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Abstract. We consider the problem of fairly allocating indivisible
resources to agents, which has been studied for years. Most previous
work focuses on fairness and/or efficiency among agents given agents’
preferences. However, besides the agents, the allocator as the resource
owner may also be involved in many real-world scenarios (e.g., govern-
ment resource allocation, heritage division, company personnel assign-
ment, etc.). The allocator has the inclination to obtain a fair or efficient
allocation based on her own preference over the items and to whom each
item is allocated. In this paper, we propose a new model and focus on the
following two problems concerning the allocator’s fairness and efficiency:
1. Is it possible to find an allocation that is fair for both the agents and

the allocator?
2. What is the complexity of maximizing the allocator’s social welfare

while satisfying the agents’ fairness?
We consider the two fundamental fairness criteria: envy-freeness and
proportionality. For the first problem, we study the existence of an allo-
cation that is envy-free up to c goods (EF-c) or proportional up to
c goods (PROP-c) from both the agents’ and the allocator’s perspec-
tives, in which such an allocation is called doubly EF-c or doubly PROP-
c respectively. When the allocator’s utility depends exclusively on the
items (but not to whom an item is allocated), we prove that a doubly
EF-1 allocation always exists. For the general setting where the allocator
has a preference over the items and to whom each item is allocated, we
prove that a doubly EF-1 allocation always exists for two agents, a dou-
bly PROP-2 allocation always exists for binary valuations, and a doubly
PROP-O(log n) allocation always exists in general.

For the second problem, we provide various (in)approximability
results in which the gaps between approximation and inapproximation
ratios are asymptotically closed under most settings.

Most of our results are based on some novel technical tools including
the chromatic numbers of the Kneser graphs and linear programming-
based analysis.
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1 Introduction

Fair division studies how to fairly allocate a set of resources to a set of agents
with heterogeneous preferences. It is becoming a valuable instrument in solving
real-world problems, e.g., Course Match for course allocation at the Wharton
School [13], and the website Spliddit (spliddit.org) for fair division of rent, goods,
credit, and so on [20]. The construct of fair division was first articulated by
Steinhaus [41,42] in the 1940s, and has become an attractive topic of interest in
wide range of fields, such as mathematics, economics, computer science, and so
on (see, e.g., [1,2,9,29,35,37,38,44] for a survey).

The classic fair division problem mainly focuses on finding fair and/or effi-
cient allocations among agents given agents’ preferences. However, in many real-
world scenarios, the allocator as the resource owner may also be involved, and,
particularly, may have the inclination to obtain a fair or efficient allocation based
on her own preference. For example, consider the division of inheritances, e.g.,
multiple companies and multiple houses, from the parent to two children. Both
children would prefer the companies as they believe the market value of the com-
panies will be increased more than the houses in the future. At the same time,
the parent may want to allocate the companies to the elder child since the parent
thinks the elder child has a better ability to run the companies. The final allo-
cation should be fair for children and may also need to incorporate the parent’s
ideas about the allocation. Another example is the government distributing edu-
cational resources (e.g., land, funding, experienced teachers or principals) among
different schools. Some well-established schools may prefer land to build a new
campus, while some new schools may need experienced teachers. On the other
hand, the government may also have a preference (over the resources and to
whom each resource is allocated) based on macroeconomic policy and may want
the resulting distribution to be efficient on top of each school feels that it gets
a fair share. Other examples abound: a company allocates resources to multi-
ple departments, an advisor allocates tasks/projects to students, a conference
reviewer assignment system allocates papers to reviewers, etc.

We focus on the allocation of indivisible goods in this work. To measure
fairness, the two most fundamental criteria in the literature are envy-freeness
and proportionality, respectively [18,41,42,45]. In particular, an allocation is said
to be envy-free if each agent weakly prefers her bundle over any other agent’s
based on her own preference, and proportional if each agent values her bundle at
least 1/n of her value for the whole resources, where n is the number of agents.
Both fairness criteria can always be achieved in divisible resource allocation
but it is not the case for indivisible resources (say, a simple example with two
agents and one good). This triggers an increasing number of research work to
consider relaxing exact fairness notions of envy-freeness and proportionality to
envy-freeness up to c goods (EF-c) and proportionality up to c goods (PROP-c)
(see, e.g., [12,16,28]). Specifically, an allocation is said to be EF-c if any agent’s
envy towards another agent could be eliminated by (hypothetically) removing
at most c goods in the latter’s bundle, and PROP-c if any agent’s fair share of
1/n could be guaranteed by (hypothetically) adding at most c goods that are
allocated to other agents, where c is a positive integer. Besides fairness, another
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important issue of fair division is (economic) efficiency (e.g., social welfare),
which is used to measure the total happiness of the agents [3,6,8,15].

The fair division problem with allocator’s preference presents new challenges
compared to the classic fair division problems. With indivisible goods, it is well
known that the round-robin algorithm1 can return a fair, i.e., EF-1, allocation
from the agents’ perspective. However, this algorithm cannot be easily adapted
to the problem where both agents and the allocator have preferences over items.
Specifically, an agent’s preference describes how much this agent values each
item, while the allocator’s preference describes how much the allocator regards
each item values for each agent. Consider the instance with both agents’ and the
allocator’s preferences shown in Tables 1 and 2.

Table 1. Agents’ Preferences

Item 1 Item 2 Item 3

Agent 1 2 1 0

Agent 2 0 1 2

Table 2. Allocator’s Preferences

Item 1 Item 2 Item 3

Allocator for Agent 1 0 2 1

Allocator for Agent 2 1 2 0

Suppose, w.l.o.g, agent 1 is before agent 2 in the ordering of the round-robin
algorithm. When performing the algorithm without considering the allocator’s
preference, agent 1 gets a bundle of items 1 and 2 while agent 2 gets item 3.
From the allocator’s perspective, this allocation is not EF-1 since the allocator
thinks agent 2 will envy agent 1 even when an arbitrary item is removed from
agent 1’s bundle. One can also verify that the above allocation is not social
welfare maximizing based on the allocator’s viewpoint, i.e., the allocator thinks
there is another allocation such that the total happiness of the agents is larger.
On the other hand, performing the round-robin algorithm based solely on the
allocator’s preference will return an allocation where agent 1 gets items 2 and 3
while agent 2 gets item 1 (assuming agent 1 has a higher priority in the ordering).
Specifically, we want to answer the following two questions in this paper.

Question 1: Is it possible to find an allocation that guarantees both the
allocator’s and agents’ fairness?
Question 2: What is the complexity of maximizing the allocator’s efficiency
while ensuring agents’ fairness?

1.1 Our Results

We initiate the study of fair division with allocator’s preference and address
the two research questions above in this paper. We focus on the allocation of
indivisible resources and discuss the divisible resources in the full version of our
paper [11].
1 The round-robin algorithm works as follows: Given an ordering of agents, each agent

picks her favorite item among the remaining items to her bundle following the order-
ing in rounds until there is no remaining item.
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Table 3. Positive and Negative Results of Maximizing Allocator’s Efficiency. The
numbers of agents and items are denoted by n and m, respectively. For each agent i, vi

represents her utility function while ui represents how much the allocator regards each
item values for agent i. Numbers α for negative results indicate that the problem is NP-
hard to approximate to within the ratio α; numbers α for positive results indicate that
the problem admits a polynomial time α-approximation algorithm. All our negative
results hold for the special case c = 1. The theorem statements and the proofs for
these negative results are only available in the full version of this paper [11].

n Fairness vi ui Negative Results Positive Results

2 EF-c arbitrary arbitrary 2 2 (Theorem 7)

EF-c arbitrary binary 2 2 (Theorem 7)

EF-c binary arbitrary – 1 (Theorem 8)

constant EF-c arbitrary binary
⌊

1+
√
4n−3
2

⌋
[10] ?

EF-c binary arbitrary – 1 (Theorem 8)

general EF-c binary binary m1−ε, n1/2−ε m (Theorem 9)

EF-c arbitrary arbitrary m1−ε, n1/2−ε m (Theorem 9)

PROP-c arbitrary binary 2 ?

PROP-c binary arbitrary – 1 (Theorem 10)

For the first problem, we propose new fairness notions doubly EF-c and dou-
bly PROP-c that extend EF-c and PROP-c to our setting with regard to the
allocator’s preference. We first consider the setting where the allocator’s utility
only depends on the items (but not to whom an item is allocated), and we show
that a doubly EF-1 allocation always exists. We then consider the general set-
ting where the allocator’s utility depends on both the items and the allocation.
For two agents, we show that 1) a doubly EF-1 allocation always exists, and 2)
a doubly EF-2 allocation and a doubly PROP-1 allocation can be computed in
polynomial time. For a general number of agents, we show that a doubly PROP-
log2 n allocation always exists for n being an integer power of 2, and we show
that a doubly PROP-(2�log n�) allocation always exists and can be computed
in polynomial time. If we restrict to binary valuations, we show that a doubly
PROP-2 allocation always exists and can be computed in polynomial time.

For the second problem, we study its complexity and approximability for both
binary and general (additive) valuations. Our results are presented in Table 3.
The gap between the approximation ratio and the inapproximability ratio is
closed, or asymptotically closed, under most settings. If agents’ valuations are
binary, this problem is tractable for EF-c with a constant number of agents and
for PROP-c with a general number of agents. Under most other settings, this
problem admits strong inapproximability ratios even for c = 1.

Our results use many technical tools that are uncommon in the fair division
literature, including i) the chromatic numbers of generalized Kneser graphs and
ii) some linear programming-based analyses.
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For i), we use a generalized Kneser graph to model a set of allocations and
the relations between the allocations. Specifically, the set of allocations that are
not fair based on an agent’s valuation form an independent set in the graph. The
existence of a doubly fair allocation is built upon the argument that there are
still remaining vertices after removing all vertices that correspond to unfair allo-
cations. Since the set of unfair allocations for each agent forms an independent
set, the chromatic number of the graph plays an important role in our analysis.

For ii), we use linear programs to formulate our problems. The solution to the
linear program naturally corresponds to a fractional allocation. Our technique is
mainly based on the analysis of the vertices of the polytope defined by the linear
program. In some applications, we bound the number of the fractional items in
an allocation given by a vertex solution of the linear program, and then handle
those few fractional items separately. In other applications, we prove that all the
vertex solutions of the linear program are integral.

1.2 Further Related Work

Conceptually, our model with allocator’s preference shares similarities with
recent research work on fair division with two-sided fairness, e.g., [19,21,25,36].
The existing two-sided fairness literature studies the fair division problem where
there are two disjoint groups of agents and each agent in one group has a prefer-
ence over the agents of the other group. The objective is then to find a (many-to-
many) matching that is fair to each agent with respect to her belonging group.
We remark these two models are different due to the following major reasons:

– In their model, there are two disjoint sets of agents, and each group of pref-
erences is defined from one set of agents to the other set of agents (viewed
as a set of “goods”). On the other hand, the two groups of preferences (one
is from the agents and the other one is from the allocator) in our setting are
both defined on a single set of agents and a single set of goods.

– In their model, each agent will be allocated (or matched) a set of agents from
the other group which is different from ours, whereas the allocator in our
model will not receive any resource in the allocation.

As we can see, our model with allocator’s preference reduces to the stan-
dard setting of indivisible goods when the allocator’s preference coincides with
agents’ preferences. Our first research question reduces to find EF-c or PROP-c
allocations in indivisible fair allocation, where the fairness notions of EF-1 and
PROP-1 are extensively studied. In particular, an EF-1 allocation always exits
and can be computed in polynomial time [14,28]. For PROP-1, an allocation that
is PROP1 and Pareto optimal always exits and can be computed in polynomial
time [4,7,16,34]. When considering the issue of economic efficiency, the problem
in our second research question could be mapped to the problem of maximiz-
ing social welfare within either EF-1 or PROP-1 allocations in the indivisible
goods setting. Aziz et al. [3] showed that the problem with either the EF-1 or
the PROP-1 condition is NP-hard for n ≥ 2 and Barman et al. [6] showed that
the problem with the EF-1 requirement is NP-hard to approximate to within a
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factor of 1/m1−ε for any ε > 0 for general numbers of agents n and items m.
Later, Bu et al. [10] gave a complete landscape for the approximability of the
problem with the EF-1 criterion.

Moreover, several works studied the fair division problem where the resources
need to be allocated among groups of agents and the resources are shared
among the agents within each predefined group [31,39,40,43]. In their model,
n = n1+· · ·+nk agents will be divided into k ≥ 2 groups, where group i contains
ni ≥ 1 agents. An allocation is a partition of goods into k groups. Each agent
in the i-th group extracts utilities according to the i-th bundle. Kyropoulou et
al. [27] also generalized the classic EF-c to the group setting: An agent’s envy
towards another group could be eliminated by removing at most c goods from
that group’s bundle. PROP-c could be defined similarly [32]. With binary val-
uations, Kyropoulou et al. [27] gave the characterization of the cardinalities of
the groups for which a group EF-1 allocation always exits. In particular, they
showed that a group EF-1 allocation always exists when there are two groups
and each group contains two agents with binary valuations. Later, Manurangsi
and Suksompong [32] showed via the discrepancy theory that EF-O(

√
n) and

PROP-O(
√

n) allocations always exist in the group setting. Note that, when
each group contains exactly two agents, i.e., n1 = . . . = nk = 2, the fair divi-
sion problem in the predefined group setting coincides with our model (where
each group could be considered to have an agent and the allocator). However,
we obtain improved results in this particular setting through different technical
tools.

2 Preliminaries

Let [k] = {1, . . . , k}. Our model consists of a set of agents N = [n], a set
of indivisible items M = {g1, . . . , gm}, and the allocator. Each agent i has a
nonnegative utility function vi : {0, 1}m → R≥0. In addition, the allocator has
her own preference in our model. The allocator’s preference is composed by n
utility functions ui : {0, 1}m → R≥0 where each ui is used to describe how
much the allocator regards each item values for agent i. We assume both utility
functions ui and vi are additive, which means vi(X) =

∑
g∈X vi(g) and ui(X) =∑

g∈X ui(g) for any bundle X ⊆ M . A utility function vi (or ui) is said to
be binary if vi(g) ∈ {0, 1} for any item g ∈ M . An allocation of the items
A = (A1, A2, . . . , An) is an ordered partition of M , where Ai is the bundle of
items allocated to agent i.

An allocation A is said to be envy-free up to c goods (EF-c) if for all pairs of
agents i 	= j, there exists a set B ⊆ Aj such that |B| ≤ c and vi(Ai) ≥ vi (Aj \ B)
(or vi(Ai) ≥ vi(Aj) − vi(B) for additive utility functions). An allocation A
is said to be proportional up to c goods (PROP-c) if for any agent i, there
exists a set B ⊆ M \ Ai such that |B| ≤ c and vi(Ai ∪ B) ≥ 1

nvi(M) (or
vi(Ai) ≥ 1

nvi(M) − vi(B) for additive utility functions).
EF-c implies PROP-c for additive utility functions. An EF-1 (hence, PROP-

1) allocation always exists and can be computed in polynomial time [14,28]. In
our model, besides ensuring fairness among agents, we also consider allocator’s
fairness. Thus, we generalize the above fairness criteria in the following.
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Definition 1 (Doubly Envy-free up to c goods). An allocation A is said to
be doubly envy-free up to c goods (Doubly EF-c) if for all pairs of agents i 	= j,
there exist sets B1, B2 ⊆ Aj such that |B1| , |B2| ≤ c, vi(Ai) ≥ vi (Aj \ B1), and
ui(Ai) ≥ ui (Aj\B2).

Definition 2 (Doubly Proportional up to c goods). An allocation A is
said to be doubly proportional up to c goods (Doubly PROP-c) if for any i ∈ N ,
there exist sets B1, B2 ⊆ M \Ai such that |B1| , |B2| ≤ c, vi(Ai ∪B1) ≥ 1

nvi(M),
and ui(Ai ∪ B2) ≥ 1

nui(M).

When the allocator’s utility functions are identical to agents’ utility func-
tions, it is easy to see that doubly EF-c and doubly PROP-c degenerate to EF-c
and PROP-c respectively. The above defined double fairness notions with the
allocator’s preference can also be interpreted as: There are two groups of val-
uation functions u and v where one is from the agents and the other one is
from the allocator. A single allocation is said to satisfy double fairness if such
an allocation is fair, e.g., doubly EF-c/PROP-c, with respect to both valuation
functions u and v.

To measure the economic efficiency for the allocator, we consider allocator’s
efficiency :

Definition 3. The allocator’s efficiency of an allocation A = (A1, . . . , An),
denoted by EFFICIENCY(A), is the summation of the allocator’s utilities of all
the agents EFFICIENCY(A) =

∑n
i=1 ui(Ai).

In this paper, we are interested in the following two problems.

Problem 1. Given a set of indivisible items M , a set of agents N = [n] with their
utility functions (v1, . . . , vn), and the allocator with her preference (u1, . . . , un),
determine whether there exists an allocation A = (A1, . . . , An) that is doubly
EF-c/PROP-c.

Problem 2. Given a set of indivisible items M , a set of agents N = [n] with their
utility functions (v1, . . . , vn), and the allocator with her preference (u1, . . . , un),
the problem of maximizing allocator’s efficiency subject to EF-c/PROP-c aims
to find an allocation A = (A1, . . . , An) that maximizes allocator’s efficiency
EFFICIENCY subject to that A is EF-c/PROP-c.

2.1 Kneser Graph and Chromatic Number

Let n, k be two integers. The Kneser graph K(n, k) is the graph with the set of all
the k-element subsets of [n] as its vertex set and two vertices are adjacent if their
intersection is empty. It was further extended to the following generalized version.
Given three integers n, k, s ∈ Z

+, in the generalized Kneser graph K(n, k, s), two
vertices are adjacent if and only if their corresponding subsets intersect in s or
fewer elements.

The chromatic number of a graph is the minimum number of colors needed to
color the vertices such that no two adjacent vertices have the same color. In other
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words, the vertices with the same color form an independent set. We denote the
chromatic number of a kneser graph K(n, k, s) by χ(n, k, s). For instance, when
n = 4, k = 3, s = 2, the kneser graph has

(
4
3

)
= 4 vertices and every two vertices

are adjacent. Thus, K(4, 3, 2) is a clique and χ(4, 3, 2) = 4.
For the chromatic number of the Kenser graph, when n ≥ 2k, it is exactly

equal to n − 2k + 2 [5,22,30,33]. For the generalized Kneser graph, Jafari and
Moghaddamzadeh [26] gave the following lower bounds.

Lemma 1 ([26]). For any positive integers s < k < n,

χ(n, k, s) ≥ n − 2k + 2 s + 2.

Lemma 2 ([26]). For any k ∈ Z
+ ≥ 2, χ(2k, k, 1) = 6.

2.2 Totally Unimodular Matrix and Linear Programming

Totally unimodular matrix is a special family of matrices that can be used to
check whether a linear programming is integral, i.e., there exists one optimal
solution such that all decision variables are integers.

Definition 4 (Totally Unimodular Matrix). A matrix Am×n is a totally
unimodular matrix (TUM) if every square submatrix of A has determinant 0,
+1 or −1.

To determine whether a matrix is TUM, we have the following lemma.

Lemma 3. Given a matrix A ∈ {0,±1}m×n, A is TUM if it can be written as

the form of
[
A1

A2

]

, where A1 ∈ {0, 1}r×n (or {0,−1}r×n), A2 ∈ {0, 1}(m−r)×n

(or {0,−1}(m−r)×n), 1 ≤ r ≤ m and there is at most one nonzero number in
every column of A1 or A2.

Lemma 4 ([24]). If A is totally unimodular and b is an integer vector, then
each vertex of the polytope {Ax ≤ b,x ≥ 0} has integer coordinates.

We can further show there exist polynomial-time algorithms to find the opti-
mal vertex solution for such a linear program by the following lemma.

Lemma 5 ([23]). For a linear program max{c�x : Ax ≤ b,x ≥ 0}, if optimal
solutions exist, an optimal vertex solution can be found in polynomial time. In
particular, we can find an (integral) vertex of the polytope {Ax ≤ b,x ≥ 0} in
polynomial time.

3 Double Fairness

In this part, we present the results for the existence of double fairness. In the first
part, we assume the allocator’s utility depends exclusively on the item (rather
than to whom an item is allocated). That is, we assume the allocator’s utility
functions are identical u1 = · · · = un. We show that a doubly EF-1 allocation
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always exists in this case by adapting the envy-cycle procedure. After that, we
consider the general setting without u1 = · · · = un. In this case, we first show
that a doubly EF-1 allocation always exists for n = 2 based on the chromatic
number of the generalized Kneser graph K(m,m/2, 1). However, the existence
of doubly EF-1 allocations for n > 3 is highly non-trivial. For this reason, we
consider relaxing the fairness constraint to doubly EF-c or PROP-c and try to
minimize the value of c. We show that a doubly PROP-O(log n) allocation always
exists for any number of agents via the techniques based on the generalized
Kneser graph and linear programming. Finally, we also consider another common
setting, where both the allocator and agents’ utility functions are binary (the
utility value can only be 0 or 1). This relaxation makes the problem tractable
and we demonstrate a doubly PROP-2 allocation always exists in this setting.

3.1 Identical Allocator’s Utility Function

This section considers the case when the allocator’s utility functions u1, . . . , un

are identical. Let u = u1 = · · · = un.
We first give a brief introduction of the techniques used in this section. The

envy-cycle procedure was first proposed by [28] to compute an EF-1 allocation for
general valuations. In the envy-cycle procedure, an envy-graph is constructed for
a partial allocation. Each vertex in the envy-graph represents an agent and each
directed edge (u, v) means that agent u envies agent v in the current allocation.
When there is a cycle in an envy-graph, we use the cycle-elimination algorithm
to eliminate this cycle.

Definition 5 (Cycle-elimination Algorithm). Given an envy-graph with a
cycle u1 → . . . → un → u1, shift the agents’ bundles along the cycle (Aui

←
Aui+1 for i = 1, . . . , n − 1 and An ← A1).

Theorem 1. When the allocator’s utility functions are identical, a doubly EF-
1 allocation always exists for any number of agents n, and can be found by
Algorithm 1 in polynomial time.

Our algorithm is presented in Algorithm 1. At the beginning of the algorithm,
we construct an envy-graph G with n vertices and no edges and sort the items
according to the allocator’s utility function in descending order. Then, we divide
the sorted items into

⌈
m
n

⌉
groups where each group contains n items. In each

round, we allocate a group of items to the agents such that each agent receives
exactly one item. This can guarantee the EF-1 property from the allocator’s
perspective. To allocate the group of n items to the n agents in each round,
each agent takes away her favorite item from the group, where the agents are
sorted in the topological order of G before the iteration begins. After all these
n items are allocated, we update the envy-graph and run the cycle-elimination
algorithm, so that the envy-graph contains no cycle and a topological order of
the agents can be successfully found in the next round. By an induction-based
argument showing the EF-1 property of the well-known round-robin algorithm,
the EF-1 property of our algorithm in the agents’ perspectives can be proved.
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Algorithm 1: Finding Doubly EF-1 Allocation for Identical Utility Func-
tion
Input: the set of agents N , the set of items M , agents’ utility functions vi,

allocator’s utility function u
Output: a doubly EF-1 allocation

1 Let G = (V, E) be the envy-graph where each vertex represents an agent and
E ← ∅;

2 Initialize A = (∅, . . . , ∅);
3 if n � m then
4 Add dummy items to M such that n | m and set the utility of each dummy

item as 0;

5 Let Ms be the sorted array of the items according to allocator’s utility function
u in descending order;

6 for every n items Mn ⊆ Ms do
7 Let {i1, . . . , in} be the agents in topological order of graph G;
8 for each j ∈ {1, . . . , n} do
9 Allocate agent ij ’s favorite item g ∈ Mn to ij :

Aij ← Aij ∪ {argmaxg∈Mn
vij (g)};

10 Mn ← Mn \ {g};

11 Update the envy-graph G;
12 Iteratively run the cycle-elimination algorithm and update G until G

contains no cycle;

13 Remove the dummy items from the allocation A ;
14 return the allocation A

3.2 General Additive Valuations with Two Agents

For general (monotone) valuations with two agents, the existence of a doubly
EF-1 allocation can be proved with the help of the generalized Kneser graph.

Theorem 2. When n = 2, there always exists a doubly EF-1 allocation.

Proof. Our high-level idea is to consider the allocations that some agents or the
allocator do not regard as EF-1. We then use the Kneser graph to demonstrate
that the union of these allocations cannot cover the entire space of all possible
allocations. We assume the number of items, m, is even. Otherwise, we can add
a dummy item g such that vi(g) = ui(g) = 0. We denote the set of allocations
where each bundle’s size is exactly equal to m

2 by Π. For i = 1, 2, Let Vi be the
set of allocations that agent i does not regard as EF-1. Besides, Ui represents
the set of allocations that the allocator does not regard as EF-1 for agent i.
Formally, they are given by the following formulas:

Vi � {A ∈ Π : vi(Ai) < vi ((M\Ai)\{g}) ,∀g ∈ (M\Ai)},

Ui � {A ∈ Π : ui(Ai) < ui ((M\Ai)\{g}) ,∀g ∈ (M\Ai)}.
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For the existence of a doubly EF-1 allocation, it suffices to show that V1 ∪ V2 ∪
U1 ∪ U2 � Π. Let V(1)

1 = {A1 : (A1, A2) ∈ V1}, and define V(1)
2 ,U (1)

1 ,U (1)
2

analogously. We give the proposition for V(1)
1 below, which also works for the

other three sets.

Proposition 1. For each A1, A
′
1 ∈ V(1)

1 , |A1 ∩ A′
1| ≥ 2.

Proof. For the sake of contradiction, we assume |A1 ∩ A′
1| ≤ 1. If A1 ∩ A′

1 = ∅,
(A1, A

′
1) is a valid allocation. If (A1, A

′
1) is not EF1 according to v1, then (A′

1, A1)
is envy-free, which means A′

1 /∈ V(1)
1 .

If |A1 ∩ A′
1| = 1, let g1 be the item in A1 ∩ A′

1 and g2 be the only item in
M \ (A1 ∪ A′

1). According to the definition of V1, we have

v1(A1) < v1(M\A1) − v1(g2) = v1(A′
1) − v1(g1),

v1(A′
1) < v1(M\A′

1) − v1(g2) = v1(A1) − v1(g1).

Combining the above two inequalities yields a contradiction. �
Return to the proof of Theorem 2. We consider the generalized Kneser graph

H = K (
m, m

2 , 1
)
. Each vertex of the graph defines a bundle B of m/2 items,

and it defines an allocation (A1, A2) where A1 = B and A2 = M\B. Due to
Proposition 1, each of V(1)

1 ,V(1)
2 ,U (1)

1 ,U (1)
2 cannot contain two adjacent vertices

of H and is thus an independent set.
Finally, we have V1 ∪ V2 ∪ U1 ∪ U2 � Π. Otherwise, H can be decomposed

into four independent sets, which contradicts to χ(H) = 6 (Lemma 2). �
Remark 1. Theorem 2 also holds for general monotone utility functions that are
not necessarily additive, with the same proof above.

Theorem 2 is non-constructive. For constructive results, we use linear pro-
gramming to construct a doubly EF-2 allocation in Theorem 3.

Theorem 3. When n = 2, there always exists a doubly EF-2 allocation that can
be computed in polynomial time.

Proof. For each item gj ∈ M , we use one decision variable xj to represent the
fraction of item gj allocated to group N1. Consider the following linear program:

max
x

⎛

⎝
m∑

j=1

v1(gj)xj −
m∑

j=1

v1(gj)(1 − xj)

⎞

⎠

subject to 0 ≤ xj ≤ 1,∀1 ≤ j ≤ m (1)
m∑

j=1

u1(gj)xj ≥
m∑

j=1

u1(gj)(1 − xj) (2)

m∑

j=1

v2(gj)xj ≤
m∑

j=1

v2(gj)(1 − xj) (3)

m∑

j=1

u2(gj)xj ≤
m∑

j=1

u2(gj)(1 − xj) (4)
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Notice that a solution x with a non-negative objective provides a fractional
doubly envy-free allocation. In addition, {xj = 0.5}j=1,...,m is such a solution.

Consider an optimal vertex solution x∗. Lemma 5 implies such a solution
can be found in polynomial time. Among all the constraints given in (1), (2),
(3), and (4), a vertex solution is obtained by setting m of them being tight.
Even if all of the three constraints (2), (3), and (4) are tight, at least m − 3
constraints are tight in (1). This implies at most three variables have value in
the open interval (0, 1). Let x∗

1, x
∗
2, x

∗
3 be them without loss of generality. This

implies we have a doubly envy-free allocation where only the first three items
may be fractionally allocated. In the remaining part of the proof, we show that
how to carefully decide the (integral) allocation of the first three items to make
the allocation doubly EF-2.

Let (O1, O2) be the allocation of the remaining m− 3 items indicated by the
LP solution x∗. We consider the two cases of x∗

1, x
∗
2, x

∗
3.

Suppose at least two of them are no less than 1
2 , and assume x∗

1, x
∗
2 ≥ 1

2 .
Consider the allocation (O1 ∪ {g1, g2}, O2 ∪ {g3}). For agent 1, for each v ∈
{u1, v1}, we have v(A1) + v (g3) ≥ ∑

gj∈M v (gj) x∗
j ≥ v(A2). For agent 2, for

each v ∈ {u2, v2}, assume v(g1) ≥ v(g2), then we have

v(A2) + v (g1) = v(A2) + (1 − x∗
1) v(g1) + x∗

1v(g1)
≥ v(A2) + (1 − x1) v(g1) + (1 − x∗

2)v(g1)
≥ v(A2) + (1 − x∗

1) v(g1) + (1 − x∗
2) v(g2)

≥
∑

gj∈M

v(gj)
(
1 − x∗

j

) ≥ 1
2
v(M) ≥ v(A1).

Suppose at least two of them are no more than 1
2 , and assume x∗

1, x
∗
2 ≤ 1

2 .
Similarly, we can also verify that (O1 ∪ {g3}, O2 ∪ {g1, g2}) is doubly EF-2. �

It is easy to see that an EF-2 allocation is always PROP-1 for two agents.

Corollary 1. When n = 2, there always exists a doubly PROP-1 allocation that
can be computed in polynomial time.

3.3 General Additive Valuations with General Number of Agents

Next, we consider the lower bound of c when n ≥ 2. Our results are shown in
the two theorems below.

Theorem 4. For any n = 2k, there always exists a doubly PROP-k allocation.

Theorem 5. For any n ≥ 2, there always exists a doubly PROP-
(
2
⌈

log n
⌉)

allocation and it can be computed in polynomial time.

The proofs are available in the full version of our paper [11]. Here we briefly
describe the high-level ideas. Both theorems are based on the idea of Even-Paz
algorithm [17]. Given n agents, we first partition the agent set into two groups
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and try to allocate each group one bundle. After that, we fix the two bundles
to the two groups and then do further allocating within groups recursively. To
guarantee the property of PROP-c, in each recursive iteration, we ensure that
each agent and the allocator believe the agent’s group receives approximately a
1
2 fraction of the total value. To be specific, the value should be at least 1

2 up to
d items, where d depends on the level of the recursion tree.

The ideas in the proofs of both Theorem 2 and Theorem 3 can be generalized
to achieve this. The idea of Kneser graphs can give a better fairness guarantee
with a smaller value of c. However, it only works when agents can be partitioned
into two equal-sized groups, and it is non-constructive. This yields Theorem 4.
The idea of linear programming analysis gives a slightly worse fairness guarantee,
but it is constructive and it works for any number of agents.

3.4 Binary Valuations

As shown in Theorem 5, for general additive valuation, when n ≥ 2, doubly
PROP-O(log n) allocations always exist. In this section, we further consider
another common setting where the utility functions are binary. We show that a
doubly PROP-2 allocation always exists and can be found in polynomial time
for any n ≥ 2 in Theorem 6. The advantage of this setting is that an agent i
only needs to focus on the items whose values are regarded as 1 by vi(·) or ui(·).
Theorem 6. When ui, vi are both binary for any i ∈ N , a doubly PROP-2
allocation always exists for any n ≥ 2 and can be computed in polynomial time.

Proof. For each agent i ∈ N , we define the following three item sets: I(1)
i � {g ∈

M : vi(g) = 1 ∧ ui(g) = 0}, I(2)
i � {g ∈ M : vi(g) = ui(g) = 1}, I(3)

i � {g ∈ M :
ui(g) = 1 ∧ vi(g) = 0}. Then, we formulate this problem by a linear program.
For each agent i ∈ N , we define a vector xi = (xi,j)j∈[m], where xi,j represents
the fraction of item gj allocated to agent i. Denote (x1, . . . ,xn) by x. Hence x is
a vector with n×m variables. Consider the polytope P = {x : AxT ≤ b,x ≥ 0},
where A ∈ R

(3n+m)×(n×m) and Ax� ≤ b is decomposed into two parts:

– For each agent i ∈ N and k ∈ {1, 2, 3},
∑

j∈I(k)
i

xi,j ≥ � 1
n · |I(k)

i |�.
– For each item gj ∈ M ,

∑
i∈N xi,j ≤ 1.

The second part says that a total amount of at most one unit can be allocated
for each item j. The first part gives a sufficient condition for the allocation being
PROP-2. Specifically, for each agent i, it implies 1 +

∑
j∈I(k)

i
xi,j ≥ 1/n · |I(k)

i |
for k = 1, 2, 3. For k = 1, 2, this implies the allocation is PROP-2 with respect to
vi, 2+

∑
j∈I(1)

i
xi,j +

∑
j∈I(2)

i
xi,j ≥ 1/n ·(|I(1)

i |+ |I(2)
i |); for k = 2, 3, this implies

the allocation is PROP-2 with respect to ui, 2 +
∑

j∈I(2)
i

xi,j +
∑

j∈I(3)
i

xi,j ≥
1/n · (|I(2)

i | + |I(3)
i |).

Notice that A can also be written as the form
[
A1

A2

]

, where A1 and A2

correspond to the two parts of the constraints. It is easy to verify that A1 is
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a matrix containing only 0 and −1 and A2 is a matrix containing only 0 and
1. Moreover, each column of A1 and A2 contains at most one non-zero entry.

According to Lemma 3,
[
A1

A2

]

is TUM.

Since x = (xi,j) =
(
1
n

)
is in the polytope, P is nonempty. In addition, since

A is TUM and b is an integer vector, by Lemma 4, all vertices of P are integral.
By Lemma 5, we can find a vertex x∗ ∈ {0, 1}n×m in polynomial time. Then for
each agent i ∈ N , allocate the bundle Ai =

{
gj ∈ M : x∗

i,j = 1
}

to her.
Thus, by the definition of the above linear program,

vi(Ai) ≥ vi

(
I(1)

i

)
+ vi

(
I(2)

i

)
≥ 1

n

∣
∣
∣I(k)

i

∣
∣
∣ − 1 +

1
n

∣
∣
∣I(k)

i

∣
∣
∣ − 1 =

vi(M)
n

− 2.

Similarly, we can verify the above inequality for ui. If there are no less than two
items with value 1 outside Ai, this allocation is already PROP-2. Otherwise, if
there is at most one item with value 1 outside Ai, then vi(M) ≤ vi(Ai) + 1. It
is easy to verify any bundle Ai satisfying this condition is PROP-2. �

4 Allocator’s Efficiency

In this section, we consider the problem of maximizing allocator’s efficiency
subject to EF-c or PORP-c constraint for the agents. Other than general additive
utility functions, we also consider the special case of binary utility functions.
Note that we no longer consider the special case with identical allocator’s utility
u1 = · · · = un since the problem becomes trivial otherwise (all allocations have
the same allocator’s efficiency).

All the negative results (corresponding to the fifth column in Table 3), includ-
ing theorem statements and proofs, are available in the full version of our paper
and are omitted here [11].

When the number of agents is 2, the problem is NP-hard to approximate to
within a factor of 2 (see the full version), and this is matched with the following
positive result.

Theorem 7. The problem of maximizing allocator’s efficiency subject to EF-c
for two agents has a polynomial time 2-approximation algorithm when the agents’
utility functions are arbitrary.

Proof ((sketch)). Our algorithm is described as follows. We initialize two empty
bundles S1 and S2, and sort the items according to agent 1’s utility in descending
order. Assume the sorted items are {g1, . . . , gm}, and use Gi(i ≥ 1) to denote a
group of two items {g2i−1, g2i}. For each group Gi(i ≥ 1), we allocate one item to
each bundle. In particular, without loss of generality, we assume v2(S1) ≥ v2(S2)
before allocating group Gi. Then, if v2(g2i−1) ≥ v2(g2i), we allocate g2i−1 to S2

and g2i to S1. Otherwise, we allocate g2i−1 to S1 and g2i to S2. Notice that,
in this algorithm, agent 1’s utility function is used exclusively for the ordering
of the item, and agent 2’s utility function is used exclusively for deciding the
allocation of the two items in each group.
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After all the items are allocated, we consider the two allocations (S1, S2) and
(S2, S1), and output the allocation with a higher allocator’s efficiency.

It is not hard to check that the allocation is always EF-1 and is thus EF-c for
any c ≥ 1. To see the approximation guarantee of 2, notice that u1(M)+u2(M)
is a trivial upper bound to the allocator’s efficiency, and the social welfare of the
output allocation is at least half of it. �

For a constant number of agents, we have an inapproximability factor of
about

√
n (see the full version) even when the allocator has binary utility func-

tions. However, when the agents have binary valuations, the problem becomes
tractable.

Theorem 8. The problem of maximizing allocator’s efficiency subject to EF-c
for any fixed n ≥ 3 can be found in polynomial time when the agents’ utility
functions are binary.

Proof ((sketch)). We can adopt the dynamic programming used in the proof of
Theorem 7.5 in [3] to prove this theorem. The details are available in the full
version of our paper [11]. �

For general numbers of agents, even when both the agents and the allocator
have binary valuations, the optimization problem admits an inapproximability
factor of m1−ε or n1/2−ε. This is complemented by the following positive result.

Theorem 9. The problem of maximizing allocator’s efficiency subject to EF-c
has a m-approximation algorithm when both the agents’ and the allocator’s utility
functions are arbitrary.

Proof. Let the allocator allocates a single item to a single agent with the highest
value ui(gj) for 1 ≤ i ≤ n, 1 ≤ j ≤ m to agent i. Then the agents use the
round-robin algorithm to allocate the remaining items. The allocation is EF-1
(and is thus EF-c) guaranteed by the round-robin algorithm and is a trivial
m-approximation to the optimal allocator’s efficiency. �

Finally, we turn our attention to PROP-c. If the agents’ utility functions are
binary, we can use linear programming to prove the following result.

Theorem 10. When agents’ utility functions are binary, the problem of maxi-
mizing allocator’s efficiency subject to PROP-c can be solved exactly in polyno-
mial time by linear programming.

Proof. The problem can be formulated as a linear program. Moreover, a careful
analysis with the help of Lemma 3 reveals that the coefficient matrix is totally
unimodular and all values in the constraints are integers. The theorem follows
from Lemma 4 and Lemma 5. �
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5 Conclusion and Future Work

In this paper, we initialize the study of a new fair division model that incorpo-
rates the allocator’s preference. We focused on the indivisible goods setting and
mainly studied two research questions based on the allocator’s preference: 1)
How to find a doubly fair allocation? 2) What is the complexity of the problem
of maximizing the allocator’s efficiency subject to agents’ fairness constraint?

We believe this new model is worth more future studies. For example, could
we extend our results to the setting with more general valuation functions, e.g.,
submodular valuations? It is also an interesting (and challenging) problem to
study what is the minimum number of c where a doubly EF-c/PROP-c allocation
is guaranteed to exist. Indeed, we do not know any lower bound for c. Specifically,
we do not know if a doubly EF-1/PROP-1 allocation exists even for binary
valuations. We have searched for a non-existence counterexample with the aid
of computer programs, and a non-existence counterexample seems hard to find.

On the other hand, our current techniques about Kneser graph and linear
programming seem to have their limitations for further reducing the upper bound
of c. Our current technique with Kneser graph can only analyze a bi-partition of
the items with an equal size m/2 (this is crucial for Propositions 1 in the proof
of Theorem 2 and the proof of Theorem 4). In addition, the value of the bundle
must be exactly half of the total value up to the addition of c items. This is
why we need n to be an integer power of 2 in Theorem 4. Moreover, the nature
of Kneser graph-based analysis makes the existence proof non-constructive. Our
linear programming technique, on the other hand, provides a weaker bound on c.
It seems to us that a Kneser graph captures more structural insights about our
problem than a linear program. Nevertheless, linear programming-based tech-
niques provide a constructive existence proof.

It is fascinating to see these techniques to be further exploited and the above-
mentioned limitations to be bypassed. Unearthing new techniques for closing the
gap between the upper bound and the lower bound of c may also be necessary.

In our double fairness setting, we aim to find an allocation that is fair with
respect to two valuation profiles (u1, . . . , un) and (v1, . . . , vn), one for the agents
and one for the allocator. A natural generalization of this is to consider alloca-
tions that are fair with respect to t valuation profiles for general t. The problem
of fair division with more than two sets of valuations is also well-motivated in
many applications (e.g., there may be more than one “allocator” in many scenar-
ios, and an agent’s valuation of the items may be multi-dimensional). We discuss
the setting with multiple sets of valuations in the full version of our paper [11].
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