
A Novel Optimization Algorithm
for Smart Video Surveillance System

and Change Object Detection

Fahad Siddiqui1(B) and Shafaq Siddiqi2

1 Sukkur IBA University, Sukkur, Pakistan
fahad.siddiqui@iba-suk.edu.pk

2 Graz University of Technology, Graz, Austria

shafaq.siddiqi@tugraz.at

Abstract. Security has been a significant concern in every aspect of
life. Traditional surveillance systems require a huge amount of storage
capacity to save recorded videos. Moreover, as these systems are not fully
automated, object detection and change detection need a lot of computa-
tional power in real-time surveillance. Finding a specific event or object in
the recorded videos becomes more tedious and time-consuming. Since the
last decade, researchers and developers have been working on the opti-
mization and improvement of surveillance systems. This paper mainly
focuses on surveillance system optimization by presenting an algorithm
that not only optimizes objects and change detection but also requires
comparatively less time in searching for a particular object from the
library of recorded videos. The paper also presents a software applica-
tion that offers various unique features such as searching for a specific
object and on-time notification on targeted object detection.

Keywords: Object detection · surveillance system · video security ·
YOLOv5

1 Introduction

Nowadays, surveillance systems are getting more and more popular because the
government, public and private organizations are using them to keep a check on
various aspects of safety and security [4,24,29,33,38]. With the advancement in
technology, the whole concept of video has changed [19] and reached a dimension
of modern digital output that not only provides high-quality videos but also
enhances interactive features. The impact of high-quality video resulted in high
storage space as video recording in HD (720px) at the rate of 30fps normally takes
up to 86 GB per day ([1,26]), and normally surveillance systems store recording
for months. So, the need for storage to record and keep those high-resolution
videos has increased, raising the cost of buying several storage devices.

Most of the surveillance systems today are incapable of making decisions in
real-time [28] and unable to decide when to record, what to detect, and what
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
T. Guarda et al. (Eds.): ARTIIS 2023, CCIS 1935, pp. 103–117, 2024.
https://doi.org/10.1007/978-3-031-48858-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48858-0_9&domain=pdf
http://orcid.org/0009-0002-6054-6243
http://orcid.org/0000-0003-0031-9911
https://doi.org/10.1007/978-3-031-48858-0_9


104 F. Siddiqui and S. Siddiqi

to ignore. These systems require humans to continuously monitor screens for
security reasons [10]. Moreover, advancement in surveillance systems and an
increased number of cameras resulted in high labor costs, useless recorded video
frames, no track of change, and limitation of attention for multi-screen moni-
toring [32]. However, improvements in computing power, availability of large-
capacity storage devices, and high-speed network infrastructure paved the way
towards more robust smart video surveillance systems for security [10,25].

Traditional surveillance systems are passive and thus keep recording contin-
uously, increasing the cost of storage. Also, a particular object/event detection
in these systems is a computationally costly and tedious job as it needs to go
through the whole video track to analyze high-resolution video images [41]. How-
ever, there are few systems that perform object detection intelligently using deep
learning [14,16,20,37,42] but they need high computation power for continuous
processing on streaming. In contrast, machine learning-based systems could be
less computationally intense but training with high accuracy is challenging in
these systems as it requires huge labeled data and manual feature extraction [8].

Some systems continuously classify each captured frame before saving it into
a video, increasing the number of objects in an image. It thus results in a surge of
processing time [2] and requires a lot of computational resources. Moreover, the
issue with these approaches is that even after classifying every image, they are
unable to detect changed objects in the camera frame. This is not their incapabil-
ity, but these systems are not designed to detect any change in objects which can
probably miss the optimization. Additionally, due to a lack of real-time object
detection, these systems do not send on-time notifications when a particular type
of object is targeted. Therefore, there is a need for an efficient algorithm, which
can perform real-time object detection in an optimal manner, and a system that
requires comparatively less storage as well as computational power and provides
intelligent object searching capability and unattended surveillance by sending
an on-time notification when a particular object is detected, or a new object
entered the scene.

This paper presents an algorithm that not only optimizes objects and change
detection but also requires comparatively less time and effort in searching for a
particular object from the library of recorded videos. The paper also presents an
automated surveillance system, namely Smart Video Surveillance System (SVS
System), which provides a solution for real-time surveillance.

We present the state-of-the-art in Sect. 2, and the architecture of our surveil-
lance system and optimizations in Sect. 3 and Sect. 4 respectively. In the end, we
discuss our experiments in Sect. 5.

2 Literature Review

Zhiqing Zhou et al. [43] presented optimizations in wireless video surveillance sys-
tems. The main idea was to create a modular system that reduces network com-
plexity and optimizes overall performance. Mohammad Alsmirat et al. [3] pro-
posed a framework that performs optimization for efficiently utilizing resources



SVSS 105

of automated surveillance systems on the edge server. For wireless bandwidth
optimization, Proportional Integral Differential (PID) technique is used.

Wang and Zhao [39] and others [11,13] proposed a motion detection technique
that is based on background subtraction. In this technique, a series of video
images had been taken, and these images contained geometrical information
of any target. Thus, relevant information is extracted for analysis and motion
detection. This technique greatly improved the compression ratio.

Devi et al. [36] presented a motion detection algorithm based on background
frame matching. This was a much more efficient method for motion detection.
It required two frames one was a reference frame another was an input frame.
Moreover, the reference frame opted to compare with the input frame and their
difference in pixel values determined motion.

Nishu Singla [35] presented another technique for motion detection which
used consecutive frame differencing. A reference frame was used for differencing
with the current/input frame and pixel-based difference produced holes in the
motion area. After that, a transformation (RGB to Gray) was applied to high-
light the motion area and then another transformation (Binarizing) was applied
for highlighting the motion area. The limitation of this approach was determining
air effect as motion which is absolutely not acceptable for surveillance systems.

Chandana S [6] presented two more techniques for motion detection and
stored video based on motion detection. The first technique was using normalized
cross-correlation to find the similarity between two frames. The second technique
was to calculate the sum of absolute differences between two consecutive frames.

Zhuang Miao et al. [23] presented an intelligent video surveillance system
that worked on moving object detection and tracking. For object detection,
three consecutive frame differencing technique was used whereas mean shift was
used for tracking. Similarly, Zhengya Xu and Hong Ren Wu [21] proposed a real-
time video surveillance system based on multi-camera view and moving object
tracking. Moreover, other functionalities of the camera like zoom/pan/tilt for
static cameras kept intact and static background modeling was used to analyze
and track objects.

A. A. Shafie et al. [34] and others [7,9] presented a video surveillance system
for traffic control. Basically, different vehicles were detected in real-time using
blob segmentation. Every time, a new vehicle came in the range of the camera,
blob segmentation drew a boundary box after classifying it.

K. Kalirajan and M. Sudha [17] proposed an object detection-based surveil-
lance system for detecting moving objects and then performed localization for
classification. For object classification, the system is used to separate background
and foreground and perform classification for foreground using the Bayesian rule.

Kyungnam Kim and Larry S. Davis [18] presented another object detection
methodology for real-time object detection and tracking. For object detection,
background subtraction was used, and tracking was performed. Moreover, multi-
camera segmentation was also implemented for parallel classification. Anima
Pramanik et al. [27] presented an approach for stream processing. Frames were



106 F. Siddiqui and S. Siddiqi

Fig. 1. Overview of SVS System.

extracted from the stream and analyzed for object detection after that they were
passed for feature extraction and anomaly detection.

Hanbin Luoa et al. [22] presented a surveillance system that can detect haz-
ards and dangerous areas in construction sites. YOLOv2 was used to detect
objects and predict boundaries and proximity was calculated between people
and detected objects other than humans.

Hyochang Ahn1 & Han-Jin Cho1 [2] identified that Convolutional Neural
Network (CNN) based real-time object detection models are very computa-
tionally intense and face difficulty in processing every frame. Also, presented
another approach with background subtraction using machine learning for real-
time object detection.

Motivated by the extensive state-of-the-art, our proposed solution also builds
upon the proposed technique with novel optimizations which results in less stor-
age and runtime.

3 Design and Architecture

The Smart Video Surveillance System has Component-Based architecture and
has different functionalities which are covered in distinct and independent com-
ponents. The system is divided into five main components namely motion detec-
tion, change object detection, object detection and classification, video storage,
and notification service.

The SVS System connects through a wired or wireless connection to the
camera. Figure 1 The system captures the frame and senses motion with the
motion detection component and if it finds any motion, it activates the object
detection and classification component. The object detection and classification
component classifies and compares the predicted output to the provided list
of targeted objects. In case of the detected object matches with the targeted



SVSS 107

objects, this component will send a request to the Video Storage component to
store the frames and Notification Service to trigger notification for the user. Once
the recording is started, the Video Storage component will store n number of
frames then pass control to change the object detection component. The change
object detection will sense if there is any change in the object and based on
this the control will be passed to either the Video Storage component to store n
frames again or the object detection and classification component to detect new
objects.

4 Methodology

In this section, we discuss the implementation details of each component with
proposed optimizations and choices of parameters.

4.1 Motion Detection

Moving object detection is widely performed by taking the pixel-wise difference
between the input frame and reference frame. Many improvements have been
proposed to existing frame differencing and background subtraction approaches.
However, these approaches have several limitations e.g., air effect, illumination
effect, which may lead to unwanted results.

The proposed approach for motion detection is calculating Mean Squared
Deviation (MSD). For two consecutive frames, we apply a threshold on MSD to
decide a change in frames is motion or not. Moreover, to overcome the limitations
of previous approaches, frames are converted into grayscale before calculating
MSD which eliminates illumination and color effects (see Algorithm 1). The
threshold value is set after an experimental evaluation. The reason for choosing
MSD for motion detection is its fast execution and avalanche effect in minor
changes. Moreover, MSD equal to zero implies similar frames, which means no
motion is detected whereas increasing MSD from zero defines the intensity of
dissimilarity between two consecutive frames. If this dissimilarity surpasses the
threshold, it will be interpreted as motion is detected. The mathematical repre-
sentation for calculating MSD is following:

MSD =
1
mn

m−1∑

i=0

n−1∑

j=0

[Icurrent(i, j) − Iprevious(i, j)]2

This algorithm first takes two grayscale frames, calculate their MSD based on
the approach mentioned above, and compares the obtained MSD with a preset
threshold to make any decision on motion detection.

4.2 Change Object Detection

The Change Object Detection component is one of the key components of this
system. Motion Detection determines the presence of any moving object in front



108 F. Siddiqui and S. Siddiqi

Algorithm 1. Motion Detection in Frames
Input: Current Frame curr, Previous frame prev
Output: Boolean

1: curr ← convert current frame into grayscale
2: prev ← convert previous frame into grayscale
3: m, n ← curr.shape() //returns current image shape

4: MSD ←
∑

(curr − prev)
m×n

5: if MSD > Threshold then
6: return True // motion detected
7: else
8: return False // no motion detected
9: end if

of the camera. But, once a cycle of recording has been completed, the system
will again start the new cycle from motion detection to video recording which
may cause a high computational cost. To further optimize this process, Min-
Max thresholding has been introduced through that the change of object will
be determined and in case of the same object(s) is present in the range of the
camera, the system will start recording again by eliminating the computationally
expensive classification task.

Min-Max thresholding is the criteria for the Change Object Detection com-
ponent to decide whether a new object has been detected in the range of the
camera or the existing object(s) is still present there. In this thresholding, Min
is the minimum threshold that is necessary to qualify to call any changes in the
frames as ‘motion’. In contrast, Max is the minimum threshold on which any
change in the frames will be considered either the same object presence or a
change of object(s) in the current frame.

Moreover, the Change Object Detection will apply Min-Max thresholding to
determine the cause of change and decide the decision as follows:

MAX > MSD > MIN Same object detection

MAX > MSD Changed object detection

Change Object Detection details are given in Algorithm 2. This algorithm
takes two grayscale frames and calculates its MSD similar to Algorithm 1. After
obtaining MSD, it applies Min-Max thresholding to conclude if the same object
is present, object has changed or there is no motion at all.

4.3 Object Detection and Classification

Smart Video Surveillance System (SVS System) uses a motion detection app-
roach before starting real-time object classification - classifying an image with
a multi-class classifier during live streaming. Once the motion detection compo-
nent responds to the change in frames as motion, the next task will be to find



SVSS 109

Algorithm 2. Change Object Detection in Frames
Input: Current Frame curr, Previous frame prev
Output: Boolean(min, max)

1: curr ← convert current frame into grayscale
2: prev ← convert previous frame into grayscale
3: m, n ← curr.shape() //returns current image shape

4: MSD ←
∑

(curr − prev)
m×n

5: if Max > MSD > Min) then
6: return (True, True) //same object
7: else if MSD > Max) then
8: return (True, False) //changed object
9: else

10: return (False, False) //No motion detected
11: end if

object(s) that has caused the motion. In this regard, a multi-class classifier is
needed which can process frames and return the detections efficiently.

Object detection and classification are valuable but computationally expen-
sive in surveillance systems. There are many approaches are mentioned in the
literature review for real-time object detection and a detailed comparison in
terms of time and accuracy of different models including YOLO (You Only Look
Once), SSD (Single Shot Detection), and R-FCN (Region-based Fully Convolu-
tional Networks) is presented in [40]. However, they all need powerful machines
with Graphical Processing Units (GPU) for surveillance systems. The proposed
approach for object detection and classification is to use the You Only Look Once
version 5 (YOLOv5) algorithm [15,30] based on trade-off [12,40] that is balanced
in terms of speed and accuracy in real-time processing. Algorithm 3 presents our
object detection and classification algorithm that loads the YOLOv5 model and
set its type. Then it starts detection with the provided parameters.

Algorithm 3. Change Object Detection in Frames
Input: image
Output: imageWithDetections

1: detector ← ObjectDetection()
2: detector.setModelTypeAsYOLOv5()
3: detector.setModelPath(”my YOLO model.h5”) //loading weights
4: detections ← detector.detectObjectsFromImage(params)
5: return detections

4.4 Video Storage

While YOLOv5 is fast and accurate in real-time classification, it requires GPU
to process every frame continuously. As a result, processors keep busy in classi-
fication on streaming which makes surveillance systems computational-intense.



110 F. Siddiqui and S. Siddiqi

Fig. 2. Interface of SVS System.

Hence, there is a need for optimization so that surveillance systems with real-
time object detection can be prevented from high computation and may also be
run on computers without GPUs. The proposed approach for this optimization
is to classify a single frame (if and only if motion is detected) and continuously
store n number of frames if any of the specified objects are found in the classified
frame. In other words, the system does not classify every frame during streaming
(until there is motion and detections does not contain the specified object(s))
instead it classifies a single frame after recording n number of frames. To pre-
vent security risks, n−1 frames are stored directly until the next classification is
performed, if classification activates on motion detection. This approach has two
limitations. First, the value of ‘n’ is experimental and may vary from application
to application. This system is designed for home premises, but different appli-
cations may have different values of ‘n’. The experiment details are shown in
the experiments and threshold value section. Second, if a system detects motion
continuously but none of the user’s specified objects is detected in the frame,
the system will start to classify every frame just like many surveillance systems.

4.5 Notification Service

SVS System has additional on-time notification services functionality which is
not yet implemented in existing surveillance systems. This system allows the user
to select notify option for any object and the system would generate a notification
for the user if an object marked notify is detected and sends it to the user’s cell
phone via SMS (short message service) and send a classified image to the user’s
WhatsApp number. Fig 2 shows the interface and notification sample of our
surveillance system.



SVSS 111

Table 1. MSD score on different walking motions

Direction Speed MSD

Left to Right & Right to Left Slow Walk 89

Left to Right & Right to Left Normal Walk 127

Left to Right & Right to Left Running 223

Front to Back & Back to Front Slow Walk 66

Front to Back & Back to Front Normal Walk 80

Front to Back & Back to Front Running 114

Diagonally Slow Walk 170

Diagonally Normal Walk 287

Diagonally Running 366

5 Experiments

This system is developed in Python 3.7 using OpenCV [5] library. The exper-
iments are conducted on non-GPU Intel®CoreTM i5-3230M CPU 2.60GHz
(4CPUs) 3rd generation with 8192MB RAM and 300 GB hard disk drive.

5.1 Motion Detection Threshold

To determine the threshold for motion detection, we conducted a series of exper-
iments. These experiments include a person’s movement across the camera,
throwing an object in the range of the camera, different light conditions (low,
medium, high, daylight), Movement of hung clothes due to air effect and raining
or water flow in front of the camera.

Experiment 1 Person Movement: In this experiment, person movement is
observed. A person moved from left to right, right to left, front to back, back to
front and diagonally with different speeds such as slow walking, normal walking
and running. We observed that walking diagonally in front of the camera always
results in higher deviation no matter the pace of walking (see Table 1).

Experiment 2 Light Effect: An observation is taken in different light condi-
tions in front of the camera. The light conditions were low (toward darkness),
medium (normal/day light on a clear sky with a temperature of 22◦C) and high
(very bright light a standard flashlight in a studio). Table 2 shows that MSD is
very high when transitioning from high light to low and vice versa. In contrast,
the MSD is very low when this transition happens in medium to low light.

Experiment 3 Throwing Objects: In this experiment, two different objects of
different masses are thrown in front of the camera. The objects were an ordinary



112 F. Siddiqui and S. Siddiqi

Table 2. MSD on different light conditions

Light Condition MSD

Low to Medium 80

Low to High 213

Medium to Low 60

Medium to High 75

High to Low 229

High to Medium 70

Table 3. MSD on different objects

Direction Speed MSD

Pen Slow 30

Pen Normal 40

Pen Fast 60

Box Slow 34

Box Normal 50

Box Fast 83

pen and a box of 10 cm * 10 cm. Table 3 show a deviation of 60 and 83 for both
pen and box respectively. We repeated the experiment three times and observed
higher deviation when an object of a bigger mass is thrown toward the camera.

Experiment 4 Air Effect: In the end, the air effect over the curtain and tree
is evaluated in indoor and outdoor scenes. The results (Table 4) show a directly
proportional relation between high air pressure and MSD. The more air pressure
increases, the more MSD value increases. Similarly, the lower air pressure will
result in a lower MSD value.

Table 4. MSD on different air conditions

Scene Air Intensity MSD

Indoor Low 50

Indoor High 65

Outdoor Low 60

Outdoor High 80

We also performed an experiment with dropping water in front of the camera
and on a rainy day but did not find a significant difference in MSD on a light rainy



SVSS 113

day. On a heavy rainy day, the recorded MSD was 52. We use this information
to increase the threshold value if a day is predicted as rainy. After getting the
MSD for different scenarios via our experiments we took the average of these
MSD values on points when a motion was detected and when a motion was
not detected. Using these average values, we found the min and max values for
Min-Max thresholding as 90 and 270 respectively.

Table 5. Number of stored frames between classifications.

Camera Direction Speed # Frames Time (s)

Camera 1 Left to Right Slow 175 41.10

Camera 1 Front to back Slow 135 30.24

Camera 1 Diagonally Slow 140 31.20

Camera 1 Left to Right Medium 110 25.38

Camera 1 Front to back Medium 85 20.58

Camera 1 Diagonally Medium 100 23.34

Camera 1 Left to Right Fast 70 17.70

Camera 1 Front to back Fast 70 17.40

Camera 1 Diagonally Fast 75 18.60

Camera 2 Left to Right Slow 600 30.00

Camera 2 Front to back Slow 480 24.00

Camera 2 Diagonally Slow 360 31.20

Camera 2 Left to Right Medium 480 18.00

Camera 2 Front to back Medium 360 24.00

Camera 2 Diagonally Medium 480 18.00

Camera 2 Left to Right Fast 480 24.00

Camera 2 Front to back Fast 360 18.00

Camera 2 Diagonally Fast 335 16.80

5.2 Number of Frames Value Determination for Recording

The purpose of this experiment was to determine an optional number of frames
to be stored after a single classification. This experiment was done with two
different size (pixel) cameras. One camera had high resolution, approximately
16 MP and the second was a 2 MP camera. In the experiment, a person is moved
across a camera with different speeds e.g., slow, medium, and fast and its time
and number of frames are recorded (Table 5). The optimal value of N found in
this experiment is 270 number of frames and 23 seconds after taking the average
of all frames and time taken.

5.3 Model Tuning

In the YOLOv5 model there is a tradeoff between the detection speed and accu-
racy of detected object. The purpose of this experiment is to find the opti-



114 F. Siddiqui and S. Siddiqi

mal detection speed for this system with minimum or no reduction in accuracy.
Increasing the speed may result to save up to 80% of the time taken to detect
objects at the cost of a slight reduction of accuracy. The detection speeds are
flash, normal, fast, faster, and fastest. The observations are given in Table 6. We
select the YOLOv5 model with a detection speed Fast for our application.

5.4 Baseline Comparison

We compare our solution (SVSS) with two baseline approaches 1) Continuous
Object Detection (COD) approach - every frame is classified in real-time and
2) Motion Detection and Classification (MDC) approach - frames are classified
only when motion is detected. In Table 7, we measure the CPU cost using the
task manager of the local machine and the Python library Psutil [31].

Table 6. Comparison of Detection Speeds, Time, and Accuracy.

Detection Speed Detection Time (s) Accuracy

Normal 3.1 99.99%

Fast 1.8 90%

Faster 0.60 70%

Fastest 0.33 52.4%

Flash 0.2 25%

Table 7. Computational Cost Comparison.

System Model COD MDC SVS Sys

Task Manager (Minimum percentage) Flash 15.1% 5.4% 3.1%

Task Manager (Average percentage) Flash 42.9% 15.3% 9.9%

Task Manager (Maximum percentage) Flash 57.6% 30.7% 29.1%

Psutil Library (Minimum percentage) Flash 16% 10.3% 6.6%

Psutil Library (Average percentage) Flash 35.8% 24% 15.6%

Psutil Library (Maximum percentage) Flash 71% 24.4% 41.6%

Task Manager (Minimum percentage) Normal 74.7% 22.1% 22.1%

Task Manager (Average percentage) Normal 80.0% 43.5% 35.1%

Task Manager (Maximum percentage) Normal 92.1% 81.2% 78.8%

Psutil Library (Minimum percentage) Normal 31.6% 6.2% 5.8%

Psutil Library (Average percentage) Normal 96.2% 26.6% 14.3%

We compare the CPU consumption for continuous fifty seconds and the
results (Fig. 3) shows consistent improvement of the proposed model over the



SVSS 115

baselines. The COD remains at peak all the time and MDC remains on peak
more frequently. In contrast, the proposed system touches the peak rarely and
operates on low CPU consumption most of the time.

Fig. 3. CPU Consumption Graph for 50 s

6 Conclusion

The Smart Video Surveillance System (SVS System) is developed to overcome
the issues and problems related to surveillance. As existing surveillance systems
hold many issues like monitoring problems, issues in browsing and searching, cost
of storage, no on-time notification, and high computation power consumption
in case of continuous classification. The proposed system is one solution for all
these issues. SVS System has five main components Motion Detection, Object
Change Detection, Object Detection and Classification, Storage Service, and
Notification Service. The motion Detection component is responsible for detect-
ing motion in the captured frame. The object Change Detection component is
responsible for detecting change, add or elimination of object(s) in consecutive
frames. The object Detection and Classification component is responsible for
object detection and predicting its label. The Storage Service is responsible for
storing videos when specific conditions are met and maintaining information
regarding each video recorded. Finally, Notification Service is responsible for
sending notifications on the user’s cell phone. The testing results show its per-
formance in real scenarios. The optimizations in the algorithm have improved
the overall system’s performance using features like Motion Detection, Change
Object Detection and Object Detection and Classification. In addition to this,
it reduces the painful efforts of searching for a particular object in the library
of recorded videos by using optimizations in video storage and notification ser-
vice. Finally, the presented SVS System offers unique features in searching for a
particular object and on-time notification on targeted object detection.

References

1. DVR Storage Calculator for Analog Security Cameras. Supercircuits (2020),
https://www.supercircuits.com/resources/tools/security-dvr-storage-calculator,
Accessed 20 Mar 2023

https://www.supercircuits.com/resources/tools/security-dvr-storage-calculator


116 F. Siddiqui and S. Siddiqi

2. Ahn, H., Cho, H.-J.: Research of multi-object detection and tracking using machine
learning based on knowledge for video surveillance system. Pers. Ubiquit. Comput.
26(2), 385–394 (2019). https://doi.org/10.1007/s00779-019-01296-z

3. Alsmirat, M., Sarhan, N.J.: Intelligent optimization for automated video surveil-
lance at the edge: a cross-layer approach. Simul. Model. Pract. Theory 105, 102171
(2020)

4. Basavaraj, G., Kusagur, A.: Vision based surveillance system for detection of
human fall. In: RTEICT, pp. 1516–1520. IEEE (2017)

5. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
6. Chandana, S.: Real time video surveillance system using motion detection. In: 2011

Annual IEEE India Conference, pp. 1–6. IEEE (2011)
7. Chitra, M., Geetha, M.K., Menaka, L.: Occlusion detection in visual scene using

histogram of oriented gradients. In: ICEVENT, pp. 1–5. IEEE (2013)
8. Cob-Parro, A.C., Losada-Gutiérrez, C., Marrón-Romera, M., Gardel-Vicente, A.,

Bravo-Muñoz, I.: Smart video surveillance system based on edge computing. Sen-
sors 21(9), 2958 (2021)

9. Daigavane, P., Bajaj, P.R., Daigavane, M.: Vehicle detection and neural network
application for vehicle classification. In: 2011 International Conference on Compu-
tational Intelligence and Communication Networks, pp. 758–762. IEEE (2011)

10. Dedeoğlu, Y.: Moving object detection, tracking and classification for smart video
surveillance. Ph.D. thesis, Bilkent Universitesi (Turkey) (2004)

11. Fang, L., Meng, Z., Chen, C., Hui, Q.: Smart motion detection surveillance system.
In: International Conference on Education Technology and Computer, pp. 171–175.
IEEE (2009)

12. Fang, Y., Guo, X., Chen, K., Zhou, Z., Ye, Q.: Accurate and automated detection
of surface knots on sawn timbers using YOLO-V5 model. BioResources 16(3), 5390
(2021)

13. Feiran, F., Ming, F., Huamin, Y.: Temporal difference method based on positive
and negative energy distribution in moving objects detection. In: IST, pp. 1–5.
IEEE (2017)

14. Ji, P., Kim, Y., Yang, Y., Kim, Y.S.: Face occlusion detection using skin color
ratio and LBP features for intelligent video surveillance systems. In: FedCSIS, pp.
253–259. IEEE (2016)

15. Jocher, G., et al.: ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improve-
ments (2020). https://doi.org/10.5281/zenodo.4154370

16. Ju, J., Ku, B., Kim, D., Song, T., Han, D.K., Ko, H.: Online multi-person tracking
for intelligent video surveillance systems. In: ICCE, pp. 345–346. IEEE (2015)

17. Kalirajan, K., Sudha, M.: Moving object detection for video surveillance. Sci. World
J. 2015 (2015)

18. Kim, K., Davis, L.S.: Object detection and tracking for intelligent video surveil-
lance, pp. 265–288. Multimedia Analysis, Processing and Communications pp
(2011)

19. Kruegle, H.: CCTV Surveillance: Video practices and technology. Elsevier (2011)
20. Liu, W., Liao, S., Hu, W.: Perceiving motion from dynamic memory for vehicle

detection in surveillance videos. IEEE Trans. Circuits Syst. Video Technol. 29(12),
3558–3567 (2019)

21. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering
validation measures. In: ICDM, pp. 911–916. IEEE (2010)

22. Luo, H., Liu, J., Fang, W., Love, P.E., Yu, Q., Lu, Z.: Real-time smart video
surveillance to manage safety: a case study of a transport mega-project. Adv. Eng.
Inform. 45, 101100 (2020)

https://doi.org/10.1007/s00779-019-01296-z
https://doi.org/10.5281/zenodo.4154370


SVSS 117

23. Miao, Z., Zou, S., Li, Y., Zhang, X., Wang, J., He, M.: Intelligent video surveil-
lance system based on moving object detection and tracking. DEStech Trans. Eng.
Technol. Res. 11, 2016 (2016)

24. Mishra, A.A., Srinivasa, G.: Automated detection of fighting styles using localized
action features. In: ICISC. pp. 1385–1389. IEEE (2018)

25. Nikouei, S.Y., Xu, R., Nagothu, D., Chen, Y., Aved, A., Blasch, E.: Real-time
index authentication for event-oriented surveillance video query using blockchain.
In: ISC2, pp. 1–8. IEEE (2018)

26. Paul: Video Resolution VS. Frames Per Second. Thinpig-media (2019), https://
thinpigmedia.com/blog/decisions-decisions-video-resolution-vs-frames-per-
second

27. Pramanik, A., Sarkar, S., Maiti, J.: A real-time video surveillance system for traffic
pre-events detection. Accid. Anal. Prev. 154, 106019 (2021)

28. Qureshi, F.Z., Terzopoulos, D.: Surveillance in virtual reality: System design and
multi-camera control. In: CVPR, pp. 1–8. IEEE (2007)

29. Rai, M., Husain, A.A., Maity, T., Yadav, R.K., Neves, A.: Advance intelligent video
surveillance system (AIVSS): a future aspect. Intell. Video Surveill. 37 (2019)

30. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: CVPR, pp. 779–788 (2016)

31. Rodola, G.: Psutil package: a cross-platform library for retrieving information on
running processes and system utilization. Google Scholar (2016)

32. Salahat, E., Saleh, H., Mohammad, B., Al-Qutayri, M., Sluzek, A., Ismail, M.:
Automated real-time video surveillance algorithms for SOC implementation: A
survey. In: ICECS, pp. 82–83. IEEE (2013)

33. Sase, P.S., Bhandari, S.H.: Human fall detection using depth videos. In: SPIN, pp.
546–549. IEEE (2018)

34. Shafie, A., Ali, M., Hafiz, F., Ali, R.M.: Smart video surveillance system for vehicle
detection and traffic flow control. J. Eng. Sci. Technol. 6(4), 469–480 (2011)

35. Singla, N.: Motion detection based on frame difference method. Int. J. Inf. Comput.
Technol. 4(15), 1559–1565 (2014)

36. SuganyaDevi, K., Malmurugan, N., Manikandan, M.: Object motion detection in
video frames using background frame matching. Int. J. Comput. Trends Technol
4, 1928–1931 (2013)

37. Tuan, M.C., Chen, S.L.: Fully pipelined VLSI architecture of a real-time block-
based object detector for intelligent video surveillance systems. In: ICIS, pp. 149–
154. IEEE (2015)

38. Wang, R., Tsai, W.T., He, J., Liu, C., Li, Q., Deng, E.: A video surveillance
system based on permissioned blockchains and edge computing. In: BigComp, pp.
1–6. IEEE (2019)

39. Wang, Z., Zhao, Y., Zhang, J., Guo, Y.: Research on motion detection of video
surveillance system. In: 2010 3rd International Congress on Image and Signal Pro-
cessing, vol. 1, pp. 193–197. IEEE (2010)

40. Xu, J.: A deep learning approach to building an intelligent video surveillance sys-
tem. Multimedia Tool Appl. 80(4), 5495–5515 (2021)

41. Yoon, C.S., Jung, H.S., Park, J.W., Lee, H.G., Yun, C.H., Lee, Y.W.: A cloud-
based utopia smart video surveillance system for smart cities. Appl. Sci. 10(18),
6572 (2020)

42. Zhang, S., et al.: Pedestrian search in surveillance videos by learning discriminative
deep features. Neurocomputing 283, 120–128 (2018)

43. Zhou, Z., Yu, H., Shi, H.: Optimization of wireless video surveillance system for
smart campus based on internet of things. IEEE Access 8, 136434–136448 (2020)

https://thinpigmedia.com/blog/decisions-decisions-video-resolution-vs-frames-per-second
https://thinpigmedia.com/blog/decisions-decisions-video-resolution-vs-frames-per-second
https://thinpigmedia.com/blog/decisions-decisions-video-resolution-vs-frames-per-second

	A Novel Optimization Algorithm for Smart Video Surveillance System and Change Object Detection
	1 Introduction
	2 Literature Review
	3 Design and Architecture
	4 Methodology
	4.1 Motion Detection
	4.2 Change Object Detection
	4.3 Object Detection and Classification
	4.4 Video Storage
	4.5 Notification Service

	5 Experiments
	5.1 Motion Detection Threshold
	5.2 Number of Frames Value Determination for Recording
	5.3 Model Tuning
	5.4 Baseline Comparison

	6 Conclusion
	References


