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Abstract. In the impartial selection problem, a subset of agents up to
a fixed size k among a group of n is to be chosen based on votes cast
by the agents themselves. A selection mechanism is impartial if no agent
can influence its own chance of being selected by changing its vote. It is
α-optimal if, for every instance, the ratio between the votes received by
the selected subset is at least a fraction of α of the votes received by the
subset of size k with the highest number of votes. We study deterministic
impartial mechanisms in a more general setting with arbitrarily weighted
votes and provide the first approximation guarantee, roughly 1/�2n/k�.
When the number of agents to select is large enough compared to the
total number of agents, this yields an improvement on the previously best
known approximation ratio of 1/k for the unweighted setting. We further
show that our mechanism can be adapted to the impartial assignment
problem, in which multiple sets of up to k agents are to be selected, with
a loss in the approximation ratio of 1/2.
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1 Introduction

Votes and referrals are a key mechanism in the self-organization of commu-
nities: political parties elect their representatives, researchers review and rate
each other’s manuscripts, and hyperlinks on the web attribute topical relevance
to an external resource. Oftentimes, the agents who give the recommendations
are themselves interested in being within a top-rated fraction of their group:
to occupy a prestigious position, be invited to a conference, or to have a web-
site appear more prominently in search results. Objectives like these provide an
incentive to deviate from a fair evaluation of one’s peers. In particular, agents
might omit a recommendation for an immediate contender in order to be ranked
above them when the votes are counted.

In a seminal work, Alon et al. [1] initiated the search for impartial mecha-
nisms to aggregate the votes cast by n agents who want to elect k individuals
among them, which we refer to as the exact (n, k)-selection problem. The authors
require that no agent is able to influence their own chance of being selected by
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adjusting the subset of peers that they vote for, while, at the same time, the
agents selected by the mechanism should receive an expected sum of votes that
is close to that of the highest voted subset of size k. We refer to the first condi-
tion as impartiality and to the second as α-optimality, where α ∈ [0, 1] denotes
the performance guarantee. If the mechanism is allowed to make use of random
choice and agents may vote for any subset of their peers, then the best known
performance guarantee is k

k+1

(
1 − (

k−1
k

)k+1
)
, which gives 1/2 for the selection

of a single agent and approaches 1− 1/e as k → ∞ [4]. It is further known that
no impartial mechanism can be better than k/(k+1)-optimal, which is tight only
for k = 1. We discuss variants with a limited number of votes per participant as
related work.

The problem only becomes more difficult in the deterministic setting, where
the mechanism is forced to choose one agent over another even for highly sym-
metric input. The instance in which two agents vote for each other and one of
them shall be selected requires the mechanism to break the tie, based on an
external preference list, in favor of one of the agents. Impartiality demands that
the same agent must be selected also when the other agent withdraws its vote.
But then, an agent with no votes is selected, even though the other agent still
receives one. This yields a performance guarantee of zero for the selection of a
single agent in the worst case. Even for k > 1, no positive performance guarantee
is possible [1], unless, surprisingly, when the mechanism is allowed to select less
than k agents in some instances. In this case an algorithm achieving α = 1/k
is known [4]. We refer to this relaxation as the inexact (n, k)-selection prob-
lem. Since this insight, the gap towards the best known upper bound, which is
(k − 1)/k in the inexact selection setting, remained remarkably wide.

More generally, the selection problem allows for votes to be weighted: one
then compares the total weight of the selected agents to that of the maximum-
weight subset of size k. In a peer review setting, reviewers are often asked to
rate the manuscript under consideration on a point scale that ranges from a
recommendation to reject to a claim of excellence. An editor or program chair
would then aggregate these scores and accept a limited number of highly rated
submissions. While the established rule to disclose any conflicts of interest pro-
tects, if obeyed, against abuse based on personal ties, authors whose papers are
on the verge of selection might still profit from giving ratings below their honest
estimate, unless the selection mechanism is impartial. In this setting, although
computational studies have been made [2], no deterministic mechanism providing
a worst-case guarantee was known to date.

1.1 Our Contribution

We propose a deterministic impartial mechanism that can be applied in the
weighted setting and which achieves a performance guarantee of 1/�2n/k�, for
k ≥ 2

√
n even, and (k − 1)/(k�2n/(k − 1)�), for k ≥ 2

√
n+1 odd. In particular,

it achieves asymptotically a guarantee of α = 1/4 for selecting at most half
and α = 1/3 for selecting at most two thirds of the agents. These are the first
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lower bounds for deterministic selection with weights. In its applicable range,
the mechanism further improves upon the previous best bound of 1/k in the
unweighted setting. The improvement is most noticeable when k is large, where
the gap between the previously best known lower and upper bounds of 1/k
and (k − 1)/k, respectively, has been widest. The construction is best behaved
whenever b := 2n/k ∈ N and b ≤ k/2 ∈ N: here a guarantee of α = 1/b is
provided and the analysis of the mechanism is tight. The mechanism uses a well-
structured set of partitions of the agents, whose existence we study in Sect. 3
using a connection to hypergraph theory and graph coloring. The mechanism
itself and the proof of the approximation guarantee are presented in Sect. 4.

In Sect. 5, we show how the mechanism can be adapted to assign agents to
multiple size-limited subsets, which may represent tasks to distribute or com-
mittees to form. In this setting, we lose only a factor of 1/2 in the performance
guarantee, independent of the number of subsets.

1.2 Related Work

Impartiality as a desirable axiom in multi-agent problems was introduced by De
Clippel et al. [11] and was first studied in the context of peer selection in parallel
by both Holzman and Moulin [15] and Alon et al. [1]: The work by Holzman and
Moulin studied the existence of impartial mechanisms satisfying further axioms
such as unanimity and notions of monotonicity, while the research by Alon et
al. showed that no deterministic impartial mechanism aiming to select exactly
k agents can achieve any constant approximation ratio. In response, Bjelde et
al. [4] showed that when fewer than k agents may be selected, 1/k-optimality is
guaranteed by the bidirectional permutation mechanism, which picks either one
or two agents, depending on the instance. The authors further proved an upper
bound of (k − 1)/k for any deterministic impartial mechanism.

Continuing the axiomatic line, Tamura and Ohseto [24] studied k-selection
in the single-nomination setting and showed that impartiality is compatible with
two natural notions of unanimity. Their mechanism was extended to the case of
a higher, but constant, maximum number of nominations by Cembrano et al.
[9]. Further, Aziz et al. [2] proposed a mechanism satisfying certain monotonicity
properties and confirmed its performance in a computational study.

Several works have focused on randomized impartial selection. Alon et al.
proposed a family of mechanisms based on a random partition of the agents that
yield the first lower bounds on the approximation ratio for this setting, namely
1/4 for k = 1 and 1 − O(1/ 3

√
k) for general k. They also provided respective

upper bounds of 1/2 and 1−Ω(1/k2). Fischer and Klimm [14] closed the gap for
k = 1 by giving a 1/2-approximation algorithm. Bousquet et al. [5] designed a
mechanism with an approximation guarantee that goes to one as the maximum
score of an agent goes to infinity. A restricted variant of particular importance,
first studied in the work of Holzman and Moulin, arises when each agent can
vote for exactly one other agent. Here, Fischer and Klimm provided both lower
and upper bounds which were later improved by Cembrano et al. [10].
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A setting closely related to the impartial selection of k agents is that of peer
review in which, in contrast to the classic k-selection problem, the votes are
weighted and represent a score assigned to a submission. Kurokawa et al. [18]
studied a model where first a limited number of weighted votes is sampled and
then the selection is performed. The authors proposed an impartial randomized
mechanism providing a constant approximation ratio with respect to the (non-
impartial) mechanism that randomly samples the votes and selects the best
possible set of k agents given these votes. Mattei et al. [21] studied this problem
from an axiomatic and experimental point of view, while Lev et al. [19] extended
this work to the setting with noisy assessments. Dhull et al. [12] explored the
scope and limitations of partition-based mechanisms for peer review in terms of
approximating the selection of the best k papers.

Beyond multiplicative approximation, some works have studied the scope
and limitations of impartial mechanisms in terms of additive guarantees [6–8]
and additional economic axioms [13,20]. Impartiality has also been considered
for the selection of agents where preferences come from correlated types [22],
for the selection of vertices in graphs with maximal progeny [3,26,27], and for
generating social rankings of agents who rank each other [16]. For a survey on
incentive handling in peer mechanisms, see Olckers and Walsh [23].

2 Preliminaries

For n ∈ N := Z≥1, we define the ranges [n] := {1, . . . , n} and [n]0 := {0, . . . , n −
1} and we write An for the set of non-negative n×n matrices with zero diagonal.
An instance of the weighted selection problem is fully described by an integer
k and a weight matrix A ∈ An, where k is the number of agents to be selected
and Aij corresponds to the weight of the vote that agent i casts for agent j. For
A ∈ An, we write A−i for the matrix obtained when removing the i-th row of
A. Given A ∈ An and R,S ⊆ [n], we write

σR(S;A) :=
∑

i∈R, j∈S

Aij

for the score of the agents in S limited to R, and σ(S;A) short for σ[n](S;A).
We omit the weight matrix A whenever it is clear from the context and we write
j short for S = {j} in the above definitions.

Let n, k ∈ N with k < n in the following. For A ∈ An, we let

Optk(A) := arg max
S⊆[n] : |S|=k

σ(S;A)

denote an arbitrary set with the largest score among vertex subsets of size k.
We write just Optk when the weight matrix is clear.

An (n, k)-selection mechanism is a function f : An → 2[n] such that |f(A)| ≤
k for every A ∈ An. Such a mechanism is impartial if, for every pair of instances
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A,A′ ∈ An and for all i ∈ [n] such that A−i = A′
−i, it holds that f(A) ∩ {i} =

f(A′) ∩ {i}. We further call an (n, k)-selection mechanism α-optimal if

σ(f(A);A)
σ(Optk(A);A)

≥ α

holds for all A ∈ An and some α ∈ [0, 1].
We write E ∪̇ F for the disjoint union of sets E and F . For a multiset E, we

write μE(e) for the multiplicity of e ∈ E and μ(E) for the cardinality of E.
A hypergraph is a pair H = (V,E) where V is a finite set of vertices and

where E ⊆ 2V is a multiset of (hyper-)edges. We say that H is d-regular if each
vertex is contained in exactly d edges, i.e., μ ({e ∈ E | v ∈ e}) = d for all v ∈ V ;
b-uniform if each edge contains exactly b vertices, i.e., |e| = b for all e ∈ E; and
linear if two distinct edges intersect in at most one vertex, i.e., |e1 ∩ e2| ≤ 1 for
all e1, e2 ∈ E with μE(e1) > 1 or e1 = e2. The dual of H is H∗ = (E,X) where
X := {{e ∈ E | v ∈ e} | v ∈ V } is a multiset of sets. One may think of the dual
graph in terms of the vertex–edge incidence matrix, which is transposed when
taking the dual graph. Note that the dual graph may have repeated edges and
loops even if the original graph does not have either.

We call a 2-uniform hypergraph without repeated edges a (simple) graph. For
a graph G = (V,E), an edge b-coloring is a mapping π : E → [b]. It is feasible if
π(e1) = π(e2) for all e1, e2 ∈ E with e1 ∩ e2 = ∅. Likewise, a vertex b-coloring is
a mapping π : V → [b] that we call feasible if π(u) = π(v) for all u, v ∈ V such
that u, v ∈ e for some e ∈ E.

3 Partition Systems

The present work takes inspiration from the partition mechanism. This mech-
anism was first proposed by Alon et al. [1] for the setting of randomized (n, 1)-
selection, and variants for selecting more than one agent have been studied by
Bjelde et al. [4], Aziz et al. [2], and Xu et al. [25]. In its original formulation due
to Alon et al., the partition mechanism assigns each agent into a voter set S1

and a candidate set S2 uniformly at random. It then considers only votes from
agents in S1 to agents in S2 and selects an agent from S2 with maximum score.
This mechanism is impartial as it considers only votes of agents with no chance
of being selected and it is 1/4-optimal, intuitively, as we see every fourth vote in
expectation. The (n, k)-selection variant by Bjelde et al. [4] partitions the agents
into k sets instead of two and selects one agent from each set that has the highest
score from all other sets, additionally considering internal votes that are directed
from left to right according to a random permutation of the agents. This variant
preserves impartiality and provides a guarantee that varies from 1/2 to 1 − 1/e
as k grows from 1 to infinity.

The partition mechanism, although achieving a good ratio when random-
ization is possible, performs poorly in the deterministic setting. If agents are
assigned in any fixed way, votes may be adversarially placed between agents in
the same set (and opposite to the order given by the permutation of the agents
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if such a step is considered), so that the mechanism cannot do any better, in the
worst case, than selecting agents with no votes, while the maximum score may
be arbitrarily high.

In the following, we build the foundation for a partition-based (n, k)-selection
mechanism that is robust against such adversarial placement of votes. To achieve
this, agents appear in the candidate set of more than one partition and with a
disjoint set of contenders each time. This way, votes not seen for a candidate
agent in one partition will be seen in another partition wherein that agent re-
appears as a candidate. Of course, repeated candidacy may lead to the same
agent being selected multiple times, at the expense of contenders with a high
number of votes. To minimize this possibility, we let every agent contest just
twice and we remove duplicate votes. As our goal is to select up to k agents,
we define k such partitions. For now, we make also the simplifying assumption
that n and k allow the candidate sets to have equal size b. This is without loss
of generality as we may fill smaller partitions with dummy agents who cast and
receive no votes and are disfavored when breaking ties. We call a collection of
partitions meeting these requirements a balanced partition system.

A partition into voters and candidates is fully described by either set. A
balanced partition system may thus be written as a family E of candidate subsets
of the set of agents V or, in other words, as a hypergraph H = (V,E) without
repeated edges, where each e ∈ E is the candidate set of a single partition. To
fulfill the requirements of a balanced partition system, H has to be 2-regular, so
that every agent appears in exactly two candidate sets, and b-uniform, so that
all candidate sets e ∈ E have the same size |e| = b. The remaining requirement
that no two agents compete twice against each other, formally |e1 ∩ e2| ≤ 1 for
all e1, e2 ∈ E with e1 = e2, translates to H being linear. The following lemma,
whose proof is omitted due to space constraints, implies that we can represent
a partition system further by a simple graph.

Lemma 1. A hypergraph is 2-regular and linear if and only if its dual is a simple
graph.

By Lemma 1 and the fact that order and size as well as degree and rank are
dual for hypergraphs, there is a one-to-one correspondence between balanced
partition systems where n agents are distributed among k candidate sets of
size b on the one hand, and b-regular simple graphs of order k and size n on
the other hand. In the simple graph representation, edges correspond to agents
while incident vertices correspond to candidate sets that the agents appear in.

In the analysis of the mechanism, we will bound the weight selected by it
by that of a subset U of top-voted agents that pairwise do not compete. More
precisely, U will be a set of maximum weight among a partition of the k top-
voted agents into b many subsets with this property. If the mechanism does not
select some agent i from U , then only because it makes up for the agent’s score in
the two partitions that agent i appears in, and which are pairwise disjoint for the
agents in U . This leads to a lower bound of (k/b)/k = 1/b, stated in Lemma 4. To
ensure the existence of b such sets, we require that any subgraph of H induced by
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(a) b = 1 (b) b = 2 (c) b = 3 (d) b = 4

Fig. 1. The construction of Lemma 2 for k = 8 vertices and degree b ∈ [4]: (a) the 4P2

(n = 4 edges), (b) the cycle C8 (n = 8), (c) the cube graph Q3 (n = 12), and (d) the
complete bipartite graph K4,4 (n = 16). Every edge represents an agent and every
vertex corresponds to a partition. A vertex and an edge are incident if the corresponding
agent is in the corresponding candidate set.

k vertices can be partitioned into b many (internally) independent sets. We call
a balanced partition system whose corresponding hypergraph has this property
robust. In terms of the b-regular dual graph G := H∗, the condition is equivalent
to the existence of an edge coloring with b colors for every subgraph induced by
k edges: the edges of any one color do not share a vertex, which corresponds to
vertices not sharing a hyperedge in H. By Kőnig’s line coloring theorem [17], a
sufficient condition for such a coloring to exist is that G is bipartite. The proofs
of Lemma 3 and 4 will formalize these ideas.

Bipartite and b-regular graphs of even order k and size n exist for all b = 2n/k
with b ≤ k/2. A simple construction is depicted in Fig. 1 and described by the
following lemma, whose proof is omitted due to space constraints.

Lemma 2. Let b, k, n ∈ N with k′ := k/2 ∈ N and b = 2n/k ≤ k′. Then, G =
(V,E) with V := [k]0 and E := {{i, k′ + ((i + �) mod k′)} | i ∈ [k′]0, � ∈ [b]0} is
a b-regular bipartite graph of order k and size n.

We condense the findings of this section in the following lemma.

Lemma 3. Let n, k ∈ N with k < n be such that b := 2n/k ∈ N and b ≤ k/2 ∈
N. Let further V with |V | = n denote a set of agents. Then, one may form k
partitions Sp

1 ∪̇ Sp
2 = V , p ∈ [k], such that

(i) |Sp
2 | = b for all p ∈ [k],

(ii) |Sp
2 ∩ Sq

2 | ≤ 1 for all p, q ∈ [k] with p = q,
(iii) |{p ∈ [k] | v ∈ Sp

2}| = 2 for all v ∈ V , and
(iv) for every U ⊆ V , there is a partition

⋃̇
t∈[b]Ut = U with u ∈ Sp

2 ⇒ v ∈ Sp
2

for all t ∈ [b], u, v ∈ Ut with u = v, and p ∈ [k].

Proof. For n, k, and b as in the statement, Lemma 2 guarantees the existence
of a b-regular bipartite graph G = (X,V ) of order |X| = k and size |V | = n.
Let H := G∗ = (V,E) be its dual graph. Note that H is b-uniform and has
order n and size k. By Lemma 1, H is further 2-regular and linear. As b ≥ 2 by
definition, it follows from linearity that H has no repeated edges, i.e., E is a set.

We use H to form a system of partitions of V . First, enumerate E by an arbi-
trary but fixed bijection φ : [k] → E. Then, for every p ∈ [k], define a candidate
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set Sp
2 := φ(p) and the associated voter set Sp

1 := V \ φ(p). As H is b-uniform,
we have (i) by construction. As it is linear, (ii) follows. Since H is 2-regular,
also (iii) holds.

It remains to show property (iv). By Kőnig’s line coloring theorem [17], there
exists a feasible edge b-coloring π : V → [b] of G. Let G′ be the subgraph of G
induced by an edge set U ⊆ V . Clearly, π restricted to U remains a feasible edge
b-coloring. The dual H ′ := (G′)∗ is the subgraph of H induced by the vertex
set U . In terms of H ′, π assigns colors to vertices. Since π restricted to U is
feasible for G′, it follows from vertex–edge duality that vertices in H ′ are colored
differently if they appear in a hyperedge together, i.e., π is a feasible vertex
coloring for H. Define thus Ut := {v ∈ U | π(v) = t} for each color t ∈ [b]. Then,
the sets Ut are disjoint by definition and

⋃̇
t∈[b]Ut = U as π(U) ⊆ π(V ) ⊆ [b].

Let finally t ∈ [b] and u, v ∈ Ut with u = v and assume towards a contradiction
that u, v ∈ Sp

2 for some p ∈ [k]. Then, u, v ∈ φ(p) ∈ E and π(u) = t = π(v)
by construction of Sp

2 and Ut, contradicting that π is a feasible vertex coloring
for H = (V,E). ��

Formally, we write S(n, k) for an arbitrary but fixed sequence ((Sp
1 , Sp

2 ))p∈[k]

with Sp
1 ∪̇ Sp

2 = [n] for every p ∈ [k] that fulfills the conditions of Lemma 3. We
assume for technical reasons that S1

2 = [b].

4 Impartial Selection

We are prepared to construct a mechanism that provides the first approximation
guarantee for deterministic impartial selection with weighted votes. Our main
result is the following.

Theorem 1. Let n, k ∈ N with 1 < k < n and k − k mod 2 ≥ 2
√

n. Then, there
exists an (n, k)-selection mechanism that is impartial and α-optimal with

α =
k − k mod 2

k
⌈

2n
k−k mod 2

⌉ .

The performance guarantee of Theorem 1 is shown in Fig. 2. It starts from
2/k for k − k mod 2 = 2

√
n and grows up to 1/3 for k − k mod 2 ∈ [2n/3, n− 1].

The main idea of the algorithm is as follows. We construct a robust partition
system of the set of agents, i.e., a set of k many partitions of the agents into
voters and candidates such that each agent appears as a candidate twice and
with disjoint sets of contenders. For the second candidacy, we remove votes that
are already present in the first candidacy to avoid double-counting. Then, the
mechanism selects the top scoring candidate from each partition, possibly select-
ing some agents twice. This mechanism is impartial as voters and candidates are
disjoint in each partition. The performance guarantee stems mainly from the
fact that every vote is counted exactly once.

In Sect. 3, we showed that a robust partition system is guaranteed to exist as
long as n and k satisfy k < n, b := 2n/k ∈ N and b ≤ k/2 ∈ N. In the following,



Deterministic Impartial Selection with Weights 159

Fig. 2. The performance guarantee of Theorem 1 for permissible n and k.

we assume these conditions in order to define and analyze our mechanism; we
lift them in the end to obtain the general result stated in Theorem 1.

Given n and k as in Lemma 3, our selection mechanism is formally described
by Algorithm 1; we refer to it as Selectk and denote its output by Selectk(A)
for a given input matrix A ∈ An. The procedure considers a partition system
with the properties stated in Lemma 3 and performs two main steps. Recall
that each agent j ∈ [n] appears in two candidate sets; we denote their indices
by l(j) < r(j) ∈ [k] such that j ∈ S

l(j)
2 ∩ S

r(j)
2 . The mechanism first computes

the modified score σ̂Sp
1
(j) for each j ∈ [n] and each p ∈ {l(j), r(j)}, which is

simply the actual score σ
S

l(j)
1

(j) for p = l(j). For p = r(j), however, we omit the
votes from agents i ∈ S

l(j)
1 in order to avoid double counting. The mechanism

then selects the vertex with the highest modified score out of each candidate
set, breaking ties in favor of the largest index.1 Figure 3 illustrates a possible
execution of Select6 on an instance A ∈ A9.

Throughout this section, whenever n, k, and A ∈ An are fixed, we write
((S1

1 , S1
2), . . . , (S

k
1 , Sk

2 )), l(j), r(j), σ̂Sp
1
(j), ip, and X for each p ∈ [k] and j ∈ [n]

to refer to the objects defined in Selectk. We only specify the input matrix A
as an argument when it is not clear from the context. The following lemma
constitutes the main technical ingredient for the proof of Theorem 1.

1 We sometimes compare tuples, for example (σ(j), j), in lexicographical order. We
use standard inequality signs as well as the min and max operators for this purpose.
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Algorithm 1: Selectk(A)
Input: weight matrix A ∈ An

Output: set X ⊆ [n] with |X| ≤ k
let ((S1

1 , S1
2), . . . , (S

k
1 , Sk

2 )) = S(n, k);
for j ∈ [n] do

let {l(j), r(j)} = {p ∈ [k] : j ∈ Sp
2} with l(j) < r(j);

define σ̂
S
l(j)
1

(j) ←− σ
S
l(j)
1

(j) and σ̂
S
r(j)
1

(j) ←− σ
S
r(j)
1 \Sl(j)

1
(j);

end
initialize X ←− ∅;
for p ∈ [k] do

take ip = argmaxj∈S
p
2
(σ̂S

p
1
(j), j) and update X ←− X ∪ {ip}

end
return X

Lemma 4. Let n, k ∈ N with k < n be such that b := 2n/k ∈ N and b ≤ k/2 ∈
N. Then, Selectk is an impartial and 1/b-optimal (n, k)-selection mechanism.

Proof. We consider n and k as in the statement. We first note that Selectk

returns a subset of [n] of size at most k and is well-defined as we have |{p ∈
[k] : j ∈ Sp

2}| = 2 for every j ∈ [n]. The former holds since ip is a single vertex
for every p ∈ [k] and X =

⋃
p∈[k]{ip}; the latter follows from property (iii) of

Lemma 3 since b := 2n/k ∈ N and b ≤ k/2 ∈ N.
To see that Selectk is impartial, let A,A′ ∈ An and j ∈ [n] such that A−j =

A′
−j . Suppose j ∈ Selectk(A). From the definition of the mechanism, we have

that there is p ∈ [k] such that j = argmaxi∈Sp
2
(σ̂Sp

1
(i;A), i). Since j ∈ Sp

2 and
A−j = A′

−j , we have both that σ̂Sp
1
(j;A) = σ̂Sp

1
(j;A′) and, for every i ∈ Sp

2 \{j},
that σ̂Sp

1
(i;A) = σ̂Sp

1
(i;A′). This yields j = argmaxi∈Sp

2
(σ̂Sp

1
(i;A′), i). Thus, we

obtain from the definition of the mechanism that j ∈ Selectk(A′). We conclude
that Selectk(A) ∩ {j} = Selectk(A′) ∩ {j}.

It remains to show that Selectk has an approximation ratio of 1/b. To this
end, we let A ∈ An be an arbitrary weight matrix. First, observe that

σ̂
S

l(j)
1

(j) + σ̂
S

r(j)
1

(j) = σ
S

l(j)
1

(j) + σ
S

r(j)
1 \S

l(j)
1

(j) = σ(j) (1)

for every j ∈ [n], since property (ii) of Lemma 3 implies S
l(j)
1 ∪ S

r(j)
1 = [n] \ {j}.

Furthermore, the definition of ip yields that

σ̂Sp
1
(ip) ≥ σ̂Sp

1
(j) (2)

for every p ∈ [k] and j ∈ Sp
2 . Given these two facts, we claim that

σ̂
S

l(j)
1

(il(j)) + σ̂
S

r(j)
1

(ir(j)) ≥ σ(j) (3)

for every j ∈ [n]. To see this, we fix j ∈ [n]. If ip = j for each p ∈ {l(j), r(j)},
inequality (3) follows immediately from equality (1). If |{j} ∩ {ip : p ∈
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Fig. 3. Example of Select6(A) for A ∈ A9. The weight matrix A is shown alongside
its graph representation, where edges of weight 1 are in blue, weight 2 are in orange,
weight 3 are in red, and edges of weight 0 are not included. The partition system is given
below, where omitted edges are shown in gray. For each partition, the selected vertex is
highlighted in light blue. Observe that σ(Select6(A)) = 17 and σ(Opt6(A)) = 27; the
multiplicative guarantee provided by Lemma 4 for this instance is 1/3. (Color figure
online)

{l(j), r(j)}}| = 1, say w.l.o.g. il(j) = j and ir(j) = h = j, we have that

σ̂
S

r(j)
1

(h) ≥ σ̂
S

r(j)
1

(j) = σ(j) − σ̂
S

l(j)
1

(j),

where the inequality follows from (2) and the equality from (1). In this case,
inequality (3) follows from j = il(j) and h = ir(j). Finally, if j ∈ {ip : p ∈
{l(j), r(j)}}, we have from (2) that

σ̂
S

l(j)
1

(il(j)) ≥ σ̂
S

l(j)
1

(j) and σ̂
S

r(j)
1

(ir(j)) ≥ σ̂
S

r(j)
1

(j)

so that inequality (3) follows from summing up these two inequalities and apply-
ing equality (1). This concludes the proof of inequality (3).

Letting χ denote the indicator function for logical propositions, we note that

σ(Selectk(A)) =
∑

j∈Selectk(A)

σ(j) =
∑

j∈Selectk(A)

(
σ̂

S
l(j)
1

(j) + σ̂
S

r(j)
1

(j)
)

≥
∑

j∈Selectk(A)

(
σ̂

S
l(j)
1

(j)χ(j = il(j)) + σ̂
S

r(j)
1

(j)χ(j = ir(j))
)

=
∑
p∈[k]

σ̂Sp
1
(ip). (4)

Indeed, the first equality follows from the definition of Selectk(A), the second
one from equality (1), the inequality simply from χ(·) ≤ 1, and the last equal-
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Algorithm 2: GenAlg,k(A)
Input: weight matrix A ∈ An

Output: set X ⊆ [n] with |X| ≤ k
define Ã ∈ Añ as

Ãij =

{
Aij if i, j ∈ [n],

0 otherwise.

return Alg(Ã)

ity follows from the definition of ip for each p ∈ [k]. We next use inequalities
(3) and (4) to conclude the bound stated in the lemma.

For b := 2n/k, we know from property (iv) of Lemma 3 that there is a
partition

⋃̇
t∈[b]Ut = Optk(A) such that i ∈ Sp

2 implies j ∈ Sp
2 for all t ∈ [b],

i, j ∈ Ut with i = j, and p ∈ [k]. We obtain that, for every t ∈ [b],

σ(Selectk(A)) ≥
∑
p∈[k]

σ̂Sp
1
(ip) ≥

∑
j∈Ut

(
σ̂

S
l(j)
1

(il(j)) + σ̂
S

r(j)
1

(ir(j))
)

≥ σ(Ut),

(5)
where the first inequality follows from inequality (4), the second one from the
fact that {l(i), r(i)} ∩ {l(j), r(j)} = ∅ for every t ∈ [b] and every i, j ∈ Ut with
i = j, and the last one from inequality (3). This yields

σ(Selectk(A)) ≥ max
t∈[b]

σ(Ut) ≥ 1
b

∑
t∈[b]

σ(Ut) =
1
b
σ(Optk(A)).

Here, the first inequality follows from (5), the second one from the observation
that the maximum of a set of values is at least as large as their average, and the
equality from the fact that {Ut}t∈[b] is a partition of Optk(A). Therefore, we
obtain that Selectk is α-optimal for

σ(Selectk(A))
σ(Optk(A))

≥ 1
b
= α. ��

In order to conclude our main result, it only remains to extend the bound
given by Lemma 4 to the case where at least one of the conditions b := 2n/k ∈ N

or b ≤ k/2 ∈ N is not satisfied. To this end, we show a general way to extend
bounds on the approximation ratio for given values of ñ and k̃ to other values
n and k: whenever n ≤ ñ and k ≥ k̃, we can do so preserving impartiality and
only losing a factor of k̃/k.

Given k, k̃, ñ, n ∈ N with k ≤ k̃ < ñ ≤ n, and an (ñ, k̃)-selection mechanism
Alg, we can generalize Alg to the (n, k)-selection mechanism GenAlg,k. This is
formally described by Algorithm 2, whose output is denoted by GenAlg,k(A) for
an input matrix A ∈ An. This algorithm simply extends A to the ñ×ñ matrix Ã
by adding ñ − n many all-zero rows and columns to it, and then applies Alg
on Ã. As before, whenever ñ, n, k, Alg, and A ∈ An are fixed, we use Ã to
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refer to the object defined in Algorithm 2 for this input. In a slight overload of
notation, when we consider A′ ∈ An as an input, we write simply Ã′ for the
matrix defined in Algorithm 2 on input A′. We obtain the following lemma.

Lemma 5. Let k̃, k, n, ñ ∈ N with k̃ ≤ k < n ≤ ñ be such that there exists an
impartial and α̃-optimal (ñ, k̃)-selection mechanism Alg. Then GenAlg,k is an
impartial and α-optimal (n, k)-selection mechanism with α = (k̃/k)α̃.

Proof. Let n, k, ñ, and k̃ be as in the statement. Let also Alg denote the
impartial and α̃-optimal (ñ, k̃)-selection mechanism.

In order to see that GenAlg,k is impartial, let A,A′ ∈ An and i ∈ [n] such
that A−i = A′

−i. This implies Ã−i = Ã′
−i, thus the impartiality of Alg yields

GenAlg,k(A) ∩ {i} = Alg(Ã) ∩ {i} = Alg(Ã′) ∩ {i} = GenAlg,k(A′) ∩ {i}.

To prove the approximation guarantee, we let A ∈ An be an arbitrary weight
matrix and observe that

σ(GenAlg,k(A))
σ(Optk̃(Ã))

=
σ(Alg(Ã))
σ(Optk̃(Ã))

≥ α̃, (6)

where the equality follows from the definition of GenAlg,k and the inequality
follows from the α̃-optimality of Alg. On the other hand, as k̃ ≤ k and σ(j, Ã) =
0 for every j ∈ [n], we know that

σ(Optk(A))
k

=
1
k

max
S⊆[n] : |S|=k

σ(S;A) ≤ 1
k̃

max
S⊆[n] : |S|=k̃

σ(S;A) =
σ(Optk̃(Ã))

k̃
,

i.e., the average score of the k top-voted agents of input A can be no larger than
the average score of the k̃ top-voted agents of input Ã. Plugging this inequality
into (6) concludes the proof as

σ(GenAlg,k(A))
σ(Optk(A))

≥ k̃

k

σ(GenAlg,k(A))
σ(Optk̃(Ã))

≥ k̃

k
α̃. ��

Our main result now follows from the last two lemmas.

Proof of Theorem 1. Let n and k be as in the statement. We define

k̃ := k − k mod 2 and ñ :=
k − k mod 2

2

⌈
2n

k − k mod 2

⌉
.

It is clear that ñ, k̃ are natural numbers with k̃ ≤ k < n ≤ ñ and that

b :=
2ñ
k̃

=
⌈

2n
k − k mod 2

⌉
∈ N.

Moreover, we have that

ñ =
k − k mod 2

2

⌈
2n

k − k mod 2

⌉
≤ k − k mod 2

2

⌈
2 (k−k mod 2)2

4

k − k mod 2

⌉
=

k̃2

4
,
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where the inequality follows from the condition k − k mod 2 ≥ 2
√

n in the
statement. This yields b = 2ñ/k̃ ≤ k̃/2 ∈ N. By Lemma 4, this implies that
Selectk̃ is an impartial and α̃-optimal (ñ, k̃)-selection mechanism with

α̃ =
1
b
=

1⌈
2n

k−k mod 2

⌉ .

Since ñ, k̃ ∈ N are such that k̃ ≤ k and ñ ≥ n, Lemma 5 implies that
GenSelectk̃,k is an impartial and α-optimal (n, k)-selection mechanism with

α =
k̃

k
α̃ =

k − k mod 2

k
⌈

2n
k−k mod 2

⌉ . ��

The mechanism and its approximation ratio naturally extend to the widely
studied unweighted setting, where one restricts to matrices A ∈ An with Aij ∈
{0, 1} for every i, j ∈ [n]. This improves on the previous best lower bound of
1/k whenever the number of agents to select is high enough compared to n for
Theorem 1 to be applicable: if k − k mod 2 ≥ 2

√
n, the theorem guarantees the

existence of an (n, k)-selection mechanism that is impartial and α-optimal with

α =
k − k mod 2

k
⌈

2n
k−k mod 2

⌉ ≥ k − k mod 2

k
⌈
2(k−k mod 2)2

4(k−k mod 2)

⌉ =
2
k

.

We end this section by showing that the analysis of our (n, k)-selection mech-
anism Selectk for n and k satisfying the conditions of Lemma 4 is tight.

Theorem 2. Let n, k ∈ N with k < n be such that b := 2n/k ∈ N and b ≤ k/2 ∈
N. Then, for every ε > 0 we have that Selectk is not (1/b + ε)-optimal.

Proof. Let n and k be as in the statement and consider the partition system
((S1

1 , S1
2), . . . , (S

k
1 , Sk

2 )) = S(n, k). Recall that we defined S(n, k) such that S1
2 =

[b]. Considering l(j) and r(j) as defined in Algorithm 1 for every j ∈ [n], we
note that for each j ∈ S1

2 we have l(j) = 1. For each j ∈ S1
2 , we let h(j) be an

arbitrary agent in S1
1 such that h(j) ∈ S

r(j)
2 . Such vertex is guaranteed to exist,

since from property (ii) of Lemma 3 we know that S
l(j)
2 ∩ S

r(j)
2 = {j}, and from

property (i) we have that |Sr(j)
2 | = b > 1.

We consider the instance given by A ∈ An with Aij = 1, if j ∈ S1
2 and

i = h(j), and Aij = 0, otherwise. Intuitively, this construction aims to have
Aij > 0 for some i ∈ Sp

1 and j ∈ Sp
2 only if p = 1, so that the only agent with a

strictly positive score selected by the mechanism, among b agents with a strictly
positive score, is i1. An example of this construction and the corresponding
outcome of the mechanism is illustrated in Fig. 4. It is clear that Optk(A) = [b]
and σ(Optk(A)) = b. On the other hand, we have that σ(i1) = 1 and, for
every p ∈ {2, 3, . . . , k}, that σ̂Sp

1
(j) = 0 for every j ∈ Sp

2 . This is because we
have σ(j) = 0 for every j ∈ [b] and, whenever there is a j ∈ [b] ∩ S2

p , we also
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Fig. 4. Example of the construction of the proof of Theorem 2 for n = 9 and k = 6
with 3 votes of weight 1: agent 4 votes for agent 1, agent 5 votes for agent 2, and
agent 6 votes for agent 3. All votes are only seen in the first partition. Since agents
with positive scores have the smallest indices, they are not selected in their second
candidate set.

have h(j) ∈ S2
p . Moreover, for every p ∈ {2, 3, . . . , k} such that there exists a

j ∈ [b] ∩ S2
p , we have that j = maxSp

2 since h(j) ∈ Sp
2 and h(j) > j. This yields

σ(ip) = 0 for every p ∈ {2, 3, . . . , k}, thus σ(Selectk(A)) = 1. This concludes
the proof as

σ(Selectk(A))
σ(Optk(A))

=
1
b
. ��

In terms of general upper bounds on the approximation ratio that an impar-
tial mechanism can achieve, the best known is (k − 1)/k [4]. Even for the regime
k − k mod 2 ≥ 2n/3, in which our mechanism provides a lower bound of 1/3
and considerably improves the previously best bound of 1/k [4], the gap remains
large. Further improvements in either lower or upper bounds arise as the main
direction for future work.

5 Impartial Assignment

In this section, we consider a generalization of the impartial selection problem
in which agents are not selected into one but assigned to at most one of m
many sets, which we refer to as jobs. Each job � ∈ [m] can be assigned at most
k agents, so that we obtain the impartial selection problem as the special case
where m = 1. We first extend the notation from Sect. 2 to this new setting.

For n,m ∈ N with m ≤ n, we consider m-tuples of weight matrices A =
(A1, A2, . . . , Am) ∈ Am

n , each of them representing the weighted votes for one
job. Let further k < n in the following; an instance of the assignment problem
is then given by the tuple A and the value k. We let

Xk :=
{
X = (X1,X2, . . . , Xm) ∈ (

2[n]
)m : |Xi| ≤ k and Xi ∩ Xj = ∅

for every i, j ∈ [m] with i = j
}

denote the set of feasible assignments, i.e., the set of tuples X containing m
pairwise disjoint subsets of agents, each with cardinality at most k. In a slight
overload of notation, for X ∈ Xk and A ∈ Am

n , we write

σ(X;A) :=
∑

�∈[m]

σ(X�;A�)
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to refer to the sum, over the jobs, of the score of the set assigned to each job
according to X, and we simply write σ(X) when the instance is clear from the
context. Finally, for A ∈ Am

n , we let

Optk(A) := arg max
X∈Xk

σ(X;A)

denote an arbitrary assignment with the largest score among feasible assign-
ments. We write just Optk when the instance is clear.

An (n,m, k)-assignment mechanism is a function f : Am
n → (

2[n]
)m such that

f(A) ∈ Xk for every A ∈ Am
n . Such a mechanism is impartial if, for every pair

of instances A ∈ Am
n and A′ ∈ Am

n and for all agents i ∈ [n] such that (A�)−i =
(A′

�)−i holds for each job � ∈ [m], it also holds that (f(A))�∩{i} = (f(A′))�∩{i}
for every � ∈ [m]. We further call an (n,m, k)-assignment mechanism α-optimal
if

σ(f(A);A)
σ(Optk(A);A)

≥ α

holds for all A ∈ Am
n and some α ∈ [0, 1].

We are prepared to state the main theorem of this section.

Theorem 3. Let n,m, k ∈ N with 1 < k < n, mk ≤ n, and k−k mod 2 ≥ 2
√

n.
Then, there exists an (n,m, k)-assignment mechanism that is impartial and α-
optimal with

α =
k − k mod 2

2k
⌈

2n
k−k mod 2

⌉ .

The proof of this result is omitted due to space constraints. The main ingre-
dient is an adaptation of our mechanism from Sect. 4 that selects from each
partition not one but m many agents: one for each set � ∈ [m]. We leave the
partitioning step unchanged and, for the second step, assign m agents from each
candidate set to different jobs in a way that the score obtained for each partition
is maximized. In case an agent is assigned to two different jobs, we assign it to
the one for which it receives the highest number of votes.

Impartiality of this mechanism follows from a similar reasoning as in the proof
of Theorem 1: whenever the vote of an agent is taken into account, the agent
is not part of the candidate set. The approximation guarantee makes use of a
detailed analysis of the case b := 2n/k ∈ N and b ≤ k/2 ∈ N, which is somewhat
more intricate than the analysis in Sect. 4. We consider subsets of agents that are
assigned to any job in the optimal assignment and are not mutual contenders.
We then use the key fact that, when considering the two partitions in which some
agent i is in the candidate set, the mechanism assigns agents in a way that the
sum of votes of the assigned agents in both partitions is at least the number of
votes that i receives for any job. Exploiting the robust partitioning structure as
before allows us to take the best of these subsets and conclude via an averaging
argument. Here we lose an additional factor of 1/2 due to the possibility that
an agent is initially assigned to two jobs. The extension to general values n, m,
and k is then analogous to that of Sect. 4.
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