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Abstract. In materials science, the microstructure which defines the
inner structure of a material is particularly important. The material
micrographic image (microstructure) is obtained by different methods
and provides various informations about the material. The main focus
of the present paper is the classification of steels based on the analysis
of their microstructure images.

This work is subdivided into two stages. The first one is about the
construction of a small dataset that contains 90 micrographs belonging to
the three distinct steel classes. The second stage is about the image pro-
cessing proposed algorithm that mainly incorporates three modules: the
segmentation to extract grains morphological features, texture analysis
employing Local Oriented Optimal Pattern (LOOP), and the Decision
Tree algorithm for the classification. Our algorithm classifies microstruc-
tures into one of three grades (Carbon, Austenitic and Duplex stainless)
with greater than 90% accuracy.

Keywords: Decision tree · Microscopic images · Microstructure
characterization · Morphological features · Steel classification · Texture
analysis

1 Introduction

Steels are the most important materials used in industry, as oil refineries, chem-
ical industry, power engineering industry and petrochemical domains, because
of their excellent mechanical properties [1,2]. Based on their chemical composi-
tions, steels can be categorized into four groups: Carbon, Alloys, Stainless and
Tool steels. The steel microstructures have different appearances, influenced by
alloying elements, rolling process, cooling rates, heat treatment and further post-
treatments [3]. These manufacture processes induce various microstructures,
with different micro-constituents such as ferrite, cementite, austenite, pearlite,
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bainite and martensite. The steel performances is highly depend on the distribu-
tion, shape and size of phases in the microstructures [3]. Carbon group is the most
important commercial steel alloy; it exhibits a ferrite/ pearlite microstructure.
Duplex stainless steels (DSS) are dual phases, comprise equivalent proportions
of ferrite (α) and austenite (γ) and exhibit excellent integration of mechanical
and corrosion properties [4]. Austenitic alloys are mono phase with austenitic
matrix.

Traditionally, steel microstructures are classified by comparing the
microscopy images with reference series. Especially for steel and its complex
microstructures, the comparison with reference series is strongly dependent on
the expert’s subjective opinion. Furthermore, it is tedious and time consuming
task [5].

Recently, computer vision and image processing have great applications in
materials science where many works are devoted to automatize some important
tasks [5]. According to the study in [6] those works can be mainly subdivided on
two groups:

(i) Image processing techniques that are based on the properties of the
image itself (such color intensity, shape, texture). The segmentation step is cru-
cial in this approach for further processing such as the morphological parameter
computations that helps to quantitatively describing each microstructures. The
simplicity, efficiency and accessibility of this approach have made it ideal can-
didate to be part of many works. For example, image thresholding was used in
[7,8], Region Growing in [9,10], and Variational models in level set framework in
[11,12]. as the material micrographic images exhibit repeated local patterns, the
texture analysis technique is employed as descriptors. In this context, authors
in [13] used Local binary descriptor and several combinations of morphologi-
cal parameters in support vector machine (SVM) to classify the microstructure
components (martensite, pearlite and bainite). They concluded that the texture
features showed fewer correlations with each other, which is one of the great
advantages over the other two parameter groups.

(ii) Learning-based approach that is based on learning a model from the
data to be treated. Nowadays, it is widely introduced in micrographic analysis. In
[14] authors classified the 13CrMo4-5 steel damages, using the geometrical coef-
ficients resulting from the SEM digital images and their classification method-
ology uses artificial neural networks (ANN). S. M. Azimi et al. [15] worked on
microstructural classification of low Carbone steel by Deep Learning method,
with 93.94% classification accuracy. In the study of Vitalii et al. [16], authors
have developed an algorithm to automate metallographic metals analysis based
on artificial intelligence technologies. Beskopylny et al. [17] applied a method
based on non-destructive test, to evaluate the indentation characteristics that
correlate with the material properties to classify steel grades. The main contri-
butions of this paper are:

1. The image processing stage describes an algorithm that aims to classify
three steel classes based on their micrographic images. To achieve such goal
several steps are considered: (i) The images are prepossessed then segmented
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to extract the MGs, (ii) the MG morphological is described base on its shape
features (orientation, circularity, elongation) and phase rate (iii) The Local
Oriented Optimal Pattern (LOOP) is used to describe the microstructure tex-
ture. (iiii) The extracted features are fed to the Decision Tree (DT) algorithm
to classify the input image onto the corresponding grade.

2. Metallic Materials Dtataset we propose, for this study, a new small
dataset that contains 90 microstructure images of three steel grades
(austenitic, carbon, and duplex stainless). The steel samples performing
and image acquisitions (using the light optical microscope Nikon-Eclipse)
were done at the Mechanics and Materials Development laboratory of
Research Center in Industrial Technologies -CRTI- https://www.crti.dz/.
The dataset is available in public domain github platform, Microstruc-
ture Images for Metallic Materials at https://github.com/Yamina77/Microst.
Images MetallicMaterialsDataset

2 Material and Dataset

The materials analyzed for this study were acquired from the industry machinery
elements. The three types of steel are mainly used to fabricate typical products,
as tubes, pipes, plates for pressure vessels, boilers and piping procedures. The
different specimens were identified as S1, S2 and S3, to refer to Austenite steel,
Carbone steel, and Stainless steel, respectively. The samples were prepared with
an established procedure, providing high surface quality. First, specimens with
a 20 × 20 mm2 square surface were cut from the received plates. The obtained
samples were then, prepared for metallography by a conventional polishing, on
turning disks with grinding papers of different grit size in six steps (P320, P500,
P800, P1000, P1200, and P2400). The last polishing was performed by adding
an alumina standard suspension onto the rotating disk to obtain a mirror sur-
faces. The polished samples were washed with ethanol and dried with air; a
subsequent etching with adequate chemical reagent is performed to reveal the
different microstructures.

The images acquisition was done by the means of a light optical microscope
(Nikon-Eclipse), equipped with objective lenses and camera for maximum optical
resolution. The images are saved in .JPG format, with different observation
scales (20 μm, 50 μm, 100 μm), and resolutions (640×480, 2560×1920). In this
work, a total of 90 images are used that are regrouped in three folders according
to their grade (30 images for carbon steel, 30 images for Stainless steals, and 30
images for Austenite).

3 Proposed Materiel Classification Model

Through the above mentioned discussion in Sect. 1, we propose the framework
shown in Fig. 1 where the classification is based on both grain’s morphology fea-
tures and texture analysis using local binary pattern. Mainly the model includes
three steps where the following subsection details each one.

https://www.crti.dz/
https://github.com/Yamina77/Microst.Images_MetallicMaterialsDataset
https://github.com/Yamina77/Microst.Images_MetallicMaterialsDataset
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Fig. 1. Micrographic identification based on Morphology and texture in decision tree
classifier

3.1 Segmentation and Morphological Features Computation

The segmentation is the crucial step in this task. In this work, we have used
the Chan-Vese in level set framework optimized via Split Bregman method for
fast convergence. The Chan and Vese [18] constructed the energy functional by
minimizing the square error between the gray value and the mean value of the
pixel points inside and outside the curve.

FPCV V
(
cin
i , cout

i , Φ
)

= ν

∫

Ω
|∇Hε(Φ)|dx

+
∫

Ω

1
N

N∑

i=1

λin
i (u0,i(x) − cin

i )2Hε(Φ) dx

+
∫

Ω

1
N

N∑

i=1

λout
i (u0,i(x) − cout

i )2(1 − Hε(Φ) dx

(1)

where i = 1, . . . N represents the ith channel of the original image u0, generally
N = 3 for color images. λin and λout are constant vectors that penalize energy
inside and outside curve in each channel i.

Hε(x) =
1
2

[
1 +

2
π
arctan

(z

ε

)]
, and δε(x) =

1
π

ε

ε2 + z2
; z ∈ R. (2)



368 Y. Boutiche and N. Ouali

The cin
i and cout

i are the constant vectors that represent the average intensities
inside and outside the curve. They are defined as follows:

cin(Φ) =

∫

Ω
u0(x))Hε(Φ)dx
∫

Ω
Hε(Φ)dx

, and cout(Φ) =

∫

Ω
u0(x)) (1 − Hε(Φ))dx
∫

Ω
(1 − Hε(Φ))dx

. (3)

For c1 and c2 fixed, the according Euler-Lagrange equation that allows the
evolution of the curve is given by the following Eq. (4)

∂Φ

∂t
= δε(Φ)

[

νdiv

( ∇Φ

|∇Φ|
)

− λ1

N∑

i=1

(u0,i − cin
i )2 + λ2

N∑

i=1

(u0,i − cout
i )2

]

. (4)

To achieve fast convergence of the Chan-Vese model, we have adapt the Split
Bregman method for the minimization process. The details of its implementation
is done in [19].

The segmented image is then used to calculate a set of grain morphological
features that allows describing the structural of microstructure. In our work,
we have chosen four morphological features so that each one give a best grain
characterization as follows:

– Phase Fraction that is computed as the percent of the phase surface divided
by the total image surface. In the case of austinitic grade this feature is very
low since it is a monphase steel.

– Elongation Elo and Orientation θ: those features describe well the duplex
steel, where phases are longer and flattened than in other steels (austinitic
and carbon).

– Circularity Cir: this feature is used to caracterise the carbon’s phases.

3.2 Texture Analysis

Local binary descriptors have been shown to be effective encoders of repeated
local patterns for robust discrimination in several visual recognition tasks [20].
In literature exist a large variety of texture descriptors that are derived from the
first and popular one named Local Binary Pattern LBP [20]. In the present work,
we use the Local Oriented Optimal Pattern (LOOP) [21] that was introduced to
overcomes the disadvantages of classic LBP.

Let ic be the image intensity I at pixel (xc, yc) and in (n = 0, 1, . . . , 7) be
the intensity of a pixel in the 3 × 3 neighborhood of ic excluding the center
pixel ic = (xc, yc). Also, the 8 responses of the Kirsch masks noted by mn

corresponding to pixels with intensity in, (n = 0, . . . , 7). Each of these pixels are
assigned an exponential wn (a digit between 0 and 7) according to the rank of
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the magnitude of mn among the 8 Kirsch mask outputs. Then the LOOP value
for the pixel (xc, yc) is given by [21]

LOOP (xc, yc) =
7∑

n=0

s(in − ic).2wn (5)

where

s(x) =
{

1 if x ≥ 0
0 otherwise

(6)

As reported in [21] the LOOP descriptor has many advantages (i) encodes
rotation invariance into the main formulation, (ii) negates the empirical assign-
ment of the value of the parameter k in a variety of local binary descriptors (iii)
less susceptible to noise than the traditional LBP operator, (iiii) LOOP allows
gains in time complexity.

Three images are randomly selected from each grade to be used as reference
for it. Let Haust, Hcarb, and Hduplex be the histograms of the resulting LOOP
images for austinitic, carbon and duplex, respectively. Let H be the histogram
of the image to be classified. The Mean Square Error MSE is then computed for
each grade as follows

MSEi =
1
D

(H − Hi)2 , i = aust, carb, duplex (7)

where D is the length of H. Such the image is classed to the grade that corre-
sponds to the minimum average squared distance between the H and reference
Hi.

3.3 Microstructure Identification Based on Morphological
and LOOP Descriptor in Decision Tree

The framework of the decision tree based method for microstructure identifica-
tion is shown in the second bloc in Fig. 1. It is proposed through the following
analysis. The class of austinitic steels is characterized by a monphase structure
thereby the phase rate is small. Consequently the identification of this class is the
combination between the austinitic local binary descriptor and fraction phase.

The grains, in duplex class, are horizontally laminated, thereso this class is
strongly described by a very weak orientation, non circularity and large elonga-
tion shape features such its morphology parameters are set to [θ = false, Cir =
false, Elo = true], incorporate with texture descriptor.

The carbon steel class generally has polygonal grains, such it is classified
based on circularity and elongation morphology parameters associated to the
LOOP descriptor with Or logic operation.

4 Experimental Evaluations and Discussion

In this section, we present comparisons of the steel micrographic images seg-
mentation using the proposed morphological-local binary pattern model against
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some widely used methods. Furthermore, the evaluation is performed to show
the advantages of combining the morphological and local texture computation
to increase the classification accuracy. In addition, all experiments are done on
the dataset described in Sect. 2.

The algorithm is implemented using Matlab2018a, on a computer equipped
with CPU Intel(R) Core (TM) i7 − 10700FCPU@2.90GHz and 16, 0Go of
RAM. Furthermore, for all experiments the level set is automatically initialized
to a rectangle binary function, where Φ = +1 inside curve and Φ = 0 outside (as
shown in the first raw of Fig. 2(a)).

The experiment in Fig. 2 shows the first bloc outcomes for an example of
Duplex stainless image displayed in first raw and column. The curve initialization
is represented, via yellow solid line on the image domain, in the second column
and the corresponding level set on last column. The second row represents, from
the left to the right the convergence of curve (solid yellow line), the level set
at the convergence and the binary segmented image, respectively. The last row
shows the LOOP image and its histogram. The algorithm performs well the

Fig. 2. Demonstration example where input image, in first row, refers to duplex stain-
less micostructure. The second row presents the segmentation bloc: from the left to
right initial zero level set function (yellow line), the convergence of this function, and
the segmented image. The third row shows the LOOP image and corresponding his-
togram.
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segmentation where the two phase in the microstructure are correctly extracted.
In addition, The LOOP image exhibits exceedingly the pattern in the image.

4.1 Segmentation Performance Compared with the Other Methods

The morphological parameters are directly computed from the segmented image,
thereby it is primordial to use algorithm able to deal with high performance on
microstructures. In this subsection, we compare the segmentation results using
proposed method with some widely used methods. The first row of Fig. 3 displays,
an arbitrary selected images from each considered material grades. The second,
third and fourth rows show the segmentation results for three class of methods,
as follows:

– Thresholding methods represented by Ridler algorithm and Kapur algorithm;
– Clustering methods represented by kmeans and fuzzy kmeans (FCM);
– Variationnal (or active contours) methods represented by Local Binary Fit-

ting Energy LBF model [22] and the Picewise Constant Chan-Vese (PC)
model optimized using Split Bregman method (adopted in our work).

As the Austenitic grade is a monphase steel, the segmented image should
be one region. This is obtained by Ridler, kmeans and PC algorithms. However,
Kapur, FCM and LBF have extracted two regions. The carbon is a biphase steel,
its microstructure is characterized by small two regions. A good performance are
obtained using Kapur, FCM and PC methods. The PC model out performs all
others methods in the case of the Duplex steel grade, where the two regions are
correctly extracted.

4.2 Classification Performance Evaluation

The classification in our work is performed using the classic decision tree algo-
rithm, where there is no learning stage (see Sect. 3). To evaluate the classification
rate of proposed algorithm with and without combination of features, we use the
accuracy rate formulation done in Eq. 8. The obtained values are displayed on
Table 1. These results shows clearly the importance of the combination between
morphological and texture features to classify steels microstructures, specially
for the carbon and duplex grades where accuracy is 100% and 93.33%, respec-
tively.

Acc =
Number of correct predictions
Overall number of predictions

(8)
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Fig. 3. Testing of the segmentation outcomes on three images for the three grades. The
first row: the original images. The 2nd to 4th rows represents obtained binary segmen-
tation using Thresholding-based methods, Clustering-based methods and Variational-
based methods.

Table 1. Classification accuracies obtained for each grade in the three cases.

Austenitic steel (30 images) Carbon steel (30 images) Duplex steel (30 images)

Classification base on texture and morphology

Acc(%) 90.00% 100% 93.33%

Classification base on morphological only

Acc(%) 36.66% 90.00% 86.67%

Classification base on texture only

Acc(%) 86.67% 76.67% 76.67%

5 Conclusion

The proposed image analysis algorithm involves image segmentation, morpho-
logical feature extraction, and local texture pattern synthesis. The obtained set
of parameters are incorporated in a decision tree algorithm to classify the input
image to its corresponding steel grade (Carbon, Austenitic and Duplex stain-
less). The developed method allows to determine the grade and steel quantita-
tive parameters (ratio Ferrite/Perlite, grain amount, etc.), that are very useful
for metallurgy.
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The proposed method was shown a higher accuracy using the combination
of morphological and texture features compared to using them separately. How-
ever, the study was done on small dataset thereby it can not be generalized.
In addition, a comparative study with the state-of-art methods should be done.
Both of these points are the goals of further work.
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