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Preface

The Energy Informatics.Academy Conference 2023 (EI.A 2023) collected great con-
tributions from researchers and practitioners in various scientific, technological, engi-
neering, and social fields to disseminate original research on the application of digital
technology and information management theory and practice to facilitate the global
transition towards sustainable and resilient energy systems.

With the whole technical program committee’s effort, in total thirty-nine (39) high-
quality papers (including full papers and short papers) and three (3) abstract papers were
accepted and presented at the conference.

These 42 papers covered the following eight themes, elucidating the breadth and
depth of research and development in the energy sector and its convergence with digital
technologies:

• AI Methods in Energy
• Data-Driven Smart Buildings
• Energy and Industry 4.0
• Energy and Smart Cities
• Energy Forecasting
• Smart Electricity System
• Smart Energy Device Management
• Smart Heating and Cooling System

Each theme brought forward a wealth of knowledge and novel ideas that promise
to shape the future trajectory of energy systems and their integration into digitalization.
From exploring innovative technologies and methodologies to discussing practical chal-
lenges and future perspectives, the papers enriched the conference’s discourse, offering
attendees a comprehensive overview of the latest in the field. Consequently, the con-
ference became a fertile ground for exchanging ideas, fostering collaborations, and
catalyzing future advancements in the energy sector.

Furthermore, eight keynote speeches provided deep insights and diverse perspectives
into the evolving realm of energy and technology:

• “Energy transition inBrazil”, byLuizCarlos Pereira daSilva,University ofCampinas,
Brazil

• “Artificial Intelligence Applied in the Electricity Sector as a Strategic Investment
Theme in the Research, Development and Innovation Program of ANEEL” by Paulo
Luciano de Carvalho, Brazilian Electricity Regulatory Agency, Brazil

• “ExplainableAI for energy and smart grids: fromconcepts to real-world applications”,
by Zita A. Vale, Polytechnic of Porto, Portugal

• “Hierarchies of Controllers for the Future Weather-Driven Smart Energy System”,
by Henrik Madsen, Technical University of Denmark

• “The importance of supervising energy consumption and production”, by Marcelo
Stehling de Castro, Federal University of Goiás, Brazil
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• “Application of Data Analytics to Electrical Energy Systems”, by Walmir Freitas,
University of Campinas, Brazil

• “Energy &Digital Agroindustry”, by Barbara Teruel, University of Campinas, Brazil
• “Energy Informatics Educational Design”, by Bo Nørregaard Jørgensen, University

of Southern Denmark, Denmark

Each speaker, with their expertise in various facets of energy systems and technol-
ogy, enriched the dialogue, fostering a multi-dimensional discussion on the challenges,
solutions, and future pathways in the energy sector. Engaging Q&A sessions followed
the speeches, further elaborating on the pertinent themes and facilitating an exchange of
ideas among the participants and speakers alike.

December 2023 Bo Nørregaard Jørgensen
Luiz Carlos Pereira da Silva

Zheng Ma
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Managing Anomalies in Energy Time
Series for Automated Forecasting

Marian Turowski(B) , Oliver Neumann , Lisa Mannsperger, Kristof Kraus,
Kira Layer, Ralf Mikut , and Veit Hagenmeyer

Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

marian.turowski@kit.edu

Abstract. The increasing number of recorded energy time series enables
the automated operation of smart grid applications such as load analy-
sis, load forecasting, and load management. However, to perform well,
these applications usually require clean data that well represents the
typical behavior of the underlying system. Unfortunately, recorded time
series often contain anomalies that do not reflect the typical behavior of
the system and are, thus, problematic for automated smart grid appli-
cations such as automated forecasting. While various anomaly manage-
ment strategies exist, a rigorous comparison is lacking. Therefore, in the
present paper, we introduce and compare three different general strate-
gies for managing anomalies in energy time series forecasting, namely the
raw, the detection, and the compensation strategy. We compare these
strategies using a representative selection of forecasting methods and
real-world data with inserted synthetic anomalies. The comparison shows
that applying the compensation strategy is generally beneficial for man-
aging anomalies despite requiring additional computational costs because
it mostly outperforms the detection and the raw strategy when the input
data contains anomalies.

Keywords: Anomalies · Anomaly management · Forecasting · Energy
time series

1 Introduction

Since energy systems around the world transition to an increasing share of renew-
able energy sources in energy supply, the implementation of smart grids support-
ing this transition also advances. Smart grid implementation implies a growing
number of smart meters that record power or energy consumption and genera-
tion as time series [4]. These recorded energy time series are characterized by
a multi-seasonality, an aggregation-level dependent predictability, and a depen-
dence on exogenous influences such as weather [16]. The increasing number of
recorded energy time series enables a wide range of possible applications for this
data and the goal of their automated operation. Exemplary applications for the
smart grid that support the transition to renewable energy sources include cus-
tomer profiling, load analysis, load forecasting, and load management [39,47].
c© The Author(s) 2024
B. N. Jørgensen et al. (Eds.): EI.A 2023, LNCS 14467, pp. 3–29, 2024.
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However, to perform well, these applications usually require clean data that
represents the typical behavior of the underlying system well [30,47].

Unfortunately, recorded time series are usually not clean, but contain anoma-
lies [13]. Anomalies are patterns that deviate from what is considered normal [10].
They can occur in energy time series for many reasons, including smart meter
failures [46], unusual consumption [32,40], and energy theft [24]. All anomalies
have in common that they potentially contain data points or patterns that repre-
sent false or misleading information, which can be problematic for any analysis of
this data performed by the mentioned applications [47]. For example, anomalies
such as positive or negative spikes may strongly deviate from what is considered
normal, and a subsequent forecasting method that uses the data as input in an
automated manner may generate an incorrect forecast. This forecast could in
turn lead to an inappropriate energy schedule and ultimately affect the stability
of the energy system in an automated smart grid setting.

Therefore, managing anomalies in energy time series – in the sense of dealing
with their presence – is an important issue for applications in the energy system
such as billing and forecasting [47]. In energy time series forecasting, the impor-
tance of an adequate anomaly management is generally known, e.g. [2,3,36]. For
this reason, various anomaly management strategies exist, including the use of
robust forecasting methods [23,28], the use of information on detected anoma-
lies [43], and the compensation of detected anomalies [9,14,37,50]. However, it is
not clear which strategy is the best for managing anomalies in energy time series
forecasting regarding the obtained accuracy and also the associated necessary
effort, which is why a rigorous comparison of available strategies is needed.

Therefore, the present paper introduces and compares different general
strategies for managing anomalies in energy time series forecasting. For this
purpose, we build on the typically used strategies mentioned above and describe
three different general strategies based on them, namely the raw, the detec-
tion, and the compensation strategy. While the raw strategy applies forecasting
methods directly to the data input without any changes, the detection strategy
provides information on anomalies detected in the input data to the forecast-
ing method. The compensation strategy cleans the input data by detecting and
thereafter compensating anomalies in the input data before applying a forecast-
ing method.

To comparatively evaluate these strategies, we use a representative selection
of forecasting methods, including naive, simple statistical, statistical learning,
and machine learning methods. We also make use of real-world energy time
series with inserted synthetic anomalies derived from real-world data. Given
these forecasting methods and data, we compare the obtained forecast accuracy
of all proposed strategies and present an example of how these strategies work
and perform.

The remainder of the present paper is structured as follows: After describing
related work in Sect. 2, Sect. 3 introduces the strategies for managing anomalies
in energy time series forecasting. In Sect. 4, we evaluate the presented strategies.
Finally, we discuss the results and the strategies in Sect. 5 and conclude the
paper in Sect. 6.
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2 Related Work

Since anomalies are potentially limiting the performance of any downstream
application, dealing with their presence is generally a well-known topic. For
example, all kinds of pre-processing methods aim to raise data quality to ensure
the validity and reliability of data analysis results, e.g. [5,19,37]. Similarly, the
influence of the choice of preprocessing methods on the accuracy of forecasting
methods is also known, e.g. [1,3]. In energy time series forecasting, several works
also address how to deal with the presence of anomalies. We organize these works
along three strategies.

Works of the first strategy focus on the robustness of forecasting methods.
These works, for example, develop forecasting methods that are robust against
anomalies, e.g. [23,28,29,51,53], strengthen existing forecasting methods, e.g.
[54], or at least investigate the robustness of forecasting methods with respect to
anomalous data, e.g. [27,52]. The second strategy consists of works that make use
of information on detected anomalies. In [43], for example, the information on
predicted anomalies is used to adapt the energy production. Works of the third
strategy detect anomalies and replace the detected anomalies with appropriate
values, e.g. [9,14,30,33], or even remove the detected anomalies, e.g. [11].

Despite these works on specific anomaly management strategies, it is not
known which strategy is the best for managing anomalies in energy time series
forecasting. For this reason, a rigorous comparison of the available strategies –
as done in the present paper – is lacking.

3 Strategies for Managing Anomalies in Energy Time
Series Forecasting

In this section, we present three general strategies for managing anomalies in
energy time series forecasting, which build on the previously described anomaly
management strategies in literature.1 All of these strategies apply a forecasting
method f(◦) to create a forecast for an input power time series y = {yt}t∈T

with T measured values. This forecasting method creates a forecast based on
historical values of the input power time series and exogenous features e such
as calendar information or weather forecasts. More specifically, the forecasting
method combines the most recent N historical values of the input power time
series yt = yt−(N−1), . . . , yt with the exogenous features et+H = et+1, . . . et+H

for the forecasting horizon H. Using this combination, the forecasting method
then generates a forecast at time point t

ŷt+H = f(yt, et+H), (1)

where ŷt+H = ŷt+1, . . . ŷt+H is the forecast value for the input power time series
for each time step in the forecast horizon. Nevertheless, the considered strategies
1 The implementation of the proposed and evaluated strategies is available at https://

github.com/KIT-IAI/ManagingAnomaliesInTimeSeriesForecasting.

https://github.com/KIT-IAI/ManagingAnomaliesInTimeSeriesForecasting
https://github.com/KIT-IAI/ManagingAnomaliesInTimeSeriesForecasting
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comprise different steps and thus differ in the inputs to the applied forecasting
method (see Fig. 1). We thus describe the included steps, the used input, and
the underlying assumptions for each strategy in the following.

Input power
time series con-
taining anomalies

Anomaly
detection

Power time series
with detected
anomalies

Anomaly
compensation

Power time series
with compensated
detected anomalies

Forecast

Forecast of power
time series

Anomaly
detection

ForecastForecast

Raw
strategy

Detection
strategy

Compensation
strategy

Fig. 1. The three strategies for managing anomalies in energy time series forecast-
ing. The raw strategy directly uses the input power time series to create a forecast.
The detection strategy first detects anomalies in the input power time series, before
providing a forecast using the information on the detected anomalies from the power
time series with detected anomalies. The compensation strategy detects anomalies and
additionally compensates the detected anomalies before performing a forecast based
on the power time series with compensated detected anomalies.

Raw Strategy. The first strategy is the so-called raw strategy. It directly uses a
power time series containing anomalies as input to a forecasting method. Given
this input, the applied forecasting method provides a forecast of the input power
time series. Formally, the raw strategy thus creates a forecast at time point t

ŷraw
t+H = f(yt, et+H), (2)
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where yt are the historical values of the input power time series containing
anomalies and H, et+H , and ŷt+H are defined as above.

The raw strategy assumes that the anomalies contained in the input time
series do not strongly affect the forecast of the applied forecasting method or
that the applied forecasting method is robust against anomalies. Therefore, the
applied forecasting method is assumed to still achieve an accurate forecast.

Detection Strategy. The second strategy is the so-called detection strategy. This
strategy first applies an anomaly detection method to the power time series con-
taining anomalies to detect contained anomalies whereby the anomaly detection
method can be supervised or unsupervised. The resulting power time series with
detected anomalies serves as input to the forecasting method that then provides
the forecast of the power time series. Formally, the detection strategy, therefore,
results in a forecast at time point t

ŷdetection
t+H = f(yt,dt+H , et+H), (3)

where dt+H = dt+1, . . . dt+H are the labels of the detected anomalies for the
forecasting horizon H and yt, et+H , and ŷt+H are defined as above.

The assumption of the detection strategy is that the applied forecasting
method can incorporate information about detected anomalies in its model so
that the consideration of detected anomalies leads to an accurate forecast.

Compensation Strategy. The third strategy is the so-called compensation strat-
egy. It also first applies a supervised or unsupervised anomaly detection method
to the power time series containing anomalies to identify the contained anoma-
lies. However, this strategy then uses the power time series with detected anoma-
lies as input to an anomaly compensation method c(◦) that replaces the detected
anomalies with realistic values, i.e.,

ỹt+H = c(yt,dt+H , ◦), (4)

where ỹt+H is the power time series with compensated detected anomalies and
◦ are additional parameters of the compensation method. This power time series
with compensated detected anomalies ỹt+H serves as input to the forecasting
method that provides the forecast of the power time series. Formally, we describe
the forecast of the compensation strategy at time point t with

ŷcompensation
t+H = f(ỹt, et+H), (5)

where ỹt are the historical values of the input power time series with compen-
sated detected anomalies and H, et+H , and ŷt+H are defined as above.

The compensation strategy assumes that anomalies have to be detected and
compensated in order to enable the applied forecasting method to provide an
accurate forecast.

4 Evaluation

To evaluate the proposed strategies for managing anomalies in energy time series
forecasting, we compare the forecasting accuracy of all strategies using different
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forecasting methods. Before presenting the results, we detail the performed eval-
uation: We introduce the used data and the inserted synthetic anomalies, the
anomaly detection methods applied in the detection and compensation strate-
gies, and the anomaly compensation method applied in the compensation strat-
egy. We also describe the used forecasting methods and the experimental setting.

4.1 Data and Inserted Synthetic Anomalies

For the evaluation, we use real-world data in which we insert synthetic anomalies.
The chosen data set is the “ElectricityLoadDiagrams20112014 Data Set”2 from
the UCI Machine Learning Repository [18]. It includes electrical power time
series from 370 clients with different consumption patterns [38]. The 370 time
series are available in a quarter-hourly resolution for a period of up to four years,
namely from the beginning of 2011 until the end of 2014. We choose the power
time series MT 200 for the evaluation to cover the entire four-year period, to
account for the electrical load of a typical client, and to consider a time series
that is anomaly-free compared to other time series in the data set (see Fig. 2).

Fig. 2. Overview of the data used for the evaluation.

Since the chosen time series does not include labeled anomalies and thus do
not allow for controlled experimental conditions, we insert synthetic anomalies
in the complete chosen time series. For this, we consider the two anomaly groups
used in [44], namely technical faults in the metering infrastructure and unusual
consumption. Using the corresponding available anomaly generation method3,
we insert four types of anomalies from each group: Anomalies of types 1 to 4 are
from the group of technical faults and based on anomalies identified in real-world
power time series in [45]. These anomalies violate the underlying distribution
corresponding to normal behavior. Anomalies of types 5 to 8 are from the group
of unusual consumption and represent unusual behavior as described in [44].
These anomalies are characterized by unusually low or high power consumption.
We give formulas and examples for all types of anomalies in Appendix 1.

2 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.
3 https://github.com/KIT-IAI/EnhancingAnomalyDetectionMethods.

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/KIT-IAI/EnhancingAnomalyDetectionMethods
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For the evaluation, we insert once 20 anomalies of types 1 to 4 each from
the group of technical faults and once 20 anomalies of types 5 to 8 each from
the group of unusual consumption into the selected time series. We insert 20
anomalies per type to consider a reasonable number of anomalies and we insert
all four types of anomalies from a group at once to consider their simultaneous
occurrence [44,45]. The inserted anomalies correspond to 5% of the data for the
technical faults and 11% of the data for the unusual consumption.

4.2 Applied Anomaly Detection Methods

For the evaluation of the detection and compensation strategies, we choose
anomaly detection methods based on the evaluation results in [44], where a vari-
ety of anomaly detection methods is already evaluated on the selected data. More
specifically, we choose the method from the evaluated supervised and unsuper-
vised anomaly detection methods that overall performs best for the considered
groups of anomalies. For both groups of anomalies, the best-performing method
is an unsupervised anomaly detection method, namely the Variational Autoen-
coder (VAE) for the technical faults and the Local Outlier Factor (LOF) for
the unusual consumption. We briefly introduce both chosen anomaly detection
methods, before we describe their application.

The Variational Autoencoder (VAE) learns to map its input to its output
using the probability distribution of ideally anomaly-free data in the latent space,
so it is trained to only reconstruct non-anomalous data [26]. The Local Outlier
Factor (LOF) estimates the local density of a sample by the distance to its
k-nearest neighbors and uses low local densities compared to its neighbors to
determine anomalies [8].

To enhance the detection performance of the selected anomaly detection
methods, we apply them to the latent space representation of the selected data
as suggested in [44] and visualized in Fig. 8 in Appendix 2. We choose the gen-
erative method to create these latent space representations for each selected
anomaly detection method based on the evaluation results in [44]: We create the
latent space data representations for the vae with a conditional Invertible Neural
Network (cINN) [6] and the latent space data representation for the LOF with
a conditional Variational Autoencoder (cVAE) [41]. We detail the architecture
and training of the used cINN and cVAE in Appendix 2. Given the created latent
space representation, we apply the selected anomaly detection methods to the
entire selected time series of the chosen data as in [44].

4.3 Applied Anomaly Compensation Method

For the anomaly compensation in the evaluation of the proposed compensation
strategy, we use a Prophet-based imputation method because of its superior
imputation performance for power time series determined in [48]. The Prophet-
based imputation method [48] is built on the forecasting method Prophet which
is capable of estimating a time series model on irregularly spaced data [42].
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Prophet uses a modular regression model that considers trend, seasonality, and
holidays as key components. It can be described as

y(t) = g(t) + s(t) + h(t) + εt, (6)

where g models the trend, s the seasonality, h the holidays, and εt all other
changes not represented in the model. The Prophet-based imputation method
trains the regression model using all values available in the power time series.
Given the trained regression model, the Prophet-based imputation method con-
siders all anomalies in the power time series as missing values and imputes them
with the corresponding values from the trained regression model.

4.4 Anomaly-Free Baseline Strategy

In the evaluation, we examine the proposed raw, detection, and compensation
strategies all based on the selected data containing inserted synthetic anomalies.
For the evaluation of these strategies, we additionally provide an anomaly-free
baseline. This baseline strategy comprises forecasts that are calculated on that
selected data but without any inserted anomalies (see Fig. 3).

Input power time
series without inserted
synthetic anomalies

Forecast

Forecast of power
time series

Anomaly-free baseline strategy

Fig. 3. For evaluating the proposed strategies on the data with inserted synthetic
anomalies, we use the forecast calculated on the input power time series without
inserted anomalies as an anomaly-free baseline strategy.

4.5 Applied Forecasting Methods

For the evaluation of the proposed strategies, we consider a multi-step 24 h-ahead
forecast with a multiple output strategy for which we apply a representative
selection of forecasting methods to the selected data. Due to the quarter-hourly
resolution of the selected data, the forecast comprises 96 values. For forecasting
methods with hyperparameters, we use hyperparameters that we initially choose
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based on best practices and then verify. We first present the selected forecasting
methods and their input data for the raw and compensation strategies, before we
describe them for the detection strategy and the anomaly-free baseline strategy.
We lastly present the used train-test split.

Methods Applied in Raw and Compensation Strategies. To examine the raw and
compensation strategies comprehensively, we consider methods with different
learning assumptions. We apply eight forecasting methods, namely two naive
and six advanced methods. The advanced methods comprise a simple statistical
method, a simple and two more complex machine learning methods, and two
statistical learning methods.

The first naive method is the Last Day Forecast. It uses the values of the
previous 24 h for the values to be predicted, i.e.,

ŷt,h = yt−96+h, (7)

where ŷt,h is the forecast value of the electrical load for the forecast horizon h
at time t and yt is the electrical load at time t.

The second naive method is the Last Week Forecast. It takes the correspond-
ing values of the last week as the forecast values, i.e.,

ŷt,h = yt−672+h, (8)

where ŷt,h is the forecast value of the electrical load for the forecast horizon h
at time t and yt−672 is the electrical load one week ago at time t − 672.

The first advanced method is the Linear Regression (LinR). As a statistical
method, it models the forecast values as a linear relationship between the his-
torical load values and calendar information and determines the corresponding
parameters using ordinary least squares. It is defined as

ŷt,h = ch +
∑

j

βh,j · yt−j +
∑

k

γh,k · Ct,k + ε, (9)

where c is a constant, index j iterates over the lagged load features yt−j , index
k iterates over the calendar information Ct,k, and ε is the error.

The second advanced method is a commonly applied simple machine learn-
ing method, namely a Neural Network (NN). It organizes a network of inter-
connected nodes in input, hidden, and output layers to apply different functions
that activate the corresponding nodes to learn the relationship between input
and output (e.g., [31,49]). The implementation of the used NN is detailed in
Table 6 in Appendix 3. For its training, we use a batch size of 64, the Adam
optimizer [25] with default parameters, and a maximum of 50 epochs.

The third advanced method is the Profile Neural Network (PNN) [21] as a
state-of-the-art and more complex machine learning method. It combines statis-
tical information in the form of standard load profiles with convolutional neural
networks (CNNs) to improve the forecasting accuracy. For this, it decomposes
a power time series into a standard load profile module, a trend module, and
a colorful noise module, before aggregating their outputs to obtain the forecast
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[21]. For the training, the PNN uses a batch size of 512, the Adam optimizer
[25], and a maximum of 50 epochs.

The fourth advanced method is the Random Forest (RF) Regressor represent-
ing a statistical learning method. It creates several randomly drawn regression
trees and takes the mean of each individual tree’s forecast as forecast [7], i.e.,

ŷt,h =
1
B

B∑

b=1

tb,h(x), (10)

where B is the number of bootstrap samples of the training set, tb is an individual
fitted tree, and x are the values from the test set. For the evaluation, we use
B = 100.

The fifth advanced method is the Support Vector Regression (SVR) and
represents another statistical learning method. It determines a regression plane
with the smallest distance to all data points used for the training. The data
points closest to the regression plane on both sides are the so-called support
vectors [17]. We apply the SVR with a linear kernel, C = 1.0, and ε = 1.0.

The sixth advanced method is the XGBoost Regressor, which represents a
more complex machine learning method. It iteratively creates regression trees
and uses gradient descent to minimize a regularized objective function [12].

All introduced forecasting methods use the historical values of the selected
power time series that contains inserted synthetic anomalies. The advanced
methods also consider calendar information as input (see Table 5 in Appendix 3
for more details). While the naive methods directly use the mentioned historical
load values, all other methods obtain the normalized load of the last 24 h and
the calendar information for the first value to be predicted.

Methods Applied in Detection Strategy. For the detection strategy that can use
the information on the detected anomalies for the forecast, we apply the fore-
casting methods introduced for the raw and compensation strategies. This way,
we also evaluate the detection method using forecasting methods with different
learning assumptions. However, we adapt the previously introduced methods as
follows: We change the Last Day Forecast so that it uses the value from a week
ago in the case of a detected anomaly. Similarly, we modify the Last Week Fore-
cast so that it uses the corresponding value of the second to last week as the
forecast value if the value to be predicted is a detected anomaly. In accordance
with the detection strategy, all other forecasting methods obtain the information
on the detected anomalies of the last 24 h as additional features.

Methods Applied in Anomaly-Free Baseline Strategy. To calculate the anomaly-
free baseline strategy for the data containing synthetic anomalies, we apply all
forecasting methods described for the raw and compensation strategies to the
same data but without inserted synthetic anomalies. These forecasting methods
obtain the inputs in the way described for the raw and compensation strategies.

Train-Test Split. Regardless of the considered strategy, we use the same train-test
split for all evaluated forecasting methods. Each forecasting method is trained on
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80% of the available data and tested on the remaining 20%. For all strategies,
the available data is the selected time series without the first 96 data points.
When calculating the anomaly-free baseline strategy for this data, we use the
same period of time, i.e., all values except the first 96 data points.

4.6 Experimental Setting

For evaluation, we use evaluation metrics in a defined hard- and software setting.

Metrics. In order to evaluate the proposed strategies for managing anomalies in
energy time series forecasting, we examine the accuracy of the obtained forecasts
compared to the data without inserted synthetic anomalies using two metrics.

The first metric is the commonly used root mean squared error (RMSE).
Given N data points to be predicted, it is defined as

RMSE =

√√√√ 1
N

N∑

t=1

(yt − ŷt)2, (11)

with the actual value yt of the anomaly-free time series and the forecast value
ŷt. Due to the squared differences considered, the RMSE is sensitive to outliers.

Therefore, we also consider a second commonly used metric, the mean abso-
lute error (MAE), which is robust to outliers. It is defined as

MAE =
1
N

N∑

t=1

|yt − ŷt| (12)

with N data points to be forecast, the actual value yt of the anomaly-free time
series, and the forecast value ŷt.

Hard- and Software. In order to obtain comparable results, we use the same
hardware throughout the evaluation and implement all evaluated strategies and
used anomaly detection, anomaly compensation, and forecasting methods in
Python (see Appendix 4 for more details).

4.7 Results

To examine the presented strategies, we compare their accuracy on the selected
time series with the described inserted synthetic anomalies and using the
described anomaly detection, anomaly compensation, and forecasting meth-
ods. After presenting the results of this comparison for the technical faults and
unusual consumption, we show a part of the selected time series as an example
of how the different strategies work and perform.
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(a) Technical faults (RMSE).
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(b) Unusual consumption (RMSE).
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(c) Technical faults (MAE).
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(d) Unusual consumption (MAE).

Fig. 4. The accuracy of the eight forecasting methods applied to the data with 20
synthetic anomalies of each type from the technical faults and unusual consumption. For
each forecasting method introduced in Sect. 4.5, the bars indicate the average RMSE or
MAE for the raw strategy, detection strategy, compensation strategy, and anomaly-free
baseline strategy. The error bars show the observed standard deviation across all runs
on the test data set. Note that the anomaly-free baseline strategy generally performs
best because it uses data that does not contain inserted synthetic anomalies.

Comparison. For the comparison, we apply all proposed strategies to the
selected data with synthetic anomalies from the technical faults and unusual
consumption. For both groups of anomalies, we insert 20 anomalies of each type
belonging to this group. Figure 4a and 4c show the resulting RMSE and MAE for
the technical faults and Fig. 4b and 4d for the unusual consumption. For each
considered forecasting method, the bars indicate the average RMSE or MAE
for the raw strategy, the detection strategy, the compensation strategy, and the
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anomaly-free baseline strategy. The error bars show the observed standard devi-
ation across all runs on the test data set.

Technical Faults. Regarding the technical faults, all considered forecasting meth-
ods except the Last Day Forecast, the Last Week Forecast, the LinR, and the NN
have both the lowest RMSE and MAE when using the compensation strategy.
The SVR has only the lowest RMSE with the compensation strategy but the low-
est MAE with the raw strategy. Even though the difference to the compensation
strategy is only small, the Last Day Forecast, the Last Week Forecast, and the
NN achieve their lowest RMSE and MAE using the detection strategy and the
LinR with the raw strategy. Moreover, the difference between the RMSE when
using the compensation strategy and the RMSE using the second best strategy
is largest for the XGBoost Regressor, the RF Regressor, and the SVR. Similarly,
the difference between the MAE when using the compensation strategy and the
MAE using the second best strategy is largest for the XGBoost Regressor, the
PNN, and the RF Regressor. Additionally, we see the largest difference between
the RMSEs in the use of the raw, detection, and compensation strategies for
the Last Day Forecast and the Last Week Forecast, followed by the XGBoost
Regressor. With respect to the MAE, we observe the largest differences for the
PNN, the XGBoost Regressor, and RF Regressor.

Compared to the anomaly-free baseline strategy, the RMSE of all forecasting
methods, especially of the Last Day Forecast, the Last Week Forecast, the SVR,
and the XGBoost Regressor, is also noticeably greater for all three strategies.
Concerning the MAE, we also see large differences between the anomaly-free
baseline strategy and the three other strategies for all forecasting methods but
especially the Last Day Forecast, the XGBoost Regressor, the LinR, and the
SVR. Considering the actual accuracy, the LinR, the PNN, and the NN form
the group of forecasting methods that achieve the lowest RMSE and the SVR,
the PNN, and the LinR the group with the lowest MAE.

Unusual Consumption. For the unusual consumption, all considered forecasting
methods except the NN achieve both the lowest RMSE and MAE using the
compensation strategy. The NN has its lowest RMSE with the detection strategy.
The Last Day Forecast also has its lowest RMSE using the compensation strategy
but its lowest MAE using the detection strategy. The difference in the RMSE
and MAE between using the compensation strategy and using the second best
strategy is large for the XGBoost Regressor, the LinR, the RF Regressor, the
SVR, and small for the NN, the PNN, the Last Day Forecast, and the Last Week
Forecast. Moreover, we observe the largest differences between the RMSEs for
using the raw, detection, and compensation strategies for the LinR, the RF
Regressor, and the SVR. The largest observed differences in the MAE of these
three strategies are for the LinR, the XGBoost Regressor, and the NN.

In comparison to the anomaly-free baseline strategy, the RMSE and MAE
of all forecasting methods is clearly larger for all three strategies. With regard
to their actual accuracy, the PNN achieves the lowest RMSE, followed by the
SVR and the LinR. Considering the accuracy in terms of the MAE, the SVR,
the PNN, and the Last Day Forecast achieve the lowest MAE.
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Example. To demonstrate how the different strategies work and perform, we
finally look at a part of the time series used for the evaluation in more detail.
Using three days of this time series from June 2014, Fig. 5 illustrates an inserted
synthetic anomaly, how this anomaly is detected, and what the resulting forecasts
of the different strategies look like.

More specifically, Fig. 5a illustrates the selected original time series, which we
assume to be anomaly-free, and the time series with inserted synthetic anomalies.
In the latter, we observe an anomaly of type 8 which increases the load values for
about one of the three days. In addition to these two time series, Fig. 5b shows the
data points of the time series with inserted synthetic anomalies that are detected
as anomalous by the LOF, which is the applied anomaly detection method. We
observe that the LOF, detects various but not all data points of the inserted
synthetic anomaly as anomalous. Figure 5c then illustrates how these detected
anomalous data points are compensated using the Prophet-based imputation
method. With regard to the compensated detected anomalous data points, our
observation is that compensated values are all close to the original anomaly-free
time series.

Finally, Fig. 5d additionally shows the multi-step 24 h-ahead forecasts of the
four different strategies using the PNN and given the previously described infor-
mation. We observe that all strategies result in different forecasts: The forecast
of the compensation strategy, that is based on the time series with compen-
sated synthetic anomalies introduced in Fig. 5c, is closest to the forecast of the
anomaly-free baseline strategy. Moreover, the forecast of the detection strategy,
that uses the information on the detected anomalous data points introduced in
Fig. 5b, is closer to the forecast of the anomaly-free baseline strategy than the
forecast of the raw strategy.

5 Discussion

In this section, we first discuss the results from the evaluation of the pro-
posed strategies for managing anomalies in energy time series forecasting, before
reviewing the evaluation regarding its limitations and insights.

In the comparison of the accuracy of the proposed strategies, we observe
that using the compensation strategy yields the lowest RMSE and MAE for
most forecasting methods and both groups of anomalies. However, while the
results are generally consistent across both accuracy metrics, some forecasting
methods benefit from the two other strategies with respect to the RMSE, the
MAE, or both: The NN and the Last Day Forecast perform best using the
detection strategy for the technical faults and unusual consumption, the Last
Week Forecast using the detection strategy for only the technical faults, and the
LinR and the SVR using the raw strategy for the technical faults. However, it is
worth noting that the compensation strategy is often the second-best strategy
in these cases with similar accuracy, so it could serve as a default strategy.

Nevertheless, using the compensation and also the detection strategy is asso-
ciated with additional computational costs because of the necessary anomaly
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Fig. 5. Three exemplary days of the power time series used for the evaluation, where
a synthetic anomaly of type 8 is inserted, detected, and compensated. Finally, the
inserted anomaly is dealt with differently in the forecast depending on the strategy.



18 M. Turowski et al.

detection and anomaly compensation. In case of the anomaly detection, the
computational costs also include the creation of the latent space representation
that we use to enhance the detection performance. Whether the improvement
in accuracy over the raw strategy of using the data essentially as-is justifies
this additional computational cost depends on the forecasting method and the
anomalies contained in the data and requires careful consideration. From these
results, one could infer that applying strategies that actively handle anomalies,
namely the compensation and the detection strategies, is generally beneficial
and, more specifically, that using the compensation strategy is mostly benefi-
cial. Based on this inference, a best practice could be to apply the compensation
strategy in energy time series forecasting. Additionally, given the nature of the
data used for the evaluation, we assume that the gained insights also apply to
similar periodic data, for example, from the areas of solar power generation,
mobility, and sales.

Moreover, the comparison of the accuracy of all strategies shows that there
is no clearly best-performing forecasting method for technical faults and unusual
consumption. Instead, there are rather groups of similarly well-performing fore-
casting methods, for example, the LinR and the PNN for the technical faults
and the PNN and the SVR for the unusual consumption. Additionally, regard-
ing their actual accuracy, we observe that even naive forecasting methods can
provide reasonable forecasts, which can serve as a computationally light baseline
when looking for competitive forecasts.

Furthermore, the example of three days from the time series used for the
evaluation illustrates how the strategies differ. By showing an inserted synthetic
anomaly, the data points of this anomaly that are detected as anomalous, and
how the detected anomalous data points are compensated, the example presents
the inputs for the raw, detection, and compensation strategies. Additionally,
the example includes the resulting forecasts of all strategies for the next day.
Thereby, the influence of the different inputs on the forecast accuracy of the dif-
ferent strategies becomes comprehensible. Considering the results of the example,
we also observe that the compensation strategy provides the comparatively best
forecast although it is dependent on the only partly detected and compensated
inserted synthetic anomaly. With regard to the detection performance of the
detection method, however, it should be noted that anomaly types of unusual
consumption are difficult to be detected from experience.

Nevertheless, we note that these results are associated with certain limi-
tations. One limitation is that we only evaluate the proposed strategies with
the selected anomaly detection, anomaly compensation, and forecasting meth-
ods since the performance of the proposed strategies highly depends on these
methods. For example, forecasting methods vary by design in their sensitivity
to anomalies and detection methods may not detect all anomalous data points.
While we believe that the different selected methods are a representative sample
of existing methods, it would be interesting to extend the evaluation to fur-
ther anomaly detection, anomaly compensation, and forecasting methods. The
performance of the selected methods additionally depends on the used hyperpa-
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rameters. Although the hyperparameters used are carefully selected, their opti-
mal choice could be investigated. Moreover, the reported results are based on the
selected data. Although we perceive the selected time series based on our domain
knowledge as comparatively anomaly-free, it could contain anomalies that influ-
ence the results. For example, the contained anomalies could worsen the results
of the raw strategy and improve the results of the detection and compensation
strategies. However, in this case, the relative comparison of the strategies would
remain the same. Nevertheless, future work could examine more closely whether
anomalies are contained and affect the results. In addition to contained anoma-
lies, the results also depend on the inserted anomalies and might change with
different numbers and types of inserted anomalies. Future work could thus also
examine the influence of the inserted anomalies on the results. Furthermore, the
data used for the evaluation represents the electrical power consumption on a
client level. In future work, it might, therefore, be interesting to use other data
to investigate how the aggregation level of the data influences the results.

Overall, we conclude from the performed evaluation that the compensation
strategy is generally beneficial as it mostly allows for better or at least similar
forecasting results as the other evaluated strategies when the input data contains
anomalies. By favoring precise forecasts, the compensation strategy provides
a means for appropriately managing anomalies in forecasts using energy time
series, which could also be beneficial for automated machine learning forecasting.

6 Conclusion

In the present paper, we evaluate three general strategies for managing anoma-
lies in automated energy time series forecasting, namely the raw, the detection,
and the compensation strategy. For the evaluation, we apply a representative
selection of forecasting methods to real-world data containing inserted synthetic
anomalies in order to compare these strategies regarding the obtained forecast
accuracy. We also present an example of how these strategies work and perform.

Despite requiring additional computational costs, the compensation strategy
is generally beneficial as it mostly outperforms the detection and the raw strategy
when the input data contains anomalies.

Given the proposed strategies for managing anomalies in energy time series,
future work could address several follow-up questions. For example, future work
could verify the results by applying other data including labeled data, anomaly
detection methods, and anomaly compensation methods. Similarly, future work
could evaluate the proposed strategies with further forecasting methods. Fur-
thermore, future work could integrate the proposed strategies into existing
approaches for automated machine learning to include them in the optimiza-
tion problem of finding the best forecast for a given data set.
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Appendix 1: Inserted Synthetic Anomalies

For the evaluation, we insert anomalies of the two anomaly groups used in [44],
namely technical faults in the metering infrastructure and unusual consumption.
For both groups, we consider four types of anomalies each. Each anomaly p̂j,i
of type j has a start index i and is inserted in the given power time series
P = p1, p2, ...pN with length N .

Technical Faults

The considered technical faults comprise the anomalies of types 1 to 4 taken
from [45]. Figure 6 shows an example of each of these types, which we define in
the following.

Anomaly Type 1

p̂1,i+n =

⎧
⎪⎨

⎪⎩

−1 · mean(P ) + rs · std(P ), n = 0
0, 0 < n < l − 1∑i+l−1

t=1 pt, n = l − 1,

(13)

where the length l ∼ U[5,24] and the random scaling factor rs = 2 + r · 3 with
r ∼ U[0,1].

Anomaly Type 2

p̂2,i+n =

{
0, 0 ≤ n < l − 1∑i+l−1

t=i pt, n = l − 1,
(14)

where the length l ∼ U[5,24].

Anomaly Type 3
p̂3,i = −rs · mean(P ), (15)

where the random scaling factor rs = 0.01 + r · 3.99 with r ∼ U[0,1].

Anomaly Type 4
p̂4,i = r · mean(P ), (16)

where the random scaling factor rs = 3 + r · 5 with r ∼ U[0,1].
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(a) Anomaly type 1: negative power
spike followed by zero values and posi-
tive spike.
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(b) Anomaly type 2: zero power values
followed by a positive spike.
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(c) Anomaly type 3: negative power
spike.
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(d) Anomaly type 4: positive power
spike.

Fig. 6. Examples of the anomaly types 1 to 4 from the technical faults taken from [45]
that we insert as synthetic anomalies into the selected data. The anomalies are plotted
in red. Note that the anomalies of types 3 and 4 actually have a length of one but are
marked together with their previous value to be recognizable. (Color figure online)

Unusual Consumption

The considered unusual consumption comprise the anomalies of types 5 to 8
taken from [44]. Figure 7 shows an example of each of these types, which we
define in the following.

Anomaly Type 5

p̂5,i+n = pi − r · pmin, 0 < n < l − 1, (17)

where the length l ∼ U[48,144], the random scaling factor r ∼ U[0.3,0.8], and
pmin = min{pi, pi+1, . . . , pi+l−1}.

Anomaly Type 6

p̂6,i+n = pi + r · pmin, 0 < n < l − 1, (18)

where the length l ∼ U[48,144], the random scaling factor r ∼ U[0.5,1], and pmin =
min{pi, pi+1, . . . , pi+l−1}.
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(a) Anomaly type 5: abrupt small tem-
porary reduction in the power values.
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(b) Anomaly type 6: abrupt small tem-
porary increase in the power values.
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(c) Anomaly type 7: small temporary re-
duction in the power values with a grad-
ual start and end.
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(d) Anomaly type 8: small temporary in-
crease in the power values with a gradual
start and end.

Fig. 7. Examples of the anomaly types 5 to 8 from the unusual consumption taken
from [44] that we insert as synthetic anomalies into the selected data. The anomalies
are plotted in red. (Color figure online)

Anomaly Type 7

p̂7,i =

⎧
⎪⎨

⎪⎩

pi − r · pmin · l
10 · i, 0 < n < l

10

pi − r · pmin,
l
10 ≤ n ≤ 1 − l

10

pi − r · pmin · l
10 · (1 − i), 1 − l

10 < n < l − 1,

(19)

where the length l ∼ U[48,144], the random scaling factor r ∼ U[0.3,0.8], and
pmin = min{pi, pi+1, . . . , pi+l−1}.

Anomaly Type 8

p̂8,i =

⎧
⎪⎨

⎪⎩

pi + r · pmin · l
10 · i, 0 < n < l

10

pi + r · pmin,
l
10 ≤ n ≤ 1 − l

10

pi + r · pmin · l
10 · (1 − i), 1 − l

10 < n < l − 1,

(20)

where the length l ∼ U[48,144], the random scaling factor r ∼ U[0.5,1], and pmin =
min{pi, pi+1, . . . , pi+l−1}.
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Appendix 2: Applied Anomaly Detection

Applied Latent Space-Based Anomaly Detection. To enhance their detection per-
formance, we apply the selected anomaly detection methods to the latent space
representation of the selected data which we create by a trained generative
method (see Fig. 8).

Trained
generative
method

Input
time series
containing
anomalies

Latent space
representation

of input
time series
containing
anomalies

Calendar
and

statistical
information

Anomaly
detection
method

Fig. 8. According to the selected anomaly detection approach from [44], a trained
generative method creates the latent space data representation of an input time series
containing anomalies. The latent space data representation then serves as input to an
anomaly detection method.

Architecture of Generative Methods. For our evaluation, we use the conditional
Invertible Neural Network (cINN) [6] and the conditional Variational Autoen-
coder (cVAE) [41] as described in [22,44] and as detailed in Tables 1 and 4.

Table 1. Architecture of the used cINN [44].

Element Description

Number of blocks 10

Layers per block Glow coupling layer and random permutation

Subnetwork in each block Fully connected NN (see Table 2)

Conditioning network Fully connected NN (see Table 3)

Training of Generative Methods. The training of the used cINN and cVAE follows
the training described in [44]: We apply the unsupervised cINN and cVAE to the
data with inserted synthetic anomalies under the assumption of 10% of the data
points are anomalies by setting the contamination parameter of the unsupervised
cINN and cVAE to 0.1. Both generative methods obtain standardized data points
of the selected time series as samples with a size of 96. Both generative methods
also use the mean of the considered time series sample as statistical information
as well as the hour of the day, the month of the year, and the weekday as calendar
information.
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Table 2. Details of the subnetwork in the used cINN [44].

Layer Description

Input [Output of previous coupling layer, conditional information]

1 Dense 32 neurons; activation: tanh

2 Dense horizon neurons; activation: linear

Table 3. Details of the conditioning network in the used cINN [44].

Layer Description

Input [Calendar information, statistical information]

1 Dense 8 neurons; activation: tanh

2 Dense 4 neurons; activation: linear

Table 4. Architecture of the encoder and decoder in the used cVAE [44].

(a) Encoder

Layer Description

Input [Normal data, conditional information]

1 Dense 64 neurons; activation: tanh

2 Dense 32 neurons; activation: tanh

3 μ: dense latent dimension; activation: linear

4 σ: dense latent dimension; activation: linear

(b) Decoder

Layer Description

Input [Latent data, conditional information]

1 Dense 32 neurons; activation: tanh

2 Dense 64 neurons; activation: tanh

3 Dense horizon neurons; activation: linear

Appendix 3: Applied Forecasting Methods

Table 5. Overview of the used calendar information.

Calendar information Implementation

Weekday Boolean

Workdays (Monday to Friday) Boolean

Hour of the day sin(2 · π · hour/24) and cos(2 · π · hour/24)

Day of the month sin(2 · π · day/days of the month)

Month of the year sin(2 · π · month/12) and cos(2 · π · month/12)
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Table 6. Details of the applied NN.

Layer Description

Input [Load data, encoded calendar information]

1 Dense 256 neurons; activation: relu

2 Dense 128 neurons; activation: relu

Output Dense 96 neuron; activation: linear

Appendix 4: Hard- and Software

Hardware. The used hardware is an HPC system with two Intel Xeon Gold 5118
CPUs and with 256 GB RAM.

Software. For the anomaly detection using the respective latent space data rep-
resentation created by the selected cINN or cVAE, we apply the implementation
described in [44]. It uses FrEIA4 and PyTorch5 [34] for the cINN, PyTorch [34]
for the cVAE, Keras6 [15] for the VAE, and scikit-learn7 [35] for the LOF.

For the anomaly compensation, we apply the implementation of the Prophet-
based method described in [48] that is based on the available Prophet implemen-
tation8 [42].

For the forecasting methods, we use Keras for the NN and scikit-learn for the
LinR, SVR, and RF Regressor. Additionally, we apply the available implemen-
tation9 [12] for the XGBoost Regressor, and adapt the available implementation
of the PNN10 [21] to work without weather data.

We finally use pyWATTS11 [20] to implement the proposed strategies and to
automate their evaluation.
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Abstract. With the current state of the electrical power system, regard-
ing the increase of renewable generation integration and electric vehi-
cle penetration to reduce gas emissions, the energy resource manage-
ment problem becomes extremely complex to optimize to the significant
dimensionality and uncertainty. Metaheuristic optimization algorithms
become efficient methods since they guarantee a balance between optimal
and practical solutions, but they lack explainability and are treated as
black-box techniques. In this work, we introduce an improved version of
the Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algo-
rithm incorporating the Vortex Search to generate new candidate solu-
tions in the iterative process. The VS MAP-Elites is then used to opti-
mize the energy resource management problem for a 13-bus distribution
network considering risk analysis due to the existence of extreme scenar-
ios in the day-ahead operation. Two different behaviors of the problem
were considered, namely demand response ratio and renewable ratio,
and the effect that they have on metaheuristic performance was ana-
lyzed through the visualization of the elite archive. Results showed that
VS MAP-Elites achieved better cost results compared to MAP-Elites,
around a 25 % reduction, since it was able to diversify the search space
finding better solutions for the considered problem characteristics.

Keywords: Energy resource management · MAP-Elites ·
Metaheuristic · Optimization · Visualization · Vortex search

1 Introduction

The current evolution of the energy sector, with the incorporation of modern
smart grid (SG) technologies, provides easier integration of distributed energy
resources (DER), most noticeable in the penetration of uncertain renewable gen-
eration [1]. As such, scheduling energy resources by managing entities such as
virtual power players or aggregators so that the proper electrical grid operation
is achieved becomes extremely complex, and by considering uncertainty, such
entities are subject to the occurrence of extreme events, for example, climate
changes which will affect renewable generation [2]. These events are unlikely to
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occur, so they have a low probability, but if their occurrence is verified, their
impact on the grid operation is substantial.

The energy resource management problem (ERM) is a highly constrained
problem with many variables, where most traditional mathematical optimiza-
tion methods fail to find optimal solutions in a short time. When dealing with
operation problems, solutions are sometimes needed in a small time window,
close to real-time. Metaheuristic optimization approaches are good alternatives
regarding energy problems since they can provide near-optimal solutions in use-
ful time [3]. Metaheuristics are increasingly used to solve complex real-world
problems, but they still have several significant disadvantages, including the
optimality of the provided solution and their explainability [4]. In this work, we
intend to make advancements in this regard by taking the Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites) to illuminate metaheuristic search
space.

The Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [5] is an
illumination algorithm or a quality-diversity (QD) algorithm that identifies a set
of solutions covering a space that is known as a behavior space [6]. More specifi-
cally, MAP-Elites creates an archive structure that stores the best solutions (or
elites) based on the problem behaviors or characteristics the user finds useful
to evaluate. This structure acts as an illumination of the search space by giving
the user an understanding of how these characteristics affect metaheuristic per-
formance through visualization methods. In the literature, MAP-Elites has been
applied to multiple works regarding robot task planning [7,8], video game level
generation [9,10], image generation [11] and vehicle routing optimization [12].
From the authors’ understanding, there are no works regarding utilizing MAP-
Elites or a QD algorithm in problems in the energy domain trying to understand
the metaheuristic behavior regarding ERM problem characteristics.

This work proposes a metaheuristic approach due to the problems’ large-
scale nature and uncertainty, where a MAP-Elites algorithm is implemented for
a day-ahead ERM optimization considering risk-based analysis. The proposed
MAP-Elites algorithm is improved by incorporating the Vortex Search (VS)
metaheuristic [13] to generate new candidate solutions compared to the standard
mutation operator used in the standard MAP-Elites algorithm. The VS operators
were selected due to their simple implementation with no additional parameters
needed. The VS MAP-Elites algorithm optimizes and determines the best elites
for this risk-based ERM in a 13-bus distribution network (DN) with significant
renewable penetration and electric vehicle integration based on behavior factors.
For the risk analysis, extreme event existence, which may jeopardize the proper
grid operation, was also considered.

The organization of this paper is as follows. The proposed methodology
regarding the mathematical problem formulation and iterated racing approach
is presented in Sect. 2. The case study employed in this work, concerning the
setting used by irace and the DN, is presented in Sect. 3. The automatic con-
figuration outcomes and the analyses of results are presented in Sect. 4. Finally,
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Sect. 5 draws the main takeaways from this work and suggests some possible
topics for further research.

2 Proposed Methodology

This section presents the proposed methodology regarding the ERM problem
formulation considering a risk analysis through a risk-averse mechanism. In this
risk analysis, the aggregator aims to reduce the expected scenario costs and
the costs associated with the worst possible scenarios through the conditional
value-at-risk (CV aR), present in Eq. (1).

Regarding the optimization algorithm, this section also describes the vortex
MAP-Elites process, which was used to perform the risk-based ERM problem,
illuminating metaheuristic performance.

2.1 Risk-Based Problem Formulation

The objective function for the day-ahead risk-based ERM formulation contem-
plates the expected costs and the costs associated with the extreme scenarios,
in this situation, evaluated through the CV aR method.

Objective Function: The risk-based ERM is a minimization cost problem that
can be formulated by Eq. (1), where expected scenario costs and risk aversion
costs are considered.

min v = ExCosts + (γ · CV aRα) (1)

where γ represents the risk-aversion factor, which varies between [0,1], meaning
that 0 no risk-aversion is present in the formulation, and 1 means that the
aggregator is taking a 100 % risk-averse approach. This work considers only a
γ equal to 1. In the first term, ExCosts in monetary units (m.u.) represents the
expected costs that are given in Eq. (2). The second term presents the costs
associated with risk events, evaluated through CV aRα (m.u.) in the day-ahead
operation present in Eq- (3).

ExCosts =
Ns∑

s=1

ρs · CDay+1
s (2)

CV aRα = V aRα +
1

1 − α

∑

s∈Nx

(CDay+1
s − ExCosts − V aRα(f totC

s )) · ρs (3)

where the scenario probability is represented by ρs, CDay+1
s (m.u.) describes

the day-ahead scenario costs/profits formulated in Eq. (4). In Eq. (3), V aRα

(m.u.) is the value-at-risk, which evaluates the extreme scenario cost, till the
confidence level α (V aRα = z − score(α) · std(CDay+1

s )). In addition to the
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V aRα, the parameter Nx represents the scenarios when the cost is higher than
ExCosts (CDay+1

s ≥ ExCosts + V aRα ∀s ∈ Nx).

CDay+1
s = OCDay+1

s − InDay+1
s + Bs (4)

where OCDay+1
s (m.u.) represents the day-ahead operational costs, InDay+1

s is
incomes from day-ahead transactions and Bs represents variables’ bound viola-
tions.

Operational Costs: The aggregator seeks to reduce the operational costs of the
ERM model in Eq. (5) while maximizing the revenues in Eq. (6). The first and
second terms of Eq. (5) include the costs of dispatchable distributed generation
(DG) and external supplier generation, which are not scenario dependent. The
costs associated with the non-dispatchable generation and positive power imbal-
ance are represented in the third and fourth terms of the equation. The fifth and
sixth terms demonstrate the costs associated with energy storage systems (ESS)
and electric vehicle (EV) discharging. The seventh and eighth terms represent
the expenses related to the incentive for demand response (DR) programs and
the negative imbalance from load not supplied.

OCDay+1
s =

Nt∑
t=1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

i∈Ωd
DG

DGPower
(i,t) · DGCost

(i,t) +
Nes∑
es=1

SupPower
(es,t) · SupCost

(es,t)+

∑

i∈Ωnd
DG

DGPower
(i,t,s) · DGCost

(i,t) +
Ni∑
i=1

ImbPower+

(i,t,s) · ImbCost+

(i,t) +

Ness∑
ess=1

ESSPower
(ess,t,s) · ESSCost

(ess,t)+
Nev∑
ev=1

EV Power
(ess,t,s) · EV Cost

(ev,t)+

Nl∑
l=1

(DRPower
(l,t,s) · DRCost

(l,t) + ImbPower−
(l,t,s) · ImbCost−

(l,t) )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∀s
(5)

where t represents the index associated with the number of periods Nt, i ∈ Ωd
DG,

is the set representing the number of dispatchable DG units, es represents the
index of external suppliers going to Nes, i ∈ Ωnd

DG is the set that represents the
number of non-dispatchable DG units. The index ess is the index going through
the total number of ESSs (Ness), and ev is the index representing EVs that
goes till the total number of EVs considered Nev. The load index is given by l,
and Nl demonstrates the total number of loads. Concerning the decision vari-
ables in the problem, DGPower

(i,t) (MW) is each dispatchable DG unit’s i active
power output during the period t, SupPower

(es,t) (MW) is each external supplier es

active power output during the period t. DGPower
(i,t,s) (MW) is the active power

output of each non-dispatchable DG unit i during the period t in scenario s, and
ImbPower+

(i,t) (MW) represents the positive active power imbalance due to excess
generation of DG unit i for period t. The decision variable ESSPower

(ess,t,s) (MW)
represents the discharging power of the ESS unit ess for the period t in scenario
s (if ESSPower

(ess,t,s) is negative, 0 otherwise), and similar to EVs, where EV Power
(ev,t,s)
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(MW) describes the discharging power of each EV unit ev for the period t in
scenario s (if EV Power

(ev,t) is negative, 0 otherwise). The decision variables DRPower
(l,t,s)

(MW) and ImbPower−
(l,t,s) (MW) are the active power reduction of load l for the

period t in scenario s and the negative power imbalance due to non-supplied
power to load l for period t in scenario s. Regarding the parameters, DGCost

(i,t)

(m.u./MWh) is the cost associated with dispatchable DG production in unit i for
the period t, SupCost

(es,t) (m.u./MWh) is the external supplier es electricity price for
the period t. DGCost

(i,t) (m.u./MWh) represents the associated cost of active power

generation from non-dispatchable DG unit i during the period t and ImbPower+

(i,t,s)

(m.u./MWh) represents the cost for positive power imbalance of the excess gen-
eration of DG unit i in period t. The costs associated with the active discharging
power of EV unit ev and ESS unit ess during the period t are represented by
the parameters ESSCost

(ess,t) (m.u./MWh) and EV Cost
(ev,t) (m.u./MWh). Finally, the

parameter DRCost
(l,t) (m.u./MWh) is related to the cost for active power reduction

of load l in period t, and the parameter ImbCost−
(l,t) (m.u./MWh) represents the

cost associated to the negative imbalance in the system for power not supplied
to load l for the period t.

Market Revenues: In Eq. (6), the aggregator earns revenue from electricity
market transactions, that is, from selling surplus power in the market. For the
day-ahead optimization to be profitable, the aggregator must maximize this
function. In other words, the values derived in Eq. (6) must be higher than
those in Eq. (5).

InDay+1
s =

Nt∑

t=1

Nm∑

m=1

EMPower
(m,t) · MP (m,t,s) ∀s (6)

where m represents the index associated with the number of electricity markets
Nm. The decision variable EMPower

(m,t) (MW) is the power transacted (offers or
bids) in the electricity market m for the period t and the parameter MP (m,t,s)

(m.u./MWh) represents price of electricity in market m for period t in scenario
s. If EMPower

(m,t) is a positive value, the aggregator sells power in the market.
Otherwise, the aggregator needs to buy power, and this variable is considered a
cost.

In [14], all of the problem’s mathematical formulations can be found, includ-
ing any resource limitations to which the objective function is subject.

2.2 Vortex MAP-Elites

The MAP-Elites algorithm [5] was used to optimize the previous problem formu-
lation. We improved the standard MAP-Elites algorithm by replacing the nor-
mal variation processes of mutation and recombination used with the VS single
solution-based variation approach. The VS metaheuristic [13] was incorporated
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to generate new solutions based on a vortex pattern. Algorithm 1 shows the
process of the VS MAP-Elites, where initially, an n dimensional empty archive
is created to store the best solutions and corresponding performance (fitness).
The next step is randomly initializing the solutions between variables’ upper and
lower bounds and creating the initial archive. The solutions are stored according
to the behavior obtained, which indicates the archive index in which the solution
is stored. We considered two different behaviors that are interesting to analyze
for the ERM problem. The first is the DR ratio, present in Eq. (7), which is the
percentage of DR power present in the total generation, and the second is the
renewable generation ratio, formulated in Eq. (8), meaning the percentage of the
total production that comes from renewables.

Algorithm 1. Vortex MAP-Elites Algorithm, based on [7]
1: (X , P) ← create empty archive() � X ← solutions; P ← fitness
2: for all NP do � Initialization
3: x’ ← create random solutions()
4: ADD TO ARCHIVE(x’,X ,P)
5: end for
6: while it ≤ maxIt do � Iterative process
7: x = selection(X ) � Select best solution from the archive
8: μit+1 = x � Center
9: rit+1 = Decrease(rit) � Standard deviation (radius)

10: x’ ← create candidate solutions(x) � N(μit+1,rit+1)
11: x’ ← bound control solutions(x’)
12: ADD TO ARCHIVE(x’,X ,P)
13: it ← it + 1
14: end while
15: return archive(X ,P)
16: procedure ADD TO ARCHIVE(x,X ,P)
17: (p,b) ← eval(x) � Evaluate performance and behavior
18: c ← get archive index(b)
19: if isempty(P(b)) —— p ¡ P(b) then
20: X (b) = x � Store solution in the archive
21: P(b) = p � Store fitness in the archive
22: end if
23: end procedure

DRratio =

Ns∑
s=1

(
Nt∑
t=1

Nl∑
l=1

DRPower
(l,t,s) ) · ρs

TotalGen
(7)

Renewableratio =

Ns∑
s=1

(
Nt∑
t=1

∑

i∈Ωnd
DG

DGPower
(i,t,s))

TotalGen
(8)



36 J. Almeida et al.

TotalGen =
Ns∑

s=1

Nt∑

t=1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

i∈Ωd
DG

DGPower
(i,t) +

Nes∑
es=1

SupPower
(es,t) +

∑

i∈Ωnd
DG

DGPower
(i,t,s) +

Ness∑
ess=1

ESSPower
(ess,t,s)+

Nev∑
ev=1

EV Power
(ess,t,s) +

Nl∑
l=1

DRPower
(l,t,s)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

· ρs (9)

After storing the initial solutions in the archive, the algorithm enters the
iterative process, where the best solution in the archive is selected and considered
as the vortex center to generate new candidate solutions. The standard deviation
(or radius) is also updated in each iteration according to Eq. (9).

rit = σ · 1
0.1

· gammaincinv(0.1, ait) (10)

where σ = xupper
i −xlower

i

2 , xupper
i and xlower

i are the variables upper and lower
bounds. The process to decrease the radius is given by ait = maxIt−it

maxIt . The
neighborhood solutions are generated through a Gaussian distribution with mean
μit and standard deviation rit. The next step is to apply a boundary control to
check and correct the variables that are outside the stipulated bounds. The final
step is to store the best of the candidate solutions in the archive.

Note that all the optimization processes regarding the fitness function pro-
cedure and solution vector encoding for the day-ahead problem can be found in
[15].

3 Experiment Parameters

The case study that was utilized to support the suggested method is discussed
in this section. It describes the resource information of the 13-bus DN and the
settings used for the MAP-Elites and VS MAP-Elites algorithms.

3.1 13-Bus Distribution Network

The considered smart grid (SG) is inserted in a mock-up smart city, developed
in the BISITE laboratory [16], which was used to create this case study. There
are four 1 MVar capacitor banks (which are set to zero in this problem since
reactive power is not taken into account), two wind farms, thirteen PV parks (15
renewable DG units), and a 30 MVA substation in bus 1. This DN’s consumption
comprises 25 distinct loads, including residences, workplaces, and a few service
structures (a hospital, a fire station, and a mall). 500 EVs were used in the
simulations to represent significant EV adoption, and two energy storage systems
are also present in the network.

Using GAMS/SCENRED1, the initial dataset of 5,000 scenarios is then con-
densed to 150 scenarios. To cut down on computation time owing to a large
1 https://www.gams.com/latest/docs/T SCENRED.html.

https://www.gams.com/latest/docs/T_SCENRED.html
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Fig. 1. Scenario variability for day-ahead a) PV Generation; b) wind generation; c)
load consumption; electricity market prices.

number of variables, it was eventually reduced to the 15 highest probable sce-
narios incorporating extreme events. Figure 1a) shows the scenario variation for
the PV generation, where one extreme scenario does not have PV generation
because non-existent solar radiation can occur. The scenario variability of the
generation provided by the wind turbines is presented in Fig. 1b), where one of
the extreme events considered has a high reduction of this type of generation.
In Fig. 1c) we show the total load consumption from the 25 loads, and from the
figure, we can see that one scenario considers a significant increase in load, and
in Fig. 1d) the scenarios created for electricity market prices are shown, where
we considered one scenario with a vast increase in these prices compared to the
remaining. In total, three extreme scenarios were contemplated according to [15].

To meet demand, the aggregator must manage its resources, electricity pur-
chased from an external supplier, and energy purchased/sold on the electricity
market. Table 1 shows the energy resource statistics for the day-ahead formu-
lation aggregator using the worst-case scenarios. The capacity, predicted values
from renewable sources and loads, minimum and maximum values taken into
consideration for resource pricing, and the number of units corresponding to
each resource are all distinguished.



38 J. Almeida et al.

Table 1. Energy resource information.

Energy resources Prices Capacity Forecast Units

(m.u./MWh) (MW) (MW)

min–max min–max min–max

Photovoltaic 29–29 0.00–0.81 13

Wind 31–31 0.30–3.07 2

External Supplier 50–90 0.00–30.00 1

Storage units Charge 110–110 0.00–1.25 2

Discharge 60–60 0.00–1.25

EVs Charge 0–0 0.01–0.05 500

Discharge 60–60 0.01–0.05

DR 100–100 0.00–1.21 25

Load 0–0 0.01–2.38 25

Electricity market 44.78–156.91 0.00–2.00 1

3.2 MAP-Elites Settings

Regarding the MAP-Elites and VS Map-Elites, a total number of 50 individu-
als (PopSize) and 200 iterations (maxIt) were considered for the optimization
process, equivalent to 10,000 objective function evaluations (PopSize × maxIt).
For both algorithms, a grid size of 20 was set, with two dimensions, regarding
the considered behaviors, which means that the algorithms had a total of 400
bins (202) in the archive. Additionally, the range of values for the DR ratio
was set between [0.22,0.32], and for the renewable generation ratio, the range
was set between [0.40,0.46], considering the observed behavior during previous
experiments.

We implemented and evaluated both algorithms using MATLAB R2018a on a
Windows 10 machine with 16GB of RAM and an Intel Xeon Gold 5120@2.20GHz
CPU.

4 Experiments Results

This section presents the simulation results obtained by the proposed VS MAP-
Elites, and a comparison is made to the results obtained by the standard MAP-
Elites.

The optimization problem is composed of 13,680 variables for each scenario,
so a total of 205,200 decision variables. Table 2 shows the average risk-based
ERM optimization costs and time for both algorithms over the course of 20 trials.
VS MAP-Elites shows a better objective function cost with a reduction of 24.81
% in costs since this algorithm was able to reduce both terms of Eq. (1), regard-
ing the expected costs (ExCosts) and CV aRα costs. This is further proved by
Fig. 2, which shows the objective function costs in the 20 trials performed, where



Illuminating Metaheuristic Performance 39

Table 2. Average risk-based cost results and optimization time for each algorithm over
20 trials.

Algorithm v (m.u.) ExCosts (m.u.) CV aRα (m.u.) Bs (m.u.) max(CDay+1
s ) (m.u.) Time (sec)

MAP-Elites 158,740.59 25,005.85 133,734.74 9,106.67 188,007.51 55.18

VS MAP-Elites 119,349.61 20,925.88 98,423.73 5,391.67 140,758.75 668.51
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Fig. 2. Radar plot regarding the objective function cost for each optimization trial.

VS MAP-Elites presented a global better performance in all runs compared to
MAP-Elites, with lesser costs. Concerning the expected costs, VS MAP-Elites
presented a reduction of 16.32 %, and when it comes to CV aRα, the reduction
was 26.40 % because of the reduction in worst scenario costs of 25.13 % in case
of the worst possible scenario for the aggregator (max(CDay+1

s )).
Since the variation processes in the standard MAP-Elites algorithm are sim-

ple and require little computational effort, the optimization time is substantially
less than the VS MAP-Elites algorithm. From Table 2, it is possible to conclude
that MAP-Elites is around 12 times faster than VS MAP-Elites.

Regarding the best elites, Fig. 3a) shows the initial archive obtained by
MAP-Elites, before the algorithm enters the iterative process and muta-
tion/recombination occurs. In this figure, it is possible to visualize that the
archive presents few solutions and is not diversified. Also, in this archive, the
solutions are stored to higher values of DR ratio and medium value of renew-
able generation ratio, meaning higher costs since the cost for load reduction is
significantly higher than the renewable generation cost. After the iterative pro-
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Fig. 3. MAP-Elites a) initial; and b) final solution archive for a single run.

cess of the algorithm, the final elite archive of the algorithm can be obtained,
as Fig. 3b) shows. Compared to the initial archive, a higher diversification is
achieved through the variation processes, and better elites are stored in the final
archive. The best elites in this archive are present for lower to mid-range DR ratio
values and mid-range renewable ratio values, which means that the aggregator
requested less load reduction through DR programs resulting in lower costs.

Concerning the elite archive for the VS MAP-Elites algorithm, Fig. 4 shows
the initial archive of elites. Similar to the initial archive of MAP-Elites, the
archive has little to no diversification, where the solutions stored present high
costs due to the behaviors of the ERM problem, mainly of the DR ratio. The
final elite archive of VS MAP-Elites is shown in Fig. 4b), where in comparison
to the final archive of the MAP-Elites, higher diversification of the search space
was achieved, resulting in better elites with lower costs. In this archive, the
best solutions resulted in lower DR ratio values in the behavior with lower to
mid-range values in the renewable generation ratio. Utilizing both resources still
presents costs to the aggregator, mainly the DR, where the worst elites stored
present high DR ratio values.

Note that the archives for both metaheuristics were presented for a single
optimization run. We assumed the best run out of the 20 runs performed in the
simulations.

The graphic convergence of both metaheuristics for a total of 200 iterations
is presented in Fig. 5, where the black line shows the average convergence over
the 20 runs for the MAP-Elites algorithm, and the red line shows the average
convergence of the VS MAP-Elites metaheuristic. The graphic also shows the
fitness variance in the 20 trials as boxplots. The MAP-Elites algorithm presents
higher fitness values compared to VS MAP-Elites, as expected, and some outliers
are noticed between iterations 10 and 20, 50 and 90, and 110 and 130. Also,
MAP-Elites seems to stabilize the convergence curve around iteration 170 fully.
In comparison, VS MAP-Elites presents more dispersed fitness outliers, with
larger variance between runs. The VS MAP-Elites seems to not fully converge,
as no stabilization in the convergence curve was noticed, so increasing the number
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Fig. 4. VS MAP-Elites a) initial; and b) final solution archive for a single run.

Fig. 5. Convergence plot of the MAP-Elites and VS MAP-Elites algorithms.

of iterations would allow the algorithm to improve the cost results but increase
optimization time.

5 Conclusions

An improved MAP-Elites algorithm based on the VS variation processes was
proposed in this work for centralized day-ahead risk-based ERM problem con-
sidering extreme events for a distribution network with high integration of renew-
ables and EVs. This version, what we called VS MAP-Elites, was then compared
to the standard version of the algorithm regarding cost results and elite archive
diversity considering two different problem characteristics or behaviors (DR ratio
and renewable ratio).

Regarding cost results, the VS Map-Elites algorithm showed lower objective
function costs when compared to MAP-Elites, around 25 %, since a reduction in
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risk costs was achieved, diminishing the impact of the worst scenario, because
VS MAP-Elites reduced this scenario costs by around 25 % also. When ana-
lyzing the elite archives of both tested metaheuristics, VS MAP-Elites has a
more diverse elite archive with better solutions when compared to MAP-Elites,
regarding solutions with lower DR ratio, since the use of DR brings higher costs
to the aggregator and also renewable generation ratio with lower to mid-range
values. In the latter, even though renewable generation costs are low compared
to DR costs, they still represent a cost to the aggregator, so it was expected that
better solutions regarding total costs would fit with lower ratios. We can con-
clude that through diversification of the search space, the VS MAP-Elites was
able to outperform MAP-Elites, achieving a better elite archive for the problem
characteristics.

Concerning future research, additional behaviors interesting to analyze in the
day-ahead risk-based ERM problem could be considered, and how they would
affect the performance of the algorithms, since in this work, only two different
problem behaviors were analyzed. Another venue that could be explored is the
integration of other variation processes based on other metaheuristics, which
already showed good performance for this type of energy problem.
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Abstract. The energy resource management problem in energy systems
is hard to optimize, mainly due to non-linear restrictions and a large
number of variables involved. This is partly because of the increased
integration of distributed energy resources. Computational intelligence
optimization techniques, namely evolutionary algorithms, are regarded
as efficient techniques for identifying optimal and near-optimal solutions.
However, these algorithms usually have in their design several parame-
ters that need to be set and, in most cases, tuned for a given problem to
find good solutions. This work proposes an automatic configuration app-
roach of different differential evolution strategies using the irace package
to solve a centralized day-ahead energy resource management problem.
The problem considers an aggregator managing multiple resources, such
as renewable generation, battery energy systems, electric vehicles, and
loads with demand response capabilities. The aggregator aims to min-
imize operational costs and maximize revenues to obtain a profit. We
compare the results of a “manual” tuning of parameters with the results
obtained with the auto-tuned parameters using irace. Results show that
the automatic configuration improves the profits of the aggregator in
almost all strategies (except for DE/either-or-algorithm/1), getting the
best results, an improvement of around 7%, with the automatically tuned
DE/target-to-best/1 mutation strategy.

Keywords: Automatic tuning · Differential evolution · Energy
resource management · Evolutionary algorithms · Iterated racing ·
Optimization

1 Introduction

The socio-economic situation of the energy sector is complex, necessitating exten-
sive research and planning. In reality, many of the issues in this area are com-
plicated and have traits like high dimensionality, a large number of restrictions,
lack of information, and noisy and corrupted data due to the large uncertainty in
the energy system [1,2]. Also, these problems frequently involve temporal limits
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that require solutions to operate in almost real-time [3]. Consequently, finding
effective and exact solutions in a reasonable amount of time is still an issue that
needs to be addressed for many energy problems.

Consider, for example, the energy resource management (ERM) in distribu-
tion networks. In such a problem, due to the grid constraints, we are dealing
with a mixed-integer non-linear programming (MINLP) formulation, which is
tough for mathematical methods to solve. Algorithms based on computational
intelligence (CI), in this context evolutionary algorithms (EAs), have shown to
be particularly well suited for this type of problem since they produce good
results in a useful time. As such, they provide an effective optimization alter-
native to mathematical methods for problems in the energy domain [4]. These
algorithms are also more tolerant to uncertainty and more suitable for address-
ing the nonlinearities prevalent in energy problems [5]. EAs are in their majority
population-based algorithms with several associated parameters. Due to their
stochastic nature, fine-tuning these parameters becomes essential to achieve fea-
sible solutions to a wide range of problems with a minimum requirement for
robustness [6]. This tuning can be done in different ways, but many authors have
performed this tuning manually through a sensitivity analysis of the parameters
[7]. Manual configuration is extremely time-consuming and needs the develop-
ers’ expertise and knowledge of the specific problem to be solved [8]. Therefore,
exploring automatic configuration methods that efficiently search the parameter
space to find high-performing configurations and removing the drawbacks from
manual configuration is essential in the design of optimizers. Automatic config-
uration methods can be divided into simple generate-evaluate methods (Brute
force [9], and F-Race [10]), high-level generate-evaluate methods (Post-selection
[11]), and iterative generate-evaluate methods (CALIBRA [12], Iterated F-Race
[13], and others) [14]. To our knowledge, such automatic configuration methods
regarding EA optimization for ERM problems have yet to be applied in the
literature, so we believe this work will significantly contribute to this field.

In this paper, we propose an automatic tuning of the parameters of multi-
ple differential evolution (DE) strategies considering the iterated racing F-race
approach present in the irace package in [13] to solve an ERM problem [15]. The
irace package was chosen for its customization (multiple automatic configuration
procedures) and simplicity. In a smart grid problem (SG), a 33-bus distribution
network (DN) is considered with distributed generation sources, electric vehicles
(EVs), battery energy systems (BES), and demand response (DR) programs for
load reduction. An aggregator optimizes resource allocation, minimizing elec-
tricity market purchases during peak hours while maximizing power sales to
the market and meeting the needs of residential customers, EV users, and the
BES. We analyze the experiments made by the irace package to find the best
configuration for the parameters of different DE strategies and present the best
configuration (final elite configuration) for each. In addition, we compare the
results with those obtained with manual tuning made in [15]. The results are
compared in terms of operational costs and the incomes of the aggregator.
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The organization of this paper is as follows. The proposed methodology
regarding the mathematical problem formulation and iterated racing approach
is presented in Sect. 2. The case study employed in this work, concerning the
setting used by irace and the DN, is presented in Sect. 3. The automatic con-
figuration outcomes and the analyses of results are presented in Sect. 4. Finally,
Sect. 5 draws the main takeaways from this work and suggests some possible
topics for further research.

2 Proposed Methodology

The aggregator intends to reduce the operational costs in Eq. 1 for day-ahead
management while maximizing electricity selling to consumers and market trans-
actions in Eq. 2. The decision variables for energy resource generation power, DG
unit commitment, BES and EV schedules, and DR loads, among others, are all
included in the ERM model under study for each unit and each period con-
sidered. The voltage and angles in each bus must also be considered during
scheduling.

2.1 Problem Formulation

The objective function for the day-ahead ERM formulation contemplates the
operational costs associated with multiple resources (previously mentioned) for
the 24-hour horizon with a time step of 1 h.

Operational Costs. Eq. 1 models the operational costs of the ERM model
that the aggregator aims to minimize while maximizing the incomes in Eq. 2.
The first and second terms of Eq. 1 include the costs of DG and excess of gener-
ation imbalance. The third and fourth terms of the equation represent the costs
associated with BES and EV discharging. The fifth and sixth terms represent the
costs associated with the incentive for DR programs and the negative imbalance
from load not supplied. Finally, the income from selling electricity in the market
is represented in the last term.

minfDay+1
OC =

∑

t∈T

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

i∈I

(pDG
(i,t) · CDG

(i,t) + pimb+

(i,t) · C imb+

(i,t) )+
∑

s∈S

pSup(s,t) · CSup
(s,t)+

∑

b∈B

pdis(b,t) · Cdis
(b,t)+

∑

v∈V

pdis(v,t) · Cdis
(v,t)+

∑

l∈L

(pRed
(l,t) · CRed

(l,t) + pimb−
(l,t) · C imb−

(l,t) )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

· Δt (1)

where T is the set of the number of periods (1, 2, 3, ..., 24), I is the set of DG units
(1, 2, 3, ..., Ni), S the set of external suppliers (1, 2, 3, ..., Ns) B represents the set
of BES (1, 2, 3, ..., Nb), V demonstrates the set of EVs (1, 2, 3, ..., Nv), L is the set
of different loads participating in the DR program (1, 2, 3, ..., Nl) and M is the set
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of electricity markets available for the aggregator transactions (1, 2, 3, ..., Nm).
Regarding the parameters, Δt represents the time step which in this case is
considered to be one hour. CDG

(i,t) is the cost associated with DG production in

unit i for the period t (m.u./kWh), C imb+

(i,t) represents the cost of the exceeding

power of DG unit i in periods t (m.u./kWh) and CSup
(s,t) the external supplier s

electricity price for the period t (m.u./kWh). The discharging costs of the BES
and EVs are the parameters Cdis

(b,t), and Cdis
(v,t) for BES b and EV v, respectively

for the period t (m.u./kWh). CRed
(l,t) is the DR cost of the load l (m.u./kWh),

and C imb−
(l,t) is the cost associated with the demand not-supplied to the respective

load (m.u./kWh). The decision variables in this equation are the following, pDG
(i,t),

which is the active power produced by each DG unit i for the period t (kW),
pimb+

(i,t) describes the exceed active power of each DG unit (kW), pSup(s,t) is the active
power supplied by external supplier s in period t (kW). The active discharging
power of each BES and EV is given by pdis(b,t) and pdis(v,t) respectively (kW). The
load curtailment power of load l for period t is represented by the variable pRed

(l,t)

(kW) and the non-supplied power is given by pimb−
(l,t) (kW).

Aggregator’s Incomes. In Eq. 2, the aggregator earns revenue from BES and
EV charging, modeled with the first and second terms; revenue from selling
electricity to residential loads with the third term; and offers for the electricity
market with the fourth term. The aggregator needs to maximize this function
to achieve profits in the day-ahead optimization. That is, the values obtained in
Eq. 2 need to be superior to those in Eq. 1.

maxfDay+1
In =

∑

t∈T

·

⎛

⎜
⎝

∑

b∈B

pcha(b,t) · Scha
(b,t)+

∑

v∈V

pcha(v,t) · Scha
(v,t)+

∑

l∈L

pLoad(l,t) · SLoad
(l,t) +

∑

m∈M

pSell(m,t) · SSell
(m,t)

⎞

⎟
⎠ · Δt (2)

where Scha
(b,t) and Scha

(v,t) are the parameters associated with the prices of BES
and EV charging (m.u./kWh). SLoad

(l,t) represents the tariff of load l in period
t (m.u./kWh) and SSell

(m,t) is the price of selling electricity in market m in each
period t (m.u./kWh). pLoad(l,t) is the parameter of day-ahead load forecast in period
t (kW). pcha(b,t) and pcha(v,t) are the variables of active charging power of each BES
b and EV v (kW). The variable associated with power sold in the electricity
market m in each period t is pSell(m,t) (kW).

Objective Function. The cost minimization problem is defined in Eq. 3, where
the aggregator subtracts the incomes from the operational costs to obtain a
profit.

minimize z(x) = −fDay+1
In + fDay+1

OC (3)

The complete mathematical formulations of the problem regarding all grid
constraints and resource constraints that the objective function (Eq. 3) is subject
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to can be found in [16]. In this paper, only the main network constraints are
shown as follows:

Active and reactive power balance:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

i∈Ωj
I

(pDG
(i,t) − pimb+

(i,t) )+
∑

s∈Ωj
S

pSup(s,t)+

∑

b∈Ωj
B

(pdis(b,t) − pcha(b,t))+
∑

v∈Ωj
V

(pdis(v,t) − pcha(v,t))+

∑

l∈Ωj
L

(pRed
(l,t) + pimb−

(l,t) − pLoad(l,t) )− ∑

mΩj
M

pSell(m,t)−

V(j,t) · ∑

k∈K

V(k,t)(G(j,k,t) · cosθ(j,k,t)+

B(j,k,t) · sinθ(j,k,t))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0

∀t,∀j, k �= j

(4)

⎛

⎜
⎜
⎜
⎝

∑

i∈Ωj
I

QDG
(i,t) +

∑

s∈Ωj
s

QSup
(s,t) − ∑

l∈Ωj
L

QLoad
(l,t) −

V(j,t) · ∑

k∈K

V(k,t)(G(j,k,t) · sinθ(j,k,t)−
B(j,k,t) · cosθ(j,k,t))

⎞

⎟
⎟
⎟
⎠

= 0

∀t,∀j, k �= j

(5)

where K is the set of buses (1, 2, 3, ..., Nk), Ωj
I is the set of DG units at bus

j of the network, Ωj
S the set of external suppliers at bus j, Ωj

B is the set of
BES at bus j, Ωj

V is the set of EVs at bus j, Ωj
L represents the set of loads at

bus j, and Ωj
M is the set of electricity market buyers at bus j. Regarding V(j,t)

represents the voltage magnitude at bus j in the period t (p.u.). G(j,k,t) and
B(j,k,t) represent the real and imaginary part of the line admittance from bus j

to bus k for the period t (Ω−1). QDG
(i,t) (kvar), QSup

(s,t) and QLoad
(l,t) are the reactive

powers of DG unit i for period t (kvar), the reactive power of external supplier
s in period t and the reactive load power l for the period t (kvar).

Voltage magnitude and angle levels:

V min
(j,t) ≤ V(j,t) ≤ V max

(j,t) ∀t,∀j (6)

θmin
(j,t) ≤ θ(j,t) ≤ θmax

(j,t) ∀t,∀j (7)

where V min
(j,t) and V max

(j,t) represent the minimum and maximum limits for the volt-
age magnitude at bus j for the period t (p.u.). The θmin

(j,t) and θmax
(j,t) are the

minimum and maximum voltage phase angles at bus j in period t (rad).

Thermal line limits:
∣
∣
∣
∣
V(j,t)([(V(j,t) − V(k,t))y(j,k,t)]∗+

[V(j,t) · 1
2yShunt j ]∗)

∣
∣
∣
∣ ≤ Smax

(j,k,t)

∀t,∀j, k �= j
(8)
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where y(j,k,t) is the line admittance from bus j to bus k for the period t t (Ω−1),
yShunt j is the shunt admittance of the line connected to bus j t (Ω−1) and
Smax
(j,k,t) is the maximum apparent power flow in the line from bus j to bus k in

period t (kVA).

2.2 Differential Evolution Strategies

DE is a population-based EA for continuous optimization. DE combines solu-
tions from the population using a linear operator. New solutions are generated at
each iteration and evaluated in a given fitness function to optimize a particular
problem. The algorithm retains the solutions with better performance, and solu-
tions with lower fitness values are replaced in the iterative process. The phases
of this method are as follows: first, a solution (target vector) is formed; next, a
donor vector is generated by mutation (by a combination of different solutions
in the population); and last, a trial vector is generated through a recombina-
tion operator between the target vector and the donor vector. The way in which
the donor vector is created can have variations that give rise to different DE
strategies. The reader can consult [15] to get specifics on these DE strategies.

We briefly discuss four well-known DE mutation strategies applied in this
work to address the ERM problem and to apply the automatic configuration
package. The first DE strategy is the DE/rand/1 strategy, where a linear com-
bination of three randomly selected solutions creates the donor vector. In the
second strategy, the DE/target-to-best/1, the base vectors are chosen following
a line formed by the target vector and the best-so-far vector (i.e., the best-so-far
solution found in the iterative process). In the third strategy, the DE/rand/1
with dither, the operator uses a random variation of the scale factor (dither),
which is incorporated in the formulation of the donor vector. Finally, in the
DE/rand/1/either-or, either a three-vector pure mutation method (like standard
DE), with probability pm, or a random recombination technique, with probabil-
ity 1-pm, is used to create the mutant vector.

For a full explanation of the solution encoding used for DE optimization and
the formulations of the different DE strategies, the reader can be directed to
[15].

2.3 Iterated Racing

Figure 1 shows the automatic configuration approach based on iterated racing for
the multiple DE strategies. Initially, irace needs an input scenario that allows
irace to run and evaluate the various configurations based on iterated racing.
The finite number of configurations to start the race is related to the maximum
experiment budget given in the scenario. Additionally, each DE parameter for
irace to configure (i.e., name, type, range) is also set in the scenario, together with
an initial configuration that irace first evaluates and forbidden configurations in
terms of logical expressions between parameters, which irace does not consider.
Each DE strategy is also passed as input to obtain the auto-tuning parameters
for the respective strategy.
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Fig. 1. Proposed method for automatic configuration of the multiple DE strategies
using irace.

Irace then calls the target-runner, which is in charge of analyzing
a specific target algorithm configuration (φc) of a particular instance
(Insj(instance, seed)) and returning the appropriate cost value (z(φc, Insj)).
In this case, since we omitted different training instances due to the charac-
teristics of the problem in [15], irace only considers different random seeds as
instances. The target-runner evokes the DE day-ahead ERM optimization prob-
lem (implemented in MATLAB) to obtain the respective mean cost results over
several runs.

After irace finishes the iterative process, it selects the best-performing con-
figurations and the so-called elite configurations (φec) based on the lowest mean
cost values.

3 Case Study

This section describes the case study used to validate the proposed approach. The
case study includes data regarding energy resources and the parameterization
needed for irace to perform auto-tuning.

3.1 33-Bus Distribution Network

The SG consists of a medium voltage 12.66 kV 33-bus distribution network [17]
used to test the multiple DE strategies and automatic tuning of irace. The 33-bus
network scenario includes 1800 EVs with V2G capabilities, 67 DGs (including
a sizable wind turbine), 10 external providers, and 15 BES. In bus 33, external
suppliers are represented as a substation linked to the main grid. Figure 2 shows
the total forecasted load demand comprising 32 residential consumers and the
total forecasted renewable generation (PV and wind) for the day-ahead opti-
mization. Direct Load Control (DLC) contracts as low as 0.02 m.u./kWh are
also considered. Consumers receive this advantage for each lowered energy unit
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Fig. 2. Total forecasted day-ahead load demand and renewable generation.

instead of paying the 0.14 m.u./kWh supply price agreed upon by the aggrega-
tor. The selling price for energy is also fixed at 0.14 m.u./kWh. Additionally, a
fleet of 1800 EVs with V2G capabilities is considered, with a forecast of 13.77
MWh total energy needed for 2553 trips. EV and BES have a discharge cost of
0.19 m.u./kWh. EV and BES have charging/discharging efficiencies set at 70%
and 90%, respectively.

Modeling these EV trips was done using an EV travel behavior simulator
tool suggested in [18]. With the aid of this simulator, we can gather information
about each EV’s trip, including the maximum charge and discharge rates, the
minimal amount of charging necessary for the EV to complete its journey in the
upcoming hour (or hours), as well as many other variables that are used as input
for the optimization.

3.2 Irace Parameterization

The DE algorithm used in this work only needs four different parameters to be
set. Table 1 shows each parameter, where NP is the population size, maxIt is
the maximum number of iterations the algorithm performs, and F and Cr are
the scale factor and crossover probability, respectively. These parameters must
be set and passed to irace, giving the software the type of each parameter (e.g.,
NP and maxIt are integer parameters). It is also needed to set the range of
values for each parameter, i.e., the search space that the irace algorithm uses to
find the best configurations. We set these ranges according to the manual tuning
performed in [15] and also consider the computation effort in the search space.

Irace starts with an initial configuration to be set and tested first; if results are
satisfactory, similar configurations will be generated and tested. Table 1 presents
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Table 1. DE parameters.

Parameter Type Parameter range Initial value

NP i (10,100) 20

maxIt i (1,500) 100

F r (0.00,1.00) 0.30

Cr r (0.00,1.00) 0.50

the values for the initial configuration given to irace, starting from the initial
point considered in the previous work where F , Cr, NP , and maxIt were set to
0.3, 0.5, 20, and 100, respectively. These values did not result from an a priori
tuning. They were just randomly set and given to irace.

Additionally, to be in conformity with [15], we set the maximum number of
function evaluations (FEs) that the algorithm can test to 10,000 (NP ×maxIt ≤
10, 000). We set this restriction as a forbidden configuration to avoid testing com-
binations of NP and maxIt that result in a large number of FEs. Finally, a max-
imum of 300 experiments, which sets the tuning budget, limiting the total num-
ber of executions. This number represents the maximum tuning budget used for
irace, i.e., the number of configurations evaluated for each instance. We noticed
that increasing this value would greatly increase simulation time since more
configurations would need to be tested.

We implement and evaluate the irace package on a Linux virtual machine
running Ubuntu 22.04.1 LTS equipped with an Intel Xeon Gold 5120 processor
operating at 2.20GHz and 16GB of RAM. The irace package used a target-
runner developed in Python 3.6.10, and the DE optimization strategies were
implemented in MATLAB R2018a.

4 Results and Discussion

This section presents the results and the experiments made using irace for the
parameter auto-tuning of the multiple DE strategies. Also, we compare the best-
obtained automatic tuning configurations with those found with the manual
tuning in [15].

4.1 Auto-tuning Experiments

Irace simulations were done for a total of 10 runs and 10,000 function evaluations
(FEs) for each DE optimization in MATLAB. That is, the MATLAB code is run
for 10 trials when it is called by the target-runner in irace.

Concerning the experiment process, Fig. 3 shows the performance of the elite
configurations in each iteration of irace for the DE/rand/1 strategy. The figure
shows the best configurations for ten instances (random seeds) evaluated. The
final best configuration found by irace for this strategy was configuration 24,
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Fig. 3. Elite configuration performance by iteration of irace for DE/rand/1 strategy
(in green the best configuration). (Color figure online)

which presented the lowest mean cost value (-4,215.31 m.u.). Notice that, even
though configuration 51 gives lower values, irace did not obtain cost results for
this configuration in all the ten tested instances (only for 8 of those), which
is why this configuration was not chosen as the best. That is, in two out of
ten evaluated instances, irace did not obtain any cost results (presented NA
results), disregarding this configuration as the best (more robust) for this DE
strategy because the race terminated before the instances were considered for
this configuration. Figure 4 presents the performance of the best elite configura-
tions for the DE/target-to-best/1 strategy, similar to the preceding case. In this
situation, only configuration 49 was considered elite in the final iteration, with
the others being discarded by the statistical test done by irace. This configura-
tion presented a mean cost value of -4,053.93 m.u. for nine seeds, a reduction of
189.08 m.u. compared to configuration 2 (best elite in iteration 4).

Figure 5 shows the iterative process regarding the elite configurations for the
DE/rand/1 with dither mutation strategy. The figure shows that configuration
27 was the best-performing configuration with the lowest mean cost value com-
pared with configurations 9 and 13, which were also elites in the last iteration.
Configuration 27 obtained –4,173.36 m.u., a decrease of 2.78% compared to con-
figuration 13 and 11.38% compared to configuration 9. Similar to the DE/target-
to-best/1, only one elite configuration was obtained with DE/rand/1/either-or
strategy in the last iteration of irace, with the rest being discarded, as Fig. 6
shows. In this strategy, the best-performing configuration was configuration 52
(the last configuration evaluated by irace), with a mean cost value of –4,144.43
for 9 instances.
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Table 2. Best elite configurations obtained by irace.

Strategy NP maxIt (60k FEs) F Cr

DE/rand/1 37 249 (1,622) 0.28 0.39

DE/target-to-best/1 21 425 (2,857) 0.57 0.10

DE/rand/1 with dither 27 428 (2,222) 0.03 0.25

DE/either-or-algorithm/1 49 181 (1,224) 0.25 0.33

We took the final best elite configurations for each proposed DE mutation
strategy. The parameters of the best elite configurations given by irace are pre-
sented in Table 2.

The DE/rand/1 and DE/either-or-algorithm/1 strategies performed better
for higher values of NP and lower values of maxIt compared to the other two
strategies. Notice that the obtained parameters were found for 10,000 FEs due to
the computational effort, which is a smaller number of FEs than the one used in
[15] for the final result comparison. Thus, for a more realistic comparison of the
final results presented in Sect. 4.2 of [15], we updated the number of iterations
based on the NP parameter to match the 60,000 FEs used to solve the ERM
optimization problem in the cited paper.
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4.2 Manual vs. Automatic Tuning ERM Results

Before starting the comparison with the manual tuning performed in [15], we
take the configuration space tested manually and show where our automatic
tuning lays in those configuration spaces. Figure 7 show heatmaps representing
the performance of configurations tested in [15].
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Fig. 7. Auto-tuning points for F and Cr compared to the manual analysis of DE
strategies. (a) DE/rand/1. (b) DE/target-to-best/1. (c) DE/rand/1 with dither. (d)
DE/rand/1/either-or (in blue, the best F and Cr parameters found with auto-tuning).
(Color figure online)

A darker color represents a better performance of a specific combination of F
and Cr parameters. We then plot the best configuration found with irace auto-
matic tuning as a blue point in that figure. It can be noticed in Fig. 7(a) that
the manual tuning for DE/rand/1 showed good performances for Cr between
[0.3,0.8] and F in the range of [0.3,07], whereas irace obtained values for F
and Cr near that area. In contrast, Fig. 7(b) shows that for the DE/target-to-
best/1 strategy, the F and Cr point acquired by irace does not fall inside the
ranges where the manual tuning showed good fitness results (specifically found
for higher values of F (between 0.7 and 1) and [0.3,0.7] for Cr). Figure 7(c)
shows that, again, the auto-tuning configuration of DE/rand/1 with dither
strategy obtained is within the range of values for F and Cr recommended
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Table 3. Comparison of each algorithm’s manual and automatic profit and cost results.

Strategy Manual tuning (m.u.) Automatic tuning (m.u.)

Avg. Profits ± std In OC Avg. Profits ± std In OC

DE/rand/1 4,458.99± 20.48 19,939.98 15,480.99 4,705.11± 9.63 19,724.46 15,019.35

DE/target-to-best 4,151.39± 28.46 20,356.94 16,205.55 4,465.51± 13.26 19,699.04 15,233.53

DE/rand/1 with dither 4,610.24± 19.15 19,798.25 15,188.02 4,633.38± 14.78 19,809.28 15,175.91

DE/either-or-algorithm/1 4,746.70± 6.46 19,624.75 14,878.05 4,307.64± 42.00 19,001.98 14,694.34

by the manual tuning. Finally, similarly to what occurred with the DE/target-
to-best/1 strategy, Fig. 7(d) shows an automatic tuning configuration for the
DE/rand/1/either-or strategy a bit out of the recommended ranges of the man-
ual tuning. Note that in the manual tuning, the NP and maxIt parameters were
fixed values, but in irace, these parameters are optimized together with F and
Cr, so these figures do not ideally represent the performance of irace since the
other parameters also need to be taken into account.

Comparing the manual tuning of the DE strategies for the NP parameter
to the automatic configuration, the manual tuning obtained the best results
for a NP value of 30 in all strategies. In contrast, the automatic configuration
obtained more specific values for each strategy, as shown previously, and the
number of iterations was uploaded accordingly to the maximum number of FEs.
Table 3 gives the average profit results (Eq. (3)) obtained with the best manual
configuration found in [15] and the automatic configuration found using irace.
50 trials were done using the best automatic configurations found (remember
that 60,000 FEs were considered for a fair comparison). The table shows that
the automatic configuration for each DE strategy showed better results, except
for the DE/either-or-algorithm/1, where a decrease of 9.25% compared to the
manual configuration was registered. Regarding the average optimization time,
the automatic tuning was faster in all strategies. The running time for the manual
tuning took around 60 min in all algorithms, while the automatic tuning took
about 40 min.

The decrease in performance for the automatic tuning of the DE/either-or-
algorithm/1 strategy is justified by the low incomes obtained, shown in Table 3,
compared to the manual configuration. The parameters provided by irace for
DE/rand/1 showed an increase in profits of 246.12 m.u. in the ERM optimization
compared to the original work. This improvement is given mostly by a decrease in
operational costs of 2.98% compared to the costs obtained by the manual config-
uration (Table 3). Concerning the DE/target-to-best/1 strategy, the automatic
configuration found a solution that increases the profits by 314.12 m.u. com-
pared to the manual configuration. This increase is accomplished by the reduc-
tion in operational costs of 972.02 m.u., even though the auto-tuned obtained
less income (657.90 m.u.) compared to the manual tuning, evidenced in Table 3.
Regarding the DE/rand/1 with dither mutation strategy, the auto-tuning pro-
vided a slightly better solution, with the incomes and operational costs being
similar.



58 J. Almeida et al.

5 Conclusions

In this work, we proposed automatically tuning multiple parameters for diverse
DE mutation strategies using irace. Irace is a software package that utilizes
iterated racing for automatic configuration evaluations. We compared the results
obtained with the auto-tuning with those obtained using a manual configuration
in a centralized day-ahead ERM optimization problem.

Results showed that the parameters obtained in the automatic configuration
found better optimization solutions for all proposed DE strategies except for
DE/either-or-algorithm/1. The decrease in performance for this strategy (worse
profit results) can be justified by the number of maximum experiments estab-
lished in the setting of the irace software. An increase in this specific parameter
would allow irace to test more configurations, allowing it to test and find better
configurations with this strategy (and with the rest of the tested strategies).
However, increasing this parameter would also increase execution time as more
optimization trials would be required. This is important to recall since automatic
tuning is intended to be a more efficient method to configure our algorithms;
thus, performing an adequate number of tests is key to achieving such efficiency.
Still, the automatic tuning was insufficient to find a better configuration than
the one found with the manual tuning for the DE/either-or-algorithm/1. Nev-
ertheless, the automatic tuning found an acceptable solution with DE/rand/1
strategy, a solution that is just 0.88% worse than the best solution found with the
manual tuning configuration. These results show that despite the advantages of
automatic tuning, there is still room for improvement when using such methods.

As interesting venues for future research, new tests could be implemented
with an increase in the maximum tuning budget, increasing the number of eval-
uated configurations, and increasing the computational time. Also, we could
explore the efficiency of the method when initial configurations for each strategy,
based, for example, on the best configuration found with the manual tuning, are
provided as starting points. Additionally, more instances of the problem with
modified characteristics would be required to validate the algorithms’ perfor-
mance and guarantee a more general algorithm parameterization.
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Abstract. Crowdsourcing data science competitions has become popular as a
cost-effective alternative to solving complex energy-related challenges. However,
comprehensive reviews on hosting processes remain scarce. Therefore, this paper
undertakes a detailed review of 33 existing data competitions and 12 hosting plat-
forms, complemented by an in-depth case study of the ADRENALIN load dis-
aggregation competition. The review identifies essential elements of competition
procedure, including platform selection, timeline, datasets, and submission and
evaluation mechanisms. Based on proposed 16 evaluation criteria, the similarities
and differences between data competition hosting platforms can be categorized
into platform scoring and popularity, platform features, community engagement,
open-source platforms, region-specific platforms, platform-specific purposes, and
multi-purpose platforms. The case study underscores strategic planning’s critical
role, particularly platform selection. The case study also shows the importance of
defining competition scope which influences the whole competition content and
procedure, especially the datasets.

Keywords: Data science competition · Data competitions · Competition
Platforms · Competition timelines

1 Introduction

The phenomenon of crowdsourcing solutions to data problems through competitive
platformshas grown immensely popular over the last decade.These competitions serve as
a cost-effective alternative to traditional hiring, fostering a broad spectrum of innovative
solutions by harnessing the collective intelligence of global participants. For competitors,
these events offer a remarkable opportunity to learn new techniques, refine their skills,
and augment their professional portfolios.

This trend is particularly vital in the energy sector, where data-driven solutions are
crucial for addressing complex energy-related challenges and problems {Christensen,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. N. Jørgensen et al. (Eds.): EI.A 2023, LNCS 14467, pp. 60–76, 2024.
https://doi.org/10.1007/978-3-031-48649-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48649-4_4&domain=pdf
http://orcid.org/0009-0004-4183-4340
http://orcid.org/0000-0002-9134-1032
http://orcid.org/0000-0001-5678-6602
https://doi.org/10.1007/978-3-031-48649-4_4


Standard Energy Data Competition Procedure 61

2019 #62}. From energy efficiency and load forecasting to renewable energy integration
and grid stability, data competitions play a significant role in generating groundbreaking
solutions and accelerating the energy transition {Vanting, 2021 #109}.

Numerous companies and platforms, such as Kaggle, specialize in hosting these
competitions. The selection ranges from free platforms to premium services, where
professional teams aid in the competition’s management. Choosing the hosting platform
is one of the many pivotal decisions that underpin the successful execution of a data
science competition.

While guidelines for hosting or setting up these competitions do exist, such as Kag-
gle’s community competition setup guide [7] and Chalearn’s guide [9], there is a notable
lack of a comprehensive review that considers the entire process. This paper aims to
fill this gap by thoroughly examining the hosting process of data science competitions,
drawing insights from 33 prior competitions hosted in 2021 and 2022 by the NeurIPS
2022 conference (25 out of 33 competitions) [12] and other conferences on the AIcrowd
platform. These competitions were collected in 2022 and they tackle a large variety of
topics, including reinforcement learning, computer vision and forecasting.

To enrich our exploration, we present a case study - the ADRENALIN load disaggre-
gation competition [14]. This competition is an integral part of theADRENALINproject,
a strategic initiative to crowdsource energy solutions for buildings. This paper provides a
comprehensive review of standard energy data competition procedures and their impor-
tance in addressing energy-related challenges, with a spotlight on the ADRENALIN
case.

The paper is organized as follows: The paper will first review the process of com-
petition hosting. First, it looks at the official websites and platforms for competition
hosting, and then analyses the stages, and durations of the competitions. Afterward, it
looks into the technical parts of a competition, by reviewing the datasets, the starter kit,
the submission, the evaluation, and the competition description. After the review, the
paper showcases the case study of the ADRENALIN load disaggregation competition.

2 Review of Data Competition Procedures

The review of the 33 data competitions shows that a data competition includes the
following 7 elements:

2.1 Official Website

Every online competition necessitates an official website. These websites serve as the
primary source for sharing up-to-date information about the competition, equipping par-
ticipants with everything they need to compete. They provide background information,
the problem statement, evaluation procedures, prizes, and details about sponsors and
hosting organizations. They also offer guidance on the submission process, where to
submit, and access to the dataset.

In addition to these websites, many competitions maintain a GitLab or GitHub page,
as observed in 17 of the investigated competitions [17]. These platforms primarily func-
tion as repositories for sharing information. The competition description is usually incor-
porated in the readme.md file, displayed on theGitHub page. They can also host datasets,
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starting kits, reinforcement learning environments, or any other necessary tools. These
resources can be effortlessly downloaded or forked by Git users. AIcrowd, for example,
frequently utilizes its own GitLab to manage code submissions [17].

Among the 33 examined competitions, 27 maintained more than one website. How-
ever, it is not uncommon to solely use a data competition hosting platform for all pur-
poses. Of the 33 competitions, six employed one of the hosting platforms as their official
website. Of these, two used AIcrowd [18, 19], two used Kaggle [20, 21], and one-one
used Codalab [22] and EvalAI [23].

2.2 Hosting Platforms

Figure 1 shows the distribution of the used platforms in the 33 analyzed competitions.
The figure shows that 10 of the competitions did not use a hosting platform. These used
their own websites to organize the competition, handling submissions by uploading on
thewebsite, or through othermeans, such asGoogleDrive. Three of thesewere hosted by
the Institute of Advanced Research in Artificial Intelligence [24–26], which has hosted
multiple competitions on its own website. The most used platform was Codalab, used 8
times, followed by AI crowd, used 7 times. The other three platforms used in the sample
of 33 competitions, were EvalAI 4 times, Kaggle 3 times, and DrivenData once.

Fig. 1. Platforms used for the 33 reviewed data competitions.

There are many platforms designed to host data science competitions. One of the
most important features of these platforms is the automatic evaluation of the submis-
sions. Using the automatic scoring, a live leaderboard can be maintained throughout the
competition. This helps competitors see how well their solution fares compared to the
others. Since the evaluation is done automatically, it also ensures that the rankings are
unbiased.

This paper applies 16 criteria (as shown in Table 1) to evaluate the 12 data com-
petition hosting platforms, extending, and updating a comparison previously made by
David Rousseau and Andrey Ustyuzhanin [27]. These hosting platforms are AiCrowd,
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Table 1. Platforms comparation criteria

Criteria Description

1 Code-sharing Code sharing gives participants an
opportunity to share their work. This can
help the community to find better solutions
and increase the reproducibility of the
winning solutions

2 Code submission Platforms that allow code submission can
automatically run the submitted code to
produce the predictions. Code submission
has some advantages over result submission

3 Active community Does the platform have an active community,
that will join the competition, and actively
participate in it

4 Staged challenge Is it possible to create a competition with
multiple different stages

5 Custom metrics Does the platform allow the hosts to define
their own evaluation metrics or is it only
possible to select from a list of predefined
metrics

6 Private evaluation Private evaluation allows the competition
hosts to evaluate the submissions without
sharing the test data with the hosting
platform. This is useful if the privacy of the
test set needs to be protected

7 Multi score leader board Multi-score leaderboards allow the
competitions to have multiple scores
calculated from the submissions and posted
on the leaderboard

8 Human evaluation Some sites allow the hosting of competitions,
where automatic scoring is replaced with
human-in-the-loop evaluation

9 Open-source Open-source platforms have higher
transparency of their workings, and hosts
have the option to set up their own servers by
using the source code

10 RL-friendly Reinforcement learning is a unique type of
ML, where the agents need to communicate
with the environment. This requires a unique
setup, not supported by all platforms

(continued)
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Table 1. (continued)

Criteria Description

11 Run for free Some platforms allow the hosting of
competitions free of charge

12 Discussion forum Most platforms provide a forum for each
competition, where the contestants can
communicate with each other and with the
organizers. Common topics include sharing
ideas, looking for teammates, or discussing
issues they came across

13 Technic support Platforms marked as “certain” are designed
for the users to set up technical support by
themselves, relying only on the
documentation. Despite this, the platform’s
creators and operators can be contacted
directly with inquiries

14 Arrangement and management services Does the platform provide services for
arranging and managing data competition
events

15 Ease of use for hosting How easy is it to host and set up a data
science competition on the platform

16 Ease of use for participation How easy is it to join and participate in a
competition. This includes registration,
submission, etc

CodaLab, CrowdAnalytiX, EvalAI, Kaggle, RAMP, Tianchi, Driven Data, Zindi,
Topcoder, Bitgrit, and HackerEarth. This comparison is shown in Table 2.

The comparison shows that the similarities and differences among the reviewed 12
platforms can be categorized into:

Platform Scoring and Popularity. In this comparison, Kaggle was the highest-scoring
platform, with 14 points. As Kaggle is the most known and most used platform, compe-
titions hosted here normally attract the most participants. AIcrowd follows as the second
scoring 13.5 points. With 13.25 points, the third competition in ranking is Eval.AI, one
of the fully open-source and free competition hosting platforms on this list. Ranking
fourth with 12.75 points is Codalab. Driven Data also has an active community, though
not quite as large as some other platforms.

Platform Features. Kaggle has also become more flexible over time, and competitions
of all categories can be found on the platform. It is important to note, that Kaggle has
both free and paid competitions. A free competition is very easy to host, but it has
some restrictions compared to the paid version and would score lower. This version
lacks some features, such as custom metrics (although there are many metrics to choose
from), human evaluation, and technical support. AIcrowd does not have a free version. It
is a flexible platform, with many different competitions hosted, which is the main reason
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for its high score. Codalab allows hosts to make significant changes to almost all aspects
of the competition after its initial setup, using the dashboard on the website.

Community Engagement. Kaggle, AIcrowd, and Driven Data have active communi-
ties, with Kaggle attracting the most participants. AIcrowd usually has a few hundred
competitors, and a few threads in the discussion forums. Driven Data, while not as large
as some other platforms, hosts large competitions with substantial prize money.

Open-source Platforms. Eval.AI and Codalab are fully open-source and free compe-
tition hosting platforms. Eval.AI offers an email where it is possible to get in contact for
those who have questions or have run into problems with the setup. A documentation
can also be found, which includes a guide on how to set up competitions. Codalab also
has good documentation online, and multiple example competitions can be found on
Codalab’s GitHub page.

Region-Specific Platforms. Tianchi, operated byAlibaba Cloud, is considered the Chi-
nese equivalent of Kaggle. Ramp is an open-source platform, developed by the Paris-
Saclay Center for Data Science and is mainly used by the University of Paris-Saclay
to host competitions. Zindi is a platform that aims to support the African data science
community.

Platform-Specific Purposes. Kaggle, Tianchi, and Zindi are not only about the compe-
tition but a central hub for learning and networking. The website for Tianchi serves as a
sharing point for datasets, data science learning, and getting in touchwith other computer
scientists through the forums. Zindi also facilitates learning and job searching.

Multi-purpose Platforms. Topcoder, unlike the other platforms, is not specialized
to host Data science competitions. It offers different tracks, such as ones called
development, design, and QA (Quality assurance).

2.3 Competition Descriptions

The information shared on the websites and the official competition platform is impor-
tant, as the participants read these to decide if they want to join the competition, or not.
This is also their source of information, for what the competition is about, what they
should do, and what they should expect from the competition. Competition descriptions
usually have the following parts:

Background Information. This explains what the purpose of the competition is and
what is the importance of the task the participants are trying to solve.

Problem formulation explains what the task is, and what is the target column in the
dataset. It needs to be clear, so the participants know what they are going to be working
on for the duration of the competition.

The timeline of the competition describes all of the deadlines, starts, and end dates
of each competition phase.

The prizes section describes what prizes are available at the competition. This
is usually prize money, split between the top finish contestants, but it can also be a
publication opportunity or a conference or workshop invitation. In one competition the
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top finishers got offered a position, and in another one items were given out as special
prizes.

The dataset description explains what the available dataset contains. Usually
explains each file, and each column in the dataset.

The submission section describes the submission process, whether it is code or
result, what needs to be uploaded, and where.

A description of the evaluation process usually discusses the evaluation metric,
and how the private evaluation takes place.

Competitions usually need a set of rules, this usually asks the competitors to avoid
things that could be considered cheating. Such as privately sharing code to take multiple
top positions, and trying to find ways to abuse the submission system, such as creating
multiple accounts to circumvent the submission limits.

2.4 Timeline and Stages

Competitions have a timeline, marking the most important dates of the competitions.
Although the timelines are normally set before the competition starts, deadline extensions
do occasionally happen. Competitions can have multiple stages, with different data
availability, and different submission types.

Pre-phase. Some competitions have a stage before the main event of the competition
takes place. In this study, these are referred to as a “pre-phase”. Out of the analyzed
competitions, 13 had a pre-phase. Twelve of these were an announcement, or a similar
pre-phasewith a different name. These usually include the release of part of the data, such
as the training set without the test set, the release of the starter kit, and the announcement
of the full details of the competition. This includes phases with different names, but
similar purposes, such as quick start, registration, data, or starting kit release.

Two competitions have a warm-up phase, which this study also considers as a
pre-phase. During this phase, most necessary information is already released, but the
leaderboard is either not open, or the submissions are tested against the training data.

These phases are usually intended to help competitors familiarize themselves with
the dataset, and the problem at hand. It is also a good opportunity for the organizers, to
take some feedback from the participants, and potentially make adjustments before the
competition starts at its earnest.

Main Phases. Eight out of the 33 competitions have only one main phase. These are the
simplest competitions. For example, the majority of the competitions hosted on Kaggle
fall into this category. These competitions usually have a start date, a final submission
deadline, and often a team merger deadline or a rule acceptance deadline.

Seven of the analyzed competitions have 2 stages. In the second stage of the com-
petition, the organizers often release additional data. This can serve multiple purposes,
such as lowering the time participants get with the entire dataset and lowering the ability
to purposefully overfit the dataset. Competitions often have a final phase, where the
evaluation is held on a previously not used part of the dataset, with a very limited num-
ber of submissions. This is necessary to make sure that it is protected from leaderboard
probing, and that the models are not overfitting by being finetuned, based on the results
of the submission.
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Some platforms, notably Kaggle, use the Private leaderboard system instead of a
separate private evaluation round. In this setup, the test set is separated into a private and
a public subset. Submissions aremade on the entire test set, but feedback is only provided
about the results on the public part. After the end of the competition, the leaderboard
based on the private part is released, which reflects the results of the competition. The
Ariel Machine Learning Data Challenge [28] competition had both a final submission
and a second data release phase,making it the only three-phase competitionwith standard
phases.

Competitions can have unique phases, and sometimes have multiple tracks. PETs
Prize Challenge: Advancing Privacy-Preserving Federated Learning [29] had three
phases unique to the problem. Participants could register as either a team that created
a privacy-preserving federated system, or a team that tested these systems by trying to
devise attacks on them. In the first phase, participants had to submit a concept paper for
their federated system ideas. In the second phase, these concepts were developed and
scored by judges, while the last phase was for the testing of these systems, by the tester
teams. The Reconnaissance Blind Chess [30] was a competition, that was hosted as a
tournament. There were two, optional test tournaments, and a real tournament. The Real
Robot Challenge 2022 had a simulated qualification phase first, which was designed to
limit the number of runs necessary on the real robots, in the second phase.

Competitions have multiple tracks, when there are multiple, closely correlated prob-
lems the organizers would like to solve. In these cases, often they chose to organize
one competition, with multiple tracks, instead of a series of separate ones. The NeurIPS
2022 IGLU Challenge [18] had two tracks, the first one was about creating an AI that
can follow instructions given in a natural language, to build structures. In the second
task, an AI had to ask clarifying questions, when the instructions given are not enough to
construct the structure. The Trojan Detection Challenge [31] had 3 tracks for three tasks.
The first task was to identify trojaned networks while the second task was to classify
trojaned networks into different categories. The last taskwas to create trojaned networks,
that are difficult to identify. The Neural MMO challenge [32] had two tracks, in one of
them the agents had to play the game alone, while on the other track, the agents had to
play the game together, interacting with each other.

Most competitions have some form of activities after the competition has ended.
This includes the announcement of the winners and contacting the winning teams to
hand in further information about their solutions, such as documentation, papers, and
program code. Some competitions are followed by a conference, or a workshop, where
the winning teams are invited to present their solutions.

2.5 Competition Durations

The duration of each competition can vary, sometimes with large differences. The length
of the one main stage competitions can be seen in Table 3. Their average length is about
77 days. Commonly the main stage of the competitions is around 90, roughly three
months.

It is shown in Table 4. That two-stage competitions usually have a longer first stage.
On average the length of the first stage is 74 days, while the second stage is only 19 days.
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This is especially true when the second stage is the private test phase. This usually does
not need a long time, as it is intended for submission of final models previously created,
rather than for further development. Overall, the length of the competitions tends to be
somewhere between two and four months.

Table 3. Duration of One-stage competitions

Event Days

Discover the mysteries of the Maya - ECML PKDD 2021 - Discovery Challenge
[33]

91

Feedback Prize – Predicting Effective Arguments. [20] 91

RSNA 2022 Cervical Spine Fracture Detection Identify cervical fractures from
scans [21]

91

Global Challenge 2021 [34] 61

ADDI Alzheimer’s Detection Challenge [35] 43

BASALT Competition 2022 [19] 98

OGB Large-Scale Challenge (OGB-LSC) [36] 161

AutoML Decathlon 2022 [37] 118

Natural Language for Optimization (NL4Opt) NeurIPS 2022 [38] 92

Second AmericasNLP Competition: Speech-to-Text Translation for Indigenous
Languages of the Americas [39]

10

Open Catalyst Challenge [23] 16

Multimodal Single-Cell Integration Across Time, Individuals, and Batches [40] 92

Sensorium 2022 Competition [41] 117

Visual Domain Adaptation Challenge [42] 10

Habitat Rearrangement Challenge 2022 [43] 59

2.6 Data and Starter Kit

Starter Kit. Starter kits often accompany competitions, proving particularly crucial
for those involving complex submission requirements, code submissions, and notably,
reinforcement learning contests. These kits should contain all the necessary resources for
making a submission, generally including a functional example. Occasionally, a baseline
model may be included to provide competitors with a solid starting point, encouraging
them to modify the baseline model according to their approach. The primary aim of
these kits is to ensure that participants can correctly submit their entries by swapping
the model in the starting kit with their own.

Out of the 33 competitions analyzed, 26 provided a starter kit. Sixteen of these were
available through GitHub, four via GitLab, and the remaining six could be found on the
hosting platform or website.
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Table 4. Duration of two-stage competitions

Event Stage 1 (days) Stage 2 (days)

CityLearn Challenge 2022 - Multi-Agent Reinforcement
Learning for energy management in cities [17]

46 30

EURO Meets NeurIPS 2022 Vehicle Routing Competition
[44]

91 27

Weather4cast Multi-sensor Weather Forecast Competition
[26]

110 6

Data Purchasing Challenge 2022 [45] 24 35

Cross-Domain MetaDL 2022 [46] 62 30

2022 NeurIPS Driving SMARTS Competition [47] 92 10

Weather4cast 2022 [24] 80 8

MyoChallenge [48] 69 6

Weakly Supervised Cell Segmentation [49] 93 19

Dataset. Datasets are usually shared through the Competition hosting platforms, as
they normally offer the possibility to upload the dataset on their platform, where the
competitors can download it. Some competitions use other ways for dataset sharing, for
example, GitHub or GitLab. The dataset is normally available alongside the starter kit
or example submission.

The dataset is one of the most important parts of every data science problem, and
as such, it is important for hosting a data science competition as well. The organizers
must make sure that there is sufficient data available to teach machine learning models.
A general rule of thumb is that the more data is the better. There are a few additional
things that must be kept in mind when creating the dataset for the competition:

• In standard data science competitions featuring a private testing phase, the dataset
must be divided into three parts: training, public validation, and private validation.
When the competition employs a public and private leaderboard system, only two
splits are necessary - one for training and one for validation. The training split should
include the solutions column.

• In high-stakes competitions with monetary rewards, itis crucial to keep the test set
concealed and devoid of leaks. If some participants gain access, it could compromise
the competition’s results.

2.7 Submission and Evaluation

Submission. There are two main ways a competition can take submissions. These are
result submission and code submission. Out of the 33 competitions looked at in this
paper, 16 used result submission, and 14 used code submission. Additionally, The Real
Robot Challenge 2022 [50] used a system, where in the first round, participants had to
submit their achieved score, and the code was only rerun for the top teams to verify their
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score. The Reconnaissance Blind Chess competition [30] did not require submission,
as the tournament was played online. If a competition uses result submission, the test
data must be shared with the participants, without the target column. The competitors
have to locally compute their predictions, and submit it in tabular format. Afterward, the
submission can be directly evaluated against the ground truth.

With code submission, the participants must submit their code, which is re-run on
the competition’s server to compute the predictions. This requires more computational
power from the server. In exchange, it allows the test set to remain entirely hidden.
In addition, it also allows further options for the evaluation of the submission, notably
the measurement of the code’s runtime. Code submission competitions normally have
a runtime limit. This has the technical purpose of not allowing single submission to
occupy a computational unit for an indefinite duration, but it can also help create more
practical models, for real-life applications.

Evaluation. Normally, evaluation is the automatic calculation of a score, by comparing
the predictions with the ground truth. Usually, there are two test sets, to calculate a
public, and a private score. The public score serves as feedback for the competitors,
which appears on the public leaderboard. The private score is used to calculate the
outcome of the competition. This is either computed parallelly with the public score,
at each submission or calculated in a final, separate round. This is important to avoid
overfitting on the test data. The public dataset is also vulnerable to leaderboard probing,
where the participants use various methods to infer information about the data based on
the returned scores. This can in extreme cases lead to revealing the ground truth.

The comparison of the ground truth and the prediction is done via a mathematical
formula, often called metric, or score. There have been many metrics developed over the
years, with different goals in mind. For example, a simple F1 score is used in [22], and
mean intersection over union for evaluation is used in a computer vision competition
[42]. Furthermore, in the CityLearn Challenge [17], the average of 6 metrics is calcu-
lated in order to evaluate electricity consumption and carbon emissions. These metrics
include ramping, 1-load factor, average daily peak demand, maximum peak electricity
demand, total electricity consumed and carbon emissions. These Metrics are not unique
to competitions, as it is always desirable tomeasure the accuracy of themachine learning
model, in a way that they can be compared to each other. Loss functions are similar, often
the same formulas, which are used during the learning process of an algorithm, though
they usually have different criteria to fulfill. As loss functions are used during the training
process, they usually need to be fast to compute, and gradient descent-based learning
can only be performed on differentiable formulas. Evaluation metrics usually aim to be
easy to understand for humans, and to capture and emphasize the most important aspects
of the model.

3 Case Study

This case study centers around the organization of the “ADRENALIN 2023: Building
Energy Load Disaggregation Challenge”, a competition embedded in the ADRENALIN
project with the aim of developing energy load disaggregation algorithms.
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3.1 Competition Scope Definition

The overall theme of the competition is non-intrusive load disaggregation. Load disag-
gregation deals with the problem of discovering the sub-loads that make up a central,
aggregated load. This can be beneficial for multiple reasons, e.g., to propagate energy
saving behavior, or to createmore precise demand response algorithms {Ma, 2021 #110}.

To determine the scope of the competition, a scoping reviewwas also conducted [51].
Based on this review, it was decided that the competition will use low-frequency data,
and aim to produce lightweight models. Furthermore, the literature also shows that the
transferability of the developed forecasting models in buildings is a challenge, therefore
the competitions also aim to test the applicability of the proposed solutions on different
buildings.

3.2 Official Website

Similarly to the majority of the analyzed competitions, the case will also have multiple
websites. The official website of the competition (https://adrenalin.energy/adrenalin-
2023-building-energy-load-disaggregation-challenge) is on the ADRENALIN project’s
website [14]. The competition’s other website is hosted on Codalab, which will handle
submissions and maintain the leaderboard. The description of the competition’s details
is available on both sites.

3.3 Hosting Platforms

The selection of a hosting platform necessitated an evaluation of various options. Given
the project’s limited funding, the decision was made to utilize a free hosting service.
Kaggle, known for its user-friendly interface, was one of the options, alongwith Eval.AI,
and Codalab. However, Kaggle’s restrictions, including the prohibition of prize offerings
in the free version, led to its exclusion. After experimenting with Codalab and Eval.AI,
Codalab was chosen due to its relative simplicity.

3.4 Competition Timeline, Stages, and Durations

Based on prior investigations, a three-stage competition was designed, which comprises
a pre-phase, and two main phases. It commences with a warm-up phase from the
1st of February to the 15th of March 2024. This gives about 1.5 months (43 days) for
participants to familiarize themselves with the problem.

The second phase is the development phase, stretching from the 15th of March to
the 14th of June 2024, lasting 91 days. This corresponds to the duration of the develop-
ment phase in the reviewed competitions. This is when participants refine their models,
experiment with solutions, and struggle to achieve the best solution.

Given that Codalab does not support a private leaderboard system, the competition
ends with the private test phase, lasting from the 15th of June to the 31st of July. This
1.5 month gives plenty of time for the participants to make a final submission, and for the
organizers to validate the submissions. During this phase, the submissions are evaluated
against previously unseen data to test their ability to generalize. This phase determines
the final leaderboard positions and competition winners.

https://adrenalin.energy/adrenalin-2023-building-energy-load-disaggregation-challenge
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3.5 Data and Starter Kit

Starter Kit. The competition will feature a starter kit. This will include an example
of a correct submission, and the evaluation program that will be used on Codalab to
calculate the scores. This will help contestants locally test their submissions, ensuring
their correctness. The starter kit might also include a working baseline model, chosen
based on a scoping review, as an example.

Data. The competition will feature a diverse dataset, collected by the ADRENALIN
project partners, from various countries across the world. This will provide a sufficient
amount of data to facilitate learning. At least three datasets will be created: training data,
test data for the development phase, and test data for the private test phase.

The datasetwill includemain- and sub-metermeasurements fromdifferent buildings,
including multiple different features, using low-frequency sampling. Supplementary
information on the building’s properties and weather information will also be included
where available.

Furthermore, the usage of external data is allowed in this competition, as long as it is
free and publicly available. The competitors must ensure that all data they use is freely
available to all participants, and post access to the dataset on the competition forum
before the end of the competition.

3.6 Submission and Evaluation

Submission. The submission of solutions will take place through the Codalab platform,
using Codalab’s submission system. The submission will be a result submission. Result
submission is generally simpler to set up and guarantees that the submissions will have
the same result as on the participant’s own computer.

Metric. Deciding the metric for the competition is not a simple task. To see what evalu-
ation metrics are used, a further study was conducted on a large number of competitions
(130), to determine what are the most popular metrics used in current data science com-
petitions. Furthermore, the literature review of load disaggregation also revealed the
most popular metrics in the scope.

The most relevant metric was determined to be mean absolute error (MAE). MAE
can be used to calculate the average difference between the predictions and the ground
truth for the entire predicted time period. Based on the literature, it is preferred over Root
mean squared error, as it does not emphasize larger errors disproportionately compared to
smaller errors. SinceCodalab candisplaymultiple scores on the leaderboard, it is possible
to add further metrics. Relative Mean Absolute Error and Mean Absolute Percentage
Error are two averaged versions of MAE, which can provide further information, for
human interpretation of the results.

3.7 Competition Descriptions

The descriptions of the competitionwill be available through both the officialwebsite and
theCodalab platform.The descriptions include the sections identified during the revision.
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It starts with the background, explaining the importance of energy disaggregation. This
is followed by the problem statement, stating the goals and the task of the competition,
based on the literature review. The following dataset description first gives an overview
of the datasets, discusses its main features, and finally each file, and their contained
features separately. The submission and the evaluation and metrics sections present the
submission and the evaluation processes. The timeline section displays the information
presented earlier. To help with getting in touch, a link to the discussion forum is also
provided. Finally, the rules of the competition are provided, and acknowledgment to the
sponsors of the competition.

4 Discussion and Conclusion

This paper conducts a comprehensive review on the procedure of data science competi-
tions. This review uncovers the key elements involved, which include the construction
of official websites, the selection of hosting platforms, timelines, datasets, starter kits,
submission and evaluation protocols, and competition descriptions.

In a comparative analysis of various data science competition platforms, Kaggle was
found to be the highest-scoring and most popular platform due to its flexibility, variety
of competitions, and active community. AIcrowd, Eval.AI, Codalab, and Driven Data
also scored high, offering a range of features and community engagement opportunities.
Eval.AI and Codalab stand out as open-source platforms, while Tianchi, Ramp, and
Zindi cater specifically to certain regions. Kaggle, Tianchi, and Zindi also serve as hubs
for learning and networking, extending beyond just hosting competitions. Unlike the
other platforms, Topcoder has a broader focus, offering tracks in development, design,
and quality assurance alongside data science.

The case study of organizing a competition such as the Building Energy Load Disag-
gregation Challenge reveals the importance of careful planning and strategic decision-
making in structuring the competition, choosing the hosting platform, and defining the
submission and evaluation mechanisms. Especially the definition of competition scope
which are not yet discussed in the literature. The competition scope influences the whole
competition content and procedure, especially the datasets. The choice of Codalab for
this competition exemplifies how factors such as cost and usability can significantly
influence the hosting platform selection.

The insights gained from this study carry important implications for stakeholders in
the energy sector seeking to organize data competitions to address pressing challenges.
These stakeholders can range from academic institutions, industry professionals, gov-
ernment entities, to non-profit organizations. By applying the findings of this paper, they
canmore effectively set up competitions that not only crowd-source innovative solutions
but also foster a culture of learning and creativity within the sustainable energy domain.

However, itis important to consider the limitations of this study. As it only samples
33 competitions, it captures just a fraction of the data competitions being hosted. Future
research should include a larger sample size and awider range of competitions to provide
a more comprehensive understanding of best practices in data competition hosting.

Acknowledgment. This paper is part of the Project “Data-dreven smarte bygninger: data sand-
kasse og konkurrence” (Journal-nummer: 64021–6025) funded by EUDP (Energy Technology
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Abstract. A Deep Harmonic Decomposition (Deep HarDec) approach
is proposed in this paper, being developed by means of a deep neural net-
work, allowing to obtain estimations of the amplitude and phase quanti-
ties of a given periodic signal. Consequently, harmonic characterization
of periodic signals are explored in this paper, assessing the suitability
of the Deep HarDec. Such a method can be potentially applied to the
real-time management of electric power systems as well as other con-
trol applications, supporting the monitoring of harmonic distortions and
providing means to active filtering interventions targeting power quality
improvement. In order to build the Deep HarDec model, a dataset com-
prising diverse combinations of the fifth, seventh, eleventh, and thirteenth
harmonic orders was considered, covering a wide range of operational
perspectives. A grid search technique was used to find the best config-
uration for the multi-layer perceptron adopted for the approach, and
the deep neural network was subjected to a training procedure target-
ing the harmonic estimation. A study case focusing on a selective active
filtering application demonstrates that the Deep HarDec can effectively
decompose harmonics, supporting the synthesis of real-time compensa-
tion references to tackle harmonic distortions in an electric grid.

Keywords: artificial neural networks · active power filter · deep
learning · harmonic decomposition · harmonic estimation · multi-layer
perceptron · power quality

1 Introduction

The increasing presence of non-linear loads in electrical systems has raised sig-
nificant attention in the past decades, mostly due to the resulting harmonic
pollution and its detrimental impact on other electronic equipment and the grid
itself [1].
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Such loads (e.g., microwave ovens, computers and peripherals, electronic
power converters, and so forth) exhibit an intrinsic non-linear characteristic
caused by their particular instantaneous energy demand patterns that distort
their current waveforms [2]. For instance, the periodic currents drawn from such
loads are not proportional to the applied voltage [3], leading to the circulation
of harmonic currents that are known for causing power quality (PQ) issues [4]
such as resonances, low energy efficiency and many others [5,6]. Therefore, when
analyzing current and voltage waveforms from a system comprising non-linear
loads, it is common to identify that their signal spectrum consists of a funda-
mental component as well as other undesired harmonic terms (i.e., which are
usually multiple integer frequencies of the former [7]).

Measuring harmonic sources and their impact on the operation of electri-
cal systems is an important aspect of PQ [8], mainly due to the fact that the
related distortions to voltages and currents need to be quantified and inter-
preted prior to deploy a countermeasure action. The treatment of harmonics in
a power system concerns consumers, prosumers, and utilities. Standards such
as the IEEE Recommendation 519 [9] establish harmonic limits for voltage and
current signals. The most commonly used method to identify harmonics is the
Fourier transform (FFT), mainly due to its straightforward implementation,
that allows to determine the amplitudes and phases of harmonic components
from limited signal samples [10]. However, digital instruments generally rely on
discrete Fourier transform (DFT) techniques, requiring a measurement window
width of 12 cycles (approximately 200 ms) for 60Hz-based power systems, as
presented in [9]. Such a long measurement window may not effectively support
decisions for equipment operating with faster dynamics, such as an active power
filter (APF) [11]. In particular, although APFs are power conditioners with fast
response capabilities, the estimation of the harmonic content can be crucial to
achieve proper compensation performance. Consequently, DFT-based strategies
can make real-time compensation difficult [12]. Additionally, the literature often
lacks comprehensive validation studies and comparisons of different harmonic
estimation methods. It is important to comprehend which techniques perform
better in distinct scenarios.

Computational techniques applied to harmonic estimation are continuously
evolving. Nonetheless, there is a gap in the literature for what concerns the appli-
cation of modern computational approaches applied to electrical systems: only
a few research papers present harmonic analyses based on machine learning,
artificial intelligence, or advanced signal processing techniques; although they
are usually more effective in obtaining accurate estimation of the harmonic con-
tent of current and voltage waveforms. As an alternative for harmonic analyses,
the deep neural network (DNN) can be used in the main processing stage to
perform pattern recognition [13,14] in power system applications, mainly in dis-
tribution systems. DNNs can identify harmonics from distorted waves, enhancing
processing speed compared to DFT-based techniques, facilitating and improv-
ing harmonic detection [12]. Deep-learning methods are representation-learning
methods with multiple levels of representation, obtained by composing simple
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but non-linear modules that each transform the representation at one level into
a representation at a higher and slightly more abstract level [13]. In addition,
Artificial neural network (ANN) can be trained to classify the preliminary infor-
mation extracted in the pre-processing stage of this approach.

Aiming at contributing to the perspective of harmonic estimation in applica-
tions related to electrical systems, this work proposes the Deep HarDec: a novel
method for harmonic identification that takes advantage of DNNs, resulting in a
tool that presents low computational effort and fast convergence capability. The
output of such a DNN is a mathematical model capable of assessing current and
voltage quantities, allowing the Deep HarDec to only require a quarter of a sig-
nal’s fundamental cycle to estimate the magnitude (i.e., amplitude) of harmonic
components. Thus, harmonics can be effectively estimated, providing means for
implementing real-time compensation in APFs (operating as an alternative tool
to traditional), developing low-cost electric energy meters, also being suitable to
other PQ-related applications.

In addition to this introductory section, this article follows the subsequent
structure: Sect. 2 addresses harmonic estimation methods and their related
implementation features; Sect. 3 describes the proposed Deep HarDec method;
Sect. 4 presents results and discussions; and Sect. 5 brings conclusions related to
the findings of this study.

2 Harmonic Estimation Methods and Correlated Studies

Within electrical systems, harmonics are sinusoidal components from waveforms
of voltage and/or current, oscillating at integer multiples of the grid’s fundamen-
tal frequency [15]. A mathematical representation of such harmonic components
is presented in Eq. (1). Instantaneous variable x(t) is the time-domain quantity
(i.e., signals of current or voltage), X1 is the magnitude (i.e., peak value) of the
fundamental component, Xh is the magnitude of the harmonic signal at order
h, φ1 and φh are the phase shifts of the fundamental and harmonic components
respectively, ω is the angular frequency and t is time, and H is the maximum
harmonic order to be considered. It is important to mention that the context of
interharmonics [16] is out of scope in this paper.

x(t) = X1 · cos(ωt + φ1) +
H∑

h

Xh · cos(hωt + φh) (1)

Although the literature presents multiple methods to assess harmonic distor-
tion, the most common index adopted is the total harmonic distortion (THD).
The total harmonic distortion (THD). represents a ratio between the overall
magnitudes of the harmonic components in relation to the fundamental compo-
nent. For the current THD, for instance, such a definition is given by Eq. (2),
where Ih is the root mean square (RMS) value of the harmonic h, and I1 is the
RMS value of the fundamental component.
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THD =

√√√√
H∑

h=2

(Ih)2

I1
(2)

Harmonic monitoring is a valuable tool for quantifying the impact of har-
monic distortion and, for the power system perspective, this process involves
acquiring and computing signals of voltage or current seen at different grid nodes
[17]. Several studies have proposed to automate the process of harmonic quan-
tification using ANNs to enhance the speed, reliability, and simplicity of data
acquisition and storage [18,19]. In the context of PQ studies, ANNs have been
utilized for harmonic identification [20,21]. One of the main advantages of this
approach is the ANNs’s potential to adapt to various environments and high tol-
erance to noise [20]. Among various types of ANNs, multi-layer percetron (MLP)
is the most commonly used one applied for pattern recognition [17]. The MLP
architecture typically comprises an input layer, one or more hidden layers, and
an output layer. In addition, MLP implementations are usually trained using
supervised learning through the backpropagation algorithm [22,23].

Although harmonic assessment and monitoring can be performed by imple-
menting intelligent computational tools, acting on the mitigation of either har-
monic currents or voltages relies on additional electric apparatuses. One of the
most effective alternatives for PQ improvement depends on the deployment of
an APF connected to the grid [24]. APFs can provide dynamic compensation of
harmonics even in scenarios where the harmonic demand imposed by non-linear
loads change [15]. However, real-time quantization of harmonics must be used in
the control system of such an APF to attain proper operation [25]. An alterna-
tive to implement real-time harmonic analysis for an integrated operation with
power conditioners is devised by a trained DNN. Besides adding real-time fea-
tures to the dynamic operation of the APF, such a DNN-based approach offers
the advantage of fast computation and low computational effort during the oper-
ational stage [26], making it significantly attractive to embedded applications.

In [27], the authors introduced a neural technique for harmonic identification
and compensation purposes. In such a compensation method, the harmonic com-
ponents may be individually selected, and the reactive power can be controlled.
In [28–31], the authors applied an ANN in amplitude and phase identification for
individual harmonic orders for a condition in which distortions were presented
in the measured signals. The results demonstrated that the proposed algorithms
were capable of detecting harmonics with high accuracy, fast convergence behav-
ior and satisfactory performance under steady conditions. ANN was also used in
[32,33] to identify harmonic current components of single-phase non-linear loads.
As previous works from the literature, the proposed ANN could also estimate
harmonic currents efficiently.

A parallel perspective found in [34] proposed the use of ANN to estimate the
Fourier coefficients corresponding to the fundamental harmonic of any distorted
voltage or current signal. Likewise, in [35], the authors presented a procedure to
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estimate the impacts on voltage harmonic distortion at a given point of interest
in the grid.

In [36], the authors considered the real application of a voltage sourced con-
verter (VSC) for an industrial microgrid (MG), in which an ANN-based control
method was employed to achieve harmonic identification for implementing a
compensation strategy. In [37], the authors detected islanding and PQ issues
in a hybrid distributed generation (DG) system composed of photovoltaic (PV)
system and wind power plant using Wavelet Transform and ANN.

A novel deep network structure is presented in [38], aiming at the problems
of a low convergence speed, low accuracy, and poor generalization ability of
traditional power disturbance identification and classification methods. A PQ
disturbance identification and classification method for MG based on the new
network structure is proposed. The trained and optimized network is applied to
PQ disturbance identification and classification. The proposed method reached
a higher accuracy, convergence speed, and stronger generalization ability than
other methods. In [39], an ANN-based model deals with electric load forecasting.
In [5,40,41], a power management strategy based on ANN for solar PV systems
is presented to show the benefits of this strategy.

Several studies have shown the effectiveness of ANN in harmonic identi-
fication and compensation and in detecting events such as voltage sag, voltage
swell, interruption, and harmonics. Moreover, ANN has been successfully applied
in amplitude and phase identification and identifying harmonic current com-
ponents of single-phase nonlinear load currents. The proposed algorithms have
shown better accuracy, faster convergence, and stability under steady conditions.
Additionally, ANN-based control methods have been employed in practical situ-
ations, such as in a VSC for industrial MG and in hybrid DG systems composed
of PV and wind power plants. Furthermore, ANN has been used in electric load
forecasting and power management strategies for solar PV systems. Novel deep
network structures have been proposed for PQ disturbance identification and
classification, demonstrating higher accuracy, convergence speed, and general-
ization ability than other methods.

Despite the ongoing development of techniques for harmonic content identi-
fication based on machine learning algorithms, gaps and challenges still need to
be addressed. For instance, the accurate identification of harmonics in complex
electrical environments, such as when load variations and network distortions
occur, remains a challenge. Consequently, artificial intelligence (AI) algorithms
need to be robust enough to handle such operational complexities. As far as one
can find in the literature, most deep neural network models can be considered
black boxes, making it challenging to comprehend how they converged to a spe-
cific decision. Hence, such a condition can be a concern when dealing with critical
issues in energy security and power quality, where the interpretability of physical
phenomena is essential. Obtaining labeled data for training AI algorithms can
be challenging and costly. The absence of specific labeled datasets for electrical
harmonic analysis can constrain the development of accurate models.
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3 The Deep HarDec Method

This section discusses the development of the Deep HarDec method, highlighting
the stages of training, validation, testing samples, and the DNN’s implementation
method. Figure 1 shows the workflow of the Deep HarDec, which requires as
input sampling only a quarter of a wave cycle (i.e., in respect to the fundamental
frequency) to estimate harmonic amplitudes. The output of the Deep HarDec
comprises the values of magnitudes of the fundamental grid frequency harmonics.
For the training and stage of the Deep HarDec, a synthetic dataset was built
from distorted current waveforms, as presented in the Subsect. 3.1.

Fig. 1. Deep HarDec workflow.

3.1 Dataset Generation for Training, Validation and Testing

The data samples were generated using an algorithm that sums the fundamental
current component with all the pre-established harmonic components using a
nested loop, as seen in Fig. 2. The sum of the harmonic components combines all
the possibilities of pre-established amplitudes and phase shifts, resulting in a set
of 33,177,300 samples. The dataset size is defined exponentially according to the
amplitudes and phase shifts possibilities. Current samples are generated with a
quarter wave cycle of the fundamental frequency. Each sample has 64 sample
values, equivalent to a sampling rate of 15.36 kHz, which is the recommended
value for a fundamental frequency of 60Hz according to IEC 61850 [42].

Figure 2 depicts a nested loop employed in sample generation. This loop
serves the purpose of creating a dataset for training the Deep HarDec model.
The generated samples constitute combinations of the fifth, seventh, eleventh,
and thirteenth harmonic orders. The nesting of this loop is attributed to its con-
current iteration over multiple variables. The outer loop traverses the harmonic
orders, whereas the inner loop iterates through amplitude and phase values for
each harmonic order. Thus, the generated samples are subsequently applied to
train the MLP incorporated within the Deep HarDec approach.

The individual harmonic samples use Eq. (3) to build the nth harmonic sam-
ples set. Then, using the nested loop of Fig. 2, we sum each possibility of individ-
ual harmonics. Current samples are generated following (3) and considering the
quantities obtained from a real non-linear load, presented in Table 1. Such quan-
tities compose a signal as illustrated in Fig. 3. The samples generation algorithm
groups 768 samples per batch and stores each batch on disk.
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Fig. 2. Nested loop in samples generation.

−→
hn = An · cos (nω

−→
t + ϕn) (3)

It is worth mentioning that it would be possible to build a sample dataset with
a wider range of amplitudes and phase shifts. However, we selected only specific
harmonic orders due to the limitations of the used computer, which presented 16
GB of RAM and an Intel(R) Core(TM) i7-10750H CPU. For instance, harmonics
from 5th, 7th, 11th, and 13th orders with amplitudes and phase shifts suitable
for the test load were taken into consideration in this study.

The samples go through a normalization process [43] by applying a transfor-
mation that maintains the obtained mean value close to 0, as well as the standard
deviation close to 1. Hence, the sample set is used in the training stage for the
DNN’s modeling and configuration, aiming to estimate harmonics amplitudes.

3.2 Exhaustive Search over Parameters Values for DNN

An exhaustive search for hyperparameters of the deep neural network in the
Deep HarDec method was conducted through GridSearchCV [44]. The search
implements a fitting process and an evaluation process. The estimator is a DNN
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Table 1. Amplitudes and phase shifts used in training samples.

Harmonic Amplitudes [pu] Phase shifts [rad]

1 1.00 −1.3979
5 0.00, 0.05, 0.10, ... , 0.70 2.4194
7 0.00, 0.05, 0.10, ... , 0.45 2.8255
11 0.00, 0.05, 0.10, ... , 0.25 0.3619
13 0.00, 0.05, 0.10, 0.15 0.6919
17 0.00, 0.05, 0.10 −1.761
19 0.00, 0.05, 0.10 −1.3728
23 0.00, 0.05 2.4537
25 0.00, 0.05 2.7928
29 0.00, 0.05 0.3532
31 0.00, 0.05 0.6974
35 0.00, 0.05 −1.7451
37 0.00, 0.05 −1.3939
41 0.00, 0.05 2.4388
43 0.00, 0.05 2.8011
47 0.00, 0.05 0.3557
49 0.00, 0.05 0.7058

Fig. 3. Deep HarDec diagram.

built with a stack of dense (i.e., fully connected) layers using ReLU (4) activation
on the hidden layers. The DNN is implemented into a Keras [45] sequential
model. The input layer has 64 input features, and the output layer has 4 neurons,
one for each harmonic amplitude. We applied AdaMax [46] as an optimizer,
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Table 2. NN models ranking.

Ranking Neurons (n) Hidden Layers (i) Activation (a) MAE

1 144 4 relu 0.00099
2 152 3 linear 0.00139
3 144 3 linear 0.00139
4 152 2 relu 0.00151
5 88 4 linear 0.00158

having mean squared error (MSE) (5) as the loss function and mean absolute
error (MAE) (6) as metrics, assuming that u is the typical neuron output and
ypred is the predicted variable for a determined input x in (4).

y =

{
0, for x < 0;
u, for x ≥ 0.

(4)

MSE =
√

ytrue − ypred (5)

MAE = |ytrue − ypred| (6)

The sample set was split using the scikit learn Train Test Split function
[47]. This function splits arrays into random train/test subsets [48]. We defined
that the training set to have 90% of the samples and the test set had 10%.
The validation set was then extracted from the training set (15%). Moreover,
we configure a kernel initializer [45] with the GlorotUniform [49] function using
seed 333 to standardize the model and enable its reproduction.

The parameters sought are the number of hidden layers, the number of neu-
rons in the hidden layers, and the output layer activation. The following scoring
methods were analyzed: DNN with an exhaustive search for the best configu-
ration of the number of neurons (n) in the ith hidden layer and for the best
output layer activation (a), in which n = {32, 40, ..., 144, 152}, i = {2, 3, 4} and
a = [relu, linear]. The negative mean absolute error was used to rank the DNN
models according to their performance by estimating harmonics from the test
set. The highest ranked configuration has 4 hidden layers (i = 4), 144 neurons in
each hidden layer (i = 144), and linear activation in the output layer (a = linear).

3.3 Creating the DNN Model

The best-ranked model is implemented in Python 3.9 [50] through Keras API
[45]. The GridSearchCV [44] method revealed that the model architecture 4
hidden layers with 144 neurons in each layer is the best among the checked
possibilities as presented in Table 3. The DNN’s input layer receives 64-position
vectors. DNN has 4 hidden layers, each with 144 neurons and an output layer
with 4 neurons. Hidden layers use ReLU activation, while the output layer uses
linear activation.

The algorithm was configured to train the model for 200 epochs with an
early stopping criterion establishing a minimum MAE variance of 0.0001 for 5
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Table 3. Summary of the ANN.

Layer (type) Output Shape Activation Param #

input (None, 64) - -
hidden #1 (Dense) (None, 144) relu 9360
hidden #2 (Dense) (None, 144) relu 20880
hidden #3 (Dense) (None, 144) relu 20880
hidden #4 (Dense) (None, 144) relu 20880
output (Dense) (None, 4) linear 580

Fig. 4. Mean absolute error while training.

epochs. The proportion of training, validation, and testing samples used in the
exhaustive search over parameters was maintained for the DNN training. The
optimizer, loss function, and metrics were also kept the same. In addition, to
train the DNN with a stratified split of samples, we also trained the DNN with
a random split of samples, keeping the same proportions of training, validation,
and testing samples.

The MAE in the last trained epoch is similar in both training processes, but
the DNN training using a random split of samples achieved a slightly smaller
error than using stratified samples. The final MAE in Fig. 4 is 0.001205. The
DNN trained using a random split of samples was implemented due to its smaller
achieved MAE.

The accuracy of the harmonic estimation performed by the trained DNN is
evaluated using the test samples. The achieved mean absolute error is 0.001082.

3.4 Controlled Rectifier Model for Deep HarDec Evaluation

We present some case studies in Sect. 4 aiming at validating the performance of
the Deep HarDec on estimating harmonics. The mathematical modeling [51] of
the current drawn from a controlled rectifier was used to obtain the distorted
waveforms target in this study. Such an instantaneous AC current is given by
Eq. (7), in which V is the RMS phase voltage in Volts, α is the firing angle in
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radians, R is the load resistance in Ohm, and L is the load inductance in Henry.
The coefficients CN and Δn are given by Eqs. (8) and (9).

i(t) =
12

√
6 · V

π
· cos α

R
·

∑

m=1,3,5...49

sin (m · π
3 )

m
· cos

(
m

(
ωt − α − π

3

))

+
8
√

6 · V

π2
·

∑

n=6,12,18...96

CN

ZN
· sin

(
nωt + Δn − arctan

(
nωL

R

)) (7)

CN =
C2

sin (Δn)
(8)

Δn = arctan
(

C2
C1

)
(9)

The coefficients C1 and C2 are given by Eqs. (10) and (11).
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where:
N1 = n − 1
N2 = n + 1

(12)

4 Results and Discussions

We performed harmonic identification tests with different values of load resis-
tance (R) and load inductance (L) in (7), being R = {5, 10, 15, 20, ..., 195, 200}
and L = {0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01}, given
in Ω and H, respectively. Figure 5 illustrates the mean absolute percentage error
in harmonic estimation achieved by the trained DNN. The mean absolute per-
centage error serves as an indicator of the predictive accuracy of the DNN. Note
that Fig. 5 demonstrates variations in mean absolute percentage error behav-
ior across different harmonic orders. Detailed outcomes of individual harmonic
assessments for each load combination are presented in Fig. 6.

We also performed an individual harmonic evaluation for each load combi-
nation, resulting in Fig. 6. The individual harmonic samples are generated using
Eq. (3) to build the n-th harmonic samples set. The nested loop of Fig. 2 is
used to sum each possibility of individual harmonics. The current samples are
generated following Eq. (3) and considering the quantities obtained from a real
non-linear load, which is presented in Table 1. The mean absolute percentage
error behavior is different according to the harmonic order.
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Fig. 5. Mean Absolute Percentage Error

Fig. 6. Individual harmonic absolute percentage error.

4.1 Selective Compensation of Estimated Harmonics by Deep
HarDec

A study case based on computational simulations, targeting a harmonic compen-
sation intervention, is presented herein. For this study, the harmonic compensa-
tion was performed at a point of common coupling (PCC), which is a grid node
connecting the experimental load, a voltage source emulating the grid, and a har-
monic current compensator. The latter is emulated in a simulation as an ideal
current source, which generates a compensation current based on the amplitude
references provided by the DNN. Figure 7 illustrates the implemented simulation
scenario. Moreover, Table 4 presents the parameters considered in simulation for
the use in (7) to obtain the load AC current waveform.

Note from Fig. 7 that the current at the PCC before compensation is fed into
the DNN block. The digitized current signal is used for the harmonic content
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Table 4. Parameters for rectifier current waveform.

Parameter Value

RMS phase voltage (V) 127 V
Fundamental frequency (f) 60 Hz
Firing angle (α)

π

9
rad

Load resistance (R) 10Ω

Load inductance (L) 5 mH

Fig. 7. Conceptual diagram of the harmonic current compensation system.

estimation. The DNN is divided into 3 stages: feature engineering [52], DNN
and harmonic amplitude output. The feature engineering stage is responsible for
adapting the digital signal to the DNN inputs, which includes the normalization
and aggregation of 64 values per quarter cycle in an array (i.e., based on a
sampling frequency of 15.36 kHz). This array is then submitted to DNN to
estimate amplitudes of the harmonics from the 5th, 7th, 11th, and 13th. then,
the DNN returns another array containing the estimated amplitudes, which are
used to reconstruct the signal according to the application. Particularly in the
considered example case, such a signal is an ideal source’s reference current.
The current source uses the reconstructed signal as a reference to generate the
selective compensation current, which is injected into PCC.

As a reference metric for assessing the compensation actions, according to
the IEEE 519:2014 [9], it is considered that a current THD should be limited to
up 5%.

The currents seen at the load at the source are illustrated in Fig. 8, as well as
the compensation current generated by the proposed method. The source current
does not present a sinusoidal waveform due to the non-compensated harmonic
orders. However, as we can see in Table 5, the targeted harmonic orders were
significantly attenuated when compensation was performed.

The DNN model for estimating harmonic amplitudes was evaluated in this
study based on non-linear load currents from literature. The results showed that
this model can estimate harmonic amplitudes with relatively high accuracy.
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Fig. 8. Compensation waveforms results.

The comparisons performed in this work indicate that the average abso-
lute percentage error varies according to the combination of load resistance and
inductance values. The performance of the DNN in estimating the harmonics
amplitudes of interest was considered satisfactory since these amplitudes were
almost completely null after compensation.

These results comply with the conclusions pointed out in [28–31], with
regards to using ANN to estimate individual harmonic amplitudes and using
the estimated amplitudes to generate a compensation current reference.

4.2 Discussions, Advantages, and Limitations of the Deep HarDec

Based on the test results and case study of Sect. 4.1, the Deep HarDec presented
estimation performance comparable to the FFT decomposition approach, indi-
cating that it can be used to identify harmonics in electrical signals, as well as
for compensating harmonics, monitoring, and assessing PQ indexes.

As advantages, the Deep HarDec corresponds to a model based on a deep
neural network, which, after being trained, becomes a matrix of weights and
connections; when input data is presented, basic mathematical calculations are

Table 5. Compensation individual results.

Harmonic Before Compensation (%) After Compensation (%)

1 100 100
5 21.03 0.11
7 13.20 0.08
11 9.30 0.14
13 7.02 0.44
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Table 6. Computational time to identify harmonics of one signal using CISC and RISC
processors (* Intel Core i9 9880H, ** ESP-32 Tensilica Xtensa LX6 240 MHz).

Architecture

Method CISC* RISC**
FFT (butterfly) 0.0013 0.0412
Deep HarDec 0.0018 0.0245

performed. As shown in Table 6, this is an advantage for RISC architectures
(i.e., for most embedded systems) because assembly instructions are limited. In
addition, to calculate the harmonics of interest, the Deep HarDec requires only
a quarter cycle, whereas the FFT requires at least one cycle.

With regards to limitations, the Deep HarDec’s computational complexity is
O(n4), whereas an FFT technique has a complexity of O(n log2 n). As shown in
Table 6, the Deep HarDec has advantages in RISC architectures, but the FFT is
quicker than the Deep HarDec in CISC architectures.

5 Conclusions

The suitability of a multi-layer perceptron ANN approach to estimate harmonic
magnitudes from the 5th, 7th, 11th and 13th orders was discussed in this paper,
requiring sampling data during a quarter of a fundamental cycle. The training
dataset used in the study cases contained 33,177,300 quarter-cycle waves with a
sampling rate of 15,360Hz.

The adopted grid search method revealed that the model architecture with
4 hidden layers, and 144 neurons in each layer, is the best among the checked
possibilities. The results show that ANN models are recommended for harmonic
estimation, especially for individual low-order frequencies. Moreover, using ANN
model in the operational stage could facilitate the implementation of low cost
microprocessors in power converters (i.e., due to the simplicity of the proposed
mathematical model).

The next step of this work is to improve the accuracy of the ANN model,
targeting a more precise obtainment of magnitude estimations for harmonic com-
ponents.
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Abstract. To successfully increase the share of renewable energy
sources in the power system and for counteract their fluctuating nature
in view of system stability, forecasts are required that suit downstream
applications, such as demand side management or management of energy
storage systems. However, whilst many forecast models to create these
forecasts exist, the selection of the forecast model best suited to the
respective downstream application can be challenging. The selection is
commonly based on quality measures (such as mean absolute error),
but these quality measures do not consider the value of the forecast in
the downstream application. Thus, we introduce a meta-learning frame-
work for forecast model selection, which automatically selects the forecast
model leading to the forecast with the highest value in the downstream
application. More precisely, we use a meta-learning approach that con-
siders the selection task as a classification problem. Furthermore, we
empirically evaluate the proposed framework on the downstream appli-
cation of a smart building’s photovoltaic-battery management problem
known as dispatchable feeder on building-level with a data set containing
time series from 300 buildings. The results of our evaluation demonstrate
that the proposed framework reduces the cost and improves the accuracy
compared to existing forecast model selection heuristics. Furthermore,
compared to a manual forecast model selection, it requires noticeably
less computational effort and leads to comparable results.

Keywords: meta-learning · forecast value · forecast model selection

1 Introduction

The increasing share of decentralised, renewable energy sources challenges sys-
tem operators since they must maintain system stability despite the uncertain
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and fluctuating behaviour of these energy sources. To maintain the system sta-
bility and to make optimal use of decentralised sources, smart grids make use
of intelligent downstream applications. Such downstream applications include
the intelligent management of smart buildings via demand side management
[7,16], or dispatchable feeders [4,30,38]. These applications can be connected in
a smart grid internet of things (IoT) environment, swiftly communicating with
one another via information and communication technology (ICT) to ensure sta-
ble system operation. However, despite real-time data via smart meters, these
downstream applications often rely on load and renewable energy generation
forecasts.

In order to create these forecasts, a number of choices must be made regard-
ing the forecast model, including the selection of the forecast method (e.g. auto-
regressive integrated moving average (ARIMA), support vector regression, or
neural networks). Furthermore, several further decisions must be taken, such as
the choice of the method’s hyperparameters and the loss function used for train-
ing. Whilst many scientific papers promote certain forecast model choices that
they claim will lead to good forecasts [2,18,23], it is important to consider and
define what constitutes a “good” forecast. Thereby, the “goodness” of a fore-
cast can be measured by its quality and/or its value [25]. The forecast quality
evaluates the forecast solely from the forecaster’s point of view and is typically
measured by metrics such as mean absolute error (MAE) or mean squared error
(MSE). On the other hand, the forecast value considers the downstream applica-
tion’s point of view by evaluating the performance of the downstream application
based on the forecast. For the smart building optimisation examples described
above, the performance of these downstream applications can be evaluated by
calculating the economic costs based on the optimisation problem’s result to
assess the forecast value.

Several studies investigate the quality and the value of forecast methods
[11,13,28] and hyperparameters [6,37] for solar, wind, and load forecasting.
These studies show that the relation between forecast quality and value does
not have to be linear or monotonic [25] and thus, improving the forecast qual-
ity may not always lead to a higher value in the downstream application in
case of a forecast with remaining uncertainties. Additionally, [37] shows that the
downstream application’s setting and the considered data influence the forecast
value. The authors show for a domestic photovoltaic-battery management prob-
lem that the battery capacity, as well as the prosumption profile, can also impact
the forecast value.

These findings highlight the complexity of selecting forecast models to
improve the value in the downstream application and indicate that the compu-
tational effort of a manual, optimal forecast model selection can be tremendous.
To reduce the manual forecast model selection’s computational burden while
achieving comparable results, we propose a solution for automatically select-
ing forecast models based on the resulting forecast’s value in the downstream
application using meta-learning. Specifically, we propose a framework for fore-
cast model selection that treats the selection task as a classification problem.
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Fig. 1. The schematic representation of the proposed framework for a smart building
optimisation as downstream application with the novelty marked in blue. In step (1),
a classifier is trained using the buildings’ metadata and the buildings’ label of the
forecast model leading to the forecast with the highest value. In step (2), the trained
classifier can be operated to predict the forecast model leading to the highest value
forecast for a new building utilising its metadata (marked in green). Then, the smart
building optimisation can be executed. (Color figure online)

To achieve this, we train a classifier to select the forecast model leading to the
forecast with the highest value in the downstream application, using metadata
as input. In the smart building optimisation context, Fig. 1 displays the pro-
posed framework. In step (1), the classifier is trained. For this training, we first
execute the building optimisation with varying forecasts from different forecast
models and then calculate the value of each forecast. Then, the forecast model
leading to the forecast with the highest value is determined and together with
metadata of the building used to train a classifier. In step (2), the trained classi-
fier can then predict the forecast model leading to the forecast with the highest
forecast value for a new building by utilising the new building’s metadata. For
evaluation, we apply our framework on the downstream application of a smart
building’s photovoltaic-battery-management problem - a dispatchable feeder -
using real-world time series of 300 buildings.

The remainder of the paper is structured as follows. Section 2 gives a brief
overview of the related work. Section 3 introduces the meta-learning framework
for forecast model selection, while Sect. 4 presents the considered downstream
application of a dispatchable feeder. Section 5 describes the experimental setup
for evaluation and presents the corresponding results. Section 6 discusses the
results and Sect. 7 wraps up the paper.

2 Related Work

In this section, we position our research compared to existing literature by
addressing two aspects. First, we summarize prior work focusing on forecast
models designed for the downstream application. Second, we present existing
meta-learning approaches for quality-oriented forecast model selection.
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One approach to designing forecast models based on the downstream appli-
cation is to incorporate information from this downstream application into the
forecast model. While [41] feeds back such information to the forecasting, [14,15]
utilise the mathematical description of the downstream application, in this case
an optimisation problem, during forecasting. However, these approaches can be
computationally expensive and may not take into account all the relevant infor-
mation influencing the forecast value. A simpler approach is to assume that the
forecast value is solely dependent on the forecast error. Then, one can use the
so-called cost-oriented loss function [19,22,24,36,40]. Thereby, the cost-oriented
loss function is a piecewise function that assigns different weights to forecast
errors, resulting in biased forecasts. While the form of the cost-oriented loss
function needs to be known in [22,24,36,40] approximate the form in a com-
putationally expensive manner. However, the cost-oriented loss function is not
suitable for complex downstream applications with constraints, such as battery
management problems. The approach of customising the loss function to fit
the downstream application is also pursued in [1,20]. However, this approach is
specifically designed for a single downstream application and cannot necessarily
be generalised to create high-value forecasts for other applications.

Approaching the forecast model selection, several works aim to find the best-
suited forecast method based on forecast quality measures using meta-learning
[31,34,35]. Additionally, [9] directly predicts the RMSE of a forecast using meta-
learning. However, these approaches do not consider the value of the forecast in
the downstream application.

Summarizing, several existing works present approaches to either design fore-
casts based on their downstream applications or use meta-learning for forecast
model selection with respect to forecast quality. In contrast, our meta-learning
framework selects the forecast model with respect to the forecast value while not
requiring knowledge of the downstream application during forecasting making it
easily usable for various applications.

3 Meta-learning Framework for Forecast Model Selection

The idea of the underlying meta-learning framework for forecast model selection
is to find the forecast model leading to the forecast with the highest value in the
downstream application for a specific instance, e.g. a specific building. Thereby,
the forecast value is a forecast evaluation metric that measures the performance
of the downstream application based on the forecast and depends on the quantity
of interest e.g. a building’s electricity cost or self-sufficiency. Mathematically, the
forecast value can be described by a function of the downstream application, its
required data, and the information needed to generate the forecasts, namely
the forecast model and the specific instance’s data. The aim of the proposed
framework is then to find the forecast model for each instance that maximises the
forecast value, which we will refer to as the best forecast model in the following.
Thus, we search for the best forecast model for instance i ∈ I
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f�
i = argmax

f∈F
Value

(
a, Di, f

)
(1)

from a set of forecast models F given a downstream application a and the
instance’s data Di. Thereby, Di includes the input data of forecast models in F
as well as additional data required by the downstream application a. Although
this best forecast model may be found through a manual search, such a manual
selection is cost-intensive and time-consuming. Therefore, we propose a meta-
learning framework to identify the best forecast model automatically. In the
following, we introduce this meta-learning framework for forecast model selection
which interprets the selection task as a classification problem. First, we present
the components of the proposed framework. Afterwards, we explain the usage of
the framework including the training process and the operation.

3.1 Components of the Proposed Framework

The meta-learning framework for forecast model selection consists of four com-
ponents. These are the set of forecasts models F , the downstream application a,
the metadata extraction component, and the classifier c.

The set of forecast models F comprises all considered forecast models. To
handle the influence of the data Di of different instances i ∈ I on what is the
best forecast model, we require that the set of forecast models F is diverse. Thus,
this diversity has to be ensured when F is created. The second component is
the considered downstream application a. This downstream application requires
a forecast provided by a forecast model f ∈ F as input for execution. The
execution’s performance determines the forecast value. The third component
is the metadata extraction component. This component extracts the metadata
mi from Di that is used by the classifier to determine the best forecast model.
The last component is the classifier c. The task of the classifier is to select the
forecast model leading to the forecast with the highest value in the downstream
application a. Thus, we need to interpret the selection problem in Eq. (1) as a
classification problem by considering each f ∈ F as a class. Consequently, the
target of the classification problem is the class of f�

i . Given the metadata mi,
the output of the classifier is then

f̂�
i = c(mi).

3.2 Usage of the Proposed Framework

To use the proposed framework, we first need to train the framework in order
to operate it afterwards.

Step 1: Training Fig. 2a provides an overview of the proposed framework’s train-
ing. This training requires the creation of the input features and the target vari-
ables. In the following, we present the creation of the input features and target
variables as well as the training of the classifier in more detail.
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First, to create the input features, we extract the metadata mi of the data
Di for each instance i ∈ I. Additionally, to create the target variables, we create
a set of forecast models F and train the forecast models on the data Di of
each instance i ∈ I. These forecast models provide forecasts to the downstream
application a for execution. The execution’s performance determines the forecast
value for each f ∈ F and i ∈ I from which we derive the target variable f�

i .
Second, using these target variables and the corresponding metadata mi, we
train the classifier c.

Train
forecast model

Apply
forecast model

Extract
metadata

Data Di

Execute downstream
application

Select best forecast
model

Best forecast
model f�

i

Metadata
mi

Train classifier c

for each
f ∈ F

for each
i ∈ I

(a) To train the proposed framework, training data needs to be created. Therefore,
for the data Di of each instance i ∈ I and each forecast model f ∈ F the forecast
value in the downstream application is calculated. Based on this, the best forecast
model f�

i for this instance is determined. Afterwards, f�
i is used as target variable

together with the metadata mi as input data to train the classifier c.

Data Dinew
Extract
metadata

Apply
classifier

Best forecast model f̂�
inew

(b) To operate the proposed framework, the metadata minew of the data Dinew of
a new instance inew is extracted. Based on this, the classifier determines the best
forecast model f̂�

inew . This forecast model can be trained and it’s forecast provided
to the downstream application a.

Fig. 2. The usage of the meta-learning framework for forecast model selection. (a) In
the first step, the framework needs to be trained. (b) Afterwards, the framework can
be operated.



Automated Value-Oriented Forecast Model Selection by Meta-learning 101

Step 2: Operation. The operation of the proposed framework is displayed in
Fig. 2b. First, for the new instance inew and the corresponding data Dinew , we
extract the metadata minew . Using this metadata as input, the classifier’s output
is the best forecast model f̂�

inew
. Based on this output, the corresponding forecast

model can be trained, and the resulting forecast provided to the downstream
application a.

4 Applying the Proposed Framework: Application
on a Dispatchable Feeder

In this section, we apply our framework to the downstream application of a
dispatchable feeder as in [37]. We, therefore, first describe the dispatchable feeder
before highlighting how we apply our framework to this downstream application.

4.1 Application Dispatchable Feeder

In this section, we introduce the exemplary downstream application on which
we apply and evaluate our meta-learning framework for forecast model selection.
The exemplary downstream application is a dispatchable feeder, which consists,
from the system side, of an inflexible, volatile component and a flexible, but
energy-constrained component [4,30]. The overall aim of the dispatchable feeder
is to intelligently manage the flexible component so that the inflexibility inher-
ent in the system is balanced out. Thereby, the management of the flexible
component is described via a two-level non-linear optimisation problem. In the
following, we first specify the considered system components, before we explain
the management.

System Components of the Dispatchable Feeder. We apply a dispatchable feeder
in a domestic building setting and consider the prosumption of the building with
a rooftop photovoltaic (PV) panel as the inflexible and the domestic battery
as the flexible component. To model these components, we consider a discrete
system operation with time intervals indexed with k ∈ N and duration of Δt ∈ R.
Additionally, we consider only active power. To model the battery, we use its
power output Ps(k) ∈ R and state of energy Es(k) ∈ R. Both variables are
restricted by lower and upper bounds P s, P s ∈ R and Es, Es ∈ R≥0. Further,
we model the dynamic evolution of the battery’s state of energy via

Es(k + 1) = Es(k) + Δt · (
Ps(k) − μP+

s (k) + μP −
s (k)

)
(2)

with loss coefficient 0 ≤ μ ≤ 1 and P+
s (k) ∈ R≥0 and P−

s (k) ∈ R≤0 being
the positive and negative parts of the battery’s power output. The building’s
prosumption is defined as domestic load minus PV power generation. The power
exchange between the grid and the dispatchable feeder is then the sum of the
battery’s power output and the building’s prosumption.
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Battery Management of the Dispatchable Feeder. In the following, we briefly
introduce the battery management of the dispatchable feeder via a hierarchical
optimisation problem with two levels. A detailed mathematical description of
the optimisation problems can be found in Appendix A.1.

In the first level, we calculate a cost-minimal dispatch schedule P̃g(k) ∈ R

for the next day using deterministic forecasts of the prosumption P̂l(k) ∈ R. As
a cost function, we take peak shaving and self-consumption into account:

CDS

(
P̃+

g (k), P̃ −
g (k)

)
= c+q · (P̃+

g (k))2 + c+l · P̃+
g (k)

+ c−
q · (P̃ −

g (k))2 + c−
l · P̃ −

g (k),
(3)

with P̃+
g (k) ∈ R≥0 and P̃−

g (k) ∈ R≤0 being the positive and negative parts of
the dispatch schedule and c+q , c+l , c−

q , c−
l ∈ R≥0 being weighting parameters.

In the second level, we minimize the deviation of the dispatch schedule
ΔPg(k) ∈ R with consideration of the realised prosumption Pl(k) ∈ R, while
respecting the battery’s technical constraints.

4.2 Applying the Proposed Framework

As described in Sect. 3, the proposed framework interprets the selection of the
best forecast model as a classification task. In the downstream application of
the dispatchable feeder, we are interested in identifying for each building the
prosumption forecast model which provides the forecast with the highest value.
As forecast value we consider the average daily total cost, with lower costs corre-
sponding to a higher value [37]. Therefore, we briefly describe these costs below.

The total cost is comprised of two components: the cost associated with
the dispatch schedule, as described in Eq. (3), and the cost resulting from the
difference between the actual dispatch and the dispatch schedule, referred to as
imbalance cost [4]. More precisely, we define the imbalance cost as

Cimb

(
ΔPg(k)

)
= cΔ

q · | ΔPg(k) · Δt |2 + cΔ
l · | ΔPg(k) · Δt |

with ΔPg(k) being the difference between the actual dispatch and the dispatch
schedule and the weighting parameters cΔ

q and cΔ
l

1.
The total cost can then be expressed as

Ctotal

(
P̃+

g (k), P̃ −
g (k), ΔPg(k)

)
= CDS

(
P̃+

g (k), P̃ −
g (k)

)
+ α · Cimb

(
ΔPg(k)

)

with imbalance cost factor2 α. Further, we sum the total cost over 24 h and
average this daily total cost over the considered days to obtain the average daily
total cost3.

5 Evaluation

We evaluate the meta-learning framework for forecast model selection on the
previously described downstream application of a dispatchable feeder.
1 In this paper, we select cΔ

q = 0.05 e
kWh2 and cΔ

l = 0.3 e
kWh

as in [5].
2 In this paper, we select as imbalance cost factor either 2 or 10 as in [5].
3 In the following, we use the average daily total cost without its unit (e).
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5.1 Experimental Setup

This section presents the experimental setup4 for the evaluation of the proposed
framework.

Forecast Models. Driven by the results of [37], we consider neural networks
using varying loss functions as forecast models. More precisely, we use three-
layered fully connected neural networks. As input, the neural networks receive
the historical prosumption of the past 24 h. The hidden layer has 16 neurons and
a ReLU [17] activation function. The output layer provides the prediction of the
prosumption for the next 42 h using 42 output neurons and a linear activation
function. Furthermore, we use 20% of the training data for validation to apply
early stopping, a batch size of 512, and the RMSProb optimiser.

To achieve a diverse set of forecast models, we consider four different loss
functions. This set of forecast models is guaranteed to be diverse because the used
loss functions are responsible for the resulting forecast’s properties. Thereby,
a loss function quantifies how well the neural network models the true values
yt, t ∈ [1 . . . N ], and is minimised in training. The first loss function is the mean
absolute error (MAE). It is the mean over the absolute errors and defined as

MAE =
1

N

N∑
t=1

|yt − ŷt| .

The MAE treats large and small errors equally. Second, the mean squared
error (MSE) is the mean over the sum of the squared errors and defined as

MSE =
1

N

N∑
t=1

(yt − ŷt)
2.

Due to the squared error term, the loss function is more sensitive to outliers.
Third, the Huber loss function combines properties of the MSE and the MAE
and is defined as

Huber =
1

N

N∑
t=1

{
1
2
(yt − ŷt)

2, for |yt − ŷt| ≤ 1

(|yt − ŷt| − 1
2
), otherwise

.

Therefore, if the absolute of the error is less than one, the squared error loss
is used, and if not, an absolute error based loss is used. This error function is
therefore less influenced by outliers than the MSE. The pinball loss, which is
often utilised for generating τ ∈ (0, 1) quantile forecasts, has the propensity to
produce biased estimates. Specifically, the true values are underestimated with
a probability of τ and overestimated with a probability of τ − 1. It is defined as

pinball(τ) =
1

N

N∑
t=1

max(τ · (yt − ŷt), (τ − 1) · (yt − ŷt)).

In the present paper, we choose τ values of 0.1, 0.25, 0.75, and 0.9.
4 See Appendix A.2 for a detailed description of the implementation.
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Classifier Setup. The classifier within our proposed framework requires meta-
data that captures relevant time series information as input. Thus, we consider
a set of statistical features as input features including the mean, standard devi-
ation, minimum, 25th percentile, median, 75th percentile, maximum, skewness,
and kurtosis of the prosumption time series. Furthermore, we also include the
average daily prosumption profile, i.e. the mean over all considered days for each
hour. For further analysis with different input features, the reader is referred to
Appendix A.4. To reduce the dimensionality of the input data, we use SKLearn’s
principal component analysis with 70% of explained variance [26]. Therefore, we
scale the input data with SKLearn’s standard scaler.

Given the selected metadata, we evaluate our framework with six different
classifiers to cover a broad range of classification approaches including tree-,
distance-, support vector-, and neural network-based classifiers, which we briefly
describe in the following. The first classifier is the XGBoost classifier [10].
XGBoost boosts multiple decision trees iteratively to improve the prediction.
The second classifier is the k-nearest neighbour (kNN) [12]. It determines the k
nearest neighbours for a given test sample. The final classification is then per-
formed by a majority vote of the k nearest neighbours. The third classifier is
the support vector classifier (SVC) [27]. The SVC aims to find a hyperplane
between two classes [32]. To apply the SVC in the multi-class scenario of the
considered downstream application, the one-vs-one strategy is used. The fourth
classifier is the multi-layer perceptron (MLP). The MLP consists of one or more
hidden layers of fully connected neurons with a non-linear activation function
to approximate arbitrary functions. The fifth classifier is a decision tree (DT)
[8]. DTs extract rules from the training data. Based on these rules, DTs predict
the class of the given sample. The sixth classifier is the naive Bayes (NB) [39].
NB assumes the conditional independence of the input features and uses them
for the prediction of a conditional probability given the prior probability of the
output variable.

Data. For our evaluation, we use the “Ausgrid - Solar home electricity data” set
[29]. The data set contains load and PV power generation time series from 300
residential buildings in Australia spanning three years from 1st July 2010 to 30th
June 2013 in a 30 min resolution. We resample the data to hourly resolution and
calculate the prosumption data by subtracting the PV power generation from
the load. To compare different ratios of load with regards to the installed PV
power generation, we scale the PV power generation with the factors 1, 5, and
10, and the load with factors 1/5, 1/2, 1, 2, and 5.

Further, we use training and test splitting, see Appendix A.3. Thereby, for
training the neural networks, we use the first two years of data as training data
set. For evaluating the neural networks, we utilise the last year as test data set.
Further, for training the classifiers, we use the first 200 buildings. For evaluating
the classifiers, we employ the last 100 buildings. Additionally, for all buildings,
we extract the metadata based on the first two years and consider the output
labels based on the last year.
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Benchmarks. To evaluate the performance of our proposed framework, we
compare it to two benchmarks. The first benchmark is the one loss function
benchmark. As suggested by the name, this benchmark applies one forecast
model to all buildings. More precisely, we train one neural network with the same
loss function for each building on the first two years. As the second benchmark,
we consider a manually selected loss function for each building. In this
benchmark, we calculate which loss function is cost-minimal for each building
based on the first two years of data. Then, each building applies this cost-minimal
loss function for the last year.

Metrics. For evaluation, we use three metrics. The first metric is the F1 score
as an accuracy measure for the considered classifier. The F1 score is defined as

F1 =
2 · TP

2 · TP+ FP + FN
,

with TP being the true positives, FP being the false positives and FN being the
false negatives. For the one loss function benchmark, the F1 score corresponds to
the percentage of buildings for which the loss function is cost-minimal. Second,
to measure the forecast value in our downstream application we use the average
daily total cost in Sect. 4.2, which take the imbalance and the dispatch schedule
cost into account. Thereby, we calculate the mean of the building’s average daily
total cost over the considered buildings for imbalance cost factors 2 and 10.
Third, we measure computational effort by recording the average computation
time of each component in seconds and calculate based on this the average
forecast model selection time in seconds. Thereby, the latter consists of the time
required to select the forecast model and to generate the forecast.

5.2 Results

In this section, we evaluate the performance of the meta-learning framework
for forecast model selection. First, we compare the cost and accuracy of our
framework with the two selected benchmarks. Second, we evaluate the impact
of different classifiers on the forecast model selection performance and, finally,
address the computational effort.

Benchmarking. We compare the cost and accuracy of our framework to the
two benchmarks with respect to imbalance cost factors 2 and 10 in Table 1.

Starting with imbalance cost factor 2, we observe for the one loss function
benchmark that the selected loss function has a noticeable impact on the cost
and accuracy. This benchmark achieves the lowest cost (6.09) with MAE as loss
function. However, similar costs are obtained when using Huber (6.11) and MSE
(6.27). The corresponding accuracies with MSE, MAE, and Huber is 0.25, 0.22,
and 0.17 respectively. In contrast, pinball 0.75 results in cost of 8.83 despite
being the cost-minimal loss function for the most buildings (namely 34%). In
comparison, the proposed framework with SVC as classifier reduces the one loss
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Table 1. The average daily total costs and the F1 scores of the proposed framework
and the considered benchmarks for the imbalance cost factors 2 and 10. The metrics
are calculated for the test data set with the last year of data and the last 100 buildings.
Note, for the average daily total costs lower values are better and for the F1 scores
higher values.

Approaches Imbalance cost factor 2 Imbalance cost factor 10

Average daily F1 scores Average daily F1 scores

total costs (e) total costs (e)

One loss function with

MAE 6.09 0.22 20.05 0.16

MSE 6.27 0.25 18.95 0.20

Huber 6.11 0.17 19.05 0.11

Pinball 0.10 9.62 0.00 43.78 0.00

Pinball 0.25 7.41 0.02 30.47 0.01

Pinball 0.75 8.83 0.34 27.04 0.37

Pinball 0.90 18.13 0.00 60.08 0.16

Manually selected loss function 5.92 0.69 17.67 0.73

Proposed framework (SVC) 5.93 0.68 17.80 0.67

function benchmark cost by at least 2.6% to 5.93 and improves the accuracy to
0.68. However, the proposed framework has slightly higher cost (5.92) and lower
accuracy (0.69) compared to the manually selected loss function benchmark.

For imbalance cost factor 10, the one loss function benchmark reaches its
lowest cost (18.95) using MSE as loss function, with similar costs using Huber
(19.05) and MAE (20.05). The corresponding accuracy is 0.20 with MSE, 0.16
with MAE, and 0.11 with Huber. The highest accuracy of 0.37 is reached with
pinball 0.75. In comparison, the proposed framework with SVC as classifier,
again, reduces the one loss function benchmark cost by at least 6% to 17.80
and improves the accuracy to 0.67. Further, similar to imbalance cost factor 2,
the difference in cost and accuracy between the proposed framework and the
manually selected loss function benchmark is less than 1% and 10% respectively.

Impact of Classifier. To investigate the impact of the classifier, we compare
the performance of the proposed framework with six classifiers. Based on the
results for the imbalance cost factors 2 and 10 in Table 2, we present three
observations.

First, for with imbalance cost factor 2, we observe that the proposed frame-
work achieves the lowest cost of 5.93 when using SVC and MLP. The classifiers
kNN, XGBoost, and decision tree lead to costs of 6.00, 6.03 and 6.07 respectively.
With respect to the accuracy, the order of the classifier is similar with SVC/MLP
(0.68), XGBoost (0.64), kNN (0.63), and decision tree (0.58). In contrast, naive
Bayes leads to the highest cost of 6.21 as well as to the lowest accuracy of 0.6.

Second, for imbalance cost factor 10, SVC and MLP lead to the lowest costs
of 17.80 and 17.81 and to accuracy of 0.67. Further, the classifier kNN, XGBoost,
and naive Bayes lead to costs of 17.98, 18.13, and 18.21 and accuracies of 0.63,
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Table 2. The average daily total costs and the F1 scores of the proposed framework
using different classifiers for the imbalance cost factors 2 and 10. The metrics are
calculated for the test data set with the last year of data and the last 100 buildings.
Thereby, we calculate the mean over five runs with the values in the brackets being
the minimum and maximum. Note, for the average daily total costs lower values are
better and for the F1 scores higher values.

Approaches Imbalance cost factor 2 Imbalance cost factor 10

Average daily F1 scores Average daily F1 scores

total costs (e) total costs (e)

XGBoost 6.03 0.64 18.13 0.61

kNN 6.00 0.63 17.98 0.63

SVC 5.93 0.68 (0.67,0.68) 17.80 0.67

MLP 5.93 (5.92,5.95) 0.68 (0.67, 0.68) 17.81 (17.76, 18.39) 0.67

Decision tree 6.07 (6.06,6.09) 0.58 (0.57,0.59) 18.35 (18.32, 18.39) 0.56 (0.55,0.57)

Naive Bayes 6.21 0.6 18.21 0.58

0.61, and 0.58 respectively. In contrast to the results for the imbalance cost factor
2, decision tree performs worst with cost of 18.35 and accuracy of 0.56.

Our final observation regarding the classifiers’ impact is that each classifier
reaches a higher accuracy for imbalance cost factor 2 compared to imbalance
cost factor 10.

Computational Effort. We first measure each component’s computation time.
Afterwards, we calculate the time of the proposed framework and the bench-
marks to select the forecast model for a new building.

For each component, Table 3a provides the average computation time in sec-
onds per building. The most time-intensive component is the optimisation prob-
lem’s run time on the first two years, followed by the neural network’s training
time. The other components require a negligible amount of time.

Based on the measured components’ times, we can estimate the forecast
model selection time for a new building. For the one loss function benchmark,
the neural network with the considered loss function must be trained on the first
two years of the new building’s data. For the manually selected loss function
benchmark, we need to train neural networks for each loss function, generate
forecasts with the trained neural networks and solve the optimisation problem
with the resulting forecasts for the first two years. For the proposed framework,
we must first extract the metadata based on the first two years, then run the
classifier, and, finally, train the neural network with the selected loss function
once. Table 3a shows the resulting forecast model selection times. In this table,
we make two observations. First, the manually selected loss function benchmark
has, noticeably, the highest forecast model selection time with 287.14 s. The
one loss function benchmark and the proposed framework require noticeably
less time. Second, we observe that despite using a meta-learning approach the
forecast model selection time of the proposed framework is only slightly higher
than that of the one loss function benchmark.
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Table 3. The average computation time of each component and the average forecast
model selection time of the proposed framework and the considered benchmarks in
seconds for a new building. Note, the times do not depend on the considered imbalance
cost factor.

(a) Computation time of the components

Components Computation time (s)

Classifier inference time

XGBoost 0.02

kNN 0.08

SVC 0.10

MLP 0.01

Decision tree 0.00

Naive Bayes 0.01

Metadata generation time 0.19

Forecasting NN training time 9.38

Forecasting NN inference time 0.07

Optimisation problem run time 31.57

(b) Forecast model selection time of the proposed framework and the considered
benchmarks for a new building.

Approaches Forecast model selection time (s)

One loss function 9.38

Manually selected loss function 287.14

Proposed framework (SVC) 9.67

6 Discussion

This section discusses the previously reported results in Sect. 5.2, the benefits,
and the limitations of the meta-learning framework for forecast model selection.

With regard to the results of the evaluation, we discuss three aspects. First,
the results indicate that the proposed framework reduces the cost and improves
the accuracy compared to the one loss function benchmark. Thereby, the choice
between the classifiers SVC and MLP does not affect the proposed framework’s
performance. In contrast, for this application, using the naive Bayes and deci-
sion tree classifier is not recommended. Furthermore, the performance of the
proposed framework with respect to cost and accuracy is comparable to the per-
formance of the manually selected loss function benchmark. However, there is
still potential for further improvement, e.g. more advanced classifier as well as
hyperparameter optimisation. Second, we observe a non-monotonic, non-linear
relation between cost and accuracy. More precisely, improving the accuracy does
not necessarily lead to lower cost. For the one loss function benchmark, this
means that the cost-minimal loss function for most buildings is not necessarily
the cost-minimal loss function for the whole data set. This observation can be
explained by extensive costs for the remaining buildings and highlights the com-
plexity of selecting the loss function with respect to the forecast value in the
downstream application. Finally, the results show that the proposed framework
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reduces the computational effort compared to the manually selected loss function
benchmark by 97%. That makes the proposed framework particularly interesting
for downstream applications for which scalability is essential. For example, in
the considered application of the dispatchable feeder, scalability and low com-
putational effort could become important for the joint optimisation of multiple
buildings. Additionally, in contrast to the manually selected loss function bench-
mark, the computational effort of the proposed framework increases negligibly
when the set of forecasting models is expanded. Besides the benefit with respect
to scalability, we want to highlight a further advantage that comes from the
design of the proposed framework. This is, due to its simplicity, it can be easily
applied to various applications without extensive knowledge of the optimisation
problem.

With regard to the proposed framework’s limitations, we discuss three
aspects. First, it should be noted that the proposed framework has been eval-
uated on one application. Second, the proposed framework currently uses two
years of historical data for the initial training process. Therefore, further evalua-
tion is required to determine how a reduced training set affects the performance.
Third, the proposed framework selects the forecast model for each building once.
Further research could extend the framework to an online setting that contin-
ually re-classifies each building based on recent information. This extension is
especially motivated by the results of the manually selected loss function bench-
mark that indicates that the forecast value of a forecast model might change
over time.

7 Conclusion

The present paper addresses the complexity of selecting a forecast model based
on the resulting forecast’s value in the downstream application. To automate
this selection and avoid a computational expensive manual selection, we pro-
pose a meta-learning framework for forecast model selection. More precisely,
we consider the selection task as a classification problem and train a classifier
based on labels referring to the forecast model which provides the forecast with
highest value in the downstream application. We evaluate this meta-learning
framework for forecast model selection on the exemplary downstream applica-
tion of a smart building’s domestic photovoltaic-battery management problem
known as dispatchable feeder. Therefore, we consider neural networks with dif-
ferent loss functions as forecast models. Thus, the selection task is to select
the neural network’s loss function providing forecasts with the highest value
for the dispatchable feeder. The results show that our framework reduces the
cost and improves the accuracy compared to selecting the same loss function for
each building. In comparison with selecting the loss function for each building
manually, the proposed framework leads to similar cost and accuracy requiring
noticeably less computational effort.

In future work, we plan to expand our framework by incorporating the
dynamically selection of the forecast model based on recent input data and by
increasing the considered set of forecast models.
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A Appendix

A.1 Optimisation Problems

In the following, the first and second level optimisation problems of the dis-
patchable feeder in Sect. 4.1 are described. In the first level, the cost function
in Eq. (3) is minimised under consideration of the system constraints. The first
level optimisation problem can be described by

min
{X}K

∑
k∈K

CDS

(
P̃+

g (k), P̃ −
g (k)

)

s.t. for all k ∈ K
(2)

Es(k0) = E0
s

P̃g(k) = Ps(k) + P̂l(k)

P̃g(k) = P̃+
g (k) + P̃ −

g (k)

P̃ −
g (k) ≤ 0

Ps(k) = P+
s (k) + P −

s (k)

P+
s (k) ≥ 0

P −
s (k) ≤ 0

0 = P+
s (k) · P −

s (k)

P s ≤Ps(k) ≤ P s

Es ≤Es(k) ≤ Es

(4)

with a discrete scheduling horizon K, decision vector X(k) =
(
P̃g(k), P̃+

g (k),

P̃−
g (k), Es(k + 1), Ps(k), P+

s (k), P−
s (k)

)T , and parameters P̂l(k), E0
s , P s, P s,

Es, Es. Thereby, the state of energy at the start of scheduling k0 ∈ N has to be
known or estimated.

In the second level, the deviation of the dispatch schedule ΔPg(k) ∈ R is min-
imised while considering the realised prosumption Pl(k) ∈ R and the battery’s
technical constraints. It can be described by

min
X(k)

(
ΔPg(k)

)2

(2)

Es(k) = Ek
s

Pg(k) = Ps(k) + Pl(k)

Pg(k) = P̃g(k) + ΔPg(k)

Ps(k) = P+
s (k) + P −

s (k) (5)

P+
s (k) ≥ 0

P −
s (k) ≤ 0
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0 = P+
s (k) · P −

s (k)

P s ≤Ps(k) ≤ P s

Es ≤Es(k) ≤ Es

with actual dispatch Pg(k) ∈ R, decision vector X(k) =
(
ΔPg(k), Pg(k),

Es(k + 1), Ps(k), P+
s (k), P−

s (k)
)T and parameters P̃g(k), Pl(k), Ek

s , P s, P s,

Es, Es. Thereby, the state of energy in k ∈ N is known.

A.2 Implementation

In the following, we briefly describe the hard- and software and the optimisation
problems’ parameter specification used for our evaluation.5

All of our experiments are performed on a small server with 32 cores
(2.1GHz), 64GB RAM, and a Nvidia Titan RTX. To ensure reproducibility
and reusability, we implement the experiments using the pyWATTS library
[21]. To solve the optimisation problem in our downstream application, we use
the Python version of CasADi [3] with IPOPT [33]. We set the parameters of
the optimisation problem in Eq. (4) and Eq. (5) as in [5], see Table 4. Further,
we implement all classifiers except XGBoost with implementation provided by
SKLearn [26]. For XGBoost, we use the XGBoost library [10]. Furthermore, we
use the default hyperparameters for all classifiers apart from the MLP classifier,
where we raise the maximum number of epochs to 1000.

Table 4. Parameter specification of the optimisation problems in Eq. (4) and Eq. (5).

Parameter Value

Δt 1 (hour)

K {ks, ..., ks + 29}a

c+q 0.05 (€/kWh2)

c+l 0.3 (€/kWh)

c−q 0.05 (€/kWh2)

c−l 0.15 (€/kWh)

P s −5 (kW)

P s 5 (kW)

Es 0 (kWh)

Es 13.5 (kWh)

μ 0.05

E0
s day 1: 6 (kWh)

days 2 - 7: estimatedb

a ks ∈ N is the index of the time
interval starting at midnight
b The initial state of energy E0

s for
days two to seven is estimated via
an optimisation problem, see [4].

5 The Code is publicly available at https://github.com/KIT-IAI/Automating-Value-
Oriented-Forecast-Model-Selection-by-Meta-Learning.

https://github.com/KIT-IAI/Automating-Value-Oriented-Forecast-Model-Selection-by-Meta-Learning
https://github.com/KIT-IAI/Automating-Value-Oriented-Forecast-Model-Selection-by-Meta-Learning
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A.3 Training and Test Data Sets

Fig. 3 displays the training and test data set splitting for the forecast models
and the classifiers.

B
u
il
d
in
g

T
est

classifi
ers

T
rain

classifi
ers

30
0

20
0

1
Test

forecast models
Train

forecast models

2010 2012 2013

Fig. 3. The training and test data sets for the forecast models and the classifiers. Note,
for the classifiers, we extract the metadata from the first two years and consider the
output labels based on the last year.

A.4 Input Features

Table 5 shows the costs and accuracies of the proposed framework for different
input features.
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Abstract. Energy consumption in the building sector is about 40%
of total energy consumed globally and is trending upwards, along with
its contribution to greenhouse gas (GHG) emissions. Given the adverse
impacts of GHG emissions, it’s crucial to integrate energy efficiency
into building designs. The most significant opportunities for enhanc-
ing energy performance are present during the initial phases of build-
ing design, which are less impacted by other design constraints. Various
tools exist for simulating different design options, providing feedback in
terms of energy consumption and comfort parameters. These simulation
outputs must then be analyzed to derive design solutions. This paper
presents an innovative approach that utilizes user input parameters, pro-
cesses them through cloud computing, and outputs easily understandable
strategies for energy-efficient building design. The methodology employs
Asynchronous Distributed Task Queues (DTQ)-a scalable and reliable
alternative to conventional speedup techniques-for conducting paramet-
ric energy simulations in the cloud. The goal of this approach is to assist
design teams in identifying, visualizing, and prioritizing energy-saving
design strategies from a range of possible solutions for each project.

Keywords: Asynchronous Distributed Task Queues · Parallel
Simulations · Building Energy Analysis

1 Introduction

Rapid urbanization around the globe is driving energy demand and the associ-
ated greenhouse gas emissions. The buildings and construction sector accounts
for 36% of final energy use and 39% of energy- and process-related emissions
worldwide. In 2021, about 28% of the total U.S. energy consumption was asso-
ciated with residential and commercial buildings [1]. As per the Global Con-
struction 2030 report, the volume of construction output is expected to grow by
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85% to USD 15.5 trillion worldwide by 2030, with China, the U.S. and India
leading the way and accounting for 57% of all global growth [2]. Much of the
energy use in buildings is wasted because of “poor design, inadequate technol-
ogy and inappropriate behavior” [3]. At the beginning of the design process,
it is relatively simpler and less expensive to make design changes to arrive at
the desired solution. The design process is generally phased sequentially as fol-
lows: conceptual design, schematic design, design development and construction
documents. The early design phases provide more flexibility as there are fewer
constraints imposed by other design decisions. There are a number of design
parameters, primarily related to building form, that need to be considered dur-
ing early design. Echenagucia et al. [4] discussed the importance of decisions
taken in early design phase, asserting that this critical phase presents the great-
est opportunity to obtain a high-performance solution for the building.

A number of building design analysis tools are currently available with vary-
ing features and functionality that can be used to explore building energy con-
sumption, including EnergyPlus [5], DOE-2 [6] and IES-VE [7]. Some of these
tools can be used with different external User Interface (UI) interfaces, For exam-
ple, EnergyPlus, which is a whole building simulation tool developed by the U.S.
Department of Energy (DOE), is included with OpenStudio [8], DesignBuilder
[9] and Simergy [10], eQUEST [11] includes DOE-2.2, a derivative of DOE-2, and
Green Building Studio [12] can serve as an interface to both DOE-2.2 and Ener-
gyPlus. IES-VE includes both a simulation engine and a user interface. Despite
the substantial number of building simulation tools available, the application of
these tools is mostly restricted to the later design phases [13].

However, a number of authors have explored the use of building performance
simulations in early design. One of the findings of Kristoffer Negendahl [14]
emphasized that most tools and methods used in the early design stages are
not sufficient to provide valid feedback while at the same time being flexible
enough to accommodate a rapidly changing design process. Tian et al. [15] have
compared seven energy optimization tools that can be used to achieve energy effi-
ciency in the conceptual design phase. The results show that existing techniques
are not able to fully address the architect’s needs in the conceptual design stage
and, therefore, further research and development are needed. Ostergard et al. [16]
have presented a robust review of building simulation tools and addressed inte-
gration challenges for early design. These challenges are time-consuming mod-
elling, rapid changes in design, and conflicting requirements.

The following points outline the limitations of the existing tools:

– Some of the tools require the user to have programming expertise
– Some tools use input files to provide the freedom to change variables but

require considerable user expertise to understand the file content and format
– Only a few of the tools harness cloud servers and task queues
– None of the tools produce outputs that can be readily explicated as rules or

clusters that are easily understandable by humans.

There appears to be no existing tool that is free of all these limitations. The
use of available simulation tools in early design stage requires expertise in energy
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simulation. Also, if there is a requirement to run a large number of parametric
simulations, the computation time is very high. For example, if there are five
parameters and each parameter needs to be simulated with five variations, then
there will be over three thousand combinations. Processing and data manage-
ment in such cases is difficult for users who do not have expertise in running
large numbers of simulations. An additional key issue is the ineffective display
of simulation results to visualize the relative performance of design alternatives.
Ideally, effective visualization would result in insights into the underlying causes
of performance differences.

In this paper, a methodology has been presented having the following novel
features:

– Presentation of results in the form of design constraints for building energy
efficiency. These restrictions are easily understandable by designers, in par-
ticular, by architects.

– Distributed Task Queue (DTQ) cloud computing for modeling and processing
of energy simulation results

In the following sections, details of the methodology for conducting early
design simulations and finding strategies are presented. Following this, a con-
cluding section is provided.

2 Methodology

A methodology has been developed to make energy-efficient decisions in the early
stages of building design. The methodology can be divided into seven steps, as
shown in Fig. 1, it consists of getting input ranges for building design variables
from the user, creating simulation models and running these using task queues
in the cloud. The simulation results are used to identify design strategies that
result in performance in the lowest energy consumption range; the results are
presented graphically to enable strategies to be visualized by users. Users can
then refine the ranges to get more insights into design flexibility [17].

Step 1: User Inputs
The step ‘User Input’ identifies early design parameters. Some parameters can
be fixed and some can be variable. The range of each variable parameter needs
to be defined for parametric simulations to be performed. Key design attributes
and the corresponding design parameters are listed in Table 1.

Fixed and Variable Input Parameters. Input parameters can be divided
into two categories - fixed parameters and variable parameters. In some cases,
the parameter may be fixed permanently; for example, orientation and/or aspect
ratio may be fixed by the constraints of the site. In some cases, certain param-
eters may be fixed in the earliest stages of the analysis to focus computational
resources on other aspects of the design.
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Fig. 1. Seven-step methodology for early stage building energy design.

Table 1. Building parameters.

Fixed Parameters Variable Parameters

Location Window to Wall Ratio (WWR)
Building type Orientation
HVAC system Glass type
Total built-up area Aspect Ratio
Number of floors Overhang
Window type
Cool roof
Daylight controls
Heating Set Point
Cooling Set Point

An illustration of fixed and variable parameters for a typical project is pre-
sented in Table 1. In some cases, parameters such as Heating Ventilation and Air
Conditioning (HVAC) type or presence of a cool roof may need to be variable
rather than fixed in order to determine how comfort can be best obtained at
a lower cost. For example, some cooling systems, such as radiant systems, may
be inherently more efficient but have lower capacity than conventional air-based
systems. In this step, input parameters are identified that are going to be used
in further processing. Typical ranges for the parameters are shown in Table 2.
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Table 2. Range of variable input parameters.

Parameter Minimum Value Maximum Value Units

Aspect Ratio 1 10 Ratio
Orientation 0 360 Degree
Overhang 1 45 Degree
WWR 1 90 Percentage

Step 2: Generating Input Files for Simulations
The next step is to generate relevant combinations to run energy simulations.
It starts with entering user inputs into templates to generate input data files
- text files with a predefined structure, such as the EnergyPlus Input Data
File (IDF) and DOE-2 input file. A template is a text file with parameters
specified as variables, which is then used to generate a separate input file for
each combination of parameter values. The number of input files depends on the
potential parameter variations - for example, if there are eight parameters and
each has five possible values, then a total of 32,768 input files will be generated.
More details of the EnergyPlus IDF can be found in the EnergyPlus [5].

Step 3: Performing Energy Simulations
Each combination needs to be simulated using a building energy simulation
tool. The simulation tool provides energy consumption for each combination.
To handle a large number of simulations, parallel computing can be used. Garg
et al. [18] have presented an approach to break annual simulation in several
segments of smaller run period and each handled by a separate processor. The
elapsed time is reduced by using multiple processors for each run. Speed gain
of 3 x to 6 x was achieved in the study. Another study performed by Giannakis
et al. [19] investigated simplifications in geometries and the use of co-simulation
and achieved a reduction in runtime of 80%. Abhilash et al. [20] used regression
to reduce computation by simulating some of the selected combinations and
estimating the rest of them. Researchers have explored various techniques to
handle multiple EnergyPlus simulations like multi-threading, multi-processing
and parallel computing but reliable software architecture and the application of
DTQ in building energy simulations still needs recognition.

In this methodology, DTQ are used for the simulations which is considered
as a standard technique to perform tasks on multiple computational cores asyn-
chronously. It is based on producer-consumer architecture. Producer en-queues
the tasks in the message queue and consumers de-queues it, process it and
updates the result in database. This work achieves novelty by introducing DTQ
to run CPU-intensive EnergyPlus programs on the web by developing scalable
and fault-tolerant application. A DTQ web application is deployed on the cloud,
this application can also be deployed in research labs, universities, offices, etc for
better cost savings in energy simulations. There are various software libraries
for DTQs in different programming languages such as Huey, Celery [21], and
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Resque. Open source python library “Celery” is opted in this work having mul-
tiple support for programming languages, brokers and monitoring tools which
focuses on real-time operation but supports scheduling as well. Apart from this,
it provides clean software implementation documentation and has wide user base
across the globe [22].

The supervisor [23] is a client/server that provides a platform for users to
monitor and control numerous processes in Linux based operating systems. An
administrator is given the privilege of controlling Django, flower and celery app in
any system/computer using this tool. This can be configured in a way which can
start any program at boot time, it makes the system persistent. In the parametric
simulations, only annual energy consumption is generated as the output. Annual
energy consumption is expressed in terms of the Energy Performance Index
(EPI), which is calculated by dividing the annual total energy consumption of
the building by its gross floor area.

Step 4: Spread of Solution Space
It is helpful for the user to look at the spread of simulation results to get an
idea about range of energy consumption. This is achieved by providing a solution
histogram. Sensitivity analysis helps the user to understand the impact of design
parameters on building energy performance.

Solution Histogram. Plotting the distribution of energy consumption of the
of how energy consumption is divided over an entire range of values. A sample
histogram is shown in Fig. 2, plotted for Energy Performance Index (EPI). This
plot shows that most of the solutions lie in the lower energy range.

Fig. 2. Frequency distribution of EPI for energy simulation results.
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Input: A data file file containing all energy simulation results
Output: Imapact ratio

Read the data from the input file containing all simulation results

Initialize parameterlist with list of variables from the input data
paramter impact for wwr variable

append orienList with unique values of orientation
append glassList with unique values of glass
append arList with unique values of aspectratio
append overhangList with unique values of overhang
for i ← orienList do

for j ← glassList do
for k ← arList do

for l ← overhangList do
Initialize ratiolist
for read all rows do

find min energy
find max energy
calculate ratio max/min
append ratio to ratioList ;

end
end

end
end

end
find max ratio from ratioList ;
return max ratio;
Algorithm 1: Algorithm to find impact factor for a given variable

Impact of Parameters. Sensitivity analysis helps the user understand the
impact of design parameters on building energy performance. It shows the change
in energy consumption resulting from a change in the value of one design param-
eter at a time, while keeping the other design parameters constant. This is equiv-
alent to one-parameter-at-a-time sensitivity analysis at a selected point in the
design space. An algorithm 1 is used to generate parameter impact.

Step 5: Finding Strategies
Energy simulation tools provide a large amount of output data. Careful selec-
tion of the data is required to reach useful conclusions. Once the simulations
are completed, the next step is to select low-energy solutions from the design
space. These selected solutions are then clustered to identify the design strate-
gies. Clustering has become a very popular machine-learning technique for identi-
fying groups of data points with common features in a set of data points. Lemley
et al. [24] provided an algorithm for finding hyper-rectangles in high dimensional
data that runs in polynomial time with respect to the number of dimensions.

An algorithm has been developed to provide parameter strategies that gener-
ate design solutions 2. The one-parameter strategy determines the range of values
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for each parameter for which each of the other parameters can take any value
within its input range. For example, for a particular climate, if WWR ≤ 30%,
any value of orientation, overhang, glass type, or aspect ratio can be chosen
without any constraint, within the specified input ranges. This example is a spe-
cial case, in that the performance of a building with a relatively small amount of
glazing will be insensitive to the other envelope parameters; whether this solu-
tion is acceptable architecturally is a broader question for the designer. Glass
type depends on the thermal conductance of glass, Solar Heat Gain Coefficient
(SHGC) and Visible Light Transmittance (VLT).

Input: A data file containing all energy simulation results
Output: List of strategies

Read the data from the input file containing all simulation results

Initialize parameterlist with list of variables from the input data

Initialize threshold for energy
for read all rows in csv do

if energy < threshold then
update value ← true.

end
else

update value ← false
end

end
for i ← parameterlist do

uniqueList ← unique i;
for j ← uniqueList do

Initialize count = 0
for read all rows do

if value == false then
count = count + 1 ;

end
end
if count = 0 then

append i,j to singlevariable list ;
end

end
end
return singlevariable list ;

Algorithm 2: Algorithm to find strategies from the energy simulation input
data

The design sub-space defined by glazing type and window-to-wall ratio pop-
ulated with solutions that satisfy a particular maximum energy consumption
criterion is shown in Fig. 3.

Figures 4a, 4b show the data points with two, and three clusters identified
using the K-Means algorithm [25]. These clusters do not provide design strategies
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Fig. 3. Design subspace for Glass Type and WWR

Fig. 4. Design subspace with two and three clusters

that can be communicated to the user. For example, Cluster 2 contains points
with WWR < 40 and GlassID < 4. However, choosing low WWR should give
freedom to the user to choose any Glass ID; this information is not getting
captured in any cluster.

The clusters identified by distance-based clustering algorithms provide infor-
mation about the effectiveness of combinations of values of different design
parameters but the limitation is that they do not provide design strategies or
provide information about design freedom, i.e. which design parameters have
little effect on energy performance and so can be set based on other criteria [26].
For example, if low SHGC is chosen, then the user should be able to choose any
WWR, but the sets of solutions identified by regular clustering algorithms do
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not capture this, so some form of synthesis is required. How, or whether, this
synthesis should be performed depends on; whether non-energy criteria are to
be incorporated, even in an implicit and qualitative way.

The stipulated criteria for clusters are as follows [26]:
Clusters must be explicable through simple rules such as a1 ≤ feature1 ≤ b1,

a2 ≤ feature2 ≤ b2, and an ≤ featuren ≤ bn. Moreover, the clusters should be
capable of adapting to scenarios where the number of clusters within the given
space is initially uncertain and necessitates a discovery process. They are also
expected to accommodate instances of overlapping clusters and account for data
points that may not be categorized into any cluster. Furthermore, the method-
ology should arrange clusters according to their sizes, establishing a ranking
based on this particular criterion. To amplify user control, the selection of clus-
ters above a threshold defined by the user should also be feasible.

To overcome the limitation of distance-based clustering, an algorithm has
been developed that identifies combinations of design solutions that can be used
as strategies by designers. Referring to Fig. 4b, combining clusters 1 and 2 gener-
ates the strategy Low WWR, which results in low energy consumption whatever
Glass Type is selected, whereas combining Clusters 1 and 3 generates the strat-
egy High-Performance Glazing, which results in low energy consumption what-
ever WWR is selected. Cluster 1 may be undesirable for non-energy reasons:
High-Performance Glazing is more expensive and low WWR may be undesir-
able in terms of view, daylighting and particular aesthetics. In projects where
these considerations apply, there are then two strategies that incorporate other,
non-energy criteria: Use Low-Performance Glazing if Low WWR is acceptable
(Cluster 2) Use High-Performance Glazing if High WWR is required (Cluster
3) Cluster 1 will have the best energy performance but the improvement over
Cluster 2 or Cluster 3 may be modest and not enough to justify the extra cost or
compensate for the reduced amenity. By use of algorithm-1, the single and dou-
ble variable strategies can be identified. This is also a type of clustering in which
we are fixing one dimension, which will provide Axis Aligned Hyper Rectangle
(AAHR) of remaining variables, which makes for easier communication with the
user.

Figures 5 and 6 show six clusters from the algorithm. The data points shown
in Figs. 5 and 6 are the points for which energy consumption is less than 10 %
above the minimum energy consumption. These six clusters can later be merged
into two clusters. The result can be easily converted into strategies that can be
communicated to the user.

The six clusters are WWR10%, WWR20%, WWR30%, GlassID4,
GlassID5, and GlassID6. These six clusters can be combined in two clusters
WWR ≤ 30 and Glass ID 4, 5, and 6. This is very easy to communicate and
understand. Let X, Y and Z be three axes in the design space and start with
this three-dimensional subspace fully populated for each step of X, Y and Z. If
there is a set of low energy consumption solutions that occupy a certain region
of the design space that contains no other, higher energy consumption, solu-
tions, then this set can be considered to represent a low energy design strategy.
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Fig. 5. Points with three clusters for Glass ID

Fig. 6. Points with three clusters for WWR

If these solutions are constrained by, i.e. are either close to or bounded by, a
plane parallel to the Y-Z plane (X=a, say), they constitute a single variable
strategy (X = a or X ≥ a or X < a). Figure 7 illustrates the case where the
constraint X=a defines the strategy. If there are two constraints, e.g. X = a and
Y > b, then the low energy solutions are located in the region of the X=a plane
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defined by Y > b, as shown in Fig. 8. If the Y constraint were Y=b, the solutions
would lie on the line defined by X = a, Y = b.

Fig. 7. Representation of one variable strategy; the solutions form a plane at X=a.
Low energy solutions are represented by solid spheres and a sampling of higher energy
solutions is represented by hollow spheres

If there are three constraints, corresponding to a three-variable design strat-
egy, they can be represented graphically as follows:

Three identity constraints: X = a, Y = b, Z = c define a point in the design
subspace Two identity constraints and a limit constraint, e.g. X = a, Y = b,
Z > c define a line segment, as shown in Fig. 9.

Step 6: Visualization
Energy simulation tools provide a large amount of output data. Care is required
in selecting the data required to reach useful conclusions. Researchers presented
different data analysis and visualization techniques that can be used in the early
stage of design decision-making. Yarbrough I. et al. [27] used heat maps to show
energy demand in a campus. Ignacio Diaz Blano et al. [28] used a histogram for
energy analytics in public buildings. Shweta Srivastava et al. [29] provided a review
of different visualization techniques used in building simulations.

Parallel Coordinate Graph. Parallel coordinates plots are one way to visual-
ize high-dimensional data. A six-dimensional graph is shown in Fig. 10. This
figure shows a parallel coordinate graph for five design parameters and the
resulting energy consumption; for this, six equally spaced vertical lines, are plot-
ted. There are a number of software tools and libraries available to generate
such graphs, such as D3 [30] and python Matplotlib [31]. This type of graph
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Fig. 8. Representation of a two-variable strategy defined by an identity constraint,
X = a, and a limit constraint, Y > b; the solutions occupy part of a plane. Low energy
solutions are represented by solid spheres and a sampling of higher energy solutions is
represented by hollow spheres

Fig. 9. Representation of a three-variable strategy defined by two identity constraints,
X=a and Y=b, and a limit constraint, Z > c; the solutions occupy part of a line.
Low energy solutions are represented by solid spheres and a sampling of higher energy
solutions is represented by hollow spheres
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can provide insights regarding the combination of design parameters that pro-
duce superior performance in terms of energy use. The user can also study the
impact of various parameters on the performance of the building. Users can
select ranges for different design parameters and see the impact on energy con-
sumption. Parameters can be arranged in order of their sensitivity, e.g. with the
most sensitive parameter at the right-hand side, to aid the interpretation of the
graph.

Colour coding of the lines by energy consumption also aids interpretation. In
Fig. 10, the blue lines indicate the solutions with the lowest energy consumption.
Tracing these lines leftwards enables beneficial combinations of design parame-
ters to be identified and provides one way of visualizing strategies. An interactive
selection of lines of one colour/energy range, while hiding the others, can make
the graph easier to interpret.

Fig. 10. Parallel Axis graph.(Color figure online)

Step 7: Refinement of Results
The user can review the results, make changes in the ranges, and look at more
possibilities. Narrowing down the ranges can help the user to understand the
output results. Fine-tuning of ranges comes at the cost of simulation time.

3 Conclusions

A novel methodology has been developed that can help architects and oth-
ers select design parameters for energy-efficient buildings in the early stages
of design. This methodology entails the assimilation of program prerequisites
and various constraints, the generation of combinations of permissible design
parameter values for simulation, analysis of the simulation outputs, and subse-
quent guidance to the design team on parameter combinations yielding optimal
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energy performance. Furthermore, an algorithm has been developed to iden-
tify strategies that depend on a subset of design parameters, promoting energy
performance while allowing design freedom to select the values of other param-
eters based on considerations external to energy. Leveraging the Asynchronous
Distributed Task Queue architecture, any tool based on the methodology can
provide scalable execution of a multitude of EnergyPlus simulations.
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Abstract. The cooling systems contribute to 40% of overall building
energy consumption. Out of which, 40% After identifying the anomalies,
we find the cause of the anomaly. Based on the anomaly, the solution
recommends a fix. If there is a technical fault, our proposed technique
informs the technician regarding the faulty component, reducing the
cost and mean time to repair. In the first stage, we propose a domain-
inspired statistical technique to identify anomalies in cooling systems.
We observe the Area Under the Curve of the Receiver Operating Char-
acteristic (AUC −ROC) score of more than 0.93 in both simulation and
experimentation. In the second stage, we propose using a rule-based tech-
nique to identify the anomaly’s cause and classify it into three classes. We
observe an AUC −ROC score of 1. Based on the anomaly classification,
in the third stage, we identify the faulty component of the cooling sys-
tem. We use the Nearest-Neighbour Density-Based Spatial Clustering of
Applications with Noise (NN-DBSCAN) algorithm with transfer learn-
ing capabilities to train the model only once, where it learns the domain
knowledge using simulated data. The overall accuracy of the three-stage
technique is 0.82 and 0.86 in simulation and experimentation, respec-
tively. We observe energy savings of up to 68% in simulation and 42%
during experimentation.

Keywords: Cooling systems · Fault Detection · IoT

1 Introduction

The cooling systems contribute to 40% of buildings’ energy consumption [17].
They consume more energy when there are anomalous instances, and these
instances occur due to faults in the cooling system. Faults in cooling systems
lead to energy wastage of up to 40% of its overall lifetime energy consump-
tion [10]. Anomalies and the cause behind these anomalies must be identified in
real-time. Delay in detecting anomalies increases downtime, and energy wastage
by the cooling system [13]. Real-time identification of anomalies suggests user to
take necessary action when a fault occurs. It also reduces the wastage of energy
consumption by cooling systems.
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The cooling systems are categorized into two categories – ducted-centralized
cooling systems and ductless-split cooling systems. In a ducted-centralized cool-
ing system, a compressor is connected to Air Handling Units (AHUs) using ducts.
Here, the ducts transfer cold air from the compressor to the rooms. However,
in the ductless split cooling systems, one compressor is connected to one AHU.
The user decides on a particular cooling system based on the usage and building
requirements. However, both types of cooling systems are prone to anomalies.

Real-time detection of anomalies in cooling systems is an important task,
especially in critical systems where it is required to maintain the room’s temper-
ature throughout with minimum downtime. Detection of these anomalies comes
under the category of time-series anomaly detection. The two primary techniques
to detect such anomalies are the classical approach and the Deep Learning (DL)
approach.

The techniques mentioned above are capable of identifying anomalies in time-
series data. However, these techniques cannot explain the reason behind the
anomalies. These techniques are data-sensitive and require a large amount of data.
However, anomalies in real-world systems depend on various environmental and
deployment factors. We do not have a large dataset at the initial stages of real-
world deployment. Hence, these approaches are not suitable for such applications.
For example, identifying an unusually significant change in energy consumption
by the cooling systems. There are various reasons behind this unusual change in
energy consumption for example – technical, incorrect set temperature, the AC
degraded over time and is not capable of cooling the room now.

The commonly used solution requires professional assistance for Fault Detec-
tion and Diagnosis (FDD) in cooling systems [7]. Here, they deploy a large set of
sensors on each physical part of the cooling system to observe the changes. For
example, in [7], Li et al. proposed to detect faults using temperature sensors.
These temperature sensors are deployed on the condensing unit, liquid line, suc-
tion line, and evaporating lines. Based on these data points, they proposed to
identify faults. These techniques are accurate but require many sensors, which
increases the cooling system’s cost.

Fig. 1. An IoT-based sensor connected with AHU in series.
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In this paper, we proposed an Internet of Things (IoT) and Machine Learning-
based solution to identify anomalies and the cause of that anomaly in a real-
world system. We collect temporal data using energy and temperature sensors
in real-time. Using the collected data, we identify anomalous instances observed
during the execution of the cooling system. Figure 1 shows the deployment of an
IoT sensor connected with the AHU of the cooling system. It records the overall
energy consumption of the cooling system.

We propose three staged non-invasive component-level anomaly detection
techniques to identify the fault and its cause in real-time. Here, we do not con-
nect sensors to each component of the cooling system separately, making the
proposed approach non-invasive. At first, we use statistical inference to find the
anomalous instances of energy consumption during the execution of the cooling
system. Here, we use domain-inspired statistical inference to identify a signifi-
cant change in energy consumption concerning the past data. Then, we define
a set of rules based on domain knowledge to identify the cause of anomalous
energy consumption instances. Once the anomaly is identified from stage one, it
will only be forwarded to the second stage. Finally, we identify the faulty com-
ponent. We use the overall energy consumption and environmental conditions of
the cooling system and identify the faulty part without explicitly connecting a
sensor to each component of the cooling system. Our proposed solution is out of
the box and does not require being trained repeatedly with every new real-world
deployment. It learns the percentage impact of each cooling system component
and identifies the faulty component. From our knowledge, these two features are
a big step forward from state-of-the-art.

For our proposed technique, detecting faults caused due to drainage, disposal
of water, and clogged AHU due to dust is not feasible. The reason is that we
use energy and temperature sensors to identify faults in cooling systems. How-
ever, the faults mentioned above do not cause any immediate change in energy
consumption and temperature. The following are the significant contributions of
this paper.

1. We propose the use of domain-inspired statistical inference for the real-time
identification of anomalies in real-world systems. Here, we use O(n) space to
identify faults, reducing overhead.

2. We propose a rule-based method to identify the cause of anomalies in cooling
systems. These rules are deduced based on domain knowledge.

3. If the cause of the anomaly is classified as a technical anomaly, we identify
the faulty component of the cooling system. We propose a Nearest-Neighbour
Density-Based Spatial Clustering of Applications with Noise (NN-DBSCAN)
with a transfer learning framework to classify the faulty cooling system com-
ponent.

4. We evaluate our proposed solution in a simulation environment using Ener-
gyPlus, where we deployed more than forty faults and in an experimentation
setup with six cooling systems in two different deployment scenarios. We
observe energy savings of up to 68% and 42% in simulation and experimen-
tation, respectively.
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Fig. 2. The architecture of the cooling system, The compressor contributes the highest
energy consumption, and the AHU the lowest.

2 Methodology

Cooling systems consists of five major components – compressor, condenser,
evaporator, expansion valve, and AHU. Figure 2 shows a basic architecture of
the cooling system.

To investigate whether faults have a discernible impact on temperature and
energy consumption, we inject commonly observed faults [8] in each of the five
components. We plot the measured temperature and energy values in Fig. 3. We
see an opportunity to differentiate the faults from the measured values. There
is, however, a need for an appropriate clustering technique to accurately identify
the faults, which we address in this paper.

Fig. 3. Each faulty component has an impact on energy consumption and temperature.
With an appropriate clustering technique, we can identify the faulty component.

Here are the definitions of the terms we use in our paper.

Tset : Set temperature of ductless-split cooling system (◦C)
Troom : Current temperature of the room (◦C)
Tgoal : Desired final temperature of the room (◦C)
Texternal : External environmental temperature (◦C)
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τ : Change in temperature per unit time by ductless-split
cooling systems (◦C)
P : Energy consumption per hour by the ductless-split
cooling systems (W)
ΔT : Change in the room temperature (◦C)
Δt : Time interval between measurements (min)
PA : Past anomaly
ER : Energy Rating
PAP : Energy consumption by the faulty component
AN : Anomaly cause
AnomalyCausei : Anomaly Cause number i

2.1 Identifying the Anomalies

The cooling system’s energy consumption follows a cooling cycle. Due to an
anomaly generated by a fault or misconfiguration, the energy consumption by
the cooling system fluctuates. This leads to a change in the cooling cycle of
the cooling system. We propose to identify such changing patterns of the energy
consumption of cooling systems due to the anomalies. We use the moving average
of energy consumption by the cooling system in three cycles and compare the
average value with data from the past non-anomalous cycle. In the first iteration,
we take the ER specified on the data sheet of the AC. We declare an anomaly if
the difference between the two values is more than 5%. The proposed anomaly
detection technique does not require substantial space for identifying faults and
anomalies compared to earlier proposed techniques discussed in [9]. The space
complexity of our solution is O(n). n is the number of sensory values input to
the anomaly detection algorithm. We want to minimize the memory requirement
so that the solution works on a low-cost IoT device. In [14], the authors use an
n×n matrix to identify the anomalous instances, which takes O(n2) space. The
time complexity of our solution is also O(n).

2.2 Identifying a Cause of the Anomaly

The reason behind any change in energy consumption of the cooling system can
be classified into three categories. 1) Wrong Tset – AnomalyCause1, 2) Technical
fault in the cooling system – AnomalyCause2 and 3) Cooling requirements are
not satisfied – AnomalyCause3

In [4], the authors discussed important faults in cooling systems. We consider
all of these and categorize them into three types based on the actions needed to
fix them. In AnomalyCause1, we consider faults due to incorrect cooling system
ON/OFF modes with setpoint schedules. AnomalyCause2 category consists of
air duct leakage, AHU motor degradation, compressor flow, condenser fan, ineffi-
cient evaporator airflow, and sensors faults. AnomalyCause3 identifies the faults
due to oversized and undersized equipment design.
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Table 1. Identifying a cause of the anomaly. Here, we use data collected from the
environment and the cooling system. When there exists an anomaly, we identify its
cause using these rules. These rules are based on domain knowledge. Using these rules,
we conclude and suggest a fix. We measure these parameters every 2 min and use them
in the algorithm. The parameters are for both types of cooling systems.

Anomaly Cause Rule No. Rule Conclusion

AnomalyCause1 Rule 1 Troom < Tgoal Tset of AC is high —
Change Tset

Rule 2 Tgoal < Troom Tset of AC is low —
Change Tset

AnomalyCause2 Rule 3 ΔTexternal < ΔTroom Cooling in Troom is less
than Texternal —
Identify faulty part

Rule 4 ΔTroom < 0 Unable to cool —
Identify faulty part

Rule 5 PA > 4 More than 4 continuous
anomalies — Identify
faulty part

AnomalyCause3 Rule 6 Troom < Tset No need to cool —
Turn OFF cooling
system

Rule 7 ΔTroom ≤ 0 &&
Tset = minimum &&
Troom ≤ Tgoal

Unable to reach the
Tgoal — Cooling
system not sufficient

Anomaly Cause2. The Tset of the cooling system is not according to the
cooling requirements, and the cooling system cannot reach the Tgoal. Here, either
the Troom is below or above the desired levels. For both of the scenarios, the
energy consumption pattern will change. When the Tset is less than Tgoal, the
system will consume more energy to cool the room. When the system’s Tset is
more than Tgoal, the system will go into an issue called short cycling. Both issues
are identified by observing a change in the patterns of energy consumption.

To detect a wrong Tset, we first identify whether it is possible to cool the room
with the given cooling system. The cooling systems deployed in a room come
with a cooling limit. We calculate the cooling requirements using the room’s heat
load and decide on the maximum cooling capacity of the system to be deployed
in the room. To identify whether it is possible to cool or not, we use τ calculated
as follows:

ΔT = Tgoal − Troom (1)

ΔT represents the change in the room temperature in a given duration of time.
The ΔT considers all dynamic heat loads inside the room, which change with
time.

τ =
ΔT

Δt
(◦C · min−1) (2)
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τ represents the capacity of the cooling system. The cooling system’s ability
depends upon whether the system can bring the temperature down to the desired
level and is checked by multiplying the τ by the time for which the system is exe-
cuted. We consider the ideal continuous execution time of the cooling system ON
cycle is 20 min [5]. Rule 1 and Rule 2 in Table 1 are to identify whether there exists
an issue with the ”AnomalyCause1” type. We mention the rules in Table 1.

Fig. 4. Workflow for identifying the cause of the anomaly, we present the parameters
which are being used by each rule and the flow of data and decisions.

Anomaly Cause2. Detecting technical faults in the cooling system requires an
expert’s opinion. A trained engineer who is an expert in the domain uses a set of
multi-meters and sensors to identify faults. Detecting these faults automatically
is a non-trivial task. To detect these faults automatically, we propose to use the
domain knowledge from the literature to construct a set of rules that help us
identify the existence of technical faults in an AC. If the faults are not repaired,
the cooling system will continue to waste energy.

The Rule numbers 3, 4, and 5 are deduced from the domain knowledge.
We consider the impact of the cooling system in the environment where it is
deployed. Using Rule 3, we identify If the cooling is less than the change in
Texternal, the cooling system consumes abnormal energy.

In Rule 4, if there is no change in the Troom, the cooling system cannot cool
the room, which leads to disruption in the execution cycle of the cooling sys-
tem. Rule 5 identifies that if the system has observed more than four anomalies
continuously, it is a technical fault.

Anomaly Cause2. The deployment of the cooling system is based on the static
factors affecting the room’s heat load. However, the real-world environment is
not static. There are dynamic factors that change the heat load of the room over
a duration of time. Even if we deploy a cooling system with sufficient cooling
capacity, its cooling capacity reduces over time. To check the cooling systems’
capabilities of satisfying the cooling requirements, we use Rules 6 and 7.

Rule 6 checks whether the Troom is already less than the Tset. In this scenario,
we do not need to execute the cooling cycle. However, by default, the cooling
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system will try to turn ON the compressor and immediately turn it OFF, which
causes the problem of short cycling. Rule 7 identifies anomalous instances as
AnomalyCause3 when the change in Troom is less than equal to 0, which rep-
resents the cooling system, can cool, and the Tset of the cooling system is set
to a minimum. However, the room’s Tgoal is not reached, leading to continuous
execution of the cooling system compressor at total capacity.

From the rule-based causal tree shown in Fig. 4, we get active high (1) or
active low (0) values for each anomaly cause. When there is more than one active
high anomaly, the particular type of anomaly is selected based on its priority.
Here, the priority of AnomalyCause1 is the highest, and for AnomalyCause3 is
the lowest. The priority is based on the chances of occurrence and the intensity
of the anomaly.

2.3 Identifying the Faulty Component

When the anomaly is classified as AnomalyCause2, we identify the component
of the faulty AC to reduce the mean time to repair.

To identify the component of the cooling system with fault, we propose a
machine learning technique, NN-DBSCAN. The NN-DBSCAN is based on the
principle of DBSCAN. We have k independent and identically distributed sam-
ples J = j1, j2, . . . , jk drawn from distribution F over R

D. Using two hyper-
parameters of DBSCAN, we find a set of n clusters with high empirical density
for samples in J [15]. These hyper-parameters are eps and minPts. The eps
is the maximum possible distance between the two samples to be considered a
neighborhood. The minPts is the minimum number of samples to be considered
as a core point for a cluster. The DBSCAN is a clustering algorithm, not a clas-
sification algorithm, because it is an unsupervised approach. We use DBSCAN
to classify the anomalies by taking the average of each cluster and comparing it
with each cause’s average from the data set. The cluster with the closest average
is assigned to the particular cause.

To calculate the eps hyper-parameter, we use the Nearest Neighbour tech-
nique. We plot an elbow curve and select the value where the elbow occurs based
on the distances obtained using the Nearest Neighbor. To calculate the second
hyper-parameter minPts, the standard approach suggests selecting it to be twice
the number of features. However, this approach does not always lead to an opti-
mal value [16]. We use the gradient descent technique to get the optimal-minPts
by executing the DBSCAN algorithm multiple times [11].

The challenge with DBSCAN is that we need a large amount of data to obtain
density-based clusters accurately. However, in the real world, the problem is that
we do not have a significant amount of data that can classify the data points into
clusters using DBSCAN. To deal with this challenge, we propose NN-DBSCAN
with transfer learning capabilities. NN-DBSCAN requires training, which is per-
formed using data from the simulation, and it is done once. In NN-DBSCAN, we
train the model with transfer learning capabilities to be used in other deploy-
ments with the same application. During training, we calculate the initial cluster
value, the centroid of the clusters formed during training. Then, we use these



Non-Invasive Anomaly Detection Technique for Cooling Systems 143

Fig. 5. The proposed techniques takes P and ER of the cooling system as input. If there
is a technical anomaly, we use proposed NN-DBSCAN to identify faulty component.
We train the model only once using simulated data. We transfer the model to any new
cooling system using the later’s ER.

Algorithm 1: NN-DBSCAN
1 Input: Dataset, pretraining, P , ER, Ncluster, incenter[], minPts, eps

Result: FaultyComponent
2 Initialization: Anomalous Component[], FaultyPart, Dist[].
3 if pretraining == 0 then
4 /*When the incenter[] is empty*/
5 Accuracy = Accuracy(DBSCAN(dataset with 50% test and train))
6 Nclusters = number of clusters formed with DBSCAN() for i ← 0 to Ncluster do
7 Anomalous Part.append(average value P for each cluster)
8 /*estimating fingerprint of each component*/
9 increment i

10 end
11 pretraining = 1
12 for i ← 0 to Ncluster do
13 incenter.append(compute using Equation 4)
14 /*Computing energy fingerprint of each component for respective cooling

system*/
15 increment i

16 end

17 else
18 if Points in each cluster is ≤ minPts then
19 Dist = EuclideanDistance(P to incenter)
20 /*Calculate the Euclidean distance from each point to the incenter*/
21 FaultyComponent = min(EuclideanDistance(Pto incenter))
22 /*Assign the point to the cluster with minimum Euclidean distance*/

23 else
24 Run DBSCAN(minPts,eps,P)
25 FaultyComponent = P C(incenter[], P)
26 /*Function P C finds the observed anomalous instance P is assigned to which

cluster*/
27 end
28 return FaultyComponent

29 end

initial cluster values as domain knowledge in different deployments, enabling
transfer learning. We allocate data to the cluster in different deployments based
on the Euclidean distance between the observed point from the data set and
the initial cluster value. Once we have the minPts in each cluster, the algorithm
continues as DBSCAN. The Algorithm 1 represents the proposed NN-DBSCAN.



144 K. Kaushik and V. Naik

To obtain clusters’ centers from the past data, we take the average energy
consumption for each cluster, where each cluster represents a different anomalous
component. We then calculate a fingerprint of a particular anomalous component
concerning normal/usual energy consumption.

Anomalous Component =
(ER + PAP )

|ER| × 100 (3)

The Eq. 3 gives us a percentage contribution when a cooling system com-
ponent is faulty. This percentage is the same for all the cooling systems, as
the principle working of each is the same. So, we use the same percentage of
fingerprints obtained during training for the initial cluster center assignment.

incenteri =
Anomalous Componenti × ER

100
(4)

Equation 4 computes the initial center for the cluster of a particular anomaly
cause. Here, i = 1, 2, ..., 5 representing different components with the possible
anomaly.

Each cooling system component is used for different functionalities with vary-
ing energy consumption. Further, we observe that the number of clusters formed
with NN-DBSCAN equals the number of components present in the cooling
system.

To identify the faulty component, our proposed NN-DBSCAN algorithm
assigns each faulty component to one of the incenters of clusters, represent-
ing each component of the cooling system, based on the Euclidean distance
between the observed point and the incenter. Once the number of instances
in each cluster exceeds the minPts, the algorithm starts assigning the cluster
based on the density. The calculation of the incenter is based on the percentage
of energy consumed by each cooling system component when we simulate the
faults for one cooling system model. Through transfer learning, we transform the
learned model for other cooling systems. The transfer learning technique takes
ER data from the datasheet as input and computes values for the incenters
for the new model. Our use of transfer learning for NN-DBSCAN enables zero
training requirements when deployed to the new cooling systems. Figure 5 shows
a flowchart of the proposed three-stage solution.

3 Evaluation

This section describes our experimentation setup, simulation setup, and metrics
we use to evaluate our proposed technique. We evaluate the proposed technique
in an experimentation environment, by deploying a set of energy sensors and
environmental sensors in the environment. These sensors provide the energy
consumption by the cooling system and room temperature to a data server at
intervals of every two minutes.

We evaluate our proposed solution in two different experiment scenarios. In
the first deployment, the average heat load is about 47 megaJoules. In the second
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deployment, it is 63 megaJoules. Both setups consist of six ductless-split cooling
systems.

In the experimental environment, it is challenging to deploy a large variety
of faults that can occur in a cooling system. We perform simulations using the
EnergyPlus simulator [3] to overcome this challenge. Here, we consider more
than forty faults and use the proposed technique to identify faults with their
cause. These faults are consequences of any fault in one of the five components
of the cooling system and can lead to an increase in energy consumption by
60% [8]. To instrument these faults, we change the settings of cooling systems
to act like faulty ones.

To generate anomaly cases in simulation and experiments. We collect data
using the EnergyPlus simulator. Here, we inject faults in the cooling systems
by changing the configuration and thresholds. The paper published by OSTI [8]
details how to inject faults in the cooling systems using a simulator. For example,
they reduce the flow rate of refrigerant in the compressor, which leads to a faulty
compressor. In the experimentation setup, we use actual ACs with some of the
faults we are studying. Our solution detected the anomalies which occurred due
to these faults. The simulations consider all the possible faults.

Complexity Analysis: Stage 1 of the proposed solution uses a moving average,
which takes O(n) time. In stage 2, we use the rule-based technique that requires
at most eight comparisons for every data point, which leads to a time complexity
of O(1). In stage 3, our proposed NN-DBSCAN has O(5 ∗ minPts) complexity,
where 5 is the number of clusters. The number of minPts is always less than n.
Hence, the overall complexity of the proposed technique is O(n). Here, n is the
number of sensory values input to the anomaly detection algorithm.

We use AUC − ROC, accuracy, and F1 scores for evaluating the proposed
solution.

3.1 Simulation

Data Collection and Preparation. We deploy a ducted centralized cooling
system and a ductless-split cooling system in a simulated building environment.
In these cooling systems, we inject faults by changing the configuration and
capacity of components. More than forty faults occur based on the changes in
the configuration of the five major components of the AC. We collect simula-
tion data in three environments, where Texternal ranges from 24◦C to 42◦C. We
manually labeled the data set’s fault cause and the faulty component, and this
dataset is balanced. The data is collected at intervals of two minutes for one year
using EnergyPlus. The simulation dataset consist of P , Troom, Texternal, AN ,
and FaultyComponent. The training data for our proposed technique consists of
21,600 data points, out of which there are 12,600 data points representing more
than 40 types of anomalies. To test our proposed technique, we used a simulated
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data set with 1,576,800 data points for anomalies in six different scenarios with
a ductless-split cooling system and ducted-centralized cooling system in three
different external environments where the Texternal ranges from 24◦C to 42◦C.

Preparation of Model. We use the data from the simulation with a ductless-
split cooling system at an average Texternal of 38◦C. We opt for the ductless-split
cooling system because the principle working of both ductless-split and ducted-
centralized cooling systems are the same, and the energy consumption ratio by
each component is also the same. We split the data set into training and testing
equally. We use a 50:50 split of the dataset for training with all types of anoma-
lies, such that it can learn the fingerprint of each cooling system component. We
have an equal number of instances in the dataset for each anomalous component.
Any other split configuration leads to missing instances of a particular type of
anomaly. Hence, the technique is unable to learn complete domain knowledge.
To test the generalizability of the proposed approach, we perform testing with
different datasets where no training is performed.

Identifying Anomalies. For this stage, we do not need to train the proposed
approach before use. It is a statistical method that only needs energy consump-
tion by the cooling system without anomaly as apriori. This apriori energy con-
sumption we get from past data or the data sheet of the cooling system. Here,
we observe an AUC − ROC score of 0.95.

Identifying Cause of the Anomaly. At this stage, there is no training
required. The proposed approach classifies the anomalies based on rules. In stage
2, we observed the AUC − ROC score of 1 with the simulated data.

Identifying the Faulty Component. This stage requires training. Here, we
first train the proposed NN-DBSCAN and then evaluate it with the help of test
data. We compare the results obtained from the proposed NN-DBSCAN with
other state-of-the-art techniques. These techniques are Neural Network (NN),
XGBoost, CatBoost, DBSCAN, and LightGBM.

We construct a NN with one node at the input layer and two hidden lay-
ers, each with ten nodes. We opt for the softmax activation function and auto
loss function [18]. We use XGBoost with multi:softprob loss function, CatBoost
with MultiClass loss function, DBSCAN with same eps and minPts as NN-
DBSCAN here, we assign causes to each cluster manually, and LightGBM with
multi logloss as loss function [1,2,6,15]. We compare the accuracy score and
F1 score of these state-of-the-art techniques with our proposed technique using
NN-DBSCAN.
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Fig. 6. NN-DBSCAN performs comparable to DBSCAN and better than all other
standard state-of-the-art techniques in terms of accuracy and F1 score.

Figure 6 compares the proposed NN-DBSCAN with other state-of-the-art
classification approaches. Here, we observe that our proposed NN-DBSCAN out-
performs compared to CatBoost, NN, XGBoost, and LightGBM. It performs as
well as the standard DBSCAN. However, NN-DBSCAN stores relevant domain
information that can be used in the future for transfer learning when deployed
with another cooling system. We observe an accuracy score of 0.82 and F1 score
of 0.79 with NN-DBSCAN.

We compare these classification techniques in a new simulation deployment,
where we have a ducted-centralized cooling system instead of a ductless-split
cooling system. We do not perform any training. Our proposed NN-DBSCAN
results in an accuracy score of 0.8 and F1 score of 0.76. The closest state-of-the-
art solution is DBSCAN, with an accuracy score of 0.67 and F1 score of 0.64,
and NN performed worst with an accuracy score of 0.28 and F1 score of 0.42.

The NN works by applying mathematical operations and combinations to
the dataset’s features. In our case, we use a single feature ’P ’, for anomalous
component identification, due to which the NN is unable to learn the pattern
of the associated anomalous component. XGBoost, CatBoost, and LightGBM
are tree-based classification techniques. These tree-based techniques are highly
prone to small data variations, due to which tree generation varies and deviates
from the correct classification. CatBoost performed better out of these. Density-
based approaches, DBSCAN and NN-DBSCAN, perform better because of their
ability to differentiate between clusters with high and low density.

From the above-discussed results, we observe that the accuracy of the pro-
posed model and other state-of-the-art reaches a maximum of up to 82%. This is
because the energy fingerprint of the three cooling system components is similar.
These three components are – condenser, evaporator, and expansion valve. The
condenser and evaporator are coils; they both have similar energy footprints.
The working of the expansion valve is to control the flow to the evaporator,
the energy footprint of the expansion valve is low, and due to a fault in the
expansion valve, the evaporator does not perform its expected function. Hence,
the footprint of the evaporator is added to the energy footprint of the expansion
valve. These reasons make it difficult for the ML model to distinguish between
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the three with very high accuracy. Combining these three classes, we obtain an
accuracy score of 1 with the proposed NN-DBSCAN.

We evaluated our proposed solution in the six deployment scenarios. we con-
sider both ductless-split and ducted-centralized cooling systems with external
temperatures of 26◦C, 32◦C, and 38◦C. The performance of the proposed three
staged techniques with an average accuracy score of 0.82 and an average F1 score
of 0.73 in six unique simulated deployments. Our proposed approach works with
different cooling systems in different environments after a single training. With
a confidence interval of 0.82 ± 0.02 for accuracy with a confidence level of 95%.

Case Study. We further evaluate our proposed technique concerning energy
savings when the user takes the suggested action. Here, we observe the maxi-
mum energy savings of up to 68% with a mean energy savings of 34%. Early
identification of faulty components leads to a reduction in repair and downtime of
the cooling systems. It also saves the repair cost because the early identification
prevents the complete damage of the faulty component.

3.2 Experimentation

Data Collection and Preparation. We collect energy and temperature data
using sensors in a data server deployed at a remote location. The data is col-
lected using Representational State Transfer (REST) APIs at an interval of two
min. The data set features are Troom, Texternal, P , and timestamp. The user
provides the Tset and Tgoal. We prepossess this time-series data. The data has
been collected for more than two and a half years. We use data from the com-
plaint management system (CMS) as the ground truth for an anomaly. The
CMS contains information related to observed anomalies by the occupants. This
CMS data includes the date and time when the anomaly was first identified, the
timestamp of the complaint’s resolution, and the technician’s reason. These com-
plaints are logged by an occupant or the room administrator based on changes
in room temperature measured using a temperature sensor or high-temperature
warning on servers. We collect this data from six different ductless-split cooling
systems. The experimentation dataset contains 221,450 data points. Note that
the model is pre-trained and is not connected to this data.

Model Preparation. We do not train the model again. The model learns
domain-specific information during initial pretraining.

Identifying Anomalies. We use this stage’s proposed domain-inspired statis-
tical technique to identify the anomaly. Here, no pre-training is required. We
observe an AUC − ROC score of 0.93 in an experimentation deployment.

Identifying Cause of Anomaly. We observed a AUC score of 1 in the simu-
lation with the rule-based technique. Similarly, in experimentation deployment,
the AUC score obtained at this stage is 1.
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Identifying Faulty Component. We do not perform any model pre-training
for experimentation deployment. We take the model which is already pre-trained
with simulated data. Here, our proposed NN-DBSCAN classifies the faulty com-
ponents with an AUC − ROC score of 0.88 and an F1 score of 0.81, shown
in Fig. 7. The significant increase in accuracy compared to simulation is due to
anomalies from the evaporator, condenser, and expansion valve. It is rare in real-
world experimentation. We evaluate the performance of the proposed technique
and observations in five scenarios – 1. AUC − ROC score of 0.93 for identifying
anomalies, 2. AUC − ROC score of 1 for identifying the anomaly’s cause, 3.
accuracy score of 0.88 with NN-DBSCAN for identifying faulty components, 4.
an overall accuracy score of 0.86, and 5. overall F1 score of 0.84. Here, the over-
all scores represent combining all three stages. The overall accuracy score of the
proposed technique in experimentation deployment is 0.86. With a confidence
interval of 0.86 ± 0.04 for accuracy with a confidence level of 95%.

Fig. 7. Accuracy and F1 score with the proposed approach during experimentation.
We get an accuracy score of 0.88 and an F1 score of 0.81. Our proposed technique
outperforms the state-of-the-art.

Case Study. During experimentation, our proposed solution identifies anoma-
lous instances of the cooling systems. Here, we observe maximum energy savings
of up to 42% and mean energy savings of 30% with a downtime reduction of
more than ten days when the action is taken immediately after identifying a
faulty component by our proposed technique. Early identification of the faulty
component using our proposed techniques saves up to 75% of repair costs as
it prevents the complete damage of the faulty component. We observe a mean
reduction of 60% repair cost of cooling systems.

We observe that NN-DBSCAN takes 0.031 s. The overall inference latency
for identifying anomalies in the cooling system using our proposed three-staged
anomaly detection technique is 0.05 s.

4 Related Work

The problem of anomaly detection is a focus of research. Some work focused
on generalized techniques for any domain, while others focused on a specific
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domain. Yanfei et al.in [8] proposed a probabilistic framework to rank the faults
in the Heating Ventilation and Cooling (HVAC) system using occupant comfort
data. They identify only faults and not the faulty component. However, our
proposed techniques identify the faulty part of the cooling system. Yang et al.
in [19] proposed a Bayesian-based probabilistic technique to identify the faulty
component inside AHU using 12 sensors with prior probability assigned to each
fault. Our proposed technique uses only energy consumption data to identify
the fault. Haroon et al. in [12] proposed to analyse the patterns of past energy
consumption to identify faults. There, they used only energy consumption data
collected using smart sensors. They achieved an AUC score of 0.89 for chillers.
However, our proposed architecture not only identifies anomalies but also finds
the cause of the anomaly.

Amer et al. in [9] proposed the use of ARIMA to predict future values of
IoT data, using this data they identify faulty instances. There, they did not
identify the cause or faulty component of the IoT system. Balakrishnan et al.
proposed the Model Cluster and Compare framework in [10]. They used unsu-
pervised clustering to detect the anomalies automatically. The first step was to
identify the abnormal instances, the second was to compare and perform clus-
tering, and finally, they used intelligent rules for grouping the anomalies. The
proposed technique could identify faults. However, it did not identify the faulty
part of the system. Haroon et al. in [13] proposed the UNUM rule-based tech-
nique on appliance-level energy consumption data to identify the behavior of the
duty-cycle of an appliance. They used k-means to identify the ON-OFF state of
the system. Lastly, using a rule-based technique, they identified whether there
existed a fault or not. If we use their anomaly detection technique, it identifies
anomalies, but it does not identify the cause of anomalies and the faulty part of
the cooling system.

5 Conclusion

Identifying anomalies in real-world cooling systems is a significant concern. There
are two types of cooling systems – ducted-centralized and ductless-split cooling
systems. The cooling system is deployed in an enclosed environment based on
its cooling needs. This paper proposes a novel, non-invasive component-level
anomaly detection technique. It is a three-stage approach. In the first stage, we
identify whether an anomaly exists or not. In the second stage, we classify the
type of anomaly, and in the third stage, we identify the faulty component of
the cooling system. We evaluate the generalizability of the proposed solution in
different experiments and simulation environments. We observe Accuracy scores
of 0.86 in experiments and 0.82 in simulations. Our solution identifies faulty
components early leading to energy savings.
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Abstract. Climate classification plays a significant role in the develop-
ment of building codes and standards. It guides the design of buildings’
envelope and systems by considering their location’s climate conditions.
Various methods, such as ASHRAE Standard 169, Köppen, Trewartha
utilize climate parameters such as temperature, humidity, solar radiation,
precipitation, etc., to classify climates. When establishing requirements
in building codes and standards, it is crucial to validate the classification
based on the building’s thermal loads.

This paper introduces a novel methodology for classifying cities based
on the number of similar days between them. It calculates similarity
using daily mean temperature, relative humidity, and solar radiation by
applying threshold values. A matrix of similar days is analyzed through
agglomerative hierarchical clustering with different thresholds. A scoring
system based on building thermal load, where lower scores signify better
classification, is employed to select the best method.

The method was tested using U.S. weather data, yielding a lower score
of 54.5 compared to ASHRAE Standard 169’s score of 63.09. This sug-
gests that the new approach results in less variation in thermal loads
across cluster zones. The study used thresholds of 7 ◦C for daily mean
temperature, 45% for daily mean relative humidity, and 35 Wh/m2 for
daily mean solar radiation, which was found to yield the lowest score.

Keywords: Climate Classification · Building Energy Performance ·
Hierarchical Clustering

1 Introduction

The building sector plays a crucial role in achieving climate goals as it stands as
the second-largest consumer of electricity. To promote energy efficiency in build-
ings, many countries have implemented mandatory regulations. Building energy
regulations are based on climate zones and classifying a city into the correct
climate zone is important. Franciso Jose et al. [1] provided a relation between
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climate zoning and its application to Spanish building energy performance. Vari-
ous sets of methods are proposed in recent years for climate classification that can
be utilized for use in building energy efficiency programs. Köppen-Geiger climate
classification system [2], is the most widely used and referred model throughout
the globe for defining climate zone. The Köppen climate classification divides
climates into five main climate groups, with each group being divided based
on seasonal precipitation and temperature patterns. This classification does not
take into account some weather elements such as winds, precipitation intensity,
amount of cloudiness and daily temperature extremes.

Briggs R. S. et al. [3,4] used Heating Degree Days (HDD) and Cooling Degree
Days (CDD) based approach for the classification. ASHRAE has come up with
a climate classification system [5] which classifies localities into climate zones
based on temperature and precipitation basis. The thermal climate zone of a
locality can range from 0–8. The moisture climate zone can be Marine, Dry or
Humid. Monjur Mourshed [6] has also shown the importance of degree days that
is used in ASHRAE classification.

There are many other classification approaches proposed such as Bansal and
Minke [7] who have developed climate classification for India using mean monthly
temperature and humidity values. Mayank B. et al. [8] have shown the classi-
fication of Indian cities using ASHRAE Standard 169 and compared it with
Bansal and Minke’s classification. ORNL researchers [9] used similarity meth-
ods for reimaging climate zones for the US. Cao Jingfu et al. [10] have consid-
ered cooling energy consumption to provide an efficient climate index for China.
Zscheischler et al. [11] showed the value of unsupervised clustering for climate
classifications. Hudson et al. [12] have provided climate classification for Colom-
bia k-means clustering with multivariate climate data. Sathiaraj et al. [13] used
k-means, DBSCAN, and BIRCH techniques for climate classification.

It was reported that DBSCAN shows less accuracy and effectiveness when
applied for climate classification purposes.

Xiong Jie et al. [14] used hierarchical climatic zoning for China. Shin M
et al. [15] have suggested using enthalpy based CDD instead of conventional
CDD value that is based on outdoor dry-bulb temperatures that neglect the
influence of latent heat on the total energy load. Giovanni Pernigotto [16] pro-
vided a classification of European climates using cluster analysis. Walsh A et
al. [17] reported that most of the current classifications are oversimplified and
not fit for building energy efficiency programs. One out of six areas analysed was
misclassified while using ASHRAE classification criteria [18].

This study aims to develop a methodology to classify climate using a hierar-
chical clustering method based on the number of similar days between cities.

The methodology has been proposed with the following novel features -

– Classification is based on the number of similar days using climate data.
– The score is calculated using the thermal energy spread within a climate zone.



154 S. S. Uppalapati et al.

The upcoming sections will outline the methodology, followed by the data
analysis for cities in the United States, the presentation of results, ensuing dis-
cussion, and finally the conclusion.

2 Methodology

2.1 Research Strategy

The strategy used for the study is mainly divided into three stages: preparation
of data, clustering, and scoring.

In the first step, weather data files (EPW format) were downloaded for cities
of the USA. EPW files are historical weather files used in climate analysis of
cities and for use in simulation purpose. A total of 786 weather files from the
USA were used after filtering based on anomalies for calculating mean daily
temperature, mean daily relative humidity, and mean daily solar radiation data,
which will be used in step two. A building model was built to perform energy
simulations for all the weather files available. The resulting thermal load data
(daily sensible cooling load, daily latent cooling load, daily total cooling load,
and daily heating load) was then normalized using the z-score method for use in
step three of the methodology.

In step two, the daily mean data of all the cities are used to identify the
number of similar days between each and every city based on the maximum
bipartite matching method considering different threshold values.

The similar days method takes into account daily data, allowing for a finer-
grained analysis of climate patterns compared to traditional classification meth-
ods that often rely on monthly or annual averages.

Agglomerative hierarchical clustering is used for climate zoning based on the
number of similar days present between the cities for all the threshold values as
shown in Fig. 1.

In step three, scores were calculated based on the interquartile range of build-
ing thermal load (separately for sensible cooling, latent cooling, and total heating
load) pattern for each cluster and added to get a final score for a threshold value.
Based on the score achieved by each threshold value, the clusters with the low-
est score were selected for further analysis. Also, the scores of clusters that were
selected are compared with the scores achieved by the ASHRAE Standard 169
method. Details of the applied methods are presented in the following sections.

2.2 Preparation of Data

Weather Files. This methodology requires the use of typical meteorological
year (TMY) data of different locations for the analysis. The data provides dry
bulb temperature, dew point temperature, solar radiation, relative humidity and
wind speed, etc. From these files, daily mean dry-bulb temperature, daily mean



A Novel Approach for Climate Classification 155

Fig. 1. Methodology for climate classification

relative humidity and daily mean solar radiation are extracted to calculate the
‘similar’ days between the two cities. The number of similar days between any
two cities determines their ‘closeness’ which was used in the clustering approach.

Building Model. To calculate the thermal load characteristics of office build-
ings across the study area, a building model was first developed based on the
relative building envelope present across the study area. Thermal load simula-
tion for the model can be performed by any simulation software or tool such
as EnergyPlus, IES-VE [22] and eQUEST [23] or any tool that provides hourly
outputs based on weather files. Sensible cooling, latent cooling, and total heat-
ing energy are calculated using simulation and used for the calculation of score,
considering similar internal load, and load generated using similar occupancy.

Data Pre-processing. To ensure consistency and comparability among the
thermal load simulation results, the z-score method was utilized for normaliza-
tion. This approach was adopted to align the data and assign equal importance
to all attributes. Z-score normalization involves calculating the Z-score value,
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which indicates the deviation of each data point from the mean. By applying
this technique, the values of a variable are rescaled to have a mean of 0 and
a standard deviation of 1. This is achieved by subtracting the variable’s mean
from each value and dividing it by the standard deviation.

2.3 Clustering the Data

As the classification labels were not known prior, the unsupervised machine
learning technique is used for the classification of climates. Unsupervised
machine learning algorithms discover hidden patterns or data groupings from the
given dataset. In this context, the agglomerative hierarchical clustering (AHC)
algorithm was utilized. AHC is a connectivity-based algorithm that groups data
points together based on their proximity or closeness to one another.

Agglomerative Hierarchical Clustering Algorithm. The algorithm begins
by considering each location as an individual cluster. Subsequently, clusters that
exhibit minor differences in climate conditions are combined to form new clusters.
In the proposed method, the condition of merging is the cities with the highest
number of similar days are grouped together to form a new cluster. The process is
iterative and runs until the criteria to stop the merging is reached. The flow chart
of the mentioned AHC algorithm is displayed in Fig. 2. Hierarchical cluster [20]
analysis produces a unique set of nested clusters by sequentially pairing based
on the criteria in the form of a dendrogram.

Since in the proposed method, there is a need to match/find similar days
between two cities, the days should be matched uniquely, and maximum of such
matching should occur. Therefore, maximum bipartite matching is used.

Maximum Bipartite Matching. A bipartite matching [21] is a set of edges
in a graph chosen such that no two edges in that set will share an endpoint. The
maximum matching is counting the maximum number of edges. The method uses
a threshold value of each variable used to identify the number of similar days.
The flow chart of the process for calculating similarity between cities using the
maximum bipartite matching is shown in Fig. 3. Considering a brief example, we
have five weather files labeled from “a” to “e”. Each file encompasses data for 5
days regarding two weather variables, denoted as “V1” and “V2”, as illustrated
in Table 1. To determine the maximum count of similar days between all cities,
specific thresholds are established for V1 and V2, which are 5 and 50 respectively.
The outcomes are presented in a square matrix with dimensions n x n, where in
this instance n = 5.
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Once the maximum bipartite matching is performed, the resulting matrix
is in a 5× 5 format, as exemplified in Table 2. When comparing a weather file
(WF) to itself, all days will match. If “a” is compared with “b”, only 2 days
meet the given threshold for similarity. Similarly, when “d” is compared with
“e”, 4 days fulfil the threshold for similarity, as depicted in Fig. 4.

Fig. 2. AHC algorithm based clustering process

Table 1. Sample values from Weather file

B1 B2 B3

A1 0.1 0.2 0.3

A2

A3

This matrix is used for Agglomerative hierarchical clustering. For this simple
example, the number of clusters is set to three (k = 3). Agglomerative hierar-
chical clustering is used and the generated labels for the five cities are: [2 1 0 0
0]. It shows that the weather files “c”, “d” and “e” are in one cluster and “a”
and “b” are in two different clusters.
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Fig. 3. Flow chart depicting the process of generating a matrix indicating the count
of similar days between cities.

Table 2. Matrix of number of similar days between sample cities

WF“a” WF “b” WF “c” WF “d” WF “e”

WF “a” 5 2 0 0 0

WF “b” 2 5 0 0 0

WF “c” 0 0 5 4 4

WF “d” 0 0 4 5 4

WF “e” 0 0 4 4 5

2.4 Calculation of Score

The scores are computed based on the sensible cooling, latent cooling, and total
heating load present in each cluster, determined in the previous step. Since each
cluster consists of a different number of cities or sites, all the cities within a
cluster are taken into account when calculating the scores.

The score is defined by the interquartile range or spread of the box plot, which
can be derived from the box plot diagram, as illustrated in Fig. 5, representing
the total cooling load for all three clusters.
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Fig. 4. Bipartite matching

The “spread score” of a zone for cooling and heating energy is determined
by summing up the spreads across all the zones. This results in three “spread
scores” for the variables: sensible cooling, latent cooling, and total heating, each
of which has its own box plot.

To obtain a single representative “spread score” for a zone, these three indi-
vidual spread scores are combined by simple addition. The objective is to mini-
mize the spread among the cities within a zone, across the three energy variables.
Equal weightage is assigned to all three energy variables during this process,
allowing the reduction of the three scores into a single representative score.

Spread Score = SLCE + SSCE + STHE
where, SLCE = Spread of Latent Cooling Energy
SSCE = Spread of Sensible Cooling Energy
STHE = Spread of Total Heating Energy

The process is carried out for different threshold values and scores for each
variation are recorded and the case with the lowest threshold value is consid-
ered for further analysis. The final “Spread Score” is then compared with the
ASHRAE classification score.

3 Analysis of Climate Classification of USA

The ASHRAE Standard 169 is referred for the climate classification of the USA
as shown in Fig. 5. The EPW files for the USA were extracted from EnergyPlus
weather data source. These weather files are in typical meteorological year format
and arranged by World Meteorological Organisation. For the analysis, the daily
mean dry-bulb temperature, daily mean relative humidity, and daily mean solar
radiation were extracted from the weather files for each city. These variables
serve as inputs for the analysis. Figure 6 displays the geographic distribution of
cities across the USA, representing their respective climate zones, which have
been taken into account for the analysis.
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Fig. 5. Sample box plot

3.1 Clustering of Cities of USA

Daily values of the three parameters are utilized to calculate the ‘similar’ days
between the cities, based on the maximum bipartite machine as per the flow
diagram shown in Fig. 3. For the considered cities of the USA, the output matrix
for similar days is of dimension 786× 786. Various sets of threshold values were
considered for calculating the number of similar days and some of the threshold
values are listed in Table 4. Then the clustering analysis was performed for all
the cities and divided the cities into 16 zones (Same as total zones of USA by
ASHRAE Standard 169) and the cities were labeled with numbers ranging from
0 to 15. Figure 7 shows the weather data clusters with the proposed method.
Figure 8 shows the frequency of cities in ASHRAE Standard 169 classification
zones for the USA.

3.2 Building Energy Simulation

The EnergyPlus software was utilized to conduct building energy simulations. A
typical core-perimeter zone office building with 400 m2 floor area was prepared
and used for the simulations. The developed model of the building is shown in
Fig. 9. The simulations were performed for all 786 weather files in the USA.

From the simulation data, the energy consumption details are extracted i.e.,
daily latent cooling energy, daily sensible cooling energy, and daily total heat-
ing energy. Subsequently, z-score normalization was applied to the energy data,
aligning the values by scaling them to have a mean of 0 and a standard deviation
of 1.
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Fig. 6. United States climate zone map based on ASHRAE-169 [5]

Fig. 7. Weather data clusters with proposed method
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Fig. 8. Frequency of cities in ASHRAE Standard 169 classification zones for USA

Fig. 9. EnergyPlus model

3.3 Calculation of Score

The score was calculated for both ASHRAE zones and zones generated with
the proposed approach based on number of similar days for different threshold
values. Table 3 elaborately shows how the final score of ASHRAE classification
is calculated. The score for ASHRAE Standard 169 classification totals to 63.09,
which is higher than the scores for different threshold combinations as shown
later in Table 4. Table 4 has been arranged in ascending order based on the
scores, as a lower score indicates a better classification.
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Table 3. Calculated scores for ASHRAE Standard 169 classification

ZONE SLCE SSCE STHE SUM

1A 0.76 1.54 0.07 2.37

2A 1.8 1.51 0.44 3.75

2B 0.66 1.88 0.18 2.72

3A 1.16 1.13 0.74 3.03

3B 1.58 3.49 0.67 5.74

3C 0.85 1.2 0.28 2.33

4A 0.91 1.6 1.02 3.53

4B 0.86 1.51 0.92 3.29

4C 0.93 1.15 0.71 2.79

5A 1.89 1.69 1.31 4.89

5B 2.1 2.2 1.56 5.86

5C 0.22 0.31 0.11 0.64

6A 2.11 1.43 2.88 6.42

6B 0.91 0.79 1.25 2.95

7 2.31 1.19 2.2 5.7

8 1.45 0.53 5.11 7.09

SUM 20.5 23.15 19.45 63.09

Table 4. Threshold combinations and scores

Threshold combinations Scores

7, 45, 35 54.5

9, 40, 35 54.59

6, 45, 35 55.17

8, 45, 35 55.76

4, 40, 30 56.06

5, 45, 35 56.06

ASHRAE 63.09

4 Results and Discussion

The findings demonstrate that the proposed method, utilizing the number of sim-
ilar days and scoring techniques, achieves higher accuracy compared to ASHRAE
Standard 169. Upon examining Table 4, it is evident that the most accurate clas-
sification is achieved when employing threshold values of 7◦C for the daily mean
dry-bulb temperature, 45% for the daily mean relative humidity, and 35 Wh/m2

for the daily mean global horizontal radiation. Figure 10 and 11 shows the spread
of sensible cooling and total cooling respectively for ASHRAE Standard 169
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classification. Figure 12 shows the spread of sensible cooling and total cooling
for our proposed classification.

Fig. 10. ASHRAE climate zones and spread for sensible cooling

It can be observed from Figs. 10 and 11 that although Climate zone (CZ) 1
to 8 represents extreme hot to arctic, the mean cooling energy values are not in
decreasing order. The climate zones 3C, 4C, and 5C of ASHRAE Standard 169
represent warm marine, mixed marine and cool marine respectively are not in
order.

As zones are identified using unsupervised clustering; the zone numbers are
not in order as per the energy consumption. Zone 13 is having highest cooling
energy consumption can be referred to as an experimental hot climate and 0 can
be an arctic zone.

Fig. 11. ASHRAE climate zones and spread for total cooling
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Fig. 12. Spread with new proposed clustering using agglomerative clustering

Upon looking at the distribution of cities in ASHRAE zones and the selected
cluster classification based on the proposed method, more than 50% overlap was
observed between the two. But a significant number of cities are distributed
uniquely in the new classified zones.

4.1 Limitations

Our study relied on the availability of weather data for the selected U.S. cities.
Limitations in data coverage and quality may influence the results. The choice of
thresholds was based on careful consideration, but they may not be universally
applicable to all regions or building types. Our study did not explicitly account
for potential climate change effects, which can alter long-term climate patterns
and impact building design considerations.

5 Conclusion

This study introduces a novel approach for climate classification of diverse cities
by utilizing the number of similar days and employing a scoring system based
on building load. The method aims to identify the most effective climate zon-
ing among various combinations using different threshold values. Unsupervised
learning is employed, utilizing mean daily weather data, to discover similari-
ties between cities. The classification is then scored based on thermal energy,
calculated through simulation tools. These scores are utilized to achieve more
accurate zone classification. A lower score indicates a better classification in this
context.

To test the proposed method, available weather files from the USA were
employed. The climate of the USA was divided into 16 clusters using the devel-
oped method outlined in this research. Scores were computed for different combi-
nations of threshold values to obtain improved zoning. The classification method
presented in this study exhibits a superior score of 54.5, as compared to the
ASHRAE Standard 169 classification score of 63.09. Furthermore, the method
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developed in this paper has the potential to be applied to other countries as it
operates by identifying similarities among weather data.
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Abstract. The building sector holds a significant impact over global energy
usage and carbon emissions, making effective building energy management vital
for ensuring worldwide sustainability and meeting climate goals. In line with
this objective, this study aims to develop and demonstrate an innovative smart
data-driven framework for building energy management. The framework includes
semantic multi-source data integration schema, AI-empowered data-driven opti-
mization and predictive maintenance strategies, and digital twin for informative
and interactive human-equipment-information building management platform. A
case study was conducted in a typical chiller plant on a campus located in Hong
Kong, China. The results show that the deployment of the proposed smart data-
driven framework achieves chiller sequencing control in amore robust and energy-
efficient manner. Specifically, the proposed control strategy achieves energy sav-
ings of 5.9% to 12.2% compared to the conventional strategy. This research rep-
resents an important step forward in the development of smarter and more sus-
tainable building management practices, which will become increasingly critical
as we strive to reduce our environmental impact and combat climate change.

Keywords: Building Energy Management · Data-driven models · Digital Twin

1 Introduction

Improving building energy efficiency is crucial for achieving sustainable development
on a global scale, given that buildings are significant energy consumers. The building
sector accounts for about 30% of global energy consumption and 27% of energy-related
greenhouse gas emissions [1], making it a key area for achieving climate objectives.
Green buildings are crucial for decarbonization and reducing global greenhouse gas
emissions. To achieve carbon neutrality, smart energy management technologies are
vital to enhancing energy efficiency and intelligence in the building sector.

Today’s buildings are not only energy-intensive but also data and information inten-
sive. Data are continuously generated during the lifetime of the building, and mainly
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stored in Building Information Models (BIMs) and Building Automation Systems
(BASs). BIMs store the static and spatial design and construction data, while BASs
store the dynamic/temporal operation data. They provide a complete spatio-temporal
description of a building. It is an effective way to understand and improve the building
operation by analyzing and utilizing these valuable data. Numerous efforts have been
made to effective data integration between BIMs and BAS, including directly linked data
and ontology-linked data. Directly linked datamethod uses standardized naming formats
such as Construction-Operations Building information exchange protocol (COBie) [2],
Open Messaging Interface (O-MI) and the Open Data Format (O-DF) [3]. Ontology-
linked data methods effectively store data in the data lake that is accessible through
a common data management system. This method establishes a link between decou-
pled ontology and time-series databases, making data accessible to applications through
a query process. With the development of ontology in the building sector, including
Semantic Sensor Network (SSN) ontology [4], Building Automation and Control Sys-
tems (BACS) ontology [5], Building Topology Ontology (BOT) [6], ifcOWL ontology
[7] andBrick Schema [8], semanticweb technologies have gained popularity for integrat-
ing multi-source data due to their rich semantic description, interoperability, scalability,
and query ability.

Most of the existing building energy management strategies are implemented in
BAS, which are not informative, with limited visualization capability, and only support
very limited and simple interactions between equipment and facility management staff.
Digital Twin (DT) is considered a promising solution to address these challenges as it
offers a more advanced and holistic approach to building energy management [9]. Chen
et al. [10] developed a BIM-based digital twin which can improve decision-making in
facility management by providing automatic scheduling of maintenance work orders.
Chen et al. [11] developed a digital twin that enabledmonitoring of indoor environments,
indoor navigation, and predictive maintenance. By leveraging digital twin technology
along with Mixed Reality (MR), IoT, Artificial Intelligence (AI), and other cutting-edge
technologies, it is possible to establish an informative and interactive human-equipment-
information building management platform. This platform can significantly enhance
the efficiency of building operation and maintenance by creating a digital replica of
the physical building and its equipment, enabling real-time monitoring and analysis of
critical data.

Heating, ventilation and air conditioning (HVAC) systems often consume the most
energy in buildings. Compared with conventional physics-based methods, data-driven
methods require less information and understanding of buildings and their energy sys-
tems [13]. Advanced machine learning algorithms and models have achieved promising
success in various applications concerning energy demand prediction [14], fault detec-
tion and diagnosis [15], energy benchmarking [16], and occupant behavior prediction
[17].

This study aims to develop a smart data-driven building management framework
for environmental and sustainability applications to improve building energy perfor-
mance. The proposed framework includes several key components, such as developing
a semantic model to integrate data from multiple sources, deploying optimization and
predictive maintenance strategies empowered by AI algorithms, and developing a digital
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twin platform designed tomanage building equipment and information comprehensively
and interactively. To demonstrate the effectiveness of the proposed framework, a case
study was conducted on a typical campus chiller plant.

2 Methodology

2.1 Overview of the Proposed Framework

Figure 1 shows the proposed framework for smart data-driven building management.

2D to 3D

2D CAD Drawings

Building Information 
Modeling (BIM)

IoT sensors

Building Automation 
System (BAS)

Multi-source data

Temporal 
data

Static
data

AI 
results

Database

Data structure

Op�miza�on 
results

Bi-direc�onal 
communica�on

Smart 3D interactive building management platform

Brick model

Semantic data integration schema

Machine-readable

Cross-pla�orm

AI engine
Health 
monitoring

Performance 
Optimization

Predictive 
maintenance

Anomaly
detection

Bi-direc�onal 
communica�on

Data-driven 
modeling

Abstraction 
of tasks

Graph

Spa�o-
temporal 

data

Digital twins Data visualization AI recommendations

Fig. 1. Proposed framework for smart data-driven building management

Data from multiple sources across different stages of the building lifecycle are
extracted and organized using a semantic model as a standardized data integration
schema. These data are then stored in a database which provides real-time data to an AI
engine. The AI engine is comprised of various environmental and sustainability appli-
cation packages that can provide recommendations for energy savings and predictive
maintenance (e.g., optimal settings, equipment warnings, etc.) to the building. These AI
recommendations stored in the database will then be sent to both the smart 3D interactive
building management platform for monitoring by building managers and operators, as
well as the BAS for optimal control.

The combination of the semantic model, AI engine, and digital twin offers sev-
eral benefits. Semantic model empowers machine-readable capabilities, enabling the AI
engine and digital twin to access data in a building-independent way while maintaining
semantic consistency. This facilitates intelligent analysis and decision support by com-
prehending and inferring data with semantic relationships and enables cost-effective
deployment of AI algorithms through its flexibility and scalability. In addition, the col-
laboration between the AI engine and digital twin enhances operational efficiency and
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maintenance processes. By synchronizing the digital twin with the real system in real-
time, it enables efficient and reliable monitoring, operation, and maintenance, leading
to improved operational efficiency and reduced costs.

2.2 Multi-source Data Available in Buildings

Static data. 2D drawings and 3D building information model (BIM) contain the static
data at the design and construction stage. They contain primarily semantic, geometric
and parametric data of building elements (e.g., wall, window, room, equipment, etc.), for
example, the name, type, height, width, orientation and materials of building walls and
windows, the name and location of air ducts as well as the design thermal temperature
of spaces and rooms. In addition, they can also provide relationships between different
building elements, for example, each VAV box entity has an association relationship
with its supply duct and the room it serves.

Temporal Data. Building automation system (BAS), also known as building manage-
ment system (BMS), contains the temporal data at the building operation stage. Building
operational data in BAS are typicallymultivariate time series data, including energy con-
sumption data, operating variables (e.g., real-time indoor temperature), environmental
parameters (e.g., outdoor air temperature), and miscellaneous [18]. With the radical evo-
lution of internet of things (IoT) networks, more environmental data from IoT sensors
[19] and occupant feedback [20] are also available for building operation management.

2.3 Semantic Data Integration Schema

In this study, the static data are extracted from BIM model using the COBie plug-in
in Revit software, enabling the inclusion of building elements and their relationship
information to develop the building semantic model. This semantic model is then stored
in a graph database,which is a specialized datamanagement systemdesigned for efficient
storage and querying of graph data. In graph database, nodes represent the building
elements, while edges represent their relationships. Properties of building elements,
such as wall materials and orientations, are stored in the static database alongside their
corresponding unique identifierswithin the semanticmodel. Temporal data from theBAS
and IoT sensor network are collected by Building Automation and Control Networks
(BACnet) protocol. This protocol is a commonly used data communication protocol
and enables data communication among various equipment, devices, and sensors. The
collected temporal data are then stored in the temporal database, with each measurement
assigned a unique identifier. Within the semantic model, each identifier is stored as a
node and linked to the corresponding element using the “hasreferenceId” relationship
to achieve spatio-temporal data integration with semantic consistency.

2.4 AI Engine

The AI engine is designed to be a collection of diverse application packages focused on
energy savings or predictive maintenance of buildings. These packages can provide a
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comprehensive viewof building operations andoffer recommendations for buildingman-
agement such as optimal control strategies, health monitoring, predictive maintenance
strategies, anomaly detection, etc. This enables building managers to make informed
decisions on how to optimize energy usage, reduce maintenance costs, and improve
occupant comfort.

2.5 Smart 3D Interactive Building Management Platform

A digital twin-based building management platform is developed by Unity3D and can
be published to cross-platform including Windows, IOS, Android and Mixed Reality
devices, etc. The spatial and static data are mainly extracted from BIM for the devel-
opment of digital twins. For aging buildings, preliminary BIM can be automatically
recovered from 2D drawings [21] and serve as the foundation for creating a digital
twin. The platform receives real-time operational data and AI recommendations from
the database, which are then presented to building managers and operators for further
review and analysis.

3 Case Study

This section elaborates the setup and results of the case study. In Sect. 3.1, the target
chiller plant is introduced. Section 3.2 illustrates the development of the digital twin and
semantic model. Section 3.3 presents the chiller sequencing results/

3.1 Introduction of the Target Chiller Plant

The target chiller plant is located in the Hong Kong Polytechnic University. The
schematic diagram of the chiller plant is shown in Fig. 2. The chiller plant consists of 5
water-cooled chillers (WCC1-5) rated at 650 RT (Refrigeration Tons) each, one water-
cooled chiller (WCC6) rated at 325 RT, and two air-cooled chillers (ACC1-2) rated at
325 RT each. The total cooling capacity is 4,225 RT. Primary chilled water pumps (PCH-
WPs) are connected in parallel. PCHWP4-9 serve WCC1-5 and the others serve three
325 RT chillers. Condenser water pumps (CDWPs) 1–6 and cooling towers (CTs) 1–5
serve WCC1-5, while CDWP7-8 and CT6 serve three 325 RT chillers. PCHWPs and
CDWPs are equipped with one redundant for safety. All PCHWPs, CDWPs, and CTs
are operated under fixed speed, and the normal power values are listed in Table 1. When
a chiller is staged, a set of PCHWP, CDWP, and CT will also be switched. Therefore, it
is important to determine the optimal number of chillers, i.e., optimal chiller sequencing
control, to reduce unnecessary energy consumption by pumps and CTs.
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Fig. 2. Schematic diagram of the target chiller plant

Table 1. Nominal power of the equipment

Equipment Power (kW)

PCHWP 1-3,10 30

PCHWP 4-9 55

CDWP 1-6 75

CDWP 7-8 45

CT 1-4 30

CT 5 18.5

CT 6 15

3.2 Development of Digital Twin and Semantic Model

As shown in Fig. 3, a digital twin is developed for the target chiller plant.

Fig. 3. Digital twin developed for the target chiller plant



174 J. Zhang et al.

The necessary static data for this purpose are extracted from BIM, encompassing
comprehensive details about chillers, pumps, cooling towers, pipes, and other relevant
components. The temporal data are collected from the integrated database that contains
operational data from BAS and IoT devices as well as AI recommendations from the AI
engine.

As shown in Fig. 4, a semantic model is developed for the target chiller plant. The
static and temporal data are integrated based on the “hastimeseriesId” relationship in the
semantic model. Figure 4(a) shows the entire chiller plant semantic model, with points
representing different entities and lines showing their relationships. Figure 4(b) demon-
strates a specific part of the model where the chiller “KC-POLYU-BCF-RF-HVAC-
WCC-01” has a sensor point “POLYU-BCF-RF-WCC-01-CHWAST”. The “hastime-
seriesId” relationship connects thismeasurement with the identifier point “VSDWCC-1.
ChilledWater SupplyTemperature”, indicating the corresponding temporal data is stored
in the temporal database with the same identifier.

Fig. 4. Semantic model developed for the target chiller plant

3.3 Test of AI-Enabled Chiller Sequencing Control Strategy

This study proposes and tests an AI-enabled robust chiller sequencing control strategy
based on probabilistic cooling load prediction [22]. For comparison purposes, a conven-
tional sequencing strategy widely used in buildingmanagement systemswas introduced,
which makes sequencing decisions based on measured cooling load and chilled water
supply temperature. Although effective in providing a stable and reliable cooling sup-
ply [23], unnecessary chillers may be staged by this reference control strategy because
it does not consider future changes in cooling loads. The proposed strategy considers
cooling load uncertainty to make sequencing actions more robust. An online risk-based
actions evaluation scheme is designed to determine the number of operating chillers and
assess the risks in the process and the reliability of the strategy simultaneously.

Two typical working days (Mondays) with similar outdoor air temperature and rela-
tive humidity were selected to compare the performance of two different chiller sequenc-
ing strategies. The first day, May 22nd, 2023, was used to test the conventional sequenc-
ing strategy, while the proposed sequencing strategy was tested on June 12th, 2023.
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The conventional strategy was built into the building energy management system. The
outdoor air temperature and relative humidity were recorded, as shown in Fig. 5. The
outdoor temperature and relative humidity were very close in both trend and average
levels. Therefore, the comparison of the sequencing strategies on these two days allows
for a fair assessment of their performance.

Fig. 5. Weather conditions of the two testing days

The chiller sequencing results of the conventional and proposed strategies are shown
in Fig. 6a) and b), respectively. Two major differences can be identified. Firstly, when
the conventional strategy was adopted from 8:00 am to 9:00 am, the chilled water supply
temperatureswere above 14 °C, leading to thermal discomfort in the occupied zones. This
dissatisfaction occurred because the conventional strategy failed to provide sufficient
cooling capacity when the previously unoccupied zones became occupied, after heat
accumulation during midnight with only one chiller in operation. The proposed strategy,
in contrast, staged on the second chiller earlier at 6:00 am and kept the chilled water
supply temperaturewater at an acceptable level. The second difference is the temperature
between the chilled water supply and the return temperature. The average temperature
difference adopting the conventional strategy is only 3.2 °C, compared to the 3.5 °C
adopting the proposed strategy. The low temperature difference can increase the energy
consumption of pumps, resulting in decreased system performance.

The energy consumption of two testing days adopting the conventional strategy
and the proposed strategy is shown in Table 2. Compared with the reference day, the
proposed strategy achieves a 5.9% reduction in energy consumption for chillers. In
terms of PCHWPs, CDWPS, and CTs, the proposed strategy leads to 12.2%, 8.9%, and
8.4% reduction in energy consumption, respectively. Overall, when comparing the total
energy consumption of the two strategies, the proposed strategy saves 7.1% in energy
consumption. These energy savings indicate that the proposed chiller sequencing strategy
is more efficient and can help reduce energy usage in chilled water systems.
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Fig. 6. Chiller sequencing results

Table 2. Comparison of energy consumption (kWh)

Chillers PCHWPs CDWPs CTs Total

Conventional
strategy

29334.8 4474.6 5878.8 2035.5 41723.7

Proposed
strategy

27614.3 3927.9 5356.3 1865.5 38764.0

Energy saving
(%)

5.9% 12.2% 8.9% 8.4% 7.4%
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4 Conclusion

This study proposed a novel smart data-driven building management framework for
environmental and sustainability applications. The proposed framework includes several
key components, such as developing a semantic model to integrate data from multiple
sources, deploying optimization and predictivemaintenance strategies empowered byAI
algorithms, and creating a digital twin platform designed to manage building equipment
and information comprehensively and interactively.

The proposed frameworkwas demonstrated in a chiller plant in HongKong. Through
the deployment of this framework, chiller sequencing control was achieved in a robust
and energy-efficient manner. The results show energy savings ranging from 5.9% to
12.2% compared to conventional strategies.

As one of the largest consumers of energy, the building sector has a significant
impact on the environment and global carbon emissions. The proposed framework can
be further improved and fine-tuned to better suit other types of buildings and facilities. By
leveraging these technologies and strategies, substantial energy savings can be achieved,
contributing to global sustainability efforts, and helping to achieve climate goals in the
building sector.
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Abstract. This review article investigates the methods proposed for disaggregat-
ing the space heating units’ load from the aggregate electricity load of commercial
and residential buildings. It explores conventional approaches together with those
that employ traditional machine learning, deep supervised learning and reinforce-
ment learning. The review also outlines corresponding data requirements and
examines the suitability of a commonly utilised toolkit for disaggregating heating
loads from low-frequency aggregate power measurements. It is shown that most
of the proposed approaches have been applied to high-resolution measurements
and that few studies have been dedicated to low-resolution aggregate loads (e.g.
provided by smart meters). Furthermore, only a few methods have taken account
of special considerations for heating technologies, given the corresponding gov-
erning physical phenomena. Accordingly, the recommendations for future works
include adding a rigorous pre-processing step, in which features inspired by the
building physics (e.g. lagged values for the ambient conditions and values that
represent the correlation between heating consumption and outdoor temperature)
are added to the available input feature pool. Such a pipeline may benefit from
deep supervised learning or reinforcement learning methods, as these methods
are shown to offer higher performance compared to traditional machine learning
algorithms for load disaggregation.

Keywords: Load disaggregation · non-intrusive load monitoring · Smart Meter
Analytics ·Machine learning · Space Heating · Building Energy Use

1 Introduction

In 2021, the operation of buildings was responsible for 30% of final global energy
consumption and 27% of total energy sector emissions (out of which 8% is related
to direct emissions from buildings, while 19% refers to emissions from generation of
heat and electricity consumed by buildings) [1]. The electrification of buildings has
been identified as a key alternative to achieve a more sustainable energy system and
mitigate the corresponding emission of gases that result in climate change [2]. The
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Norwegian building sector is a special case as its heating supply is highly electrified,
due to historically low electricity prices; the building stock was accordingly responsible
for approximately 37% of delivered energy and 55% of delivered electricity [3] in 2021.
This has a significant effect on the peak electricity use and, consequently, the peak
experienced by the grid coincides with the coldest hours of the year. Therefore, as the
transport and industrial sector are becoming electrified, electricity peaks are expected to
rise, increasing the strain on the electricity grid. A substantial share of grid investments
will be made to avoid bottlenecks that are expected to occur for only a few hours each
year [4]. To limit the growth in the peak load that is expected in the green transition
with increased electrification, and the resulting cost to society and consumers, further
knowledge is needed about buildings’ electricity use behind the main meter. Electricity
meters only show how much electricity is delivered to the customer, but not how the
electricity is used or how different loads and appliances drive the peaks. By separating
the electricity consumption specifically for heating purposes from the overall electricity
consumption in buildings, one can attain a deeper understanding of both the proportion
of total energy consumption and the increase in peak load attributable to heating. This
approach not only enhances our comprehension of the influence of various heating
appliances and types of buildings on the peak load, but also provides valuable data for
optimising grid planning and facilitating more efficient demand management within
buildings. Consequently, this practice can result in cost savings for building occupants
and reduce the need for investments in the grid, thereby benefiting society at large. As
a consequence, this paper aims to investigate previous research on disaggregation of
heating loads from the total electricity load of buildings. The goal is to gain insight
into the most promising methodologies and to identify any existing research gaps in the
domain of heating load disaggregation.

2 Background

By 2019, Norway mandated the installation of smart electricity meters for all electric-
ity consumers as part of advanced metering systems (AMS) [5]. These meters record
customers’ hourly electricity usage and transmit data to grid companies. Moreover, the
meters can provide high frequency (seconds) and medium frequency (minutes) data on
electricity usage, as well as information on active and reactive power, voltage and fre-
quency through the Home Area Network gate (HAN-gate). This allows for collection
of aggregate electricity consumption data. However, to gain a deeper understanding of
the total peak load and how to limit it, it is necessary to disaggregate the load to specific
appliances, particularly those corresponding to heating systems [6].

One way to perform load disaggregation is by using intrusive metering, which
involves installing separate meters for each appliance or in each building. However,
this approach can be expensive due to costs associated with the manufacturing, installa-
tion, maintenance and monitoring of the required measurement devices. It can also be
inconvenient for building residents, and new meters would have to be installed for every
new appliance or installation, making it impractical and challenging to scale [7]. An
alternative load disaggregation method is non-intrusive load monitoring (NILM), which
involves using software tools to analyse power signals and disaggregate total energy load
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into individual loads or appliances from a single point of measurement. The concept of
NILM was first proposed by Hart in the 1980s [8]. The objective of NILM techniques
is to determine the individual power consumption or on/off state of electrical loads.
These methods rely solely on measuring the aggregate energy consumption of these
loads. NILM has various applications, including monitoring energy use in residential
and service buildings, as well as in the industrial sector. Typically, NILM techniques are
classified into two categories: ‘low-frequency approaches’ that use data or features at a
frequency lower than theACbase frequency in buildings, or ‘high-frequency approaches’
with higher frequencies [9, 10]. The AC base frequency is usually 50 Hz or 60 Hz for
AC power systems in Europe, Asia and North America.

Traditionally, NILM approaches for building loads involve 4 steps: data acquisition,
appliance and feature extraction, inference and learning, and finally, load disaggregation
and classification Several techniques have been studied for NILM [12], linear regression
models and unsupervised methods. Optimisation and regression techniques are compu-
tationally efficient and can yield good results with small datasets. However, in recent
years there has been significant research into other machine learning (ML) methods,
particularly supervised learning techniques, which have gained substantial attention.
These methods include Bayesian classifiers [13], support vector machines [14] and
K-nearest neighbours [15], among others. Approaches used in unsupervised training
instead include blind source separation [16], and the most researched method, which is
hidden Markov models (HMM) [17, 18]. In addition, Deep Neural Networks (DNNs)
have seen tremendous success in the domains of vision and natural language processing
in recent years. Accordingly, since 2015 there has been a rapid increase in the number
of DNN-based approaches and applications for building load disaggregation [9, 19].

With the increasing number of disaggregation techniques, applications and research,
the NILM toolkit (NILMTK) was developed in an effort to create reproducible NILM
experiments that serves as a reference library for dataset parsers and benchmark algo-
rithm implementations [20]. The original NILMTK library comes with implemented
methods for combinatorial optimisation (CO), mean regression, factorial hiddenMarkov
models (FHMM), and the original algorithm by Hart from 1985. The toolkit can be used
to disaggregate any datasetwhich has been structured as anNILMTKdataset, eitherman-
ually or through a simple API, and the results can be reviewed using the performance
measures implemented. Furthermore, theNILMTK-Contrib repository is an extension of
the NILMTK toolkit that offers additional disaggregation algorithms, such as recurrent
neural networks (RNN), FHMM, sequence-to-sequence models (Seq2Seq), and more
[21]. Another toolkit that is an extension of NILMTK is Torch-NILM, which offers a
suite of tools for training deep neural networks in the task of energy disaggregation [22].

In the Norwegian case, it is assumed that heating loads/heating technologies are
responsible for the majority of the annual electricity consumption, as well as the electric
peak load in buildings [23]. A deeper knowledge of how this varies for different building
categories, and how the heating loads can be disaggregated from hourly measurements
from theAMSmeters, ismissing.Disaggregation approaches are usually applied, trained
and validated on datasets with labelled data for energy use in buildings. In some cases,
these datasets have separate measurements for space heating units of buildings, and
NILM techniques are used to identify and disaggregate heating loads from the total
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electricity load in buildings. The experience from these studies can help to gain more
knowledge about disaggregation of heating loads in buildings, the nature of electricity
used for heating in all electric buildings in cold climates, and insights on how to limit
the growth in the peak electricity demand in Norway.

2.1 Scope

The scope of this review is to look into methods used specifically for disaggregation
of space heating technologies and space heating demand from the total electric load of
both commercial and residential buildings. This is particularly relevant for theNorwegian
case, as the peak demand load is mainly caused by electrical heating in buildings. When
we talk about heating loads in this paper, we specifically mean electricity used for
space heating and heating of ventilation air. When talking about heating appliances, we
consider all electrical appliances that can be used for space/ventilation heating, including
heat pumps (air-to-air, ground-source, air-to-water, etc.), electric space heaters, electric
heating batteries, electric floor heating and electrical boilers.

This paper explores methods that utilise both traditional learning methods, as well
as deep supervised learning and reinforcement learning (RL) approaches, and outlines
the data requirements for load disaggregation of the space heating demand in all electric,
and partially electric, buildings, with recommendations for further work. The paper also
looks into and provides an overview of building energy measurement datasets used for
developing disaggregation methods. Finally, the paper briefly examines the suitability
of NILMTK for disaggregation of heating technologies from low frequency electricity
use in all electric buildings.

In this paper, the resolution of different datasets and approaches are referred to either
as frequency given in Hz or as per time unit, given as seconds/minutes/hours. These units
are used interchangeably, but essentially 1 Hz is the same as 1/s, meaning that a dataset
with the resolution of one Hz has measurements with 1-s resolution. In this review paper,
we also consider datasets and methods which are applied to datasets with resolution in
the seconds domain to be of high resolution, while datasets with measurements in the
minute or hour domain are considered to be of low resolution.

2.2 Related Works and Contributions

Several review studies have examined NILM and disaggregation techniques that employ
machine learning to disaggregate individual appliances. A selection of these are sum-
marised in Table 1. Some studies have partly examined methods for disaggregating
heating appliances’ electricity use from the building’s aggregate load. However, there is
a lack of a systematic overview of techniques that specifically address disaggregation of
heating loads in buildings. Such a review is essential to determine the research gaps in the
disaggregation field regarding heating loads and heating appliances and can contribute
to increasing the knowledge of how heating loads contribute to peak loads in all-electric
buildings and the building stock.

Other recently conducted reviews and relevant articles focus on disaggregation of
building energy loads and/ormachine learning approaches in the disaggregation research
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field. Rafati et al. [24] performed a review of NILM used for fault detection and effi-
ciency assessment ofHVAC systems. This review considered differentmethods ofNILM
applied to building HVAC systems with different measurement durations and sampling
frequencies and showed that, even though NILM could be successfully implemented
for Fault Detection and Diagnosis (FDD) and the energy efficiency (EE) evaluation
of HVAC, and enhance the performance of these techniques, there are many research
opportunities to improve or develop NILM-based FDD methods to deal with real-world
challenges. Huber et al. [9] reviewed NILM approaches that employ deep neural net-
works to disaggregate appliances from low-frequency data, i.e. data with sampling rates
lower than the AC base frequency. The study looked at around 100 studies in which
deep learning approaches were used for NILM. Energy use for heat pumps was disag-
gregated in ten of the studies examined that investigated deep learning methods on the
AMPds-datasets [25], while two studies disaggregated electric heaters. The study also
found that the number of deep neural network approaches to solve NILM problems has
increased rapidly since 2015. Himeur et al. [26] looked into machine learning methods
for anomaly detection of energy consumption in buildings using machine learning. The
method briefly reviewed ML-based NILM for anomaly detection of energy consump-
tion in buildings and concluded that even though the performance of NILM to identify
abnormal consumption is not yet as accurate as using sub-metering feedback, its perfor-
mance could be further improved, to allow a robust identification of faulty behaviour.
Himeur et al. (2) [27] made a second review of recent trends in smart NILM frame-
works (event-based, non-event-based), as well as a more technical review describing
sensors and devices utilised to collect energy consumption data in residential and public
buildings before applying NILM. They also reviewed real-life applications of NILM
systems. Angelis et al. [28] undertook a more general literature review about commonly
used methodology and applications of NILM for building energy consumption. Earlier,
Ruano et al. [29] reviewed NILM methods specifically for Home Energy Management
Systems (HEMS) and Ambient Assisted Living (AAL).

Table 1. Overview of other review articles on disaggregation of building energy use.
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To the best of the authors’ knowledge, this review article is the first review to
specifically look into the scientific literature on disaggregation of space heating appli-
ances/space heating loads from the aggregate building load. In contrast to other review
papers that concentrate on the disaggregation of all household appliances, including
electrical heating devices among them, there is reason to believe that heating appliances
could potentially benefit from more tailored methodologies. This assertion is grounded
in the relation with outdoor temperature, building characteristics and heating appliance
usage patterns. The primary contribution of this paper is to investigate this proposition
and to assess the effectiveness of machine learning advancements in the specific context
of disaggregating heating loads.

2.3 Outline of the Paper

The paper is structured into different sections. Section 3, entitled “Methodology”,
explains the approach taken in the literature search. Additionally, it offers an overview
of commonly used datasets within the NILM/disaggregation field, together with insights
into the availability of separate meters for heating appliances in these datasets.

Proceeding to Sect. 4, “Disaggregation of Buildings’ Heating Loads”, the main
findings from the literature review are presented. This section includes details of various
disaggregation studies, categorised as traditional methods, deep supervised learning
approaches and reinforcement learning methods.

Section 5 provides an evaluation of the data requirements essential for the
development of effective disaggregation approaches.

Finally, in Sect. 6, the paper concludes by summarising the key findings and insights.

3 Methodology

The aim of this article is to conduct a literature review of proposed methods of disaggre-
gation of building heating loads and the advances of machine learning methods within
this field. This literature review looks into three main categories of literature: 1) other
relevant review studies on disaggregation of building loads; 2) documented datasets for
energy use in buildings used in NILM/disaggregation research; and 3) methods and
results of disaggregation approaches for building heating loads.

To conduct this review, a literature search was executed on Google scholar, Elsevier
library and IEEE Xplore using various combinations of key words: “disaggregation”,
“NILM”, “HVAC”, “space heating”, “machine learning”, “buildings”, “deep learning”,
in January/February 2023. This resulted in a total of 1,970 articles being extracted, of
which around 200 articles were screened and marked as relevant for the topic of dis-
aggregation of energy use in buildings. An additional step in the literature search was
conducted using Connectedpapers.org for articles which appeared to be specifically rel-
evant, e.g. datasets containing measurements of heating technologies or disaggregation-
methods utilising these datasets. This search describes citations within each article and
points to other articles where the article in question is cited.

During the work with this article, the authors also tested NILMTK [20] and the
extension NILMTK-Contrib [21] to get a better overview of the datasets used for NILM
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approaches, and some of the methods used for NILM. To get a better understanding
of the requirements and limitations of NILM-Toolkit and commonly used datasets,
NILMTK and NILMTK-Contrib were tested by following the user guide accessible
through GitHub, using the IAWE [30], UK-DALE [31] and AMPds [25] datasets. The
toolkit was also tested to give better insights into the NILM methodology and results.
The toolkit was tested by writing a dataset converter and using the authors’ proprietary
dataset with hourly measurements of energy use in two Norwegian school buildings.
Metadata for the datasets which are compatible with NILMTK was examined within
the toolkit itself by accessing the information in the NILMTK GitHub repository [32]
giving supplementary information about the datasets.

3.1 Datasets

To train, test and benchmark various disaggregation techniques, a variety of datasets
are used in the literature. While some researchers gather and utilise proprietary datasets
for their novel disaggregation approaches, acquiring high-resolution data on multiple
buildings and appliances necessitates a significant investment of time and resources. As
a result, most disaggregation methods are built, tested and benchmarked using existing
datasets. Understanding these widely utilised datasets and their content is critical for
gaining insight into which approaches have been utilised for disaggregating heating
loads and technologies in buildings. Some of the datasets most frequently referenced
in this paper include the datasets AMPDs [25], UK-Dale [31], IAWE [30] and REFIT
[33] among others. AMPDs (Almanac of Minutely Power dataset) is a public dataset for
load disaggregation and eco-feedback research and is a record of energy consumption
of a single house in Vancouver with 21 sub-meters for an entire year (from April 1,
2012 to March 31, 2013) at one minute read intervals [31]. UK-Dale (UK recording
Domestic Appliance-Level Electricity) is an open access dataset of disaggregated energy
use data from 5 houses in the UK, measured over 655 days [31]. REFIT is another
UK dataset he with electrical load measurements of 20 houses with nine individual
appliance measurements at 8-s intervals per house, collected continuously over a period
of two years [33]. The IAWE (Indian Dataset for Ambient Water and Energy) contains
measurements of 73 days in 2013 of energy and water use data for a single family house
[30]. Table 2 gives an overview of these datasets and other datasets for building energy
use which are used in research on load disaggregation. The table indicates the location,
building category and number of buildings in the datasets, as well as the measurement
duration, sampling rate and available measured quantities. The availability of separate
measurements for heating loads and heating technologies within the dataset, as well as
NILMTK-compatibility, are also indicated in the table. A list of abbreviations is given
at the end of the table.

Other recently conducted reviews and relevant articles focus on disaggregation of
building energy loads and/ormachine learning approaches in the disaggregation research
field. Rafati et al. [24] performed a review of NILM used for fault detection and effi-
ciency assessment ofHVAC systems. This review considered differentmethods ofNILM
applied to building HVAC systems with different measurement durations and sampling
frequencies and showed that, even though NILM could be successfully implemented
for Fault Detection and Diagnosis (FDD) and the energy efficiency (EE) evaluation
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Table 2. Overview of different datasets containing energy measurements for building loads.
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of HVAC, and enhance the performance of these techniques, there are many research
opportunities to improve or develop NILM-based FDD methods to deal with real-world
challenges. Huber et al. [9] reviewed NILM approaches that employ deep neural net-
works to disaggregate appliances from low-frequency data, i.e. data with sampling rates
lower than the AC base frequency. The study looked at around 100 studies in which
deep learning approaches were used for NILM. Energy use for heat pumps was disag-
gregated in ten of the studies examined that investigated deep learning methods on the
AMPds-datasets [25], while two studies disaggregated electric heaters. The study also
found that the number of deep neural network approaches to solve NILM problems has
increased rapidly since 2015. Himeur et al. [26] looked into machine learning methods
for anomaly detection of energy consumption in buildings using machine learning. The
method briefly reviewed ML-based NILM for anomaly detection of energy consump-
tion in buildings and concluded that even though the performance of NILM to identify
abnormal consumption is not yet as accurate as using sub-metering feedback, its perfor-
mance could be further improved, to allow a robust identification of faulty behaviour.
Himeur et al. (2) [27] made a second review of recent trends in smart NILM frame-
works (event-based, non-event-based), as well as a more technical review describing
sensors and devices utilised to collect energy consumption data in residential and public
buildings before applying NILM. They also reviewed real-life applications of NILM
systems. Angelis et al. [28] undertook a more general literature review about commonly
used methodology and applications of NILM for building energy consumption. Earlier,
Ruano et al. [29] reviewed NILM methods specifically for Home Energy Management
Systems (HEMS) and Ambient Assisted Living (AAL).

4 Disaggregation of Buildings’ Heating Loads

This section presents the literature review onmethods for disaggregation of heating loads
from aggregate building electricity loads. All investigated methods are summarised in
Table 3 at the endof the section. The section is divided into three sub-sections basedon the
main machine learning class used in the different articles – namely “Traditional methods
and shallow-algorithms”, “Deep supervised learning” and “Reinforcement learning”.

4.1 Traditional Methods and Shallow Algorithms

The first disaggregation methods were based on rule-based algorithms, statistical meth-
ods, and shallow learning algorithms, such as combinatorial optimisation, clustering and
regression models. In this article, shallow learning refers to non-deep machine learn-
ing methods or traditional machine learning methods. These methods are still prevalent
today due to their simplicity, interpretability and computational efficiency, making them
well-suited for real-time monitoring and control applications. For instance, optimisation
and linear regression models can be trained on small datasets, making them useful when
data is limited or expensive to collect.

Liu et al.’s method, which is based on Affinity propagation clustering (AP) and time-
segmented state probability (TSSP), was proposed as a fast working algorithm for real
time disaggregation in 2021 [54]. This method was tested on the AMPds dataset and
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offered an average load state identification accuracy of over 96% and power decomposi-
tion accuracy of over 89%,while including all appliances. The state recognition accuracy
for heat pumps was notably lower than corresponding average accuracy obtained for all
appliances, although it maintained a high power composition accuracy.

Another method that is based on optimisation was proposed by Balletti et al. [55],
with a novel penalty-based binary quadratic programming formulation with appliance-
specific as well as an optimisation-based automatic state detection algorithm to estimate
power levels of appliances and their respective transient behaviour. Their approach was
trained and tested on AMPds, UKDALE and REFIT and its capability to disaggregate
many appliances with high accuracy was demonstrated. However, in the training proce-
dure, some issues were faced for heat pumps, as the same unit is employed for cooling in
summer and for heating in winter. The latter situation resulted in the wrong parameters
for the heat pump in summer when the model is trained on winter data. To overcome
this challenge, the parameters were re-estimated using two weeks for training and one
for validation immediately before the test week.

Several methods have also been proposed for low resolution (1 h) data in this area.
One statistical method developed in 2013 by Morch et al. [56] used linear regression to
segment hourly electricity loads from households into weather-dependent (e.g. space
heating) and weather-independent loads. This method considers the dependency of
energy consumption on current and past-day temperatures. Lien et al. [57] also use
linear regression, seasonality and temperature dependency to generate average profiles
for domestic hot water heating (DHW) in buildings based on heat load and outdoor
temperature measurements. However, this method is only tested on heating loads and
not electricity loads, and it is best used for generating average load profiles, rather than
disaggregating total heating loads in single buildings.

Other works have investigated unsupervised methods for disaggregating heating and
cooling loads from hourly energy data. Zaeri et al. [58] used unsupervised time-series
decomposition to disaggregate hourly aggregate electricity load into corresponding heat-
ing and cooling loads by decomposing the total signal into trend, seasonality and resid-
uals before comparing with submeter data. The study showed promising results, but the
results are difficult to interpret and replicate, as the type and characteristics of the office
building’s heating system are not provided in the article. Amayri et al. [59] developed
NILM methods based on random forest to disaggregate flexible electricity use in three
houses. The method aimed to classify whether the hot water heater and electric heater
were on or off and were shown to perform well for two of the houses, but not the third
one.

Najafi et al. [60] proposed another method for disaggregation of air-conditioning
load from smart meter data, in which an extended pool of input features was extracted
from both smart meter data and the corresponding weather conditions’ dataset. Input
features included calendar-based variables and features inspired by buildings’ thermal
behaviour (e.g. outdoor temperature in previous timestamps), alongwith statistics-based,
regression-based and pattern-based features that were originally proposed byMiller et al.
[61] for building characterisation. A feature selection algorithm was then employed to
identify the most promising set of features and an optimisation process was utilised to
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determine the most promising algorithm (showing that extra trees algorithm offers high-
est performance). The method achieved an average R2 score of 0.905 for disaggregating
cooling load and thus demonstrated the utility of the proposed set of features and the fact
that high-frequency data or appliance-wise measurements are not always necessary to
achieve high accuracy. However, this approach was tested on a relatively small dataset
and should be tested on a larger set of buildings to further assess its generalisability.

Overall, shallow learning algorithms and rule-based algorithms can be useful for
building load disaggregation when interpretability and computational efficiency are
needed. However, if the data is highly complex and non-linear, and a large dataset
is available, deep learning models may provide better accuracy and performance.

4.2 Deep Supervised Learning

In the past years, deep learning methods have been increasingly utilised for disag-
gregation of building energy use. Models based on deep supervised learning require
more computational power compared to traditional methods, although they can pro-
vide better accuracy, scalability and performance compared to regression models in
disaggregation applications, specifically while dealing with complex and non-linear
relationships between the aggregate electricity consumption and appliance usage. Deep
learning methods consist of a range of different models such as Convolutional Neural
Networks (CNN), Residual Network (ResNet), Seq2Seq and Generative Adversarial
Network (GAN), alone or in combination with each other and/or mechanisms such as
Gated Recurrent Units (GRU) and Denoising Autoencoder (dAE).

Most of the proposed deep-learning based approaches for the disaggregation of
heating loads that have been reviewed in this sub-chapter are designed for disaggre-
gation of datasets with a resolution of 1 min or more. Considering the information
that can be extracted from the measurement data with such resolution, these methods
are typically designed to recognise patterns in different appliances’ consumption and
their states. In this context, Kaselimi et al., 2019 [62] introduced a Bayesian-optimised
bidirectional Long Short-Term Memory (LSTM) method for energy disaggregation of
household aggregate load. The method was evaluated using the AMPds dataset. In gen-
eral, the model was shown to have a higher performance than the one achieved using
other methods such as LSTM, CNN, CO and FHMM, but the proposed method per-
formed significantly worse on disaggregating the heat pump’s load compared to other
appliances such as the dryer, the dishwasher and the oven. Methods based on LSTM
were also examined by Xia et al. [63], who proposed a composite deep LSTM for load
disaggregation. The method was not tested on any heating appliances, but it was tested
on an air conditioner from the Dataport dataset with 1 min’s resolution. The air condi-
tioner was used frequently in the training period and the method performed better than
all traditional methods and the DAE method for disaggregation of the air conditioner’s
load. Wang et al. [64] proposed an ensemble-based deep learning method for NILM,
which used both LSTM and feed forward NN. The model used the real power readings
from the dataset and considered sliding window data and additional attributes such as
month and time of day for disaggregation of six appliances from the AMPds-dataset,
including the heat pump and HVAC. The method achieved 93.9% accuracy for the heat
pump disaggregation.
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Davies et al. [65] proposed some CNN models for appliance classification, trained
and tested on a PLAID dataset. Results showed that appliance classification is possi-
ble to some extent at low “smart meter”-like sampling frequencies, but performance
increases greatly with sampling resolution. In general, their CNN architectures showed
good separation of appliances on a PLAID dataset, but the models performed poorly on
electric heater class, however, which was confused with the hairdryer. This is because
heater onset events are generated by a single heating element turning on, corresponding
to a simple step shaped transient. Such appliance classes are very difficult to separate
since they contain a heating element whose onset appears as a plain step.

Li et al. [66] proposed a fusion framework using an integrated neural network for
NILM with two tasks: load identification and power estimation. The foundation of load
identification is event detection, achieved by using the CUSUM method. Experimental
results on an AMPds dataset with 1 min’s resolution showed that the proposed model
could be used for NILM on datasets using low sampling-rate power data, and the method
achieved 98.5% accuracy for identification of the heat pump.

Wang et al. [67] proposed an end-to-end method to identify individual appliances
from aggregated data using a combination of DAE and LSTM networks on an AMPds
dataset. The method was trained on aggregated data and tested on synthesised data.
The results of the model showed that it had high performance for some appliances, but
low performance on reconstructing appliances with continuous states (as opposed to
on/off-appliances), such as a washing machine and a heat pump.

Harell et al. [68] proposed a causal 1-DCNN, inspired byWaveNet, forNILMon low-
frequency data on the AMPds dataset. The study found that when implementing current,
active power, reactive power and apparent power the model showed faster convergence
and higher performance for NILM, but the study does not, however, present any results
specifically for the heat pump or any other appliance.

Xia et al. [69] proposed sequence-to-sequence methods for NILM based on a deep
delated convolution residual network. The original power data fromUK-DALE and Dat-
aport was normalised before sliding window was used to create input for the residual
network. The method can improve disaggregation efficiency and the accuracy of dis-
aggregation of electrical appliances with low usage. The method was not tested on any
heating appliances, but on an air conditionerwith promising performance, but the authors
argue that other methods such as KNN, DEA, CNN, seq-2-point, and their own method
based on DA-ResNet [70], offered just as high performance on the disaggregation of the
air conditioner.

Kaselimi et al. [71] proposed a contextually adaptive and Bayesian optimised bidi-
rectional LSTMmodel for modelling different household appliances’ consumption pat-
terns in a NILM operational framework. The model showed low accuracy in detecting
the HPE appliance (AMPds), mainly due to recurring signal changes caused by external
(seasonal) contextual conditions. Later in the same year, Kaselimi et al. [72] investi-
gated the suitability of a GAN-based model for NILM. GAN-based models can generate
longer instances of the signal waveform, thereby enhancing NILMmodelling capability.
The model includes a seeder component and generates specific appliance signatures in
accordance with an appliance operation, and should accurately detect events occurring
(e.g. switch-on events) during a day. The method was tested on two buildings, including
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one with a heat pump (from AMPds), with measurements performed for one month
(17/5–17/6), when heat pumps are rarely in use. The model shows promising results
for NILM on most appliances, performing as well or better than traditional and other
deep learning methods for all appliances tested, but the study also shows that out of all
appliances, all methods performed the worst for disaggregating the heat pump compared
to other appliances (not for heating). This model was improved by Kaselimi in [73] by
including a deep learning classifier in the discriminator component of GAN, which gave
a slight improvement in disaggregation performance of the heat pump compared to [72].

Liu et al. [74] proposed a deep learning method for NILM, which used a GRU, as
well as multi-feature fusion. The method considers the coupling relationship between
the electrical signals of different appliances, as well as water and gas use, meaning that
correlations betweenworking states of applianceswere considered in the disaggregation.
They used an AMPds-dataset, which has a significant correlation between the working
states of heat pump and furnace. Themethod improved the F1 score and accuracy greatly
compared to methods that do not consider the relationship between the electricity use
of the appliances, as well as the gas and water use.

Kianpoor et al. [75] proposed a deep adaptive ensemble filter based on various
signal processing tools integrated with an LSTM for NILM. Their framework searches
ensemble filtering techniques, including discrete wavelet transform, low-pass filter and
seasonality decomposition, to find the best filtering method for disaggregating different
flexible loads (e.g. heat pumps). The discrete wavelet transform gave best results for
the heat pump combined with LSTM. Their study showed that using LSTM greatly
improved performance compared to traditional methods, such as linear regression, and
that introducing adaptive filtering improved the results even more, although the peaks
of the heat pump power consumption are still not perfectly captured.

Zou et al. [76] introduced a method based on CNN and bidirectional LSTM (BiL-
STM). In this approach, periodical changes in total demand (e.g. daily, weekly and
seasonal variations) are disaggregated into corresponding frequency components and
are correlated with the same frequency components in meteorological variables (e.g.
temperature and solar irradiance), allowing selection of the combinations of frequency
components with the strongest correlations as additional explanatory variables. Their
study found that heating and lighting loads were identified with greater accuracy when
the correlated frequency components were used as additional information during the
disaggregation.

All of the research mentioned within this field has looked at datasets with resolutions
of 1 min or higher. In 2022, Hosseini [77], however, suggested an LSTM-based method
for disaggregating heating demand from the aggregated load profiles, with 15 min reso-
lution, belonging to houses equipped with electric space heaters and water heaters. Their
proposed method aims to identify major appliances by first extracting overall heating
demand from the aggregated load before extracting the remaining appliances. To extract
the electric space heaters, an LSTM network is used, with a sliding window that con-
siders the past 7 instances of aggregated load and the past 8 instances of energy for the
electric space heaters. It is worth noting that ambient conditions were not considered
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as input features in the latter disaggregation procedure. The remaining load is disaggre-
gated through an unsupervised clustering procedure (Density-Based Spatial Clustering
of Applications with Noise).

Deep supervised learning methods can be more difficult to interpret compared
to traditional models and they require larger amounts of data and computational
resources to train. To overcome the latter, reinforcement learning RL may be suitable
for disaggregation of heating loads with high performance and less data.

4.3 Reinforcement Learning

Deep learning approaches typically require large datasets in the training procedure.
Although many labelled datasets exist for developing and testing disaggregation tech-
niques, providing a large amount of perfectly labelled training data for specific applica-
tion may not always be feasible. RL and deep RL is an alternative data-driven approach
which requires no labelled training data. In projects with data collection of energy use
measurements in buildings, it can take a long time to acquire a full set of representa-
tive data. Algorithms developed for disaggregation of heating loads can benefit strongly
from having data corresponding to more than one year, as the heating demand may vary
greatly from one year to another. Considering ambient conditions, such as the outdoor
temperature, could in addition improve the recognition of heating loads. With RL, one
can start training the algorithm on a small dataset and continue to improve the learning
algorithm as the dataset grows.

Only a fewmethods for disaggregation of heating loads in buildings based onRLhave
been proposed in the literature. Li [78] proposed an NILM recognition method based
on adaptive K-nearest neighbours RL (AD-KNN-RL) and compared it to other models,
such as the conventional KNN, genetic algorithm (GA) and Hidden Markov Model
(HMM). The method was applied to an AMPds dataset and aimed at state recognition of
5–8 different appliances, including a heat pump. It proved that the accuracy of the state
recognition of electrical appliances with simple state changes such as lamps and heat
pumps is higher than for other electrical appliances, but that the accuracy of electrical
identification is generally low for multi-state continuous changes. AD-KNN-RL proved
to have the highest performance, while HMM performed the worst.

Zaoali et al. [79] used LSTM-based reinforcement Q-learning to disaggregate the
REDD dataset. The experiment showed that the accuracy of the disaggregation was
significantly improved by using this method, compared to using the deep learning app-
roach, TFIDF-DAE, achieving an accuracy of 85%. The buildings 1, 2, 3, 4 and 6 from
the REDD dataset were used for training of the model, while building number 4 was
used to test the algorithm. Building numbers 2 and 3 have electric heaters, while building
number 4 does not, so that the disaggregation of electric heaters from the aggregate load
using this approach was not tested here.
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Table 3. Overviewofmethods used for disaggregation of building electricity load in the literature.

5 Evaluation of Datasets and Requirements

The datasets described in Table 2 are both widely used and sometimes rarely used for
the development of methods for disaggregation of building heating appliances, as shown
in Sect. 4. The content of the datasets can be summarised as follows:
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Building Category: 24 datasets are investigated. Four include measurements from
commercial buildings and 22 include measurements from residential buildings – mostly
from single-family houses but also some multi-family houses.

Sampling Rate: Most of the datasets have a frequency of 1 Hz or higher, while a few
datasets have only very low resolution, of minutes or per hour.

Duration: The duration of the datasets varies between 1 day and several years, with a
median value of 180 days.

Locations: The datasets are from different locations – 11 datasets are from buildings
in Europe, 8 from North America, 3 from India and 1 from Korea. The datasets together
represent buildings from both cold and warm climates.

Appliances: 12/24 datasets contain buildings with single measurements of heating
appliances or heating loads, while the rest of the datasets have no measurements
connected to space heating load.

Measurements: All contain measurements of power (active) or hourly energy use
(apparent). Several datasets also contain corresponding measurements with current,
voltage, phase factor, reactive power and phase angle.

NILMTK Compatibility: The majority of the datasets in Table 2 are available in the
NILMTK format as hdf5 files and with available converters.

Most of the datasets investigated include high-resolution data (1 s or lower).However,
for real world applications, energymeasurement data is usually available at amuch lower
resolution (15–60 min). Hosseini [77] shows that their suggested model performs effi-
ciently with low-resolution data (15 min) in identifying most of the ESH loads (electric
heaters), although the model performs inadequately in capturing the peaks and causing
unwanted variations in lower demand. Najafi et al. [60], however, achieved a high R2
value for recognising AC loads through the use of feature selection. High-resolution data
measurements are widely used for development of disaggregation methods, but may not
be applicable to hourly datasets, which are far more available and more commonly used
in real-life applications.

Space heating loads are highly dependent on outdoor temperature, season, time of
day, type of day (weekday/end) and building metadata (such as building type, heating
appliances and energy efficiency, etc.) [6]. Buildings with electrical heating typically
exhibit significant fluctuations in their load profiles. These fluctuations stem from the
varying outdoor temperatures, which can differ substantially from year to year. Conse-
quently, datasets with extended time spans prove exceptionally valuable. Most of the
datasets in Table 2 contain less than one year of data.

Given the notable difference between information that is available in measured load
profiles with low and high resolution, the corresponding pipelines benefit from being
treated differently. The methods proposed for disaggregating high-resolution load pro-
files are typically designed to recognise patterns in different appliances and their states,
while this information is often lost when moving into low resolution (15 min to 1 h).
For the specific case of disaggregating the heating loads from low-resolution datasets,
the pipeline may benefit from generating and employing features that are inspired by the



Advances in Machine-Learning 195

thermal behaviour of buildings (e.g. the lagged values of ambient conditions such as out-
door temperature and the corresponding seasonality) to capture additional information
that is not available in the load measurement’s data.

Some datasets in Table 2 include measurements for heating appliances, but these
are typically one single heating appliance per building. In the Norwegian setting, it
is common to have more than one heating appliance per building, e.g. combinations
of electric floor heating, electric panel heaters, air-to-air heat pump, electric boilers,
electric water heaters, ground source heat pumps, etc. [80]. Several of these electric
heating appliances and their combinations are not found in the existing datasets.

The availability of metadata varies for different datasets. The heating appliances
and heating distribution system in a building greatly affect the use of electric heating
appliances. An electric boiler used for both heating of domestic hot water and space
heating typically has a different user pattern compared to an electric boiler solely used
for one of these purposes. An air-to-air heat pump is typically used differently in a
single-family house that also has access to non-electric heating options. The heating
systems of the buildings in the different datasets are not always available to users, but
could provide useful information for the disaggregation of the heating appliances.

While some datasets like AMPds contains hourly climate data, several of the datasets
investigated include climate/ambient data or district heating data, in addition tomeasured
electricity consumption. Space heating is highly dependent on outdoor temperature and
climate conditions. This is rarely considered in traditional disaggregation approaches
implemented in NILMTK. Although NILMTK can take in temperature and gas mea-
surements, it is not utilised in the implemented methods. However, NILMTK currently
does not support heating measurements from district heating.

6 Conclusion

This review paper has investigated existing approaches for disaggregation of space heat-
ing loads and appliances frombuildings’ total energy load that utilise traditionalmethods,
shallow learning methods, deep supervised learning and RL methods. Previous research
shows that several approaches have disaggregated single heating appliances from total
electricity load.Thesemethods are often applied to high-resolution energymeasurements
(50–60 Hz) from buildings, with varying durations of training datasets. Deep learning
methods are shown to offer higher disaggregation performance compared to traditional
and shallow learning methods such as FHMM, CO, Mean, etc. The review also shows
that RL approaches for disaggregation are promising, but with a limited number of stud-
ies that can be further investigated in the future. Most of the disaggregation approaches
investigated typically recognise and disaggregate single appliances, and the majority of
them look at the heat pump from AMPds, or other single appliances such as heat pumps
or electric space heaters from datasets with buildings with these appliances. However,
few methods have been proposed in the literature for disaggregating total electricity
use for space heating from the total electricity use in buildings with electric heating, or
the loads of heat appliances in buildings with more than one heating appliance. At the
same time, there is a demand for disaggregation algorithms tailored for cold climates
that include electric heating from different heating options that work on low-frequency
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data. However, only a few methods have considered disaggregating the consumption of
heating units based on features that are inspired from the thermal behaviour of buildings
(e.g. lagged values of outdoor conditions or relationship between heating consumption
and outdoor temperature). In most of the studies, power consumed by heating systems is
commonly disaggregated using the same pipelines as those utilised for other appliances.
Recommendations for future work include integrating deep supervised learning tech-
niques with features inspired by building physics to develop pipelines for disaggregating
heating loads from low-resolution aggregate electricity data, as this method shows sig-
nificant promise, and as building energy data is mostly available as low-resolution data.
Additionally, there remains a notable research gap in the disaggregation of heating loads
in both commercial and public buildings, as well as in the application of reinforcement
learning methods for this purpose.
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Abstract. The design of IoT-based smart buildings places great emphasis on net-
work infrastructure and the integration of resilience into the overall system. The
research aims to develop amethodology that comprehensively integrates resilience
into the design of IoT-based smart buildings. The study reviews the existing
literature on IoT-based smart buildings, emphasizing energy efficiency through
the design of resilient architecture platforms. Fundamental aspects of resilience
architecture in IoT-based smart buildings are explored, along with an examina-
tion of current research efforts and challenges in IoT resilience. The methodology
employed for integrating resilience into the architecture design is described, reveal-
ing the utilization of the Design Science Research (DSR) methodology to enhance
the architecture’s fault tolerance, survivability, and adaptability. The paper con-
cludes with a summary of key findings and suggests future research directions for
further enhancing the resilience of IoT-based smart building architectures.

Keywords: Resilience Architecture · Energy Efficiency · Smart Building

1 Introduction

Oneof themost significant and complex issues for smart cities is energy demand [1].With
the ever-growing standard of living, it is inevitable that energy consumptionwill continue
to rise. The International Energy Agency (IEA), reports buildings are responsible for
about one-third of global primary energy consumption and about one-third of total direct
and indirect energy-related Greenhouse Gases (GHGs) emissions [2]. Not only that, but
it also expected that energy demand in buildings will increase globally by 50% by
2050 based on projected growth in the absence of effective actions to improve building
energy efficiency [3]. In the Southeast Asia region, there is an anticipated doubling of
electricity demand by 2040 [4]. This persistent increase in energy demand, together with
the limited supply of conventional energy reserves, necessitates a global effort to address
these issues. One of the initiatives proposed on 30 November 2016 involves updating
the Energy Performance of Buildings Directive (EPBD) with the aim of promoting
the adoption of smart technology in buildings and monitor the energy performance of
buildings throughout Europe [5]. Therefore, it is very important to design buildings to
provide resilient infrastructure that can be adapted to environmental changes.
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Smart buildings are defined as buildings that use information and communication
technology to improve efficiency, performance, and sustainability and consider as ideal
solution due to their focus on energy efficiency and the integration of sustainable and
resilient infrastructure [6–9]. By integratingwith other Internet of Things (IoT) technolo-
gies, energy consumption can bemonitored through smart buildings andmake necessary
adjustments. In addition, smart buildings play an important role in resilient infrastruc-
ture development by enabling rapid response during natural disasters such as floods or
earthquakes [10]. The lighting system in the building, for example, will be automatically
switched off through a smart system in the event of a drastic change in the electricity
source caused by a flood [11]. To mitigate potential losses, early intervention measures
can be employed, such as the use of indoor sensors to detect and respond to incidents.
Besides resilient architecture, several approaches and strategies have been studied focus-
ing on energy efficiency in smart building IoT-based implementation. These includes
passive design [12–14], Energy Management Systems (EMS) [15–17], energy-efficient
Heating, Ventilation, and Air Conditioning (HVAC) systems [18, 19], Building Energy
Management Systems (BEMS) [20, 21], energy-efficient lighting systems [18, 22, 23]
and, advanced metering and energy monitoring [24].

Beginning in the late 1990s, building design began to be oriented around sustainable
principles drivenby strict standards.However, given the current effects of climate change,
these sustainable practices alone are no longer sufficient. Simultaneously, resilient fea-
tures have received significant attention in building design considerations [25]. The goal
is to ensure the long-term durability of the building, resist extremeweather due to climate
change [25], and minimize environmental impact [26]. Therefore, to ensure the oper-
ation efficiency and effectiveness of smart buildings, advanced technology like smart
sensors must be integrated into the building [27].

The deployment of IoT plays a vital role in achieving these objectives. However, IoT
consist of a variety of heterogeneous devices over IoT layers, which can grow in scale
and complexity. Enabling IoT sensing technology in buildings presents challenges when
it comes to merging and networking incompatible sensing and IoT devices, as well as
ensuring data security.

Thus, an IoT network necessitates a resilience architecture that supports intelligent
search, data recovery, failure detection, and dynamic and autonomous network main-
tenance [28]. There are a few parameters that have been considered when designing a
resilience architecture smart building with IoT-based smart building such as redundant
and diverse communication networks [29], robustness [27], interoperability and stan-
dardization [31, 32], edge computing [33] and local processing [34], real-timemonitoring
and analytics [35, 36], scalability and flexibility [31, 32], and, energy management and
efficiency [28, 37, 38]. These parameters help ensure that the building can withstand and
recover from disruptions while maintaining efficient and effective operations.

The aim of this research is to develop amethodology that comprehensively integrates
resilience into the designof IoT-based smart buildings. This approach involves a thorough
examination of network components and their interconnections, with a specific emphasis
on guaranteeing both system resilience and energy efficiency. The rest of the paper is
organized as follows. Section 2 provides a review of the literature on IoT-based smart
buildings. Section 3 elaborates on the fundamental aspects of resilience architecture in
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the context of IoT-based smart buildings. Section 4 presents a discussion of the current
state of research, including related work, challenge and effort in IoT resilience. Section 5
outlines themethodology employed to incorporate resilience into the architecture design.
Finally, Sect. 6 concludes the study, summarizes the key findings, and proposes future
research directions.

2 IoT-Based Smart Building

Figure 1 show the IoT architecture layer which serves as the fundamental framework
for the IoT infrastructure. It enables the seamless integration of diverse systems and
technologies, contributing to the enhanced efficiency and effectiveness of the smart
building ecosystem.

Perception Network Processing (middleware) Application

Fig. 1. IoT Architecture Layer

Based on the IoT architecture layer discussed above, [39, 40] proposes an IoT-based
architecture for managing energy consumption and efficiency in smart buildings. This
architecture incorporates a network of sensors and actuators that collect and measure
data from various building systems. The collected data is then stored in a cloud database,
allowing authorized parties to access and monitor the building’s performance.

In the context of the smart building, continuous monitoring of energy consumption
is prioritized to ensure occupant comfort and operational efficiency [41, 42]. IoT sensors
and connected devices in smart buildings generate valuable data for analytics [43]. This
data enables insights, optimization opportunities, and improvements in energy efficiency
and user experience within the building. The transportation of data and instructions
occurs through the building’s data network. Therefore, two key elements are essential
for a building to become smart: automation through a Building Management System
(BMS) and connectivity facilitated by network infrastructure.

Findings by [44] also state that the use of IoT in smart buildings will generate
several applications: (i) facilities management to maintain efficient services; (ii) energy
management to manage energy consumption in optimizing the operational efficiency;
and (iii) enhancement of interior comfort to ensure comfortable living conditions for
building occupants.

By integrating the IoT-based architecture and leveraging the data generated by IoT
sensors, smart buildings can efficiently manage energy consumption, ensure occupant
comfort, and enhance operational efficiency.

3 The Fundamental of Resilience Architecture

According to author [45], “The resiliency of a system is defined by its capability (i) to
resist external perturbance and internal failures; (ii) to recover and enter stable state(s);
and (iii) to adapt its structure and behavior to constant change.“ In the context of network



Incorporating Resilience into the IoT-Based Smart Buildings Architecture 205

resilience, the study conducted by [46, 47] defines it as the ability to resist the degree of
movement towards impaired service while maintaining an acceptable level of service. A
challenge, is an event that triggers faults and errors, impacting the normal operation of
the network [48]. If these errors propagate, it can ultimately lead to a network failure. The
definitions provided by [46–48] shed light on the importance of resilience in both system
and network contexts. Resilience involves the ability to withstand external disturbances
and internal failures, recover effectively, and adapt to constant changes [2]. In the network
realm, resilience is crucial in maintaining service levels and mitigating the impact of
challenges that can disrupt normal network operations.

Resilience architecture enhances flexibility and adaptability [49], optimizing energy
use based on real-time data in smart buildings. It integrates advanced monitoring and
control systems for continuous energy consumption monitoring and optimization [18],
enabling proactive maintenance and improving energy efficiency. Additionally, it facil-
itates rapid service recovery from disruptive events [50, 51], such as natural disasters
or equipment failures. This capability helps minimize ensuring a quick return to normal
operation and reduces the impact on energy efficiency [12].

The taxonomyof resilience, resilient architecture, and resilientmechanisms pertinent
to IoT of previous and current research works were discussed by [52]. The large-scale
deployment of IoT in buildings increases the chances of component faults, which can
result in system malfunctions and unpredictable changes in network topology [53, 54].
Moreover, as the number of IoT devices continues to grow, several significant challenges
may arise in the development of a robust IoT architecture. It is essential to anticipate and
mitigate these challenges to ensure the successful integration and utilization of many
IoT devices within smart building operation. By effectively addressing these challenges,
the smartness of a building can be sustained, ultimately leading to the development of a
resilient building over time.

4 Related Works on Challenges and Efforts in IoT Resilience

In response to these challenges, numerous efforts have been dedicated to developing
resilience architecture for IoT-based smart building. Several specific solutions have been
explored to tackle the complexity of IoT-based resilience architecture in different forms,
focusing on enhancing its robustness and adaptability for effective implementation in
diverse contexts.

The design of IoT smart buildings, with its focus on network infrastructure and
resilience integration, aligns with the resilient strategy proposed by [47]. This strategy
emphasizes key steps such as defend, detect, remediate, recover, and diagnose, refine
(D2 R2 + DR). It incorporates redundancy and diversity to prevent network failures and
support changes in network topology. The challenge of network resilience, as defined in
[55], involves providing a backup path within a minimal timeframe to ensure uninter-
rupted connectivity. Addressing this challenge requires swiftly establishing at least one
backup path. Similarly, [28] emphasizes the need to determine the maximum number
of failed nodes or links the network can withstand while still performing well. Another
factor for sustaining network operation is having resilient traffic, as described in [56]—
traffic resilience relates to how quickly a network can recover from service interruptions.
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To effectively address this challenge, the focus should be on minimizing downtime and
promptly restoring services. This involves the identification of critical network vertices
based on latency-aware resiliency metrics. These metrics help determine the parts of the
network that are most vital for swift recovery from disruptions, ensuring the network’s
resilience.

Meanwhile, [57] conducted research on a complex IoT process chain, emphasizing
the significance of acknowledging interconnections within IoT systems when formally
addressing resilience challenges. In this context, the researcher views the IoT system as
a network consisting of interconnected activities, activity nodes, and links connecting
these activities and processes. They also introduced a resiliency analysis approach using
a graph-based mechanism and assessed the resilience of IoT chains by evaluating the
performance and availability of the activity graph both before and after disruptions
affecting critical components.

In response to the challenge posed by the expansion of the IoT, researchers in [58,
59] have introduced a framework for Wireless Sensor Networks (WSNs). This frame-
work harnesses the resilience and coordination capabilities of IoT devices withinWSNs.
Meanwhile, Le et al. [60] suggest three different approaches that exhibit superior perfor-
mance compared to the conventional Routing Protocol for Low-Power and Lossy Net-
works (RPL) solution. This innovation in routing protocols addresses critical challenges
within the IoT and WSN domains, where conserving energy, reducing delays, ensur-
ing reliable packet delivery, and balancing network loads are paramount concerns. To
tackle the issue of unreliable communication in IoT services, an innovative architecture
is suggested by [61]. This architecture aims to bolster the resilience of IoT infrastruc-
ture by incorporating trustworthy middleware. These advancements present promising
opportunities to strengthen the reliability and efficiency of IoT and WSN systems.

Several studies have also been conducted that focused on enhancing the resilience
of services in IoT networks to improve the reliability and robustness of IoT systems.
Shammari et al. [28] developed a framework using Mixed Integer Linear Programming
(MILP) to enhance service resilience in IoT networks, consequently improved network
performance through optimized node and route selection. Basnayake et al. [62] intro-
duced anAI-based smart building automation controller (AIBSBAC) that prioritizes user
comfort, safety, and energy efficiency, with the added advantages of easy installation
and plug-and-play compatibility.

Numerous studies have been dedicated to tackling the challenges of constructing a
robust IoT infrastructure for efficient big data management. Bashir et al. [63] presents a
reference architecture that emphasizes the importance of integrating real-time IoT data
management, analytics, and autonomous control within smart buildings, utilizing the
Integrated Big Data Management and Analytics (IBDMA) framework. Another publi-
cation [64] provides guidance on establishing and maintaining a comprehensive system
featuring a resilient Data-Flow Path. This system effectively retrieves pertinent sensor
data and handles abnormal data occurrences.

The existing literature falls short in providing concrete guidelines and comprehensive
implementation architectures concerning the enhancement of the resilient network layer
in IoT-based smart buildings. It is evident that additional research is essential to bridge
this gap and generate practical solutions that offer clear and actionable guidance in
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designing and implementing robust and resilient architectural frameworks within the
domain of smart buildings.

5 Incorporating Resilience into the Design

This section presents the proposed method for integrating resilience into the design. To
create a resilient IoT smart building network, the study will employ the Design Science
Research (DSR) methodology, which includes steps such as problem identification,
design and development, evaluating outcomes, and reflection on the process, as shown
in Fig. 2. This design will include D2R2 +DRmeasures to increase system resilience by
incorporating redundancy and diversity to prevent network failures and support changes
in network topology. The research will focus on two important metrices, Betweenness
Centrality (BC) and Closeness Centrality (CC), which are commonly used to analyze
network resilience and robustness.

Fig. 2. DSR Methodology approach

BC identifies nodes that have a crucial role in maintaining efficient communication
across the network. If these nodes become inaccessible, it can severely disrupt network
traffic. In contrast, CC measures how fast a node can connect to all other nodes in the
network. Nodes with low CC are closely connected to others, facilitating rapid informa-
tion dissemination. Nodes with high CC help in quickly spreading information during
emergencies or component failures, ensuring that critical data reaches its destination
promptly. These two metrics were selected because, as per [57], IoT node activities
are interdependent on each other and on the network links. Therefore, BC and CC are
suitable for evaluating IoT network performance and availability.

The resilience analysis process commences with the definition of metric parameters.
In this study, BC and CC have been selected as the resiliency metrics. Subsequently,
after establishing these resilience metrics, the study proceeds to the resiliency assess-
ment phase. During this stage, IoT activities (or services) are identified, and controlled
disruptions are introduced to evaluate the strengths and weaknesses of the proposed
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design. This process contributes to the formulation of a resilience strategy, a key step in
the subsequent phase of analysis, known as resiliency enhancement.

In the resiliency enhancement phase, IoT activities are ranked to assess their impact
on resiliency. To facilitate this analysis, three levels of ranking have been identified.
These levels include: (i) connected component analysis, (ii) end-to-end path analysis,
and (iii) traffic management analysis. In evaluating the performance, Evaluation Criteria
(EC) can be employed, as recommended by [63]. These criteria serve as guidelines for
assessing the performance and effectiveness of the designed system. In the context of
this study, a total of four specific criteria have been carefully identified and chosen. With
the goal of achieving efficacy, the criteria encompass efficiency, reliability, functionality,
and robustness. These criteria were selected primarily due to their direct relevance to
the research objectives.

The performance of the network can be measured and evaluated under different
scenarios. Design and performance analysis can be conducted using techniques such as
graph-based modeling, mathematical calculations, and simulations. These approaches
enable a comprehensive understanding of the network’s behavior and assist in developing
an efficient and resilient design.

6 Conclusion

In conclusion, the development of resilience architecture in IoT-based smart buildings
is a crucial aspect in ensuring the robustness and adaptability of these systems. The
integration of resilient features into the overall system design is essential for addressing
potential disruptions and enhancing performance. However, several challenges need to
be addressed, such as complex integration, compatibility of devices and protocols, data
security and privacy concerns, and energy efficiency optimization.

Future work in this field should focus on proposing a comprehensive reference archi-
tecture that specifically addresses the resilience requirements of IoT-based smart build-
ings. This reference architecture should provide clear guidelines and implementation
strategies for integrating resilient features into the system design. It should consider
the unique characteristics of smart buildings, including diverse sensors and actuators,
network connectivity, and data management.

By proposing a robust and comprehensive reference architecture, researchers can
provide practical guidance for designing resilient IoT-based smart buildings. This will
pave the way for the development of more efficient, reliable, and sustainable smart build-
ing systems that can effectively handle disruptions and ensure the long-term resilience
of the infrastructure.
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Abstract. Greenhouse agriculture is a crucial solution to global food security
and sustainability challenges, as it provides a controlled environment for plant
growth, resulting in higher yields and efficient resource utilization. Climate control
plays a critical role in determining energy consumption and plant growth within
greenhouse systems. The selection and optimization of control parameters have a
significant impact on the overall performance. This study conducted simulations
of a tomato greenhouse located inMontreal, Canada, with the aim of evaluating the
effect of different control setpoints in the presence of high-pressure sodium (HPS)
supplemental lighting and light-emitting diode (LED) supplemental lighting on
greenhouse performance. To comprehensively assess the influence of each control
setpoint, a sensitivity analysis (SA) was performed, systematically varying the
control setpoints over a wider range than what is typically observed in tomato
production. The SA utilized different control setpoints as inputs, while energy
consumption and crop yield were considered as outputs. The setpoints for relative
humidity and air temperature during the light period were identified as the most
influential factors. This highlights the importance of accurate measurements and
predictions of temperature and humidity to optimize environmental conditions in
indoor greenhouses when implementing a predictive control strategy. The results
obtained from this SA can contribute to the development of reduced-order models
that focus on the most influential variables.
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Dark Period when the lamps are off
Day Period from sunrise to sunset
Lamps Lamps parameters
Light Period when the lamps are on
Night Period from sunset to sunrise
SP Setpoint
thScr Thermal screen parameters

1 Introduction

Greenhouses play a significant role in addressing the global food security and sustain-
ability challenges. The world population is projected to reach 9.7 billion by 2050 [1],
meaning food production will have to increase by at least 50% to meet demand [2].
This increased food production is also associated with increased energy consumption,
resulting in a significant carbon footprint and environmental degradation.

Greenhouse farming is a key solution to this challenge, providing a controlled envi-
ronment for plant growth, higher yields, and efficient use of resources, including water
and energy. Greenhouses also provide access to fresh local produce year-round, regard-
less of the outside climate. However, the energy consumption required to maintain ideal
conditions for plant growth in greenhouses is high, making energy efficiency a critical
aspect of greenhouse agriculture.

Climate controls determine energy consumption and crop growth in a greenhouse.
Studies have shown that the selection andoptimizationof control parameters significantly
impact the overall performance of greenhouse systems. As mentioned by Rizwan et al.,
maintaining optimal control in a greenhouse environment is challenging due to the
interconnected nature of its climate parameters [3]. However, growers are conservative
in changing their control setpoints and tolerances.

Climate control research has focused on developing accurate greenhouse models and
efficient controllers to regulate microclimate variables. These investigations range from
simple air temperature models to complex models involving plant responses.

The literature reviews by [4] and [5] outline two primary categories of greenhouse
control algorithms: conventional control and optimal control (see Fig. 1). Conventional
control seeks to minimize deviations between setpoints and measured values. In con-
trast, optimal control considers greenhouse behavior, actuator capabilities, energy con-
sumption, and crop response as inputs to the control strategy [4, 6]. To meet the crop
requirements, advanced controllers combined with artificial neural networks have been
proposed by many researchers for precise control and energy efficiency [5].

Figure 1 also illustrates the various control components and parameters in greenhouse
control systems, where each component affects different parameters (e.g., the heating
system affects temperature and humidity control) [5, 7]. These control components
exhibit strong coupling among multiple parameters, going beyond pairwise interactions
[5, 6].

Numerical simulations, primarily using MATLAB/Simulink, are the predominant
method for investigating greenhouse control strategies, accounting for about 30% of the
selected literature [5].
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Fig. 1. Review of greenhouse control algorithms, components and parameters (adapted from [4]
and [5]).

The primary focus of this research is to evaluate and analyze which control parame-
ters have the most significant impact on greenhouse performance, specifically in terms
of energy consumption and crop yield. By investigating and assessing various control
parameters, such as temperature, humidity, carbon dioxide (CO2), and lighting, this study
aims to identify the key setpoint factors that significantly affect greenhouse performance.

In the long term, this research will allow to target the controls that would gain to be
set dynamically, ensuring optimal, real-time adaptation to external conditions such as
meteorological climate and energy markets. Such dynamic controls have the potential
to significantly influence the operational costs and environmental impacts associated
with greenhouse operations. By comprehensively investigating the influence of control
parameters on energy consumption and crop yield, this research seeks to provide valuable
insights into optimizing greenhouse systems, leading to improved sustainability, resource
efficiency, and economic viability.

This study conducted a simulation of a tomato greenhouse located in Montreal,
Canada. The purpose of the simulations was to evaluate the impact of different control
setpoints on greenhouse performance. Greenhouses with high-pressure sodium (HPS)
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and light-emitting diode (LED) supplemental lighting were considered. To compre-
hensively assess the influence of each control setpoint, a sensitivity analysis (SA) was
performed, involving the systematic variation of the control setpoints within a wider
range than the typical range observed for tomato production. The inputs for the sensi-
tivity analysis consisted of the diverse control setpoints, while the outputs considered
were energy consumption and crop yield. This research contributes to a better under-
standing of the relationships between control setpoints, greenhouse performance, and
optimization of environmental conditions for tomato production. The paper is structured
as follows. Section 2 presents the methodology, outlining the approach and methods. It
explains the model and simulation by defining the reference greenhouse and reference
climate controls. It also introduces the sensitivity analysis method by defining the input
values, the sampling method and the regression method.

Section3 shows the results, focusingon energy consumption and cropyield. Section 4
presents the discussion, providing insights and data derived from the experiments and
analysis. The control and reaction of the indoor climate, the energy contribution, and a
linearization of the inputs are presented. Finally, Sect. 5 summarizes the key findings
and their implications for the greenhouse industry.

2 Methodology

The work focuses onmodeling and simulation techniques to investigate the performance
of greenhouses under different climate control setpoints. The methodology diagram
(Fig. 2) illustrates the step-by-step process used in this study to achieve the research
objectives. The graph shows the sequential order of actions, facilitating a comprehensive
understanding of the methodology.

Section 2.1 presents the model and simulation methodology used to evaluate the
energy consumption and crop yield of a greenhouse in Montreal, Canada. Section 2.2
introduces the SA that was used to evaluate the effect of varying control setpoints (input
parameters) on the energy consumption and yield (output variables) of the tomato green-
house simulation. By systematically adjusting the control setpoints and observing the
resulting changes, the study aimed to determine the sensitivity of the model outputs to
the variations in the input parameters.

Fig 2 .Model Selection and Simulation Approach

The energy and growth simulations were performed using the GreenLight model [8],
an open-source model designed for illuminated greenhouses with tomato crops (MAT-
LAB code available at https://github.com/davkat1/GreenLight and run on MATLAB
R2021a). GreenLight was chosen because the computational time is reasonable, and
all codes are accessible, allowing transparency in the research. Initially, this model was

https://github.com/davkat1/GreenLight
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designed to replicate an advanced Venlo-type greenhouse with a tomato crop and supple-
mental lighting. According to Katzin et al. [8], based on the dataset of an experimental
trial, the error in predicting the annual heating needs is in the range of 1 to 12%.

Before any modification was made to the GreenLight model, it was verified against
literature data and previous results to ensure its accuracy and reliability. Using the same
methodology asKatzin et al. in [9], each stepwas validated and comparedwith the energy
consumption results for Amsterdam, the Netherlands, given in the article (importing
climate data, running scenarios, and post-analysis).

ReferenceGreenhouse. The reference greenhouse simulated in this research is a virtual
state-of-the-art high-tech tomato greenhouse located in Montreal, Canada. The decision
to focus on a modern high-tech greenhouse, rather than a conventional greenhouse com-
monly found in the region, wasmotivated by the goal of exploring future possibilities and
potential advancements in greenhouse technology. By simulating a cutting-edge green-
house, this study aims to evaluate the feasibility and potential benefits of implementing
advanced dynamic climate control strategies in greenhouse operations. This research
seeks to provide valuable insights for the development of future greenhouse designs that
integrate dynamic control systems with real-time monitoring with multiple sensors.

This state-of-the-art greenhouse is based on products available from the major Dutch
greenhouse manufacturers (Priva [10], Ridder [11], Dalsem [12], Certhon [13], and
Havecon [14]). The most common advanced greenhouse for commercial use is the high-
tech Venlo-type Dutch glasshouse [8, 15], which is designed to optimize plant growth
and yield by controlling the environment in the greenhouse. This type of greenhouse has
features such as automated climate control systems, advanced irrigation systems, supple-
mental lighting, humidification anddehumidification,CO2 supplementation, and energy-
efficient design (double glazing, energy curtains, etc.) [16]. The high-tech glass green-
house is the most popular advanced greenhouse for commercial use in the Netherlands
due to its efficiency, sustainability, and flexibility.

After analyzing the market related to tomato greenhouses, the reference greenhouse
for the simulation is the one proposed by Katzin et al. [8] for the GreenLight model.
In that study, a 4-hectare Venlo-type greenhouse, 200 m wide and long, with a gutter
height of 6.5 m, a ridge height of 7.3 m and a roof slope of 22° was replicated. The roof
was made of glass panels, with 1 in 6 panels having a ventilation window (1.40 m ×
1.67 m) that can be opened to 60°. Thermal screens were installed at a height of 6.3 m.
The path width was 1.6 m with a pipe rail system. This reference greenhouse is based
on the Dutch greenhouse design described by Vanthoor et al. [17].

The GreenLight model was adapted considering the physical characteristics of the
selected greenhouse and the meteorological data of the selected location. The meteoro-
logical data for Montreal, Canada, is retrieved from EnergyPlus (https://energyplus.net/
weather). The database used is the Canadian Weather for Energy Calculations (CWEC),
an hourly weather observation of a characteristic one-year period specifically designed
for building energy calculations [18].

Based on themethodology of Katzin et al. [9], all simulations of this study are almost
one year long (350 days) and start on September 27, which represents the planting date
of the crops. The simulated crops are assumed to be mature. Growers typically have a
tomato harvest season of 350 days because about twoweeks are needed between harvests

https://energyplus.net/weather


220 M.-P. Trépanier and L. Gosselin

to change crops and wash the greenhouse. The cycle adds up to a full year and allows
for better crop management.

Figure 3 illustrates the relations of the system designed to control the indoor climate
of the greenhouse and presents the flow of information and control decisions within the
system. The diagram is divided into five sections: Outdoor Weather, Indoor Climate,
Crop, Controls and Outputs. Control decisions are based on outdoor weather conditions,
the existing indoor climate, and the current state of the crop. The indoor climate is
influenced by the outdoor weather, the controls, and the crop. The crop is influenced by
the indoor climate. The key outcomes of this research are the yield (which depends on
the crop) and the energy consumption (which depend on the controls).

Fig. 3. Representation of the greenhouse system and influences (numbered arrows indicate the
flow of information and control decisions) (adapted from [19]).

Reference Climate Controls. High-tech commercial greenhouses are equipped with
advanced climate control systems. Therefore, the simulation of greenhouses must also
account for the climate controls to provide the optimal environment according to the
requirements of different growth stages of the crops. The climate controls included in
GreenLight consider the following aspects: lamps, blackout screens, thermal screens,
CO2 injection, heating, cooling by ventilation, and dehumidification [19].

As regulated by the reference climate controls, the lamps are on from midnight to
18:00,which represents 18hof lighting, the ideal lighting time for tomatoproduction [20]
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[21]. However, during this time, the lamps are turned off depending on the solar radiation
and the indoor temperature. Blackout screens are present to avoid light pollution, so they
are closed at night, except when the indoor relative humidity or temperature is too high.
Thermal screens contribute to the energy efficiency of greenhouses. They are closed
when the external solar radiation and temperature are low. However, the screens are
opened when ventilation is needed. CO2 is injected during the light period (when the
plants are exposed to light, either from the sun or lamps) when the concentration is below
a certain setpoint.

The heating is set to a specific setpoint temperature, one for the light period and one
for the dark period. Ventilation cooling of the roof windows is activated (windows open)
when the indoor temperature is 5 °C above the setpoint. Ventilation dehumidification in
the greenhouse is activated when the indoor relative humidity is too high. All the values
and conditions of these different controls are listed in Table 1.

The climate was controlled using a smoothed proportional controller (defined by a
sigmoid function). In the GreenLight program, the controller enables the definition of a
setpoint and an acceptable tolerance band (pBand ) for each parameter (Table 1). This
function allows realistic control of the different variables since the desired values are
not always attainable despite the setpoints.

Table 1. Climate controls and their conditions for the GreenLight simulation [19].

Control Condition(s) Setpoint pBand

Lamps On: from 00:00 to 18:00
Off if: (IGlob > IGlobSP) OR

(TAir > TLampsSP ) OR (Nightifblackoutscreensopen) OR

(SumIGlob > SumIGLobSP)

IGlobSP = 400W/m2

TLampsSP = 26.5◦C
SumIGLobSP =
10MJ/m2/day

Blackout
screens

Closed during the night AND Open during the day
Forced open if:(
RHAir > RHblScrSPANDTAir > TAirSP − 1◦C

)

OR (TAir > TLampsSP )

RHblScrSP = 90% 0.5◦C(T ) OR
0.5%(RH )

Thermal
screens

Closed if:(
IGlob < IGlobthScr SP

ANDTOut < TthScrSP(Day)

)
OR

(
IGlob > IGlobthScr SP

ANDTOut < TthScrSP(Night)

)

Forced to open if: (TAir > 2◦C + TAirSP ) OR
(
RHAir > RHAirSPANDTAir > TAirSP − 1◦C

)

IGlobthScr SP
=

50W/m2

TthScrSP(Day) = 18◦C
TthScrSP(Night) = 5◦C
RHAirSP = 85%

1◦C(T ) OR
10%(RH )

CO2
injection

On during the light period if:

(CO
ppm
2 < CO

ppm
2 SP)

CO
ppm
2 SP = 1000ppm 100ppm

(CO2)

Heating Setpoint for heating:
Light period (TAirSP(Light)) AND

Dark period (TAirSP(Dark))

Heating on only if: (TAir < TAirSP − 2◦C)

TAirSP(Light) =
19.5◦C
TAirSP(Dark) =
18.5◦C

1◦C(T )

Cooling by
ventilation

Roof windows open if:
(TAir > 5◦C + TAirSP ) OR (RHAir > 87%)

Open: 4◦C(T ) OR
50%(RH )
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Table 2. Input parameters and range for the climate control SA.

Parameter Minimum value Maximum value Units Reference

RHAirSP 50 95 % [24]

TAirSP(LightPeriod) 10 30 °C [24, 25]

TAirSP(DarkPeriod) 10 25 °C [24, 25]

TthScrSP(Day) -32 25 °C [25, 26]

TthScrSP(Night) 10 25 °C [26]

COppm
2 SP 450 1500 ppm [24]

IGlobSP 150 500 W/m2 [16, 19]

SumIGLobSP 7 25 MJ / m2/day [20]

2.1 Sensitivity Analysis (SA)

In this study, a SA was performed to identify which input parameters have the most
significant impact on the output variables, allowing for a better understanding of their
relationships. Two sensitivity analyses were carried out, one with HPS supplemental
lighting and one with LED supplemental lighting.

SA is the study of how uncertainty in the output of a model can be attributed to
different sources of uncertainty in themodel input [22]. An analysis of the control system
makes it possible to better understand the peculiarities of themodel and to discoverwhich
components have the largest influence on the greenhouse. SA is used to achieve several
goals, such as validating the robustness of themodel to checkwhether themodel depends
on weak assumptions, prioritizing future research by targeting factors that merit further
analysis or measurement, and simplifying the model by holding certain factors constant
or even removing them [23].

Input Values. The SA involved varying the values of the control setpoints over a range
wider than the proposed “optimal” values for crop growth. Specifically, the control
setpoints were adjusted to a minimum value reduced by 25% and a maximum value
increased by 25%. The input variables of the SA are the different control setpoints listed
in Table 2. The input ranges of the different variables were based on literature and
realistic ranges with respect to existing tomato greenhouse controls. In total, eight input
variables were considered in the SA

SamplingMethod. The samplingmethod used for the SA is amodified latin hypercube
sampling (LHS). The LHS is a method of sampling from a given probability distribution
[27]. It ensures full coverage of the range of input variables. the LHS produces a pseudo-
random sample that Mimics a random structure. This type of sampling is similar to
stratified sampling. compared to simple randomsampling, LHS requires a smaller sample
size to achieve the same precision [23]. The LHS algorithm assumes that the input
variables are independent [28].

For the regression-based sensitivity analysis used in this work (see next section),
Nguyen and Reiter [29] suggest a sample size of 1.5 to 10 times the number of input
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variables. Eight input variables are considered in this project, so 80 samples were
evaluated.

Regression Method. Different sensitivity analysis methods can be used depending on
the features of a given problem [30]. Tian [31] presented an overview of sa techniques
with their main characteristics. Their review, which focuses on the application of sa
in the field of building performance analysis, analyzes the different sensitivity analysis
methods that are possible.

With the approach based on linear regressions, the relationship between a dependent
variable (y) and multiple independent variables (xi) is represented by the following
equation:

y = β0 + β1x1 + β2x2 + β3x3 + ... + βixi + ... + βnxn + ε (1)

where β0 is the intercept term (the value of y when all xi are zero), βi are the regression
coefficients that represent the change in y that corresponds to a one-unit change in each
respective xi and ε is the error term that represents the unexplained variation in y that is
not accounted for by the independent variables.

The goal of a linear regression is to estimate the values of βi that minimize the sum
of the squared differences between the observed values of y and the predicted values
from the linear equation. The Standard Regression Coefficients (SRC) method, which
is fast to compute and easy to understand, was chosen as the SA method in the present
work. This method is suitable for linear or nearly linear models [29], so the first step is
to validate the linearity of the outputs with the SCR method. This method also requires
that the inputs be uncorrelated. In the SCRmethod, the coefficients βi give an indication
of the importance of the variable i [30] with respect to the output considered. These
coefficients were determined using the Matlab function “regress” for multiple linear
regressions (Matlab R2022b) [32]. Since the magnitude of βi is affected by the units of
measurement used for the corresponding regressor, a more robust strategy is to scale the
model to generate standardized regression coefficients [33].

It is possible to calculate standardized value (y∗) of the output y (dependent variable)
by subtracting the mean of y(y) from the observed value and then dividing it by the
standard deviation (σy):

y∗ = y − y

σy
(2)

Standardizing the values makes it easier to compare and interpret the data.
Similarly, standardized coefficients (β∗

i ) of the input xi (independent variable) can
be obtained by multiplying the original coefficient (βi) with the ratio of the standard
deviation of the dependent variable (σy) to the standard deviation of xi (σxi ):

β∗
i = βi

σy

σxi
(3)

Standardizing the coefficients helps to compare the relative importance and impact
of different independent variables in the regression model and to quantify the linearity of
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a model. The closer the sum of the squares of the β∗
i coefficients is to 1, the more linear

and fit the model is [33]. Once the standardized regression coefficients are estimated,
they provide information about the strength and direction of the relationship between
the dependent variable (y) and each independent variable (xi).

Evaluation Metrics. The methodology uses a comprehensive set of evaluation metrics
to analyze the impact of the different independent lamp parameters (inputs, xi). The
primary outputs studied are the total energy consumption, which includes energy for
lighting and heating, and the total yield, which is represented by the total fresh weight of
harvested tomatoes (productivity). To facilitate comparisons with other studies, all met-
rics are calculated per squaremeter of greenhouse area. For each output, the standardized
regression coefficients (β∗

i ) of the inputs xi (independent variables) are analyzed.

3 Results

In this results section, the two outputs studied (i.e., y in Eq. (1)) are the annual energy
consumption and total freshweight tomato yield. The objective of an optimal greenhouse
is to reduce its energy consumption while increasing its total yield, therefore the analysis
centers on these two outputs, with a focus on the impact of input parameters. The signif-
icant correlations and standardized regression coefficients, illustrating the importance
of independent variables, are shown. In addition, a comparison between HPS and LED
lighting is presented. These findings inform strategies for greenhouse optimization.

The total fresh weight tomato yield in kg per square meter of greenhouse floor area
for a 350-day period for a greenhouse with HPS lamps in Montreal, Canada, is reported
in Fig. 4 as a function of each input parameter independently (scatter plots) for the
sample under consideration. In this scatter plot, each data point corresponds to a specific
combination of SA input and tomato yield, and the color of each point indicates the
yield, with blue representing higher yields and yellow representing lower yields. The
color gradient allows for a clear distinction between better and worse yields.

FromFig. 4, the observed correlation between the air temperature setpoint and tomato
yield highlights the importance of maintaining appropriate temperature in optimizing
tomato production under HPS lighting conditions.

Similarly, the total energy consumption in MJ per square meter of greenhouse floor
area is shown in Fig. 5. Again, a color gradient is used to distinguish the results. The
best energy consumption values (lowest values) are represented in blue and the worst
energy consumption values (highest values) are represented in yellow.

Figure 5 shows a correlation between the input control variable of relative humidity,
and the total energy consumption. The distribution of the data points suggests that as the
relative humidity setpoint increases, less energy is needed. This correlation is indicated
by the clustering of the blue dots, representing lower energy, towards the higher values
of relative humidity, while the yellow dots tend to be more prevalent at lower relative
humidity values. Overall, Fig. 5 provides valuable visual evidence for the relationship
between relative humidity and total energy, suggesting that manipulating relative humid-
ity levels could be a potential strategy for reducing energy consumption in HPS lighting
systems.



Impact of Setpoint Control on Indoor Greenhouse Climate Modeling 225

Fig. 4. Total freshweight tomatoyield as a functionof theSA input variable (independent variable,
xi) for 350 days under HPS lighting (Colors indicate the yield: blue represents higher yields and
yellow represents lower yields).

The same simulations were performed under LED lighting, and the results exhibited
correlations similar to those shown in Figs. 4 and 5.

Figure 6 summarizes the key findings by showcasing the standardized regression
coefficients (β∗

i ) for each independent variable, providing a concise overview of the SA
results. The standardized regression coefficients provide information on the strength and
direction of the relationship between the input and output variables.

HPS LightingLED Lighting.
Positive values on the y-axis indicate a positive relationship, where an increase in

the independent variable leads to an increase in the dependent variable. Conversely,
negative values indicate a negative relationship, where an increase in the independent
variable results in a decrease in the dependent variable. More importantly, the magnitude
of the coefficients (β∗

i ) reveals the relative importance of the independent variables.
Larger coefficient values mean that the corresponding independent variables have a
strong impact on the dependent variable, while smaller coefficient values indicate a
weak influence.
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Fig. 5. Total energy consumption as a function of the SA input variable (independent variable,
xi) for 350 days under HPS lighting (Colors indicate the energy: blue represents lower energy and
yellow represents higher energy).

The comparison between HPS and LED lighting conditions allows one to evaluate
how the importance of each independent variablemay differ based on the lighting system
used. From the results in Fig. 6 we can conclude that there is no significant difference
between the two types of lamps with that respect. For the main correlations (relative
humidity setpoint for the total energy and air temperature setpoint during lighting period
for the total yield), the standardized regression coefficients are slightly less dominant
for greenhouses under LED lighting. For the total fresh weight tomato yield output, the
standardized regression coefficient of the air temperature setpoint during light period
is -0.8605 for HPS and -0.8266 for LED. For the total energy output, the standardized
regression coefficient of the relative humidity is for -0.6349 HPS and -0.5521 LED.

For both HPS and LED lightings, the sum of the square standardized regression
coefficient (β∗2) is higher for the total energy consumption than for the total fresh
weight tomato yield. For energy, the sum is equal to 0.801 for HPS and 0.810 for LED,
and for total yield, the sum is equal to 0.522 for HPS and 0.432 for LED.
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HPS Lighting         LED Lighting 

Fig. 6. Standardized regression coefficient (β∗) of each independent variable (inputs, xi) for
yearly energy consumption and yield, for both types of lamps (HPS and LED).

4 Discussion

Predictive control has emerged as a promising approach for maintaining optimal envi-
ronmental conditions in various indoor settings, including greenhouses and controlled
growth environments. The SA presented above shows that the setpoints of the control
system that have the most impact on the energy consumption and tomato yield are the
relative humidity and air temperature during the light period, respectively. According to
Zhang et al. [5], most of the literature (approximately 60%) focuses on temperature and
humidity as the regulated parameters in greenhouse climate control as these variables
have a direct impact on crop yield and represent the primary contributors to energy con-
sumption. This means that to implement a predictive control strategy, it is essential to
have accurate measurements and predictions of temperature and humidity to optimize
environmental conditions in indoor greenhouse settings.

Reliable predictions allow the control algorithm to anticipate environmental changes
and adjust control actions accordingly. This adaptability helpsmaintain desired setpoints
and prevents overshooting or undershooting, thereby improving system performance.
Accurate prediction of temperature and humidity is challenging due to the complex
nature of indoor environments. Data-driven approaches, such as machine learning and
statistical techniques, offer the potential to improve temperature and humidity predic-
tions. Integrating data from multiple sensors, including temperature, humidity, CO2
levels, and solar radiation, can improve prediction accuracy. The key factors to focus
on are those related to relative humidity and air temperature, according the present SA.
However, as shown in Fig. 6, there are other factors at play depending on the type of
lamps and the output. The three most influential factors in order of importance for the
total energy consumption underHPS lighting are the relative air humidity setpoint, the air
temperature setpoint during the light period, and the daily summed global solar radiation
setpoint. Under LED lighting, the two main factors remain the same, but the third one
is the air temperature setpoint during the dark period. For the total fresh weight tomato
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yield, the three most influential factors in order of importance under HPS lighting are
the air temperature setpoint during the light period, the air temperature setpoint during
the dark period, and the CO2 concentration setpoint. Under LED lighting, these factors
are the air temperature setpoint during the light period, and the global solar radiation
setpoint, and the air temperature setpoint during the dark period.

4.1 Control and Reaction of the Indoor Climate

Figure 7 illustrates the relationship between the heating and ventilation controls and
the resulting output air temperature and relative humidity for selected 24-h periods.
These controls are determined by, but not limited to, the air temperature setpoint for
heating and the relative humidity setpoint for ventilation. Three different scenarios are
shown for each control, a minimum, average, and maximum setpoint value. For the
sake of simplicity, the focus is on a specific day and is conducted under HPS lighting
conditions. To illustrate the inside air temperature (Fig. 7 A, C, and E), the day shown
is January 1 (winter), and to illustrate the relative air humidity (Fig. 7 B, D, and F), the
day shown is July 1 (summer). The heating control activates the boiler. When the value
is 100% the boiler works at full capacity. The ventilation control activates the opening
of the roof windows. When the value is 100% the windows are fully open.

Figure 7 shows how changes in the control setpoints affect the environmental con-
ditions. Throughout the day, the heating and ventilation commands vary based on the
setpoints, indicating that the system is attempting to achieve the desired environmental
conditions. It is important to note that although the setpoints vary, this does not necessar-
ily mean that the system always achieves these specific values. Instead, the system tries
to achieve the setpoints and the corresponding results are analyzed. In Fig. 7 B, D and F,
the boiler control is low because the day shown is in summer. However, it demonstrates
increased energy consumption when the control setpoint of relative humidity is lower.
This is likely because the vents are more open, resulting in the activation of heating
when the outside air temperature is lower during nighttime hours. This analysis shows
oscillations in the boiler control of Fig. 7 A and C. This should be adjusted in future
work.

4.2 Energy Consumption Contribution

To better understand the energy dynamics of the simulation, additional details focusing
on the breakdown of energy consumption is presented. Specifically, the division of
energy usage between artificial lighting and greenhouse heating is highlighted. These
details are presented in Fig. 8, covering the entire simulation period and offering a
comprehensive view of energy utilization patterns for three different relative air humidity
control setpoints. In these three simulations, all controls are identical except for the value
relative air humidity setpoint.

For all simulations, during winter, the energy is at its highest for heating and for
artificial lighting. This is due to the cold outside conditions and low outside light period
in Montreal, Canada. During winter, the energy for heating dominates and the opposite
happens during summer as the energy for lighting is higher.
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Fig. 7. Heating (boiler) control and output air temperature over one day (January 1) with an air
temperature setpoint control of 10 °C (A), 20 °C (C), 30 °C (E) for HPS lighting. Heating (boiler)
and ventilation (roof) controls and output relative air humidity over one day (July 1) with a relative
air humidity setpoint control of 50% (B), 72.5% (D), 95% (F) for HPS lighting.

Fig. 8. Daily energy input related to lamp use and heating for 350 days (day of planting is
September 27) under HPS lighting for a different relative air humidity control setpoint.

The energy for lighting does not vary with the relative humidity control setpoint.
On the other hand, heating energy varies considerably, especially during the winter
months (mid-November to March / 50–150 days after planting). The main solution to
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reduce humidity is roof ventilation. However, this reduces the air temperature inside the
greenhouse and the boiler has to compensate.

4.3 Linearization of the Inputs

In Fig. 4, we observed a correlation between the temperature input and the total fresh
weight tomato yield; however, it is evident that the relationship is not strictly linear. To
address this issue and to facilitate further analysis, we introduced a new variable to try
to linearize the relation with the yield. The proposed new variable for this linearization
is:

xTAir =
∣∣∣TAirSP(LightPeriod)

− 19.5◦C
∣∣∣ (4)

The value 19.5 °C comes from the reference optimal air temperature setpoint [19]. By
using the new variable instead of xTAir directly, we can express the effect of temperature
on the yield in a more linear way. The scatter plot of the total fresh weight tomato yield
as a function of the variable of Eq. (4) during the light period is shown in Fig. 9. The
SAs presented previously were performed again but replacing xTAir by Eq. (4).

Fig. 9. Linearization of total fresh weight tomato yield in function of the air temperature control
during light period under HPS lighting (Colors indicate the yield: blue represents higher yields
and yellow represents lower yields).

For HPS lighting, the new standardized regression coefficient is -0.6932 compared
to -0.6349 without the linearization. For LED lighting, the coefficient is now -0.7831
compared to -0.5521. The difference ismore important under LED lighting. In both cases
the air temperature setpoint during light period is the most influential inputs for total
fresh weight tomato yield. With the new variable, the sum of the square standardized
regression coefficient (β∗2) becomes 0.567 (HPS) and 0.656 (LED) compared to 0.522
and 0.432 before. This means that with this new variable, it is possible to explain an
even higher percentage of the variance with the regression.

4.4 Limitation of the Model

The accuracy and realism of the results depends on the model employed in the sim-
ulation, which contain limitations. The model provides only a limited set of humidity
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and temperature values, lacking details on how these conditions vary across the green-
house. This restricts our ability to analyze spatial differences in the indoor climate, as the
model precludes a more granular analysis of spatial variations. Also, the precision of the
research is inherently tied to the model’s accuracy, meaning that any limitations in the
model may affect the accuracy of our results [19]. Furthermore, to ensure the model’s
reliability, it would be beneficial to validate it by comparing its predictions to real-world
data under different control conditions. This would help confirm that the model accu-
rately represents the physical processes at play. The scope of this research is confined
to the specific sequence of controls integrated into the model, predominantly reliant
on predefined setpoints and control band parameters. This limitation prevents us from
evaluating the potential of more advanced control strategies, such as model predictive
control.

5 Conclusion

This study investigated the impact of setpoint control on indoor greenhouse climate
modeling. By performing a SA on greenhouse control setpoints, the setpoints for relative
humidity and air temperature during the light periodwere identified as themost influential
factors.

To further understand and optimize greenhouse performance, the implementation
of a digital twin could be explored. A digital twin would provide a virtual replica of
the greenhouse, allowing real-time monitoring and simulation of control strategies. The
results of the SA could help to obtain reduced order models focusing on the most influ-
ential variables. In addition, the adoption of more dynamic variable control approaches
could help improve the accuracy of climate modeling. While the current study focused
primarily on setpoint control, it would be interesting to expand the analysis to include
other variables and their impact on greenhouse climate control. By considering addi-
tional factors, such as permissive band control rules, a more complete understanding of
the complex interplay of variables could be gained and control strategies refined accord-
ingly. However, it is important to recognize that the GreenLight model used in this study
has limitations. The accuracy and realism of greenhouse climate modeling depends on
the model. By exploring better control strategies, it is possible to achieve more efficient
and sustainable greenhouse cultivation practices.
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Abstract. Facing economic challenges due to the diverse objectives of businesses,
and consumers, commercial greenhouses strive to minimize energy costs while
addressing CO2 emissions. This scenario is intensified by rising energy costs
and the global imperative to curtail CO2 emissions. To address these dynamic
economic challenges, this paper proposes an architectural design for an energy
economic dispatch testbed for commercial greenhouses. Utilizing the Attribute-
Driven Design method, core architectural components of a software-in-the-loop
testbed are proposed which emphasizes modularity and careful consideration of
the multi-objective optimization problem. This approach extends prior research
by implementing a modular multi-objective optimization framework in Java. The
results demonstrate the successful integration of the CO2 reduction objective
within the modular architecture with minimal effort. The multi-objective opti-
mization output can also be employed to examine cost and CO2 objectives, ulti-
mately serving as a valuable decision-support tool. The novel testbed architecture
and a modular approach can tackle the multi-objective optimization problem and
enable commercial greenhouses to navigate the intricate landscape of energy cost
and CO2 emissions management.

Keywords: Modifiability · architecture · economic dispatch · testbed ·
greenhouse energy systems

1 Introduction

Commercial greenhouses confront economic challenges stemming from the dynamic
objectives of businesses, consumers, and policymakers [1]. From a business standpoint,
greenhouses aim to minimize energy costs, while from a societal perspective, stake-
holders such as consumers and policymakers strive to reduce CO2 emissions [2]. These
challenges are intensified by escalating energy costs and the global urgency to curb CO2
emissions [3]. The landscape is further complicated by fluctuating energy prices andCO2
emissions dependent on specific energy technologies. Commercial greenhouses operat-
ing in cold and low-light climates utilize heterogeneous energy systems to meet plant
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growth demands by providing supplemental heat and electricity [4]. In the prevailing sce-
nario, greenhouse operators determine daily optimal energy system operation based on
fluctuating energy prices, climate data, and plant information. This economic dispatch
procedure, typically executed in spreadsheets, is both costly and error-prone, involv-
ing models that are difficult to adapt to evolving business, consumer, and policymaker
objectives.

Therefore, to address these dynamic economic challenges, this paper aims to present
an architectural design for a testbed focused on the modifiability of energy economic
dispatch in commercial greenhouses, addressing the associated challenges.

The paper is organized as follows. Section 1.1 describes related research. Section 2
describes the methodology. Section 3 identifies stakeholders and high-level require-
ments. Section 4 describes the experimental setup. Section 5 presents the results.
Section 6 discusses the results. Section 7 concludes the paper and lists future work.

1.1 Related Works

Economic dispatch is a regular method in energy systems that aims to dispatch instruc-
tions to generation units while minimizing costs given the constraints of load demands
[5]. Costs include all relevant economic aspects in the domain. Economic dispatch has
been applied in e.g., power systems [6–8], demand response [9], and greenhouses [10,
11]. In essence, economic dispatch is an optimization problem and can be implemented
in numerous ways; merit order dispatch [12, 13], multi-objective optimization [3, 6, 14],
genetic algorithms [15–18], and particle swarm optimization [19] tomention a few. Each
method has inherent advantages/disadvantages.

The economic dispatch algorithm must be verified before deploying it to opera-
tion. The verification methods apply the dispatch instructions on generation units in a
simulated environment. The type of environment depends on the application’s needs,
but examples include discrete-event and real-time simulation environments [20]. The
purpose is to verify the performance of the dispatcher in open- or closed-loop control
systems. The control loop requires models of the generation units under the system
environment conditions. White-, grey-, and black-box methods are applied to deriving
models that describe the reality of the systems. Recent approaches include digital twins
that utilize the Internet of Things (IoT) to (i) mimic the behavior of the physical twins
and (ii) operate the physical twin through its inherent cognitive abilities [21].

In-the-loop paradigms can utilize the virtual model or digital twin at various devel-
opment stages. Software-in-the-loop (SIL) is applied at the early stage to assess the
feasibility of the dispatch strategy [22, 23]. The benefit of SIL is that the control logic
can be reused throughout the lifetime of the system. This enables rapid feedback cycles
that lower costs and reduce risks before deploying the controller logic to production.

To manage and reduce the cost of software changes, flavors of this quality have
been proposed: Modifiability, modularity, changeability, flexibility, adaptability, main-
tainability, and extensibility. Modifiability is a fundamental quality of software systems
because changing requirements cause software evolution over the entire lifetime [24].
Therefore, software needs to be modifiable in places that are likely to change. The modi-
fiability parameters involvemodularization, increasing cohesion, and reducing coupling.
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These parameters can be realized to address changes at different points in time. For exam-
ple, a change may be manifested during coding-, build-, deployment-, initialization-, or
runtime. The existing literature on economic dispatch focuses mostly on the optimiza-
tion methodology rather than software modifiability and changing needs. The authors
in [25], however, demonstrated a climate control application with the ability to add and
remove independently developed objectives through a global lookup registry called a
blackboard architecture. This paper contributes to the existing literature by suggesting an
architectural testbed for economic dispatch for greenhouse energy systems. In contrast
to the existing literature, this paper includes (i) an analysis of the architectural issues,
(ii) integrates Functional Mock-up Units (FMU) to mimic individual energy produc-
tion units, (iii) and demonstrates the consequence of various decision-making strategies
among Pareto-optimal solutions.

This paper consequently uses the term modifiability to describe the degree to which
the system can be changed (add/delete/modify) to meet new requirements [26]. This
requires the identification of foreseeable changes through module decomposition which
will reduce the change’s cost impact.

2 Methodology

This paper applies software engineering principles to design the architecture for the
energy economic dispatch in commercial greenhouses with a focus onmodifiability. The
approach follows Attribute-Driven Design (ADD) proposed by Bass et al. [27]. The goal
ofADD is to propose an initial architecture that enables iterative refinement. Thismethod
is depicted in Fig. 1. The Attribute-Driven Design (ADD) methodology. The driver of
ADD is Architectural Significant Requirements (ASRs) i.e., the important functional
and non-functional requirements. The ASRs are derived from high-level stakeholder-
and business requirements. These requirements are used to sketch the core architecture
where solutions to each architectural element are designed in subsequent iterations.
The design must be verified by using appropriate techniques. This paper verifies the
design by using a generic energy system of a greenhouse. Experimentation with physical
energy production systems exposes the business to significant risks. Therefore, this paper
operates on virtual models of energy production systems.

The paper extends previous research in [28, 29] and by applying a Java-based mod-
ular multi-objective optimization framework developed at the SDU Center for Energy
Informatics [30]. This framework was developed with core design guidelines that focus
on modularity. Other Multi-objective Evolutionary Algorithm (MOEA) frameworks are
available e.g., jMetal, and MOEA Framework, but they do not satisfy the requirements
of (i) providing decision making strategies to select ideal solutions from the Pareto-
front and (ii) out-of-the-box integration with Functional Mock-up Interfaces (FMI) and
Functional Mock-up Units (FMU). This includes the separation of algorithm configu-
ration, decision variables, objectives, and decision-making strategies. Furthermore, it is
important that the framework is interoperable with upstream and downstream systems
to function with in-the-loop control approaches.

The chosen framework provides a multi-objective genetic algorithm (MOGA) The
MOGA is an evolutionary heuristic search algorithm that progresses in iterations. In the
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Fig. 1. The Attribute-Driven Design (ADD) methodology.

first iteration, a population of candidate solutions is randomly generated. Each solution
is evaluated against the set of objectives and the evaluation yields metrics to compare the
optimality of a solution against other solutions. Since objectives may conflict, the cur-
rently best solutions found by theMOGA are stored in a Pareto-optimal set. In the subse-
quent iterations, theMOGAprogresses by selecting parent solutions from the Pareto-set.
Based on the parents, new candidates are created by applying the MOGA operators of
crossover and mutation. Crossover selects genes from each parent, and mutation alters
the value of a gene to a random value to diversify the population. Crossover also enables
the MOGA to escape local minima. The MOGA terminates upon reaching a termination
criterion which in this case is temporally determined. MOGA provides the advantages of
being intuitive to understand, fast to implement, and enabling separate modification of
objectives during compilation- and runtime. The modification of multiple objectives is
possible because the objective does not interfere. This property enables an architecture
where objectives can be plugged in/out. The significant disadvantage of MOGA is the
high computational cost. This is an important factor for real-time applications, and the
application designer must decide whether the computational cost can be afforded. For
this paper, the computational window for decision-making is at least 10 min. This win-
dow is dictated by the control of the physical equipment. Furthermore, greenhouse cli-
mate operators prefer slow ramp-ups/downs of their equipment because it is empirically
cost-efficient. This gives time for the MOGA to converge towards optimality.

The paper applies FunctionalMock-up Units (FMU) for modeling the energy system
dynamics. An FMU is an executable unit that encapsulates the design and behavior of
a system as a black box simulation. FMUs provide the necessary interfaces and code to
exchange dynamic simulation models of the greenhouse’s energy systems. The FMUs
in this paper were developed in Dymola/Modelica.



238 C. S. B. Clausen et al.

3 High-Level Stakeholders’ Requirements Identification

Based on the business ecosystem mapping concept introduced in [31], the stakeholders
and their interests were identified through coordinatedmeetings and seminars. The result
is shown in Table 1. The stakeholders and interests are important factors in scoping the
architecture through ASRs.

Table 1. Stakeholders, descriptions, and their interests.

Stakeholder Description Concerns

Greenhouse business owner Owns the greenhouse and is
therefore responsible for
achieving its overall goal

To meet the business goals and
the economic aspects of:
• Maximizing revenue
• Minimizing expenses
• Complying with regulatory
requirements

Greenhouse grower The grower is responsible for
nurturing the plants including
(1) watering, (2) applying
fertilizer and retardation, (3)
moving plants between
conveyors, and (4) logging
events for regulatory
authorities

• To comply with the expected
plant quality (size, number
of leaves, etc.)

Greenhouse climate operator The greenhouse climate
operator is responsible for
creating ideal growing
conditions by monitoring and
controlling the indoor
environment. For example,
artificial lights, curtains,
temperature, and CO2

• To operate the indoor
climate while complying
with the growing conditions
of the plants

Customer The customer buys the plants • To buy plants of the
expected quality and price

Policy maker Makes international, national,
or local policies that are
motivated by social and
political factors

• To make and enforce
regulations

External data provider The external data provider is
responsible for providing
services or data that support
the greenhouse business
operation

• To provide relevant data of a
certain quality (including
resolution) that can help the
growers in the
decision-making process

(continued)
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Table 1. (continued)

Stakeholder Description Concerns

Energy Systems Engineer The energy systems engineer
provides the virtual models to
simulate the dynamics of the
greenhouse energy systems

• To provide virtual models
that mimic the real-world
properties of the greenhouse
energy systems

Systems Engineer The systems engineer
manages and digitalizes the
greenhouse business
processes to help the business
owner achieve their goals

To develop a system that:
• Meets the expectations of all
stakeholders

• To minimize the
development effort by
managing complexity

• To enable rapid development
cycles to meet the need for
frequent changes in the
greenhouse operation

Researcher The role of the researcher is to
advance research within the
optimization of energy
systems

To have an architectural
testbed that enables
experimentation through:
• Crisp interfaces and
abstractions

• Analysis of algorithmic
output

• Translation of business goals
into algorithmic objectives

The use of the system is two-folded since the systemaims to address research-related-
and business-related challenges. Ideally, the energy dispatch algorithms developed on
the architectural testbed can be effortlessly deployed on the real system. Figure 2 shows a
high-level development process of this ideal. The architecturemust support the software-
in-the-loop paradigm by operating on virtual models that comply with the interfaces and
behavior of the real system. To realize this, the researcher, systems engineer, and energy
systems engineer collaborate to realize the control software during early development
in stage 1. The control software operates in a closed-loop mode to verify that the con-
troller operates as expected. In stage 2, the virtual models are substituted with a digital
twin of the energy systems. This enables verification of the real-time properties of the
closed-loop controller. Furthermore, it enables the climate operator to test the deci-
sion support tools using the digital twin. Due to high investment costs and physical
space requirements, it is infeasible to test the control software on actual hardware using
hardware-in-the-loop in a lab. Testing on a digital twin lowers investment costs and
enables rapid development cycles. When the test in Stage 2 is satisfactory, the controller
software is configured to operate on the real hardware in Stage 3.

The users of the architectural testbed are researchers and climate operators. The
researcher’s use case is to utilize the architectural testbed to provide a feasible method
of economic dispatch. The climate operator use case is decision-making support by using
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Stage 1 (Software-in-the-loop)

Stage 2 (Twin-in-the-loop)

Stage 3 (Operation)

Control software Digital twin

Control software Virtual model

Control software Hardware

Fig. 2. Development stages using software-in-the-loop and digital twins in process control.

the output of the economic dispatch algorithm to operate the energy systems. Based on
the stakeholder analysis and verification requirements, a set of high-level requirements
was formulated as presented in Table 2.

Table 2. High-level system requirements.

ID Description Requirement type

Requirement 1 The system must address the economic dispatch problem
by providing tradeoffs between conflicting business
objectives

Functional

Requirement 2 The system must provide monitoring, scheduling, and
decision-making features to assist the climate operator in
decision-making

Functional

Requirement 3 The system must provide a testbed for developing
economic dispatch control strategies. This includes the
possibility of algorithmic performance evaluation

Functional

Requirement 4 The system must be modifiable to address the challenge of
research-based activities and continuous change
throughout the greenhouse operation’s lifetime

Non-functional

Requirement 5 The system must support interoperability with test
facilities and existing infrastructure e.g., forecasts services,
virtual models, digital twins, and SCADA systems

Non-functional

3.1 Architectural Design

Following the ADD method, this section presents a high-level view of the core system
architecture (Fig. 3) and subsequently narrows the focus to the economic dispatch opti-
mizer. The design intends to satisfy the requirements by applying the process-control
[32, 33] and in-the-loop paradigms. Therefore, the core design must hold throughout the
three development stages.

The architecture is decomposed into four subsystems: 1) External inputs, 2) an opti-
mizer, 3) an emulator, and 4) a graphical interface. This decomposition draws a natural
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Fig. 3. Architectural design of the economic dispatch testbed.

boundary between the external data providers and the internal system. Furthermore, the
architecture enables flexibility, and design choices can be delayed until the refinement
of each subsystem. From a functional perspective, it gives the following properties:

• The optimizer isolates the economic dispatch optimization problem to accommodate
experimentation with control strategies and performance evaluation. Furthermore,
the optimizer can be executed on dedicated computational resources to improve
performance using horizontal or vertical scaling.

• The emulator exposes a black box process with controls and the state of the energy
system. The emulator can be developed independently by an energy systems engi-
neer in any environment. This assumes that the optimizer and emulator models are
interoperable. Furthermore, the emulator can be substituted by the real cyber-physical
system.

• The graphical interface can be used by the climate operator for monitoring and deci-
sion support purposes. The exact usability requirements and technicalities can be
delayed. But for example, it enables isolated development, and optional programming
environment or thin clients for mobile units.

The execution of the economic dispatch algorithm is described on a high level as
follows:

1. The optimizer is instantiated with a configuration of the multi-objective optimization
problem. This includes forecast inputs and the state of the energy system.

2. The optimizer executes until a termination criterion is met. The output is a vector that
consists of setpoints for each energy system in a certain resolution (hourly, minutely,
…). Essentially, this is a prescription intended to control the energy systems and to
inform the climate operator.

3. The optimizer sends the schedule (the current set of setpoints) and the prediction (the
predicted result of actuating the setpoints) to the graphical interface. Optionally, the
optimizer can send the schedule to the emulator when operating in closed-loop mode.
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4. The climate operator uses the graphical interface to monitor the state, schedule, and
predicted behavior of the energy systems. Furthermore, the climate operator can
choose to manually actuate the schedule if running in human-in-the-loop mode.

From a non-functional perspective, the design aims to satisfy modifiability and inter-
operability at appropriate system levels (Requirements 4 and 5). Modifiability involves
the identification and management of foreseeable changes. Interoperability involves
information exchange between systems. On a system level, changes are localized to
their respective subsystem assuming stable subsystem interfaces. Changes may cascade
if the interoperability assumptions are wrong, i.e., data, sequencing, timing, endpoints,
and pre-and post-conditions. Changes regarding interoperability within the boundary are
manageable, but unforeseeable changes to the external inputs expose the architecture
to wrong assumptions. This risk can be managed by accommodating interoperability
through a modifiable architecture.

In the next step of the ADD, the internal structure of the optimizer (Fig. 4) is ana-
lyzed since this is the central subsystem of the architecture. The structure reflects the
abstractions that need to be modifiable. Most abstractions are provided by the chosen
MOEA framework [30] and need only to be specialized in subclasses. The ‘External
Inputs’ module is responsible for upstream interoperability by fetching forecasts and
states and making that data compatible with the framework. The ‘Decision maker’ mod-
ule provides a configuration of how the ‘best’ decision from the Pareto-frontier must
be selected. This can be used to select the setpoints in the closed-loop scenario with a
Digital twin. The ‘Output’ module is responsible for downstream interoperability with
the digital twin and the graphical interface.

Optimization application

Decision
maker

Multi-objective evolutionary algorithm

ObjectivesDecision
variables

External
Inputs

Virtual
models

Output

Algorithm
events

Fig. 4. Internal structure of the optimization application

The ‘Multi-objective evolutionary algorithm’module consists of specializeddecision
variables, objectives, and the algorithm provided by the framework. Decision variables
involve the encoding/decoding of the problem. The decision variables e.g., resolution,
length, etc. are localized here. The objectives are responsible for evaluating the decision
variables into scalar values using external input and the estimated response on the inte-
grated virtual models. The virtual models are integrated into the optimizer as individual
components (i.e., heat pumps, combined heat and power plant, gas boiler, district heat-
ing, and thermal energy storage). This design accommodates changes in the greenhouse
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energy system because the component composition can be reflected in code. For exam-
ple, it can be used to experiment with up- or down-scaling or with heterogeneous energy
production technologies. The framework emits algorithmic events that can be used to
collect data for performance evaluation e.g., on each generation or upon termination.

4 Experimental Setup

The purpose of the experiment is to demonstrate the economic dispatch in a hypothetical
greenhouse application built upon themodular architecture. The experiment includes the
following setup:

4.1 Greenhouse Energy System Configuration

The case is based on a hypothetical greenhouse compartment with heterogeneous energy
systems. The compartment’s energy systemwas composed of virtual models and a block
diagram of their relations is depicted in Fig. 5 where the corresponding symbols are
defined in Table 3. The models were implemented in Dymola/Modelica and the models
were exported to FMUs for integration with the optimizer’s objective functions. The
virtual models in this paper were derived with grey-box modeling techniques using on-
site measurements from a commercial greenhouse in Denmark. White-box modeling
is computationally expensive, and black-box modeling does not capture the physical
properties of the system.Furthermore, black-boxmodeling relies onhigh-quality training
data which were unavailable. The grey-box models approximate the system response
using the collected measurements to tune the parameters of theoretical models. This
approach is suitable for this paper where the focus is the architectural design and because
the model precision can be tuned later. The system dynamics were simplified to linear
equations and the thermal energy storage does not account for temperature gradients or
heat loss.

The input vector used to instantiate the energy system is defined by

Sinit = [LFchp,LFgb,LFhp,Tsource,Tinit,Pdh,req,Pgh] (1)

where the output of each model is calculated. The heat output vector Pout = [Ph,chp,
Ph,gb, Ph,hp, Pdh] is used as input parameters of the TES. The TES operates analogous to
a battery that can be charged and discharged but with heat instead of electricity. The TES
enables flexible operation because heat can be stored when prices are low and drained
when prices are high. The outputs Eout = [Pe,chp, mchp, mgb, Pe,hp, Pdh] are used to
calculate the economics of the energy system in terms of costs and CO2 emissions.

4.2 Multi-objective Problem Definition

The energy dispatch schedule is represented as a decision vector that contains the energy
systems load factors for each instant in the schedule:

S = [Ci,Ci+1, . . . ,Ci+h,Gi,Gi+1, . . . ,Gi+h,Hi,Hi+1, . . . ,Hi+h,Di,Di+1, . . . ,Di+h]T (2)
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Fig. 5. Block diagram of the experimental greenhouse compartment’s energy system.

where S is the schedule, i is an instant, C is the CHP load factor,G is the GB load factor,
H is the HP load factor and D is the heat request to the DH provider. The number of
instants i are configured depending on the application requirements.

The optimization problem is subject to minimizing the costs and CO2 emissions of
the schedule:

minOcost(S) =
h∑

i=1

costgas,i + costel,i + costdh,i − incomeel,i (3)

minOCO2(S) =
h∑

i=1

CO2gas,i + CO2el,i + CO2dh,i (4)

where h is the number of instants within the schedule. Costgas,i is the price of gas
consumed in the instant, costel,i is the price of electricity consumed in the instant, and
costdh,i is the price of district heating consumed in the instant. The CHP produces
electricity which needs to be deducted from incomeel,i in the instant. CO2gas,i is the
emissions of gas consumed by the CHP and GB. CO2el,i is the emissions of electricity
consumed by the HP. CO2dh,i is the emissions caused by district heating.

The optimization is subject to the following objective space constraints:

Celectricity(S) = ∀i ∈ S : Pgh,i + Pe,hp,i ≤ Pgrid_capacity (5)

CTES(S) = ∀i ∈ S : TTES,min ≤ TTES,i ≤ TTES,max (6)

Celectricity(S) states that the greenhouse power demand and the HP power consump-
tion must not exceed the grid capacity in any instant. CTES(S) states that the temperature
of the TES must be within the minimum and maximum values in any instant.
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Table 3. Block diagram symbols and descriptions.

Symbol Unit Interval Description

LFchp [-] [0, 1] Load factor of the combined heat & power (CHP)
model

LFgb [-] [0, 1] Load factor of the gas boiler (GB) model

LFhp [-] {0, 1} (binary) Load factor of the heat pump (HP) model. Either on or
off

Tsource [°C] [20, 50] Water temperature at the inlet of the evaporator of the
HP

Ph,chp [MW] [0, 2.8] Heat power produced by the CHP

Ph,hp [kW] [0, 500] Heat power produced by the HP

Ph,gb [MW] [0, 7] Heat power produced by the GB

Pdh,req [MW] [0, 6] The district heating (DH) power request from the DH
network

Pdh [MW] [0, 6] Obtained district heating power from the DH network

Pgh [MW] [0, 10] Greenhouse heat demand

Tinit [°C] [0, 90] The initial temperature of the thermal energy storage
(TES)

Pe,chp [MW] [0, 1.2] Electric power produced by the CHP

mchp [kg/s] [0, 12] Gas mass flow rate consumed by the CHP

mgb [kg/s] [0, 194] Gas flow rate consumed by the GB

Pe,hp [kW] [0, 125] Electric power consumed by the HP

TTES [°C] [0, 90] Water temperature of the TES

QTES [MWh] [0, 65] Stored energy in the TES

The optimization is subject to the following decision space constraints to reduce the
size of the decision space.

CCHP(S) = ∀Ci ∈ S : (0 ≤ Ci ≤ 1) ∧ (CimodCr = 0) (7)

CGB(S) = ∀Gi ∈ S : (0 ≤ Gi ≤ 1) ∧ (GimodGr = 0) (8)

CDH (S) = ∀Di ∈ S : (0 ≤ Di ≤ Dmax) ∧ (DimodDr = 0) (9)

CHP(S) = ∀Hi ∈ S : Hi = 0 ∨ Hi = 1 (10)

CCHP(S) states that the load factor Ci must be between 0 and 1 while being divisible
by the resolution Cr . CGB(S) and CDH (S) have similar properties but with separate
resolutions Gr and Dr . CHP state that the load factor Hi must be exactly 0 (turned off)
or 1 (turned on).
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4.3 Optimization Configuration

Table 4 shows the parameters of the optimizer. The TES was configured with an initial
temperature Tinit to enable immediate flexible use. For the experiment, it must not be
economically feasible to drain the TES completely in the last instants of the schedule
as the optimizer would regard the initial TES contents as free energy. Therefore, an
additional objective constraint was created to avoid this case:

CTES_end_temperature(S) = ∀i ∈ S : Tinit ≤ TTES,h (11)

where Tinit is the initial temperature of the TES and TTES,h is the temperature in the last
instant.

Table 4. Optimization parameters.

Scope Parameter Value Unit

MOGA Schedule length 168 [h]

Termination criteria 1 [h]

Crossover rate 50 [%]

Mutation operator Random resetting [-]

Crossover operator Single-point crossover [-]

Mutation rate 5 [%]

Celectricity(S) Pgrid_capacity 12·106 [W]

Electricity Tariff and Fee 0.185 [EUR/kWh]

CTES (S) TTES,min 43.96 [°C]

TTES,max 79.84 [°C]

CCHP(S) Cr
1
20 [-]

CGB(S) Gr
1
20 [-]

CDH (S) Dr 104 [-]

Dmax 6·106 [W]

TES Model Tinit 50 [°C]

HP Model Tsource 20 [°C]

4.4 External Inputs

Given the architectural boundary, it is assumed that the external inputs are available as
forecasts. The forecasts consist of the greenhouse energy demands (electricity and heat),
electricity-, gas-, and district heating prices, andCO2 emissions for each technology. The
forecasted greenhouse demands are depicted in Fig. 6. The forecasted energy demands
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are based on optimal climate and historical energy consumption records [29] The elec-
tricity wholesale price signal was retrieved from Nordpool in the Danish area DK1 and
tariffs were retrieved from Energinet. The gas price signal was retrieved from the next
day’s index of the Exchange Transfer Facility (ETF) at the European Energy Exchange
(EEX). The energy prices are depicted in Fig. 7. The CO2 emissions for electricity are
available in a 5-min resolution at Energinet. The 5-min resolution was aggregated into
an hourly resolution to satisfy the optimization constraints. CO2 emissions for district
heating are declared as a yearly average and were retrieved from the Danish provider
Fjernvarme Fyn. The CO2 emissions for gas are estimated to be 204 kg CO2 / MWh by
the Danish Energy Agency. The estimated CO2 emissions are depicted in Fig. 8.

Fig. 6. Greenhouse heat and electricity forecast.

Fig. 7. Energy price forecast.

Fig. 8. Estimated CO2 emissions forecast.
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5 Results

The results were conducted on a workstation with an AMD Ryzen 9 5900X 12-core
(24 threads) processor, 64 GB DDR4–3200 RAM, NVIDIA GeForce RTX 3060, and a
Samsung 970 EVO NVMe drive. The termination criterion was set to 1 h to match the
lowest sample resolution from the external inputs. The data was exported in CSV format
by using the built-in framework interfaces GenerationFinishedListener and
TerminationListener.

Figure 9 depicts the resulting Pareto-front as a scatter plot of the objective space
with CO2 emissions [kg*CO2] on the x-axis and costs [EUR] on the y-axis. The gray
dots are invalid solutions while the red dots are valid solutions.

Fig. 9. Pareto-front in objective space; CO2 emissions [kg*CO2] vs. costs [EUR].

A solution is valid if the constraints of Celectricity(S), CTES(S), and
CTES_end_temperature(S) are satisfied. The number of invalid solutions is caused by the
implementations of the constraints. To guide the MOGA in the objective space, the con-
straints were implemented as objectives that return a scalar value of the distance to each
constraint. The distance is the sum of hours of unsatisfied electricity and heat, and the
Euclidean distance to the target TES temperature.

The plot indicates an almost linear relationship between kg*CO2 and costs indicating
CO2 emissions can be reduced without significantly increasing the costs. This can be
explained by the constant CO2 emission factors [kg*CO2/MWh] of gas and district
heating. Naturally, an increased energy consumption leads to increased CO2 emissions.
This explanation holds true for the gas and district heatingCO2 emissions signals because
they are constant. However, CO2 emissions for electricity consumption does not have this
linear relationship, and therefore, the total emission depends on the fraction of energy
produced by renewable energy sources with zero CO2 emissions.

The resulting Pareto-front can be used for automated/manual decision-making. For
the automated approach, the optimizer selects one solution by prioritizing or balancing
costs or CO2 using the built-in DecisionMaker interface. The result can also be sent
to the climate operator for human-in-the-loop decision-making.

Suppose that the operator needs to choose an appropriate solution. Figure 10 shows
three possible decision strategies:MinimizeCO2,minimize costs ormake a compromise.
This can be achieved by configuring the decision-making strategy by first removing the
invalid solutions. Then, following the approach suggested in [34], all objective scores
are normalized for comparison and have a social welfare metric applied. The minimum
CO2 and cost objectives are computed using an elitist metric, while the compromise is
computed using the utilitarian metric. Simply put, the elitist metric selects the lowest
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value in either dimension. The utilitarian metric sums the normalized objectives scores
and selects the solution with the overall lowest value.

Fig. 10. Decision-making strategies within the Pareto-front.

Table 5 shows a comparison of the three strategies. In the given experiment it is
possible to reduce the costs by 757.89 [EUR] (1.11%) but this increases CO2 emis-
sions by 16109,15 [kg*CO2] (12.74%) over a 168-h period. 16 tons CO2 corresponds
approximately to the average CO2 emissions of one US citizen in a year.

Table 5. Decision-making strategy comparison.

Strategy CO2 [kg*CO2] Costs [EUR] CO2 index Costs index

1 126,396.19 681,34.61 100 100

2 136,423.81 674,64.70 107.93 99.02

3 142,505.34 673,76.72 112.74 98.89

6 Discussion

The paper extended the research in [30] by utilizing the modifiable architecture. The
CO2 objective was integrated by adding a new objective that operated on the origi-
nal set of decision variables in the greenhouse domain. Changes to the CO2 objective
(add/remove/modify) are localized and do not interfere with the cost objective. The
external inputs for CO2 emissions were similarly added to the modular architecture by
adhering to the hourly resolution in the domain. The CO2 objective is limited in a few
ways. Firstly, the district heating estimated CO2 emission is a yearly constant. The objec-
tive space would change significantly if the estimates were more precise. Furthermore,
there is a risk that averaging the 5-minCO2 input to an hourly rate skews the optimization
results. For example, the CO2 emissions might increase tremendously in a 5-min period
but decrease for the remaining hour. This information is lost when averaging. Secondly,
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the computational performance can suffer if the resolution is increased from hourly to 5-
min intervals, because the solution space increases drastically. Therefore, it is important
to adjust the optimization resolution for real-world application needs. Thirdly, the FMUs
could have a localized model that reflected CO2 emissions more precisely depending on
the efficiency of the production unit. The computational performance of the algorithm
is limited by the FMU integration. FMUs consist of native C-code that must be called
from Java when a decision vector is evaluated in the objective. To speed up the perfor-
mance, a local cache was implemented. The cache stores the computed FMU output on
a given decision vector. There is a high probability that equivalent decision vectors are
generated due to the stochastic nature of MOEA. Tests showed that implementing the
FMUs as linear functions could speed up the objective evaluation by a factor of 50. This
computational cost associated with FMU integration is a serious trade-off consideration.
A few limitations within the experiment are addressed next. There is a lack of demon-
strating modifiability in the decision vector. Changes to the configuration of energy
production units require the decision vectors to reflect these changes. There is a tight
coupling between the decision vectors, objectives, and FMUs that must be addressed
to lower modification costs further. Ideally, these modifiability changes could be made
by the climate operator in a domain-specific language or user interface that focuses on
usability. The results in hourly resolution should also be comparedwith decision-making
frequencies that reflect the greenhouse domain, for example, to schedule the operation
daily or weekly.

7 Conclusion and Future Work

This paper proposes an architectural design for a testbed for energy economic dispatch
in commercial greenhouses. This includes the identification of stakeholders and their
requirements along with an architectural design. The architecture demonstrated modifi-
ability to the extent that the incoming change request for including CO2 emissions in the
decision-making process can be supported. Furthermore, the architecture separates the
core modules in the optimizer to enable economic dispatch experimentation. For exam-
ple, to experiment with other decision-making strategies, tuning, etc. The architecture
aims to accommodate the foreseeable requirements of in-the-loop testing by applying the
process-control paradigm. The paradigm separates the decision variables and optimiza-
tion from the controlled process. This separation promotes modifiability and reusability
of the controller in later in-the-loop stages. The proposed novel testbed architecture
and a modular approach can tackle the multi-objective optimization problem and enable
commercial greenhouses to navigate the intricate landscape of energy cost and CO2
emissions management. Future work might consider (i) including a demonstration of
modifiability in the decision vector and lowering the inherent coupling to the objectives.
(ii) Assessing the costs of reconfiguring the energy system by adding new production
units or removing obsolete units. (iii) Identifying more operation objectives such as
favoring certain production units for impairment or maintenance reasons. (iv) The real-
time capability of the core architecture should be tested at the subsequent development
stages. Furthermore, (v) the demonstration must involve the graphical decision-making
support tool and the digital twin of the greenhouse energy system.
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Abstract. Digitalization is challenging in heavy industrial sectors, andmany pilot
projects facing difficulties to be replicated and scaled. Case studies are strong
pedagogical vehicles for learning and sharing experience & knowledge, but rarely
available in the literature. Therefore, this paper conducts a survey to gather a
diverse set of nine industry cases, which are subsequently subjected to analysis
using the business model canvas (BMC). The cases are summarized and compared
based on nine BMC components, and a Value of Business Model (VBM) evalua-
tion index is proposed to assess the business potential of industrial digital solutions.
The results show that the main partners are industry stakeholders, IT companies
and academic institutes. Their key activities for digital solutions include big-data
analysis, machine learning algorithms, digital twins, and Internet of Things devel-
opments. The value propositions of most cases are improving energy efficiency
and enabling energy flexibility. Moreover, the technology readiness levels of six
industrial digital solutions are under level 7, indicating that they need further
validation in real-world environments. Building upon these insights, this paper
proposes six recommendations for future industrial digital solution development:
fostering cross-sector collaboration, prioritizing comprehensive testing and val-
idation, extending value propositions, enhancing product adaptability, providing
user-friendly platforms, and adopting transparent recommendations.
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1 Introduction

The industry sector accounts for 25.6%of the energy consumption in theEuropeanUnion
(EU) in 2021 [1], where both the industrial process and non-process-related operations
contribute to this energy usage. It is crucial to improve energy efficiency and flexibility in
the industry to combat global climate change. In this context, digitalization has emerged
as a promising technology to achieve these goals in Industry 4.0 [2].

Energy efficiency [3] refers to the capacity of decreasing energy consumption while
maintaining production quality. It involves employing technologies, practices, and sys-
tems that minimize energy waste and maximize the output obtained from the energy
consumed [4]. On the other hand, energy flexibility [5] pertains to the capability of an
energy system to adapt its energy production or consumption patterns in response to
fluctuations in energy supply or demand conditions. This flexibility allows the system
to efficiently balance the energy generated or consumed with the changing needs and
availability of energy resources [6].

Digitalization enables the collection and analysis of large-scale data from industrial
processes, equipment, and operations for the research of energy efficiency and flexibil-
ity through various technologies such as Artificial Intelligence (AI), Machine Learning
(ML), Internet of Things (IoT), Digital Twins (DT), Cloud Computing, etc. [7]. These
technologies can be leveraged to identify energy consumption patterns [8] and optimize
energy usage [9] in industry. Moreover, industrial processes can be optimized to mini-
mize energy usage and maximize production quality with Optimization models and ML
algorithms [10]. They can be employed to identify energy-efficient operating conditions
[11], adjust setpoints [3], and optimize process parameters [12]. Furthermore, the intel-
ligent system can offer recommendations for optimizing key devices regarding energy
efficiency or flexibility by utilizing explainable AI frameworks [13]. These frameworks
provide transparency and comprehensibility in the decision-making process, enabling
users to understand and interpret the provided recommendations.

Numerous projects have emerged to leverage the benefits of digitalization by employ-
ing digital tools to assist industrial stakeholders in attaining their energy consumption
goals [14]. However, the process of industrial digitalization is intricate and influenced
by various factors [15]. Consequently, developing tailored strategies that cater to distinct
requirements and minimize individual risks becomes essential [16].

Prior to the development of industrial digital solutions, it is crucial to conduct a
comprehensive survey of existing cases and understand their strengths and drawbacks.
The Business Model Canvas (BMC) is a strategic management tool that visually repre-
sents key value blocks, outlining the core aspects of a business model [17]. By using the
BMC, a systematic overview of industrial digitalization cases can be obtained, enabling
individuals to identify potential gaps, opportunities, and areas for innovation within their
products, which facilitates more effective decision-making and strategic planning pro-
cesses. Four business models based on BMC have been developed in [15] to investigate
the building participation in energy aggregation market by analyzing building owners’
requirements to develop feasiblemarket access strategies for different types of buildings.
An evaluation tool [18] is proposed to access the business model for smart cities with
the potential to be extend for evaluating all BMCs for digital solutions.
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So far, only a few studies have surveyed industrial digitalization cases for energy
efficiency and flexibility and employed the BMC to analyze the cases. To fill the research
gap, this paper utilizes the BMC to analyze nine cases of digitalization-enabled energy
efficiency and flexibility in the industry. Moreover, their values in different BMC blocks
are analyzed in detail and an evaluation index is proposed to assess the value of potential
business models of industrial digital solutions.

The remainder of the paper is organized as follows. Section 2 reviews the literature
on digital solutions and relevant business models for energy efficiency and flexibility.
Section 3 introduces the data collection and analysis methods. Section 4 presents the
results of the BMC on nine cases in industrial digitalization and Sect. 6 discusses the
potentials and challenges of digitalization for energy efficiency and flexibility. Section 7
concludes the study and makes recommendations for future research.

2 Related Works

2.1 Digital Solutions for Energy Efficiency and Flexibility

Advancements in digitalization technologies, such as Artificial Intelligence (AI),
Machine Learning (ML), the Internet of Things (IoT), Digital Twin (DT), and Cloud
Computing, have provided unique opportunities for augmenting the performance of
energy applications. The fusion of these diverse methodologies often results in a more
precise and resilient analysis.

For instance, a study in [19] introduces an innovative ML-based optimization frame-
work to tweak the pivotal parameters affecting bioenergy production, with the objective
of enhancing energy efficiency. This study leverages a neural network (NN) for predicting
energy consumptions and production yield with a high accuracy.

In another research [8], a kCNN-LSTM framework is put forward to yield accurate
predictions on building energy consumption. The research employs k-means cluster-
ing to decipher energy consumption patterns; utilizes Convolutional Neural Networks
(CNN) to unravel complex features that influence energy consumption; and uses Long
Short Term Memory (LSTM) to capture long-term dependencies by modeling temporal
information in time series data. This framework’s implementation at both the electricity
network and user levels could significantly assist in informed decision-making, effective
demand management, and improving energy efficiency.

Furthermore, [20] employs amulti-agent-based simulation to probe into the potential
of energy flexibility in the Danish brewery sector. The research indicates that Danish
breweries could reduce their electricity expenses by 1.56% annually, maintain opera-
tional security, and decrease their greenhouse gas (GHG) emissions by approximately
1745 tons. Moreover, [21] applies a life cycle assessment (LCA) model to evaluate the
carbon footprint in the food processing industry. Here, the k-means clustering technique
is used to discern the optimal production flow that results in lower energy consumption.
The study’s findings suggest that the most energy-efficient temperature at the end of the
production line is -25 °C, with a tolerance of ± 2 °C.
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2.2 Business Models for Energy Efficiency and Flexibility

Business models play an important role in digital technology analysis, which is helpful
to facilitate, configure, and broker system innovation [22]. [23] discusses the business
model innovation to address salient bottlenecks in the European energy transition. The
results show that digital technologies for cost reduction are often more impactful than
digital technologies for adding value.

The study in [24] indicates that eight dimensions in business models should be con-
sidered when analyzing industrial digitalization, including resource, network, customer,
market, revenue, manufacturing, procurement, and financial. The summary and compar-
ison demonstrate that digitalization has a positive impact on sustainable manufacturing.
Furthermore, [25] introduces a digital business model innovation ladder that helps to
enhance understanding of the social and environmental values associated with industrial
digitalization. The higher up business models are on the innovation ladder, the greater
value they create for the energy system but fewer benefits for users.

Existing business models typically focus on analyzing either digital solutions or
energy efficiency studies. However, this study introduces a novel business model that
specifically analyzes industrial digital solutions aimed at improving energy efficiency
and enhancing energy flexibility. The details of this model will be presented in the
following section.

3 Methodology

3.1 Data Collection

This study is aimed at gathering cases of digitalization adoption and implementation in
industries across multiple sectors. To achieve this, a survey methodology is employed,
where industrial stakeholders and IT technology providers offer essential information on
base details, technology implementation, and other key takeaways. The data collection
process involves a questionnaire with open-ended questions to gather the necessary
information from the partners.

The questionnaire comprises four sections: basic information, technology devel-
opment, market segment, and additional information. The basic information section
encompasses both the company’s and project’s brief descriptions. The technology devel-
opment section gathers information regarding technology applications, such as imple-
mented solutions, partners involved, and associated implementation costs. The market
segment section focuses on the anticipated value proposition and potential implemen-
tation challenges. Lastly, the additional information section covers key takeaways and
lessons learned.

3.2 Data Analysis – Business Model Canvas

Business Model Canvas. The business model canvas (BMC) [17] is a strategic man-
agement tool that provides a visual framework for describing, analyzing, and designing
business models, which comprises nine key components, including key partners, key
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activities, key resources, value propositions, customer relationships, channels, customer
segments, cost structure, and revenue streams.

Figure 1 demonstrates the business model for industrial digitalization for energy
efficiency and flexibility based on the nine cases. Academic and industry partners play
distinct roles when developing industrial digital solutions and contribute different exper-
tise. Academic partners primarily provide theoretical support and state-of-the-art tech-
nology, while industry partners contribute data and assist in tool testing and validation.
Value proposition represents the unique values that a system offers to meet the specific
needs and demands of its target customers. In the context of energy efficiency and flex-
ibility, the industry focuses on achieving goals such as reducing energy consumption
and GHG emissions. Moreover, there is also a need to decrease operational costs and
enhance production quality.

In the customer relationship perspective, the systemprovider should offer customized
service after selling their products, because most industrial digital solutions are cus-
tomized. Hence, both communication channels and revenue streams are also negotiated
between providers and customers. Moreover, the customer segments involved can vary
significantly due to distinct targets in different cases.

Fig. 1. Business model of digital solutions for energy efficiency and flexibility in industry.

3.3 Evaluation Index for Business Models

An evaluation index is developed to assess the value of potential business models based
on the evaluation tools in [15, 18]. All components affecting business models as well as
technology readiness levels (TRLs) and Relevance-Breadth (RB) are included in Eq. (1).
This evaluation index can be utilized in all technology-related business model analyses
to investigate their value potential. The value 0.3 in Eq. (1) is aimed at avoiding negative
results by shifting the VBM (Value of business model) value. The TRL and RB are set
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as two independent factors while the remaining parameters are parts in a sum, because
the TRL and RB directly relate to commercialization potential whereas the others are
support factors in the evaluation [15].

VBM = TRL × RB × (EPR + RID + RA + NCP + CAD + NS + FA− RIC + 0.3) (1)

TRLs are a method for estimating the maturity of technologies during the acquisition
phase of a program [26]. In 2013, the TRL scale was further canonized by the Interna-
tionalOrganization for Standardization (ISO)with the publicationof the ISO16290:2013
standard. Table 1 shows the definition of the TRL scale in the European Union (EU).
The TRL level 1–9 is also the value of parameter TRL in Eq. (1).

Table 1. The definition of TRL [27].

TRL Definition

1 Basic principles observed

2 Technology concept formulated

3 Experimental proof of concept

4 Technology validated in the laboratory

5 Technology validated in a relevant environment

6 Technology demonstrated in a relevant environment

7 System prototype demonstration in an operational environment

8 System complete and qualified

9 Actual system proven in an operational environment

The RBmetric indicates the applicability of the tool in various domains. A score of 1
signifies that the system can be applied acrossmultiple domains and targets, while a score
of 0.5 indicates that the tool is specific to a particular domain or target. Furthermore, a
score of 0.1 implies that the system is customized for a specific company. The rest of
the parameters in VBM are defined in Table 2.

Based on the definition of each parameter and their value ranges, the range of VBM
is (0, 64.8]. A large value represents a more significant commercial potential of the
business model. The VBM value can be assigned to three different levels as Table 3
shows.

The low level denotes that the business model has little commercial value. The
threshold 7.5 is calculated by setting TRL at 5, RB at 0.5, NS at 0.2, and all of the rest
parameters at 0.5. An industrial digital solution with a TRL under 5 is still undergoing
laboratory testing and validation, and real-world application tests have not yet been
conducted. RB at 0.5 indicates that such a product has the potential to be sold to similar
companies in the market. Moreover, more participating segments may lead to higher
collaboration risks. For instance, it becomes challenging to reach a consensus where
every segment involved is completely satisfied.
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Table 2. Description of evaluation index for the business model.

Components from Business
Model Canvas

Criteria Value Explanation

Key Partners External partner reliability
(EPR)

1: none or small collaboration
with external partners

0.5: external partners are
necessary
0.1: mainly rely on external
partners

Key Activities Relative implementation
difficulty (RID)

1: easy to implement
0.5: can be design and
implemented by in-house
expertise
0.1: requires external expertise to
design and implement

Key Resources Resource accessibility
(RA)

1: existing resources
0.5: new but easy to reach
0.1: new and hard to reach

Value Propositions Relative Benefits (RB) 1: significant benefits in
multiple areas

0.5: significant benefits in one
area, or minor benefits in
multiple areas
0.1: minor benefits in one area

Customer Relationships New customer potential
(NCP)

1: easy to extend new customers
0.5: hard to extend new
customers
0.1: aimed at keeping existing
customers

Channels Channel access difficulty
(CAD)

1: an existing channel
0.5: new but easy to build
0.1: new and hard to build

Customer Segments Number of Segments (NS) 1/(number of segments)
range: (0,1]
More segments may lead to more
interest confliction

Cost Structure Relative Implementation
Cost (RIC)

1: high, and detailed economic
feasibility analysis is required

0.5: relatively average, and
usually requires a first-order
economic feasibility analysis
0.1: limited to no cost involved
to implement the opportunity

(continued)
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Table 2. (continued)

Components from Business
Model Canvas

Criteria Value Explanation

Revenue Streams Familiarity and
affordability (FA)

1: familiar to customers and
companies

0.5: partly familiar to customers
and companies
0.1: totally new to customers and
companies

The medium level refers to a system that has limited commercial value in the market
and several barriers to be applied in multiple areas, whereas the high level represents
that the products have high commercial value in multiple areas. The threshold 21.9 is
calculated by setting TRL at 7, RB at 1, NS at 1/3, and the rest of the parameters at
0.5. A product with a TRL above 7 is mature enough to be sold in the market. RB at 1
indicates that such a product has the potential to be sold to companies in different areas.

Table 3. Level of VBM values.

Range of the VBM value Level

(0, 7.5] Low

(7.5, 21.9] Medium

(21.9, 64.8] High

4 Case Studies

This research paper analyzes nine diverse instances of industrial digitalization, each one
strategically implemented for the enhancement of energy efficiency and flexibility. These
nine case studies are derived from nine distinct projects associated with the IEA-IETS
Annex XVIII. This Annex is concerned with the integration of digitization, artificial
intelligence, and other associated technologies to optimize energy efficiency and reduce
greenhouse gas emissions within various industrial sectors [28].

A comprehensive analysis of all nine cases has been conducted using the business
model canvas outlined in Fig. 1. This strategicmanagement template is utilized to analyze
each case’s business model and understand their structure and strategies in detail. In
addition to this, the commercial potential of each case is further assessed by computing
their respective VBM values. This process provides valuable insights into the individual
commercial viability and success potential of each case.

Furthermore, Table 4 provides an overview of the general information pertinent to
the nine case studies. More detailed descriptions and findings for each case can be found
in the referenced document [28].
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Table 4. General information on the nine cases.

No Company name Sector Topic

1 ArcelorMittal Steel manufacturing Scheduling a Galvanizing
Line Using Ant-Colony
Optimization to Minimize
Costs and Energy
Consumption

2 CanmetENERGY/NRCan Pulp and paper mill Online Paper Machine
Operation Optimization and
Inefficiencies Diagnosis

3 Christonik Transportation Structured Data Collection
and Analytics for Reduced
Carbon Footprint Mobile

4 KMD A/S General Production Energy Key Production
Insight

5 MayaHTT Pulp and paper production Pulp & Paper Production
Quality Prediction

6 SDU-CEI Horticulture Digital Twin of Greenhouse
Energy System

7 SDU-CEI Horticulture Digital Twin of Greenhouse
Production Flow

8 Software AG General Production KI4ETA - Artificial
Intelligence for Energy
Technology and
Applications in Production

9 Tata Steel B.V Steel manufacturing SMEAT: Smart Heat
Management

5 Results

The nine cases are analyzed based on BMC in Sect. 3.2, and the case information
regarding the nineBMCblocks is summarized and compared in the following subsection.
Their VBM scores are presented in this section as well.

5.1 Business Model Analysis

Key Partners. Table 5 illustrates the key partnerships in the selected cases, involving
academic and industry stakeholders. These partnerships serve unique roles in developing
and implementing industrial digital solutions, each contributing their distinct expertise.
Academic partners are typically responsible for providing theoretical backing and con-
tributing cutting-edge technology. On the other hand, industry partners supply necessary
data and lend support in the testing and validation of digital tools.
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Only a third of the cases involved academic partners, mainly due to the fact that the
project leads hailed from academic institutions and were equipped to tackle theoretical
challenges independently. Industrial partners are further divided into three categories:
IT service providers, industry decision-makers and end-users, and investors. IT ser-
vice providers support in establishing the IoT architecture, resolving hardware issues,
and crafting software solutions. Industry decision-makers and end-users contribute real-
world processing data and specific application requirements. Lastly, investors comprise
of both investment companies and funding agencies.

Table 5. Summary and comparison of key partners in the nine cases.

Key partners Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Academic
partners

� � �

IT service
providers

� � � � �

Industry decision
maker and
end-user

� � � � � �

Investor �

Key Activities. The key activities across the nine cases, as summarized in Table 6,
demonstrate the range of technologies employed to create and deliver value in this study.
These technologies include big data analytics, artificial intelligence (AI), machine learn-
ing (ML), Internet of Things (IoT), and digital twins (DT). Big data analyticsmethods are
utilized to process raw industrial data, aimed at enhancing data quality and operational
efficiency. ML and deep learning (DL) algorithms are employed as state-of-the-art AI
technologies for prediction, decision-making, optimization, and recommendation across
many domains. DT serves as a digital replication of a physical system, used to simulate
the performance of the physical counterpart, leading to efficiency, productivity, and per-
formance improvements. IoT pertains to a network of physical objects equipped with
sensors and software that allow them to collect and exchange data over the internet.

Table 6. Summary and comparison of key activities in the nine cases.

Key activities Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Big data � � �
ML/DL � � � � � �
DT � � �
IoT � � �
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Key Resources. Key resources include the vital assets and infrastructures required
to deliver value propositions, such as skilled professionals, hardware/software facilities,
and intellectual property rights. Within the context of industrial digitalization, the exper-
tise of professionals and the software or platforms used for programming and simulation
are considered critical resources.

Value Propositions. The value propositions of the nine cases are shown in Table 7. In
the energy efficiency domain, the primary objectives are to reduce GHG emissions and
minimize energy consumption. This involves implementing technologies that enhance
energy resource utilization, such as equipment upgrades and energy-saving practices.
By reducing energy waste and improving overall efficiency, the purpose is to mitigate
the environmental impact associated with energy generation and consumption.

In the energy flexibility domain, the focus shifts toward identifying and implement-
ing optimal practices in industrial processing. The goal is to optimize processes efficient
energy resource utilization, leading to reduced energy costs and production time. While
reducing energy costs andproduction time are key targets in the energyflexibility domain,
it’s important to consider other value propositions as well. Operational costs play a sig-
nificant role in determining industrial best practices, so any improvements in energy
efficiency or flexibility should aim to minimize these costs. Additionally, the produc-
tion quality is crucial in ensuring the reliability and performance of industrial systems,
and it should be considered alongside other factors when designing and implementing
industrial digital solutions for energy efficiency and flexibility in industry.

Table 7. Summary and comparison of value propositions in the nine cases.

Value
propositions

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Improve
energy
efficiency

� � � � � �

Reduce
GHG
emissions

� � � � � �

Reduce
energy cost

� �

Reduce
production
time

�

Optimize
process

� � � � �

Improve
production
quality

� �
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Customer Relationships. The term ‘customer relationships’ denotes the interaction
and services exchanged between system providers and customers. In the context of
energy efficiency and flexibility, industrial digital solutions are customized to meet
unique demands. Consequently, technology providers are expected to offer timely
consultation and regular maintenance services.

Channels. To facilitate smooth customer interaction, service providers must establish
a stable and easily accessible communication channel. This could be through online
platforms or telephonic services, enabling efficient and convenient exchanges.

Customer Segments. Table 8 summarizes the customer segments in the cases. These
groups are categorizedbasedon their roles in the project. This study focuses on the techni-
cal segments of digitalization system implementation, while excluding the management
and financial departments from its scope. Initially, the IT department responsible for pro-
duction data management should be involved to provide top-tier data, thereby ensuring
accurate analysis and informed decision-making. Typically, this data collection andman-
agement process is led by the technology departments. Subsequently, IT departments
also infuse their industry-specific knowledge into the project, offering valuable insights
on technical aspects, standards, regulations, and best practices related to the industrial
digital solutions. Finally, the Research and Development (R&D) department illuminates
the challenges and optimization necessities within the production workflow, leveraging
their expertise to identify inefficiencies, bottlenecks, and areas for improvement.

Table 8. Summary and comparison of customer segments in the nine cases.

Customer
segments

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

R&D Dept � � �
Energy
Dept

� � �

IT Dept.
Technology

� � � � � �

Cost Structure. Table 9 demonstrates the cost structure of the cases. It’s crucial to
identify all significant costs and expenses tied to the operation of your business, including
fixed and variable costs, economies of scale, and resource allocation. When managing
a business for digitalization systems, it is essential to consider both fixed and variable
costs. The fixed costs encompass expert hours for system development and the licensing
costs of software and platforms. On the other hand, variable costs relate to devices and
expert hours required for system updates and maintenance.

Revenue Streams. Within the context of this study, revenue streams are defined as
the various modes of financial inflow. These streams epitomize the agreed upon forms
of remuneration, carefully negotiated and established between system providers and
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Table 9. Summary and comparison of the cost structure in the nine cases.

Cost structure Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

Case
8

Case
9

Expert hours � � � � � � � �
License � � � � �
System
update/maintenance

� � � � � � � � �

customers. These arrangements not only underscore the business’ profitability but also
reflect the value proposition offered to the consumers.

5.2 Value of Business Model Evaluation

The data illustrated in Table 10 reveals that six out of the nine industrial digital solutions
occupy a medium position, signifying that a majority of the industrial digital solu-
tions hold commercial potential, but require additional verification. Primarily, in most
instances, the Technology Readiness Levels (TRLs) of these systems are classified at
level 6. This indicates that these industrial digital solutions have undergone successful
validation and demonstration in a context that is relevant to their designed functions.
However, to enhance the TRLs, it’s necessary to undertake further testing in a real-world
operational environment.

Moreover, although these industrial digital solutions bring significant advantages
in certain areas, their applicability in different domains tends to be restricted, leading
to a Relevance-Breadth (RB) score of 0.5. To illustrate, the software deployed in the
third case study has successfully enhanced energy efficiency by up to 20%. However,
its ability to be adapted to optimize different objectives, such as operational cost, or its
applicability in other industrial sectors, might be constrained. Therefore, its VBM level
is medium as shown in Table 10.

Table 10. Evaluation scores of parameters in VBM

Cases TRL RB EPR RID RA NCP CAD NS FA RIC VBM Level

1 9 1 1 0.5 0.1 1 0.5 0.2 0.5 0.1 36 High

2 6 0.5 0.5 0.5 0.1 0.1 0.5 1 0.5 0.1 10.2 Medium

3 8 0.5 0.1 1 0.5 1 0.5 1 0.5 0.1 19.2 Medium

4 6 0.5 1 0.1 0.5 0.1 0.5 1 0.5 0.5 10.5 Medium

5 7 1 0.5 1 0.1 0.5 0.5 1 0.5 0.5 27.3 High

(continued)
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Table 10. (continued)

Cases TRL RB EPR RID RA NCP CAD NS FA RIC VBM Level

6 6 0.5 0.5 1 1 0.1 0.5 1 0.5 0.5 13.2 Medium

7 6 0.5 0.5 1 1 0.1 0.5 0.5 0.5 0.1 12.9 Medium

8 6 1 0.1 0.5 0.1 0.5 0.5 1 0.5 0.5 18 Medium

9 3 0.1 0.5 0.5 0.5 0.1 0.5 0.33 0.5 0.1 0.94 Low

6 Discussion

6.1 Strengths and Weaknesses

The nine cases in this paper are all specifically designed with a focus on enhancing
energy efficiency and flexibility within various industries. Given the European Union’s
ambitious objective of a 55% reduction in GHG emissions by 2030 [29], there is a
significant potential for growth in the market for industrial digitalization tools geared
towards decreasing energy consumption and GHG emissions.

Current industrial digital solutions have demonstrated their proficiency in offering
solutions for improving energy efficiency and reducing operational costs. For example,
the digitalization framework in case 2 helps the pulp and paper mill company save
about 11% energy. This is achieved through the deployment of advanced digitalization
methodologies including Machine Learning/Deep Learning (ML/DL), Digital Twins
(DT), and the Internet of Things (IoT). Additionally, these industrial digital solutions
often offer customization to suit specific partners and objectives, thus facilitating flexible
requirements from the client’s end. Moreover, the development cost of these digital
solutions is relatively manageable, usually entailing expenses such as expert personnel
salaries, licensing fees for specific software or platforms, and certain hardware devices.

Despite these strengths, there are limitations that must be acknowledged. Firstly, the
discrete scale used in the VBM metric is derived from [10, 12], which might not be the
optimal scale for evaluation as how close to a specific value is not defined. Secondly,
except for cases 1 and 3, the remaining digital solutions are still in developmental phases,
not yet primed for commercial applications. They necessitate extensive real-world test-
ing to ensure reliability and effectiveness. In addition, digital systems also contribute
to GHG emissions through electricity consumption by servers, computing equipment,
and cooling systems. Achieving net energy savings in both the industry system and dig-
italization tools is therefore paramount. Moreover, the discussed industrial digital solu-
tions were sector-specific, limiting their applicability. Therefore, tech providers should
broaden product adaptability across sectors, potentially expanding their customer base,
supporting commercial success, and advancing energy efficiency and GHG reduction
goals.

6.2 Relationships Between BMC Components

The results show that there are differences in key partners key activities, customer seg-
ments from value proposition perspective as shown in Table 11, but not in the other
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BMCcomponents. Commonly, timely information exchangewith customer departments
is crucial for discussing requirements and maintenance services in the development of
industrial digital solutions. Therefore, it is essential to establish a stable and accessible
communication channel. Furthermore, careful calculation and discussion of costs and
budget between the system provider and customer, along with negotiation of financial
inflow, are critical for ensuring successful system development. Moreover, both indus-
trial and academic partners can contribute to the big-data analysis and AI frameworks
in distinct aspects. Such methods are leveraged in some software or hardware platforms
by skilled professionals, which are the key resources.

Table 11. Relationships between BMC components

Value
propositions

Improve
energy
efficiency

Reduce
GHG
emissions

Optimize
process

Improve
production
quality

Reduce
energy
cost

Reduce
production
time

Key partners Industry decision maker and end-user; IT service providers

Academic partners

Investor

Key activities Big data; Machine learning; IoT

DT DT

Customer
segments

IT Department

R&D Department; Energy Department

6.3 Recommendations on Digital Solution Development for Enabling Energy
Efficiency and Flexibility in Industry

This paper presents an improved and comprehensive set of recommendations designed
to enhance the effectiveness and value proposition of industrial digital solutions, with a
particular focus on big data-driven tools and services:

• Fostering cross-sector collaboration: Cross-sector collaboration is a pivotal strategy
for developing digitalization solutions [30]. Industry stakeholders should emphasize
the collection and integration of high-quality, multi-sourced data, as well as the use of
advanced data analytics technologies in their operations. This requires forging part-
nershipswith IT companies offeringAI-integrated, data-driven products and services.
Additionally, collaboration with research institutes can offer access to state-of-the-art
solutions, fostering knowledge sharing and further enhancing data utilization.

• Prioritizing comprehensive testing and validation: The operational effectiveness of
industrial digital solutions relies heavily on extensive testing and validation in real-
world environments [31]. Such practices ensure the systems can reliably handle
real-life situations, identify potential bottlenecks or weaknesses before full-scale
deployment. This can lead to a more secure, reliable, and efficient system.
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• Extending value propositions: The value proposition of digital solutions should not be
solely technology-focused [32]; it should also include aspects like operational costs
and production quality. In a competitive industrial environment, organizations should
strive to enhance efficiency and product quality, two key performance indicators
directly influenced by digitalization.

• Enhancing product adaptability: Digital solution providers should focus on improving
the adaptability of their systems for wider application scenarios [33]. This broadens
the customer base by catering to diverse industry requirements, which subsequently
enhances the commercial viability and impact of the solutions.

• Providing user-friendly platforms: From the customer’s perspective, it’s vital to have
a user-friendly platform that provides accurate analyses [34]. The ease of use and
precision of insights significantly influence customer satisfaction, facilitating more
informed decision-making and promoting adoption of the solution.

• Adopting transparency: Service providers should offer clear and understandable rec-
ommendations to clients [35]. Hence, the application of explainable AI technologies
is highly recommended in these systems. Such transparency fosters trust between
providers and users, making it easier for clients to understand the value of the solution
and how it contributes to their operations.

7 Conclusion

This study conducted an in-depth analysis and provided a critical discussion surrounding
digital solutions designed for energy efficiency and flexibilitywithin the industrial sector.
Primary data on nine pertinent cases was meticulously compiled via survey methods,
which were subsequently evaluated and compared through the lens of the Business
Model Canvas framework. In a novel approach, an evaluative index known as the Value
of Business Model (VBM) was introduced with the purpose of assessing the business
viability and potential of these digital solutions.

Our findings underscore the necessity for extensive real-world testing and valida-
tion to elevate the technical robustness of these digital solutions. Additionally, to opti-
mize energy efficiency and flexibility in industry, operational costs and product quality
should be elevated to the status of key metrics, alongside traditional considerations of
energy consumption and GHG emissions. It is equally vital that the digital solutions
possess a degree of extensibility to enable their adoption across wider scenarios, con-
sequently broadening the potential customer base. A system’s inherent flexibility and
scalability, therefore, are paramount attributes that enable adaptation to diverse needs
and accommodate future expansion.

In summary, it is of utmost importance to orchestrate symbiotic, intelligent digital
solutions capable of informing and guiding decisions concerning energy efficiency and
energy flexibility. Drawing on the insights gleaned from the case studies featured in
this study, future research endeavors can further refine and enhance industrial digital
solutions. It is recommended to design digital solutions that are user-friendly, transparent,
and possesses the ability tomaximize potential for application across a range of contexts.
This approach will not only improve usability but also foster a wider acceptance and
implementation of digital solutions in various industrial sectors.
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Abstract. Improving energy efficiency in industrial production processes is cru-
cial for competitiveness, and compliance with climate policies. This paper intro-
duces a data-driven approach to identify optimal melting patterns in induction
furnaces. Through time-series K-means clustering the melting patterns could be
classified into distinct clusters based on temperature profiles. Using the elbow
method, 12 clusterswere identified, representing the range ofmelting patterns. Per-
formance parameters such as melting time, energy-specific performance, and car-
bon cost were established for each cluster, indicating furnace efficiency and envi-
ronmental impact. Multiple criteria decision-making methods including Simple
Additive Weighting, Multiplicative Exponential Weighting, Technique for Order
of Preference by Similarity to Ideal Solution, modified TOPSIS, and VlseKri-
terijumska Optimizacija I Kompromisno Resenje were utilized to determine the
best-practice cluster. The study successfully identified the cluster with the best per-
formance. Implementing the best practice operation resulted in an 8.6% reduction
in electricity costs, highlighting the potential energy savings in the foundry.

Keywords: Energy Efficiency · Foundry Industry · Induction Furnace ·
Time-series K-means Clustering ·Multi-criteria Decision Making

1 Introduction

The industrial sector accounts for approximately 40% of global energy consumption and
represents the second-largest contributor of CO2 emissions following power generation
[1]. The iron and steel industry is categorized as the industry sub-sector with the highest
CO2 emissions, accounting for approximately 2.6 GtCO2 in 2020 [2]. In November
2021, the International Energy Agency (IEA) reported that the industry sector is not on
track to meet the Net Zero Emissions by 2050 scenario [2].

Several strategies and recommended actions have been proposed to accelerate the
industry’s progress toward meeting the Net Zero Emissions by 2050 scenario targets.
The strategies include increased direct and indirect electrification of processes and
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improved overall energy efficiency through best-practice operation and maintenance
[2]. Within the iron and steel sub-sector, IEA emphasizes the need for energy efficiency
measures by deploying the best available technologies [3]. Furthermore, data collec-
tion and transparency should be emphasized to facilitate performance benchmarking
assessments.

The foundry industry is a vital sector of the manufacturing industry that produces
metal castings for a wide range of applications, including automobiles, infrastructure,
and consumer goods.As a result of high demand, crude steel production doubled between
2000 and 2021 [4]. A report on global steel production costs showed that the production
cost of one tonne of steel had increased by an estimated 51% from 2019 to 2021. The
report also identified that countries with low raw material and energy costs had lower
production costs. As the foundry production process is highly energy-intensive and
generates significant greenhouse gas emissions, there is an increasing need to improve
energy efficiency and sustainability to increase the market competitiveness for European
countries and meet the goals set forward by the IEA.

Denmark has proposed climate goals of reducing greenhouse gas emissions by 70%
by 2030 compared to 1990 levels and being climate neutral by 2050 [5]. The 15 Danish
foundries produced 90 Mt of castings in 2019 across the industry, accounting for 1.5%
of Danish energy consumption and 3.2% of Danish industrial energy consumption [6,
7]. Furthermore, the Danish government has agreed to phase in a CO2 tax starting
from 2025, which all industries must pay based on their emissions [8]. The foundries
constitute a significant part of Danish energy consumption, and for Denmark to meet the
climate goals, the foundry industry must become increasingly sustainable. Furthermore,
electrical consumers have been shown to have an increasing alertness toward electricity
price and CO2 emissions [9].

The process energy consumption associated with the foundry process presented in
Fig. 1 is mapped according to the approximate distribution identified by [10]. As seen in
Fig. 1, the melting process accounts for approximately 55% of the energy consumption
in a casting process. Furthermore, the primary forming in the casting mold accounts
for approximately 20% of the energy consumption. It is, therefore, essential to address
the melting and casting processes to improve a foundry process’s energy efficiency and
flexibility. The top drivers for energy efficiency covering the Swedish aluminum and
casting industry were described by [11]. The drivers included the desire to reduce power
charge, avoid exceeding power peaks, and reduce costs due to lower energy usage and
taxes associated with energy and carbon emissions.

Within the foundry industry, the operation is primarily based on the tacit knowledge
of furnace operators [12]. To promote efficient operation, there is a need to identify the
melting patterns that can be considered best practices. The diversity of melting patterns
makes it difficult to categorize and analyze them effectively. Additionally, the lack of a
systematic approach for evaluating and comparing the performance of different melting
patterns hinders the identification of best practices. These factors highlight the need for
a comprehensive, data-driven methodology to address these challenges. While previous
studies have explored various aspects of energy efficiency and optimization in industrial
processes, the specific problem of identifying best practice melting patterns in induction
furnaces has not been adequately addressed in the literature.
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Fig. 1. Foundry industry energy consumption distribution based on [10]

Therefore, this paper aims to present a systematic method for identifying best-
practice melting patterns in induction furnaces to enable energy-efficient operation. The
method includes applying time-series K-means clustering to categorize melting patterns
into clusters, calculating performance parameters for each cluster to assess their effi-
ciency and environmental impact, employing multi-criteria decision-making methods
to determine the best practice melting pattern cluster, and lastly evaluating the poten-
tial cost savings and energy efficiency improvements resulting from implementing the
identified best practice pattern. The method is demonstrated in a case study of a Danish
foundry.

The rest of this paper is structured as follows, initially, relevant background and lit-
erature is presented surrounding the current development of realizing energy efficiency
in the foundry industry. Subsequently, the methodologies employed in this paper are
outlined, providing an overview of the approach used to identify best practice melting
patterns in induction furnaces.Afterward, the results are presented, showcasing the appli-
cation of time series K-means clustering to categorizemelting patterns and determine the
ideal number of clusters using the elbowmethod. Next, relevant performance parameters
are established for the clusters, along with the introduction of multi-criteria decision-
making (MCDM) methods employed to evaluate and compare the performance of dif-
ferent clusters. Lastly, the potential cost savings and energy efficiency improvements
resulting from implementing the best practice pattern are explored before discussing the
results and concluding upon the findings with suggestions for further research.

2 Background

The fundamental process flow observed within a foundry production process can be
shown in Fig. 2. As shown in Fig. 2, several production steps are involved in producing
the final casting workpieces.

The foundry process shown in Fig. 2, is initiated with collecting and sorting melting
material, primarily iron, and alloys, in different qualities, including the addition of scrap
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Fig. 2. Overview of the foundry production process

metal collected from the scrapmetal pits. Subsequently, the iron is added to the induction
furnace,where it is heated to the specified temperature adjusting for ferromagnetic losses.
Once the melt has achieved the specified temperature, it is transferred to a pre-heated
transfer ladle. In the transfer ladle, doping may be performed to achieve specific alloy
capabilities adhering to the melt currently in the holding furnace. The melt is then
transferred to a holding furnace, where it can be stored for a set period. The transfer to
the holding furnace marks the completion of the melting part of the foundry process.
Subsequently, the primary forming stage commences.

Once the primary forming starts, alloy of the required quality is collected from the
holding furnace in a pre-heated transfer ladle. At this stage, doping can be performed
again to meet customer-specific demands for alloy capabilities. Once the correct alloy
has been achieved, it is transferred to one of the molding machines that perform the
primary forming of the melt using sand-molded casting. The casting is subsequently
transferred to a cooling line which marks the end of the primary forming of the casting.

2.1 Energy Efficiency in Foundry Production

Industrial production, foundry production, is usually a highly energy-intensive process
that consumes large amounts of electricity, natural gas, and other fuels to melt and
shape metal alloys [13]. Over the past few decades, there has been growing interest in
improving the energy efficiency of industrial production to reduce energy consumption,
greenhouse gas emissions, and costs [14].

Several studies have focused on identifying the primary energy consumption sources
in foundry production, such as melting and casting operations, heat treatment, and mate-
rial handling. For example, a study found that melting and casting processes accounted
for the majority of energy consumption in a steel foundry [10, 15]. However, it was
found that heat treatment andmelting accounted for themajority of energy consumption,
approximately 60%, in an aluminum foundry [16]. These studies have also identified
various energy-saving opportunities, such as using more energy-efficient equipment,
improving process control, and recycling waste heat.
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Various strategies have been proposed to improve energy efficiency in foundries. One
approach is to use more efficient equipment and technologies, such as induction melting
and high-pressure die casting. Another strategy is to implement energy management
systems and conduct energy audits to identify and address areas of inefficiency [16, 17].

Several studies have also applied advanced modeling and simulation techniques to
optimize foundry production processes for energy efficiency. For instance, the use of
computational fluid dynamics (CFD) and finite element analysis (FEA) have been used
in several studies to optimize the design of melting and casting operations and to study
the heat transfer processes within the furnace and mold, allowing for the identification
of potential energy savings [18, 19]. Optimization techniques such as mathematical
programming, artificial intelligence, and machine learning have also been reported to
reduce energy consumption in the foundry process [20–23].

Foundry production process modeling and simulation have also been investigated
to improve cost and energy efficiency. E.g., early foundry simulation efforts examined
the impact of scheduled jobs in a foundry setting where each job should follow specific
criteria relating to the number of castings needed and the weight of each casting [24].
Several studies have applied simulation in various aspects of the production process
especially emphasizing molding, casting, and core shooting [12, 25–27].

Best-practice operations have been shown to enable substantial energy savings [28].
However, the concept of best practice operation in the context of foundries has not been
sufficiently investigated in previous literature. Operational practices have been shown to
impact the industry’s performance and potential energy efficiency [29]. Previous studies
have suggested that induction furnaces may experience up to 25–30% losses due to
unfavorable operation [30], considering that the majority of energy consumption in the
foundry is consumed in themelting process; this presents a significant gap in the literature
for promoting energy-efficient operation in the foundry.

This paper proposes clustering to identify and group melting patterns in the induc-
tion furnace to distinguish operational practices. In the literature, clustering has been
used to identify energy consumption patterns in production processes and group similar
processes together based on their energy consumption profiles, e.g., [31]. This informa-
tion has been used to identify opportunities for energy savings by optimizing the energy
consumption of the production processes. Clustering has also seen use for benchmark-
ing in energy regulation [32]. Clustering has also been used to group similar processes
together based on their flexibility and responsiveness; to identify opportunities for pro-
cess optimization and improvement. For instance, clustering can identify processes that
can switch between energy sources or operate at different production rates, enabling
them to respond to energy availability or demand changes, e.g., [33]. Lastly, clustering
has seen use in identifying the optimal configuration of production processes to maxi-
mize energy efficiency and flexibility. Clustering can identify the optimal configuration
of production processes by analyzing the relationships between different variables, such
as energy consumption, production rates, and operating conditions, e.g., [33].

MCDM has been proposed for establishing best practices in various domains, such
as quality management and selection of technologies [34, 35]. However, it has not seen
in-depth investigation in establishing industry best practices. However, MCDM has seen
usage for establishing energy efficiency practices [36]. Previous studies have examined
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the use ofMCDM in the automotive industry to improve energy efficiency in automotive
engineering and service center selection [37, 38]. Furthermore, in the beverage industry,
MCDM has seen use for choosing energy improvement measures [39]. MCDM has also
seen use in selecting locations for energy storage systems in combination with using K-
means++, and for mapping industries for participation in electricity markets [40, 41]. In
summary, it is evident that there is a need to establish best practice operations for furnace
operation in foundries. Best practices have been established both through clustering and
MCDM in various domains; however, there is little literature on combining the methods
for providing industries with the identification of best practice operations. Utilizing a
data-driven clustering approach ensures that the best practice adheres to the constraints
of the process as the clusters build on historical data, while the MCDM allows the
facility to prioritize the subjective weighting of what performance parameters indicate
best practice.

3 Methodology

An overview of the methodology used in this paper can be seen in Fig. 3. To enable
the clustering of operational practices and identification of the best practice cluster, the
relevant clustering and MCDM algorithms are selected.

Fig. 3. Methodology for identifying best-practice melting patterns.

3.1 Clustering Algorithm Selection

As production processes often collect time-series data and experience variance in the
processing time, the data requires specialized clustering algorithms that can handle
the temporal nature of the data and capture the patterns and relationships within the
time series. Therefore, time-series clustering is proposed, as time-series clustering is an
unsupervised learning technique used to identify patterns and group similar data points
based on their temporal behavior. Previous studies have compared various clustering
algorithms; it was found that the K-means algorithm provided better performance while
also being computationally efficient [42]. Time-series K-means clustering is a modified
version ofK-means clustering that considers the temporal nature of the data. Thismethod
involves representing each time series as a sequence of vectors and clustering these
vectors using K-means clustering; the vectors may be established using dynamic time
warping or Euclidian distance [43]. The resulting clusters represent similar patterns in
the time-series data.
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Compared to other clustering algorithms, time-series K-means clustering has sev-
eral advantages. Previous comparisons have established that the performance of the
K-means clustering algorithm outweighs other clustering algorithms, and furthermore,
the implementation of K-means is faster compared to other algorithms [43–45]. This is
further supported by the ability to scale with large datasets and guaranteed convergence
[46]. Other clustering algorithms, such as Kernel K-means, and Kshape, have also been
used for time-series clustering. However, these algorithms have limitations when dealing
with the computation of cluster centroid and datasets of various lengths due to relying
on cross-correlation of the cluster time series [43].

The elbow method is commonly used to determine the optimal K-means clustering
cluster size [45]. The elbow method involves plotting the within-cluster sum of squares
against the number of clusters and selecting the number of clusters at the “elbow” of the
plot, where the rate of decrease in the within-cluster sum of squares slows down [47].
The within-cluster sum of squares measures the sum of the squared distances between
each data point and its assigned cluster center. The idea behind the elbow method is
to select the number of clusters that significantly decreases the within-cluster sum of
squares while minimizing the number of clusters [47]. Increasing the number of clusters
too much can lead to overfitting and loss of generalizability, while too few clusters may
not capture all the underlying patterns in the data. Time series K-means clustering was
utilized in this paper to identify clusters of similar profiles relating to the operation.
By identifying clusters of operational patterns the performance of the various practices
could be evaluated to identify efficient and inefficient operations.

3.2 Multi-criteria Decision Making

The performance of a specific operation may be evaluated across several parameters,
and the goals and preferences of various foundries may vary. Therefore, there may
not be a single solution that fits all foundries; therefore, MCDM algorithms are imple-
mented to incorporate the goals and preferences of the foundrywhen evaluating a specific
operational practice.

MCDM is a method used to select the best option from a set of alternatives based
on multiple criteria or objectives [48]. There are several MCDM techniques available,
such as Analytical Hierarchy Process (AHP), the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS), and VlseKriterijumska Optimizacija I Kompro-
misnoResenje (VIKOR). TheMCDMprocess involves identifying the criteria, weighing
them according to their importance, and evaluating the alternatives against the criteria
[48]. In the context of energy usage in industrial production processes, MCDM can be
applied to support decision-making in various scenarios, such as production planning,
resource allocation, and energy performance evaluation, e.g. [49]. TheMCDMapproach
has several advantages, such as the ability to handle multiple criteria, the flexibility to
incorporate subjective preferences, and the ability to evaluate alternatives comprehen-
sively. However, MCDM also has some limitations, such as difficulty determining the
appropriate weights for the criteria and the subjective nature of the decision-making
process [50].



278 D. A. Howard et al.

This paper has implemented a series of MCDM algorithms based on the work con-
ducted in [51] and [52]. The MCDM algorithms utilized in this research are Simple
Additive Weighting (SAW), Multiplicative Exponential Weighting (MEW), TOPSIS,
Modified Technique for Order Preference by Similarity to Ideal Solution (mTOPSIS),
andVIKOR.ByutilizingmultipleMCDMalgorithms, the robustness of thefinal decision
can be increased, and any differences in ranking can be examined [53].

4 Case Study

A large Danish foundry provides a case study for the application of the identification
of best-practice operations. The Danish foundry is the largest in Northern Europe and
produces 45,000 tonnes of casting products each year, exported to 25 different countries.
The foundry has committed to reducing its greenhouse gas emissions and has actively
implemented circular economy and sustainability as active goals in its business strategy.
As a part of the foundry’s sustainability efforts, the energy consumption of their produc-
tion was mapped. The mapping revealed that 78.5% of their annual energy consumption
is electricity, predominantly consumed by the melting and holding furnaces. As part of
the energy mapping, it was shown that 0.5 tonnes of carbon dioxide emissions were
emitted per tonne of produced casting.

The case study is ideal for identifying best-practice melting patterns due to their
commitment to improving sustainable foundry practices and being a state-of-the-art
facility utilizing induction furnaces with processes monitored through existing sensors.
The production observed in the foundry case study follows the steps shown in Fig. 2. The
facility includes an in-house factory where machining and surface treatment of casting
workpieces can be undergone. In this study, only the foundry process is considered as this
is the mandatory part of the production flow. This study focuses on the melting operation
in the furnace, and the adjacent steps shown with dashed lines are not included.

5 Results

Based on the case study, data for one of the induction furnaces could be obtained. The
period range of the obtained data was from the 11th of May 2022 to the 30th of May
2022. An overview of the parameters and data completeness can be seen in Fig. 4.

Before initiating the cluster identification, the data was cleaned and prepared. The
cleaning involved removing the furnace state parameter and removing the rows of data
with missing temperature measurements. The parameters collected in Fig. 4 include
the melt temperature, melt weight, furnace voltage, furnace state, furnace power con-
sumption, furnace isolation resistance, furnace frequency, furnace current, and multiple
measuring points for the cooling water temperature and flow.



Identifying Best Practice Melting Patterns in Induction Furnaces 279

Fig. 4. Induction furnace parameters and data completeness.

Using temperature to identify melting patterns in induction furnaces is driven by its
significance in melting. Temperature is a fundamental parameter that directly impacts
the physical and chemical transformations occurring within the furnace and provides a
comprehensive representation of the thermal behavior of the furnace during the melt-
ing cycle. Examining temperature data over time enables the identification of distinct
patterns in the melting process. These patterns can be associated with different opera-
tional conditions, such as the charging of materials, power input, or changes in furnace
load. In contrast, parameters like power consumption may not capture the nuances of the
melting process as effectively as temperature. Therefore, the temperature profiles were
investigated and can be seen in Fig. 5.

As the obtained data is in a time-series format, an algorithm is necessary to separate
the individual melts. The algorithm used to separate the time series data in this study
can be seen in Fig. 6.

The algorithm seeks to identify the melting endpoints from which the starting points
of the subsequent melt can be inferred. Using the index, the change in temperature
from one time to the next can be calculated. As shown in Fig. 5, a significant decrease in
temperature is observed at the end of a melt by tuning the minimum temperature, and the
minimum change in temperature of the melts can be identified. The limits are imposed
as changes in temperature can happen due to adding new material to the melt, and the
change should hence occur under a set temperature limit, indicating that the melt has
been completed. Ninety-three individual melts were identified for the period.
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Fig. 5. Time-series overview of the melt temperature from the furnace computer for the whole
period and for a segment of the period

Fig. 6. Melting pattern identification algorithm.

5.1 Time-Series K-means Clustering of Melting Profiles

Timeseries K-means clustering was performed to identify similar melting profiles. As
seen in Fig. 7, the number of clusters was determined based on the elbow method with
a comparison of the inertia, distortion, and silhouette scores for finding the optimal K.
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Fig. 7. Inertia, Distortion, and Silhouette score in response to the number of clusters

As shown in Fig. 7, the inertia and distortion do not yield a distinct elbow. Examining
the silhouette score shows an elbow at K = 12. Subsequently, the time series K-means
clustering was performed using the number of clusters determined from the silhouette
score. The result of the clustering can be seen in Fig. 8.

Fig. 8. Clustering of melting profiles showcasing the average of each cluster.
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As seen in Fig. 8, 12 clusters are identified, with each cluster plot line showing
the mean temperature of all current cluster members at a given time step. Each cluster
consists of several melting profiles; the distribution of melting profiles in each can be
seen in Fig. 9.

Fig. 9. Distribution of the number of melts within each cluster

As seen in Fig. 9, the melts were distributed in 12 clusters, with cluster no.6 contain-
ing the highest number of melts. The clusters containing the highest number of melts
(e.g., no. 3, 4, 6, and 11) represent the common operational practice at the furnace.Mean-
while, other clusters, e.g., no. 2, 5, and 10 represent uncommon operational practices.
According to the furnace operators’ explanation, the few melts in cluster no.2 were due
to changing the furnace’s refractory lining, i.e., scheduled furnace maintenance. With
further collaborationwith the furnace operators, specific operational practiceswere iden-
tified within the identified clusters, aiding in explaining and understanding the observed
cluster melting pattern.

5.2 Multi-criteria Decision Making for Best Practice Melting Profile
Identification

As established in the previous chapter, the clusters contain similar melting profiles.
Each melting profile has an associated performance in terms of melting time, energy
consumption, etc. Therefore, to sufficiently assess which cluster should be considered
best practice, MCDM is used. MCDM allows assessing an array of options with asso-
ciated parameters, where each parameter may be weighted differently. Using MCDM
hence enables the foundry to emphasize the performance metrics that are important to
them. The cluster-specific performance metrics can be seen in Table 1.

Several MCDM methods were used to compare the performance of the individual
clusters. Table 2 shows the ranking of each of the MCDM methods. Equal weighting
was assumed between each performance parameter.
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Table 1. Cluster-specific performance parameters

Cluster Average production
time [s]

Average electricity
consumption [kWh]

Average
energy-specific
performance
[kWh/tonne]

2030 Carbon tax
[DKK]

0 5346.25 5186.90 554.83 509.44

1 5251.67 5111.82 552.55 552.57

2 20515.00 5364.75 573.80 643.60

3 4332.73 4858.24 522.00 338.01

4 5221.00 4980.30 551.26 496.16

5 12870.00 6368.12 664.31 803.86

6 4892.00 4880.48 541.03 396.21

7 6216.00 5236.36 554.28 493.01

8 5886.00 5028.03 550.13 368.42

9 7370.00 5027.46 563.93 404.34

10 11820.00 5260.52 605.99 410.19

11 5218.57 5065.82 545.92 421.69

Table 2. Cluster-specific MCDM ratings

Cluster SAW MEW TOPSIS mTOPSIS VIKOR

0 0.25783 0.25160 0.82853 0.82853 0.30858

1 0.26195 0.25443 0.79901 0.79901 0.35786

2 0.40147 0.37967 0.17793 0.17793 0.83386

3 0.21649 0.20874 1.00000 1.00000 0.00000

4 0.25162 0.24555 0.84409 0.84409 0.26624

5 0.38969 0.38676 0.37868 0.37868 1.00000

6 0.23199 0.22617 0.93427 0.93427 0.11052

7 0.26293 0.25968 0.81689 0.81689 0.29767

8 0.23903 0.23532 0.90686 0.90686 0.16566

9 0.25763 0.25636 0.82027 0.82027 0.25173

10 0.30212 0.29815 0.59682 0.59682 0.50407

11 0.24141 0.23617 0.90259 0.90259 0.16635

As can be seen from the table above, cluster three shows the overall best performance
as it scores best across all MCDMmethods. Hence, cluster three is selected as the cluster
representing the best-practice operation.
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5.3 Energy Efficiency Potential for Best-Practice Operation

The identified best-practice cluster performance was assumed across all melts in the
investigated period to assess the impact of using best-practice operations, assuming
100% adherence to the best-practice operation. I.e. the average performance of the melts
in the best practice cluster were assumed for all other clusters in the dataset. Using the
recorded start times of the melts in the other clusters the corresponding electricity cost
and CO2 emissions could be calculated subject to the best practice performance. The
foundry is assumed to follow the spot market electricity price and CO2 emissions. The
implication of utilizing best practice operations can be seen in Table 3.

Table 3. Comparison of current operation and implementation of best practice operation

Operating
Mode

Electricity Cost
[DKK]

2030 Carbon
Cost [DKK]

CO2 Emissions
[kg]

Total Electricity
Cost [DKK]

Current
practice

602913.00 40761.88 54349.18 643674.89

Best practice 551041.56 37321.17 49761.56 588362.73

Percentage
change

8.60% 8.44% 8.44% 8.59%

6 Discussion

To identify best-practice melting patterns in induction furnaces, the following four steps
have been conducted:

1. Application of the time series K-means clustering to categorize melting patterns into
clusters

2. Calculation of the performance parameters for each cluster to assess their efficiency
and environmental impact

3. Deployment of the multi-criteria decision-making methods to determine the best
practice melting pattern cluster,

4. Evaluation of the potential cost savings and energy efficiency improvements resulting
from implementing the identified best practice pattern.

In accordance with the presented method, the obtained data was prepared and sep-
arated into individual melts. The application of time-series K-means clustering enabled
the identification and categorization of melting patterns in the induction furnace, leading
to the determination of an optimal number of clusters using the elbow method, as seen
in Fig. 7. Examining the distribution of clusters from Fig. 9 and the cluster patterns
in Fig. 8 furthermore enabled identification of specific operations within the furnace,
e.g., change of refractory lining. The cluster distribution furthermore showed that the
melts adhering to the best practice operation only occur around 12% of the time. As
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seen in Table 1, the performance parameters calculated for each cluster, such as melt-
ing time, energy-specific performance (kWh/tonne), and carbon cost, provided insights
into different patterns’ energy efficiency and cost-effectiveness. Using MCDM meth-
ods, SAW, MEW, TOPSIS, mTOPSIS, and VIKOR, facilitated comparing and selecting
a cluster representing the best-practice performance seen in Table 2. The foundry could
achieve cost savings by implementing the identified best practice melting pattern, with
an estimated reduction of approximately 8.6% in electricity costs.

7 Conclusion

This paper has addressed the challenge of identifying best practice melting patterns in
induction furnaces through a data-driven methodology utilizing time-series K-means
clustering and multi-criteria decision-making (MCDM) methods. The cluster represent-
ing the best practice performance could be identified by categorizing melting patterns
into clusters and evaluating their performance based on various parameters such as
melting time, energy-specific performance, and carbon cost.

The implications of the findings are significant for the foundry industry, as imple-
menting the identified best practice melting pattern can lead to substantial cost savings
and improved energy efficiency. The estimated electricity cost savings of approximately
8.6% demonstrate the tangible benefits of improving melting practices.

Building on the findings presented in this paper, there is potential for exploring
further research. The findings in this paper build on the investigation of a single furnace
within the foundry, which could be extended to include other furnaces. Furthermore,
limited information was available on the alloy composition within the furnace; for future
research, it would be beneficial to include the alloy composition to investigate the impact
of alloy composition on best practice operation.

From the methodology perspective, investigating the scalability and applicability of
the methodology for the identification of best practice melting patterns across different
foundries and regions would aid in verifying the robustness of the methodology. Fur-
thermore, the applicability of the methodology outside of the foundry domain could be
investigated to examine the potential for the identification of best-practice operations
in other domains. Lastly, the implementation of the best practice operation is subject to
underlying uncertainties present in production processes; therefore, it would be bene-
ficial to develop a simulation model that can accurately represent the process flow and
evaluate any unforeseen consequences due to the best practice operation to provide a
more nuanced understanding of the best practice implications.
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ligence and related technologies for energy efficiency and reduction of greenhouse gas emissions
in industry” (Case no. 134-21010), and “Data-driven best-practice for energy-efficient operation
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Abstract. Maintenance activities are crucial in manufacturing environments to
reduce machine breakdowns and maintain product quality. However, traditional
maintenance strategies can be expensive, as they can lead to unnecessary mainte-
nance activities. As a result, Predictive Maintenance (PdM) can be a great way to
solve these issues, as it enables the prediction of a machine’s condition/lifespan
allowing for maintenance-effective manufacturing. This paper aims to address
these issues by proposing a novel methodology to improve the performance of
PdM systems, by proposing a machine learning training methodology, an auto-
matic hyperparameter optimizer, and a retraining strategy for real-time application.
To validate the proposed methodology a random forest and an artificial neural
network model are implemented as well as explored. A synthetic dataset, that
replicates industrial machine data, was used to show the robustness of the pro-
posed methodology. Obtained results are promising as the implemented models
can accomplish up to 0.97 recall and 93.15% accuracy.

Keywords: Data Preprocessing · Hyperparameter Optimization · Predictive
Maintenance

1 Introduction

Several changes have been happening in the energy sector, namely with the imple-
mentation of the smart grid concept [1], having more active participation of electricity
consumers in demand response programs [2, 3]. Booming innovation in Big data, data
analytics, and Internet of Things (IoT) has resulted in a shift in traditional industrial
maintenance strategies to systems capable of forecasting machine lifespan [4, 5]. Fur-
thermore, taking into account energy usage is also critical for optimizing production
lines in industrial environments, because machine health can have a significant impact
on a machine’s energy efficiency capabilities [6, 7]. Accordingly, it is in these industries’
best interests to implement these systems to minimize energy consumption, reducing not
only costs but also contributing to a sustainable future through energy savings. There has
been the development of two new maintenance concepts for detecting abnormalities in
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the production environment: prognostic and health management, as well as condition-
based maintenance [8]. Predictive Maintenance (PdM), which analyzes past data to
forecast behavior patterns, is frequently used with these two principles in mind, either
with prognosis and health management or condition-based maintenance, and in some
circumstances, the application of both [9]. The use of predictive systems to determine
when maintenance activities are required is critical in a manufacturing environment, not
only to avoid wasteful expenses and cut potential Greenhouse gas emissions but also to
enhance product quality. According to [10], maintenance expenses can represent 15%
to 70% of the cost of manufactured products. Predictive maintenance enables continu-
ous monitoring of the machine’s integrity, allowing maintenance to be performed only
when absolutely needed, reducing unnecessary maintenance costs. Moreover, PdM pre-
vents, to some extent, machine breakdowns, which are responsible for the emission of
Greenhouse gas emissions in some industrial sectors [11]. Prediction systems that use
statistical inference, historical data, engineering methods, and integrity factors allow for
early abnormalities detection [12]. Forecasting a machine’s condition and/or lifespan
can be done through a variety of techniques, such as Artificial Neural Networks (ANNs)
[13–15], Random Forests (RFs) [16–18], deep learning [19], digital twins [20], sup-
port vector machines [21], k-means [22], gradient boosting [23], naive bayes [24], and
decision trees [25]. Other noteworthy techniques are presented in [12] as well as in [26].

This paper focuses on the implementation aswell as the exploration of the advantages
and disadvantages of the two most popular machine learning approaches, according to
[12], for PdM:ANNs (27%model employment) andRFs (33%model employment). The
prominent use of RF in PdM systems, due to its performance and easy implementation,
is the main reason for the exploration of this model in the present paper. Nevertheless, an
ANN model has the potential to outperform an RF, both in recall and context adaption,
when its hyperparameters are adequately optimized. Furthermore, unlike the RF model,
ANNs have the advantage of backpropagation (i.e., fine-tuning of the network’s weights
based on the error rate), allowing a current model to be constantly fed with data and
improve over timewithout the need to recreate themodel every time there is new training
data, which is ideal for manufacturing environments.

The work in [13] proposes an ANN for PdM using the mean time to failure values
and backpropagation for adjusting the neuron’s weights. A PdM system for air booster
compressor motors is proposed in [14] that employs an ANN with optimized weights
and bias by using a particle swarm optimization algorithm. Also using an ANN, the
proposed work in [15] focuses on a PdM system for induction motors that optimizes
hyperparameters (e.g., number of hidden layers and neurons) to improve performance
in the model. For RF, the work in [16] proposes a real-time PdM system for production
lines using IoT data. A new PdM methodology, using RF, is proposed in [17] to allow
dynamic decision rules to be imposed for maintenance management. A data-driven PdM
system applied to woodworking is proposed in [18] using an RF that takes advantage of
event-based triggers.

Of the above-cited works, none tackle, to the extent of the present paper, the main
problem plaguing PdM problems, imbalanced data. Furthermore, with the exception of
the works in [14] and [15], there is little to no optimization regarding hyperparameters,
which can improve model performance significantly primarily in imbalanced datasets.
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Finally, only the work in [16] considers real-time deployment and only the work in [13]
takes advantage of the backpropagation feature for retraining. As such, the premise of
this paper is to contribute to the progression of the current state-of-art by proposing:

• An innovative machine learning training approach for PdM that aims to improve
model performance while also taking into account imbalanced and irrele-
vant/erroneous data.

• An automatic hyperparameter optimization strategy, used to determine the optimal
hyperparameters for the ANN and RF, hence enhancing the models’ performance
even further.

• The application in real-time of both implemented models, by taking into account
model retraining and user application.

This paper structure is divided into five sections. After this introductory and state-of-
art section, Sect. 2 describes the training and testing dataset used to validate the proposed
methodology. Section 3 describes the proposed methodology for PdM on an ANN and
RF, while Sect. 4 presents the obtained results of the implemented models, as well as a
discussion regarding such a topic. The conclusions are presented in Sect. 5.

2 Training/Testing Dataset

The PdM dataset used for training and testing of the proposed methodology was made
available from the University of California in Irvine, Machine Learning Repository [27].

The PdM dataset from 2020, labeled “AI4I 2020 Predictive Maintenance Dataset
Data Set,” is freely accessible in [28]. The synthetic dataset has 10,000 data points
where 339 represent failures and 9661 non-failures data points (i.e., a ratio of 1:28), as
presented in Fig. 1. The machine data is the following:

• Air temperature–defines the exterior temperature of the machine, in Kelvin (K);
• Process temperature − defines the temperature produced within the machine, in

Kelvin (K);
• Rotational speed–defines the rotational speed of the tools inside the machine, in

Revolutions per minute (rpm);
• Torque–defines the force required to rotate the machine’s tools, in Newton-meters

(Nm);
• Tool wear–defines the amount of deterioration of the tools inside the machine, in

minutes until breakdown (min);
• Machine failure–defines a machine failure status by assuming the value 0 for non-

failure and 1 for failure.

The correlation heatmap between the used dataset features is described in Fig. 2.
It demonstrates that there is a medium positive correlation between machine failure

and the features torque (0.190 positive correlation) and tool wear (0.110 positive cor-
relation). On the other hand, the lowest correlation found to machine failure was the
rotational speed (0.044 negative correlation) and process temperature (0.036 positive
correlation).
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Fig. 1. Machine failure status bar chart of the used dataset.

Fig. 2. Correlation heatmap between the used dataset features.

3 Proposed Methodology

Twomachine learningmodels, an ANN and an RFmodel, are implemented and explored
for PdM. In the proposed methodology, training of the implemented models can be done
in batches, mini-batches, or continuous data streaming. Before real-time training, an
initial model is constructed through a dataset, and only then, the training process is
carried out in real-time via data streaming or mini-batches.

The initial model for the ANN or RF is constructed using:

• The dataset described in Sect. 2;
• The Holdout method, 80% for training and 20% for testing;
• A Min-Max approach for data normalization;
• A newly added dataset feature, machine temperature difference (i.e., process tem-

perature − air temperature), replaces the process and air temperature features. It
focuses on improving model performance, by reducing the number of inputs for less
complexity and better correlation between temperature and machine failure;

• A data balancing method, 5% oversampling on failure data and a majority undersam-
pling strategy on non-failure data. To achieve this, the imbalanced-learn [29] library
was used;
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• A 5-fold cross-validation splitting strategy to search for the best hyperparameters.

It is worth mentioning that, the Holdout method and the 5-fold cross-validation
splitting strategy described above were employed as safe measures to prevent overfitting
of the models.

The proposedmethodology for real-time training begins by obtaining themost recent
machine data, described in Sect. 2, from machine databases in the facility. Afterward,
prior to training, a data preprocessing phase is employed, which can be divided into six
sequential subphases:

1. Data aggregator–combines all acquired data into a single data file;
2. Data normalization–standardizes data units and types betweenmachines, using aMin-

Max technique with the MinMaxScaler method [30] from the Scikit-Learn library
[31];

3. Data imputation–fillsmissing values on the obtained data, through a k-Nearest Neigh-
bors imputation approach with the KNNImputer method [32] from the Scikit-Learn
library;

4. Data filtering–removes any potentially incorrect or irrelevant data, by detecting out-
liers using the Z-scorewith the SciPy stats Z-scoremethod [33] from the SciPy library
[34];

5. Data engineering–creates or removes features to better depict the underlying problem;
6. Data balancing–balances machine data failure and non-failure points, with the

imbalanced-learn library [29].

Then, the preprocessed data is used to train the machine learning models (i.e., ANN
or RF), wherein the ANN neuron weights are adjusted due to the back-propagation
feature, or, in the case of the RF, the model has to be reconstructed from the start using
the new and past data.

The methodology for real-time application of the implemented machine learning
models in a machine can be divided into three phases:

1. Data acquisition–obtains the necessary machine data from the machine to be
inspected;

2. Data preprocessing–applies data normalization, imputation, filtering, and engineering
on the obtained data;

3. Machine failure status prediction–uses one of the models, designated by the user, to
predict the machine failure status (0 for non-failure and 1 for failure).

3.1 Artificial Neural Network Training

The ANN was trained using an automatic hyperparameter optimizer, which focuses
on finding the optimal hyperparameter values to obtain a high-performing model. This
is achieved by using the GridSearchCV [35] method available from the Scikit-Learn
library. The automatic hyperparameter optimizer works by exploring each hyperparam-
eter’s possible values, at random, in order to find a high-performing ANNmodel, which
contains the optimal values for each hyperparameter. Table 1 presents the possible and
found optimal hyperparameter values for the ANN model. However, some hyperpa-
rameters were predefined, as there was no need to find the optimal value, such as the
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loss function, defined with binary cross-entropy function, metrics with binary accuracy,
the number of input neurons as 4 (temperature difference, rotational speed, torque, tool
wear), the number of output neurons as 1 (machine failure), the output layer activation
function definedwith a sigmoid function, and a normal weight initialization in the hidden
layers.

For the ANN classifier, the KerasClassifier [36] from the Keras [37] library was
used. It operates through rules created during the training phase to achieve the lowest
possible accuracy error in contrast to the training classes. The model is ready to generate
predictions once it has been properly fitted using training data.

Table 1. Artificial neural network hyperparameters possible and optimal values.

Hyperparameter Possible Values Optimal Value

Batch Size 10, 20, 40, 60, 80, 100, 200, 500,
1000, 2000, or 5000

5000

Dropout Regularization on Hidden
Layers

0%, 5%, 10%, 20%, 30%, 35%,
40%, 50%, 60%, 70%, 80%, or
90%

35%

Dropout Regularization on Input
Layer

0%, 5%, 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, or 90%

0%

Epochs 10, 50, 100, 150, 200, 300, 500,
1000, 2000, 5000, 8000, or 10000

5000

Neuron Activation Function Hard Sigmoid, Linear, Relu,
Sigmoid, Softmax, Softplus,
Softsign, or Tanh

Relu

Hidden Layers Neuron
Composition

1 to 4 layers
5, 10, 15, 20, 25, or 30 neurons
per layer

25 neurons in layer 1
20 neurons in layer 2
15 neurons in layer 3
15 neurons in layer 4

Optimizer Adadelta, Adagrad, Adam,
Adamax, Nadam, RMSprop, or
SGD

Nadam

Weight Initialization in Input Layer Glorot Normal, Glorot Uniform,
He Normal, He Uniform, Lecum
Uniform, Normal, Uniform, or
Zero

Glorot Uniform

3.2 Random Forest Training

The RF was also trained using an automatic hyperparameter optimizer, aiming to find a
robust RFmodel. This is accomplished through the RandomizedSearchCV [38] method.
This method focuses on determining the optimal estimator to employ in the model by
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selecting one of the possible values for each hyperparameter at randomand then assessing
each estimator based on their accuracy scores. Each hyperparameter’s possible values
and optimal value for the RF model are shown in Table 2. The RandomForestClassifier
[39] was used as the RF classifier.

Table 2. Random forest hyperparameters possible and optimal values.

Hyperparameter Possible Values Optimal Value

Bootstrap Sample True or False True

Criterion Function Gini or Entropy Gini

Max Depth 10 to 32 10

Max Features Auto, Sqrt, or Log2 Log2

Min Samples Leaf 1, 2, 4, 6, 8, or 10 1

Min Samples Split 2, 5, 10, 20, or 30 2

Tree Amount 200 to 3000 511

4 Results and Discussion

Four metrics were used to validate the performance of the proposed machine learning
models: recall, precision, f1-score, and accuracy. It is worth noting that, since PdM
problems commonly have very imbalanced datasets that have a low number of failure
data points, the recall metric was considered to be the most relevant performance metric
to validate the proposed methodology. The ANN performance metrics using the optimal
hyperparameters found in Table 1 and the performance of theRFmodel using the optimal
hyperparameters in Table 2 are shown in Table 3.

Table 3. Performance metrics of the proposed machine learning models using their respective
optimal hyperparameters.

Machine Learning Model Recall Precision F1-score Accuracy

Artificial Neural Network 0.97 0.15 0.27 83.65%

Random Forest 0.95 0.30 0.46 93.15%

According to the results presented in Table 3, each model has its own benefits and
drawbacks, with the ANN being slightly better at predicting when there is about to be
a machine breakdown, since it has the highest recall, and the RF excelling at lowering
the number of false alarms (i.e., false positives), because of having the highest precision
and accuracy scores. As a result, on one hand, if maintenance costs are inexpensive and
undetectedmachine breakdowns can lead to dire consequences, the ANN is the preferred
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model to be employed. On the other hand, the RF model is better at reducing the number
of false alarms, which reduces unnecessarymaintenance activities when compared to the
ANN. Nevertheless, both models have good accuracy scores, mainly the Random Forest
model with 93.15%, for this type of problem, where imbalanced predictive maintenance
datasets are commonandnegatively affect accuracy scores. Table 4 presents theANNand
RF confusionmatrixes. It is noteworthy that there is a big trade-off between true positives
and false positives between the twomodels, with the RF only having 1more unsuccessful
machine failure prediction but having 191 fewer false alarms than the ANN. Therefore,
in general, even though the recall was considered to be the most relevant metric, the RF
model has the best performance overall, since it does not fall behind too much on recall
and all other metrics are much better than in the ANN model. It is worth mentioning
that another work [40] utilized the same dataset as the current paper to justify the usage
of a bagged trees ensemble classifier. However, cited work did not split the dataset for
training and testing, resulting in an overfitted model and inflated results, because of this,
no comparison was made to this work. Despite the fact that the cited work inflated their
obtained results, it achieved a recall score of only 0.71, lower than the present paper’s
ANN model with a recall of 0.97 and RF with 0.95.

Table 4. Artificial neural network and random forest confusion matrix.

Predicted Actual

Failure Non-failure

Artificial Neural Network Failure 59 325

Non-failure 2 1614

Random Forest Failure 58 134

Non-failure 3 1805

5 Conclusion

To further reduce costs and improve product quality, the manufacturing industry has
been investing in PdM strategies to cut down on unnecessary maintenance costs, as PdM
systems are capable of predicting machine condition/lifespan allowing for maintenance-
effective manufacturing.

The proposed methodology aims to improve performance in machine learning mod-
els for PdM problems by proposing a novel training methodology, an automatic hyper-
parameter optimization strategy, and a new retraining method. To achieve this, an ANN
and RF models are implemented and explored. A synthetic dataset for PdM, containing
imbalanced data, is presented to validate the proposed methodology.

The obtained results show the robustness of the proposed methodology, with the
ANN model accomplishing a recall of 0.97, a precision of 0.15, an f1-score of 0.27,
and an accuracy of 83.65%. The RF model was able to excel even further by achieving
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a lower recall of 0.95, but having a much better precision of 0.30, an f1-score of 0.46,
and an accuracy of 93.15%. In general, the RF model has better performance overall,
nevertheless, it is clear that the ANN is slightly better at reducing true positives while
the RF reduces false positives.

Future work will address the use of real-world data instead of a synthetic dataset,
allowing to better evaluate the effectiveness of the proposed methodology in practical
manufacturing environments. In addition model interpretability, through eXplainable
Artificial Intelligence (XAI), will also be explored for the proposedANNandRFmodels,
in order to improve confidence in PdM systems.
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