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Abstract. The energy resource management problem in energy systems
is hard to optimize, mainly due to non-linear restrictions and a large
number of variables involved. This is partly because of the increased
integration of distributed energy resources. Computational intelligence
optimization techniques, namely evolutionary algorithms, are regarded
as efficient techniques for identifying optimal and near-optimal solutions.
However, these algorithms usually have in their design several parame-
ters that need to be set and, in most cases, tuned for a given problem to
find good solutions. This work proposes an automatic configuration app-
roach of different differential evolution strategies using the irace package
to solve a centralized day-ahead energy resource management problem.
The problem considers an aggregator managing multiple resources, such
as renewable generation, battery energy systems, electric vehicles, and
loads with demand response capabilities. The aggregator aims to min-
imize operational costs and maximize revenues to obtain a profit. We
compare the results of a “manual” tuning of parameters with the results
obtained with the auto-tuned parameters using irace. Results show that
the automatic configuration improves the profits of the aggregator in
almost all strategies (except for DE/either-or-algorithm/1), getting the
best results, an improvement of around 7%, with the automatically tuned
DE/target-to-best/1 mutation strategy.

Keywords: Automatic tuning · Differential evolution · Energy
resource management · Evolutionary algorithms · Iterated racing ·
Optimization

1 Introduction

The socio-economic situation of the energy sector is complex, necessitating exten-
sive research and planning. In reality, many of the issues in this area are com-
plicated and have traits like high dimensionality, a large number of restrictions,
lack of information, and noisy and corrupted data due to the large uncertainty in
the energy system [1,2]. Also, these problems frequently involve temporal limits
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that require solutions to operate in almost real-time [3]. Consequently, finding
effective and exact solutions in a reasonable amount of time is still an issue that
needs to be addressed for many energy problems.

Consider, for example, the energy resource management (ERM) in distribu-
tion networks. In such a problem, due to the grid constraints, we are dealing
with a mixed-integer non-linear programming (MINLP) formulation, which is
tough for mathematical methods to solve. Algorithms based on computational
intelligence (CI), in this context evolutionary algorithms (EAs), have shown to
be particularly well suited for this type of problem since they produce good
results in a useful time. As such, they provide an effective optimization alter-
native to mathematical methods for problems in the energy domain [4]. These
algorithms are also more tolerant to uncertainty and more suitable for address-
ing the nonlinearities prevalent in energy problems [5]. EAs are in their majority
population-based algorithms with several associated parameters. Due to their
stochastic nature, fine-tuning these parameters becomes essential to achieve fea-
sible solutions to a wide range of problems with a minimum requirement for
robustness [6]. This tuning can be done in different ways, but many authors have
performed this tuning manually through a sensitivity analysis of the parameters
[7]. Manual configuration is extremely time-consuming and needs the develop-
ers’ expertise and knowledge of the specific problem to be solved [8]. Therefore,
exploring automatic configuration methods that efficiently search the parameter
space to find high-performing configurations and removing the drawbacks from
manual configuration is essential in the design of optimizers. Automatic config-
uration methods can be divided into simple generate-evaluate methods (Brute
force [9], and F-Race [10]), high-level generate-evaluate methods (Post-selection
[11]), and iterative generate-evaluate methods (CALIBRA [12], Iterated F-Race
[13], and others) [14]. To our knowledge, such automatic configuration methods
regarding EA optimization for ERM problems have yet to be applied in the
literature, so we believe this work will significantly contribute to this field.

In this paper, we propose an automatic tuning of the parameters of multi-
ple differential evolution (DE) strategies considering the iterated racing F-race
approach present in the irace package in [13] to solve an ERM problem [15]. The
irace package was chosen for its customization (multiple automatic configuration
procedures) and simplicity. In a smart grid problem (SG), a 33-bus distribution
network (DN) is considered with distributed generation sources, electric vehicles
(EVs), battery energy systems (BES), and demand response (DR) programs for
load reduction. An aggregator optimizes resource allocation, minimizing elec-
tricity market purchases during peak hours while maximizing power sales to
the market and meeting the needs of residential customers, EV users, and the
BES. We analyze the experiments made by the irace package to find the best
configuration for the parameters of different DE strategies and present the best
configuration (final elite configuration) for each. In addition, we compare the
results with those obtained with manual tuning made in [15]. The results are
compared in terms of operational costs and the incomes of the aggregator.
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The organization of this paper is as follows. The proposed methodology
regarding the mathematical problem formulation and iterated racing approach
is presented in Sect. 2. The case study employed in this work, concerning the
setting used by irace and the DN, is presented in Sect. 3. The automatic con-
figuration outcomes and the analyses of results are presented in Sect. 4. Finally,
Sect. 5 draws the main takeaways from this work and suggests some possible
topics for further research.

2 Proposed Methodology

The aggregator intends to reduce the operational costs in Eq. 1 for day-ahead
management while maximizing electricity selling to consumers and market trans-
actions in Eq. 2. The decision variables for energy resource generation power, DG
unit commitment, BES and EV schedules, and DR loads, among others, are all
included in the ERM model under study for each unit and each period con-
sidered. The voltage and angles in each bus must also be considered during
scheduling.

2.1 Problem Formulation

The objective function for the day-ahead ERM formulation contemplates the
operational costs associated with multiple resources (previously mentioned) for
the 24-hour horizon with a time step of 1 h.

Operational Costs. Eq. 1 models the operational costs of the ERM model
that the aggregator aims to minimize while maximizing the incomes in Eq. 2.
The first and second terms of Eq. 1 include the costs of DG and excess of gener-
ation imbalance. The third and fourth terms of the equation represent the costs
associated with BES and EV discharging. The fifth and sixth terms represent the
costs associated with the incentive for DR programs and the negative imbalance
from load not supplied. Finally, the income from selling electricity in the market
is represented in the last term.

minfDay+1
OC =

∑
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·
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where T is the set of the number of periods (1, 2, 3, ..., 24), I is the set of DG units
(1, 2, 3, ..., Ni), S the set of external suppliers (1, 2, 3, ..., Ns) B represents the set
of BES (1, 2, 3, ..., Nb), V demonstrates the set of EVs (1, 2, 3, ..., Nv), L is the set
of different loads participating in the DR program (1, 2, 3, ..., Nl) and M is the set



Comparing Manual vs Automatic Tuning of Differential Evolution Strategies 47

of electricity markets available for the aggregator transactions (1, 2, 3, ..., Nm).
Regarding the parameters, Δt represents the time step which in this case is
considered to be one hour. CDG

(i,t) is the cost associated with DG production in

unit i for the period t (m.u./kWh), C imb+

(i,t) represents the cost of the exceeding

power of DG unit i in periods t (m.u./kWh) and CSup
(s,t) the external supplier s

electricity price for the period t (m.u./kWh). The discharging costs of the BES
and EVs are the parameters Cdis

(b,t), and Cdis
(v,t) for BES b and EV v, respectively

for the period t (m.u./kWh). CRed
(l,t) is the DR cost of the load l (m.u./kWh),

and C imb−
(l,t) is the cost associated with the demand not-supplied to the respective

load (m.u./kWh). The decision variables in this equation are the following, pDG
(i,t),

which is the active power produced by each DG unit i for the period t (kW),
pimb+

(i,t) describes the exceed active power of each DG unit (kW), pSup(s,t) is the active
power supplied by external supplier s in period t (kW). The active discharging
power of each BES and EV is given by pdis(b,t) and pdis(v,t) respectively (kW). The
load curtailment power of load l for period t is represented by the variable pRed

(l,t)

(kW) and the non-supplied power is given by pimb−
(l,t) (kW).

Aggregator’s Incomes. In Eq. 2, the aggregator earns revenue from BES and
EV charging, modeled with the first and second terms; revenue from selling
electricity to residential loads with the third term; and offers for the electricity
market with the fourth term. The aggregator needs to maximize this function
to achieve profits in the day-ahead optimization. That is, the values obtained in
Eq. 2 need to be superior to those in Eq. 1.

maxfDay+1
In =

∑

t∈T

·

⎛

⎜
⎝

∑

b∈B

pcha(b,t) · Scha
(b,t)+

∑

v∈V

pcha(v,t) · Scha
(v,t)+

∑

l∈L

pLoad(l,t) · SLoad
(l,t) +

∑

m∈M

pSell(m,t) · SSell
(m,t)

⎞

⎟
⎠ · Δt (2)

where Scha
(b,t) and Scha

(v,t) are the parameters associated with the prices of BES
and EV charging (m.u./kWh). SLoad

(l,t) represents the tariff of load l in period
t (m.u./kWh) and SSell

(m,t) is the price of selling electricity in market m in each
period t (m.u./kWh). pLoad(l,t) is the parameter of day-ahead load forecast in period
t (kW). pcha(b,t) and pcha(v,t) are the variables of active charging power of each BES
b and EV v (kW). The variable associated with power sold in the electricity
market m in each period t is pSell(m,t) (kW).

Objective Function. The cost minimization problem is defined in Eq. 3, where
the aggregator subtracts the incomes from the operational costs to obtain a
profit.

minimize z(x) = −fDay+1
In + fDay+1

OC (3)

The complete mathematical formulations of the problem regarding all grid
constraints and resource constraints that the objective function (Eq. 3) is subject
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to can be found in [16]. In this paper, only the main network constraints are
shown as follows:

Active and reactive power balance:
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(5)

where K is the set of buses (1, 2, 3, ..., Nk), Ωj
I is the set of DG units at bus

j of the network, Ωj
S the set of external suppliers at bus j, Ωj

B is the set of
BES at bus j, Ωj

V is the set of EVs at bus j, Ωj
L represents the set of loads at

bus j, and Ωj
M is the set of electricity market buyers at bus j. Regarding V(j,t)

represents the voltage magnitude at bus j in the period t (p.u.). G(j,k,t) and
B(j,k,t) represent the real and imaginary part of the line admittance from bus j

to bus k for the period t (Ω−1). QDG
(i,t) (kvar), QSup

(s,t) and QLoad
(l,t) are the reactive

powers of DG unit i for period t (kvar), the reactive power of external supplier
s in period t and the reactive load power l for the period t (kvar).

Voltage magnitude and angle levels:

V min
(j,t) ≤ V(j,t) ≤ V max

(j,t) ∀t,∀j (6)

θmin
(j,t) ≤ θ(j,t) ≤ θmax

(j,t) ∀t,∀j (7)

where V min
(j,t) and V max

(j,t) represent the minimum and maximum limits for the volt-
age magnitude at bus j for the period t (p.u.). The θmin

(j,t) and θmax
(j,t) are the

minimum and maximum voltage phase angles at bus j in period t (rad).

Thermal line limits:
∣
∣
∣
∣
V(j,t)([(V(j,t) − V(k,t))y(j,k,t)]∗+

[V(j,t) · 1
2yShunt j ]∗)

∣
∣
∣
∣ ≤ Smax

(j,k,t)

∀t,∀j, k �= j
(8)
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where y(j,k,t) is the line admittance from bus j to bus k for the period t t (Ω−1),
yShunt j is the shunt admittance of the line connected to bus j t (Ω−1) and
Smax
(j,k,t) is the maximum apparent power flow in the line from bus j to bus k in

period t (kVA).

2.2 Differential Evolution Strategies

DE is a population-based EA for continuous optimization. DE combines solu-
tions from the population using a linear operator. New solutions are generated at
each iteration and evaluated in a given fitness function to optimize a particular
problem. The algorithm retains the solutions with better performance, and solu-
tions with lower fitness values are replaced in the iterative process. The phases
of this method are as follows: first, a solution (target vector) is formed; next, a
donor vector is generated by mutation (by a combination of different solutions
in the population); and last, a trial vector is generated through a recombina-
tion operator between the target vector and the donor vector. The way in which
the donor vector is created can have variations that give rise to different DE
strategies. The reader can consult [15] to get specifics on these DE strategies.

We briefly discuss four well-known DE mutation strategies applied in this
work to address the ERM problem and to apply the automatic configuration
package. The first DE strategy is the DE/rand/1 strategy, where a linear com-
bination of three randomly selected solutions creates the donor vector. In the
second strategy, the DE/target-to-best/1, the base vectors are chosen following
a line formed by the target vector and the best-so-far vector (i.e., the best-so-far
solution found in the iterative process). In the third strategy, the DE/rand/1
with dither, the operator uses a random variation of the scale factor (dither),
which is incorporated in the formulation of the donor vector. Finally, in the
DE/rand/1/either-or, either a three-vector pure mutation method (like standard
DE), with probability pm, or a random recombination technique, with probabil-
ity 1-pm, is used to create the mutant vector.

For a full explanation of the solution encoding used for DE optimization and
the formulations of the different DE strategies, the reader can be directed to
[15].

2.3 Iterated Racing

Figure 1 shows the automatic configuration approach based on iterated racing for
the multiple DE strategies. Initially, irace needs an input scenario that allows
irace to run and evaluate the various configurations based on iterated racing.
The finite number of configurations to start the race is related to the maximum
experiment budget given in the scenario. Additionally, each DE parameter for
irace to configure (i.e., name, type, range) is also set in the scenario, together with
an initial configuration that irace first evaluates and forbidden configurations in
terms of logical expressions between parameters, which irace does not consider.
Each DE strategy is also passed as input to obtain the auto-tuning parameters
for the respective strategy.



50 J. Almeida et al.

Fig. 1. Proposed method for automatic configuration of the multiple DE strategies
using irace.

Irace then calls the target-runner, which is in charge of analyzing
a specific target algorithm configuration (φc) of a particular instance
(Insj(instance, seed)) and returning the appropriate cost value (z(φc, Insj)).
In this case, since we omitted different training instances due to the charac-
teristics of the problem in [15], irace only considers different random seeds as
instances. The target-runner evokes the DE day-ahead ERM optimization prob-
lem (implemented in MATLAB) to obtain the respective mean cost results over
several runs.

After irace finishes the iterative process, it selects the best-performing con-
figurations and the so-called elite configurations (φec) based on the lowest mean
cost values.

3 Case Study

This section describes the case study used to validate the proposed approach. The
case study includes data regarding energy resources and the parameterization
needed for irace to perform auto-tuning.

3.1 33-Bus Distribution Network

The SG consists of a medium voltage 12.66 kV 33-bus distribution network [17]
used to test the multiple DE strategies and automatic tuning of irace. The 33-bus
network scenario includes 1800 EVs with V2G capabilities, 67 DGs (including
a sizable wind turbine), 10 external providers, and 15 BES. In bus 33, external
suppliers are represented as a substation linked to the main grid. Figure 2 shows
the total forecasted load demand comprising 32 residential consumers and the
total forecasted renewable generation (PV and wind) for the day-ahead opti-
mization. Direct Load Control (DLC) contracts as low as 0.02 m.u./kWh are
also considered. Consumers receive this advantage for each lowered energy unit
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Fig. 2. Total forecasted day-ahead load demand and renewable generation.

instead of paying the 0.14 m.u./kWh supply price agreed upon by the aggrega-
tor. The selling price for energy is also fixed at 0.14 m.u./kWh. Additionally, a
fleet of 1800 EVs with V2G capabilities is considered, with a forecast of 13.77
MWh total energy needed for 2553 trips. EV and BES have a discharge cost of
0.19 m.u./kWh. EV and BES have charging/discharging efficiencies set at 70%
and 90%, respectively.

Modeling these EV trips was done using an EV travel behavior simulator
tool suggested in [18]. With the aid of this simulator, we can gather information
about each EV’s trip, including the maximum charge and discharge rates, the
minimal amount of charging necessary for the EV to complete its journey in the
upcoming hour (or hours), as well as many other variables that are used as input
for the optimization.

3.2 Irace Parameterization

The DE algorithm used in this work only needs four different parameters to be
set. Table 1 shows each parameter, where NP is the population size, maxIt is
the maximum number of iterations the algorithm performs, and F and Cr are
the scale factor and crossover probability, respectively. These parameters must
be set and passed to irace, giving the software the type of each parameter (e.g.,
NP and maxIt are integer parameters). It is also needed to set the range of
values for each parameter, i.e., the search space that the irace algorithm uses to
find the best configurations. We set these ranges according to the manual tuning
performed in [15] and also consider the computation effort in the search space.

Irace starts with an initial configuration to be set and tested first; if results are
satisfactory, similar configurations will be generated and tested. Table 1 presents
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Table 1. DE parameters.

Parameter Type Parameter range Initial value

NP i (10,100) 20

maxIt i (1,500) 100

F r (0.00,1.00) 0.30

Cr r (0.00,1.00) 0.50

the values for the initial configuration given to irace, starting from the initial
point considered in the previous work where F , Cr, NP , and maxIt were set to
0.3, 0.5, 20, and 100, respectively. These values did not result from an a priori
tuning. They were just randomly set and given to irace.

Additionally, to be in conformity with [15], we set the maximum number of
function evaluations (FEs) that the algorithm can test to 10,000 (NP ×maxIt ≤
10, 000). We set this restriction as a forbidden configuration to avoid testing com-
binations of NP and maxIt that result in a large number of FEs. Finally, a max-
imum of 300 experiments, which sets the tuning budget, limiting the total num-
ber of executions. This number represents the maximum tuning budget used for
irace, i.e., the number of configurations evaluated for each instance. We noticed
that increasing this value would greatly increase simulation time since more
configurations would need to be tested.

We implement and evaluate the irace package on a Linux virtual machine
running Ubuntu 22.04.1 LTS equipped with an Intel Xeon Gold 5120 processor
operating at 2.20GHz and 16GB of RAM. The irace package used a target-
runner developed in Python 3.6.10, and the DE optimization strategies were
implemented in MATLAB R2018a.

4 Results and Discussion

This section presents the results and the experiments made using irace for the
parameter auto-tuning of the multiple DE strategies. Also, we compare the best-
obtained automatic tuning configurations with those found with the manual
tuning in [15].

4.1 Auto-tuning Experiments

Irace simulations were done for a total of 10 runs and 10,000 function evaluations
(FEs) for each DE optimization in MATLAB. That is, the MATLAB code is run
for 10 trials when it is called by the target-runner in irace.

Concerning the experiment process, Fig. 3 shows the performance of the elite
configurations in each iteration of irace for the DE/rand/1 strategy. The figure
shows the best configurations for ten instances (random seeds) evaluated. The
final best configuration found by irace for this strategy was configuration 24,



Comparing Manual vs Automatic Tuning of Differential Evolution Strategies 53

1 2 3 4 5 6

12 12 18 12 18 24 12 18 24 12 18 24 51 12 18 24 51

−4300

−4250

−4200

−4150

−4100

−4050

Configurations

C
os

t (
m

.u
.)

Iterations

Fig. 3. Elite configuration performance by iteration of irace for DE/rand/1 strategy
(in green the best configuration). (Color figure online)

which presented the lowest mean cost value (-4,215.31 m.u.). Notice that, even
though configuration 51 gives lower values, irace did not obtain cost results for
this configuration in all the ten tested instances (only for 8 of those), which
is why this configuration was not chosen as the best. That is, in two out of
ten evaluated instances, irace did not obtain any cost results (presented NA
results), disregarding this configuration as the best (more robust) for this DE
strategy because the race terminated before the instances were considered for
this configuration. Figure 4 presents the performance of the best elite configura-
tions for the DE/target-to-best/1 strategy, similar to the preceding case. In this
situation, only configuration 49 was considered elite in the final iteration, with
the others being discarded by the statistical test done by irace. This configura-
tion presented a mean cost value of -4,053.93 m.u. for nine seeds, a reduction of
189.08 m.u. compared to configuration 2 (best elite in iteration 4).

Figure 5 shows the iterative process regarding the elite configurations for the
DE/rand/1 with dither mutation strategy. The figure shows that configuration
27 was the best-performing configuration with the lowest mean cost value com-
pared with configurations 9 and 13, which were also elites in the last iteration.
Configuration 27 obtained –4,173.36 m.u., a decrease of 2.78% compared to con-
figuration 13 and 11.38% compared to configuration 9. Similar to the DE/target-
to-best/1, only one elite configuration was obtained with DE/rand/1/either-or
strategy in the last iteration of irace, with the rest being discarded, as Fig. 6
shows. In this strategy, the best-performing configuration was configuration 52
(the last configuration evaluated by irace), with a mean cost value of –4,144.43
for 9 instances.
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strategy (in green the best configuration). (Color figure online)
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Fig. 6. Elite configuration performance by iteration of irace for DE/rand/1/either-or
strategy (in green the best configuration). (Color figure online)

Table 2. Best elite configurations obtained by irace.

Strategy NP maxIt (60k FEs) F Cr

DE/rand/1 37 249 (1,622) 0.28 0.39

DE/target-to-best/1 21 425 (2,857) 0.57 0.10

DE/rand/1 with dither 27 428 (2,222) 0.03 0.25

DE/either-or-algorithm/1 49 181 (1,224) 0.25 0.33

We took the final best elite configurations for each proposed DE mutation
strategy. The parameters of the best elite configurations given by irace are pre-
sented in Table 2.

The DE/rand/1 and DE/either-or-algorithm/1 strategies performed better
for higher values of NP and lower values of maxIt compared to the other two
strategies. Notice that the obtained parameters were found for 10,000 FEs due to
the computational effort, which is a smaller number of FEs than the one used in
[15] for the final result comparison. Thus, for a more realistic comparison of the
final results presented in Sect. 4.2 of [15], we updated the number of iterations
based on the NP parameter to match the 60,000 FEs used to solve the ERM
optimization problem in the cited paper.
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4.2 Manual vs. Automatic Tuning ERM Results

Before starting the comparison with the manual tuning performed in [15], we
take the configuration space tested manually and show where our automatic
tuning lays in those configuration spaces. Figure 7 show heatmaps representing
the performance of configurations tested in [15].
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Fig. 7. Auto-tuning points for F and Cr compared to the manual analysis of DE
strategies. (a) DE/rand/1. (b) DE/target-to-best/1. (c) DE/rand/1 with dither. (d)
DE/rand/1/either-or (in blue, the best F and Cr parameters found with auto-tuning).
(Color figure online)

A darker color represents a better performance of a specific combination of F
and Cr parameters. We then plot the best configuration found with irace auto-
matic tuning as a blue point in that figure. It can be noticed in Fig. 7(a) that
the manual tuning for DE/rand/1 showed good performances for Cr between
[0.3,0.8] and F in the range of [0.3,07], whereas irace obtained values for F
and Cr near that area. In contrast, Fig. 7(b) shows that for the DE/target-to-
best/1 strategy, the F and Cr point acquired by irace does not fall inside the
ranges where the manual tuning showed good fitness results (specifically found
for higher values of F (between 0.7 and 1) and [0.3,0.7] for Cr). Figure 7(c)
shows that, again, the auto-tuning configuration of DE/rand/1 with dither
strategy obtained is within the range of values for F and Cr recommended



Comparing Manual vs Automatic Tuning of Differential Evolution Strategies 57

Table 3. Comparison of each algorithm’s manual and automatic profit and cost results.

Strategy Manual tuning (m.u.) Automatic tuning (m.u.)

Avg. Profits ± std In OC Avg. Profits ± std In OC

DE/rand/1 4,458.99± 20.48 19,939.98 15,480.99 4,705.11± 9.63 19,724.46 15,019.35

DE/target-to-best 4,151.39± 28.46 20,356.94 16,205.55 4,465.51± 13.26 19,699.04 15,233.53

DE/rand/1 with dither 4,610.24± 19.15 19,798.25 15,188.02 4,633.38± 14.78 19,809.28 15,175.91

DE/either-or-algorithm/1 4,746.70± 6.46 19,624.75 14,878.05 4,307.64± 42.00 19,001.98 14,694.34

by the manual tuning. Finally, similarly to what occurred with the DE/target-
to-best/1 strategy, Fig. 7(d) shows an automatic tuning configuration for the
DE/rand/1/either-or strategy a bit out of the recommended ranges of the man-
ual tuning. Note that in the manual tuning, the NP and maxIt parameters were
fixed values, but in irace, these parameters are optimized together with F and
Cr, so these figures do not ideally represent the performance of irace since the
other parameters also need to be taken into account.

Comparing the manual tuning of the DE strategies for the NP parameter
to the automatic configuration, the manual tuning obtained the best results
for a NP value of 30 in all strategies. In contrast, the automatic configuration
obtained more specific values for each strategy, as shown previously, and the
number of iterations was uploaded accordingly to the maximum number of FEs.
Table 3 gives the average profit results (Eq. (3)) obtained with the best manual
configuration found in [15] and the automatic configuration found using irace.
50 trials were done using the best automatic configurations found (remember
that 60,000 FEs were considered for a fair comparison). The table shows that
the automatic configuration for each DE strategy showed better results, except
for the DE/either-or-algorithm/1, where a decrease of 9.25% compared to the
manual configuration was registered. Regarding the average optimization time,
the automatic tuning was faster in all strategies. The running time for the manual
tuning took around 60 min in all algorithms, while the automatic tuning took
about 40 min.

The decrease in performance for the automatic tuning of the DE/either-or-
algorithm/1 strategy is justified by the low incomes obtained, shown in Table 3,
compared to the manual configuration. The parameters provided by irace for
DE/rand/1 showed an increase in profits of 246.12 m.u. in the ERM optimization
compared to the original work. This improvement is given mostly by a decrease in
operational costs of 2.98% compared to the costs obtained by the manual config-
uration (Table 3). Concerning the DE/target-to-best/1 strategy, the automatic
configuration found a solution that increases the profits by 314.12 m.u. com-
pared to the manual configuration. This increase is accomplished by the reduc-
tion in operational costs of 972.02 m.u., even though the auto-tuned obtained
less income (657.90 m.u.) compared to the manual tuning, evidenced in Table 3.
Regarding the DE/rand/1 with dither mutation strategy, the auto-tuning pro-
vided a slightly better solution, with the incomes and operational costs being
similar.
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5 Conclusions

In this work, we proposed automatically tuning multiple parameters for diverse
DE mutation strategies using irace. Irace is a software package that utilizes
iterated racing for automatic configuration evaluations. We compared the results
obtained with the auto-tuning with those obtained using a manual configuration
in a centralized day-ahead ERM optimization problem.

Results showed that the parameters obtained in the automatic configuration
found better optimization solutions for all proposed DE strategies except for
DE/either-or-algorithm/1. The decrease in performance for this strategy (worse
profit results) can be justified by the number of maximum experiments estab-
lished in the setting of the irace software. An increase in this specific parameter
would allow irace to test more configurations, allowing it to test and find better
configurations with this strategy (and with the rest of the tested strategies).
However, increasing this parameter would also increase execution time as more
optimization trials would be required. This is important to recall since automatic
tuning is intended to be a more efficient method to configure our algorithms;
thus, performing an adequate number of tests is key to achieving such efficiency.
Still, the automatic tuning was insufficient to find a better configuration than
the one found with the manual tuning for the DE/either-or-algorithm/1. Nev-
ertheless, the automatic tuning found an acceptable solution with DE/rand/1
strategy, a solution that is just 0.88% worse than the best solution found with the
manual tuning configuration. These results show that despite the advantages of
automatic tuning, there is still room for improvement when using such methods.

As interesting venues for future research, new tests could be implemented
with an increase in the maximum tuning budget, increasing the number of eval-
uated configurations, and increasing the computational time. Also, we could
explore the efficiency of the method when initial configurations for each strategy,
based, for example, on the best configuration found with the manual tuning, are
provided as starting points. Additionally, more instances of the problem with
modified characteristics would be required to validate the algorithms’ perfor-
mance and guarantee a more general algorithm parameterization.
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