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Abstract. The Internet of Vehicles (IoV) is one of the most exciting and practical
ways that corporations and academics are interested in, especially by employing
coordinated unmanned vehicles to explore areas like the automobile industry. To
provide long-term possibilities for task investigations, the IoV connects vehicles,
transportation networks, and communication infrastructure. Data privacy, how-
ever, may be compromised by the coordination of information gathering from
numerous sources. Federated Learning (FL) is the answer to these concerns of
privacy, scalability, and high availability. A well-distributed learning framework
designed for edge devices is federated learning. It makes use of large-scale pro-
cessing from edge devices while allowing private data to remain locally. In this
work, different categories of federated learning have been discussed. A review
of various systems implementing FL for IoV has been presented followed by the
applications and challenges of FL in the IoV paradigm. The paper concludes by
providing future research directions for FL in the IoV.

Keywords: Federated learning · Internet of Vehicles ·Machine learning ·
Unmanned Arial Vehicles

1 Introduction to Federated Learning

Federated Learning (FL) utilizes a centralized aggregator and provides a solution to the
issues associated with manyMachine Learning (ML) clients. It ensures that training data
for federated learning is decentralized to protect data privacy [1]. Two key concepts of
local computation and model transmission have been introduced to lower the privacy
risk and cost of centralized ML systems. In FL, participants train their models by using
local data and then send the model to the server for aggregation, and the server dissem-
inates model updates. In Fig. 1, FL’s high-level map process has been given [2]. In FL,
local models are trained on separate vehicles before aggregating them in the cloud to
enhance security, accuracy and learning efficiency [3]. In two phase mitigating scheme,
an intelligent architecture with FL provides data leakage detection [4] and intelligent
data transmission [5] to improve security [6]. In Unmanned Aerial Vehicles (UAV) fed-
erated deep learning applications with wireless networks, the focus is to improve the
learning efficiency, learning speed significance, conscious joint data selection, resource
allotment algorithm [7], and content caching method for edge computing of FL in IoV.
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1.1 Categories of Federated Learning.

FL depends on five aspects which are heterogeneity, communication architecture, data
partitioning, applicable machine learning models, and privacy mechanism [8]. Figure 2
depicts the classification of FL.

Fig. 1. Federated learning high-level process map

1.1.1 Data Partition

Based on various distributions of design, FL can be divided into the three types [9] i.e.
horizontal FL, Vertical FL, and Federated Transfer Learning. Horizontal FL is employed
where user attributes for two datasets overlay remarkably but user overlap is minimal.
The data set is divided horizontally, with the same user attributes, but different users
for training [10, 11]. In vertical FL (VFL), users are overlapped a lot and user features
are overlapped a little. In VFL, data sets are divided vertically and a portion of data is
considered for training wherever users are identical with different useful features [12]. In
Federated Transfer learning (FTL) the users or the users’ attributes are never segmented.
However, it can be employed in cases when there is a lag of information or tags [13].

1.1.2 Privacy Mechanism

Using FL, clients can store data locally and transmit model information for target model
training. Inmodel aggregation, the only significant aspect of FL ismodel aggregation that
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trains their global model by integrating the model attributes from all clients thus prevent
transferring the metadata throughout the training process [14]. The problems associated
with calculating encrypted data have been resolved using homomorphic encryption key.
In differential privacy, both ML and deep learning use gradient iteration [15], which
incorporates the addition of noise to the result to implement differential privacy to
safeguard user privacy [16].

Fig. 2. The Classification of Federated Learning

1.1.3 Machine Learning Schemes

FL enhance the capability and security of the ML model. Neural network, decision tree
and linear model are the three main ML models. In federated environment, the linear
model of training that mitigates the security issues and attains the same accuracy as
a non-private solution is proposed in [17]. The tree model in FL, random forest and
gradient boost decision trees are utilized for both single and multiple decision trees
[18]. The most famous model of machine learning is the neural network model that
trains complex tasks. In autonomous vehicles using drones target location, trajectory
planning, target recognition services plays a vital role [19]. Due to the drawback of
regular connection between UAV group and base station, centralized training fails in
real time but deep learning provides excellent efficiency with UAV group usually [20].

1.1.4 Communication Architecture

The problems of application scenario of FL are equipment computing and uneven dis-
tribution of user data [21]. All the participants that are under training are in touch with
centralized server for the update of global model. The communication cost of FL is high
for critical problems. To minimize the cost between server and local users the model
data is compressed by secondary sample random rotation quantization [22].
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1.1.5 Methods for Solving Heterogeneity

Different devices affect the accuracy of total training process. The diversions of het-
erogeneity are model heterogeneity, fault tolerance, asynchronous communication and
device sampling [23]. The main factor of FL is the efficiency of unevenly distributed
data from various devices. In FL, the processing of data from various devices affects the
model. Asynchronous communication is the solution to many problems with dispersed
devices in FL settings.

2 Related Work

This section discusses some of the related works of FL in IoV. For intelligent object
detection, a two-layer FL model has been used in a 6G supported IoV environment [24,
25]. The use of a hybrid blockchain method in addition to FL by using DRL to select
optimized participants which improve the learning efficiency has been proposed in [26].
Iterative model averaging is used by the deep network federated learning frame-work
to train the global model by adding the local models in each round of updates [20]. For
the selection of Smart Vehicles (SVs) for FL, local learners are adopted by using round
robin, random scheduling using heterogeneous asynchronous FL networks [27–29]. In
[30], the authors concluded that the Quality of Information (QoI) received by the SVs
is dynamic and will affect the performance of FL. Therefore, to improve the QoI, the
Vehicular Service Provider’s (VSP’s) responsibility is to select SVs of current location
within important areas. With the combination of important areas and QoI, VSP can
obtain beneficial on-road data [14] and trustworthy trained model updates [31] from the
chosen SVs.

In a non-collaborative Stackleberg game model proposed in [32–34], the mobile
devices have full information about the VSPs payment budget. For estimating the traf-
fic with FL that more correctly captures the spatio temporal correlation of the traffic
flow with the use of clustering, FedGRU approach proposed in [35] combines the GRU
(Gated Recurrent Unit) to get the best overall model. A model proposed in [36] Fed-
Prox integrates the edge devices data of distributed training with the Federal Averaging
(FedAvg) model maximization method that improves the reliability of the target task.
In [37], Multiple Principal One Agent (MPOA) based contract optimization is being
employed to maximize the revenue of VSPs in each iteration [38]. OBU in IoV can
gather data and glean local knowledge. A model proposed in [39] replaces data as a
service by know ledge as a service in IoV. Knowledge serves as real information and
is incorporated into data intelligence. IoV cars learn about the environment and the
roads in different locations using ML techniques, and they share their expertise [40]. In
[41], a model has been proposed to maintain balance between the dataset computational
resources and wireless resources that is affected by the combination of vehicle client
selection resource and wireless resource. Table 1 gives the review of previous work done
by various researchers with respect to implementation of federated learning for IoV.

3 Applications of Federated Learning

This section discusses the various applications of federated learning including its
applications for IoVs.
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3.1 Google Keyboard

The prediction of the next word is achieved while improving the quality of the keyboard
with security and privacy [7, 57]. In building the recommended systems, building of
language model is also attained.

3.2 Intelligent Medical Diagnosis Systems

In the centralizedmethod ofML, the data gathering and processing formedical diagnosis
becomes difficult because of privacy and security concerns. With FL, it is possible to
use the data locally without any issues of privacy and train the model for diagnosis
[57, 58]. For small and insufficient labels, federated transfer learning is the solution. To
implement an integrated multi FL network on APOLLO network merges the interrelated
medical system’s longitudinal real world data with health outcome data for the help of
doctors in forward-looking diagnosis of patients [57].

3.3 RSU Intelligence

IoV comprises of RSUs that are designed to receive data to process basic operations.
Different varieties of data are received by RSUs and thus FL can be applied in various
situations. One of the familiar approaches is in image processing. For autonomous vehi-
cles, both onboard Vehicular Computing (VC) and RSU image processing is important.
Collision detection and pedestrian detection also make use of image processing tasks
[7].

3.4 Network Function Virtualization (NFV) Orchestration

NFV enabled network highlights the use of FL in making NFV orchestration in secu-
rity/privacy services and in vehicular service delivery. Each of the networks is divided
into sub-networks which may be further divided, utilizing network slicing techniques
[59]. This added complexity supports the use of FL because NFV orchestrators from
different network partitions can use cooperative ML training to create models capable
of performing operations like VNF installation, scaling, termination, and migration. In
MEC enabled orchestration of NFV, the RSU is placed near the network edge so that it
can act as a network node to hold Virtual network functions (VNFs) [7].

3.5 Vehicular Intelligence

Vehicular intelligence in IoV has many applications such as forecasting the road con-
ditions, image processing in lane detection and popular predictive maintenance [60].
The predictive maintenance uses operational data and alerts the user for maintenance of
specific part by predicting the failure of the component through planned maintenance.
With the use of FL, in addition to vast collection of data, predictive maintenance models
have been built with greater efficiency [7].
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4 Conclusions and Future Direction

Given the importance of communication in federated networks and the privacy risks
associated with transferring raw data, it is mandatory to keep generated data local. In
this situation, two things can be done to furtherminimize communication: one is to lessen
the total number of iterations of communication rounds, and other is too minimize the
size of message. In this paper, federated learning and its various categories have been
discussed. A systematic review of different systems implementing FL in IoVs has been
presented followed by applications of federated learning in different areas related to IoV.
However, due to the heterogeneity of the VCs, system complexity is a major challenge.
Thus, building privacy protection schemes depending on specific devices in IoV is the
future direction. Resolving the tradeoff between communication cost and computational
pressure is another challenge. Distributed FL is forthcoming research direction with
heterogeneous data.
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