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Abstract. Mobile StrokeUnits (MSUs) are specialized ambulances that can diag-
nose and treat stroke patients; hence, reducing the time to treatment for stroke
patients. Optimal placement of MSUs in a geographic region enables to maxi-
mize access to treatment for stroke patients. We contribute a mathematical model
to optimally place MSUs in a geographic region. The objective function of the
model takes the tradeoff perspective, balancing between the efficiency and equity
perspectives for the MSU placement. Solving the optimization problem enables
to optimize the placement of MSUs for the chosen tradeoff between the efficiency
and equity perspectives. We applied the model to the Blekinge and Kronoberg
counties of Sweden to illustrate the applicability of our model. The experimental
findings show both the correctness of the suggested model and the benefits of
placing MSUs in the considered regions.

Keywords: Optimization · MILP · Time to Treatment · Mobile Stroke Unit
(MSU) · MSU Placement

1 Introduction

A stroke refers to when a blood clot or a bleeding interrupts the blood circulation inside
the brain, and stroke is amain global reason for death and permanent disability [1]. There
are three main stroke types, each requiring specific treatment. To assure providing the
correct stroke treatment, a computed tomography (CT) scan is required to identify which
type of stroke the patient is suffering. Ischemic strokes are most common, and they occur
when blood clot(s) impede blood circulation in the brain. Treatment for ischemic stroke
patients typically involves thrombolysis and, in specific cases, thrombectomy.

Early treatment is known to be crucial for the successful recovery of stroke patients
[2]. However, it is often difficult to treat stroke patients immediately since the patient
typically cannot be diagnosed and treated until the ambulance delivers him/her to an
acute hospital.
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One effective way to decrease the time to treatment for stroke patients involves
the utilization of Mobile Stroke Units (MSUs). An MSU is a specialized ambulance
equipped with advanced medical equipment, including a CT scanner, that enables the
ambulance personnel to diagnose and administer thrombolysis on stroke patients while
the patient is still in the MSU. As a result, MSUs have the potential to reduce the time
to treatment by eliminating the time required for the transportation and diagnosis of the
patient at the hospital. However, due to the high operational expenses associated with
MSUs, only a limited number of MSUs can be placed in a geographic region. Therefore,
when introducing MSUs, it becomes essential to strategically place them in order to
provide a timely service for residents living in a region.

There are a number of studies focusing on identifying the optimal locations for
placingMSU(s) within a region to enhance stroke care. These studiesmainly explore two
perspectives regarding where to place MSUs: efficiency and equity. The term efficiency
refers to placing MSUs so that they provide access to treatment in the shortest possible
time for most patients in a region, for example, in urban areas [3, 4]. Equity emphasizes
the placement of MSUs in a manner that ensures equal access to healthcare services
regardless of the geographic location of the patients, for example, in rural areas [5].
Phan et al. [3] introduce a data-driven approach that utilizes the Google application
programming interface to determine the best possible placement for an MSU within the
Sydney area. Rhudy Jr. et al. [4] use geospatial analysis to optimize service delivery
for stroke patients in Memphis by studying the distribution of an MSU throughout the
city. Dahllöf et al. [6] propose an expected value optimization approach to determine the
best placement for an MSU in Sweden’s Skåne county, aiming to assess the potential
advantages of placing an MSU for urban and rural residents respectively. Amouzad
Mahdiraji et al. [7] utilize an exhaustive search approach to optimally place MSUs in
southern Sweden with the aim of balancing the efficiency and equity perspectives for
the placement of MSUs.

The aim of the current study is to introduce amathematical optimizationmodel in the
form of a mixed integer linear programming (MILP) model to identify the best locations
ofMSUs within a geographic region. Mathematical optimization has been demonstrated
to be an effective technique to solve complex problems in a wide range of domains, such
as emergency medical services (EMS). Due to the computational complexity of emer-
gency vehicle placement problems, it is vital to build efficient mathematical models to
represent the key characteristics of the MSU placement problem. However, no existing
research directly addresses the mathematical formulation of the MSU placement prob-
lem. The objective function of the presented MILP model expresses a tradeoff between
the efficiency and equity perspectives, aiming to provide maximum population coverage
as well as equal service for the inhabitants of a region; however, considering the chosen
tradeoff between the two perspectives. A scenario study is conducted in two counties of
southern Sweden to show the correctness and advantages of our proposed model, where
we solve the model to identify the optimal placements for different numbers of MSUs.

The subsequent sections of the paper are outlined as follows. We review the related
work in Sect. 2. In Sect. 3, we present the MSU placement problem with a tradeoff
between the efficiency and equity perspectives. In Sect. 4, we present our optimization
model for the described problem. The scenario study is presented in Sect. 5, which is
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followedby an analysis of experimental results and a discussion. Eventually,we conclude
the paper in Sect. 6.

2 Related Work

Previous studies in EMS useMILP for problems related to ambulance routing and place-
ment, ambulance fleet allocation, crew scheduling, and resource allocation, ultimately
leading to better patient outcomes and resource utilization [8]. As an example, Tavakoli
et al. [9] propose a mathematical model for the strategic placement of ambulances, aim-
ing to improve the response time of EMS in Fayetteville, North Carolina. Røislien et al.
[10] use mathematical modeling to explore the optimal locations for air ambulance sites
in Norway. Their approach utilizes high-resolution population data to estimate the num-
ber of required sites to provide service within 30 and 45 min for different shares of the
population. Leknes et al. [11] present a MILP model to address the strategic and tactical
problems of placing ambulance sites in heterogeneous regions. The authors examined
the model in an urban-rural area in Norway. Akdoğan et al. [12] utilize queuing theory
and aMILPmodel to locate emergency vehicles on fully connected networks. TheMILP
model aims to reduce the average response time of EMS according to an approximate
queuing model.

In another study, Tlili et al. [13] propose a mathematical model to improve EMS
transportation during disaster situations. The authors use a genetic algorithm for the
ambulance routing problem to reduce time-sensitive treatment delays during urgent sit-
uations involving congested traffic compounds.Acuna et al. [14] contribute an ambulance
placement optimizationmodel to decrease patients’ waiting times, time to treatment, and
emergency department overcrowding in a county in Florida. The model considers dis-
parities and fairness in placing ambulance services to emergency departments. Wan S.
et al. [15] use a 0–1 MILP model to represent the location of distribution centers in mas-
sive emergencies, applied in a case study of earthquake response logistics in Chengdu,
China. The proposed bi-objective model considers both the total transportation cost and
the coverage level of emergency supplies.

While numerous research studies focus on the mathematical modeling of ambulance
location problems, no previous study explicitly contributes to the mathematical formu-
lation of the MSU placement problem. To address this gap, in this paper, we present a
MILP model to represent the MSU placement problem.

3 MSU Placement Problem

As mentioned earlier, when placing MSU(s) in a geographic region, we need to take the
impacts of theMSU locations into account to assure that the inhabitants of different parts
of a region receive maximum benefit. In this section, we describe the MSU placement
problem and how MSUs can be placed in a region considering the tradeoff between the
efficiency and equity perspectives.

In our companion study [7], we demonstrate how different placements of MSUs
would impact individuals living in different parts of a region. In particular, we propose
an objective function that could be used in an optimization model to tradeoff between
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the efficiency and equity perspectives, and hence, allows placing MSUs so that most
people living in a region are expected to receive more equitable service and shorter time
to treatment. In addition, we employ the concept of the expected time to treatment to
capture the value of the corresponding measure for each perspective. It should be noted
that the expected time to treatment for a stroke patient denotes the expected time until
the patient gets treatment either at a hospital or inside an MSU. In a previous study
[16], we present how to calculate the expected time to treatment for patients in different
subregions of a geographic region, considering that both a regular ambulance and an
MSU can be dispatched.

The efficiency perspective refers to placing MSUs in a region to ensure a higher
proportion of the population is expected to receive treatment at an earlier time. Using
this perspective, theMSUs are placed close to highly populated regions, that is, in or near
the urban areas. The efficiency perspective can be measured by the weighted average
time to treatment (WATT). The expected time to treatment for individuals located in
each subregion of a larger region is multiplied by the share of stroke cases expected to
take place in the corresponding subregion; the sum of these values yields the WATT.
We can use the WATT as an objective function in an optimization model for the MSU
placement problem that considers the efficiency perspective.

The equity perspective refers to placing MSUs where the people who live far from
themedical centers (for example, hospitals) benefit most, that is, people living in or close
to rural areas. The range measure can be utilized to model the equity perspective, aiming
tominimize the time difference between the expected times to treatment for patients who
are located in different subregions of the studied region. The focus of an optimization
problem corresponding to the equity perspective is to identify the MSU placements that
minimize range.

In our companion study [7], we also introduce a tradeoff function that is established
based on the WATT and range. It is shown that the tradeoff function enables to balance
between the efficiency and equity perspectives to optimally place MSUs. In an opti-
mization problem for placing MSUs in a region, the tradeoff perspective aims to find the
locations of MSUs that minimize the tradeoff function.

It should be highlighted that in the formulated optimization problem, we only con-
sider, for each perspective, the placement of MSUs in the existing ambulance sites in a
geographic region.

4 Optimization Model

We here present our MILP model, which represents the key characteristics of the MSU
placement problem. Our optimization model aims to minimize the tradeoff function that
enables to identify the optimal locations for MSU(s) that can provide highly equitable
service and reduced time to treatment for residents within a region.

We let I = {1, . . . ,m} denote the index set over ambulances sites, where m is the
total number of ambulance sites, and N is the number of MSUs to place. The aim is to
place a fixed number ofMSUs at the existing ambulance sites in a geographic region. It is
assumed that there is always at least one regular ambulance available at each ambulance
site. We also assume that there is always an ambulance or an MSU available for dispatch
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when it is required, and that the placed MSU(s) have no limitation concerning driving
distance, and that they can provide service throughout the whole region.

We further assume that the studied region is divided into a non-overlapping set of
subregions, denoted by R = {1, . . . , n}, where n is the total number of subregions. We
also assume that all inhabitants located in subregion r ∈ R are in the same location, for
example, in the centroid of r.

We let tRAr be the shortest time to treatment using a regular ambulance located in
any ambulance site i ∈ I for subregion r ∈ R, tMSU

ir be the expected time to treatment
for a patient located in subregion r ∈ R using an MSU located in site i ∈ I , and Qr

be the share of stroke incidents within the studies region that is expected to take place
in subregion r ∈ R (

∑
r∈R Qr = 1). Please note that the tRAr :s (r ∈ R), tMSU

ir :s (i ∈ I ,
r ∈ R), and Qr :s (r ∈ R) are input parameters, and hence can be calculated beforehand.

In order to formulate the MILP model, we need the following decision variables:

• xi ∈ {0, 1}, (i ∈ I) is a binary decision variable such that:

xi =
{
1 if there is an MSU in site i ∈ I ,
0 Otherwise.

(1)

• yMSU
ir is the expected time to treatment for a patient in subregion r ∈ R using anMSU
in site i ∈ I . This variable is assigned a large value,M , if there is no MSU placed in
site i ∈ I .

• yMSU
r is the shortest expected time to treatment for a patient in subregion r ∈ R using
any of the placed MSUs.

• yr is the shortest expected time to treatment for a patient in subregion r ∈ R using
either an MSU or a regular ambulance.

• umax is the longest expected time to treatment for any subregion r ∈ R.
• umin is the shortest expected time to treatment for any subregion r ∈ R.

The tradeoff function z, presented in Eq. (2), is the objective function for our MILP
model. Theobjective functionhas twocomponents: thefirst one is theWATTas ameasure
for the efficiency perspective, and the second one is the range (time difference between
subregions with the shortest and longest expected time to treatments) as a measure for
the equity perspective.

min z =
∑R

r=1
(1 − w)yrQr + w

(
umax − umin

)
, (2)

In Eq. (2), w ∈ [0, 1] is the weight employed to control the effects of the efficiency
and equity perspectives. For example, we here assume w = 0.5 to let each of the terms
have an equal impact on the tradeoff function.

The optimal solution of our model is subject to the following constraints:

yMSU
ir = xit

MSU
ir + M (1 − xi), i ∈ I , r ∈ R, (3)

yMSU
r = min

i∈I

{
yMSU
ir

}
, i ∈ I , r ∈ R, (4)

yr = min
{
yMSU
r , tRAr

}
, r ∈ R, (5)
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umax ≥ yr, r ∈ R, (6)

umin ≤ yr, r ∈ R, (7)

∑

i∈I xi = N . (8)

We use constraint sets (3)-(5) to obtain the values of the yr , which is the shortest
expected time to treatment for any subregion r ∈ R using either an MSU or a regular
ambulance. The constraint in Eq. (3) assigns tMSU

ir to yMSU
ir if there is an MSU available

in site i for a patient in subregion r. However, if no MSU is located in site i, it instead
assigns a large valueM to the yMSU

ir .M , which is a parameter in our optimization model,
is a sufficiently large constant value. For example,M can be set to any value larger than
the longest expected time to treatment for any subregion r and any ambulance site i, that
is,M > max

r∈R tRAr .

The constraint in Eq. (4) takes the minimum over the expected times to treatment
for the possible MSU locations. The minimum operation is used to assign the shortest
expected time to treatment using anMSU for a patient in subregion r. In the optimization
model, the constraint yMSU

r = min{
i∈I

yMSU
ir } = min

{
yMSU
1r , . . . , yMSU

mr

}
is modeled as an

ordered sequence of (|I |−1)minimumoperations, each having two components. For this
purpose, we introduce a set of positive help variables pMSU

ir , i ∈ {1, . . . , |I | − 1}, r ∈ R,
which are used in the following way:

pMSU
1r = min

{
yMSU
1r , yMSU

2r

}
, (9)

pMSU
2r = min

{
pMSU
1r , yMSU

3r

}
,

. . .

pMSU
(�I�−1)rh = min

{
pMSU
(�I�−2)r, y

MSU|I |r
}
.

In turn, each of these (|I |−1) minimum operations are represented using six constraints
in our optimization model.

To model each of the minimum operations (including two components), we also
need one binary variable. We let binary help variable sMSU

ir , i ∈ {1, . . . , |I | − 1}, r ∈ R
be used in the i:th minimum operation in this sequence for subregion r.

The first of the minimum operations pMSU
1r = min

{
yMSU
1r , yMSU

2r

}
, determining the

minimum between yMSU
1r and yMSU

2r is modeled using the following (six) constraints.

yMSU
2r − yMSU

1r ≤ MsMSU
1r , (10)

yMSU
1r − yMSU

2r ≤ M
(
1 − sMSU

1r

)
,

pMSU
1r ≤ yMSU

1r ,



An Optimization Model for the Placement of Mobile Stroke Units 303

pMSU
1r ≤ yMSU

2r ,

pMSU
1r ≥ yMSU

1r − M
(
1 − sMSU

1r

)
,

pMSU
1r ≥ yMSU

2r − MsMSU
1r

The i:th (2 ≤ i ≤ |I |−1) of the minimum operations pMSU
ir = min

{
pMSU
(i−1)r, y

MSU
(i+1)r

}
,

determining the minimum between pMSU
(i−1)r and yMSU

(i+1)r , is modeled using the following
(six) constraints. Please note that there are in total |I | − 2 such constraint sets for each
subregion r.

yMSU
(i+1)r − pMSU

(i−1)r ≤ MsMSU
ir , (11)

pMSU
(i−1)r − yMSU

(i+1)r ≤ M
(
1 − sMSU

ir

)
,

pMSU
ir ≤ pMSU

(i−1)r,

pMSU
ir ≤ yMSU

(i+1)r,

pMSU
ir ≥ pMSU

(i−1)r − M
(
1 − sMSU

ir

)
,

pMSU
ir ≥ yMSU

(i+1)r − MsMSU
ir .

Then, we use the constraint in Eq. (12) (one for each r ∈ R) to acquire yMSU
r . Please

note that this constraint is needed in order to be consistent with the constraint set (11).

yMSU
r = pMSU

(|I |−1)r, r ∈ R. (12)

The constraint yr = min
{
yMSU
r , tRAr

}
shown in Eq. (5) captures the minimum value

between yMSU
r and tRAr for the patients located in subregion r. In the optimization model,

this constraint is modeled using the following six constraints, where vr, r ∈ R is a binary
help variable:

yMSU
r − tRAr ≤ Mvr, r ∈ R, (13)

tRAr − yMSU
r ≤ M (1 − vr), r ∈ R,

yr ≤ tRAr , r ∈ R,

yr ≤ yMSU
r , r ∈ R,

yr ≥ tRAr − M (1 − vr), r ∈ R,
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yr ≥ yMSU
r − Mvr, r ∈ R.

The constraints umax ≥ yr and umin ≤ yr in Eqs. (6) and (7) capture the longest and
shortest expected time to treatment for any subregion r and for any MSU in site i. The
value of umax − umin in the objective function, see Eq. (2), refers to the range measure.

Finally, the constraint
∑

i∈I xi = N defined by Eq. (8) specifies the number of MSUs
to be placed in a region.

5 Scenario Study

In this section, we describe the application of our proposed optimization model to two
counties in southern Sweden. We then describe the experimental results.

5.1 Scenario Description

To evaluate the efficacy of the presented optimization model, we apply it to the Blekinge
and Kronoberg counties of Sweden, which are parts of Sweden’s southern healthcare
region (SHR). The SHR covers an area of 16,622 km2 and encompasses four counties:
Skåne, Blekinge, Halland, and Kronoberg. The SHR has 49 municipalities, and its pop-
ulation was 1,687,000 in 2018. In Sweden, over 21,000 stroke incidents occur annually,
with 3,900 cases reported in SHR [17]. In SHR, there are 39 ambulance sites and 13 acute
hospitals equipped with CT scanners. Using the standard solvers, for example, Gurobi,
we realized that it would be difficult to solve the model for large problem instances,
that is, the entire SHR. Therefore, we decided to test the model with two counties of
SHR. Table 1 represents the demographic and geographic statistics for each county of
SHR. Figure 1 shows an overview of SHR, where each green triangle (referred to by a
specific circled number) and each purple circle corresponds to an ambulance site and
an acute hospital, respectively. The borders of the Blekinge and Kronoberg counties are
represented in red and blue, respectively. As shown in Fig. 1, the ambulance sites in
Blekinge are in Karlshamn (id: 15), Karlskrona (id: 16), Olofström (id: 26), Ronneby
(id: 29), and Sölvesborg (id: 30), and ambulance sites in Kronoberg are in Älmhult (id:
1), Alvesta (id: 3), Lenhovda (id: 21), Lessebo (id: 22), Ljungby (id: 23), Markaryd (id:
25), Tingsryd (id: 34), and Växjö (id: 36).

We considered the same input data and assumptions aswe did in our companion study
[7]. In particular, we utilized the demographic data and stroke data for 2018 collected
from Statistics Sweden [18] and Sweden’s southern healthcare region committee [19],
respectively. In our data, each county of SHR was divided into a set of non-overlapping
subregions, each equaling to 1 × 1 km2 and indicated by r ∈ R so that the union of all
subregions

⋃
r∈Rr equals to the corresponding county of SHR. The demographic data

included the number of inhabitants for each subregion r ∈ R and each of the 21 assumed
age groups, that is {[0, 4), [4, 8), . . . , [95, 99), [100,∞)}. In addition, the stroke data
included the number of stroke cases for each age group in each county of SHR. Using the
provided data, we calculatedQr , indicated in Sect. 4, for each subregion r ∈ R, obtained
by dividing the expected number of stroke cases in subregion r by the total expected
number of stroke cases in the SHR.
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Table 1. Demographic and geographic data of each county of SHR.

County Population Number of
municipalities

Number of
subregions

Number of
ambulance sites

Number of
hospitals

Blekinge 134,188 5 1,959 5 2

Halland 133,025 3 1,603 4 1

Kronoberg 198,903 8 4,233 8 2

Skåne 1,221,074 33 8,827 22 8

Fig. 1. Overview of the Sweden’s southern healthcare Sweden (SHR). The purple circles and
green triangles show the locations of acute hospitals and ambulance sites, respectively. The cir-
cled numbers indicate the corresponding ambulance site IDs. The borders of the Blekinge and
Kronoberg counties are shown in red and blue, respectively. (Color figure online)

In the scenario study, we aimed to identify the optimal locations of different numbers
of MSUs in either Blekinge or Kronoberg using the proposed optimization model. In
the experiments, we took into consideration that every ambulance site within the region
could potentially serve as a location for placing anMSU. In addition, for all experiments,
we measured the results using only the expected time to treatment. We also compared
the experimental results of placingMSU(s) with the experimental results of the baseline,
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representing the current situation in the SHR, where there are only regular ambulances
across all 39 ambulance sites in the SHR.

We solved the problem in Gurobi1 10.0.0, which uses the barrier and simplex algo-
rithms to solve continuous relaxations of mixed-integer models and continuous models.
In all experiments, we solved the described problem using the barrier and simplex algo-
rithms. All of the code was written in Jupyter Notebook using Python on a computer with
32-gigabyte memory (RAM) and a Core(TM) i7-8650U CPU 1.90 gigahertz Intel(R)
processor.

5.2 Experimental Results

Asmentioned above,we applied ourmodel to different parts of the SHR, that is, Blekinge
andKronoberg counties. To demonstrate the functionality of our optimizationmodel and
to explore how large problem instances can be solved using this approach, we initially
tried to apply it to a smaller county of SHR, that is, Blekinge, which is a smaller region
and which has a lower number of ambulance sites compared to the entire SHR.We, then,
applied the model to a broader region, that is, Kroboberg county, with a higher number
of ambulance sites. The reason that we did not represent the application of the model to
the complete SHR, which is a large area, is that it was challenging and time-consuming
to optimally solve our proposed model for such a large region with the corresponding
large amount of input data.

The experimental results for the Blekinge county are presented in Table 2. We con-
sidered two situations regarding the number of ambulance sites that are available for
placing MSUs in Blekinge: Situation 1) the number of available ambulance sites cor-
responds to the number of ambulance sites in Blekinge; Situation 2) the number of
available ambulance sites corresponds to the number of ambulance sites in Blekinge +
all ambulance sites located in the neighborhood of Blekinge. As can be seen the Fig. 1,
there are six ambulance sites close to Blekinge, where the two nearest ambulance sites
are Bromölla (id: 6) and Tingsryd (id: 34).

Since there are 5 ambulance sites in the Blekinge county, in the experiments, we
solved the problem for placing 1 to 4 MSUs. According to Table 2, by adding the
number of MSUs, the tradeoff value decreases in comparison with the baseline (where
there is no MSU in Blekinge). The results also demonstrate that by using MSU(s) in
Blekinge, the values of the tradeoff, WATT, range, and average time to treatment are
expected to decrease compared to the baseline. In particular, by placing two MSUs in
Blekinge, it is possible to make the treatment available within an hour for all inhabitants
living in Blekinge.

When we solved the problem considering Situation 1 (only ambulance sites in
Blekinge), the Simplex and Barrier algorithms produced the same results for each MSU
placement. For Situation 1,wepointed out theminimumexecution timebetweenSimplex
and Barrier in Table 2.

For Situation 2, where we considered 11 ambulance sites (5 ambulance sites in
Blekinge and 6 neighborhood ambulance sites), the Gurobi solver using the Simplex
algorithm had difficulty in solving the problem for placing of 1 to 4 MSUs. We instead

1 Available: https://www.gurobi.com.

https://www.gurobi.com
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decided to only consider the 2 nearest ambulance sites to the existing ambulance sites of
Blekinge and perform the experiments with 7 ambulance sites, shown in the third row
of each MSU placement in Table 2. However, using the Barrier algorithm, Gurobi could
solve the problemconsidering 11 ambulance sites in a feasible amount of time.According
to the Gurobi documentation2, the reason is probably that the Barrier algorithm is more
efficient for complex models with large size. The results of the Barrier algorithm for
Situation 2 are presented in parentheses in the third row for each MSU placement.

Table 2. Experimental results for the Blekinge county. NoAAS: number of available ambulance
sites for placing MSUs; NoM: number of MSUs to place in the county; algorithm: algorithm used
to solve the problem; MSU IDs: found optimal MSU site IDs, denoted by numbers within the
square brackets; Ex. Time: Execution time (in seconds); Tr.: objective function corresponding to
tradeoff value (in hour); Ra.: range (in hours); ATT: average time to treatment (in hour); WATT:
weighted average time to treatment (in hour); and ES: exhaustive search.

NoAAS NoM Algorithm MSU IDs Ex. 
Time 

Tr. Ra. WATT ATT

Baseline - - - - 1.39 1.44 1.34 1.61
5 & 11 1 ES [29] - 1.09 1.16 1.01 1.11
5 1 Simplex 

& Barrier
[29] 22 1.09 1.16 1.01 1.11

7 (11) 1 Simplex 
(Barrier)

[29] 42 
(45)

1.09 1.16 1.01 1.11

5 & 11 2 ES [15,16] - 0.87 0.89 0.84 0.97
5 2 Simplex 

& Barrier
[15,16] 572 0.87 0.89 0.84 0.97

7 (11) 2 Simplex 
(Barrier)

[15,16] 978 
(1008)

0.87 0.89 0.84 0.97

5 3 ES [15,16,29] - 0.81 0.83 0.79 0.93
5 3 Simplex 

& Barrier
[15,16,29] 466 0.81 0.83 0.79 0.93

7 (11) 3 Simplex 
(Barrier)

[15,16,34] 1243 
(1127)

0.82 0.79 0.84 0.95

11 3 ES [15,16,34] - 0.82 0.79 0.84 0.95
5 4 ES [15,16,26,29] - 0.78 0.81 0.75 0.89
5 4 Simplex 

& Barrier
[15,16,26,29] 24 0.78 0.81 0.75 0.89

7 (11) 4 Simplex 
(Barrier)

[15,16,26,34] 1003 
(995)

0.81 0.81 0.80 0.91

11 4 ES [15,16,26,34] - 0.81 0.81 0.80 0.91

In Table 2, the comparison of the results of Situation 1 and Situation 2 shows that the
identifiedMSU locations are equal when placing 1 and 2MSUs. However, the identified
MSU locations are different when placing 3 and 4 MSUs, where the corresponding
tradeoff values of Situation 1 are smaller than Situation 2.

2 Available: https://www.gurobi.com/documentation/

https://www.gurobi.com/documentation/
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According to Table 2, in Situation 1 and Situation 2, the highest execution times are
recorded when placing 2 MSUs (572 s) and 3 MSUs (1243 s for Simplex and 1127 s for
Barrier), respectively.

In order to verify the optimal solutions and optimal objective function values obtained
using our optimization model, we compared the output of our model with the exhaustive
search, proposed in our companion paper [7], for placing 1, 2, 3, and 4MSUs inBlekinge,
presented in Table 2. In all MSU placements and Situations, the identified solutions and
objective function values are the same both for our proposedmodel and for the exhaustive
search.

Table 3. Experimental results for the Kronoberg county. The abbreviations are the same as in
Table 2.

NoAAS NoM Algorithm MSU IDs Ex. 
Time 

Tr. Ra. WATT ATT

Baseline - - - - 1.65 1.84 1.45 1.78
8 1 ES [3] - 1.32 1.53 1.11 1.31
8 1 Simplex 

(Barrier)
[3] 2195 

(133)
1.32 1.53 1.11 1.31

8 2 ES [23,36] - 1.09 1.24 0.94 1.13
8 2 Simplex [23,36] 2667 1.09 1.24 0.94 1.13
8 3 ES [21,23,36] - 1.01 1.10 0.91 1.10
8 3 Simplex [21,23,36] 3481 1.01 1.10 0.91 1.10
8 4 ES [21,23,34,36] - 0.99 1.10 0.87 1.02
8 4 Simplex [21,23,34,36] 4099 0.99 1.10 0.87 1.02
8 5 ES [21,23,25,34,36] - 0.97 1.10 0.83 0.98
8 5 Simplex [21,23,25,34,36] 2340 0.97 1.10 0.83 0.98

In Table 3, we present the results of applying our model to the Kronberg county.
In the experiments, we assumed that only ambulance sites in Kronberg can be used for
placing MSUs. Considering the complexity of solving the model, we, further, assumed
that it is relevant to solve the problem of placing 1 to 5 MSUs in Kronoberg.

According to Table 3, by adding the number of MSUs, the tradeoff value decreases
in comparison with the baseline (where there is no MSU in Kronoberg). In Table 3,
the results also show that by placing MSU(s) in Kronoberg, the values of the tradeoff,
WATT, range, and average time to treatment are expected to reduce compared to the
baseline. Especially, placing 5 MSUs in Kronoberg would potentially provide treatment
within an hour for all inhabitants living there.

It can be observed in Table 3 that when we solve the problem of placing one MSU
in Kronoberg, the Simplex and Barrier algorithms produce the same results. However,
when placing more than one MSU in Kronoberg, the Barrier algorithm had difficulties
in finding feasible solutions for placing 2 to 5 MSUs. Alternatively, using the Simplex
algorithm, Gurobi could solve the problem for different numbers of MSUs within a
feasible amount of time. As mentioned above, the reason appears to be that the Barrier
algorithm tends to be quicker when handling large complex models, but it exhibits
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greater numerical sensitivity. On the other hand, the simplex algorithm is generally less
affected by numerical issues. According to Table 3, the highest execution time (4099 s)
is recorded when placing 4 MSUs in Kronoberg.

Similar to Table 2, we compared the output of the presented optimization model with
the exhaustive search for placing different numbers of MSUs in Kronoberg, presented in
Table 3. As can be seen for all MSU placements, the identified solutions and objective
function values are the same both for our proposed model and for the exhaustive search.

From the conducted experiments, we could explore to what extent large problem
instances can be solved using our optimization model, and in that way, we could learn
about the limits of using the Gurobi solver to solve the described problem.

6 Conclusions

We have presented a MILP model for the optimal placement of MSUs in a geographic
region. The objective function of our optimization model is a tradeoff function proposed
in our prior study [7], used to tradeoff the equity and efficiency perspectives for theMSU
placement problem while aiming to provide shorter time to treatment and equal service
for residents living in a region. To evaluate our optimization model, we conducted a sce-
nario study to placeMSUs in the Blekinge andKronoberg counties of Sweden. Applying
themodel to smaller counties provided us the opportunity to assess themodel’s function-
ality and performance on a more manageable scale before scaling it up to larger problem
instances. In the presented model, the time needed to identify an optimal solution for
the given problem instances indicated the complexity of the MSU placement problem.
The experimental results, supported by the results of the exhaustive search approach
presented in previous research [7], indicated that the proposed optimization model is
able to find the optimal MSU locations concerning the defined objective function and
constraints. The results of the experiments also showed that using our proposed opti-
mization model for the MSU placement problem enabled to cut down the expected time
to treatment for most residents compared to the baseline. From the experimental results,
we concluded that by placing 2 and 5 MSUs in Blekinge and Kronoberg, respectively,
it is likely to achieve access to treatment within an hour for all inhabitants living there,
which is often considered an important goal.

The focus of the current paper was on validating the correctness of the proposed
optimization model and illustrating the possible idea of placing MSU(s) in a region
using the tradeoff perspective. As mentioned above, solving large problem instances, for
example, the SHR, is computationally expensive, in particular for standard optimization
solvers. For futurework,weplan to investigate the use of heuristics to solve large problem
instances within a reasonable time frame.
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