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Abstract. We study a robust monopoly pricing problem where a seller
aspires to sell an item to a buyer. We assume that the seller, unaware
of the buyer’s willingness to pay, ambitiously optimizes over a space of
all individually rational and incentive compatible mechanisms with a
regret-type objective criterion. We particularly adopt a robust satisfic-
ing approach, which has been touted as a promising alternative of robust
optimization, and aim at minimizing the excess regret above the prede-
termined target level. We interpret our pricing problem both probabilis-
tically and distributionally robustly, and we analytically show that the
optimal mechanism involves the seller offering a menu of lotteries that
charges a buyer-dependent participation fee and allocates the item with
a buyer-dependent probability. Then, we consider two additional variants
of the problem where the seller restricts her attention to a class of only
deterministic posted price mechanisms and where the seller is relieved
from specifying the target regret in advance. Finally, we determine a
randomized posted price mechanism that is readily implementable and
equivalent to the optimal mechanism, compute its statistics, and quantify
the strength of the entailed randomization. Besides, we compare the pro-
posed mechanism with a robust benchmark and numerically find that the
former is predominantly superior to the latter in terms of the expected
regret and the expected revenue especially when the coefficient of varia-
tion of the buyer’s value is under a hundred percent.

Keywords: Mechanism design · Monopoly pricing · Regret
minimization · Robust optimization · Satisficing

1 Introduction

We study a variant of the monopoly pricing problem where the seller (‘she’ ) offers
an item to gain maximum benefit. The buyer (‘he’ ) attaches a private value ν
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to the item offered, and to him this value is a personal monetary equivalent of
the item. It indicates the maximum amount of money that he is willing to pay.
Consequently, if this value was known to the seller, then she could have simply
offered the item at a fixed price ν and earned maximally.

However, a prudent buyer would always keep his value strictly private before
the seller making her first move in order to not lose his bargaining power. It is
therefore impossible for the seller to earn exactly an amount of ν from the sale
transaction. The seller designs and broadcasts a mechanism that sets out the
instructions on how the buyer can communicate with her. A mechanism consists
of three parts: the set of messages for the buyer to choose from, the allocation
rule, and the payment rule. Once the buyer selects a message that to him is
the most favourable, he will pay an amount indicated by the payment rule to
the seller and be allotted the item with a certain probability that is specified
by the allocation rule. Modern studies of mechanism design largely simplify due
to the influential Revelation Principle [18] which allows the seller to restrict her
attention to a subclass of direct mechanisms, where the message set is simply
chosen as the set of all possible values of the buyer’s private value ν, without any
loss of generality and revenue. In the remainder of the paper, we will henceforth
use the terms mechanism and direct mechanism interchangeably.

As ν is unknown to the seller, it may be perceived as a random variable that
crisply follows a known probability distribution. In this case, [18] and [23] showed
that the seller can attain a maximum expected revenue by posting a deterministic
price for the item. Although without a doubt this is the most popular variant
of the mechanisms currently seen in practice, especially at retail stores, several
studies and observations have pointed out the advantages of the seller offering
the same item to different buyers at different price points.

The assumption that the seller knows the distribution of the buyer’s private
value ν itself is not innocuous, and a question concerning the robustness of the so-
called optimal mechanism has come under the spotlight [3]. A seller with limited
information about ν may consider stepping away from maximizing the expected
revenue and instead leverage robust optimization (see, e.g., [2,6]) with an aim
to maximize the worst-case revenue. While this approach is methodologically
sound, it may recommend a trivial and unrealistically conservative mechanism
where the seller keeps the item to herself provided that the uncertainty set for
ν contains zero.

To address having limited information and also to avoid being superfluously
conservative, [24] introduced a minimax regret as a decision criterion; see also [19,
21] for further justifications. Specifically in a sale transaction, the seller’s regret
is defined as the difference between the hypothetical revenue that the seller could
have earned if she exactly knew ν and the actual revenue which is specified by
the payment rule. Recently, it was discovered in [13] that the mechanism which
attains the smallest worst-case regret is non-trivial, and it involves a piece-wise
logarithmic allocation rule and a piece-wise linear payment rule even if ν can
take a value of zero. The minimax regret criterion has also been adopted in
several other papers, for example, [4] and [5], with the latter aptly noting that
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“a deterministic pricing policy exposes the seller to substantial regret, and that
the seller can decrease her exposure by offering many prices,” which underscores
the importance of a randomized pricing strategy when a regret-type objective is
used by the seller. Slightly differently, [8] and [27] adopted a worst-case relative
regret criterion, also known as a competitive ratio, and again the benefit of
randomization remains.

The principle of worst-case regret minimization resonates well with that
of robust optimization. A duality technique that is frequently leveraged in the
robust optimization literature is indispensable for [13] to analytically derive the
optimal mechanism that minimizes the seller’s worst-case regret. We refer our
readers to [26] for a broader discussion on the link between mechanism design
and linear programming as well as the corresponding duality theory.

For the comprehensiveness of our literature review, we remark that a risk-
neutral, ambiguity-averse seller may instead use distributionally robust optimiza-
tion (e.g., [11,17,28]) to maximize her worst-case expected revenue when facing
the inadequacy of robust optimization in mechanism design. To achieve this, the
seller needs to construct an ambiguity set comprising all probability distributions
of ν that are consistent with her prior information. Listing a few important exam-
ples, [5] and [14] adopted a neighbourhood of a reference distribution of ν with
respect to the Prohorov and the Wasserstein metric, respectively, whereas [20]
and [7] considered an ambiguity set that is characterized by the support, the
mean, and/or higher order moments. Recently, [9] provided a unified framework
for computing the robustly optimal mechanisms under different ambiguity sets
of distributions.

Recently, [15] provided a follow-up on an earlier work on globalized robust
optimization due to [1] and introduced an alternative to robust optimization
known as ‘robust satisficing.’ When the objective function representing cost (or
regret) is uncertain, robust optimization computes a solution that minimizes the
worst-case cost. On the contrary, robust satisficing determines a solution that, in
the nominal scenario, has a cost under the predetermined target and, in all other
scenarios, a cost that only proportionately deviates from the same target. Robust
satisficing has been numerically shown to produce statistically better decisions
than various state-of-the-art benchmarks (see, e.g., [12,25]), and it also satisfies
several axioms from behavioral decision making. Abiding by this new principle,
the decision maker needs to specify the ‘nominal scenario’ and to supply the
‘target value,’ which represents the acceptability level of the nominal objective. In
this paper, we revisit the monopoly pricing problem with a regret objective that
was studied by [13], but we formulate the problem using the robust satisficing
ideology instead. Computationally, depending on the convexity and linearity
properties of the problem (or the lack thereof), robust satisficing solutions could
be exactly determined by Fenchel duality [1] or approximately attained by using
either a primal decision rule [15] or a dual linear decision rule [22]. To our
knowledge, we are the first to analytically solve a robust satisficing problem of
this level of complexity, that is, the infinite dimensionality of the mechanism
design problem and the interaction between the two agents (i.e., the buyer and
the seller), without any approximation.
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We summarize the main contributions of the paper as follows.

1. We use robust satisficing to formulate a mechanism design problem for a
monopolist who has an item to liquidate and a regret minimization objective.
The problem takes as input parameters the support of the buyer’s value for
the item and its nominal value as well as the target regret level that should
not be exceeded (that is, the threshold that the seller is willing to tolerate)
under the nominal scenario. After mathematically formulating the problem,
we derive a probabilistic regret bound based on its solution to provide further
justification for this work.

2. We characterize the condition on the problem’s input that is equivalent to
the problem’s feasibility. Whenever it is feasible, we analytically propose a
candidate solution of the mechanism design problem, which itself is an infinite
linear program. We establish that the proposed mechanisms are optimal with
respect to the problem’s given input by developing tight lower bounds of
the problem. Besides, we also argue that each of these lower bounds has an
intimate relationship with the problem’s dual, see our online Appendix B,
and we relate a subset of our recommended mechanisms to those from the
existing literature on distributionally robust mechanism design.

3. We study two additional variants of the mechanism design problem that are
similarly analytically solvable. The first extension assumes that the seller
restricts her attention to a class of deterministic posted price mechanisms
only, whereas the second relaxes the requirement of the target regret needing
specifying.

4. To increase the acceptance and the relevance of the derived optimal mecha-
nism, we interpret it as a randomized posted price mechanism, compute its
statistics and compare it with the optimal deterministic posted price mecha-
nism. Besides, we compare our mechanisms with several benchmarks includ-
ing the worst-case regret minimizing mechanism; see [13], where we numeri-
cally show the dominance of our mechanism in terms of the seller’s expected
regret and expected revenue, especially when the coefficient of variation of
the buyer’s value falls below 100%. Based on our experiment results, we also
provide a guideline on how our pricing model should be calibrated.

The rest of the paper is structured as follows. Section 2 discusses how regret
could be leveraged as a decision criterion in both robust optimization and
robust satisficing settings. Section 3 derives the optimal mechanism for different
ranges of the input parameters. Section 4 considers a restricted problem where
only deterministic posted price mechanisms are considered, and Sect. 5 studies
another variation of the problem where the seller is relieved from choosing the
target regret. Finally, Sect. 6 reports the statistics and the performance of the
proposed mechanisms in relation to the benchmarks, and Sect. 7 concludes the
paper. All proofs can be found in Appendix A, which is available online.

Notation: For a logical expression E , we define 1(E) = 1 if E is true; = 0
otherwise, and for any real number x, we denote by x+ its positive part, that is,
x+ = max{x, 0}. We adopt the convention for division by zero that a/0 = ∞ if
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a > 0; = 0 otherwise. All logarithms have a natural base of e, and it is assumed
that log(0) = −∞. Besides, the set of all (bounded) Borel-measurable functions
from D to R is denoted by L(D,R), and finally the cone of all non-negative
Borel measures supported on A is denoted by M+(A).

2 Regret Satisficing in Robust Mechanism Design

We consider a prototypical monopoly pricing problem where the seller aims
to sell a single product to a buyer. She perceives the value ν that the buyer
privately assigns to the item as a stochastic-free uncertain variable which could
take any value in the interval [0, ν]. The vanishing lower bound is justified by the
observation that no matter what the product offered is, it can be inconsequential
to some people, and the upper bound ν could perhaps be estimated from the
price of a similar yet superior substitute that is currently available in the market;
see [10]. If nothing else is known, a direct mechanism that attains the minimum
worst-case regret can be found by solving

minimize sup
ν∈[0,ν]

ν − m(ν)

subject to q ∈ L([0, ν], [0, 1]), m ∈ L([0, ν],R)
q(ν)ν − m(ν) ≥ 0 ∀ν ∈ [0, ν]
q(ν)ν − m(ν) ≥ q(ω)ν − m(ω) ∀ν, ω ∈ [0, ν],

(1)

where q and m denote the allocation and the payment rule, respectively. In par-
ticular, q(ν) represents the probability that the buyer with value ν will obtain
the item after he makes a payment of amount m(ν) to the seller. Besides, Prob-
lem (1) assumes that the buyer is risk-neutral and that his expected utility
coincides with q(ν)ν − m(ν). The two inequalities are known as the ‘individual
rationality’ and the ‘incentive compatibility’ constraints, respectively. A mech-
anism is said to be individually rational if it ensures that the buyer’s expected
utility is always non-negative, and it is said to be incentive compatible if the
buyer can maximize his expected utility by truthfully reporting his true value ν,
which is unknown to the seller when the mechanism is designed. Both of these
constraints must hold for a buyer of any value. Finally, the objective function
of Problem (1) contains ν − m(ν) which we refer to as a ‘regret’ of the seller
since it characterizes the difference between the hypothetical revenue that the
seller could have earned if she precisely knew ν and the actual revenue that is
generated by the mechanism (q,m).

As an allocation of the item is probabilistic, the seller announcing a mech-
anism is similar to the seller offering a lottery: requesting an upfront payment
from the buyer without making a definite promise to deliver the winning prize.
Though, a mechanism can be as simple as offering a product at a certain price,
say p ∈ R. In this case, we can write down the mechanism as

q(ν) = 1(ν ≥ p) and m(ν) = p1(ν ≥ p),
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and we shall refer to it as a ‘deterministic posted price mechanism.’ One can
readily verify that such a mechanism is always incentive compatible and individ-
ually rational. Note that due to the linearity of the constraints involved, even if
the price p is chosen at random, p̃ ∼ P, a ‘randomized posted price mechanism’
with

q(ν) = EP (1(ν ≥ p̃)) and m(ν) = EP (p̃1(ν ≥ p̃))

is too incentive compatible and individually rational. Amongst others, [7] argued
that every incentive compatible and individually rational mechanism with a
right-continuous allocation rule can be interpreted as a randomized posted price
mechanism.

Essentially, [4] solved the above worst-case regret minimization problem, and
subsequently [13] provided an extension to this problem in which the seller has
multiple items to sell simultaneously. Similarly, both papers showed that the
optimal mechanism consists of a piece-wise logarithm allocation rule and a piece-
wise linear payment rule.

In this paper, we are going to take a similar yet fundamentally different
approach to the seller’s worst-case regret minimization problem. Instead of using
robust optimization, we adopt a recently proposed ‘robust satisficing’ approach
and consider the following mechanism design problem.

minimize k

subject to q ∈ L([0, ν], [0, 1]), m ∈ L([0, ν],R), k ∈ R+

q(ν)ν − m(ν) ≥ 0 ∀ν ∈ [0, ν]
q(ν)ν − m(ν) ≥ q(ω)ν − m(ω) ∀ν, ω ∈ [0, ν]
ν − m(ν) ≤ τ + k|ν − ν̂| ∀ν ∈ [0, ν].

(P)

In this formulation, we have additional parameters ν̂ ∈ (0, ν) and τ ∈ R. They
represent the nominal value of ν and the target regret (see [15]). The target τ
represents an admissible upper bound of the seller’s regret under the nominal
scenario ν = ν̂. The additional decision variable k characterizes the maximum
level of constraint violation of all other scenarios ν �= ν̂ in relation to their
deviation from the nominal counterpart. Problem (P) seeks the smallest upper
bound on the regret ν −m(ν) of the form τ + k|ν − ν̂|, parameterized by k. This
upper bound takes a minimum value when ν = ν̂ and is increasing when the
buyer’s value ν further deviates from the nominal value ν̂ in either direction. The
inputs ν̂ and ν are to be obtained or statistically estimated from the available
data, whereas the target τ is to be specified by the seller to reflect her risk
tolerance level. Throughout, we will refer to the last constraint of Problem (P)
as the ‘satisficing’ constraint. By construction, the optimal objective value of
Problem (P) could be infinity if τ is too small, and it decreases as τ increases. As
an upper bound on the nominal regret, i.e., ν̂ − m(ν̂), that the seller is willing
to tolerate, τ is a trade-off parameter that the seller could explore. She may
leverage a smaller τ if she believes that ν̂ is an adequate representative of the
unknown ν. Conversely, if ν is considerably uncertain, she may employ a larger
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τ to get a smaller optimal k and strengthen the regret bound elsewhere as ν
departs from ν̂.

The satisficing constraint allows us to draw the following probabilistic regret
bound, which serves as an additional motivation for us to study Problem (P).

Theorem 1. If ν ∼ Q and Q (ν ∈ [0, ν]) = 1, then

Q (ν − m(ν) < τ + δ) ≥ 1 − k

δ
EQ [|ν − ν̂|] (2)

for any δ > 0 and any (q,m, k) that is feasible in Problem (P).

The regret bound in Theorem 1 conforms with the convention of robust
satisficing, which yearns for the smallest k so that the probabilistic guarantee
is strongest. The theorem also suggests that, if possible, the seller may want
to choose ν̂ to be the median of ν. On the other hand, if ν̂ is chosen as the
expected value of ν, then the right-hand side of (2) is completely characterized
by the mean absolute deviation of ν. Other choices of ν̂ will be presented in
the later part of the paper. The fact that this probabilistic guarantee depends
explicitly on the input ν̂ marks a clear distinction between robust satisficing and
robust optimization, with the latter focusing on only the worst-case ν [16].

Before solving Problem (P), we state its feasibility condition as follows.

Theorem 2. Problem (P) is feasible if and only if τ > 0.

Due to Theorem 2, we henceforth always assume that τ > 0 to avoid trivial-
ities.

3 Optimal Mechanisms

This section contains our main results which are the analytical derivations of the
optimal solutions of Problem (P) for different values of the seller’s target τ > 0.
We will consider in total four cases depending on the relationship between τ and
the other inputs to the problem: ν̂ ∈ (0, ν) and ν > 0.

I: τ ≥ ν

e
II: τ <

ν

e
and τ > ν̂

III: τ <
ν

e
, τ >

(
2e−1/2 − 1

)
ν̂ and τ ≤ ν̂ IV: τ ≤

(
2e−1/2 − 1

)
ν̂

3.1 Analysis of Case I

Proposition 1. If τ ≥ ν
e , then (q�,m�, 0) with

q�(ν) =
(
1 + log

(ν

ν

))+

and m�(ν) =
(

ν − ν

e

)+

(3)

is optimal in Problem (P).

Note that this optimal mechanism depends on neither τ , as long as it is suffi-
ciently large, nor ν̂. This observation indicates that the regret incurred by the
buyer of any value ν ∈ [0, ν] is no more than ν

e , which is consistent with and
encapsulates the analysis by [13].
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3.2 Analysis of Case II

Proposition 2. If ν̂ < τ < ν
e , then (q�,m�, k�), where

q�(ν) =
(
1 + (1 − k�) log

(ν

ν

))+

and m�(ν) = (1 − k�)
(
ν − e1/(k�−1)ν

)+

(4)
and k� ∈ (0, 1) is a solution of kν̂ + (1 − k)e1/(k−1)ν = τ , is feasible in Prob-
lem (P).

To establish the optimality of mechanism in (4), our strategy is to construct a
tight lower bound of Problem (P). This lower bound is expressed as the optimal
objective value of the following maximization problem

maximize
∫ ν

0

(ν − τ) β(ν) dν − τνβ(ν)

subject to β ∈ L([0, ν],R+)
∫ ν

0

|ν − ν̂|β(ν) dν + (ν − ν̂)νβ(ν) = 1

νβ(ν) ≤ νβ(ν) +
∫ ν

ν

β(x) dx ∀ν ∈ [0, ν].

(D)

Note that Problem (D) implicitly imposes that any feasible β must be integrable;
however, β is not necessarily continuous or monotonic.

Proposition 3. Problem (P) is lower bounded by Problem (D).

We next establish the tightness of the proposed lower bound, which will in
turn imply the optimality of the mechanism defined in (4).

Proposition 4. If ν̂ < τ < ν
e , then β� which is defined through

β�(ν) =

{
c

ν2 if ν ∈ [
e1/(k�−1)ν, ν

]
,

0 if ν ∈ [
0, e1/(k�−1)ν

)
,

where k� ∈ (0, 1) is defined as in Proposition 2 and

c =
[
2 − k�

1 − k�
− e1/(1−k�) ν̂

ν

]−1

,

is feasible in Problem (D) and it attains the objective value of k�.

3.3 Analysis of Case III

Proposition 5. If τ < ν
e and

(
2e−1/2 − 1

)
ν̂ < τ ≤ ν̂, then (q�,m�, k�), where

q�(ν) =

⎧
⎪⎪⎨
⎪⎪⎩

1 + (1 − k�) log
(

ν
ν

)
if ν ∈ (ν̂, ν],

1 + log
(

ν
ν

)
+ k� log

(
νν
ν̂2

)
if ν ∈

[(
ν̂2k�

eνk�−1

)1/(k�+1)

, ν̂

]
,

0 otherwise,

(5a)
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and

m
�
(ν) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − k�)(ν − ν̂) + (1 + k�)

(

ν̂ −
(

ν̂2k�

eνk�−1

)1/(k�+1)
)

if ν ∈ (ν̂, ν],

(1 + k�)

(

ν −
(

ν̂2k�

eνk�−1

)1/(k�+1)
)

if ν ∈
[(

ν̂2k�

eνk�−1

)1/(k�+1)
, ν̂

]

,

0 otherwise,

(5b)

and k� ∈ (0, 1) is a solution of τ + kν̂ = (1 + k)
(

ν̂2k

eνk−1

)1/(k+1)

, is feasible in
Problem (P).

Analogously to Case II, Proposition 6 below certifies the optimality of the
mechanism from (5).

Proposition 6. If τ < ν
e and

(
2e−1/2 − 1

)
ν̂ < τ ≤ ν̂, then β� which is defined

through

β�(ν) =

⎧
⎪⎪⎨
⎪⎪⎩

c
ν2 if ν ∈

[(
ν̂2k�

eνk�−1

)1/(k�+1)

, ν

]
,

0 if ν ∈
[
0,

(
ν̂2k�

eνk�−1

)1/(k�+1)
)

,

where k� ∈ (0, 1) is defined as in Proposition 5 and

c =

⎡
⎣e1/(1+k�)

(
ν̂

ν

) 1−k�

1+k�

− 2
1 + k�

log
(

ν̂

ν

)
− 2 + k�

1 + k�

⎤
⎦

−1

,

is feasible in Problem (D) and it attains the objective value of k�.

It could be readily observed that the derived optimal mechanism of this case
is distinctively similar to the mechanism that maximizes the seller’s worst-case
expected revenue when the probability distribution governing the buyer’s value
ν is ambiguous and only known to have certain mean and support [7,20]. Here,
we discuss this phenomenon more deeply by showing that the mechanism we
propose is indeed distributionally robust in some sense.

Corollary 1. For any 0 < μ < 2ν
e , then (q�,m�, k�) constructed in Proposi-

tion 5 when τ = ν̂ ∈ (
0, ν

e

)
and ν̂

(
1 + log

(
ν
ν̂

))
= μ satisfies

(q�, m�) ∈ arg max
q,m

⎧
⎨

⎩
inf

Q∈Q(μ)
{EQ [m(ν)]} :

q ∈ L([0, ν], [0, 1]), m ∈ L([0, ν],R)
q(ν)ν − m(ν) ≥ 0 ∀ν ∈ [0, ν]
q(ν)ν − m(ν) ≥ q(ω)ν − m(ω) ∀ν, ω ∈ [0, ν]

⎫
⎬

⎭
,

where the ambiguity set Q(μ) comprises of all probability distributions of ν such
that

Q(ν ∈ [0, ν]) = 1 and EQ[ν] = μ.
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To our best knowledge, this observation shows for the first time the rela-
tionship between robust satisficing with a regret objective and distributionally
robust optimization with a revenue objective. Besides, we numerically compute
Corollary 1’s choices of τ and ν̂ for different values of μ, from which it is observed
that to bring forth the distributional robustness for the expected revenue, the
seller should choose τ and ν̂ to be smaller than a half of μ. Together, Theorem 1
and Corollary 1 highlight the impact of our input parameters in the seller’s regret
and in her revenue, respectively.

3.4 Analysis of Case IV

Proposition 7. If τ ≤ (
2e−1/2 − 1

)
ν̂, then (q�,m�, k�), where

q�(ν) =

⎧
⎪⎨
⎪⎩

1 if ν ∈ (ν̂, ν],
1 + (1 + k�) log

(
ν
ν̂

)
if ν ∈ [

e−1/(k�+1)ν̂, ν̂
]
,

0 otherwise,
(6a)

and

m�(ν) =

⎧
⎪⎨
⎪⎩

(1 + k�)
(
1 − e−1/(k�+1)

)
ν̂ if ν ∈ (ν̂, ν],

(1 + k�)
(
ν − e−1/(k�+1)ν̂

)
if ν ∈ [

e−1/(k�+1)ν̂, ν̂
]
,

0 otherwise,
(6b)

and k� ∈ [1,∞) is a solution of τ + kν̂ = (1 + k)e−1/(k+1)ν̂, is feasible in
Problem (P).

To establish the optimality of the mechanism in (6), we need a different lower
bound which is

maximize
∫ ν̂

0

(ν − τ) β(ν) dν − τ ν̂β(ν̂)

subject to β ∈ L([0, ν̂],R+)
∫ ν̂

0

(ν̂ − ν)β(ν) dν = 1

νβ(ν) ≤ ν̂β(ν̂) +
∫ ν̂

ν

β(x) dx ∀ν ∈ [0, ν̂].

(D′)

Note that Problem (D′) implicitly imposes that any feasible β must be integrable.

Proposition 8. Problem (P) is lower bounded by Problem (D′).

We are now ready to argue that the mechanism suggested in Proposition 7
is indeed optimal.
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Proposition 9. If τ ≤ (
2e−1/2 − 1

)
ν̂, then β� which is defined through

β�(ν) =

{
c

ν2 if ν ∈ [
e−1/(k�+1)ν̂, ν̂

]
,

0 if ν ∈ [
0, e−1/(k�+1)ν̂

)
,

where k� ∈ [1,∞) is defined as in Proposition 7 and

c =
[
e1/(k�+1) − 2 + k�

1 + k�

]−1

,

is feasible in Problem (D′) and it attains the objective value of k�.

We summarize the analyses of the four cases in the theorem below.

Theorem 3. Problem (P) is solved by the mechanism
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

from Proposition 1 if τ ≥ ν
e ,

from Proposition 2 if τ < ν
e and τ > ν̂,

from Proposition 5 if τ < ν
e , τ >

(
2e−1/2 − 1

)
ν̂ and τ ≤ ν̂,

from Proposition 7 if τ ≤ (
2e−1/2 − 1

)
ν̂.

All in all, we show that the optimal solution of Problem (P) can be deter-
mined by using a simple line search to find a value of k� from a certain interval
which solves a given characteristic equation. Although for Case IV the upper
bound on k� is not explicitly given, we can still without any loss impose that
k� ≤ max

{
ν̂
τ − 2, 1

}
which is a valid inequality known from the proof of Theo-

rem 2 in Appendix A, which is available online.

4 Optimal Deterministic Posted Price Mechanisms

Our aim for this section is to derive an optimal deterministic posted price
mechanism. We denote by p ∈ [0, ν] the posted price which is to be opti-
mized, and we restrict the allocation and payment rule to q(ν) = 1(ν ≥ p)
and m(ν) = p1(ν ≥ p). Under this restriction, Problem (P) reduces to

minimize k

subject to p ∈ [0, ν], k ∈ R+

ν − p1(ν ≥ p) ≤ τ + k|ν − ν̂| ∀ν ∈ [0, ν].
(7)

Unlike Problem (P), Problem (7) involves a finite number of decision variables
(i.e., p and k). It however still contains an infinite number of constraints, each
of which is neither convex nor concave in the posted price p.

Theorem 4. Problem (7) is solved by

p� =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ if τ ≥ ν
2 ,

a root of p−τ
p−ν̂ = ν−p−τ

ν−ν̂ from (τ, ν − τ) if τ < ν
2 and τ > ν̂,

ν̂ if τ < ν
2 and τ = ν̂,

max
{

ν̂ − τ, a root of p−τ
ν̂−p = ν−p−τ

ν−ν̂ from (τ, ν̂)
}

if τ < ν
2 and τ < ν̂.
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Based on Theorem 4 and our earlier results, we can now establish the follow-
ing observations.

1. The mechanism that is optimal in Problem (P) is not necessarily unique.
Indeed, when τ ≥ ν

2 , the optimal objective value of Problem (P) vanishes and
it could be solved by a mechanism with either a randomized or a deterministic
allocation; see Theorems 3 and 4.

2. The restriction to a class of deterministic posted price mechanisms does not
impact the feasibility of Problem (P). That is Problem (P) is feasible if and
only if Problem (7) is. Particularly, both problems are feasible if and only if
τ > 0.

3. Even though Problems (P) and (7) share the same necessary and sufficient
condition for feasibility, the latter can result in a mechanism that is arbitrarily
worse than the former. To see this, we may consider a target τ ∈ [ν

e , ν
2 ). The

optimal objective value of Problem (P) is zero, whereas that of the restricted
problem (7) is strictly positive. Suppose otherwise for the sake of contradiction
that k can be zero in Problem (7). Its satisficing constraint evaluated at ν ↑ p
and ν = ν would then imply that both p and ν − p are smaller than or equal
to τ . Therefore, τ ≥ ν

2 and this observation contradicts with the admissible
range of τ currently considered.

5 Optimal Target-Free Mechanisms

We will now consider another variant of Problem (P) where the seller is relieved
from choosing τ :

minimize k

subject to q ∈ L([0, ν], [0, 1]), m ∈ L([0, ν],R), k ∈ R+

q(ν)ν − m(ν) ≥ 0 ∀ν ∈ [0, ν]
q(ν)ν − m(ν) ≥ q(ω)ν − m(ω) ∀ν, ω ∈ [0, ν]
ν − m(ν) ≤ ν̂ − m(ν̂) + k|ν − ν̂| ∀ν ∈ [0, ν].

(8)
In other words, Problem (8) is obtained by replacing the target regret τ which
is an explicit input parameter of Problem (P) by ν̂ −m(ν̂), which represents the
regret of the mechanism (q,m) under the nominal scenario ν = ν̂. Similar to our
solution approach in Sect. 3, we perform a case-by-case analysis depending on
the value of ν̂ ∈ (0, ν).

Proposition 10. If ν̂ ≥ ν
e , then Problem (8) is solved by the mechanism defined

in (3).

Proposition 11. If ν̂ < ν
e , then Problem (8) is solved by the mechanism defined

in (4) where k� ∈ (0, 1) satisfies e1/(k�−1)ν = ν̂.
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In fact, there are infinitely many mechanisms that solve Problem (8). Indeed,
for any (q�,m�, k�) that is optimal, we can construct a family of optimal mech-
anisms of the form (q�,m� − δ, k�), which are parametrized by δ ≥ 0. However,
when δ > 0, these mechanisms are Pareto inefficient as to the seller they would
earn a strictly smaller expected revenue (regardless of the probability distribu-
tion that governs ν), and hence they are of less interest.

Last but not least, we present a distributionally robust interpretation for the
mechanism provided in Proposition 11.

Corollary 2. For any 0 < μ < 2ν
e , then (q�,m�, k�) constructed in Proposi-

tion 11 when ν̂ ∈ (
0, ν

e

)
and ν̂

(
1 + log

(
ν
ν̂

))
= μ satisfies

(q�, m�) ∈ arg max
q,m

⎧
⎨

⎩
inf

Q∈Q(μ)
{EQ [m(ν)]} :

q ∈ L([0, ν], [0, 1]), m ∈ L([0, ν],R)
q(ν)ν − m(ν) ≥ 0 ∀ν ∈ [0, ν]
q(ν)ν − m(ν) ≥ q(ω)ν − m(ω) ∀ν, ω ∈ [0, ν]

⎫
⎬

⎭
,

where the ambiguity set Q(μ) is defined as in Corollary 1.

6 Statistics and Performance of the Optimal Mechanisms

In all cases, the optimal allocation rule of Problem (P) is continuous and non-
decreasing as well as satisfies q�(0) = 0 and q�(ν) = 1. Hence, q� admits an
interpretation as a cumulative distribution function that is supported on [0, ν],
and there exists a random variable p̃ ∼ P such that

q�(ν) = P (p̃ ≤ ν) = EP (1(p̃ ≤ ν)) ∀ν ∈ [0, ν].

Moreover, the optimal mechanism satisfies m�(0) = 0. From Lemma 1 in
our Appendix A, we further have

m�(ν) = q�(ν)ν −
∫ ν

0

q�(x) dx =
∫ ν

0

x dq�(x) =
∫ ν

0

x1(x ≤ ν) dq�(x)

= EP (p̃1(p̃ ≤ ν)) ∀ν ∈ [0, ν].

We can thus interpret the optimal mechanism (q�,m�) as a ‘randomized posted
price mechanism’ where the price p̃ is drawn from the probability distribution
P. Using randomized posted prices offers a distinct advantage to the seller in
the sense that it increases the willingness of the buyer to engage in the sale
transaction as the buyer has to pay only when he is actually given the item.
In contrast, directly implementing the mechanism (q�,m�) entails offering a
lottery that requires the buyer with a value ν to make a payment of amount
m�(ν) regardless of whether or not he will obtain the item, which to him can
only happen favourably with a probability of q�(ν).

We will now carry out a sensitivity analysis to see how the mean price EP (p̃)
changes with the values of τ and ν̂, and simultaneously we will compare it
with the optimal deterministic posted price p� derived in Sect. 4. Throughout
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the experiment, we assume that ν = 1$ = 100¢. From Fig. 1, it is seen that
when τ is small, EP(p̃) and p� coincide. As the target τ gets increasingly larger
(i.e., as the seller gets more uncertainty-conscious), the variance of the optimal
random price becomes more sizeable, which justifies the implementation of the
more convoluted mechanism we propose. When τ reaches a certain threshold, the
variance of p̃ may drop but stay significant nonetheless. Overall, we find that the
optimal random price is, on average, at least as large as the optimal deterministic
price; hence, the randomized strategy does not only incur a smaller regret but
it also has a potential to extract higher revenue from the buyer. Last but not
least, we compute and compare the optimal objective value of Problem (P),
denoted by k�, and that of Problem (7), denoted by k�

det. These optimal objective
values characterize the sensitivity of the regret upper bound with respect to the
departure of the buyer’s value ν from ν̂. Regardless of ν̂ ∈ {20¢, 40¢, 60¢, 80¢},
it can be observed from Fig. 2 (top) that both k� and k�

det change abruptly when
τ ≤ 21.3% × ν̂. Our recommendation for the seller is therefore to choose the
target τ above this level, and the larger τ is suitable for a seller who prefers to
have a stronger safeguard against an uprising regret from any scenario ν �= ν̂.
To further appreciate the benefit of the price dispersion, Fig. 2 (bottom left)
shows that the randomized pricing strategy can lead to a substantial reduction
of the sensitivity level (from k�

det to k�) of at least 12%, and oftentimes the
difference between the two strategies is considerably more pronounced. Figure 2
(bottom right) exemplary visualizes the regret bound τ +k|ν− ν̂|, k ∈ {k�, k�

det},
of the two pricing strategies when τ = 20¢ and ν̂ = 30¢.
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Fig. 1. The mean (left) and the coefficient of variation (right) of the optimal random
price p̃ under different combinations of τ and ν̂. The accompanied dashed curves (left)
show the optimal deterministic prices p�.

Next, we make a statistical comparison between the worst-case regret min-
imization [13] and the proposed robust regret satisficing frameworks. Retain-
ing the names of the optimization techniques adopted, we shall refer to their
recommended mechanisms as ‘robust’ and ‘satisficing’ solutions, respectively.
Specifically for this experiment, we work with a target-free model proposed in
Sect. 5, we normalize ν to 1$, and we now model the buyer’s value as a Beta
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Fig. 2. The comparison between k� and k�
det (in a logarithmic scale) under different

combinations of τ and ν̂ as well as the comparison between the corresponding regret
upper bounds.

random variable, ν ∼ Q, with some positive shape parameters s1 and s2, and
we set ν̂ as μ = EQ[ν]. We consider various combinations of the shape param-
eters that are consistent with different means from {5¢, 10¢, . . . , 35¢} (as when
ν̂ = μ > 1

e ≈ 0.368, the robust and the satisficing solutions coincide) and coef-
ficients of variation (CV) from {0.1, 0.2, . . . , 2.5}. It should be noted that there
may be no shape parameters that are compatible with a certain combination
of the mean and the CV of ν from their stipulated ranges. In such cases, the
corresponding entries in Table 1 are painted black, and there are 137 remaining
cells in total. Table 1 (left) reports the relative improvement (in %) in terms
of the expected regret of the satisficing solution from Proposition 11 over the
robust solution from [13], whereas Table 1 (right) similarly reports the relative
improvement (in %) in terms of the expected revenue. We observe that, in an
overwhelming majority of instances, our target-free robust satisficing mecha-
nism makes a significant improvement. Though, as one would expect, if the
variance of ν becomes exceptionally large, the seller should carefully and cau-
tiously hedge against this uncertainty, and the standing of the robust solution
from [13] remains. In light of this, Table 1 markedly defines the region where the
satisficing solution is superior to the robust solution and vice versa.
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Table 1. Relative improvement (in %) of the satisficing mechanism over its robust
counterpart in terms of the expected regret (left) and the expected revenue (right)
under different Beta distributions of the buyer’s value. The entries marked with a star
symbol indicate that the improvement exceeds 100%.

CV

μ

5¢ 10¢ 15¢ 20¢ 25¢ 30¢ 35¢

0.1 1.3 1.7 2.1 2.5 2.9 3.3 1.9

0.2 2.7 3.5 4.2 5.0 5.7 5.3 2.0

0.3 4.0 5.2 6.3 7.4 7.7 6.0 1.9

0.4 5.3 6.9 8.4 9.4 8.7 6.1 1.8

0.5 6.6 8.6 10.3 10.7 9.2 5.9 1.6

0.6 7.8 10.2 11.8 11.5 9.1 5.5 1.4

0.7 9.0 11.8 12.9 11.7 8.7 4.9 1.1

0.8 10.2 13.1 13.6 11.5 7.9 4.1 0.8

0.9 11.4 14.2 13.8 10.9 6.9 3.1 0.5

1.0 12.5 15.0 13.6 9.9 5.6 1.8 0.0

1.1 13.5 15.5 13.0 8.5 3.8 0.3 −0.7

1.2 14.5 15.6 12.1 6.8 1.7 −1.7 −1.5

1.3 15.3 15.4 10.7 4.6 −1.0 −4.2 −2.5

1.4 16.0 14.9 8.9 1.8 −4.4 −7.6

1.5 16.5 14.0 6.7 −1.5 −8.7 −11.3

1.6 16.8 12.8 4.0 −5.7 −14.2

1.7 17.0 11.3 0.8 −10.8−20.3

1.8 17.0 9.4 −3.1 −17.3

1.9 16.7 7.2 −7.7 −25.3

2.0 16.3 4.6 −13.3

2.1 15.7 1.5 −20.2

2.2 14.9 −2.1 −28.6

2.3 13.9 −6.3 −38.2

2.4 12.7−11.1

2.5 11.3−16.7

CV

μ

5¢ 10¢ 15¢ 20¢ 25¢ 30¢ 35¢

0.1 � � � � � � 92.6

0.2 � � � � � � 32.1

0.3 � � � � � � 17.5

0.4 � � � � � 71.4 11.0

0.5 � � � � � 44.2 7.2

0.6 � � � � 88.9 29.0 4.8

0.7 � � � � 58.1 19.2 3.1

0.8 � � � � 38.8 12.4 1.8

0.9 � � � 73.0 25.6 7.4 0.8

1.0 � � � 49.4 16.1 3.5 0.0

1.1 � � � 32.8 8.8 0.4 −0.7

1.2 � � 73.3 20.5 3.1 −2.1−1.3

1.3 � � 50.2 11.1 −1.5 −4.2−1.7

1.4 � � 33.2 3.6 −5.3 −6.0

1.5 � � 20.2 −2.5 −8.5 −7.4

1.6 � 79.9 9.9 −7.5 −11.3

1.7 � 56.4 1.7 −11.8−13.3

1.8 � 38.4 −5.2 −15.4

1.9 � 24.2 −10.9−18.5

2.0 � 12.8 −15.7

2.1 � 3.5 −19.9

2.2 � −4.3 −23.6

2.3 � −10.8−26.5

2.4 86.1−16.5

2.5 64.5−21.3

Finally, we recall that, although natural, we do not necessarily have to set ν̂
as μ. For instance, Corollary 2 suggests a value for ν̂, which will be henceforth
denoted by ν† ∈ (0, μ], that enables the seller to earn more on average under
the worst-case distribution from the mean-support ambiguity set [7]. We now
consider 11 possibilities of ν̂, namely

ν̂ ∈
{

ν† +
i

10
(μ − ν†) : i ∈ {0, . . . , 10}

}
.

For each of the 137 distributions Q which we experiment with in Table 1,
we determine which value of ν̂ (or equivalently, which i ∈ {0, . . . , 10}) earns
the highest expected revenue. From Fig. 3, we conclude that the majority of the
optimal i’s are either zero or ten highlighting the benefit of the distributionally
robust mechanism studied in [7] and our previous choice of the robust satisficing
mechanism, respectively, and the seller is recommended to increase the value
of ν̂ when CV or μ becomes larger. We also compute the expected revenue of
the mechanism that corresponds to the optimal i ∈ {0, . . . , 10} and compare it
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with the maximum expected revenue obtained without any restriction besides
incentive compatibility and individual rationality, and we find that in more than
93.4% of the test distributions the difference between the two is no more than
10¢.

Fig. 3. The value of i ∈ {0, . . . , 10} corresponding to the maximally-earning value of ν̂
under different Beta distributions of the buyer’s value.

7 Conclusions

Inspired by the recent development of the satisficing decision-making paradigm,
we propose an innovative way of incorporating regret into the robust monopoly
pricing problem. We demonstrate that the resulting optimization problem, which
is an infinite linear program, and several of its variants can be solved analytically.
We then alternatively express each of our optimal mechanisms as a randomized
posted price mechanism since the latter is more widely accepted and readily
implementable in practice. We show in our numerical studies both the benefit of
randomizing prices and of adopting the satisficing over the traditional robust and
distributionally robust approaches. As a by-product, we also give a managerial
guideline on how to calibrate the risk-aversion parameter of our problem.

Acknowledgements. We would like to thank the reviewers, Daniel Kuhn and Bahar
Taşkesen for their comments on an earlier version of the manuscript. The full paper is
available at https://ssrn.com/abstract=4169471.
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