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Abstract. Dialogue systems need to deal with the unpredictability of
user intents to track dialogue state and the heterogeneity of slots to
understand user preferences. In this paper we investigate the hypoth-
esis that solving these challenges as one unified model will allow the
transfer of parameter support data across the different tasks. The pro-
posed principled model is based on a Transformer encoder, trained on
multiple tasks, and leveraged by a rich input that conditions the model
on the target inferences. Conditioning the Transformer encoder on mul-
tiple target inferences over the same corpus, i.e., intent and multiple
slot types, allows learning richer language interactions than a single-task
model would be able to. In fact, experimental results demonstrate that
conditioning the model on an increasing number of dialogue inference
tasks leads to improved results: on the MultiWOZ dataset, the joint
intent and slot detection can be improved by 3.2% by conditioning on
intent, 10.8% by conditioning on slot and 14.4% by conditioning on both
intent and slots. Moreover, on real conversations with Farfetch costumers,
the proposed conditioned BERT can achieve high joint-goal and intent
detection performance throughout a dialogue.

Keywords: Dialogue state tracking · Intent detection · Slot filling ·
BERT

1 Introduction

Conversational assistants need to explicitly maintain information about user
goals by tracking the user intent and storing a set of slot-value pairs. This is
critical to ensure the smoothness of user-agent interaction leading to frustration-
free outcomes. Both dialogue state and slot values can be used as a way to pro-
vide a general initial product suggestion [13], before more fine-grained attributes
are requested by the system. Hence, keeping the dialogue agent up-to-date
with user’s perception of the current conversation is a critical, yet, non-trivial
task [12].

Algorithms that support more natural conversations need to tackle com-
plex phrasal constructions [3] and dialogue contextual information [11]. Each
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user utterance conveys multiple and intertwined hints leading to very rich
language structures and possible co-references to the dialogue history. Recent
approaches [3,11,12,25], explored the Transformer model in this context and
leveraged the attention mechanisms to tackle the above challenges. A common
practice is to use the control token to detect intent [4,20,22] or presence of a slot
span [3,17,23]. Recent works extend the Transformer with new heads [4,20,22],
tackling both intent detection and slot filling in a multi-task setting. While these
works capture the dependencies between intent detection and slot-filling, all the
inferences are solely conditioned on the dialogue utterances, without accounting
for each target inference task.

Our research hypothesis is that jointly learning dialogue inference tasks while
conditioning the Transformer on the aforementioned dialogue state-tracking
(DST) tasks, will lead to more precise joint-inferences of user intent and slot
filling, i.e., more accurate dialogue state inferences. This hypothesis is supported
by the way BERT [7] attends to different tokens [5]—the [CLS] token, retaining
a global sequence embedding, can leverage a number of language tasks [7], by
functioning as an attention hub, contextualizing the whole input sequence. Extra
special attention hub tokens can then be added and learned through fine-tuning.
Hence, we argue that introducing new task-specific tokens, acting as task-specific
attention hubs, alongside Transformer heads, could allow for the introduction of
additional domain-specific operations. We argue that these empirical observa-
tions are all rooted on the same principle: when the Transformer encoder is
conditioned on the target task, the self-attention mechanism across all layers
becomes aware of the target inference operation. Thus, the conditioning input
can steer the inferences across all layers. This forms the base assumption of our
work.

In the following section we discuss the related work. In Sects. 3 and 3.1 we
describe the proposed approach. Section 4 presents and discuss experimental
results.

2 Related Work

Dialogue State Tracking (DST) refers to the act of maintaining a set of user
goals or preferred attributes by performing slot-filling in task-oriented dialogues,
which can be either single or multi-domain. Span-based slot-filling approaches
have been widely explored with promising results, as seen in [23], [3], [17],
with the first employing RNN encoding and the latter two using a BERT-based
encoder. Extracting spans may sometimes be sufficient to attain good perfor-
mance, but, in open-ended dialogues, may prove insufficient when facing values
implicitly mentioned by the user or values which refer to previously filled slots.
To remedy this, work towards introducing other types of information has been
developed, maintaining the same BERT encoder setup. [11] proposed to directly
refer the previously made slot assignments or system suggestions, depending on
the output of the slot-gate, which is extended so as to perform a more fine-grained
classification. Other approaches, such as [26], make use of predefined ontologies
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when slots are considered categorical. While non-categorical slots are classified
by detecting relevant spans in the dialogue, categorical slots use a fixed BERT
model to encode all possible slot key-value combinations in the ontology, and use
cosine similarity matching with the [CLS] token output of both BERT instances.
While this work is similar in spirit to ours, we directly adapt BERT-DST [3] to
develop our models, as was previously attempted by [11].

BERT-DST [3] classifies each slot independently from one another in two
steps: first, using BERT’s [CLS] token embeddings, it classifies whether a slot
is or is not present in the utterances, or whether the user expressed no interest
in its value; referred to as a slot-gate. Second, for each slot where the slot-gate
output is positive, using the embedding of each token, attempts to extract the
dialogue span in which its value is mentioned.

Intent Detection requires analyzing a user utterance and classifying it, as a
whole, given a set of possible user intents. Transformer encoder-based approaches
are especially adept at this task, performing the classification step using sentence
embeddings. Intent detection data is limited in task-oriented datasets, and most
approaches [4,14,16] focus on single-utterance queries for voice assistants [6,9],
forgoing multi-turn interactions.

Recently developed DST datasets, such as [17,24], have attempted to
account for the fact that real-world systems will contain categorical and non-
categorical slots. Alongside this notion, they also push the relevance of intent
detection, with [17] supplying intent annotations and [24], an update to Multi-
WOZ [2], updating the annotation set with user intent annotations.

3 Proposed Model

Slot-filling and intent detection are natural language processing tasks associated
to the understanding of a sequence D = {(u1, a1), ..., (uT , aT )}, of T dialogue
turns, where each turn i is represented by a tuple (ui, ai) composed of user and
system utterances, respectively. First, given the user utterance uT+1 and a set of
M possible intents I = {I1, ..., IM}, our goal is to infer the correct intent Im of
the user utterance. Second, given all dialogue utterances up to turn T and a set of
N slot-keys S = {s1, ..., sN}, the goal is to assign a slot-value v ∈ {v1, . . . , vi, . . .}
to every slot-key sk which was, explicitly or otherwise, accepted or suggested
by the user in the turns present in D. A slot-value can be anything from a
hotel location to the number of people in a restaurant reservation. The act of
maintaining all relevant slot key-value pairs in a dialogue D is referred to as
Dialogue State Tracking (DST).

3.1 Dialogue Task Conditioned Encoder

Conditioning the Transformer encoder on dialogue data can be achieved
by considering the entire sequence of dialogue utterances. We can consider
the independent probabilities of user intent p(Im|uT ,Hc) and slot key-value
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p(sk = vi|uT ,Hc) where uT stands for the current user utterance, and Hc =
{uT−c, . . . , uT−1} is the set of past dialogue utterances. Alternatively to the
independent modes, the joint-inferences of intent and slot filling is an explic-
itly dependency-based model, p(Im, sk = vi|uT ,Hc) where the joint inference is,
again, conditioned on the dialogue history Hc. We extend these variables and
investigate how different conditioning assumptions affect the Transformer infer-
ence performance for joint slot-filling and intent detection. In practice, we enrich
the conditional probability with dialogue task information DT ,

p(Im, sk = vi|uT ,Hc,DT ), (1)

which brings a series of advantages to Transformer-based implementations of the
above model.

Fig. 1. The dialogue target task is explicitly passed to the encoder to condition its
inferences.

3.2 Dialogue Task Conditioning

Large Transformer models [12,20] are able to singlehandedly model complex
tasks within dialogues, such as next sentence prediction, intent detection, and
ontology-based slot-filling. Even though intent detection in TOD-BERT [20]
is performed by leveraging the [CLS] token, both SimpleTOD [12] and TOD-
BERT prepend user and assistant utterances with special tokens that denote
the speaker. In DST, user and assistant turns should be attended differently: in
order to perform slot-filling on a slot key, the user must either state it (explicitly
or otherwise) or agree with an assistant suggestion. The aforementioned tokens
can condition the Transformer into performing slot-filling appropriately in each
situation. SimpleTOD [12] further makes use of tokens to delineate the start and
end of each dialogue subtask, such as slot-filling and response generation.

Hence, in light of what we know [20] regarding special token usage on vanilla
BERT ([CLS], [SEP]) and pre-trained TOD systems (utterance source tokens,
subtask delineation), we pass dialogue specific tokens to the encoder to condition
its inference operations (Fig. 1). Each one of these dialogue specific tokens is
then fine-tuned on the corresponding target inference tasks. This is extremely
important since now, all encoder layers will have explicit information regarding
the required output task.
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3.3 BERT-DST: Span Slots

First, we build on the BERT-DST [3] model and leverage the fact that BERT
overly attends to special tokens [5]. This baseline model uses the standard input
formatting [7] (first row of Fig. 1), where each input token is mapped to an h
dimensional internal representation. The output O ∈ R

L×h comprises contextu-
alized embedding representations of the input tokens.

As previously described, the [CLS] token feeds the slot-gate softmax layer,
and the slot values are extracted using a span-based approach over D. The span
detection is implemented as two classification layers, one for the span-start and
one for the span-end, see Fig. 2. All these layers are trained under a common
loss function

Lslot =α · Lslot gate +
1 − α

2
· (Lspan start + Lspan end), (2)

a convex combination parameterized by α.

Fig. 2. The BDST-J architecture explicitly conditions the dialogue state inference
operations in an end-to-end fashion over the intent and domain-slots.

3.4 BDST-I: Intent Detection

Our first take towards conditioning the Transformer encoder in the target infer-
ence task is to introduce an [INTENT] token to the sequence input. This new
token embedding is used by a linear classification layer head to detect the intent.

Introducing the aforementioned token is feasible as both tasks are inherently
related—in fact, recent DST approaches [17] attempt to consolidate intent detec-
tion and slot-filling within the same model. We also argue that slot classification
is inherently coupled with the current user intent. When users intend to, for
instance, request hotel information, it is more likely that they would mention
the number of people than also request a restaurant location in the same turn.
This is also shown by a strong Cramer’s V correlation [1] between utterances
of a specific intent and mentioned slots, on all considered datasets (discussed
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in Sect. 4.1). Specifically, the MultiWOZ and Farfetch-Costumers datasets both
exhibit a 0.62, Farfetch-Sim 0.53, and Sim-R with 1.

We fine-tune BDST-I to both slot-filling and intent detection, adding β ·
Lintent to the BERT-DST loss function (Eq. 2), with Lintent as the cross entropy
loss for the intent prediction target, and β is a convex combination constants:

LBDST−I = β · Lintent + (1 − β) · Lslot (3)

The embedding weights of the [INTENT] token are initialized with the [CLS]
weights and are then fine-tuned to the intent detection task. β was determined
experimentally on the validation set.

3.5 BDST-C: Categorical Slots

The search for the presence of slots is usually focused on the ones that make
sense for the current dialogue stage—in real world scenarios, it is not plausible
to search for all slots in all dialogue stages. Thus, for each categorical slot that
we wish to detect, we introduce a slot-specific input token, each initialized with
random embeddings, signaling we need to perform inference on each mentioned
slot. The BERT model input is shown in Fig. 1: assuming hotel-stars and hotel-
price as the categorical slots in the domain. In such cases, given a categorical slot
[cs], whose possible values are in V[cs], and the corresponding token BERTcs,
the slot value is determined by a classifier head,

arg max
Vcs

Wcs · BERTcs + bcs (4)

where Vcs is the set of all possible values for slot key [cs] in the domain ontology.
Note that in domains without categorical slots, the model input is the same as
vanilla BERT-DST.

BDST-C uses a different classification strategy depending on the slot type,
so special considerations must be taken. We use a weighted sum for the loss, as
follows:

LBDST−C = β · Lcat + (1 − β) · Lslot (5)

Following the assumption that each slot is of equal importance to the final
result, we fix β to (#categorical slots)/(#total slots).

3.6 BDST-J: Joint Intent and Multiple-Slots

As previously mentioned, both extensions attempt to exploit BERT being capa-
ble of assigning operations to special tokens. Similarly to how [CLS] is known
to contain an aggregate sequence representation for NSP, it is easy to see how
an [INTENT] token could also contain an aggregate representation based on all
the possible intents. The same rationale applies to the extra categorical tokens,
potentially containing sentence-level representations weighted on the semantic
classification of specific slot-keys. Hence, we generalize the above approaches and



Task Conditioned BERT for Joint Intent Detection and Slot-Filling 473

introduce a fully flexible input sequence for the joint task, BDST-J, Fig. 1. It
follows that, when training BDST-J, the loss function is:

LBDST−J = α · LBDST−I + (1 − α) · LBDST−C (6)

All parameters are determined on the validation set.

4 Evaluation

In this section we evaluate the vanilla BERT-DST model, BDST-I, BDST-C,
and BDST-J on Sim-M, Sim-R, MultiWOZ 2.2 benchmarks, and on the Far-
fetch dataset, with real testers. All the baselines we tested are encoder-only
architectures and have a similar number of parameters for a fair comparison,
with the exception of the low-parameter TRADE-DST [21]. Other architectures
require more training time and are more complex to deploy.

4.1 Datasets

M2M (Sim-M + Sim-R). Sim-R and Sim-M [18], respectively focusing on the
restaurant and movie ticket domains, use crowdsourced paraphrasing of template
utterances to simulate both user and agent. All slots are non-categorical, which
biases the dialogue towards simple and direct conversations where slot values
are always explicit in utterances. Dialogues are also noiseless, which may not
reflect some of the challenges of an in production, robust DST system. Both
datasets have a high proportion of out of vocabulary values, meaning that sev-
eral test set slot values are absent during training. These values are contained
in the restaurant name and movie slots. Sim-R contains coarse-grained intent
detection, with two possible intent values: find and reserve restaurant. Com-
pared to other datasets used in this work, the amount of dialogues is relatively
low—to perform well on M2M, models must develop a robust understanding of
the semantics of slot-filling with sparse data.

MultiWOZ 2.2 (MW) MultiWOZ [2] is a widely used DST dataset which
follows a standard human-to-human Wizard of Oz approach, spanning several
domains. This allows for significantly higher language variety and more complex
dialogues, as there are little to no restrictions put on the users when creating
data. The lack of language restrictions and the explicit usage of categorical slots
requires inferring values in turns, alongside extractively collecting slot values
from utterances. An extra challenge is entity bias and misannotations, which
have been approached by multiple works [8,10,15,24]. For training and evalua-
tion, we use the 2.2 variant [24] supported by the original MW authors.1 MW 2.2
extends the 2.1 version by cleaning some annotations and, not only introducing
categorical slot annotations, but also introducing a set of active user intents per
user turn. We follow the assumption that the current user intent is the next to
1 https://github.com/budzianowski/multiwoz.

https://github.com/budzianowski/multiwoz
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be fulfilled in the active user intent set (i.e. when an intent is removed from the
active intent set, the user had been working towards fulfilling it). We use this
assumption to retrieve a single intent per user utterance.

Farfetch Simulated Dialogues (Farfetch-Sim). This dataset comprises dia-
logues that simulate a fashion concierge [19] that understands customer needs
and provides the correct answers. These were created in a way that reflects
past real user experiences on the Farfetch platform, with a massive number of
users. The simulated dialogues cover the complete customer journey: greeting,
product search and exploration, to checkout. Throughout the different conversa-
tional journeys, users engage in product-grounded conversations, across different
scenarios. We defined a range of scenarios and flows that reproduce real-world
client-assistant interactions and introduce novel fashion-specific sub-dialogues
that combine language and product metadata. From a total of 39,956 simulated
dialogues, we extract 236,072 annotated utterances (slot-filling and intent) for
training, 48,427 for validation and 48,097 testing.

Farfetch User Dialogues (Farfetch-Costumers). This set of real and
authentic dialogues was obtained during a user testing session of a Farfetch’s
in-house conversational shopping assistant prototype. Users (actual costumers)
were sampled based on device (desktop or mobile chat), and clothing gender
(men or women), and had no prior experience using a conversational agent for
product discovery. A total of 85 complete dialogues were annotated with slot-
filling and intent detection information, and used for testing.

Table 1. Results on the M2M datasets.

Sim-M Sim-R

Model JG Int. Acc. JG Int. Acc.

BERT-DST [3] 81.9 – 88.6 –

BDST-C 82.6 – 86.1 –

BDST-I 83.3 100.0 91.3 99.9

TripPy [11] 83.5 – 90.0 – Fig. 3. Slot key distribution on the
Sim-R train split, by intent

4.2 Training

Similarly to vanilla BERT-DST, we train the models using randomly sampled
batches of size 32. Unless otherwise stated, we used the [BERT base, Uncased]
architecture and weights and train for 100 epochs—except for the Farfetch dia-
logues, which we train for 20 epochs, due to their large amount. We set the
learning rate to 2e−6 and use ADAM optimizer.
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4.3 Metrics and Evaluation Methodology

We evaluate slot-filling using the standard joint-goal accuracy (JG) met-
ric. Joint-goal accuracy is calculated as follows: in dialogue turn T , update a
set of active slots S (initialized as ∅ when the dialogue begins) by adding all
(slot key, slot value) pairs present in T so that S contains at most one of each
slot keys, replacing ones that were previously present. The joint-goal score for
turn T is 1 if S is equal to the ground truth, which is updated in a similar
manner. (i.e. active slots for all current and previous turns have been correctly
classified), and 0 otherwise. The final value is the average of the joint-goal scores
of every dialogue turn. The joint-goal score tends to accumulate errors from ear-
lier dialogue turns, unless the system is able to reclassify. We evaluate single-turn
dialogues using the slot F1 score, as per JointBERT [4].

To evaluate in the M2M dataset, we use the provided BERT-DST [3] eval-
uation script. In the MultiWOZ dataset, we use the recommended TRADE-
DST [21] pre-processing and evaluation scripts (we refrain from using the spe-
cial pre-processing considerations for plural nouns). We use different evaluation
scripts to ensure that comparisons with other works are adequate. We adapt the
TRADE-DST evaluation scripts for the Farfetch dialogues.

4.4 General Results

In this section we analyze the performance of the proposed approach under
different conditions: no overlap of slots per intent and multi-slot per intent.

No Overlap of Slots Per Intent: M2M Table 1 displays the evaluation
metrics on the M2M datasets of our two proposals alongside vanilla BERT-DST
performance. To generate an ontology for categorical slots, we use a similar
heuristic to the one used for the SGD dataset [17]: slots which refer to a range
of values or a small amount of discrete elements which can easily be listed are
categorical, while slots with continuous, uncountable or several values are non-
categorical. In Sim-M, we consider the slot num tickets as categorical—in Sim-R,
we consider the num people, price range, meal and rating slots.

The BDST-C performance on Sim-M is quite close to the vanilla model,
as expected. This is due to only one slot being considered categorical. It is also
important to note that the data was not created with categorical slots in mind—
since all slots are explicitly present in dialogue spans, moving away from them
may not be ideal for performance; especially relevant in SIM-R. On the other
hand, the joint-goal score of BDST-I was higher than anticipated, showing itself
to be competitive with the state-of-the-art [11]. By analyzing the coarse-grained
intent information contained in the data (none, BUY MOVIE TICKETS in
Sim-M; none, FIND RESTAURANT, RESERVE RESTAURANT in Sim-R).
We find that, in M2M, the user intent directly correlates with the slots that are
being mentioned, containing no overlap of mentioned slots, per intent (Fig. 3).
The general performance improvement when introducing intent information sup-
ports our claim that jointly training a model on both slot-filling and intent detec-
tion tasks can improve performance.
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Table 2. Joint-goal and intent detec-
tion accuracy scores on MultiWOZ 2.2
dataset. Values with * are reported
by [24]. It should be noted that the DS-
DST model uses two BERT models.

Model MW 2.2

JG Int. Acc.

BERT-DST [3] 33.0 –

BERT-DST (w/ dialogue history) 37.6 –

BDST-I 40.8 88.4

BDST-C 48.4 –

BDST-J 49.0 87.9

BDST-CLARGE 48.6 –

BDST-JLARGE 49.8 87.7

Systems

SGD Baseline [17] 42.0* –

TRADE-DST [21] 45.4* –

DS-DST [26] 51.7* –

Fig. 4. Cross-domain slot mentions on
the MultiWOZ 2.2 in the hotel versus
restaurant domains

Multi-slot Per Intent: MultiWOZ Leveraged by the insights from the previ-
ous experiments and the results on the MultiWOZ dataset (Table 2), we reached
several conclusions. First, we observed that training a model for both intent
detection and slot-filling improves slot-filling performance. MultiWOZ 2.2, sim-
ilarly to Sim-R, displays a high correlation between the active intent and the
slots that are being mentioned. Second, the proposed conditioning architecture,
i.e. tokens and corresponding heads, enabled our models to approach state-of-
the-art performance. When compared with TRADE-DST, our model performs
significantly better, proving to be a solid alternative for real-world systems where
probabilistic outputs are preferred. Third, introducing more domain information
improves overall performance. The joint-goal score largely increases by simply
introducing categorical slot tokens. This can be seen when evaluating BERT-DST
instances versus their BDST-C counterparts. A similar result can be seen when
introducing intent information—in MultiWOZ, the result of the intent detec-
tion task can inform slot-filling modules of the domain relevant to the current
utterance. Then, we show how the domain of the classified user intent is directly
related to the frequency of mentioned slots (Fig. 4). When the current domain is
restaurant, the slot-gate for hotel related slots is more likely to be correct when
outputting none, while slot-gates related to restaurant slots are likely to output
span. Finally, we also observed that increasing the model size slightly improves
performance. In our tests using BERT-large, which contains about 3 times more
trainable parameters than BERT-base (345 million vs. 110 million), shows a
limited, but consistent, performance gain of less than 1% in all situations.
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Table 3. Joint-goal and intent detection accuracy scores on Farfetch dialogues.

Model Farfetch-Sim Farfetch-Costumers

Slot F1 Int. Acc. Slot F1 Int. Acc. JG

JointBERT [4] 93.5 96.7 83.2 93.8 54.9

BDST [3] 94.2 – 85.0 – 65.1

BDST-I 94.6 98.1 87.3 95.4 71.0

Farfetch Dialogues Finally, we evaluated the proposed model in an online
shopping assistant with both simulated and real costumer dialogues. For this
experiment, models are trained solely on simulated dialogues. Table 3 reports
the obtained results. First, in the simulated dialogues (Farfetch-Sim), we observe
that BDST-I can successfully detect both intents and slot-values, with significant
improvements in slot F1 and intent accuracy. When we consider dialogues with
real costumers, the robustness of BDST-I becomes more evident: the gap in
slot-F1, intent accuracy and, more importantly, the joint-goal accuracy between
BDST-I and the other two baselines increase considerably. In particular, joint-
goal accuracy is 71.0% and intent accuracy reaches 95.4%, which confirms that
performing both tasks simultaneously and conditionally inferring slot values and
intents provides the model with more information to improve its performance.

5 Conclusion

In the context of this work, we explicitly assumed that there are strong depen-
dencies among language tokens, and that these dependencies become even more
salient when the Transformer is conditioned on the dialogue data and on the
dialogue state. We proposed an extension to a well-established model, which
takes advantage of introducing extra dialogue information and multi-task learn-
ing, significantly increasing performance in all cases. Our contributions are as
follows:

– DST inference task conditioning architecture: The multi-head archi-
tecture and the corresponding tokens elegantly extends the Transformer
encoder architecture to facilitate joint slot-filling and intent detection. We
also observed that training on the different tasks also improved results, thus
leveraging the multi-task parameter sharing nature.

– Multiple slot-filling across domains: The proposed architecture nicely
supports the MultiWOZ 2.2 scenarios where multiple heterogeneous slots co-
occur in data, e.g. restaurant span-based slots with hotel categorical slots.

– State of the art competitive results across heterogeneous domains:
Our models which perform intent detection and slot-filling outperform strong
baselines [21] of equivalent complexity, by learning the intrinsic correlations
between the user intent and the slots which are currently being mentioned.
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– Generalization to realistic domain-specific dialogues: Experiments
show that BDST-I effectively generalizes in state-tracking for domain-specific
and real scenarios, outperforming the compared approaches.

To sum up, we proposed a principled and theoretically well grounded approach
to dialogue state tracking that significantly improves performance. The model
is flexible enough be augmented with external heuristics [11], and generalizes to
multiple domains.
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