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Preface

The Energy Informatics.Academy Conference 2023 (EI.A 2023) collected great con-
tributions from researchers and practitioners in various scientific, technological, engi-
neering, and social fields to disseminate original research on the application of digital
technology and information management theory and practice to facilitate the global
transition towards sustainable and resilient energy systems.

With the whole technical program committee’s effort, in total thirty-nine (39) high-
quality papers (including full papers and short papers) and three (3) abstract papers were
accepted and presented at the conference.

These 42 papers covered the following eight themes, elucidating the breadth and
depth of research and development in the energy sector and its convergence with digital
technologies:

• AI Methods in Energy
• Data-Driven Smart Buildings
• Energy and Industry 4.0
• Energy and Smart Cities
• Energy Forecasting
• Smart Electricity System
• Smart Energy Device Management
• Smart Heating and Cooling System

Each theme brought forward a wealth of knowledge and novel ideas that promise
to shape the future trajectory of energy systems and their integration into digitalization.
From exploring innovative technologies and methodologies to discussing practical chal-
lenges and future perspectives, the papers enriched the conference’s discourse, offering
attendees a comprehensive overview of the latest in the field. Consequently, the con-
ference became a fertile ground for exchanging ideas, fostering collaborations, and
catalyzing future advancements in the energy sector.

Furthermore, eight keynote speeches provided deep insights and diverse perspectives
into the evolving realm of energy and technology:

• “Energy transition inBrazil”, byLuizCarlos Pereira daSilva,University ofCampinas,
Brazil

• “Artificial Intelligence Applied in the Electricity Sector as a Strategic Investment
Theme in the Research, Development and Innovation Program of ANEEL” by Paulo
Luciano de Carvalho, Brazilian Electricity Regulatory Agency, Brazil

• “ExplainableAI for energy and smart grids: fromconcepts to real-world applications”,
by Zita A. Vale, Polytechnic of Porto, Portugal

• “Hierarchies of Controllers for the Future Weather-Driven Smart Energy System”,
by Henrik Madsen, Technical University of Denmark

• “The importance of supervising energy consumption and production”, by Marcelo
Stehling de Castro, Federal University of Goiás, Brazil
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• “Application of Data Analytics to Electrical Energy Systems”, by Walmir Freitas,
University of Campinas, Brazil

• “Energy &Digital Agroindustry”, by Barbara Teruel, University of Campinas, Brazil
• “Energy Informatics Educational Design”, by Bo Nørregaard Jørgensen, University

of Southern Denmark, Denmark

Each speaker, with their expertise in various facets of energy systems and technol-
ogy, enriched the dialogue, fostering a multi-dimensional discussion on the challenges,
solutions, and future pathways in the energy sector. Engaging Q&A sessions followed
the speeches, further elaborating on the pertinent themes and facilitating an exchange of
ideas among the participants and speakers alike.

December 2023 Bo Nørregaard Jørgensen
Luiz Carlos Pereira da Silva

Zheng Ma
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Multi-agent Based Simulation for Investigating
Electric Vehicle Adoption and Its Impacts
on Electricity Distribution Grids and CO2

Emissions

Kristoffer Christensen , Zheng Ma(B) , and Bo Nørregaard Jørgensen

SDU Center for Energy Informatics, Maersk Mc-Kinney Moeller Institute, The Faculty of
Engineering, University of Southern Denmark, Odense, Denmark

{kric,zma,bnj}@mmmi.sdu.dk

Abstract. Electric vehicles are expected to significantly contribute to CO2-eq.
emissions reduction, but the increasing number of EVs also introduces challenges
to the energy system, and to what extent it contributes to achieving climate goals
remains unknown. Static modeling and assumption-based simulations have been
used for such investigation, but they cannot capture the realistic ecosystem dynam-
ics. To fill the gap, this paper investigates the impacts of two adoption curves of
private EVs on the electricity distribution grids and national climate goals. This
paper develops a multi-agent based simulation with two adoption curves, the Tra-
ditional EV charging strategy, various EV models, driving patterns, and CO2-eq.
emission data to capture the full ecosystem dynamics during a long-term period
from 2020 to 2032. The Danish 2030 climate goal and a Danish distribution net-
work with 126 residential consumers are chosen as the case study. The results
show that both EV adoption curves of 1 million and 775k EVs by 2030 will not
satisfy the Danish climate goal of reducing transport sector emissions by 30%
by 2030. The results also show that the current residential electricity distribution
grids cannot handle the load from increasing EVs. The first grid overload will
occur in 2031 (around 16 and 24 months later for the 1 million and 775k EVs
adopted by 2030) with a 67% share of EVs in the grid.

Keywords: electric vehicle · adoption curve · distribution grid · agent-based
modeling · multi-agent systems · CO2 emissions

1 Introduction

The transportation sector contributes greatly to CO emissions. For instance, In 2019 cars
in Denmark emitted 7.2 million tons of CO2-eq, and the total car fleet in Denmark in
2019 was 2.65 million [1], resulting in an average emission per car of 2.72 tons annually.
The car fleet is estimated to increase to about 3.25 million in 2030 [2]. With no change
in car emissions, this would result in a total car emission of 8.84 million tons by 2030.

The European Union’s climate policies (which Denmark is obligated to), states
among other things that emissions from buildings, agriculture, and transportation have

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. N. Jørgensen et al. (Eds.): EI.A 2023, LNCS 14468, pp. 3–19, 2024.
https://doi.org/10.1007/978-3-031-48652-4_1
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to be reduced by 30% compared to 2005 levels [3]. In 2005 the CO2-eq. emissions from
cars were around 7.1 million tons [2]. This corresponds to a maximum emission level of
4.97 million tons CO2-eq. from cars by 2030, in order to meet the climate goal. Electric
Vehicles (EVs) have been prompted to contribute to reducing CO2-eq. emissions in the
transportation sector, a minimum of 1.42 million of the car fleet in 2030 has to be EVs to
meet the climate goal. Furthermore, EVs are also expected to provide flexibility to the
electricity system to leverage the fluctuation due to renewable energy sources [4]. How-
ever, EV charging is associated with a CO2-eq. emission due to the energy production
is not 100% green [5].

Furthermore, due to the regulations, electricity Distribution System Operators
(DSOs) have no access to information on howmany EVs, when, and howmuch EVs will
charge in the distribution grids with the increasing number of EVs. Therefore, DSOs
are unclear about the loading profile of the distribution grids in the future. Although
many studies have investigated EV-caused overloads in distribution grids (e.g., [6, 7]),
most studies are based on static modeling or assumption-based simulations without con-
sidering the real EV adoption curves. It causes a challenge for DSOs that it is unclear
what the overloads in distribution grids will look like with the increasing number of
EVs over the years in the future. However, the majority of the literature is based on
static modeling or assumption-based simulations without considering the realistic EV
adoption curves. It would result in high uncertainty for DSOs to conduct grid planning,
especially congestion management.

Therefore, this paper aims to investigate how different adoption curves of private
EVs will impact the national climate goals and the consequence to the electricity distri-
bution grids. A multi-agent based simulation with several adoption curves, EV models,
driving patterns, andCO2-eq. emission fromEV charging is developed to capture the full
ecosystem dynamics during a long-term period from 2020 to 2032 with a high resolution
(hourly).

Furthermore, the adoption curves, EV models, and driving patterns are all based
on national statistics and national market research to ensure the simulation can closely
represent the reality to provide a clear and realistic load profile of distribution grids
in the future due to EV adoption. The CO2-eq. emissions from consuming electricity
depend on the electricity production mix in the grid, thus, the simulation imports and
extrapolates hourly electricity consumption emission data. A distribution grid consisting
of 126 residential consumers in the city of Strib, Denmark is selected as a case study to
investigate the uncertainty of the increasing EVs’ impact on the distribution grid with
the electricity consumption data for 2019.

The paper outline starts with a background of the Danish electricity system and
electric vehicle adoption curve; secondly, the methodology is introduced followed by
the case study; thirdly, the scenario and experiment design is presented; lastly, the results
are presented followed by the discussion and conclusion.

2 Literature Review

The applications ofMulti-Agent Systems (MASs) in the energy domain are increasing as
the energy system complexity increases as a result of the green transition [8]. [9] conduct
a scoping review of the literature on ontology forMAS in the energy domain. [9] identify
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the energy domain applications for MAS to be within grid control, electricity markets,
demand-side, and building systems. This paper’s MAS should represent the energy
ecosystem around EV home charging as proposed in [10]. The MAS representation of
the ecosystem simulates the impact on the distribution system from the adoption of EVs
over time.

The adoption of technology and innovation is a well-covered subject since the inno-
vation adoption theory was first introduced in 1960 by Everett Rogers in his book called
“Diffusion of Innovation Theory” [11]. 30 technology adoption theories have been iden-
tified [12], and essential elements from the theory are used, such as the S-shaped (logistic
function) and the adoption rate curve. Several studies, e.g., [13–17], are conducted using
agent-basedmodeling together with Rogers’ adoption theory. Furthermore, [18] and [19]
use MAS for investigating the impact of adopting EVs, but do not consider grid loading,
tariff schemes, or charging algorithm adoption. [18] uses an ecosystem approach, but
the ecosystem does not consider the business part of the ecosystem, hence not consid-
ering several flows (e.g., monetary flows). [18] focuses on spatial adoption and does
also not consider the business ecosystem perspective. Moreover, [20] investigates the
CO2 emissions from charging EVs and compares them with plug-in hybrid EVs and
conventional vehicles. The paper applies a static approach using a fixed CO2 intensity
of the electricity generation mix to calculate the emissions per km driven by the EV.

3 Methodology

This paper choosesMAS to investigate the ecosystemdynamics, stakeholders’ behaviors,
and the impacts of increasing EVs on an energy business ecosystem. MAS is chosen
since it allows an assembly of several agents with either homogenous or heterogeneous
architecture [21] and has been popularly applied tomodel and simulate complex systems.

The selection of the agent-based simulation tool applied in this paper is based on a
comprehensive comparative literature survey of the state-of-the-art in software agent-
based computing technology [22]. The survey addresses more than 80 software tools.
Classifications are made considering the agent-based simulation tools’ scope or appli-
cation domain and the computational modeling strength against the model development
effort. Furthermore, three criteria are defined for the evaluation and selection:

• High to extreme scale of computation modeling strength and simple to moderate
model development effort

• The application domains are in a dynamic computational system, business, eco-
nomics, planning & scheduling, enterprise, and organizational behavior

• Suitable for simulating energy business ecosystems

Among 80 software tools, AnyLogic seems to fit the purpose as AnyLogic’s appli-
cation domains cover power grids, business strategy & innovation analysis. Hence,
AnyLogic is chosen as the simulation tool in this paper.
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4 Multi-agent Based Simulation Development

There are a vast number of potential scenarios for complex MASs with a wide variety
of parameter inputs to investigate an ecosystem. However, in this paper, the focus is to
enlighten impacts on the CO2-eq. emissions and distribution grid from increasing EVs.
To do so, the ecosystem is translated into a MAS by identifying agents, interfaces, and
communications. The identifiedMAS elements are programmed in the selected software
tool AnyLogic.

The agents represent actors and objects in the ecosystem. The communication flows
are between roles. Therefore, the roles are represented by Java interfaces (Anylogic
is Java-based) holding the interactions related to the role. The agents implement the
respective interfaces corresponding to the actor/object and the associated roles.

Figure 1 shows a screenshot of the running simulation which shows an overview of
the simulated ecosystem, which is based on the ecosystem presented in [10]. The states
of the households and transformer loading are shown in real-time.

The relevant input data for this paper are the adoption curves, EV models, driving
patterns, and CO2-eq. emission from EV charging.

Fig. 1. Screenshot of the electric vehicle home charging multi-agent system.

4.1 Danish Electric Vehicle Adoption Curve

Based on Rogers adoption curves and the national statistics [23], the residential EV
adoption in Denmark from 2011 to 2021 is shown as the black line in Fig. 2 which
is close to a logistic growth with a 52.6% rate shown as the orange line in Fig. 2. The
logistic function (Roger’s S-curve) running through 124 EVs in 2011 and 16,687 in 2021
is identified using Eq. 1 (orange line in Fig. 2).

P(t) = A

1+
(

A
P(0)−1

)
e−rt

(1)



Multi-agent Based Simulation for Investigating Electric Vehicle Adoption 7

where P(t) is the number of EVs to the time t. A is Denmark’s total number of vehicles
in December 2021 of around 2.5 million cars for residents [23]. P(0) is the initial value
in January 2011 of 124 EVs, and r is the growth rate in percent. The growth rate is
identified to be 52.6% in order to match the EV adoption in 2011 and 2021. This results
in a population of EVs of 1.3 million by 2030.

Fig. 2. Growth function estimation based on historical data (orange). (Color figure online)

4.2 EV Models

The EV models are selected as the five most sold EV types in 2019 in Denmark, and
the probability of which EV is adopted is based on the purchase share of each type in
2019 (shown in Table 1) [24]. This general approach can be used for other markets by
identifying the most popular EV models and their adoption shares.

4.3 Driving Patterns

This research defines the EVs’ departure and arrival times based on the significantly
decreased and increased electricity consumption data in the mornings and evenings. A
significant increase/decrease is defined as 80%above idle hours. Idle hours are calculated
as the average load between hours 0 and 5 (at night). Those hours are assumed to
represent the idle load of the consumer (consumption when residents are sleeping).
When identifying a significant increase in load (indicating residents are awake) between
5 and 9 AM (default), the departure time is set within the hour, which has a load below
the significant level (indicating residents have departed). The arrival time is within the
hour when the load increases above the significant level between 2 and 10 PM (default).
Figure 3 illustrates how departure and arrival are chosen for a consumer.

Suppose no significant decrease or increase in consumption data is detected. The
default time is set to a random hour from 5 to 9 AM and 2 to 10 PM for departure and
arrival hours, respectively. The same approach applies to systems with similar working
cultures, working from around 8 AM to 4 PM.
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Table 1. Top five most sold electric vehicles in Denmark in 2019.

EV model Capacity [kWh] Mileage
[kWh/km]

Maximum
charging power
[kW]

Percentage of
purchased EVs in
2019 [%] [24]

Tesla Model 3
[25]

50 0.151 11 40.5

VW e-Golf [26] 35.8 0.168 7.2 18.0

Hyundai Kona
[27]

42 0.154 11 08.3

Renault Zoe [28] 44.1 0.161 22* 06.0

Nissan Leaf [29] 40 0.164 3.68 05.8

*Charging power is limited to the maximum power that can be consumed by each household
in Denmark. This limit is typically three phases of 25 Amps (corresponding to approximately
17.3 kW) [30].

Fig. 3. Example of how the departure and arrival times are chosen.

The distribution of the driving distance per EV is adapted from [31]. The driving
distance statistics in [31] are based on 100,000 interview data collected over 15 years
for private Danish vehicle users. For simplicity, all EVs will be driven once a day.

4.4 EV Charging CO2-eq. emission

The CO2-eq. emission from consuming electricity is imported from [32] for DK1 on
a 5-min resolution from 2017 to 2020 (4 years). The data is converted to hourly-based
(hourly average) to match consumption data. The data are illustrated in Fig. 4.

Fig. 4. Data on CO2-eq. emissions from consuming electricity, from 2017–2020.
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The Danish Energy Agency [33] has extrapolated the CO2-eq. emission factor for
electricity from 2020 to 2030. The extrapolation is shown in Fig. 5. An exponential
regression is made to identify a function that describes the reduction of CO2-eq. emis-
sions from electricity over the years without becoming negative. The Danish Energy
Agency’s extrapolation is considered a valid calculation used as the reduction factor in
the implemented dataset.

Fig. 5. CO2-eq. emission factor extrapolation over time.

From the exponential regression shown in Fig. 5, the emission factor can be derived
by Eq. 2.

Emissionnew = Emissiondata · e−0.203·Year (2)

where Emissionnew is the new calculated emission accounting for the reduction depend-
ing on the simulation time. Year is the simulation-years past. Figure 6 shows the data
after implementing the emission factor extrapolation during simulation time. The figure
shows the emissions reductions over time as the electricity becomes greener, giving a
more realistic result on the environmental impact from different scenarios.

Fig. 6. Repeated data on CO2-eq. emissions from consuming electricity with the implementation
of emission factor extrapolation (simulated).

Table 2 shows the results of interest based on the relevant stakeholders’ (i.e., the DSO
and households) perspective. The output is exported at the simulation end for analysis.
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Table 2. Scenario outputs based on the relevant stakeholders.

Stakeholder Considered output

DSO • Load Factor (for the day with the first overload)
• Coincidence factor (for the first year after overload)
• Date and time for the first overload
• Number of overloads first year after the first overload

EV users • Total average of all EV users’ average CO2-eq. emissions
• Average annual CO2-eq. emissions from charging EVs (kg CO2-eq.)

5 Case Study

The Danish electricity grid is divided into DK1 (Western Denmark - Jutland and Funen)
and DK2 (Eastern Denmark - Zealand). The electricity grid is divided into generation,
transmission, distribution, and consumption. This paper focuses on the Danish low volt-
age (400 V) distribution grid. This paper’s electricity system boundary starts from the 10
kV/0.4 kV transformer and ends at the residential consumers. The components between
the transformer and consumer (i.e., cables, nodes, etc.) are not considered. A distribution
grid consisting of 126 residential consumers in the city of Strib, Denmark, is selected as a
case study to investigate the uncertainty of the increasing EVs’ impact on the distribution
grid.

The EV adoption for the area with 126 residents is shown in Fig. 7, which is an
extrapolation from the logistic function identified in Fig. 2 (in Sect. 4.1 - Danish Electric
Vehicle Adoption Curve). Consumption data for 126 residential consumers are provided
by the Danish DSO TREFOR, which operates in the area of Strib.

The data for Strib is available from 2019 to now. However, since this paper uses
consumption data to estimate driving behavior, the years with COVID-19 have been
excluded, i.e., 2020 and 2021. Therefore, the data is used for 2019 alone. Furthermore,
the data has been cleaned for householdswithEVs, PVs, heat pumps, electric heating, and
missing data points. This ensures that the simulation has the actual number of consumer
consumption patterns without any distributed energy resources, such as heat pumps.
The consumption data is for 2019 and are shown in Fig. 8. The figure does not show the
actual year on the Time-axes since they are produced from the simulation outputs and
are repeated yearly.

The baseline scenario uses the case study’s adoption curve shown in Fig. 7. The
model does not apply the adoption curve directly but uses the yearly adoption as the
average rate in a Poisson process [34]. This means that the EVs are adopted each year
randomly at the given adoption rate, which on average, corresponds to the number of EVs
adopted within that year. The reason is to take the uncertainty into account. However, for
the scenario of various EV adoption curves, the curves are used directly for comparison
purposes.
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Fig. 7. Adoption curve (black) and adoption rate i.e., electric vehicles adopted per year (green)
(Color figure online).

Fig. 8. Aggregated hourly consumption of the 126 consumer consumption data.

6 Scenario Design

Two scenarios are considered in this paper with two EV adoption curves of 775k and 1
million EVs in Denmark by 2030. The scenarios are identified based on the estimation
and the political goal by [35], respectively. The two adoption curves are shown in Fig. 9
and Fig. 10, representing the two designed experiments. All simulation experiments
start, by default, in 2020 and stop one year after experiencing the first overload. The
results considered as key results for this paper are the date for the first overload, the
frequency of overloads in the following year, and the average CO2-eq. emissions from
charging the EVs. The average total CO2-eq. emissions are calculated for 2031, as this
is relevant for the 2030 goal of reducing transport sector emissions by 30%. 2031 has
been chosen to see if the goals by 2030 have been achieved in different scenarios.
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Fig. 9. 775k electric vehicles by 2030 adoption curve applied to the case study.

Fig. 10. 1 million electric vehicles by 2030 adoption curve applied to the case study.

7 Results

7.1 Baseline Scenario Results

The baseline scenario is simulated from 2020 to 2032 and simulates the Traditional
charging strategy (i.e., charging immediately at arrival). The baseline scenario’s EV
adoption curve with the Poisson process from the simulation start (2020) to the last
simulation year (2032) is shown to the left in Fig. 11. By the end of 2032, 98 EVs are
adopted. The distribution of the EV models at the beginning of the last simulation year
(January 1, 2032) is illustrated to the right in Fig. 11. The key results for the scenario
are shown in Table 3.
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Fig. 11. The total number of adopted electric vehicles from the simulation start (2020) to the
simulation end (2032) (left) and the distribution of electric vehicle models at the beginning of the
last simulation year (January 1, 2032) (right).

Table 3. Baseline scenario key results.

Date of the first
overload

Overloads the
year after the first
overload

Days with
overload

Total EVs when the
first overload occurs

Avg. Total
CO2-eq.
emissions in
2031 [kg]

Oct. 21, 2031, 4
PM

60 41 85 116.37

Figure 12 shows grid information for the day with the first grid overload (October
21, 2031). The first overload in the baseline scenario occurs on October 21, 2031, at 4
PM. A total of 85 EVs are adopted in the grid, with 49 simultaneous charging EVs. The
first overload has a size of 1.44 kW above the grid capacity. At this overload, the total
charging load is 324.92 kW. The orange line in Fig. 12 shows the total electricity prices
and that there is one peak-price period during winter due to the DSO tariff. However,
the EVs are not considering the electricity price when charging (Traditional charging
strategy, i.e., charging immediately at arrival) and the result from this is 60 overloads
(as shown in Fig. 13) the year after the first overload. Nine additional EVs are adopted
that year.

Fig. 12. Details of the day when the first overload occurs in the grid. (Color figure online)



14 K. Christensen et al.

Fig. 13. Total grid loads the year after the first overload (October 21, 2031, to October 21, 2032).

By the end of 2030, 69EVswere adopted. This resulted in an average annual emission
in 2031 of 116.37 kg per EV. The individual emissions vary depending on the driving
and charging behavior as evident from Fig. 14.

Fig. 14. The total annual CO2-eq. emissions from charging for 69 EVs in 2031.

7.2 Various Electric Vehicle Adoption Curves Scenario Results

ThevariousEVadoption curve scenario considers the adoptionof 775k and1millionEVs
in Denmark by 2030, based on the estimation and the political goal by [35], respectively.
This scenario investigates when overloads can be expected with different EV adoptions.
To evaluate the two EV adoption curves, the simulation follows the actual EV growth
instead of the Poisson process used for the baseline scenario and avoids a situation
where one curve adopts faster than another. The result (shown in Table 4) proves that the
adoption curve with 1 million EVs by 2030 results in an eight-month earlier overload
compared to the adoption curve with 775k EVs by 2030.

The average CO2-eq. emissions are close to the same as in the baseline scenario,
which is no surprise since the emission levels are the same, but with fewer EVs adopted.
For the 775k and 1 million EVs by 2030 experiments, the number of EVs at the end of
2030 is 30 and 42, respectively.

Both scenario experiments (775k and 1 million by 2030) are adopting slower than
the adoption estimated based on the historical data (1.3 million by 2030) used in the
baseline scenario. The slower adoption results in around 16 and 24months later overload.
The result indicates that the DSO’s planning for dealing with grid overloads should be
proactive in that the overloads might happen much earlier than the estimation, especially
due to the rapid adoption of other distributed energy resources in the distribution grids.
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Table 4. Key results for electric vehicle adoption curve scenario.

Experiment Overload date Number of
overloads the
year after the
first overload

Days with
overload

Total number
of EVs at
overload time

Avg. Total
CO2-eq.
emissions in
2031 [kg]

775k EVs by
2030

October 26,
2033, 4 PM

8 7 71 115.72

1 million EVs
by 2030

February 20,
2033, 6 PM

15 10 77 114.21

8 Discussion

It is no supervise, the results show that the adoption curve based on historical data and
used in the other scenarios has a faster adoption (1.3 million EVs by 2030) than the
1 million by 2030 adoption curve. The current Danish regulations are following the
suggestions to reach 775k EVs by 2030 because reaching 1 million EVs is too costly.
However, the Danish authorities are still aiming for 1 million EVs by 2030 and are
reconsidering new regulations in 2025 to reach the goal [36].

The reason for considering the curve determined based on historical data for the case
study area (Strib) is due to the relation between income and EV adoption as shown in
Fig. 15. Figure 15 shows the EV population (left in the figure) and average personal
income (right in the figure) for the municipalities in Denmark. The city of Strib (marked
by the red circles) is part of one of the municipalities with a relatively high average
income. Hence, a faster adoption in the city of Strib than the average adoption of the
whole Danish population is expected.

No data

Electric vehicle population of all cars, user 

divided. avg. 0.8%

Fig. 15. Maps of Denmark illustrate the electric vehicle population [until August 2020] [37] (left)
and the average personal income [DKK in 2017] in the municipalities [38] (right). (Color figure
online)

As mentioned at the beginning of this paper, the average CO2-eq. emissions from
cars in Denmark were around 2.72 tons annually in 2019. The simulation results showed
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that for EVs in 2031, the average emission is around 115 kg per EV. At this time, the
electricity mix consists of a high share of green production, resulting in low emissions
from consuming electricity. With 775k EVs in 2030 out of 3.25 million would result in
6.821 million tons of CO2-eq. emission (calculation shown in Eq. 3). This does not meet
the limit of 4.97 million tons necessary to satisfy the goal of a 30% reduction compared
to 2005 emissions.

775,000 · 115 kg+ (3,250,000− 775,000) · 2,720 kg = 6.821 million tons (3)

For the scenarios with 1 million and 1.3 million EVs, this resulted in 6.235 and 5.456
million tons, respectively. This does also not satisfy the goal, as this requires at least
1.486 million EVs by 2030 to achieve a reduction of 30% of emissions compared to
2005. Alternatively, a larger reduction should be achieved in the other groups of the
transport sector, since this calculation only considers passenger cars. As conventional
cars also become more efficient, the exact number of EVs needed might be lower.

A faster adoption might help achieve the climate goal, however, this results in new
challenges for the DSO. The results show that the current residential distribution grid
can manage around 43–49 simultaneous charging EVs depending on the EV models
and charging behavior. Each of these experiments uses different randomness (i.e., the
random values generated in the simulation differ between scenarios) in the simulation
due to the different adoption rates. However, with the conditions presented in the three
scenarios, the overload is expected to occur between October 2031 and October 2033.
The faster the EV adoption, the faster the grid experiences the first overload, with more
frequent overloads following.

9 Conclusion

This paper investigates how different adoption curves of private electric vehicles (EVs)
will impact the national climate goals with an example of Denmark’s 2030 climate goals
and the consequence to the electricity distribution grids. The results show that both
considered EV adoptions (1 million and 775k EVs by 2030) will not satisfy the Danish
obligation to the European Union’s climate goal of reducing transport sector emissions
by 30% by 2030. Furthermore, the results show that the current electricity distribution
grids cannot handle the increasing load from EVs. With an EV adoption extrapolated
from historical data and the traditional charging strategy (immediately start charging
at arrival without any control), the overload will occur in 2031 with a 67% share of
EVs in the grid. With a slower adoption, the first overload is experienced around 16 and
24months later for the 1million and 775kEVs by 2030 goal and estimation, respectively.

This paper enlightens uncertainties from two aspects: an unclear loading profile of
distribution grids in the future due to EV adoption, and the indirect CO2-eq. emissions
from charging EVs. As stated in the introduction section, the majority of the literature is
based on static modeling or assumption-based simulations without considering the real
EV adoption curves and varying CO2-eq. emissions from charging.

This paper appliesmulti-agent based simulationwith two adoption curves, a common
EV charging strategy (Traditional charging), various EV models, driving patterns, and
CO2-eq. emission data to capture the full ecosystem dynamics during a long-term period
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from 2020 to 2032 with a high resolution (hourly). The research provides a clear load
profile of distribution grids as well as the indirect CO2-eq. emissions from EV charging
in the future due to EV adoption.

In this research, the financial aspects of EV charging under different price struc-
tures are not considered and are recommended for future research to be included e.g.,
the financial impact from hourly electricity prices with dynamic tariffs. Moreover, this
paper mainly focuses on the impact of EV adoption curves on the electricity distribu-
tion grids, therefore, only Traditional EV charging strategy is considered in the simu-
lation. However, there are various EV charging algorithms discussed in the literature,
e.g., centralized and decentralized EV charging which future research should take into
consideration.
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Abstract. Data plays a crucial role in understanding a scientific problem
which includes those related to electrical micro, smart grids, and power
consumption. In this scenario, one aspect that requires analysis is the
consumption data that can be retrieve into the monthly utility invoices.
However, the analysis of utility invoices in Brazil poses an unique
challenge due to variations in invoice document formats across different
services, utilities and contract types. This article addresses this challenge
by developing a software based in Regular Expression to extract and
standardized data from diverse invoice models. Through the establishment
of a database and the use of a Business Intelligence platform, the
retrieval and analysis of pertinent information have been significantly
improved. The focus of this article is on understanding and extracting
utility invoice data, including electricity, water, piped gas, and telephony
services, which have direct or indirect impacts on natural resources
and human well-being. The analysis is carried out on public buildings
in Brazil, specifically those associated with the São Paulo Center for
Energy Transition Studies (CPTEn). The data presented in this paper
encompasses consumption invoices from three universities: the State
University of Campinas (Unicamp), São Paulo State University campus of
São João da Boa Vista (Unesp-SJBV), and the Federal University of Goiás
(UFG). It is important to note that all the analyzed information is publicly
available under Brazilian law number 12 527 from November 18, 2011.

Keywords: Data understanding · Brazilian utility companies ·
Brazilian energy market

1 Introduction

Data became an important resource to comprehending various issues,
particularly those associated with smart grids [1,2] and the services they offer.
These services encompass not only electricity but also other utility services that
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directly or indirectly affect natural resource usage and human well-being, such as
water, piped gas, and telephony. Within this context, the monthly consumption
data of users, which Brazilian utility companies measure for each type of service,
is one of the key datasets that necessitates to analysed.

The analysis of historical consumption patterns, along with future
projections, can yield valuable insights and actions to reduce household energy
burdens [3]. This analysis can also contribute to enhancing efficiency in resource
utilization, including water, energy, and other resources [4]. Moreover, it can
inform strategies to decrease costs by aligning consumption with contract
conditions and analyzing utility competitors.

While these analyses could benefit all consumers [5], this article focuses on
data extraction of invoice documents of selected Brazilian public buildings of the
partner universities in the project of the São Paulo Center for Energy Transi
tion Studies (“Centro Paulista de Estudos da Transição Energética” - CPTEn),
as pilot study to be expanded to other public buildings.

The data presented in this paper is a compilation of consumption invoices
for water, piped gas and electricity from the State University of Campinas (Unic
amp), São Paulo State University campus of São João da Boa Vista (Unesp-S
JBV) and Federal University of Goiás (UFG) for the year 2022. All information
presented in those documents are public available under Brazilian law number
12 527 from November 18, 2011 [6].

It is known that the electricity service alone accounts for approximately 51%
of the Brazilian public building administration budget [7]. Moreover, there is an
ongoing debate about how the government should handle sporadic connections
and honor related bills [8,9]. The goal of this work is to understand the data of the
invoices related to common services used by public buildings and to provide user-
friendly framework of visualization and analysis to enable public administrations
to make data-driven policy.

This paper is organized as follows: Sect. 2 provides an introduction to the
fundamental aspects of the Brazilian utility market organization and Sect. 2.1
delves into the specifics of the Brazilian electrical market and different contract
types. Section 2.2 shows technical trading rules of the invoices data into a
proposed database (DB). Section 3 enrolls the consumption of the partner
universities in the year of 2022 using the proposed methodology, and Sect. 4
concludes the article.

It is important to highlight that the processes described in this paper were
achieved by developing software tools to prune the potential for human error in
the data extraction, checking and merging processes.

2 Brazilian Utilities Market

Water, gas, telephony and electricity are considered essential services for the
Brazilian population, and the law prohibits private companies from directly
monopolizing these sectors. Moreover, there are cases where certain services
remain under public control, such as the provision of water services in small

https://cpten.unicamp.br/en
https://cpten.unicamp.br/en
https://www.unicamp.br
https://www.unicamp.br
https://www.sjbv.unesp.br
https://www.sjbv.unesp.br
https://ufg.br
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cities through municipal autarchies. In other instances, private companies receive
government authorization to operate as utilities and are allowed to commercially
provide specific services within a designated geographic region.

These utilities bear the responsibility of maintaining the quality standards
of the services they offer: ensuring the absence of water impurities, maintaining
appropriate gas pressure, ensuring telephony and internet baud-rate, electricity
voltage, and keeping service interruptions at a minimum standard. They also
have to provide consumers a monthly consumption information in the form of
invoices, which can be delivered via mail or through digital channels (Fig. 1).

(a) Water SANASA invoice of Unicamp
(2022-May).

(b) Piped gas Comgas invoice of Unicamp
(2022-May).

Fig. 1. Water and piped gas consumption invoice examples of utilities that supply
Unicamp with highlighted data.

In Brazil there are a minimum 27 piped gas companies and over 56 water
utility and autarchies [10] operating across 5568 cities. Within the São Paulo
State alone, which is the region of interest for the CPTEn, there are 645 cities [11]
served by 2 piped gas companies and at least 3 major water companies, excluding
the autarchies and municipal water supply authorities. Each utility/company/
autarchy/municipal authority is exclusive responsible for a unique region and
there is no multiple supply option unless by the internet providers.



Brazilian Utilities’ Invoice Data Understanding 23

As shown in the water (Fig. 1a) and piped gas (Fig. 1b) invoices examples,
each utility have it own invoice template but they all contain a minimum
information:

1. Utility company identification;
2. User identification;
3. Actual and, sometimes, past consumption (m3 unit in this case);
4. Monetary amount to pay in Brazilian currency (BRL) and automation data

(barcode for bank Automated Teller Machines or it correspondent number
sequence);

5. Description of partial costs associated with the service;
6. Service index information: water impurities, gas pressure and temperature;
7. Messages from utility company to consumer.

2.1 Brazilian Energy Market and Contract

The electrical energy market and contract in Brazil, with more than 50
companies [12], is more intricate than the water and gas sectors. The energy
contracts vary depending on the consumer category: Residential consumers
typically have low-voltage connections; Industrial consumers can have
either low-voltage or high-voltage connections, depending on their energy
requirements; Rural consumers which including farms, agricultural facilities,
and public water pumping consumers, they may have low-voltage or high-voltage
connections, depending on their specific needs for water treatment and irrigation.
This creates different invoices documents in the same utility (Figs. 2 and 3).

In addition, there are two types of markets: the Captive market and the
Free market, for consumer that may buy kW direct in producer auctions. The
tariff structures in both markets consider factors such as consumption levels,
time of use, and potential subsidies being split into:

– Conventional is the base contract applied to every consumer up to 500kW
of power demand in the installation. They stays under the captive market
regulation;

– Seasonal Green is a contract for bigger consumer that may cause a relevant
impact on the power grid. This consumer pay different price of energy
(BRL/kWh) in the three-hour sequential time of bigger consumption in Brazil
(usually close to 6pm but may vary between Brazilian regions). This contract
also pays a amount for energy availability reservation, the maximum kW
estimated that the installation may require from the power grid. This type of
consumers are connected to the grid under high voltages and it power factor
is monitored;

– Seasonal Blue is a tariff type for bigger consumer that the seasonal green
and it interference affects the grid administration in such way that is required
a value of energy demand for the peak-period and other for out such time;

– White contract is an optional tariff system introduced by the Brazilian
Electricity Regulatory Agency (ANEEL) in 2018 that the Conventional
consumer may sign. It ensure a small price (BRL/kWh) out of the peak hour
with the disadvantage of bigger price in the peak hour consumption [13].



24 H. Guillardi Júnior and M. S. de Castro

Although the conventional electricity invoice (Fig. 2a) contain similar
information to water and piped gas invoices (1 to 7) with the differences reside
on the facts of the consumption being measured in kWh and the service index in
min of interruption time. Consumers in the free market (Fig. 2), typically with
high energy demand, are forced to chosen between the seasonal contracts. While
they pre-pay for a specific amount of energy in kWh, they are still subject to
seasonal contracts in terms of transmission and grid usage costs (information 8
to 9).

(a) Conventional CPFL invoice of
Unicamp (2022-Mar).

(b) Seasonal green free market CPFL
invoice of Unicamp (2022-Mar).

Fig. 2. Electricity invoice examples of utilities that supply Unicamp with highlighted
base (1 to 7) and specific data (8 to 9).

Additionally the electrical energy invoice have additional charges described
as the tariff flags that over price the amount of kW when the Brazilian system
of thermometric generation is activated.

The seasonal electricity invoices (Fig. 3) related invoices have a bunch
information extra information compared with the conventional one. This extra
data are enrolled bellow:

8. Contracted demand (in and out of peak hours for the seasonal blue) and fine
by trespass the demand value(s);

9. Reactive power consumption out and inside the peak and/or fine by trespass
the power factor restriction value.
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(a) Seasonal green CPFL invoice of
Unicamp (2022-Mar, page 1).

(b) Seasonal green CPFL invoice of
Unicamp (2022-Mar, page 2).

(c) Seasonal green Elektro invoice of
Unesp (2022-Oct).

(d) Seasonal blue Enel invoice of UFG
(2022-Mar).

Fig. 3. Electricity invoice examples of utilities that supply Unicamp, Unesp and UFG
with highlighted base (1 to 7) and specific data (8 to 9).
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The energy invoices may also include information about on-site generation.
Due to the cost of energy transportation, the utility company typically purchases
the generated kilowatts at a lower price than it is sold to consumer.

2.2 Data Extraction and Storage

In Brazil, consumers receive monthly invoices that provide a consumption
report. These invoices can be received in printed or digital PDF file via
email. However, despite containing mandatory information, there are significant
variations between invoices for different services (such as water and gas, Fig. 1),
invoices from different utilities within the same service and different region of
operation (Fig. 3), and invoices for different types of contracts within the same
service and utility (Fig. 2).

The challenge lies in analyzing these documents, as it requires extracting
data with minimal human interference and standardizing field names to ensure
consistent meanings across different utility document models. In this work,
Regular Expression techniques [14] were utilized in Python programming
language [15] to create extraction modules for each distinct file model that
internally execute the follow logic sequence [16]:

1. Converts the PDF file to string;
2. Identify the company (name, address, ...) and it service (water, gas,

electricity);
3. Get the user data (name, address, contract / provision number, ...);
4. Extract the consumption and payment values;

Fig. 4. DB for invoice data store: relational tables (blue) and temporal data (red).
(Color figure online)
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5. Validate the partial values with total one and other duplicated values present
at the document as a safety to check the software integrity;

6. Output the data as standardized JSON that populate DB.

The DB maintains historical consumption records, service indices, and other
crucial data extracted from the invoice files. It serves as the foundation for
generating analysis. The extracted data is modelled within the DB structure
shown on Fig. 4, facilitating efficient retrieval and analysis of information of two
types:

– Relational tables (in blue) to keep the relation between companies, consumer,
provision contracts and address;

– Time series (in red) to store the consumption data (consumption it self in
each own physical unit, amount paid, service indexes, demand, etc), messages
and link to stored file invoice.

The DB organization allows geographic interpretation of the consumers
and companies addresses, contract category, company to consumers
communication (messages), and manual file checking by inspecting the files
linked into the files table. It is possible get the consumption value by each
period (start_day and end_day) and even the identification of the physical
equipment who measured this data (meter_id).

3 Results

The results presented were generated by a DB populated through extracting data
from the invoice documents and an automated procedure [17]. The accompanying
charts (Figs. 5 to 7) were created using the Microsoft® Power BITM business
intelligence platform.

The charts display the total consumption (m3 or kWh) and amount paid
(BRL) by month in the year of 2022 for water services, piped gas and electricity.

Fig. 5. Piped gas consumption in m3 and monetary in Brazilian currency (BRL) for
month at Unicamp, supplied by COMGAS utility.

https://www.comgas.com.br/
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The analysis take into account that Unicamp have 4 campi with the large unique
campus and only one with the free market electricity contract, UFG have 5 campi
and Unesp-SJBV corresponds to only one campus of the numerous campi of
Unesp present at 24 cities of São Paulo Brazilian Region.

Among the three universities analyzed, only Unicamp has piped gas
supply (Fig. 5). The gas is utilized in the main campus located in the
(in Barão Geraldo district) to the internal restaurants and hospital services.

(a) Unicamp, supplied by SANASA water utility.

(b) UFG, supplied by SANEAGO water utility.

(c) Unesp-SJBV, supplied by SABESP water utility.

Fig. 6. Water consumption in m3 and monetary in Brazilian currency (BRL) for month
at each university and its region utility.

http://www.internationaloffice.unicamp.br/pagina-inicial-en/
https://ufg.br/?atr=en&locale=en
https://www2.unesp.br/portal#!/unesp-40-anos/perfil-da-universidade/
https://www2.unesp.br/portal#!/unesp-40-anos/perfil-da-universidade/
http://www.internationaloffice.unicamp.br/barao-geraldo/
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There has been a noticeable increase in gas consumption due to recent
investments in green energy renovation projects in the last 3 years [18].

Figure 6 shows the water consumption for the three universities in analysis
which reveals some data missing, particularly during the initial months of 2022

(a) Unicamp supplied by CPFL electricity utility.

(b) UFG supplied by Enel electricity utility / Equatorial group.

(c) Unesp-SJBV supplied by Elektro electricity utility / Neoenergy group.

Fig. 7. Electricity consumption in kW h and monetary in Brazilian currency (BRL) for
month at each university and its region utility.
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for Unicamp (Fig. 6a) due some invoice incompatibility with the developed
software. It also indicates possible missing data in September for UFG (Fig. 6b),
because that is only expected a lower water consumption in July due to the
university vacation period. Moreover, an increase in water prices is evident for
SANEAGO utility, as the total paid line rate is increasing despite the almost
constant consumption line trend. Unesp-SJBV, as small consumer, presents
a seasonal component (Fig. 6c) that matches with its electricity consumption
(Fig. 7c) discussed in sequence.

Figure 7 shows the electricity consumption of the three universities and
despite the missing data, particularly in Unicamp (Fig. 7a), some important
insights are possible. For example, UFG presents a increasing consumption rate
and a lower value in the March (Fig. 7b), probably caused by the delay in the
January vacation, which took place in March, due to the resumption scholar
calendar caused by the COVID-19 pandemic.

The seasonal component in Unesp-SJBV consumption (Fig. 7c) evidences
the influence of the summer vacation in Brazil (end of December to beginning
of March), resulting in lower electricity consumption. Consequently, the higher
consumption is observed in April to May, likely attributed to increased demand
for air conditioning during the hottest non-vacation months of the year.

This hypothesis can be confirmed with the lower consumption in the winter
months (July to September) and the fact that, due to the smaller number of
buildings and invoices, Unesp-SJBV does not have any missing consumption
data or interpretation problems reported by the developed software.

4 Conclusion

The analysis of utility invoices in Brazil poses an unique challenge due to the
variations in invoice file templates across different services, utilities and contract
types. However, through the development of a software in Python language
with the utilization of Regular Expression techniques, it have been possible
to overcome this challenge and extract standardized data from diverse invoice
models with not human interference.

The establishment of a DB model has greatly enhanced the retrieval and
analysis of relevant information through a Business Intelligence platform. The
friendly use of the interface based in charts can empowers the universities to gain
valuable insights of its consumption patterns, identify opportunities for reducing
energy burdens, improve resource efficiency and optimize cost-saving strategies
mainly when talking about pre-paid electricity and demand control.

Despite the missing data, significant consumption trends can still be
identified. These include the influence of seasonal variations, the impact of air
conditioner usage in Unesp-SJBV, the initiative to transition Unicamp to a
greener energy matrix by the extensive use of natural gas and the issues caused
in delay of scholar year begin of UFG.

No much can be said about the Unicamp electricity and water consumption
due invoices missing and software miss-interpretation. But it can be affirmed
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that the software’s data cross-validation using the partial tables and duplicated
values into one document guaranteed that not wrong consumption values was
insert into the DB.

Further advancements in this development could lead to a more efficient,
sustainable, and data-driven approach to decision-making in energy-saving
measures. Moreover, these practices could be expanded to other universities and
the Brazilian public sector, ensuring widespread benefits.

Additional tables of environment variables and consumption prevision can
be included into the DB allowing data crossing to expanding the consumption
planing for a better energy transition.
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Abstract. The intensification of environmental impacts and the increased eco-
nomic risks are triggering a technological race towards a low-carbon economy.
In this socioeconomic scenario of increasing changes and environmental con-
cerns, microgrids (MGs) play an important role in integrating distributed energy
resources. Thus, a planning strategy for grid-connected MGs with distributed
energy resources and electric vehicle (EV) charging stations is proposed in this
paper. The developedmathematical model aims to defineMG expansion decisions
that satisfy the growing electricity demand (including EV charging demand) at
the lowest possible cost; such decisions include investments in PV units, wind tur-
bines, energy storage systems, and EV charging stations. The objective function
is based on the interests of the MG owner, considering constraints associated with
the main distribution grid. A mixed-integer linear programming model is used to
formulate the problem, ensuring the solution’s optimality. The applicability of the
proposedmodel is evaluated in the 69-bus distribution grid. Promising results con-
cerning grid-connected MGs were obtained, including the enhancement of energy
exchange with the grid according to their needs.

Keywords: Energy storage systems · EV charging stations · microgrids
planning · renewable generation

1 Introduction

1.1 Motivation

The recent trend toward decentralization and decarbonization of power systems is
remarkable. Concern about environmental impacts has driven a strong worldwide move-
ment towards a new era of power systems. Policies such as the Paris Agreement [1] have
collaborated and encouraged electric mobility and renewable energy sources as an alter-
native to carbon-based fuel systems. Thus, in recent years, the adoption of new loads
such as electric vehicles (EV), the integration of renewable generation, distributed gen-
eration, and energy storage systems (ESSs) has grown worldwide [2]. In this new world
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scenario, the microgrid (MG) concept has emerged. A widely cited definition in the
literature was established by [3], defining MGs as follows:

“A group of interconnected loads and distributed energy resources within clearly
defined electrical boundaries that acts as a single controllable entity with respect
to the grid. A microgrid can connect and disconnect from the grid to enable it to
operate in both grid-connected or island mode”.

According to this definition, the boundary separating the MG from the main grid
must be clearly identified; MGs control their resources and can operate connected to the
external grid [4] or in isolated mode [5]. These operation modes have different goals.
For example, in the latter, eachMG seeks to reduce its own generation cost. On the other
hand, MGs that are connected to the grid can interchange electricity with the main grid
and/or nearby MGs [6].

According to [7], three main factors have encouraged the development of grid-
connected MGs: (1) Economic benefits: MGs can avoid or postpone reinforcements in
the distribution grid by integrating distributed energy resources (DERs). (2) Clean energy
integration:Renewable energy generation such as photovoltaic (PV) andwind generation
depend on weather conditions, and their generation variability can cause problems for
power systems. Thus, MGs are designed to deal with this issue, using storage systems to
balance generation and loads locally. (3) Energy security: MGs can improve resilience
and reliability by providing energy to priority loads such as hospitals, fire departments,
and communication systems, among others.

In this context, MGs have emerged as a flexibility tool in active distribution grids and
this concept contributes to the EV sustainable charging, since microgrids use renewable
energy to charge EVs. A microgrid allows EV users to reduce peak demand on the grid
and adapt their energy consumption to times when energy costs are lower. Furthermore,
microgrids can simplify EV charging by providing adequate charging facilities, thus
makingEVchargingmore affordable [8]. For this purpose, theMGmust have an adequate
planning and control system to ensure the quality of the energy supply to customers [9].
Therefore, MGs with EV charging stations (EVCSs) play an important role in modern
power systems. Thus, appropriate models and methods must be developed to adequately
accommodate this new infrastructure.

1.2 Literature Review

MGs can operate autonomously [5] or be connected to the network. This literature review
addresses grid-connected MGs [4, 10, 11] and planning of EVCS [12, 13], which are
the focus of this paper. A complete review of [4, 10–13] is presented below.

Reference [4] presents a game-based model for the long-term planning of a dis-
tribution grid with several connected MGs under the retail electricity market. In that
model, the interests of the DSO and MG investors are considered, namely the DSO is
responsible for the operation and expansion of the distribution grid. On the other hand,
MG investors are responsible for expanding and controlling DERs. The power exchange
between the MG and DSO has been addressed. Finally, the bi-level planning problem is
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transformed into a mixed-integer linear programming (MILP) model easily solved via
a commercial solver.

A stochasticmulti-objective approach for the expansion planning of a grid-connected
MG has been proposed in [10] considering a long-term planning horizon. Such an app-
roach aims to maximize reliability and profit and minimize costs (investment and opera-
tion costs). That planning strategy defines the capacity and type of renewable generation,
dispatchable generation, and ESSs connected to the MG. As in [4], power exchange
with the utility has been modeled in [10], and the problem is solved via the Benders
decomposition method.

In [11], a long-term planning model for MGs under uncertainties related to demand
growth (including EV demand) has been proposed. The information gap decision theory
method was used to deal with these uncertainties. Cost minimization is adopted as
the objective function to address costs related to operation and investment, EV charging
costs, and power exchange costs between theMGand themain grid. Also,MGexpansion
alternatives includePVunits andESSs. Then, the problem is formulated as aMILPmodel
and solved via CPLEX.

A mixed integer linear programming model has been proposed to solve the plan-
ning of EVCSs in reference [12]. This model considers the multi-period approach and
addresses the uncertainties related to EV demand and renewable generation. Planning of
EVCS is also covered in [13]. In this proposal, the authors aim to highlight under which
conditions the adoption of DERs becomes more convenient compared to investments in
network reinforcement. An important contribution of this proposal is to include battery
technical properties and degradation in the optimization model.

According to the literature review, it is possible to reach the following conclusions:

• Most of the reviewed works address the interchange of electricity between MGs and
the main grid [4, 10, 11]. Also, PV, wind turbines (WT) units, and ESSs are the most
adopted DER technologies.

• ADCpower flow is used tomodel the operation of distribution grids [4, 11]. However,
such a formulation is unsuitable [14], since these models simplify the operation of
distribution grids, ignoring, for example, reactive power flow and power losses [4,
11]. Furthermore, the reference [10] does not consider power flow constraints.

• None of the proposals addresses the fast-charging stations planning in grid-connected
microgrids.

In this context, a stochastic optimization model for the planning of grid-connected
MGswithDERs and EVCSs is proposed in this work. In contrast to [4, 10–13], this paper
addresses the planning of EVCS in MGs. Furthermore, the operation of grid-connected
MGs is formulated through an AC power flow (ACPF), [4, 10, 11, 13]. This paper aims
to define MG expansion decisions satisfying the growing electricity demand (including
EV charging demand) at the lowest possible cost. Such decisions include investments
in PV units, WT units, ESS, and EVCS. The objective function of the planning problem
is based on the interests of the MG owner, considering constraints associated with the
main distribution grid.

A MILP model is used to formulate the planning problem, ensuring the solu-
tion’s optimality. Finally, Table 1 compares the model proposed here and the previous
approaches.
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Table 1. Comparison between this work and the previous approaches.

Reference MG investments ACPF Carbon
constraintPV units WT units ESSs EVCSs

[4] � � � – – –

[5] – � � – – –

[10] � � � – – –

[11] � – � – – –

[12] � � – � � –

[13] � – � � – –

This work � � � � � �
� Considered; -: Not considered; WT: Wind turbine; EVCS: ESS: Energy storage system; EV
charging stations; ACPF: AC power flow.

1.3 Paper Contributions and Organization

The main objectives and contributions of this paper are:

• A stochastic optimization model for planning grid-connected MGs with DERs and
EVCSs, where the grid operation is formulated through an AC power flow.

• A joint planning strategy for EVCSs, PV units, WT units, and ESSs for several MGs.
This planning approach model is formulated as a MILP and solved using commercial
solvers. Thus, the solutions’ optimality is guaranteed.

• Inclusion of environmental constraints in the model, aiming at a low carbon
development strategy.

The rest of thework is organized as follows: The proposedmodel for theMGplanning
problem and the uncertainty model are presented in Sect. 2. Section 3 describes the case
studies and results of the proposed model applied to the 69-bus distribution grid, and
conclusions are presented in Sect. 4.

2 Planning Strategy for Grid-Connected MGs with Fast Charging
Stations

This section describes themathematical formulation of the proposed stochasticmodel for
planning grid-connected MGs with DERs and EVCSs. Moreover, the uncertainty model
related to electricity demand, electricity price, EV charging demand, solar irradiation,
and wind speed is described here. Finally, the proposed optimization model is based on
the following assumptions: (i) The grid-connected MG operation is represented by an
AC linear power flow model in which the loads are modeled as constant powers; (ii) A
set of scenarios represents the annual variation in electricity demand, EV demand, PV
generation, wind generation, and electricity price; (iii) The planning horizon is divided
into p periods; (iv) The original model is converted to an equivalent MILP model using
the piecewise f -function.
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2.1 Objective Function

The objective function of the problem is described in (1) and minimizes the following
costs: Investments costs (ICp) (2) related to EVCSs, PV units, WT units, and ESSs.
Operational costs (OCp) (3), related to the operation and maintenance of PV units, WT
units, and ESSs, cost of MG load curtailed, and cost of power exchange between the

MG and the external network. The function f (τ, λ) = 1−(1+τ)−λ

τ
permits the estimation

of present values.

min
∑

p

(Ip + Op)(1 + τ)
−(p−1)λ
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2.2 Constraints

This planning problem is subject to a) Steady-state operation constraints, b) operational
limits, c) DERs model, d) EVCS model, and e) environmental constraint, which are
described below.
a) Steady-state operation constraints
The set of constraints (4)–(9) defines the steady-state operation of the distribution grid.
The active and reactive power balance in the distribution grid is determined by (4) and
(5). Constraints (6) and (7) represent the power balance in the MGs. Constraints (8) and
(9) represent the application of Kirchhoff’s second law. Constraint (10) determines that
the power exchange between the distribution grid and each MG is equal to the power
flow between the branch that connects the grid to the MG; if Pex

m,s,p < 0, the MG will
supply power to the grid, otherwise (Pex

m,s,p > 0) the grid will supply power to the MG.
Finally, the model is originally a nonlinear expression that is linearized by utilizing the
piecewise f -function to determine the sum of (Pij,s,p)

2+(
Qij,s,p

)2, employing � blocks.
This linearization is described in detail in [15].

∑
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(4)
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∑
kg

Qkg,s,p − ∑
gj

(Qgj,s,p + X LlgjI
sqr
gj,s,p) + Qs

g,s,p

= QD
g,p + Pex

m,s,p; ∀g, s, p, m ∈ mc
(5)

∑
km

Pkm,s,p − ∑
mh

(Pmh,s,p + RLlmhI sqrmh,s,p) + Ppv
m,s,p + Pwt

m,s,p + Pes+
m,s,p

− Pes−
m,s,p + Plc

m,s,p = PD
m,pf Ds,p + Devcs

m,s,p + Pex
m,s,p; ∀m, s, p

(6)

∑

km

Qkm,s,p −
∑

mh

(
Qmh,s,p + X LlmhI sqrmh,s,p

)
+ Ppv

m,s,p + Pwt
m,s,p

+ Qlc
m,s,p = QD

g,p + Qex
m,s,p; ∀m, s, p (7)

V sqr
i,s,p − V sqr

j,s,p = [2(RLPij,s,p + X LQij,s,p
)
lij

+ ZL2l2ijI
sqr
ij,s,p]; ∀i, s, p

(8)

V sqr
j,s,pI

∧sqr
ij,s,p = f

(
Pij,s,p, �

) + f
(
Qij,s,p, �

); ∀ij, s, p (9)

Pex
m,s,p =

∑

gm

Pgm,s,p; ∀m ∈ mc, s, p, (10)

b) Operational limits
Equations in the set (11)–(15) determine the operational limits for the distribution system.
By constraints (11) and (12), respectively, voltages at nodes and current through circuits
are bound. Constraints (13) and (14) define the active and reactive power flow limits
through circuit ij. Moreover, the square of the apparent power (�sqr

d ,s,p) supplied by the
substation is determined by (15).

V 2 ≤ V sqr
i,s,p ≤ V 2; ∀i, s, p (11)

0 ≤ I sqr
ij,s,p ≤ I2ij ; ∀ij, s, p (12)

∣∣Pij,s,p
∣∣ ≤ VI ij; ∀ij, s, p (13)

∣∣Qij,s,p
∣∣ ≤ VI ij; ∀ij, s, p (14)

�
sqr
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(
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n,s,p, Qs
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)
; ∀n, s, p (15)

c) DERs model
Constraints (16)–(25) represent the operation and investment limits of DERs. Constraint
(16) limits the number of PV units in each candidate bus. The limits of active and reactive
power by PV units are shown in (17) and (18). There will only be one WT unit installed
at each bus, according to constraint (19). The operational limits of active/reactive power
byWT units are presented in (20) and (21). The number of ESSs that can be allocated to
each bus over the course of the planning period is limited by constraint (22). Additionally,
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according to the converter’s capacity, constraints (23) and (24) provide limits on anESS’s
charging and discharging power. Finally, constraint (25) is used to estimate the charging
and discharging processes of an ESS in each time block.

∑

p

N pv
u,p ≤ N

pv
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d) EVCS model
Constraint (26) ensures that only one charging station will be allocated for each bus. The
number of EV chargers assigned to each bus is limited by constraint (27). Constraint
(28) ensures that an EVCS’s maximum capacity is not exceeded by the EV charging
demand. Besides, the demand at charging stations coincides with the demand from EVs
in eachMG, according to constraint (29) Finally, constraint (30) ensures that at least one
EVCS is installed in each MG.
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e) Environmental constraint
Carbon emissions related to energy supplied by the grid are limited by (31).

∑
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∑

n

ζ s
nPs

n,s,p ≤ EM ; ∀n, s, p (31)

2.3 Uncertainty Model

Uncertainties related to electricity demand, solar irradiation, wind speed, and electric-
ity price are modelled through discrete scenarios by using historical data. The uncer-
tainty related to the EV charging demand is modelled using the algorithm presented in
[15]. Scenario reduction is necessary to achieve computational tractability. For this pur-
pose, the k-means method (available in MATLAB) has been used. This approach, which
is frequently used to solve planning problems [16], preserves the correlation between
uncertain data. Details of the uncertainty model are described in [15].

3 Numerical Results

A 69-bus distribution grid has been employed to evaluate the proposed optimization
model. This adapted network has a nominal voltage of 12.66 kV, a planning horizon of
ten years (two periods of five years each), and threeMGs. The allowed voltage ranges are
0.95 p.u (lower limit) and 1.05 p.u (upper limit). The chargers installed in EVCSs have
capacities of 50 kW (fast charger) and 150 kW (super-fast charger) at USD 28,401 and
USD 75,000, respectively [17]. MGs can sell their surplus generated energy, and when
the power provided by theDERs in theMGs is insufficient tomeet their demand, theMGs
can buy energy from the grid. The ESS has the energy to power (E/P) ratio of 4 h with a
capacity of 250 kW/1000 kWh, an investment cost of USD 241,750 (USD 189/kWh and
USD 211/kW) [18]. In addition, all data used in the case studies are available in [19].

In AMPL, the mathematical model was implemented, and CPLEX was employed
to solve it. The simulations were performed using a DELL PowerEdge T430 computer
with an Intel Xeon E5-2650 processor and 64 GB of RAM. The following case studies
were used to analyze the proposed model:

Case I) Planning strategy considering islanded MGs.
Case II) Planning for grid-connected MGs without investments in ESS.
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Case III) Similar to Case II, with the difference of considering investment in ESSs.

Regarding carbon emissions, the proposed planning obtained the following results:
no carbon emissions (Case I), 8742.99 tons (Case II), and 8488.34 tons (Case III).
Moreover, the computational time for Cases I, II, and III was 2005.48 s, 79.92 s, and
396.13 s, respectively.A summary of themain costs of the proposed planning is presented
in Table 2. Note that Case III, which includes investments in PV units,WT units, EVCSs,
and ESSs, obtained the lowest total cost. Cases I and II costs are 391.59% and 1.71%
higher than Case III, respectively.

Table 2. Summary of main costs for Cases I, II, and III.

Case I II III

Investment costs (103 USD)

PV units 10,385.70 13,899.00 15,368.00

WT units 19,451.06 16,000.00 16,000.00

EVCSs 545.00 495.87 495.87

ESSs 3,618.36 – 300.22

Total investment 34,000.12 30,394.87 32,164.09

Operational costs (103 USD)

DER O&M 2,043.68 277.84 366.02

MGL 13,372.39 621.71 0.00

Total operational 15,416.07 899.55 366.02

Cost of energy exchange between the MG and
external grid (103 USD)

EPG 0.00 664.34 657.54

ESG 0.00 19,123.32 20,568.33

Balance 0.00 18.458,98 19,710.79

Total cost 49,416.19 12,835.44 12,619.32

In contrast to Case III, Case I defines the planning decisions for islanded operation
of MGs. This case without external grid support had the highest investment cost, with
a difference of approximately 3,605.25 103 USD and 1,836.03 103 USD compared to
Cases II and III, respectively. Furthermore, this case had a significantly higher cost of
load curtailment (13,372.39 103 USD) compared to cases II (621.71 103 USD) and III
(no load curtailment). Another important result in Table 2 is the cost of energy exchange
between MGs and the external grid. Note that the MG sells much more energy than it
buys from the grid; thus, in the energy transaction with the distribution network, the MG
obtained a profit of 18.458,98 103 USD (Case II) and 19,710.79 103 USD (Case III),
respectively. In Case I, there is no energy exchange with the grid since the MG operates
in islanded mode. Finally, Table 3 summarizes the investments made for each case.
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Table 3. Investment plans for cases I, II, and III

Case I II III

PV units
(bus i, units, period p)

28, 1, 1; 36, 3, 1;
38, 1, 1; 39, 2, 1;
45, 1, 1; 46, 2, 1;
53, 6, 1; 54, 3, 1;
55, 4, 1; 56, 6, 1;
57, 4, 1; 58, 4, 1;
59, 3, 1; 60, 6, 1;
61, 9, 1; 62, 1, 1;
63, 3, 1; 36, 1, 2;
37, 1, 2; 38, 4, 2;
40, 1, 2; 46, 1, 2;
53, 4, 2; 54, 2, 2;
55, 2, 2; 57, 1, 2;
58, 2, 2; 59, 1, 2;
60, 1, 2; 61, 28, 2;
62, 3, 2; 63, 1, 2;

28, 50, 1; 46, 2, 1;
53, 71, 1;

28, 56, 1; 46, 2, 1;
53, 78, 1;

WT units
(bus i, period p)

35, 1; 42, 1; 63, 1;
31, 2; 43, 2; 65, 2;

31, 1; 42,1; 63, 1; 65, 1; 31, 1; 42,1; 63, 1;
65, 1;

ESS
(bus i, units, period p)

28, 1, 1; 45, 1, 1;
56, 1, 1; 60, 1, 1;
61, 1, 1; 62, 1, 1;
63, 3, 1; 60, 2, 2;
61, 2, 2; 62, 3, 2; 63, 1,
2;

- 53, 2, 2

Quick EV charger
(bus i, units, period p)

55, 2, 1;
28, 2, 2;
46, 3, 2;

28, 1, 1;
46, 1, 1;
53, 1, 1;

28, 2, 1;
46, 2, 1;
53, 2, 1;

Super-fast EV charger
(bus i, units, period p)

55, 1, 1;
28, 2, 2;
46, 2, 2;

28, 1, 1;
46, 1, 1;
53, 1, 1;

28, 2, 1;
46, 2, 1;
53, 2, 1;

The power exchange between MGs and grid is illustrated in Fig. 1, highlighting the
power exchanged in each scenario and planning period for Cases II (Fig. 1.a) and III
(Fig. 1.b). Analyzing this figure, some important issues can be highlighted:

• In both cases in period 1, the MGs buy energy from the grid in scenarios 10, 12,
14, 15, 26, 29, and 32; these scenarios are critical for MGs since there is no energy
generation by PV units. Also, the energy provided by other DERs technologies is
not enough to supply the demand. Thus, grid support is needed to ensure the energy
supply in the MGs.

• In period 2, the demand growth causes an increase in energy purchase in scenarios
10, 12, 14, 15, 26, 29, and 32 in Case II. Furthermore, in scenarios 16, 27, and 30
the MGs buy energy from the grid, in contrast to period 1. In addition, it is important
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to highlight that the energy sale by MGs in period 2 is reduced due to the increased
demand.

• In general, in period 2, the demand growth causes an increase in the purchase of
energy from the grid, except for scenarios 12 and 14, which in Case 3 reduce the
power supplied from the grid to the MG compared to period 1 (from 504.71 kW to
441.9 kW in scenario 12; from 536.62 kW to 232.32 kW in scenario 14), due to an
investment of 2 ESSs in period 2 of Case III.

• In contrast to Case II, Case III invested in ESSs in period 2. As a result, Case III is
less dependent on grid support, reducing energy purchases compared to Case II, in
period 2. On the other hand, Case II generally sells more energy in scenarios with
photovoltaic generation due to the lack of storage systems. Thus, MGs in Case II sell
the excess energy produced by photovoltaic generation since this energy cannot be
stored.

• All scenarios inwhich the grid supplies energy to theMGsare critical (solar irradiation
is zero). Therefore, there is no energy generated by the PV units.

Finally, Fig. 2 illustrates the investment plan for Case III that provided the best
outcomes in terms of the problem’s objective function. Note that most investments are
made in period 1. On the other hand, period 2 has only investment in two ESSs at bus
53.

Fig. 1. Power exchange between MGs and the external grid for a) Case II and b) Case III.
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Fig. 2. Investment plan for Case III.

4 Conclusion

A stochastic optimization model for planning grid-connected microgrids (MGs) with
distributed energy resources and electric vehicle charging stations (EVCSs) has been
proposed in this paper. This model seeks to define MG expansion decisions, aiming at
a low-carbon development strategy. Therefore, only clean generation alternatives were
considered in the MG investment plan. The proposed model was tested and validated
using the 69-bus distribution grid.

The current planning strategy has obtained promising results concerning grid-
connected MGs. Parallel operation (grid connected operation) benefits MGs, allowing
them to exchange energy with the external grid according to their needs or interests.
The MG can sell the energy if the renewable generation units have excess production.
On the other hand, in critical scenarios of low generation and high demand, the MG
can buy energy from the grid. Additionally, integrating MGs into the grid allows adding
more renewable energy sources (RES), contributing to environmental goals. The results
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also emphasize the importance of integrating RES with energy storage systems (ESSs).
Using ESSs, MGs become more empowered and less dependent on network support.

This planning proposal can be easily adapted according to the planner’s interests. For
example, the adopted objective may maximize the MG investor’s profit considering the
revenues related to the energy transaction in the local and/or retailmarkets. Finally, future
research may include: (i) Aspects related to reliability since MGs can be a promising
strategy to improve continuity and quality of energy service; (ii) Energy transactions
between MGs under a competitive market environment; (iii) Collaborative planning
between DSO and MGs that meets the interests of both players, highlighting the impact
of MGs on the expansion of the distribution system; (iv) Battery degradation model and
its impact on planning decisions.
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Nomenclature

Indices and sets:

b/u/r/w Index of possible locations for ESS/PV/EVCS/WT units allocation.
c Index of EV charger types.
g/m Index of grid/ MG buses.
i/k/h/ij Index of buses/circuits.
M Set of MGs.
mc Index of MG buses connected to the distribution grid.
n Index of substation buses.
p/t Index of planning periods.
s/s� Index of scenarios/scenarios s contained in block � .

Parameters:

ζ s
i Energy emission rate supplied by grid.

ηes+/− Efficiency rate of charging and discharging for ESSs.
λ Number of years in each planning period.
πs Probability of scenarios.
�i,p Apparent power demand at node i and period p.
τ Interest rate.
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Γ Number of discretization blocks.
Cch

c Cost of EV charger type c.
Cep

s Cost of energy exchange between MGs and external grid at node i.
Ces

b Cost of ESS.
Cevcs Installation cost for EVCS.
C lc Cost of MG load curtailment.
Cop,es+ Costs associated with ESS discharge process operation and maintenance.
Cop,es− Costs associated with ESS charge process operation and maintenance.
Cop,pv Costs associated with PV unit operation and maintenance.
Cop,wt Costs associated with WT unit operation and maintenance.
Cpv

u Cost of PV unit at bus u.
Cwt

w Cost of WT unit at bus w.

Dev
m,s,p EV aggregated demand, at bus m, scenario s, and period p.

ds Duration (hours) of scenario s.
EM Maximum limit of CO2 emissions.
f Ds Demand factor of scenario s.
f pvs PV production factor of scenario s.
f wts WT production factor of scenario s.
I ij Maximum current of circuit ij.
lij Length of circuit ij.

N
ch
c Maximum number of EV chargers type c to be installed.

N
es
b Maximum number of ESS to be installed at node b.

N
pv
u Maximum number of PV units to be allocated at node u.

Pchc Capacity of EV charger type c.
PD

i,p/QD
i,p Active/reactive power demand at node i and period p.

Pes
b Maximum active power capacity of ESS at bus b.

P
pv
u Active power capacity of PV units at bus u.

P
wt
w Active power capacity of WT units at bus w.

V /V Upper and lower voltage limits.

RL/X
L
/ZL Conductor resistance/reactance/impedance.

Continuous variables:

�
sqr
i,s,p Square of the apparent power provided by the substation at bus i, scenario

s, and period p.

Devcs
r,s,p Charging demand in EVCS at bus r, scenario s and period p.

I sqrij,s,p Square of current through circuit ij in scenario s and period p.
Pij,s,p Active power flow through circuit ij for conductor a in scenario s and period

p.
Pes−/+

b,s,p Active power stored/ provided of ESS at bus b, scenario s, and period p.
Pex

m,s,p Active power injected/absorbed by MGs at bus m, scenario s, and period p.

Plc
m,s,p Active power related to load curtailment at bus m, scenario s, and period p.

Ppv
u,s,p Active power injected by PV at node u, scenario s, and period p.

Pwt
w,s,p Active power injected by WT at node w, scenario s, and period p.
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Ps
i,s,p Active power supplied by substation at node i, scenario s, and period p.

Qij,s,p Reactive power flow through circuit ij in scenario ω and period p.
Qex

m,s,p Reactive power injected/absorbed byMGs at busm, scenario s, and period p.
Qlc

m,s,p Reactive power related to load curtailment at busm, scenario s, and period p.
Qpv

u,s,p Reactive power injected by PV at node u, scenario s, and period p.
Qs

i,s,p Reactive power by the substation i at node d , scenario s, and period p

V sqr
i,s,p Square of the voltage at node i, scenario s, and period p.

Integer and binary variables:

N ch
r,c,p Integer variable representing the number of EV chargers at node r, type c

and period p.
N es

b,p Integer variable representing the number of ESS at node b and period p.

N pv
u,p Integer variable representing the number of PV units at node u and period p.

xevcsr,p Investment variable representing the installation of an EVCS at node r and
period p.

xwtw,p Investment variable representing the installation of an WT units at node w
and period p.
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Abstract. The energy sector explores various paths to improve the energy man-
agement of buildings. Nowadays a frequent path is to schedule load forecasting
activities due to the accessibility of reliable forecasting algorithms. Data scientists
usually take advantage of a large historic of consumption with weekly patterns and
sensors data presenting a higher correlation with the consumption variable. How-
ever, specialists in the explainable artificial intelligence area focus on studying
the positive or negative impact of each variable to the prediction accuracy. In this
paper, a correlation analysis evaluates in the first stage the most reliable sensors to
be used during training and forecasting tasks. In the second stage, the Local Inter-
pretable Model-Agnostic Explanations (LIME) explainable artificial intelligence
method is applied to determine which features have a stronger positive or nega-
tive influence on the prediction accuracy. The training and forecasting tasks are
supported in this paper by the forecasting algorithm Artificial Neural Networks.
In the case study, a historic of two years and six months is used to estimate the
consumption values of a targeted week considering periods of five minutes. The
results section calculates the confidence of each sensor to the prediction accuracy
provided by LIME method and compares the obtained insights with the corre-
lation analysis. The results and conclusions sections state that the two sensors
more correlated with the consumption variable either contribute negatively to the
prediction performance or do not contribute at all on most test targets.

Keywords: Energy Management · Energy Sector · Explainable Artificial
Intelligence · Prediction Accuracy

1 Introduction

The forecast of consumption patterns plays a crucial role in the energy management
of buildings on different levels including the demand-side management [1]. In [2], for
example, prediction activities are scheduled to optimize the energy dispatch of building
energy systems for demand response. It is worth noting that the incentive of demand
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response programs leads to the improvement of power grid flexibility and the reduction
of energy costs [3].

Several forecasting algorithmsof themachine learningfieldmaybe applied in various
sectors of the building including ARIMA, SARIMA, XGBoost, and Random Forest [4].
Deep learning applications from the artificial intelligence domain can be enumerated as
well for forecasting tasks including Artificial Neural Network, Deep Belief Network,
Recurrent Neural Network, Elman Neural Network, Deep Recurrent Neural Network,
Convolutional Neural Network and Nonlinear Autoregressive Network [5].

The prediction of electricity consumption in smart homes is approached in [6] with
the support of past consumption data, inhabitants’ actions and activities, and environmen-
tal data. The electricity consumption forecasting of office buildings is approached in [7]
with the support of an artificial intelligence approach based on forecasting algorithms
including artificial neural networks, support vector machines hybrid fuzzy inference
systems, and Wang and Mendel’s fuzzy rule learning method. The prediction of the
aggregated load for residential and commercial buildings is approached in [8] with the
support of artificial neural networks to compare the fore-casting performance of recurrent
and non-recurrent networks. A hybrid deep learning model consisting of convolutional
neural network and recurrent neural network is proposed in [9] to predict hourly energy
consumption for smart buildings.

Obtaining reliable predictions is important to guarantee efficient energymanagement
as well as to reduce energy costs [10]. It is possible to improve the forecasting accuracy
in smart buildings with the support of feature selection strategies [11]. Another solution
to reduce the forecasting error consists in optimizing the hyperparameters of the fore-
casting algorithm models [12]. The evaluation of forecasting models is valued in [13]
as the selected forecasting model puts in question if it results in lower errors than other
forecasting model alternatives. Explainable artificial intelligence (XAI) plays a crucial
role in the interpretability of various forecasting algorithms [14]. Some explainable arti-
ficial intelligence (XAI) techniques are indicated in [15] including SHapley Additive
exPlanations (SHAP), and Local Interpretable Model-Agnostic Explanations (LIME).

The motivation of this paper consists on understanding if the sensors more cor-
related with consumption patterns have a very positive contribution to the prediction
performance with the support of the LIME explainable method. The sensors correlation
analysis has been studied previously by the authors of this paper in [16]. This paper takes
advantage of the LIME analysis on first stage to understand which features contribute
most to the prediction performance with Artificial Neural Networks. The second stage
is focused on the motivation of this paper which is to understand if the sensors more cor-
related with the consumption patterns had a very positive contribution to the prediction
performance as seen through the LIME analysis. The use of Artificial Neural Networks
in this scientific paper resides in resulting in lower forecasting errors than other fore-
casting algorithms such as K-nearest Neighbors as concluded in [16]. An annual historic
of past consumption and sensors data with weekly patterns is trained to predict energy
consumption patterns for a target week contextualized for periods of five minutes with
the support of Artificial Neural Networks. The correlation analysis has been studied
with the support of the Excel software while the training and the prediction with Arti-
ficial Neural Networks and the LIME explainable method have been run with Python
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programing language. These two crucial tasks have been supported by Python libraries
including tensorflow and LIME respectively.

Following this introduction, Sect. 2 explains the different steps of the proposed
methodology. Afterwards, Sect. 3 details the case study. Then, Sect. 4 displays the
results. Finally, Sect. 5 presents the main conclusions of this research.

2 Methodology

This section explains the different steps of the proposed methodology. These include
as illustrated in Fig. 1 the access to a historic dataset composed of consumptions and
sensors data, a correlation analysis procedure, the training of data with the support of
artificial neural networks algorithm, and a LIME analysis of the features contribution to
the prediction performance.

Fig. 1. Proposed two-stage methodology diagram.

The real-time data involves all the consumption and sensors data from an electrical
buildingmonitored in IoT devices contextualized for periods of fiveminutes. The historic
dataset is composed of consumptions and sensors data for the intended peri-od for
training and forecasting activities. The correlation analysis evaluates the sensors with
higher influence on the consumption variable that should be added to the training data.
The data set reducer excludes the sensors data not presenting a high correlation with the
consumption variable.

The data resulted from the data set reducer procedure goes through a data cleaning
procedure that reorganizes the data structure and values incoherencies to prepare the data
for training and forecasting tasks and furthermore to improve the data reliability. The
new data structure consists of consumptions and sensors data reorganized in an unique
spreadsheet with consumption and sensors values associated to different data features
separated in various columns. These data features consist of the following variables: year,
month, day of the month, day of the weeks, hour, and minutes. Moreover, the content
of the spreadsheet is contextualized for periods of five minutes from Monday to Friday.
The data cleaning procedure has also detection and correction functions to improve the
reliability of data. Firstly, the detection and correction of missing data gathers all the
periods of five minutes lacking consumption or sensor values in the spreadsheet and
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associates these records with new values corresponding to previous entries. Secondly,
duplicated records defined by the same data features are detected and transformed into
unique records composed of the average of the consumption and sensors data. Lastly,
the detection of outliers gathers records with consumption and sensors incoherencies
described by incorrect readings made by the IoT devices. The detection of outliers is
supported by the mean and standard deviation calculations as presented in Eq. 1 and
Eq. 2 and validated with the if-then condition presented in Eq. 3.

M =
∑NPActual

NPExact=NPActual−NPFrame V (NPExact)

NPFrame
(1)

• M – mean of V in NPFrame
• V(NPExact) – consumption/sensor value at NPExact
• NPActual – current number of period
• NPFrame – number of periods used as frame
• NPExact – exact number of period

SD =
√

NPFrame−1 ∗
∑NPActual

NPExact=NPActual−NPFrame
(V (NPExact) − M )2 (2)

• SD – standard deviation of V in NPFrame
• M – mean in NPFrame
• V(NPExact) – consumption/sensor at NPExact
• NPActual – current period
• NPFrame – number of periods used as frame
• NPExact – exact number of period

V (n) ≥ M + ε ∗ SD ∨ V (n) ≤ M − ε ∗ SD := V (n) = V (NPExact − 1) + V (NPExact + 1)

2
(3)

• V(NPExact) – consumption/sensor value at NPExact
• ε – error factor
• M – mean in NPFrame
• SDC – standard deviation of V in NPFrame
• NPActual – current period
• NPFrame – number of periods used as frame
• NPExact – exact number of period

The average and standard deviation are calculated for the consumption variable
and for a frame used as basis respectively in Eq. 1 and Eq. 2. Afterwards, an if-then
condition presented in Eq. 3, checks if the value of the consumption or sensor variable
at an exact period is higher or equal to the calculated mean plus an error factor times
the calculated standard deviation. The condition presented in Eq. 3 also checks if the
value of the consumption or sensor variable at an exact period is lower or equal to the
calculated mean minus an error factor times the calculated standard deviation. If the
if-then condition presented in Eq. 3 is verified. Then the value the of the consumption or
sensor variable at the exact period is replaced by the average of the value occurring in the
previous and following periods. In the aftermath of the cleaning operations, a training
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function trains most of the data with the support of artificial neural networks algorithm.
The value considered for the error factor was 2. The reason of why artificial neural
network algorithm is applied is because this forecasting algorithm is recommended to
deal with large amounts of data while other such as k-nearest neighbors and random
forest despite their advantages are not so good to deal with big data.

The LIME analysis proposed in this methodology is supported by the theorical and
practical explanations provided by [17]. Firstly, LIME is supported by a forecasting func-
tion to estimate consumption values for a large sequence of short periods with artificial
neural networks algorithm. Secondly, a feature and contribution analysis integrated in
LIME analyzes which features contributed positively or negatively to the prediction per-
formance. The positive features contribution to the prediction performances means that
the values of the features influence the prediction performance with a higher accuracy.
On the other hand, a negative features contribution to the prediction performance means
that the respective feature values influence a lower prediction accuracy. Afterwards, an
explainer function takes place to compare the features contribution insights obtained
with the two approached strategies: LIME analysis, and correlation study.

3 Case Study

The historical data of this case study is composed of consumption and sensors records
monitored in a building with the support of IoT devices. The considered dataset for
cleaning, training and forecasting activities is composed of a large historic from 22May
2017 to 15 November 2019. This dataset is reused according to previous work developed
from the authors of this paper. Furthermore, it should be noted that the prepared version of
the dataset for cleaning, training, and forecasting activities is contextualized for periods
of fiveminutes. Furthermore, it should be noted that although themonitored data is saved
to the building database for periods of ten seconds, the prepared version of the dataset
for cleaning, training, and forecasting activities is the result of data transformations from
periods of ten seconds to periods of five minutes. Therefore, the training and forecasting
procedures are contextualized for periods of five minutes. The building is composed of
three zones, each one with three different rooms, each one with three different rooms.
The training and forecasting activities occur for zone 1 of the building. The IoT sensors
presented in zone 1 of the building are:

• One air quality sensor;
• One temperature sensor;
• One humidity sensor;
• One CO2 sensor;
• Four movement sensors;
• Three door status indicators;
• Seven light power indicators.

The weekly consumption from 22 May 2017 to 15 November 2019 is illustrated in
Fig. 2 considering a total of 1440 periods of five minutes due to the weekends exclusion.
The reason about the weekends exclusion is because of the low consumption activity
during theweekend. Furthermore, a total of 150weeks illustrate theweekly consumption
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profile with unique and random colors. The consumption activity from week to week
tends to result in different behaviors. This observation is clear inFig. 2 as the consumption
activity of each week highlighted with an unique color differs from the consumption
activity of other weeks highlighted by other colors.

Fig. 2. Weekly consumption profiles from 22May 2017 to 15 November 2019 contextualized for
periods of five minutes and zone 1 of the building.

4 Results

This section presents all the results following the theorical explanation of the methodol-
ogy and the detailing of the case study. Subsect. 4.1 explains the artificial neural networks
configuration. Subsect. 4.2 compares the sensors contribution to the prediction perfor-
mance with the support of LIME method to compare with the insights of a correlation
analysis that concludes the sensors with higher influence on the consumption variable.

4.1 Forecasting

The ANN forecasting algorithm trains all the historic of consumptions and sensors
data except the last week for periods of five minutes. Therefore, the time horizon of
the training data is described by all periods of five minutes from 22 May 2017 to 8
November 2019. Furthermore, the selected sensors added to the input of the training
data are the ones with higher correlation as concluded in the Subsect. 4.3. Therefore, the
selected sensors are CO2 and light intensity. The ANN architecture is composed of the
parameterization model resulting in lower forecasting errors through different trial and
errors scenarios as researched previously by the authors of this paper in [18]. Hence,
ANN architecture is composed of a multilayered model with an input layer with twelve
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neurons connected to all the neurons of the first of two sequential hidden layers, each one
with sixty-four neurons. The first and second hidden layer have their neurons connected
to all the neurons of the other layer. Finally, all the neurons of the second hidden layer
are connected to the only neuron presented in the output layer. The reason that ANN is
configured with twelve neurons in the input layer is that the input of the training data
is composed with ten consumption values contextualized for sequential periods of five
minutes, and the two selected sensors known as light intensity and CO2 occurring in the
same period of five minutes as the last consumption input. Furthermore, the reason that
ANN is configured with only one neuron in the output layer is that the training output
is composed of only one consumption contextualized for a period of five minutes. The
epochs parameterization of ANN is assigned to five hundred. This means that ANN will
apply the feedforward algorithm (to train the output) and the backpropagation algorithm
(to update the weights) five hundred times. The epochs parameterization was assigned
to the indicated value since the volume of consumption and sensors data is very high.
Therefore, it is crucial to train both the feedforward and backpropagation algorithms
many times. It should be noted however that an early stopping procedure is added to
the ANN architecture to stop automatically the training before reaching the final five
hundred times if no training improvements are detected within 20 sequential epochs.
The method used for the feedforward algorithm is the gradient descent method with
learning rate assigned to 0.001. The reason that the learning rate is very small is to allow
a rigorous search for local minimums to improve the training accuracy of the variable.

4.2 Explanations

The LIME results expressing the positive and negative confidence of each one of the
features (consumptions, light sensor, and CO2) are presented in Fig. 3 for scenario 1 and
for twenty four different test targets with artificial neural networks algorithm.

The positive and negative confidence are marked respectively in orange and blue.
Moreover, the consumptions labeled asC0 toC9correspond to sequences of consumption
input values precede the output consumption contextualized on periods of five minutes.
The light sensor (labeled as DALI_LIGHT) and the CO2 (labeled as CO2) precedes
the output consumption contextualized in a period of five minutes. The configuration
of LIME uses an exponential kernel to calculate the Euclidean distances, and the mode
assigned to the regression level to deal with quantitative measures.

The consumptions marked as C1, C4, C5, C6, C7 and C8 contribute more positively
to the prediction. On the other hand, the consumptions labeled as C2, C3, and C9 con-
tribute more negatively to the prediction. It is also worth noting that the light sensor and
CO2 contribute negatively to most test targets. Some exceptions where the light sensor
contributes positively to the prediction correspond to the test target labeled as t12 with
the value 4.03, and to the test target labeled as t17 with the value 1.48. An exception
where CO2 contributes positively to the prediction correspond to the test target labeled
as t6 with the value 7.24.

Three test targets were selected to study the positive and negative impact for each
feature in detail as provided by LIMEmethod. To study with higher precision, a bar plot
illustrates in Fig. 4, 5 and 6 the positive and negative impact of each feature respectively
for the following test targets: t1, t12, and t24.



58 D. Ramos et al.

Fig. 3. LIME positive and negative confidence of each feature for scenario 1 and for different test
targets with artificial neural networks algorithm.

Figure 4 shows that the features contributing more positively to the prediction are
the consumptions marked as C2 with the value 40.30, C1 with the value 27.61, C3 with
the value 23.00, C9 with the value 17.49, and C6 with the value 15.44. Moreover, the
features that contribute more negatively to the prediction are the consumptions marked
as C0 with the value 27.80, C4 with the value 25.45, C7 with the value 19.12, C8 with
the value 11.01, and CO2 with the value 8.68.

Figure 5 shows that the features contributing more positively to the prediction are
the consumptions marked as C2 with the value 46.90, C5 with the value 37.65, C3
with the value 27.96, C6 with the value 21.21, and the light sensor with the value
4.03. Moreover, the features that contribute more negatively to the prediction are the
consumptions marked as C0 with the value 104.03, C1 with the value 43.99, C7 with
the value 24.05, C4 with the value 10.58, and CO2 with the value 3.17.

Figure 6 shows that the features contributing more positively to the prediction are the
consumptions marked as C0 with the value 393.86, C1 with the value 142.40, C7 with
the value 109.35, C4 with the value 86.89, C5 with the value 36.34, C8 with the value
23.53, C6 with the value 16.63. Moreover, the features that contribute more negatively
to the prediction are the consumptions marked as C2 with the value 79.13, C3 with the
value 55.15, and C9 with the value 36.44.

As seen previously, the correlation analysis shows that light sensor and CO2 are
the variables with a stronger influence on the consumption, respectively with the values
0.8484 and 0.5403.

The correlation analysis studies the sensors with a stronger influence on the con-
sumption variable. Table 1 studies the correlation of all the sensors with the consumption
variable considering the time horizon and the context of the data detailed in the case
study. These sensors are indicated in Table 1 evidencing the total PV, light intensity,
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Fig. 4. LIME positive and negative confidence of each feature for scenario 1 and for different test
targets with artificial neural networks algorithm.

Fig. 5. LIME positive and negative confidence of each feature for scenario 1 and for target t1
with artificial neural networks algorithm.
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Fig. 6. LIME positive and negative confidence of each feature for scenario 1 and for target t24
with artificial neural networks algorithm.

CO2, air quality, temperature, humidity, and light consumption. The correlation analy-
sis shows that light sensor and CO2 are the variables with a stronger influence on the
consumption, respectively with the values 0.8484 and 0.5403. The correlation analysis
shows that light sensor and CO2 are the variables with a stronger influence on the con-
sumption, respectively with the values 0.8484 and 0.5403. On the other hand, the results
provided by LIME method show that the light sensor and CO2 contribute negatively to
the prediction or none at all on most test targets. A few exceptions where the light sensor
contributes positively to the prediction is for t12 (with the value 4.03) and t17 (with the
value 1.48). An exception where CO2 contributes positively to the prediction is for t6
(with the value 7.24). The negative contribution of the light sensor and CO2 on most test
targets is understandable since artificial neural networks is the considered forecasting
algorithm. Taking into account that the indicated algorithm is very effective for large
volumes of data, the consumption inputs separated in a large sequence of periods of five
minutes will contribute more to the forecasting performance than the sensors data.

Therefore, the adding of CO2 and light sensor values to the input data will result in
excessive information that will result in negative contribution to the forecasting perfor-
mance on most test targets. Only on specific test targets where conditions are favorable
to the sensors data, the adding of this additional data to the input will result in positively
contribution to the forecasting performance.
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Table 1. Correlation matrix of consumption and sensors data from 22May 2017 to 15 November
2019 contextualized for zone 1 and periods of five minutes.

Correlation

Total
consumption

1

Total PV 0.3374 1

Light
intensity

0.8484 0.3681 1

CO2 0.5403 0.4918 0.5677 1

Air Quality –0.2064 −0.3193 −0.2665 −0.2831 1

Temperature 0.4178 −0.0132 0.2487 −0.0037 0.2205 1

Humidity 0.0679 0.044 −0.0305 −0.0377 0.2348 0.296 1

Light
consumption

0.3376 0.2738 0.468 0.4154 −0.2326 −0.0568 −0.2516 1

5 Conclusions

This paper evaluates the sensors contribution to the forecasting performance of a building
installed with IoT devices to compare the obtained insights with a correlation analysis
studied previously by the authors of this paper. This evaluation conducted with the sup-
port of LIME analysis and the artificial neural networks forecasting algorithm concludes
that the insights obtained are incompatible with the correlation analysis. The LIME anal-
ysis concludes that CO2 and the light sensor have a positive contribution only on a small
number of test targets. The insights of the correlation analysis contradict the observa-
tions of the LIME analysis since CO2 and the light sensor had a stronger influence on
consumption patterns than other sensor variables. This however can be explained since
artificial neural networks are successful on dealing with large volumes of data. There-
fore, the training of artificial neural networks will give more importance to the input
consumptions contextualized in sequential periods of five minutes than the CO2 and the
light sensor occurring in the same period of five minutes that the last input consumption
takes place. It is understandable therefore that the adding of CO2 and light sensors data
to the input will contribute positively to the forecasting performance only on specific
test targets. As future work, the authors of this paper intend on researching with higher
precision the conditions of the test targets that result in more accurate performances
considering the sensors usage. Moreover, the authors of this paper intend to use addi-
tional explainable artificial intelligence methods to analyze the sensors contribution to
the prediction performance.
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Abstract. Solar irradiation is the backbone of photovoltaic power tech-
nologies and its quantization allows to optimize energy generation. How-
ever, solar irradiation can be difficult to detect, mostly due to the design
and disposition of sensors, as well as their high cost. To address this
limitation, this paper proposes a deep neural network-based model to
estimate global solar irradiation by only relying on weather data, focus-
ing on applications targeting the Brazilian territory. The model uses a
deep neural network trained with data from the Brazilian National Insti-
tute of Meteorology (INMET), which includes 606 nationwide weather
stations and over 39 million hourly records of meteorological variables
cataloged from years 2010 to 2022. Thus, in this paper i) a deep neural
network is used to estimate irradiation, and ii) a long short-term mem-
ory is used to predict solar irradiation considering different time gran-
ularities: 5 min, 30 min, 6 h, and 1 day. The results show a small error
between the measured irradiation data and the calculated results with
regard to the following six meteorological variables: time, temperature,
relative humidity, wind speed, precipitation, and atmospheric pressure.
Moreover, experimental validations conducted using a weather station
set up by the authors demonstrate that the proposed models can accu-
rately predict solar irradiation. Thus, the developed model stands as
a promising approach for applications within the Brazilian perspective,
improving the efficiency and reliability of solar energy generation.
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ANN Artificial Neural Network
ARMA Autoregressive Moving Average
A-P Angstrom-Prescott
DL Deep Learning
DNN Deep Neural Network
GAN Generative Adversarial Networks
GEP Gene Expression Programming
GRNN Generalized Regression Neural Network
GRU Gated Recurrent Unit
INMET Brazilian National Institute of Meteorology
LSTM Long Short-term Memory
MAD Median Absolute Deviation
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLP Multilayer Perceptron
MSE Mean Squared Error
PV Photovoltaic
RBF Radial Basis Function
RBFNN Radial Basis Neural Network
RF Random Forest
RNN Recurrent Neural Network
SVM Support Vector Machine
WRNN Wavelet Recurrent Neural Networks

1 Introduction

The availability of energy supply is crucial for the economic and social devel-
opment of any country, and producing electricity by means of sustainable gen-
eration sources has been playing a pivotal role in meeting the expected world
demand for energy. Photovoltaic- (PV) and wind-based energy sources are exam-
ples of alternative resources that have supported the reduction of fossil fuel usage
and decreased the need for nuclear power installations. Consequently, due to the
advancement of such technologies, the world is becoming less dependent on power
generation means, which may harm the environment or human life while pro-
ducing electricity [1]. Hence, such alternative sources are shedding light on the
new energy paradigm [2].

Particularly in Latin America, PV power plants have presented an accentu-
ated growth since the past decades; for instance, now accounting for 2.47% of
Brazil’s total power generation [3]. PV-based technologies rely on the physical
nature of solar radiation, depending directly on the irradiation performance to
attain efficient energy conversion and/or utilization. The more one knows about
the irradiation patterns in a certain territory, the more adequate the PV-based
energy can be processed. Thus, quantifying solar irradiation is of paramount
importance in several scenarios, such as power generation and utility markets,
heat load distribution in buildings [4], PV system analysis and installation [5],
agricultural applications [6], as well as irrigation systems [7].
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Solar irradiation, measured in W/m2, varies throughout the day at any given
geographic location, mainly due to the earth’s movement and the chaotic effects
of the atmosphere [8]. With regards to Brazil, it has the world’s highest potential
for solar energy generation, given that a large part of its territory is located in
the equatorial and tropical zones [9].

Measuring such irradiation is challenging due to its cost, maintenance
requirements, and technical demands for calibration of sensors [10,11]. Several
approaches have been proposed in the literature to address this issue, considering
empirical models, mathematical formulations, and satellite-based data. Recently,
the development of artificial intelligence (AI) algorithms to predict and estimate
solar irradiation profiles at specific geographical locations has also been com-
monly evidenced [4–7,12,13]. Gao, Miyata and Akashi highlighted in [14] that
most of the solar-related research findings available worldwide applied long short-
term memory (LSTM), autoregressive moving average (ARMA), and multilayer
perceptron (MLP) as a basis for solar irradiation forecasting algorithms.

Many research works have focused on artificial neural networks (ANN) for
either predicting or forecasting solar irradiation, such as the one conducted by
Yadav and Chandel [15], Shaddel, Javan, and Baghernia [16], and Zhang et al.
[8]. In particular, Zhang et al. [8] and Salazar et al. [9] reviewed and compared
various models, such as MLP, radial basis function (RBF), and wavelet recurrent
neural networks (WRNN), in terms of estimation type and time scale.

For what concerns the Brazilian perspective, ANN-based applications focused
on solar irradiation quantization are still limited, being particularly targeted only
for a small number of areas or regions. Some research efforts have investigated
ANN techniques for solar irradiation prediction in local scenarios, such as in
Fortaleza - Ceará [17], Seropédica - Rio de Janeiro [18], Petrolina - Pernambuco
[9,19], and Botucatu - Sao Paulo [20]. However, Brazil is a geographically exten-
sive country with a significant north-to-south extension, and it lacks research on
a generalist model to predict solar irradiation throughout the entire region.

Motivated by such a scientific gap, this paper presents two main contributions
to fulfill the need to estimate solar irradiation in any location within the Brazil-
ian territory. First, a model based on a deep-learning neural network (DNN) is
developed to estimate solar irradiation based on the following attributes: day-
time, temperature, humidity, atmospheric pressure, wind speed, and hourly pre-
cipitation. As a second contribution, a dynamic model is proposed to forecast
daily irradiation based on locations’ latitude, longitude, and month of the year.

A DNN is used as a regressor for the former model, and its performance
is compared with other estimation techniques. The latter (i.e., dynamic) model
uses a Recurrent Neural Network (RNN) based on the LSTM principle, allowing
solar irradiation prediction for different time scales ranging from 5min to 24 h.
It is worth highlighting that this study utilizes data from 606 meteorological
stations managed by the Brazilian National Institute of Meteorology (INMET)
to train and evaluate the proposed models, considering the datalogging period
between 2010 and 2022.
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This paper reads as follows. Section 2 presents the process of choosing and
implementing DNN and LSTM for the estimation and forecasting process of
solar irradiation. Section 3 presents information about the database provided by
INMET, the data munging process, and the results attained from the ANNs’
model. In addition, it is presented performance analyses for short, medium, and
long-term estimation and forecasting of irradiation, also considering comparisons
with previous works from the literature. Section 4 presents the final considera-
tions about the proposed models, their limitations, and future work proposals.

2 Artificial Neural Network Techniques for Solar
Irradiation

ANNs are bio-inspired computational models capable of representing complex
knowledge, maintenance, and generalization processes using the relationship
between input and output data [6,12]. The basic unit of an ANN is the neu-
ron, and models known as synapses interconnect the multiple units of neurons.
A tuning value is associated with such synapses comprising the ANN, known as
the weight factor.

The first ANNs were idealized in 1943 [21]; however, practical models were
implemented in applications only after 1986, with the construction of an MLP
with backpropagation [22]. An MLP is an ANN architecture comprising an input
layer, one or more hidden layers, and an output layer, as shown in Fig. 1a. The
MLP uses the supervised learning concept called backpropagation in the training
process and can solve the nonlinearity of the input data to perform pattern
recognition or estimation [6].

Since the MLP milestone, deep learning (DL) has progressed because of the
computational evolution in the last decades and the possibility of increasing the
number of hidden layers and neurons [23], as shown in Fig. 1b. Therefore, new
architectures of ANNs were developed for several purposes, such as regression,
supervised classification, computer vision, speech recognition, natural language
processing, and audio detection [24].

Many research efforts present techniques for solar irradiation forecast. For
instance, Wang et al. [25] conducted a study on daily solar radiation prediction
comparing three ANN architectures: the MLP, generalized regression neural net-
work (GRNN), and radial basis function neural network (RBFNN). The models
were developed using as attribute input the air temperature, relative humid-
ity, air pressure, water vapor pressure, and sunlight duration measured from 12
weather stations in different climate zones. Based on the results, they found that
the MLP and RBFNN models provide better accuracy than GRNN.
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Input layer

a) Vanilla ANN b) DNN

Hidden / dense layer Output layer

Fig. 1. ANN and DNN comparison.

Belaid and Mellit [26] developed a method that uses a support vector machine
(SVM) to predict daily and monthly global average solar irradiation in an arid
climate (Ghardaia, Algeria), taking as input the temperature, maximum sun-
shine duration, and the extraterrestrial solar radiation. For these quantities, the
correlation coefficient ranged from 0.894 to 0.896, and the prediction error of
approximately 7.5%.

Mehdizadeh et al. [27] conducted a study comparing gene expression pro-
gramming (GEP), ANN, adaptive neuro-fuzzy inference system (ANFIS), and
48 empirical equations to estimate daily solar radiation in Kerman, Iran. The
authors reported that the scenarios based on meteorological parameters and
sunlight in ANFIS and ANN showed better accuracy than empirical models.

For the Brazilian scenario, ANN-based applications relating to the solar irra-
diation context are still limited. However, some studies have presented ANN
approaches for solar irradiation prediction focusing on the regions of Fortaleza -
Ceará [17] and Seropédica - Rio de Janeiro [18], achieving an accuracy of 89.7%.
Salazar et al. [9] have developed a time series-based method to identify the solar
irradiation in the equatorial near-zone and obtained a median absolute devia-
tion (MAD) equivalent to 1.4% in the validation at a weather station installed
in Petrolina - Pernambuco - Brazil. Carneiro et al. [19] used an ensemble learn-
ing method based on crest regression achieving mean absolute percentage error
(MAPE) values of 14.191% also in Petrolina - Pernambuco - Brazil. Silva et al.
[20] applied SVM, Angstrom-Prescott (A-P), and ANNs to estimate solar irra-
diation: the first achieved the best result while comparing to the A-P and ANN
models, achieving a R2 of 0.806.

Based on some studies found in the literature [17,25,27], ANNs provide sig-
nificant capacity to predict solar irradiation. ANNs can estimate solar irradia-
tion based on meteorological quantities and predict future irradiation based on
historical events. Thus, this paper presents both models for obtaining solar irra-
diation, with the steps depicted in Fig. 2 and detailed in the Subsects. 2.1, 2.2
and discussed in Sect. 3.
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Solar irradiation for the time t+1 (next minutes, hours or days)
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I) Model 1 - DNN-based regressor for the solar irradiation estimation

II) Model 2 - Time prediction of solar irradiation using LSTM
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Fig. 2. The proposed ANN models.

2.1 Model 1 - DNN-Based Regressor for the Solar Irradiation
Estimation

We assume this model as linear regression, in which a numerical value (target
value or dependent variable) is obtained as a function of input values (attributes
or independent variables), as presented in Eq. (1). Target values are continuous,
meaning they can take any numerical value within the real number domain. In
the literature, linear regression is used in various applications, such as stock
market price forecasting, house price forecasting, sales forecasting, and others
[28]. With regards to linear regression applications, using DNNs as regressors is
helpful since they can learn the complex relationship between attributes and the
target, mainly due to the presence of the activation function in each layer [6].

Y = β0 +
N∑

n=1

βnXn + ε (1)

where:
Y is the numerical value of the dependent variable. It is this value that is wanted
to be predicted;
β0 is the intercept on the Y -axis when all input attributes are zero;
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βn are the fitness coefficients for the attribute n. In ANN’s case, these values are
calculated to indicate the effects that each attribute causes for the most accurate
prediction of Y ;
Xn is the n-th independent variable;
N is the number of independent variables in the regression model;
ε is the model error, which shows the difference between the real and the pre-
dicted value;

One must take into account the following considerations to build the linear
regression model using DNN:

– Build a sequential ANN architecture;
– Define the quantity and neurons of the dense layers;
– Assign a performance metric (loss function) based on numerical error calcu-

lation, such as the mean absolute error (MAE), which is calculated according
to Eq. (2);

– Defining the output layer with a single neuron, having as activation function
the linear function [f(x) = x];

MAE =
1
n

n∑

i=1

|yi − ŷi| (2)

in which:
i is the sample;
n is the total number of samples;
yi is the true or real value of the dependent variable;
ŷi is the value of the dependent variable predicted by the regression model.

The second model is a forecasting process for future events, and it is based
on another ANN architecture, as presented in the following subsection.

2.2 Model 2 - Time Prediction of Solar Irradiation Using LSTM

Vanilla ANN cannot perform time series prediction, depending on a previous
data history to predict the next instant [29]. On the other hand, RNNs are
well-known for achieving solid results in many applications with time series and
sequential data [30]. The most well-known RNN structures, such as the LSTM
and the gated recurrent unit (GRU), can capture the long-term temporal depen-
dencies in variable-length samples [31]. Another distinguishing characteristic of
RNNs is that they share parameters across each network layer. In addition, while
feed-forward networks have different weights across each node, RNNs share the
same weight parameter within each network layer. Such weights are still adjusted
through the backpropagation and gradient descent approaches to facilitate rein-
forcement learning.

Since the previous outputs obtained during training leave an information
base, the RNN model supports predicting future outputs as a function of the
input attributes (Xt). Note that this occurs with the help of the previous outputs
(ht), as presented in Fig. 3.
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Fig. 3. Introducing the iterative process of an RNN.

LSTM is an RNN technique that can learn long-term dependencies, especially
in sequential or seasonal prediction problems. LSTM has feedback connections
that can process the entire data sequence and single data points. Each iteration
of the LSTM network presents the data vector as input and two output data for
each iteration:

– Xt is the input vector;
– Ct is the memory state cell, which maintains its state over time, considered

as an output with memory;
– ht is the time series output value.

Information can be added to or removed from the state Ct, regulated by
input, forgetting, and output gates, presented after the layer applications shown
in Fig. 4. These gates allow information to flow in and out of the cell, thus
allowing memory propagation to the next iteration. The sigmoid layers (Fig. 4)
present output numbers between zero and one, in which the former means that
“nothing should be carried forward”, and the latter means that “everything should
be carried forward”.

For constructing the solar irradiation prediction model, the number of steps
represents the input layer (which corresponds to hourly data) and the attributes.
We have the solar irradiation output in the output layer.

σ
σ

σ tanh

ht
ht-1

ct-1 ct

tanh

x +

x

x

xt

ht

Layer Elementary arithmetic

A

Fig. 4. Iterative process of an LSTM network.
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Considering the structures of the two models, Sect. 3 presents the construc-
tion of the ANNs to estimate and predict solar irradiation and perform the
models proposed in this work.

3 Methodology and Results

3.1 INMET Meteorological Station Data

The study comprised within this paper uses the meteorological database from
the Brazilian National Institute of Meteorology (INMET), which is available at
[32]. In this database, namely BDMEP, each data sample corresponds to the
collection of meteorological variables collected at every hour or every six hours,
being separated into individual files for each of the 606 meteorological stations
distributed throughout Brazil, as shown in Fig. 5. Each file is composed of a
header containing information about each meteorological station, as well as a
structured set of samples of the collected meteorological variables. The dataset
used in this study considers the interval between 01/01/2010 and 31/12/2022,
as presented in Table 1.

Fig. 5. Localization of the meteorological stations used in this work.
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Table 1. Composition of each file in the BDMEP dataset.

Name Unit/Format

Header
Region of the country
State
Code (WMO)
Latitude ◦

Longitude ◦

Altitude m
Foundation date dd/mm/yy
Data
Date YYYY-MM-DD
Time HHMM UTC
Hourly precipitation mm
Atmospheric pressure at station level mB
Maximum atmospheric pressure in the previous hour mB
Minimum atmospheric pressure in the previous hour mB
Global radiation kJ/m2

Air temperature ◦C
Dew point temperature ◦C
Maximum temperature in the previous hour ◦C
Minimum temperature in the previous hour ◦C
Maximum dew point temperature in the previous hour ◦C
Minimum dew point temperature in the previous hour ◦C
Maximum relative humidity in the previous hour %
Minimum relative humidity in the previous hour %
Relative humidity %
Wind direction ◦

Maximum wind gust m/s
Wind speed m/s

Data preprocessing and cleaning are considered relevant step, as it enhances
the quality of the information, assists in decision-making, and improves the
machine learning model [33]. As a first step in data preprocessing, only momen-
tary quantities that do not depend on the previous time were considered, result-
ing in 11 quantities. Furthermore, the data from all 606 meteorological stations
were merged, resulting in 39,656,352 samples.

Subsequently, data cleaning was performed [34], with the removal of sam-
ples with reading errors, missing data, duplicate data, and removal of outliers,
considering the empirical rule of 3σ [35], resulting in 36,433,601 samples, which
represents approximately 91.87% of the initial dataset.

After the data preprocessing and cleaning step, the data is used in the train-
ing stage for modeling and constructing the solar irradiation estimation tool, as
presented in Subsect. 3.3.
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Considering the data presented in Sect. 3.1, the method and the results of
the studies are presented in the following subsections. We consider two main
scenarios for the results: i) the estimation of solar irradiation based on indirect
meteorological quantities; and ii) the prediction of solar irradiation based on
geolocation and date.

3.2 Estimation of Solar Radiation Based on Other Meteorological
Variables Applying Model 1

In this first scenario, the focus is given to the solar radiation estimation applying
Model 1, presented in Subsect. 2.1, and the target data was initially normal-
ized using the Z-score technique [36]. After that, we conducted a k-fold cross-
validation (k = 5) analysis to evaluate the efficacy of deep learning-based models
on the BDMEP dataset. Cross-validation is a widely recognized technique for
assessing machine learning model performance [37]. In 5-fold cross-validation,
the dataset is divided into five equal subsets, where four subsets are employed
for model training, and the remaining subset is employed for model validation.
This procedure is repeated five times, using a different subset for validation.
The model’s generalization performance is accurately assessed by averaging the
performance metrics over the five folds. Cross-validation aids in ensuring that
the models do not overfit and can effectively generalize to new data.

The DNN architecture is presented in Fig. 6. As input data for the DNN,
six variables were considered: hour, precipitation, atmospheric pressure, tem-
perature, humidity, and wind speed. The output layer corresponds to the value
of solar radiation. In all intermediate layers, the ReLu activation function was
used [38], and the linear function f(x) = x was used in the output layer. The
optimizer of the model is the “Adamax”.

Solar 
Irradiation

Data acquisition

... ... ... ...

Hour

Precipitation

Atmospheric 
Pressure

Temperature

Humidity

Wind Speed

Input layer Hidden layer Output layer

6 24 78 32 20 1
Number of neurons

f(x)

Fig. 6. DNN architecture with the best parameters.
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In order to present the best results, a grid search was performed, which is a
technique that searches for the best parameters for the machine learning model.
For the DNN, a grid search was performed for the number of neurons (n) in the
i-th hidden layer and the number of layers (i), where n = 20, 24, 28, ..., 66, 72, 78
and i = 2, 3, 4, 5. At this stage, k-fold cross-validation was also considered, with
k = 10 [37].

With the DNN configuration presented in Fig. 6, the training process was
performed with a limit of 100 epochs. Additionally, the stabilization of MAE
was considered as the stopping criterion. Figure 7 presents the learning curve of
the DNN implemented in this study.

Fig. 7. DNN learning curve.

For the test data, the data for the year 2022 (i.e., until 10/30/2022) were
considered, which can be accessed at [32]. Therefore, through such data, the mean
absolute error equivalent to 9.34 kJ/m2 was obtained in the study. To verify the
system’s dynamics in estimating solar irradiation, the results are presented in
Fig. 8 for two real scenarios: 1) Xanxerê-SC-Brazil station, which is a member
of BDMEP; and 2) IBAURU9 station, located in Bauru-SP-Brazil, which was
developed by the authors [39] and used as a scenario of data not seen previously
by the DNN model.

The model could predict irradiation behavior, as demonstrated by comparing
the actual and estimated values presented in Fig. 8. On days with maximum solar
radiation, the model could follow the approximate trend (i.e., note the estimated
and actual curves in the lower graphs of Fig. 8). Furthermore, the model could
still follow the irradiation reduction in the location on cloudy or rainy days, even
though it presented a more significant error in the estimation.

3.3 Solar Irradiation Forecasting Based on Geolocation and Date
Applying the Model 2

At this stage, the data presented in Sect. 3.1 was considered for Model 2, pre-
sented in Subsect. 2.2, being then normalized using the Z-score technique, which
has the advantage of using a common normalization for variables with different
standard deviations [40]. The training data corresponded to data between 2010
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Fig. 8. Result of solar irradiation estimation for Bauru-SP-Brazil and Xanxerê-SC-
Brazil stations.

Fig. 9. LSTM learning curve.

and 2021, while the data from 2022 was used for testing. The target inputs are
the solar irradiation information, the geolocation, and the date. The output of
the model is the predicted irradiation at the next time step t. Moreover, the
learning curve is shown in Fig. 9, presenting a final loss of 0.576.
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Different time granularity was considered in this result. For the prediction for
the next 5min, the model presents an MAE equivalent to 18.91 kJ/m2; for the
next 30min, 33.15 kJ/m2; for the next hour 43.64 kJ/m2; and for the prediction
for 24 h, the MAE corresponds to 91.52 kJ/m2. Figure 10 shows the response of
the model for the next hour of irradiation prediction, and the system can track
the real solar irradiation. A valley is visible around 17:00 due to the appearance
of a cloud, which caused a significant decrease in solar irradiation. The model
did not follow the real value, but it did follow the trend when the sun returned.

Fig. 10. One-day prediction results from the LSTM.

Figure 11 shows the 24-hour forecast made by the model for a sequence of
seven days. There is also a slight delay between the predicted and the actual
signal, but the forecast had adequate generation tracking for days of full solar
irradiation. On the sixth day, there was a cloudy and rainy day, and the model
had a higher error but still captured the decrease in irradiation for the day. On
cloudy days, solar irradiation is diffuse, elusive and typically between 10 and
25 percent of its normal value on sunny days [41]. The proposed model tries to
adjust values according to historical data without high accuracy, but presents a
decrease in the solar irradiation estimation.

Fig. 11. 7-day prediction results from the LSTM.
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3.4 Method Comparison and Discussion

This section considers techniques commonly found in the literature aiming at
comparing the two proposed scenarios. The data used for testing and validating
the methodologies was obtained from INMET, being identical to that presented
in Sect. 3.1. A Macbook Pro, model A1990, with an Intel i9 9980H processor,
16GB of RAM and a Radeon Pro 560× 4GB video card, was used to compute
the comparison analyses of the results.

Model 1 - Comparison. According to Gao, Miyata, and Akashi [14], deep
learning-based models have demonstrated outstanding ability for predicting solar
irradiation, with LSTM demonstrating superior assertiveness performance com-
pared to other techniques. However, it is necessary to verify the performance
of the two scenarios proposed in this paper using methodologies from the lit-
erature. In addition to the DNN proposed in this project, traditional machine-
learning regression techniques used in the literature for estimating solar irradi-
ation from meteorological quantities were contrasted. Support Vector Machine
(SVM) [42,43], Random Forest (RF) [42,44], and MLP [6,42,45,46] are the tech-
niques used in the comparison with the results displayed in Table 2. The results
indicate that the DNN approach had a lower MAE for the prediction scenarios.
The MLP, which is another neural network architecture, presented the second-
best performance. Moreover, the RF approach had the worst results, confirming
the findings of Gao, Miyata, and Akashi [14]. On the other hand, while SVM has
the best efficacy in training and testing regarding computational time, its error
rate is nearly twice that from the DNN.

Table 2. Model 1 - Regression model comparison to estimate the solar irradiation.

Method MAE train(s) test(s)

DNN - Model 1 14.86 74,736 102.3
MLP 18.42 20,375 75.4
RF 104.89 17,759 21.2
SVM 28.25 13,302 245.7

Note in Table 2 that Model 1 provided results comparable to the current state
of the art, presenting the lowest MAE of all evaluated methods. Thus, based
on such results, the DNN is recommended. One of the DNN’s disadvantages,
however, is that it has one of the highest computational costs. As demonstrated
in Sect. 3.3, another disadvantage is the behavior on cloudy and rainy days. A
potential solution to such an issue is to either use generative adversarial networks
(GAN) or consider balanced data for what concerns sunny, cloudy, and rainy
days, aiming at providing the model with generalized adjustments.
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Model 2-Comparison. The efficacy of four statistical and machine learning
tools for global solar irradiation forecasting was analyzed and compared during
this study. Gao, Miyata, and Akashi [14] demonstrate that ARMA [47,48], MLP
[49], and LSTM [14,50,51] are the most popular and appropriate models for
the prediction of future solar irradiation. The Kalman filter [52] was also used
to perform such a comparison. Table 3 displays the results taking into account
various future time granularities, such as 5min, 30min, 6 h, and 1 day. Note that
the Kalman filter produced the best results for the 5min and 1 day baselines,
while the LSTM produced the best results for 30min and 6 h instances. With
regards to neural network-based architectures, the LSTM and MLP demanded
the most time to train, while the Kalman filter presented the faster training
process. During the test, ARMA had the fastest time. Hence, the Kalman filter
is recommended for the smallest and largest granularities. On the other hand,
based on the data analyzed in this paper, the LSTM is recommended for the
intermediate granularities of 30min and 6 h. The presented comparative analyses
corroborate the findings of Yu, Cao, and Zhu [50], who concluded that the LSTM
is not recommended for a 24-hour granularity model.

Table 3. Model 2 - Time-series prediction comparison of solar irradiation.

MSE
Method 5 min 30 min 6 h 1 day train(s) test(s)

LSTM - Model 2 18.91 33.15 43.64 191.52 6,971.3 23.55
ARMA 22.37 36.54 61.11 102.54 533.5 12.50
Kalman’s filter 18.11 35.04 48.31 122.50 101.4 88.52
MLP 58.44 98.104 114.88 157.30 7,392.8 45.77

At last, note that Model 2 produced results that are similar or better than
achieved by the state-of-the-art, with regards to the mean squared error (MSE):
a ranking near the best one was obtained for 5min; it was the lowest one for
the 30-minutes and 6-hour predictions; although it was the worst performance
for the 1-day forecast. As an inherent disadvantage, Model 2 presents one of the
highest computational costs for training. Nonetheless, Model 2’s performance
could be improved by taking into account additional input attributes, such as
the weather data displayed in Model 1. Moreover, minimizing the number of
input samples may enhance training performance.

4 Conclusion

Quantifying solar radiation is essential for a range of applications, from solar
energy generation to building thermal management, agriculture, and irrigation.
However, measuring this magnitude poses technical and operational challenges,
making its real-time use difficult.
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This work presented the use of a database of 606 Brazilian weather stations
collected by INMET between 2010 and 2021 to develop two deep learning-based
models. The first model is a DNN-based method that estimates solar radiation
across Brazil based on hourly temperature, humidity, atmospheric pressure, wind
speed, and precipitation data. The second model is an LSTM-based method that
predicts future solar radiation for intervals of 5min, 30min, 1 h, and the entire
day.

Our results demonstrate that both models accurately estimate and predict
solar radiation. The first model has an MAE of 9.34 kJ/m2, while the second
model has an MAE of 1.89 kJ/m2, 3.31 kJ/m2, 4.36 kJ/m2, and 31.52 kJ/m2

for predicting the next 5min, 30min, 1 h, and 24 h, respectively.
Our findings demonstrate that DNN modeling can adequately identify solar

radiation using indirect meteorological variables, while the LSTM model can
adapt well to a prediction system, producing close-to-real results with geographic
coordinates, the previous radiation level, and the month of the year as inputs.
These results indicate the potential of deep learning-based methods for estimat-
ing and predicting solar radiation in Brazil, considering the successful perfor-
mance of the model with over 39 million hourly data points from 606 weather
stations nationwide.

Future work involves utilizing adversarial generative networks to improve
the prediction performance on rainy or cloudy days and exploring RNA appli-
cability in intelligent meter immersion to aid solar generation management and
prediction.
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Abstract. The energy management of electrical buildings takes an active role
in the energy market. Researchers tasked with the primary goal of reducing the
energy costs take advantage of machine learning algorithms to predict how much
energy should be bought and sold in the market ahead of time. Some researchers
take account green computing approaches to reduce the energy cost spent in fore-
casting roles and ensure the environmental sustainability of computing devices. In
this paper two forecasting algorithms known as k-nearest neighbors and artificial
neural networks train an annual historic with energy consumptions and sensors
devices data to predict several energy consumption values of a target week for non-
working periods of either five minutes or hour schedules. The green computing
area is highlighted in this paper by studying the influence that decisions intended
on decreasing the energy of the CPU processing unit on forecasting activities may
have in the forecasting accuracy. Such decisions include changing the training and
forecasting schedule of five minutes to hour periods and excluding the retraining
using updated data from the test set. The conclusions of this paper clarify that
scheduling forecasts for non-working hours with the support of k-nearest neigh-
bors algorithm contextualized for periods of five minutes results in lower errors
than artificial neural networks. However scheduling forecasts for periods of five
minutes instead of hour periods also results in higher energy and time dedicated
for cleaning, training, and forecasting tasks.

Keywords: environmental sustainability · forecasting algorithms · green
computing

1 Introduction

Energy consumption forecast is very important for adequate management of energy
resources, namely in the smart grids context. This raises the possibility of consumers to
have great benefits form the participation in Demand Response (DR) programs [1, 2].

Moreover, nowadays, several buildings equipped with photovoltaic and renewable
energy systems are certified with green building schemes [3]. This is because many
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governments provide incentives to promote green building practices in the construction
sector as means to improve the energy sustainability [4]. This explains the strong link
between the building information modelling and the green building certification sys-
tems in the energy area [5]. Several energy sources are widely used to supply demand in
microgrids, therefore ensuring the robust and stable control of microgrids especially in
green buildings [6]. The smart grids technology control is fundamental when environ-
mental issues are a threat studied by several investigations including the CO2 emissions
and the energy savings [7]. The rise of electric vehicles and integrated photovoltaics in
smart buildings is a promising opportunity for green computing applications to max-
imize the green energy produced by photovoltaic units, thus reducing climate change
issues [8]. Therefore, the adoption of energy trading strategies in distributed energy
systems of smart systems should reflect the consumer behavior and energy in sustain-
able environments [9]. This is why green data centers are powered by renewable energy
and have their technology infrastructure and computing devices readapted to use the
minimum number of servers [10]. Green electronics may promote the energy savings
based on the electronic factors, for example, an eco-friendly laptop takes into account
the price, battery, shell, central processing unit, monitor, storage device and keyboard
[11]. The government role on environmental supervision of smart cities is fundamen-
tal to promote the use of low-carbon environmental protection [12]. While minimizing
carbon emissions guarantees green building environments, an additional green comput-
ing factor considers the minimization of non-renewable energy to maintain sustainable
building environments [13]. However, data centers are threatened by the expensive costs
and intermittent availability of renewable energy, thus optimization algorithms are usu-
ally the solution to minimize the costs in data centers [14]. The blockchain integration
in smart grids energy applications requires high computation and communication com-
plexity, thus greener and computational-friendly auctions are recommended to carry out
the decentralized energy trading [15].

This paper continues the green computing research developed in a recent publication
to lower the energy costs while forecasting energy consumptions of an electrical build-
ing for different non-working periods [16]. Moreover, this paper reuses the proposed
configurations of artificial neural networks and k-nearest neighbors algorithms and the
selected sensors to be added to the annual historic of energy consumptions as concluded
previously by the authors of this paper [17]. The goal of this paper is to analyze how
decreasing the energy costs in cleaning, training and forecasting activities affects the
forecasting accuracy. Therefore, alternatives from five minutes to hour schedules and
from historic retraining to using the historic previously saved in disk storage are con-
sidered in this paper in different trial and error scenarios. Similar research has been
studied recently in [18] studying how it is possible to lower the forecasting energy costs
for working periods instead. The forecasting algorithms artificial neural networks and
k-nearest neighbors are selected in this paper regarding non-working periods to com-
pare the forecasting accuracy and energy and time dedicated for cleaning, training, and
forecasting tasks with recent research developed by the authors of this paper regarding
working periods in [18]. Following this introduction, Sect. 2 presents the methodology,
then Sect. 3 proceeds with the case study, afterwards Sect. 4 presents the results, and
finally Sect. 5 presents the main conclusions.
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2 Methodology

The methodology illustrates and explains all required steps to forecast different electric-
ity consumption values for a long sequence of short periods. The data transformations,
the training of an historic of electricity consumptions and sensors devices, the fore-
casting of different electricity consumption values and the performance evaluation of
forecasting errors and the total energy cost are among the methodology steps.

Fig. 1. Proposed methodology.

Themethodology illustrated in Fig. 1 evidences an historic dataset with consumption
and sensor values monitored in an electrical building contextualized in different short
periods. The sensors featured in the historic dataset correspond to CO2 and binary values
representing light activity or light absence in the electrical building respectively assigned
to the values one and zero. The data transformations intend on simplifying the historic
dataset to train and forecast electricity consumption values under non-working hours
where no duties are scheduled in the electrical building. These non-working hours cor-
respond to behaviors after 6 p.m. and before 11 a.m. duringMonday to Friday and all the
hours between 12 a.m. and 11 p.m. during the whole weekend. The data transformation
may also perform time adjustments to convert periods of five minutes to hour schedules.
Average calculations reassign the twelve values contextualized in fiveminutes periods of
each hour to a single value representing the energy consumption and sensors behavior of
a particular hour. The outliers’ correction is another data transformation technique that
checks possible energy consumption inconsistencies for non-working hours and corrects
these anomalies to logical values with non-working energy consumption behaviors. The
rules to detect and correct outliers follow the logic researched by the authors of this paper
in [R1]. Moreover, the data transformation rules to the historic dataset follow the same
logic for the real-time data. After the outliers detection and correction, the final version
of the prepared historic dataset is obtained and sent to be trained and forecasted with
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the CPU device. The historic of energy consumption and sensors data is trained with the
artificial neural networks and k-nearest neighbors algorithms. Afterwards, energy con-
sumption values are predicted for an entire week with the artificial neural networks and
k-nearest neighbors algorithms using the CPU device. The training and forecasting of
data are contextualized for non-working periods of either five minutes or hour schedules
relying on the context defined previously for data transformations. The artificial neural
networks and k-nearest neighbors’ configuration for training and forecasting tasks fol-
lows the same logic defined by recent research written by the authors of this paper in
[R1]. The performance evaluation analyzes the forecasting error for non-working hours
using the Symmetric Mean Absolute Percentage Error (SMAPE) metrics. The authors
of this paper reuse the calculation method used for recent research which explains also
why SMAPE is more effective than other metrics for this context [R1]. The performance
evaluation also calculates the total energy cost spent on training and forecasting tasks.

3 Case Study

The case study analyzes the forecasting effectiveness of energy consumptions in five
minutes and hour schedules with the CPU device. The train dataset involves a large
historic of energy consumption and sensor values from 22 May 2017 to 10 November
2019 while the test dataset focus on the forecast of energy consumption patterns from
11 to 17 November 2019. Energy consumption and sensors data from 2020 and 2021
was excluded from the train and test datasets due to the lower reliability in data as a
result from COVID-19 pandemic. The sensors selection involves CO2 values and binary
values indicating either light activity on the electrical building with the value one or no
light activity on the electrical building with the value zero instead. Moreover, the energy
consumption and sensors data used in the train and test datasets for the period from 22
May 2017 to 17 November 2019 involves only non-working hours where no duties are
schedules for the electrical building. Thus, only hours after 6 p.m. and before 11 a.m.
during Monday to Friday and all the hours from 12 a.m. to 11 p.m. during the weekend
are considered. The training and forecasting of energy consumption and sensor values
are scheduled for five minutes or hour contexts relying on the defined context. Thus, the
training dataset considers a total of 198144 observations for five minutes periods and a
total of 16512 observations for hour schedules. The test dataset features a total of 1536
observations for five minutes periods and a total of 128 observations for hour sched-
ules. Non-working hours for the training and test datasets present energy consumption
usual behaviors between 500 and 600 kWh. Similar training and forecasting datasets are
illustrated in recent research written by the authors of this paper and contextualized for
working hours in [18].

4 Results

The results analyze the influence of alternating between periods of five minutes and hour
schedules for non-working hours and the training strategy on the forecasting accuracy
and the time dedicated for cleaning, training and forecasting activities. Two forecasting
algorithms support the energy consumption forecasts from 11 to 17 November 2019
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including the artificial neural networks and the k-nearest neighbors’ algorithms with the
effort of the CPU processing unit. The forecast of energy consumptions of an electrical
building is scheduled for non-working hours with four different trial and error scenarios
labeled from A to D as identified in Table 1. The forecasting error is displayed in Table 1
as well using the SMAPE metrics. All these scenarios use a training set from 22 May
2017 to 10 November 2019 to forecast energy consumptions of a building on 11 to 17
November 2019 for non-working hours. Scenarios A and C feature training and fore-
casting periods of five minutes while scenarios B and D feature training and forecasting
periods scheduled for different hours. The training of energy consumptions and sensors
devices data patterns may be processed in two different ways, either retraining the algo-
rithm continuously in RAM for each target period or saving previously to disk storage
to be loaded in RAM later during the forecasting of energy consumptions from 11 to
17 November 2019. Moreover, the training and forecasting of energy consumptions are
run with the CPU device.

Table 1. Forecasting scenarios scheduled for non-working hours and SMAPE errors using the
CPU device.

Scenario Period Training SMAPE KNN (%) SMAPE ANN (%)

A 5 min Training update for each
target period

2.61 7.51

B 1 h Training update for each
target period

6.52 7.33

C 5 min Loaded from storage disk 2.19 6.91

D 1 h Loaded from storage disk 5.72 6.10

The four scenarios identified previously in Table 1 compare the forecasting errors
with the SMAPE metric to identify the forecasting deviations to the real energy con-
sumptions considering schedules of five minutes on scenarios A and C and schedules
of hour periods on scenarios B and D. The symmetric mean absolute percentage errors
presented on Table 1 for the four scenarios initially show that forecasting electrical
consumptions for all five minutes periods for non-working hours and with k-nearest
neighbors’ algorithm is more precise than forecasting for hour periods for non-working
hours and with k-nearest neighbors. This is evidenced by the SMAPE forecasting errors
provided by k-nearest neighbors algorithm for periods of five minutes in scenarios A
and C, respectively 2.61 and 2.12% and the same forecasting errors for hour schedules
in scenarios B and D, respectively 6.52 and 5.72%. On the other hand, the forecasting
algorithm artificial neural networks result in more precise forecasts for hour schedules
as evidenced by SMAPE forecasting errors in scenarios B and D, respectively 7.33 and
6.10%, while the same forecasting errors for five minutes periods in scenarios A and C
correspond respectively to 7.51 and 6.91%. Nevertheless, the k-nearest neighbors fore-
casting algorithm evidences lower forecasting errors than artificial neural networks in all
scenarios fromA toD. The retraining in RAM results in lower forecast effectiveness both
for five minutes periods and hour schedules. Retraining with five minutes periods result
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in SMAPE errors of 2.61 and 7.51% respectively for k-nearest neighbors algorithm and
artificial neural networks. The forecasts of energy consumptions for fiveminutes periods
loading the k-nearest neighbors and artificial neural networks training from disk storage
and no retraining result in SMAPE errors respectively of 2.19 and 6.91%. Retraining
with hour periods result in SMAPE errors of 6.52 and 7.33% respectively for k-nearest
neighbors algorithmand artificial neural networks. The forecasts of energy consumptions
for hour periods saving the k-nearest neighbors and artificial neural networks training to
disk storage and no retraining result in SMAPE errors respectively of 5.72 and 6.10%.
It is understandable that the use of k-nearest neighbors algorithm results in lower errors
than artificial neural networks recalling that the training and forecasts are developed for
non-working periods. Therefore, the historic and the target data present data with low
activity and low dispersion which does not work with high precision for artificial neural
networks. This is because artificial neural networks is an artificial intelligence algorithm
that can only work with high accuracy if big data is considered on the historic dataset.
Moreover, since there is a low dispersion of data k-nearest neighbors will eventually
handle the data better than artificial neural networks for non-working periods. The time
dedicated for data cleaning operations, training activities concerning the period from 22
May 2017 to 10 November 2019 and forecasting activities concerning the period from
11 to 17 November 2019 is studied for the scenarios A to D as evidenced in Table 2.
Moreover, the energy spent on cleaning, training and forecasting activities is studied as
well for each scenario in Table 2.

Table 2. Forecasting scenarios scheduled for non-working hours and training and clean time and
energy spent using the CPU device.

Scenario Period Training Train time
(KNN)

Train time
(ANN)

Train and
clean time

Energy (Wh)

A 5 min Training
update for
each target
period

2584.86 486084.75 906913.25 23.54

B 1 h Training
update for
each target
period

24.53 4347.01 5358.55 0.31

C 5 min Loaded
from disk
storage

1.89 142.11 431.91 0.42

D 1 h Loaded
from disk
storage

0.09 49.47 139.21 0.04

The time dedicated for k-nearest neighbors and artificial neural networks training
and forecasting and the sum of the two variants with the time dedicated for cleaning
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operations show that scheduling forecasts for periods of five minutes and retraining the
algorithms dedicates much more time as evidenced by scenarios A and B. The time
dedicated for train and cleaning operations is nearly 906913 s with retraining and five
minutes periods as evidenced in scenario A. A similar analysis evidences retraining and
hour schedules resulting in a cleaning and training time of nearly 5359 s as evidenced
in scenario B. No retraining result in cleaning and training times of nearly 432 and 139
s respectively using five minutes periods and hour schedules in scenarios C and D. The
time dedicated for the training and forecasting of energy consumptions is much higher
for artificial neural networks than k-nearest neighbors presenting a difference of 483500
s for scenario A, 4322 s for scenario B, 140 s for scenario C and 49 s for scenario D.
Thus, using retraining and five minutes periods increases the difference in the training
and forecasting of artificial neural networks and k-nearest neighbors.

The energy spent in each trial and error scenarios is much higher for periods of five
minutes than hour schedules due to the need to process much more data during cleaning,
training and forecasting activities. This is clear when identifying the energy spent by
five minutes scenarios including scenario A with a total of 23.54 Wh, and the energy
spent by scenario C with a total of 0.42 Wh. These values are much higher than hour
schedule scenarios including scenarios B and D with respectively 0.31 and 0.04 Wh.
The retraining of data evidenced in scenarios A and B influence also more energy spent
in cleaning, training and forecasting activities with totals of respectively 23.54 Wh and
0.31 Wh. These values are much higher than the energy spent on scenarios C and D
where there is no retraining with values of respectively 0.42 and 0.04 Wh.

5 Conclusion

This paper studies the forecasting accuracy for hours where the energy consumption
has non-working hours and the computational time and energy influence on cleaning,
training and forecasting activities. This influence is analyzed alternating trial and error
scenarios between periods of five minutes and for the different hours. Moreover, the
retraining in RAM for each test target and the loading of the training from the disk
storage with no retraining are two additional options studied as well to test the cost
on spending higher computational time and CPU energy while considering retraining.
The SMAPE forecasting errors and the forecasting accuracies for the different scenarios
show lower forecasting errors using k-nearest neighbors algorithm compared to artificial
neural networks. It is possible to guaranteemuch lower forecasting errors using k-nearest
neighbors if five minutes periods are considered. However, the use of periods of periods
of five minutes instead of hour schedules increases considerately the time dedicated in
cleaning, training and forecasting tasks and the CPU energy spent on these tasks as well.
Moreover, it is noted that considering retraining for non-working hours is less effective
as the forecasting errors are higher and the computational time and energy spent by the
CPU is also much higher than saving the training previously to storage disk. As for the
limitations of this paper, it is clear that there is a reducednumber of forecasting algorithms
to support the insights regarding the scenarios with higher forecasting accuracy and
lower energy and time spent in forecasting activities. Therefore, future research intends
on addingmore forecasting algorithms other than artificial neural networks and k-nearest
neighbors.
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Abstract. Within the spectrum of studies conducted by the São Paulo
Center for Energy Transition Studies (CPTEn), time series from the Pho-
tovoltaic Energy Plant of the UNICAMP Multidisciplinary Gymnasium
(GMU-PV) were analyzed. This plant is associated with the first imple-
mentation of a photovoltaic system in the context of the Sustainable
Campus Project (PCS) at UNICAMP - as a consequence, it originated
the most extensive and robust time series in the project.

The research, structured according to the Cross Industry Standard
Process for Data Mining (CRISP-DM) methodology, aimed to identify
the patterns and parameters associated with the energy production of
the aforementioned photovoltaic system. Based on Machine and Deep
Learning techniques, forecasting models were developed to maximize the
use of available resources and promote the sustainability of this energy
system at UNICAMP.

In evaluating the results, it was observed that the most effective model
was the Orthogonal Matching Pursuit (OMP) built from the Python low-
code library, PyCaret. This regression machine learning model led to a
coefficient of determination (R2) of 0.935 494 and a root mean square
error (RMSE) of 8.561 679.

Keywords: Solar Energy Forecasting · Machine Learning · Deep
Learning

1 Introduction

The United Nations Climate Change Conference of 2022 (COP27) [1] recently
examined the progression of global temperature and the impacts resulting from
CO2 usage. The agreements and protocols established the aim of controlling
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CO2 emission sources, promoting an extensive transition to less environmentally
damaging renewable energy sources.

In alignment with this global endeavor, the São Paulo Center for Energy
Transition Studies (CPTEn) [2] was founded to conduct multidisciplinary
research and development of technological solutions for the transition to renew-
able energies with minimal environmental impact in the Brazilian state of São
Paulo. Despite the fact that the Brazilian energy matrix is primarily renew-
able (hydroelectric power - 56.8% [3]), it still has a significant environmental
footprint.

The University of Campinas (UNICAMP), in whose campus CPTEn is based,
is a public university; hence, it has the obligation to seek an efficient use of
its financial resources and to protect the environment. Electricity costs at the
university, accounting for annual expenses exceeding 30 million reais (5.45% of
the current University budget [4]), have surpassed those related to water and
sewage since 2019. With an approximate monthly consumption of 5000 MW h
of electrical energy, UNICAMP has chosen to participate in the Free Energy
Market, allowing the contracting of a more cost-effective energy band.

According to [5], each MW h produced in the National Interconnected System
(SIN) resulted in the emission of 0.3406 tCO2 in 2022. Consequently, UNICAMP,
when contracting 6000 MW h of electric power from SIN, co-contributes to the
emission of 2043.60 tCO2 into the atmosphere. To mitigate this issue, the Sustain-
able Campus Project (PCS) [6] was introduced at UNICAMP, taking charge of the
installation of the Photovoltaic Energy Plant of the UNICAMP Multidisciplinary
Gymnasium (GMU-PV) (see Fig. 1), a solutionwith a power of 336 kWp.Presently,
PCS oversees six Plants with a combined installed power of 534 kWp.

Fig. 1. Photovoltaic Energy Plant of the UNICAMP Multidisciplinary Gymnasium
(GMU-PV).

The GMU-PV, located at latitude −22.815 070 and longitude −47.071 253
in Campinas, Southeastern Brazil, operates in a high-altitude tropical climate
and hosts five inverters of the INGECON SUN 100TL 55 kW model [7]. Each
of these is connected to ten strings containing 26 photovoltaic modules of the
Canadian Solar CS6K-270 model, with each module having a power output of
270Wp and an efficiency of 16.98% [8].
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In this context, it became essential to expedite and structure the energy
transition at UNICAMP. This justifies the rationale of this work: to analyze
photovoltaic electric energy production data series, thus providing an overview of
energy production to guide decisions affecting existing Photovoltaic Power Plants
and the installation of new ones. It analyzes GMU-PV production system and
evaluates created forecasting models in order to seek more realistic generation
values through use of Python programming language version 3.10.12 and Google
Colaboratory notebooks.

2 CRISP-DM Methodology

The Cross Industry Standard Process for Data Mining (CRISP-DM) [9] (Fig. 2)
is one of the most widely disseminated methodologies for Machine/Deep Learn-
ing and Data Science projects in general. In this paper, the following topics will
be addressed: Business Understanding, Data Understanding, Data Preparation,
Modelling and Evaluation.

Fig. 2. CRISP-DM Methodology Diagram.

2.1 Business Understanding

The developed models seek to address two inquiries: 1) feasibility of developing
a photovoltaic energy production forecast model with the available data from
GMU-PV; 2) whether the forecast results could help achieve the objectives of
CPTEn by optimizing energy contracting and aiding in the energy transition,
leading to a less impacted environment.

In this context, two types of data are expected to be crucial: photovoltaic
energy production and climate conditions. In accordance with [10,11], three time
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series forecasting techniques could be applied to address these questions: 1) a uni-
variate method using only the target for forecasting; 2) a multivariate method
incorporating features and the target for forecasting; 3) a regression method
using only features to determine the target. Machine/Deep Learning models
and traditional techniques like Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA) were considered. According to [12,13], the performance of the
models could be evaluated using metrics such as Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE), and Coefficient of Determination (R2). The model
with the best performance across most of these metrics was selected as the most
suitable.

2.2 Data Understanding

For the analysis, GMU-PV data from May 4, 2019 to April 15, 2023, as well
as climatic data from [14], were used. Given the disparity in sampling between
the two data sources, it was necessary to convert both into daily samples. This
was achieved by taking the average value of variables of the photovoltaic energy
production and climatic condition.

Upon analyzing the target variable Energy (kW h) and decomposing this
time series into trend, seasonal, and residual components, Fig. 3 was obtained.
In addition to this procedure, the target variable was also subjected to the Aug-
mented Dickey Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
tests [15] to assess its nature as a time series. For the ADF test, if the test
statistic result is below zero and the p-value is less than 0.05, the null hypothe-
sis is rejected, indicating that the target is stationary. Conversely, with the KPSS
test, if the test statistic result is above zero and the p-value is less than 0.05,
the null hypothesis is rejected, suggesting that the target is non-stationary. As

Fig. 3. Decomposition of the time series of the target variable Energy (kW h).
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shown in Table 1, there is a duality in results, implying that the target variable
is difference stationary.

Table 1. ADF and KPSS Test Results.

Test Test Statistic p-value Result

ADF −2.866 094 0.049 435 Stationary
KPSS 1.287 349 0.010 000 Not Stationary

Furthermore, using [16], it is possible to analyze the main statistics of the
target variable, as depicted in Fig. 4, and check that these data do not follow a
normal distribution, so suitability is required for application in some AI models.

For the other numeric variables in this dataset, which include: Phase I Volt-
age, Phase II Voltage, Phase III Voltage, Phase I Current, Phase II Current,
Phase III Current, Frequency, Active Power, Reactive Power, Cos Phi, Volt-
age (DC), Current (DC), Power (DC), Energy (kWh), Downward Irradiance,
Photosynthetically Active Radiation Total, UVA Irradiance, UVB Irradiance,
UV Index, Temperature, Dew/Frost Point, Relative Humidity, Precipitation
Corrected, Surface Pressure, Wind Speed, Wind Direction, Wet Bulb, Specific
Humidity, proceeded with a decomposition into trend, seasonal, and residual
components.

Subsequently, the ADF and KPSS tests and the Pearson Correlation Coef-
ficient Matrix were applied, as shown in Fig. 5. Given the strong correlation
observed among numerous variables, the implementation of Feature Engineering
[17] became essential for optimizing Machine Learning models, including those
like SARIMA.

Fig. 4. KDE Plot, Normal Q-Q Plot and Boxplot of the target variable Energy (kW
h).
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Fig. 5. Pearson Correlation Coefficient Matrix of variables dataset.

2.3 Data Preparation

The photovoltaic solar energy production dataset comes directly from the moni-
toring software of the inverter supplier while the climatic dataset that originates
from Prediction Of Worldwide Energy Resources (POWER) Project by NASA,
in this way, no type discrepancies, redundancies, missing, or excessive outliers
were identified. Nevertheless, the regulations outlined in Module 8 of Electric
Energy Distribution Procedures in the National Electric System (PRODIST)
[18] mandate a power grid frequency between 59.9 and 60.1Hz. Frequencies out-
side this values lead to the system disconnecting from the electrical grid. As all
outliers identified in the dataset resulted from disconnections due to frequency
alterations, these outliers were removed. The total percentage of outliers in the
dataset amounted to 0.3%.

After excluding this data, the only process performed was the resampling of
the 72 593 hourly observations to daily sampling. Through the Pandas library
[19], variables were resampled by their averages, and the two data sources were
joined to create a single dataset with 1443 observations, 27 numeric float-type
features, 1 numeric float-type target, and 1 datetime variable.

Finally, due to the difference in scale among the variables and to optimize
the convergence of the models, the Scikit-Learn library [20] was used to perform
standard scaling. Moreover, the dataset was divided into training (713 observa-
tions = 50%), validation (300 observations = 20%) and test (430 observations
= 30%) sets.
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2.4 Modeling

Considering the presence of variables with a high degree of correlation (Fig. 5),
feature engineering is important. However, for the selected Machine and Deep
Learning models and libraries, the original features was retained, as these meth-
ods internally handle feature engineering.

Additionally, to prevent overfitting, models underwent cross-validation
through the TimeSeriesSplit (ts_splits) feature of the Scikit-Learn library,
and, in the case of Deep Learning, Early Stopping and Dropout have also been
implemented.

Another strategy adopted was hyperparameter optimization using Random
Search and fine-tuning with Grid Search for Machine Learning models, and
HParams [21] for Deep Learning models. As mentioned, three distinct approaches
were used, as explained:

Univariate Time Series: In this methodology [10], only the target variable
Energy (kW h) is used and the datetime variable is the data index. The concept
involves predicting a value based on a number of previous points and a distance
from the point to be predicted. Using the Darts library [22], which specializes in
time series and combines classic models like SARIMA, Machine and Deep Learn-
ing models, and carries out a low-code process for the sequential computation
of all models available in the library.

As the ADF and KPSS tests classified the series as difference stationary,
differentiation for a better result in terms of prediction was considered in models
that, like SARIMA, can use differentiation.

After submitting the train, validation and testing datasets to the available
models, the Machine Learning model XGBoost Regressor yielded the best results.
Next, the hyperparameter optimization process was carried out by Random
Search and fine-tuning with Grid Search, the best model hyperparameters con-
templated: lag = 10, n_estimators = 100 and Input as ndarray (1,).

The evaluation metrics of this model for the test data are presented in Table 2,
and Fig. 6 presents the performance of the prediction compared to the actual
Energy (kW h) data.

Table 2. XGBoost Regressor model results from the Darts Library.

MAE MSE RMSE MAPE R2

29.335 376 1346.605 155 36.696 119 0.524 371 −0.185 010
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Fig. 6. Solar Energy Forecasting - GMU-PV (using models from Darts).

As the results with this approach were not fully convergent for the analyzed
hyperparameters in relation to the test data, this approach could not be consid-
ered as the final model.

Multivariate Time Series: In this methodology [10], all variables in the
dataset is involved. The concept also involves predicting by a number of pre-
vious points as previous. The best result was obtained with the NeuralProphet
library [23].

While the original Prophet uses an additive model to decompose time series
into trend, seasonality, and holiday components, NeuralProphet adds the ability
to use neural networks to model these components, providing the ability to
capture non-linear relationships in the data.

Thus, upon submitting the train, validation and testing datasets to the
model, the best model contemplated a lag of 1 point to predict the immediately
subsequent one. The final hyperparameters are: growth = ’off’, num_hidden_
layers = 4, d_hidden = 4, learning_rate = 2e-2, loss_func = ’MSE’, epochs
= 64, ts_splits = 6 and Input as ndarray (27,).

The evaluation metrics of this model for the test data are presented in Table 3,
Fig. 7 represents the training and validation loss, confirming that no overfitting
occurred. Finally, Fig. 8 presents the performance of the prediction compared to
the actual Energy (kW h) data.

Table 3. Results of the NeuralProphet Model.

MAE MSE RMSE MAPE R2

1.895 517 6.012 676 2.452 076 0.552 482 0.161 024

Although the results with this approach were convergent for the analyzed
hyperparameters in relation to the test data and no overfitting was detected,
as the metrics results and graphs performed low, this approach could not be
considered as the final model.
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Fig. 7. Training and Validation Loss (using NeuralProphet model).

Fig. 8. Solar Energy Forecasting - GMU-PV (using NeuralProphet model).

Regression: In this methodology [11], two modelling approaches are used:
1) Machine Learning models: all regression models available in the low-code
PyCaret library [24], the regression model of Conformal Prediction [25] from the
Mapie library [26], as well as the Prophet [27] model developed by Facebook; 2)
Deep Learning models: Convolutional Neural Network (CNN) [28], Long Short-
Term Memory (LSTM) [29] and Transformer [30].

PyCaret library brings together the Machine Learning regression models avail-
able from the Scikit-Learn library, in addition to automating the use of these
models serially. Moreover, for cases like this one, where strongly correlated
features exist, the library performs Feature Engineering and cross-validation
with splits parts of the series. Upon applying the train, validation and testing
datasets to the aforementioned models, the Orthogonal Matching Pursuit (OMP)
[31] linear regression technique proved to be the most effective. The following
hyperparameters were used: fit_intercept = True, n_nonzero_coefs = None,
normalize = ’deprecated’, precompute = ’auto’, tol = None, ts_splits =
6 and Input as ndarray (27,).
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Conformal Prediction [32] is implemented through a two-regressor framework:
one for the regression task itself, and another to evaluate the performance of the
first and assign a conformity score, thereby improving its result, regardless of the
algorithm employed in the initial regressor. In this paper, the Random Forest
Regressor was selected as the primary regressor, given its inherent ability to
perform Feature Engineering. The Mapie Regressor was applied as a secondary
measure, a feature of the Mapie library [26].

Upon applying the train, validation and test datasets to the model, and after
hyperparameter optimization, the following hyperparameters were obtained for
the Random Forest Regressor: n_estimators = 2, max_depth = 5, ts_splits
= 6 and Input as ndarray (27,).

Prophet is a additive Machine Learning model, developed by Facebook, where
time series are viewed as a combination of trend, seasonality, and holiday com-
ponents. The trend component captures the non-periodic evolution over the long
term, seasonal components capture periodic effects, and holiday components cap-
ture the effects of irregular events that occur on scheduled dates. It is a flexible
trend model that can accommodate both linear and logistic growth trends.

Upon applying the train, validation and test datasets to the model, and after
hyperparameter optimization, the following hyperparameters were obtained:
changepoint_prior_scale = 0.4, growth = ’linear’, n_changepoints= 25,
changepoint_range = 0.8, ts_splits = 6 and Input as ndarray (27,).

Convolutional Neural Networks (CNN) [33] for unidimensional cases (1D CNNs)
represent an adaptation of the traditional Convolutional Neural Networks
(CNNs), specifically configured to handle sequential or temporal data. Analo-
gous to standard CNNs, 1D CNNs use convolution operations to extract features
from a dataset, however, instead of operating on a 2D matrix of pixels like in an
image, they process a unidimensional sequence of data.

The Deep Learning architecture described here was developed in Tensorflow
Keras [34] via HParams [21] obtain the optimizing architecture in Fig. 9, with
the training and validation loss shown in Fig. 10. The selected hyperparameters
were: loss = MSE, optimizer = RMSprop, learning_rate = 1e-4, epsilon
=1e-16, metrics = RMSE, ts_splits = 6 and Input as tensor (27,1).

Fig. 9. CNN architecture used.

Long Short-Term Memory (LSTM) [35] are a specific variant of Recurrent Neu-
ral Networks (RNNs) designed to circumvent the problem known as “gradient
vanishing”, making them effective in learning long data sequences. Due to their
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ability to retain information from previous data points, LSTMs are particularly
suitable for time series regression tasks, a crucial attribute for predicting future
values in such a series.

The Deep Learning architecture in question was implemented in Tensorflow
Keras. Upon submitting the train, validation and test datasets to the model and
optimizing hyperparameters, the final architecture was arrived at, as shown in
Fig. 11, with the training and validation loss displayed in Fig. 12. The selected
hyperparameters were: loss = MSE, optimizer = RMSprop, learning_rate =
1e-5, epsilon = 1e-12, metrics = RMSE, ts_splits = 6 and Input as tensor
(27, 1).

Fig. 10. Training and Validation Loss (using CNN model).

Fig. 11. LSTM architecture used.

Fig. 12. Training and Validation Loss (using the LSTM model).
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Transformers [36] are a neural network architecture originally designed for
Natural Language Processing (NLP) tasks, such as automatic translation, in
which they have achieved remarkable success. However, their application has
also extended to time series regression tasks, where they exhibit significant per-
formance. One of the distinct features of Transformers is their ability to model
complex dependencies over time, stemming from their capability to weigh the
importance of different data points within the input sequence.

The aforementioned Deep Learning architecture was implemented in Tensor-
flow Keras. Following the submission of the train, validation and test datasets
to the model, and the hyperparameters optimization, the final architecture was
obtained, as illustrated in Fig. 13, with the corresponding training and valida-
tion loss displayed in Fig. 14. The adjusted hyperparameters were: loss = MSE,
optimizer = Adam, learning_rate = 1e-3, epsilon = 1e-12, metrics = RMSE,
amsgrad = True, head_size = 56, num_heads = 4, ff_dim = 4, ts_splits =
5 and Input as tensor (27, 1).

Fig. 13. Transformer Architecture used.

Fig. 14. Training and Validation Loss (using the Transformer model).

Hence, the results obtained from the use of regression models are summarized
in Table 4, and additionally, Fig. 15 presents the forecasting performance of the
models compared with the actual Energy (kW h) data.

From this, it can be observed that all the presented models converged and
achieved good results on the established metrics, despite the LSTM model
exhibiting an underfitting case, as illustrated in Fig. 12. However, out of the
three approaches considered for this paper, this was the most successful one,
with the Orthogonal Matching Pursuit (OMP) Machine Learning model from



104 G. R. do Nascimento et al.

Table 4. Regression Models Results Table.

Model MAE MSE RMSE MAPE R2

PyCaret 6.317 669 73.302 349 8.561 679 0.127 132 0.935 494
Conformal 6.746 395 83.538 955 9.139 965 0.120 461 0.926 486
LSTM 8.755 827 109.929 299 10.484 717 0.142 408 0.903 262
Prophet 9.424 195 126.971 854 11.268 179 0.155 440 0.888 265
Transformer 8.496 331 133.023 516 11.533 582 0.110 105 0.882 940
CNN 9.713 513 133.339 422 11.547 269 0.141 591 0.882 662

Fig. 15. Solar Energy Forecasting - GMU-PV (using Regression Models).

the PyCaret Library demonstrating the best performance and, consequently,
being selected as the final model to be implemented in production.

2.5 Evaluation

Out of the three proposed strategies, there was no convergence in the univariate
time series analysis. On the other hand, convergence was observed in the mul-
tivariate analysis, but with lower performance compared to the regressive app-
roach. Using three distinct Machine Learning regression models [24,25,27] and
three others through Deep Learning [28–30], R2 values ranged between [0.882
662; 0.935 494], demonstrating significant efficacy and potential for research
questions analysis.

The most effective model, Orthogonal Matching Pursuit (OMP), is com-
monly used for retrieving sparse signals from noisy measurements and involves
approximating the fit of a linear model with constraints imposed on the number
of non-zero coefficients. As a forward feature selection method, it approximates
the ideal solution vector with a fixed number of non-zero elements.

argmin
w

||y − Xw||22 subject to ||w||0 ≤ nnonzero_coefs (1)
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Alternatively, the orthogonal matching pursuit can aim for a specific error
rather than a specific number of non-zero coefficients. This approach can be
expressed as:

argmin
w

||w||0 subject to ||y − Xw||22 ≤ tol (2)

In the context of this paper, OMP predominantly behaves as a greedy algo-
rithm. This means the algorithm consistently selects the best available orthogo-
nal vector without necessarily considering future consequences. As a result, the
best global solution might not always be found, but rather an optimal local one.
While this approach might result in a suboptimal solution, an advantage lies in
the algorithm is typical efficiency and simplicity in implementation.

When comparing it to other analyzed alternatives, OMP shows better perfor-
mance, since greedy algorithms in seasonal time series, with minimal structural
variation and reduced data volume, are not very compromised, the local optimal
solution leading to more interesting metrics than in the other models evaluated.

Finally, for this model and datasets, the features of greatest importance were
DC Voltage (0.35) and Wind Speed at 10m height (0.08).

3 Conclusions

Regarding the research inquiries, with the available data from the GMU-PV, it
was possible to implement a model with an R2 of 0.935 494 and an RMSE of 8.561
679, for a variable with an average of 123.08 kW h. This result is promising for
future forecasts and enables a contract in the Free Energy Market with seasonal
clauses, taking into account the cyclical variation presented by Fig. 3.

Given the need to resample the data to a daily average, since data acquisi-
tion from the original sources varied, the number of data points in the dataset
dropped to 1443. Of these, 50% were used for training, 20% for validation,
and 30% for testing. Therefore, even with measures taken to prevent overfit-
ting/underfitting, such as Cross Validation, Dropout and Early Stopping, models
tested with more complex architectures experienced a slight decrease in perfor-
mance due to the reduced data volume. However, in the broader context, this
difference did not exceed 5% in the R2 metric, for example.

In the process of resampling for daily averages by variable, the results
obtained can be deemed conservative. However, there is the possibility of cre-
ating a range of values considering the lower limit as the daily resample by
the minimum value (pessimistic projection) and the upper limit by the daily
resample by the maximum value (optimistic projection).

Finally, it is feasible to extend this methodology to other Photovoltaic Plants
of the University, thereby enhancing the robustness and reliability of the results.
These findings could be instrumental in planning new installations.

If the robustness of the model is validated with data from the other Photo-
voltaic Plants of the University, it will move to production and undergo testing
during the Deployment phase of the CRISP-DM Methodology. Only after receiv-
ing positive feedback from the University community will it solidify its role as a
management tool. This would contribute to reducing the use of high environmen-
tal impact energy, aligning with the primary objectives of CPTEn and PCS.
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Abstract. Gossen’s First Law, also known as the law of diminishing
marginal utility, describes the decreasing marginal utility gained from an
increased consumption of a good or service and this is observed in vari-
ous areas. This paper proposes the hypothesis that Gossen’s First Law
also holds in the modeling for Demand Side Management. It motivates
the exploration of how the utility of a model depends on its complex-
ity in this context, in order to provide a guideline that helps developing
more simple and efficient models. We then propose a methodology for
this investigation and apply it to a ground source heat pump in a stand-
alone house. For this purpose, four mathematical models are developed
with different degrees of simplification based on a detailed mathemati-
cal model. The model complexity is then quantified, and the simulation
results are compared with actual measurement data to explore the utility
of each model. The first results are in line with our hypothesis. Finally,
we outline the next steps to provide more results and thoroughly verify
the hypothesis.

Keywords: Demand Side Management (DSM) · Distributed Energy
Resources (DER) · Ground Source Heat Pump (GSHP) · Modeling

1 Introduction

The total energy consumption of private households in Germany has only slightly
increased by 3.7% from 2010 to 2018. In the meantime, the use of renewable
energy has significantly increased by 26.3% and accounted for more than 14%
of all kinds of energy sources [4]. On the way to a sustainable energy supply,
higher flexibility in the overall system is of increasing importance due to rising
shares of renewable energies. In addition to adapting production to renewable
energies, there is also the possibility of adapting the electricity load to electricity
production, also known as Demand Side Management (DSM) [8]. Load-changing
ability is usually provided by so called Distributed Energy Resources (DERs),
such as battery energy storages. Due to the energy transition, buildings will
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contain more and more electricity-related components such as heat pumps, solar
systems, charging stations for e-mobility and fuel cell systems as home power
plants. Thus, there are plenty of different models for DSM applications with
varying degree of complexity. However, when modeling such components and
their synergies for DSM, it is often unclear how detailed they need to be for the
purpose of DSM since there is always an interaction effect between the utility
and complexity of a model.

As seen in many modeling-based works, energy system models are generally
categorized into three types: white box, gray box and black box [15]. White box
models are based on detailed physical entities of a system and the laws of physics
such as the thermodynamics, e.g., [1,5]. On the contrary, black box models do not
focus on the physical properties of a system and instead are data-driven by lots
of empirical datasets, e.g., [1,22]. Gray box models, which fall between the other
two, consider the physical structure of a system by using simplified models such
as low-order ordinary differential equations, e.g., [9,22]. Each kind of the modeling
categories has its own characteristics and results in different complexities and util-
ities. To build white box models, a lot of expertise on specific physical systems is
required. For a whole system of different mechanical, thermal or electrical compo-
nents, the effort for modeling is enormous and the expansibility is limited, whereas
the details, especially the interactions between them, are well contained. In con-
trast, the details of an energy system in black boxmodeling are neglected.However,
massive highly resolved datasets such as load profiles are necessary for a good mod-
eling. Although some advanced algorithms can make the results of black box mod-
els accurate enough for specific use cases, the lack of details can raise concerns on its
reliability and interpretability. When we only focus on the non-transient interac-
tion between major elements, the physical structure of a system may be simplified
in order to build balanced gray box models.

A complex model can usually provide more meaningful results than a simple
model, but the effort required to modeling it increases accordingly. The question
of how to strike a reasonable balance when modeling for DSM considering inter-
action between complexity and utility, to the best of our knowledge, is still not
answered in the literature. Mainly inspired by Gossen’s First Law in economics
and by research results in other modeling applications, e.g., in Building Infor-
mation Modeling (BIM) [16], we want to propose the hypothesis that in general
the complexity-utility relationship in the field of DSM modeling could be repre-
sented by a diminishing marginal utility curve, too. In this context, a method is
needed for quantifying the complexity and the utility, in order to illustrate the
complexity-utility relationship.

In order to verify the proposed hypothesis, four mathematical models of a
Ground Source Heat Pump (GSHP) with different degrees of simplification are
derived. All four models are used to calculate the electrical load profile with
different number of measurement inputs and then compared with ground truth
i.e. the electrical power consumption by high precision sensors in the circuit. By
analyzing the Mean Absolute Percentage Error (MAPE Mean) and the Maxi-
mum Absolute Percentage Error (MAPE Max), the utility of different models is
quantified for the purpose of plotting the diminishing marginal utility curve.
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The remainder of the paper is divided into four parts. Several related works
are concluded in the following Sect. 2. In Sect. 3, a brief description of the infras-
tructure used for measurement is given. Then the method and ideas for quanti-
fying complexity and utility of DSM modeling as well as visualizing the relation-
ship between them are defined and explained in Sect. 4. Section 5 presents the
four developed mathematical models, along with the detailed reference model.
Section 6 presents, analyses and discusses the simulation results and measure-
ment data. Finally, the main conclusions and plans for future work are high-
lighted in Sect. 7.

2 Related Work

In recent years, there has been an increasing amount of literature on modeling of
demand response or DSM technologies. For instance, in [26] a modeling frame-
work for 4 types of individual devices which are expected to participate in future
demand-response markets are introduced. The purpose is to pursue their optimal
price-taking control strategy under a given stochastic situation. The models are
differentiated into 4 types which are optimal and generic. Therefore, modeling
of specific systems and synergies between different systems are not investigated.
In 2013, a more generic taxonomy for modeling flexibility in Smart Grids are
defined in [21], which divided all systems into three categories and used them to
optimize and solve flexibility problems in Smart Grids. This type of modeling
approach simplifies the modeling process and improves optimization efficiency.
However, the challenges of considering different influencing factors in real energy
systems such as temperature are not solved since the models are too abstract.
For this reason, the models are hard to be directly applied to real energy systems
on the demand side.

In contrast, [12,20,25] used very detailed theoretical models and complex
numerical techniques such as Lax-Wendroff finite difference approximations for
a specified system i.e. heat pump and its subsystems. These models are capa-
ble of delivering accurate results, however, yield very high complexity and low
performance, which limits the application in DSM.

In summary, we conclude that models of varying degree of complexity have
different utilities, as mentioned in Sect. 1. However, there is no, to the best
knowledge of the authors, straightforward investigation of the effect of model
complexity on model utility in DSM. Hence, it’s necessary to investigate the
relationship between the utility and complexity of a model in order to provide
a better reference for different DSM applications.

3 Measurement System Infrastructure

Analyzing the utility of different models relies on accurate real-world measure-
ment data, which are provided by our measurement system infrastructure. This
section first briefly introduces the floor plan and setup of our LLEC (Living Lab
Energy Campus) buildings [10] to give an overview of their spatial layout and
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their heating matrix setup. Subsequently, the technical and software infrastruc-
ture that makes time series data from LLEC available is described.

Fig. 1. Schematic floor plan of the LLEC house

3.1 Overview and Setup of Living Lab Energy Campus

Within the facilities of the Energy Lab 2.0 [13], three free-standing single-family
houses have been purpose-built and equipped with a large variety of automation
hardwares to allow for the use of advanced modern energy solutions [10]. All
houses share the same two-story floor plan with several normal rooms, kitchen
and restroom, as shown in Fig. 1. But they differ in the choice of heating source.
Each room is equipped with a range of different kinds of sensors and actuators,
e.g., room climate sensors, heat flow meters, motorized windows, and smart
thermostats, with only minor differences in equipment between the houses. The
hardware is addressed by a PLC (Programmable Logic Controller), which han-
dles control requests from external systems and automatically collects, filters and
stores measurement data in our database. The latter process will be explained
in more detail in the next subsection.

This paper focuses the LLEC house which uses a GSHP together with a
hot water tank for the house heating and domestic hot water supply. Figure 2
shows the schematic heat matrix of the overall heating system along with the
electrical circuit installed in the experimental LLEC house. The GSHP has its
own internal sensors to determine the hot water flow rate, the supply and return
temperature of water and brine as well as other datapoints.
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Fig. 2. Schematic heat matrix and electrical circuit of the experimental LLEC house

Furthermore, additional external sensors for water temperature and flow rate
are installed to build a redundant measurement system to ensure more useful
characteristics such as self-calibration, error compensation and the recovery of
lost information.

3.2 Technical Infrastructure for Measurement Acquisition
and Storage

The measurement system architecture is shown in Fig. 3 and consists of separate
tools for collecting, processing, and storing timeseries data, with the relevant
systems being shown in green. The data source in our experiments is the PLC,
which acquires data in regular intervals via different bus systems or analogue
inputs. In the new protocol version, the data is then formatted as JSON and sent
to a MQTT (Message Queuing Telemetry Transport) Broker with a datapoint-
specific topic. The data is subsequently received by a data logger service sub-
scribed to the MQTT topic, parsed, and pushed to our InfluxDB database via its
REST (Representational State Transfer) interface. This new architecture allows
to easily select the required inputs for different models via their respective top-
ics and to choose the datasets for the validation and analysis of the simulation
results.
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Fig. 3. Technical infrastructure of the measurement

4 Method for Quantification and Visualization

As with Gossen’s First Law, the marginal utility itself is an inherently abstract
concept and needs to be quantified first, such as income [14], in order to illustrate
its relationship with consumption or other properties. Similarly, the method
for quantifying the complexity and utility of DSM modeling is also crucial to
visualize the interaction between them. This section discusses separately what
kinds of quantitative options for complexity and utility are available and then
explains those that have been chosen in the present work.

4.1 Quantification of Complexity

In computer sciences complexity is measured in various ways, such as required
time, number of operations, or required memory. They do depend on the spe-
cific algorithms, their implementation, and the hardware they are running on.
For modeling we need other measures. Different from computational complex-
ity theory or information theory, this work focuses on the modeling of physical
structure or dynamical processes of energy components in DSM applications.
Thus, an appropriate method for quantification appliable for all possible system
components is required.

In [2,3,11] different time scales are used in energy systems of different com-
plexity. In the process of modeling, if transient processes within a system are
non-decisive, we could neglect the details and use larger time scale to simplify
the whole process. However, this option cannot differentiate the complexity of
the same model because different time scales can also be chosen during the sim-
ulation for the same model.

Besides choosing different time scales, another option to quantify complexity
would be by the power range that can cover the range from milliwatt (mW)
to gigawatt (GW). Different power ranges would have an impact on dynamic
responses of the model, leading to more complex model and corresponding con-
trols [6]. However, the limitations of this option are also significant because the
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power range is generally determined for a given energy system. Therefore, the
power range of a model cannot always be artificially changed to quantify its
complexity.

A third way of quantifying complexity could be based on the number of
required parameters in models. On a structural basis, any model is a combination
of different input and output parameters. Furthermore, for the same model, the
number of parameters could be adjusted according to the study objectives or
experimental conditions, so that models of different complexity can be built.

Among the three methods mentioned above, the third method has the best
applicability and feasibility. Based on that, the included parameters of a model,
i.e. the number of applied parameters, has been chosen to quantify the complex-
ity in our work.

4.2 Quantification of Utility

The main goal of DSM applications is to improve the flexibility of a power sys-
tem [8]. In this context, the methods for the quantification of utility are as same
as those for quantifying flexibility in DSM applications. In [19] four typical ways
for quantifying flexibility in DSM, namely load-shifting, peak shaving, reduction
of energy use and valley filling, are explained and summarized. In [7] two more
specific approaches i.e. daily primary energy use and daily energy costs are used
to show the improved and quantified flexibility.

In addition, it is worth noting that the accuracy of a model must first be
verified through offline simulations before the model is used to analyze flexibility
in DSM applications. According to ISO 5725-1, the general term “accuracy”
describes the closeness of a measurement to the true value [18]. Based on this
definition, we can quantitatively describe the accuracy of a model with the help
of some useful metrics in descriptive statistics, such as max error, Root-Mean-
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).

This work focuses on the accuracy of different models in an offline simulation
and uses quantified accuracy to represent utility of models. In order to reduce
the impact of absolute values on the accuracy analysis, MAPE Mean and MAPE
Max are used for the analysis in this work. It’s worth noting that the Mean and
Max after MAPE are meant to distinguish between the two MAPE abbreviations
as described in Sect. 1. More details are given in Sect. 6.

5 Ground Source Heat Pump and Heat Pump Storage
Modeling

In this section we introduce the employed models and discuss different options
for modeling a GSHP and heat pump storage with varying degree of detail that
we used for the evaluation of utility and complexity. The operating principle
of a GSHP for house space heating and hot water supply is based on a reverse
Carnot thermodynamic cycle [24], which means the thermal energy at the output
consists of two parts i.e. environmental energy and driving energy. Depending
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on the source of different energy, models can vary accordingly. This work focuses
on a Ground-Coupled Heat Pump (GCHP), a subset of GSHP, with vertical U-
tubes as Ground Heat Exchanger (GHE). In this case, heat transfer takes place
in three subsystems: GHE in borehole, heat pump and heat pump storage. The
following subsections develop and explain mathematical models with different
complexity for each subsystem.

5.1 Thermal Model of Borehole Ground Heat Exchanger

Building and validating a detailed theoretical model of a borehole GHE requires
too many geometric and thermal properties [23,25] which is beyond the scope
of the present work. Alternatively, if we only focus on the inlet temperature
T in and outlet temperature T out of the borehole GHE, we can easily use the
specific heat capacity of brine cb and the mass flow of brine ṁb to calculate the
temperature change at different times as follows:

T out
t = T in

t−1 +
P abs
Q,t−1

cb · ṁb
(1)

where P abs
Q,t−1 is the absorbed thermal power at time t− 1, which is also the dif-

ference between thermal power Php
Q,t−1 and electrical power of the GSHP Php

el,t−1

at the same time and calculated in (2).

P abs
Q,t−1 = Php

Q,t−1 − Php
el,t−1 (2)

5.2 Thermal Model of Heat Pump

In contrast to the GHE, the GSHP is modeled with varying degree of detail and
complexity. As mentioned before, heat pumps operate upon a reverse Carnot
cycle involving four steps. In a detailed, physical model we would describe each
step and the associated physical processes. However, in the context of DSM, mod-
els are much more abstract. Therefore, we focus on more abstract models based
on COP (Coefficient of Performance), which is typically used to characterize heat
pump’s overall performance. This value is influenced by many factors in actual
operation such as the supply/return temperature, outdoor temperature. In [20]
a linear data-fitting equation was used for calculating the COP of the GSHP
taking the outlet temperature of borehole GHE and indoor temperature into
consideration. Similarly, this work employs a second-order polynomial regres-
sion in consideration of outdoor air temperature T env

t to calculate the declared
COP and declared heat power Pdh in kW at medium partial load based on the
data sheet of the heat pump manufacturer [17] in (3) and (4). The R-squared
value of the regression is 0.9902 and 0.9972 respectively.

COP cal
t = −0.0007 · (T env

t−1 )2 + 0.0983 · (T env
t−1 ) + 3.8429 (3)

Pdh = 0.0009 · (T env
t−1 )2 − 0.1992 · (T env

t−1 ) + 3.4164 (4)
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For the subsequent combination of different models with varying degree of detail
in Sect. 6, we can further simplify (3) and (4) by neglecting the effect of outdoor
temperature and consider COP as well as Pdh as a constant as follows:

COP const. = 3.8429 (5)

P const.
dh = 3.4164 (6)

Alternatively, we can calculate the COP directly with the measured thermal and
electrical data over a period of time and obtain an average value as follows:

COP avg =
1
n

n∑

1

Php
Q,t

Php
el,t

(7)

The thermal power Php
Q,t is measured and calculated with (8), where cw, ρw and

V̇w are the specific heat capacity, density and volume rate of water respectively.
The difference between supply temperature and return temperature is repre-
sented by (T supply − T return).

Php
Q,t = cw · V̇w · ρw · (T supply

t−1 − T return
t−1 ) (8)

5.3 Thermal Model of Heat Pump Storage

As the central storage for thermal energy, the temperature and corresponding
energy changes have a significant impact on the overall system. This work uses
a multi-layer hot water tank with negligible heat loss as the central storage for
domestic hot water and space heating. Assuming the density and the specific
heat capacity of hot water as constant, the thermal energy change in the storage
between two successive time steps is calculated as follows:

ΔQs = cw · Vs · ρw · (Tmean
t − Tmean

t−1 ) (9)

where Vs is the volume of the hot water tank and (Tmean
t − Tmean

t−1 ) denotes the
average temperature change of hot water, which are determined in (10) with
the assumption that the temperature is evenly distributed in each layer at every
time step:

Tmean
t =

Tu
t + Tm

t + T l
t

3
(10)

In (10), we use three temperature sensors placed in the upper, middle and lower
layer of the hot water tank to measure the temperature of each layer, assuming
that each of these temperatures represents one-third of the total capacity.

6 Results and Discussions

In this section, the models are first classified based on the number of required
parameters by combining different mathematical models presented in Sect. 5.
Then, various models are used to perform offline calculations of the load profile
and analyze the results together with the measurement. Lastly, the section con-
cludes with a discussion of the hypothesis mentioned at the beginning of this
work.
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6.1 Model Classification and Geometric-Thermal Parameters

Table 1. Model classification with respect to parameters

Model Class Combination Number of required Parameters

Model A (1)(2)(7)(9)(10) 11

Model B (7)(8) 6

Model C (5)(8) 5

Model D (3)(6) 3

Table 2. Overview of the applied parameters to each model class

Parameter Model A Model B Model C Model D

T supply x x

T return x x

V̇w x x

COP avg x x

ṁb x

T out x

T in x

Tu x

Tm x

T l x

ρw x x x

cw x x x

cb x

Vs x

T env x

P const.
dh x

COP cal x

This subsection aims to classify the mathematical models based on the num-
ber of required parameters by combining different models presented in Sect. 5.
We introduce four different model classes (A, B, C, and D) with decreasing
complexity in terms of the number of parameters required. Model A utilizes
(1) and (2) to calculate the absorbed thermal power in the brine directly. The
result is then combined with (7) to calculate the electrical power of the heat
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pump. And furthermore, the energy change in the heat pump storage is also
taken into account by calculating (9) and (10). Model B combines (7) and (8)
to compute the consumed electrical power of the heat pump without considera-
tion of the energy change in the storage. Furthermore, Model C uses a constant
COP to estimate the Php

el,t. Finally, a constant declared heat power is obtained
in the simplest Model D. Table 1 presents this classification and the number of
required parameters. An overview of the individual parameters that apply to
the four model classes is given in Table 2. Furthermore, Table 3 lists the fixed
thermal and other parameters, where the specific heat capacity of brine is taken
from the technical diagram provided by the heat pump manufacturer and based
on a 20 vol% mixture of Tyfocor.

Table 3. Fixed thermal and volume parameters

Parameter Value

Hot water tank volume Vs 920 L

Specific heat capacity of water cw 4186 J/(kg·◦C)

Density of water ρw 0.988 kg/L

Specific heat capacity of brine cb 3940 J/(kg·◦C)

6.2 Results and Utility Comparison

Table 4. Comparison of MAPE Mean and MAPE Max

MAPE Mean MAPE Max

Model A 0.68% 0.82%

Model B 1.65% 5.55%

Model C 1.80% 4.54%

Model D 8.07% 17.32%

For the simulation and analysis, we have selected a typical winter day in February
and recorded the sensor data for 24 h continuously. The data are then collated
in a 60-min interval for the off-line load profile simulation. The initial value of
the electrical power of the GSHP is set to the first value of the measurement.
Figure 4 shows the simulation results of different models along with the differ-
ences between them and the measurement. The diagram shows that the results
of Model A are almost identical to the measured results, whereas Models B and
C show large deviations at some points in time, such as t = 10 and t = 15. This
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behavior could be caused by ignoring the energy change in the heat pump stor-
age. To describe the overall statistic features of simulation results, we calculate
the MAPE Mean and the MAPE Max, yielding the results presented in Table 4.
Model A, with the most parameters, has the lowest MAPE Mean of 0.68% as
compared to the other three simplified models. Furthermore, the MAPE Max by
using Model A is also the minimum in all cases. It is worth noting that although
the MAPE Max of Model B is larger than that of Model C, the MAPE Mean
of it is still smaller than the MAPE Mean of Model C. As for Model D, the
simplification leads to the largest error among the other models.
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Fig. 4. Comparison between model simulation results and measured values

To quantify the utility of these models, the following formula is defined to cal-
culate and describe the accuracy, i.e., utility of the model:

U = (1 − (MAPE Mean)) · 100 (11)

where U represents the utility of a model in natural number that is not greater
than 100 and MAPE Mean is the mean absolute percentage error of the model
simulation results compared with the measurement. With this definition, we
illustrate the relationship between the utility and complexity of four different
GSHP models in Fig. 5. This demonstrates that the results are basically in line
with our hypothesis mentioned in the Sect. 1. However, regarding the limitations
of data points, the graph line is not as smooth as an approximated diminishing
marginal utility curve by using regression methods which is also presented in
orange dashed line in Fig. 5.
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7 Conclusion

The present paper introduces a first study to investigate diminishing marginal
utility in DSM modeling based on Gossen’s First Law in economics. We model a
GSHP in a stand-alone house with four different kinds of complexity to simulate
the electrical load profile of the heat pump. A comparison between the simulation
results and the measurement is carried out and then analyzed using metrics
such as MAPE Mean. By defining a formula to quantify the utility of GSHP
modeling and drawing the resulting curve showing the relationship between the
utility and complexity, we reinforce the hypothesis. The results appear consistent
with the diminishing marginal utility curve and provide a promising basis for
future work. Future research should explore other possibilities of quantifying the
utility of models based on flexibility. For this purpose, models with different
complexity should be integrated into a control system to influence the future
load profile. Moreover, more prominent and more general modeling approaches
for DER flexibility found in the literature should be compared. Furthermore,
future research could examine the synergy of more complex DSM by combining
more subsystems in a model e.g. PV-systems and battery storage.
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Abstract. Wood stoves are commonly used as space heating systems in Nor-
wegian houses. However, the specific impact of wood stoves on electric power
remains relatively unexplored and is investigated in our study. We also aim to
reveal the coincidence between the wood stove operation and the use of electric
appliances during the different hours of the day, as it directly impacts the total
electric power of the dwelling. Detailed field measurements have been performed
in a detached house equipped with a wood stove and electric radiators in the cold
climate of Trondheim, Norway. As expected, the use of the wood stove leads to
a significant reduction of the space-heating power. However, as wood stoves are
operated manually, there are still periods when the electric radiators are operated
at maximum power. Nevertheless, we discovered a positive correlation between
the usage of the wood stove and electric appliances. It means that when occupants
are active, they extensively use their electric appliances and are more likely to use
the wood stove simultaneously. Consequently, the peak power of electric appli-
ances does not coincide with the peak power of the electric radiators so that total
electric power of the dwelling is reduced by using the stove.
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Psh Space heating power for the electric radiators
Pe Electric power of the smart meter (AMS)
Papp Power of the electric appliances
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Tp Pipe temperature of the stove
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1 Introduction

Wood stoves are an integral part of space heating in Norway, with nearly half of the
Norwegian households equipped with wood stoves, as shown by a survey conducted
by Norsk Varme in 2016 [1]. In terms of regulatory requirements, the building code in
Norway, currently TEK17, states that small residential buildingsmust either be equipped
with a chimney or a water-borne heating system [2].

With the advancement of technology and population growth, the need for energy
is increasing. In European residential houses, space heating accounts for almost two-
thirds of the total building energy consumption [3]. Electricity stands as the most widely
used energy source in Norwegian buildings [4]. During the cold seasons, space heating
power requires a large amount of electricity to be transmitted using the grid. The grid
must be able to transmit this load, maintaining a balance between supply and demand.
The widespread usage of wood stoves in Norway provides an opportunity to lower the
pressure on the electricity grid during peak periods, especially in the mornings and
evenings when demand is at its highest. Consequently, proper operation of wood stoves
has the potential to reduce the risk of blackouts and the need for costly grid expansions.

In addition, the utilization of wood stoves can play a vital role in meeting the space
heating needs of households using the renewable energy produced by logs or pellets.
Norway possesses a plentiful and valuable wood resource, which can be effectively
utilized to decrease dependence on electricity.

It is important to highlight that wood stoves differ from other space heating sources,
such as electric radiators and heat pumps, in terms of their operational characteristics.
While most heating options are equipped with thermostats allowing users to set the
desired indoor temperatures, wood stoves are manually operated and thus heavily rely
on the behavior of the individuals.

Active involvement and awareness of users in properly operating the wood stove can
significantly enhance its efficiency. In such cases, the full potential of a wood stove is
exploitable. Therefore, user behavior and knowledge play a vital role in maximizing the
benefits of having a wood stove as a part of the heating system. In a study conducted by
Thalfeldt et al. [5], the impact of variouswood stove-related user behaviorswas examined
using building performance simulation (BPS). These behaviors included factors such as
the set-point temperature, the wood stove power modulation, the energy in each batch of
wood, and the opening of internal doors within the building. However, this study did not
specifically investigate the reason behind using the stove and the times when the stove
was utilized.

Georges et al. [6] investigated the contribution of a single wood stove to the overall
space heating of a passive single-family house in cold climates using BPS. Although
it can be possible to cover the heating needs for a passive house, it is challenging to
only use one wood stove to heat an entire house when the building is less insulated.
A study conducted in the project iFleks [7] divided 5,000 households from six cities
across Norway into two groups: control and price. They tested various hourly artificial
electricity prices throughout the day, ranging from NOK 1/kWh to NOK 30/kWh, with
different time profiles. The study revealed that 6 to 11% of the participants reduced
their consumption. The individuals took several actions, such as turning off the heating
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in unoccupied rooms, lowering the indoor temperature, or shifting showering times to
hours with lower prices, but they also prioritized wood stoves over electric heating.

Kipping et al. [8] investigated the effect of various heating systems on the hourly
electricity consumption of Norwegian households using smart meter data combinedwith
occupant surveys. In houses equipped with both electric radiators and wood stoves, 60%
used their wood stove as the main source of space heating, 30% of those households
used the wood stove as an additional heat source and the remaining 10% as coziness.
The results indicated that the use of wood stoves led to a significant reduction in the
hourly electricity consumption for space heating.

Felius et al. [9] examined wood stove usage habits and motivations based on survey
data. In the responses obtained from the questionnaires, it was found that more than 50%
of the respondents mentioned that one of their reasons for using the fireplace was its
coziness, while approximately 20% used it exclusively for that purpose. Additionally,
most of the participants (over 75%) affirmed that the fireplace offered a quickway to heat
their homes. Typical schedules of wood stove operation were identified and incorporated
into a BPS model of a typical Norwegian single-family detached house. The aim was
to assess the influence of stove user behavior on energy use and the risk of overheating.
The results demonstrated that using a wood stove could potentially save up to 32% of
the electrical energy required for space heating.

Except for Kipping et al., the existing literature primarily consists of simulation-
based research where the user behavior is fixed. For instance, Felius et al. [9] modeled
the user behavior using a fixed deterministic hourly time schedule for the wood stove
operation. Furthermore, they also assumed a fixed daily schedule for electric appliances.
Therefore, our contribution differs by presenting a field study based on real data collected
from loggers and sensors. No simplification is done for the user behavior regarding the
wood stove and electric appliances operation. This also enables us to investigate the
coincidence in time between these two activities, a factor that directly influences the
total electric power of the dwelling.

Using detailed field measurements, the paper aims to reveal the processes leading to
the reduction of the total electric power of the building when using a wood stove. Again,
the answer to this question is not obvious due to the key influence of user behavior.
To the best of the authors’ knowledge, this question has never been addressed in the
scientific literature. The overall purpose is to enable informed decisions and strategies
for optimizing power usage at the grid scale.

2 Materials and Methods

2.1 The Test House

The house that has been studied is located in Trondheim, Norway. It is a detached house
with a concrete foundation and wooden walls with double-paned windows. The roof
is made of concrete slabs, and the floor is covered by wooden parquets. The house is
naturally ventilated. It comprises twofloors and abasement. Thefirst floor accommodates
a kitchen, a bathroom, a bedroom, and a living room. The second floor consists of a
bathroom and three bedrooms. The residents of the house are individuals affiliated with
NTNU University, including Ph.D. and exchange students. Space heating on the first
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floor is performed using three 1 kW electric radiators and one wood stove. The electric
radiators are equipped with a local on-off controller. This means that when the desired
temperature is reached, the radiators turn off, and when the temperature drops below a
set threshold, they turn on again (i.e., hysteresis control).

In Norwegian houses, electric radiators (or panels) are commonly used for space
heating [10]. In our study, the occupants actively utilized the wood stove as their primary
source for space heating.

Fig. 1. The first-floor plan featuring thewood stove on the right and a photo on the left showcasing
the wood stove and three electric fans.

The wood stove is situated in the living room (as shown in Fig. 1). Additionally, there
are two electric radiators located in the living room and one in the bedroom. In order to
circulate the air generated by the stove to the second floor, the occupants employ three
electric fans, as indicated in Fig. 1. It is important to note that these fans are solely used
for air circulation and do not contribute to heating.

2.2 Data Collection

The data collection for this study took place during the winter season, specifically from
February 28th, 2023, to April 6th, 2023. In order to assess the impact of the wood stove
on electricity consumption and understand user behavior, the period was divided into
two segments. During the initial period, spanning from February 28th to March 21st,
occupants were allowed to utilize both the wood stove and the three electric radiators
for space heating. The second segment, which lasted for nearly one week from March
22nd to March 28th, the occupants were not allowed to use the wood stove, leaving the
electric radiators as the only option for space-heating. The brief duration of this second
period is due to the limitation of time as we were approaching the end of the heating
season.
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2.3 Sensors and Data Loggers

In this study, a total of 10 temperature sensorswere utilized indoors, alongwith one sensor
to measure the outdoor temperature. These indoor sensors were strategically placed
throughout the house, including the bedrooms, bathrooms, living room, and kitchen.
The precision of these sensors is within ±0.1 °C. The recorded temperature data was
conveniently accessible through a cloud dashboard or a mobile app. The temperature
sensors recorded measurements at intervals of five minutes.

Tomonitor the power consumption of each electric radiator, Zigbee smart mini plugs
were employed, with a measurement accuracy of ±1%. Additionally, a Zigbee logger
was connected to the smart meter (ALS) of the dwelling using its HAN port to track the
total electricity consumption of the house at a frequency of every two seconds. These
loggers were linked to a Raspberry Pi 3 via a Zigbee gateway.

In order to measure the surface and flue temperatures of the wood stove, two PT100
sensors were installed. The purpose of these two sensors was to identify when the stove
was in operation rather than to get an accurate measurement of the surface temperature.
These sensors had a wide temperature range of −200 °C to 400 °C and were connected
to two loggers. The recorded data was then transmitted to the cloud dashboard through
a Wi-Fi connection.

3 Results and Discussion

To initiate this section, a general description of the building and stove operation during
the measurement period is given prior to analyzing the electricity consumption in more
detail. The temperature readings are represented by the box plots in Fig. 2 that present
the hourly-averaged value recorded throughout the experiment. The recorded minimum
and maximum outdoor temperatures were−13.5 °C and 16.7 °C, respectively. The mea-
sured indoor temperatures during the experiment were between 15.8 °C and 23.7 °C. The
average indoor temperature was recorded at 19 °C, while the average outdoor tempera-
ture was measured at 0 °C. In this study, we will not incorporate outdoor temperature to
explain the user behavior due to the limited measurement period. To establish a correla-
tion between outdoor temperature and electricity consumption for heating, measurement
data for a longer period than one month is required, as seen in other studies [11].

Figure 3(A) illustrates the hourly-averaged pipe temperature at various hours of the
day throughout the experiment. It is clear that the stove is typically initiated for operation
from 17:00 until midnight. In Fig. 2(B), the stove is depicted as being in operation, and
this representation is based on the condition that its pipe temperature is above 35 °C.
Using this Boolean information, it was possible to evaluate the probability of stove
operation for each hour of the day.

As previously mentioned, the electric radiators are equipped with an on-off thermo-
stat. As the radiator powerwas recordedwith a one-second sampling interval, each on-off
cycle was recorded. A time average of one hour is applied to filter out the short-term
dynamics of this local controller and the building fabric. For instance, a linear regression
between the hourly space heating power and the hourly outdoor temperature proved to be
valid in the literature [11]. In addition, shorter time intervals (lower than 15 min) are of
lower interest to the grid company and the end users. The grid companies typically seek



Measurement of the Wood Stove Impact on the Electric Power Consumption 131

Fig. 2. Hourly-averaged indoor and outdoor temperature, and surface temperature of the stove
displayed at various hours of the day for the entire duration of the experiment.

hourly electric power aggregated for several buildings, while the households currently
pay their monthly bills according to their electricity use but also the maximum hourly
electric power, measured during the previous month [12]. Figure 4 provides a clearer
understanding of this phenomenon. The on-off controller causes abrupt jumps between
0 and 3 kW while hourly-averaged data provides a (more) continuous variable. For the
remainder of the paper, hourly-averaged data will be used consistently.

Figure 5(A) presents the relationship between space heating power (PSH) and total
electric power (Pe). Thedata points are categorized into circles and triangles, representing
periods when stove usage was allowed and prohibited, respectively. On the right side of
the figure, we predominantly observe triangles, indicating a peak Pe and PSH of ~5 kW
and 1.2 kW, respectively. This peak of 5 kW represents the worst-case scenario observed
during the one-month experiment. Aswemove to the left, triangles transition into circles,
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Fig. 3. Hourly pipe temperature averaged throughout the experiment period (A). Probability of
stove usage assuming the stove in operation when surface temperature exceeds 35 °C (B).

meaning that PSH is reduced when the stove is in operation. In the very left part, the peak
Pe is approximately 4 kW while PSH is nearly zero.

Figure 5(B) and Table 1 explain the correlation between the total power (Pe) and the
power of electric appliances (Papp). As clearly shown in the graph and table, when the
use of the stove is allowed, a significant drop in the intercept of the linear regression
between these two variables is observed.

Analyzing Fig. 6 indicates that when the user is permitted to utilize the stove, they
actively employ it, as evidenced by the space heating box plots.

The final explanation relates to the correlation between the space heating power (Psh)
and the power of appliances (Papp). As expected, Fig. 7 confirms a significant negative
correlation between these two variables when the user was permitted to use the stove. To
quantify this trend, we include three common correlation coefficients: Kendall, Pearson,



Measurement of the Wood Stove Impact on the Electric Power Consumption 133

Fig. 4. Space heating power (PSH) averaged for different time intervals.

Table 1. The coefficients of linear regression between the power of appliances (Papp), and the
total power (Pe) in two different scenarios

Coefficient Electric panels only Wood stove and panels

Intercept 925 136

Slope 0.99 0.96
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Fig. 5. The relationship between the power of electric appliances (Papp) and the total power (Pe)
in figure (A). The relationship between space heating power (Psh) and the total power (Pe) in
figure (B).

and Spearman [13]. Kendall and Spearman are non-parametric rank correlation coeffi-
cients used to assess the strength and direction of the monotonic relationship between
two variables, while Pearson correlation measures the linear correlation between two
sets of data. Table 3 provides the numerical calculation of these correlations. According
to Fig. 7, when the wood stove was allowed to be used, when users were highly active
using appliances (while being at home and awake), they also actively used the stove,
resulting in low space heating power, and vice versa.

Conversely, when users were not allowed to use the stove, there was no meaningful
correlation between these variables, as indicated in Fig. 7 and confirmed by Table 2.
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Fig. 6. Comparison of the hourly space heating power with and without the wood stove use.

Table 2. The correlation between the power of electric appliances and space heating during the
period when users can utilize only the panels.

Correlation Estimate P-value

Spearman −0.08 0.48

Kendall −0.05 0.49

Pearson −0.04 0.74

Table 3. The correlation between the power of electric appliances and space heating during the
period when users can utilize the stove.

Correlation Estimate P value

Spearman −0.21 0.00

Kendall −0.15 0.00

Pearson −0.18 0.00
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Fig. 7. The correlation between the power of electric appliances (Papp) and space heating (Psh).

4 Limitations and Future Work

The analysis of the occupants’ behavior, as depicted in Figs. 2 and 3, revealed certain
peculiarities in their usage patterns of the wood stove and electric appliances. These
patterns may be attributed to the occupants’ unique lifestyle, which differs from a typical
family. To validate the findings and ensure their generalizability, future studies should
encompass a broader range of households with diverse user habits.

Furthermore, it is noteworthy that the house under examination was equipped with
only three 1kW electric radiators, which should be insufficient for adequately heating a
two-storey house with 151 m2 area. Typically, this kind of dwelling has 5.3 to 6 kW of
installed space heating power [14]. In further research, it is recommended to investigate
different types of houses that feature various ventilation systems and space heating units,
such as heat pumps and mechanical ventilation. This will enhance our understanding
of the interplay between household characteristics, heating technologies, and occupant
behavior.

Finally, it should be noted that the duration of the period when only the electric
radiators are in use and the period when both the wood stove and the radiators are in
use should be equivalent. It was also observed that the outdoor temperature was milder
during the period when the users exclusively relied on the radiators, as opposed to the
period when they had the option to use the wood stove. These parameters should be kept
the same to ensure a better comparison between the two scenarios.
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5 Conclusions

During the period when the use of the wood stove was permitted, we observed a clear
negative correlation between space heating power (Psh) and the power of appliances
(Papp). This indicates thatwhenpeoplewere active, they used their appliances extensively
and were more likely to use the stove, resulting in lower total electricity consumption
(Pe) when the stove was part of the heating strategy. Grids are designed to face the most
severe events, here represented by the maximum hourly total power (Pe, max) measured
during the experiments.When the user could not use the stove, Pe, max was the sum of the
maximum hourly power for appliances (Papp, max) and the maximum hourly power for
the radiators (PSH, max). Intuitively, one could have initially expected the same behavior
when thewood stovewas allowed to beused as therewere always periodswhenoccupants
did not (or forgot) to use the stove. However, when the users were allowed to use the
stove, the maximum hourly total power (Pe, max) was equal to the maximum hourly
power for the appliances only (Papp, max). In other words, Pe, max has been decreased by
PSH, max, even though the electric radiators have been operated at high instantaneous
power during this period. Since grid tariffs are currently determined based on the Pe, max
recorded during the previousmonth, ourmeasurement shows that the use of awood stove
can lower electricity bills [12]. This study also underscores the potential of wood stoves
to reduce electric power consumption during mornings and evenings, thus reducing the
stress on the electricity grid. These conclusions will become more evident with longer
measurement periods, such as an entire cold season or consecutive cold seasons in
multiple houses.
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Abstract. In light of emerging challenges in energy systems, markets
are prone to changing dynamics and market design. Simulation mod-
els are commonly used to understand the changing dynamics of future
electricity markets. However, existing market models were often created
with specific use cases in mind, which limits their flexibility and usability.
This can impose challenges for using a single model to compare different
market designs. This paper introduces a new method of defining market
designs for energy market simulations. The proposed concept makes it
easy to incorporate different market designs into electricity market mod-
els by using relevant parameters derived from analyzing existing simu-
lation tools, morphological categorization and ontologies. These param-
eters are then used to derive a market abstraction and integrate it into
an agent-based simulation framework, allowing for a unified analysis of
diverse market designs. Furthermore, we showcase the usability of inte-
grating new types of long-term contracts and over-the-counter trading.
To validate this approach, two case studies are demonstrated: a pay-as-
clear market and a pay-as-bid long-term market. These examples demon-
strate the capabilities of the proposed framework.

Keywords: energy market design · agent-based simulation · market
modeling

1 Motivation

The importance of a well-functioning energy market for a stable economy
becomes further apparent, as the recent energy crisis in Europe challenges the
current energy market design. The needed adjustments to existing energy mar-
kets are discussed by regulatory stakeholders [1] as well as in current research [2].
The latter highlights the need for simulating the effects of a particular market
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mechanism to evaluate proposed changes to the design. A well-established sim-
ulation technique for this purpose is agent-based modeling. Instead of providing
a central solution it allows a fine representation of individual agents’ behavior
and adjusts the behavior when new bidding options arise [3], making it the right
tool for this task.

In line with the increased necessity of simulating markets, the research around
energy market designs has evolved significantly through better data availability,
the increase of computational power and access to relevant open-source software
libraries for general energy system modeling [4,5]. Consequently, recent research
provides a variety of new theoretic concepts in the field of energy market mecha-
nisms, like pricing schemes for Vickrey Clarke Groves auctions [6,7], transactive
energy markets [8] or local energy markets [9]. Investigating new market mecha-
nisms can be done with morphological boxes, a well-known technique for explor-
ing the market design space. However, these new market mechanisms require
further standardization of how the design space can be put into practice. Sim-
ilarly, current research states that “there is an emerging need for standardized
and realistic test beds for market mechanisms” [9] to test theoretical concepts in
a setting with special assumptions, such as the data available in market agents,
as also noted in [10,11]. Yet such a standardized investigation and comparison
of different energy market designs is not supported by widely used frameworks.
Unfortunately, the lack of a generic agent-based framework results in tools that
represent the behavior of a particular market and which are, therefore, not inter-
operable or comparable and often one-off solutions [12]. Many important research
questions need a comprehensive market simulation framework. Here, we identify
a research gap for a tool enabling the standardized exploration of the design
space for energy markets. By providing a software tool to move from a con-
ceptual market design to a ready simulation, researchers can more efficiently
explore new market mechanisms, overcoming the technical challenges associated
with rising design complexity.

The proposed methodology is derived from current publications in the field
of energy market abstractions, ontologies, and existing simulation tools. In con-
junction with the benefits of a common abstraction provided by ontologies, a
novel market abstraction framework focusing on the integration of currently
evaluated market mechanisms and contracts is developed. Currently, discussed
mechanisms of complex contracts like Contract for Differences (CfD) and Power
Purchase Agreements (PPA) [13,14] as well as concurrent markets are consid-
ered by the developed model, resulting in the core contribution of this paper: a
methodology for modeling different market designs through a flexible configura-
tion of the particular properties of the analyzed scenario. Accounting for current
and future market complexity, the abstraction capabilities are shown by com-
paring an energy-only market with a market design containing a second market
that includes long-term options.

This paper is structured as follows: The latest work on energy market abstrac-
tions, in the field of ontologies is evaluated and compared to the functionality
of existing market simulations in Sect. 2. Subsequently, a categorization and
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requirements of market abstractions are derived from a morphological box app-
roach. In conjunction with the common abstraction provided by ontologies, the
novel market abstraction framework is developed and presented in Sect. 3. The
market abstraction is then applied in a case study in Sect. 4. Finally, a conclusion
is given in Sect. 5.

2 Related Work

Looking at existing energy market simulation tools with varying focus, the first
need is to specify the scope of a market design. In literature, a market design is
described through different marketplace institutions, rules, and customs, which
induce different strategies and produce a variety of outcomes [15]. By taking
the scope of existing market simulations and market designs into account, the
rules can be specified as changes to the incentives of agents. Taking descrip-
tions of energy market designs from [16] leads us to the definition of an energy
market design as the sum of all possible trading options, including subventions,
promotions and customized incentives through policies. It also points out that a
market design can include several marketplaces offering different bidding options
to agents with varying clearing schedules and properties.

Of the publicly available energy market simulation tools, most focus only on
a single specific given market [17]. Hence, they are not inherently designed to
evaluate different market mechanisms. The approaches that attempt to compare
market mechanisms can be divided into simulation frameworks, which provide
the toolset to model energy markets, and market abstraction models, which
provide an abstraction layer for the definition of different energy market designs
[18]. To detail this, the following paragraphs will discuss the related models and
their scope - starting with simulation frameworks.

The needed elements of simulation frameworks are the availability of a trans-
parent evaluation mechanism to model comparative simulations with different
market mechanisms. For this, open access and interoperability are similarly cru-
cial, so that the scientific community can contribute and verify results from the
framework or reuse the results [4]. Considering future possible market designs,
frameworks need to include the calculation of power flow and grid congestion
for the comparison of nodal markets [29]. Having a scalable solution that can
run on a distributed cluster is a feature, which also supports future use cases
with a high model complexity [30]. Support for new mechanisms like conditional
contracts and bilateral contracts between agents is also needed in modern mar-
ket simulation tools. An overview of existing tools and their adherence to the
requirements is given in Table 1.

AMIRIS is an agent-based energy market model developed to explore and
simulate future energy market characteristics [31,32]. The focus of AMIRIS is
on the modeling of the day-ahead-spot market on an hourly basis. Furthermore,
it supports the use of basic predefined contracts, like Contracts for Differences
(CfD) or the market premium, yet the supported market design is unflexible
and not readily substitutable. Similarly, PowerACE is an agent-based simulation
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Table 1. Overview of existing agent-based market simulation frameworks and their
relevant properties, Legend: – not applicable, – partly applicable, – fully
represented
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AMES [19] 2008-now SCUC/SCED

AMIRIS [20] 2016-now DA, ID, DV

ASAM [21] 2021-now DA, ID, RE

FlexAble [22] 2020-2023 DA, DHM, CRM

GSY-e [23] 2016-now LEM

lemlab [24] 2021-now LEM

MASCEM [25] 2012-now DA, ID, RE, DV

ÃČâĂŞkoFlex [26] 2014-2017 DA

PowerACE [27] 2014-now DA

USEF [28] 2016-2017 USEF

Proposed (ASSUME) 2023-now Various Mechanisms

model that captures operation and investment decisions for dispatchable power
plants in the European electricity system. It models the reserve and day-ahead
market and was extended to also capture different market design choices such
as capacity remuneration mechanisms [33] or market splitting [34]. The AMES
toolbox on the other hand focuses on the modeling of Security-Constrained Unit
Commitment (SCUC) and Security Constrained Economic Dispatch (SCED) as
it is commonly used in parts of the USA. While providing a simulation for nodal
markets with a clearing based on marginal costs, it does not allow modeling pay-
as-clear auctions or subventions [19,35]. The Universal Smart Energy Framework
(USEF) contributes a new artificial market design, which defines new market
participants and roles for a deregulated energy market [28]. The corresponding
simulation tool [36] is a one-off development, which is used to showcase the new
market design. It does not allow comparing the new design to existing approaches
and did not receive further development after the first publication, even though
the contribution of this modern market design approach is still relevant [18].
FlexAble is a modern market simulation written in Python, which investigates
the interaction of an Energy-Only Market, a District-Heating Market and a
Control-Reserve Market for modeling of the German electricity market [22], but
does allow comparing other markets than the defined. The simulation toolbox
MASCEM allows modeling different energy market designs and tries to solve
the comparability of simulations while having an interface to different energy
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markets [25]. Unfortunately, it is not available as open source and there has not
been recent development of it.

The research behind the MASCEM model builds the bridge to the second
category - the market abstraction models. They developed a market ontology
for the interoperability of multi-agent-based modeling [37], as well as an ontol-
ogy, which defines how bidding agents can interact with a given market agent
[38,39]. Market Abstractions are usually derived from ontologies since they pro-
vide a common understanding of the knowledge domain. Generally, they are not
interoperable without integration work [40] or do not have a respective simula-
tion model tied to the ontology at all [41]. The energy market ontology proposed
in Santos et al. [40] provides basic definitions of bidding behavior in energy-only
markets, for example for NORDPOOL, MIBEL and EPEX markets. It also inte-
grates a simulation, which does not support the full scope of a market design
by the aforementioned definition. Instead, it fits into a subset of the approach
provided in this paper by focusing on a single market or trading option, e.g., the
Day-Ahead-Market in Europe.

As mentioned before, notable abstractions and generalizations are often part
of an ontology. The Open Energy Ontology (OEO) takes a more generalized
approach, which does not only focus on markets but tries to provide a consis-
tent interfacing language to energy modeling [41]. Relevant ontologies for the
energy domain are discussed in [42]. Some are focusing on facility data like the
one given by Tomasevic et al. [43]. An ontology for the integration of flexible
devices into smart grids is provided by SARGON [44], which is an extension
to the smart application ontology SAREF [45]. As both are more related to
the integration of individual buildings, they can not be used to model mar-
ket interactions. Ontologies aid understanding in energy system modeling, but
a standardized implementation for market simulations is not yet established.
The proposed model uses the findings from research on existing ontologies and
provides needed features for the simulation and evaluation of different energy
market designs.

The provided market abstraction model makes it possible to model vari-
ous energy market designs and mechanisms, providing a comparable evaluation,
while using the agent-based simulation framework mango-agents [46]. At the
time of writing, this is the first market abstraction, that provides such features,
while the aforementioned frameworks are not focusing on modeling multiple con-
current bidding options and market complexity to this extent.

3 Market Abstraction Model

The following section utilizes the top-level market abstraction categories
obtained from the morphological box approach, which incorporates key char-
acteristics of different energy markets as shown in [47,48]. Morphological anal-
ysis proves valuable in creating diverse designs for a specific artifact [49], in
our case electricity market characteristics worldwide. For instance, variations
in the degree of competition can be observed, with some markets being ver-
tically integrated while others allow competition in both wholesale and retail
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sectors. Market designs can involve either a central scheduling and dispatch pro-
cess to model an Energy Only Market (EOM), or bilateral contracts with power
exchange for investigating long-term market (LTM) interactions. Furthermore,
since different markets may employ distinct price formation mechanisms, it is
essential to define the corresponding price formation method, such as pay-as-
clear, pay-as-bid, or other approaches. These characteristics serve as categories
in Table 2 which were then detailed into the configuration items. Therefore, all
different combinations of market models that result from the morphological box
should be mappable to our proposed market configuration, so that compara-
tive simulations with different market designs are possible. Currently, additional
information on requirements to bid on other markets is missing but can be
enabled by extending the market configuration with additional fields, restricting
the current version to fields needed to model the core of the market design.

Table 2. Description of the parameters used to configure a single trading
option/market extended from [47,48]. The configuration of multiple market products
allows for extensive configuration of trading options.

category market config item description

market product product type energy or capacity or heat
market products list of available trading products
volume unit string for visualization
price unit string for visualization

opening & duration opening hours recurrence rule of openings
opening duration time delta

price formation market mechanism name of method used for clearing
additional fields list of additional fields to base bid
query available offers boolean

bid constraints maximum bid max allowed bidding price
minimum bid min allowed bidding price
maximum volume largest valid volume for a single bid
volume tick size step increments of volume
price tick size step increments of price

specialized config maximum gradient max allowed change between bids
eligible obligations lambda function checking if agent is eligible

The categories relate to information about the market products, the schedule
of market openings and closings, the configuration of the price formation mech-
anism, as well as common constraints of energy bids used in markets similar to
the ontology described in [50]. Additional options for specialized configurations
make this a comprehensive model of the relevant configuration options of mar-
kets. Thus, for specialized markets an additional field can contain a bid value
from a market participant, for example for bilateral over-the-counter contracts.
This additional field then restricts the allowed agents that can see and accept
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the bid. In reality, a market design includes more than one option where trading
happens, which is why a market design is described as a list of bidding options
(market configs). Here, each market has an individual configuration of opening
schedule, a set of market products and trading conditions. This makes it pos-
sible for agents to decide, from a list of markets, on which markets they want
to participate and how the bids are formulated. The configuration of the bid-
ding agents is independent of market configurations, but they have access to all
the relevant information described in the market design. The proposed market
abstraction model supports scenarios ranging from single-market models with
only one trading option to complex simulations involving multiple interacting
markets within a unified agent-based framework. For instance, consider a sce-
nario where bidding agents have the option to participate in a day-ahead market
as well as a real-time market. Bidding agents can evaluate market conditions and
adjust bidding on both markets accordingly as can be seen in the example in
Sect. 4. Based on this idea, an abstraction of energy markets is found and pro-
vided which allows modeling all significant characteristics of a single market.
The different categories and in particular how bids are modeled are detailed in
the next subsections.

3.1 Configuration Categories

The first category of the market configuration is the list of market products,
which describes the trading intervals as a list of market products. The descrip-
tion of a market product is derived from the usage in the EPEX trading options
[51] and describes the delivery duration, the count of how many deliveries can be
traded in one market cycle and the offset of the delivery to the market opening
time. For example, the typical day ahead market has only one market product
which trades hourly, the next 24 h and bidding starts a day ahead, which looks
like this: [(HOURLY, 24, next day)]. In addition, to which time slots can be
traded, the opening duration defines the hours how long and how often markets
open. This category is closely related to the price formation category, which
specifies the clearing method. By providing a freely defined market mechanism
for the clearing and defining additional fields on which the market mechanism
function can rely, the abstraction covers the modeling of various markets. For
example with clearings relying on signals from a grid, as is the case in nodal mar-
kets, as well as complex bidding options (block order, all-or-nothing, exclusive
orders), Over-The-Counter (OTC) trading and subventions/policies. Within the
clearing method, special attention needs to be given to the clearing frequency.
Using the technical standard to define recurring events as described in RFC 5545
[52] makes it possible to define arbitrary recurrent schedules in a well-defined
way, both being precise and highly configurable.

3.2 Bidding Abstraction

In general, all bidding behavior of energy trading needs to have a defined time
frame of delivery with a given volume that has to be delivered according to the
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market configuration. For example, if the volume unit is “MW”, a power of 100
MW can be provided throughout the whole time frame from 2023-06-30 00:00
until 2023-06-30 01:00 resulting in 100 MWh of contracted energy as shown in
Table 3. Here, a positive volume indicates generation while a negative volume
represents demand, as is typical for sink and source models. Using this abstrac-
tion of market offers and orders allows the modeling of all other market behavior
similarly by extending the introduced bids through customized behavior. For a
better understanding of this important aspect, an exemplary bid is given in
Table 3, which contains the default fields each bid must have.

Table 3. Exemplary bid showing mandatory fields used in all markets. The volume is
positive for generation while it is negative for demand bids. The sender id contains a
unique id of the bidding agent.

start-delivery 2023-06-30 00:00
end-delivery 2023-06-30 01:00
volume 100
price 32
sender id 118

By providing additional fields, complex bidding for block orders as described
in [40] can be modeled, which makes conditional negative bidding to skip turn-
offs, and a correct representation of power plant bidding possible. The config-
uration would therefore be extended by an additional identifier “BaseId” and
“LinkId”, which allows linking multiple blocks to surrounding blocks, as it is
used and needed by power plant representations to model the ramping con-
straints in their bidding behavior [51,53]. This allows a similar representation of
linked block bidding as in the European energy market [40]. Of course, the mar-
ket participant agent needs to adhere to this behavior, so knowledge about this
market configuration has to be provided in the list of available markets. On the
other hand, the market must respect the additional constraints through linked
blocks by respecting an additional constraint in a modified clearing function for
each market clearing interval:

N∑

n=0

nused ≤ (1 +R) ∗
N∑

n=0

parent(n)used (1)

where R is the ramping factor noting how much the power can be increased
relative to the parent bid. This can be addressed entirely in the market config
without changes to the actual implementation of the market abstraction, which
is a key feature in contrast to existing market simulation frameworks. Equation 1
ensures through the inequality that blocks can not be used if the parent block
is not used.
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3.3 Continuous Trading and Contracts

For continuous auctions, things are different as they are matching suitable bids
as soon as the bids reach the market while clearing auctions have fixed clearing
intervals based on a recurrence schedule. In continuous trading, agents can also
query the available unmatched bids to check the current market price before-
hand. This can lead to agents continuously checking the market situation which
slows down the simulation. To still provide continuous trading in a simulation,
some limitations are needed to guarantee a sufficiently advancing simulation time
by implementing minimum steps for the agents and the market. Therefore, a con-
tinuous trading auction does not clear its offers on an event base in real-time
but through fast clearing actions in intervals of a few minutes in comparison
with the 24-h duration of day-ahead markets. Thus, as not all auctions have
clearable bids, messages are only sent for accepted bids in continuous markets.
This approach to simulating continuous auctions ensures the reproducibility of
the scenarios as the order of bidding actions is set by a global clock. While this
gives a pseudo-continuity it allows implementing the functionality similar to the
usage of fixed clearing intervals and reduces complexity by using a working gen-
eralization. Still, the special query functionality to receive unmatched bids from
the market is respected in the market config in the parameter “query available
offers”. Agents can therefore check existing unmatched bids before providing
their bidding, as is also the case in existing markets. This new approach for
representing continuous trading makes it further possible to simulate additional
bidding behavior like OTC trading including complex evaluation of contracts.

Peer-to-Peer/Over-The-Counter Contracts. Most of the actual market actions
are happening through OTC trading, which covers a bilateral agreement between
two market participants to trade energy [54]. While this can theoretically be set-
tled without any third party involved, often an OTC trading platform is involved,
which tracks available offers and bids. For example, Agent-A can send a bid to
the market which is only seen by Agent-B. Agent-B can use the aforementioned
mechanism to look into unmatched bids of the market and accept the bid from
Agent-A. This is using continuous trading in conjunction with additional fields
to describe that only some agents are allowed to use the trading option. This
means, that the additional fields contain the “ReceiverId” which ensures that each
bid contains a field “ReceiverId” additionally to the fields specified in Table 3.
In market clearing, a function can be specified that matches these offers only to
bids sent by the agent with the respective Id - as is the case with peer-to-peer
markets.

Conditional Contracts. Besides contracts with individual participants, subven-
tion mechanisms are often based on a price index or have an unspecified volume,
which creates the need for contract logic to be included in the bid.

The relevance of such long-term investment policies is rising and is commonly
implemented through Power Purchase Agreements (PPA) or Contracts for Dif-
ferences (CfD). At first sight, the concept of long-term contracts with conditions
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tied to market behavior or unit dispatch seems somewhat different from the typ-
ical bidding described before. Yet, continuing the same concept of OTC trading
and applying it here allows modeling such contracts in the same way as bids.
Providing an additional field to contain the type of contract, makes it possible
to handle contracts in a way that different agents can interact and accept offers.
The actual logic of a contract has to be provided before the simulation but can
be freely defined as a callback function.

Throughout the reduction of the complexity by stepwise addition to previous
results, the usage of Market contracts can be seen as an extension of the simple
bidding described in Subsect. 3.2. The abstraction is then used to make compa-
rable simulations of different market designs possible. For this, a market design,
the unit operators and needed time series data are specified as a model input.

4 Case Study

In the following, a scenario with an EOM is compared to one with an EOM
and an additional OTC market. The results of the case study are created using
the ASSUME Framework 3which was extended by an implementation of the
described market configuration that includes new features for agent-based mod-
eling of energy markets. To assure openness and transparency, the code and
results used for this paper were made public on Zenodo [55].

Most market simulations only focus on fixed interval clearing, yet markets
with continuous trading are making up large parts of existing trading in future
markets and OTC trading [54]. The importance of modeling long-term OTC
trading as well as subventions is often weighted against the increased complexity
of the seemingly different mechanisms. Using the described common abstraction
of bids, it is shown in the following that one can easily integrate different market
behaviors in the same simulation, as shown in the example.

4.1 Application of Morphological Box

To create use cases, relevant market designs are derived by using the morpho-
logical box. When analyzing the impact on markets, a combination of different
scenarios extracted from the morphological box has to be considered. For this
reason, we apply the characteristics proposed in the morphological box to define
scenarios for modeling the hourly EOM spot as well as an LTM with weekly
physical contracts shown in Table 4.

The EOM includes market products for the next single hour, instead of the
next 24 h to reduce the complexity of the example. For comparison, an example
of a long-term trading option is shown, which uses pay-as-bid as a market pric-
ing mechanism and trades weekly products. The different clearing mechanisms
and market products are modeled in the proposed market configuration. The
resulting market design is shown in Table 5. The programmatic representation
of this market design is used for the showcase in the following section.
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Table 4. Application of the Morphological Box for the description of electricity mar-
kets: hourly EOM spot and LTM Market.

Characteristic EOM LTM

Degree of Competition Wholesale and retail
competition

Wholesale competition

Market Structure central scheduling and
central dispatch

Contracts on Power
Exchange

Clearing Mechanisms Power pool price-based Physical contract
Price Formation Marginal Pricing (Pay

as clear)
Pay as bid

Pricing mechanisms Zonal Pricing Zonal Pricing
Market Products Hourly Energy

Generation
weekly contracts

Market Timeframe Day-ahead market
(DAM)

Forward Market (FM)

Table 5. Configuration of energy markets used in the scenario. The main difference is
the opening schedule, the bidding products and the price formation/market mechanism.

EOM Hourly market LTM forward market

product type energy energy
market products [(HOURLY, next 1 h,

offset 1 h)]
[(weekly, one week,
offset 2 h)]

opening hours every hour weekly at 24:00
opening duration 1 h 2 h
market mechanism pay as clear pay as bid
maximum bid 9999 9999
minimum bid −500 −500
maximum volume 500 500
additional fields [baseid, linkid] none
volume tick size 0.1 0.1
price tick size 0.1 0.1
volume unit MW MW
price unit €/MW €/MW
query available offers false false
maximum gradient none none
eligible obligations lambda none none

Both inspected cases utilize the same agent bidding behavior which is based
on always bidding marginal cost of the power plant. The volume of the bids is
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decided by their availability of energy generation for the whole bidding period.
There are 262 generation units bidding on each market generated from the same
input scenario data set. The list of power plants is based on the World Electric
Power Plants Database [56] and complemented by data from the German Envi-
ronment Agency [57], and the Federal Network Agency [58]. The variable renew-
able energy generation and the inelastic demand for Germany were obtained
from SMARD1. The fuel prices for marginal cost calculations are obtained from
[59–61]. The complete input data is available on Zenodo [55].

4.2 Scenario 1 - EOM only

The first scenario includes a single energy-only market, which has an hourly
scheduled opening for the next hour after bidding, as described on the left side in
Table 5. A schematic overview of the bidding interval and the opening frequency
is shown in Fig. 1a.
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(a) Hourly spot market (b) Hourly spot and long-term markets

Fig. 1. Schematic overview of the clearing times in the simulation with (a) hourly spot
market, (b) hourly spot and the long-term markets.

The market communicates the openings and closings at each hour, while every
market participant sends its bids in this time slot. The delivery obligation starts
with an offset of one hour to the opening times as described in the third value
1 https://www.smard.de.

https://www.smard.de
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of the market products. As the opening duration is also one hour, the delivery
starts directly after market clearing. After receiving the result from the energy
market, the market participant checks if the requested dispatch is feasible.

4.3 Scenario 2 - EOM with Additional LTM

The above-described scenario is compared to a market design that includes an
additional LTM. The agents bid their firm capacity for the product period on
each market, which refers to the minimum capacity that can be supplied through-
out the entire market product period. In the case of the LTM, a generation load
for the whole week is sold or bought. In most weeks renewable generation does
not have firm capacity, as there is a time per week when no energy generation
is available, so they can not bid on the LTM in the way we have simulated the
product duration. A schematic overview including the additional market open-
ing and clearing schedule is shown in Fig. 1b. The market design in this case
consists of a list of both markets, as both markets in Table 5 are configured in
the simulation.

4.4 Simulation Results

An exemplary power dispatch of the simulation is shown for the generation
technology nuclear and hard coal in Fig. 2 for the scenario which includes bidding
on the LTM. The traded amount on the LTM can be seen as the lower part of
the graph, while the requested amount of hard coal increases in every bidding
period of seven days, due to larger demand, while the nuclear firm capacity
is fully requested, due to its lower marginal price. Further visualizations for
remaining generation technologies from the simulation are available on an open-
source dashboard realized with Grafana.

Fig. 2. Traded Electricity for Nuclear and Coal on the LTM and EOM respectively.
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Please note that these results showcase the capabilities of the market abstrac-
tion framework. The results do not aim to replicate actual market results, due
to the reduced complexity in the bidding behavior as well as the market imple-
mentation. In this specific case, one can see the change of volume traded on
the EOM towards the LTM once it is introduced. The step-wise increment can
be seen due to increasing minimum demand in the modeled weeks of January
2019. The total volume traded on both markets stays the same as agents aren’t
reselling energy on the market.

The impact of the shown dispatch on the total system cost and average mar-
ket prices can be seen in Fig. 3. The total cost of trading on the LTM, cleared
with pay-as-bid, is lower than the EOM if the marginal costs bidding strategies
are used. We use these results to explain the behavior of the implemented sequen-
tial markets. In another simulation that focuses on replicating realistic bidding
more complex bidding strategies which take reselling, portfolio management and
long-term market strategies into account, should be implemented.

(a) total dispatch costs

(b) average market clearing price

Fig. 3. Overview of (a) total dispatch cost and (b) average market clearing prices for
both scenarios.

Due to the different pricing mechanisms at the LTM, the total dispatch cost,
shown in Fig. 3a, decreases when more volume is traded on the LTM market using
pay-as-bid, which shows that the general market behavior follows the expecta-
tion. Figure 3b shows the average clearing price on both markets. Once the LTM
is introduced, the average price of the EOM is decreased, as a significant amount
of conventional energy generation is shifted towards the LTM. This leaves a much
higher share of renewables in the EOM which explains the low average price on
the EOM. The average price in the LTM settles as the average marginal cost
of conventional generation, as renewables can’t bid on this market. The average
marginal cost is much lower than the clearing price in the EOM-only example,
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due to the pay-as-bid pricing which does not set a uniform price for all involved
generation plants. This behavior shows the correct functionality of the bidding,
but can not be generalized for other bidding strategies.

5 Discussion and Conclusions

Evaluation of agent-based models can be difficult due to the need for correct
parametrization and modeling of agent behavior [62]. To facilitate the evaluation
process and enable a comparative market analysis, a generalized market abstrac-
tion is crucial. In this paper, we propose a novel approach to market modeling in
the energy domain. Our study involves an in-depth analysis of existing simulation
approaches and ontologies that abstract energy markets. From these sources, we
extract a robust methodology for modeling different market designs by defining
a comprehensive abstraction that encompasses various market configurations.
By bridging the gap between market descriptions in ontologies and their imple-
mentation in simulation frameworks, our approach establishes a solid foundation
for future comparative studies of market designs. Moreover, we implement our
methodology in an open-source framework, empowering other researchers to con-
duct their market design studies. Finally, we demonstrate the capabilities of our
market modeling methodology through the implementation of a multi-market
simulation scenario.

While the show-cased multi-market scenario has strong simplifications, it can
be adapted to model complex real-world examples with multiple markets. The
results for existing markets can be validated through historical data. To assess
such real-world examples and analyze the impact of market design changes on
market outcomes, it is recommended to incorporate the existing market options
described in [53] for an evaluation. For this purpose, the current presentation can
be seen as a first step for an extensive market comparison. The demonstration
lacks an example of continuous trading and the bidding agent strategies have
been simplified to enhance clarity by reducing the complexity of the illustration.

The latter, namely integrating more complex bidding behavior, will be
addressed in future research. While we address the market simulation, altering
the simulated market design requires corresponding adjustments in the agents’
bidding behavior. Determining the optimal bidding strategy for a given market
design can, however, be challenging. Reinforcement learning techniques offer a
solution by enabling the endogenous creation of bidding strategies that conform
to a specific set of market rules. These strategies can be learned through iter-
ations of the simulation, as demonstrated in [63–65]. However, further research
is necessary to investigate bidding strategies in greater depth and conduct com-
parative simulations using publicly available datasets.
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Abstract. The current landscape of the electric world is shifting toward a cleaner
and more sustainable pattern. While this is a known fact, there is still very little
consideration for how distributed generators (DG) should be compensated when
studying the network, whether through planning or operation/reconfiguration. The
DG remuneration needs to be considered in modern network studies, especially
when there is a high percentage of renewable energy penetration. Another major
factor that should be given an adequate amount of importance is the introduction of
uncertainty to the data used along the process. Thus, this study applies uncertainty
to wind and solar generation and load, with its’ degree varying according to the
season and daily periods. This study is applied to a 180-bus network in the Leiria
district, Portugal, with 42 Wind farms, 33 Photovoltaic (PV) parks, as well as
three biomass generators, and a substation belonging to the Distribution System
Operator (DSO). The network also has two Energy Storage Systems (ESS) already
in place owned by an outside party, but themodel allows for the installation ofmore
from the DSO. This study is done from the point of view of the DSO, aiming to
minimize the investments and expenditures on their part while fairly remunerating
the participants using a two-stage stochastic model. There are 16 main scenarios
in this model, the combinations of the four seasons and daily periods. The results
are promising with a Payback of 3,02 years.

Keywords: Distributed Resources · Remuneration · Renewable Generation ·
Optimal Planning · Seasonal Impacts · Uncertainty

1 Introduction

The topic of remuneration of DG is a necessary discussion in modern networks, espe-
cially with the network getting more and more complex and unpredictable with an
increase in renewable energy sources (RES) penetration. There is a need for solid
consideration for these contributors who are part of a more extensive network.
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Current literature addresses these issues in different ways. A common consensus is
that introducing ESS benefits the network by allowing for more flexible handling and
management [1].

Regarding remuneration, in [2] the authors offer a new approach that combines
several methods and tools to manage uncertainty and overcome the obstacles of unclear
data. The goal is to reduce the total involved cost and the number of associated forecasting
errors.

Many authors aim to calculate the associated remuneration through Locational
Marginal Pricing (LMP), such as [3] in which the authors propose a method to reim-
burse DG with LMP in distribution systems with radial configurations. Similarly to
our research work proposed in this paper, the authors consider both used and unused
resources. Bai et al. in [4] aim to give attention to managing congestion and prices while
taking into consideration both active and reactive power, also addressing the voltage
support through mixed-integer second-order cone programming (MISOCP).

In [5], the congestion is computed ahead of time, and demand response (DR) is
calculated to respond as needed. This information is then utilized to determine the
relevant remuneration value, which also considers the interactions between the unit to
be remunerated and the DSO. Reference [6] adopts a similar strategy, although it is
implemented on a network managed mainly by non-RES.

The authors Faria et al. in [7] present a technique to manage resources using an
aggregator, to provide various combinations of aggregation and payment schemes. In
[8], the authors investigate multiple strategies, including hierarchical and fuzzy c-means
clustering. These strategies are utilized to aggregate and monetize energy resources.

Even though the primary focus of the study is on fairly compensating contributors
and reducing operational costs, Silva et al. in [9] offer a new stage to the already existing
scheduling, aggregation, and remuneration, which is the classification stage. This stage
aims to assist the aggregator in operating situations. Similarly, in [10], these authors
contribute by striving to grasp precisely how aggregating affects the final values of pay
for each contributor. In other words, they are trying to determine how aggregating affects
the final pay values.

Although the DG remuneration aspect in the context of network planning is vital,
offering the best possible representation of reality, this could be achieved by combining
several concerns such as adding the uncertainty to the model, which is very much a
necessity in modern planning, as well as ESS [11].

Sarker et al. in [12] prepare for a potential rise in the number of circulating EVs
(Electric Vehicles). To adapt to time-varying pricing and offer possible incentives to
those who contribute the most to keeping the network within its bounds, the key goal is
to maximize the aggregator’s profitability while reducing the costs to the customer. The
authors establish that boosting EV penetration in contemporary networks is feasible.

Likewise, Ma et al. in [13] employ real-time changes to determine the appropriate
incentives to give to the network’s demand side. The customers in their suggestedmodel,
an improved Arrow’d Aspremont-Gerard-Varet (AGV) mechanism, are penalized or
rewarded based on their consumption history. The authors claim that this works verywell
in raising customers’ awareness of their power use and is advantageous to both consumers
and providers. Lastly, Kim et al. in [14] investigate how predicting errors affects resource
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allocation and compensation. In this article, the authors create twoways in retrospect, one
flawless and one flawed, and consequently, they evaluate how each method affects the
outcomes. These models can accommodate DLMP-based compensation, value stacks,
and net metering. According to Kim et al., incorrect foresight results in a financial loss
of at least 1.6% in all cases.

Our research paper proposes individual remuneration for each resource across a
medium voltage (MV) distribution network with 180 buses, 42 Wind farms, and 33 PV
parks. The network also has a substation and three Biomass generators owned by the
DSO. Two ESSs are already installed, owned by a third party, allowing the DSO to use
25% of its capacity under contract freely. If the DSO needs to access the remaining 75%
of the storage unit, a cost penalty is applied for contract breach. The model allows for
the installation of more storage units.

Apart from the individual remuneration of each resource, this work also applies a
deep level of uncertainty (daily values), a crucial combination not commonly seen in
related literature.

Our proposed advancements with this paper are:

• Advancing the level of uncertainty in similar models to daily values;
• Fair remuneration of DG units individually;
• Intertwining uncertainty, remuneration of DG, ESSs, DG, and EVs with an optimiza-

tion model, to get the closest we can to a real situation.

This paper is divided into the following topics: 1-Introduction, where relevant liter-
ature is analyzed, and briefly explaining the paper’s aim. In 2-Considered Methodology,
the work method is described, namely the appliance of uncertainty and considerations
used in the remuneration process. Here, the optimization model is also explained. In
3-Case study, the specific details of the existing network are discussed more in-depth,
and the application of the methodology happens. In 4-Results Discussion the results
for the model are exposed. Lastly, in 5-Conclusions, there is a global gathering of the
information portrayed in the paper, such as the implications of the results.

2 Considered Methodology

This section provides an overview of the model’s definition and application. There is an
explanation of how the uncertainty is structured and how the remuneration was decided
and applied. Subsection 2.1 aims to explain how the scenarios were defined and distin-
guished and how the uncertainty was applied to each scenario. Subsection 2.2 aims to
explain the proposed optimization model. Subsection 2.3 describes how the values for
remuneration were defined and applied.

2.1 Scenario Segmentation and Application

The model consists of 16 main scenarios: all combinations of seasons (Summer, Spring,
Fall, Winter) and daily time periods (Morning, Peak, Afternoon, Night). The probability
of each of these main scenarios is as exposed in Table 1.
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Each of these 16main scenarios’ probability has been calculated as follows in Eq. (1),
using Fall Night as an example:

ProbFallNight = 1275

8760
× 100% = 14.54% (1)

Table 1. Scenario Segmentation and Probability

Scenario Probability (%)/Days out of 8760/Scenario Number

Season (days) Morning Peak Afternoon Night

Summer (92) 7.35%/644/(1)* 3.15%/276/(2) 3.15%/276/(3) 11.55%/1012/(4)

Spring (92) 5.25%/460/(5) 3.15%/276/(6) 4.20%/368/(7) 12.60%/1104/(8)

Fall (91) 5.19%/455/(9) 2.08%/182/(10) 3.12%/273/(11) 14.54%/1274/(12)

Winter (90) 4.11%/360/(13) 2.05%/180/(14) 3.08%/270/(15) 15.41%/1350/(16)

(1)*, for example, refers to the scenario number, as such, Summer Morning is scenario (1) from
now on

For each of these 16 main scenarios, 50000 individual scenarios were created for
wind and solar generation, load, EV, and ESS states, which are then reduced to the
corresponding number of hours. For example, the initial 50000 situations are reduced to
1274 for the main scenario Fall Night through a scenario reduction tool (Scenredpy).

The multiplicative factors that help distinguish the scenarios between themselves
were found through a collection and analysis of data in Portugal from 2017 to 2022. Load
data were extracted from [15] and wind and PV behavior from [16]. Spring Morning
was chosen as the base value (unitary load, wind, and PV factor) to enable a direct
comparison between scenarios. The results are shown in Table 2.

Table 2. Multiplicative factor for PV/Wind/Load

Multiplicative Factor for PV/Wind/Load

Season Morning Peak Afternoon Night

Summer 1.40/1.00/0.99 3.20/1.60/1.11 2.40/1.00/0.91 0.05/0.80/0.59

Spring 1.00/1.00/1.00 2.60/1.40/1.12 1.40/1.00/0.92 0.05/0.80/0.65

Fall 1.00/1.00/1.03 2.20/1.40/1.16 1.40/1.00/0.93 0.05/0.80/0.65

Winter 0.60/1.00/1.03 1.40/1.40/1.14 1.00/1.00/0.95 0.05/0.80/0.69

2.2 Optimization Model

Our proposed model presents a baseline based on [17] with some changes, namely:
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• Three biomass generators are used along the network, belonging to the DSO;
• Two ESSs are already installed (usage is explained in 2.3), on top of allowing the

model to install more;
• Instead of approaching the 16 main scenarios with one state per scenario, an hourly

approach was implemented, as explained in 2.1;
• There is a consideration for remuneration of all resources (analyzed yearly and for

the project’s entire lifetime of 30 years) individually, with the model aiming to reduce
all associated costs.

The model allows for investments in potential new lines (as seen in Fig. 1) and a
redesign of its topology and investments in ESS.

The proposed model is formulated as MILP to find the following decision variables:

• Power required by DSO (substation, biomass, and any ESS to be added apart from
the ones in buses 31/87);

• Power generation curtailment of DG;
• Size and location of ESS;
• Optimal network topology;
• Optimal power flow for each line in each sub-scenario;

The model outputs the following information:

• Every associated network-specific cost: new lines, lines’ maintenance, expected
energy not supplied (EENS), power losses, ESS installation and maintenance, load
cut, and power generation curtailment;

• System average interruption duration index (SAIDI);
• System average interruption frequency index (SAIFI);
• Cost of the power required by DSO (substation, biomass, and any ESS to be added

apart from the ones in buses 31/87) yearly;
• Remuneration to the networks’ third-party generation providers (PV,Wind, ESSbuses

31/87);
• Economic analysis as a comparison to the original network.

The model is also subject to the following constraints:

• Power balance;
• Power flow limit;
• Unidirectionality of power flow;
• Insurance of radial topology;
• Avoidance of island creation;
• Substation, biomass, and ESS maximum capacity;
• ESS charge and discharge rate;
• Price adaptation of ESS;
• SAIDI and SAIFI limits;
• Generation and load curtailment limit.

The network initially has two ESS units already applied in buses 31 and 87. A third
party owns these and is part of the network through a contract with the DSO, who has
control over 25% of the capacity of the unit to charge and discharge as needed, with
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Fig. 1. Initial Network Configuration with Potential New Lines, Adapted From [17].

minimal compensation to the unit’s owner. Would the DSO need to access the remaining
75%, there would be compensation to be paid to this third party. The detailed prices are
exposed in Subsect. 2.3.



164 F. Castro et al.

Equations (2)–(4) are implemented to limit the biomass generators and storage units.
Equation (2) defines Biomass generation, where PBioMinLimit(b) and PBioMaxLimit(b) are
the minimum and maximumBiomass generation, respectively. PBio(b) is the actual value
of generation of each Biomass generator (b). B is the set of biomass generators.

PBioMinLimit(b,s) ≤ PBio(b,s) ≤ PBioMaxLimit(b,s) (2)
∀b ∈ ΩB,∀s ∈ ΩS

Regarding the storage units, Eqs. (3) and (4) represent the adaptation of pricewhether
the usage is within the contract or not. Equation (3) represents the compliance of con-
tracted values. Here, StUsage(e,s) is the amount of energy flowing from an ESS (can be
positive if discharging or negative if charging), for every ESS available, e, be it the two
pre-installed or potential new additions, for every scenario studied, s. StMaxCap(e) is the
maximum capacity of every ESS used. StCost(e,s) is the final price to pay for the usage
of that specific unit, e, on that scenario, s, and the StPriceInContract is the price to apply if
the contract is followed. E is the set of ESSs and S is the set of scenarios. The specific
prices are outlined in Sect. 2.3.

StUsage(e,s) ≤ StMaxCap(e) × 0.25
StCost(e,s) = StPriceInContract × StUsage(e,s) (3)

∀e ∈ ΩE,∀s ∈ ΩS

Equation (4) represents a breach of contract, where all variables retain their meaning.
Regarding StPriceOutContract , it is the price to apply to the excess value. It must be

noted that this extra value is only to be applied to the excess value past the contracted
25%, not the entire value.

StUsage(e,s) ≥ StMaxCap(e) × 0.25 (4)
StCost(e,s) = StPriceInContract × (

StMaxCap(e) × 0.25
)

+StPriceOutContract × (
StUsage(e,s) − (

StMaxCap(e) × 0.25
))

∀e ∈ ΩE,∀s ∈ ΩS

The plan is to ensure a radial topology to the network and evaluate the strategy
economically while studying the impact that considering remuneration of the resources
has on the network.

Since we are looking at the problem through the lens of a DSO, we’re aiming to
minimize the associated costs asmuch as possible, and, as such, Eqs. (6)–(10)were added
to the already existing objective function in [17], to accommodate the consideration for
remunerating these resources. These belong to the second stage of the stochastic model
and, as such, would be adapted to the already existing PC2 in Eq. (5), from [17].

MinimizePC = PC1 + PC2 (5)

Here, PC1 are the first-stage variables in the two-stage stochastic model (“here-and-now
decisions”), and PC2 are the second-stage variables (“wait-and-see decisions”).
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Equation (6) represents the total amount to pay for substation generation, as shown:

SubTotalGenCost = PSub(s) × SubPrice (6)

∀s ∈ ΩS

where, SubTotalGenCost is the total cost to pay for the amount produced by the substation,
PSub(e) is the total generation for the substation in any scenario, s, and SubPrice is the
price explained in Table 3.

Equation (7) represents the remuneration calculation for the biomass generators, as
shown:

BioTotalGenCost =
∑

b∈ΩB

PBio(b,s) × BioPrice (7)

∀b ∈ ΩB,∀s ∈ ΩS

where BioTotalGenCost is the total amount to pay for all biomass generators, b, in any
scenario, s.PBio(b,s) is the total amount generated by each biomass generator, andBioPrice
follows the prices discussed in Table 3.

Equations (8) and (9) follow the same trend but for PV parks and Wind farms,
respectively.

PVTotalGenCost =
∑

pv∈ΩPV

PSolar(PV ,s) × PVPrice (8)

∀pv ∈ ΩPV ,∀s ∈ ΩS

where PVTotalGenCost is the total amount to remunerate to all contributors for all PV
parks, pv, across all scenarios, s. PSolar(PV ,s) is the amount of generation for any given
PV park in any given scenario, and, again, PVPrice follows Table 3.

WindTotalGenCost =
∑

W∈Ωw

PWind(w,s) × WindPrice (9)

∀w ∈ ΩW ,∀s ∈ ΩS

The same happens with this equation. WindTotalGenCost is the total amount to remu-
nerate to all contributors for all Wind farms, w, across all scenarios, s. PWind(w,s) is
the amount of generation for any given Wind farm in any given scenario, and, again,
WindPrice follows Table 3.

Equation (10) is what is added to PC2 to be minimized, and it is as follows:

RemunerationTotalCost = SubTotalGenCost + BioTotalGenCost + PVTotalGenCost

+ WindTotalGenCost (10)
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Table 3. Prices of each technology to remunerate accordingly.

Generation Source Regular Usage Price
(m.u./MWh)

Excessive Generation Price
(m.u./MWh)

Owned and Operated by the DSO

Substation 55 300

Biomass 45 300

ESS 40 400

Owned and Operated by another Party, which needs compensation from the DSO

Wind Farms 45 150

PV Parks 45 150

ESS (Buses 31/87, within
Contract)

30 150

ESS (Buses 31/87, breach of
Contract)

400 1000

*Any ESS that the model decides to install apart from the two that were already in place
(buses 31/87) are assumed to be owned by the DSO

2.3 Remuneration of Distributed Resources

Regarding the remuneration of distributed resources, research was conducted to discover
the most accurate pricing feasible for each technology, and the data for this study was
obtained from various sources [18–25]. A price was determined for the typical use of
all technologies, and another price, dubbed the “Excess Price,” was established for any
surplus energy that was generated but not used. As may be seen in Table 3, the final costs
were as follows:

The proposed cost of 300 m.u./MWh for excessive generation follows the study
made in [17], where an analysis was made for the values of 100, 200, 300, 400, and
500 m.u./MWh, and 300 was found to be the most suitable. A study will be done to
understand the impact of ESSs on total remuneration.

3 Case Study

The proposed methodology will be applied to a real MV network with 180 buses in the
Leiria district in Portugal.

As mentioned before, the network has 42 Wind farms, 33 PV parks, and two ESSs
owned by participants of the grid, being that the ESSs are partially maneuvered by the
DSO under a contract, as previously discussed. The network also has a substation, three
biomass generators, and potentially any ESSs the model sees fit to add, all owned by the
DSO. These generation units are used to feed 90 loads across the entire network, as well
as five EV parking lots. The biomass generators have a maximum capacity of 0.25MW,
based on [26].
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The proposed analysis will evaluate the project economically for the full 30 years of
the project,with the corresponding recuperation factor. In addition, a studywill determine
how impactful the change in the contracted percentage of ESS usage would be in the
economic analysis, with incremental steps of 25%. All the possible ESS conditions that
will be studied are as follows in Table 4, although the default state is 25% for the DSO.
This study aims to understand the differences that would be caused, such as in the costs.

Regarding the potential of adding new ESSs, the model can place them in buses 15,
66, and 156. It is also allowed to consider adding more capacity to the existing ones on
buses 31 and 87, with a corresponding cost.

The discount rate used in the study is 0.05% [27], and since the project has a lifetime
of 30 years, there is a capital recovery factor (CRF) of 0.034. There is an imposed
limitation to the SAIDI and SAIFI values of at least a 10% reduction from their original
actual values of 24.48(h/customer) and 5.98(interruptions/customer), respectively.

Moreover, all corresponding maintenance and applied costs are multiplied by
three since it is a three-phase system, and the costs for power losses are assumed as
120m.u./MWh. The economic analysis evaluated theNet Present Value (NPV), Payback,
and Internal Rate of Return (IRR).

Table 4. Different possibilities for ESSs

Housing Bus For
the ESS

Percentage
Owned by The
DSO (%)

Percentage
Owned by the
Network
Participant (%)

Current Installed
Capacity (MW)

Maximum
Possible
Capacity (MW)

31 0/25/50/75/100* 100/75/50/25/0 1 5

87 3 5

15/66/156 100 -- -- 3

* Corresponding to the five different analyses made

4 Results Discussion

The study’s primary optimization model considered the yearly remuneration situation,
which consists of 1,245,255 constraints and 2,658,602 variables. It was executed on
a computer with an AMD Ryzen 7 5800H processor and 16GB of RAM, operating
on Windows 11 Home, modeled with Pyomo’s library [28], and solved with Gurobi’s
Optimization Solver [29], using Python. Table 5 shows the difference in run time and
memory allocation caused by considering remuneration, as measured by the tracemalloc
library.

In Fig. 2, we show the contribution of each technology to the final model for each
of the 16 main scenarios, considering remuneration. After that, the contribution to the
total remuneration of each technology (Fig. 3). Since the other situations are variations
for analysis purposes, Figs. 2 and 3 refer to the standard case of 25% of ESS contracted
usage.
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Table 5. Computational Resources for the different situations

Case Run time (s) Memory allocation (MB)

Remuneration Not Considered 545 396

Yearly Remuneration 948 792

*The run time and memory allocation are an average of all studies undertaken (different
runs for different % of ESS usage allowed within the contract)

Fig. 2. Generation by technology for each scenario

As seen, a large portion of generation is upheld by the substation.
The three Biomass generators are also used near their maximum capacity since the

DSOowns themand does not need to pay anyone for the respective generation, apart from
the resources. The variation within scenarios depends on the surrounding circumstances,
i.e., negligible PV generation at night requires a different generation pattern, even if there
is much less demand to be met.

The model decides not to install any ESS unit and opts not to add capacity to the
existing buses (31 and 87). Primarily, the ESS in bus 31 is being used to feed the network
(apart from scenarios 12 and 16, which are Fall and Winter at Night). In contrast, the
ESS in bus 87 is being charged in all scenarios, where the third-party owner pays the
DSO for the corresponding quantity (between 9.000 m.u. and 10.000 m.u., as seen in
Fig. 3.

This study could be translated into other networks,with only someminor adaptations,
along with the required input changes, meaning that it is versatile in terms of application.
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The optimization model is formulated in such a way that it is universal to any network
as long as the input data is known.

Fig. 3. Remuneration for each technology in each scenario

The final network is shown in Fig. 4. Themodel opts not to use some lines previously
on the network, such as 82–174. It also opts to add some new lines and a new connection
to the feeder, where the respective costs for the transformer and connectors and the
respective maintenance were considered (1–102).

Since the primary purpose of this model is to reduce the total costs for the DSO, a
detailed analysis of the total expenses is made in Table 6.

An economic evaluation was also made to understand how valuable the model is, by
evaluating the economic indicators NPV, Payback, and IRR, as previously mentioned,
and it is shown in Table 7. The consideration for biomasses and ESS in this network,
especially when the DSO owns them, aid the model tremendously economically since
the generation needed to meet the demand can come from several places, allowing the
model more options. If there were no biomasses, all the generation coming from them
would need to be compensated by the substation, resulting in higher EENS and power
loss costs derived from the distance the power would need to travel.

The model is economically advantageous compared to the original network, with
a relatively short Payback (3,02 years) considering the size of the problem and the
investment made.

The economic analysis was conducted based on [17, 30, 31].
The main contributors to the model’s total cost are the maintenance of lines, as

aspected due to the network dimension and the considered project lifetime (30 years).
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Fig. 4. Optimal Network Topology (Original Network Adapted from [17])
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Another strong contributor to the total cost is the amount of power supplied by the
substation (the most significant contributor to feeding the grid).

Table 6. Total listing of costs for the current model

Investments Lines (Including Transformer Cost) 1 257 600 m.u

ESS 400 000 m.u

Total Investments 1 657 600 m.u

Expenditures Excessive Generation 26 887 m.u

Power Losses 556 580 m.u

Expected Energy Not Supplied (EENS) 1 280 487 m.u

Lines Maintenance 8 564 554 m.u

ESS Maintenance 1 203 755 m.u

Total Expenditures 11 632 263 m.u

Total Network Planning Costs 13 289 863 m.u

Remuneration (Yearly) Substation 5 258 321 m.u

Biomass 389 621 m.u

Wind 585 655 m.u

PV 390 621 m.u

Storages −157 169 m.u

Total Remuneration Associated Costs 6 467 049 m.u

Total Costs 19 756 912 m.u

Table 7. Economic evaluation of the proposed model

NPV 14 699 358 m.u

Payback 3,02 years

IRR 33,16%

Regarding the study of the percentage of ESS that is contracted to be available to the
DSO, it was found that there was a very slight decrease in total cost from 25% to 50%
availability. Still, assuming that the contract would also be costlier with an increase in
percentage access, 25% seems to be the adequate balance to choose from the DSO in
this situation. This essentially means that the amount used of ESS does not change with
the accessible percentage, meaning that 25% is enough for the current model.

The failure indicators SAIDI and SAIFI end up at 19,23 h/customer and 2,94
interruptions/customer, respectively.
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5 Conclusions

Ourworld is rapidly shifting toward a clean future, but despite it being necessary, it brings
a plethora of issues to address. The uncertainty correlated to RES results in forecasting
errors, and a low network flexibility to correct those errors calls for meticulous planning
of the network, where it is crucial to consider potential uncertainties correlated to these
Wind, PV, and Load values. It is also increasingly needed to study the effects of storage
devices since they are seen as a way to allow the network to be more flexible by being
dispatchable with immediate effect when needed.

Since our current landscape is shifting toward using more RES, naturally, these
resources must be remunerated appropriately. Many current networks are seeing an
influx of electricity generation frommany directions derived from network contributors,
who need to be appropriately reimbursed. Our proposed model is not only appealing
economically by optimizing all aspects of the network, such as line placement but is
also fair regarding remuneration. With a Payback of 3,02 years and an IRR of 33,16%
we can see that we improve the network drastically, especially since the original was
not efficient in its topology. The addition of biomass generators and ESSs also proved to
be tremendously beneficial, especially regarding the decrease in power loss and EENS
related costs, but it also proved to help improve the SAIDI and SAIFI by 21,45% and
50,84%, respectively.

According to the findings of this paper, it is recommended that all modern network
planning works consider the remuneration aspect, since it accounts for a significant
portion of associated costs, and, as such, must not be ignored.

The present approach is limited in regards to computational time, since it is a
significant burden, and also by not yet considering risk assessment.

The current plan is also to implement risk assessment in future work to allow our
model to prepare for extreme situations regarding either generation or load, and also
multi-period investment.
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Abstract. Demand response (DR) programs have received significant
attention with proliferation of smart meters and increasing need for
demand-side flexibility to complement the growing share of renewable
generation. A critical element in DR program is the consumer selec-
tion; adhoc selection of consumers may not yield any tangible results in
actual deployment. Clustering on features derived from smart meter data
has shown potential for facilitating the consumer selection for DR. This
paper furthers the understanding of this approach by looking at issues
associated with the clustering process. Specifically, the paper identifies
the problem of defining characteristic profiles for consumers exhibiting
multiple consumption patterns. The characteristic profile is a key ele-
ment for clustering as well as for evaluating behavior consistency. A new
method for extracting characteristic profile is presented and metrics for
consistency in consumption patterns are redefined. We also propose sev-
eral useful attributes to quantify the peak load contributions associated
with a consumer cluster. We apply the proposed techniques to Dataport
smart meter data to bring fresh insights on clustering techniques that seg-
regate consumers based on their consumption and behavioral patterns.
We demonstrate how clusters formed using our proposed definition of
characteristic profile show bettering clustering consistency. Our results
also show how the proposed consistency metrics and peak attributes are
useful for capturing the consumer predictability and peak contribution
for a more meaningful DR program design.

Keywords: Clustering · Consumer consistency · DR consmumer
selection · Peak contribution

1 Introduction

With increased deployment of renewable generation, demand-side flexibility is
not just a means to improve electricity market competition but also a source
of ancillary services to manage the impact of intermittent renewable power out-
puts [21]. Last few years have witnessed several demand response (DR) success
stories, with most significant demand side flexibility potential demonstrated by
curtailment services from commercial and industrial demand segments. Residen-
tial loads typically contribute to 25 to 35% of the system load [9] and have also
shown promising potential for DR. For example, Austin Energy in Texas, US,
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reported savings of roughly 2.25 million US dollars in avoided generation costs
due to all its residential DR programs combined [29]. Therefore, a careful con-
sideration of residential DR is necessary for effective system load management.

Residential demand segment typically has large number of consumers and
constitutes the largest connected load in any grid. Therefore, it is a vital com-
ponent of the system supply-demand analysis and effective load management
for this segment via tariff design and/or pricing- and curtailment-based DR is
necessary for a well functioning system. On the one hand, electricity costs may
actually matter more to some residential users as compared to industrial con-
sumers, making them ideal candidates for pricing-based DR schemes. On the
other hand, residential users may not have adequate backup unlike industrial
and commercial consumers making them more likely to ignore DR curtailment
events. Finding the right DR scheme for a residential consumer thus becomes a
challenging problem.

Targeting the residential users for DR programs based on pricing schemes
and/or curtailment incentives is complicated by two factors. First, the number of
consumers being large allows for many sub-optimal choices. Second, the response
of consumer(s) can vary widely. The review of several practical implementations
of time-of-use (TOU), critical peak pricing (CPP) and real time pricing (RTP)
programs in [8] precisely emphasizes these two challenges. In this paper, we
address them by proposing data analytics that leverage the advanced metering
infrastructure (AMI) being deployed in many countries around the world. AMI
facilitates access to smart meter data that can be used towards a meaningful
analysis of consumer behavior and allow for a more effective consumer targeting
for specific DR schemes.

The problem of consumer classification and/or selection for DR programs
using their smart meter data has received increased attention in academia. Sev-
eral papers use the data to partition the residential consumers into various groups
based on commonalities in appliance ownership or similar high consumption pat-
terns or coincidence in time of use of specific appliances so that these groups can
be targeted for more effective DR program design. For instance, contributions
of individual consumers to system peak can be used for cluster identification [2].
Likewise, the thermal sensitivity of the consumer demands can be characterized
and deployed for identifying potential candidates for DR [1]. The grouping itself
can be achieved using various clustering/classification techniques as seen in liter-
ature – references [10,28] review several such methods. These include hierarchical
techniques (see [6,19]), centroid-based methods such as k-means and k-medoids
(see [16,17]), density-based approaches (see [14]) and model-based methods (see
[27]).

In several clustering schemes mentioned above, consumer clusters are iden-
tified based on their representative or characteristic load profiles. Such profiles
can be extracted by averaging the daily load profiles of the consumers (see [7])
or averaging consumer load profiles of certain weekdays to avoid effect of week-
end and holidays (see [15]). Then, clustering consumers based on such profiles
can be implemented taking into consideration the specific DR program in mind
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[26]. For instance, clustering can be implemented for peak load and energy loss
assessment [5] and DR participant selection [12] as well as design of pricing-based
DR program [18] and incentive-based DR program [13]. Since the clusters are
based on the similarities among the characteristic load profiles of the constituent
consumers, the definition of a characteristic load profile should be carefully con-
sidered.

A consumer may exhibit multiple consumption patterns owing to weekends,
vacation, variable cleaning schedules, climatic changes, etc. Multi-profile con-
sumers may be defined as a consumers who exhibit multiple consumption pat-
terns – a systematic treatment of such consumers for characteristic load pro-
file definition and clustering applications is missing in the current state-of-art.
This paper proposes a new definition for the characteristic load profile of the
multi-profile consumers – it is defined as the weighed average of the consumer’s
multiple profiles instead of the traditionally used mean profile. The weights for
the same are computed as the degree of repeatability of the characteristic con-
sumption pattern. It is noted that this adaption ensures that the characteristic
profile remains close to the repeatable consumption pattern and improves the
consistency quantification for the consumer.

Literature on clustering for DR using smart meter data often focus on improv-
ing adequacy measures or similarity index values, which may not be adequate
from DR viewpoint. A utility implementing DR among its residential consumers
may prefer to rely on consumers with fairly consistent consumption patterns if
curtailment contracts are to be offered. In case of a group engaging in such con-
tract, the consistency based inference for clustered consumers may be of interest
to the said utility. Additionally, quantitative measures that capture the contri-
bution of the cluster towards system peak and correlation of cluster aggregate
consumption with system peak may be useful for quantifying the DR potential
of the group. This paper provides quantifiable metrics for consistency and peak
demand contribution so that clustering techniques can be re-examined from the
DR application point of view.

The quantification of consistency of consumer helps to understand the pre-
dictability of consumer [23]. There are few attempts made in literature to quan-
tify consistency. In [12], consistency is quantified using threshold K-means and
entropy metrics. However, it requires meta data and is sensitive to threshold
value and type of clustering algorithm used. A consistency score suggested in
[23] uses average load profile of an consumer – the usual choice of characteristic
profile as per [7,15] – and the standard deviation around it, but it is highly
sensitive to outliers or abnormalities. More importantly, the algorithm design
penalizes any ephemeral load variation in the consumption profile and pro-
duces a reduced consistency score for the consumer despite of the profile being
mostly consistent across the time series. On the contrary, the consistency metric
proposed in this work explicitly take into consideration multi-profile behavior
of consumers by explicitly considering variations around the weighted average
characteristic profile. The approach is thus better suited to capture consistent
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weekday/weekend/holiday patterns. We also define consistency of a cluster to
quantitatively demonstrate its reliability for DR targeting scheme.

Peak demand action can prove to be decisive in relieving grid overload if
consumers contributing to the system peak are targeted for DR participation
[20]. Hence, clustering and peak analysis has been used for system peak load
assessment in [5]. But these approaches do not use peak attributes such as coin-
cidence and correlation to assess the impact of consumer cluster on system peak
reduction. This paper extracts peak attributes and correlation values of a con-
sumer cluster in relation to system load and peak. These attributes allow the
utility to identify conforming and non confirming group/cluster of consumers
so that appropriate consumer clusters can be targeted for peak curtailment or
load shifting DR schemes. The paper discusses how the attributes can be derived
from data post processing after cluster identification. This provides a compre-
hensive treatment for the consumer selection problem by including the practical
feasibility into clustering-based DR consumer selection approach.

In summary, the paper makes following contributions to the problem of clus-
tering for DR consumer selection:

1. Defining the characteristic profile for multi-profile consumers: we show how
clustering results vary considerably with such modeling.

2. Devising cluster consistency and consumer cluster reliability metrics for clus-
ter selection for DR: the metrics explicitly consider multi-profile behavior.

3. Proposing peak coincidence and peak contribution metrics: we discuss how
clusters can be selected for DR based on these attributes.

In what follows, we present our analytics, results and concluding remarks.

2 Materials and Methods

A simple, linear methodology is adopted in this paper: data pre-processing, con-
sumer clustering and post-processing for cluster attributes. The data cleaning
and structuring steps involved in pre-processing stage, the analytics for consumer
clustering and the computation of the consistency metrics and peak attributes
for the clusters in the post processing stage is described in the following sub-
sections.

2.1 Data Pre-processing

Data pre-processing is foremost step in any data-driven analysis that ensures
data compatibility and deals with missing data. In the context of this paper,
this step is divided into data import, data cleaning, missing data replacement,
data structuring and data visualization and exploration.

Data Cleaning, Missing Data and Outlier Replacement: For the Data-
port smart meter data used in our casestudy, we use the Savitzky Golay filter
[24] to filter any high frequency noise in the consumption data. Missing data
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is replaced using exponential smoothing and seasonal auto regressive integrated
moving average (S-ARIMA) forecasting [3] for three and more than three con-
secutive missing data respectively. Outliers in daily consumption profiles are
detected using bands whose limits are formulated based on time and frequency
domain approaches by utilizing three mean absolute deviation and median abso-
lute deviation respectively. Any consumer profile that violates the outlier detec-
tion band is tagged as outlier. Furthermore, outlier profile tagged for any day
consumer is then replaced by its mean consumption profile.

Data Structuring and Extraction of Characteristic Profile: The filtered
data is indexed by the consumer id, day and time interval for consumption.
Specifically, the term P d

n(t) is used to denote the consumption of the nth con-
sumer during the tth interval of dth day. Here, n ∈ {1, 2, . . . , N}, d ∈ {1, 2, . . . ,D}
and t ∈ {1, 2, . . . , T}, with N being the number of consumers, D representing
the total number of days for which data is available and T denoting the number
of intervals per day for which the data is reported by the meter. The data struc-
tured in this format is the processed to extract the characteristic profiles for the
consumers.

A key step in extracting characteristic consumption profile for any consumer
is identifying how many representative consumption patterns he exhibits. In this
paper, gap evaluation criterion and basic K-means clustering are used to extract
this information. Specifically, the number of clusters of a consumer’s daily con-
sumption profiles for which maximum gap evaluation is achieved are considered
to be number of characteristic profiles for that consumer [25]. To avoid over
partitioning, the maximum number of characteristic profiles for any consumer is
restricted to K. The optimal choice for K is derived by help of gap evaluation
criteria and visualized using dendrogram for hierarchical clustering [11]. The
same can be achieved using gap evaluation criteria and Davies Bouldin index
[4].

K-means is used to assign θknd ∈ {0, 1} to the daily consumption profile of
the nth consumer for the dth day. This classification is then used to extract the
characteristic consumption profile

{
CP

k

n (t) : t = 1, 2, . . . , T
}

as shown as:

CP
k

n (t) =
∑D

d=1

(
θknd ∗ P d

n(t)
)

∑D
d=1 θknd

for k = 1, . . . K . (1)

The probability of consumer n exhibiting the kth pattern is calculated as

πk
n =

∑D
d=1 θknd
D

, (2)

while the mean absolute deviation for this pattern in the tth interval is calculated
using

MADk
n(t) =

∑D
d=1

∣∣∣(θknd ∗ P d
n(t) − CP

k

n (t)
∣∣∣

∑D
d=1 θknd

. (3)
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The metrics πk
n and

{
MADk

n(t)
}

are statistical measures of the repeatability
of the consumption patterns for consumer n. Knowing the distribution of the
K patterns, the characteristic profile for the multi-profile consumer n can be
constructed as

ĈPn(t) =
K∑

k=1

CP
k

n (t)πk
n . (4)

The profile expressed by Eq. (4) is indeed representative all the K profiles poten-
tially exhibited by consumer n and hence is a more suitable feature to represent
his consumption behavior. The results presented in the following section further
expand on this concept.

2.2 Clustering Algorithm

The characteristic profiles for the N consumers derived in Eq. (4) are used to
cluster them into c classes. Since any clustering algorithm such as K-means or
hierarchical may be used, clustering process itself is treated as a black box here.
It is modelled as a set of membership vector Mn for nth consumer where

Mn = [mn1,mn2, ......mnc] (5)

with mnx ∈ [0, 1] and
c∑

x=1

mnx = 1 . (6)

Note that for the hard partitioned clustering schemes like k-mean, k-medoids and
hierarchical clustering algorithms, the membership value is discrete such that
mnx ∈ {0, 1}. The cluster id for consumer n is denoted as θn and determined
using

θn = argmaxx(mnx) . (7)

After all consumers are clustered, the mean consumption profile for cluster x,
denoted by {Cx (t)} is obtained using

Cx (t) =
∑N

n=1 mnxĈPn(t)∑N
n=1 mnx

for t = 1, 2, . . . , T . (8)

2.3 Data Post Processing

The clusters formed are analyzed to quantify the consistency of the consumer
groups. Quantification of peak attributes is also undertaken to determine how
useful clusters may be for specific DR schemes.

Consistency Attributes: The consistency metric proposed herein for a con-
sumer is a measure of regularity with which a consumer follows a certain con-
sumption profile over a time series. The mean absolute deviation for consumption
pattern k, k = 1, . . . ,K defined in Eq. (3) is used to formulate upper and lower
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bounds so that a metric fk
n(s) can be defined to measure the bound violation for

sample s ∈ {
1, 2, . . . , Sk

n

}
and thus measure bound consistency BCk

n as shown:

TUBk
n(t) = CP k

n (t) + h × MADk
n(t) (9)

TLBk
n(t) = CP k

n (t) − h × MADk
n(t) (10)

fk
n(s) = 0 if TLBk

n(t) < P dk
n (t) < TUBk

n(t) else 1 (11)

BCk
n =

⎛
⎝Sk

n −
Sk
n∑

s=1

fk
n(s)

⎞
⎠ /Sk

n (12)

Here, the variable h used in definition of lower and upper bounds TLBk
n(t) and

TUBk
n(t) takes value 1, 2 or 3 as desired to signal as the number of standard devi-

ations around the mean to be considered. Then, the overall bound consistency
for the consumer is computed as

E (BCn) = BC1
nπ1

n + .... + BCK
n πK

n . (13)

The reliability of a cluster is denoted by RCx: it is a measure of the aggregate
bound consistency of all the consumers in it and is formulated using E (BCn)
and mnx as follows:

RCx =
∑N

n=1 mnx · E (BCn)∑N
n=1 mnx

, (14)

RCM =
∑x=c

x=1(RCx

∑N
n=1 mnx

c
. (15)

The second metric RCM is the overall reliability of clusters metric that averages
RCx across all clusters.

Another consistency measure termed as consumer cluster consistency is
devised to clock the regularity with each consumer profile is clustered in its
respective cluster. The daily profiles of N consumers were clustered for D days
to compute instance of nth consumer categorization in cluster θn. The cluster of
consumer to be selected for any DR opportunity can be achieved using CCx

n for
xth as shown in Eq. (17).

Ux
n = (Tp − Npx) /Tp (16)

CCx =
∑N

n=1 Ux
n∑N

n=1 mnx

(17)

CCM =
∑x=c

x=1(CCx
∑N

n=1 mnx

c
(18)

where Tp is the total number of consumer profiles for which consistency is quanti-
fied and Npx are the total number of consumer profiles not classified with cluster
x. In other words, it is ratio of consumer profiles associated with the specified
cluster id to total number of consumer profiles. These attributes allow utility to
select fairly consistent consumers or cluster(s) for DR.
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Peak Association Attributes: Peak association attributes are extracted in
reference to aggregated system profile peak or the peak that would interest DR
programs. Traditionally, peaks are defined as highest value of curve. This paper
use the definition of peak prominence as the minimum vertical distance that the
signal must descend on either side of the peak before either climbing back to
a level higher than the peak or reaching an endpoint. This paper defines the
peak width as length of half prominent peak vector. Hence, peak attributes are
specified as PAy

x := (Peakmy
x, P eakwy

x, Sy
x , Ly

x)), where Peakmy
x and Peakwy

x

are peak magnitude and peak width associated with half prominent peak respec-
tively for yth peak of cluster aggregate CAx (t) while Sy

x and Ly
x are start and

end time stamps of the peak detected. The peak detection uses the findpeaks()
function of Matlab with half peak prominence notion.

The definition of critical peak employed in the proposed framework is based
on prominence of the highest peak for the aggregate system profile {A(t)}, which
can be computed from the cluster aggregate profile {CAx(t)} as shown:

CAx (t) =
N∑

n=1

mnxĈPn(t) , (19)

A (t) =
c∑

x=1

CAx (t) . (20)

The critical peak period is assumed as width of half prominent peak for the
system profile as shown in the Fig. 1. We use notation Coiny

x and POy
x to denote

the coincidence and offset of the yth peak of the aggregated cluster consumption
pattern {CAx(t)} with that of the critical peak of the system aggregate profile
{A(t)}. If lcyx represents the length of cluster aggregated peak that coincides with
system peak and lay

x is total length cluster peak that includes the coincidence
interval and the offset, then

Coiny
x = lcyx/lay

x , (21)
offsetyx = ± (1 − lcyx/lay

x) . (22)
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Here, POy
x takes negative values if cluster peak ends after the aggregated profile

peak ends and it takes positive values if cluster peak starts prior to aggregated
peak. However, if cluster peak starts as well as ends before (or after) the aggre-
gated peak POy

x takes positive values. Maximum peak per consumer in a cluster
x is denoted by MCy

x and determined using

MCy
x =

Peakmy
x∑N

n=1 mnx

. (23)

The cluster correlation Corrx is given by

Corrx =
R

∑
A(t)CAx(t) − ∑

A(t)
∑

CAx(t)√
[R

∑
(A(t))2 − (

∑
A(t)2][R

∑
CAx(t)2 − (

∑
CAx(t))2]

(24)

where R is number of pairwise distances. Conforming cluster may be defined
as a cluster that has high Corrx with the aggregated consumption pattern and
high value of Coiny

x. Whereas, POy
x quantifies a degree with which a consumer

is non confirming.

3 Results and Discussion

This section discusses the application of methodology developed in the preceding
section to the Dataport smart meter data set [22] as a case study for DR program
design. The data consists of aggregate, appliance level and circuit level power
consumption for 722 houses in US, including residential single family houses,
apartments and mobile vehicles. We only use the data set for residential single
family consumers over the course of one year (2014). The analysis discussed here
does not use device or circuit level consumption pattern to ensure that proposed
methodology remains generalized and is not constrained by intrusive data sets.

The results presented here highlight the impacts of data pre-processing such
as normalization. Also, the insights that can be drawn from the clusters formed
using hierarchical, k-means, k-medoids and SOM clustering are also discussed.
In particular, the metrics proposed in the data post processing described in the
preceding section are applied to formulate our inferences.

3.1 Effect of Normalization on Clustering Techniques

Since the data analyzed in this paper did not exhibit any trends or noise, detrend-
ing and filtering are not discussed in detail here. We only discuss data normal-
ization, which aims at reducing data redundancy and leads to assignment of
equal weights to all the features. Normalization is typically used in multi-feature
clustering since algorithms based on distance measures are highly sensitive to
magnitude variations among different features. However, in case of time series
clustering of consumer consumption patterns, the role of normalization is debat-
able. Using normalized consumption patterns may lead to consumer clusters
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which show similar consumption times and are hence useful for TOU-, CPP-
based DR schemes. Alternately, clustering on actual consumption pattern leads
to grouping of consumers with similar magnitudes of power usage that may be
helpful for peak rebate type DR programs. We compute the Silhouette score for
clusters achieved by different techniques with and without normalization in Table
1. The mean cluster mean profiles {Cx (t)} extracted using the four techniques
with and without normalization are shown in Figs. 2 and 3.

Table 1. Effect of normalization on clustering performance

Silhouette Score K-means K-medoids HC SOM

With normalization 0.37 0.38 0.58 0.47
Without normalization 0.31 0.47 0.58 0.29
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Fig. 2. Cluster mean profiles using normalization

It is evident from the Table 1 and the plots in Figs. 2 and 3 that the cluster
mean profiles are sensitive to normalization. For instance, SOM and K-medoids
performance vary drastically owing to normalization when compared to effect of
normalization on performance of classical K-means and hierarchical clustering.
Note that all the results and comparisons portrayed in later sections (unless
specified) are presented for the hierarchical clustering technique as it was least
affected by normalization and outlier for our database.

3.2 Demographic of Multi-profile Consumers

Three distinct characteristic profiles exhibited by a multi-profile consumer are
shown in Fig. 4. Figure 5 shows a histogram of distinct characteristic profiles
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Fig. 3. Cluster mean profiles without using normalization
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Fig. 4. An example of multi-profile consumer having 3 distinct profiles

exhibited by 100 consumers randomly selected from the Dataport data set. It
shows that the number of consumers exhibiting more that two distinct profiles
is considerably large. This implies consideration of profiles beyond the weekday-
weekend distinction.

Failure to consider the multi profile consumer may introduce skew in results,
particularly while capturing consumer consistency and cluster consistency. This
is shown in Table 2, where the comparative analysis of reliability and consistency
metrics for clustering with the traditional and proposed characteristic profile
are tabulated. The proposed characteristic profile registers higher RCM and
CCM values as compared to the scores for the profiles proposed in [7] and [15].
Moreover, comparison of characteristic bound violation instance 2.38 times and
1.95 times for [7,15] when compared to that for the proposed ĈPn. This is a
clear indication of the suitability of ĈPn for multi-profile consumers to reduce
risk of erroneous prediction and estimation.
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Table 2. RCM and CCM comparison for various characteristic profile extraction

Characteristic Profile RCM CCM

Averaged daily [7] 0.631 0.621
Averaged weekday [15] 0.642 0.591
Proposed ̂CPn 0.719 0.702

3.3 Cluster Correlation and Peak Contribution

In order to evaluate the identified clusters from point of view of DR implemen-
tation, we compute the peak attributes defined in Sect. 2.3 for each cluster: the
values are tabulated in Table 3. Recall that the peak identification adopted in
this paper is portrayed in Fig. 1. The metrics tabulated below are computed by
comparing the peak coincidence and correlation of the cluster aggregate profiles
CAx’s with the system aggregate profile A shown in Fig. 6.

Table 3. Cluster-wise Peak Contribution metric

Cluster
(x)

Peak Per
Consumer
(MCy

x)

Correlation
(Corrx)

Peak
Coincidence
(Coiny

x)

Offset
(POy

x)

1 2.22 0.70 1.00 0.00
2 1.21 0.37 0.00 +1.00
3 1.96 0.67 0.42 +0.57
4 1.55 0.97 1.00 0.00
5 1.47 0.83 0.90 −0.10
6 1.44 0.46 0.92 −0.07

Peak contribution metric helps enhancing the usefulness of clustering results
for its employment for targeting cluster DR schemes. For instance cluster 1 and
4 would be highly appropriate targets for system peak reduction effort owing to
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high correlation and peak coincidence. However cluster 2 and 3 may be used for
load levelling scheme by contributing load during peak off periods but might not
be effective targets for CPP or peak rebate based schemes.

Fig. 6. Critical Peak Coincidence for all CAx

3.4 Reliability and Consistency of a Cluster

Despite of encouragingly high correlation and peak coincidence of the cluster
it is probable that the consumer identified by the cluster may not be having
consistent profile or the consumer may vary its profile largely from identified
cluster mean profile(s). Hence it is necessary to get a notion of consistency of
consumer and reliability of a cluster. Such attributes would provide assurance to
the utility about DR selection in terms of planning and consumer consumption
behavior prediction. A comparison of cluster consistency and reliability under
various clustering techniques is given in Tables 4 and 5 respectively. We note
that hierarchical clustering has comparable or higher values of RCx as well as
CCx. SOM has partially high and low values of RCx and CCx, whereas k-
medoids has comparative lowest value of RCx and CCx. Classical K-means also
has comparably higher values of RCx and CCx.

Table 4. Cluster Consistency Vs Clustering Techniques

Clustering
Technique

Cluster Consistency CCx

x=1 x=2 x=3 x=4 x=5 x=6

K-means 0.77 0.49 0.65 0.70 0.42 0.73
K-medoid 0.76 0.54 0.59 0.66 0.57 0.83
Hierarchical 0.74 0.59 0.72 0.68 0.60 0.89
SOM 0.81 0.43 0.73 0.61 0.55 0.74
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Table 5. Cluster Reliability Vs Clustering Techniques

Clustering
Technique

Cluster Reliability RCx

x=1 x=2 x=3 x=4 x=5 x=6

K-means 0.83 0.61 0.73 0.78 0.48 0.73
K-medoid 0.81 0.52 0.57 0.71 0.55 0.69
Hierarchical 0.87 0.58 0.81 0.75 0.51 0.90
SOM 0.80 0.69 0.75 0.82 0.39 0.89

3.5 DR Impact Assessment

The DR impact of a cluster is assessed by integration of attributes from peak
contribution, reliability and cluster bound consistency to give a clear notion of
how the consumer cluster can be exploited DR. The attributes for all clusters
are presented in table 6.

Table 6. DR Impact Matrix

Cluster Consistency
Attributes

Peak Attributes

x CCx RCx MCy
x Corrx Coiny

x POy
x

1 0.74 0.87 2.22 0.70 1.00 0.00
2 0.59 0.58 1.21 0.37 0.00 +1.00
3 0.72 0.81 1.96 0.67 0.49 +0.51
4 0.68 0.75 1.55 0.97 1.00 0.00
5 0.40 0.51 1.47 0.83 0.93 -0.07
6 0.89 0.90 1.44 0.46 0.89 -0.11

We note that cluster 1 can be inferred as conforming cluster owing to high
Corr and Coin values. The cluster reliability and consistency are also compara-
ble with other clusters, which suggest that this cluster can be handy selection for
any peak pricing or consistent forecast based DR schemes. On the other hand,
cluster 2 has exact contradictory values of DR impact attributes, which brands
it a potential consumer for load levelling and off-peak rebate DR schemes. It
can be inferred from cluster 3 attributes that it has lesser peak coincidence and
peak offset value suggest that it tends to consume early peaks and hence can be
potentially utilized in peak shifting DR schemes. It may not hamper consumer
comport largely as cluster 3 inherently tend to consume early peaks. Interestingly
cluster 5 despite having lower consistency attribute values has high coincidence
and is a conforming cluster, but it shall serve as low priority option to cluster
1. Cluster 6 is a conforming cluster with high values of consistency attributes
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with fairly high coincidence but low correlation. This ensures that despite less
correlative consumption pattern cluster 6 contributes to the peak period and
hence can be used for consistent forecast, peak as well as off peak based DR
schemes.

To further identify suitable DR strategies for each cluster, the profiles iden-
tified in Fig. 6 can be considered in conjunction with the above metrics. For
instance, the consumers exhibiting conforming mean cluster profiles CA1 and
CA6 with high CCM,RCM and MCy

x values seem well suited for peak load
curtailment programs like CPP or peak hour rebates. Whereas, the consumers
in the second cluster with low CCM and high RCM can be incentivized for appli-
ance scheduling/load shifting via TOU pricing. Consumers in clusters 3 and 4
exhibiting profile CA3 and CA4 with high CCM and low RCM are best suitable
for behavioural change. Lastly, the consumer profile CA5 with low CCM and low
RCM should be avoided due to its poor predictability.

4 Conclusion

The issue of consumer selection for DR programs is critical to ensure that pric-
ing schemes are effective and curtailment contracts are exercised when needed.
This paper takes a detailed look at clustering schemes applied to address this
issue. A key contribution of this paper is the notion of multi-profile consumers
which leads us to propose several new definitions for characteristic consumption
profiles, consumer consistency, cluster consistency and consumer cluster reliabil-
ity. Consumers having higher consistency scores are considered more predictable
and the same viewpoint is adopted for clusters to guide DR participant selection.
Additionally, attributes such as peak coincidence and peak contribution of the
cluster are introduced to provide insights on which specific DR schemes may be
suited for a cluster.

This paper allows utility to leverage the smart meter data in an effective
manner to aid DR program design. However, this work ignores the use of meta-
data which may also provide valuable insights and validate the selection. How to
use available meta-data as well extract it (partially or fully) from the available
metered data is a future line of work we intend to pursue. Additionally, clustering
process itself may be re-looked to get more meaningful consumer groups. Finally,
we note that the metrics CCx and RCx quantify the confidence for a given
consumption profile and hence may be used for risk assessment. We intend to
explore this in the context of different DR implementations in future work.
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Abstract. The growing popularity of e-mobility, heat pumps, and
renewable generation such as photovoltaics is leading to scenarios which
the distribution grid was not originally designed for. Moreover, parts of
the distribution grid are only sparsely instrumented, leaving the distri-
bution system operator unaware of possible bottlenecks resulting from
the introduction of such loads and renewable generation. To overcome
this lack of information, we propose the use of widely available smart
home devices, such as smart plugs, for grid monitoring. We detail the
aggregation and storage of smart plug measurements for distribution
grid monitoring and examine the accuracy of the measurements. A case
study shows how the average monitoring error in a distribution grid
area decreases the more measurement devices are installed. Hence, sim-
ple smart plugs can help with distribution grid monitoring and provide
valuable information to the DSO.

Keywords: Smart Grid · Distribution Grid Monitoring · Smart Home
Measurement Device

1 Introduction

1.1 Motivation

With new loads such as electric vehicle (EV) chargers and new generators such as
small PV systems, the demands on the grid are changing rapidly. For example,
the distribution grid can only accommodate a certain amount of photovoltaic
generation without violating regulatory constraints (hosting capacity [10,23]).
Other challenges include the optimized control of distributed energy resources
(DER), such as controllable heat pumps or schedulable electric vehicle charging
infrastructure, as well as demand-side management (DSM) of smart household
appliances. As a result, it is essential that the distribution system operator (DSO)
has comprehensive and up-to-date measurement data from the distribution grid.
However, the adoption of smart distribution grid infrastructure to monitor the
live state of the grid or detect bottlenecks is slow [7]. Many old network infras-
tructures are still in use. It is neither monitored nor equipped with the necessary
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communication infrastructure, and upgrading the infrastructure is costly and
time-consuming. Key components in the distribution grid such as transformers
and cables, have a life expectancy of about 35 years [6], and monitoring the state
of the grid with such old equipment is therefore a challenge. However, smart
home devices are becoming increasingly popular. In the US, 35.8 % and in the
EU, 23.0 % of households had smart home systems installed in 2021 [21]. Smart
plugs can turn power outlets on and off remotely, and some smart plugs also
include hardware to measure the power consumption of the connected device
and the line voltage of the socket outlet they are plugged into. We hypothesize
that sufficiently accurate grid monitoring is possible with the use of smart plugs
as measurement devices. This raises two further research questions: What is the
accuracy of the measurements and can the accuracy be further improved with
software modifications tailored to the voltage measurements?

The contributions of this paper are as follows:

1. It is shown that the measurement inaccuracies of the widely available smart
plugs are low enough to be comparable to other distribution grid measurement
devices.

2. It is demonstrated how a modified firmware can increase the measure-
ment accuracy and frequency, and the firmware version is released as open
source [30].

3. A case study is presented to outline the practicality of using distributed and
non-calibrated measurement devices for distribution grid monitoring.

The paper is organized as follows: Sect. 2 summarizes related works on distri-
bution grid monitoring, the development of measurement devices, and the secure
communication with Internet of Things (IoT) devices. The method for selecting
a type of smart plug to measure voltages and analyzing the data is presented
in Sect. 3. The measurement error of the smart plugs with an unmodified open
source firmware as well as with a firmware version tailored for voltage measure-
ments is evaluated in Sect. 4. Section 5 presents a case study that illustrates a
realistic use case for distribution grid monitoring using smart plugs. The case
study is conducted using a grid simulation and a simulation of the smart plugs
with the same measurement error as the real devices shown in the evaluation.
The results of the case study and the practical applicability of this research are
discussed in Sect. 6, followed by a final conclusion in Sect. 7.

2 Related Work

2.1 Distribution Grid Monitoring

To assess the state of the distribution grid, several articles identify accurate
voltage measurements at different nodes in the distribution grid as an important
prerequisite [3,10]. The p.u. (per unit) value describes the factor between the
real voltage and the nominal voltage. There are different standards that define
the minimum and maximum p.u. values for different countries. For example,
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the EN-50160 standard specifies a p.u. of 0.9 to 1.1 as the permissible voltage
variation. Therefore, to evaluate the hosting capacity for PV systems in a part of
the distribution grid, the minimum and maximum p.u. levels that occur within
a predefined period of time need to be known, and thus voltage measurements
are needed.

2.2 State of the Art

In the past, the lack of measurement hardware in the distribution grid led to the
exploration of simulations based on sparse measurement data and pseudo mea-
surements [1,8,24]. Others have increased the observability of the distribution
grid by integrating smart meter data into a state estimation [2,15,16,36]. This
enables the generation of a forecasts [25,26] or the detection and localization
of faults in the grid [4,35]. Furthermore, network topology reduction techniques
can be applied to carry out a grid state estimation with a limited number of
smart meters [16]. To increase the accuracy of the state estimation in [2], the
unsynchronized measurements of multiple smart meters are filtered and only the
most recent measurements are included. Compared to a state estimation that
assumes all smart meter measurements are recorded at the same time, the pro-
posed method is more accurate [2]. However, the smart meters require a profes-
sional electrician to install, and the majority of meters only take measurements
every 15min [36]. In comparison, the commercially available smart plugs can
be installed by anyone and measure the voltage every second with a modified
firmware.

Leveraging the Advanced Metering Infrastructure (AMI) already present in
the distribution grid saves costs and expenditures at the expense of the timeli-
ness of the data [27], and consequently the accuracy of the grid state estimation
at the present time. The lack of measurement hardware also leads to inaccurate
load modeling of the distribution grid transformer. To calculate load profiles
of the transformer and determine whether new loads could overload the current
hardware, AMI can be included in the analysis [19]. Installing monitoring devices
on all transformers could also solve this problem, but is not cost effective [19].
To improve the grid model and more accurately estimate the transformer peak
load, several other sources of information such as temperature, geographic, cus-
tomer, and facility management data can also be included. The near real-time
optimization of the distribution network with smart grid technology is identified
as a significant improvement for the efficient operation of the grid [19].

A smart plug to monitor voltage and frequency in real-time is designed in [9].
The measured values are sent to a smartphone that is connected via Bluetooth.
The smartphone then forwards the data to a web server. With their implemen-
tation, they demonstrate the feasibility of measuring the voltages at different
points in the distribution grid and estimating the live state of the grid based
on these measurements. The device is considered a working proof of concept for
a low-cost substitute for smart metering hardware, although no measurement
accuracy or time delay is specified. Other authors propose the use of specialized



198 S. Grafenhorst et al.

voltage meters to monitor the state of the grid [3]. They synchronize their mea-
surements and analyze the grid state with load flow simulations based on a series
of snapshots of the grid. Furthermore, the underlying grid model is extended by
learning from the differences between the calculated and measured voltages at
different nodes. In [11], a smart plug is designed for DSM. They develop a soft-
ware that switches the connected load on or off depending on the voltage level
and show that the load peaks are shaved off when the designed smart plugs
are widely distributed in the grid. However, no communication mechanism is
implemented, so the measured values cannot be used for a distribution grid
monitoring. The hardware is also a prototype design that is not commercially
available. To monitor meteorological variables and PV generation, a low-cost
data logger device with LoRa wireless communication is developed in [22]. The
data is sent to the LoRa Gateway by the data logger and forwarded to a MQTT
Broker. The data is stored in the Google Cloud Platform. However, all of these
devices are custom-built and cannot be considered widely available, which hin-
ders widespread adoption.

2.3 Implementation Challenges

When integrating IoT devices into an electrical grid to improve the monitoring
and control capabilities, a major challenge is network security [17]. The potential
number of devices in the grid creates a large attack surface. In addition, critical
infrastructure is dependent on an uninterrupted supply of electricity, and attacks
on the grid infrastructure could result in huge financial and economic losses [17].
Energy infrastructure is therefore a popular target for cyber attacks. Attacks
targeting IoT devices in the electricity grid include Denial-of-Service, Man-in-
the-Middle, and Phishing attacks, whereas the latter two types of attacks being
easier to execute when communications are not encrypted. Therefore, we encrypt
the network communication of the smart plugs in our proposed approach.

An exemplary communication and data management platform is outlined
in [5], which collects measurement data from various devices through a vari-
ety of interfaces. It also adapts the protocols and stores the abstracted data
in a database. The abstraction layer enables the unification of data collected
by measurement devices from different vendors and their evaluation in new
domains. In addition, by integrating multiple interfaces, it is possible to support
multiple versions of software without having to worry about updating inter-
faces and losing support for older versions of software. To promote the reuse of
functionality in [5], auxiliary services are divided into components that are as
small as possible. This approach follows the microservice philosophy. Moreover,
a microservice-based architecture has the advantages of scalability, autonomy,
and rapid deployment of new features [14]. The lightweight technologies that
a microservice relies on accelerate the development and deployment process.
Deployment on servers using containerization leads to great autonomy of individ-
ual services and allows for dynamic allocation of resources [13]. These advantages
also lead to the increasing popularity of containerization of applications [13]. To
make our ICT structure for data collection and aggregation extensible, we decide
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to separate the different services and implement them as microservices. This
allows us to support other vendors and communication channels without com-
promising compatibility with the technologies we already support. For example,
the implementation of a REST API for data aggregation or the support of other
database systems can be realized by implementing independent adapters.

3 Method

Smart plugs are plugs that connect to a Zigbee hub, a LoRaWAN hub, or a
WiFi access point. They consist of an outlet that can be turned on and off by
smartphone apps or a smart home hub. In addition to a relay to control the outlet
and a microcontroller, some smart plugs also contain hardware to measure the
power consumption of the connected device and the line voltage of the socket
outlet they are plugged into. The measurement data is typically sent to a server of
the device manufacturer, allowing customers to monitor the values measured by
the smart device via a web service. However, with suitable firmware, some smart
devices can connect to IoT gateways other than the manufacturer’s server. These
gateways can forward the measured data, packaged into standardized messages,
to a message broker, thus enabling remote monitoring and logging of the voltage
levels and power consumption of connected devices. The data can then be stored
as a time series and be used as input data for grid simulations, or be used in
real-time to detect congestion, faulty hardware, or to control DSM hardware and
distributed generation.
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Fig. 1. Smart plug measurements compared to voltage levels measured by a calibrated
device
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Because these smart home devices are not intended to monitor the grid, the
manufacturers of these devices do not provide data on the accuracy of the energy
measurements. Furthermore, the accuracy and frequency of the measurements
can be modified by modifying the firmware of the smart plugs. We analyze the
measurements of the smart plugs with the unmodified firmware and our modi-
fied version. The difference between the values measured by a calibrated mea-
surement device and the values measured by the smart plugs is reported as the
accuracy of the smart plug. We use the measurements of a Janitza UMG 604EP-
PRO power analyzer as a calibrated reference. The measurement error shall not
include a constant systematic bias, as we are treating this constant measurement
error separately. The measurement error may be due to a change in temperature,
interpolation between two measurement points, or insufficient resolution at some
point in the measurement process. An example is shown in Fig. 1, where the dif-
ference between the calibrated voltage readings and the smart plug measurement
is the measurement error.

In addition, smart home devices may be calibrated differently. Due to man-
ufacturing tolerances and environmental differences between the smart home
devices, the measured voltage and current levels can vary between devices from
the same manufacturer and production batch. We calculate a constant offset bias
for all smart plugs separately and remove this offset for each individual smart
plug in a pre-processing step of the measured values. This calibration step must
also be completed prior to deployment in a live environment.

3.1 Communication Interface

There are several types of smart home devices available. The main difference is
the communication interface available, which can be based on WiFi, LoRaWAN
or Zigbee. All three interfaces have different strengths and weaknesses as can be
seen in the Table 1.

Table 1. Comparison of smart home communication technologies [31]

Protocol Hub needed Data Rate Range

WiFi no high low
LoRaWAN yes low high
Zigbee yes medium medium

For this work, we use WiFi smart plugs. With a customized version of the
Tasmota open source firmware [33], it is possible to collect measurements every
second and send them directly to a MQTT broker. With further modifications, a
slightly higher measuring frequency could be realized, but this caused problems
during practical tests. Compared to the LoRaWAN and Zigbee smart devices,
no hub or gateway device is required other than the WiFi access point. In the
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test environment, access points are already in place, so no additional hardware is
required, making the deployment of WiFi smart plugs the most practical option.
In addition, the higher bandwidth allows for more frequent and comprehensive
measurement data. With the smart plug used for testing in this paper, the mea-
surements are available in the simulation in less than one second.

In general, the data sent over WiFi to an access point is not necessarily
encrypted. However, the smart plugs evaluated in this paper contain an ESP8266
microcontroller that supports the WPA2 encryption standard. This enables the
encryption of the communication between the smart plug and the access point,
which protects the transmission of measurements.

The TLS encryption standard is supported by the Mosquitto MQTT broker
we use, and the Tasmota firmware for the smart plug also includes basic support
for this standard. To enable the ESP8266 to send TLS encrypted packets, a cus-
tom version of the Tasmota open source firmware must be compiled that includes
the very lightweight BearSSL library. Since the smart plugs are configured with
the SSL fingerprint of the MQTT broker and a preshared key, a spoofing attack
in which the attacker impersonates the smart plug and sends malicious or false
data is not trivially possible.

Fig. 2. Network infrastructure between the smart plug and the InfluxDB server

A microservice application is used to subscribe to the MQTT broker. The
application creates the adapter between the MQTT messages and the InfluxDB
server. Incoming measurement data is mapped to specified fields. This architec-
ture also allows for multiple different measurement devices to write to the same
database server, and, in this case, to compare voltage measurements recorded
by different devices. In addition, metadata can be added to the measurements
so that the voltage data is associated with a power phase, a geographic location,
and the manufacturer of the device.
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This infrastructure also enables fast integration of new sensors by developing
new microservices to map the measurement data messages. Should new smart
plugs be introduced that do not support the MQTT protocol, new microservices
can be added to inject data into the time-series database without losing support
for the existing devices. Furthermore, the addition of other database servers for
specific measurement data only requires the development of another microservice
and does not require changes to the existing structures. An overview of the
resulting networking infrastructure is shown in Fig. 2.

3.2 Measurement Hardware

Besides the communication interface, another difference between the smart
plugs is the measurement hardware. Popular energy measurement integrated
circuits (ICs) for smart plugs are the Shanghai Belling BL0937 and the Shang-
hai Belling BL0940 [32]. The smart plugs used for testing in this paper contain
the BL0937 IC. The smart plugs used to perform the tests are numerous Nous
A1T, Gosund SP1 and Shelly Plug S. However, the same measurement hard-
ware is also included in many other smart plugs, so the measurement accuracy
of the plugs is identical. All tested smart plugs share the same measurement
characteristics.

The measurements taken by the smart plugs are compared to the values
measured by a Janitza UMG 604EP-PRO power analyzer. This power analyzer
implements a measurement process according to IEC 61000-4-30 and is connected
to an Influx database via TCP/IP.

4 Evaluation

To evaluate the accuracy of the smart plug voltage measurement, two smart
plugs are installed in the real-world test environment. In our test setup, the
power analyzer is configured to send one measurement value per second. Since
the smart plugs contain the same measurement IC, the difference in the measured
values is only due to the difference between the modified and the unmodified
firmware versions.

First, we analyze the measurements of the smart plug with the unmodified
Tasmota open source firmware [32]. With this firmware, the smart plugs output
voltage measurements with one decimal place. Therefore one could assume that
the error of a measurement is at most 0.1V. However, due to rounding errors in
the unmodified Tasmota firmware, the measurement error is higher. The smart
plug only takes voltage measurements in steps of at least 0.2V, sometimes even
only 0.3V.

In Fig. 3, the measurement error of the smart plug with the unmodified
firmware version is plotted in orange and the measurement error of the smart
plug with the modified firmware is plotted in blue. Since the unmodified firmware
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version outputs one measurement value every ten seconds and the modified
firmware version outputs one value per second, there are exactly ten times as
many measurement values of the modified firmware version in the same time
span. The Y-axis values are relative to the total number of measurements.
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Fig. 3. Relative frequency histogram of the measurement error of smart plugs with the
modified firmware (blue) and the unmodified firmware (orange). (Color figure online)

The measurements of the smart plug with the unmodified Tasmota firmware
are more spread out compared to the measurements of the measurements with
the modified firmware, indicating that the standard deviation of the blue mea-
surements is lower than the standard deviation of the orange measurements.
This is indeed the case, as the standard deviation of the smart plug with the
unmodified firmware is 0.33V and the standard deviation of the smart plug with
the modified firmware is 0.27V.

Neither the Anderson-Darling test [20] for normality nor the Shapiro-Wilk
test [29] allow us to reject the null hypothesis that the data are normally dis-
tributed. The Anderson-Darling test returns a statistic of 0.44 and a critical
value to reject the null hypothesis of 0.57, even at a significance level of 15 %.
The Shapiro-Wilk test gives a p-value of 0.54. Therefore, we conclude that the
measurement error is likely to follow a normal distribution or some other very
similar distribution.
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5 Case Study: Monitoring the Distribution Grid
with Smart Plugs

The use of smart plugs as distributed measurement devices in the distribution
grid can enable real-time monitoring of voltage levels, allowing utilities to detect
and address issues promptly. However, the measurement error could be an issue
for accurate distribution grid monitoring. To further explore the impact of the
measurement error and the correlation between the number of measurement
devices and the accuracy of the grid monitoring, this section presents a case
study of an exemplary distribution grid monitoring.

In the case study, we simulate the power flow in a IEEE 37 bus system. The
smart plugs installed in the grid are simulated as well with a measurement error
according to our findings in the previous section. An integration of real world
measurements into a power flow simulation is not shown in this case study.

5.1 Problem Formulation

Distribution grid monitoring and state estimation are becoming increasingly
important for DSOs due to the rise in flexible consumption, distributed genera-
tion and the increase of demanding loads such as heat pumps and electric vehicle
chargers. However, accurately monitoring the distribution grid and determining
the impact of new loads and distributed electricity generation requires a large
number of measurement devices. This case study shows how a limited number
of smart plugs can provide valuable insight into the voltage levels at different
nodes within the distribution grid area. It also outlines the relationship between
the number of smart plugs in the grid area and the accuracy of the monitoring.

5.2 Method

To evaluate the benefit of smart plug measurements for grid state monitoring,
an IEEE 37 bus system is simulated. We implement the grid simulation using
Pandapower, an open-source tool written in Python for modeling and analyz-
ing of power grids [34]. The smart plugs providing the measurements are also
simulated. Figure 4 shows an overview of this standardized distribution grid bus
system.

The transformer T is connected to the 20 kV grid on the primary side and
to the 400V distribution grid on the secondary side. The nodes in the graph
represent the houses in the distribution grid. In this power flow simulation, all
the houses are placed 40m away from each other, and NAYY 4× 150 SE lines are
used to connect them. These are the most common lines used in Germany [18]
and 40m is a common distance between neighbors in a rural German distribution
grid [12]. We assume that the root mean square (RMS) voltage at the transformer
is constant for this simulation model.
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Fig. 4. IEEE bus system 37. Nodes are colored based on the voltage monitoring error.
Monitored voltages at white and yellow nodes are similar to the simulated voltages
and monitored voltages at the red nodes differ more from the simulated voltages. In
this instance, only one smart plug is installed at node 736 and the average monitoring
error is about 2.87 V (Color figure online)

To evaluate the impact of the measurement error of the distributed smart
plugs on the monitoring of the grid area, we implement several scenarios with
different numbers of smart plugs installed in the grid area. We also compare
the monitoring results that are based on the smart plugs with the unmodified
firmware with the results based on the smart plugs with the modified firmware
version. All scenarios are based on the IEEE bus system 37. For each node in the
original bus system, we add and connect another node representing the house
and the smart plug inside the house. We also add random resistive loads between
0 kW and 6.5 kW with a power factor of 1.0 to the house nodes, representing
household appliances and electric vehicle chargers. The DSO sees the total load
at the feeder, but does not know where the individual loads are located. The
simulated voltage levels are the ground truth against which we will later compare
our monitoring results.
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The DSO monitors the total load at the feeder level and the voltage level
at the outlets where the smart plugs are located. In the case study, we use
the voltage levels generated by the simulation as the ground truth. We offset
them with random values sampled from a normal distribution with the standard
deviation calculated in Sect. 4 to model the measurement accuracy of the smart
plugs. This results in voltage levels that could be measured by a DSO in a real
world experiment and we call them artificial voltage measurements.

We now attempt to estimate the true voltage levels at all nodes in the bus
system 37 from the perspective of the DSO based on the artificial voltage mea-
surements and the feeder load. To do this, we calculate the average load by
dividing the feeder load by the number of houses in the grid. We then place this
average load at each node in the grid as a starting point. This results in a rough
estimate of the voltage levels at all the nodes.

Next, we compare the voltage levels at each house to the artificial voltage
measurements recorded by our artificial smart plugs and approximate the loads
at these measurement points. If the voltage at a house node is higher than the
artificial voltage measurements, the assigned load is increased. If the voltage is
lower, the load is reduced. The result is a distribution grid with loads placed
at all nodes so that the voltage levels measured by the smart plugs match the
true voltage levels. However, due to the inaccuracy we intentionally introduced
into the simulated voltage levels, these loads and voltage levels differ from the
ground truth.

5.3 Evaluation

In order to evaluate the effect of distribution network metering devices on the
quality of monitoring, we compare the artificial voltage measurements generated
as described above with the true voltage levels. The nodes in Fig. 4 are colored
based on the difference between the true voltage levels and these artificial voltage
measurements. Red nodes represent a greater difference between the true voltage
levels and the artificial voltage measurements and the lighter the nodes are
colored, the smaller the monitoring error is. The voltage error at the feeder is
the smallest. This is due to the short length of the line and the small voltage
drop across the line between the feeder and the first house. In the grid shown in
Fig. 4 only one smart plug is used for monitoring.

In Fig. 5, eight smart plugs are placed in the grid area. It can be clearly seen
that the monitoring error is lower at each node in the grid.
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Fig. 5. IEEE bus system 37. Nodes are colored based on the voltage monitoring error.
Monitored voltages at white and yellow nodes are similar to the simulated voltages and
monitored voltages at the red nodes differ more from the simulated voltages. In this
example, eight smart plugs are installed at nodes 736, 706, 709, 711, 742, 722, 725 and
738. The average monitoring error is about 1.04 V and the coloring is consistent with
Fig. 4

The correlation between the number of measurement devices in the grid and
the average voltage error in a 230V grid can be seen in Fig. 6.

6 Discussion

The voltage standard deviation observed in the smart plug measurements with
the modified firmware of 0.27V is well within the range of what is considered
acceptable in other publications (0.6% in [26] and 0.3% to 0.9% in [15]). Installing
multiple smart plugs in the same distribution grid area further improves the
accuracy of the measurements, and monitoring multiple phases in three-phase
distribution networks would allow asymmetric loads to be detected. This should
be evaluated in the future. The smart plugs with the modified firmware version
allow for up to one voltage measurement per second, which are available almost
immediately for a grid state analysis. In contrast, smart meters often take only
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Fig. 6. Correlation between the number of smart plugs in the grid area and the average
monitoring error.

one measurement every fifteen minutes and transmit the data at intervals of up
to six hours [27]. In addition, the deployment of the smart plugs in a real-world
test environment can be completed in minutes by configuring the smart plug
and connecting it to a nearby WiFi network, and no electrician is required for
installation.

Smart meters are typically installed near to the point of common coupling.
Smart plugs, on the other hand, measure the voltage at the outlet to which they
are connected to. This means that the voltage drop within the resident’s home
is included in the smart plug’s measurements. This voltage drop depends on
the loads within the home’s electrical system and is therefore not constant. In
order to reduce the voltage drop on the local line, it is necessary to install the
smart plug as close as possible to the point of common coupling. In addition,
the smart plugs monitor only one phase. However, the load in the distribution
grid is predominantly symmetrical [28], which means that the voltage drop is
also symmetrical.

The approach of using widely available smart plugs to monitor the distribu-
tion grid is mostly limited by privacy concerns and the accuracy of the measure-
ments, especially when compared to the measurements from calibrated smart
metering systems or power analyzers. Installing the smart plugs away from the
common coupling point further reduces the validity of the measurements, and
the constant offset of each device must be determined and compensated for.
However, the frequency of the measurements could permit some compensation
for these shortcomings, e.g. by means of filters. Another issue for practical imple-
mentation in the field is the availability of a WiFi connection to transmit the
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measurements. Perhaps allowing customers to use the switching function of the
smart plug would be an incentive to allow the use of their private WiFi access.

In general, the installation of a custom firmware to monitor the distribution
grid voids the warranty of the smart plugs. The manufacturers of the smart
plugs would need to provide a software interface to collect measurement data
or connect to a custom server in order to use the smart plugs without flashing
a custom firmware. Without the manufacturers support for such a feature, the
DSO would need to flash the custom firmware before distributing the smart
plugs to the customers.

7 Conclusion

In this paper, we determine the accuracy of smart plug measurements by compar-
ing the calculated values with voltage readings from a Janitza UMG 604EP-PRO
power analyzer. We use commercially available devices in the present work that
are able to connect directly to a WiFi network and transmit the measurement
data to a server, eliminating the need for a relay. The voltage measurements
of the tested smart plugs with the modified Tasmota firmware have a standard
deviation of 0.27V, which is lower than the standard deviation of the mea-
surements taken by smart plugs with the unmodified Tasmota firmware. The
modified firmware is published as open-source. We also describe the network
structure and the integration of smart plug measurement data into an existing
time-series database. In a case study, a practical use-case for a distribution grid
monitoring is outlined and evaluated. It is shown how the average monitoring
error in a distribution grid area decreases the more measurement devices are
installed. The installation of the commercially available smart plugs does not
require an electrician, the hardware is inexpensive, and the individual configu-
ration of the devices is simple. In this light, simple smart plugs can help with
distribution grid monitoring and provide valuable information to the DSO.

Future research should evaluate other use cases of smart plugs for a DSO,
such as DSM and non-intrusive load monitoring. Furthermore, other types of
power measurement ICs in other smart home devices should be evaluated and
compared. To complete the monitoring and account for asymmetric loads, it
would be relevant to consider two-phase or three-phase distribution systems.
And in a real-world implementation of a grid monitoring using smart home
devices, the placement of the devices in the grid must be optimized to collect
the most useful data.
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Abstract. Data plays a crucial role in understanding several problems,
including those related to electrical micro, smart grids and power con-
sumption. In addition to electrical meters, data can be sourced from dif-
ferent channels such as environmental conditions, user expertise, mainte-
nance history, and inventory registries. This paper introduces a Python-
based analysis tool designed to search for equipment categories that
exhibit constant power consumption within the asset inventory database
of the University of Campinas. The software effectively identifies and cat-
egorizes items as air conditioners, refrigerators, computers, uninterrupted
power supplies and internet routers, providing detailed insights into their
specific characteristics. The tool generates a comprehensive PDF report
featuring item discrimination through values, charts, organized and uni-
versity units. Additionally, the software incorporates identification item
lists and logs, aiding in the identification of missing or mismatched data
throughout the process. These reports has been utilized to establish inter-
nal guidelines for optimizing in power consumption and already help the
university to improve its GreenMetric index.

Keywords: Big data · Data analysis · Python language

1 Introduction

Data became an important resource to understanding a problem and it is no
exception for micro and smart-grids [1,2]. Such data can be provided not only
by electrical or environmental measurements but also by user experience or static
databases (DBs) that keep historic of maintenance or registry of equipment into
the grid.

As part of asset control, large institutions like companies and universities
store them equipment inventory in extensive DBs that specify purchase data
(indirectly informing the aging of the equipment), item description (which may
include type, power, and other relevant characteristics), manufacturer, model,
serial number, etc. The inventories provide valuable information about the elec-
trical power grid of the institution and can be applicable for specialized control
and management in a smart-grid scenario [1].

These DBs are usually filled by individuals with knowledge of registry and
purchase procedures but without technical backgrounds. As a result, they often
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lack in complete the technical descriptions or the correct physical units that
describe the electrical characteristics of a particular item. The challenge of
extracting information from these DBs lies in recognizing patterns and mining
data while considering user interpretations at the time of filling and potential
typing errors. Programming libraries/languages can help in pattern recognize
procedure [3,4], but they still require the programmer’s understanding of the
DB and common fields errors.

This work is the case of the University of Campinas - Brazil (UNICAMP),
where inventory data is publicly available according to Brazilian law number
12 527 from November 18, 2011 [5]. At May 28, 2023, the inventory contained
759 990 items divided into 126 units (plus a virtual unit for “available items”) and
it encompasses a wide range of general categories, such as chairs, tables/desks,
cars, and others items with constant power consumption, as: air conditioners,
fridges, computers. As additional issue of this DB, the categorization may not
be direct expressed into a DB column or it may not be reliable, requiring scrap-
ing from existing descriptions and other fields as part of the automated search
procedure.

As an institutional initiative, the Sustainable Campus project of UNICAMP
(Campus Sustentável) [6] aims to develop a living laboratory at UNICAMP
focusing on renewable energy [7], losses and fault detection [8,9], energy manage-
ment in small and smart-grids [10], urban mobility [11] and consumption under-
standing of the university (Fig. 1). Retrofit and Energy Efficiency in Building is
also a area of study and it must be guided by thorough an understanding of the
equipment in use.

Fig. 1. Study areas of the Sustainable Campus of UNICAMP project [6].
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This article presents one aspect of this project, namely the better understand-
ing of the final power usage at UNICAMP by examining all electrical equipment
that remains constantly plugged into the grid through an automated procedure
of investigation into the asset inventory DB of the university.

The goal of the study is to provide guidelines for improving efficiency in usage
and specification processes for such items. This article is organized as follow:
Sect. 2 presents the methodology, libraries, and software structure developed to
identify, analyze, and generate a report based on the UNICAMP DB inventory.
Section 3 shows the results of this analysis based on the May 28, 2023 inventory
data. And Sect. 4 concludes by discussing the real impacts of this work at the
university.

It is important to highlight that no such analysis has been conducted at
UNICAMP until now, and the study is ongoing to assess the full extent of its
impacts.

2 Software Development

Analyzing a vast DB can be a tedious and error-prone task due to human fac-
tor such as mistyping or overlooking certain items or values. To mitigate these
challenges and leverage computational power for repetitive tasks, an automated
script or software validated by test examples is crucial.

In the analysis of the UNICAMP inventory, a Python [12] software consisting
of 14 164 lines was developed to search for patterns in each asset item description.
The software identifies various parameters such as nominal power, item type, the
Brazilian National Power Conservation Program Stamp (“PROCEL stamp”) [13],
which classifies equipment categories based on their efficiency since December 8,
1993, and other relevant parameters. The primary Python packages utilized in
this application were:

– Pandas [14,15] for read the exported DB file and generate intermediary file
outputs containing all identified items;

– Numpy [16] and ScyPy [17] for statistic evaluation;
– Matplotlib [18] and Seaborn [19] for chart generation;
– WeasyPrint [20] for final report composition;
– Numba [21] to speed-up some software functions evaluation;
– Selenium, [22] used to connect to university services and download the DB.

Figure 2 illustrates the software structure associated with each processing
step. The rectangles in the image represents the Python files and libraries
that were developed. The software itself can be accessed at https://gitlab.com/
hildogjr/unicamp-inventory, and the complete list of dependencies can be found
in the Process/requirements.txt file.

The developed software performs five procedures:

1. Connection though Virtual Privacy Network (VPN) and extraction of the
inventory DB from UNICAMP server (extract_dbs.py) by using the Sele-
nium package as web browser puppeteer. This step is necessary due to access
restrictions imposed on downloading the raw DB.

https://gitlab.com/hildogjr/unicamp-inventory
https://gitlab.com/hildogjr/unicamp-inventory
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Fig. 2. Hierarchy of the Python software developed libraries and data processing steps.

2. Identification of the items by searching for specific description patterns
(search_on_dbs.py) within the exported DB. It utilizes the item character-
istics defined in the items_definitions.py file;

3. Statistic analysis (perform_analysis.py) to evaluate measures such as
mean, median, and other statistics for each relevant value of the specified
equipment categories and university units. The analysis results are then plot-
ted in charts based on the value types (string, float, date, ...) defined in
analysis_char.py;

4. Generation of a report file in PDF format that includes the previously
generated charts, tables and units information. The formatting of the report
follows the guidelines specified in format_output.py;

5. Send the report file and the software log to an email group via the Simple
Mail Transfer Protocol (SMTP) connection, secured by VPN.

Other files and internal procedures are of the software are described as follow:
The general_definitions.py file lists general variables and definitions for

the software, including the operating system and path definitions.
The items_*.py modules contain lists of match and non-match patterns

using Regular Expressions [4]. These modules form the core of the software,
enabling the identification of items and defining patterns to search for unique
item characteristics across DB columns. They also specify the type of analy-
sis to be performed for each item category. The items_general_info.py file
defines general scraping parameters for all equipment, such as electric power
and PROCEL stamp. All these modules are loaded and validated through test
scenarios in the items_testcase.py file as part of the Continuous Integration
and Continuous Delivery (CI/CD) pipeline [23].

Lastly, format_input.py contains specific functions to read the exported DB
data at the begin of the process and ensure proper data conversion according to
the configurations used by the UNICAMP server during exportation.

The software is designed to run into a container or a GitLab repository
pipeline to provide automatic reports via email at regular intervals. The config-
urations for these functionalities can be found in the Makefile and .gitlab-ci
.yml files within the software repository.

https://gitlab.com/hildogjr/unicamp-inventory/
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3 Results

The developed software was utilized to analyze the information into the DB
inventory looking for several types of equipment, including Air Conditioner sys-
tems, Computers, Uninterrupted Power Systems (UPSs), Refrigerators/Fridges,
and Internet Routers, along with their respective subtypes, as shown on Fig. 2.
The results of item identification for the UNICAMP database dated of May 28,
2023, and the average purchase year, which provides insights of the equipment
aging, are summarized in Table 1. Additionally, the following charts complement
this information.

Table 1. Summary of software identification of complete inventory.

Item category Total quantity Purchase average year

Air conditioners 13 084 2009
Refrigerators 5681 2006
Computers 34 466 2013
UPSs + power stabilizers (IT) 7420 2007
Internet routers 4967 2014

Figures 3 to 7 show graphical analysis with typification, aging and PROCEL
classification for each category of items enrolled at Table 1. On the chart leg-
ends, “NO CLASS” marks the item quantity that was not possible to identify
the characteristic and “Before procel” on the PROCEL pie chart indicates the
items percentage produce before the mandatory PROCEL classification on item
manufacture [13].

(a) Type identification. (b) Purchased quantity by year. (c) PROCEL stamp.

Fig. 3. Classification of all air conditioners equipment at UNICAMP.

Despite the purchase average year of 2009 for air conditioners systems
(Table 1), Fig. 3 indicates the presence of more the 20 years-old air conditioner
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equipment and possible not efficient one as pointed by the unregistered classifi-
cation at Fig. 3c (bellow class A). Also the significant presence of “Window”-type
air conditioners, a technology knows as old and less efficient. The “Before procel”
counting of 1070 indicates, for sure, purchased item before Dec. 8, 1993, which
may deserve a better maintenance attention.

“Condensator” and “Evaporator” numbers discrepancy from Fig. 3a may be
caused by mismatched registry procedures. For example, instead of using the
word “Split” to register the pair of “Condensator” and “Evaporator” air condi-
tioner systems, or they individual “Condensator”/“Evaporator” words to register
each part separately, some air conditioners items have no description or a simple
entry such as “air conditioner”, or even “Condensator” was used to refer to both
parts of the air conditioner system.

Figure 4 presents the results for refrigeration equipment other than air
conditioners. This category includes common refrigerators, fridges, frigobars,
drinking fountains, ice machines and ultra fridges. UNICAMP, being home to
one of the most important hospitals in the region and having a significant under-
graduate course on Food Engineering, relies on these equipment types for essen-
tial purposes. Drinking fountains, in particular, have a significant presence on
UNICAMP campi, providing drinkable water for employees and students. The
PROCEL data of such item (Fig. 4c) indicates a high percentage of unidentified
items, suggesting not only the possibility of old equipment but also a lack of
attention to filling in such characteristics in the item descriptions within the
database.

(a) Type identification. (b) Purchased quantity by year. (c) PROCEL stamp.

Fig. 4. Classification of all refrigerators/fridges equipments at UNICAMP.

Figure 5b shows the surge of computer purchases in the year 2011, which
coincided with UNICAMP’s efforts to modernize its infrastructure and network.
The most prevalent computer type is “Desktop” (Fig. 5a), often accompanied
by a higher number of displays, registered apart from computers. This can be
attributed to the versatile use of displays as TVs, information displays, or for
dual-screen workstation setups. UNICAMP currently has 894 computers dedi-
cated as server equipment to support its internal network and services.

Uninterrupted Power Systems (UPSs) and small auto-transformers
power stabilizers for computers also experienced a significant increase in pur-
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(a) Type identification. (b) Purchased quantity by year.

Fig. 5. Classification of all registered computers at UNICAMP.

chases during the same period as computers ((Fig. 6b). The majority of these
purchases were small stabilizers and offline UPSs, both commonly used for desk-
top computers. Line interactive, sinusoidal, and online UPSs account for 660
units, representing 8.90% of all UPSs in the asset inventory (Fig. 6a), are typ-
ically applicable to provide power backup to critical electronic equipment in
Information Technology (IT), network provisioning, and medical facilities. The
medical units within the UNICAMP own 3888 of these UPSs, accounting for
52.40% of the total (as compiled in Table 2).

(a) Type identification. (b) Purchased quantity by year.

Fig. 6. Classification of all UPSs equipment at UNICAMP.

Furthermore, Fig. 7a provides insights into UNICAMP’s internet hard-
ware asset by categorizing Ethernet routers as “infrastructure” (main network
providers), “access point” (Wi-Fi coverage on UNICAMP campi, with the largest
presence), “service” (dedicated equipment for network and server services such
as interconnection and backup), and “common” (general-purpose routers used
internally in laboratories and not part of the main network structure). Figure 7b
highlights a significant investment by the university in year 2015, likely related to
the expansion of the Education Roaming (Eduroam) internal infrastructure [24].
Additionally, there appears to be a possible upward trend in router acquisitions
by the year 2020, possibly due to an increase in Wi-Fi coverage.

https://eduroam.org/
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(a) Type identification. (b) Purchased quantity by year.

Fig. 7. Classification of all internet routers at UNICAMP.

Due to administrative and registration process time for a purchased item, the
data for 2022 may be incomplete, and information for 2023 is partial available,
making it challenging to draw definitive conclusions for these last two years on
any item.

The analysis report generated by the software revealed that the top 10 out
of the 116 units at UNICAMP, which are known by consume the most significant
amount of electricity bill, accounted for a minimum of 35.52% of items in each
analyzed category (Table 2). Notably, these units possess nearly 50% of the air
conditioning systems and the are enrolled as follows:

1. CAISM: Women’s Hospital “Prof. Dr. José Aristodemo Pinotti”
(Hospital da Mulher “Prof. Dr. José Aristodemo Pinotti”);

2. CCUEC: Computer Center (Centro de Computação);
3. FCM: School of Medical Sciences (Faculdade de Ciências Médicas);
4. FEA: School of Food Engineering (Faculdade de Engenharia de Alimentos);
5. FEM: School of Mechanical Engineering (Faculdade de Engenharia

Mecânica);
6. HC: UNICAMP’s Clinical Hospital (Hospital das Clínicas da UNICAMP);
7. HEMOCENTRO: UNICAMP’s Blood Center (Hemocentro da UNICAMP);
8. IB: School of Biology (Instituto de Biologia);
9. IFGW: School of Physics “Gleb Wataghin” (Instituto de Física “Gleb

Wataghin”);
10. IQ: School of Chemistry (Instituto de Química).

This group of units are composed by 3 hospital unities (CAISM, HEMO-
CENTRO and HC) plus one medical school (FCM), four school heavy based
on cooling process (FEA, IB, IFGW and IQ) and the computer center/server
administration (CCUEC), which explain the air conditioning and refrigerators
presence.

The created software is not restrict to the presented analysis in this paper
and it is capable of discriminate data of each of the 116 schools/administrative
unit of UNICAMP and extract more data, those result are not included here for
simplicity sack but can be found as a semiannual analyses at the public e-mail

https://hildogjr.gitlab.io/unicamp-inventory/
www.caism.unicamp.br
www.ccuec.unicamp.br
www.fcm.unicamp.br
www.fea.unicamp.br
www.fem.unicamp.br
www.fem.unicamp.br
www.hc.unicamp.br
www.hemocentro.unicamp.br
www.ib.unicamp.br
www.ifgw.unicamp.br
www.ifgw.unicamp.br
www.iqm.unicamp.br
https://gitlab.com/hildogjr/unicamp-inventory/
https://www.unicamp.br/unicamp/faculdades-e-institutos
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Table 2. Total by category of the 10 biggest power consumption units.

Item category Quantity Perceptual to total Purchase avg. year

Air conditioners 6250 47.67% 2008
Refrigerators 3193 58.20% 2006
Computers 12 241 35.52% 2012
UPSs + power stabilizers (IT) 3888 52.40% 2007
Internet routers 2147 43.23% 2014

group dataanalytics-l@unicamp.br and the webpage https://hildogjr.gitlab.io/
unicamp-inventory/.

In a significant development, the results generated by the software were
utilized to update the GreenMetric World Universities Rankings of UNICAMP.
This, along with other university directives, resulted in a significant improve-
ment of 35 positions in the global index in 2021 [25] and a further 10 positions
in 2022. These achievements have also provided the basis for the university’s
current investment in retrofitting air conditioning systems.

4 Conclusions

The application of data mining techniques, leverage by data acknowledgement
and regular expressions made possible the analysis of the extensive UNICAMP
asset inventory and facilitated quantitative analyses of equipment categories
with constant power consumption to obtain periodic university statistics without
human interference.

The initial results have highlighted the aging of equipment and underscored
the need for better and standardized procedures for updating the inventory. It
is exact the case of PROCEL and other characteristics not presented here.

The work presented here has sparked meaningful discussions within the uni-
versity about the significance of data and the measures required to maintain an
accurate and up-to-date inventory database. It also helped to indirectly improve
the university green statistics [25].
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Abstract. The increasing prevalence of smart home devices has created new
opportunities for cyberthreats and -attacks, necessitating effective security mea-
sures for their protection. This study investigates the potential of using power
consumption analysis as an indicator for detecting cyberattacks on smart home
devices. Through the examination of power data from a hardware testbed of 10
different devices over a one-month period, distinct groups of devices with varying
power consumption patterns during simulated cyberattacks were identified. The
findings reveal noticeable changes in power consumption during attacks across
all devices, suggesting that monitoring power data could help detect threats and
initiate appropriate countermeasures. Moreover, this study provides insights into
the limitations and challenges associated with the stated approach and suggests
avenues for future research. This study contributes to smart home security by
demonstrating the feasibility of using power consumption analysis as an additional
layer of protection for IoT devices and their users.

Keywords: Smart home security · Cyberattacks · Anomaly detection · IoT
devices · Power consumption patterns · Data analysis

1 Introduction

The increasing digitization and connectivity of ordinary objects have brought profound
shifts in our daily lives,work dynamics, communicationways. Smart homes are an exam-
ple of this development, providing individualswith a convenient and efficientway to con-
trol and automate their homes and appliances [1]. The proliferation of internet-connected
devices and the valuable data they store, has rendered smart homes susceptible to a range
of cyberthreats and -attacks, including Distributed Denial of Service (DDoS), Man-in-
the-Middle (MitM), andmalware-related attacks. DDoS attacks involve overwhelming a
network or website with an enormous amount of traffic, making it inaccessible to users.
MitM attacks occur when an attacker intercepts communication between two parties and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. N. Jørgensen et al. (Eds.): EI.A 2023, LNCS 14468, pp. 224–239, 2024.
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has the ability to manipulate the conversation or steal sensitive information. Malware-
related attacks involve the installation of malicious software on a device, granting the
attacker potential control over the device, the ability to extract sensitive information, or
even execute diverse forms of attacks, including DDoS. In the realm of smart homes,
these attacks can have severe repercussions, including compromised privacy, property
damage, and even physical harm. For instance, an attacker could exploit a smart lock
system, gaining unauthorized and undetected entry. Moreover, as highlighted by Kevin
Coleman, manipulating a heating system could lead to fire hazards [2]. To mitigate or
detect such attacks, it is imperative to implement appropriate security measures. One
promising approach involves analyzing power data generated by smart home devices. By
examining power usage patterns, it is possible to pinpoint anomalies that may indicate
the presence of an attack. For example, an attacker could manipulate a device to carry
out a DDoS attack, which could cause a noticeable surge in power usage. By actively
monitoring and analyzing power data, such anomalies can be detected, allowing for the
timely response and preemptive measures against potential cyberattacks.

The study analyzes of how the power consumption of different devices connected
in a hardware testbed varies or respond to simulated cyberattacks. It aims to answer
whether and how cyberattacks are reflected in power metering data. The objective is to
investigate the feasibility of using power consumption data to detect hacking attacks and
identify patterns on IoTdevices and changes in their power consumption. The resultsmay
contribute to alternative attack detection approaches, potentially enhancing the overall
robustness and effectiveness of existing methods. The motivation for this study is driven
by the need to address the following issues:

• Investigating the possibility of detecting hacking attacks through the analysis of power
consumption data and comparing this method with detection based on network data.

• Identifying patterns and anomalies in power consumption that could indicate hacking
attacks and developing algorithms or models for detecting such patterns.

• Examining the observed changes in power consumption of devices.
• Analyzing the potentials and limitations of using power consumption data for detect-

ing hacking attacks and contributing to the improvement of overall attack detection
in interconnected systems.

2 Related Work

As stated byWendzel et al. [3, 4], the expansionof smart home systems leads to increasing
threats, challenges, and vulnerabilities to cyberattacks. In response, researchers have
focused on early detection of attacks. This section provides an overview of related
works discussing their strengths and limitations, and how this study differs from and
builds upon prior works in the field.

Zhao et al. [5] propose a two-layer learning framework for robust anomaly detection
in the presence of unreliable anomaly labels.While their focus is on detecting IoT attacks
and failures, they do not analyze power consumption patterns of smart home devices
statistically.

Zhou et al. [6] directly address cyberattack detection, developing a short- and long-
term detection algorithm based on binary logistic regression to learn power consumption
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patterns and identify anomalies. However, their research considers power data and power
consumption within the context of sponsor incentive pricing attacks, rather than the
attacks themselves.

Sajeev et al. [7] investigate the impact of cyberattacks on smart home energymanage-
ment systems under an aggregator systemof operation. Their focus is on price attacks and
the overall impact on the smart home system, rather than early detection and statistical
analysis of attacks.

Bobrovnikova et al. [8] examine the detection of IoT cyberattacks through power
consumption patterns and opcode sequences. In contrast, this paper emphasizes the
direct examination of power consumption data, conducting actual hacking attacks on a
hardware testbed to determine the resulting effects. This approach offers easy integra-
tion into existing systems and provides detailed insights into the correlation between
cyberattacks and IoT device power consumption, utilizing various statistical methods
for accurate interpretation of the results.

Bobrovnikova et al. [8] alsomention other approaches based onmonitoring the power
consumption to detect cyberattacks in different contexts [9–12]. Caviglione et al. [13]
present an approach to detect covert data exfiltration from smart phones using power
consumption profiles of Android apps.

Yang Shi et al. [14] proposed a detection framework based on power consumption
analysis, focusing on a wide range of attacks. However, their work does not measure
the real power consumption patterns whilst the simulated cyberattacks. In contrast, this
approach involves direct measurement and provides practical results. Additionally, their
primary focus is on the accuracy and detection speed of learning algorithms, while this
study concentrates on different power consumption patterns of four distinct groups.

Lara et al. [1] investigate anomaly detection in the smart home context, primarily
focusing on larger devices and working with hypothetical scenarios. They mention the
testing of attack detection limits through anomalies in power consumption as a potential
area of further research.

Yan Lim et al. [15] aim to develop a detection algorithm for identifying anomalies in
power consumption data recorded by a smart meter. Their research focuses on general
anomalies in the context of industrial energy management rather than cyberattacks in
the private smart home sector.

In addition, the work by Mottola et al. [16] presents a method for detecting energy
attacks by leveraging machine learning and approximate intermittent computing, focus-
ing on the detection of anomalies in energy consumption data of battery less IoT devices.
However, the statistical analysis is mainly concerned with the evaluation of the detection
system and not with the changed consumption behavior per se, notwithstanding that the
system is not concerned with the context of a smart environment.

Pathak et al. [17] also propose a similar approach but focusing on security sensor
tampering in office environments.

Chatterje et al. [18] review and compile existing publications on anomaly detection
algorithms for IoT devices, but these studies do not necessarily consider cyberattacks.
There is also a scarcity of anomaly detectionmethods that can functionwithout sufficient
ground truth data, particularly in private smart home systems with various sensors and
data expansion.



Power Consumption Analysis as a Detection Indicator 227

3 Methodology

Thepresentwork is a contribution to theBMBF-funded research projectKIASH(funding
code: 16KIS1614). Due to this a hardware testbed with 10 components created for
research purposes in the project is used and linked to an intelligent measuring device in
order to carry out cyberattacks and to record these in the measured data. The following
section is structured in three parts. First, the collection of the power data as well as
the structure of the testbed and measurement station are described. Second, the various
cyberattacks are explained, and last, the structure of the following analysis is presented.

3.1 Power Data Acquisition

Power data over a period of one month were collected in order to get an assessment of
possible measurement errors, updates and the targeted attacks.

The basis for the anomaly detection is given by the power consumption data collected
via separately and independently installed smart meters (TP-Link Tapo P110 [19]).
These smart meters can handle devices with a maximum power of 3680 W and 16 A
of maximum current. The main request on the smart meters is an easy installation for
every person, to be used in a broad range of households. It is not necessary to have an
accuracy in the range of submW, because the focus is to detect cyberattackswith low-cost
devices in single households. Regardless the IoT sensors should be stable and precise
enough to measure small power consumptions in the range of about 50 mW. For the
smart home testbed, a wide range of 10 different smart home devices were installed and
connected to the network. Each of the 10 devices was connected to one smart meter and
in addition, the power consumption of the whole testbed was monitored with a twelfth
smart meter. The used smart home devices are summarized with their connection to
the smart meters in Table 1. The measurement and storing of the smart meter data are
done using a Raspberry Pi 4 [20]. The smart plugs were connected via an independent
network connection completely separated from the network of the smart home devices.
The sensor data was collected using the graphical development tool Node-RED [21]. It
consists of a server and a web browser-based flow editor. Inside the flow editor, a flow
was built up to connect the IoT smart meters and separate the needed power consumption
data. Inside the flow the data acquisition was triggered once a second for all sensors.
The data was collected and automatically added to a daily log file. The log file consists
of the date, timestamp, and the current power consumption for all smart meter sensors in
mW. The data was collected over a period of one month to get an assessment of possible
measurement errors, updates, and the targeted attacks.

3.2 Simulation of Cyberattacks

Several of today’s common IoT based attacks [32–34], such as (D)DoS or brute-force
attacks, rely on sending a high number of packets within a short time to exhaust the
computing capabilities of IoT devices or to exploit side channels to, e.g., gain user
credentials. Even if this type of attack exists since several years, it is still often used
against IoT devices [35, 36]. One of the reasons for that fact is that such attacks can
be realized easily. If the target is an IoT device, it usually possesses limited processing
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Table 1. Smart meter and plug abbreviations, devices and data sheets

Smart Plug Device Datasheet

Sensor 1 Printer | “Canon” [22]

Sensor 2 Google Nest Mini [23]

Sensor 3 Amazon Alexa Echo Dot [24]

Sensor 4 Apple HomePod Mini [25]

Sensor 5 Netamo Weatherstation [26]

Sensor 6 Bosch Smart Home Controller [27]

Sensor 7 Phillips Hue Bridge [28]

Sensor 8 Netamo Alarm System [29]

Sensor 9 Homematic IP Access Point [30]

Sensor 10 Netamo radiator thermostat [31]

Sensor 11 Entire testbed –

power, i.e., it is not able to handle a larger amount of requests simultaneously. To confirm
the assumption that the power consumption of an IoT device increases strong enough
to differentiate its power consumption during an ongoing attack, ICMP flooding was
conducted. The attack itself sends a high amount of ICMP requests to a remote peer that
has to answer the requests.

To this end, the different IoT devices were installed following the device instructions
without automatic device actions being configured. Devices were connected to a single
network via Wi-Fi, or, if available, through a wired connection. As attacking machine,
a Raspberry Pi 3 with hping3 [37] was used.

The attack itself was configured in flood mode, which sends packets to the targeted
device as fast as it can without considering ICMP responses.

3.3 Power Data Analysis

Since the study assumed that the power consumption of an IoT device increases during an
ongoing attack, metrics like average, minimum andmaximum values, standard deviation
were calculated. To observe the effects of attack, pre-attack and post-attack values were
also considered. The average value before, after andduring an attack helped to summarize
the behavior of energy consumption of a device under different conditions over a period.
The minimum and maximum value during an attack were noted to understand how
extreme the values can go in both directions during an attack. This value when compared
to average value can help us note the extreme behavior. The graphical representations
were generated to notice if the attacks can be easily identified given access to a better
visual representation than just numbers. Finally, standard deviation calculation was done
to quantify the fluctuation than the average behavior over a period under consideration.

All these statistical tools help to test the assumption by quantification on which this
entire study is based.
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In summary and based on the explained data analysis the following listed points were
viewed concerning days with and without cyberattacks.

• Average and median power consumption of the devices before, during and after
hacking attacks

• Minimum and maximum power value of the devices during hacking attacks
• Graphical representation of power consumption before, during and after hacking

attacks
• Examining fluctuations in IoT device power consumption due to attacks using

standard deviation.

In the overview section of this analysis, visible changes were observed in the power
consumption data during the hacking attacks for all devices. Frequently, the power
consumption data shifted upward during the attacks, and then normalized once the attacks
had ended. When looking at the power consumption data, it was noticed that certain
devices showed similar changes their power consumption during an attack, although
it is not clear why the devices reacted in this way. The devices could be divided into
four groups, in which all devices of a group showed similar reactions to a cyberattack.
These device groups and their reactions are explained in the following and then always
considered based on a representative device.

Group 1. Devices exhibiting a clear upward change in power consumption during
the attacks, followed by normalization. This group includes Apple Homepod, Amazon
Alexa, Bosch Smart Home Controller, and Philips Hue.
Group 2. Devices showing small, intermittent spikes in power consumption during the
attacks, both upwards and downwards. This group consists of NetatmoWeather Station,
Netatmo Thermostat, Netatmo Alarm System, Homematic IP Access Point, and Google
Nest Mini.
Group 3. Devices with occasional upward spikes in power consumption during the
attacks, such as the Canon Printer.
Group 4. A subset of Group 2 devices that experienced a significant increase in power
consumption for several hours following the attack, specifically the Netatmo Thermostat
and Netatmo Weather Station.

The statistical analysis revealed that the average power consumption consistently
increased during the attacks across all devices. In the subsequent sections, a deeper look
into the patterns and trends exhibited by each group and their implications for detecting
hacking attacks through power consumption data analysis is taken.

4 Analysis

The following section presents the results of the measurement, statistical analysis, and
visual analysis. Table 2 is provided, which includes information about the four groups.
The table lists the selected representatives from each group, which are further analyzed
in detail. The general power consumption behavior of the four groups during cyberat-
tacks is described both in words and in numerical values. This includes average power
consumption before, during, and after a hacking attack, as well as the minimum and
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maximum consumption values, and their deviation during the attack. Furthermore, it
is discussed whether the representative and their power consumption can be utilized to
identify cyberattacks.

Following the table, there are plots illustrating the power consumption of the different
representatives before, during, and after the cyberattacks. These plots (see Fig. 1 to Fig. 4)
visually depict the behavior explained numerically in the previous section.

Table 2. Results of the statistical analysis for the four representatives of the different device
groups

Group 1 Group 2 Group 3 Group 4

Representative Amazon Alexa Google Nest
Mini

Canon Printer Netamo
Thermostat
device

Power
consumption
behavior under
attack

distinct increase
in power
consumption
during attack,
rapid return to
normal after
attack

overall increase
during attack,
greater
variability, and
intermittent
drops below
normal levels

overall increase
during attacks,
greater
variability and
intermittent
drops return to
normal levels
after attack

initial increase
during hacking
attack, followed
by stabilization
and decrease to
level above
pre-attack
consumption

Average power
consumption
before attack

902 mW 1,316 mW 1,260 mW 468 mW

Average power
consumption
during attack

1,385 mW 1,623 mW 1,525 mW 535 mW

Average power
consumption
after attack

911 mW 1,328 mW 1,260 mW 513 mW

Deviation
during attack

69 mW 212 mW 257 mW 191 mW

Min. and max.
Power
consumption
during attack

997 mW
1,541 mW

987 mW
1,943 mW

1,152 mW
1,874 mW

0 mW
812 mW

Hacking attack
according to
visual and
statistical
analysis
identifiable

more readily
identifiable

not that easy to
identify

challenging to
identify

potentially
identifiable,
although
challenging
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4.1 Group 1

Fig. 1. Exemplary power consumption of group 1 devices 30 min before, during and 30 min after
the cyberattack, represented by Amazon Alexa Dot

4.2 Group 2

Fig. 2. Exemplary power consumption of group 2 devices 30 min before, during and 30 min after
the cyberattack, represented by Google Nest Mini
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4.3 Group 3

Fig. 3. Exemplary power consumption of group 3 devices 30 min before, during and 30 min after
the cyberattack, represented by Canon Printer

4.4 Group 4

Fig. 4. Exemplary power consumption of group 4 devices 30 min before, during and 30 min after
the cyberattack, represented by Netamo radiator thermostat
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4.5 Key Metrics and Comparisons

In this section, the key metrics (mean, median, standard deviation, etc.) for each repre-
sentative example from the four groups are compared, highlighting the similarities and
differences in power consumption patterns during and outside of hacking attacks.

Mean Power Consumption During Attacks. When comparing the mean power con-
sumption during the attack for each group, there is a clear increase in power consumption
noticeable for all devices.Group1devices (e.g.,AmazonAlexa) have thehighest increase
(53.4%), while Group 4 devices (e.g., Netamo Thermostat) show the smallest increase
(14.3%). Group 2 devices (e.g., Google Nest Mini) experience a 23.3% increase, and
Group 3 devices (e.g., Canon Printer) have an increase of 21.0%.

Standard Deviation During Attacks. The standard deviation during the attacks varies
across the different groups.

As seen in Fig. 1 Group 1 devices, such as Amazon Alexa, exhibit a relatively
low standard deviation, indicating uniform power consumption during the attack. In
contrast, Group 2 (Google Nest Mini) and Group 3 (Canon Printer) devices show
higher standard deviations, indicating greater variability in power consumption. Group
4 devices (Netamo Thermostat) demonstrate a standard deviation suggesting variable
power consumption patterns.

Post-attack Power Consumption. A notable difference between the groups is the
behavior of power consumption after the attack. Group 1 devices (e.g., Amazon Alexa)
return to pre-attack power consumption levels, while Group 4 devices (e.g., Netamo
Thermostat) maintain elevated post-attack power consumption. Group 2 and Group 3
devices display mixed patterns, with some returning to pre-attack levels and others
experiencing fluctuations in power consumption after the attack.

Through Months. It is important to note that the analysis is based on power consump-
tion data of only a few days including the cyberattack, which demonstrates the significant
impact of the attack on the device’s power consumption, regardless of which group is
considered, visible throughout the whole month.

Conclusion. The comparisons of keymetrics between the groups demonstrate the vary-
ing impact of hacking attacks on power consumption patterns for different smart devices.
Group 1 devices show the most consistent response, while Group 4 devices indicate a
lasting effect on power consumption after the attack. Group 2 and Group 3 devices
display more variable power consumption patterns during and after the attacks. Under-
standing these differences can be valuable for further investigation into detecting and
mitigating the effects of hacking attacks on smart home devices based on their power
consumption data.

5 Discussion

5.1 Interpretation of the Results in Context of the Research Question

The primary aim of this research was to investigate the impact of cyberattacks on the
power consumption of smart home devices and to determine if power data could be
utilized to detect these attacks. This analysis of the 10 different devices, divided into
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four groups based on their power consumption patterns during the attacks, provides
valuable insights into the relationship between cyberattacks and power consumption.

For Group 1 devices, there was a clear increase in power consumption during the
attacks observed, followed by a return to normal levels after the attacks ended. This
suggests that cyberattacks have a noticeable impact on the power consumption of these
devices, and monitoring power data could potentially serve as a means of early detection
for such attacks.

Group 2 devices exhibited smaller fluctuations during the attacks, with occasional
deviations both above and below the normal power consumption levels. This indicates
that while power data might still be useful for detecting attacks on these devices, it may
requiremore advanced statistical analysis ormachine learning techniques to differentiate
between genuine anomalies and normal variations in power consumption.

Group 3, represented by the Canon Printer, demonstrated occasional spikes in power
consumption during the attacks. This suggests that, although power data may not be as
reliable for detecting cyberattacks on devices in this group, it could still provide some
indications of potential threats when combined with other detection methods.

Lastly, Group 4 devices, such as the Netamo Thermostat, experienced a sustained
increase in power consumption after the attacks, indicating that cyberattacks can have
long-lasting effects on the energy efficiency of these devices. This finding highlights
the importance of not only detecting but also mitigating the impacts of cyberattacks on
smart home devices.

In conclusion, this study has demonstrated that power consumption patterns can be
indicative of cyberattacks on various smart home devices by examining devices with
distinct power consumption behaviors.

5.2 Comparing the Results with Existing Literature

The objective of this paper was to investigate the impact of cyberattacks on the power
consumption of smart home devices and determine whether the changes can be used to
detect cyberattacks early on. In Table 3, the main focuses in comparison with existing
studies are presented. Here,✓ and ✗ symbols are used to indicate whether a specific topic
is addressed in each study. The table shows how this study covers topics not addressed
in some of the other studies and how it focuses on different aspects to provide a more
comprehensive understanding of the impact of cyberattacks on the power consumption
of smart home devices.

From the Table, it is evident that this study is similar or complementary to some
existing works in some aspects. Some of the key differences compared to other studies
are:

• Yang Shi et al. [14] focused on the same research question, still this work differs
from the referenced paper in several ways. While they focused on a wide range of
attacks, this paper specialized in one method. Additionally, the power consumption
patterns of various devices were measured directly, making this here stated approach
more practical and accurate. Also, potentials and limitations of this approach were
considered, while the study concentrates on different power consumption patterns of
distinct groups rather than the accuracy and detection speed of learning algorithms.
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• The shown results confirm Bobrovnikova et al.’s approaches [8], however this study
goes beyond by directly examining the power consumption data, conduction real
hacking attacks on a hardware testbed, and using statistical methods for accurate
interpretation. This comprehensive approach allows a more details insight into the
correlation between cyberattacks and IoT device power consumption, contributing
significantly to IoT security research.

In summary, this research contributes to the understanding of the impact of cyber-
attacks on IoT devices and their power consumption, thereby advancing security in the
smart home field.

Table 3. Comparison between this study and other studies with similar topic

Study Smart
environment

Energy-
management

Anomaly
Detection

Cyberattacks
on smart
devices

Statistical
analysis

Private
(Smart
Home) or
Industrial
Usage

This study ✓ ✓ ✓ ✓ ✓ private

Bobrovnikova
et al.

✓ ✓ ✓ ✓ ✓ both

Sajeev et al. ✓ ✓ ✓ ✓ ✗ both

Sivanthan
et al.

✓ ✗ ✗ ✓ ✗ both

Lara et al. ✓ ✓ ✓ ✓ ✗ private

Zhao et al. ✓ ✓ ✓ ✓ ✗ both

Zhou et al. ✓ ✓ ✓ ✗ ✓ private

Yan Lim et al. ✓ ✓ ✓ ✗ ✓ industrial

Chatterje &
Ahmed

✓ ✗ ✓ ✗ ✗ both

Pathak et al. ✓ ✗ ✓ ✗ ✗ industrial

Yang Shi et al. ✓ ✓ ✓ ✓ ✓ both

Mottola et al. ✗ ✓ ✓ Energy
attacks

✓ neither

5.3 Limitations

In this section the limitations of the analysis are acknowledged, which may impact the
interpretation of the results and the generalizability of the findings.

1. Insufficient data: Although this study includes data from 10 smart devices, the sample
size is relatively small, limiting the robustness of the conclusions stated in this paper.
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A larger sample size with a greater diversity of devices would be beneficial to make
more definitive claims about the relationship between hacking attacks and power
consumption patterns.

2. Potential biases: This analysis is based on data from a specific hardware testbed,
which may not be representative of all smart home devices and their configurations.

3. The hacking attacks: The attacks used in this study might not cover the full range of
possible cyberattacks that these devices could face in real world scenarios. In fact,
onlyDDos attackswere used.Moreover, this study focuses on simulated cyberattacks,
which might not fully reflect real world scenarios. Therefore, experiments in a live
environment would have been needed and might be considered in follow up research.

4. The power consumptions weremeasured only in standbymode and not during regular
operation. Further research should consider different operating modes of the devices.

5. Some smart home devices are not connected to a power supply and utilize batteries
or other energy sources, limiting the direct application of this approach.

6. Additionally, it was observed, that different devices may show varying impacts on
their power data. Therefore, the devices were grouped into four categories. Nonethe-
less, it might be necessary to investigate further in future studies to determine the
underlying causes.

By acknowledging these limitations, the aim is to provide a transparent and balanced
perspective on the findings. Future research should consider addressing these limitations
to provide a more comprehensive understanding of the relationship between hacking
attacks and power consumption patterns in smart home devices.

6 Conclusion

This study’s findings have significant implications for improving smart home security,
demonstrating that monitoring power consumption patterns could serve as an additional
layer of defense against cyberattacks. It is illustrated that cyberattacks on connected
devices can be detected, which is the base to take appropriate countermeasures by ana-
lyzing power consumption patterns and might be discussed in further research. The
implementationof anomalydetection systems can supplement existing securitymeasures
in smart homes.

This investigation studied the impact of cyberattacks on the power consumption
patterns of various smart home devices. Through detailed analysis and comparison of
power data during attack and non-attack periods, distinct device groups with different
power consumption behaviors under cyberattacks were identified. The main findings of
this research include:

1. Noticeable increases in power consumption during cyberattacks, followed by
normalization after attack cessation.

2. Occasional spikes in power consumption during attacks, with some devices also
experiencing temporary decreases.

3. Persistent increases in power consumption post-attacks for certain devices.

This study contributes to existing research on smart home security by providing a
novel approach to detecting cyberattacks throughpower consumption anomalies. By ana-
lyzing real-world data from a hardware testbed and applying various statistical methods,
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valuable insights into the relationship between cyberattacks and the power consumption
of IoT devices are offered.

Future research can build on these findings by exploring other potential indicators
of cyberattacks in smart home devices, such as irregularities in battery usage patterns or
data transmission rates. In addition, researchers can developmore sophisticated anomaly
detection algorithms and techniques tominimize false alarms and adapt to evolving smart
home devices and their power consumption patterns.

Moreover, to strengthen the study’s findings, further studies should address the men-
tioned limitations and consider real-world testing with a more diverse sample of devices.
Also expanding the discussion on potential countermeasures would contribute to the
overall impact of the research.

Another possible consideration for the future would be to explore the integration of
power consumption analysis with other security mechanisms to create a comprehensive
defense framework for IoT devices.

In conclusion, this study illuminates the potential of using power consumption
analysis as an extra layer of security in smart homes. By refining and expanding
these techniques, this study can contribute to a more secure and resilient smart home
ecosystem.
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Abstract. The increasing use of renewable energy sources, which are
predominantly based on power electronics, and the increasing demand
for electricity due to the electrification of the transportation and heating
sectors have brought new challenges to traditional power grids. In order
to address these challenges, the so called Energy Packet Grid (EP Grid)
proposes a novel operating scheme for the power grid that focuses on
the control of the power electronic components of the grid and consid-
ers the limitations of the grid equipment and power lines. The present
article specifically deals with the management of a single Energy Packet
Device (EP device) as an active participant within this grid structure.
It outlines the challenges associated with managing an EP device and
presents three employable control strategies: Three-Step Switching Con-
troller, Probabilistic Range Control, Packetized Energy Management. A
simulation environment is created to evaluate the effectiveness of these
control strategies. The results of the simulations compare the impact of
the different strategies on the operation of EP devices. The primary con-
tribution of this article is the proposal of management strategies for EP
devices, highlighting the challenges involved and suggesting solutions to
mitigate uncertainty in EP device management.

Keywords: Energy Packet Grid · EP Device Management Strategies ·
Smart grid · Simulations and Modeling

1 Introduction

With an increasing share of renewable energy sources, the supply side of power
grids becomes more decentralized and more power converter-based. This trans-
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as a top-down architecture with few conventional large power plants based on
rotating machines. One major drawback of renewable energy sources is their
volatility and an thus their reduced predictability. Therefore flexible loads and
storages are needed to match the demand to the actual supply. All these novelties
drastically increase the complexity of grid management and control. Moreover,
both the topology of the installed power lines and the grid equipment are not
designed for massive distributed generation [1,2]. At the same time, there is an
increasing energy and power demand because of the electrification of the mobility
sector and the heating sector [3].

Also, today’s grid control technique with its different levels of control is
suited to the physical characteristics of generation systems based on rotating
machines, such as primary control and secondary control. Since these charac-
teristics do not necessarily have to be present in power converter dominated
systems, it is necessary to adapt the control system to the new conditions. This
task is also becoming more dynamic and complex due to the increasing number
of measurement data, possible control signals and their communication.

One group of approaches to tackle this challenges are hierarchical control
approaches based on decentralized and autonomous control of participants,
which then can be aggregated for higher control layers, like in microgrids [4,5]
multi-microgrids [6], web of cells and fractal grids [7]. One point where these
control approaches do not offer a clear solution is scalability, especially together
with management of shared and limited resources like lines and transformers.

Another upcoming approach is motivated by communication networks. Like
packet switching helped to overcome similar challenges in such networks, the
approach proposes energy packets for the power grid as discrete power flows for
a simpler and non-continuous control and management. It was first introduced
in [8] and discussed in particular in [9–12]. In these first works, there is no
control over the transmitted power, because energy packet transfers are realized
by interconnecting capacitors charged with DC voltage requiring an exclusive
line usage between the participants.

Since then several approaches were proposed which can be classified as energy
packet concepts dependent on the used definition or at least share similarities
with the concept. One of those concepts is the so called “Energy Internet” and
related designs [12–19]. Beside many similarities to the energy packet concept,
like the existence of energy routers, they do not necessarily employ discrete
energy packets or use them only partially on a higher system level.

A recently published concept is packetized energy management [20–23] which
was applied to thermostats, batteries and electric vehicle charging. It uses a
central coordinator that authorizes participants to draw or withdraw an energy
packet with a discrete power during a discrete time step. The works show the
advantage of efficient grid resource utilization, but do not involve energy routers.

The Energy Packet Grid (EP grid) proposed in [24,25] presents an alterna-
tive approach that provides a quantized power flow that takes into account the
limitations of grid equipment and lines during power transmission. An Energy
Packet (EP) in this concept is a quantized power flow between two pre-negotiated
EP devices which exchange a certain amount of energy. The EP device as a key
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element proposed in [24] and developed in [25] is a power converter combined
with a battery storage system as well as control and communication equipment.
They are the participants of the EP grid and interconnect either multiple cells
of the EP grid or an EP grid cell with a traditional grid. Within each EP cell, a
line manager (LM) is involved in the negotiation phase of every EP transfer. The
LM evaluates the grid state resulting from the requested transfer and dependent
on transmission line constraints and voltage constraints denies or accepts each
transfer. For the participants in an EP grid, this means that they can never draw
or feed in power without finding a partner for the EP transfer and without the
permission of the line manager.

The present article builds on the work described in [24,25] and discusses the
challenges of managing an EP device and proposes two potential management
strategies as a main contribution. The proposed strategies are also compared
with a corresponding strategy from related work by [22,23]. In addition, the
approaches to identify the causes that reduce the success rate and reliability of
EP device management are developed. The results highlight the need to reduce
uncertainty in EP device management, which will be instrumental in improving
the success rate. The selection of parameters for the energy packets themselves
as well as safety margins for protection devices are also mentioned as key aspects
to improve the success rate. As a conclusion, we suggest the integration of fore-
casting into EP device management as a possible solution to reduce uncertainty.
Another possible approach is to make loads and generators, especially those with
higher power, interruptible or controllable.

The remainder of the article is organized as follows: Sect. 2 introduces the
task of EP device management. Section 3 proposes three control strategies for
EP device management. Section 4 describes the implemented simulation envi-
ronment. Section 5 defines the simulation setup. Section 6 shows the simulation
results of the different control strategies. Section 7 compares the results of the
control strategies and Sect. 8 concludes the paper.

2 EP Device Management

Conventional loads and generators, or any form of aggregation like a com-
plete household are connected to the EP grid via EP devices. Figure 1 shows
a schematic of the power flows in such a household with an EP device. One
interface of the power converter of the EP device connects to the EP grid for the
exchange of energy packets with the grid. The other interface operates as a grid-
forming inverter (GFM), which provides the local AC grid for the household.
Since in the context of households, AC connected batteries may already exist in
a household and commercial products at least are available, this work considers
the battery being connected to the local AC grid instead of being connected
directly to the power converter of the EP device. This creates a balance point
of loads, generators, battery and power converter, with the last two logically
forming the EP device. This balance point in most cases will have to be actively
balanced by either the battery, the inverter or a combination of both.



Management Strategies for an EP Device in an Energy Packet Grid 243

+

Battery

Load

Generation

Power
converter

Household

EP Device

Pload

Pgeneration

Pbattery

Pconverter Ppacket EP Grid

Fig. 1. Generalized overview of power flows in an EP grid household. [24]

In such a case, both sides are affected by a number of physical constraints,
so finding an appropriate operating strategy to keep the balance point neutral
becomes an a major task, which is the essential part of EP device management.
In a traditional grid, the power converter could always supply or feed in needed
power within its power limits. But as the EP device and so the power converter
is a participant in the EP grid, this gets more complicated. Energy packets
need to be requested and can get denied. Thus the EP device can not rely on
instantaneous power from the public grid. This means the battery always has to
be in a state where it can fullfill the power demand of the local AC grid for a
short time in case a packet request gets denied. Otherwise reliable supply can
not be guaranteed or components may be damaged. The main task of the EP
device management therefore is battery management:

Assume an energy packet is send into the EP grid and the battery is supplying
the local grid at its maximum power. In that case, there is no battery power left
over to supply additional loads in the household and the power converter is tied
to the negotiated transfer. A load increase would lead to an undersupply of the
local AC grid with consequences on the voltage and stability issues. Considering
non-curtailable generation, this situation also exists the other way round if the
generation at the balance point exceeds maximum battery charging power and
the power converter is tied to a packet transfer or packet request is denied.

3 Control Strategies and Guard Schemes

Three empirically derived control strategies for EP device management are
implemented and compared in the following. As an intuitive approach, Three-
Step Switching Controller is used to gain first results. Packetized Energy Man-
agement (PEM) is a strategy from related work [22,23] which faces similar chal-
lenges under slightly different constraints. Probabilistic Range Control (PRC) is
a modified version of PEM that uses linear functions and omits the state machine
to reduce the complexity. At the end of the chapter guard schemes are proposed
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that can be evaluated in addition to each strategy and are allowed to override
the strategy decision under certain conditions, e.g. when hardware constraints
are exceeded.

3.1 Three-Step Switching Controller

The first strategy is a Three-Step Switching Controller based on the state of
charge (SoC). If SoC is above an upper limit u, a request of sending an EP is
made. If SoC is below a lower limit l, a request of receiving an EP is made.
This behavior can be described by two probability functions PR(xb) for request
to receive (cf. Eq. (1)) and PS(xb) for request to send (cf. Eq. (2)) an EP. The
resulting probability distribution for l = 0.3 and u = 0.9 is shown in Fig. 2.

PR(SoC) =

{
1 , SoC ≤l
0 , SoC >l

(1)

PS(SoC) =

{
1 , SoC ≥u
0 , SoC <u

(2)
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Fig. 2. Three-Step Switching Controller probability curve

3.2 Probabilistic Range Control (PRC)

Probabilistic range control (PRC) adds a desired SoC parameter SOCtarget

which has to be in the interval introduced by the two limits. Between the lower
limit l and SOCtarget, the probability making a request for the receipt of an
energy packet linearly decreases from 100% to 0%, like shown in Eq. 3. Between
SOCtarget and the upper limit u, the probability making a request for sending
an EP linearly increases from 0% to 100%, like shown in Eq. 4. Figure 3 shows
the probability curves for the two request types for an exemplary configuration
of l = 0.4, u = 1, SOCtarget = 0.8. PRC can be modified by two extensions:
estimation approach (EST) and direction awareness (DIR).

The estimation approach (EST) uses the actual SoC and the actual power of
the battery to calculate an SoC estimation SoCestimate. SoCestimate is the SoC
the battery would have at the next strategy decision, assuming constant power
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of the battery until then. In the decision making of PRC with EST, SoCestimate

is used as parameter for the probability functions instead of SoC.

Direction awareness (DIR) which is evaluated after the PRC decision. It
cancels a request if the actual power of the battery exceeds a relative threshold
compared to the power of the EP transfer that would be requested by PRC.
This relies on the assumption that in this situation, the same result as with the
packet transfer will be achieved by the actual power of the battery.

PR(SoC) =

⎧⎪⎨
⎪⎩

1 , SoC ≤l
SoCtarget−SoC

SoCtarget−l , l< SoC < SoCtarget

0 , SoC ≥ SoCtarget

(3)

PS(SoC) =

⎧⎪⎨
⎪⎩

0 , SoC ≤ SoCtarget
SoCtarget−SoC

SoCtarget−l , SoCtarget < SoC <u

1 , SoC ≥u

(4)
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Fig. 3. Probabilistic Range Control (PRC) probability curve

3.3 Packetized Energy Management (PEM)

The third strategy is the Packetized Energy management (PEM) approach for
energy storage systems of Almassalkhi et al. [22]. The approach consists of a state
machine where each state is associated with two probability functions, similar
the probability functions shown before. However in PEM, probability curves
are exponential. The general function PR,S is shown by Eq. (5). Depending on
request to receive or request to send different functions μR(SoC) and μS(SoC) are
used to calculate the individual probability, cf. Eq. (6) and cf. Eq. (7). Between
the different states, the parameter Mi of the functions varies to achieve a steeper
or flatter curve. States are changed in dependency on the acceptance of the
previous request. If a requested is accepted, the strategy assumes that the grid
is not fully utilized and switches to a state with functions of steeper probability
functions. If a request is denied, the strategy assumes high grid load and switches
to a state with flatter probability functions. With this behaviour, the PEM
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approach tries to adapt the request rate to the actual grid utilization. Like the
exemplary probability distribution in Fig. 4 shows, in PEM, the strategy could
decide to simultaneously request sending and receiving a packet. As mentioned in
[22], this case is ignored and does not result in sending two EP requests because
the resulting transfers would cancel each other out.

P{R,S}i
= 1 − e−μ{R,S}(SoC)δc (5)

μR(SoC) =

⎧⎪⎨
⎪⎩

0 , SoC ≤ l
u−SoC
SoC−l · SoCtarget−l

u−SoCtarget
· Mi , l < SoC <u

∞ , SoC ≥u

(6)

μS(SoC) =

⎧⎪⎨
⎪⎩

∞ , SoC ≤l
SoC−l
u−SoC · u−SoCtarget

SoCtarget−l · Mi, l < SoC < u

0 , SoC ≥u

(7)
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Fig. 4. Exemplary probability curve of Packetized Energy Management (PEM) [22]

3.4 Guard Schemes

In addition to the three strategies shown above, we design guard schemes that
try to prevent the EP device management from a bad decision mainly in terms
of exceeding hardware limitations. The guards are evaluated after a strategy’s
decision and have the ability to override them. Whenever a strategy decides to
send an EP request, each of the guards has to be fullfilled or otherwise no request
will be sent. We implement the battery capacity guard, the battery power guard
and the oscillation guard. Requests are canceled by the battery power guard if
the actual power situation exceeds the maximum charge or discharge power of
the battery. The battery capacity guard cancels requests if the EP transfer based
on the actual power situation would lead to exceeding SoC limitations assuming a
non-changing power situation. Note that this is not a reliable protection measure
because it is evaluated when the decision is made and the power situation can
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change afterwards, but it prevents the EP device management from requesting
transfers that are not feasible at the moment of decision making. Changing power
situations are also the reason why both of these guards can be configured with a
margin to leave some headroom for fluctuation. The oscillation guard prevents
the EP device management from requesting the receipt of an EP if the previous
decision was a request to send an EP, or vice versa. Such opposite actions in
two consecutive decisions are considered unnecessary and oscillating transfers,
because they would not have an impact on the SoC of the battery as the energy
sum is zero.

4 Simulation Environment

A simulation environment is implemented to evaluate the different strategies.
Algorithm 1 shows the overall simulation process. As inputs there are aggregated
load power Pload[t] and aggregated generation power Pgeneration[t] for each time
step t, and the constant power of each energy packet Ppacket. For each time step,
the simulation calculates the charging power of the battery Pbattery based on the
power of the load, the generation and the converter. If necessary, the generation
gets curtailed to reduce charging power. Afterwards, the SoC of the battery
gets updated based on the charging power. The discrete-time battery model is a
simplified version of the battery model from [22]. It includes standby losses and
charging efficiency as well as discharge efficiency. It does not include battery
degradation, temperature-specific and SoC-specific behavior. Every k-th time
step, the EP device management decides whether an EP should be requested or
not and whether it should be received or sent. For that, the decision function
shown in Algorithm2 is called. It calculates a control strategy’s decision and
afterwards evaluates the guards. At the end, there is a randomized acceptance
of the request to model the request acceptance of the Line Manager. If a request
is made, not prevented by the guards and gets accepted by the Line Manager,
the decision function returns the power of the EP Ppacket with the correct sign
depending on sending or receiving. This value is stored as setpoint of the power
converter Pconverter in the simulation process. Although the decision is only
based on the actual power of a single time step, the EP is send over k time steps
because the converter power Pconverter is not modified in the following time
steps. Thus, the strategy’s decision has an impact on the following k − 1 time
steps. This provides a fluctuating load and fluctuating generation behavior to
the simulation, because those power values change every time step and therefore
may lead to an exceeding limit which a strategy should avoid. Without the
modeled fluctuation (k = 1), a strategy can perfectly adapt to the given power
data which in a real world scenario would mean that load power and generation
power is constant for the duration of an EP transfer or would be exactly known
beforehand. This might be the case when a very short duration for time steps is
considered.
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Algorithm 1. Simulate
1: for t ∈ [0, N ] do
2: if t mod k = 0 then
3: Pconverter ← decision(SoC, Pload[t] − Pgeneration[t], Ppacket)
4: end if
5: Pbattery ← Pload[t] − Pgeneration[t] + Pconverter

6: if Pbattery < −Pbattery max then
7: Pgeneration[t] ← Pgeneration[t] − Pbattery max + Pbattery

8: if Pgeneration[t] < 0 then
9: Pgeneration[t] ← 0

10: end if
11: Pbattery ← Pload[t] − Pgeneration[t] + Pconverter

12: end if
13: battery.updateSoC(Pbattery)
14: if !battery.checkLimits() then
15: fail()
16: end if
17: end for

5 Simulation Setup

For the evaluation, data profiles from the Open Power System Data project
[26] are used. This data set provides measured time series data for many small
enterprises and residential houses that are valuable in modeling household or
low-voltage power systems. The data contains solar power generation as well
as energy consumption (load) down to the level of a single unit. Specifically,
we used the time series for the Residential 1 household (R1) and for the Resi-
dential 4 household (R4). For both, data are used for the duration of one year
from 2015-12-11 19:00:00 to 2016-12-11 18:59:00 with a time resolution of one
minute. We set the interval of strategy decisions to 5 min which corresponds to
k = 5. The modeled battery has a capacity of 12 kWh and a nominal power of
12 kW. Simulation runs with different batteries show comparable results rela-
tive to their capacity. As constant EP sizes for individual simulation runs, we
choose 0.05 kWh to 1.4 kWh in increments of 0.05 kWh. In comparison, the aver-
age energy consumption per control interval in data set R1 is 0.059 kWh. The
upper limit for the EP size corresponds to a power during the control interval
of 16.8 kW comparing well to the 16.4 kW maximum grid feed in of the R4 data
set. The set of transfer grant probabilities simulating the Line Manager decision
is chosen to γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. For the same set of
simulation parameters the individual probability decision at each control step is
the same for each strategy so that results are comparable. The lower margin of
the battery capacity guard is set to 0.7 kWh and the upper margin to 11.5 kWh.
This is an adaption on the used data sets where in a single control step without
packet transfers the maximum energy discharged is 0.7 kWh and the maximum
energy charged is 0.5 kWh. As a result, at each control step, the made deci-
sion will always lead to an assumed upcoming SoC that provides enough stored
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Algorithm 2. Decision(SoC, power, Ppacket)
1: requestType ← strategyDecsion(SoC, power, Ppacket)
2: if requestType = NONE then
3: return 0
4: end if
5: if !checkGuardsValid(requestType,SoC, power, Ppacket) then
6: return 0
7: end if
8: if !checkTransferGranted() then
9: return 0

10: end if
11: if requestType = SEND then
12: return +Ppacket

13: else
14: return −Ppacket

15: end if

energy and free storage capacity to successfully pass the following control step
even without a EP transfer. Note that this only tries but can not guarantee the
SoC to be within this limit because strategy and guards only know the momen-
tanous power situation at the moment of decision making. The receive power
guard safety margin is set to 0 which allows to use the complete available charg-
ing power of the battery (12 kW) within the guard. With EP power less than
the maximum charge power of the battery, this is always a suitable choice. The
packet transfer itself does not exceed maximum charge power in that case and
any generation leading to a charge power beyond the limit is curtailed by the
simulation at every time step. So there is no need to leave additional headroom
by choosing receive power guard safety margin greater than zero.

Choosing a send power guard safety margin is more complicated. The obvious
limit would be the maximum discharge power of the battery. But assuming a
situation where a strategy fully uses this power, any load increase during the
control interval will lead to a failure of the simulation. In contrast to generation,
the loads are modeled as uncontrollable and can not be curtailed which makes
this scenario very likely to happen. Therefore it can be helpful to choose a send
power guard safety margin greater than zero to only plan with some amount of
battery discharge power and leaving headroom for changing load behavior.

Figure 5 shows an aggregated evaluation of all simulation runs with the
described set of parameters in dependency of the send power guard safety mar-
gin. We can see that the success rate of the simulation increases with increasing
margin. Accordingly, the fail rate due to exceeded discharge power decreases
and the number of triggered send power guards during simulation increases. The
figure shows that a margin above 9 kW will not increase the success rate because
the fail rate due to exceeded discharge power is zero at this point. For the follow-
ing evaluation, we thus set the send power guard safety margin to 9 kW leading
to an allowed charge power within the guard scheme of only 3 kW.
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Fig. 5. Combined simulation results of the strategies for different send power guard
margins and data sets.

6 Evaluation

In the following, the different strategies are compared based on their success
rate, total received energy and total wasted energy. Figure 6 shows the results
for data set R1 and Fig. 7 for data set R4. The boxplots of total received energy
show the energy that the power converter of a household has received via energy
packets in each simulation run with the different parameters. Beside the local
generation this is the only supply of the household. The blue dashed line visual-
izes the energy consumption of the household with preferred usage of the battery
and local generation. This is the energy, the households needs from the grid in
a traditional grid environment. In the context of EP device management, the
received energy is desired to be as close to this baseline as possible. Any addi-
tional energy received above the storage capacity (12 kWh) is not consumed and
can not be stored. This energy at some point in the simulation had to be fed back
to the EP grid and is an indicator for unnecessary transfers. The wasted energy
metric combines the surplus energy of unnecessary transfers and the unused
energy by curtailed generation. Both of these two effects are undesired behavior
and strategies with less wasted energy are preferred. Note that generation some-
times has to be curtailed because the transfer grant probability denies sending
an EP and therefore zero wasted energy is not achievable with every simulation
configuration. For both data sets, the ranking of the strategies in terms of suc-
cess rate stays the same with PEM providing the best result, and the variants of
PRC being very close. Only the Three-Step Switching Controller provides signif-
icantly worse results. In terms of wasted energy, no strategy clearly outperforms
the others.
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(A)

(B)

Fig. 6. Boxplot visualization of total received energy (A) and wasted energy (B) for
simulation runs with different strategies and different simulation parameters based on
R1 data set. The blue dashed line signalizes the possible minimum of received energy.
(Color figure online)

Figure 8 shows the simulation results of the different strategies with different
packet sizes when using the R1 data set. Sent energy is the energy that the
power converter of the household sent into the EP grid. Curtailed energy is the
energy of the generation that is not used because of curtailment. The effect that
less energy can be sent into the grid if generation is curtailed can be seen clearly
in the mirrored course of the two curves. The wasted energy metric shows the
same behavior as curtailed energy with an offset. This offset can be assigned to
unnecessary transfers where energy was received but had to be sent back to the
grid at a later point. To reduce unnecessary transfers and especially to curtail
as less generation as possible, a EP size between 0.4 kWh and 0.5 kWh should
be used based on the modeled battery. This translates to a 40%–50% saturation
of the batteries possible charging power. On the other hand, the success rate
and received energy show better values with increasing packet size. However,
both curves, especially received energy, flatten towards the end. This makes the
proposed packet size a suitable compromise between wasted energy and success
rate.
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(A)

(B)

Fig. 7. Boxplot visualization of total received energy (A) and wasted energy (B) for
simulation runs with different strategies and different simulation parameters based on
R4 data set. The blue dashed line signalizes the possible minimum of received energy.
(Color figure online)

7 Discussion

According to the results of the evaluation, it can be concluded that battery
power and the send power guards are critical for the success of the strategy.
The send power guard prevents the strategy from exceeding the discharge power
limit of the battery when a packet shall be sent. The margin is used to deal with
power fluctuations during the control interval which of course are not known at
the beginning of the interval when packet decision is made. Power fluctuations
leading to an increase in discharge power are increasing load power, decreasing
generation power and the combination of both. This shows that in contrast to
the other parameters that mainly depend on battery properties, the send power
margin strongly depends on the data set. The margin of the send power guard for
the evaluation is set to 9 kW based on experimental results of R1. This matches
quite well with the data set for which during a control interval maximum increase
of load power is 7.44 kW, maximum decrease in generation power is 9.6 kW and
maximum increase in power demand (sum of load and generation) is 10.38 kW.
The fact that a margin of 9 kW is already enough to prevent failures, even if
there is maximum fluctuation as high as 10.38 kW, shows that the strategies
made the right decision at these control intervals even without the send power
guard. Overall the evaluation shows the high impact of the send power guard,
but with the margin being an adaption on the data set, it shows that in a real
world scenario, the margin should be chosen individually for each household and
can not be defined generally.
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Fig. 8. Combined simulation results for different packet sizes based on R1 data set.

Based on the evaluation, there is no clear strategy to choose for EP device
management. PEM and PRC + EST show similar results for the given data set.
Without the EST extension, PRC performs worse, which shows that EST is a
good extension. This rises the question whether PEM could also benefit from
EST. In the simulation, each run uses a constant transfer grant probability. PEM
is designed to adapt to grid utilization based on transfer grant decisions. This
means it may show better results than PRC, if the transfer grant probability
varies during the simulation run, which would also happen in real world. Over-
all, the success rates of the strategies are not satisfying enough for EP device
management because without further measures every strategy with less than
100% success rate would lead to partial power failures in the according house-
hold. At this point further analysis of the results and more testing is needed. The
evaluation aggregates the results of all simulation runs for the complete set of
simulation parameters. Thus bad results due to bad parameter setup, e.g. packet
energy, are integrated in the overall results. Also harsh scenarios like low transfer
grant probabilities are integrated in the results although it is unclear whether
these occur in the real world. This especially includes simulations runs with
10% transfer grant probability where no strategy and parameter set achieved a
successful run.

With the constant duration of energy packets in the evaluation and a constant
packet energy during each simulation run, the evaluation suggests an EP size
leading to a utilization of about half of the batteries maximum power. Whether
this is a suitable choice in general or just a fit for the evaluated parameter
and data set needs further investigation. It could be possible that it applies as a
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general recommendation to deal with uncertainty in load and generation. Packet
power should be chosen dynamically depending on the actual power situation.
With a constant duration this would lead to energy packets with a dynamic
amount of energy. Energy packet duration on the other hand also does not need
to be constant and could be chosen dynamically. Especially when considering
a heterogeneous grid where not every household has the same generators and
batteries, constant parameters can probably not be chosen to fit everyone and
a dynamic choice of packet parameters could help to adapt on the properties of
two EP transfer partners.

8 Conclusion

This article describes the challenges associated with the management of EP
devices. Two possible management strategies are proposed and compared with
the strategy in the related work by [22]. Approaches that contribute to reducing
uncertainty are likely to improve the success rate. Therefore, several methods
are possible. One is to integrate forecasting into the EP device management.
Another one is making loads and generators, especially the ones with higher
power, interruptable or controllable. A major point to improve success rate is
the parameter choice regarding the energy packets themselves and also safety
margins for guards. The presented results show the trade off between wasted
energy and success rate regarding the packet size. A suggestion for packets size
dependent on battery power and capacity is given, but is strongly based on the
simulation setup where packet size is the only choosable packet parameter. A
more freely parameter choice where packet power, packet duration and packet
size can be choosen independently from each other and also dynamically during
runtime should improve the results, but will need a more complex simulation
environment. Free choice of parameter will also help to find suitable parameters
that fit for all EP devices in a grid with heterogeneous distribution of loads,
generators and batteries.
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Abstract. Digital controllers for grid-connected voltage source convert-
ers GC-VSC offer a noteworthy alternative to traditional continuous-
time control systems. A power grid often comprises inverters, grid- form-
ing and grid- following converters, renewable energy source units, and
various local loads. Currently, the design of GC-VSC controllers is sub-
ject to restrictions and additional considerations following standards and
technical recommendations for their control when operating connected
or disconnected from a power grid, mainly to maintain the stability of
the control system. In this context, this paper presents the design of the
GC-VSC digital controllers, using mainly the concepts of dead- beat con-
trol. Thus, the main result of this project is to improve the modeling and
control of the single- phase GC-VSC using the digital control method.
The relative RMS errors of the GC-VSC current and load voltage are
εif = 3.67 % and εvo = 0.01 %, respectively, i.e., the controller showed
tracking accuracy. Simulation results using MATLAB/SIMULINK are
presented to validate the proposed controllers.

Keywords: Grid-Following · Grid-Forming · Dead-beat controller ·
Digital control · Voltage source converter

1 Introduction

Industrial, commercial, and residential applications of grid-connected voltage
source converters (GC-VSCs) based on power electronics, such as battery energy
storage systems (BESSs) and photovoltaic systems (PVs), have increased con-
siderably recently, mainly due to the energy transition and variable renewable
energy sources (RESs), with the consequent growing demand for distributed
energy resources (DERs) [1–3]. Power systems are constantly changing, mainly
due to the application of power electronic converters in the distribution system
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Fig. 1. Basic depiction of single- phase grid with the GC-VSC operation models as
GFMVS-VSC or GFLCS-VSC.

[4–6]. GC-VSC in alternating current (AC) grids can be controlled as a grid-
forming (GFMVS-VSC) operating in voltage source mode (VS) or grid-following
(GFLCS-VSC) operating in current source mode (CS) (Fig. 1) [7–9].

GC-VSC, operating as a GFMVS-VSC, maintains the voltage and frequency
at the local load of the power circuit within established limits, in addition to
limiting the current within the parameters of the converter [10,11]. Considering
the operating mode as GFLCS-VSC, the converter continues feeding the local
load, but the grid is responsible for supplying the voltage at the point of common
coupling (PCC). In this operation mode, the GC-VSC can inject a current into
the grid if there is excess power on the direct current (DC) side [12].

The controllers of the converters have a significant role in order to main-
tain stability, mitigating power loss, and improving the robustness and dynamic
response of the GC-VSC [13,14], considering the purpose of reducing the cost of
system implementation [15,16].

Authors of [16] improve the robustness and dynamic response of the voltage
source converter (VSC) using a second-order sliding mode control algorithm.
This algorithm was applied considering a weak- grid scenario [16].

In [17], the authors presented the control system of a GC-VSC, which enables
the enhancement of the stability and resilience of a grid. In [18], a detailed
analysis of the operation of grid- connected converters is presented, focusing on
GFLCS-VSC, among other configurations. Droop control can be used during
the connection to the grid, also allowing the regulation of its output power flow
[17,19]. Some researchers use a phase-locked loop (PLL) [20–22] to impose a
current through the coupling inductance at PCC, but this issue is not discussed
herein.

Authors of [23] present an analysis of the stability of a GC-VSC during
transients. The single- loop controller used in this work keeps the amplitude of
the supplied voltage within predetermined parameters [23]. However, there is no
discussion about the performance of this GC-VSC when there is a need to inject
current into the grid.
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Currently, there is a growing application of digital controllers [24–26]. Several
discretization techniques can be applied to determine the discrete-time model of
a GC-VSC [27]. The model definition impacts the digital control system quality.

This paper presents the design of digital controllers applied to a single- phase
VSC connected to a local load. Thus, this paper aims to design digital controllers
applied in a GC-VSC [10]. The digital control algorithm of the current injected
into the grid only starts to operate when the voltage measured at the PCC is
equal to the grid voltage with the power switch (SW) closed, which allows the
connection of the GC-VSC. The assumptions made throughout this paper are
listed as follows:

1. a digital pulse-width modulation (DPWM) based current control is employed
in single- phase VSC connected to a local load;

2. a GC-VSC is used to supply electrical power, with voltage and frequency
within an appropriate level, only to the local load RL, i.e., operating as a
grid- forming (two control loops using only dead-beat (DB) controllers). This
mode of operation occurs when the SW is open (off) and the automatic control
switch (c-SW) is set to position 1. Thus, we assume the analyzed circuit is
formed only by the inductance Lf in series with the equivalent of the capacitor
Cf in parallel with the load RL. This assumption is valid because we consider
that the inductor resistance can be neglected and that the current in the
branch formed by Lg and Rg is zero (ig = 0);

3. the GC-VSC operates as a grid- following (three control loops using two DB
controllers and one proportional-integral-resonant (PIR) controller) with SW
closed (on), which causes the automatic switch c-SW to change to position 2.
Thus, the circuit analyzed is formed by Rg and Lg branch;

4. the AC series filter eliminates the harmonics due to the switching;
5. it is assumed that the GC-VSC is lossless;
6. the grid voltage is considered to be ideal.

The paper is organized as follows. Section 2 describes the analysis and model-
ing of the controller. Section 3 presents the digital controller methods. Section 4
describes the simulation setup, results, and discussions. Section 5 concludes the
paper and lists potential future works.

2 Analysis and Modeling of System

Figure 2 shows the power circuit of a GC-VSC with the ideal power semiconduc-
tor switches (S1, S2, S3, and S4), where vf , vo, if , io and ig are the controlled
instantaneous voltage and currents generated and vg is the voltage at PCC. Note
that the inductor Lf and the capacitor Cf form the inductive-capacitive filter
(LC-Filter) at the GC-VSC AC side. We consider the GC-VSC DC- side voltage
Vdc and the grid voltage vg to be ideal, i.e., without voltage ripple (DC- side)
and harmonic distortion (AC- side). The power losses of the GC-VSC are dis-
regarded, but the adverse effects of delay time imposed by the GC-VSC in the
current controller are considered in this work [25,28]. The modulation system is



260 C. F. do Nascimento et al.

Single-Phase
Grid

SW

GFC-VSC

LC-Filter Coupling Impedance
PCCResistive Load

Fig. 2. GC-VSC connected to the single-phase power grid.

Table 1. Power Circuit Parameters.

Parameters Symbols Values

DC- side voltage Vdc 450V

Switching frequency fsw 20kHz

Filter inductance Lf 1.4mH

Resistance of the Filter Rf 0.5Ω

AC- side capacitor Cf 30µF

Coupling inductance Lg 0.5mH

Resistance of the coupling inductance Rg 0.25Ω

Load resistance RL 26.5Ω

Nominal power So 3k VA

Nominal RMS grid voltage Vg 230V

Nominal grid frequency fg 50Hz

based on the DPWM concept, which is used considering the delay of the digital
system. The parameters of the GC-VSC are presented in Table 1 [12].

Figure 3 presents the power circuit at the PCC. The instantaneous current if
drained from GC-VSC AC- side is composed of the currents of capacitor iCf

and
in load node io, where io is the sum of the currents of load iL and grid ig (ig = 0
when SW is open). The GC-VSC AC- side voltage vf , the load voltage vo, and
the grid voltage vg are also shown in the circuit. The analysis of this circuit
depends on the operation of SW, according to what has already been assumed.
Thus, we obtain the mathematical model described in (1) and (2). The models
presented in (3) and (4) are obtained by imposing that SW is operating closed,
which results in the voltage and frequency at PCC being established by the grid.

− vf + Rf if + Lf
dif
dt

+ vo = 0 (1)

if − Cf
dvo

dt
− vo

RL
= 0 (2)
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PCC

Fig. 3. AC- side equivalent circuit.

− vo + Rgig + Lg
dig
dt

+ vg = 0 (3)

if − Cf
dvo

dt
− vo

RL
− ig = 0 (4)

Assuming the circuit is disconnected from the grid (SW is open) and applying
(1) and (2), the current Gif (s) and voltage Gvo

(s) transfer functions are given
by (5) and (6).

Gif (s) =
Vdc

RL

1 + sRLCf

1 + sLf

Rf
+ s2LfCf

(5)

Gvo
(s) =

Vf (s)
If (s)

=
RL

1 + sRLCf
(6)

The transfer function of the grid current Gig (s) in (7) is determined by using
(3) and (4), with SW closed.

Gig (s) =
Ig(s)

Vo(s) − Vg(s)
=

1
Rg + sLg

(7)

However, the dead-beat (DB) controller design does not require continuous-
time transfer functions, such as (5) and (6). It is based on an internal converter
model directly built in the discrete- time domain, as described in Sect. 3.

Instead, the transfer function given in (7) is used to design a continuous- time
proportional-integral (PI) controller, which is later discretized. One approach
step used for the PIR controller design is to obtain the discrete- time equivalent
of the continuous- time transfer function of the PI [29]. The PIR controller offers
an alternative to the conventional approach based only on the PI, operating
directly in the stationary reference frame without coordinating transformations.
The resonant part offers a very high gain at the desired AC frequency without
using a dq control for disturbance tracking and rejection [30].

3 Digital Controllers

Grid-connected voltage source converter (GC-VSC) control block diagram is
depicted in Fig. 4. Note that there are one voltage loop and dual- loop current
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control block diagram. The voltage vo is controlled with DB controllers, and the
control system limits the local load current iL. A PIR controller controls the
grid current. These controllers are designed in the discrete- time domain.

DBv VSCDBi DPWMPIRv

c-SW

Grid-Following Mode
(SW on and c-SW 2)

Grid-Forming Mode
(SW off and c-SW 1)

1

2

Fig. 4. Loop voltage and current control block diagram.

3.1 Dead- Beat Digital Controller Designs

The design of DB controllers is based on the concept of internal model control,
i.e., the discrete- time current generated by GC-VSC is calculated two steps
ahead of the measured value, as given in (8) and (9), taking into account the
sampling time Tsw (switching period Tsw = 1/fsw). This is to account for the
processing time of the control system. DB basically does direct pole allocation
with dynamic state feedback in discrete-time systems [24].

if (k + 2) = if (k + 1) +
vf (k + 1) − vg(k + 1)

Lf
Tsw (8)

if (k + 1) = if (k) +
vf (k) − vg(k)

Lf
Tsw (9)

GC-VSC AC- side average voltage with the respective duty- cycle [d(k + 1)
and d(k)] are given by (10) and (11).

vf (k + 1) = [2d(k + 1) − 1]Vdc (10)

vinv(k) = [2d(k) − 1]Vdc (11)

Considering i∗f (k) = if (k + 2) in (8), the duty- cycle is given by (12).

d(k + 1) = [i∗f (k) − if (k)]
Lffsw

2Vdc
+

vg(k)
Vdc

− d(k) +
1
2

(12)

Note in (12) that the current error can be as shown in (13).

εif (k) = i∗f (k) − if (k) (13)
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Therefore, the duty- cycle is written as in (14).

d(k + 1) = εif (k)
Lffsw

2Vdc
+

vg(k)
Vdc

− d(k) +
1
2

(14)

GC-VSC controlled voltage at PCC, i.e. at Cf , is given by (15). Note that
two steps of generated current if (k + 2) represent one step of the controlled
voltage vo(n + 1), as shown in Fig. 5. Observe also that the sampling interval
index k is used, like in i(k) = i(t)|t=kTsw

, but the interval considered for vo is n.

vo(n + 1) = vo(n) +
1

Cf

[
i∗f (n) − if (n)

]
Tsw (15)

Fig. 5. Discrete-time representation of k and n.

Using (8) and considering iL(n) = if (n), v∗
o(n) = vo(n + 1) and εvo

(n) =
v∗

o(n) − vo(n), we have the generated reference current in (16).

i∗f (n) = εvo
(n)Cffsw + iL(n) (16)

3.2 Proportional- Integral- Resonant Digital Controller Design

Figure 6 shows the transfer function Gig (s) used in the design of the PIR con-
troller. The magnitude Mig and phase PHig of the frequency response of the
system, the crossover frequency ωCRig

and the mϕig
margins were used to deter-

mine the proportional and integral gains of the PIR.
Given that the PI controller function is as shown in (17), the proportional

and integral gains are kpig
and kiig

, respectively [24].

PIig = kpig
+

kiig

s
(17)

Using the information from the Bode diagram in Fig. 6, we have the PI gains
as a function of ωCRig

, mϕig
and PHig , as given in (18). Figure 7 shows the

phase- margin mϕig
of the PIR controller.

kiig

kpig

= ωCRig
tan

(
PHig + 180◦ − mϕig

)
(18)

The proportional gain value of the PI controller is determined using (19).
Thus, the integral gain is determined using (18) and (19).
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Fig. 6. Bode plot diagram of open- loop grid current transfer function Gig (s).

Fig. 7. Bode plot diagram of closed- loop PIR.

kpig
=

1

1 +

√(
kiig

kpig

1
ωCRig

)2
(19)

We can obtain the discrete time of the PI controller, PIig(z), using (17) and
the transformation based on step invariance method (ZOH) [29], as given in (20).

PIig(z) = kpig
+ kiig

1
(1 − z−1)fsw

(20)

Resonant (R) filter, Rig (z), of the digital- based PIR controller is given by
(21), with ωo = 2πfg. Figure 8 shows the block diagram of the PIR controller.
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Note that vg is the feed- forward grid voltage, and v∗
o2 is the reference voltage

generated when SW is closed, i.e., GC-VSC is operating as GFLCS-VSC. The
PI controller can guarantee near-zero steady-state error only for DC signals [24].
Since the injected current signal is sinusoidal, the application of the R filter,
tuned to the fundamental grid frequency, becomes necessary.

Rig (z) =
kRig

Tsw

1 + ω2
oT 2

sw

1
1 − 2

1+ω2
oT 2

sw
z−1 + 1

1+ω2
oT 2

sw
z−2

(21)

P

R

I

Fig. 8. PIR controller block diagram.

4 Simulation Results

Simulation results obtained from model- based MATLAB/SIMULINK software
are presented in this section to verify the effectiveness of the proposed digital con-
trollers. The simulations consider the synchronization between the controllers,
the synchronism between the GC-VSC AC- side and the grid, the counters, and
the time delay usually encountered in applying a real system.

All tests with the digital controllers were performed using a power circuit
based on the GC-VSC, with grid RMS voltage and frequency of Vg = 230V and
fg = 50Hz. At the first test, the grid is connected to the PCC (SW closed) at
t = 0ms, while at t = 42.5ms, a negative step of 20% is applied to grid reference
current (Subsect. 4.1). In a different test, the GC-VSC operates disconnected
from the grid (SW open), but then at t = 37.5ms, the circuit is connected by
closing SW (Subsect. 4.2). Thus, the GC-VSC was tested both operating as a
grid- forming and grid- following during the 200ms evaluated. It demonstrates
the effectiveness of the controllers that are also automatically switched.

Table 2 summarizes the performance of the three digital control loops of
the GC-VSC. Note that the relative errors are dynamic values and the phase
errors are static. Total harmonic distortion (THD) is used herein to demon-
strate the GC-VSC performance quality using the proposed controllers [31,32].
Performance comparisons between control techniques are presented in [3,33].

4.1 GC-VSC Operating as Grid- Following

Figure 9 shows the grid current ig imposed through the coupling impedance Lg

and the reference current i∗g, with GC-VSC operating as grid- following (SW



266 C. F. do Nascimento et al.

Table 2. Dynamic and static results.

Parameters Relative RMS Errors (%) THD (%) Phase Errors (degrees)

Grid current (ig) 1.07 0.31 0.90

GC-VSC current (if ) 3.67 4.92 1.80

Current in load node (io) 3.70 0.21 10.35

Load voltage (vo) 0.01 0.35 0.45

on). The current ig varies instantaneously after negative step at t = 42.5ms.
However, it takes at least half a cycle of the grid frequency to enter steady state.
This can be seen in the current error shown in Fig. 9. Figure 10 shows details
(zoom from result of Fig. 9) of the grid current and current error behaviors. Note
that the error grows instantaneously at t = 42.5ms, but then it converges to zero.
There is a relatively small residual tracking error between the reference signal
and the instantaneous average value of the waveform generated by the GC-VSC.
This error, measured under steady-state conditions, is due to the delay caused
by calculating the duty- cycle in the digital control algorithm [24]. The current
THD remains constant at THD = 0.31% before and after the transient, with
a relatively small overshoot and fast dynamic response. The distortion of the
reference current generated by the digital control algorithm is THD = 0.33%.
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Fig. 9. Controlled grid current.

The current generated by the GC-VSC (if = iCf
+iL+ig) presents a transient

but with an instantaneous variation of lower intensity when compared to that
of the grid current ig, as shown in Fig. 11. The voltage vo at the local load did
not show significant variations during the load current variation at t = 42.5ms.
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Fig. 11. Controlled GC-VSC current.

However, the effect of the negative step on the reference current i∗g can be verified
in Fig. 12.

4.2 GC-VSC Operating as Grid- Forming or Grid- Following

Figure 13 and Fig. 14 show the signals of the digital controllers designed with the
DB concept, considering SW opened. It can be seen in Fig. 13 that the signal of
the modulator formed by DPWM, considering N = 700 points in the normalized
modulation index, is practically tracking the voltage vo, which maintains current
control. The relative RMS current error is εif = 3.67%, even after the transient
with the closing of SW. The current if phase error is Δϕif = 1.80◦. This
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Fig. 13. Current control signals.

result can be verified by comparing the reference current waveform and the one
generated by the GC-VSC. Figure 14 presents the current signals, current error,
and the comparison between the reference voltages and the voltage controlled by
the GC-VSC. The relative RMS voltage error is εvo

= 0.01%, with the phase error
of Δϕvo

= 0.45◦, which also demonstrates the effectiveness of the controllers.
Figure 15 shows the PIR controller signals. The reference voltage generated

by the controller practically does not change after the closure of SW, in which
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Fig. 16. GC-VSC AC-side voltage and current

only the local load is connected to GC-VSC, i.e., the current is drained only
by the load. The current error reaches the maximum value during the transient
but is approximately zero soon after. The relative RMS grid current error is
εig = 1.07%, and the phase error is Δϕig = 0.90◦. Thus, it can be seen that
the PIR digital controller could also track the reference current with adequate
accuracy for the proposed application.

Connecting a GC-VSC to an electrical power grid requires great scientific
and technical rigor in the design and development of the controllers, mainly to
follow the technical standards and recommendations. The main objective of this
work is to feed a local load with the voltage and current waveforms within the
design parameters. It can be seen in Fig. 16 that the waveforms provided by
GC-VSC meet the proposed design.

5 Conclusions

Digital- based controllers, using two dead-beats (DBs) and one proportion-
alintegral- resonant (PIR), acted according to the design, i.e., they were able to
follow both the reference current and voltage with relative errors of εvo

= 0.01%
and εif = 3.67%, respectively. Thus, the approaches used in the design of con-
trollers using the small- signal method in digital systems were effective.
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This work is part of a research project that aims to apply these controllers in
a three- phase system using the same digital design method. It is also intended
to consider the problems inherent to synchronism with a three- phase power
grid with unbalanced voltage (and/or current) to improve the effectiveness of
the digital controllers considering an application in a low- cost industrial VSC.

In future work, the proposed digital controllers will be implemented for exper-
imental results using the hardware-in-the-loop (HIL) and real scenarios with the
implementation on embedded systems. The real- time capability of the controller
must be tested at the subsequent development stages.

Acknowledgements. The authors are grateful for the financial support provided by
the Sao Paulo Research Foundation (FAPESP) under grant 2022/00317- 3 and grant
2016/08645- 9. We thank our colleagues at the Department of Information Engineering
(DEI) at the University of Padova (UNIPD) for their support.

References

1. Rathnayake, D.B., et al.: Grid-forming inverter modeling, control, and applications.
IEEE Access 9, 114781–114807 (2021)

2. Islam, M.M., Muttaqi, K.M., Sutanto, D., Rahman, M.M., Alonso, O.: Design of a
controller for grid forming inverter-based power generation systems. IEEE Access
11, 55755–55770 (2023)

3. Liu, Q., Caldognetto, T., Buso, S.: Review and comparison of grid-tied inverter
controllers in microgrids. IEEE Trans. Power Electron. 35, 7624–7639 (2020)

4. Du, W., et al.: Modeling of grid-forming and grid-following inverters for dynamic
simulation of large-scale distribution systems. IEEE Trans. Power Del. 36, 2035–
2045 (2021)

5. Baltas, G.N., et al.: Grid-forming power converters tuned through artificial intel-
ligence to damp subsynchronous interactions in electrical grids. IEEE Access 8,
93369–93379 (2020)

6. Mitsugi, Y., Baba, J.: Phaser-based transfer function analysis of power synchro-
nization control instability for a grid forming inverter in a stiff grid. IEEE Access
11, 42146–42159 (2023)

7. Yazdani, S., Ferdowsi, M., Davari, M., Shamsi, P.: Advanced current limiting and
power sharing control in a PV based grid-forming inverter under unbalanced grid
conditions. IEEE J. Emerg. Sel. Topics Power Electron. 8, 1084–1096 (2020)

8. Pattabiraman, D., Lasseter, R.H., Jahns, T.M.: Comparison of grid- following and
grid-forming control for a high inverter penetration power system. In: Proceedings
of IEEE Power Energy Society General Meeting (2018)

9. Lasseter, R.H., Chen, Z., Pattabiraman, D.: Grid-forming inverters: a critical asset
for the power grid. IEEE J. Emerg. Sel. Topics Power Electron. 8, 925–935 (2020)

10. Nascimento, C. F., Diene, O. & Watanabe, E. H. Analytical Model of Three- Phase
Four-Wire VSC Operating as Grid-Forming Power Converter under Unbalanced
Load Conditions in Proc. of the IEEE Int. Conf. Power Electron. Drive Syst. (2017)
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Abstract. Faults in district heating systems (DHS) cause sub-optimal
operating conditions, which increase energy losses. As DHSs are criti-
cal infrastructure for many households in Denmark, these faults should
be detected and corrected quickly. A novel model-based fault detection
and diagnosis framework has been applied to detect and prioritise faults.
The framework uses a bound for normal operation based on the residuals
between historical sensor data and simulated properties in a digital twin
of the DHS. The faults detected are prioritised based on the fault prob-
ability calculated using the Chernoff bound method. A case study on a
Danish DHS has proven that the framework can produce a prioritised
list of faults that maintenance crews can use to target faults with the
highest probability. Furthermore, the digital twin allowed for fault loca-
tion investigation, which could correlate different faults in the DHS. The
framework has the potential for real-time fault detection and diagnosis.
However, more precise digital twins need to be developed.

Keywords: fault detection and diagnosis · district heating systems ·
digital twin · Chernoff bound

1 Introduction

A district heating system (DHS) aims to distribute and provide affordable heat
to connected consumers efficiently [4]. In Denmark, the majority of households’
heat is supplied by district heating (DH), and a large proportion of total energy
use is for hot water use and heating in the EU [6], which makes the DHSs
critical infrastructure, and an important domain to improve the energy effi-
ciency of, to lower CO2 emissions. The complexity of operating a DHS with all
the different functions, from heat production and transmission to consumption,
leads to faults. These faults result in the DHS operating sub-optimally [4,11,12].
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To ensure the DHSs work efficiently, it is important to detect these faults and
remedy them as quickly as possible. However, DH companies mostly perform
reactive- and preventive maintenance instead of proactive maintenance. Reactive
maintenance strategies often result in faults not being detected quickly enough
or are never detected if the system is able to compensate or does not affect the
delivery of heat to the consumers (but still wastes energy). Faults leading to the
discomfort of consumers are often detected far more quickly. The use of planned
maintenance results in inspections being done too often, resulting in a waste of
resources. To unleash the full potential of the digitalisation of the DH sector,
tools for enabling proactive maintenance via implementing fault detection and
diagnosis (FDD) methods are needed. These methods must be able to detect
faults in a DHS in a timely and economical manner to reduce waste of energy
and time and lowering CO2 emissions.

Methods for FDD are categorised in [8] into three sub-types: quantitative
model-based, qualitative model-based, and process history-based, which all come
with advantages and disadvantages. Quantitative model-based, which uses a
model based on thorough physical or engineering principles, enhances the pre-
cision of the model. However, comprehensive modelling is also a weakness due
to the level of complexity and amount of input required to model, which can
reduce the scalability of the approach. The method is used in [19], where a DHS
is modelled in OpenModelica. The residuals between model output and pressure
sensors are compared in a Bayesian Network to determine the possibility of faults
and evaluate the system. Another example is [2], in which a simulation of a DHS
grid is also created and is coupled with an optimisation problem to detect and
identify both thermal and hydraulic faults.

Both quantitative and qualitative model-based FDD have some overlapping
elements, and the differences can sometimes be vague. On the other hand, pro-
cess history-based FDD differentiates itself by only utilising data. This makes
the modelling less complex because black-box models require less knowledge of
the physics of the system and make it easier to scale to other systems. However,
the method requires a lot of good-quality data and, to some extent, compu-
tational power. An example of that is the method seen in [14], where three
methods of FDD, Hotelling’s T2 and Q statistics, contextual Shewhart chart,
and linear regression, are presented. Furthermore, [14] uses an approximation
of the Chernoff bound method proposed in [5] to investigate if all three FDD
methods agree on the same fault thereby filtering out insignificant alarms for
faults occurring in the DHS. Based on the identified literature on FDD in the
DHS domain, it is apparent that more research employs data-driven methods
compared to model-based methods. Some examples of data-driven research are
Sun et al. [15], where they use three clustering methods to identify operation
patterns that lead to faulty behaviour in consumers. The use of a gradient boost
regressor has been utilised by Månsson et al. [10] to detect faults in DH sub-
stations by predicting regular operation. Lastly, the work in [17] utilises cluster



Digital Twin-Based FDD and Prioritisation in DHS 279

analysis and association analysis- to decide rule patterns for the operation of
the DH substation. According to a review paper on FDD in DHS [4], many of
the data-driven models created will not perform well and are thereby not useful
in the real world, due to them being created and trained using laboratory or
simulation data. This problem can be alleviated either by using real-world data
or by utilising model-based methods. In general, the review paper [4] indicates
an overall research gap in the field of FDD in DHSs. This can be in part due to
the preconceived idea that DHS work well, even though that is not the case [7],
and the use of DH is not as widespread.

A challenge emphasised by the literature is the number of faults different
FDD methods will produce [9,13]. A methodology to differentiate between dif-
ferent faults more accurately is important in the decision-making process for
making corrective maintenance in DHSs for liability and economic reasons. Paper
[19] compares the model’s output with sensor data from the system and detects
a fault when the sensor data deviates ±1% from the model simulation in at least
ten consecutive time steps. The fault is then run through a Bayesian Network
to diagnose the fault. The Bayesian Network is built upon expert knowledge,
strengthening the capability of diagnosing faults. Still, on the other hand, expert
knowledge may not be sufficient to identify a correlation between residuals to a
fault diagnosis, thereby disregarding a possible fault. The current approach to
fault prioritisation is mainly based on expert knowledge to classify the severity of
faults and this is extremely time-consuming [16]. Furthermore, according to [16],
data-driven methods are not widely utilised for fault prioritisation or even seen
in literature at all. Some developments have been made, however. [5] proposed
a statistical method of prioritising faults in a telecommunication network using
the Chernoff bound method. Using the Chernoff bound method, this statistical
approach can identify the probability of a fault occurring in a system without
expert knowledge. This methodology has been brought into the energy domain
in papers [1,3] using it for FDD in a heat, ventilation, and air conditioning
(HVAC) system of a building. Using the Chernoff bound method, the papers
were able to categorise the state of urgency into three subsets: low(P < 60%),
medium(60% ≤ P < 95%), and high(P ≥ 95%). The model-based FDD using
the Chernoff bound method proposed in the papers [1,3] showed great potential
for FDD in HVAC systems but also the potential for implementation in other
energy-system domains such as DHSs.

This paper proposes an FDD framework for DHSs. In summary, it applies
Chernoff bound methodology to the residuals between the outputs of a quanti-
tative model of a DH network (digital twin) and real-world sensor data, when
the residual is above a predetermined threshold. Chernoff bound provides a fault
probability value that can be used by maintenance for better prioritisation of
which faults to further investigate. This paper aims to contribute with a frame-
work to the apparent research gap in the literature for FDD in DHSs with a
two-fold contribution.
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1. A framework is developed by implementing a quantitative model-based FDD
approach together with the Chernoff bound method to prioritise faults by
their probability. This makes it possible for maintenance crews to only focus
on the faults with the highest fault probability, not wasting their time. To
the best of our understanding, this has not been done before.

2. The framework’s methodology is tested using a case study with real-world
data and a digital twin of the DHS.

In Sect. 2, the overall framework for model-based FDD in DHSs is introduced
and explained in detail. The next step is in Sect. 3, in which the framework is
applied to a case study, and results are presented.

2 Methodology

A novel model-based FDD framework will be presented in this section. The
section will describe how sensor data measured in a DHS is processed and sim-
ulated in a digital twin for FDD and how the faults are indexed according to
their probability. A flow diagram of the framework can be seen in Fig. 1. For the
purpose of this work, we adopt the general definition of a digital twin stated by
Yu et al. [18] that “a digital twin is a digital (or virtual) representation that
looks-like, behaves-like, and connects-to a physical part or system with the goal
of improving or optimising decision making for any time horizon.”

Fig. 1. Flow diagram of model-based FDD framework.



Digital Twin-Based FDD and Prioritisation in DHS 281

In step 1, the data is collected from the sensors in the DHS. The sensor data
is pre-processed to have the right format and units to match the requirements
for the data input to the digital twin in step 2. The data validation in step
2 investigates if negative- or NAN-values are present in the data. The data
validation also investigates if some measurements violate the physical capabilities
of the system or if unexpected repeating patterns can be found in the data, which
could indicate sensor faults. Invalidated data must be corrected before further
use of the data. In step 3, a digital twin uses some of the data collected by
the sensors as boundary conditions to perform quasi-dynamic simulations of the
state of the DHS. The digital twin should be a very accurate digital model of the
DHS where the pipe configurations, heat loss coefficients etc., are defined. The
results from the digital twin are then post-processed together with the unused
sensor data for FDD. This model-based FDD framework proposes a univariate
statistical approach using a bound of normal operation to detect faults. The
bound of normal operation is defined as the root-mean-square error (RMSE) of
the residual of one property, e.g., mass flow rate, between the digital twin and the
sensor data. With this approach, it is assumed that the majority of the sensors
in the DHS are correct and if one sensor deviates more than the bound of normal
operation, it is detected as a fault. Furthermore, the bound also represents the
modelling error of the digital twin, which allows some deviations from the norm.
The RMSE value is calculated using Eq. 1, where N and M are the time steps
and sensors, respectively.

RMSE =

√∑M
k=1

∑N
i=1(Y

sensor
ik − Y digital twin

ik )2

N · M (1)

The RMSE can be interpreted as the standard deviation of the residuals. The
r-value, which is the number of standard deviations included, can adjust the size
of the bound. The FDD should not raise an alarm if the sensor measurement is
within the bound, as seen in Eq. 2.

Y sensor
i > Y digital twin

i − r · RMSE

and Y sensor
i < Y digital twin

i + r · RMSE
(2)

Due to some data having higher numerical values, the data is normalised
with maximum scaling (see Eq. 3) before the RMSE value is calculated. The
maximum scaling is done by finding the maximum value in the data for one
consumer k, which has one column with sensor data and one with simulated
data. For each time step i, the data point ri,k is divided by the maximum value
max(rk) giving the normalised data point ni,k. Maximum scaling ensures that
all data is less than or equal to 1.

ni,k =
ri,k

max(rk)
(3)

In step 6, FDD is carried out using the bound of normal operation. To pri-
oritise which faults have the highest probability and should be investigated by
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a maintenance crew, the Chernoff bound method from [5] is used. A schematic
of the Chernoff bound method can be seen in Fig. 2.

A suspicion is started when the sensor measurements leave the bound of
normal operation and end when it enters again. The areas under the curves are
used in Eqs. 4 and 5 to calculate the probability of normal- and faulty operation,
respectively. As the areas AO and AB are used to calculate the probability, the
fault probability for a period is correlated to the amplitude and the period.

Pnormal operation = P (AO|AB) = e

−

⎛
⎜⎜⎝

(
AB

(
1− A0

AB

)2
)

2

⎞
⎟⎟⎠

(4)

Pfaulty operation = 1 − Pnormal operation

AO = Grey area

AB = Grey area + Colored area

(5)

Lastly, in step 7, the output of the Chernoff bound method is prioritised from
highest fault probability to lowest. As proposed in papers [1,3], the faults are
categorised into three fault probability indices; high, medium, and low, as seen
in Table 1.

Time

P
ar
am

et
er

Target
Sensor
Bounds

Fig. 2. Chernoff bound schematic. Showcasing the gray and coloured areas used for
calculating the probability. The figure does not depict real data.

Table 1. Fault probability indexing levels classifications.

Probability level index Probability of fault Colour indication

High P ≥ 95% Red

Medium 60% ≤ P < 95% Yellow

Low P < 60% Green



Digital Twin-Based FDD and Prioritisation in DHS 283

3 Case Study and Results

3.1 Description of Case Study

The model-based FDD framework presented will be implemented in a case study
with historical data from a suburb of the DHS in Odense, Denmark. The investi-
gation period is from December 2022 to January 2023. A sensor installed at the
substation measures supplied and returned energy, mass flow rate, pressure, and
temperature at an hourly resolution. At every 648 consumers, a sensor measures
the volumetric flow rate, energy consumption, and supplied and returned energy
at a daily resolution. Supply and return energy is the supply and return tem-
perature multiplied by the volumetric flow rate. The digital twin of the DHS,
developed by a collaboration between Fjernvarme Fyn and Danfoss, was built
in the software Leanheat Network (LHN) and will be used to simulate the DHS.
LHN simulates hydraulic and thermal conditions based on boundary conditions
and optimises pressure-, mass flow rate-, and temperature conditions to minimize
pump- and heat production costs. The digital twin will simulate hourly quasi-
dynamic simulations, where each hourly simulation will represent the whole day.
The boundary conditions imported to the digital twin are the power consump-
tion and return temperature at the consumers, supply temperature and return
pressure at the substation, and the pressure change at a critical node defined
as 1.33 bar, based on Fjernvarme Fyn’s expert knowledge. The sensor data is
reformatted to meet the data import requirements for the software. The output
from the digital twin, which will be used for FDD, is the supply temperature
and mass flow rate at the consumers. Implementing the Chernoff bound method
will produce a list of fault probabilities for these two properties with the format
as seen in Table 2.

Table 2. Fault probability list of mass flow rate FDD.

Consumer ID Start End Fault probability Fault probability index

Consumer 345 2023-01-04 2023-01-16 98% High

Consumer 322 2022-12-07 2022-12-14 84% Medium

...
...

...
...

...

Consumer 103 2023-01-05 2023-01-06 16% Low

Consumer 382 2022-12-15 2022-12-16 16% Low

3.2 Calibration of Bound Size

As the bound size is defined by Y digital twin
i ± r · RMSE, the number of faults

found and their probability are directly correlated with the chosen r-value. The
investigation of every single fault can be costly and time-consuming. Therefore,
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tuning the r-value to ensure that a reasonable number of faults with high proba-
bility are found is important, disregarding the faults with low probability caused
by, e.g., the modelling error. This paper suggests tuning the r-value manually
by investigating the framework’s output when the r-value is changed. Another
approach for automatically tuning the r-value could be the elbow method which
is a heuristic method for finding the incremental increase in the r-value with the
largest marginal decrease in the number of faults detected. However, the elbow
method was not investigated as it is seen as more beneficial for the operator to
manually tune the number of faults detected to match the resources available to
investigate them. Automatically tuning the r-value could produce an unneces-
sary amount of faults detected which can be unmanageable to investigate. The
proposed manual tuning of the r-value is visualised in Fig. 3 for the mass flow
rate and Fig. 4 for the supply temperature, where the number of faults and mean
probabilities are shown for each r-value.

Fig. 3. Incrementally increasing the r-value from one to seven for the mass flow rate
FDD.

Figure 3 shows that the number of detected faults decreases with increasing
r-value, contrary to the mean probability of the detected faults, which increases
with increasing r-value. This illustrates how the size of the bound and the Cher-
noff bound method are combined only to detect and prioritise the most important
faults. For further fault investigation, an r-value of 7 is chosen, which gives 22
faults (13 unique consumers) with a mean probability of 40%.
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Looking at supply temperature, the investigation of the r-value shows similar
results, seen in Fig. 4. For the further investigation of supply temperature, an r-
value of 5 has been chosen, which resulted in 12 faults with five unique consumers
and a mean probability of around 50%. R-values larger than 5 seem to decrease
the number of faults at a low rate, and it is therefore not seen as necessary to
increase the r-value above 5. Another approach is to choose a low r-value and
then sort the list of faults, only looking at the high-probability faults.

Fig. 4. Incrementally increasing the r-value from one to seven for the mass flow rate
FDD.

3.3 Fault Investigation

In Fig. 5, Consumer 239 is showcased, which operates under normal conditions.
It can be seen that the sensor- and simulated boundary conditions are equal.
Some deviations exist between the measured- and simulated mass flow rate and
supply temperature. Still, these small deviations were inside the bound of normal
operation and were therefore not detected as faults. The bound of normal oper-
ation is not shown in Fig. 5, as the bound was calculated based on normalised
data.

From the prioritised list of fault probabilities, regarding the supply tem-
perature FDD, consumer 471 experienced three faults. The operation of con-
sumer 471 can be seen in Fig. 6, and the three faults (grey areas) had a fault
probability of 35%, 95%, and 58%, respectively. Correlating the four proper-
ties in Fig. 6, the largest deviation in supply and return temperature happens in
periods when consumer 471 has no consumption. When there is no consumption,
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Fig. 5. Consumer 239 shows normal operation conditions, as the residuals between
the sensor- and model curves for the four properties are within the bound of normal
operation.

the mass flow rate is also 0 kg/s, which may cause the sensor not to measure the
supply and return temperature correctly and set it to 0 ◦C. These boundary
conditions can not be simulated accurately by the digital twin, which forces it
to change the boundary condition causing this large deviation. This fault may
be labelled as a sensor fault and will probably not have damaging effects on
the system. However, it can be noticed that the digital twin also changes the
return temperature, which is a boundary condition, after the period of no con-
sumption ends by December 2022. In the global property settings in the LHN
software, it was defined that the simulation will not allow a ΔT ≤ 0.5 ◦C,
i.e., that the consumers cool the DH water less than 0.5 ◦C. For consumer 471
ΔT ≥ 0.5 ◦C, however, the digital twin still changes the defined return temper-
ature. This action by the digital twin, where boundary conditions were changed,
is due to numerical stability in the optimisation problem being solved (confirmed
by Danfoss).
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Fig. 6. Consumer 471 shows faulty operation, where the marked grey areas for the
supply temperature chart, within the first 15 days, are the three faults.

Consumer 365, presented in Fig. 7, had two faults in the investigation period
with 26% and 48% fault probability, respectively, regarding the FDD on mass
flow rate. These faults did not rank high on the fault probability indexing. Nev-
ertheless, Consumer 365 is showcased as Fjernvarme Fyn validated that con-
sumer 365 was operating in a faulty condition due to a low cooling efficiency of
the consumer installation and that these faults showed particular interest com-
pared to higher prioritised faults. The faults can be seen in Fig. 7, where the
simulated mass flow rate spikes twice in the investigation period (grey areas).
These spikes are infeasible to occur in the real DHS. The digital twin calculates
results by running an optimisation problem, where it tries to match all proper-
ties in the pipes and nodes in the system given the set of boundary conditions.
These spikes indicate that the boundary conditions for consumer 365 could not
be simulated accurately by the digital twin and therefore have a probability of
being faulty.
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Fig. 7. Consumer 365 shows a faulty operation, where the marked grey areas for the
mass flow chart are the two faults.

3.4 Fault Location Investigation

Instead of investigating each fault individually on the list of faults, another
approach is to identify the consumers’ location and the types of houses on the
list. For this investigation, having a digital twin with a geographical user interface
is advantageous. Using the two lists of faults obtained by an r-value of 7 for mass
flow rate and 5 for supply temperature, the fault location investigation shows
that all the detected faults happened in terrace houses. The DHS in the suburb
has more terrace houses than single houses, but this indicates that the terrace
houses are more prone to operating in faulty conditions. Another interesting
result is the location of three out of four consumers in the same terrace house
had a fault detected, illustrated in Fig. 8.

The terrace house is located far from the substation and is also the last
connection point of that pipeline branch, where the non-faulty consumer is the
first one connected. Using this knowledge of the faults’ locations can indicate the
faults’ cause, as similar faults may unlikely occur at three of the four consumers.
This could indicate a fault upstream in the pipe network, possibly the pipe going
from the main pipe into the terrace house. However, a thorough investigation
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Fig. 8. Three out of four consumers in same terrace house operating faulty.

of the pipes and consumers must be done to find the root of the three faults
occurring in the terrace house.

4 Conclusion and Future Work

Faults in district heating systems (DHS) that are not detected quickly enough or
not at all, can waste a lot of energy. As DHSs are critical infrastructure for the
many Danish households connected, fault detection and diagnosis (FDD) frame-
works are of great importance in detecting and correcting these faults. A model-
based FDD framework detecting and prioritising faults in a DHS has therefore
been developed in this paper. The model-based FDD framework detects faults
using a bound of normal operation based on the root-mean-square error (RMSE)
of the deviation between a digital twin and the sensors in a DHS, where the r-
value could calibrate the number of faults detected, disregarding faults caused
by the modelling error. The faults detected were prioritised based on their fault
probability using the Chernoff bound method. The prioritised list of faults can
be useful for maintenance crews as they can save time and resources by inves-
tigating and targeting faults with a high probability. The framework is scalable
and can easily be implemented by DH companies with existing digital twins. For
future work, the model-based FDD framework should be tested on live sensors,
where the benefits of enhanced time resolution of the sensor measurements also
could be investigated.

Acknowledgements. We thank Peer Andersen, Lasse Elmelund Pedersen, and the
rest of their team at Fjernvarme Fyn A/S for their assistance with the data and the
model. Also, thanks to Johan Peter Alsing from Danfoss A/S for assisting us with
Leanheat Network.

References

1. Alexandersen, E.K., Skydt, M.R., Engelsgaard, S.S., Bang, M., Jradi, M., Shaker,
H.R.: A stair-step probabilistic approach for automatic anomaly detection in build-
ing ventilation system operation. Build. Environ. 157, 165–171 (2019). https://doi.
org/10.1016/j.buildenv.2019.04.036

2. Bahlawan, H., et al.: Detection and identification of faults in a district heating
network. Energy Convers. Manage. 266, 115837 (2022). https://doi.org/10.1016/
j.enconman.2022.115837

https://doi.org/10.1016/j.buildenv.2019.04.036
https://doi.org/10.1016/j.buildenv.2019.04.036
https://doi.org/10.1016/j.enconman.2022.115837
https://doi.org/10.1016/j.enconman.2022.115837


290 F. W. Madsen et al.

3. Bang, M., Engelsgaard, S.S., Alexandersen, E.K., Skydt, M.R., Shaker, H.R., Jradi,
M.: Novel real-time model-based fault detection method for automatic identifica-
tion of abnormal energy performance in building ventilation units. Energy Build.
183, 238–251 (2019). https://doi.org/10.1016/j.enbuild.2018.11.006

4. Buffa, S., Fouladfar, M.H., Franchini, G., Lozano Gabarre, I., Andrés Chicote,
M.: Advanced control and fault detection strategies for district heating and
cooling systems-a review. Appl. Sci. 11(1), 455 (2021). https://doi.org/10.3390/
app11010455

5. Cheung, B., Kumar, G., Rao, S.A.: Statistical algorithms in fault detection and
prediction: toward a healthier network. Bell Labs Tech. J. 9(4), 171–185 (2005).
https://doi.org/10.1002/bltj.20070

6. EU: Commission recommendation (eu) 2019/786 of 8 May 2019 on building reno-
vation (2019). https://bit.ly/30nxBs5

7. Gadd, H., Werner, S.: Fault detection in district heating substations. Appl. Energy
157, 51–59 (2015). https://doi.org/10.1016/j.apenergy.2015.07.061

8. Katipamula, S., Brambley, M.R.: Review article: methods for fault detection, diag-
nostics, and prognostics for building systems-a review, part II. HVAC&R Res.
11(2), 169–187 (2005). https://doi.org/10.1080/10789669.2005.10391133

9. Kim, W., Katipamula, S.: A review of fault detection and diagnostics methods for
building systems. Sci. Technol. Built Environ. 24(1), 3–21 (2018). https://doi.org/
10.1080/23744731.2017.1318008
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Abstract. For district heating systems (DHS) to operate cost-
effectively, avoid disturbances of loads, and increase overall energy effi-
ciency, faults in DHSs must be detected, located, and rectified quickly.
For this purpose, a novel digital twin-based fault detection and diagnosis
framework with virtual sensor employment have been developed. The
framework defines virtual sensors measuring the mass flow rate in points
in the DHS where sensors are absent by using the existing sensors in the
system. Faults in the virtual sensors are detected when deviations occur
between the calculated and digital twin-simulated mass flow rate using a
bound of normal operation, allowing some degree of modelling error. To
define which virtual sensors are of interest, a novel Specialised Agglom-
erative Hierarchical Clustering algorithm will be used. A case study on a
DHS of a suburb in Odense showed how the framework was able to locate
faults with a top-down approach and could indicate whether the fault
was local or due to upstream faults. The framework has the potential to
be implemented in real-time monitoring of a DHS.

Keywords: Fault detection and diagnosis · District heating systems ·
Digital twin · Virtual sensor · Machine learning

1 Introduction

In Denmark, a large share of households uses district heating (DH) for hot water
use and space heating. The objective of a district heating system (DHS) is to
distribute cost-effective heat to consumers efficiently [2]. As hot water use and
space heating are a large proportion of total energy use in the EU [5], the DHSs
are critical infrastructure, which means it is a relevant domain to improve energy
efficiency and thereby lowering CO2 emissions. The vast amount of functionali-
ties required for the operation of the DHS makes it complex and failure prone.
To guarantee the DHS works efficiently, these faults need to be detected and
corrected quickly, as the faults result in suboptimal operating conditions of the
DHS [2,9,12].
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Currently, most DH companies perform reactive- and preventive mainte-
nance, whereas proactive maintenance is rarely used. With a reactive main-
tenance strategy, it is difficult to detect faults quickly. It may also lead to faults
never being detected, e.g., if the DHS can compensate for the fault and still
deliver heat, but this will still waste energy. Preventive maintenance often leads
to a waste of resources due to redundant maintenance. To utilise the still ongoing
digitalisation of the DH sector by implementing proactive maintenance, diagnos-
tic tools using automatic fault detection and diagnosis (FDD) methods are of
great interest. Developing such tools and methods to detect faults expeditiously
and affordably in a DHS would reduce the energy and time waste and further-
more reduce CO2 emissions.

In [6], three sub-types are used to categorise different FDD methods: quan-
titative model-based, qualitative model-based, and process history-based, where
all three have certain advantages and disadvantages. An advantage of the quan-
titative model-based method is the utilisation of a very precise model, which is
built on the basis of thorough physical or engineering principles. On the other
hand, the precise model is also a disadvantage of the method because of the level
of complexity and required amount of input needed to build the model, which
can lead to reducing the scalability of the approach. [19] models a DHS in Open-
Modelica, and uses the output of the model together with pressure sensors to
calculate residuals. A Bayesian Network is then used to compare these residuals,
calculate fault probability, and evaluate the system. [1] also uses a qualitative
model-based approach, where a DH pipe network is simulated together with an
optimisation problem, used to detect both thermal and hydraulic faults.

While the difference between quantitative- and qualitative model-based
methods can be vague due to overlapping features, the process history-based
method differs a lot. This category covers data-driven approaches, that do not
necessarily require knowledge about the complex physics of the DHS system,
and offers great scalability. On the other hand, these methods may require vast
amounts of correct data, which can be hard to obtain. Furthermore, they can
have high computational demands.

Generally, for the domain of DHS, data-driven FDD is more researched com-
pared to model-based approaches. A data-driven method is seen in [14], which
utilises three FDD methods: Hotelling’s T2 and Q statistics, contextual Shewhart
chart, and linear regression, enabling to check if all methods agree on detected
faults. More examples of data-driven approaches are seen in [8,10,15,16]. [15]
identifies operations patterns by three clustering methods, [8] predicts normal
operation of DH substations with the use of gradient boosting regressor, and
[16] finds rule patterns for the operation of a DH substation using cluster- and
association analysis.

This paper utilises a quantitative model as DH companies often have thor-
ough knowledge about their pipe network regarding configuration, dimensions,
and heat transfer coefficients, which can be used to set up a digital twin (DT) in
industry-specialised software. Software, that supports geographical information
systems also allows the operator to locate and correlate faults quickly on a map.
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[9,12] argues that previously FDD frameworks for DHS were old and not suf-
ficiently advanced for the move towards Industry 4.0. Though more methods are
being developed, as we have highlighted, there is still a general lack of research
on FDD in the DHS domain, as is also emphasized by [2]. For these reasons and
to support the move towards Industry 4.0, the framework proposed in this paper
integrates data from modern residential smart heat meters alongside substations’
sensor data to operationalise a digital twin of a real DH network for improved
monitoring and proactive maintenance.

One way of utilising a digital twin of a DHS is through the ability to calculate
certain properties everywhere in the system. This can be used together with vir-
tual sensors and thereby enabling fault detection by comparing the results from
the digital twin and the virtual sensors. For the energy systems domain, virtual
sensors have been developed in different applications, such as heat, ventilation,
and air conditioning (HVAC) systems of buildings and in residential buildings in
a DHS. [7] uses physical relations inside the HVAC to establish virtual sensors,
which enables FDD and introduces cost-efficient redundancy. In [17], virtual
sensors are established by grey-box modelling, which estimates heating loads in
residential buildings in the absence of sensors. To the best of the authors’ knowl-
edge, using virtual sensors and a digital twin to locate faults in the pipe network
of a DHS has not been done before.

The contribution of this paper to the apparent research gap in the litera-
ture for FDD in DHSs is two-fold. Firstly, a digital twin-based FDD framework
utilising virtual sensors is developed, which can detect and locate faults in a
DHS. To the best of our knowledge, this has not been done before. Furthermore,
the FDD method makes use of a novel Specialised Agglomerative Hierarchical
Clustering algorithm that validates discovered clusters with information about
virtual sensors. Secondly, the framework is tested by implementing it on a case
study with real-world sensor data and a digital twin of a DHS.

In Sect. 2, the different steps of the framework are presented, and in Sect. 3,
the framework is implemented on a case study, and results are shown.

2 Methodology

This section will present a novel digital twin-based FDD framework using virtual
sensors for DHSs.

The framework will utilise sensor measurements and a digital twin to detect
faults in virtual sensors in DHSs. Faults in this context are abnormalities and
deviations between measured- and digital twin simulated data. Faults can be
located in the DHS to correlate possible multiple faulty consumers in an area.
Locating and correlating faults in a specific area will enable a maintenance crew
to focus resources on local related faults instead of individual faults at consumers.
This may lead to the use of fewer resources and achieve better system perfor-
mance. The unsupervised nature of the framework means it does not require
historical maintenance records or fault characteristics. This both strengthens
the framework’s applicability as it has fewer requirements for implementation
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than would otherwise be the case, but it also comes at the cost of weakened
diagnosis capabilities.

The framework, seen in Fig 1, is divided into eight steps and shows how
sensor measurements in the DHS are simulated in a digital twin, how data is
processed, and how virtual sensors and consumer clusters are used to perform
FDD on pipes in the system. For the purpose of this work, we adopt the general
definition of a digital twin stated by Yu et al. [18] that “a DT is a digital (or
virtual) representation that looks-like, behaves-like, and connects-to a physical
part or system with the goal of improving or optimising decision making for any
time horizon”.

In the first step of the framework, data is collected from sensors at the indi-
vidual consumers and at sub-stations. In step two, this data is processed and
formatted together with a thorough investigation of the data, finding abnormal-
ities and physics-violations, to validate it. Invalidated data is reconstructed in
step 2. In the third step, some of the sensor data is imported as time series
to a digital twin as boundary conditions, which can run quasi-dynamic simu-
lations showing the state of the DHS. The proposed FDD framework exploits
the increasing modelling error in the digital twin, which occurs due to faults
or when the boundary conditions indicate abnormal operation at an individual
consumer, to detect deviations between the sensor- and digital twin data The

Fig. 1. Flow diagram of digital twin-based FDD framework with virtual sensor employ-
ments.
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Fig. 2. Virtual sensors are represented as crosses, and nodes connecting pipes and
consumers are represented as dots. The arrows show the shortest route from the red
end node to the sub-station. (Color figure online)

desired output from the digital twin is consumer properties and the mass flow
rate in the pipes used later for the FDD and fault location. The results from the
digital twin are formatted and validated in step four for the further use of the
data.
The virtual sensors employed in the DHS, in step five, will hold the mass flow
rate in the pipes. A pseudocode for the virtual sensor calculation is seen in
Alg. 1.

Algorithm 1: Pseudocode for virtual sensors in pipes of a radial pipe
configuration.
for all end nodes in the system do

Find the shortest route of pipes towards the substation using the Dijkstra
algorithm [4];
for all nodes along the shortest route do

Place a virtual sensor in the upstream pipe the node connects to;
Calculate the mass flow rate in the virtual sensor by summing up the
total mass flow rate at the consumers in the downstream pipe network
from the virtual sensor;

Filter out virtual sensor duplicates;

The pseudocode in Alg. 1 is for a radial pipe configuration, which is by far
the most common configuration in DHSs. The approach is illustrated in Fig. 2,
where crosses represent the virtual sensors in the pipes and dots are the nodes
connecting the pipes and consumers. Applying this approach to all end nodes in
a radial pipe network will ensure that all pipes in the system will have a virtual
sensor.

In the sixth step, clusters of consumers are defined. These clusters will indi-
cate which virtual sensors are of interest and can be used for FDD. Figure 3
shows how consumers along a small residential street connected to a main pipe
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can be clustered into one large cluster (blue area) and two smaller sub-clusters
(green area). The virtual sensors of interest are shown in Fig 3 (black and red
crosses). Larger clusters are divided into smaller sub-clusters as this allows for
detecting and locating faults from a top-down approach. E.g. in Fig 3, if a fault
occurs in the large cluster (black virtual sensor), then the sub-clusters (red vir-
tual sensors) are investigated. Here a fault might only be detected in one of the
sub-clusters, which narrows down the fault location.

Performing FDD on the individual consumers in the sub-cluster can indicate
the final location of the fault. If only one consumer in the sub-cluster is operating
in a faulty condition, that consumer will probably be the cause of the deviation
in the virtual sensors. On the other hand, if multiple consumers operate under
faulty conditions, the probability of similar faults at each consumer might be
low and can therefore indicate faults in the upstream pipe network.

This paper proposes the use of a Specialised Agglomerative Hierarchical Clus-
tering algorithm, which is a modification of the standard Agglomerative Hier-
archical Clustering algorithm for which some of the earliest mentions are from
Sibson [13] and Rohlf [11]. The specialized approach views the pipe network as
a graph and uses the bottom-up hierarchical clustering method to cluster con-
sumers in close proximity. The extension of the algorithm is proposed to avoid
wrongly defined clusters, i.e., clusters of consumers that have no corresponding
virtual sensor. This logic is defined as: If c represents a set of consumers, and
V (c) is a boolean representation of whether a virtual sensor exists that only
aggregates information for the consumers in the set c, then a cluster produced
with Agglomerative Hierarchical Clustering, which groups the consumers in set
c, is accepted if and only if V (c) = 1. The extension of the clustering algorithm
can be seen as a filter that eliminates clusters without a corresponding virtual
sensor.

The Specialised Hierarchical Agglomerative Clustering algorithm is presented
in Algorithm 2. C is a set of clusters at all hierarchical levels, R is a set of the
indices of a cluster’s children, and H is a set of distances between the children

Fig. 3. Hierarchical clustering of consumers. The diagram shows one large cluster and
two sub-clusters with their representing virtual sensors (black and red crosses). (Color
figure online)
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of a cluster. In this setting P is a set of the individual consumers, and xk ∈ X
denote the consumers downstream of the virtual meter point k. Nc is the number
of clusters, which reduce by 1 each time two clusters are agglomerated and it
defines when the algorithm is done, i.e., when all points are agglomerated into 1
cluster. The distance between two points is the shortest distance along the pipes
of the network, calculated with the Dijkstra algorithm [4]. The distance function
denotes yields the maximum distance between all points of the two input clusters
(complete linkage).

Algorithm 2: Specialised Hierarchical Agglomerative Clustering
Given: A set of points to cluster P = {p1, ..., pn}, a set of potential clusters
X = x1, ..., xk, and a distance function d(c1, c2) Populate the set of clusters, C
with the points in P ;
C ← {};
H denotes the distance between the children of each cluster and R denotes the
indices of the children of each cluster, both of which are empty for leaf clusters;
for i ← 1 to n do

C
+← {pi};

H
+← {};

R
+← {};

Z ← C;
Nc = |C|;
while Nc > 1 do

a, b = argmin
i,j

d(zi, zj) where i �= j and {zi, zj} ⊆ X ;

C
+← {za, zb};

Z
+← {za, zb};

R
+← {a, b};

H
+← d(za, zb);

Z
−← {za} and {zb};

Nc −= 1
Return C, R, and H

In step seven, a bound of normal operation is defined, and FDD is carried
out. The bound of normal operation is defined as,

Target · (1 ± β) (1)

The target in Eq. 1 is the simulated property value in the digital twin, and β is a
ratio parameter of how much deviation is allowed due to small modelling errors.
Faults are detected by investigating at each time step if the virtual sensor is
outside the bound of normal operation simulated in the digital twin. Consecutive
out of bound detections will be defined as one faulty event. Faults may arise as
a consequence of different events or phenomena, abnormal boundary conditions,
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such as very low cooling efficiency, can increase modelling error and may be
detected using the proposed method. Lastly, in step eight, the detected faults are
located with a top-down approach using the hierarchical clusters, and corrective
and maintenance actions can be initiated.

3 Case Study and Results

3.1 Description of Case Study

The digital twin-based FDD framework with virtual sensor employments pre-
sented will be implemented in a case study in a suburb of Odense, Denmark.
The DHS operator, Fjernvarme Fyn, provided historical data and a Leanheat
Network (LHN) model for the DHS, which was developed in collaboration with
Danfoss, the developer of the software. The LHN model constitute the digital
twin of the system.

LHN simulations are performed by hydraulic and thermal condition simula-
tions and pressure and temperature optimisations, minimising pump- and heat
production costs, based on defined material properties and boundary conditions
at the substation and individual consumers. Simulation results from LHN pro-
vides properties at all nodes and pipes in the DHS [3].

Figure 4 shows the DHS of the suburb implemented in LHN, all 648 con-
nected consumers are supplied via the substation. The DHS in the diagram has
only radial connections because it is only operated in a radial manner, which
is typically for DHSs. Nevertheless, most DHSs have meshed connections for
redundancy, e.g. for when faults happen.

The implementation of the framework on the case study results in a list of
abnormalities, of which two are analysed to find the possible roots of the abnor-
malities. Due to not having a maintenance record, a more quantitative method
of analysing the abnormalities could not be performed, where the abnormalities
could have been compared with the maintenance record thereby confirming or
denying them.

The data, from December 2022 to January 2023, contains consumer sensor
measurements on a daily resolution at the 648 consumers and sensor measure-
ments on an hourly resolution at the substation. Consumer data contains the
energy consumption, volumetric flow rate and supplied and returned energy,
which is the supplied and return temperature multiplied by the volumetric flow
rate. The substation data contains supplied and returned energy, mass flow rate,
pressure, and temperature.

The data will be formatted to have the correct units and a time series for-
mat for the model. The model will simulate hourly quasi-dynamic simulations
representing the whole day, where the boundary conditions for the model will
be return temperature and energy consumption at the consumers, supply tem-
perature and return pressure at the substation, and pressure change at a critical
node assumed to be 1.33 bar based on expert knowledge. The output from the
model will be the mass flow rate in all the pipes of the network and consumers,
which will be used for the later FDD and fault location investigation. This case
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Fig. 4. Visualisation of DHS implemented in the LHN model. The substation located
at the bottom supplies the 648 consumers through the pipe network, which represents
the real configuration of the DHS. Red dots represent the nodes connecting the pipes
and black houses represent the individual consumers. (Color figure online)

study will focus on two consumer clusters in the DHS, which will be divided into
sub-clusters, to showcase the capabilities of the framework.

3.2 Consumer Clustering

To enable the monitoring of the DHS by a top-down approach, the consumers
need to be clustered in several clusters and sub-clusters. This section will show
how a cluster of seven consumers is defined (Cluster 1) using the proposed Spe-
cialised Agglomerative Hierarchical Clustering algorithm.

The bottom-up clustering method begins at the lowest level, i.e., each con-
sumer is a cluster, which can be seen in the dendrogram in Fig. 5. Using the
geographical data from the model, the method iteratively looks at the defined
distance matrix of the edge (pipe) lengths and joins the two closest clusters into
one cluster, until only one cluster is left. After the clustering, the dendrogram is
used to define the number of sub-clusters by defining a distance threshold. For
this clustering, a distance threshold of 60m is chosen. This resulted in one over-
all cluster (blue) with two sub-clusters (orange and green), as seen in Fig. 5, but
the distance threshold is ultimately a tuneable hyperparameter. Also in general,
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a series of distance thresholds must be selected to account for more upstream
clusters.

Fig. 5. Dendogram of Cluster 1; initially, all consumers are considered individual clus-
ters. At each iteration, the two closest clusters are joined. The horizontal red dotted
line shows the distance threshold is set to 60 m (Color figure online) and defines the two
sub-clusters. Consumer 6 is connected with a dotted blue line, representing that the
logic-based rule constraint rejects consumer 6 from the clusters containing consumers
4 and 5 as no virtual sensor exists that aggregates all three of them.

The graph representation of the seven consumers (Fig. 6), which is used
to define the distance matrix, indicates that the orange sub-cluster is wrongly
defined due to the locations of the virtual sensor, which is corrected with the
extension of the algorithm. In the dendrogram (Fig. 5), the orange sub-cluster
holds three consumers, but the virtual sensor only holds two of them. The logic-
based rule extension of the Agglomerative Hierarchical Clustering will indicate
that there is no virtual sensor which holds consumers 4, 5, and 6 and there-
fore disregards this cluster. Going one level down in the hierarchical clustering
(Fig. 5), the logic-based rule will accept the sub-cluster containing consumers 4
and 5 and reject consumers 6, as there is a virtual sensor which holds consumers
4 and 5.

A second cluster (Cluster 2) located in another part of the DHS was also
made. This cluster contains 13 consumers and was divided into three sub-
clusters, two sub-clusters with four consumers and one with five (Sub-cluster
2.1, 2.2, and 2.3).
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Fig. 6. Cluster 1 contains seven consumers (blue dots), nine nodes (red dots), and 11
pipes (black lines) represented as a graph. The virtual sensors of interest are defined
as red and black crosses, where the belonging clusters are represented as dotted lines
(blue, green, and orange). Black arrows show the direction of forward flow in the pipes.
(Color figure online)

3.3 Fault Investigation and Location

This section will present the detected faults in the virtual sensors and locate the
faults with a top-down approach using the hierarchical consumer clusters defined.
The parameter β defines the size of the bound and must be calibrated to produce
an appropriate number of faults, as there is a direct connection between the size
of the bound and the number of faults detected. The bound of normal operation
used in this paper is introduced in Eq. 1, with β = 0.3.

Figure 7 illustrates the mass flow rate in the virtual sensors supplying Cluster
1 and Sub-cluster 1.1 and 1.2. Figure 7 shows that a large deviation in Cluster
1 occurs between the modelled mass flow rate and the calculated mass flow rate
in the virtual sensor. This resulted in three fault detections (grey marked areas
in Fig. 7). Going one level down in the hierarchy of the consumer clusters, it
is evident that the fault in Cluster 1 is due to a fault occurring in Sub-cluster
1.1, as Fig. 7 shows faults detected in Sub-cluster 1.1 and not in Sub-cluster 1.2.
FDD was done at the individual consumer level at last and showed that only one
consumer was operating in a faulty condition. This may lead to the conclusion
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Fig. 7. Cluster 1; Shows the mass flow rate in the virtual sensors supply Cluster 1
and Sub-cluster 1.1 and 1.2. Grey marked areas represent faults detected. (Color figure
online)

that it is a local fault at the consumer or its service pipe and is possibly not due
to a fault in the upstream pipe network.

Figure 8 shows a consumer cluster of another part of the DHS. Cluster 2
contains three terrace houses with 13 individual consumers in total. Cluster 2 is
located far away from the sub-station, and the consumers are the last connected
to the pipe branch. Sub-cluster 2.1, 2.2, and 2.3 contains four, five, and four
individual consumers, respectively. Figure 8 shows that two faults were detected
in Cluster 2 (grey marked areas).

Investigating the three sub-clusters of Cluster 2, in Fig. 8, shows faults were
detected only in Sub-clusters 2.2 and 2.3. Notice that some of the faults in
Cluster 2 and Sub-cluster 2.2 and 2.3 happen in the same time span, indicating
a correlation of the faults. An investigation of the individual consumers in the
two faulty sub-clusters showed that faults only were detected at one out of five
consumers in Sub-cluster 2.2 and at three out of four consumers in Sub-cluster
2.3.

A visualisation of Cluster 2 and its sub-clusters can be seen in Fig. 9. As
faults were both detected in Sub-cluster 2.2 and 2.3, the location of the fault
could be upstream in the pipe network from Sub-cluster 2.2. A precise location
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Fig. 8. Cluster 2; Shows the mass flow rate in the virtual sensors supply Cluster 2
and Sub-cluster 2.1, 2.2, and 2.3. Grey marked areas represent faults detected. (Color
figure online)

of the fault or multiple faults can be difficult to determine and will have to be
found by a thorough investigation.

One possibility could be a fault had occurred in the pipe between Sub-cluster
2.1 and 2.2 as faults were detected in both sub-clusters downstream from Sub-
cluster 2.1. This fault could be due to pipe leakage or damage to the pipe insula-
tion, among other things. A fault in this pipe could be the reason for the faults
detected further downstream in the pipe network and would have a cascading
effect of introducing multiple faults.

Another scenario could be that a fault had occurred in the pipe between
Sub-cluster 2.2 and 2.3 and that the single fault detected in Sub-cluster 2.2 is
due to a local fault at the faulty consumer. It is unlikely that the faults at three
out of four consumers in Sub-cluster 2.3 are due to local faults, which increases
the possibility of a fault had occurred further upstream in the pipe network,
possibly the main pipe going into the terrace house.
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Fig. 9. Visualisation of the pipe network configuration of Cluster 2 and Sub-Cluster
2.1, 2.2, and 2.3. The blue area represents Cluster 2, and the black cross is its virtual
sensor. Green areas represent the sub-clusters, and red crosses their virtual sensor.
(Color figure online)

3.4 Conclusion and Future Work

Faults occurring in the complex domain of DHSs must be detected, and correc-
tive actions must be made to ensure the cost-effectiveness of the system, avoid
disturbance of loads, and lower the overall energy losses and CO2 emissions of
the system. To target these objectives and locate faults, this paper proposes a
digital twin-based FDD framework with virtual sensor employments to detect,
locate faults in DHSs

The framework defines virtual sensors in the DHS’s pipes measuring the mass
flow rate, where real sensors are absent, by summing up the total mass flow rate
at consumer sensors downstream in the pipe network from the virtual sensors.
Faults were detected by the framework by investigating residuals between the
calculated and digital twin-simulated mass flow rate in pipes using a bound of
normal operation defined as Target · (1± β), where the ratio parameter (β) can
be calibrated.
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To define which virtual sensors are of interest and should be monitored, this
paper proposes a Specialised Agglomerative Hierarchical Clustering algorithm
that validates discovered clusters with information about the virtual sensors. The
framework shows a great ability to detect faults in places where real sensors are
absent, and it uses a top-down approach to narrow down the location of the fault.
Faults found in the case study of this paper could not be confirmed and diagnosed
since Fjernvarme Fyn did not have a maintenance record of abnormalities at the
locations of detected faults by the framework. For future work, the framework
should be implemented on a large-scale DHS, with a focus testing how well it
generalises and performs quantitatively, using metrics like precision and recall.
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Abstract. District heating and cooling (DHC) networks are often run with a
small number of sensors and actuators to provide the necessary supply and to
maximize economics based on a predetermined high ecologic performance. With
better knowledge of the demand and flexibility options, it is feasible to optimize
heat generation and network functioning overall. Improved network management
based on real-timemeasurement data and the incorporation of new digital business
processes is made possible by a greater deployment of information and commu-
nication technology. Clarifying the role of digitalization for various components
within district heating and cooling systems is necessary for ongoing growth, as is
promoting opportunities for the integration of digital processes into DHC systems.
Digital technologies are expected to improve the efficiency and system integra-
tion of additional renewable sources while also making the entire energy system
smarter, more reliable, and more efficient. Future district energy systems could be
able to completely optimize their plant and network functioning while empow-
ering the end user thanks to digital applications. However, there are still more
difficulties to be overcome, including issues with data privacy and security as well
as issues with data ownership. The research findings from the IEA DHC Annex
TS4 on “Digitalization of District Heating Systems – Optimized Operation and
Maintenance of District Heating and Cooling Systems via Digital Process Man-
agement” are presented and discussed in this publication. https://www.iea-dhc.
org/the-research/annexes/2018-2024-annex-ts4.

Keywords: Digitalization of district heating · operation and maintenance ·
business processes and models

1 Introduction

It is thought that the widespread adoption of digital technology would make our energy
systems smarter, more efficient, andmore reliable. The utilization of cutting-edge digital
technology and procedures also creates new commercial opportunities and is predicted to
result in a considerably higher integration of renewable energy sources into the systems
[1]. The DHC Annex TS4 initiative is aimed to promote the possibilities of integrating
digital processes intoDHC schemes in this context. This necessitates a clarification of the
function of digitalization for various aspects of the district heating and cooling system’s
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operation and maintenance. Additionally, these technologies’ applications are shown in
close collaboration with a number of industrial partners. Additionally, issues including
data privacy and security, as well as queries regarding data ownership, are addressed
[2]. The overall structure of the internationally cooperative work of Annex TS4 within
the Technology cooperation program on District Heating and Cooling (DHC) of the
International Energy Agency (IEA) is given in this article. The initiative offers a forum
for the sharing of research findings from both national and international activities. In
this approach, information on the digitalization of district heating and cooling systems
is gathered, compiled, and presented.

2 Digitalization in District Heating

District heating and cooling (DHC) networks are often operated with a limited number
of controls, such as regulating supply temperatures or network pressure, to ensure supply
and maximize economic and ecological performance. However, in traditional network
operations, there is a lack of detailed information about supply and utilization structures.
Bygainingmore knowledge about demand andflexibility options, such as energy storage,
it becomes possible to achieve peak shaving and reduce the use of expensive peak
boilers. This leads to efficient heat generation and improved overall network functioning.
Previous projects have demonstrated the integration of diverse heat sources, including
solar thermal energy and power-to-heat applications that function in electricity markets.
The increased use of information and communication technology enables better network
management through real-time measurement data and the incorporation of new business
models. This has resulted in the emergence of businesses offering products and services
like smart meters or digital analysis platforms, which contribute to enhanced network
efficiency. Overall, by harnessing the potential of advanced technologies and integrating
renewable energy sources, DHC networks can optimize their performance, reduce costs,
and promote sustainability in heating and cooling systems.

The particular significance of digitalization in district heating systems arises from the
fact that it is a need for cutting-edge low-temperature, or “4th generation,” heat networks
[4, 5] that incorporate variable and renewable heat sources. Therefore, digitalization has
the potential to make heat networks more efficient, dependable, better suited for the
integration of lower temperatures, such as through the optimal use of heat pumps or
CHP units, and more profitable, such as through the reduction of expensive fossil fuel
consumption or through the reduction of transmission losses.

Digitalization in district heating systems is demanding a

• Large number of sensors present in the network,
• An automated recording, transfer, and storage of data
• Automated analyses of data
• The use of analyses beyond automated billing to optimize the network operation.

3 The International Cooperation in IEA DHC Annex TS4

The project DHC Annex TS4 aims to raise awareness of the potential for incorporating
digital technology into district heating and cooling systems. The project’s primary areas
of attention include new business model potential based on digital technology and the
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legal environment for using things like data, for example. Additionally, a description
of how digitalization affects many aspects of system operation and maintenance is pro-
vided. A tight partnership between industry and research teams demonstrates how these
technologies and procedures are implemented.

The initiative aims to provide insights and information on how the district heating
sector and system suppliers are impacted by digitization. It emphasizes the state of the
art, points out obstacles, and offers goals, targets, and suggestions for each of the district
heating systems’ targeted levels:

• Level of sector coupling or integration of numerous sources of production
• Building and consumption levels
• Distribution level
• Legal level
• Economic and business level

The project considers the full energy chain, from production/generation through
distribution to end usage and particularly consumer (secondary side systems).

The main objectives of DHC Annex TS4 are to:

• Raise awareness among the various stakeholders and users of the benefits of
implementing digital processes; and

• Provide a current overview of the digitalization of district heating schemes in terms
of R&D projects, demonstrators, and case studies.

• Consider non-technical factors such as business models, legal considerations, and
policy instruments when evaluating barriers and enablers to digitalization processes
in district heating and cooling schemes.

All research efforts that are the focus of this activity are organized into so-called
subtasks (ST) in order to achieve the goals outlined above (Fig. 1).

Fig. 1. Working structure of the IEA-DHC Annex TS4, including different subtasks (ST).
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Within the group of participants from industrial partners and from research orga-
nizations, the main interest areas for the digitization of district heating systems were
identified, and this working structure is built on those areas. The following provides a
more thorough description of various working groups.

3.1 Digitalization of End Use/Consumption

This working item’s goal is to create and demonstrate techniques for improving the
operation of heating systems in buildings in order to lower supply and return temperatures
as well as peak loads. These approaches are based on data from energy meters.

Heat cost allocators on radiators, space heating sub-energy meters, household hot
water systems, and the main energy meter on the district heating supply to individual
buildings are all migrating to digital and wireless technology. Therefore, in addition to
the yearly data used for the heating bills, they may also give hourly data on the actual
functioning of the heating systems in buildings. This new circumstance serves as the
foundation for the creation of approaches that will lower the operating temperatures of
heating systems and boost the overall efficiency of the heating supply.

3.2 Digitalization of Infrastructure

This working item considers the infrastructure viewpoint for district heating systems’
digitization procedures. In order to increase system performance and assist the planning
procedures for system extensions, etc., the modeling of the complete supply and network
system is particularly important. The application of digital twins for DHC networks is
crucial in this situation. It is also necessary to handle benefits and use cases from a system
viewpoint, at the component level, and as controller-in-the-loop/hardware-in-the-loop.
Focus is placed on reviewing current implementations of digital twins in district heating
networks in terms of tangible benefits, real-world experiences, and lessons learned, as
well as the techniques and data employed. Additionally, the methods for creating digital
twins are categorized according to the system boundaries that have been selected, the
level of detail or time interval, and the model features as physical/data driven model or
static/dynamic. Focusing on methodologies and needs is the main challenge in this work
using digital twins for simulation-related objectives.

3.3 Digitalization on the System Perspective

Here, the emphasis is on the digitalization of district heating from a systems perspective,
i.e., how digitalization can be used to improve the sustainability and efficiency of dis-
trict heating networks, as well as how district heating networks can benefit the overall
energy system. Operational optimization and analytics are the main areas of attention in
this work item. Operational optimization is here defined as active interaction with the
network, i.e. real interventions in the operation of the network. Think of modifying the
control of temperatures or flow rates in the network in order to achieve a certain objec-
tive on the network or energy system scale (e.g. peak shaving or increasing the share of
renewable energy in the energy system). These interventions could happen on the supply
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side e.g. control of storage (small, large, seasonal), sector coupling through CHPs, HPs,
or production portfolio management. The analytics tasks do not seek to actively interfere
with the network’s normal operation. However, these tasks involve analyzing network
performance in order to increase the network’s effectiveness and sustainability.

3.4 Digitalization of Business Processes

It is well acknowledged that digitalization is a vital technology for developing low-
temperature district heating networks with a large proportion of renewable energy
sources. Examining the commercial worth of digitalized district heating systems and
calculating their economic potential and return on investment are the goals here. Digi-
talization can handle the escalating complexity brought by, for example, sector coupling,
by having an influence on the whole district heating and cooling value chain from man-
ufacturing and distribution to buildings and end-users. Digitalization can also help the
new economic models that district heating will need to become more appealing than
individual heat sources. Issues with data security and other legal obligations will be
taken into consideration.

3.5 Knowledge Transfer, Dissemination, Management

This work item has been focused on gathering and disseminating data on ongoing and
completed activities within this activity. This has involved things like creating an infor-
mation portal and planning a ton of lectures and workshops. The major product will be
a guidebook that compiles the results of the work completed within this activity. Nine
nations contributed constantly to the initiative via industry and research partners.

4 Conclusions

With readily available and quickly evolving digital solutions that can utilize data from the
field and frommultiple sources (market pricing, weather predictions, etc.) to accomplish
effective design and efficient operations, digitalization is the key tomanaging the ensuing
complexity successfully. Therefore, an important strategy to enable the decarbonization
of the energy system is district heating and cooling. However, DHC systems have to be
changed in order to realize their potential since it has grown increasingly complicated as
a result of a variety of production methods, remote sources, and sector coupling. When
the value chain is considered as a whole, high performance is attained. Particularly, the
economic potential of buildings and consumers has not yet been completely realized. The
challenges of data security and privacy, as well as concerns about data ownership, must
be addressed, and solutions must be developed, in order for digital processes to be more
widely integrated. So that the necessary rapid transformation has real-world business
models, products, and services that are ready for the market. The strong communication
between the scientific community and system producers, utilities, and service providers
is the project’s greatest asset [7]. Detailed results are in the final report of TS4, available
via the project homepage (see above).
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Abstract. District heating systems have become increasingly complex by inte-
grating evenmore efficient technologies to help decarbonize the built environment.
However, the full potential of such systems has yet to be reached due to inade-
quate controls. Predictive control has emerged as a promising solution to leverage
operational data, modelling capabilities and various forecasts (weather conditions,
price signals, carbon intensity) to optimize district energy system operation in real
time. This paper discusses practical hurdles and lessons learned from the imple-
mentation of an artificial intelligence (AI)-based model predictive control (MPC)
strategy in two Canadian district heating systems. These systems are equipped
with natural gas boilers, which supply space and water heating through a steam
network. This AI-based MPC strategy builds upon district heating demand fore-
casting models and data-driven boiler performance curves to optimize boiler ther-
mal outputs that minimize greenhouse gas emissions. Practical hurdles include the
usual suspects – data collection and preparation, communication with the control
system, equipment maintenance – but also unexpected aspects such as weather
forecast access issues and partial application of the recommendations. Lessons
learned deal with the adoption of the proposed strategy, the potential for perfor-
mance improvement of multi-boiler district heating systems, and the scalability
and generalization to more complex systems.

Keywords: Boiler Efficiency · District Heating · Field Demonstration · Load
Forecasting ·Model Predictive Control

1 Introduction

District heating and cooling systems enable the integration of a wide range of tech-
nologies at a large scale, including boilers (biomass, electric, natural gas), combined
heat and power, heat pumps, renewable energy systems (e.g. solar collectors), waste
heat recovery and thermal energy storage devices (water tanks, geothermal) [1, 2]. It
has resulted in complex integrated energy systems, whose optimal operation has yet to
be reached. On the other hand, with the advent of the digital age, operational data has
been increasingly available whereas data-driven modelling capabilities are becoming
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more powerful with the continuous emergence of new machine learning and other arti-
ficial intelligence (AI) techniques [3]. In this context, model predictive control (MPC)
has appeared as an effective solution to leverage available operational data, modelling
techniques and various sources of forecasts –such as weather conditions, price signals,
carbon intensity– in order to optimize the operation of district energy systems [4]. How-
ever, well-documented real-world demonstration projects remain relatively scarce. Two
compelling examples could still be mentioned. The STORM controller aims to exploit
flexibility from building thermal inertia and was implemented in two demonstration
sites to reduce peak loads [5]. Results showed a decrease of 3.1% in Rottne (Sweden)
and 7.5–34% in Heerlen (The Netherlands). The second example is the smart controller
developed as part of the TEMPO project [6]. This controller aims to reduce peak loads
and return temperatures in district heating networks andwas tested in a peripheral branch
of an Italian district heating system (Brescia). An average peak load reduction of 34%
was obtained for this case study.

This paper presents the development and implementationof aMPCstrategy formulti-
boiler district heating systems. Such systems (i.e. only relyingonnatural gas, oil or diesel)
represent approximately half of all installed systems in Canada [7] and provides high
potential for replicability. Section 2 describes the two demonstration sites and presents
the MPC strategy, from the modelling to the implementation results. Section 3 discusses
practical hurdles encountered during the development and implementation phases, as
well as the lessons learned throughout the project and the potential for generalization to
more complex district heating and cooling systems.

2 Development and Implementation of a Model Predictive Control
Strategy

2.1 Description of Demonstration Sites

The district heating system under study is composed of several natural gas boilers that
generate steam and supply space heating and domestic hot water to a district, character-
ized by different types of buildings. Boilers are operated alone or in combination with
other boilers.

The first demonstration site is located in the province ofOntario (Canada); the second
one is located in the province of Québec (Canada). For both sites, the central heating
plant is composed of 3 non-condensing boilers (boiler capacity of 11.7–22.2 MW for
site #1 and of 18.2–19.6 MW for site #2). The control system records and stores weather
conditions, operating conditions and boiler consumption and production. By Canadian
law and regulations, the operators must turn on and off the boilers manually for large
capacity natural gas boilers. Therefore, they decide in the morning which boilers to run
and at what power for the rest of the day, and adjust according to specific requirements or
issues (e.g. boiler maintenance or repairs). In site #1, if two boilers are in operation, one
boiler provides a base load and the second one fulfills the peak (denoted “base-peak”).
In site #2, the load is equally distributed among boilers (denoted “equal load”) but could
be operated using “base-peak” method.
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2.2 Control-Oriented Models

The control-oriented model is two-fold: 1) one model forecasts the district heating
demand for the next 24 h based on machine learning techniques; 2) another model
estimates boiler efficiency based on part-load ratio performance curves. Both models
are calibrated with operational data and rely on hourly averaged values.

The heating demand model consists of a tree-based machine learning (XGBoost)
model fed by an appropriate input dataset, composed of weather conditions (outdoor air
temperature), time index inputs (hour of the day, cosine function of the hour of the day,
cosine function of the scaled heating demand, weekends) and an occupancy variable
(work hours derived from heating demand patterns). More information can be found in
[3]. The accuracy was evaluated by considering weather forecasts as inputs; CV-RMSE
(coefficient of variation of the root mean square error) of 8.7% was obtained for site #1
and of 11.7% for site #2 [3].

The boiler model was inspired from the National Energy Code of Canada for Build-
ings (NECB) [8] and expresses the energy efficiency (ηboil) as a function of the boiler
part-load ratio (i.e. PLR, ratio of thermal and nominal load) as follows:

ηboil = a
b

PLR + c + d × PLR
(1)

where a, b, c and d are parameters calibrated with operational data. Figure 1 shows the
boiler performance curves.
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Fig. 1. Boiler performance curves for (a) site #1 and (b) site #2.

To remove transient operation [9], the efficiency was calculated such that the boiler
has been in operation for 2 h and remains in operation for 2 h. In site #1, three levels of
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efficiency are observed (75%, 80%, 85%). In contrast, site #2 shows similar efficiency
for all boilers (around 80%). CV-RMSE of 1.0–1.4% were found for boilers in site #1,
and of 2.2–2.4% for boilers in site #2.

2.3 Predictive Control Strategy and Decision Support Tool

The predictive control strategy aims to leverage modelling capabilities and weather
forecasts to support operators’ decision-making about which boilers to run and at which
thermal power for the coming day. TheMPC strategy targets the minimization of natural
gas consumption of all boilers over 24 h by optimizing the hourly thermal output of
each boiler. The optimization routine consists of a brute force method that explores all
possible combinations, from which the optimum is extracted. The load distribution is
determined by “base-peak” approach for site #1, and by “base-peak” and “equal load”
methods for site #2.

Since operators need to manually turn on and off boilers, automatic control is not
possible and the output format of the MPC strategy must be adjusted to enable imple-
mentation. A PDF report was automatically generated to help operators make informed
decisions. This report is generated once a day in the morning (around 7am) and provides
the recommendations from 8am to 7am the next day. It is up to the operators to decide
whether or not to apply the strategy throughout the day, based on their own technical
constraints and considerations.

The automatic report generation works as follows. CanMETEO, Python, Windows
Task Scheduler and Outlook were used as software platforms. Weather forecasts are
retrieved using CanMETEO [10] and adjusted to match the evaluation period. Historical
data is retrieved and used to train the control-orientedmodels in Python. The optimization
routine is then run, and recommendations are extracted to build theMPC report in Python.
Finally, this report is automatically created and sent to the operators via email (Outlook).
These tasks are synchronized using Windows Task Scheduler.

An example of this report for site #1 is displayed in Fig. 2. The report contains
several pages. The first page provides forecasted outdoor air temperature and district
heating demand (a figure and a summary table with min/max values), as well as the first
recommendation,which is the optimumbasedon energy efficiency.The recommendation
consists of a figure showing the heating load forecast and the contribution of each boiler,
and three tables providing boiler general information (nominal capacity, load range at
which the boiler has been operated in the past), operational style (estimated boiler load
and efficiency for the recommended operation) and system performance (energy use
estimates for the central heating plant based on operational style). It aims to provide
critical information for applying the recommendation, compare proposed operational
conditions with historical data and display potential savings to encourage adoption.
Plain text descriptions for each figure and table were also added to facilitate adoption.
Additional pages were generated to provide the optimum of specific scenarios in case
the operators are unable to run the most efficient scenario: only boilers #1 and #3 can
be in operation (e.g. due to maintenance on boiler #2); only boilers #2 and #3 can
be in operation; least efficient scenario (for performance comparison purposes). The
last page aims to gather daily performance and operators’ feedback on the proposed
recommendations or technical issues encountered. For each scenario, energy, economic
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and GHG emissions savings are provided for the coming day. For site #1, the reference
scenario represents the least efficient situation (the least efficient boiler is also the most
reliable one) to encourage adoption. For site #2, the reference scenario was estimated
based on historical data to compare with expected system performance under normal
operation.

Fig. 2. MPC output report example containing the recommendations (pages 1, 2 and 5) for site
#1.

2.4 Implementation Results

To evaluate the implementation results, a baseline model was developed to determine
what would have been the performance if MPC was not implemented. It generally
consists of an energy signature model that calculates daily energy usage usually as a
function of outdoor conditions (e.g. heating degree days, outdoor air temperature) [11,
12]. In this case, daily gas consumption of the central heating plant is estimated as a
function of daily heating demand (which is assumed to be equal to the daily total steam
production) to specifically track energy efficiency variations. Results showed CV-RMSE
of 4.4% for site #1 and 5.3% for site #2, respectively, and are displayed in Fig. 3.

For site #1, results were divided into three categories based on whether the rec-
ommendations were 1) followed, 2) partially followed (e.g. the base power was slightly
different fromwhatwas recommended) or 3) not followed (e.g. technical issues). Figure 3
shows that the MPC performance was almost consistently lower than the baseline when
the recommendations were followed and/or partially followed.

For site #2, the recommendations were either 1) followed or 2) not followed. In
contrast with site #1, Fig. 3 shows that the daily gas consumption was on average lower
than the baseline but some occurrences led to higher consumption. Savings for both sites
were confirmed by a statistical analysis.

Table 1 shows the energy savings obtained for both sites during the implementation
period. For site #1 (48 effective days), a 2.8% reduction was obtained, which represents
in absolute terms, savings of $ 19,975 CAD and 77 t CO2eq (daily average of $ 416
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Fig. 3. MPC implementation results showing daily gas consumption vs. daily steam production
for (a) site #1 and (b) site #2.

CAD and 1.6 t CO2eq). For site #2 (67 effective days), a reduction of 1.3% is observed,
representing savings of $ 10,268 CAD and 45 t CO2eq (daily average of $ 153 CAD
and 0.7 t CO2eq).

Table 1. MPC implementation results for site #1 (Feb 2 – Apr 27, 2023) and site #2 (Feb 15
– May 28, 2023).

Performance metric Difference between MPC and reference case

Site #1 (48 days) Site #2 (67 days)

District heating demand 0 GJ 0 GJ

Gas boiler consumption - 1,502 GJ (- 2.8%) - 903 GJ (- 1.3%)

Average system efficiency 2.28% 1.07%

Total energy costs - $ 19,975 CAD (- 2.8%) - $ 10,268 CAD (- 1.3%)

Total GHG emissions - 77 t CO2eq (- 2.8%) - 45 t CO2eq (- 1.3%)

3 Field Implementation: Practical Hurdles and Lessons Learned

This section tackles practical hurdles faced during the development and implementation
phases and lessons learned from this implementation project. In a nutshell, practical
hurdles consisted in data-related (access, quality, pre-processing, etc.) and communi-
cation (ability to retrieve data and send control commands) issues as well as weather
forecast access and uncertainty, equipment maintenance, operational issues and partial
application of the recommendation. Lessons learned are related to the adoption of the
MPC strategy, the potential of such a strategy (model retraining, performance improve-
ment) and the transition towards decarbonization. They are summarized in Table 2 and
discussed in the following sub-sections.
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Table 2. Practical hurdles and lessons learned from implementation.

Hurdles and lessons learned Description

Practical hurdles during
development phase

- Data access, availability and quality
- Data pre-processing
- Data privacy and security
- Communication with the control system

Practical hurdles during
implementation phase

- Access to weather forecasts
- Uncertainty of weather and heating load forecasts
- Partial application of the recommendation
- Equipment maintenance and operational issues
- Baseline and performance evaluation

Lessons learned - Adoption of the data-driven predictive control strategy
- Performance improvement potential
- Model training and major operation changes
- Transition towards decarbonization

3.1 Practical Hurdles During the Development Phase

Every approach dealing with operational data always comes with the same obstacles:
real world data is messy and challenging. Most of the practical hurdles faced during the
development phase are data-related and can be grouped in the following categories. Even-
tually, these hurdles could be expressed in terms of monetary amounts and additional
efforts are required to prepare datasets before being further used for any applications.

Data Access, Availability and Quality. Data acquisition can be difficult, and comes
with its own hurdles (e.g. hardware and software issues, communication problems),
ultimately resulting in gaps in the datasets. Data was not necessarily stored for an appro-
priate period of time and was not accessible in real-time. In site #1, different trend logs
characterized the same variable, but their size varied from one to another (a few days
up to 2 years). In site #2, steam production was available for several years whereas gas
consumption was only available for 8 months.

There was low documentation on measuring instruments (e.g. sensor type, technical
specifications, last time sensors were calibrated, measurement uncertainty), or on what
was exactly measured (e.g. location of steam meters). It has resulted in tremendous
detective work on some of the data to find out what was inside and its extent.

Peoplemight even be unaware of the extent of the data they have. Data volumes could
vary considerably: we have had plentiful data which are critical for controlling the plant
but not necessarily useful for modelling purposes and advanced controls; conversely,
small amounts were really critical for the strategy. In site #1, we received 1,300 +
csv files with limited descriptive names and redundant information. For instance, steam
production for a given boiler was recorded in klbs/hr, kJ/s, MJ/s (several variables for
each unit) and with totalizers (hourly, daily, monthly). In site #2, we only received the
variables we were interested in, but not always in the same format. Moreover, both
sites are actually equipped with four boilers, but one of them is barely used; therefore,



Field Implementation of a Predictive Control Strategy in District Heating Systems 321

little data was available to derive performance curves and they were excluded from the
analysis.

Data quality varied significantly, and variables did contain missing values, erroneous
and questionable values, unknown units, as well as miscalibrated data. In site #1, the
outdoor air temperature sensor is located in the turbine of a cogeneration unit, which
is not used anymore, and showed constantly higher values compared to other weather
data sources. In site #2, the steam production was characterized by two variables, which
showed different values for the same period of time. Furthermore, the steam production
is measured in Mg/h but was stored in kW; the internal conversion process remains
unclear but might not take into account the effect of steam pressure changes, which have
occurred in summer.

Data Pre-processing. The large amount of data obtained came in a variety of different
structures and formats, and could combine different data sources. Such a process required
laborious processing through various software and tools. Data did not come on nicely
aligned time stamps, andwas usually available at different times and different time-steps.
Data synchronization was thus challenging for both sites. In site #1, efforts were mainly
spent on the selection of the appropriate trend logs, and their synchronization, whereas in
site #2, different data sources (steam production and gas consumption from two different
control systems; weather data from other sources) needed to be synchronized.

Once the data has been synchronized, it still needs to be cleaned for analysis and
modelling purposes. This task was partially done manually due to the lack of advanced
data cleaning tools. Outlier detection based on statistical distribution might remove peak
loads that actually occurredwhereas it failed in detecting specific situations; for instance,
a value that remains constant for a while, and steam production values, which were not
relevant due to pressure changes.

Data pre-processing in real-time could be even more difficult since these steps must
be automated andback-upplansmust be elaborated if the data happens to be not available.
Fail-safes were required for instance in case of missing weather forecasts.

Data Privacy and Security. People are required by law to protect data and they must
develop an appropriate data infrastructure for this purpose; however, this can make data
sharing more challenging. People may be reluctant to share their own data due the
uncertainty of what data they are storing and how it will be used. This was not issue in
both sites thanks to operators’ and engineers’ engagement.

Furthermore, access to real-time data can be even more challenging due to the higher
risks of data breaches and the increased need for cybersecurity. In this project, commu-
nication was subject to stringent requirements, such as the automatic procedure for gen-
eration and sending of emails in a safe and secure manner, which needed to be approved
by the IT department.

Communicationwith theControl System. Anothermajor roadblockwas the ability to
connect to the control system and the data storage device, and the ability to automatically
retrieve operational data and send control commands. In addition, Canadian regulations
oblige operators to turn on and off the boilers manually for large capacity gas boilers.
Therefore, the MPC strategy output needed to be formatted as a decision support system
and aimed to assist operators in their daily routine, rather than automatically controlling
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the system. The MPC strategy output was shared as a report, which was continuously
tailored for operators as part of an on-going learning process. They might have required
additional information, not initially shown in the report (e.g. showmore scenarios), or in
the opposite, more compact results (e.g. reduce the level of details in the results, remove
unnecessary scenarios).

3.2 Practical Hurdles During the Implementation Phase

Once the barriers of the development phase have been overcome and the control strategy
has been developed, a series of additional hurdles have still been encountered during
the implementation phase and led the provided recommendations to be either partially
followed or not followed at all. These hurdles are discussed below with no particular
order.

Access to Weather Forecasts. Weather forecasts were retrieved through numerical
weather prediction files generated by the Canadian Meteorological Centre and postpro-
cessed using the software tool CanMETEO [10]. These GRIB files are readily available
on the web and weather forecasts are organized according to specific Canadian geo-
graphical zones and locations. However, this file organization has been modified by the
Canadian Meteorological Centre during the implementation phase (url, geographical
zone distribution), and we needed to adjust the retrieval process accordingly, resulting
in losing one week of implementation.

Uncertainty of Weather and Heating Load Forecasts. In site #1, general operators’
feedback in the early days of the implementation was pinpointing differences between
forecasted weather conditions and heating loads, and actual on-site measurements (e.g.
colder weather than forecasted, warmer than forecasted, load higher all day than fore-
casted). During the development phase, we estimated the load forecast accuracy (i.e.
using heating load model along with weather forecasts) to be 8.7% and 11.7% for sites
#1 and #2, respectively, which is already pretty good. Our impression is that the per-
ception of operators was to obtain high-quality forecasts that almost perfectly match
actual demand. However, weather forecasts by intrinsic nature come with an uncertainty
whereas load forecasting model adds up additional uncertainty due to model inaccuracy.
Figure 4 shows outdoor air temperature forecasts and measurements for the implemen-
tation phase for both sites. Standard deviations of 2.5 °C and 2.6 °C were obtained along
with mean values of -0.6 °C and -0.6 °C, for sites #1 and #2 respectively, which is in
accordance, although a bit higher, with previous studies (standard deviations of 2.2–
2.3 °C) for site #2 [3] and for two other locations in Canada [13]. The week without
forecasts in Fig. 4 corresponds to the week when GRIB files were reorganized.

PartialApplication of theRecommendation. The inaccuracy of heating load forecasts
has affected the decision-making of which boilers to use and at what power. More
specifically, it was the case when only one boiler was recommended to operate whereas
the actual load was higher than expected or the operators were not confident that one
boiler would be enough to take the load. However, for site #1, it also happened that
the load distribution was not exactly followed (e.g. the recommended base load was 26
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Fig. 4. Outdoor air temperature forecasts vs. measurements for: (a) site #1 and (b) site #2.

klbs/hr whereas it was actually operated at 29–32 klbs/hr). Similarly, it happened that
the recommendation was followed during the day but not necessarily at night. For site
#1, the predictive control strategy was also only implemented during workdays (Monday
to Friday), not during weekends. Finally, it happened that the feedback report was not
filled out, such that we could not know if the recommendation was followed. For all
these observations, the rationale behind remains unknown.

Equipment Maintenance and Operational Issues. The central heating plant has
undergone normal equipment maintenance during the implementation phase. Operators
have reported for instance: boiler maintenance, boiler chimney repairs, boiler vibration
and noise check, boiler safety valvemaintenance, boiler chemicalsmanagement. In these
cases, some boilers could be off for a few hours up to a few days. The demonstration sites
have also been subjected to power failure and electrical repairs (high tension electrical
switching order).

Baseline and Performance Evaluation. The implementation of a new control strategy
always comes with an appropriate methodology to gauge past and current performance
in order to evaluate savings. This methodology is essential to decide whether the strategy
was effective or not. In this work, the baseline model allows to calculate the daily natural
gas consumption as a function of the daily steam production, in order to grasp boiler
performance, regardless of outdoor air conditions. Other models (e.g. different mod-
elling techniques or different inputs) and time resolutions (e.g. hourly values, monthly
values) might have led to different results. It is worth mentioning that for both sites,
baseline models were also developed to evaluate daily steam production and daily gas
consumption as a function of daily average outdoor air temperature. It was found that
the daily steam production has increased by 10.7% (site #1) and 3.7% (site #2) com-
pared to the baseline model, most probably due to changes in some of the buildings’
operation, so did the daily gas consumption. Nevertheless, the system did perform more
efficiently (see Fig. 3) despite this increased gas consumption when normalized with
weather conditions.
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3.3 Lessons Learned

Adoption of the Data-Driven Predictive Control Strategy. The proposed approach
is a first step towards increased utilization of data to support district heating and cooling
operation. Data analysis can already bring invaluable insights on system operation by
providing an accurate picture of the current operation, which could be helpful to assist
operators in their daily routine and transfer knowledge and experience to new operators.
For instance, load profile analysis provides a better understanding of system schedules
(based on load increase and decrease), energy usage and peak demand. Data-driven
performance curves show actual boiler energy efficiency and could identify anomalies
or performance degradation that could be further investigated and addressed. Eventually,
such a data-driven approach allows to build operators’ confidence for projects with
more complex systems; it includes retrofits with a new electric boiler, optimization of
time-varying energy costs.

After the implementation of the MPC strategy, the main feedback from our collab-
orators was that the operators were willing to apply the recommendations when it was
possible. The operators are experienced technicians and managers, and they are proud
in efficiently operating and maintaining their facility for years. The predictive control
strategy has helped them be even more aware of energy efficiency and economic con-
siderations by displaying potential savings they could further obtain. If the plant was
alreadywell operated, it has strengthened operators’ confidence in their approach.More-
over, it is worth mentioning that the operators were engaged at the very beginning of
the project. Since the automatic control of the district heating system was not allowed
(see Sect. 3.1), they were kept in the loop during the whole process in order to tailor
the predictive control strategy output to their needs and preferences, thus facilitating
adoption.

After this implementation phase, the question of tool maintenance has gained more
importance in the discussion with the operators. Simply said, how to go from a research
project to a more robust and reliable tool? This topic has come with its own ques-
tions, which have yet to be answered. It includes among others: software development
and maintenance in case of technical issue, MPC strategy reliability in the long term,
access to operational data for model retraining, funding acquisition and involvement of
collaborators.

Model Training and Major Operation Changes. The proposed predictive control
strategy significantly relies on operational data to forecast the district heating demand
and the central heating plant performance. To this purpose, up to years of data could
be used for modelling (see Sect. 3.1). Nevertheless, this data must be representative of
current operation to obtain accurate predictions. Therefore, major changes in operation
(e.g. increased or reduced heating demand, boiler performance degradation) must be
considered during the modelling phase. This project was started during the COVID-19
pandemic and an important considerationwas to better understand how the pandemic has
affected both district heating system and individual buildings operations. Based on data
analysis, the district heating demand did not significantly change because of the COVID-
19 pandemic for both sites, which could be due to the nature of these specific district
systems. Nonetheless, it is worth mentioning that building schedules were adjusted
during the pandemic for site #1 (daytime period from 6am-6pm to 4am-10pm), which
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was still captured by the district heating demandmodel (through the “work hour” variable
[3]). In the case of major operational changes, datasets used for model training must be
adjusted accordingly to account for actual operation. Adaptive learning could be helpful
in this regard to rely on the most recent data.

Performance Improvement Potential. In general, the effectiveness of a new control
strategy strongly depends on how the system has been operated in the past. If the system
has already been well operated, low energy savings are expected; conversely, if the
system operation shows several flaws, more savings could be achieved.

Moreover, the potential performance improvement depends on the energy efficiency
of each natural gas boiler. Site #1 shows boilers with different energy efficiency levels
(from 73% up to 85% for steam production between 3 and 12 MW) and more savings
could be expected if the usage of low efficient boilers can be reduced to maximize
the high efficient boiler operation (e.g. maximum of 12% efficiency increase). On the
other hand, site #2 shows boilers with similar performance (e.g. efficiency between 78
and 83% for steam production between 5 and 10 MW), which reduces the potential
for energy savings (e.g. maximum of 5% efficiency increase). These observations were
confirmed with the implementation results: higher savings were obtained for site #1
(2.8%) compared to site #2 (1.3%). A similar study on multi-boiler system operation
optimization has been conducted by Gunay et al. [14] using simulation. Boiler energy
efficiencies were ranging between 65% and 85% (for part load ratio between 20% and
100%) and simulation results demonstrated 4% savings, which is in accordance with
site #1 implementation results. Replication of this approach should focus first on boiler
performance curves to grasp the potential of such a strategy.

Finally, it is worth mentioning that these savings were obtained during operation at
no additional capital cost since no measuring devices nor new equipment were installed.
Therefore, although savings in % are modest, the strategy still demonstrates relatively
high return on investment (ROI). Preliminary estimates show annual savings of 89,000
$ and 340 t CO2eq for site #1, and 33,000 $ and 140 t CO2eq for site #2. This case study
has demonstrated the potential of advanced controls to improve performance and work
is underway with our partners to replicate the approach to other sites.

Transition Towards Decarbonization. This project is a first step towards decarboniza-
tion of district energy systems and aims to improve the way these systems are operated.
Natural gas boilers will not go away overnight, and we still need to operate them more
efficiently during this transition period. The proposed control strategy builds upon data-
driven models and allows to minimize GHG emissions by improving the current effi-
ciency of the multi-boiler system. Nonetheless, it was built with a mindset to be scalable
to similar systems and extendible to next generation systems for which operation can be
much more complex and potential savings (GHG emissions, energy costs) much higher.
Indeed, thesemulti-boiler systemsmay rely on steam-based networks (this is the case for
both sites), which have shown limitations in performance improvement unless a major
and costly retrofit occurs. Retrofits include partial or full conversion of steam to water
network, the installation of new equipment such as electric boiler, heat pumps, renewable
energy systems or thermal energy storage devices. The proposed control strategy aims
to be easily adaptable to these new technologies and builds the foundations for more
complex hybrid energy systems in more complex situations (dynamic tariffication, peak
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demandmanagement, dynamic electric grid’s carbon intensity, etc.). District energy sys-
tem electrification would also bring new challenges such as resiliency, which could also
be tackled to some extent with such a predictive control approach.

4 Conclusions

This paper has presented the development and implementation of a predictive control
strategy in two demonstration sites in Canada. This strategy tackles the operation of
multi-boiler district heating systems and optimizes boiler thermal outputs for the next 24
h to minimize total natural gas consumption. Implementation results showed reductions
of 1.3% and 2.8% for both sites, which represent savings of 45–77 t CO2 eq and $
10,268–19,975 CAD for a 2–3-month period.

Nonetheless, the implementation was not straightforward and has faced different
obstacles. During the development phase, most of the hurdles were data-related; real
world data is messy and challenging. It includes difficult access to data and communica-
tion issues, low documentation onmeasuring instruments or what was exactly measured.
Data cleaning has also required substantial efforts to address missing, erroneous and
questionable values, unknown units and miscalibrated data. During the implementation
phase, weather forecasts were not accessible for a week; the recommendations were not
necessarily followed by the book; and the central heating plant has undergone equipment
maintenance. Overall, the MPC strategy was well adopted, and the proposed data-driven
approach has highlighted benefits of an increased utilization of data to support district
heating and cooling operation. Expected savings vary from one site to another, which
is mainly due to the original control strategy, and the energy efficiency of each boiler.
This project paves the way for decarbonization of district energy systems and future
work includes the application of the MPC strategy to similar sites in Canada, and the
development of a more generalized approach, applicable to more complex systems in
more complex situations.
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Abstract. Residential District Cooling Systems (DCS) are crucial for maintain-
ing thermal comfort in urban areas, making it imperative to understand occupant
cooling behavior as it significantly influences DCS operation. While several stud-
ies have investigated cooling behavior within small user groups through on-site
measurements or surveys, these often fall short in representing the broader pop-
ulation. In this study we considered 387 homes in Hyderabad, which has a DCS
connection for chilledwater supply.Operational data spanning threemonths across
different seasons were meticulously selected to assess the residents’ behavior for
the cooling demand. In order to better facilitate the operation of the residential
DCS, user load profile and system performance were analyzed using real world
data for different seasons in the year. Our findings revealed notable disparities
in DCS electrical consumption, with summer usage being 1.9 times higher than
the monsoon period and 2.7 times higher than the winter period. Furthermore,
a strong positive correlation emerged between outdoor temperature and thermal
energy usage by the residents. On average, the daily thermal consumption per
residence during winter, summer and monsoon is 3.3 kWhth, 35.1 kWhth and
10.4 kWhth respectively. Interestingly, the probability of a residence using AC
during the day for the winter, summer and monsoon seasons are 0.07, 0.41 and
0.18 respectively.

Keywords: District cooling system · Residential AC usage · seasonal data · Air
conditioning · Load profile

1 Introduction

Rapid urbanization has led to a surge in urban populations, posing increased risks and
detrimental environmental effects. In the years 2021–2022, the residential apartment
market sales have increased by 41% across top 8 cities in India [1]. Due to less green
spaces andwater bodies, built environment in cities is gettingwarmer andmaking people
vulnerable to rising temperatures. In response, demand for space cooling in the building
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has been viewed not only as a luxury but also a critical element in promoting health, well-
being, and productivity. In India, apart from fan and air coolers, room air conditioners
have 7–9% penetration in residential sector which would significantly increase over the
next decade [2]. This heightened demand necessitates cleaner, more energy-efficient
technologies and environmentally friendly cooling solutions. According to International
Cooling Action Program (ICAP) reports, per capita energy consumed for space cooling
in India stands at 69 kWh compared to the world average of 272 kWhe.With the growing
demand for space cooling in the country, it is a great opportunity to implementmeaningful
and resourceful interventions for the future of cooling technologies.

Generally, space cooling in hot regions is characterized by large seasonal and daily
variations which puts a heavy load on the electricity grid. The cooling load for most
of the residences is met through window units like split air conditioning or evaporative
air coolers. These systems are mostly predefined sizes catering to common markets.
Unfortunately, these systems contribute to negative environmental impacts by releasing
greenhouse gases and excess heat into the environment. They also affect the aesthetics
of the building and create a noisy environment while running. In contrast, central air
conditioning like District Cooling Systems (DCS) uses environment friendly refrigerant
and water-cooled chillers to reduce environment impacts. This type of air conditioning
provides reliable service and can be equippedwith energy efficient equipment’s to reduce
electricity consumption.

The load profile is a crucial element for designing and operating DCS in an efficient
manner. By evaluating cooling load and system size more accurately, DCS can provide
more economic and environmental benefits. Surprisingly,much of the research surround-
ing DCS has focused on design and optimization based on theoretical calculations, often
unable to utilize real world data [3, 4]. The fundamental reason why theoretical values
and operating values frequently diverge is because human behavior and other real-world
elements which are not considered while developing. To bridge this gap, a study was
conducted based on data from the HongKong Polytechnic University campus, analyzing
actual hourly cooling and electricity usage data [5]. Using a simulation model, this study
evaluated the energy efficiency of DCS and individual cooling systems under various
operating modes. The study shows that depending on the control technique employed,
the payback period varies from 6.4 to 10.4 years.

Recognizing that user behavior significantly influences systemeffectiveness, demand
load evaluation and management which have assumed greater importance. Comparative
investigations between DCS and traditional cooling systems in residential buildings
have demonstrated considerable benefits in reducing peak demand and operational costs
[6, 7]. The energy efficiency and applicability of centralized AC systems in residential
buildings will be significantly impacted by the load pattern and load ratio [8]. Notably,
the dispersed nature of residential structures necessitates larger pumps to supply cooling
to scattered zones, resulting in lower energy efficiency due to the dispersion of cooling
loads [9].

The objective of this paper is to assess the occupant behavior and real-world factors
in designing and operating efficient residential cooling systems, ultimately contributing
to sustainable urban living. In this study we considered 387 homes in Hyderabad, which
has a DCS connection for chilled water supply. The operational data of three months
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from different seasons were chosen to study the residents’ behavior for the cooling
demand. The cooling consumption of residences and electrical consumption of DCS
were used. In order to better facilitate the performance of the residential DCS, cooling
load of different season were analyzed.

2 Methodology

The aim of this study is to provide a comprehensive understanding of residential DCS
to understand the actual energy consumption, occupant AC usage pattern and influence
of outdoor temperature. The study is conducted in three steps: data collection, data
preparation and analysis. TheDCS system and the building details was already studied in
the case study paper [10]. This paper is an extended analysis of the case study comparing
the seasonal variation over the course of a year.

2.1 Residence and DCS Characteristics

The case study is a residential building located in Hyderabad, the capital city of Telan-
gana, India. The city experiences an arid climate, consisting primarily of dry and hot
days. As depicted in Fig. 1, cooling demand is very high from March to June, followed
by a moderation from July to October. The building consists of five towered apartments
with 387 residences and six common areas. The residence areas vary in size from 180m2

to 250 m2, contributing to a total built-up area of 1,04,344 m2. Since 2015, the building
has been equipped with a centralized cooling system boasting a total cooling load of
13,641 kWth, serviced by water cooled chiller and a thermal storage system.

Fig. 1. Monthly outdoor temperature in Hyderabad.

2.2 Data Collection

Data collection involves two types of meters were used to gather thermal and electricity
consumption data. The meter connections and its specifications are comprehensively
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detailed in the previous case study [10]. Each residence is installed with BTU meter
through which AC consumption is measured. Electrical energy from chillers and other
equipment is measured through the smart three-phase energy meter. Data was stored in
a Building Management System (BMS) which is then used by the maintenance office
for billing purposes. Data was collected for three different seasons: Winter (January
2023), Summer (May 2022), and Monsoon (September 2022). Detailed description of
the data is given in Table 1. AC consumption data contains thermal energy usage in both
residences and common spaces for cooling. Electricity consumption of DCS includes
meter readings from chillers, brine chiller, pumps, and cooling towers.

Table 1. Description of the data

Type of data Time period Data units Data points Data interval

AC usage May 2022, September
2022, & January 2023
(92 days)

kWhth 3.47 million points 15 min

Electricity usage May 2022, September
2022, & January 2023
(92 days)

kWhe 0.04 million points 15 min

2.3 Data Preprocessing

Irrelevant data apart from DCS meter and residence meter were removed including the
house id. Microsoft excel was used for the processing and analysis of data. Missing data
in the dataset were found to be within permissible limit. Thermal data and electricity
data was recorded in kWhth and kWhe units at 15-min interval. Given the data is in
time series format, simple moving average method was used for the interpolation of the
missing data. This process used the same time hourly values from adjacent 3 days of
the missing data. If the adjacent day was also missing, values from adjacent time slots
were utilized. Using the meter reading, the value from the interpolation were adjusted
according to the missing reading values. The author believes the average value of hourly
representation of the data will explain the outcome more clearly. The day is divided into
four segments: early morning (12 AM to 6 AM), morning (6 AM to 12 PM), afternoon
(12 PM to 6 PM), and night (6 PM to 12 AM).

3 Results and Discussion

This section aims to explain the relationship between the thermal use behavior of resi-
dents and electrical load of DCS across 3 different seasons (summer, winter, and mon-
soon). To understand the behavior of residents, a detailed analysis of the thermal data
with a focus on seasonal variation was conducted.
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3.1 DCS Energy Usage

Understanding the electrical consumption of the DCS is crucial in improving its effi-
ciency. The hourly electrical load during different time period of the typical day in a
month is shown in Table 2. Figure 2 explains the hourly effect of the electrical load of
DCS during these three seasons. During the summer and monsoon periods, there is a
peak in electrical demand during sleeping hours, as the cooling load is met by chiller. In
contrast, during winter, thermal energy storage was used for 19 days to supply chilled
water for cooling. The charging occurs over a span of around 3 to 4 h in the evening,
followed by discharge during the remaining period. This results in a consistent electricity
demand from early morning to afternoon. In summer, due to hot outdoor weather condi-
tions there is a peak in electricity demand during lunch time. The daily average electrical
load during winter, summer and monsoon is 2,158 kWhe, 5,910 kWhe and 3,139 kWhe.
The average hourly load for the winter, summer and monsoon seasons are 90 kWhe, 246
kWhe and 131 kWhe. The maximum hourly load during the months of winter, summer
and monsoon are 469 kWhe, 481 kWhe and 253 kWhe. For the annual electricity usage,
two major peaks are observed: one during nighttime and another during the afternoon
period. Notably, summer electrical consumption is 1.9 times higher than the monsoon
period and 2.7 times higher than in winter period.

Table 2. Hourly average electrical load (kWhe) at given time period.

Time period Winter Summer Monsoon

Early morning 64 330 151

Forenoon 58 200 125

Afternoon 61 212 117

Night 177 243 131

Fig. 2. Daily average DCS electricity usage.
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3.2 AC Energy Usage

People prefer different comfort conditions despite being in the same physical environ-
ment. Understanding the thermal consumption at different periods of the day and com-
paring it to different seasons will help us understand the thermal behavior of residents.
From Table 3, the thermal load during summer afternoon is higher than the forenoon
which is not the case for winter and monsoon season. The graph in Fig. 3 shows the
daily average AC usage by the residents. The daily average thermal load during winter,
summer and monsoon is 1,269 kWhth, 13,565 kWhth and 4,021 kWhth, respectively.
The average hourly thermal load during the day for the winter, summer and monsoon
seasons are 53 kWhth, 565 kWhth and 168 kWhth. The maximum hourly thermal load
during the day in winter, summer and monsoon seasons are 262 kWhth, 1199 kWhth and
541 kWhth. Notably, during summer, the first peak is 2.9 times higher than the second
peak, while in winter it is 5.7 times higher and in monsoon it is 3.2 times higher. The
summer AC consumption is 3.4 times higher than monsoon period and 10.7 times higher
than the winter period.

Table 3. Hourly average thermal load (kWhth) at given time period.

Time period Winter Summer Monsoon

Early morning 99 840 266

Forenoon 46 426 134

Afternoon 24 450 105

Night 42 545 165

Fig. 3. Daily average AC usage.
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3.3 Residence AC Use Pattern

In this section, we will discuss the characteristics of the occupant behavior and provide
insights into the operation schedule of the DCS.

Probability
Interestingly, some residents use AC during all the seasons despite the outdoor temper-
ature is comfortable for the average human. Figure 4 illustrates the usage probability
of AC during different time periods in a typical house. The average probability of a
residence using AC in a day for the winter, summer and monsoon seasons are 0.07, 0.41
and 0.18 respectively. Figure 4 indicates that most residents use AC from midnight to
early morning throughout all seasonal months. In summer, people using AC during post
lunch has increased more than winter and monsoon due to peak outdoor temperature.

Fig. 4. Daily average probability of a residence using AC.

Load
The study of a typical residence for the AC usage is necessary to understand the AC
usage behavior and to provide suitable measures to increase the system efficiency. In
Fig. 5, the average of hourly thermal energy plotted against the number of days AC used
for each residence for different seasonal months. In this analysis, the hours where the
AC was not used throughout the month were removed. The hourly average thermal load
during winter, summer and monsoon is 1.8 kWth, 3.2 kWth and 2.2 kWth. In winter and
monsoon months the overall load varies a lot due to fewer residents using AC.

Influence of Outdoor Temperature
Figure 6 reveals the average daily thermal usage as a function of the average outdoor
temperature for three months. This figure illustrates a clear positive correlation between
outdoor temperature and thermal usage. As the outdoor temperature increases AC usage
in residences also increases. Thermal energy consumption by residents is more scattered
in summer compared to winter and monsoon months. More residents use AC to bring
down the room temperature and usemechanical ventilation tomaintain the roomcomfort.
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Fig. 5. Daily average AC load of a residence.

Fig. 6. Average outdoor temperature vs average daily thermal usage.

4 Conclusion

The operational data of threemonths from different seasonswere chosen to study the res-
idents’ behavior for the cooling demand. By analyzing the operational data, the cooling
load profile of residences and electrical load profile of DCS were identified for different
seasons throughout a typical day.

• The average hourly load during the day for the winter, summer and monsoon seasons
is 90 kWhe, 246 kWhe and 131 kWhe, respectively. Themaximum hourly load during
the months of winter, summer and monsoon are 469 kWhe, 481 kWhe and 253 kWhe.
Summer electrical consumption of DCS is 1.9 times higher than the monsoon period
and 2.7 times higher than the winter period. There is a substantial seasonal and hourly
variation in electrical demand for air conditioning on the grid.
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• The average hourly thermal load during the day for the winter, summer and monsoon
seasons is 53 kWhth, 565 kWhth and 168 kWhth, respectively. The maximum hourly
thermal load for thewinter, summer andmonsoon seasons are 262 kWhth, 1199 kWhth
and 541 kWhth. There is a significant variation in AC consumption among residences
during summer compared to winter and monsoon.

• The average probability of a residence using AC in a day for the winter, summer and
monsoon seasons is 0.07, 0.41 and 0.18, respectively. The hourly average thermal load
duringwinter, summer andmonsoon is 1.8 kWth, 3.2 kWth and 2.2 kWth, respectively.
In winter and monsoon, AC consumption primarily occurs during early morning
period, possibly due to residents’ accustomed behavior at nights.

• As outdoor temperature rises, AC usage in residences also increases. The thermal
energy used by the residents is more scattered in summer compared to winter and
monsoon months, primarily because more people using AC in the summer.

These findings will greatly assist policymakers in establishing benchmarks and eval-
uating solutions for themasses. Theywill also aid engineers in designingDCS especially
for the residential users by providing inputs such as cooling demand profiles for different
seasons. If an analysis of chiller’s water temperature and the individual electrical load of
other equipment’s were measured, it would provide valuable insights into the efficiency
of the DCS.
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