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Abstract. Maintenance activities are crucial in manufacturing environments to
reduce machine breakdowns and maintain product quality. However, traditional
maintenance strategies can be expensive, as they can lead to unnecessary mainte-
nance activities. As a result, Predictive Maintenance (PdM) can be a great way to
solve these issues, as it enables the prediction of a machine’s condition/lifespan
allowing for maintenance-effective manufacturing. This paper aims to address
these issues by proposing a novel methodology to improve the performance of
PdM systems, by proposing a machine learning training methodology, an auto-
matic hyperparameter optimizer, and a retraining strategy for real-time application.
To validate the proposed methodology a random forest and an artificial neural
network model are implemented as well as explored. A synthetic dataset, that
replicates industrial machine data, was used to show the robustness of the pro-
posed methodology. Obtained results are promising as the implemented models
can accomplish up to 0.97 recall and 93.15% accuracy.

Keywords: Data Preprocessing - Hyperparameter Optimization - Predictive
Maintenance

1 Introduction

Several changes have been happening in the energy sector, namely with the imple-
mentation of the smart grid concept [1], having more active participation of electricity
consumers in demand response programs [2, 3]. Booming innovation in Big data, data
analytics, and Internet of Things (IoT) has resulted in a shift in traditional industrial
maintenance strategies to systems capable of forecasting machine lifespan [4, 5]. Fur-
thermore, taking into account energy usage is also critical for optimizing production
lines in industrial environments, because machine health can have a significant impact
on a machine’s energy efficiency capabilities [6, 7]. Accordingly, it is in these industries’
best interests to implement these systems to minimize energy consumption, reducing not
only costs but also contributing to a sustainable future through energy savings. There has
been the development of two new maintenance concepts for detecting abnormalities in
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the production environment: prognostic and health management, as well as condition-
based maintenance [8]. Predictive Maintenance (PdM), which analyzes past data to
forecast behavior patterns, is frequently used with these two principles in mind, either
with prognosis and health management or condition-based maintenance, and in some
circumstances, the application of both [9]. The use of predictive systems to determine
when maintenance activities are required is critical in a manufacturing environment, not
only to avoid wasteful expenses and cut potential Greenhouse gas emissions but also to
enhance product quality. According to [10], maintenance expenses can represent 15%
to 70% of the cost of manufactured products. Predictive maintenance enables continu-
ous monitoring of the machine’s integrity, allowing maintenance to be performed only
when absolutely needed, reducing unnecessary maintenance costs. Moreover, PdM pre-
vents, to some extent, machine breakdowns, which are responsible for the emission of
Greenhouse gas emissions in some industrial sectors [11]. Prediction systems that use
statistical inference, historical data, engineering methods, and integrity factors allow for
early abnormalities detection [12]. Forecasting a machine’s condition and/or lifespan
can be done through a variety of techniques, such as Artificial Neural Networks (ANNs)
[13-15], Random Forests (RFs) [16-18], deep learning [19], digital twins [20], sup-
port vector machines [21], k-means [22], gradient boosting [23], naive bayes [24], and
decision trees [25]. Other noteworthy techniques are presented in [12] as well as in [26].

This paper focuses on the implementation as well as the exploration of the advantages
and disadvantages of the two most popular machine learning approaches, according to
[12], for PAM: ANNs (27% model employment) and RFs (33% model employment). The
prominent use of RF in PdM systems, due to its performance and easy implementation,
is the main reason for the exploration of this model in the present paper. Nevertheless, an
ANN model has the potential to outperform an RF, both in recall and context adaption,
when its hyperparameters are adequately optimized. Furthermore, unlike the RF model,
ANNS s have the advantage of backpropagation (i.e., fine-tuning of the network’s weights
based on the error rate), allowing a current model to be constantly fed with data and
improve over time without the need to recreate the model every time there is new training
data, which is ideal for manufacturing environments.

The work in [13] proposes an ANN for PdM using the mean time to failure values
and backpropagation for adjusting the neuron’s weights. A PdM system for air booster
compressor motors is proposed in [14] that employs an ANN with optimized weights
and bias by using a particle swarm optimization algorithm. Also using an ANN, the
proposed work in [15] focuses on a PdAM system for induction motors that optimizes
hyperparameters (e.g., number of hidden layers and neurons) to improve performance
in the model. For RF, the work in [16] proposes a real-time PdM system for production
lines using IoT data. A new PdM methodology, using REF, is proposed in [17] to allow
dynamic decision rules to be imposed for maintenance management. A data-driven PAM
system applied to woodworking is proposed in [18] using an RF that takes advantage of
event-based triggers.

Of the above-cited works, none tackle, to the extent of the present paper, the main
problem plaguing PdM problems, imbalanced data. Furthermore, with the exception of
the works in [14] and [15], there is little to no optimization regarding hyperparameters,
which can improve model performance significantly primarily in imbalanced datasets.
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Finally, only the work in [16] considers real-time deployment and only the work in [13]
takes advantage of the backpropagation feature for retraining. As such, the premise of
this paper is to contribute to the progression of the current state-of-art by proposing:

e An innovative machine learning training approach for PdM that aims to improve
model performance while also taking into account imbalanced and irrele-
vant/erroneous data.

e An automatic hyperparameter optimization strategy, used to determine the optimal
hyperparameters for the ANN and RF, hence enhancing the models’ performance
even further.

e The application in real-time of both implemented models, by taking into account
model retraining and user application.

This paper structure is divided into five sections. After this introductory and state-of-
art section, Sect. 2 describes the training and testing dataset used to validate the proposed
methodology. Section 3 describes the proposed methodology for PAM on an ANN and
RF, while Sect. 4 presents the obtained results of the implemented models, as well as a
discussion regarding such a topic. The conclusions are presented in Sect. 5.

2 Training/Testing Dataset

The PdM dataset used for training and testing of the proposed methodology was made
available from the University of California in Irvine, Machine Learning Repository [27].

The PdM dataset from 2020, labeled “AI4I 2020 Predictive Maintenance Dataset
Data Set,” is freely accessible in [28]. The synthetic dataset has 10,000 data points
where 339 represent failures and 9661 non-failures data points (i.e., a ratio of 1:28), as
presented in Fig. 1. The machine data is the following:

e Air temperature—defines the exterior temperature of the machine, in Kelvin (K);

e Process temperature — defines the temperature produced within the machine, in
Kelvin (K);

e Rotational speed—defines the rotational speed of the tools inside the machine, in
Revolutions per minute (rpm);

e Torque—defines the force required to rotate the machine’s tools, in Newton-meters
(Nm);

e Tool wear—defines the amount of deterioration of the tools inside the machine, in
minutes until breakdown (min);

e Machine failure—defines a machine failure status by assuming the value O for non-
failure and 1 for failure.

The correlation heatmap between the used dataset features is described in Fig. 2.

It demonstrates that there is a medium positive correlation between machine failure
and the features torque (0.190 positive correlation) and tool wear (0.110 positive cor-
relation). On the other hand, the lowest correlation found to machine failure was the
rotational speed (0.044 negative correlation) and process temperature (0.036 positive
correlation).
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Fig. 1. Machine failure status bar chart of the used dataset.
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Fig. 2. Correlation heatmap between the used dataset features.

3 Proposed Methodology

Two machine learning models, an ANN and an RF model, are implemented and explored
for PAM. In the proposed methodology, training of the implemented models can be done
in batches, mini-batches, or continuous data streaming. Before real-time training, an
initial model is constructed through a dataset, and only then, the training process is
carried out in real-time via data streaming or mini-batches.

The initial model for the ANN or RF is constructed using:

The dataset described in Sect. 2;

The Holdout method, 80% for training and 20% for testing;

A Min-Max approach for data normalization;

A newly added dataset feature, machine temperature difference (i.e., process tem-
perature — air temperature), replaces the process and air temperature features. It
focuses on improving model performance, by reducing the number of inputs for less
complexity and better correlation between temperature and machine failure;

e A data balancing method, 5% oversampling on failure data and a majority undersam-
pling strategy on non-failure data. To achieve this, the imbalanced-learn [29] library
was used;
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e A 5-fold cross-validation splitting strategy to search for the best hyperparameters.

It is worth mentioning that, the Holdout method and the 5-fold cross-validation
splitting strategy described above were employed as safe measures to prevent overfitting
of the models.

The proposed methodology for real-time training begins by obtaining the most recent
machine data, described in Sect. 2, from machine databases in the facility. Afterward,
prior to training, a data preprocessing phase is employed, which can be divided into six
sequential subphases:

1. Data aggregator—combines all acquired data into a single data file;

2. Datanormalization—standardizes data units and types between machines, using a Min-
Max technique with the MinMaxScaler method [30] from the Scikit-Learn library
[31];

3. Data imputation—fills missing values on the obtained data, through a k-Nearest Neigh-
bors imputation approach with the KNNImputer method [32] from the Scikit-Learn
library;

4. Data filtering—removes any potentially incorrect or irrelevant data, by detecting out-
liers using the Z-score with the SciPy stats Z-score method [33] from the SciPy library
[34];

5. Dataengineering—creates or removes features to better depict the underlying problem;

6. Data balancing—balances machine data failure and non-failure points, with the
imbalanced-learn library [29].

Then, the preprocessed data is used to train the machine learning models (i.e., ANN
or RF), wherein the ANN neuron weights are adjusted due to the back-propagation
feature, or, in the case of the RF, the model has to be reconstructed from the start using
the new and past data.

The methodology for real-time application of the implemented machine learning
models in a machine can be divided into three phases:

1. Data acquisition—obtains the necessary machine data from the machine to be
inspected;

2. Data preprocessing—applies data normalization, imputation, filtering, and engineering
on the obtained data;

3. Machine failure status prediction—uses one of the models, designated by the user, to
predict the machine failure status (O for non-failure and 1 for failure).

3.1 Artificial Neural Network Training

The ANN was trained using an automatic hyperparameter optimizer, which focuses
on finding the optimal hyperparameter values to obtain a high-performing model. This
is achieved by using the GridSearchCV [35] method available from the Scikit-Learn
library. The automatic hyperparameter optimizer works by exploring each hyperparam-
eter’s possible values, at random, in order to find a high-performing ANN model, which
contains the optimal values for each hyperparameter. Table 1 presents the possible and
found optimal hyperparameter values for the ANN model. However, some hyperpa-
rameters were predefined, as there was no need to find the optimal value, such as the
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loss function, defined with binary cross-entropy function, metrics with binary accuracy,
the number of input neurons as 4 (temperature difference, rotational speed, torque, tool
wear), the number of output neurons as 1 (machine failure), the output layer activation
function defined with a sigmoid function, and a normal weight initialization in the hidden

layers.

For the ANN classifier, the KerasClassifier [36] from the Keras [37] library was
used. It operates through rules created during the training phase to achieve the lowest
possible accuracy error in contrast to the training classes. The model is ready to generate
predictions once it has been properly fitted using training data.

Table 1. Artificial neural network hyperparameters possible and optimal values.

Hyperparameter Possible Values Optimal Value
Batch Size 10, 20, 40, 60, 80, 100, 200, 500, | 5000
1000, 2000, or 5000
Dropout Regularization on Hidden | 0%, 5%, 10%, 20%, 30%, 35%, |35%
Layers 40%, 50%, 60%, 70%, 80%, or
90%
Dropout Regularization on Input 0%, 5%, 10%, 20%, 30%, 40%, | 0%
Layer 50%, 60%, 70%, 80%, or 90%
Epochs 10, 50, 100, 150, 200, 300, 500, | 5000
1000, 2000, 5000, 8000, or 10000
Neuron Activation Function Hard Sigmoid, Linear, Relu, Relu

Sigmoid, Softmax, Softplus,
Softsign, or Tanh

Hidden Layers Neuron 1 to 4 layers 25 neurons in layer 1
Composition 5, 10, 15, 20, 25, or 30 neurons 20 neurons in layer 2
per layer 15 neurons in layer 3
15 neurons in layer 4

Optimizer Adadelta, Adagrad, Adam, Nadam

Adamax, Nadam, RMSprop, or
SGD

Weight Initialization in Input Layer

Glorot Normal, Glorot Uniform,
He Normal, He Uniform, Lecum
Uniform, Normal, Uniform, or
Zero

Glorot Uniform

3.2 Random Forest Training

The RF was also trained using an automatic hyperparameter optimizer, aiming to find a
robust RF model. This is accomplished through the RandomizedSearchCV [38] method.
This method focuses on determining the optimal estimator to employ in the model by
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selecting one of the possible values for each hyperparameter at random and then assessing
each estimator based on their accuracy scores. Each hyperparameter’s possible values
and optimal value for the RF model are shown in Table 2. The RandomForestClassifier

[39] was used as the RF classifier.

Table 2. Random forest hyperparameters possible and optimal values.

Hyperparameter Possible Values Optimal Value
Bootstrap Sample True or False True

Criterion Function Gini or Entropy Gini

Max Depth 10 to 32 10

Max Features Auto, Sqrt, or Log2 Log2

Min Samples Leaf 1,2,4,6,8, or 10 1

Min Samples Split 2,5, 10, 20, or 30 2

Tree Amount 200 to 3000 511

4 Results and Discussion

Four metrics were used to validate the performance of the proposed machine learning
models: recall, precision, fl-score, and accuracy. It is worth noting that, since PAM
problems commonly have very imbalanced datasets that have a low number of failure
data points, the recall metric was considered to be the most relevant performance metric
to validate the proposed methodology. The ANN performance metrics using the optimal
hyperparameters found in Table 1 and the performance of the RF model using the optimal
hyperparameters in Table 2 are shown in Table 3.

Table 3. Performance metrics of the proposed machine learning models using their respective
optimal hyperparameters.

Machine Learning Model Recall Precision F1-score Accuracy
Artificial Neural Network 0.97 0.15 0.27 83.65%
Random Forest 0.95 0.30 0.46 93.15%

According to the results presented in Table 3, each model has its own benefits and
drawbacks, with the ANN being slightly better at predicting when there is about to be
a machine breakdown, since it has the highest recall, and the RF excelling at lowering
the number of false alarms (i.e., false positives), because of having the highest precision
and accuracy scores. As a result, on one hand, if maintenance costs are inexpensive and
undetected machine breakdowns can lead to dire consequences, the ANN is the preferred
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model to be employed. On the other hand, the RF model is better at reducing the number
of false alarms, which reduces unnecessary maintenance activities when compared to the
ANN. Nevertheless, both models have good accuracy scores, mainly the Random Forest
model with 93.15%, for this type of problem, where imbalanced predictive maintenance
datasets are common and negatively affect accuracy scores. Table 4 presents the ANN and
RF confusion matrixes. It is noteworthy that there is a big trade-off between true positives
and false positives between the two models, with the RF only having 1 more unsuccessful
machine failure prediction but having 191 fewer false alarms than the ANN. Therefore,
in general, even though the recall was considered to be the most relevant metric, the RF
model has the best performance overall, since it does not fall behind too much on recall
and all other metrics are much better than in the ANN model. It is worth mentioning
that another work [40] utilized the same dataset as the current paper to justify the usage
of a bagged trees ensemble classifier. However, cited work did not split the dataset for
training and testing, resulting in an overfitted model and inflated results, because of this,
no comparison was made to this work. Despite the fact that the cited work inflated their
obtained results, it achieved a recall score of only 0.71, lower than the present paper’s
ANN model with a recall of 0.97 and RF with 0.95.

Table 4. Artificial neural network and random forest confusion matrix.

Predicted Actual
Failure Non-failure
Artificial Neural Network Failure 59 325
Non-failure 2 1614
Random Forest Failure 58 134
Non-failure 3 1805

5 Conclusion

To further reduce costs and improve product quality, the manufacturing industry has
been investing in PdM strategies to cut down on unnecessary maintenance costs, as PAM
systems are capable of predicting machine condition/lifespan allowing for maintenance-
effective manufacturing.

The proposed methodology aims to improve performance in machine learning mod-
els for PAM problems by proposing a novel training methodology, an automatic hyper-
parameter optimization strategy, and a new retraining method. To achieve this, an ANN
and RF models are implemented and explored. A synthetic dataset for PdM, containing
imbalanced data, is presented to validate the proposed methodology.

The obtained results show the robustness of the proposed methodology, with the
ANN model accomplishing a recall of 0.97, a precision of 0.15, an fl-score of 0.27,
and an accuracy of 83.65%. The RF model was able to excel even further by achieving
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a lower recall of 0.95, but having a much better precision of 0.30, an f1-score of 0.46,
and an accuracy of 93.15%. In general, the RF model has better performance overall,
nevertheless, it is clear that the ANN is slightly better at reducing true positives while
the RF reduces false positives.

Future work will address the use of real-world data instead of a synthetic dataset,
allowing to better evaluate the effectiveness of the proposed methodology in practical
manufacturing environments. In addition model interpretability, through eXplainable
Artificial Intelligence (XAI), will also be explored for the proposed ANN and RF models,
in order to improve confidence in PAM systems.
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