
Alfredo Capozucca
Sophie Ebersold
Jean-Michel Bruel
Bertrand Meyer (Eds.)

LN
CS

 1
43

87

Second International Workshop, FISEE 2023
Villebrumier, France, January 23–25, 2023
Invited Papers

Frontiers in Software
Engineering Education

Lecture Notes in Computer Science 14387
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Alfredo Capozucca · Sophie Ebersold ·
Jean-Michel Bruel · Bertrand Meyer
Editors

Frontiers in Software
Engineering Education
Second International Workshop, FISEE 2023
Villebrumier, France, January 23–25, 2023
Invited Papers

Editors
Alfredo Capozucca
University of Luxembourg
Esch-sur-Alzette, Luxembourg

Jean-Michel Bruel
University of Toulouse
Blagnac, France

Sophie Ebersold
University of Toulouse
Toulouse, France

Bertrand Meyer
Constructor Institute
Schaffhausen, Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-48638-8 ISBN 978-3-031-48639-5 (eBook)
https://doi.org/10.1007/978-3-031-48639-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023, corrected publication 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-9765-1907
https://orcid.org/0000-0002-3653-0148
https://orcid.org/0000-0002-0957-2844
https://orcid.org/0000-0002-5985-7434
https://doi.org/10.1007/978-3-031-48639-5

Preface

Following the success of FISEE 2019 in Villebrumier, the 2nd International Workshop
on Frontiers in Software Engineering Education, FISEE 2023, was devoted to advanced
topics in software engineering education, and in particular to “Education in Technology
and Technology for Education”.

The workshop, which took place from January 23 to 25 at the Château de Ville-
brumier near Toulouse in south-west France, was focused on discussion and exchanges
in a friendly context. It brought together classic education and fearless ideas on what
education in Software Engineering needs, what should be changed and how new and
traditional institutions can adapt to the fast pace of technology.

The main topics of the workshop were:

• Education in technology and technology for education,
• New (and fearless) ideas on education,
• Adjustments in teaching during pandemic: experience reports,
• Models for class development,
• How to design learning objectives and outcomes,
• Labs and practical sessions: how to conduct them,
• Curriculum Development,
• Course Design,
• Quality Course Assessment,
• Long-life studies in education,
• Empirical research in SE education,
• Experiences in starting up new educational systems,
• Blended education

Carlo Ghezzi, Politecnico di Milano, renowned textbooks author and a pioneer in
software engineering education, delivered the following keynote: Do Software Engi-
neers Need to Know About Social Sciences and Humanities? The talk mainly aimed at
setting the stage for opening amuch-needed and urgent discussion, which should involve
software engineering researchers and educators and has to be broad and open, especially
to social sciences and the humanities.

Armando Fox of UC Berkeley co-designed and co-taught Berkeley’s first Massive
Open Online Course on “Engineering Software as a Service”. His current research in CS
education focuses on creating novel technologies to help students learn advanced pro-
gramming concepts at scale. Armando delivered the following keynote: SING: Greatly
Expanding Software Engineering Education. The talk discussed recent and ongoing
work on software engineering teaching with the aim of stimulating a conversation and
vision for the next decade of software engineering education.

Papers presented and included in these conference post-proceedings were reviewed
by three members of the program committee using a two-round single-blind review
process. Final contributions had not only to be conformant to the aims of the workshop,
but also meet the following criteria:

vi Preface

– Significance: The paper’s contributions are important with respect to topics addressed
by computing education, and in particular software engineering education at any level;

– Novelty: The paper presents new ideas and results and places them appropriately with
respect to the state of the art;

– Evidence: The paper presents sufficient evidence supporting its claims, such as
experimental results, statistical analyses, case studies, and anecdotes;

– Clarity: The paper presents its contributions, methodology, and results clearly: i.e.,
adequate use of the English language, absence of major ambiguity, clearly readable
figures and tables, and adherence to the publication format.

The first and second rounds led to rejection of 2 papers, acceptance of 5 papers
with minor modifications, and a request to the authors to provide a new version of their
paper (major revisions) in 3 cases. Thus, at the end, 8 regular papers are included in
these post-proceedings. They take stock of the lessons learned from the Covid period
and distance learning, look at new teaching methods better suited to the evolution of
software engineering - with Agility teaching, for example - or else consider the future
of education in the Chat-GPT society.

A rich discussion on the challenges and opportunities of teaching computer science
in the age of AI-based assistants took place during the workshop. Major outcomes of
these discussions are reported in the editorial included in these post-proceedings.

November 2023 Alfredo Capozucca
Jean-Michel Bruel
Sophie Ebersold
Bertrand Meyer

The original version of the book has been revised. A correction to this book can be found at https://
doi.org/10.1007/978-3-031-48639-5_10

Organization

Program Committee

Jean-Michel Bruel University of Toulouse, France
Alfredo Capozucca University of Luxembourg, Luxembourg
Michael Caspersen Aarhus University, Denmark
Maximiliano Cristiá National University of Rosario, Argentina
Elisabetta Di Nitto Politecnico di Milano, Italy
Sophie Ebersold University of Toulouse, France
Carlo Ghezzi Politecnico di Milano, Italy
Orit Hazzan Technion - Israel Institute of Technology, Israel
Michael Hilton Carnegie Mellon University, USA
Raymond Lister University of Technology Sydney, Australia
Bertrand Meyer Constructor Institute, Switzerland
Henry Muccini University of L’Aquila, Italy
Gail Murphy University of British Columbia, Canada
Manuel Oriol Constructor Institute, Switzerland
Cecile Peraire Carnegie Mellon University Silicon Valley, USA

Keynotes

SING: Greatly Expanding Software Engineering
Education

Armando Fox

UC Berkley, USA
fox@berkeley.edu

Abstract. In the last couple of decades, software engineering education has faced soaring
new demands. To meet them, we must scale (S) software engineering education far
beyond “CS 1”: we must find scalable ways to teach intermediate & advanced (I) topics
as well as the basics, to reach nontraditional & nondegree (N) learners with well-defined
assessments as well as reaching students in traditional higher education, and to teach
both the technical and nontechnical group & team skills (G) that are now essential in all
nontrivial software projects.

I will discuss recent and ongoing work on all of these directions with the aim
of stimulating a conversation and vision for the next decade of software engineering
education.

Do Software Engineers Need to Know About Social
Sciences and Humanities?

Carlo Ghezzi

Politecnico di Milano, Italy
carlo.ghezzi@polimi.it

Abstract. Most software lives and interacts with the physical world and humans. We
can even go further and see software engineers as the demiurges who are creating a
cyber-physical world where humans, autonomous digital entities, and physical entities
live together in a new kind of society. The increasing pervasiveness of software-enabled
functions and their intimate relation with humans asks for re-thinking the competences
and responsibilities of technologists who conceive and develop software, and the skills
they should acquire through education. Rethinking should start by asking questions
like: Should software engineers care about the human values involved while conceiv-
ing/developing new applications? About possible future uses and ethical implications?
Can they do it by themselves? What kind of skills would they need?

The talk mainly aims at setting the stage for opening a much needed and urgent
discussion, which should involve software engineering researchers and educators and
has to be broad and open, especially to social science and humanities.

Contents

Specializations in Software Engineering Education . 1
Anthony I. (Tony) Wasserman

Co-design of Modern Technology Modules with Industry and Students
as Partners . 14

David Cutting, Andrew McDowell, and Esha Barlaskar

Tribal Capstone Project Course . 32
Manuel Oriol

Analyzing Scrum Team Impediments Using NLP . 42
Kaleemunnisa, Christelle Scharff, Krishna Mohan Bathula,
and Kaiyin Chen

Finding Behavioral Indicators from Contextualized Commits in Software
Engineering Courses with Process Mining . 56

Mika Pons, Jean-Michel Bruel, Jean-Baptiste Raclet, and Franck Silvestre

Education to Agile: Fostering Team Awareness with Essence 69
Paolo Ciancarini and Marcello Missiroli

The Physical and Human Dimension of Communication in Distance
Education . 85

Christophe Gnaho

Is ChatGPT 3 Safe for Students? . 100
Julia Kotovich and Manuel Oriol

Computing Education in the Age of AI-Based Assistants: Challenges
and Opportunities . 108

Alfredo Capozucca, Sophie Ebersold, Jean-Michel Bruel,
and Bertrand Meyer

Correction to: Frontiers in Software Engineering Education C1
Alfredo Capozucca, Sophie Ebersold, Jean-Michel Bruel,
and Bertrand Meyer

Author Index . 117

Specializations in Software Engineering
Education

Anthony I. (Tony) Wasserman(B)

Software Methods and Tools, San Francisco, CA 94131, USA
tonyw@acm.org

Abstract. This paper describes the origins and evolution of software engineering
education as it has developed independently of computer science and electrical
engineering programs. The rapid growth of software technology and development
processes has led to the emergence of subdisciplines in software engineering, to the
extent that it is no longer feasible for software engineers to remain knowledgeable
about all of the relevant topics. As a result, it seems likely that software engineering
education will follow the path taken in other fields, such as law and medicine,
where students receive foundational education in software engineering, followed
by additional education and practice in one or more specialized areas.

Keywords: Software engineering · education

1 Background

1.1 Computer Science Education

The first computer science department in the United States (at Purdue University) was
created in 1962, with many others (including Univ. of Wisconsin, Univ. of Illinois, Univ.
of Pennsylvania, Stanford, U. of North Carolina, and Carnegie Mellon) following in the
next 2–3 years. Initially created for graduate level study, most of them quickly expanded
to offer undergraduate majors as well. Senior faculty in these departments often initially
came predominantly from departments of mathematics or electrical engineering, giving
their new departments an emphasis on theoretical foundations or computer hardware.
They were often joined by people with interests in scientific computation and cognitive
science who had previously been associated with other departments.

However, these departments initially had very few people with interests in systems
and software, with many of the most experienced people working in industry on large
scale systems such as the IBMOS/360 operating system, the American Airlines SABRE
airline reservation system, andfinancial applications (banking, securities trading), aswell
as on avionics, military, and aerospace applications. That situation changed over time,
with industry leaders such as Fred Brooks leaving IBM to become the founder of the
Computer Science Department at the University of North Carolina at Chapel Hill.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, pp. 1–13, 2023.
https://doi.org/10.1007/978-3-031-48639-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_1&domain=pdf
http://orcid.org/0000-0003-3841-8085
https://doi.org/10.1007/978-3-031-48639-5_1

2 A. I. (Tony) Wasserman

1.2 The Origins of Software Engineering

At the same time, many application development efforts in industry were unsuccessful,
with many projects over budget, late, and/or complete failures. Furthermore,
organizations often did not recognize these problems until they had spent significant
amounts of time andmoney without having anything usable to show for it. The problems
grew worse as system requirements became more complex, with no reliable techniques
for estimating the work needed to define, design, and develop these systems.

With this situation in mind, a group of European academic software leaders
organized a workshop on “software engineering” in 1968 [1]. The termwas intentionally
provocative, conveying the notion that it should be possible to engineer software
development in the same manner as projects in traditional engineering disciplines.
(Author’s observation: engineering in these other disciplines wasn’t always very
predictable on innovative projects, such as the aforementioned airline reservation system
or the NASAApollo Program leading to the 1969 moon landing. These software leaders
may have been too optimistic at the time.)

In any event, a subsequent workshop, also sponsored by the NATO Science
Committee, was held a year later, in 1969 [2]. Together, the reports from theseworkshops
identified numerous promising techniques for software engineering and stimulated
interest in software development processes. The first workshop gave greater attention to
design and to processes for software production, while the second one introduced issues
of program correctness and program portability. Taken together, these reports resulted in
valuable exchanges of ideas among participants, as well as an agenda for future activities
for the emerging field of software engineering.

The field began to developmore extensively in the early 1970s, with such advances as
the waterfall model for software development [3], structured programming, modularity,
and various techniques for program correctness, with work on program specifications
following soon afterward. These activities were among the main topics at the 1975
International Conference on Reliable Software and the 2nd International Conference on
SoftwareEngineering, held in 1976. IEEEbegan publication ofTransactions on Software
Engineering in 1975.

1.3 Origins of Software Engineering Education

These developments identified the need for education on software engineering topics.
Initially, academic courses on topics such as programming methodology were taught in
computer science departments, but the growing interest in software engineering practices
raised the question of whether software engineering education should be separated from
the foundational computer science topics. This question was a major topic at a workshop
organized byWasserman andFreeman in early 1976 [4]. They alsoworkedwith Fairley to
lay out some goals for software engineering education [5], but the topics of management
techniques and communication skills were at odds with the more technical material in
computer science and electrical engineering courses.

As they evolved, some of the traditional computer science courses began to take
on a more practical outlook, especially as universities recruited faculty with software
development experience. The release of the Unix system [6] from AT&T Bell Labs,

Specializations in Software Engineering Education 3

starting in 1974, included source code, so that courses on operating systems could
evolve from theoretical discussions of scheduling andmemorymanagement to a practical
examination of how those tasks were handled in a real operating system. Tanenbaum
wrote MINIX, a Unix-like system that was included on a disk in his widely adopted
operating systems textbook [7]. Relational database management systems emerged in
the same timeframe, enabling faculty to augment their courses with practical experience
in data management.

Apart from teaching these concepts in university courses, there was a huge demand
for software engineering education in industry, government, and other organizations.
This demand led to the growth of commercially-sponsored short courses on various
software development topics, as well as many startup companies producing software
tools. For example, Freeman and Wasserman edited four editions of their Tutorial:
Software Design Techniques, published by the IEEE Computer Society Press, beginning
in 1976, and taught short courses based on that material [8]. Ed Yourdon created a
company with a team of experts who taught Structured Analysis and Structured Design
[9] to industry-based clients. Doug Ross, founder of SofTech, was an attendee at a NATO
Conference, and went on to develop SADT, another analysis and design method that was
widely adopted. However, these methods were rarely taught in universities.

Over time, many universities have added undergraduate and/or graduate degree
programs in software engineering for those who want to earn an academic degree.
Many students follow an undergraduate degree in computer science with a MS degree
in software engineering, which may be offered as a specialization in a computer science
or electrical engineering department or, increasingly, as a separate degree program in a
larger academic unit. These programs typically have an emphasis on educating students
for professional jobs in industry, rather than as a stepping stone to a doctoral degree.

2 Modern Challenges in Software Engineering

In the 1970’s and into the early 1980’s, the dominant model for computing involved
users at alphanumeric terminals interacting with applications running on mainframes
or minicomputers. The lower cost of hard disk drives and the wider use of database
management systems made them well-suited for that class of applications.

However, the introduction and rapid adoption of personal computers in the 1980’s
brought important changes that had amajor impact on software development. The first of
these was the client-server model. As alphanumeric terminals were replaced by personal
computers, distributed applications could be developed, with code running on both the
PC (client) and the mainframe (server). The second of these was the graphical user
interface (GUI), first developed for the Alto computers at Xerox PARC, with similar
interfaces released on the Macintosh and on engineering workstations. GUIs became
universally available following the release of Microsoft Windows 3.0 in 1990. Both
of these advances had implications for software engineering practices, particularly the
latter, which raised the need for expertise in designing GUIs, a topic that had not yet
been introduced in computer science and software engineering education.

Another impact of PCs was extensive use of software by the general public,
coinciding with the release of relatively inexpensive packaged applications, often sold
through retail stores. Applications for word processing, personal finance, and graphic

4 A. I. (Tony) Wasserman

design, as well as games, were leaders in a huge wave of software releases. When an
application was complete, it was manufactured in large quantities, copied onto floppy
disks (later onto CDs), packaged, and distributed for sale through retail channels, much
like music albums or even groceries. The cost of the mass production process meant that
applications had to be extensively tested prior to its release. When poor quality software
was released, it had both a measurable cost for fixing the software, plus manufacturing
and distributing new media, as well as a reputational cost to the vendor. In those pre-
Internet days, those costs included physical shipment of the packaged product. Software
engineers responsible for these applications had to learn about software testing and
quality assurance processes, another topic that was rarely taught in academic institutions.

2.1 The Internet Changes Everything

The invention of open networking protocols and systems (Ethernet and TCP/IP) in
the 1970s led first to the creation of local area networks and then to the ability to
connect and transfer information among machines anywhere, using the standard IPv4
protocol. In 1989, Sir Tim Berners-Lee invented HTTP, the Hypertext Transfer Protocol,
along with HTML and the URI (or URL) [10]. With these developments, it became
possible to access and transfer information from one machine to another. Berners-Lee
also created the first web browser, the WorldWideWeb, providing a graphical interface
formanaging this remote access.Mosaic, the first popularwebbrowser,was created at the
National Center for Supercomputer Applications (NCSA), by Marc Andreesen and Eric
Bina [11].

Andreesen then left NCSA to start Netscape, which released Netscape Navigator
in 1994, soon followed by JavaScript for customizing the presentation of web content.
Microsoft soon released their browser, Internet Explorer, but it was not fully compatible
with the open standard, creating some problems for website designers.

This major development, rapidly accepted by organizations and people, created a
new set of application development issues for software engineers, who now could build
web applications that could run on a globally distributed network of machines. The
applications transmitted HTML back to the browser, which then displayed the output.
Software engineers working on web applications were presented with a new set of
technical challenges.

The first of these was related to presentation of the output in the browser (the front
end), designing a user interface for the end user that could be implemented by code
running on a server, typically a remote machine (the back end), which used an HTTP
server to transfer the application output for display by the browser.HTMLand JavaScript,
taken together, provided great flexibility in the browser display, and used technology that
was fundamentally different from what had come before. End users accessing websites
andweb applications quickly developed preferences for the appearance of content in their
browsers, making it important to include specialists in interface design in the software
engineering team.

A second set of challenges related to security. A user accessing awebsite might know
very little about its provenance, and had no reason to trust it with personal information,
which might be captured and used maliciously. Furthermore, there was a risk that

Specializations in Software Engineering Education 5

data could be stolen during transmission from the end user to the web application.
These concerns meant that software engineers had to devote attention to security, which
was much less of a concern when an application was running on an organization’s
own machine(s) detached from external network connections. Accordingly, security
specialists were important in the development ofweb applications and in their computing
infrastructure, with firewalls, for example.

A third set of challenges was related to performance, both in network traffic and
computational load on the server. Even from the earliest days of the Internet, certain sites
became very popular, to the extent that the number of HTTP requests could overwhelm
the capacity of these popular sites, causing severe slowdowns and crashes. Some of these
problems were eventually addressed in the computing infrastructure with hardware load
balancers distributing the requests amongmultiple computers. As with other concerns, it
was important to include performance experts on the software engineering team, people
who knew how to scale resources for greatly increased demand, as well as to queue up
requests to relieve the demand on web sites.

Taking these challenges together, users quickly grew to expect web applications to
be secure and reliable, with acceptable performance and an attractive user interface,
particularly for financial transactions and other critical needs.

These needswere so new and rapidly changing that therewere few, if any, educational
resources for software engineers to learn how to meet these challenges. Instead,
individual engineers discovered solutions empirically and thus becameexperts onvarious
aspects of web application design, development, and operations. In a sense, these experts
resembled the designers of cathedrals in the Middle Ages, where a small number of
people knew how to design critical features, such as the nave, and traveled from one city
to another to help local people design and build them.

Many well-known web applications, including Facebook, Netflix, YouTube, and
Amazon.com, support millions of concurrent users and process terabytes of data,
volumes thatwere beyondmost people’s imaginationswhen the Internetwasfirst created.
But there were few formal principles underlying the development of these sophisticated
applications. Instead, many of the techniques needed for building web applications were
developed in an ad hoc manner, rather than building on theoretical foundations.

2.2 Mobile Applications Change Everything Again

Mobile devices first gained significant use in the late 1990s, with people wanting to
replicate the features of some web applications on these devices, including sports scores,
weather forecasts, and stock market quotations. From a conceptual standpoint, doing so
was straightforward, but there were numerous technical issues that made it difficult to
build them.

The first of these problems involved the limited resources of the mobile device itself,
particularly before the emergence of Apple and Android smartphones in 2007 and later.
Early mobile phones had very little local storage, very small displays, and no keyboard,
so the nature of user interaction was quite different than it was running web applications
on laptop and desktop computers.

Second, these phones were designed for communication with a telecom provider,
not with a general purpose computer, as found on the open Internet. Telecom companies

6 A. I. (Tony) Wasserman

didn’t support HTML, so early mobile applications used WAP (Wireless Application
Protocol) and WML (Wireless Markup Language), a similar but more restricted
language, and had limitations on the length of theWML text that could be transmitted to
the phone because of storage limitations [12]. This issue eventually became less critical
with the arrival of modern smartphones.

Third, mobile phones had limited battery power and network communication,
whether voice, text messages, or mobile applications, all used battery power. Keeping
an open connection between the mobile phone and the application could quickly deplete
the battery.

Fourth, as mobile devices gained more power and larger screens with the emergence
of smartphones, mobile application designers had to adjust user interfaces to create an
appealing user interface on a screen of 10–12 cm diagonally. Response times remained
a critical aspect in the design of web applications, not just for highly interactive games,
but also for applications in general.

Fifth, the growing power of mobile devices made it feasible to do more computation
on the device rather than on the server side. Software engineers had to decide how to
distribute the application between the device and the server, taking relative compute
power, volume of network traffic, and battery use into consideration.

In summary, the growing use ofmobile devices for Internet access presented software
engineerswith a newset of issues goingbeyond those found in traditionalweb application
development. Once again, there was little theoretical foundation to assist in addressing
these issues, so the software engineers were often left to solve these problems by trial
and error. Fortunately, the major platforms (Android and iOS) provided toolkits to
aid developers in building applications, and various companies contributed software
libraries, such as Meta’s React Native, to simplify and standardize aspects of the user
interface design [13].

2.3 The Internet of Things and “Smart” Devices Add to Complexity

The preceding sections addressed computing platforms connected to the Internet, but
this notion of connectivity expanded at the end of the 20th century to include devices
in the physical world that could also be connected to the Internet. Rose, Eldridge, and
Chapin described this “more connected world” [14].

The Internet of Things relies on sensors that are receiving and sending out
information. Sensors are used for many different purposes, including temperature
sensing, surveillance, home andpersonal devices, image processing, and location sensing
(e.g., GPS). These different types of sensors can be used individually or in combinations
for applications such as intrusion detection, motion tracking, fault identification, facial
detection, and management of “smart” appliances and homes. These sensors may
communicate using an Internet protocol, or via a proprietary protocol to an intermediate
device that transmits a message to a server over the Internet. Common consumer
applications include adjusting home temperature and lighting based on a schedule or on
presence detection, diagnosing problems with electronic devices, tracking the location
of personal items, and biometrics, as found in fitness devices.

There are billions of these sensors emitting signals, many of which require an
immediate response, as required for autonomous driving or perimeter protection. It’s very

Specializations in Software Engineering Education 7

common for a server to receivemany sensor signals concurrently, with the corresponding
need to know which ones require a response and which can be ignored. Alarms may
fall into the former category, while regularly scheduled status signals fall into the latter
category.

The Internet of Things is responsible for an entirely new class of time and sensor-
based applications. Not only must the software properly handle a high volume of
signals, but it must also be able to detect inoperative sensors and malicious attacks
from unauthorized sensors that could result in denials of service or erroneous responses
to the signals from authentic sensors.

A sophisticated application, such as Level 5 autonomous driving [15], requires
continuous processing of different types of signals, including lidar, video images, vehicle
speed, and more, with the ability to respond instantly with audio notifications, evasive
actions (braking, speed changes, and steering), as well as sending emergency messages
in the event of a collision.

In summary, developing applications for the Internet of Things introduces the
software engineer to a new array of issues related to real-time processing of signals
from a large number of sensors. While there is already a body of knowledge related to
the development of real-time signal processing applications, more is needed to address
the security, performance, and criticality issues needed to develop reliable and robust
applications for the Internet of Things.

2.4 Artificial Intelligence Changes Everything Yet Again

Work on artificial intelligence (AI) began in the early days of computing, with game
playing and other kinds of problem solving applications. In that era, applications used
a set of rules and/or a scoring system, making it possible to trace and adjust, as needed,
the decision-making process used by the application [16].

Many modern AI applications take a different approach, relying on large data sets
to “train” the application, providing a foundation for solving the problem. For example,
an AI application can “learn” how to recognize an image of a cat by processing many
thousands of images, including images of cats, which are identified as cats. When the
program is presented with new images, it can use its existing data set to compare the
image with the known images of cats to determine whether the new image is that of a
cat. The success rate of the recognition depends on the contents of the data set.

Thismachine learning (ML) approachhas beenused,with varyingdegrees of success,
formany different applications, includingmedical diagnosis, financial lending decisions,
image enhancement, and autonomous driving. Many of the failures are caused by poor
quality of the dataset underlying the analysis, often because the dataset fails to cover all
of the possible cases that the AI software might encounter.

The development process in these modern AI applications is not algorithmic, but is
dependent on the training dataset. From a software engineering perspective, a developer
must learn an entirely new approach to application development, often using new
development languages and data management systems, as well as software libraries
that accompany them [17]. The testing process is also quite different from that used
in algorithm-driven applications, since incorrect results may be unrelated to any code
written by the developer.

8 A. I. (Tony) Wasserman

Several of the examples cited in the above discussion on the Internet ofThings include
AI components. Building these applications often involves combining traditionally built
software components with AI components.

Unlike the examples in the previous sections, software engineers are working in
an area where there is well-developed educational material, such as the comprehensive
text by Russell and Norvig [18]. However, building AI/ML applications follows a very
different process than building the other types of applications described in previous
sections. As a result, there can be a substantial learning curve for the software engineer
switching to AI application development, with a corresponding need for suitable
education.

2.5 Changes in Software Engineering Processes and Tools

Beyond the above waves of new technologies, the way that software is designed,
developed, and deployed has also changed. The first of these is Software as a Service,
with applications being hosted by publicly available cloud services. That shift takes
the much of the burden of hardware and network maintenance away from the software
development organization, as well as letting them control all running versions of the
software, thereby reducing installation issues for their users and simplifying updates
to the software. Many software development organizations have adopted a process of
continuous integration/continuous deployment that facilitates the transition from the
development team to customer availability. That also allows them tomake enhancements
or fix bugs as needed, simply by updating the running versions, with no need for users
to download any code or executable programs.

The second of these major changes is the extensive use of open source software and
other software components, now found in the vast majority of running applications,
especially at the infrastructure level. Instead of writing a new data management
application or user interface library, for example, developers can incorporate such proven
and well-tested software into their application, allowing them to focus their efforts on
the parts of their application that provide value to their intended users.

The third of these changes is the shift from waterfall to agile development methods,
which support incremental development and release of a software system. Techniques
such as Scrum [19] have been adopted by both large and small organizations, allowing
organizations to organize their development as a series of brief sprints, with daily
reviews of progress. While the intent of agile methods was to bring developers together
for the daily meeting, more and more development organizations now have remotely
distributed teams. Instead, teams can meet through a video conference, and have
continual communication through a messaging tool such as Slack [20].

Finally, many software development organizations have added product management
to their process,where a productmanager communicates among customers, development
managers, and other stakeholders within the organization. The product manager helps
to prioritize the introduction of key features into a product, and manages a roadmap for
successive releases.

Specializations in Software Engineering Education 9

3 The Need for Specialization in Software Engineering Education

In reviewing the skills needed for creating software systems, it becomes quickly apparent
that it is impossible for anyone to keep up with all of these different types of systems or
with the tools needed to define, build, test, deploy, and enhance them. Instead, people tend
to work on specific types of systems and/or on broadly needed aspects of applications,
such as site reliability engineering or cybersecurity. In today’s world, it is very difficult
to be a generalist, so software engineers are naturally drawn to specialize in one or more
subdisciplines, based on personal preference and/or work assignments.

The breadth of software engineering can be seen by reviewing the Software
EngineeringBodyofKnowledge (SWEBOK), sponsored by the IEEEComputer Society,
with the Third Edition appearing in 2014 [21], and a Fourth Edition currently under
review. The newest version of the SWEBOKGuide (v4) identifies 17 distinct knowledge
areas for software engineering in thorough detail, and reinforces the observation made
here that the field is too large and is changing too rapidly for anyone to be able to master
all (or even a significant portion) of the topics covered in the guide. As just one example,
Version 4 of the guide, while still incomplete, does not address the emerging important
topic of Generative AI, as found in tools such as ChatGPT [22].

In this section, we briefly review how specialization is handled in such disciplines
as law and medicine, and then address how it could be handled for software engineering
specialties.

3.1 Specialization in Other Professions

This approach to specialization is very similar to what is found in other professional
disciplines, such as law and medicine. In law, for example, an attorney might specialize
in an aspect of criminal law without knowing more than the basics about civil law.
Similarly, in medicine, a specialist in cardiology would refer a patient to a specialist in
a different area of medicine to address questions about other human systems.

Bothmedicine and law have long had specializations across their field. For medicine,
according to Weisz [23],

“specialization had become perceived [in the 19th Century] as a necessity of medical
science as a result of the realization of two preconditions: First, a new collective
desire to expand medical knowledge prompted clinical researchers to specialize; only
specialization, it was believed, permitted the rigorous observation of many cases.”

The American Board of Medical Specialties (ABMS) currently oversees 24 Boards
that certify medical specialists in 40 specialty and 88 subspecialty areas of medicine
to assure their clinical judgment and skills needed for delivering excellent patient care
[24].

In law, the American Bar Association (ABA) currently accredits 18 specialty
certification programs. According to the ABA, “lawyer certification helps consumers
identify lawyers who have specialized training, education, experience, and knowledge
in their area of practice, and meet the highest standards of ethics and professionalism”
[25].

In bothmedicine and law, specialists are expected to practice lifelong learning to stay
current in their specialty and to maintain their certification. The ABMS helps to oversee
the work of each of the specialty Boards that approve Continuing Medical Education

10 A. I. (Tony) Wasserman

and recertify physicians, and maintains a list of accredited educational resources. For
law, ABS member attorneys have access to accredited online webinars and on-demand
programs, as well as to approved in-person conferences and events.

It is important to note that neither discipline requires their professionals to obtain
their continuing education from academic institutions, though such education may be
available as a option for them. (While this discussion draws upon US organizations, such
specializations also exist in other countries, giving them broader relevance.)

3.2 Software Engineering Specialization

The examples of law andmedicine provide a framework for creating an analogousmodel
for software engineering. By analogy, the centerpiece would be a professional degree
in software engineering, building upon today’s MS programs in software engineering.
As with these programs, entering software engineering students would be expected to
have a solid academic background in a relevant discipline, such as computer science or
electrical engineering.

Unlike some current software engineering degree programs that last for a year or
less, this professional degree program should be long enough for students to learn not
only the fundamental principles of software engineering but also to learn about some
specializations and then apply them inpractice.Agood analogy iswithmedical education
in the US, where the foundational education is followed by an internship where the
new doctor is rotated from one department to another, gaining knowledge of various
specializations. The internship is followed by a residency at a medical institution, where
a new doctor develops expertise in a chosen specialty, and then goes on to practice
medicine in that specialty. (Board certification is not always required.)

The approach to specialization in the law is similar. In the US, students who have
completed their law degrees typically join an existing practice and study to pass the Bar
exam, which accredits them to practice law in their state. It’s also possible for them to
learn more about specific aspects of the law by serving as a clerk for a judge.

At present, there is no certification requirement for software engineers in the US, and
it seems unlikely that such a requirement will be imposed in the foreseeable future. Even
so, there are many certificate programs sponsored by hardware and software vendors, as
well as by professional societies, software training businesses, and extension programs
associatedwith colleges and universities. The quality and the reputation of these different
certificates varies greatly, but many of them are seen by employers as having value and
thus helping applicants find work. Companies such as edX, Udemy, and Coursera offer
thousands of technology-based courses, often with the option to obtain a certificate upon
successful completion of a course.

3.3 Possible Specialization Areas

There are many possible specialization areas for software engineers, some of which have
been suggested in previous sections of this paper. In each of these cases, the material
covered in previous computer science and software engineering education provides the
foundational material for these areas of specialization. Possible candidate areas, in no
particular order, include the following:

Specializations in Software Engineering Education 11

1) Scalability – The focus is on creation of system architectures that allow computing
resources to be dynamically allocated (and deallocated) to assure satisfactory
performance of the application, including response time.

2) Security – The emphasis cuts across protection against malicious intrusion of an
application or its underlying infrastructure, along with detection and remediation of
software vulnerabilities

3) User experience – This area is aimed at continuous improvement of user interfaces
and refinements to applications to simplify the ability of users to complete their task(s)

4) Analytics – The theme of this topic is to improve understanding of running programs
with the goals of lowering the costs of execution and of understanding how users
interact with the software

5) Empirical Software Engineering – This specialization addresses the software
engineering process, including measurement of the various techniques and tools used
for building systems

6) Open Source Software – This subject covers not only the areas of contributing to and
using open source software, but also organizational management and policies for its
adoption

7) Interdisciplinary specialization – With software becoming pervasive across a wide
range of domains, this specialization combines expertise in software engineering
with expertise in another subject matter. Manufacturing process control and medical
informatics are just two possibilities.

While these areas are relatively narrow, it’s also possible to consider some broader
topic areas for specialization, including such topics as machine learning and artificial
intelligence, mobile application development, application testing and the Internet
of Things (high-volume real-time systems). The knowledge areas described in the
SWEBOK guide also suggest some suitable areas for specialization.

Developing such a specialization might take a year of further study and practical
experience beyond the initial software engineering courses. At that point, the student
could be considered as a professional with a specific area of expertise. It would then be
the responsibility of software engineering professionals to develop a personal approach
to lifelong learning that would assure their career-long ability to remain an expert in
their area of specialization.

4 Conclusion: Future Directions in Software Engineering
Education

One of the most important unanswered questions for software engineering education
is the extent to which employers will seek specific credentials from job applicants. At
present, software developers are in high demand. Many people with only a moderate
amount of relevant training, such as a coding school, are able to find work in the field,
and those with academic degrees in computer science often have multiple opportunities.

However, there is an important place and significant demand for people who not only
have the foundational training but also have demonstrable knowledge of one or more
specialty areas, who are frequently employed by companies and other organizations that

12 A. I. (Tony) Wasserman

are building highly sophisticated software-centric systems, which often have extremely
high demands for reliability, performance, and security.

At present, most people with technical expertise in these areas have gained it
from their on-the-job experience, a learning-by-doing approach to specialization. Very
few existing certification programs are aimed at these advanced areas of technical
specialization, though it is possible to take courses on many of these topics through
University extension programs and educational offerings from companies that have
aggregated such courses. There are numerous opportunities to create certification
programs based on specialized topics, similar to the professional degree in Human-
Computer Interaction offered by Carnegie Mellon University [26].

It remains unclear as to how many such certifications and degree programs will
emerge to address the specializations described above or in the Software Engineering
Body of Knowledge. Beyond that, it’s uncertain whether employers and their hiring
managers will consider such certifications in their hiring process, since there are
currently no regulations that would require companies to include people with “certified”
knowledge on their development teams for specific projects.

It’s certainly possible that organizations contracting for software development work
could require that the contract team include people with specific certified skills, much
as some companies and governments have required that contractors must have achieved
a certain level of software engineering maturity as measured by the CMMI Institute, a
spinoff of the Software Engineering Institute [27]. If such an approach is widely adopted,
then one can expect to see an increasing number of certification programs, with the added
possibility that they will be sponsored by professional societies or related organizations
whose imprimatur would add credibility and status to the educational program, much as
has happened with specializations and continuing education in law and medicine.

References

1. Naur, P., Randell, B.: Software Engineering: NATO Science Committee (1969)
2. Buxton, J.N., Randell, B.: Software Engineering Techniques: NATO Science Committee

(1970)
3. Royce,W.W.:Managing the development of large software systems: concepts and techniques.

In: Proceedings of Western Electronic Show and Convention (WesCon), Los Angeles (1970)
4. Wasserman, A.I., Freeman, P. (eds.): Software Engineering Education: Needs and Objectives.

Springer Verlag, New York (1976). https://doi.org/10.1007/978-1-4612-9898-4
5. Freeman, P., Wasserman, A.I., Fairley, R.E.: Essential elements of software engineering

education. In: Proceedings of 5th International Conference on Software Engineering, San
Francisco, pp. 116–122

6. Ritchie,D.M., Thompson,K.: TheUnix time-sharing system.Commun.ACM 17(7), 365–375
(1974). https://doi.org/10.1145/361011.361061

7. Tanenbaum, A.S.: Modern Operating Systems. Prentice-Hall, Englewood Cliffs, NJ (1992)
8. Freeman, P., Wasserman, A.I. (eds.): Tutorial: Software Design Techniques, 4th edn.

Computer Society Press, Los Alamitos, CA (1983)
9. Stevens,W.P., Myers, G.J., Constantine, L.L.: Structured design. IBMSyst. J. 13(2), 115–139

(1974)
10. The Birth of theWeb. https://www.home.cern/science/computing/birth-web. Accessed 8 June

2023

https://doi.org/10.1007/978-1-4612-9898-4
https://doi.org/10.1145/361011.361061
https://www.home.cern/science/computing/birth-web

Specializations in Software Engineering Education 13

11. NCSAMosaic Internet Web Browser: the complete history. https://history-computer.com/his
tory-of-the-ncsa-mosaic-internet-web-browser. Accessed 8 June 2023

12. Tracing the History and Evolution of Mobile Applications. https://tech.co/news/mobile-app-
history-evolution-2015-11. Accessed 8 June 2023

13. React Native. https://reactnative.dev. Accessed 8 June 2023
14. Rose, K., Eldridge, S., Chapin, L.: The internet of things: an overview. Internet Soc. 80, 1–50

(2015)
15. The Six Levels of Vehicle Autonomy Explained. https://www.synopsys.com/automotive/aut

onomous-driving-levels.html. Accessed 8 June 2023
16. Crevier, D.: AI: TheTumultuousHistory of the Search forArtificial Intelligence. Basic Books,

New York (1993)
17. PyTorch. https://pytorch.org. Accessed 8 June 2023
18. Russell, S.J., Norvig, P.: Artificial Intelligence: AModernApproach. 4th ed. Pearson, Harlow,

England (2020)
19. Welcome to the Home of Scrum. https://www.scrum.org. Accessed 8 June 2023
20. Made for People. Built for Productivity. https://slack.com/. Accessed 8 June 2023
21. Bourque, P., Fairley, R.E. (eds.) Guide to the Software Engineering Body of Knowledge,

Version 3.0, IEEE Computer Society (2014)
22. Introducing ChatGPT. https://openai.com/blog/chatgpt. Accessed 8 June 2023
23. Weisz, G.: The emergence of medical specialization in the nineteenth century. Bull. Hist.

Med. 77(3), 536–575 (2003)
24. What is ABMS Board Certification? https://www.abms.org/board-certification. Accessed 8

June 2023
25. ABA Standing Committee on Specialization. https://www.americanbar.org/groups/specializ

ation. Accessed 8 June 2023
26. Human-Computer Interaction Institute. https://www.hcii.cmu.edu/academics. Accessed 8

June 2023
27. CMMI Institute. https://cmmiinstitute.com/. Accessed 8 June 2023

https://history-computer.com/history-of-the-ncsa-mosaic-internet-web-browser
https://tech.co/news/mobile-app-history-evolution-2015-11
https://reactnative.dev
https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://pytorch.org
https://www.scrum.org
https://slack.com/
https://openai.com/blog/chatgpt
https://www.abms.org/board-certification
https://www.americanbar.org/groups/specialization
https://www.hcii.cmu.edu/academics
https://cmmiinstitute.com/

Co-design of Modern Technology Modules
with Industry and Students as Partners

David Cutting(B) , Andrew McDowell, and Esha Barlaskar

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast, UK

{d.cutting,andrew.mcdowell,e.barlaskar}@qub.ac.uk
https://www.qub.ac.uk/schools/eeecs/

Abstract. It is essential to provide computing students with hands-on
exposure to modern techniques and technologies such as cloud comput-
ing in an authentic and engaging fashion, but universities can be slow
to respond to fast-moving technologies. Co-design is a process in which
other stakeholders, such as members of the student body and industrial
partners can take part in the initial design process of a resource or ser-
vice. Our approach was to embed co-design into the creation of a new
responsive module to address the topic of cloud computing, leading to
the creation of overall concepts as well as specific curriculum, learning
outcomes and assessments. To implement this module in a cost-effective
and timely manner a private cloud solution was created requiring sig-
nificant up-skilling of staff but allowing a proof-of-concept delivery with
no financial risk. The module following the co-design process was highly
successful and well regarded by students and employers, allowing fur-
ther financial investment and improvement to resources. To ensure the
co-design process was sustainable, an iterative approach was taken with
continual review and improvements leading to further refinement and
increases in quality. The resulting module quickly became the most pop-
ular optional computing module and has garnered positive feedback from
students, examiners and employers. We are now using this as a model
to show how such an approach can deliver low-risk agile responses to
emerging topics.

Keywords: Co-design · Cloud Computing · Industrial Partnership

1 Introduction

The area of cloud computing is one that has seen significant growth and use in
industry often categorised as “using someone else’s computer” i.e. rather than
running code on your own equipment it is deployed to the cloud and runs on
a vendors service (such as Amazon Web Services or Google Cloud Platform).
This can be seen as a “utility computing” model i.e. you only pay for what you
use rather than acquiring and maintaining expensive infrastructure. Use of cloud
computing technologies allows businesses a quick route to market, much more
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, pp. 14–31, 2023.
https://doi.org/10.1007/978-3-031-48639-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_2&domain=pdf
http://orcid.org/0000-0002-1088-4749
https://doi.org/10.1007/978-3-031-48639-5_2

Co-design with Industry and Students 15

efficient use of resources and agility in responding to changes in demand, thus
making it a key factor in the growth of many organisations [6]. Consequently,
skills in cloud computing are much in demand by employers [8] and so an area
where Higher Education may choose to focus as industry alignment [2,14] is an
important factor in delivering the workplace-ready graduates for the computing
sector.

For us to deliver education in this area a curriculum review needed to be
undertaken and new content devised. Given the drivers behind this requirement
and the importance of curriculum alignment [2,14] a co-design approach was
taken whereby industrial partners and students had direct input into how the
learning outcomes, activities, and assessments would be defined as well as pro-
viding expertise and masterclasses as appropriate throughout the academic year.
Early on it was also identified that given the domain and the difference in how
students learn [17] with many favouring “learning by doing” i.e. kinaesthetic
learning [1] there should be a substantial element of active learning with applied
computing included.

The remainder of this paper is structured as follows. In Sect. 2 key related
work is identified and evaluated before our approach is introduced in Sect. 3. Spe-
cific design decisions of our approach are included in Sect. 3.1 detailing the “cloud
in a cupboard” setup and Sect. 3.2 our private cloud implementation. Discussion
of the approach and outcomes including student, industry, and academic feed-
back are contained in Sect. 5. Finally, conclusions are reached and future work
identified in Sect. 6.

2 Related Work

Co-design of a teaching curriculum with expert parties is not in itself new and is
widely adopted in many domains such as healthcare [9,16]. [11] defines co-design
as “a highly-facilitated, team-based process in which teachers, researchers, and
developers work together in defined roles to design an educational innovation”
while [15] defines it more broadly as “the creativity of designers and people not
trained in design working together in the design development process”. Co-design,
therefore, can be seen as a collaborative up-front process moving the traditional
element of stakeholder feedback from a review (post-) activity to an intrinsic
part of the creation (pre-). The overall goal of this process is to build a resource
which, through early engagement, is highly aligned and relevant to the needs of
the stakeholders, delivering an engaging and efficient resource or service [3–5].

Although an attractive prospect with the potential to generate effective out-
comes, the process of co-design is by no means straightforward. [13] analyses a
number of projects to identify barriers and enablers in the co-design of services.
Amongst other general recommendations, [13] identifies the tension potentially
caused by including such a wide range of people with different backgrounds and
drivers, as well as issues with the process being seen as a “superimposed one-off
activity with weak connection to actual end solutions”, which can be addressed
by ensuring a sustainable approach is used with ongoing in-depth transformation
to deliver value.

16 D. Cutting et al.

Within the setting of higher education in addition to a focus on industrial
co-design there has been work on including the student body as partners in the
design and delivery of learning (often referred to as co-production) both as a way
to build student engagement [7] and to create relevant curriculums and schemes
of work [12].

3 Our Approach

Building on the experience seen in the literature our approach is to combine both
industrial and student partners in the end-to-end co-design and lifecycle of a new
cloud computing module, seeking input to build and shape every element from
topics to assessments. This process aims to embed co-design into every element
demonstrating clear links between design input and the resources ultimately
building an inclusive feedback cycle to keep refining and refreshing content year-
on-year to ensure a sustainable outcome.

Having identified both the need for cloud computing skills, and a desire for
strong industry engagement, a series of events were held to co-design this final
year module covering cloud topics. Working with existing industrial contacts a
number of small meetings were held starting with a blank page and beginning to
draft possible topics and assessments. The intention of these, building on existing
good relationships, was to define some initial draft structures which could be
used to inform wider discussion; it being considered easier to get feedback on
a plan however basic than start with a blank piece of paper (stages 1 and 2
of our general process below). The output from this stage was taken forward
and a draft module outline with several options for assessment was generated by
academics.

The general process we adopted can be seen in Fig. 1 and consists of the
following stages:

1. Industry partners are invited to a series of facilitated sessions to review any
existing curriculum (or, initially, high level curriculum proposals).

2. The output from the first step is developed in partnership with the industrial
members to produce the learning outcomes, topics and general assessment
structure (type, weight, learning outcomes).

3. Academic staff take these outputs and, using their specialist skills in edu-
cational delivery, generate the taught material for the identified topics and
outcomes.

4. As students begin their iteration of the course they receive the topics, learn-
ing outcomes, and assessment structure along with taught material to be
delivered.

5. The students, in a facilitated fashion working with the academic staff, devise
and agree the specific concrete form of the assessments including the questions
to be answered, precise form of the work, and agree a marking rubric. They
then undertake the assessments and are marked accordingly, getting feedback
as with any other module.

Co-design with Industry and Students 17

Fig. 1. Co-design process with input from industry and students including review cycle

6. At the end of a module iteration student views are canvassed on the overall
module as well as specific improvements of changes. These, along with mark-
ing results and sample work, are fed back to the industrial partners to begin
a cycle of review and we return to stage 1.

The first iteration of pre-launch co-design culminated in a large “coffee and
cloud” event hosted at the university where a large number of employers in
different fields were invited (these ranged from SMEs to multi-nationals) along
with student stakeholders to help shape the curriculum. This event was held
under “Chatham House Rules” and generated lively debate and engagement.
Split into groups, each with a facilitator from the university, a series of guided
discussions were undertaken asking open questions around general issues and the
proposed module draft in particular. Following each group discussion a wider
inter-group discussion was held where the conclusions of each group were read
out by the facilitator and other groups invited to comment or challenge.

The headline findings of the “coffee and cloud” event as the final consultation
of the co-design were as follows:

– Generic skills more important than platform experience - employers
would value generic hands on experience with any cloud techniques and tech-
nologies, especially for graduate roles, rather than expecting any particular
technology or vendor, although some experience of different vendors would be
useful to see differences in offerings.

– Distributed computing theory is very relevant - focussing on the plat-
forms and technologies must not be at the expense of key theoretical concepts.

18 D. Cutting et al.

The challenges of distributed computing [10] are ever present in large cloud
systems and should be thoroughly understood.

– Processes and ops skills are important - to fully utilise cloud comput-
ing efficiently understanding and exposure to processes such as continuous
integration (CI) and operation skills such as shell scripting are needed.

– End to end engineering - students should be expected to understand the
process of engineering a cloud system from end to end, including architecting
a modern system and a good understanding of relevant software engineering
principles to make effective use of technologies such as microservices.

– Metrics and monitoring - students should be aware of how and why services
are monitored, how reliability can be measured and improved, and the type
of modern metrics gathered from distributed cloud systems.

Ultimately two things occurred; a drive to implement certain concepts impor-
tant to “cloud engineering” throughout the curriculum at different stages and a
specialist new module was implemented with topics and learning outcomes based
on the co-design output. Assessments for this module were finalised following dis-
cussion at “coffee and cloud” before being distributed for any further comment
to the participants (resulting in only positive comments).

3.1 Access to Cloud Environments

Recognising it is essential to provide hands on applied skills in this area it was
necessary to consider how provision to cloud environments and infrastructure
could be facilitated. While most cloud vendors do offer some form of educational
grant or academic access we found this far from plain sailing, with students being
rejected from academic programmes despite providing ID, or just running out of
provided credit before completing their work. Of course, it would be possible to
ourselves utilise “utility computing” and simply pay for access to vendor systems
but this was not a serious option in the resource constrained world of UK higher
education, something some providers did not seem to understand (being highly
US-centric in their education programs where financial resources are more readily
available). Another restriction on buying service was the transient nature of the
spend, at the end of the year that cohort of students would move on but no long-
term investment would have been made in the university facilities and would
require ongoing financial commitment year-on-year.

However, many of the technologies used are actually freely available, mostly
based on free open-source software. The vendors may charge for use of their
computing resources and storage but in many cases the actual technologies and
stacks can be implemented on hardware by anyone. A plan was therefore formed
to build a private internal cloud (called our “cloud in a cupboard”), a state-of-
the-art cloud computing lab facilitating hands-on learning but using resources
which represent a long term capital investment rather than an ongoing utility
cost.

Co-design with Industry and Students 19

3.2 Solution Design of the Private Cloud

To facilitate the delivery of a modern cloud syllabus the following functional
requirements were defined for the private cloud:

– Latest industry practice - the latest industry practice in cloud deployment
should be implemented as far as possible.

– Open access architecture - students should be free to interact with the
resources directly in user interfaces or through APIs to allow open expansion
and access from third-party tools such as Terraform.

– Shell access - students must be provided remote Unix shell access to allow
for command-line use and execution of tools within the environment.

– Pipelines - students must have access to pipeline systems to facilitate CI.

Additionally some non-functional requirements were defined representing the
constraints within which any system must operate:

– Secure - the system should provide a minimal security risk to the internal
network.

– Immediate creation pending further investment - given the funding
and budgetary cycles of the university, the system must be able to deliver a
minimum viable product using only reused/repurposed hardware in the first
instance.

– Robust - as a critical component to a module the system must be robust
enough to handle any minor issues without compromising performance.

– Scalable - the system must have the capacity to scale in future should this
be required.

– Evolvable - the system should have the general design characteristics to allow
the evolution of specific technology platforms deployed upon it.

The private cloud was then implemented during summer 2019 using repur-
posed hardware as an initial proof of concept before being scaled up with dedi-
cated equipment procured in 2020, 2021, 2022 and 2023 resulting each time from
the success of the module and growth in demand. The specific technologies used
for implementation are detailed in Sect. 3.3.

3.3 Implementation Details of the Private Cloud

To meet the design specification in Sect. 3.2 a number of open-source technolo-
gies and stacks were investigated building on suggestions from industry partners
along with independent research. The primary architect of the system was an
academic with over twenty years Unix, Linux, and network administration expe-
rience supported by specialist technicians from the school who had previously
setup private high-performance research clusters.

To maximise future flexibility and be agile a decision was made to base
as much as possible on a virtualised infrastructure, allowing both for a more
efficient use of limited hardware resources and speedy evolution when required.

20 D. Cutting et al.

In addition to shell access students needed the ability to build, test, and deploy
software at scale which led to the decision to use containers (which themselves
were a highly sought after technology). Therefore three general components were
required: shell access, a repository and container registry with pipelines, and an
environment to support the mass execution of containers in a managed fashion.

Virtualisation Infrastructure and Stack: Based on the previous experience
of the primary architect and others in the school the Xen Virtualisation stack
(https://xenproject.org/) was selected. This stack would run on a number of
hardware nodes using local RAID storage but with the ability to migrate virtual
machines as needed between host nodes for resource sharing and disaster recovery
if required. The host operating system chosen was Ubuntu 18.04 LTS following
testing to ensure performance.

Shell: To facilitate shell access a CentOS 7 virtual machine was deployed on
the Xen stack which allowed remote SSH access by students. Some rudimentary
scripts were created which would allow the creation and deletion of accounts
for classes using a CSV file, avoiding the need for any complex tie-in to cen-
tralised authentication, as well as some shared areas for resources such as shell
programming challenge data.

Repository, Registry, and Pipelines: Research and further conversations
with industry partners led to testing and ultimately adoption of Gitlab specifi-
cally the community edition (https://gitlab.com/) installed via Omnibus Gitlab
onto a CentOS 7 VM. Gitlab was chosen as it offered a single solution incorporat-
ing source code management (git repository), container registry and continuous
integration pipelines via Gitlab runners which could be deployed throughout the
infrastructure.

Container Execution: Once containers had been decided upon as the pri-
mary form of code packaging and execution an analysis of the options for a
managed deployment environment for Docker containers (the most common con-
tainer technology) was undertaken. As this was the most complex component
and the one that the team and primary architect had more limited experience
with, a number of test environments were created and evaluated as well as spe-
cific input from industrial partners sought. Ultimately the Kubernetes (k8s)
(https://kubernetes.io/) system was selected as offering the required level of
scalability and control as well as having been successfully deployed by industry
partners with a similar need for container execution on a small private cluster.
To aid in accessibility both for the administrators and students a management
tool called Rancher (https://rancher.com/) was also included providing a web
interface and the ability to create and manage deployments without needing to
create config files (though that option is still available). Kubernetes is structured
with a master node (or nodes) which coordinates the cluster and worker nodes

https://xenproject.org/
https://gitlab.com/
https://kubernetes.io/
https://rancher.com/

Co-design with Industry and Students 21

on which deployments are executed. Although concerns were raised that there
may be issues using VMs to run k8s workers due to CPU scheduling overhead
limited resources meant a mixture of VM and physical worker nodes would be
used. All nodes (master and workers) as well as the Rancher VM were installed
with CentOS 7.

Building the QPC: With the decisions made on technology stacks and testing
complete, implementation proceeded using re-purposed hardware. The hardware
consisted of three Dell servers (Intel Xeon 16 thread CPUs with 64GB of RAM)
and four Alienware workstations (Intel i7 8 thread CPUs with 16GB of RAM)
for a total of 80 CPU cores and 256GB of RAM. Two of the Dell servers were
turned into Xen hosts on which the VMs were deployed (Shell, Gitlab, k8s Master
and a number of k8s workers) with the remaining machines being dedicated k8s
workers built on CentOS 7. On the four Alienware machines the Gitlab runners
were installed which would execute pipeline jobs submitted to the main Gitlab
instance running as a VM. All nodes were directly connected to the university
network for the computer science building. An overview of this initial setup can
be seen in Fig. 2.

Initial Time Investment: Although not precisely recorded it is useful to
roughly quantify the amount of time invested into the project to get to the point
where a first running of the Cloud Computing class could take place. This can
be broadly broken down into the initial co-design consultation exercise and the
technical phases of investigation and implementation. The time approximations
seen in Table 1 have been gathered from contemporaneous notes, calendar and
diary entries and git commit logs. It is important to note these do not include
the time required for “normal” module delivery such as preparing slides, writing
assessments, marking etc., only the additional time the co-design approach and
QPC implementation added.

3.4 Iteration and Refinement

A key concept to ensure the sustainable [13] nature of our approach is the iter-
ative and reflective parts of the process (stage 6). This combines the more tra-
ditional elements of university feedback and review, using student satisfaction
scores and examiner feedback, with a more specific form of review working with
the stakeholder groups from industry and the student body. Though not as
involved as the initial creation, the format is similar including asynchronous
comments and input combined with live facilitated discussion sessions, with the
added involvement of students who have completed the course in the previous
cycle.

This process has led to significant further refinement of the module, both in
terms of topics and assessment, but also ongoing continual improvement as to
the levels of relevance and engagement opportunities, increasing student satis-
faction as evidenced from feedback (more details are included in the discussion
in Sect. 5).

22 D. Cutting et al.

Fig. 2. Initial implementation of QPC in 2019

Table 1. Approximation of initial time investment into QPC project

Phase People Involved Approx. Time Investment (hours) Notes

Initial Consultation Primary Architect 175

Other Staff 16 4 staff combined total
Industry Partners 90

Tech. Investigation Primary Architect 120

Other Staff 30 2 staff combined total
Industry Partners 6

Implementation Primary Architect 100

Other Staff 12 3 staff combined total
Industry Partners 8

From a technical perspective the increased demand for the module (becom-
ing the most selected optional module) meant the private cloud system needed
significant expansion which was possible as once it was shown as a very viable

Co-design with Industry and Students 23

and sought-after module a case for more investment could be made. A number
of improvements were made in stages each year and the current (summer 2023)
state of the infrastructure can be seen in Fig. 3. The workstation nodes have
been retired as have any virtual k8s worker nodes (the concerns identified dur-
ing initial planning were well founded and VM worker nodes did not perform
well). Overall the count of hardware nodes has gone from 7 to 25 with available
CPU cores increasing from 80 to 592 and RAM from 256GB to 1.6TB spread
over virtualisation hosts and k8s hardware nodes (the k8s cluster has 288 cores
and 1TB of RAM dedicated). Improvements in the management systems include
a dedicated internal network and Network Attached Storage in the primary loca-
tion as well as a number of worker nodes being located in a second data centre.

Fig. 3. Condensed overview of QPC as of summer 2023

24 D. Cutting et al.

Gitlab has been upgraded as has the runner capability to spread the load over
the cluster and the majority of all nodes and systems now run on Ubuntu 20.04
or later.

In 2022 the virtualisation stack was completely re-built around XCP-NG
(https://xcp-ng.org/) a community implementation of XenServer and with man-
agement tools using Xen Orchestra (https://xen-orchestra.com). This virtualised
stack now supports live migration of guests as well as automatic backups and
recovery giving a needed level of resilience to the overall system.

4 Cloud Computing Module

The primary purpose of the “cloud in a cupboard” was to support delivery of
education for students and after the consultation, investigation and implemen-
tation detailed above the first iteration of this class took place in the autumn
(fall) semester of academic year 2019/20 (running from September 2019 until
January 2020). The overall content, learning outcomes and specific skills and
assessments had been identified and refined in partnership with industry (as
detailed in Sect. 3, specifically steps one to three shown in Fig. 1) which resulted
in the following “course content” description:

The Cloud Computing module will provide an opportunity for you to
learn about and explore a wide range of concepts, technologies, providers,
and applications of cloud computing. Initially the module will focus on
concepts including how we design, deploy, and manage cloud software and
infrastructure to ensure both high availability and elastic scaling (being able
to go from thousands of users to millions of users seamlessly).

You will learn in detail how software can be developed in such a way
as to easily allow (or not) cloud deployment including concepts of functional
and stateless programming. After covering general concepts and generic
technologies such as containerisation for micro-services, virtualisation, and
DevOps pipelines, the module moves on to look at specific modern cloud
providers such as AWS, GCP, and Azure. You will examine the differences
between these platforms, learn how to deploy to them, and also gain
experience of meta tools which are platform-agnostic and can be used to
specify and manage cloud estates covering multiple providers.

The agreed learning outcomes were as follows:

On completion of this module, students will be able to:

– Demonstrate knowledge, understanding and the application of:

• Core cloud concepts including data synchronisation, performance man-
agement, security, and infrastructure design

https://xcp-ng.org/
https://xen-orchestra.com

Co-design with Industry and Students 25

• Virtual machines and virtualisation stacks
• Container technology including coordinated container swarms and

approaches
• Elastic scalable computing with automatic adjustment to load condi-

tions

– Demonstrate knowledge, understanding and the application of the princi-
ples and application of appropriate software development considerations
to ensure developed software is cloud-deployable

– Demonstrate knowledge and understanding of the principles of functional
and stateless programming

– Demonstrate knowledge and understanding of the principles of modern
devops pipelines including automated infrastructure, continuous integra-
tion, continuous deployment, and monitoring

– Demonstrate knowledge and understanding and the application of com-
mon widely used cloud hosting platforms and management tools

As a “standard” module within our university (worth 20 CATS points rep-
resenting one sixth of a 120 CATS point year delivered over a single 12week
semester) students would be expected to spend approximately one third of their
working time on this module which would equate to 144 h (12 h a week for 12
weeks). During 10 “teaching weeks” (new content is delivered through lectures
and reinforced through practical learning) there would be lectures of 2 or 3 h
(averaging 2.5 h a week) and a 2 h guided practical making a total of 25 h of lec-
ture delivery and 20 h of practical work. The remaining 99 h would be made up
with independent study, working on assignments and attending revision classes
on the topic. Throughout the delivery a number of “office hours” were held where
the lecturer and/or PhD-level teaching assistants were available. The module ran
successfully in 2019 and some further discussion of this as well as evolution of
the approach is contained in the discussion (Sect. 5).

4.1 Assessment

Assessment was entirely coursework based and consisted of three deliverables:

Technical Report (20% of Module): Students are required to produce a
technical report on a topic related to cloud computing (a list of topics was
provided) with the specific requirement that the report must be “a textual piece
of work containing technical details and facts about the topic in question” and
“suitable for reading by someone with knowledge of computer science but not
necessarily the topic in question”. It was suggested to consider the audience as a
CTO or other technical manager who had asked for an overview of the particular
technology. While generally open in nature guidance was also given to include
the background of the topic, the current situation (in terms of maturity and
adoption), risks, opportunities and the future direction of travel.

26 D. Cutting et al.

The overall purpose of this assessment is to have students conduct their own
research into topics as well as being able to synthesise what they find into a
readable form suitable for a wider audience (key things identified by industry
partners).

Project One (40% of Module): Build a cloud-based web calculator from a
provided rudimentary front-end where each service (mathematical operation) is
running in a deployed container and communicated with via an HTTP API call.
The students are required to improve the existing provided frontend and services
(add and subtract) as well as implement their own services in deployed containers
which, for full marks, must be in different languages or paradigms. A number
of other tasks were given as part of this assignment including implementing
pipelines and CI testing, a monitoring service and a custom-built proxy-router
to centralise requests for calculations. Requiring the different languages and
implementation of core functionality such as a proxy router made the project
challenging and requiring independent thought and research as to how cloud
services operate (the proxy router especially gave a clear insight into how Ingress
routers work on a k8s cluster for example).

Project Two (40% of Module): Architect, implement, deploy and manage
a search engine system including the ability to run on multiple vendors (in the
design this could be demonstrated, it did not need to be implemented). Unlike
the previous project no penalty was applied for using off-the-shelf components
and services making the focus the architecture decisions and flexibility of the
options chosen including deployment and monitoring environments.

5 Discussion

While the need to include cloud concepts, engineering and active hands on expe-
rience was clear from industry input, how we should approach this was initially
uncertain. Our decision to choose co-design, involving industry and students
right from the start in shaping the module rather than asking for an opinion
post hoc, was novel in our school and required significant up-front effort to make
contacts and arrange meetings or events. Once the group was set up, however,
the input proved invaluable; helping to remove some assumptions (for example
we had assumed specific vendor experience would be an essential component
while the industry input was the opposite) and build learning outcomes and
assessments from the ground up based on real world projects, experience, and
needs. This alignment was clearly felt and acknowledged by students taking the
resultant module, many of whom would have just returned from an industrial
placement, giving them a very valuable educational experience.

The financial model, seeking capital investment to procure hardware to build
a private cloud rather than paying for utility computing, was made through a
business case which included alternative costing models. The expected take-up of

Co-design with Industry and Students 27

the course showed that a hardware investment model would pay for itself within
three years (i.e. by year three the cost of hardware would be less than the cost
of utility cloud computing for the same period) and this was then supported by
our faculty. In fact the demand for the module was higher than expected and the
point of return on investment was well within two years not three. The ability to
initially use re-purposed hardware also meant that we could show such a system
was possible to deliver a minimum viable product and allow staff and adminis-
trators to upskill to support the private cloud before any significant investment
was made. The ongoing success of the module, both in terms of numbers and
student satisfaction, has allowed further business cases to be made to expand the
hardware capabilities every year. This approach did however require significant
amounts of up-front staff time, support, and re-skilling which purchasing utility
credits from a major vendor (or even fully using a vendor’s pre-packaged courses
such as AWS Academy) would not. The emphasis of maintaining, updating, and
managing the hardware and service also falls within the school, which provides
further risk and challenges that a utility model would avoid.

Although specific platform experience was identified as not needed it was
felt some exposure to different vendors was important more to see the differ-
ences in offerings rather than any specific technology. To this end, the academic
programmes of major vendors were used to provide access but as this wasn’t
essential to the assessments there was no risk with credit use or access changes,
offering a best-of-both approach.

One other aspect of industry engagement was the use of guest speakers.
Taking offers to deliver guest talks gathered during the co-design events a range
of speakers were invited in on weeks aligned to the topic they would be covering,
adding extra depth and detail to the academic and practical content of that
topic. Speakers in this context had a mixed reception with some students clearly
preferring talks which were directly related to coursework rather than the wider
context of the subject. This feedback, combined with the strictures of COVID-19
remote learning, meant that for 2020/21 guest “talks” actually were in the form
of pre-recorded discussions between academic staff and industry experts which
could then be optionally viewed in full by the students or used in part (for
example a specific question and answer) as video content in a particular topic.
This approach was very well received and continued as the model for including
guest sessions post-COVID.

5.1 Student Experience and Evaluation

The first student cohort took the module in 2019/20 and it has been in consis-
tently high demand ever since, such that in 2020/21 it was run twice to satisfy
all requests while still procuring hardware to scale. As of 2022/23 it is the most
chosen optional module in our computing pathways. Student comments at the
end of the module have included the following:

– “Very relevant for industry.”

28 D. Cutting et al.

– “It is relevant to what I was doing on placement, it’s getting exposure to
modern technologies and it’s interesting.”

– “Teaching style, the practicals were very useful for the project, industry rele-
vant and up to date.”

– “Variation in type of assessment allowed to use different skills.”

At the end of each delivery of the module students are asked to give the
module a score in a number of areas including an “overall module score”. This
score has been consistently high, with an average of 4.4/5 which puts in amongst
the most highly rated modules delivered in the school every year.

These comments, and scores, reflect positively on the impact the co-design
process and open architecture provided have on student experience, allowing
what are clearly relevant real-world skills to be taught and assessed as part of
the HE curriculum. Returning graduates who are now working in industry have
commented that this was “the most relevant module” and “should be essential
for all future developers”.

Other aspects of student feedback gathered included suggestions for changes
to the module. The three main concerns raised from the 2019/20 running of
the module were the lack of ability to access some of the resources from off-
campus (making it impossible to study or complete assessments remotely), that
the guest lectures presented by industry were not specifically aligned with the
topics (especially during assessment periods) and finally that the three assess-
ments (including a final project over the Christmas period) took a lot of time.
This feedback was used as part of our defined process (see Sect. 3 and specifically
steps 6 back to 2 in Fig. 1) and allowed immediate changes for the next iteration
of the module in 2020/21. The changes, detailed as followed, were well received
and in subsequent years only small changes have needed to be made.

Remote Access to Resources: While this had been requested by students
in their feedback from 2019, by September 2020 with the COVID pandemic it
became a necessity so the module team worked with the technical services in the
school and wider university to open up the necessary firewall access to allow full
remote access (in 2020/21 all courses were delivered 100% remotely and students
worked from their homes).

Guest Lectures: The format of guest input was changed, from a defined live
lecture to pre-recorded asynchronous presentations and “discussion sessions” with
the module lecturer. This allowed the inclusion of specific industrial input and
was available for those students who wished to make use of it and also for a
library of specific topics to be created which were then available on-demand as
the topics became relevant in the module.

Assessment: The overall assessment footprint was reduced to two points, an
initial technical report and a larger single project incorporating the architecture
design and multi-vendor aspects of the original second project.

Co-design with Industry and Students 29

5.2 Industry Experience and Feedback

As part of the iterative cycle we have the opportunity to hear back from employ-
ers who have recruited students that have completed the module, offering a
nearly unique ability to hear within one academic year the impact it has had.
Employer feedback has been enthusiastically positive, commenting that in many
of their teams students who have completed the cloud module are able to “hit
the ground running” and demonstrate “immediate understanding” of technology
stacks in comparison with students from our or other universities who have not
taken the course.

The ongoing wholehearted committent of industry partners to the iterative
process demonstrates the value they feel the approach and module delivers, with
significant time committent and expertise being provided year-on-year.

5.3 Academic Reflection

There is little doubt that this approach and implementation required significant
additional time beyond the “normal” when creating a new module (for approx-
imations see Sect. 3.3) both in terms of the co-design approach itself and the
resultant need to research and create the technical infrastructure. It is however
important to consider that though an experienced system administrator with
some cloud experience, the primary architect had no hands on expertise at the
levels of scale needed to build and deliver the module. Reflecting on the experi-
ence, they believe the co-design approach overall saved time by giving up-front
quality input as to what areas were important to focus on and what technolo-
gies should be considered, further that during the research phase being able to
tap industry partners for immediate feedback and support was invaluable. This
may not always be true, for example, if someone creating a module was highly
experienced in the topic or had come recently from industry themselves, but in
this case where the specific skills and technologies were both open it was a very
useful exercise.

Of course the process itself can always be refined and it was clear from the first
year that there were some issues, primarily the over-assessment caused by trying
to separately assess key topic areas and forced embedding of external industry
talks into the content. These however were minor issues and the feedback was
overwhelmingly positive from the students, with changes allowing these issues
to be fixed for the next cycle (detailed in Sect. 5.1).

Since the creation of the module another academic has taken on the primary
delivery and a second cloud computing module has been created to run in the
summer for postgraduate students using the same approach and building blocks,
both using the feedback process inherent in the co-design process successfully.
The academic module leads in all cases believe that this process had added
significant value beyond the technical support aspects, offering a much more
refined set of near “real world” challenges and bringing the topics to light in an
engaging and sustainable way.

30 D. Cutting et al.

6 Conclusion and Future Work

In the years since the curriculum review and the initial creation of the module it
is clear that both have been positively received by both students and industry.
The co-design process was an excellent way to engage more effectively with
industrial partners while maintaining academic control and quality assurance,
and a process we hope to repeat in other topic areas for the future.

Like any modern technology cloud computing is constantly evolving so this
co-design and implementation has not been a one-off activity to ensure sustain-
ability. Ongoing industrial engagement and regular (targeting three year cycles)
complete root-to-branch reviews are important when taking a frank and honest
look at content to see if it is still relevant as well as identifying any new or
emerging topics which are now key. Making constant small changes combined
with this review cycle has ensured the content remained fresh, engaging, and rel-
evant. The approach has demonstrated responses to emerging technologies can
be agile, something it is perceived the university sector has failed to be in the
past.

Our next steps with the module, beyond the iterative reviews mentioned
above, is looking at how we can further create industrially-aligned projects to
embed industrial partners in the setting and mentoring of project delivery. We
will also continue to expand the private cloud capabilities adding both capacity
and new features. More generally our future work is to further embed co-design
at all levels through the curriculum and evangelise this approach through dis-
seminations, internally and externally, of how we have achieved success as well
as lessons learnt in our attempt to adopt this approach in a low-risk fashion.

Acknowledgements. The authors wish to acknowledge the help and invaluable sup-
port of Neil Lowry, Keith Stewart, Debbie Britton, Maire Bowler, Martin Kinkead,
David Nelson, Laragh Cullen and Michael Garland in their support of this work and
paper as well as the reviewers of FISEE 2023 for their detailed and constructive com-
ments.

References

1. Ayala, N.A.R., Mendívil, E.G., Salinas, P., Rios, H.: Kinesthetic learning applied
to mathematics using kinect. Procedia Comput. Sci. 25, 131–135 (2013)

2. Benamati, J.H., Ozdemir, Z.D., Smith, H.J.: Aligning undergraduate is curricula
with industry needs. Commun. ACM 53(3), 152–156 (2010)

3. Bradwell, P., Marr, S.: Making the most of collaboration an international survey
of public service co-design. Annu. Rev. Policy Des. 5(1), 1–27 (2017)

4. Cook, E., Mann, L., Daniel, S.: Co-designing a new engineering curriculum with
industry. In: 45th SEFI Annual Conference (2017)

5. David, S., Sabiescu, A.G., Cantoni, L.: Co-design with communities. A reflection
on the literature. In: Proceedings of the 7th International Development Informatics
Association Conference, pp. 152–166, No. 2013, IDIA Pretoria, South Africa (2013)

6. DeStefano, T., Kneller, R., Timmis, J.: Cloud computing and firm growth (2020)

Co-design with Industry and Students 31

7. Elliott, I.C., Robson, I., Dudau, A.: Building student engagement through co-
production and curriculum co-design in public administration programmes. Teach.
Public Adm. 39(3), 318–336 (2021)

8. Haranas, M.: The most in-demand cloud computing jobs for 2021 (2021)
9. Keinonen, T., Vaajakallio, K., Honkonen, J., et al.: Designing for wellbeing (2013)

10. Liu, M., Tannenbaum, A., Van Steen, M.: Distributed Systems: Concepts & Design
(2012)

11. Penuel, W.R., Roschelle, J., Shechtman, N.: Designing formative assessment soft-
ware with teachers: an analysis of the co-design process. Res. Pract. Technol.
Enhanc. Learn. 2(01), 51–74 (2007)

12. Pepin, B.: Connectivity in support of student co-design of innovative mathematics
curriculum trajectories. ZDM – Math. Educ. 53(6), 1221–1232 (2021). https://doi.
org/10.1007/s11858-021-01297-4

13. Pirinen, A., et al.: The barriers and enablers of co-design for services. Int. J. Des.
10(3), 27–42 (2016)

14. Plice, R.K., Reinig, B.A.: Aligning the information systems curriculum with the
needs of industry and graduates. J. Comput. Inf. Syst. 48(1), 22–30 (2007)

15. Sanders, E.B.N., Stappers, P.J.: Co-creation and the new landscapes of design.
Co-design 4(1), 5–18 (2008)

16. Sbaiti, M., et al.: Whose voices should shape global health education? Curriculum
codesign and codelivery by people with direct expertise and lived experience. BMJ
Glob. Health 6(9), e006262 (2021)

17. Schmeck, R.R.: Learning Strategies and Learning Styles. Springer, New York
(2013). https://doi.org/10.1007/978-1-4899-2118-5

https://doi.org/10.1007/s11858-021-01297-4
https://doi.org/10.1007/s11858-021-01297-4
https://doi.org/10.1007/978-1-4899-2118-5

Tribal Capstone Project Course

Manuel Oriol(B)

Constructor Institute, Schaffhausen, Switzerland
mo@constructor.org

Abstract. It has become common for curricula to contain a Capstone
project component. Usually, the idea behind a capstone project course
is to form groups of 4 to 6 students to work on a longer and larger
project. This allows them to experience working for some months on
ideas coming either from industry or from a professor. The intent is to
make this experience more “real” than a traditional small project.

This article presents a new type of capstone projects, which we call
“Tribal Capstone Project Course”. It takes a cohort of students over 3
semesters and makes them work in larger groups of 15–25 students called
“tribes”. The course has run for two cohorts of masters students within
the Constructor context and has started for a third cohort. We believe
that this setup is more representative of a real-world product-building
context.

Keywords: capstone project · software engineering · education

1 Introduction

Many universities include a capstone project course that spans over a single
semester, where students need to work on a “large project” in groups of 4–6
students [18]. Examples of such courses are numerous, for example: Harvard1

or University of Washington2 both run 6-month-long projects with groups of
4–6 students. The main learning outcome advertised is to gain experience in the
following topics:

– Requirements gathering
– Architecture
– Implementation
– Group work
– Release

1 https://harvard.simplesyllabus.com/en-US/doc/jw31lxh21, consulted last on Dece-
mber 2, 2022.

2 https://www.cs.washington.edu/academics/ugrad/current-students/degree/
capstones, consulted last on December 2, 2022.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, pp. 32–41, 2023.
https://doi.org/10.1007/978-3-031-48639-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_3&domain=pdf
http://orcid.org/0000-0003-4069-7626
https://harvard.simplesyllabus.com/en-US/doc/jw31lxh21
https://www.cs.washington.edu/academics/ugrad/current-students/degree/capstones
https://www.cs.washington.edu/academics/ugrad/current-students/degree/capstones
https://doi.org/10.1007/978-3-031-48639-5_3

Tribal Capstone Project Course 33

This type of Capstone project course maps very well the context of small
software development teams that start working on a small-scale project. They,
however, do not allow students to experience what happens in a major research
and development product-producing project in industry, where teams of 25–40
people work together to create a new product.

In the Spotify model3 such large teams are called “tribes”, whereas scrum
teams are “squads”. Tribes are generally enough to create a whole product. Tribes
are autonomous, yet aligned.

In our experience, the size of a tribe captures better where the real organi-
zational difficulties lie: it is easy to align and agree on the way to go when the
group consists of 5 people, it is much more difficult when the group consists of
25–40 people.

The “Tribal” variant of the Capstone project course consists in separating
a cohort in tribes and then working on a project in one tribe. The tribe goes
through an ideation process to find an idea that they own. Then the tribe creates
requirements and works on the architecture as well as the implementation. The
effect is that students feel a strong sense of ownership for the project and can
see concrete applications to the material they learnt in other courses.

Section 2 presents a high-level view of the course. Section 3 details the teach-
ing sequences in the course. Section 4 outlines the main results from the experi-
ence of running this type of project course over two cohorts. Section 5 describes
the related work. Section 6 concludes.

2 High-Level View

This section presents first the core teaching principles for this course and contin-
ues with a high-level description of the course. The design of the course follows
three principles:

– Principle 1: Core content is taught in other courses. For example,
software architecture is taught in its own course. Capstone thus acts as a
course tying all the other courses together. It reviews occasionally concrete
points when needed in the context of the course for a common understanding.
Such reviews are potentially performed on-demand and on the spot.

– Principle 2: Experience first, then learn. The way teachers run the course
is centered around students experiencing the difficulty firsthand (still in a safe
environment) and benefiting from the support of the lecturer to solve issues.
Issues are not solved in advance through a designated process.

As an example of that approach, in the first semester, students are first
assigned random teams, then are switched to different random teams to mini-
mize the number of people they know. From the second semester on, they can
choose their own teams. The concrete result is that students experience twice
the team life cycle and then they can choose their trusted team members.

3 As explained by Atlassian https://www.atlassian.com/agile/agile-at-scale/spotify,
consulted last on December 2, 2022.

https://www.atlassian.com/agile/agile-at-scale/spotify

34 M. Oriol

The supporting discussion on team life-cycle and dynamics is only held at the
beginning of the second semester.

– Principle 3: Agile is followed both for the work and for the schedule.
Early on, students start working in 2-week-long sprints with adapted sprint
reviews, retrospectives, and planning. Assignments are defined per sprint. The
sequence of assignments is not linear and might be changed depending on (1)
the workload of the students, and (2) the advancement of the project. What is
also specific is that the objectives of the sprints are negotiable during the sprint
planning. This sometimes leads to offering choices or to changing assignments
on the spot.

Semester 1:
Ideation &

Requirements

Semester 2:
Architecture &

Implementation

Semester 3:
Polishing &

Advanced Features

Fig. 1. High-level plan of the capstone project course.

As shown in Fig. 1, the project is separated in three parts:

– Semester 1: Ideation process, initial discussions with customers/users, and
requirements elicitation. In this phase, the main point is to make a decision
on the project topic so that it (1) suits and interests the students, (2) has
the proper level of complexity, and (3) is relevant for creating a new business.
The first two points are easy to understand in an educational context, the
third is important for reaching out customers and acquiring the first-hand
experience of talking directly to customers and users.

– Semester 2: Architecture definition, further discussions with customers, and
initial implementation. In this phase, the first structures for software develop-
ment should be in place (repository, development platform. . .). This is where
the students actually start making something concrete and rush to produce
a prototype in one semester.

– Semester 3: Repayment of technical debt, artificial intelligence, cyberse-
curity, and presentation to stakeholders. Because of the previous semester
rush to make a first implementation, students already created technical debt
that they need to repay. Much polishing has then to be done, and advanced
functionalities are added to the prototype based on the priorities from the
customers and customer base analysis.

After describing the main teaching principles and the high-level view, the
next section presents the main teaching sequences of the course.

Tribal Capstone Project Course 35

3 Teaching Sequences

As explained in the previous section, the goal of the first semester is to create
ideas, select one, confront it to customers, and finally make a requirements doc-
ument. Teams are randomly assigned at the beginning of the semester for the
ideation sequence because students usually do not know each other beforehand.
After the ideation stage, teams are then randomly shuffled so that students
would meet more of their peers. Table 1 presents the main activities of the first
semester and their main learning outcomes. Activities can take one or several
two-week-long sprints.

Table 1. Main teaching sequences of the first semester

Title Description Learning objectives

Ideation Each student proposes an idea for
a web app. Students discuss it in
groups and chose one idea.
Students create a mock
application using InVision or
Figma and present the result in
front of all students. The tribe
then votes on the best idea of all
groups

– Creating business ideas
– Creating mocks
– Choosing ideas

Customers feedback Each group has to find customers
and users (at least 6 in total),
present the idea that was chosen
and gather feedback. Students
have to keep track of the
discussions in a customer file.

– Creating a script
– Conducting a conversation
with customers
– Creating a customer file

Refinement of the idea Each group refines the idea
according to customer feedback.
Students create a mock
application using InVision or
Figma and present the result in
front of all students. The tribe
then vote on the best idea of all
groups.

– Creating a script
– Conducting a conversation
with customers
– Creating a customer file

Requirements document creation The tribe creates a requirements
book [11]. Groups define a
common format and share the
work.

– Working collaboratively on
documents
– Creating a requirements
document

The second semester aims at making the first version of the web application
and make a minimum viable product. Its main activities are centered on cre-
ating the first version of the prototype (the Minimum Viable Product). Table 2
presents the main activities of the first semester and their main learning out-
comes. Activities can take one or several two-week-long sprints.

36 M. Oriol

Table 2. Main teaching sequences of the second semester

Title Description Learning objectives

Group Dynamics Students can chose their own
groups for this semester. Since
they already know each other,
they usually think it is going to be
easier to work together. We
present general concepts of team
dynamics [16,17] and what it
means to have a good team [10].

– Understanding team
dynamics
– Creating highly functioning
teams

Architecture Each group produces a proposal
for the architecture. The content
related to architecture is usually
taught in another course, but we
give some introduction on
architecture to make sure that
students have good understanding
of the task. Students then vote on
a winning architecture and elect a
lead architect.

– Creating architecture
– Understanding the impact
of architecture on the imple-
mentation
– Choosing ideas

Backlog creation The initial backlog is created
following a group-based approach.
The tools for backlog creation are
introduced and a product owner is
elected.

– Creating an initial version of
the backlog
– Task effort evaluation using
techniques such as “planning
poker”

Implementation Each group picks user stories in
the backlog and implements them
over the rest of the semester.

– Maintaining a backlog over
time
– Implementing

Presentation to stakeholders The tribe creates a complete pitch
deck and a demo with the
minimum viable product for
stakeholders university employees
and previous cohorts are invited
to the presentation.

– Making a pitch deck
– Creating a demo that is
engaging

The third semester aims at polishing the web application. Its main activities
are centered on cleaning up the code, cybersecurity, and artificial intelligence.
Table 3 presents the main activities of the first semester and their main learning
outcomes. Activities can take one or several two-week-long sprints.

The sequences presented in Table 1, Table 2, and Table 3 are specific
sequences that fit best the goals of each semester. They can run over one or
several sprints. They might also be triggered on-demand or reordered in the dif-
ferent semesters to accommodate specific needs. Even further, specific sequences
might actually be requested on demand to accommodate the students needs
at a point in time. Additionally to these structured sequences, we also created
additional sequences that can be used to solve issues when they happen:

Tribal Capstone Project Course 37

Table 3. Main teaching sequences of the third semester

Title Description Learning objectives

Code cleanup Like in many startup setups, the
rush of developing for the second
semester created some technical
debt. The first sprint(s) of the
semester consist in cleaning up
the mess and improving the
architecture and structures (also
known as “repaying technical
debt”).

– Understanding of technical
debt
– Understanding of the cost
of repaying technical debt

Cybersecurity In most cases, students did not
focus on cybersecurity in the
previous semesters. The idea in
this sequence is to focus on
creating a threat model and be
pragmatic for prioritization and
development.

– Creating a threat model
– Creating descriptions of
cybersecurity user stories
– Prioritizing threats accord-
ing to risk and likelihood
– Creating actions to tackle
high priority threats

Artificial Intelligence In all cases so far, it has been
possible to identify uses of data
analytics and/or machine
learning. This sequence focuses on
identifying such possibilities and
implementing some of them

– Creating descriptions
of data analytics and/or
machine learning user stories
– Implementing some of such
user stories

Product management To create user stories both for
cybersecurity and machine
learning/artificial intelligence, we
run some product manager
sprints, in which students act as
product managers and find ways
to prioritize user stories.

– Further developing a back-
log
– Business potential-based
prioritization

Presentation to stakeholders The tribe improves the pitch deck
and the demo with the minimum
viable product for stakeholders.
University employees and previous
cohorts are invited to the
presentation.

– Refining and improving
pitch decks
– Refining the demo

– Branching: Many of our students have experience in industry. This leads
them to trying to apply strategies for branching that do not work on the long
term. We define their strategy and discuss the “laws of branching” blog posts
by Bertrand Meyer.4

– Decision making: students often need to be able to make decision quickly.
We show them decision matrices and how to quickly make decisions in the
context of a project.

– Building trust: Conflicts often arise in the course of the project. We present
the notion of trust to them and how to re-establish it if it has been lost.

4 https://bertrandmeyer.com/2013/09/30/the-laws-of-branching-part-1/.

https://bertrandmeyer.com/2013/09/30/the-laws-of-branching-part-1/

38 M. Oriol

The reason for being flexible in the course is that the development follows
an agile methodology. The further students progress in the completion of the
project, the more important becomes the final result for the students. So there
is no reason to force a plan on the students if it does not make sense in the
context of the project. In itself, this is also a very important lesson.

4 Further Considerations

The course is repeatedly successful in producing a web application that can be
shown to stakeholders. It is generally seen as a foundational experience by most
students because they experience creating a product in a safe environment. Few
points deserve further mention:

– Free-riders: as mentioned by Farell et al. [6], tackling free-riders is always
a difficulty in group work. The solution for this course is to let it happen for
a while, and then introduce proper task effort evaluation, e.g. using planning
poker, and assignments in the agile manner, making each person responsible
for at least one user story.

– Communication: despite the availability of all communication channels
(slack, MS Teams, Telegram,...). It is usually difficult for the teams to com-
municate efficiently.

– Real-customers: as pointed out by Isomöttönen and Kärkkäinen [9], some
capstone project courses have real-world customers involved with the student
teams. In the Tribal Capstone Project Course, the goal is to create a new
product and to involve the customers. The difference with other Capstone
project courses is that the customers are usually people who will pay for the
product. For the student, this is the occasion to learn how to talk to customers
the way sales would. Though in the first iteration this appeared late, it is now
happening in the first semester, as this is foundational for the requirements.

– Sprint mechanics: when working in large group, it is complicated to gather
feedback in a time-efficient manner. Tools like Menti5 help to capture in real-
time problems and discuss them during the sprint review.

– Choice of the project and motivation: after the ideation process, the
project is chosen using a democratic approach among the students. Teachers
are only here to break the ties and choose the most important idea. Getting
your project chosen certainly increases your motivation, it is however some-
times difficult to be motivated by the project defined by someone else. Though
all students understand that this is a democratic process, we see a dip in moti-
vation at that point in time. This is similar to what happens when projects
are turned down in industry and we do not have a good answer on how to
recover from that yet.

Though it feels very successful, we have not evaluated further the course
other than with informal feedback.

5 https://www.mentimeter.com.

https://www.mentimeter.com

Tribal Capstone Project Course 39

5 Related Work

Despite their diversity of meaning, Capstone project courses have been running
and the subject of some research in computer education in the past 20 years
[2,5,7,8,13,14].

In an attempt to bridge the gap between university and industry, various
Capstone project courses bring an industrial partner either as a stakeholder
[1,5,7] or as a helper [15]. We consciously decided to go another way and to
permit students to create their own project. We believe that this allows the
students to also be better prepared to create startups.

Training students in soft skills is a goal of the master program as well as the
Tribal Capstone Project Course. The potential of Capstone Projects for such a
training has been pointed out by Carter [3] and Mohan et al. [12]. Our experience
is that most students benefit from such an approach even if some students simply
do not progress in their social skills and keep repeating the same mistakes.

One of the Capstone project courses that resembles the most ours is detailed
by Chamillard and Braun [4]. In their course, students are split in groups and
contribute to a real-world project. The Capstone course is also spanning over two
semesters. The authors also identify the issue with free-riders and resolved it by
using a scoring system for everyone to grade others. What is different is however
the content (we are conducting this course twenty years later and outside of a
military context): we let students decide on the project, we consider real business
ideas, we use agile, and finally we consider cybersecurity and AI specifically.

6 Conclusions

The experience of the past few years regarding the Tribal Capstone Project
Course shows that introducing students to a realistic industrial context is
extremely valuable. Informal and formal feedback from the students shows that
such a course is tying the rest of the Master’s program learnings together in a
comprehensive manner and let students experience how real-world products and
projects are developed together. Along the way, the course also invites many
guest speakers from industry who reinforce this feeling of relevance.

Future work will focus on improving further the course and the didactic
sequences as well as measuring all such effects.

References

1. Allen, G.I.: Experiential learning in data science: developing an interdisciplinary,
client-sponsored capstone program. In: Proceedings of the 52nd ACM Techni-
cal Symposium on Computer Science Education, SIGCSE 2021, pp. 516–522.
Association for Computing Machinery, New York (2021). https://doi.org/10.1145/
3408877.3432536

https://doi.org/10.1145/3408877.3432536
https://doi.org/10.1145/3408877.3432536

40 M. Oriol

2. Bloomfield, A., Sherriff, M., Williams, K.: A service learning practicum capstone.
In: Proceedings of the 45th ACM Technical Symposium on Computer Science Edu-
cation, SIGCSE 2014, pp. 265–270. Association for Computing Machinery, New
York (2014). https://doi.org/10.1145/2538862.2538974

3. Carter, L.: Ideas for adding soft skills education to service learning and capstone
courses for computer science students. In: Proceedings of the 42nd ACM Tech-
nical Symposium on Computer Science Education, SIGCSE 2011, pp. 517–522.
Association for Computing Machinery, New York (2011). https://doi.org/10.1145/
1953163.1953312

4. Chamillard, A.T., Braun, K.A.: The software engineering capstone: structure and
tradeoffs. In: Proceedings of the 33rd SIGCSE Technical Symposium on Com-
puter Science Education, SIGCSE 2002, pp. 227–231. Association for Computing
Machinery, New York (2002). https://doi.org/10.1145/563340.563428

5. Clear, T., Goldweber, M., Young, F.H., Leidig, P.M., Scott, K.: Resources for
instructors of capstone courses in computing. In: Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education, ITiCSE-
WGR 2001, pp. 93–113. Association for Computing Machinery, New York (2001).
https://doi.org/10.1145/572133.572135

6. Farrell, V., Ravalli, G., Farrell, G., Kindler, P., Hall, D.: Capstone project: fair, just
and accountable assessment. In: Proceedings of the 17th ACM Annual Conference
on Innovation and Technology in Computer Science Education, ITiCSE 2012, pp.
168–173. Association for Computing Machinery, New York (2012). https://doi.org/
10.1145/2325296.2325339

7. Herbert, N.: Reflections on 17 years of ICT capstone project coordination: effective
strategies for managing clients, teams and assessment. In: Proceedings of the 49th
ACM Technical Symposium on Computer Science Education, SIGCSE 2018, pp.
215–220. Association for Computing Machinery, New York (2018). https://doi.org/
10.1145/3159450.3159584

8. Hundhausen, C., Carter, A., Conrad, P., Tariq, A., Adesope, O.: Evaluating com-
mit, issue and product quality in team software development projects. In: Pro-
ceedings of the 52nd ACM Technical Symposium on Computer Science Educa-
tion, SIGCSE 2021, pp. 108–114. Association for Computing Machinery, New York
(2021). https://doi.org/10.1145/3408877.3432362

9. Isomöttönen, V., Kärkkäinen, T.: The value of a real customer in a capstone
project. In: 2008 21st Conference on Software Engineering Education and Training,
pp. 85–92 (2008). https://doi.org/10.1109/CSEET.2008.24

10. Lencioni, P.: The five dysfunctions of a team (2002). Overcoming the Five Dys-
functions of a Team (2005)

11. Meyer, B.: Handbook of Requirements and Business Analysis. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-06739-6

12. Mohan, S., Chenoweth, S., Bohner, S.: Towards a better capstone experience. In:
Proceedings of the 43rd ACM Technical Symposium on Computer Science Educa-
tion, SIGCSE 2012, pp. 111–116. Association for Computing Machinery, New York
(2012). https://doi.org/10.1145/2157136.2157173

13. Pieterse, V., Stuurman, S., van Eekelen, M.C.: Using jungian personality types for
teaching teamwork in a software engineering capstone course. In: Proceedings of the
52nd ACM Technical Symposium on Computer Science Education, SIGCSE 2021,
pp. 239–245. Association for Computing Machinery, New York (2021). https://doi.
org/10.1145/3408877.3432455

https://doi.org/10.1145/2538862.2538974
https://doi.org/10.1145/1953163.1953312
https://doi.org/10.1145/1953163.1953312
https://doi.org/10.1145/563340.563428
https://doi.org/10.1145/572133.572135
https://doi.org/10.1145/2325296.2325339
https://doi.org/10.1145/2325296.2325339
https://doi.org/10.1145/3159450.3159584
https://doi.org/10.1145/3159450.3159584
https://doi.org/10.1145/3408877.3432362
https://doi.org/10.1109/CSEET.2008.24
https://doi.org/10.1007/978-3-031-06739-6
https://doi.org/10.1145/2157136.2157173
https://doi.org/10.1145/3408877.3432455
https://doi.org/10.1145/3408877.3432455

Tribal Capstone Project Course 41

14. Razak, S.: A case for course capstone projects in cs1. In: Proceeding of the 44th
ACM Technical Symposium on Computer Science Education, SIGCSE 2013, pp.
693–698. Association for Computing Machinery, New York (2013). https://doi.org/
10.1145/2445196.2445398

15. Tenenberg, J.: Industry fellows: bringing professional practice into the classroom.
In: Proceedings of the 41st ACM Technical Symposium on Computer Science Edu-
cation, SIGCSE 2010, pp. 72–76. Association for Computing Machinery, New York
(2010). https://doi.org/10.1145/1734263.1734290

16. Tuckman, B.W.: Developmental sequence in small groups. Psychol. Bull. 63(6),
384 (1965)

17. Tuckman, B.W., Jensen, M.A.C.: Stages of small-group development revisited.
Group Organ. Stud. 2(4), 419–427 (1977)

18. Umphress, D., Hendrix, T., Cross, J.: Software process in the classroom: the cap-
stone project experience. IEEE Softw. 19(5), 78–81 (2002). https://doi.org/10.
1109/MS.2002.1032858

https://doi.org/10.1145/2445196.2445398
https://doi.org/10.1145/2445196.2445398
https://doi.org/10.1145/1734263.1734290
https://doi.org/10.1109/MS.2002.1032858
https://doi.org/10.1109/MS.2002.1032858

Analyzing Scrum Team Impediments Using NLP

Kaleemunnisa , Christelle Scharff(B) , Krishna Mohan Bathula ,
and Kaiyin Chen

Pace University, Seidenberg School of CSIS, One Pace Plaza, New York, NY 10038, USA
{klnu,cscharff,kbathula,kc25295n}@pace.edu

Abstract. In this research, we focus on the impediments encountered by students
in capstone projects following the Scrummethodology. Scrummeeting notes were
collected in a dataset to permit Scrum roles and instructors tomonitor progress and
issues. We identified 9 categories of impediments in this dataset: Android, Coding
Skills, Debugging, External Factors, Firebase/Database, Git/GitHub, Teamwork,
Time Management, and UI/UX Design. We developed a Large Language Model
(LLM) to classify these impediments. Natural Language Processing (NLP) has the
potential to support software engineering processes. The novelty of this research
is that it attempts to identify impediments faced by students’ Scrum teams with AI
and support students and instructors. The relevance of the approach was discussed
with subject matter experts (SME) of the industry. The proposed model is useful
in both the academic and industry settings, to identify on-the-fly areas that need
attention and, if fixed, would increase team productivity.

Keywords: Agile · Artificial Intelligence (AI) · Impediments ·Machine
Learning · Large Language Model (LLM) · Natural Language Processing
(NLP) · Scrum · Software Engineering Education

1 Introduction

Scrum is an agile methodology that was developed in the nineties with the focus on
delivering value to all stakeholders incrementally [29]. It has been used in different
types of projects including software development. Scrum is one of the most extensively
adopted agile methodologies, ranking second in popularity after Kanban [9]. While
Scrum does not explicitly recommend engineering practices, it has been widely used
paired with Extreme Programming [7]. It emphasizes specific ceremonies such as the
daily standup Scrummeeting, orchestrated by the ScrumGuardian (also known as Scrum
Master), where development teammembers, provide individual work updates in the form
of answers to three standardized questions: What did I do since yesterday?; What will I
do until tomorrow?; andWhat are my impediments so far?. Impediments are factors that
“block developers in their creation of a valuable piece of software in a sprint (iteration)
or that restrict the team in achieving its intrinsic level of progress” [29]. Impediments
go from insufficient skills, issues with tooling, illness of team members, unavailability
of the Product Owner (key Scrum role in charge of the requirements), and lack of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, pp. 42–55, 2023.
https://doi.org/10.1007/978-3-031-48639-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_4&domain=pdf
http://orcid.org/0000-0002-9656-6775
http://orcid.org/0000-0001-8342-5984
http://orcid.org/0000-0002-5294-2708
https://doi.org/10.1007/978-3-031-48639-5_4

Analyzing Scrum Team Impediments Using NLP 43

alignment with the product vision, to conflicts between developers and workload of the
team members. The Scrum Guardian helps the team to adopt and practice Scrum. The
role facilitates the Scrum meeting, Sprint Planning, and Sprint Demo/Review; keeps the
team accountable to itself and its commitment; creates an environment where raising
impediments is safe; and, as a problem solver, works in removing impediments by
seeking support within and outside the team.Assistance in the removal of impediments is
a strategic role of the ScrumGuardian to ensure delivering the softwarewithin constraints
of time, scope, and budget. The process goes through the timely identification and address
of impediments, permitting continuous improvement.

This study focuses on a post-mortem analysis of projects realized in a software engi-
neering capstone course. We analyzed the 515 Scrum meeting notes of 32 teams over
4 semesters (Spring 2021 to Fall 2022). We studied the impediments encountered by
teams of students using Scrum and elicited during Scrum meetings when answering
the standard question: “What are my impediments so far?” Understanding impediments
helps teams achieve better results and higher success in delivering software increments.
In addition, it provides instructors with more visibility of the issues students are encoun-
tering to address them timely. Running capstone courses is a time-consuming activity
and any support to relieve instructors is useful. With timely knowledge of impediments,
instructors can provide tailored and additional help to teams. They can propose indi-
vidualized feedback, targeted training, and access to resources (infrastructure, human,
technical etc.). Team awareness will increase, leading to less frustration and more trust.

The research questions we addressed in this study are:

1. What are the impediments met by Scrum teams and how can we classify them?
2. What type of machine learning model would be most appropriate to classify

impediments?

By analyzing Scrum meeting notes, we identified 9 categories of impediments:
Android, Coding Skills, Debugging, External Factors, Firebase/Database, Git/GitHub,
Teamwork, Time Management, and UI/UX Design. We thought that it would be inter-
esting to classify team impediments and apply this classification on-the-fly to address
issues quickly. To achieve this, we developed and evaluated a Large Language Model
(LLM) based on GPT-3.5 Turbo [14, 26].

This study has an impact on instructors and students. In addition, outside of the scope
of education, this study can be useful for the industry. In this context, we sought feedback
from two subject matter experts (SME) of the industry who validated and shared their
vision on the potential of the approach.

This paper is organized as follows. Section 2 provides useful background. Section 3
presents the educational context for this study. It outlines the software engineering course
and how the semester-long project is organized in terms of process and supportive tools.
Section 4 presents the process used to identify the impediments from the Scrummeeting
notes and discusses the types of impediments encountered by the teams. It answers the
first research question. Section 5 outlines our model experimentation and presents our
final model to automatically classify impediments using NLP. This section answers the
second research question. Section 6 explains howwe validated and discussed our overall
approach with subject matter experts. Section 7 concludes our work and outlines future
work.

44 Kaleemunnisa et al.

2 Background

In this section, we provide background information related to the use of agile and scrum
in the classroom, as week as the impact of AI on software engineering.

2.1 Agile in the Classroom

Scrum and agile methodologies have been introduced in the classroom setting to per-
mit students to work iteratively, develop soft skills, and provide them with industry
relevant and transferable skills. Most of the targeted courses for introducing Scrum
are related to computer science and software engineering, especially capstone courses
[4, 15, 19]. Research on the impact of Scrum in the classroom has shown promising
results with teams increasing their motivation and productivity [21, 23, 30]. In [15], stu-
dents experimented with Scrum in software engineering, human-computer interaction,
and game technology courses. Scrum permitted them to stay on track and complete more
work than expected. In capstone software engineering courses, instructors are designing
scenarios to provide students with real experiences with agile methodologies, mimick-
ing the industry environment. They provide training, assign roles to students, involve
professional Scrum Guardians, Product Owners, and Agile Coaches, and organize the
academic calendar to accommodate agile ceremonies and sprints. Instructors organize
Scrum meetings, dedicate closer attention to group dynamics, provide individualized
material for self-learning, identify students’ affinity with tasks, and distribute the stu-
dents to appropriate tasks [30]. The complex role and responsibilities undertaken by
the instructor in Scrum projects has been discussed extensively in the literature [2];
instructors are often involved in project management or Scrum Guardian roles on top
of their course responsibilities. The transition to agile methodologies often focuses,
first, on the introduction of the Scrum meeting as one of the pillars of agile. In addi-
tion, Scrum meetings appear as the most popular technique after the burndown chart,
sprint planning, and user stories (requirements) and estimation. There have been dis-
cussions on the difficulties for students to adhere to Scrum, including missing Scrum
meetings, not answering all three relevant Scrum questions, late sprint planning, not
preparing the sprint review, omitting the value section in user stories, and not using the
burndown chart to monitor progress [23, 24]. In terms of success, it was observed that
high-performing and low-performing teams use about the same Scrum practices, but the
high-performing teams use Scrum practices more thoroughly by taking advantage of the
Scrum and Review meetings [18]. Several studies are proposing configurations where
students are distributed between institutions and countries, emphasizing working across
distance, culture, and time zones [6, 23, 24]. Noteworthy, there is a gap between the
implementation of Scrum in the classroom and in the industry as the stakes are not the
same and students are likely unable to do the Scrum daily.

2.2 AI and Software Engineering

Artificial Intelligence (AI) is impacting software development and the role of software
developers. Advances were possible thanks to the wide availability of data and the
increasing computer power offered to deal with large and complex neural networks.

Analyzing Scrum Team Impediments Using NLP 45

AI techniques have been applied to software development, classifying the points of
application into three categories: process, product, and runtime [12]. Natural Language
Processing (NLP) [5] has a crucial role to play in supporting software development
[5]. Recently, large code datasets have permitted the development of GitHub Copilot
[13] and Microsoft DeepCoder [1]; they provide real-time code suggestions following
specifications and input-output requirements. Such tools encourage developers to focus
on more complex code rather than boilerplate or repetitive code patterns. The literature
also shows different usage of NLP in projects following the Scrum process. NLP is used
to discover related user stories and scope them into released [25], transform user stories
into UML use cases [10], and detect privacy requirements from user stories [3].

3 Educational Context

In this section, we describe the targeted software engineering capstone course, types of
mobile applications developed by students, processes followed by the teams, and tooling
infrastructure.

3.1 Capstone Course

The target course is the capstone software engineering course taught in Spring and Fall
2021 and 2022. The course is taught synchronously online. It covers process, require-
ments, design, and testing. It integrates presentations by software engineering prac-
titioners and a semester-long project. Students are divided into teams to collaborate
on developing Android applications using Scrum and GitHub for code collaboration
and versioning. Most applications use Firebase as a backend. Students in the course
are new to Android, Git/GitHub and Scrum. The software projects d focused on the
topics of United Nation Sustainable Development Goals (SDG). Examples of projects
include apps related to reducing carbon footprint, monitoring water quality, recycling,
and increasing companies’ transparency. 32 teams and 108 students took this course in
the 4 targeted semesters.

3.2 Process and Tooling

Teams used Scrum with practices of Extreme Programming (XP). After the requirement
phase, they completed three sprints of two weeks. Students were provided with training
on Scrum via lectures, talks by professional Scrum Guardians, and by playing an online
version of the BallPoint Game [28]. Before sprint 1, students learned Android through
Google Codelabs and Git/GitHub through tutorials and collaborative in-class exercises
that illustrated conflict situations. Teams all used a pre-defined tooling set. Tools can
be categorized into engineering, communication, and project management as shown
on Table 1. GitHub was used as a code and documentation repository. Documentation
included idea proposal, product/sprint backlogs, sprint planning, and Scrummeeting and
Scrum demo/review notes. For this study, we focus on data collected from the Scrum
meeting notes.

46 Kaleemunnisa et al.

Table 1. Tools Used in the Software Development Projects

Type of Tools Use

Engineering Android Studio for mobile app development; Firebase for back-end
real-time databases and authentication; Git/GitHub for code versioning
and bug reports development; Figma or similar for wireframing;
Photoshop or similar for art production; APIs

Communication Slack or Discord for team and instructor/team communications; Zoom
for instruction and synchronous Scrum and Spring Reviews

Project Management Google calendar with notifications; GitHub for project documentation
and code deliveries; Google Docs for project documentation; YouTube
for software demos

4 Classifying Scrum Impediments

This section presents the impediments encountered by students in the Scrum projects
realized in the software engineering course described previously. It highlights the cre-
ation of the dataset, the process we used to identify the categories, the categories them-
selves, and the findings. It answers the first research question:What are the impediments
met by Scrum teams and how can we classify them?

4.1 Scrum Impediments Dataset

In this study, we did a post-mortem analysis of the Scrummeeting artifacts. We created a
dataset from the Scrum meeting notes written by students and gathered on GitHub. The
dataset comprises 515 impediment entries. It is used for classifying impediments into
categories. It is multiclass, as some sentences can be classified into two categories. Each
entry is composed of one or several sentences that capture the same types of impediments.

4.2 Scrum Impediments Categories

After creating the dataset, we did a corpus analysis. The dataset has a 1303-word vocab-
ulary. The lexical diversity is 7.65, which represents a moderate range of words. The
most common words in the corpus are project-specific words like “sprint1”, “sprint2”,
and “sprint3”, technical terms like “Android,” “Firebase,” and “Git,” as well as coding-
related words like “coding,” “debugging,” and “classes”, and team-related words such
as “teamwork” and “member”. Overall, the most common words in the corpus show
how technical and collaborative the project was, and the importance of skills and tools
for coding. The word cloud on Fig. 1 permits to visualize word occurrences. It also
determined initial categories of impediments.

An instructor and a student in the class read all the Scrummeeting notes to label them.
We coded each entry of the dataset and identified 9 categories: Android, Coding Skills,
Firebase/Database, Debugging, External, Git, Teamwork, Time, and UI. The dataset was
labeled with these 9 category names. Examples of impediments with their categories are
provided in Table 2.

Analyzing Scrum Team Impediments Using NLP 47

Fig. 1. Word Cloud of the Scrum Meeting Notes about Impediments

Table 2. Examples of Classification of Collected Impediments

Class Impediment

Android “My only issue has been related to finding ways of best practice in
Android. Like how to best use fragments rather than activities”

Coding Skills “So far, a potential issue that may pose a challenge would be the code
needed to implement the following features regarding being able to share
articles amongst contacts”

Firebase/Database “I have not figured out how to append information to Firebase”

Debugging “I had some problems running the app due to crashes from the codes.
Thus, it slowed down my progress”

External “Work from other classes; I work outside class on weekends and cannot
work on schoolwork; I have been sick the last few days”

Git “GitHub blocked my merge, fixing that has ruined my workflow and
messed up my local code”

Teamwork “I cannot meet with my team face-to-face; I wait for my team member to
complete his work”

Time “I am very concerned that we will not have sufficient time to complete all
the necessary tasks.”

UI “I did not find a way to add the logo on the splash screen; I’ve been trying
to test out different backgrounds and content in an effort to get the about
page to look nice without much success yet”

4.3 Findings

We used Exploratory Data Analysis (EDA) on the labeled dataset. The Scrum meeting
notes have the following distribution: ~ 36.1% (186 notes) for sprint 1, ~ 36.3% (187
notes) for sprint 2, and ~ 27.6% (142 notes) for sprint 3.

The charts of Fig. 2 show that themost common impediment were labelled as “Exter-
nal”. Students faced numerous external issues that were blocking them from advancing
smoothly in the project, e.g., personal issues and course and professional workloads.

48 Kaleemunnisa et al.

The second highest-ranked impediment is “Time”, which refers to time management
and balancing workload. “Coding Skills” are also ranked second; they refer to techni-
cal skills required for software development, including the use of APIs and difficulties
with Android Java. The lowest-ranked impediment is “Teamwork”; this may mean that
students were comfortable to work as teams and that teamwork was not a main concern.

In terms of the evolution of the impediments through sprints, the main impediments
that students faced during sprint 1 were “Android, “Coding Skills” and “Time”. In sprint
2, they were “Coding Skills”, “Firebase” and “Time”. In sprint 3, they were “External”,
“Time” and “Coding Skills”. While Scrum is a time-boxed methodology, “Time” is a

Fig. 2. Occurrences of Impediments Overall and in Each Sprint

Analyzing Scrum Team Impediments Using NLP 49

constant impediment for students during sprints. Students are also facing “Coding Skills”
impediments throughout the project. Students are still learning Android in sprint 1, are
focusing on Firebase in Sprint 2, and are exposed to more “External” impediments in
sprint 3, probably due to stress at the end of the semester.

5 Automated Classification of Impediments with NLP

This work is a first attempt to build a classification model based on NLP to classify
impediments. In this section, we present the overall classification process and the model
based on GPT-3.5 Turbo that we implemented and evaluated. This section answers
the second research question: What type of machine learning model would be most
appropriate to classify impediments?

5.1 Overall Classification Process

Figure 3 illustrates the overall classification process. It illustrates what input we provided
to the classifier and the output we obtained.

Fig. 3. Classification of Impediments

5.2 Building a LLM

Models for Text Classification. Machine learning algorithms can perform text clas-
sification tasks on labeled data. Multinomial Logistic Regression [27], Support Vector
Machine (SVM), and K-Nearest Neighbors (KNN) [17] are popular for text classifica-
tion. Deep Learning algorithms such as Convolutional Neural networks (CNN), known
for image classification, can also be used on text classification with satisfactory results
[32]. However, these techniques are not capable of comprehending the semantics of text.
When working on small datasets, they require using data augmentation (e.g., random
insertion, deletion, swapping). Bidirectional Encoder Representations from Transform-
ers (BERT) models are based on the transformer architecture and pre-trained with a
huge corpus of unlabeled data to permit increased capacity for understanding context

50 Kaleemunnisa et al.

and ambiguity in language [8, 31]. Large Language Models (LLM) employ deep learn-
ing, are trained on huge amount of text, and have massive number of parameters from
millions to billions, resulting in complex model architectures [26]. LLMs can gener-
ate text that closely resembles human language and perform diverse natural language
processing tasks from language generation to translations and classification.

Choice of LLM. We experimented with Multinomial Logistic Regression, Multiclass
SVM, KNN, CNN and BERT models to obtain a baseline, but, due to the small size
of our dataset, only a LLM-based model permitted us to obtain promising results. For
reasons of space and scope, we only present the LLM-based model in this paper. We
used transfer learning and developed a classifier using the state-of-the-art Open AI GPT
3.5 Turbo LLM model [14]. GPT-3.5 Turbo is a neural network-based language model
that was released in 2021 with 154 million parameters and trained on over 570 GB
of data. It has less parameters that GPT-3 and it provides a balance between perfor-
mance and cost-effectiveness during deployment. The implementation was done using
the Scikit-LLM library [16]. The choice of the classifier was Dynamic Few-Shot Text
Classification, which dynamically adds several examples to the input to contextualize
and offer directions to the model. This is important as LLMs have limited context length
and text inputs that need to be classified are of a wide range of sizes. For example,
GPT-3.5 has a context limit of 4096 tokens.

Results. We used different metrics to evaluate the model. Accuracy, Precision, Recall,
and F1 are the commonly usedmetrics used for classification.Accuracy checks if the data
are properly classified. It is determined by dividing the number of correctly predicted
labels as positive, also known as true positive (TP), and correctly predicted labels as
negative, also known as true negative (TN), by the total number of examples of data ((TP
+TN)/(TP+TN+FP+FN)), where FP and FN refer to false positive and false negative
respectively. Precision is the ratio of true positive predictions (positive examples that
were correctly classified) by all positive predictions (TP/(TP + FP)). Recall is the ratio
of correctly predicted labels divided by the correctly predicted labels and incorrectly
predicted labels (TP/(TP + FN)). F1 is interpreted as a weighted harmonic mean of
precision and recall.

Table 3 summarizes the evaluation of our LLM. We achieved an accuracy of 82%.
This accuracy can be perceived as low. This can be attributed to factors such as the size,
diversity, and, especially, the lengths of the sentences of the dataset. The other models
performed much lower, from 55% (CNN) to 75% (Multinomial Logistic Regression)
and required the use of augmented datasets to achieve these results.

6 Validation by Subject Matter Experts

In this section, we describe the feedback of two subject matter experts (SME) on 1)
the notion of impediments in Scrum projects; 2) the impediments classification that we
proposed; and 3) the relevance of the development of a model to classify impediments
that could be used in educational context and in the industry.

Analyzing Scrum Team Impediments Using NLP 51

Table 3. Evaluation of the GPT-3.5 Turbo-based LLM to Classify Impediments

Metrics Training Testing

Accuracy 98 82

F1 98 82

Precision 98 86

Recall 98 83

6.1 Subject Matter Expert 1

Our first SME is a Scrum Alliance and SAFE agile coach with 10 years of industry
experience. The SME is also a university instructor teaching software engineering and a
trainer. The SME started by mentioning that it is a real differentiator on the job market
when students are introduced to agile during their studies. The SME was asked to pro-
vide examples of impediments that arise in Scrum meetings. The cited examples were
difficulties of working in multiple teams at the same time; unfinished user stories carried
through sprints; project dependencies, i.e., relationships between tasks based on their
sequence; and heterogeneous infrastructure. The SME agreed that the Scrum Guardian
role is to help remove impediments, but, as the teammatures, the team ends up removing
its own impediments.

The first impressions of the SME on the impediments categories generated a dis-
cussion on the notion of impediments. The SME framed the notion of impediments in
the answers to these two questions: “What is preventing the team to move forward and
accomplish the sprint goal?” and “What is preventing the team to be a high perform-
ing team?” As Scrum is a timeboxed methodology, the SME did not think that “Time”
would be a category of impediments in the industry. At the beginning of the sprint, teams
need to plan based on the time to be allocated to the project. They should plan for 80%
capacity. The SME also did not think that “Coding Skills” should be a category. With
accountability being an important aspect of Scrum, teams know they have to learn the
skills they do not have. The SME was going back and forth with the values and prin-
ciples of agile and scrum methodologies, but also mentioned that no clear definition of
impediments was available.

The SME was in favor of documenting Scrum meetings and using a model as
described previously in the industry. Notes could be used by Scrum guardians, agile
coaches, and management, and would be “useful to understand the mindset of the team
and what help they need”. The SME thought that the proposed model was interesting for
the class setting but would have liked more granularity with categories such as problems
related to user stories, infrastructure and project dependencies. The SME alsomentioned
that an automated anti-pattern detection tool would be useful for agile coaches. Anti-
patterns are behaviors that teams exhibit that would be detrimental in the long run [11].
It is recommended for teams to identify and remove such behaviors. They include absent
product owner, micro-management, and weak definition of done.

52 Kaleemunnisa et al.

6.2 Subject Matter Expert 2

Our second SME was a Scrum practitioner, author of several papers related to agile, and
instructor who taught agile methodologies. The SME provided different examples of
impediments cited during Scrummeetings from work experience: difficulty to distribute
tasks to team members due to different levels of technical and business knowledge;
problems of communication due to the presence of several point of contacts on the
customer side; use of different languages in communications and documentation not
understandable by everybody (multi-lingual teams); slow process to get infrastructure in
place; and knowledge management issues. The SME mentioned that all the practices of
Scrum are not implemented in the company. Scrums are not documented formally, the
three Scrum questions are not always answered, and Scrums are often used to socialize
and for team building. The Sprint Reviews are always documented. The SME insisted
on the fact that most problems in software projects were due to communication and team
dynamics rather than technical issues and that technical issues were easier to overcome.

The first impressions of the SME on the impediments categories that we identified
were that they were very detailed and adapted to the educational setting for mobile app
development specifically. The SME was interested in a generic model that would work
for all types of projects, not focusing on technology choices. The SME believed that
such a model would be very useful in the industry. Some of the categories could be
combined such as “Android”, “Firebase” and “Coding Skills”. The SME would like to
see categories related to “Testing”, “Business” and “Infrastructure” and would rename
“Git” by “Supportive Tools” to englobe more of such a tool. The SME mentioned that
the categories were adapted to the specific educational context described in this paper.
Concerning themodel, the SME thought thatNLP can have an impact in detecting project
issues on-the-fly.

7 Conclusion and Future Work

With this research, we sought to advance the understanding of impediments elicited in
Scrum meetings. We identified classes of impediments in a capstone software engineer-
ing course where students developed mobile applications. We identified 9 categories
of impediments in that context: Android, Coding Skills, Debugging, External Factors,
Firebase/Database, Git/GitHub, Teamwork, TimeManagement, and UI/UX design. The
categories are very specific to the type of project carried out in the course and capture
the fact that students were beginners in Android, Git/GitHub, Firebase and Scrum. Such
a classification is useful for instructors to understand the problems the teams encounter
and for teams to improve their productivity. These findings also create a framework to
guide students taking such courses; students know the difficulties they may encounter
in their own projects.

We attempted to use NLP to analyze Scrum meeting notes and proposed a model
that classifies teams’ impediments. The model is based on the GPT 3.5 Turbo LLM. It is
an additional tool for instructors to detect the impediments met by students and address
them in a timely manner and for the teams to better collaborate and build trust. The
SME were convinced of the usefulness of such a tool in education to help the teams and
support the instructors.

Analyzing Scrum Team Impediments Using NLP 53

The proposed study, while focusing on education, can be of interest to the industry.
SME imagined that the model could be used by Scrum Guardians, management, and
Agile Coaches. They suggested categories of impediments that are more adapted to their
industry and more generic, e.g., user stories, infrastructure, and project dependencies.
They were also interested in more granularity in the categories.

We envision such a model for impediments classification to be used, live, during
Scrum meetings and to generate notifications to be sent to a predefined set of project
stakeholders in Slack or Discord communication tools. Such a model could also be
integrated in Rally [20] or JIRA [22].

In the next steps of the study, we plan to use a larger dataset by integrating data
from recent courses and tune the LLM to increase accuracy. We would like students to
elaborate on their impediments and provide more explanation in the sentences collected
in the dataset. We realized that the notion of impediments is understood differently
by different practitioners. We plan to work on a more generic model for impediments
classification for the industry using empirical data. We will also focus on other uses of
NLP and computer vision in Scrum projects such as the detection of anti-patterns and
summarization of Kanban Boards and Burndown Charts for Review sessions.

Acknowledgment. This work was approved under IRB 2023–06 and IRB 2023–90. We thank
all the students and SMEs involved in this study.

References

1. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: DeepCoder: Learning
to write programs. In: International Conference on Representation Learning (ICLR) (2017)

2. Beecham, S., Noll, J., Clear, T.: Do we teach the right thing? A comparison of GSE educa-
tion and practice. In: IEEE 12th International Conference on Global Software Engineering
(ICGSE), Buenos Aires, Argentina, pp. 11–20 (2017)

3. Casillo, F., Deufemia, V., Gravino, C.: Detecting privacy requirements from user stories with
NLP transfer learning models. Inf. Softw. Technol. 146, 106853 (2022). https://doi.org/10.
1016/j.infsof.2022.106853

4. Chang, H.-F., Shokrolah Shirazi, M.: Adapting scrum for software capstone courses. Inform.
Educ. 21(4), 605–634 (2022). https://doi.org/10.15388/infedu.2022.25

5. Chowdhary, K., Chowdhary, K.R.: Natural language processing. Fundam. Artif. Intell. 603–
649 (2020). https://doi.org/10.1007/978-81-322-3972-7_19

6. Clear, T., Beecham, S.: Global software engineering education practice continuum special
issue of the ACM transactions on computing education. ACM Trans. Comput. Educ. 19(2),
1–8 (2019). https://doi.org/10.1145/3294011

7. Dada, O.A., Sanusi, I.T.: The adoption of software engineering practices in a scrum environ-
ment. Afr. J. Sci. Technol. Innov. Dev. 14(6), 1429–1446 (2021). https://doi.org/10.1080/204
21338.2021.1955431

8. Devlin, J., Chang, M.W., Lee, K.: BERT: Pretraining of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018)

9. Digital.AI. 16th State of Agile Report: resource center. (2022). https://digital.ai/resource-cen
ter/analyst-reports/state-of-agile-report

10. Elallaoui, M., Nafil, K., Touahno, R.: Automatic transformation of user stories into UML use
case diagrams using NLP. Techniques (2018). https://doi.org/10.1016/j.procs.2018.04.010

https://doi.org/10.1016/j.infsof.2022.106853
https://doi.org/10.15388/infedu.2022.25
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1145/3294011
https://doi.org/10.1080/20421338.2021.1955431
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://doi.org/10.1016/j.procs.2018.04.010

54 Kaleemunnisa et al.

11. Eloranta, V.-P., Koskimies, K., Mikkonen, T., Vuorinen, J.: Scrum anti-patterns an empirical
study. In: 20th Asia-Pacific Software Engineering Conference (APSEC), Bangkok, Thailand,
2013, pp. 503–510 (2013). https://doi.org/10.1109/APSEC.2013.72

12. Feldt, R., de Oliveira, N., Francisco, G., Torkar, R.: Ways of applying artificial intelligence in
software engineering. In: Proceedings of the 6th International Workshop on Realizing Arti-
ficial Intelligence Synergies in Software Engineering. Presented at the Gothenburg, Sweden,
pp. 35–41 (2018). https://doi.org/10.1145/3194104.3194109

13. GitHub Copilot.: Your AI pair programmer (2022)
14. GPT-3.5 models. OpenAI. (2023). https://platform.openai.com/docs/models/gpt-3-5
15. Jiménez,O.,Cliburn,D.: Scrum in the undergraduate computer science curriculum. J.Comput.

Sci. Coll. 31(4), 108–114 (2016)
16. Kondrashchenko, I., Kostromin, O.: Scikit-LLM: Sklearn meets large language models.

(2023). https://github.com/iryna-kondr/scikit-llm
17. La, L., Guo, Q., Yang, D., Cao, Q.: Multiclass boosting with adaptive group-based kNN and

its application in text categorization. Math. Probl. Eng. 2012, 793490 (2012). https://doi.org/
10.1155/2012/793490

18. Paasivaara,M.,Vanhanen, J.,Heikkilä,V.T., Lassenius,C., Itkonen, J., Laukkanen,E.:Dohigh
and low performing student teams use scrum differently in capstone projects? In: IEEE/ACM
39th International Conference on Software Engineering: Software Engineering Education and
Training Track (ICSE-SEET), Buenos Aires, Argentina, pp. 146–149 (2017). https://doi.org/
10.1109/ICSE-SEET.2017.22

19. Pócsová, J., Bednárová, D., Bogdanovská, G., Mojžišová, A.: Implementation of Agile
methodologies in an engineering course. Educ. Sci. 10(11), 333 (2020). https://doi.org/10.
3390/educsci10110333

20. Rally Software gives the business predictability and adaptability. https://www.broadcom.com/
products/software/value-stream-management/rally

21. Rodriguez,G.,Vidal, S.,Marcos, C.,Martinez Saucedo,A.C.: Evaluating students’ perception
of Scrum through a learning game. Comput. Appl. Eng. Educ. 30(5), 1485–1497 (2022)

22. Sarkan, H.M., Ahmad, T.P.S., Bakar, A.A.: Using JIRA and Redmine in requirement devel-
opment for agile methodology. In: Malaysian Conference in Software Engineering, Johor
Bahru, Malaysia, pp. 408–413 (2011). https://doi.org/10.1109/MySEC.2011.6140707

23. Scharff, C., Verma, R.: Scrum to support mobile application development projects in a just-
in-time learning context. In: Proceedings of the ICSE Workshop on Cooperative and Human
Aspects of Software Engineering. Presented at the Cape Town, South Africa, pp. 25–31
(2010). https://doi.org/10.1145/1833310.1833315

24. Scharff, C.,Heng, S.,Kulkarni,V.:On the difficulties for students to adhere toScrumonGlobal
Software development projects: Preliminary results. In: Second International Workshop on
Collaborative Teaching of Globally Distributed Software Development (CTGDSD), pp. 25–
29. IEEE (2012). https://doi.org/10.1109/CTGDSD.2012.6226946

25. Sharma, S., Kumar, D.: Agile release planning using natural language processing algorithm.
In: Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab
Emirates, pp. 934–938 (2019). https://doi.org/10.1109/AICAI.2019.8701252

26. Takeshi, K., Gu, S.S., Reid,M.,Matsuo, Y., Iwasawa, Y.: Large languagemodels are zero-shot
reasoners. In: Advances in Neural Information Processing Systems, vol. 35, 22199–22213
(2022)

27. Tomas, P., Virginijus, M.: Application of logistic regression with part-of-the-speech tagging
for multi-class text classification. In: IEEE 4th Workshop on Advances in Information, Elec-
tronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 2016, pp. 1–5 (2016). https://
doi.org/10.1109/AIEEE.2016.7821805

https://doi.org/10.1109/APSEC.2013.72
https://doi.org/10.1145/3194104.3194109
https://platform.openai.com/docs/models/gpt-3-5
https://github.com/iryna-kondr/scikit-llm
https://doi.org/10.1155/2012/793490
https://doi.org/10.1109/ICSE-SEET.2017.22
https://doi.org/10.3390/educsci10110333
https://www.broadcom.com/products/software/value-stream-management/rally
https://doi.org/10.1109/MySEC.2011.6140707
https://doi.org/10.1145/1833310.1833315
https://doi.org/10.1109/CTGDSD.2012.6226946
https://doi.org/10.1109/AICAI.2019.8701252
https://doi.org/10.1109/AIEEE.2016.7821805

Analyzing Scrum Team Impediments Using NLP 55

28. Ulrich, S.: Training scrum with gamification: lessons learned after two teaching periods. In:
IEEE Global Engineering Education Conference (EDUCON), Athens, Greece, pp. 754–761
(2017). https://doi.org/10.1109/EDUCON.2017.7942932

29. Verheyen, G.:Scrum a pocket guide. Van Haren Publishing (2019)
30. Wagh, R.: Using scrum for software engineering class projects. (2012). https://doi.org/10.

1109/AgileIndia.2012.17
31. Yu, B., Deng, C., Bu, L.: Policy text classification algorithm based on BERT. In: 11th Interna-

tional Conference of Information and Communication Technology (ICTech)), Wuhan, China,
2022, pp. 488–491 (2022). https://doi.org/10.1109/ICTech55460.2022.00103

32. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification.
In: Advances in Neural Information Processing Systems, vol. 28, 1502–01710 (2015)

https://doi.org/10.1109/EDUCON.2017.7942932
https://doi.org/10.1109/AgileIndia.2012.17
https://doi.org/10.1109/ICTech55460.2022.00103

Finding Behavioral Indicators
from Contextualized Commits in Software
Engineering Courses with Process Mining

Mika Pons1(B) , Jean-Michel Bruel2 , Jean-Baptiste Raclet3 ,
and Franck Silvestre1

1 IRIT, Université Toulouse 1 Capitole, Toulouse, France
mika.pons@irit.fr

2 IRIT, Université Toulouse 2 Jean Jaurès, Toulouse, France
3 IRIT, Université Toulouse 3 Paul Sabatier, Toulouse, France

Abstract. Git4School is a dashboard helping teachers to monitor and
make decisions during Git-based lab sessions in higher education com-
puter science programs. This tool makes it possible to visualize the com-
mits made by students over time according to the context and, in partic-
ular, the type of pedagogical intervention by the teacher (discussions
between students on the problem, dissemination of a solution, etc.).
Despite its visualizations providing indicators for decision-making, the
tool does not provide information about the student’s behavior. There are
existing studies dealing with Process Mining (PM) in education, specif-
ically in computer science courses and using Git. Through an empirical
exploratory study, we explore the possibility of taking advantage of these
contextualized commits using PM. We analyzed data from 5 teaching
units covering different higher education levels using the bupaR library.
Firstly, we discovered promising indicators to predict students’ behavior
during a lab session. Secondly, we identified several possibilities for future
research on PM and contextualized commits. Finally, we have established
a set of recommendations to help analyze contextualized commits using
PM.

Keywords: Learning analytics · Educational data mining · Git ·
Process mining · Behavioral patterns

1 Introduction

In their 2020 study, Raclet and Silvestre [13] introduced the Git4School (G4S)
dashboard, which aims to assist teachers in (1) monitoring student activity and
in (2) making decisions to trigger a pedagogical intervention (e.g., publication of
the solution for a problem, a peer review, etc.). G4S is currently used in software
engineering education in higher education computer science programs. The data
visualized in G4S is automatically extracted from individual Git repositories in
which each learner performs their work, enriched with situational data.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, pp. 56–68, 2023.
https://doi.org/10.1007/978-3-031-48639-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_5&domain=pdf
http://orcid.org/0000-0002-5844-8727
http://orcid.org/0000-0002-3653-0148
http://orcid.org/0000-0001-7357-912X
http://orcid.org/0000-0002-1134-8200
https://doi.org/10.1007/978-3-031-48639-5_5

Finding Behavioral Indicators from Contextualized Git Commits with PM 57

In Git terminology, the result of a source code modification is saved in a
unit of information called a commit. Triggered by a learner at the end of a unit
of work, a commit records the learner’s identity, the message provided by the
learner describing the unit of work (e.g., fix question #1), the date and time of
the commit and what was modified by the learner. Combining this information
with situational data gives more information about the pedagogical context of
the commit; for example, it is possible to know whether it was carried out before
or after a particular intervention made by the teacher, during a class, or after,
etc. In the remainder of the paper, the term contextualized commit refers to
the combination of the information contained in a commit with the situational
information related to that commit.

Although the G4S dashboard provides relevant indicators for bridging
decision-making based on contextualized commits, information needs to be pro-
vided on the behavior of learners during the activities offered to them throughout
a course. It is, therefore, currently only possible to identify patterns of student
behavior that lead to better learning outcomes or, conversely, that lead to failure.

This paper presents an empirical and exploratory study based on data col-
lected from activities supervised with G4S. First, our study aims to answer the
following research question:

RQ1: What indicators about student behaviors can we extract using
Process Mining (PM) with contextualized commits?

Moreover, as the learner triggers a commit at the end of a unit of work, it
does not contain precise information about the start date and the duration of the
work activity. This point represents a limitation for making the best use of PM
techniques. Therefore, our study aims to answer the following second research
question:

RQ2: What information should be added to the contextualized commits
to make the most of the Process Mining techniques?

The paper is composed of 4 sections. Section 2 presents previous work related
to our research questions. Then, Sect. 3 describes the empirical study and the
obtained results. Section 4 discusses the results and provides answers to our
research questions. Finally, the paper ends with a conclusion and a presentation
of future work.

2 Related Work

2.1 Process Mining in Education

Bogarín et al. [3] define Educational Process Mining (EPM) as using of log data
gathered specifically from educational environments to discover, analyze, and
provide a visual representation of the complete educational process. As such,
Process Mining (PM) techniques have already been used to identify patterns
of learner behavior. Some studies focus on specific dimensions of the learning

58 M. Pons et al.

process, such as self-regulation [4] or how students take part in quizzes [8]. Other
studies focus on detecting student learning paths by exploring the data collected
by Learning Management Systems, such as Moodle [5] or by MOOC platforms [2,
11].

2.2 Process Mining in Software Engineering

Process Mining has also been applied to software engineering in different ways. In
2007, Rubin et al. [14] proposed a framework to explicit software development
processes based on data stored in configuration management systems. Thus,
several studies focus on the process mining of software repositories. Poncin et
al. [12] used the FRamework for Analyzing Software Repositories (FRASR) to
combine logs coming from several kinds of repositories: version control systems,
bug trackers, and mail. Then they could classify developers by role or identify
some patterns in the bug lifecycle. Gupta et al. [7] analyzed data from three
software repositories to improve the process relative to reporting and resolution
of issues. Ardimento et al. [1] use the conformance checking technique to test
coding behavior, starting with event logs generated from IDE.

2.3 Process Mining in Software Engineering Education

At the crossroads of Education PM and PM applied to software engineering edu-
cation, some research works present different ways of using PM in the context
of software engineering courses. For example, Mittal and Sureka [10], in the con-
text of an undergraduate software development course, mined data from version
control systems, wiki, and bug tracking systems to qualify learners’ activities in
teamwork projects better. In 2020, Eskofier [6] presented same kind of work, min-
ing different kinds of repositories but leveraging the Gitlab1 platform. Similarly,
Shynkarenko and Zhevaho [15] aim to provide visualization resulting from PM
to help students and teachers in code review and assessment activities. Finally,
the study proposed by proposed by Macak et al. [9] focuses on mining data from
students’ Git repositories. As such, the authors describe precisely how to convert
a Git log into an event log that PM tools can process.

Our exploratory study is in line with the work presented in this section.
It differs from it by exploring an aspect not dealt with in the previous work:
considering elements of pedagogical context and of the teacher’s pedagogical
interventions in the activities carried out by the students.

3 Empirical Study

In this section, we first present the contexts for the production of our datasets,
and the steps followed to transform and analyze the data using the bupaR2

library. Then, the study results are presented, focusing on relevant items for
discussion.
1 https://about.gitlab.com/.
2 https://bupar.net/.

https://about.gitlab.com/
https://bupar.net/

Finding Behavioral Indicators from Contextualized Git Commits with PM 59

3.1 Datasets Description

G4S has been experimented with in several computer science courses from two
French higher education institutions, covering ISCED (2011) levels 5, 6, and 73
(see Table 2 for a more detailed description of the datasets):

– Institut Universitaire de Technologie of Rodez, in the context of its Associate
Degree and B.Sc. in Computer Science training;

– Université Toulouse 3 Paul Sabatier, as part of its M.Sc. in Software Engi-
neering.

From G4S logs exports, we collected the datasets corresponding to the work
done by the students during lab sessions of 6 courses. Concretely, they had
to solve sets of questions from a worksheet and commit when a question was
done. Out of the six collected datasets, one was not eventually included in the
study presented here because it needs to contain the educational interventions
we want to analyze. More precisely, this course was organized without review
or correction between lab sessions. The questions were corrected after all lab
sessions but before the final exam. Therefore, the correction could not have
affected the students during the lab sessions.

Thus, five datasets were analyzed, representing about 200 students and 3100
commits over two academic years (from 2020 to 2022). For each course, the lab
sessions were supervised, and the order of the questions was fixed. Each of these
lab sessions was supervised by a teacher during face to face sessions and the
order of the questions was predefined. One course had two optional questions at
the end of the worksheet.

As advocated in the introduction, the analyzed data are commits contextu-
alized by their anteriority or posteriority to a pedagogical intervention by the
teacher. These interventions are either peer reviews or corrections and address
predefined questions. With this information, G4S can type commits as follows:

– Intc intermediate: the commit does not resolve a question;
– Bfrr before review: the commit resolves a question before the associated

review;
– Brac between review and correction: the commit resolves a question between

the associated review and correction;
– Aftc after correction: the commit resolves a question after the associated

correction.

We then need to transform these specific logs into event logs in order to be
able to use PM techniques.

3 It corresponds to short-cycle tertiary education, Bachelor’s and Mas-
ter’s or equivalent level respectively (https://en.wikipedia.org/wiki/
International_Standard_Classification_of_Education).

https://en.wikipedia.org/wiki/International_Standard_Classification_of_Education
https://en.wikipedia.org/wiki/International_Standard_Classification_of_Education

60 M. Pons et al.

3.2 Pre-processing

Our datasets include, among other things4, the list of each student’s GitHub
repository with a list of commits made during the lab sessions (see Fig. 1a).

Fig. 1. Datasets structure models

Before analyzing the data, a pre-processing phase was necessary to adapt the
data structure for the bupaR library. For this, a Python script (see Footnote 4)
was written with two objectives:

– transform the data model structure from a list of GitHub repositories to a list
of commits;

– convert the file format to CSV.

The data provided by G4S is in a JSON format which is difficult to manip-
ulate with the R language. Therefore, using a Python library, a CSV file is
obtained after picking the data we wanted as columns: The student’s name, the
commit author identifier (it will be needed for filtering described in the following
section), the student’s group, the raw commit message, the type of the commit,
and the resolved question if there is one (or an empty string otherwise).

In the end, CSV files are produced with a simple structure (see Fig. 1b)
required for the analysis part presented in Sect. 3.3. This data will be sufficient
to build the event logs for two types of activities: (1) the resolution of a question
and (2) the work in a pedagogical context identified by the type of commits.
4 For more details, visit the public repository: https://gitlab.irit.fr/talent/TALENT/

around-g4s/G4S-to-PM-scripts-and-data-2022.

https://gitlab.irit.fr/talent/TALENT/around-g4s/G4S-to-PM-scripts-and-data-2022
https://gitlab.irit.fr/talent/TALENT/around-g4s/G4S-to-PM-scripts-and-data-2022

Finding Behavioral Indicators from Contextualized Git Commits with PM 61

3.3 Process Mining Analysis with BupaR

After the pre-processing, the datasets are almost ready to be used with bupaR.
Two types of event logs have been constructed corresponding to the two types
of activities mentioned before. To this end, an R script has been written (also
available in the public repository).

Two columns have been added. First, the column status is needed to indicate
when the activity is complete. Because we only get the event linked to the end of
the activity in our data, we assign the value “complete” for all the rows. Secondly,
we add the column activity_instance with a value incremented on each row to
differentiate each activity for the same case. Next, for constructing of the event
logs with the resolution of a question as an activity, we excluded the Intc com-
mits as we only want to analyze resolved questions’ sequences. Finally, we filter
the rows to exclude the automatic commits from GitHub Classroom5. Indeed,
when the students create their repository, a first commit is done automatically
by a bot (whose author is github-classroom[bot]) to have the startup code of the
course.

As presented in Table 1, we constructed two event logs per dataset according
to the above properties.

Table 1. How the event logs are built based on the activity

Question resolution-based Commit type activity-based

case_id author author

activity_id question type

resource_id type question

timestamp commitDate commitDate

The script then generated two R markdown6 reports. Both present the same
13 types of graphs, but one uses the event logs based on the resolution of a
question, while the other is based on the work in a pedagogical context identified
by the type of commits. BupaR uses the heuristicsmineR package. This package
uses the frequencies of the transitions between activities to build the precedence
matrices (or causal net) and the process maps. The following section presents
the more relevant graphs for future discussion.

3.4 Results

Question Resolution. Figure 2 shows the sequences of students’ answers to a
particular question. Note that each node in all the remaining graphs is a commit

5 https://classroom.github.com/.
6 https://rmarkdown.rstudio.com/.

https://classroom.github.com/
https://rmarkdown.rstudio.com/

62 M. Pons et al.

Fig. 2. Question resolution process map during a lab session

and hence a particular step in the worksheet. Ideally, the resolution process
should be sequential from the first question to the last. However, the graph
shows that the reality is quite different. There are several kinds of transitions
between non-consecutive questions:

– loops;
– transitions from Qn (Question #n) directly to the end (with n not being the

last question in the worksheet);
– transitions between Qn and Qn+m (m > 1);
– transitions between Qn and Qn−m (m ≥ 1).

They are a few loops, but they are always present in all the study datasets.
Transitions from Qn to End indicate that the last question resolved by the
student was the #n. We can see several transitions between Qn and Qn+m (m
hence representing the number of forgotten commits) and infrequent transitions
from Qn to Qn−m.

All the lab sessions we have analyzed have chaotic transitions except for
Fig. 3. In this one, only two transitions out of 204 (0.98%) skip a question. After
asking the teacher in charge of this course, the three reasons for this shallow rate
of chaotic commits are:

– an extreme dependence between the questions;
– a small group size making it easier to follow the group individually;
– regular reminders of the question-solving process by commit.

Looking for indicators, we have also analyzed the performance profile with the
average time between the resolution of two questions. Figure 4 shows an example
of a produced graph. The label on the edge gives the average time between the
two activities corresponding to the starting node and the destination node. In
our experiment, however, the starting time of the activities is not logged by G4S.

Indeed, for each question, only the commit date is available. This duration
could be extrapolated from the time between two consecutive activities, but this
introduces too much hazard to be considered. For instance, in Fig. 4, we can see

Finding Behavioral Indicators from Contextualized Git Commits with PM 63

Fig. 3. An extract from the process map showing a well-followed question resolution
process

that it takes an average of 187.31 h to complete question #3 (see the label of the
edge between #2 and #3). This duration is not representative of the time taken
to solve the question because it includes the time elapsed between the two lab
sessions.

Fig. 4. Performance profile process map (using mean function)

Work in a Pedagogical Context Identified by the Type of Commits.
The precedence matrix based on the antecedents was generated (see Fig. 5). This
graph shows the probability that the next commit will be of a particular type
depending on the type of the last commit. Out of all the antecedents, the one
most likely to result in an Aftc commit is the Aftc commit itself. This is
the same for the Bfrr commits.

Last, the matrix shows that the lowest probability of resulting in an
Aftc commit is an Intc commit. The probability of this happening is 4.56%,

while it is 10.93% from the state Bfrr . In other words, a student is less likely
to produce an Aftc commit if they made an Intc commit instead of a
Bfrr commit.

64 M. Pons et al.

Fig. 5. Precedence matrix based on commit type as activities

4 Discussion

We now propose interpretations of the results presented in the previous section.
We also discuss some limits coming from the data and the approach. Finally, we
present a work in progress to overcome the identified limits.

4.1 Interpretation

In the first subsection, we address RQ1 by presenting the indicators we found
promising for future studies. In the second subsection, we first address RQ2 by
identifying data that could enrich the contextualized commits. Then we suggest
recommendations to perform a better PM analysis on contextualized commits.

Behavioral Indicators. The Qn → Qn−m edges show that students return to
previous questions, which is a behavior not easily noticeable in G4S. Two reasons
a student goes back to a previous question: (1) they just forgot something, (2)
they want to correct or improve their solution (because of a second thought or
a teacher’s advice or answer, . . .). The last reason is showing that the student
is engaged in a learning process, but, as it stands, we cannot affirm that this is
the main reason for this pattern. Also, it could be interesting to study a possible
correlation between that behavior and their grades on the final exam. Future
work could be to cluster the students according to whether or not they engage
in this behavior in order to see if they tend to make less Aftc commits.

In Fig. 5, we saw that Intc commit is the least likely to lead to a Aftc com-
mit. Making Intc commits has a positive influence on the resolution of ques-
tions. This hypothesis also needs to be investigated more by looking for a cor-
relation with performance indicators, for instance. It is an exciting indicator as
it shows that the student is committed to the work to be done by following an
approach common and encouraged in the professional world, i.e., to commit their
work regularly.

Finding Behavioral Indicators from Contextualized Git Commits with PM 65

To finish with this figure, we can see the high probability of transition between
two Bfrr commits or two Aftc that we could respectively call the virtuous
loop and vicious loop. Although both behaviors are relatively common (and not
only in the context of learning), they can be relevant indicators. For example,
the lower the probability of a vicious loop, the greater the ability of the group
to catch up.

Improvements. To understand the behavioral mechanism behind the Qn →
Qn−m and loop transitions, we could ask the students during an interview why
they returned to a previous question when they make the commit.

Because our datasets essentially present mandatory questions, we assumed
Aftc commits were a negative sign that the student is behind schedule. How-

ever, a late resolution for optional questions means the student is trying to
understand the solution. It shows that they are engaged in a deep learning pro-
cess. We need to track which questions are optional to see the difference and
have the correct interpretation.

While using bupaR, process map views seem more appropriate for analyz-
ing event logs based on question resolution, as we can see resolved questions’
sequences. While the precedence matrix looks quite relevant for event logs based
on work identified by the type of commits, we can look at the probabilities of
moving from one type of commit to another, which is interesting if we want to
maximize the occurrence of one type of commit.

When analyzing the performance profiles in Sect. 3.4, we have seen that hav-
ing no start date for the activity makes this analysis irrelevant. We need to add
this data with more accurate tracking of student activity.

The datasets with very few chaotic transitions show that only analyzing the
data without having the context of its production is a mistake. To avoid this,
interviews with the involved teachers are necessary.

As the last recommendation, it is essential to check that datasets represent
the behaviors to study. This could be expected in any analysis, but it is not
easy to assess when analyzing contextualized commits with PM. For example,
in the precedence matrix, a dataset could have transitions to an Aftc commit
simply because no student has committed after the correction (instead of having
no correction).

4.2 Limits

The first limitation we faced when analyzing the data was the lack of reliability.
Indeed, as shown in Fig. 2, a certain number of students do not strictly follow
the process of producing a commit when they finish a question. Some students
may work, resolve several questions and make one commit, or make the commits
way after, so they appear as Aftc commit when it is not the case.

Also, all the processes rely on Git-based lab sessions, which brings two issues:
(i) it makes this analysis hard for first-year students as it requires a minimal

66 M. Pons et al.

degree of expertise with Git; (ii) it limits this type of study to computer science
students. We are working on a script7 to help reduce or avoid some of these
limitations.

4.3 Script: G4S-Automation

The G4S-automation script is written with Python; it has two objectives: (i) to
make the question resolution process based on contextualized commits accessi-
ble to learners not familiar with Git; (ii) to make the learner activity tracking
(through the commits) more accurate. To this end, the script proposes three
main features.

Firstly, it tracks any operations on the files inside the repository it has been
launched in. An automatic commit identifies each operation. We will have the
start of a question resolution and will be able to perform an accurate performance
profile analysis.

Secondly, it provides a console for a student to perform a commit to resolve a
question without using Git. For example, the command fix #1 will commit and
push all the changes since the last question was resolved so that the teacher can
inspect the progress with a dashboard like G4S. This will ease the use of this
tool for first-year students in computer science curricula because it abstracts the
use of Git.

Thirdly, it allows the opening and closing of the workspace. When the student
stops the script, all the files in his Git repository become inaccessible locally.
Then, when they restart the script, the files are accessible again, and the student
can resume their work. This feature guarantees the complete tracking of the
student’s activity, even outside the lab session.

The use of Github to manage practical work is very common in computer
science. To orchestrate the resolution of questions on an exercise sheet, “issues”
are sometimes used. It is then possible to close these issues, marking them as
solved, directly in the commit message, by indicating the character “#” followed
by the issue number to close. We have designed this interactive system so that
it is possible to close these issues via the “fix” command. To do this, you just
need to define the questions to be resolved in the same way as the close issue
key, i.e.: “#1” for the question and issue 1, . . .

Finally, to address the issue of GDPR compliance, we plan to soon inte-
grate data anonymization directly into the dashboard. This will ensure that
only teachers have access to personal data, while researchers wanting to process
data extracted from the dashboard will only have access to anonymized data, by
design.

5 Conclusion

In this study, we proposed to analyze five datasets, with more than 3100 contex-
tualized commits for about 200 students in higher education, using Process Min-
ing (PM). We extracted several indicators of student learning behavior. Although
7 https://github.com/git4school/git4school-automation.

https://github.com/git4school/git4school-automation

Finding Behavioral Indicators from Contextualized Git Commits with PM 67

we could not determine their effectiveness, we have listed relevant data to add
and recommendations to improve the analysis of contextualized commits with
PM. Finally, we have introduced an outgoing work with a script that allows
for partial automation of the question commit process, which will reduce some
limitations encountered in this study. This script will be tested in a real-life
classroom setting during the 2023 school year. Future work will be helpful to
verify the relevance of the indicators, looking for a correlation between them
and the marks obtained by the students at the final summative assessment.

Appendix A Description of the Datasets

Table 2. Description of datasets

Datasets Course name Institution Learning outcomes ISCED level Number of students

FilmProvider XML and Web
Services

IUT de Rodez Know how to use XPATH and create an XML
schema

5 2 groups of 20+
students

M1 SDL Engineering of
dynamic web
applications

Université Paul
Sabatier

Design (multi-layer architecture, role of a
framework) and technology (J2EE: servlet, JSP,
ORM, etc.)

7 (first year
M.Sc.)

49 students in 4
groups

M2 SDL Optimization of
dynamic web
applications

Université Paul
Sabatier

Be able to implement the advanced notions of
JPA in the context of a Java project accessing a
relational database. Be able to use Spring Boot
to develop a backoffice application exposing a
RESTFull API

7 1 group of 32
students

OurBusiness Data persistence IUT de Rodez Understand the main principles of ORM
approaches and how to use the JPA API

6 1 group of 11
students

PDO_MVC Server-side Web
programming

IUT de Rodez Know how to use SQL from a programming
language (PHP in our case) and how to develop
a Web application (in PHP in our case)
respecting the MVC pattern

5 3 groups of 20+
students

db_my_activities Database
Programming

IUT de Rodez Know how to develop functions and procedures
in SQL

5 3 groups of 20+
students

References

1. Ardimento, P., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Evaluating coding
behavior in software development processes: a process mining approach. In: 2019
IEEE/ACM International Conference on Software and System Processes (ICSSP),
pp. 84–93. IEEE (2019)

2. Arpasat, P., Premchaiswadi, N., Porouhan, P., Premchaiswadi, W.: Applying pro-
cess mining to analyze the behavior of learners in online courses. Int. J. Inf. Educ.
Technol. 11, 436–443 (2021)

3. Bogarín, A., Cerezo, R., Romero, C.: A survey on educational process mining.
Wiley Interdisc. Rev. Data Min. Knowl. Dis. 8(1), e1230 (2018)

4. Cerezo, R., Bogarín, A., Esteban, M., Romero, C.: Process mining for self-regulated
learning assessment in e-learning. J. Comput. High. Educ. 32(1), 74–88 (2020)

5. Dolak, R.: Using process mining techniques to discover student’s activities, nav-
igation paths, and behavior in LMS moodle. In: Rønningsbakk, L., Wu, T.-T.,
Sandnes, F.E., Huang, Y.-M. (eds.) ICITL 2019. LNCS, vol. 11937, pp. 129–138.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35343-8_14

https://doi.org/10.1007/978-3-030-35343-8_14

68 M. Pons et al.

6. Eskofier, B.M.: Exploration of process mining opportunities in educational soft-
ware engineering-the GitLab analyser. In: Proceedings of the 13th International
Conference on Educational Data Mining, EDM 2020, pp. 601–604 (2020)

7. Gupta, M., Sureka, A., Padmanabhuni, S.: Process mining multiple repositories
for software defect resolution from control and organizational perspective. In: Pro-
ceedings of the 11th Working Conference on Mining Software Repositories, pp.
122–131 (2014)

8. Juhaňák, L., Zounek, J., Rohlíková, L.: Using process mining to analyze students’
quiz-taking behavior patterns in a learning management system. Comput. Hum.
Behav. 92, 496–506 (2019)

9. Macak, M., Kruzelova, D., Chren, S., Buhnova, B.: Using process mining for git log
analysis of projects in a software development course. Educ. Inf. Technol. 26(5),
5939–5969 (2021)

10. Mittal, M., Sureka, A.: Process mining software repositories from student projects
in an undergraduate software engineering course. In: Companion Proceedings of
the 36th International Conference on Software Engineering, pp. 344–353 (2014)

11. Mukala, P., Buijs, J.C., Leemans, M., van der Aalst, W.M.: Learning analytics on
coursera event data: a process mining approach. In: SIMPDA, pp. 18–32 (2015)

12. Poncin, W., Serebrenik, A., Van Den Brand, M.: Process mining software reposi-
tories. In: 2011 15th European Conference on Software Maintenance and Reengi-
neering, pp. 5–14. IEEE (2011)

13. Raclet, J.-B., Silvestre, F.: Git4School: a dashboard for supporting teacher inter-
ventions in software engineering courses. In: Alario-Hoyos, C., Rodríguez-Triana,
M.J., Scheffel, M., Arnedillo-Sánchez, I., Dennerlein, S.M. (eds.) EC-TEL 2020.
LNCS, vol. 12315, pp. 392–397. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57717-9_33

14. Rubin, V., Günther, C.W., van der Aalst, W.M.P., Kindler, E., van Dongen, B.F.,
Schäfer, W.: Process mining framework for software processes. In: Wang, Q., Pfahl,
D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 169–181. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-72426-1_15

15. Shynkarenko, V., Zhevaho, O.: Application of constructive modeling and process
mining approaches to the study of source code development in software engineering
courses. J. Commun. Softw. Syst. 17(4), 342–349 (2021)

https://doi.org/10.1007/978-3-030-57717-9_33
https://doi.org/10.1007/978-3-030-57717-9_33
https://doi.org/10.1007/978-3-540-72426-1_15

Education to Agile: Fostering Team
Awareness with Essence

Paolo Ciancarini(B) and Marcello Missiroli

DISI, University of Bologna, Bologna, Italy

paolo.ciancarini@unibo.it

Abstract. This paper explores the incorporation of Agile practices in
our undergraduate courses leveraging the Essence approach, a meta-
notation for describing software processes, roles, and best practices.

Exposing students and young developers to the Agile mindset and
related methods is important to let them to cope with the challenges of
modern software development and digital transformations. Agile meth-
ods and practices can also help students to develop valuable soft skills
such as communication, teamwork, and adaptability.

Essence clarifies and guides several key Agile practices, thanks to
guidelines and checklists, such as: team building, customization of Agile
ceremonies, promoting the effectiveness of retrospectives, tool selection
and configuration. We found that the usage of Essence helps students
to develop critical thinking and a sense of ownership and responsibility
related to their teamwork. They achieve a better understanding of what
is expected of them, and, as a result, they are more motivated to achieve
their goals.

1 Introduction

During the last few years, we have been researching on the practice of Agile
methods for teaching Software Engineering. We introduced the principles of Agile
development in our Software Engineering courses for undergraduates, an ongoing
process that has transformed the way we teach, support students, and assess their
results in, hopefully, a way more compliant with the Agile vision.

Our first involvement with Agile was the AMINSEP research project [4],
which confronted us with the problems of digital transition in a strongly struc-
tured environment in an Italian Public Administration. In AMINSEP we devel-
oped and enacted iAgile (which stands for improved Agile), a process model that
encompassed the mainstream Scrum framework to adapt it to the necessity of a
public administration engaged in projects of an Agile digital transformation in
a critical context requiring high security [30].

After the termination of the project we began experimenting by introduc-
ing the Agile vision to inexperienced programmers, both in high school and in
our university courses. Our preliminary results showed that Agile had indeed a
potential in this field [22].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, pp. 69–84, 2023.
https://doi.org/10.1007/978-3-031-48639-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_6&domain=pdf
http://orcid.org/0000-0002-7958-9924
http://orcid.org/0000-0002-9243-3406
https://doi.org/10.1007/978-3-031-48639-5_6

70 P. Ciancarini and M. Missiroli

We have introduced Cooperative Thinking [6] as a combination of Compu-
tational Thinking and Agile collaboration. We studied which collaborative tools
are especially useful for Agile developments [7], and evaluating outcomes of Agile
development projects in high schools or university courses [8,22].

We came to the conclusion that students and young developers need to be
exposed to both Agile methods and powerful open source tools to be able to
cope with the challenges of modern software development.

Following the results of a survey on tools used by the Agile community world-
wide [7], we started building and experimenting with a fully open source devel-
opment environment that is compatible with the principles of Agile and privacy,
the Composable Agile System (CAS) [5]. CAS was especially useful during the
lockdown periods caused by the pandemic, because students got powerful col-
laborative tools at their disposal, which allowed them to work on their project
and at the same time allowed us to collect process data to be analyzed [8].

The most difficult challenge was to convince the students to adopt a discipline
of agile collaboration. Convincing students that software is a social construct, in
fact, was not easy. We focused on some specific practices: team building, product
ownership, negotiating requirements, and collective analysis during retrospec-
tives [21]. We found that students need some specific guidance in understanding
a process model like Scrum, and to acquire self-awareness as a team. Essence
- a meta-tool used to describe processes [14] - proved to be a useful addition.
Essence helps the students in two ways: firstly, it helps to describe the process
they follow, allowing some degree of customization according to their necessities.
Essence helps in explaining that some practices are not mandatory, and can be
substituted by alternative practices. For instance, after beginning to use Scrum,
they rapidly realize that the daily meeting is not suitable – as it is not compat-
ible with their course schedule. A second crucial help consists in using Essence
during the retrospectives to understand and track the progress of the process as
a whole, check its weaknesses, and possibly introduce adjustments for the next
sprint.

Agile software development is an iterative and flexible approach to software
development that emphasizes collaboration, customer satisfaction, and rapid
delivery of working software. Open source tools are software tools whose source
code is made freely available to the public, allowing anyone to modify and
improve upon them. The relationship between Agile software development and
open source tools is, in our view, a natural one. Open source tools are often
used in Agile development because they offer developers the flexibility and the
adaptability they need to quickly respond to changing requirements.

The open source tools we suggested to use are flexible and customizable,
allowing developers to tailor them to meet their specific needs. This flexibility
makes them ideal for use in Agile development, where requirements can change
frequently and rapidly – the relationship between Agile software development
and open source tools is one of mutual benefit.

In summary, we found that our courses greatly improved by introducing the
combined use of Agile methods and Open source tools, and Essence provided
a solid framework for teaching, monitoring, customizing and reflecting on the
process within a Cooperative Thinking perspective.

Education to Agile: Fostering Team Awareness with Essence 71

The rest of this paper has the following structure:

– Section 2 presents the status of research on these topics;
– Section 3 describes the process of refocusing our courses on the Agile perspec-

tive and introducing a Project-based assessment;
– Section 4 highlights the role covered by Essence in the process;
– Section 5 shows the outcomes of the changes introduced;
– finally, in Sect. 6, we draw our conclusions and describe the forthcoming further

changes that we are planning for the next edition of the course.

2 Literature Review

Teaching Agile software development is now a popular approach, and several
papers report about experiences of Agile projects developed by Computer Sci-
ence undergraduates. For instance, [9] discusses how Agile software development
is taught to students of computer science and software engineering in various
universities; the authors describe their experiences and provide some recommen-
dations for instructors, like keeping up the pace of the developing teams using
some form of minimal competition.

In the paper [17] we found the description of a course on Agile methodolo-
gies taught to software engineering students analyzing their personalities and
attitudes to teamwork, thus adopting some form of team building before the
start of the actual projects. In [20] there is a discussion of how the use of col-
laborative practices needs some maturity by the students. The idea of using
real-life problems, with an approach called Problem-Based Learning, to study
Agile development is discussed in [12].

A recent paper considers how product management and Agile can be taught
to undergraduates is [24]. Product management is relatively unexplored in soft-
ware engineering, yet it is an important topic in any effort of digital transforma-
tion.

The Essence way to teach Agile practices and train Agile students and devel-
opers is presented in [15]. A paper from a different group concerning how to use
Essence cards and approach is [34]. Two papers from Peraire and Sedano vali-
date the Essence approach used by students in retrospectives [25,26]. A paper
discussing how Essence can be used during an academic course project work is
[16]; this paper discusses the difficulties of adopting Essence with undergraduate
students.

Essence can be considered as a playful framework for team building and
support [32]; the role of serious games in the education of Agile developers and
related team building activities is reviewed in [28].

We have devoted some effort to search for recent evidence on teaching Agile
development using open source tools only. The match seems natural, however
we have found only few papers: the report [33], which uses tools quite different
from those we used, in particular they used Redmine for project management
and Bugzilla as issue tracker; and the paper [36], which focuses on software reuse
in a community of student developers.

72 P. Ciancarini and M. Missiroli

Documentation of process choices, tools selections, and their rationale is an
important factor in software development projects in order to support product
quality and future maintenance. While several research publications address this
topic, systematic approaches and tools are rarely found in practice, and are not
well covered in software engineering education. Lack of suitable process docu-
mentation is especially an issue in Agile software development, where processes
and tools are often seen as less important than working products [31]. We found
some reports describing the use of a Scrum-like approach adaptable by the stu-
dents, see for instance [1,29].

Concerning the evaluation of product, process and teams, our work has been
inspired by the quality model described in the article by Hoegl and Gemuenden
[13], and further developed by Lindsjørn et al. [18]. The maturity model for Agile
teamwork, on the other hand, was proposed by Yin et al. [37], based on the one
created by Chetankumar et al. [3]. Gren et al. have also discussed the concept
of teamwork maturity in Agile teams [11].

3 Extreme Development

We have been teaching a “Software Engineering” course (part of the CS degree
curriculum, 3rd year) for several years. Its syllabus had a traditional struc-
ture, i.e. mostly lecture-based with some workshops, and focused on traditional,
waterfall-style software engineering: software requirement specification (SRS) -
including several UML diagrams - test specs and some design patterns. The final
exam was based on writing a project plan, drawing some UML diagrams, and
answering a few questions.

When the pandemic began we reorganized the course structure, with the
following goals in mind:

1. Promote the idea that developing software is a social activity, for instance
with team building activities based on games;

2. Emphasize Agile development principles, including the possibility of choosing
the most suitable practices;

3. Foster a product-oriented mindset educating the students to the role of prod-
uct owner;

4. Provide open source tools to experiment and support Agile collaborative prac-
tices;

5. Offer continuous monitoring and feedback to students during their projects
(not just at the end).

We introduced these changes related to these goals over a three-year period,
and some elements are still subject to adjustments.

Implementing the Agile vision in our course presented challenges, as it encom-
passes various concepts, including values and principles as in the Agile Manifesto,
some best practices, a lightweight project management framework, emphasis on
versioning and deployment disciplines (like pipelines based on GitLab and sys-
tematic usage of docker). We adopted the Scrum framework, combined with
some XP practices, like pair programming.

Education to Agile: Fostering Team Awareness with Essence 73

To put Agile into practice, we incorporated a project into the course format.
Students were required to form teams since the first days of the class. Thus,
the project activities began early in the 12-week course, with sprints spanning
three weeks. We did not fix the number of sprints, but we asked if possible to
conclude the development by the end of the fall term. The required non trivial
product was a Twitter client capable of aggregating posts using visual analytics
techniques. Most teams successfully delivered their products by the end of the
lectures, with only a few teams requiring additional sprints. Each team provided
a report documenting their process, including productivity data, a product demo,
and a final retrospective.

We faced two main challenges:

1. Students lacked experience with teamwork since the current Computer Sci-
ence curriculum typically focuses on individual programming. To address this,
we introduced team-building activities to help them to develop and test some
teamwork skills.

2. Initially each team had the freedom to choose its development tools, which
sometimes resulted in complex and demanding solutions. This led to varia-
tions in team productivity and introduced unnecessary complexity. Further-
more, the COVID-19 pandemic forced all students to work online, depriving
them of face-to-face communication, a key aspect of Agile. Therefore, we pro-
vided a standard set of tools for all teams, in order to provide a working
environment with minimal configuration. This prompted us to develop an
“Extreme development” praxis, as detailed below.

3.1 Our Motivation

During the pandemic the necessity of working remotely forced us to choose a
number of collaborative tools to support students working online. We wanted
students to be in complete control of their development environment, including
process data and artifacts. We restricted the choice to open source software
suitable to offer complete control of all artifacts and data they produced. This
was challenging, since several students were used to online tools that were closed-
source, with unclear privacy terms of use, or both.

To this end, we identified a series of FLOSS products that, when combined,
provided the basic services similar to their commercial counterparts, such as
Trello or Slack. These open source software include Git+Gitlab, Jenkins, Sonar-
Qube. We added Mattermost for communication (an open source alternative to
Slack), and Taiga for project management (a more comprehensive and open
source alternative to Trello). These tools formed the core of our CAS [5] system.
We configured some virtual machines as instances of the development environ-
ment, and gave students access. Some teams opted for a self-hosted solution
however. The students could use any open source IDE, like Eclipse, IntelliJ,
Atom or Visual Studio Code (the latter one was the preferred choice).

We also required each student to track the time spent on the project. To avoid
commercial products, we provided a self-developed IDE plugin able to log the

74 P. Ciancarini and M. Missiroli

actions of the developers client-side; these actions could then later be analyzed
either individually or collectively, team-wide, using a dashboard.

We named this praxis as “extreme Agile development”. It is an extreme form
of development because it required the combination of:

– an Agile framework, as given by Scrum, tailorable by the students;
– the necessity of using open source only tools;
– the requirement to track the productivity data both as individual developers

and as a team;
– the freedom to choose and adapt the Agile best practices most suitable to the

team, as for instance pair programming, the daily scrum, and the retrospec-
tives;

– the requirement to use systematically Essence cards for the retrospectives and
for any additional tool or best practice adopted by the team;

– pervasive teamwork, including team building activities and using collaborative
tools.

While these issues are not necessarily correlated, we assume that modern
would-be developers should be exposed to all of the above to be ready for the
real-world challenges. Our goal here is to pull students out of their comfort zones
as individual developers, and reinforce their collective behavior and reciprocal
trust.

3.2 Fostering Extreme Development

We hold that writing software is a social activity performed in teams. How-
ever, education to programming tends to focus on individual -centered learning
and sometimes discourages cooperation, even penalizing it as cheating. Agile’s
best practice of collective code ownership often contradicts this approach [2].
To address this issue, we needed to promote self-organization, positive team
building, and personal accountability.

– Self-organization was achieved by letting students form teams with minimal
limitations. Specifically, we wanted all teams to have more or less the same
number of participants, usually five or six. The process of team forming usually
required 3–5 days, and our intervention and advice was very limited.

– Team building was integrated in the preliminary iteration of the project
(defined as “Sprint 0”), during which the students performed some training
games, such as “Scrumble”1, and “Escape the Boom”2. These games can be
played remotely online - this was a requirement during the pandemic. The
performance of each team when playing these games was self-evaluated by the
team itself using a GQM approach.

1 http://scrumble.pyxis-tech.com.
2 https://escape-the-boom.com.

http://scrumble.pyxis-tech.com
https://escape-the-boom.com

Education to Agile: Fostering Team Awareness with Essence 75

Fig. 1. The structure of the project process

– To promote personal accountability we committed to providing frequent and
precise feedback to teams, and let them handle the results. This was achieved
by requiring reports and surveys at the end of each sprint, as well as offering
online discussion sessions with faculty on a regular basis.

Git was instrumental in providing several important data, such as the number
and the size of commits and their temporal distribution. More to the point, we
utilized gitinspector3 to present git log data in a simple and graphical format
to the team. For example, the tool is able to detect common usage patterns,
such as who is the person most responsible for a given file, or the person that
contributed the most lines of codes, in a weekly breakdown. This data is then
used as a basis for a teacher-student discussion. Figure 1 shows how the project
process has been organized.

Students form teams with Trello, as it is a well known and offers a good app
over the smartphones. Each student builds a self-presentation in the form of a
card explaining personal abilities and preferred activities, eg. Python program-
mer, User interface designer, etc. This is a format derived from Agile unconfer-
ences worldwide, emphasising the self-organizational aspect. Then, they look for
companions to form teams. After that, the first activity we suggest is to engage
in some team building games in order to practice Scrum roles and assign them.
By far, the most successful game we introduced is Scrumble, that we adopted in
an online variant we have implemented. Most students reported its usefulness in

3 https://github.com/ejwa/gitinspector.

https://github.com/ejwa/gitinspector

76 P. Ciancarini and M. Missiroli

getting the idea of what Scrum works and what is expected from Scrum roles.
Most teams reported that they assigned the roles of product owner and Scrum
master after playing the game.

4 The Role of Essence

The introduction of an Agile project in our course required, for most students, a
complete change of mindset: no “think ahead”, requirements negotiable and not
imposed or predefined, a lot of teamwork, focus on product and customer, using
powerful development tools, and more. Lecturing students on these principles
is one thing, have them understand and apply them is completely different.
Students receive an overwhelming amount of information in a short time period
and, consequently, their overall understanding is shallow.

We needed some framework that could help and guide their learning even
outside class hours. We choose Essence, a standard for software engineering
methods [23]. Essence is based on a collection of guidelines and checklists in the
form of cards4, that describe the process roles and activities to be performed. The
cards, among other things, are used in retrospective games and provide a solid
mental scaffolding that helps students understand “where they are”, possibly
“where they are heading” and share this information among themselves and
with us.

At first we used Essence cards only as a teaching support during lectures.
We added the book [14] as a suggested reading, but we skipped a formal intro-
duction and simply started using the cards. This is one of the proposed learning
approaches proposed by its authors, defined as “stealth mode”5.

We started with the so-called Kernel Alphas, which help to define the basic
software engineering concepts such as “Requirements” and “Software System”.
To that, we added some concepts related to Agile, specifically Product Backlog
and Product Backlog Item (which includes User Stories and Tasks). Depending
on the context, the cards were used as visual teaching aid, cheat sheets, or recap
elements. Table 1 shows a timeline of the introduction of the various Essence
cards over the course.

4.1 Monitoring the Status of a Project

The Essence cards can be used in an interesting and active way during the devel-
opment of a project, namely to understand the status of the process [27]. Even
in real-life development projects it is difficult to have a clear idea of the status
of a software project; in case of inexperienced developers tackling a complex
assignment for the very first time, this becomes a very hard problem indeed.

4 available at https://practicelibrary.ivarjacobson.com.
5 https://paulemcmahon.wordpress.com/2019/06/09/scaling-essence-in-stealth-

mode-and-why-you-should-care.

https://practicelibrary.ivarjacobson.com
https://paulemcmahon.wordpress.com/2019/06/09/scaling-essence-in-stealth-mode-and-why-you-should-care
https://paulemcmahon.wordpress.com/2019/06/09/scaling-essence-in-stealth-mode-and-why-you-should-care

Education to Agile: Fostering Team Awareness with Essence 77

Table 1. The usage of Essence elements as the project progresses

Timeline Focus Essence elements Tools

Lectures SE Basics, open source value Customer; Requirements Planning poker app

sprint 0 Teambuilding, System setup Team, System, Git, Gitlab Gitlab

sprint 1 1st MVP, Retrospective User Stories, Retrospective

games

Taiga, logger, IDE,

gitinspector

sprint 2 2nd MVP, Agile values and

techniques

Pair Programming, Test Cover-

age

JUnit, Jest

sprint 3+ 3rd MVP, Code quality, Refac-

toring

Evolve a Releasable Product,

Manage technical debt

SonarQube

Release Deployment pipeline Devops Essentials Jenkins

We suggested that teams should pick some Essence cards to track and assess
their process status. We proposed some cards, such as “Stakeholder”, “Soft-
ware System”, “Team” and, with the help of the checklists linked to the cards,
students were able to provide a reasonable estimate of the “well being” of the
project. As the project progressed, they used cards to assess their overall project
progress, sometimes indicating the desirable state to be achieved at the end of
each iteration. Though this practice was not mandatory, most groups used it
during their retrospectives.

4.2 Retrospectives with Essence

Reflection is one of the Agile principles [35] (#12), but it is also is a key element in
effective learning [10]; unfortunately, our students traditionally do not have much
experience (if any) in this technique. Essence provided the perfect mechanism
to do so. Practice Patience6 is a gaming activity that drives the retrospective
session – required at the end of each iteration:

1. The team selects a number of cards that are considered of interest. During
the first retrospective we required the use of at least four cards, including the
Team card.

2. Cards are positioned in a two-dimensional board, where the vertical axis
represents the importance of the practice associated to the card, and the
horizontal axis shows how well the team performed in relation to that topic,
possibly adding comments.

3. The team discusses each card, and produces a list of improvement actions.

From a teaching perspective, it was easy to notice a general improvement
of the teams over time; teams used more cards and were able to write useful
comments and improvement suggestions. As many retrospectives were executed
online, they developed an Excalidraw template which they shared among them.

6 https://www.ivarjacobson.com/publications/blog/agile-tools-coaching/better-
scrum-through-essence-part-2-1.

https://www.ivarjacobson.com/publications/blog/agile-tools-coaching/better-scrum-through-essence-part-2-1
https://www.ivarjacobson.com/publications/blog/agile-tools-coaching/better-scrum-through-essence-part-2-1

78 P. Ciancarini and M. Missiroli

Fig. 2. Three new cards supporting Git, GitLab tool, and Logger. Following the
Essence convention, the Git card is a skill, while GitLab and Logger are alphas.

4.3 Process Organization

Some Agile principles clearly suggest that the software development process
should be sustainable and teams be self-organized [35] (#8, #11). While we
presented a standard development method based on Scrum with several XP
elements, teams were free to organize themselves as they thought it was best
for them. Essence offers a vast library of practices that students were free to
implement or not.

For instance, the Daily Scrum practice was interpreted differently by groups:
some skipped it altogether, some performed it online early in the morning, other
opted for a bi-weekly face-to-face version. As a further example, pair program-
ming was an Agile practice that was intensively used by some teams and com-
pletely ignored by others.

In fact, we can say that every team used a different, customized development
process – further promoting the Cooperative Thinking mindset.

Though very comprehensive, Essence did not provide all the elements we
wanted our students to learn and use. Since Essence is an open standard, we
created some cards, shown in Fig. 2. Some are of general use, such as the ability
to properly use Git commands and sharing a GitLab repository, others describe
some services we offer in CAS, such as the Logger. Some other cards have been
developed for other tools. Table 1 shows some Essence elements introduced as
the project progresses.

Some teams proposed and customized changes to the process. Several teams
decided to implement deployment pipelines from the beginning of the project,
even before they were lectured on DevOps pipelines. Some team enriched the ret-
rospective practice by tracking individual card evaluation over time, an interest-
ing piece of information that is otherwise lost as individual opinions are merged
and averaged - see Fig. 3.

Education to Agile: Fostering Team Awareness with Essence 79

Fig. 3. A matrix showing the results of a retrospective discussion. The leftmost column
lists the practices chosen by the team to be discussed. The columns 2–6 are one for each
team member: red-the practice is going bad, yellow-the practice needs care, green-the
practice is going well. The last column contains some notes. The second column is from
the PO, the third is from the SM: they disagree on the state of the practices (Color
figure online)

5 Outcomes

It is very difficult to evaluate the impact of changes we applied, especially given
that several modifications have happened over a relatively short amount of time:
we modified the syllabus, the teaching strategies, the outcomes expected from
the student teams, and the evaluation method. Therefore, our discussion here
tends to be limited to anecdotal value, but in this case there are some data
suggesting clearly that our changes have been beneficial.

Team responsibility is achieved by basing a large part of the final grade
(around 80%) on the project outcome, and specifically on process evaluation
rather than product evaluation. Personal reflections confirm that this approach
has been understood and, generally, approved.

The number of students passing the exam has improved: while the average
number of enrolled students has remained more or less constant, averaging 90,
the number of non-passing students after two months from the end of the lectures
has rapidly decreased to zero, from an average of 15% related to the previous
course structure.

Another positive indicator is the students’ feedback concerning the course.
The course remained popular among students. Many students commented that
the course was “more engaging” and provided “practical experience” that could
be exploited in the job market. Some remarked that more effort (hours of work)
were needed, but this is hardly a negative point from a teacher’s perspective. The
results of the first two instances of the class project, mostly executed during the
strict lockdown in winter 2020–21 and 2021–22, were positive because all teams

80 P. Ciancarini and M. Missiroli

Table 2. Perceived usefulness of tools.

Mean Std. err. Mode Median

Taiga 4,05 0,13 4 4

GitLab 4,92 0,05 5 5

SonarQube 3,41 0,17 3 3

Mattermost 2,89 0,28 1 3

Jenkins 2,38 0,26 1 1

Scrumble 3,32 0,20 3 3

Escape the Boom 2,38 0,27 3 3

Essence 3,49 0,15 4 4

completed their product before starting the spring semester. This experience is
discussed in [19], written with two students who developed the project.

Table 2 shows the students’ feedback related to some the proposed tools used
within the CAS Environment (Taiga, Gitlab, SonarQube, Mattermost, Jenkins),
the teambuilding games (Scrumble and Escape the Boom) and Essence cards.
The excellent evaluation of both Taiga and GitLab was no surprise, whereas the
low score of Jenkins and Mattermost was justified by the easy-to-use GitLab
internal pipeline for the former and the limited features and usability of the
latter, which is improving by the day. SonarQube fared reasonably well. The
Scrumble game was deemed generally useful–some teams even played it twice–,
but the Escape the Boom not very so.

The logger tool caused the most concerns, mainly because the program did
not support all IDEs and all platforms and the continuous IDE upgrades created
increasing incompatibilities with our software. By direct observation, we must
add that the data recorded concerning productivity were not very reliable, since
students were not precise in tracking their own activities, be it automatic or
manual. We are currently looking for a viable solution to overcome this problem.

In general, the students evaluated positively the retrospectives based on
the Essence method, provided as part of the final team report. Most students
described the Essence cards as “clarifying” during the lectures and also “very
beneficial” in understanding how some methods and techniques were intended
to be used, specifically during Sprint Retrospectives.

The final question to be answered is whether all this reorganization effort
was worth it or not. To answer that, we collected and organized team data,
commented their results, and compared team performance to the final grades
obtained by each student [8]. We used two evaluation models, a quality model
(measuring overall code quality), and a maturity model (measuring how the
team applied Agile values in their work).

Analyzing the results of the two models we have observed a linear relation
(as shown in Fig. 4), suggesting that teams that closely followed the proposed
work methodology, on average, produced better quality code. In our view, this
confirms that our efforts in fostering performing teams using Agile method were
fruitful.

Education to Agile: Fostering Team Awareness with Essence 81

Fig. 4. Linear correlation of maturity and quality models [8]

6 Conclusions and Further Work

We and our students believe that Essence cards are quite useful to achieve a
good Agile proficiency. In order to simplify and improve the introduction of
agile practices, we plan to reinforce the use of Essence cards. Firstly, we are
expanding their use during the lectures, since students like the synthesis offered
by the cards and the freedom to select their own practices and tools. In addition,
we are preparing additional cards, with the goal to address the details of new
agile practices (for instance in product management), or to describe specific
tools, like for instance the logger and the other tools that we are adding to the
CAS environment for supporting diagramming and retrospectives.

Another challenging idea consists in managing a multi-team project, enacting
some scalable process model like SAFe or LESS. Essence cards offer support for
SAFe, however we need a reorganization of the courseware, and probably some
new management tools, that we are currently studying.

Acknowledgment. We ack the support of CN-HPC under PNRR (National Recovery
and Resilience Plan), and of CINI and CNR-ISTC.

References

1. Bass, R., Pejcinovic, B., Grant, J.: Applying scrum project management in ECE
curriculum. In: Proceedings of the Conference on Frontiers in Education, pp. 1–5.
IEEE (2016)

2. Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code!
Examining the effects of ownership on software quality. In: Proceedings of the
19th ACM SIGSOFT Symposium on Foundations of Software Engineering, pp.
4–14 (2011)

82 P. Ciancarini and M. Missiroli

3. Chetankumar, P., Ramachandran, M.: Agile maturity model (AMM): a software
process improvement framework for agile software development practices. Int. J.
Softw. Eng. 2, 01 (2009)

4. Ciancarini, P., Messina, A., Poggi, F., Russo, D.: Agile knowledge engineering for
mission critical software requirements. In: Nalepa, G.J., Baumeister, J. (eds.) Syn-
ergies Between Knowledge Engineering and Software Engineering. AISC, vol. 626,
pp. 151–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64161-4 8

5. Ciancarini, P., Missiroli, M., Poggi, F., Russo, D.: An open source environment for
an agile development model. In: Ivanov, V., Kruglov, A., Masyagin, S., Sillitti, A.,
Succi, G. (eds.) OSS 2020. IAICT, vol. 582, pp. 148–162. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-47240-5 15

6. Ciancarini, P., Missiroli, M., Russo, D.: Cooperative thinking: analyzing a new
framework for software engineering education. J. Syst. Softw. 157, 110401 (2019)

7. Ciancarini, P., Missiroli, M., Sillitti, A.: Preferred tools for agile development: a
sociocultural perspective. In: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A.
(eds.) TOOLS 2019. LNCS, vol. 11771, pp. 43–58. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29852-4 3

8. Ciancarini, P., Missiroli, M., Zani, S.: Empirical evaluation of agile teamwork.
In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P., Pérez-Castillo, R. (eds.)
QUATIC 2021. CCIS, vol. 1439, pp. 141–155. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-85347-1 11

9. Devedžić, V., et al.: Teaching agile software development: a case study. IEEE Trans.
Educ. 54(2), 273–278 (2010)

10. Ertmer, P.A., Newby, T.J.: The expert learner: strategic, self-regulated, and reflec-
tive. Instr. Sci. 24(1), 1–24 (1996)

11. Gren, L., Goldman, A., Jacobsson, C.: Agile ways of working: a team maturity
perspective. J. Softw. Evol. Process 32(6), e2244 (2020)

12. Heberle, A., Neumann, R., Stengel, I., Regier, S.: Teaching agile principles and
software engineering concepts through real-life projects. In: 2018 IEEE Global
Engineering Education Conference (EDUCON), pp. 1723–1728. IEEE (2018)

13. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449
(2001)

14. Jacobson, I., Lawson, H., Ng, P., McMahon, P., Goedicke, M.: The Essentials of
Modern Software Engineering. ACM Books, Morgan & Claypool Publishers (2019)

15. Jacobson, I., Sutherland, J., Kerr, B., Buhnova, B.: Better scrum through essence.
Softw. Pract. Exp. 52(6), 1531–1540 (2022)

16. Kemell, K.-K., Nguyen-Duc, A., Wang, X., Risku, J., Abrahamsson, P.: The essence
theory of software engineering – large-scale classroom experiences from 450+ soft-
ware engineering BSc students. In: Kuhrmann, M., et al. (eds.) PROFES 2018.
LNCS, vol. 11271, pp. 123–138. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03673-7 9

17. Layman, L., Cornwell, T., Williams, L.: Personality types, learning styles, and
an agile approach to software engineering education. In: Proceedings of the 37th
SIGCSE Technical Symposium on Computer science education, pp. 428–432 (2006)

18. Lindsjørn, Y., Sjøberg, D.I., Dingsøyr, T., Bergersen, G.R., Dyb̊a, T.: Teamwork
quality and project success in software development: a survey of agile development
teams. J. Syst. Softw. 122, 274–286 (2016)

https://doi.org/10.1007/978-3-319-64161-4_8
https://doi.org/10.1007/978-3-030-47240-5_15
https://doi.org/10.1007/978-3-030-29852-4_3
https://doi.org/10.1007/978-3-030-29852-4_3
https://doi.org/10.1007/978-3-030-85347-1_11
https://doi.org/10.1007/978-3-030-85347-1_11
https://doi.org/10.1007/978-3-030-03673-7_9
https://doi.org/10.1007/978-3-030-03673-7_9

Education to Agile: Fostering Team Awareness with Essence 83

19. Marzolo, P., Guazzaloca, M., Ciancarini, P.: “Extreme development” as a means
for learning agile. In: Succi, G., Ciancarini, P., Kruglov, A. (eds.) ICFSE 2021.
CCIS, vol. 1523, pp. 158–175. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-93135-3 11

20. Meier, A., Kropp, M., Perellano, G.: Experience report of teaching agile collabo-
ration and values: agile software development in large student teams. In: Proceed-
ings of the 29th International Conference on Software Engineering Education and
Training (CSEET), pp. 76–80. IEEE (2016)

21. Meyer, B.: Agile! The Good, the Hype and the Ugly. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05155-0

22. Missiroli, M., Russo, D., Ciancarini, P.: Learning agile software development in
high school: an investigation. In: Proceedings of the 38th International Conference
on Software Engineering Companion, pp. 293–302 (2016)

23. OMG. Essence - kernel and language for software engineering methods, version 1.2.
Technical Report 18-10-02. OMG (2018)

24. Pal, K.: Reflection on teaching practice for agile methodology based product devel-
opment management. In: Teaching Innovation in University Education: Case Stud-
ies and Main Practices, pp. 135–155. IGI Global (2022)

25. Péraire, C., Sedano, T.: Essence reflection meetings: field study. In: Proceedings
of the 18th International Conference on Evaluation and Assessment in Software
Engineering, pp. 1–4 (2014)

26. Péraire, C., Sedano, T.: State-based monitoring and goal-driven project steering:
field study of the SEMAT Essence framework. In: Companion Proceedings of the
36th International Conference on Software Engineering, Hyderabad, India, pp. 325–
334. ACM (2014)

27. Quintanilla-Perez, D., Mauricio-Delgadillo, A., Mauricio-Sanchez, D.: Essboard: a
collaborative tool for using Essence in software development. In: Proceedings of
the 10th International Conference on Software Engineering and Service Science
(ICSESS), pp. 20–23. IEEE (2019)

28. Rodŕıguez, G., González-Caino, P.C., Resett, S.: Serious games for teaching agile
methods: a review of multivocal literature. Comput. Appl. Eng. Educ. 29(6), 1931–
1949 (2021)

29. Rush, D.E., Connolly, A.J.: An agile framework for teaching with Scrum in the IT
project management classroom. J. Inf. Syst. Educ. 31(3), 196–207 (2020)

30. Russo, D., Taccogna, G., Ciancarini, P., Messina, A., Succi, G.: Contracting agile
developments for mission critical systems in the public sector. In: Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Society, pp. 47–56 (2018)

31. Schubanz, M., Lewerentz, C.: What matters to students - a rationale management
case study in agile software development. In: Proceedings of the SEUH Software
Engineering im Unterricht der Hochschulen, volume 2531 of CEUR Workshops
Proceedings, Innsbruck, Austria, pp. 17–26 (2020)

32. Sutherland, J., Jacobson, I., Kerr, B.: Scrum essentials cards: experiences of scrum
teams improving with essence. Queue 18(3), 83–106 (2020)

33. Teel, S., Schweitzer, D., Fulton, S.: Teaching undergraduate software engineering
using open source development tools. Issues Informing Sci. Inf. Technol. 9, 63–73
(2012)

34. Tüzün, E., Üsfekes, Ç., Macit, Y., Giray, G.: Towards unified software project
monitoring for organizations using hybrid processes and tools. In: Proceedings of
the International Conference on Software and System Processes (ICSSP), pp. 115–
119. IEEE (2019)

https://doi.org/10.1007/978-3-030-93135-3_11
https://doi.org/10.1007/978-3-030-93135-3_11
https://doi.org/10.1007/978-3-319-05155-0

84 P. Ciancarini and M. Missiroli

35. Agile alliance - 12 principles behind the agile manifesto (2001)
36. Villarrubia, A., Kim, H.: Building a community system to teach collaborative soft-

ware development. In: Proceedings of the 10th International Conference on Com-
puter Science & Education (ICCSE), Cambridge, UK, pp. 829–833 (2015)

37. Yin, A., Figueiredo, S., da Silva, M.M.: Scrum maturity model. In: Proceedings of
the ICSEA, pp. 20–29 (2011)

The Physical and Human Dimension
of Communication in Distance Education

Christophe Gnaho1,2(B)

1 Laboratoire Algorithmique, Complexité Et Logique, Université Paris Est,
61 Avenue du Général de Gaulle, 94010 Créteil, Cedex, France

christophe.gnaho@u-paris.fr
2 Université Paris Cité, 45 Rue Des Saints-Pères, 75006 Paris, France

Abstract. Distance education is essential to improve access to education, par-
ticularly for certain categories of people who are unable to travel to a training
center, such as long-term hospital patients, prison inmates, etc. In addition, dis-
tance education has been given a new impetus by the Covid-19 pandemic, allowing
many universities and training centers to maintain pedagogical continuity. Today,
distance education can rely on more and more sophisticated tools and technolo-
gies. However, one may wonder if this is enough to cover all the dimensions of
learning. We will argue that non-verbal communication is necessary to promote
learning and thus guarantee the quality of teaching and the commitment of the
learners. To this end, we believe it is appropriate to start a reflection on this sub-
ject and to try to provide an answer to the following research question: how can
distance education compensate for the lack of the physical and human dimension
of communication? The aim of this paper is to present the first results of our
reflections. Based on work in the fields of educational science, ergonomics and
human-machine interaction, we propose a model-driven approach that is indepen-
dent of any technological platform. This approach can be instantiated and adapted
to different learning situations.

Keywords: Distance education · Non verbal communication · Collaborative
learning · Learning community ·Model driven approach · Federated architecture

1 Introduction

Distance education has been developing for several years thanks to the evolution of
multimedia and Internet technologies. It is essential because it makes it possible to
improve the accessibility of education, in particular for certain categories of learners
who cannot move to a place of training, such as people hospitalized for a long time, the
population of prisons, etc. Moreover, with the Covid-19 pandemic and even today after
the pandemic, distance education has received a new impetus, allowingmany universities
and training centers to maintain pedagogical continuity, for example during periods of
transport strikes or, for some countries, during times of war.

Although distance education can rely today on increasingly sophisticated tools and
technologies, one can wonder if this is enough to cover all the dimensions of learning.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, pp. 85–99, 2023.
https://doi.org/10.1007/978-3-031-48639-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_7&domain=pdf
https://doi.org/10.1007/978-3-031-48639-5_7

86 C. Gnaho

For example, do technological advances make it possible to consider certain types of
subjects that require strong human interaction, such as programming, mechanics, and
other courses requiring practical work, etc.?

According to several researchers in the field of educational sciences, one of the
main challenges of distance education, beyond mastering the spatio-temporal aspect, is
the creation of a remote presence [8, 12]. However, the scope of those studies is often
limited to situations where the interactions between the learners and the trainer are only
conveyed by verbal communication (oral andwritten) online, without any body language
that is perceptible to the distant audience. In addition, there is much research arguing
that gestures convey content information (both concrete images and abstract concepts),
thus revealing a speaker’s mental representations [13, 16].

We therefore intend to include non-verbal communication (emotional states, body
language, etc.) to complement verbal communication.Wewill state that non-verbal com-
munication is necessary to promote learning and thus guarantee the quality of teaching
and learners’ commitment. To this end,we believe that it is appropriate to start a reflection
on this subject and to try to provide an answer to the following research question: how
can distance education compensate for the lack of the physical and human dimension of
communication?

This research question could be approached from several perspectives. We are cur-
rently focusing on issues related to the socialisation of the virtual classroom and the
creation of a remote pedagogical presence. This paper presents the first results of our
reflections. Based on work in the fields of educational science, ergonomics and human-
machine interaction, we propose a model-driven approach, independent of any techno-
logical platform, in the form of a general framework that can be instantiated and adapted
according to different learning situations. We use a concrete example of a remote Java
programming lab session to illustrate this framework.

The remainder of the paper is structured as follows. The next section introduces
key definitions and outlines the theoretical framework upon which our study is built.
Section 3 elaborates on the proposed approach and its principal components. In Sect. 4,
we investigate the feasibility of our approach. Finally, Sect. 5 concludes the paper and
provides insights into our future research directions.

2 Definitions and Theoretical Framework

This section presents the background on which our study is based. It begins with some
definitions of the concept of distance education, together with theoretical terms used
to describe the relationships between learners and trainers. It then presents some of the
main theoretical trends related to collaborative learning.

2.1 Definitions

Distance Education (DE). DE is defined in [20] as a pedagogical process in which a
significant part of the teaching is provided by a trainer distant from the learner in space
and/or time. According to a communication from the European Commission onMay 24,
2000, remote education consists of “using multimedia technologies and the Internet to

The Physical and Human Dimension 87

improve the quality of learning by facilitating access to resources and services, as well
as remote communication and collaboration.”

During the Covid-19 period, we had the opportunity to experiment with several
modes of remote education, which we can summarize in two groups: fully remote and
hybrid. Fully distance education is in turn broken down into synchronous and asyn-
chronous education. Hybrid teaching is defined by part of the learners being face-to-
face and another part remotely. Both modes can be used in a complementary way. As
part of our study, we are particularly interested in the synchronous mode. While asyn-
chronous education offers its own set of advantages, it may not provide the same level
of interactivity and human contacts as synchronous education.

The literature presents different theoretical concepts to describe the relationship
between learners and trainers in distance education. In the following, we present four of
them, which seem to us complementary to formalise the distance learning activities in
the context of our study.

The Concept of Transactional Distance. Moore [19] uses the term “transactional
distance” to express the level of interaction and communication. This notion brings
together the different modes of communication and interaction that we can put in place
in a distance education session. These modes of interaction also depend on the mode of
teaching chosen. For example, in the context of asynchronous teaching, we can establish
tempotal landmarks for the completion of an assignment and send a message in the form
of an email. In a type of synchronous teaching, we will use a videoconference tool to
explain important concepts.

The Concept of Learning Community. Garrisson [9] introduces the notion of “learn-
ing community”. He sees the purpose of interactions as creating or fostering a learning
community. In a learning community, presence manifests itself cognitively, socially and
educationally.

The Concept of Remote Presence. Jézégou [12] relies on the two above notions to
define the concept of “remote presence” as follows: “remote presence results from the
social interactions that the trainer maintains remotely with the learners to support cog-
nitive and socio-affective presence. These interactions involve fostering transactions
among learners while contributing to a socio-affective climate based on the symmetry
of the social relationship and on amiability, within a digital communication space”.

The Concept of Zone of Proximal Development (ZPD). Vygotsky [24] argued that
social interactions are crucial to learning. He developed the concept of the “Zone of
Proximal Development” (ZPD), which explains how people can learn from each other
by sharing a common core of knowledge. He believes that an individual’s knowledge can
be represented by a central core. This core can be used to perform tasks autonomously.
This core is surrounded by a region (ZPD) where the individual has some knowledge but
needs help to use it to perform tasks. Looking at a community of people, an individual’s
ZPD overlaps with the knowledge core of others, suggesting that people are able to learn
and improve more in the presence of others.

88 C. Gnaho

2.2 Collaborative Learning

The consideration of the above concepts in our study requires the adoption of learning
strategies that encourage strong interactions between learners and teachers. To this end,
we believe that contributions in the field of collaborative learning offer an interesting
solution. Collaborative learning is an interdisciplinary field. This includes knowledge
from computer science, education, psychology and ergonomics. According to several
researchers, this type of learning can be seen as a social phenomenon that requires
the cooperation of several actors in training. Collaborative learning is based on several
theories [14, 22]. After proposing a definition of this concept, we present the socio-
constructivist theory that we consider most interesting in relation to our research.

Defining Collaborative Learning. There are various definitions of collaborative learn-
ing in the literature [6, 11]. We would like to quote here the one by Henri and Lundgren-
Cayrol. According to them, collaborative learning is an active process centred on the
learner, which takes place in an environment where he works on constructing his knowl-
edge. He expresses his ideas, articulates his thinking, develops his own representations,
elaborates his cognitive structures and carries out a social validation of his new knowl-
edge. The trainer plays the role of learning facilitator, while the group participates as a
source of information, a motivator, a means of mutual help and support and a privileged
space for collective knowledge construction. Thus, according to this definition, collab-
orative learning is a combination of two processes, one for the individual and the other
for the group [11].

The Socio-constructivist Approach. This theory, proposed by Vygotsky, incorporates
the main ideas of the constructivist model of Piaget [21] and adds the social role of
learning [5, 22, 24]. The social and cultural aspects of knowledge are taken into account.
The construction of knowledge, although it is personal, takes place in a social frame-
work and is created through a process of social interaction between the teacher and
the learner or between the learners themselves. Teachers using such approaches seek to
create a learning community by encouraging collaboration, cooperation and trust, and
by considering multiple ways of learning.

According to this theory, learning should take place in the learner’s zone of proximal
development, which includes tasks that can be accomplished with the help of others.
This zone significantly increases a learner’s potential to learn more effectively [24]. The
teacher’s role is to define this zone accurately in order to provide appropriate practice.
He/she will also encourage debate between students (socio-cognitive conflict) by having
them work in groups.

3 The Proposed Approach

3.1 Overview

As indicated above, our main objective is to try to answer the question: how can distance
education compensate for the lack of the physical and human dimension of communica-
tion? In fact, based on our own experience (involving several hundred students, a dozen

The Physical and Human Dimension 89

subjects and three different types of profiles) of distance learning since the Covid-19
pandemic, as well as the testimonies we have collected, we have observed that inter-
actions during distance learning sessions can be reduced due to the discouragement of
learners. Distance learners are isolated and unaware of the actions of their peers, making
group coordination difficult and potentially leading to situations of inconsistency in a
shared experience.

Therefore, we argue that it is necessary to develop an approach that allows, above
all, to remobilise the interaction of the learners and to reinforce the “remote presence”
that Jézégou [12] mentions (see Sect. 2). In other words, we need to find a way of
defining learning situations that make it possible to break down the isolation of the
learners, encourage their involvement and improve theirmotivation. The defined learning
situations need to be supported by learning environments that foster social relationships
and positive attitudes among learners.

To achieve this goal, we need to rethink traditional pedagogical processes and teach-
ing strategies. In particular, we need to move from a transmissive pedagogical approach
to a collaborative and interactive approach. In the collaborative and interactive approach
(see Sect. 2) the role of both learners and teachers changes. The role of the learners is
to share, criticise, cooperate and collaborate. The role of the teacher is not limited to
the transmission of knowledge but can also be: orchestrating, guiding, animating and
monitoring.

We think that these issues could be addressed from several perspectives; we decided
to focus first on the socialisation of the virtual classroom and the creation of a remote
pedagogical presence. We believe that pedagogical processes and strategies inspired by
the paradigmof socio-constructivism (seeSect. 2)might bemore appropriate.Aswehave
alreadymentioned, in this type of approach the teacher, using different teaching-learning
strategies, draws on the skills and personal experiences of the learners, promotes the
establishment of meaningful links between them and their environment and stimulates
their questioning and creativity [22].

In addition, studies in ergonomics have shown that non-verbal communication has a
stronger influence on tasks that require: interpersonal information exchange, interactivity
between participants and a strong common reference. It is therefore necessary to take
non-verbal communication into account when developing mediated interactions. As the
body (body language) is the impaired parameter in distance education, wewill also study
to what extent we can rely on existing technologies to build up to compensate for the
lack of physical presence in online education.

So, in order to address the above issues, we adopt a model-driven approach that is
independent of any technological platform. It takes the form of a general framework
consisting of two main elements:

– A meta-model, which we call “The Collaborative Distance Learning Meta-model”.
– A generic functional architecture of the technical environment that supports the meta-

model.

3.2 The Collaborative Distance Learning Meta-model

Figure 1 shows a simplified UML representation of our Collaborative Distance Learning
Meta-model. Its definition takes into account the issues described above and is based

90 C. Gnaho

mainly on the theoretical elements presented in Sect. 2. This meta-model, supported by
the technical environment presented in the next section, can be instantiated for different
collaborative learning situations.

As can be seen in Fig. 1, a distance learning session corresponds to a pedagogical
situation, which can be of several types: lecture, practical work, tutorial, etc. It is made
up of a series of activities of varying complexity. We distinguish two complementary
types of activities: learning activities and activities that help build social connections
(Socialisation Activity). A learning activity can be individual or collaborative. Social-
izationActivities are necessary to increase the sense of social presence and allow learners
to interact and coordinate their actions. Each activity can use or produce a number of
artifacts (pedagogical and/or interactive) supported by specific tools (see next section).

We are going to focus on the grey boxes, which represent the concepts and elements
that are necessary to socialise the virtual classroom and to create a remote presence.

Fig. 1. Collaborative Distance Learning Meta-model

Collaborative Activity. Collaborative learning activities are seen here as a way of
actively involving students in sharing their knowledge and learning processes with each
other, thereby reducing feelings of disconnection and isolation. Effective implementa-
tion of this type of activity requires, in addition to the steps common to any type of
educational activity, additional actions that we call “Socialisation activities”. The main
aim of these actions is to create the conditions for an effective collaborative learning
situation. Depending on the time available and the degree of interaction desired, they
could be combined with collaborative activities in different ways. The activities related
to Socialisation are presented in the following sub-section.

Socialisation Activity. We consider socialisation activities as a secondary objective
in a distance learning situation in the sense that their main objective is to reinforce
collaborative learning activities. In fact, socialisation activities add a social dimension
to enhance the mediated collaboration in a distance learning environment. Learners get
to know each other and perceive each other positively through a socialisation activity.

The Physical and Human Dimension 91

According to [1, 3], a socialisation activity is about creating a space where learners and
trainers commit to a common learning goal and achieve learning through collaboration
and strong social interaction. By encouraging positive interactions between learners, this
type of activity can therefore increase the sense of social presence and engagement. As
shown in Fig. 1, we consider two broad categories of socialisation activities: interaction
awareness activities and social icebreakers activities. Interaction awareness activities are
then divided into two subcategories: emotional state and cognitive state activities. These
are presented below.

Interaction Awareness Activity. In a face-to-face collaborative learning situation, the
learners have a direct sense of the presence of the others and of their actions. However,
this direct perception, which is necessary for the quality of collaborative learning, is
complicated by the limited access to the non-verbal channel in distance learning situa-
tions. Thus, the main purpose of the interaction awareness activity is to provide means
and tools to enable each learner to be aware of the presence of other learners and their
actions. To do this, we propose to base this type of activity on the notion of awareness,
which comes from the fields of educational science and computer supported collabora-
tive work (CSCW) [4]. According to several researchers, awareness refers to perceiving
other people, their activities and their products [4]. Awareness in a collaborative learn-
ing environment is essential for coordination, communication and collaboration. We
propose to distinguish between emotional state awareness and cognitive state aware-
ness. Emotional state awareness refers to the perception of other participants’ emotions,
while cognitive state awareness refers to the perception of their activities, products and
intentions.

(1) Emotional state Awareness Activity

Emotions are fundamental because they instinctively influence our behaviour and
decisions. Studies in thefield of affective computing and thepsychologyof emotions have
shown that the understanding of the partner’s emotions in the context of collaborative
education is necessary for the regulation of learning and the achievement of common
goals [18]. Other studies have shown the importance of helping learners not only to
share their emotions during collaborative learning, but also to understand the impact of
their emotions on the way they work and learn [17]. A positive relationship between
the ability to regulate emotions and the perceived quality of interactions was shown by
Molinari et al. [17].

Facial expressions, body language and gestures are the most common and effective
ways to convey emotions without speaking. They can be observed by others. However, as
mentioned above, the perception of these non-verbal signals is very limited or impossible
in a distance-learning situation. This can lead to an increased gap between the emotions
expressed by a learner and what is actually perceived in the group.

The emotional awareness activity therefore aims to overcome these distance-related
limitations by providing the means and the tools to enable the learners and the teacher
to be aware of their emotions and to share them during a collaborative learning session.
This activity should therefore integrate the following two actions:

1. Linking specific tools to the current learning environment to allow better access to
non-verbal signals.

92 C. Gnaho

2. Implementing emotional feedback tools that allow learners to share their emotions
during the collaborative learning session.

A number of interesting tools that can be used for this purpose are presented in the
following section.

(2) Cognitive state Awareness Activity

As we mentioned above, a second type of interaction awareness is not related to
knowledge and perception of participants’ emotions, but to their activities, products
they are involved with, and their intentions. We call this type of awareness cognitive
state awareness. In a learning situation, learners need to be aware of and consider what
others are doing and have done in the past. We therefore need processes and tools
that enable learners to be informed in real time about the activities and status of their
partners. Consequently, this activity consists mainly in selecting and integrating themost
appropriate technological tools for the learning situation. These tools and the method of
integration are presented in the next section.

Social Icebreakers Activity. As mentioned, we consider two broad categories of
socialisation activities, social icebreakers being the second.

Social icebreakers are teaching strategies designed to help build relationships with
learners, foster a safe learning environment, and reduce inhibitions or tension in the
classroom [15]. Therefore, the use of icebreakers at different times during the learning
session would allow students to continue the socialisation process and have more sub-
stantive interaction with each other. The paper by Barkley et al. [2] gives some examples
of social icebreakers activities. One of them is the following:

1. Divide students into different groups of 4–6. In their groups, students list as many
things as possible that they all have in common.

2. Each group reports back to the rest of the class after the small group discussion.

This paper gives other examples.

3.3 The Functional Architecture of the Learning Environment

Figure 2 gives an overview of the software functional architecture of the learning envi-
ronment. This environment is designed to support the learning meta-model presented
in the previous section. It is a generic architecture that can be adapted according to
the learning situation set up by the teacher. Given the number and variability of tools
required, we believe it is necessary to create an architecture that evolves and adapts
to each situation, integrating or removing new tools. We have therefore opted for an
architecture that allows the federation of existing or future tools.

A federation is defined as an open and dynamic software architecture that is eas-
ily adaptable to different types of problems and modes. To this end, it relies on the
cooperation of a set of participating components [10, 23].

In the context of our approach, this architecture will have to federate four main
categories of tools, together with a module for the human-machine interaction. These
components are presented below.

The Physical and Human Dimension 93

Collaboration Tools. This category includes tools necessary for the support of the
actual collaborative activity. Its aim is to help learners interact and support each other in
order to learn better in groups. Tools in this category may include: Collaborative mind
mapping tools; Screen sharing and group work tools; and Visual presentation tools such
as Sociograms.

Fig. 2. The learning environment’s software architecture

Collaborative mind mapping tools are used for brainstorming, exploring ideas and
problem solving. A mind map is a visual representation of an idea. Start by placing the
main concept in the center and brainstorm ideas that relate to it.

Among the tools available for screen sharing and working in groups are the collab-
orative coding tools. Collaborative coding tools allow multiple students to work on the
same code at the same time, share ideas and solve problems as they occur. These tools
offer a variety of features, including real-time multiplayer editing, audio and video chat,
and group debugging. Here are a few examples of such tools: CodeTogether (www.cod
etogether.com), CodePen (https://codepen.io), Visual Studio Live Share (https://visual
studio.microsoft.com), etc.

A sociogram is a tool for mapping relationships within a group. It provides diagrams
that visually show the learner what is happening in the group. In this way, each learner
is informed about his or her own contribution to the collective work and to the activity
of the group.

Socialisation Tools. The purpose of the socialisation tools is to provide support for the
socialisation activities described in the previous section. They are divided into two main
subcategories: emotional state feedback tools and cognitive state feedback tools.

Emotional State Feedback Tools. The purpose of emotional state feedback tools is to
facilitate the sharing of emotions between participants. Their main functions are to mea-
sure and analyse participants’ emotions and to suggest visualisations that can improve
awareness of the emotions felt. These tools can be divided into two broad categories
based on the way they measure or assess emotions: objective assessment and subjective
assessment. Below we briefly introduce these two categories with some examples of
commercial and research tools.

http://www.codetogether.com
https://codepen.io
https://visualstudio.microsoft.com

94 C. Gnaho

(1) Objective assessment tools

Tools known as Facial Expression Recognition can often provide objective assess-
ments. These tools are based on the Facial Action Coding System (FACS) developed by
Ekman and Friesen [7]. The FACS is one of the most widely used and comprehensive
coding systems for facial expression analysis. It is based on Action Units (AUs), roughly
defined as the muscle groups in the face responsible for facial expressions [7]. Research
shows that certain combinations of Action Units are associated with the six universal
facial expressions of emotion: anger, disgust, fear, sadness, surprise and happiness. For
example, the emotional state Confusion is related to the action units 4 (Brow lower) and
7 (Eyelid tighten) [7].

We have identified the following two tools that could be used in our research to test
the approach that we are going to take. FaceReader (www.noldus.com) is commercial
software designed to analyse facial expressions. It uses a webcam to classify facial
expressions into one of the following categories: happy, sad, angry, surprised, scared,
disgusted and neutral. It is also possible to add custom expressions by combining the
above seven expressions. The results are displayed in a variety of graphs and can also
be exported to a log file. The second tool is called MorphCast Emotion AI (www.mor
phcast.com), which is also a commercial facial emotion analysis tool. There is a version
called Morphcast for Zoom. This is a plugin that allows you to integrate the emotion
analysis feature directly into the video conferencing tool Zoom (https://zoom.us).

(2) Subjective assessment tools

Subjective measurement tools do not automatically measure emotions. Instead, they
allow for self-assessment by giving participants the opportunity to indicate the emotions
they feel during the collaborative task and to share them with their partners.

As far as we know, there are very few tools in this category. Most of them are pro-
totypes for research purposes. One example is EMORE-L [18], a tool that provides
participants with a list of 8 emotions: joy, fear, curiosity, boredom, engagement, con-
fusion, surprise and frustration. Participants select the emotions they feel related to the
situation and then indicate the intensity of their feelings using 7-point Likert scales
(ranging from 1 very low to 7 very high). An emotional sharing module allows emotions
to be shared between participants and how each participant represents the emotions of
the others.

Cognitive State Feedback Tools. This category of tools aims to support the cognitive
state awareness activity described above. These are tools that are able to provide real-
time feedback on the activity of the participants during the interaction. The feedback
takes the form of visualisations and can provide participants with different types of
information about their partners, such as the level of participation. This type of tool
is usually integrated into collaboration tools to varying degrees. For example, in the
CodeTogether tool, each participant’s contribution is identified by a symbol representing
his or her name. Other more sophisticated tools are available as research prototypes [2].

Communication Tools. Interaction between participants is based on a communication
space comprising a set of synchronous and asynchronous tools. These include social
networks, email, but also tools that integrate collaborative features such as forums,

http://www.noldus.com
http://www.morphcast.com
https://zoom.us

The Physical and Human Dimension 95

commenting spaces, collaborative communication platforms. The SLACK software
(https://slack.com), launched in February 2014 and owned by the Californian com-
pany Salesforce since 2020, is an interesting example of a collaborative communication
platform.

Pedagogical Tools. Traditional tools for developing and delivering learning content to
learners are included in this category. For example, there are tools for the creation and
management of training material (courses, assessments, exams, etc.), but also tools for
the monitoring of the progress of learners by means of performance indicators.

Adaptive User Interface. The user interface allows both the learner and the teacher to
interact with the learning environment. They can access the various types of tools in a
coherent manner, according to the learning scenario and the learning context selected
by the teacher.

We propose an adaptive user interface that dynamically adapts to different profiles.
These profiles aremodelled andmanaged by an adaptationmodule. One possibility could
be a virtual room adapted to the type of course (lab, lecture, etc.) and/or to the profile
of the students (age, cognitive ability, etc.). The use of different emotional learning
metaphors could also be an option. At the present stage of our work, the adaptation
module does not yet exist; it will be the subject of work in the future.

4 Exploring Feasibility: Java Programming Lab Project

In order to illustrate our approach and to study the feasibility of it, we carried out an
experiment with a group of students from our university. This is a practical work group
in Java programming, consisting of 30 students in the second year of a computer science
degree. The aim of the work was to write a small program in Java to manage data stacks.
Below we present the different steps and the first results obtained.

4.1 Instantiation of the Meta-model and the Functional Architecture

The first step is to instantiate themeta-model in Fig. 1. The result is shown on the left side
of Fig. 3, as a UML object diagram. As shown in this figure, we have chosen a teaching
session consisting of a collaborative activity reinforced by two socialisation activities:
cognitive state awareness and emotional state awareness. For the virtual classroom we
used Zoom. Collaborative activity is supported by the CodeTogether tool, integrated
here as an Eclipse plug-in. Cognitive state awareness is supported by features built into
CodeTogether to visualise the interactions and contributions of each participant. Emo-
tional state awareness is supported by a module of theMorphCast tool calledMorphCast
for Zoom.

Next, we instantiated the functional architecture (see Fig. 2) of the learning environ-
ment. This integrates the various tools in a federated manner, as shown on the right-hand
side of Fig. 3.

https://slack.com

96 C. Gnaho

Fig. 3. Instance of the proposed approach

4.2 Results

A screenshot of the interfaces for interacting with the learning environment is shown
in Fig. 4. The top part represents the learner interface, while the bottom part represents
the teacher interface. As shown in the figure, the workspace allows all the learners
to participate in the writing of code in a collaborative way. In order to facilitate the
various interactions, an annotation system allows each participant to visualise the state
of progress and the contribution of each individual participant. This visualisation is
reinforced bywhatwe call “cognitive state awareness”,which is provided by two features
built into CodeTogether (See Fig. 4):

– The right panel “See what others are doing”, which allows: to see what files others
are working on; to view shared resources such as terminals and to split into different
coding groups.

– The “Driving with others” button, which allows: to follow what someone is doing or
even Self-programming of the code.

As mentioned above, we used MorphCast Emotion AI, facial emotion recognition
software, to experiment with the emotional awareness activity. This software is inte-
grated into Zoom as a service (MorphCast for Zoom). It provides real-time analysis of
participants’ emotional state, attention, and engagement during video conferencing on
Zoom in the browser. Participants can choose whether or not to accept their emotional
analysis.

The screenshot in Fig. 5 shows examples of emotion visualisation. During the learn-
ing session, the teacher can start and stop the analysis. The tool evaluates the learners’
non-verbal responses to determine and provide a real-time dashboard showing their emo-
tions such as angry, happy, disgusted, sad, etc. (see Fig. 5). The dashboard can also show
some information about the learners’ average attention and arousal levels, dominant
emotions, etc.

The Physical and Human Dimension 97

Fig. 4. Overview of the interface of the learner and the teacher

Fig. 5. Examples of emotion visualisation

5 Conclusion and Future Works

Distance education has spread during theCovid-19 pandemic and can nowbe understood
in a different way. The wide range of audiences involved, from primary schools to
higher education, has raised new issues about distance learning and its advantages and
disadvantages. In this paper, we have focused on the physical and human presence
that needs to be offset in the online experience in innovative ways. We have presented
a model-driven approach that is independent of any technological platform. It can be
instantiated and adapted to different learning situations. This approachwas experimented
with in a specific remote practical session in Java programming. We can confidently say

98 C. Gnaho

that the results of this experiment are encouraging. In fact, the pedagogical objective
was successfully achieved. We have observed a better engagement of the students. They
familiarised themselves with the learning environment without any difficulties. This
work is therefore a first step towards our goal. While it introduces and experiments
the approach, a number of works are in progress. We are improving and completing the
current outcome. The first promising results need to be confirmed by further experiments.

References

1. Adams, B., Wilson, N.S.: Building community in asynchronous online higher education
courses through collaborative annotation. J. Educ. Technol. Syst. 49(2), 250–261 (2020)

2. Barkley, E.F., Cross, K.P., Major, C.H.: Collaborative Learning Techniques: A Handbook for
College Faculty. Wiley, San Francisco, CA (2014)

3. Berry, S.: Teaching to connect: community-building strategies for the virtual classroom.
Online Learn. 23(1), 164–183 (2019)

4. Bodemer, D., Dehler, J.: Group awareness in CSCL environments. Comput. Hum. Behav.
27(3), 1043–1045 (2011)

5. Charron,A., Raby, C.: Synthèse sur le socioconstructivisme. In:Dans, Raby, C., Viola, S. (dir.)
Modèles d’enseignement et théories d’apprentissage : de la pratique à la théorie, pp. 119–133.
Québec, QC : CEC (2007)

6. Dillenbourg, P.: What do you mean by collaborative learning? In: Dillenbourg, P. (Ed.)
Collaborative-learning: Cognitive and Computational Approaches, Elsevier (1999)

7. Ekman, P., Friesen, W.: Facial action coding system: a technique for the measurement of
facial movement. Palo Alto, Ca.: Consulting Psychologists Press (1978)

8. Garrison, D.R., Archer W.: A Theory of community of Inquiry. Second edition. Moore,
M.G. (dir), Handbook of Distance Education, pp. 77–88. Laurence Elbaum Associates, INC.,
Publisher (2007)

9. Garrison, D.R.: E-Learning in 21st century: A Framework for Research and Practice. 3e
edition. Taylor & Francis, New York (2017)

10. Guérin, S., Champeau, J., Bach, J.C., Beugnard, A.m, Dagnat, F.: Multi-Level Modeling with
Openflexo/FML: a contribution to the multi-level process challenge. Enterp. Model. Inf. Syst.
Architect. 17, 9–1 (2022)

11. Henri, F. et Lundgren-Cayrol, K.: Apprentissage collaborative à distance: Pour comprendre
et concevoir les environnements d’apprentissage virtuels. Presses de l’Université du Québec,
Québec (2001)

12. Jézégou, A.: Créer de la présence à distance en E-learning, cadre théorique, définition, et
di-mensions clés, Lavoisier « distance et savoir », Vol.8, pp. 257–274 (2010)

13. Kenden, A.: Gesticulation and speech: two aspects of the process of utterance. In: Key,
M.R. (ed.) Relationship of Verbal and Nonverbal Communication, pp. 207–228. Mouton,
The Hague (1980)

14. Lundgren-Cayrol, K.: Computer-conferencing: A Collaborative Learning Environment for
Distance Education Students. Université Concordia, Montréal, Thèse de doctorat (1996)

15. McGrath, N., Gregory, S., Farley, H., Roberts, P.: Tools of the trade: breaking the ice with
virtual tools in online learning. In: Proceedings of the 31st Australasian Society for Computers
in Learning in Tertiary Education Conference, pp. 470–474 (2014)

16. McNeill, D.: So you think gestures are nonverbal? Psychol. Rev. 92(3), 350–371 (1985).
https://doi.org/10.1037/0033-295X.92.3.350

https://doi.org/10.1037/0033-295X.92.3.350

The Physical and Human Dimension 99

17. Molinari, G., Chanel, G., Bétrancourt, M., Pun, T., Bozelle, C.: Emotion feedback during
computer-mediated collaboration: effects on self-reported emotions and perceived interaction.
In: Proceedings of the 10th Conference CSCL, Madison, WI, 15–19 June 2013, pp. 336–344
(2013)

18. Molinari, G., Trannois, M., et al.: EMORE-L: un outil de reporting des emotions pour
l’apprentissage à distance. Actes de la 28ème conference francophone sur l’Interaction
Homme-Machine, pp. 167–176, Fribourg, Suisse (2016)

19. Moore, M.G.: The theory of transactional distance. In: Moore, M.G. (dir), Handbook of
Distance Education, pp. 66–85. Routledge, New York (2013)

20. Perraton, H.: A theory for distance education. In: Stewart, D., Keegan, D., Holmberg, B. (eds.)
Distance education: International Perspectives, pp. 34–45. Routledge, NY (1998)

21. Piaget, J.: The Development of Thought: Equilibration of Cognitive Structures. Viking Press,
Oxford, UK (1977)

22. Vienneau, R.: Apprentissage et enseignement: Théorie et pratique. Ed. Gaëtan Morin, Mont-
réal (2005)

23. Villalobos, J.: Fédération de composants : une architecture logicielle pour la composition par
coordination. Software Engineering. Université Joseph-Fourier - Grenoble I, (2003)

24. Vygotski, L.S.: Pensée et langage. Ed sociales, p. 287 (1985)

Is ChatGPT 3 Safe for Students?

Julia Kotovich and Manuel Oriol(B)

Constructor Institute, Schaffhausen, Switzerland
{julia.kotovich,mo}@constructor.org

Abstract. ChatGPT3 is a chat engine that fulfils the promises of an
AI-based chat engine: users can ask a question (prompt) and it answers
in a reasonable manner. The coding-related skills of ChatGPT are espe-
cially impressive: informal testing shows that it is difficult to find simple
questions that ChatGPT3 does not know how to answer properly. Some
students are certainly already using it to answer programming assign-
ments.

This article studies whether it is safe for students to use ChatGPT3
to answer coding assignments (“safe” means that they will not be caught
for plagiarism if they use it). The main result is that it is generally not
safe for students to use ChatGPT3. We evaluated the safety of code
generated with ChatGPT3, by performing a search with a Codequiry, a
plagiarism detection tool, and searching plagiarized code in Google (only
considering the first page of results). In 38% of the cases, Codequiry finds
a piece of code that is partially copied by the answer of ChatGPT3. In
96% of the cases, the Google search finds a piece of code very similar to
the generated code. Overall, it is not safe for students to use ChatGPT3
in 96% of the cases.

Keywords: ChatGPT · education · programming

1 Introduction

In the past few months, ChatGPT31 has been at the heart of many discus-
sions between academics because of its potential to change what educators can
ask students to code. It looks like many simple coding tasks can be automati-
cally performed using ChatGPT3. Simple assignments can then be solved in a
very short amount of time without understanding the generated code, and with
learning only one skill: asking the right questions to the chat engine. This article
investigates whether students can safely write programs using ChatGPT3 for
assignments that forbid it.

Academics have predicted that ChatGPT will change the way software engi-
neers code [14], or even kill programming altogether [12]. To adapt to the new
paradigm, educators will change the way they teach in the future. Adapting the
education programs and expectations will however take time and some students

1 https://openai.com/blog/chatgpt.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, pp. 100–107, 2023.
https://doi.org/10.1007/978-3-031-48639-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_8&domain=pdf
http://orcid.org/0000-0003-4069-7626
https://openai.com/blog/chatgpt
https://doi.org/10.1007/978-3-031-48639-5_8

Is ChatGPT 3 Safe for Students? 101

already started to use the new technology. This poses two main challenges: (1)
Will ChatGPT actually produce the right answer? (2) Will educators be able to
detect its use?

This article evaluates these two challenges by using ChatGPT3 on program-
ming tasks that consist in coding standard data structures and standard sorting
algorithms. Such algorithms are very well documented and generally available
online. Students who want to cheat can already use resources online, but they
generally need to adapt them to fit the programming language or the data for-
mat. This article’s main experiment consists in asking ChatGPT3 to code algo-
rithms from BigOCheatSheet,2 check whether a standard plagiarism tool (Cod-
equiry [3]) detects it, and then check whether the first page of a simple Google
search returns results that can be referenced to show plagiarism. It is then con-
sidered safe for students to use ChatGPT3 if our study does not find any data
that shows plagiarism.

The main results of this study are that ChatGPT produced the correct
answers 100% of the time for that basic standard requests in computer science.
However, it is generally not safe for students to use ChatGPT3 to generate these
simple algorithms. In 38% of the cases, Codequiry finds a piece of code that is
partially copied by the answer of ChatGPT3. In 96% of the cases anyway, the
Google search finds a piece of code that is very similar to the generated code.
Overall, it is not safe for students to use ChatGPT3 in 96% of the cases.

Section 2 describes the experiment in more details. Section 3 presents the
main findings and their implications. Section 4 explains the threats to validity.
Section 5 analyzes related work. Section 6 concludes this study.

2 Experiment

The experiment consists in simulating an assignment made by a lecturer requir-
ing students to code a standard algorithm in Python.

Why Python? Python is the most popular general-purpose programming lan-
guage on StackOverflow.3

How Did We Select the Algorithms? Algorithms selected for the test cor-
respond to the most used data structure and sorting algorithms presented on the
BigOCheatSheet (the first result on a Google search that describes “algorithms
complexity” with a complete list of algorithms, January 2023).

This results in a list of 13 sorting algorithms and 14 data structures:

1. Quicksort
2. Mergesort

2 https://www.bigocheatsheet.com.
3 https://insights.stackoverflow.com/survey/2021#technology-most-popular-

technologies.

https://www.bigocheatsheet.com
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies

102 J. Kotovich and M. Oriol

3. Timsort
4. Heapsort
5. Bubble Sort
6. Insertion Sort
7. Selection Sort
8. Tree Sort
9. Shell Sort

10. Bucket Sort
11. Radix Sort
12. Counting Sort
13. Cubesort
14. Array (removed from the evaluation as it is a base type in Python)
15. Stack
16. Queue
17. Singly-Linked List
18. Doubly-Linked List
19. Skip List
20. Hash Table
21. Binary Search Tree
22. Cartesian Tree
23. B-Tree
24. Red-Black Tree
25. Splay Tree
26. AVL Tree
27. KD Tree

For each algorithm and data structure, (except the Array type, which is a
base type in Python), we requested ChatGPT3 to create the implementation
in Python using common prompt “write a Python code for X ” (for example
“write a python code for Bubble Sort”). All the results are then stored in a
GitHub repository.4 Additionally, for each piece of code, ChatGPT provides a
code snippet and a short comment such as: “This code sorts an input array ‘arr’
using the bubble sort algorithm. The algorithm compares each pair of adjacent
elements and swaps them in they are if the wrong order. This process is repeated
until the array is sorted in ascending order.”

The resulting generated code is then uploaded to CodeQuiry [3]. CodeQuiry’s
“Web Check tool (Checking Engine - Web Plagiarism and Group Similarity)” is
a testing tool for plagiarism that compares code to over 100 million sources of
code from major public and private repositories, as well as over 2 billion pieces
of code from the web. The results show similarities and highlighted matches to
external sources. CodeQuiry5 returns the list of sources with links for a specific
piece of code and the percentage of matches.

We then perform a search on the Internet using Google search and only look
at the first page of results for duplicated pieces of code. If the code is significantly
4 https://github.com/Julia-Kotovich/ChatGPT_Python_code.
5 https://codequiry.com/code-plagiarism.

https://github.com/Julia-Kotovich/ChatGPT_Python_code
https://codequiry.com/code-plagiarism

Is ChatGPT 3 Safe for Students? 103

duplicated (if more than 50% of lines of code have a match or just variable names
were changed), we then consider that the piece of code generated by ChatGPT3
is not safe for use by students as an answer in the assignments.

3 Results

Table 1. Codequiry results on the whole repository

Sources Indexed Total Matches Parseable Lines of Code

Algorithms 25,664,586,829 32 261
Data Structures 25,590,145,664 45 632

In all cases, the code generated by ChatGPT is valid and could be used as
such without any modifications.

All results of the code generated are stored in a GitHub repository and then
uploaded to the CodeQuiry platform for the tests. CodeQuiry found 32 matches
(see Table 1) for the algorithm folder which contains 13 files there and 45 matches
for the data structure folder which contains 13 files.

In total, Codequiry finds 77 matches in the 26 files. The percentage of match-
ing varies from 8% to 96% and the average is only 38%.

CodeQuiry found two main sources for the code are StackOverflow and
GitHub. Details of the results are available in Table 2.

According to the results of a Google search, the most common sources that
Google finds code similar to the generated by ChatGPT are these popular
websites: StackOverflow, GitHub, GeeksforGeeks,6 Programiz,7 and freeCode-
Camp.8

In only 38% of the cases Codequiry finds the similarity. The results of a
manual Google search revealed that in 96% of the cases, code or portions of
code very similar to what was generated using ChatGPT could be found on the
first page of Google results. This results in an overall 96% of the cases being
unsafe.

4 Limitations and Threats to Validity

There are mainly four threats to the validity of this study: (1) the algorithms
used to test ChatGPT3 are not representative of “code in general”, (2) gener-
ated code is always the same for the same question, (3) the methodology for
considering safety is not evaluating the right actions, and (4) these results are
only limited to ChatGPT3. The following paragraphs evaluate each one of these
threats separately.
6 https://www.geeksforgeeks.org/.
7 https://www.programiz.com/.
8 https://www.freecodecamp.org/.

https://www.geeksforgeeks.org/
https://www.programiz.com/
https://www.freecodecamp.org/

104 J. Kotovich and M. Oriol

Table 2. Complete results of the evaluation. In 38% of the cases Codequiry finds more
than 50% of the code is copied. In 96% of the cases, a simple Google search finds a
source for at least 50% of the code.

Name Codequiry % Source link Google link Safe? Correct?

Quicksort 69 GitHub rb.gy/9myp no yes
Mergesort 96 StackOverflow rb.gy/qcy3 no yes
Timsort 0 no matches rb.gy/bkdq no yes
Heapsort 96 StackOverflow rb.gy/un4e no yes
Bubble Sort 70 StackOverflow rb.gy/elp9 no yes
Insertion Sort 75 StackOverflow rb.gy/wsq5 no yes
Selection Sort 79 GitHub rb.gy/emlj no yes
Tree Sort 0 no matches rb.gy/e1sc no yes
Shell Sort 74 StackOverflow rb.gy/zhjp no yes
Bucket Sort 0 no matches rb.gy/kuka no yes
Radix Sort 78 GitHub rb.gy/gudz no yes
Counting Sort 0 no matches rb.gy/cnnb no yes
Cubesort 0 no matches rb.gy/2m5i no yes
Stack 0 no matches rb.gy/ckpc no yes
Queue 0 no matches rb.gy/zkft no yes
Singly-Linked List 0 no matches rb.gy/o3iy no yes
Doubly-Linked List 14 GitHub rb.gy/30c7 no yes
Skip List 0 no matches rb.gy/dfvc no yes
Hash Table 0 no matches no matches yes yes
Binary Search Tree 10 GitHub rb.gy/tgcs no yes
Cartesian Tree 0 no matches rb.gy/2af2 no yes
B-Tree 0 no matches rb.gy/oed8 no yes
Red-Black Tree 22 GitHub rb.gy/i9vm no yes
Splay Tree 8 StackOverflow rb.gy/apoi no yes
AVL Tree 58 GitHub rb.gy/ibu0 no yes
KD Tree 12 StackOverflow rb.gy/upak no yes

Threat 1: Algorithms are not representative. The question is whether students
can use ChatGPT to code a correct solution. The answer is that, in most cases,
they can. This seems true for simple algorithms, but what happens for smarter
programming questions? What about questions that require to combine several
aspects of such algorithms? Does ChatGPT3 still generate the correct code? Is
it still safe? Our guess is that the more complicated the problem, the more likely
it is that ChatGPT3 does not produce the right result though it might be more
difficult to spot plagiarism. This should, however, be checked in further studies.

Is ChatGPT 3 Safe for Students? 105

Threat 2: Generated code is always the same. When one asks questions, Chat-
GPT3 answers. If the same question is asked again ChatGPT3 might return
another answer! Our preliminary data show that these answers have strong sim-
ilarities (around 60% for the few cases that we evaluated). It is however possible
that these might diverge significantly and that our conclusions are erroneous
because of that. Again this would deserve a further study.

Threat 3: Actions are wrongly chosen to evaluate the safety of the approach. In
many universities, plagiarism tools are simply not used, and we cannot imagine a
coding instructor checking all projects one by one using Google, and hunting for
references. This means that the study has conservative conclusions. Since we are
considering safety, it seems appropriate to be conservative, especially considering
that plagiarism tools might improve and catch even more issues in the future.

Threat 4: The study only applies to ChatGPT3. It is clear that this article only
considered ChatGPT3 as a target because it seemed to be the best-adapted tool
when we started the study. Since then, ChatGPT4 appeared, and we did not
study other tools. We believe that, because all these tools are learning from the
same sources, we would see similar results with other tools. We however have no
evidence of that fact.

5 Related Work

Bots are becoming more and more available to software engineers willing to
improve their productivity [5,8]. For example, Carr et al. [2] created a bot that
inserts automatically proven contracts in source code, Tian et al. [9] made a chat-
bot that answers questions about APIs, Bradley et al. [1] made a development
assistant able to understand commands for Git and GitHub tasks.

For automated bots generating code, most articles tend to focus on making
it as close to what a programmer could have generated. For example, generating
automatically patches with explanations [6,11] or make refactorings indistin-
guishable from what a human could have generated [13].

Plagiarism of source code is a widely studied field [7] that focused mostly on
detecting plagiarism among a group of students who received the same question.

Internet plagiarism commercial detection tools like Codequiry [3], copy-
leaks [4], or Turnitin [10] are already promising to detect AI-generated content.
In our preliminary evaluation, they are not yet accurate enough to exhibit a good
accuracy. It is however clear that these tools will be able to detect the code and
content generated by the current generation of AI engines. To our knowledge, we
are the first ones to present a study showing that such content can be detected.

6 Conclusions and Future Work

Some tools suddenly open possibilities that we thought would never be reality.
ChatGPT3 is one of these tools. It suddenly sparked a very strong interest and

106 J. Kotovich and M. Oriol

captured the imagination of many. Is it interesting? Yes! It seems to return only
valid results, which could be expected for simple cases, but is it safe to use for
programming assignments? No!

If students use ChatGPT3 for simple assignments, they have very high
chances to be penalised for plagiarism. Even if the plagiarism tool we used only
found plagiarism in 38% of the cases, a simple Google search finds plagiarism
in 96% of the cases. It is likely that future versions of the Internet plagiarism
finding tools improve and catch these cases better. This might lead to retroactive
invalidation of results (similarly to drug tests for athletes).

It is possible that other tools than ChatGPT3 create better results, but if
everyone uses them, it is also possible that results coming from different students
look very much alike and then are identified as plagiarism. Future work will focus
on confirming our results using other tools to generate code and more complex
requests to generate code.

References

1. Bradley, N.C., Fritz, T., Holmes, R.: Context-aware conversational developer assis-
tants. In: Proceedings of the 40th International Conference on Software Engineer-
ing, ICSE 2018, pp. 993–1003. Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3180155.3180238

2. Carr, S.A., Logozzo, F., Payer, M.: Automatic contract insertion with CCBot.
IEEE Trans. Software Eng. 43(8), 701–714 (2017). https://doi.org/10.1109/TSE.
2016.2625248

3. CodeQuiry, L.: Codequiry (2023). https://codequiry.com. Accessed Feb 2023
4. Copyleaks, I.: Copyleaks (2023). https://www.copyleaks.com/. Accessed Mar 2023
5. Erlenhov, L., Gomes de Oliveira Neto, F., Scandariato, R., Leitner, P.: Current

and future bots in software development. In: 2019 IEEE/ACM 1st International
Workshop on Bots in Software Engineering (BotSE), pp. 7–11 (2019). https://doi.
org/10.1109/BotSE.2019.00009

6. Monperrus, M.: Explainable software bot contributions: case study of auto-
mated bug fixes. In: 2019 IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE), pp. 12–15. IEEE Computer Society, Los Alami-
tos, CA, USA, May 2019. https://doi.org/10.1109/BotSE.2019.00010, https://doi.
ieeecomputersociety.org/10.1109/BotSE.2019.00010

7. Novak, M.: Review of source-code plagiarism detection in academia. In: 2016 39th
International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), pp. 796–801 (2016). https://doi.org/10.
1109/MIPRO.2016.7522248

8. Santhanam, S., Hecking, T., Schreiber, A., Wagner, S.: Bots in software engineer-
ing: a systematic mapping study. PeerJ Comput. Sci. 8, e866 (2022)

9. Tian, Y., Thung, F., Sharma, A., Lo, D.: APIBot: question answering bot for API
documentation. In: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 153–158 (2017). https://doi.org/10.1109/ASE.
2017.8115628

10. Turnitin, L.: Turnitin (2023). https://www.turnitin.com/. Accessed Mar 2023

https://doi.org/10.1145/3180155.3180238
https://doi.org/10.1109/TSE.2016.2625248
https://doi.org/10.1109/TSE.2016.2625248
https://codequiry.com
https://www.copyleaks.com/
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00010
https://doi.ieeecomputersociety.org/10.1109/BotSE.2019.00010
https://doi.ieeecomputersociety.org/10.1109/BotSE.2019.00010
https://doi.org/10.1109/MIPRO.2016.7522248
https://doi.org/10.1109/MIPRO.2016.7522248
https://doi.org/10.1109/ASE.2017.8115628
https://doi.org/10.1109/ASE.2017.8115628
https://www.turnitin.com/

Is ChatGPT 3 Safe for Students? 107

11. Urli, S., Yu, Z., Seinturier, L., Monperrus, M.: How to design a program repair
bot? Insights from the repairnator project. In: Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice, ICSE-SEIP
2018, pp. 95–104. Association for Computing Machinery, New York, NY, USA
(2018). https://doi.org/10.1145/3183519.3183540

12. Welsh, M.: The end of programming. Commun. ACM 66(1), 34–35 (2022). https://
doi.org/10.1145/3570220

13. Wyrich, M., Bogner, J.: Towards an autonomous bot for automatic source code
refactoring. In: 2019 IEEE/ACM 1st International Workshop on Bots in Soft-
ware Engineering (BotSE), pp. 24–28 (2019). https://doi.org/10.1109/BotSE.2019.
00015

14. Yellin, D.M.: The premature obituary of programming. Commun. ACM 66(2),
41–44 (2023). https://doi.org/10.1145/3555367

https://doi.org/10.1145/3183519.3183540
https://doi.org/10.1145/3570220
https://doi.org/10.1145/3570220
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1145/3555367

Computing Education in the Age
of AI-Based Assistants: Challenges

and Opportunities

Alfredo Capozucca1(B) , Sophie Ebersold2 , Jean-Michel Bruel2 ,
and Bertrand Meyer3

1 University of Luxembourg, Luxembourg, Luxembourg
alfre-do.capozucca@uni.lu

2 University of Toulouse, Toulouse, France
3 Constructor Institute, Neuhausen am Rheinfall, Switzerland

Abstract. On the basis of discussions at the 2nd edition of the Fron-
tiers on Software Engineering Education workshop, researchers identified
challenges brought by the use of AI assistants into computing education.
These challenges represent a starting point for the endless road towards
effective education of software engineering and computing science in
higher education. This paper summarises the challenges and research
opportunities that were identified during the heated discussions at the
workshop.

By the time this paper is read, new works related to AI assistants
would have been reported. These works might have either partially or
totally addressed the research challenges reported here. If that is the
case, then it would have been proven that they were valid research ques-
tions. Otherwise, the community should start addressing them shortly.
One way or the other, we trust the information provided here may help
to raise awareness of the concerns brought by AI assistants into higher
computing education.

1 Introduction

When DeepBlue beat the then world chess champion Garry Kasparov in 1997,
the world experienced the ability of machines to perform tasks of sufficient com-
plexity better than the best-prepared humans.

In defence of humanity, the first critics pointed towards chess, as it is a
game that has a set of finite solutions and therefore, any machine simply using
brute force together with high computing power could surpass the best human.
This is very true since today any chess software equipped with a calculation
engine is capable of running on a state-of-the-art laptop (or mobile device) and
outperforming any human.

This human superiority over machines was again questioned when in 2016
Google DeepMind’s AlphaGo software beat Lee Sedol, the world’s highest-ranked
player at the time. Unlike chess, Go is a game that not only has many more move

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023,
corrected publication 2024
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, pp. 108–115, 2023.
https://doi.org/10.1007/978-3-031-48639-5 9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_9&domain=pdf
http://orcid.org/0000-0001-9765-1907
http://orcid.org/0000-0002-0957-2844
http://orcid.org/0000-0002-3653-0148
http://orcid.org/0000-0002-5985-7434
https://doi.org/10.1007/978-3-031-48639-5_9

Computing Education in the Age of AI-Based Assistants 109

combinations but also requires the player’s intuition to win. Much of AlphaGo’s
success was due to the incorporation of advanced AI techniques in combination
with computing power. Since then, it was a matter of time before artificial intel-
ligence (AI) could be used in tasks with a higher impact than complex games,
but with the same level of difficulty.

Today, in early 2023, it seems that the time has finally come. Or at least,
that seems to be. Why? The advances in the domain of AI made it possible for
OpenAI to produce an assistant known as GPT which managed to pass the exam
(known as “the bar exam”) required to obtain the license needed to practice as
a lawyer1 in most states of the USA [2].

A variation of the same AI also produced by OpenAI and known as Codex
was challenged with questions about introductory programming subjects similar
to those students need to pass in CS1 programming course in a higher educa-
tion institution. The results showed that Codex scored as students in the top
quartile [3].

Both examples raise concerns about the capacity of AI assistants to overtake
human activities that require lot of intellectual effort and time. Who would be
willing to make such as investment knowing that today’s technology can do it
in seconds? These AI assistants represent a fundamental shift in education in
general, and in higher education in particular whose main role is to train future
professionals.

More evidence that validates this fundamental shift in education is the fact
that certain educational institutions have decided to ban access to these AI
assistants from within the school due to the difficulty for educators to discern
if the assignment was made by the student or the AI assistant [6,10]. Facts like
these ones do nothing but increase the pressure on educators and the educational
system in general.

To address this fundamental shift, during the 2nd edition of the FISEE work-
shop on education [4], the organisers invited the participants to design a teaching
intervention assuming the existence of AI assistants (both for teachers and stu-
dents). The intended goal of the activity was to discover challenges brought by
AI assistants for software engineering and computing science educators when
doing their duties.

Participants were higher education teachers with large worldwide experience
(most of them with more than 10 years) in teaching software engineering and
computing science topics going from introduction to programming, passing for
operating systems, programming language concepts and design patterns, until
advanced topics in software engineering. The participants represent a valid sam-
ple of experienced educators in computer science and software engineering who
will have to deal with the unavoidable challenges brought by the AI assistants
when performing their teaching duties.

1 Actually, each state has its own bar exam, and they are different. A lawyer who
passed the bar exam in one state cannot practice law in another state without
passing the bar exam in such state.

110 A. Capozucca et al.

Here, we discuss the main outcomes of the workshop’s activity, focusing on
the discovered challenges and research opportunities that spawn from them.
The goal is to raise awareness of the challenges that relate to the use of AI
assistants into higher education to spur research directions meant to overcome
such challenges.

2 Challenges and Opportunities

2.1 Usage

As with any other available resource accessible via the Internet (e.g. Stack Over-
flow just to mention one related to coding), students cannot be stopped from
using AI assistants. Nevertheless, similarly to any existent resource, it has to be
used with caution. Just as the information provided by a search engine needs to
be verified, it cannot be taken for granted the AI assistant will give the solution
right away at once. Thus, the user needs to have enough knowledge to judge
whether the answer provided by the AI assistant is accurate or not.

This is a challenge for the user, especially when his/her knowledge about
the addressed topic is limited. Therefore, when, and what for to use an AI
assistant represents a challenge as soon as the given AI assistant’s outcome
plays a determinant role in society. For example, if the code provided by the
AI assistant is going to be used in a safety-critical system, it should go through
the same verification and validation process as if it would have been made by
a human. Yet another example, more connected with the regular duties of a
teacher, is about judging the knowledge level acquisition of a student. It is critical
for the teacher to know whether the elements provided by the student, and which
the teacher relies on to make such judgemental decision, have been produced by
the student without any help from an AI assistant.

The education-focused research questions that come up from this challenge
are:

RQ1: given a certain learning objective, to which extent is it worth
students use an AI assistant in the pursuit of reaching that objec-
tive?
RQ2: assuming it is worth students use the AI assistant, what is
the knowledge they must have to make effective use of the outcome
provided by the AI assistant?

RQ1 can take two orthogonal viewpoints: “knowledge transfer”, and ”knowledge
acquisition assessment”. When focusing on the former, research efforts have to be
made to find out not only whether AI assistants help students to acquire intended
learning outcomes, but also if it does similarly as a human being teacher. Find-
ings driven by this research question may shed light to determine the role of AI
assistants in classrooms. A follow up question to be answered would be whether
a content could be fully taught by an AI assistance without any human inter-
vention, while providing the same level of effectiveness as if it were taught by a
human expert.

Computing Education in the Age of AI-Based Assistants 111

When RQ1’s goal is oriented towards assessment, the first-class stakeholders
become the teacher rather than the student. In this case, it is required to con-
duct research to find out how teachers can take advantage of AI assistants to
judge whether the intended learning outcomes were acquired by the students.
In this particular case, the potential to rely on AI assistant to help assessing
students would be very appreciated for the education community as grading is
acknowledged to be one of the biggest pain point [9].

However, shortcomings or limitations of the AI assistants must be taken into
account during the investigations, with particular attention to fairness: i.e., a
priori an AI should not have prejudices, however that will depend on how it was
trained [7].

RQ2 draws the attention on the prerequisites in terms of knowledge and
skills to make effective use of any AI assistant. RQ2’s derived questions are:
what are the student’s prerequisites to make effective use of the AI assistant
during the learning process?, what should students be taught to enable them
to assess the information provided by any AI assistant?, what should students
be taught to enable them to formulate appropriate queries to an AI assistant?
To certain extend, the same questions are also valid when replacing the student
for a teacher. Educators in the computing area may need to get trained on how
to use these assistants as it cannot be taken as granted that anyone knows the
origin of the results obtained and their level of certainty.

2.2 Know-How

Even if AI assistants are able to outperform humans in certain tasks, are we sure
humans don’t want to keep developing the required skills that would allow us to
perform such activities? It’s claimed that mathematics helps to develop analyti-
cal skills, so that it is at the backbone of any standard educational system. The
same is claimed for programming languages so that introductory courses on the
topic have been moved from higher education to high school, while some special-
ists even considered their inclusion in primary schools along with mathematics.
Therefore, the challenge here is to understand what subjects are still valuable to
be taught despite the fact machines can make it effortless. This challenge leads
us to formulate the following research question:

RQ3: what are the topics that need to be kept in a curricula regard-
less of the advances made by AI?

Let’s take the example of the web and search engines. We train very few
students in networking, data storage, data access, etc. We train them mostly
in the formulation of search queries. We mostly teach them how to formulate
queries that fit their needs, to criticise and filter the information they find. They
don’t need to understand how the web works, or very little to use it correctly
and smartly (they know the indexing mechanisms, for example, without knowing
how they are implemented by web specialists).

In computing education, major concerns are related to programming as it
is an area where AI assistants have proven to perform as well as students. The

112 A. Capozucca et al.

research efforts required to determine the topics that remain valuable to be
taught despite the progress of AI should also include a careful analysis on the
cognitive advantages of acquiring skills related to such topics, and the risks of
losing them for the society. Some of you would remember the scarcity of qualify
people to deal with the Y2K crisis or currently to migrate COBOL code to more
modern programming language.

The software engineer of tomorrow will have to be able to validate and verify
the code he or she gets without necessarily needing to know the programming
language used. This will increase the importance of requirements engineering in
the realisation of systems. Indeed, requirements will have to be well formulated
in terms of accuracy, completeness, intelligence (ability to be well understood by
the “verifiers”), and have all expected common qualities [8].

2.3 Accountability

Like every technology, AI assistants will get better over time. Thus, eventually
we will reach a point where we will have to decide whether the trust to carry
out an activity is placed on an AI rather a human being. Examples of such
activities range from determining a person’s repayment capacity when applying
for a mortgage loan, to letting unmanned aerial vehicles transport people.

Applying a reductionist vision, education in general can be considered as the
area in charge of transmitting knowledge and evaluating the level of acquisition
of said knowledge. Both the recipient of the knowledge to be transferred and
those who have to be evaluated whether said knowledge was acquired or not are
human beings.

This, a priori, makes education safe, in the sense that it is a primarily human-
oriented area. However, this does not put education aside when considering who
is transferring the knowledge nor assessing its level of acquisition (see above,
subsection Usage for getting a better idea about how AI assistants may play an
important role towards this regard. Now, focusing only on the people who have
to get trained and assessed, the use of AI will remain only as assistants and no
decision makers.

This highlights the principle that the ultimate decision-maker has to be a
human (either the person who get trained, or the person in charge of assess-
ing the level of knowledge acquisition) and not a machine. Therefore, a human
being remains responsible for responding to an evaluating entity in case of inves-
tigation. Putting this in other words, AI assistants (like any other technology)
cannot be legally responsible of any facts.

Under this principle of human accountability, the challenge that raises in the
context of education is to ensure both students (i.e. the future professionals) and
teachers (the judgmental entities) are educated in that regard. Ethical aspects
related to both the production and use of AI-related technology must be included
in higher education programmes. Thus, the research questions derived from this
challenge are:

RQ4: what are the ethical principles that govern the conduct of
professionals regarding the development and use of AI?

Computing Education in the Age of AI-Based Assistants 113

RQ5: how to educate scholars and instructors to respect the code
of conduct driven by such as ethical principles?

Defining these ethical principles along with their inclusion into the computing
curricula and professional code of ethics represents research objectives to guide
professionals towards a responsible use and development of AI technologies.

The research that would lead towards those objectives has to embrace existing
code of ethics [1,5] and initiatives [12] to build a complete and consistent body
of knowledge that would allow panels, boards, and committees to assess whether
the conduct of a particular professional, company or organisation [13] complies
with the ethical principles embodied in such body of knowledge.

2.4 FOAI

Free and Open Source Software (FOSS) is a term coined to indicate a particular
software’s source code is made available to the community (i.e. everyone) and its
use is free. A software with this characteristic has many benefits, among which
are transparency. Having access to the source code gives us the opportunity to
know in detail (to certain extend) what the software does when it’s running.

Yet another important benefit is its continuous improvement as defects are
easier to be found and reported due to the (potential infinite) large number
of users. These defects in the software are eventually fixed by the community
supporting it. Therefore, the maintainability and reliability of a FOSS software
depends on the commitment and willingness of the community that supports
such software. The quality of a FOSS software then is determined by the com-
munity that backs it up. It is not surprising all top 500 most powerful super-
computers in the world run a Linux variant OS [11], which is one of the FOSS’
flagship.

AI assistants, similarly to any AI-based technology is computational in
nature. This means that a combination of hardware and software is required to
make it function. AI technology can reach high levels of transparency, maintain-
ability, reliability and any other ’bility’ only if it adheres to the same principles
of FOSS. The challenge then is to develop policies, methodologies and tools to
allow AI-based assets (i.e. models and data) to be developed, maintained, and
used open and free.

Free and Open AI (FOAI) will represent the label to indicate a particular
AI asset (either software or hardware) is made available to the community with
total transparency. An asset with this label is eligible as a valid resource to do
research that adheres to open science policies.

Thus, the results obtained during the research will be transparent and avail-
able to the community favouring both reproducibility and replicability of the
research study.

In this regard, challenges lead to define policies, procedures and tools aiming
at supporting and easing the development and use of FOAI assets.

Valid research questions to be answered in these directions are:

RQ6: what does a FOAI license have to include?

114 A. Capozucca et al.

RQ7: how does a FOAI asset have to be released to adhere to a
FOAI license?
RQ8: what are the tools required to support the development of
FOAI assets?

Orienting these research questions towards the computing education domain,
efforts should be made to educate scholars about risks of AI, how to make a
responsible use of it, and why FOAI may be an alternative to mitigate the risks.
Thus, scholars should get trained not only to gain technical skills towards the use
and development of FOAI assets, but also to understand how an irresponsible
use of it may harm society. Thus, there exists a strong connection with the notion
of accountability as presented in the previous section.

3 Conclusion

Without a doubt, this is partial list of the challenges that AI assistants have
brought to the higher computing education community. These challenges, pre-
sented as research questions, are mainly oriented towards researchers. The main
objective is to raise awareness of the concerns that need to be urgently addressed.
It is expected then that the research efforts aimed at tackling these challenges
would enlighten the education community about the benefits and limitations of
AI assistants.

Certainly, by the time this paper is read, new works related to AI assistants
and AI in general would have been reported. These works might either partially
or totally addressed the research challenges reported here. If that is the case, then
it would have been proven that they were valid research questions. Otherwise,
we hope the community start addressing them shortly. We trust they do need to
be answered for the sake of a proper higher computing education, and society in
general.

Acknowledgements. Whereas the content of this paper is the sole responsibility of
its authors, it would not have been possible without the contribution of the people who
gently participated in the activities and discussions that took place during the 2-day
FISEE23 workshop in Villebrumier.

We would like to express our gratitude to all these participants for their important
contributions during the workshop, in particular to Armando Fox and Carlo Ghezzi
for their time the days that followed the workshop to provide relevant feedback.

References

1. ACM Code 2018 Task Force: ACM Code of Ethics and Professional Conduct
(2018). https://www.acm.org/code-of-ethics. Accessed 3 Feb 2023

2. Bommarito, M., Katz, D.M.: GPT takes the bar exam (2022). https://doi.org/
10.48550/ARXIV.2212.14402. https://arxiv.org/abs/2212.14402. Accessed 3 Feb
2023

https://www.acm.org/code-of-ethics
https://doi.org/10.48550/ARXIV.2212.14402
https://doi.org/10.48550/ARXIV.2212.14402
https://arxiv.org/abs/2212.14402

Computing Education in the Age of AI-Based Assistants 115

3. Finnie-Ansley, J., Denny, P., Becker, B.A., Luxton-Reilly, A., Prather, J.: The
robots are coming: exploring the implications of OpenAI codex on introductory
programming. In: Proceedings of the 24th Australasian Computing Education
Conference, ACE 2022, pp. 10–19. Association for Computing Machinery, New
York (2022). https://doi.org/10.1145/3511861.3511863. https://doi-org.proxy.bnl.
lu/10.1145/3511861.3511863

4. Laser Foundation: 2nd International Workshop on Frontiers in Software Engineer-
ing Education (2023). https://www.laser-foundation.org/fisee/2023/. Accessed 3
Feb 2023

5. Gotterbarn, D., Miller, K., Rogerson, S.: Software engineering code of ethics. Com-
mun. ACM 40(11), 110–118 (1997). https://doi.org/10.1145/265684.265699

6. Guardian, T.: New York City schools ban AI chatbot that writes essays and answers
prompts (2023). https://www.theguardian.com/us-news/2023/jan/06/new-york-
city-schools-ban-ai-chatbot-chatgpt. Accessed 3 Feb 2023

7. Meyer, B.: Things To Do To An Algorithm. https://cacm.acm.org/blogs/blog-
cacm/247225-things-to-do-to-an-algorithm/fulltext/. Accessed 5 Mar 2023

8. Meyer, B.: Handbook of Requirements and Business Analysis. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-06739-6

9. Mirhosseini, S., Henley, A.Z., Parnin, C.: What is your biggest pain point? An
investigation of CS instructor obstacles, workarounds, and desires. In: SIGCSE
2023: ACM Technical Symposium on Computer Science Education. ACM (2023).
Accessed 5 Feb 2023

10. Monde, L.: ChatGPT : à l’université, un outil pédagogique ou un instrument de
triche? (2023). https://www.lemonde.fr/pixels/article/2023/01/19/a-l-universite-
chatgpt-comme-outil-pedagogique-plutot-que-comme-instrument-de-triche
6158497 4408996.html. Accessed 3 Feb 2023

11. The TOP500 project Statistics. https://www.top500.org/statistics/list/. Accessed
5 Feb 2023

12. UNESCO: Recommendation on the Ethics of Artificial Intelligence (2022). https://
unesdoc.unesco.org/ark:/48223/pf0000381137.locale=en. Accessed 3 Feb 2023

13. Vardi, M.Y.: Who Is Responsible Around Here? https://cacm.acm.org/magazines/
2023/3/270214-who-is-responsible-around-here/fulltext. Accessed 5 Mar 2023

https://doi.org/10.1145/3511861.3511863
https://doi-org.proxy.bnl.lu/10.1145/3511861.3511863
https://doi-org.proxy.bnl.lu/10.1145/3511861.3511863
https://www.laser-foundation.org/fisee/2023/
https://doi.org/10.1145/265684.265699
https://www.theguardian.com/us-news/2023/jan/06/new-york-city-schools-ban-ai-chatbot-chatgpt
https://www.theguardian.com/us-news/2023/jan/06/new-york-city-schools-ban-ai-chatbot-chatgpt
https://cacm.acm.org/blogs/blog-cacm/247225-things-to-do-to-an-algorithm/fulltext/
https://cacm.acm.org/blogs/blog-cacm/247225-things-to-do-to-an-algorithm/fulltext/
https://doi.org/10.1007/978-3-031-06739-6
https://www.lemonde.fr/pixels/article/2023/01/19/a-l-universite-chatgpt-comme-outil-pedagogique-plutot-que-comme-instrument-de-triche_6158497_4408996.html
https://www.lemonde.fr/pixels/article/2023/01/19/a-l-universite-chatgpt-comme-outil-pedagogique-plutot-que-comme-instrument-de-triche_6158497_4408996.html
https://www.lemonde.fr/pixels/article/2023/01/19/a-l-universite-chatgpt-comme-outil-pedagogique-plutot-que-comme-instrument-de-triche_6158497_4408996.html
https://www.top500.org/statistics/list/
https://unesdoc.unesco.org/ark:/48223/pf0000381137.locale=en
https://unesdoc.unesco.org/ark:/48223/pf0000381137.locale=en
https://cacm.acm.org/magazines/2023/3/270214-who-is-responsible-around-here/fulltext
https://cacm.acm.org/magazines/2023/3/270214-who-is-responsible-around-here/fulltext

Correction to: Frontiers in Software
Engineering Education

Alfredo Capozucca , Sophie Ebersold , Jean-Michel Bruel ,
and Bertrand Meyer

Correction to:
A. Capozucca et al. (Eds.): Frontiers in Software Engineering
Education, LNCS 14387,
https://doi.org/10.1007/978-3-031-48639-5

The original version of this book was inadvertently published without this paper
“Computing Education in the Age of AI-Based Assistants: Challenges and Opportu-
nities”. This was corrected and the chapter has been added to the book.

The updated version of this book can be found at
https://doi.org/10.1007/978-3-031-48639-5

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, p. C1, 2024.
https://doi.org/10.1007/978-3-031-48639-5_10

https://orcid.org/0000-0001-9765-1907
https://orcid.org/0000-0002-0957-2844
https://orcid.org/0000-0002-3653-0148
https://orcid.org/0000-0002-5985-7434
https://doi.org/10.1007/978-3-031-48639-5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48639-5_10&domain=pdf
https://doi.org/10.1007/978-3-031-48639-5
https://doi.org/10.1007/978-3-031-48639-5_10

Author Index

B
Barlaskar, Esha 14
Bathula, Krishna Mohan 42
Bruel, Jean-Michel 56, 108

C
Capozucca, Alfredo 108
Chen, Kaiyin 42
Ciancarini, Paolo 69
Cutting, David 14

E
Ebersold, Sophie 108

G
Gnaho, Christophe 85

K
Kaleemunnisa 42
Kotovich, Julia 100

M
McDowell, Andrew 14
Meyer, Bertrand 108
Missiroli, Marcello 69

O
Oriol, Manuel 32, 100

P
Pons, Mika 56

R
Raclet, Jean-Baptiste 56

S
Scharff, Christelle 42
Silvestre, Franck 56

T
(Tony) Wasserman, Anthony I. 1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
A. Capozucca et al. (Eds.): FISEE 2023, LNCS 14387, p. 117, 2023.
https://doi.org/10.1007/978-3-031-48639-5

https://doi.org/10.1007/978-3-031-48639-5

	 Preface
	 Organization
	Keynotes
	 SING: Greatly Expanding Software Engineering Education
	 Do Software Engineers Need to Know About Social Sciences and Humanities?
	 Contents

	Specializations in Software Engineering Education
	1 Background
	1.1 Computer Science Education
	1.2 The Origins of Software Engineering
	1.3 Origins of Software Engineering Education

	2 Modern Challenges in Software Engineering
	2.1 The Internet Changes Everything
	2.2 Mobile Applications Change Everything Again
	2.3 The Internet of Things and “Smart” Devices Add to Complexity
	2.4 Artificial Intelligence Changes Everything Yet Again
	2.5 Changes in Software Engineering Processes and Tools

	3 The Need for Specialization in Software Engineering Education
	3.1 Specialization in Other Professions
	3.2 Software Engineering Specialization
	3.3 Possible Specialization Areas

	4 Conclusion: Future Directions in Software Engineering Education
	References

	Co-design of Modern Technology Modules with Industry and Students as Partners
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Access to Cloud Environments
	3.2 Solution Design of the Private Cloud
	3.3 Implementation Details of the Private Cloud
	3.4 Iteration and Refinement

	4 Cloud Computing Module
	4.1 Assessment

	5 Discussion
	5.1 Student Experience and Evaluation
	5.2 Industry Experience and Feedback
	5.3 Academic Reflection

	6 Conclusion and Future Work
	References

	Tribal Capstone Project Course
	1 Introduction
	2 High-Level View
	3 Teaching Sequences
	4 Further Considerations
	5 Related Work
	6 Conclusions
	References

	Analyzing Scrum Team Impediments Using NLP
	1 Introduction
	2 Background
	2.1 Agile in the Classroom
	2.2 AI and Software Engineering

	3 Educational Context
	3.1 Capstone Course
	3.2 Process and Tooling

	4 Classifying Scrum Impediments
	4.1 Scrum Impediments Dataset
	4.2 Scrum Impediments Categories
	4.3 Findings

	5 Automated Classification of Impediments with NLP
	5.1 Overall Classification Process
	5.2 Building a LLM

	6 Validation by Subject Matter Experts
	6.1 Subject Matter Expert 1
	6.2 Subject Matter Expert 2

	7 Conclusion and Future Work
	References

	Finding Behavioral Indicators from Contextualized Commits in Software Engineering Courses with Process Mining
	1 Introduction
	2 Related Work
	2.1 Process Mining in Education
	2.2 Process Mining in Software Engineering
	2.3 Process Mining in Software Engineering Education

	3 Empirical Study
	3.1 Datasets Description
	3.2 Pre-processing
	3.3 Process Mining Analysis with BupaR
	3.4 Results

	4 Discussion
	4.1 Interpretation
	4.2 Limits
	4.3 Script: G4S-Automation

	5 Conclusion
	A Description of the Datasets
	References

	Education to Agile: Fostering Team Awareness with Essence
	1 Introduction
	2 Literature Review
	3 Extreme Development
	3.1 Our Motivation
	3.2 Fostering Extreme Development

	4 The Role of Essence
	4.1 Monitoring the Status of a Project
	4.2 Retrospectives with Essence
	4.3 Process Organization

	5 Outcomes
	6 Conclusions and Further Work
	References

	The Physical and Human Dimension of Communication in Distance Education
	1 Introduction
	2 Definitions and Theoretical Framework
	2.1 Definitions
	2.2 Collaborative Learning

	3 The Proposed Approach
	3.1 Overview
	3.2 The Collaborative Distance Learning Meta-model
	3.3 The Functional Architecture of the Learning Environment

	4 Exploring Feasibility: Java Programming Lab Project
	4.1 Instantiation of the Meta-model and the Functional Architecture
	4.2 Results

	5 Conclusion and Future Works
	References

	Is ChatGPT 3 Safe for Students?
	1 Introduction
	2 Experiment
	3 Results
	4 Limitations and Threats to Validity
	5 Related Work
	6 Conclusions and Future Work
	References

	Computing Education in the Age of AI-Based Assistants: Challenges and Opportunities
	1 Introduction
	2 Challenges and Opportunities
	2.1 Usage
	2.2 Know-How
	2.3 Accountability
	2.4 FOAI

	3 Conclusion
	References

	Correction to: Frontiers in Software Engineering Education
	Correction to: A. Capozucca et al. (Eds.): Frontiers in Software Engineering Education, LNCS 14387, https://doi.org/10.1007/978-3-031-48639-5

	Author Index
	542290_1_En_9_Chapter_OnlinePDF.pdf
	Computing Education in the Age of AI-Based Assistants: Challenges and Opportunities
	1 Introduction
	2 Challenges and Opportunities
	2.1 Usage
	2.2 Know-How
	2.3 Accountability
	2.4 FOAI

	3 Conclusion
	References

	542290_1_En_10_Chapter_OnlinePDF.pdf
	Correction to: Frontiers in Software Engineering Education
	Correction to: A. Capozucca et al. (Eds.): Frontiers in Software Engineering Education, LNCS 14387, https://doi.org/10.1007/978-3-031-48639-5

	542290_1_En_BookBackmatter_OnlinePDF.pdf
	Author Index

