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Abstract. Solar irradiation is the backbone of photovoltaic power tech-
nologies and its quantization allows to optimize energy generation. How-
ever, solar irradiation can be difficult to detect, mostly due to the design
and disposition of sensors, as well as their high cost. To address this
limitation, this paper proposes a deep neural network-based model to
estimate global solar irradiation by only relying on weather data, focus-
ing on applications targeting the Brazilian territory. The model uses a
deep neural network trained with data from the Brazilian National Insti-
tute of Meteorology (INMET), which includes 606 nationwide weather
stations and over 39 million hourly records of meteorological variables
cataloged from years 2010 to 2022. Thus, in this paper i) a deep neural
network is used to estimate irradiation, and ii) a long short-term mem-
ory is used to predict solar irradiation considering different time gran-
ularities: 5 min, 30 min, 6 h, and 1 day. The results show a small error
between the measured irradiation data and the calculated results with
regard to the following six meteorological variables: time, temperature,
relative humidity, wind speed, precipitation, and atmospheric pressure.
Moreover, experimental validations conducted using a weather station
set up by the authors demonstrate that the proposed models can accu-
rately predict solar irradiation. Thus, the developed model stands as
a promising approach for applications within the Brazilian perspective,
improving the efficiency and reliability of solar energy generation.
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1 Introduction

The availability of energy supply is crucial for the economic and social devel-
opment of any country, and producing electricity by means of sustainable gen-
eration sources has been playing a pivotal role in meeting the expected world
demand for energy. Photovoltaic- (PV) and wind-based energy sources are exam-
ples of alternative resources that have supported the reduction of fossil fuel usage
and decreased the need for nuclear power installations. Consequently, due to the
advancement of such technologies, the world is becoming less dependent on power
generation means, which may harm the environment or human life while pro-
ducing electricity [1]. Hence, such alternative sources are shedding light on the
new energy paradigm [2].

Particularly in Latin America, PV power plants have presented an accentu-
ated growth since the past decades; for instance, now accounting for 2.47% of
Brazil’s total power generation [3]. PV-based technologies rely on the physical
nature of solar radiation, depending directly on the irradiation performance to
attain efficient energy conversion and/or utilization. The more one knows about
the irradiation patterns in a certain territory, the more adequate the PV-based
energy can be processed. Thus, quantifying solar irradiation is of paramount
importance in several scenarios, such as power generation and utility markets,
heat load distribution in buildings [4], PV system analysis and installation [5],
agricultural applications [6], as well as irrigation systems [7].
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Solar irradiation, measured in W/m2, varies throughout the day at any given
geographic location, mainly due to the earth’s movement and the chaotic effects
of the atmosphere [8]. With regards to Brazil, it has the world’s highest potential
for solar energy generation, given that a large part of its territory is located in
the equatorial and tropical zones [9].

Measuring such irradiation is challenging due to its cost, maintenance
requirements, and technical demands for calibration of sensors [10,11]. Several
approaches have been proposed in the literature to address this issue, considering
empirical models, mathematical formulations, and satellite-based data. Recently,
the development of artificial intelligence (AI) algorithms to predict and estimate
solar irradiation profiles at specific geographical locations has also been com-
monly evidenced [4–7,12,13]. Gao, Miyata and Akashi highlighted in [14] that
most of the solar-related research findings available worldwide applied long short-
term memory (LSTM), autoregressive moving average (ARMA), and multilayer
perceptron (MLP) as a basis for solar irradiation forecasting algorithms.

Many research works have focused on artificial neural networks (ANN) for
either predicting or forecasting solar irradiation, such as the one conducted by
Yadav and Chandel [15], Shaddel, Javan, and Baghernia [16], and Zhang et al.
[8]. In particular, Zhang et al. [8] and Salazar et al. [9] reviewed and compared
various models, such as MLP, radial basis function (RBF), and wavelet recurrent
neural networks (WRNN), in terms of estimation type and time scale.

For what concerns the Brazilian perspective, ANN-based applications focused
on solar irradiation quantization are still limited, being particularly targeted only
for a small number of areas or regions. Some research efforts have investigated
ANN techniques for solar irradiation prediction in local scenarios, such as in
Fortaleza - Ceará [17], Seropédica - Rio de Janeiro [18], Petrolina - Pernambuco
[9,19], and Botucatu - Sao Paulo [20]. However, Brazil is a geographically exten-
sive country with a significant north-to-south extension, and it lacks research on
a generalist model to predict solar irradiation throughout the entire region.

Motivated by such a scientific gap, this paper presents two main contributions
to fulfill the need to estimate solar irradiation in any location within the Brazil-
ian territory. First, a model based on a deep-learning neural network (DNN) is
developed to estimate solar irradiation based on the following attributes: day-
time, temperature, humidity, atmospheric pressure, wind speed, and hourly pre-
cipitation. As a second contribution, a dynamic model is proposed to forecast
daily irradiation based on locations’ latitude, longitude, and month of the year.

A DNN is used as a regressor for the former model, and its performance
is compared with other estimation techniques. The latter (i.e., dynamic) model
uses a Recurrent Neural Network (RNN) based on the LSTM principle, allowing
solar irradiation prediction for different time scales ranging from 5min to 24 h.
It is worth highlighting that this study utilizes data from 606 meteorological
stations managed by the Brazilian National Institute of Meteorology (INMET)
to train and evaluate the proposed models, considering the datalogging period
between 2010 and 2022.
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This paper reads as follows. Section 2 presents the process of choosing and
implementing DNN and LSTM for the estimation and forecasting process of
solar irradiation. Section 3 presents information about the database provided by
INMET, the data munging process, and the results attained from the ANNs’
model. In addition, it is presented performance analyses for short, medium, and
long-term estimation and forecasting of irradiation, also considering comparisons
with previous works from the literature. Section 4 presents the final considera-
tions about the proposed models, their limitations, and future work proposals.

2 Artificial Neural Network Techniques for Solar
Irradiation

ANNs are bio-inspired computational models capable of representing complex
knowledge, maintenance, and generalization processes using the relationship
between input and output data [6,12]. The basic unit of an ANN is the neu-
ron, and models known as synapses interconnect the multiple units of neurons.
A tuning value is associated with such synapses comprising the ANN, known as
the weight factor.

The first ANNs were idealized in 1943 [21]; however, practical models were
implemented in applications only after 1986, with the construction of an MLP
with backpropagation [22]. An MLP is an ANN architecture comprising an input
layer, one or more hidden layers, and an output layer, as shown in Fig. 1a. The
MLP uses the supervised learning concept called backpropagation in the training
process and can solve the nonlinearity of the input data to perform pattern
recognition or estimation [6].

Since the MLP milestone, deep learning (DL) has progressed because of the
computational evolution in the last decades and the possibility of increasing the
number of hidden layers and neurons [23], as shown in Fig. 1b. Therefore, new
architectures of ANNs were developed for several purposes, such as regression,
supervised classification, computer vision, speech recognition, natural language
processing, and audio detection [24].

Many research efforts present techniques for solar irradiation forecast. For
instance, Wang et al. [25] conducted a study on daily solar radiation prediction
comparing three ANN architectures: the MLP, generalized regression neural net-
work (GRNN), and radial basis function neural network (RBFNN). The models
were developed using as attribute input the air temperature, relative humid-
ity, air pressure, water vapor pressure, and sunlight duration measured from 12
weather stations in different climate zones. Based on the results, they found that
the MLP and RBFNN models provide better accuracy than GRNN.



DNN to Estimate Solar Irradiation in Brazil 67
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Fig. 1. ANN and DNN comparison.

Belaid and Mellit [26] developed a method that uses a support vector machine
(SVM) to predict daily and monthly global average solar irradiation in an arid
climate (Ghardaia, Algeria), taking as input the temperature, maximum sun-
shine duration, and the extraterrestrial solar radiation. For these quantities, the
correlation coefficient ranged from 0.894 to 0.896, and the prediction error of
approximately 7.5%.

Mehdizadeh et al. [27] conducted a study comparing gene expression pro-
gramming (GEP), ANN, adaptive neuro-fuzzy inference system (ANFIS), and
48 empirical equations to estimate daily solar radiation in Kerman, Iran. The
authors reported that the scenarios based on meteorological parameters and
sunlight in ANFIS and ANN showed better accuracy than empirical models.

For the Brazilian scenario, ANN-based applications relating to the solar irra-
diation context are still limited. However, some studies have presented ANN
approaches for solar irradiation prediction focusing on the regions of Fortaleza -
Ceará [17] and Seropédica - Rio de Janeiro [18], achieving an accuracy of 89.7%.
Salazar et al. [9] have developed a time series-based method to identify the solar
irradiation in the equatorial near-zone and obtained a median absolute devia-
tion (MAD) equivalent to 1.4% in the validation at a weather station installed
in Petrolina - Pernambuco - Brazil. Carneiro et al. [19] used an ensemble learn-
ing method based on crest regression achieving mean absolute percentage error
(MAPE) values of 14.191% also in Petrolina - Pernambuco - Brazil. Silva et al.
[20] applied SVM, Angstrom-Prescott (A-P), and ANNs to estimate solar irra-
diation: the first achieved the best result while comparing to the A-P and ANN
models, achieving a R2 of 0.806.

Based on some studies found in the literature [17,25,27], ANNs provide sig-
nificant capacity to predict solar irradiation. ANNs can estimate solar irradia-
tion based on meteorological quantities and predict future irradiation based on
historical events. Thus, this paper presents both models for obtaining solar irra-
diation, with the steps depicted in Fig. 2 and detailed in the Subsects. 2.1, 2.2
and discussed in Sect. 3.
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II) Model 2 - Time prediction of solar irradiation using LSTM
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Fig. 2. The proposed ANN models.

2.1 Model 1 - DNN-Based Regressor for the Solar Irradiation
Estimation

We assume this model as linear regression, in which a numerical value (target
value or dependent variable) is obtained as a function of input values (attributes
or independent variables), as presented in Eq. (1). Target values are continuous,
meaning they can take any numerical value within the real number domain. In
the literature, linear regression is used in various applications, such as stock
market price forecasting, house price forecasting, sales forecasting, and others
[28]. With regards to linear regression applications, using DNNs as regressors is
helpful since they can learn the complex relationship between attributes and the
target, mainly due to the presence of the activation function in each layer [6].

Y = β0 +
N∑

n=1

βnXn + ε (1)

where:
Y is the numerical value of the dependent variable. It is this value that is wanted
to be predicted;
β0 is the intercept on the Y -axis when all input attributes are zero;
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βn are the fitness coefficients for the attribute n. In ANN’s case, these values are
calculated to indicate the effects that each attribute causes for the most accurate
prediction of Y ;
Xn is the n-th independent variable;
N is the number of independent variables in the regression model;
ε is the model error, which shows the difference between the real and the pre-
dicted value;

One must take into account the following considerations to build the linear
regression model using DNN:

– Build a sequential ANN architecture;
– Define the quantity and neurons of the dense layers;
– Assign a performance metric (loss function) based on numerical error calcu-

lation, such as the mean absolute error (MAE), which is calculated according
to Eq. (2);

– Defining the output layer with a single neuron, having as activation function
the linear function [f(x) = x];

MAE =
1
n

n∑

i=1

|yi − ŷi| (2)

in which:
i is the sample;
n is the total number of samples;
yi is the true or real value of the dependent variable;
ŷi is the value of the dependent variable predicted by the regression model.

The second model is a forecasting process for future events, and it is based
on another ANN architecture, as presented in the following subsection.

2.2 Model 2 - Time Prediction of Solar Irradiation Using LSTM

Vanilla ANN cannot perform time series prediction, depending on a previous
data history to predict the next instant [29]. On the other hand, RNNs are
well-known for achieving solid results in many applications with time series and
sequential data [30]. The most well-known RNN structures, such as the LSTM
and the gated recurrent unit (GRU), can capture the long-term temporal depen-
dencies in variable-length samples [31]. Another distinguishing characteristic of
RNNs is that they share parameters across each network layer. In addition, while
feed-forward networks have different weights across each node, RNNs share the
same weight parameter within each network layer. Such weights are still adjusted
through the backpropagation and gradient descent approaches to facilitate rein-
forcement learning.

Since the previous outputs obtained during training leave an information
base, the RNN model supports predicting future outputs as a function of the
input attributes (Xt). Note that this occurs with the help of the previous outputs
(ht), as presented in Fig. 3.
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Fig. 3. Introducing the iterative process of an RNN.

LSTM is an RNN technique that can learn long-term dependencies, especially
in sequential or seasonal prediction problems. LSTM has feedback connections
that can process the entire data sequence and single data points. Each iteration
of the LSTM network presents the data vector as input and two output data for
each iteration:

– Xt is the input vector;
– Ct is the memory state cell, which maintains its state over time, considered

as an output with memory;
– ht is the time series output value.

Information can be added to or removed from the state Ct, regulated by
input, forgetting, and output gates, presented after the layer applications shown
in Fig. 4. These gates allow information to flow in and out of the cell, thus
allowing memory propagation to the next iteration. The sigmoid layers (Fig. 4)
present output numbers between zero and one, in which the former means that
“nothing should be carried forward”, and the latter means that “everything should
be carried forward”.

For constructing the solar irradiation prediction model, the number of steps
represents the input layer (which corresponds to hourly data) and the attributes.
We have the solar irradiation output in the output layer.

σ
σ

σ tanh

ht
ht-1

ct-1 ct

tanh

x +

x

x

xt

ht

Layer Elementary arithmetic

A

Fig. 4. Iterative process of an LSTM network.
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Considering the structures of the two models, Sect. 3 presents the construc-
tion of the ANNs to estimate and predict solar irradiation and perform the
models proposed in this work.

3 Methodology and Results

3.1 INMET Meteorological Station Data

The study comprised within this paper uses the meteorological database from
the Brazilian National Institute of Meteorology (INMET), which is available at
[32]. In this database, namely BDMEP, each data sample corresponds to the
collection of meteorological variables collected at every hour or every six hours,
being separated into individual files for each of the 606 meteorological stations
distributed throughout Brazil, as shown in Fig. 5. Each file is composed of a
header containing information about each meteorological station, as well as a
structured set of samples of the collected meteorological variables. The dataset
used in this study considers the interval between 01/01/2010 and 31/12/2022,
as presented in Table 1.

Fig. 5. Localization of the meteorological stations used in this work.
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Table 1. Composition of each file in the BDMEP dataset.

Name Unit/Format

Header
Region of the country
State
Code (WMO)
Latitude ◦

Longitude ◦

Altitude m
Foundation date dd/mm/yy
Data
Date YYYY-MM-DD
Time HHMM UTC
Hourly precipitation mm
Atmospheric pressure at station level mB
Maximum atmospheric pressure in the previous hour mB
Minimum atmospheric pressure in the previous hour mB
Global radiation kJ/m2

Air temperature ◦C
Dew point temperature ◦C
Maximum temperature in the previous hour ◦C
Minimum temperature in the previous hour ◦C
Maximum dew point temperature in the previous hour ◦C
Minimum dew point temperature in the previous hour ◦C
Maximum relative humidity in the previous hour %
Minimum relative humidity in the previous hour %
Relative humidity %
Wind direction ◦

Maximum wind gust m/s
Wind speed m/s

Data preprocessing and cleaning are considered relevant step, as it enhances
the quality of the information, assists in decision-making, and improves the
machine learning model [33]. As a first step in data preprocessing, only momen-
tary quantities that do not depend on the previous time were considered, result-
ing in 11 quantities. Furthermore, the data from all 606 meteorological stations
were merged, resulting in 39,656,352 samples.

Subsequently, data cleaning was performed [34], with the removal of sam-
ples with reading errors, missing data, duplicate data, and removal of outliers,
considering the empirical rule of 3σ [35], resulting in 36,433,601 samples, which
represents approximately 91.87% of the initial dataset.

After the data preprocessing and cleaning step, the data is used in the train-
ing stage for modeling and constructing the solar irradiation estimation tool, as
presented in Subsect. 3.3.
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Considering the data presented in Sect. 3.1, the method and the results of
the studies are presented in the following subsections. We consider two main
scenarios for the results: i) the estimation of solar irradiation based on indirect
meteorological quantities; and ii) the prediction of solar irradiation based on
geolocation and date.

3.2 Estimation of Solar Radiation Based on Other Meteorological
Variables Applying Model 1

In this first scenario, the focus is given to the solar radiation estimation applying
Model 1, presented in Subsect. 2.1, and the target data was initially normal-
ized using the Z-score technique [36]. After that, we conducted a k-fold cross-
validation (k = 5) analysis to evaluate the efficacy of deep learning-based models
on the BDMEP dataset. Cross-validation is a widely recognized technique for
assessing machine learning model performance [37]. In 5-fold cross-validation,
the dataset is divided into five equal subsets, where four subsets are employed
for model training, and the remaining subset is employed for model validation.
This procedure is repeated five times, using a different subset for validation.
The model’s generalization performance is accurately assessed by averaging the
performance metrics over the five folds. Cross-validation aids in ensuring that
the models do not overfit and can effectively generalize to new data.

The DNN architecture is presented in Fig. 6. As input data for the DNN,
six variables were considered: hour, precipitation, atmospheric pressure, tem-
perature, humidity, and wind speed. The output layer corresponds to the value
of solar radiation. In all intermediate layers, the ReLu activation function was
used [38], and the linear function f(x) = x was used in the output layer. The
optimizer of the model is the “Adamax”.

Solar 
Irradiation

Data acquisition

... ... ... ...

Hour

Precipitation

Atmospheric 
Pressure

Temperature

Humidity

Wind Speed

Input layer Hidden layer Output layer

6 24 78 32 20 1
Number of neurons

f(x)

Fig. 6. DNN architecture with the best parameters.
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In order to present the best results, a grid search was performed, which is a
technique that searches for the best parameters for the machine learning model.
For the DNN, a grid search was performed for the number of neurons (n) in the
i-th hidden layer and the number of layers (i), where n = 20, 24, 28, ..., 66, 72, 78
and i = 2, 3, 4, 5. At this stage, k-fold cross-validation was also considered, with
k = 10 [37].

With the DNN configuration presented in Fig. 6, the training process was
performed with a limit of 100 epochs. Additionally, the stabilization of MAE
was considered as the stopping criterion. Figure 7 presents the learning curve of
the DNN implemented in this study.

Fig. 7. DNN learning curve.

For the test data, the data for the year 2022 (i.e., until 10/30/2022) were
considered, which can be accessed at [32]. Therefore, through such data, the mean
absolute error equivalent to 9.34 kJ/m2 was obtained in the study. To verify the
system’s dynamics in estimating solar irradiation, the results are presented in
Fig. 8 for two real scenarios: 1) Xanxerê-SC-Brazil station, which is a member
of BDMEP; and 2) IBAURU9 station, located in Bauru-SP-Brazil, which was
developed by the authors [39] and used as a scenario of data not seen previously
by the DNN model.

The model could predict irradiation behavior, as demonstrated by comparing
the actual and estimated values presented in Fig. 8. On days with maximum solar
radiation, the model could follow the approximate trend (i.e., note the estimated
and actual curves in the lower graphs of Fig. 8). Furthermore, the model could
still follow the irradiation reduction in the location on cloudy or rainy days, even
though it presented a more significant error in the estimation.

3.3 Solar Irradiation Forecasting Based on Geolocation and Date
Applying the Model 2

At this stage, the data presented in Sect. 3.1 was considered for Model 2, pre-
sented in Subsect. 2.2, being then normalized using the Z-score technique, which
has the advantage of using a common normalization for variables with different
standard deviations [40]. The training data corresponded to data between 2010
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Fig. 8. Result of solar irradiation estimation for Bauru-SP-Brazil and Xanxerê-SC-
Brazil stations.

Fig. 9. LSTM learning curve.

and 2021, while the data from 2022 was used for testing. The target inputs are
the solar irradiation information, the geolocation, and the date. The output of
the model is the predicted irradiation at the next time step t. Moreover, the
learning curve is shown in Fig. 9, presenting a final loss of 0.576.
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Different time granularity was considered in this result. For the prediction for
the next 5min, the model presents an MAE equivalent to 18.91 kJ/m2; for the
next 30min, 33.15 kJ/m2; for the next hour 43.64 kJ/m2; and for the prediction
for 24 h, the MAE corresponds to 91.52 kJ/m2. Figure 10 shows the response of
the model for the next hour of irradiation prediction, and the system can track
the real solar irradiation. A valley is visible around 17:00 due to the appearance
of a cloud, which caused a significant decrease in solar irradiation. The model
did not follow the real value, but it did follow the trend when the sun returned.

Fig. 10. One-day prediction results from the LSTM.

Figure 11 shows the 24-hour forecast made by the model for a sequence of
seven days. There is also a slight delay between the predicted and the actual
signal, but the forecast had adequate generation tracking for days of full solar
irradiation. On the sixth day, there was a cloudy and rainy day, and the model
had a higher error but still captured the decrease in irradiation for the day. On
cloudy days, solar irradiation is diffuse, elusive and typically between 10 and
25 percent of its normal value on sunny days [41]. The proposed model tries to
adjust values according to historical data without high accuracy, but presents a
decrease in the solar irradiation estimation.

Fig. 11. 7-day prediction results from the LSTM.
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3.4 Method Comparison and Discussion

This section considers techniques commonly found in the literature aiming at
comparing the two proposed scenarios. The data used for testing and validating
the methodologies was obtained from INMET, being identical to that presented
in Sect. 3.1. A Macbook Pro, model A1990, with an Intel i9 9980H processor,
16GB of RAM and a Radeon Pro 560× 4GB video card, was used to compute
the comparison analyses of the results.

Model 1 - Comparison. According to Gao, Miyata, and Akashi [14], deep
learning-based models have demonstrated outstanding ability for predicting solar
irradiation, with LSTM demonstrating superior assertiveness performance com-
pared to other techniques. However, it is necessary to verify the performance
of the two scenarios proposed in this paper using methodologies from the lit-
erature. In addition to the DNN proposed in this project, traditional machine-
learning regression techniques used in the literature for estimating solar irradi-
ation from meteorological quantities were contrasted. Support Vector Machine
(SVM) [42,43], Random Forest (RF) [42,44], and MLP [6,42,45,46] are the tech-
niques used in the comparison with the results displayed in Table 2. The results
indicate that the DNN approach had a lower MAE for the prediction scenarios.
The MLP, which is another neural network architecture, presented the second-
best performance. Moreover, the RF approach had the worst results, confirming
the findings of Gao, Miyata, and Akashi [14]. On the other hand, while SVM has
the best efficacy in training and testing regarding computational time, its error
rate is nearly twice that from the DNN.

Table 2. Model 1 - Regression model comparison to estimate the solar irradiation.

Method MAE train(s) test(s)

DNN - Model 1 14.86 74,736 102.3
MLP 18.42 20,375 75.4
RF 104.89 17,759 21.2
SVM 28.25 13,302 245.7

Note in Table 2 that Model 1 provided results comparable to the current state
of the art, presenting the lowest MAE of all evaluated methods. Thus, based
on such results, the DNN is recommended. One of the DNN’s disadvantages,
however, is that it has one of the highest computational costs. As demonstrated
in Sect. 3.3, another disadvantage is the behavior on cloudy and rainy days. A
potential solution to such an issue is to either use generative adversarial networks
(GAN) or consider balanced data for what concerns sunny, cloudy, and rainy
days, aiming at providing the model with generalized adjustments.
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Model 2-Comparison. The efficacy of four statistical and machine learning
tools for global solar irradiation forecasting was analyzed and compared during
this study. Gao, Miyata, and Akashi [14] demonstrate that ARMA [47,48], MLP
[49], and LSTM [14,50,51] are the most popular and appropriate models for
the prediction of future solar irradiation. The Kalman filter [52] was also used
to perform such a comparison. Table 3 displays the results taking into account
various future time granularities, such as 5min, 30min, 6 h, and 1 day. Note that
the Kalman filter produced the best results for the 5min and 1 day baselines,
while the LSTM produced the best results for 30min and 6 h instances. With
regards to neural network-based architectures, the LSTM and MLP demanded
the most time to train, while the Kalman filter presented the faster training
process. During the test, ARMA had the fastest time. Hence, the Kalman filter
is recommended for the smallest and largest granularities. On the other hand,
based on the data analyzed in this paper, the LSTM is recommended for the
intermediate granularities of 30min and 6 h. The presented comparative analyses
corroborate the findings of Yu, Cao, and Zhu [50], who concluded that the LSTM
is not recommended for a 24-hour granularity model.

Table 3. Model 2 - Time-series prediction comparison of solar irradiation.

MSE
Method 5 min 30 min 6 h 1 day train(s) test(s)

LSTM - Model 2 18.91 33.15 43.64 191.52 6,971.3 23.55
ARMA 22.37 36.54 61.11 102.54 533.5 12.50
Kalman’s filter 18.11 35.04 48.31 122.50 101.4 88.52
MLP 58.44 98.104 114.88 157.30 7,392.8 45.77

At last, note that Model 2 produced results that are similar or better than
achieved by the state-of-the-art, with regards to the mean squared error (MSE):
a ranking near the best one was obtained for 5min; it was the lowest one for
the 30-minutes and 6-hour predictions; although it was the worst performance
for the 1-day forecast. As an inherent disadvantage, Model 2 presents one of the
highest computational costs for training. Nonetheless, Model 2’s performance
could be improved by taking into account additional input attributes, such as
the weather data displayed in Model 1. Moreover, minimizing the number of
input samples may enhance training performance.

4 Conclusion

Quantifying solar radiation is essential for a range of applications, from solar
energy generation to building thermal management, agriculture, and irrigation.
However, measuring this magnitude poses technical and operational challenges,
making its real-time use difficult.
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This work presented the use of a database of 606 Brazilian weather stations
collected by INMET between 2010 and 2021 to develop two deep learning-based
models. The first model is a DNN-based method that estimates solar radiation
across Brazil based on hourly temperature, humidity, atmospheric pressure, wind
speed, and precipitation data. The second model is an LSTM-based method that
predicts future solar radiation for intervals of 5min, 30min, 1 h, and the entire
day.

Our results demonstrate that both models accurately estimate and predict
solar radiation. The first model has an MAE of 9.34 kJ/m2, while the second
model has an MAE of 1.89 kJ/m2, 3.31 kJ/m2, 4.36 kJ/m2, and 31.52 kJ/m2

for predicting the next 5min, 30min, 1 h, and 24 h, respectively.
Our findings demonstrate that DNN modeling can adequately identify solar

radiation using indirect meteorological variables, while the LSTM model can
adapt well to a prediction system, producing close-to-real results with geographic
coordinates, the previous radiation level, and the month of the year as inputs.
These results indicate the potential of deep learning-based methods for estimat-
ing and predicting solar radiation in Brazil, considering the successful perfor-
mance of the model with over 39 million hourly data points from 606 weather
stations nationwide.

Future work involves utilizing adversarial generative networks to improve
the prediction performance on rainy or cloudy days and exploring RNA appli-
cability in intelligent meter immersion to aid solar generation management and
prediction.
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