-sokoban. github.com/mpSchrader/gym-sokoban (2018)
18. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without
human knowledge. Nature 550(7676), 354–359 (2017)

19. Tesauro, G.: Programming backgammon using self-teaching neural nets. Artif.
Intell. 134(1–2), 181–199 (2002)

20. Thrun, S.: Learning to play the game of chess. Adv. Neural. Inf. Process. Syst. 7,
1069–1076 (1994)

21. Torralba, A., Alcázar, V., Borrajo, D., Kissmann, P., Edelkamp, S.: Symba*: A
symbolic bidirectional a* planner. In: International Planning Competition, pp.
105–108 (2014)

22. Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Skill acquisition via transfer learning
and advice taking. In: European Conference on Machine Learning, pp. 425–436.
Springer (2006)

http://arxiv.org/abs/1705.00154
http://arxiv.org/abs/1708.07280
http://arxiv.org/abs/1412.6980

Heuristic Search Optimisation using Planning 507

23. Tsai, Y.H.H., Bai, S., Yamada, M., Morency, L.P., Salakhutdinov, R.: Transformer
dissection: An unified understanding for transformer’s attention via the lens of
kernel. arXiv:1908.11775 (2019)

24. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
�L, Polosukhin, I.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30,
5998–6008 (2017)

25. Virseda, J., Borrajo, D., Alcázar, V.: Learning heuristic functions for cost-based
planning. Plan. Learn. 6 (2013)

26. Yoon, S.W., Fern, A., Givan, R.: Inductive policy selection for first-order mdps.
arXiv preprint arXiv:1301.0614 (2012)

http://arxiv.org/abs/1908.11775
http://arxiv.org/abs/1301.0614

	 Heuristic Search Optimisation Using Planning and Curriculum Learning Techniques
	1 Introduction
	2 Related Work
	3 Classical Planning
	4 Planner's Architecture
	5 The Proposed Neural Network
	6 Curriculum Learning
	7 Experimental Results
	7.1 Training
	7.2 Comparison to Prior State-of-the-Art

	8 Conclusion and Future Work
	References

