
Education to Agile: Fostering Team
Awareness with Essence

Paolo Ciancarini(B) and Marcello Missiroli

DISI, University of Bologna, Bologna, Italy

paolo.ciancarini@unibo.it

Abstract. This paper explores the incorporation of Agile practices in
our undergraduate courses leveraging the Essence approach, a meta-
notation for describing software processes, roles, and best practices.

Exposing students and young developers to the Agile mindset and
related methods is important to let them to cope with the challenges of
modern software development and digital transformations. Agile meth-
ods and practices can also help students to develop valuable soft skills
such as communication, teamwork, and adaptability.

Essence clarifies and guides several key Agile practices, thanks to
guidelines and checklists, such as: team building, customization of Agile
ceremonies, promoting the effectiveness of retrospectives, tool selection
and configuration. We found that the usage of Essence helps students
to develop critical thinking and a sense of ownership and responsibility
related to their teamwork. They achieve a better understanding of what
is expected of them, and, as a result, they are more motivated to achieve
their goals.

1 Introduction

During the last few years, we have been researching on the practice of Agile
methods for teaching Software Engineering. We introduced the principles of Agile
development in our Software Engineering courses for undergraduates, an ongoing
process that has transformed the way we teach, support students, and assess their
results in, hopefully, a way more compliant with the Agile vision.

Our first involvement with Agile was the AMINSEP research project [4],
which confronted us with the problems of digital transition in a strongly struc-
tured environment in an Italian Public Administration. In AMINSEP we devel-
oped and enacted iAgile (which stands for improved Agile), a process model that
encompassed the mainstream Scrum framework to adapt it to the necessity of a
public administration engaged in projects of an Agile digital transformation in
a critical context requiring high security [30].

After the termination of the project we began experimenting by introduc-
ing the Agile vision to inexperienced programmers, both in high school and in
our university courses. Our preliminary results showed that Agile had indeed a
potential in this field [22].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, pp. 69–84, 2023.
https://doi.org/10.1007/978-3-031-48639-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_6&domain=pdf
http://orcid.org/0000-0002-7958-9924
http://orcid.org/0000-0002-9243-3406
https://doi.org/10.1007/978-3-031-48639-5_6


70 P. Ciancarini and M. Missiroli

We have introduced Cooperative Thinking [6] as a combination of Compu-
tational Thinking and Agile collaboration. We studied which collaborative tools
are especially useful for Agile developments [7], and evaluating outcomes of Agile
development projects in high schools or university courses [8,22].

We came to the conclusion that students and young developers need to be
exposed to both Agile methods and powerful open source tools to be able to
cope with the challenges of modern software development.

Following the results of a survey on tools used by the Agile community world-
wide [7], we started building and experimenting with a fully open source devel-
opment environment that is compatible with the principles of Agile and privacy,
the Composable Agile System (CAS) [5]. CAS was especially useful during the
lockdown periods caused by the pandemic, because students got powerful col-
laborative tools at their disposal, which allowed them to work on their project
and at the same time allowed us to collect process data to be analyzed [8].

The most difficult challenge was to convince the students to adopt a discipline
of agile collaboration. Convincing students that software is a social construct, in
fact, was not easy. We focused on some specific practices: team building, product
ownership, negotiating requirements, and collective analysis during retrospec-
tives [21]. We found that students need some specific guidance in understanding
a process model like Scrum, and to acquire self-awareness as a team. Essence
- a meta-tool used to describe processes [14] - proved to be a useful addition.
Essence helps the students in two ways: firstly, it helps to describe the process
they follow, allowing some degree of customization according to their necessities.
Essence helps in explaining that some practices are not mandatory, and can be
substituted by alternative practices. For instance, after beginning to use Scrum,
they rapidly realize that the daily meeting is not suitable – as it is not compat-
ible with their course schedule. A second crucial help consists in using Essence
during the retrospectives to understand and track the progress of the process as
a whole, check its weaknesses, and possibly introduce adjustments for the next
sprint.

Agile software development is an iterative and flexible approach to software
development that emphasizes collaboration, customer satisfaction, and rapid
delivery of working software. Open source tools are software tools whose source
code is made freely available to the public, allowing anyone to modify and
improve upon them. The relationship between Agile software development and
open source tools is, in our view, a natural one. Open source tools are often
used in Agile development because they offer developers the flexibility and the
adaptability they need to quickly respond to changing requirements.

The open source tools we suggested to use are flexible and customizable,
allowing developers to tailor them to meet their specific needs. This flexibility
makes them ideal for use in Agile development, where requirements can change
frequently and rapidly – the relationship between Agile software development
and open source tools is one of mutual benefit.

In summary, we found that our courses greatly improved by introducing the
combined use of Agile methods and Open source tools, and Essence provided
a solid framework for teaching, monitoring, customizing and reflecting on the
process within a Cooperative Thinking perspective.



Education to Agile: Fostering Team Awareness with Essence 71

The rest of this paper has the following structure:

– Section 2 presents the status of research on these topics;
– Section 3 describes the process of refocusing our courses on the Agile perspec-

tive and introducing a Project-based assessment;
– Section 4 highlights the role covered by Essence in the process;
– Section 5 shows the outcomes of the changes introduced;
– finally, in Sect. 6, we draw our conclusions and describe the forthcoming further

changes that we are planning for the next edition of the course.

2 Literature Review

Teaching Agile software development is now a popular approach, and several
papers report about experiences of Agile projects developed by Computer Sci-
ence undergraduates. For instance, [9] discusses how Agile software development
is taught to students of computer science and software engineering in various
universities; the authors describe their experiences and provide some recommen-
dations for instructors, like keeping up the pace of the developing teams using
some form of minimal competition.

In the paper [17] we found the description of a course on Agile methodolo-
gies taught to software engineering students analyzing their personalities and
attitudes to teamwork, thus adopting some form of team building before the
start of the actual projects. In [20] there is a discussion of how the use of col-
laborative practices needs some maturity by the students. The idea of using
real-life problems, with an approach called Problem-Based Learning, to study
Agile development is discussed in [12].

A recent paper considers how product management and Agile can be taught
to undergraduates is [24]. Product management is relatively unexplored in soft-
ware engineering, yet it is an important topic in any effort of digital transforma-
tion.

The Essence way to teach Agile practices and train Agile students and devel-
opers is presented in [15]. A paper from a different group concerning how to use
Essence cards and approach is [34]. Two papers from Peraire and Sedano vali-
date the Essence approach used by students in retrospectives [25,26]. A paper
discussing how Essence can be used during an academic course project work is
[16]; this paper discusses the difficulties of adopting Essence with undergraduate
students.

Essence can be considered as a playful framework for team building and
support [32]; the role of serious games in the education of Agile developers and
related team building activities is reviewed in [28].

We have devoted some effort to search for recent evidence on teaching Agile
development using open source tools only. The match seems natural, however
we have found only few papers: the report [33], which uses tools quite different
from those we used, in particular they used Redmine for project management
and Bugzilla as issue tracker; and the paper [36], which focuses on software reuse
in a community of student developers.



72 P. Ciancarini and M. Missiroli

Documentation of process choices, tools selections, and their rationale is an
important factor in software development projects in order to support product
quality and future maintenance. While several research publications address this
topic, systematic approaches and tools are rarely found in practice, and are not
well covered in software engineering education. Lack of suitable process docu-
mentation is especially an issue in Agile software development, where processes
and tools are often seen as less important than working products [31]. We found
some reports describing the use of a Scrum-like approach adaptable by the stu-
dents, see for instance [1,29].

Concerning the evaluation of product, process and teams, our work has been
inspired by the quality model described in the article by Hoegl and Gemuenden
[13], and further developed by Lindsjørn et al. [18]. The maturity model for Agile
teamwork, on the other hand, was proposed by Yin et al. [37], based on the one
created by Chetankumar et al. [3]. Gren et al. have also discussed the concept
of teamwork maturity in Agile teams [11].

3 Extreme Development

We have been teaching a “Software Engineering” course (part of the CS degree
curriculum, 3rd year) for several years. Its syllabus had a traditional struc-
ture, i.e. mostly lecture-based with some workshops, and focused on traditional,
waterfall-style software engineering: software requirement specification (SRS) -
including several UML diagrams - test specs and some design patterns. The final
exam was based on writing a project plan, drawing some UML diagrams, and
answering a few questions.

When the pandemic began we reorganized the course structure, with the
following goals in mind:

1. Promote the idea that developing software is a social activity, for instance
with team building activities based on games;

2. Emphasize Agile development principles, including the possibility of choosing
the most suitable practices;

3. Foster a product-oriented mindset educating the students to the role of prod-
uct owner;

4. Provide open source tools to experiment and support Agile collaborative prac-
tices;

5. Offer continuous monitoring and feedback to students during their projects
(not just at the end).

We introduced these changes related to these goals over a three-year period,
and some elements are still subject to adjustments.

Implementing the Agile vision in our course presented challenges, as it encom-
passes various concepts, including values and principles as in the Agile Manifesto,
some best practices, a lightweight project management framework, emphasis on
versioning and deployment disciplines (like pipelines based on GitLab and sys-
tematic usage of docker). We adopted the Scrum framework, combined with
some XP practices, like pair programming.



Education to Agile: Fostering Team Awareness with Essence 73

To put Agile into practice, we incorporated a project into the course format.
Students were required to form teams since the first days of the class. Thus,
the project activities began early in the 12-week course, with sprints spanning
three weeks. We did not fix the number of sprints, but we asked if possible to
conclude the development by the end of the fall term. The required non trivial
product was a Twitter client capable of aggregating posts using visual analytics
techniques. Most teams successfully delivered their products by the end of the
lectures, with only a few teams requiring additional sprints. Each team provided
a report documenting their process, including productivity data, a product demo,
and a final retrospective.

We faced two main challenges:

1. Students lacked experience with teamwork since the current Computer Sci-
ence curriculum typically focuses on individual programming. To address this,
we introduced team-building activities to help them to develop and test some
teamwork skills.

2. Initially each team had the freedom to choose its development tools, which
sometimes resulted in complex and demanding solutions. This led to varia-
tions in team productivity and introduced unnecessary complexity. Further-
more, the COVID-19 pandemic forced all students to work online, depriving
them of face-to-face communication, a key aspect of Agile. Therefore, we pro-
vided a standard set of tools for all teams, in order to provide a working
environment with minimal configuration. This prompted us to develop an
“Extreme development” praxis, as detailed below.

3.1 Our Motivation

During the pandemic the necessity of working remotely forced us to choose a
number of collaborative tools to support students working online. We wanted
students to be in complete control of their development environment, including
process data and artifacts. We restricted the choice to open source software
suitable to offer complete control of all artifacts and data they produced. This
was challenging, since several students were used to online tools that were closed-
source, with unclear privacy terms of use, or both.

To this end, we identified a series of FLOSS products that, when combined,
provided the basic services similar to their commercial counterparts, such as
Trello or Slack. These open source software include Git+Gitlab, Jenkins, Sonar-
Qube. We added Mattermost for communication (an open source alternative to
Slack), and Taiga for project management (a more comprehensive and open
source alternative to Trello). These tools formed the core of our CAS [5] system.
We configured some virtual machines as instances of the development environ-
ment, and gave students access. Some teams opted for a self-hosted solution
however. The students could use any open source IDE, like Eclipse, IntelliJ,
Atom or Visual Studio Code (the latter one was the preferred choice).

We also required each student to track the time spent on the project. To avoid
commercial products, we provided a self-developed IDE plugin able to log the



74 P. Ciancarini and M. Missiroli

actions of the developers client-side; these actions could then later be analyzed
either individually or collectively, team-wide, using a dashboard.

We named this praxis as “extreme Agile development”. It is an extreme form
of development because it required the combination of:

– an Agile framework, as given by Scrum, tailorable by the students;
– the necessity of using open source only tools;
– the requirement to track the productivity data both as individual developers

and as a team;
– the freedom to choose and adapt the Agile best practices most suitable to the

team, as for instance pair programming, the daily scrum, and the retrospec-
tives;

– the requirement to use systematically Essence cards for the retrospectives and
for any additional tool or best practice adopted by the team;

– pervasive teamwork, including team building activities and using collaborative
tools.

While these issues are not necessarily correlated, we assume that modern
would-be developers should be exposed to all of the above to be ready for the
real-world challenges. Our goal here is to pull students out of their comfort zones
as individual developers, and reinforce their collective behavior and reciprocal
trust.

3.2 Fostering Extreme Development

We hold that writing software is a social activity performed in teams. How-
ever, education to programming tends to focus on individual -centered learning
and sometimes discourages cooperation, even penalizing it as cheating. Agile’s
best practice of collective code ownership often contradicts this approach [2].
To address this issue, we needed to promote self-organization, positive team
building, and personal accountability.

– Self-organization was achieved by letting students form teams with minimal
limitations. Specifically, we wanted all teams to have more or less the same
number of participants, usually five or six. The process of team forming usually
required 3–5 days, and our intervention and advice was very limited.

– Team building was integrated in the preliminary iteration of the project
(defined as “Sprint 0”), during which the students performed some training
games, such as “Scrumble”1, and “Escape the Boom”2. These games can be
played remotely online - this was a requirement during the pandemic. The
performance of each team when playing these games was self-evaluated by the
team itself using a GQM approach.

1 http://scrumble.pyxis-tech.com.
2 https://escape-the-boom.com.

http://scrumble.pyxis-tech.com
https://escape-the-boom.com


Education to Agile: Fostering Team Awareness with Essence 75

Fig. 1. The structure of the project process

– To promote personal accountability we committed to providing frequent and
precise feedback to teams, and let them handle the results. This was achieved
by requiring reports and surveys at the end of each sprint, as well as offering
online discussion sessions with faculty on a regular basis.

Git was instrumental in providing several important data, such as the number
and the size of commits and their temporal distribution. More to the point, we
utilized gitinspector3 to present git log data in a simple and graphical format
to the team. For example, the tool is able to detect common usage patterns,
such as who is the person most responsible for a given file, or the person that
contributed the most lines of codes, in a weekly breakdown. This data is then
used as a basis for a teacher-student discussion. Figure 1 shows how the project
process has been organized.

Students form teams with Trello, as it is a well known and offers a good app
over the smartphones. Each student builds a self-presentation in the form of a
card explaining personal abilities and preferred activities, eg. Python program-
mer, User interface designer, etc. This is a format derived from Agile unconfer-
ences worldwide, emphasising the self-organizational aspect. Then, they look for
companions to form teams. After that, the first activity we suggest is to engage
in some team building games in order to practice Scrum roles and assign them.
By far, the most successful game we introduced is Scrumble, that we adopted in
an online variant we have implemented. Most students reported its usefulness in

3 https://github.com/ejwa/gitinspector.

https://github.com/ejwa/gitinspector


76 P. Ciancarini and M. Missiroli

getting the idea of what Scrum works and what is expected from Scrum roles.
Most teams reported that they assigned the roles of product owner and Scrum
master after playing the game.

4 The Role of Essence

The introduction of an Agile project in our course required, for most students, a
complete change of mindset: no “think ahead”, requirements negotiable and not
imposed or predefined, a lot of teamwork, focus on product and customer, using
powerful development tools, and more. Lecturing students on these principles
is one thing, have them understand and apply them is completely different.
Students receive an overwhelming amount of information in a short time period
and, consequently, their overall understanding is shallow.

We needed some framework that could help and guide their learning even
outside class hours. We choose Essence, a standard for software engineering
methods [23]. Essence is based on a collection of guidelines and checklists in the
form of cards4, that describe the process roles and activities to be performed. The
cards, among other things, are used in retrospective games and provide a solid
mental scaffolding that helps students understand “where they are”, possibly
“where they are heading” and share this information among themselves and
with us.

At first we used Essence cards only as a teaching support during lectures.
We added the book [14] as a suggested reading, but we skipped a formal intro-
duction and simply started using the cards. This is one of the proposed learning
approaches proposed by its authors, defined as “stealth mode”5.

We started with the so-called Kernel Alphas, which help to define the basic
software engineering concepts such as “Requirements” and “Software System”.
To that, we added some concepts related to Agile, specifically Product Backlog
and Product Backlog Item (which includes User Stories and Tasks). Depending
on the context, the cards were used as visual teaching aid, cheat sheets, or recap
elements. Table 1 shows a timeline of the introduction of the various Essence
cards over the course.

4.1 Monitoring the Status of a Project

The Essence cards can be used in an interesting and active way during the devel-
opment of a project, namely to understand the status of the process [27]. Even
in real-life development projects it is difficult to have a clear idea of the status
of a software project; in case of inexperienced developers tackling a complex
assignment for the very first time, this becomes a very hard problem indeed.

4 available at https://practicelibrary.ivarjacobson.com.
5 https://paulemcmahon.wordpress.com/2019/06/09/scaling-essence-in-stealth-

mode-and-why-you-should-care.

https://practicelibrary.ivarjacobson.com
https://paulemcmahon.wordpress.com/2019/06/09/scaling-essence-in-stealth-mode-and-why-you-should-care
https://paulemcmahon.wordpress.com/2019/06/09/scaling-essence-in-stealth-mode-and-why-you-should-care


Education to Agile: Fostering Team Awareness with Essence 77

Table 1. The usage of Essence elements as the project progresses

Timeline Focus Essence elements Tools

Lectures SE Basics, open source value Customer; Requirements Planning poker app

sprint 0 Teambuilding, System setup Team, System, Git, Gitlab Gitlab

sprint 1 1st MVP, Retrospective User Stories, Retrospective

games

Taiga, logger, IDE,

gitinspector

sprint 2 2nd MVP, Agile values and

techniques

Pair Programming, Test Cover-

age

JUnit, Jest

sprint 3+ 3rd MVP, Code quality, Refac-

toring

Evolve a Releasable Product,

Manage technical debt

SonarQube

Release Deployment pipeline Devops Essentials Jenkins

We suggested that teams should pick some Essence cards to track and assess
their process status. We proposed some cards, such as “Stakeholder”, “Soft-
ware System”, “Team” and, with the help of the checklists linked to the cards,
students were able to provide a reasonable estimate of the “well being” of the
project. As the project progressed, they used cards to assess their overall project
progress, sometimes indicating the desirable state to be achieved at the end of
each iteration. Though this practice was not mandatory, most groups used it
during their retrospectives.

4.2 Retrospectives with Essence

Reflection is one of the Agile principles [35] (#12), but it is also is a key element in
effective learning [10]; unfortunately, our students traditionally do not have much
experience (if any) in this technique. Essence provided the perfect mechanism
to do so. Practice Patience6 is a gaming activity that drives the retrospective
session – required at the end of each iteration:

1. The team selects a number of cards that are considered of interest. During
the first retrospective we required the use of at least four cards, including the
Team card.

2. Cards are positioned in a two-dimensional board, where the vertical axis
represents the importance of the practice associated to the card, and the
horizontal axis shows how well the team performed in relation to that topic,
possibly adding comments.

3. The team discusses each card, and produces a list of improvement actions.

From a teaching perspective, it was easy to notice a general improvement
of the teams over time; teams used more cards and were able to write useful
comments and improvement suggestions. As many retrospectives were executed
online, they developed an Excalidraw template which they shared among them.

6 https://www.ivarjacobson.com/publications/blog/agile-tools-coaching/better-
scrum-through-essence-part-2-1.

https://www.ivarjacobson.com/publications/blog/agile-tools-coaching/better-scrum-through-essence-part-2-1
https://www.ivarjacobson.com/publications/blog/agile-tools-coaching/better-scrum-through-essence-part-2-1


78 P. Ciancarini and M. Missiroli

Fig. 2. Three new cards supporting Git, GitLab tool, and Logger. Following the
Essence convention, the Git card is a skill, while GitLab and Logger are alphas.

4.3 Process Organization

Some Agile principles clearly suggest that the software development process
should be sustainable and teams be self-organized [35] (#8, #11). While we
presented a standard development method based on Scrum with several XP
elements, teams were free to organize themselves as they thought it was best
for them. Essence offers a vast library of practices that students were free to
implement or not.

For instance, the Daily Scrum practice was interpreted differently by groups:
some skipped it altogether, some performed it online early in the morning, other
opted for a bi-weekly face-to-face version. As a further example, pair program-
ming was an Agile practice that was intensively used by some teams and com-
pletely ignored by others.

In fact, we can say that every team used a different, customized development
process – further promoting the Cooperative Thinking mindset.

Though very comprehensive, Essence did not provide all the elements we
wanted our students to learn and use. Since Essence is an open standard, we
created some cards, shown in Fig. 2. Some are of general use, such as the ability
to properly use Git commands and sharing a GitLab repository, others describe
some services we offer in CAS, such as the Logger. Some other cards have been
developed for other tools. Table 1 shows some Essence elements introduced as
the project progresses.

Some teams proposed and customized changes to the process. Several teams
decided to implement deployment pipelines from the beginning of the project,
even before they were lectured on DevOps pipelines. Some team enriched the ret-
rospective practice by tracking individual card evaluation over time, an interest-
ing piece of information that is otherwise lost as individual opinions are merged
and averaged - see Fig. 3.



Education to Agile: Fostering Team Awareness with Essence 79

Fig. 3. A matrix showing the results of a retrospective discussion. The leftmost column
lists the practices chosen by the team to be discussed. The columns 2–6 are one for each
team member: red-the practice is going bad, yellow-the practice needs care, green-the
practice is going well. The last column contains some notes. The second column is from
the PO, the third is from the SM: they disagree on the state of the practices (Color
figure online)

5 Outcomes

It is very difficult to evaluate the impact of changes we applied, especially given
that several modifications have happened over a relatively short amount of time:
we modified the syllabus, the teaching strategies, the outcomes expected from
the student teams, and the evaluation method. Therefore, our discussion here
tends to be limited to anecdotal value, but in this case there are some data
suggesting clearly that our changes have been beneficial.

Team responsibility is achieved by basing a large part of the final grade
(around 80%) on the project outcome, and specifically on process evaluation
rather than product evaluation. Personal reflections confirm that this approach
has been understood and, generally, approved.

The number of students passing the exam has improved: while the average
number of enrolled students has remained more or less constant, averaging 90,
the number of non-passing students after two months from the end of the lectures
has rapidly decreased to zero, from an average of 15% related to the previous
course structure.

Another positive indicator is the students’ feedback concerning the course.
The course remained popular among students. Many students commented that
the course was “more engaging” and provided “practical experience” that could
be exploited in the job market. Some remarked that more effort (hours of work)
were needed, but this is hardly a negative point from a teacher’s perspective. The
results of the first two instances of the class project, mostly executed during the
strict lockdown in winter 2020–21 and 2021–22, were positive because all teams



80 P. Ciancarini and M. Missiroli

Table 2. Perceived usefulness of tools.

Mean Std. err. Mode Median

Taiga 4,05 0,13 4 4

GitLab 4,92 0,05 5 5

SonarQube 3,41 0,17 3 3

Mattermost 2,89 0,28 1 3

Jenkins 2,38 0,26 1 1

Scrumble 3,32 0,20 3 3

Escape the Boom 2,38 0,27 3 3

Essence 3,49 0,15 4 4

completed their product before starting the spring semester. This experience is
discussed in [19], written with two students who developed the project.

Table 2 shows the students’ feedback related to some the proposed tools used
within the CAS Environment (Taiga, Gitlab, SonarQube, Mattermost, Jenkins),
the teambuilding games (Scrumble and Escape the Boom) and Essence cards.
The excellent evaluation of both Taiga and GitLab was no surprise, whereas the
low score of Jenkins and Mattermost was justified by the easy-to-use GitLab
internal pipeline for the former and the limited features and usability of the
latter, which is improving by the day. SonarQube fared reasonably well. The
Scrumble game was deemed generally useful–some teams even played it twice–,
but the Escape the Boom not very so.

The logger tool caused the most concerns, mainly because the program did
not support all IDEs and all platforms and the continuous IDE upgrades created
increasing incompatibilities with our software. By direct observation, we must
add that the data recorded concerning productivity were not very reliable, since
students were not precise in tracking their own activities, be it automatic or
manual. We are currently looking for a viable solution to overcome this problem.

In general, the students evaluated positively the retrospectives based on
the Essence method, provided as part of the final team report. Most students
described the Essence cards as “clarifying” during the lectures and also “very
beneficial” in understanding how some methods and techniques were intended
to be used, specifically during Sprint Retrospectives.

The final question to be answered is whether all this reorganization effort
was worth it or not. To answer that, we collected and organized team data,
commented their results, and compared team performance to the final grades
obtained by each student [8]. We used two evaluation models, a quality model
(measuring overall code quality), and a maturity model (measuring how the
team applied Agile values in their work).

Analyzing the results of the two models we have observed a linear relation
(as shown in Fig. 4), suggesting that teams that closely followed the proposed
work methodology, on average, produced better quality code. In our view, this
confirms that our efforts in fostering performing teams using Agile method were
fruitful.



Education to Agile: Fostering Team Awareness with Essence 81

Fig. 4. Linear correlation of maturity and quality models [8]

6 Conclusions and Further Work

We and our students believe that Essence cards are quite useful to achieve a
good Agile proficiency. In order to simplify and improve the introduction of
agile practices, we plan to reinforce the use of Essence cards. Firstly, we are
expanding their use during the lectures, since students like the synthesis offered
by the cards and the freedom to select their own practices and tools. In addition,
we are preparing additional cards, with the goal to address the details of new
agile practices (for instance in product management), or to describe specific
tools, like for instance the logger and the other tools that we are adding to the
CAS environment for supporting diagramming and retrospectives.

Another challenging idea consists in managing a multi-team project, enacting
some scalable process model like SAFe or LESS. Essence cards offer support for
SAFe, however we need a reorganization of the courseware, and probably some
new management tools, that we are currently studying.

Acknowledgment. We ack the support of CN-HPC under PNRR (National Recovery
and Resilience Plan), and of CINI and CNR-ISTC.

References

1. Bass, R., Pejcinovic, B., Grant, J.: Applying scrum project management in ECE
curriculum. In: Proceedings of the Conference on Frontiers in Education, pp. 1–5.
IEEE (2016)

2. Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code!
Examining the effects of ownership on software quality. In: Proceedings of the
19th ACM SIGSOFT Symposium on Foundations of Software Engineering, pp.
4–14 (2011)



82 P. Ciancarini and M. Missiroli

3. Chetankumar, P., Ramachandran, M.: Agile maturity model (AMM): a software
process improvement framework for agile software development practices. Int. J.
Softw. Eng. 2, 01 (2009)

4. Ciancarini, P., Messina, A., Poggi, F., Russo, D.: Agile knowledge engineering for
mission critical software requirements. In: Nalepa, G.J., Baumeister, J. (eds.) Syn-
ergies Between Knowledge Engineering and Software Engineering. AISC, vol. 626,
pp. 151–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64161-4 8

5. Ciancarini, P., Missiroli, M., Poggi, F., Russo, D.: An open source environment for
an agile development model. In: Ivanov, V., Kruglov, A., Masyagin, S., Sillitti, A.,
Succi, G. (eds.) OSS 2020. IAICT, vol. 582, pp. 148–162. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-47240-5 15

6. Ciancarini, P., Missiroli, M., Russo, D.: Cooperative thinking: analyzing a new
framework for software engineering education. J. Syst. Softw. 157, 110401 (2019)

7. Ciancarini, P., Missiroli, M., Sillitti, A.: Preferred tools for agile development: a
sociocultural perspective. In: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A.
(eds.) TOOLS 2019. LNCS, vol. 11771, pp. 43–58. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29852-4 3

8. Ciancarini, P., Missiroli, M., Zani, S.: Empirical evaluation of agile teamwork.
In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P., Pérez-Castillo, R. (eds.)
QUATIC 2021. CCIS, vol. 1439, pp. 141–155. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-85347-1 11

9. Devedžić, V., et al.: Teaching agile software development: a case study. IEEE Trans.
Educ. 54(2), 273–278 (2010)

10. Ertmer, P.A., Newby, T.J.: The expert learner: strategic, self-regulated, and reflec-
tive. Instr. Sci. 24(1), 1–24 (1996)

11. Gren, L., Goldman, A., Jacobsson, C.: Agile ways of working: a team maturity
perspective. J. Softw. Evol. Process 32(6), e2244 (2020)

12. Heberle, A., Neumann, R., Stengel, I., Regier, S.: Teaching agile principles and
software engineering concepts through real-life projects. In: 2018 IEEE Global
Engineering Education Conference (EDUCON), pp. 1723–1728. IEEE (2018)

13. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449
(2001)

14. Jacobson, I., Lawson, H., Ng, P., McMahon, P., Goedicke, M.: The Essentials of
Modern Software Engineering. ACM Books, Morgan & Claypool Publishers (2019)

15. Jacobson, I., Sutherland, J., Kerr, B., Buhnova, B.: Better scrum through essence.
Softw. Pract. Exp. 52(6), 1531–1540 (2022)

16. Kemell, K.-K., Nguyen-Duc, A., Wang, X., Risku, J., Abrahamsson, P.: The essence
theory of software engineering – large-scale classroom experiences from 450+ soft-
ware engineering BSc students. In: Kuhrmann, M., et al. (eds.) PROFES 2018.
LNCS, vol. 11271, pp. 123–138. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03673-7 9

17. Layman, L., Cornwell, T., Williams, L.: Personality types, learning styles, and
an agile approach to software engineering education. In: Proceedings of the 37th
SIGCSE Technical Symposium on Computer science education, pp. 428–432 (2006)

18. Lindsjørn, Y., Sjøberg, D.I., Dingsøyr, T., Bergersen, G.R., Dyb̊a, T.: Teamwork
quality and project success in software development: a survey of agile development
teams. J. Syst. Softw. 122, 274–286 (2016)

https://doi.org/10.1007/978-3-319-64161-4_8
https://doi.org/10.1007/978-3-030-47240-5_15
https://doi.org/10.1007/978-3-030-29852-4_3
https://doi.org/10.1007/978-3-030-29852-4_3
https://doi.org/10.1007/978-3-030-85347-1_11
https://doi.org/10.1007/978-3-030-85347-1_11
https://doi.org/10.1007/978-3-030-03673-7_9
https://doi.org/10.1007/978-3-030-03673-7_9


Education to Agile: Fostering Team Awareness with Essence 83

19. Marzolo, P., Guazzaloca, M., Ciancarini, P.: “Extreme development” as a means
for learning agile. In: Succi, G., Ciancarini, P., Kruglov, A. (eds.) ICFSE 2021.
CCIS, vol. 1523, pp. 158–175. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-93135-3 11

20. Meier, A., Kropp, M., Perellano, G.: Experience report of teaching agile collabo-
ration and values: agile software development in large student teams. In: Proceed-
ings of the 29th International Conference on Software Engineering Education and
Training (CSEET), pp. 76–80. IEEE (2016)

21. Meyer, B.: Agile! The Good, the Hype and the Ugly. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05155-0

22. Missiroli, M., Russo, D., Ciancarini, P.: Learning agile software development in
high school: an investigation. In: Proceedings of the 38th International Conference
on Software Engineering Companion, pp. 293–302 (2016)

23. OMG. Essence - kernel and language for software engineering methods, version 1.2.
Technical Report 18-10-02. OMG (2018)

24. Pal, K.: Reflection on teaching practice for agile methodology based product devel-
opment management. In: Teaching Innovation in University Education: Case Stud-
ies and Main Practices, pp. 135–155. IGI Global (2022)

25. Péraire, C., Sedano, T.: Essence reflection meetings: field study. In: Proceedings
of the 18th International Conference on Evaluation and Assessment in Software
Engineering, pp. 1–4 (2014)

26. Péraire, C., Sedano, T.: State-based monitoring and goal-driven project steering:
field study of the SEMAT Essence framework. In: Companion Proceedings of the
36th International Conference on Software Engineering, Hyderabad, India, pp. 325–
334. ACM (2014)

27. Quintanilla-Perez, D., Mauricio-Delgadillo, A., Mauricio-Sanchez, D.: Essboard: a
collaborative tool for using Essence in software development. In: Proceedings of
the 10th International Conference on Software Engineering and Service Science
(ICSESS), pp. 20–23. IEEE (2019)

28. Rodŕıguez, G., González-Caino, P.C., Resett, S.: Serious games for teaching agile
methods: a review of multivocal literature. Comput. Appl. Eng. Educ. 29(6), 1931–
1949 (2021)

29. Rush, D.E., Connolly, A.J.: An agile framework for teaching with Scrum in the IT
project management classroom. J. Inf. Syst. Educ. 31(3), 196–207 (2020)

30. Russo, D., Taccogna, G., Ciancarini, P., Messina, A., Succi, G.: Contracting agile
developments for mission critical systems in the public sector. In: Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Society, pp. 47–56 (2018)

31. Schubanz, M., Lewerentz, C.: What matters to students - a rationale management
case study in agile software development. In: Proceedings of the SEUH Software
Engineering im Unterricht der Hochschulen, volume 2531 of CEUR Workshops
Proceedings, Innsbruck, Austria, pp. 17–26 (2020)

32. Sutherland, J., Jacobson, I., Kerr, B.: Scrum essentials cards: experiences of scrum
teams improving with essence. Queue 18(3), 83–106 (2020)

33. Teel, S., Schweitzer, D., Fulton, S.: Teaching undergraduate software engineering
using open source development tools. Issues Informing Sci. Inf. Technol. 9, 63–73
(2012)

34. Tüzün, E., Üsfekes, Ç., Macit, Y., Giray, G.: Towards unified software project
monitoring for organizations using hybrid processes and tools. In: Proceedings of
the International Conference on Software and System Processes (ICSSP), pp. 115–
119. IEEE (2019)

https://doi.org/10.1007/978-3-030-93135-3_11
https://doi.org/10.1007/978-3-030-93135-3_11
https://doi.org/10.1007/978-3-319-05155-0


84 P. Ciancarini and M. Missiroli

35. Agile alliance - 12 principles behind the agile manifesto (2001)
36. Villarrubia, A., Kim, H.: Building a community system to teach collaborative soft-

ware development. In: Proceedings of the 10th International Conference on Com-
puter Science & Education (ICCSE), Cambridge, UK, pp. 829–833 (2015)

37. Yin, A., Figueiredo, S., da Silva, M.M.: Scrum maturity model. In: Proceedings of
the ICSEA, pp. 20–29 (2011)


	Education to Agile: Fostering Team Awareness with Essence
	1 Introduction
	2 Literature Review
	3 Extreme Development
	3.1 Our Motivation
	3.2 Fostering Extreme Development

	4 The Role of Essence
	4.1 Monitoring the Status of a Project
	4.2 Retrospectives with Essence
	4.3 Process Organization

	5 Outcomes
	6 Conclusions and Further Work
	References


