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Abstract. It is well known that without randomization, Byzantine
agreement (BA) requires a linear number of rounds in the synchronous
setting, while it is flat out impossible in the asynchronous setting. The
primitive which allows to bypass the above limitation is known as obliv-
ious common coin (OCC). It allows parties to agree with constant prob-
ability on a random coin, where agreement is oblivious, i.e., players are
not aware whether or not agreement has been achieved.

The starting point of our work is the observation that no known pro-
tocol exists for information-theoretic multi-valued OCC with optimal
resiliency in the asynchronous setting (with eventual message delivery).

This apparent hole in the literature is particularly problematic, as
multi-valued OCC is implicitly or explicitly used in several construc-
tions.

In this paper, we present the first information-theoretic multi-valued
OCC protocol in the asynchronous setting with optimal resiliency, i.e.,
tolerating t < n/3 corruptions, thereby filling this important gap. Fur-
ther, our protocol efficiently implements OCC with an exponential-size
domain, a property which is not even achieved by known constructions
in the simpler, synchronous setting.

We then turn to the problem of round-preserving parallel composition
of asynchronous BA. A protocol for this task was proposed by Ben-Or
and El-Yaniv [Distributed Computing ’03]. Their construction, however,
is flawed in several ways. Thus, as a second contribution, we provide
a simpler, more modular protocol for the above task. Finally, and as
a contribution of independent interest, we provide proofs in Canetti’s
Universal Composability framework; this makes our work the first one
offering composability guarantees, which are important as BA is a core
building block of secure multi-party computation protocols.

The full version of this paper can be found at the IACR Cryptology ePrint Archive,
report 2023/1003.
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1 Introduction

Byzantine agreement (BA) [63,74] enables n parties to reach agreement on one
of their inputs in an adversarial setting, facing up to t colluding and cheating
parties. The core properties require all honest parties to eventually terminate
with the same output (agreement), which equals their input value in case they
all begin with the same common input (validity). BA and its closely related
single-sender variant, broadcast, are fundamental building blocks in the construc-
tion of cryptographic protocols, in particular for secure multi-party computation
(MPC) [13,28,56,82], in which parties wish to privately compute a joint function
over their inputs.

We consider a complete network of authenticated and private point-to-point
(P2P) channels, which enables every pair of parties to communicate directly.
The central settings in which BA has been studied are:

The synchronous setting. Here the protocol proceeds in a round-by-round
fashion, and messages sent in a given round are guaranteed to be delivered
by the start of the next round. The round structure can be achieved given
synchronized clocks and a known bound on message delivery, and enables
the use of timeouts. This clean abstraction allows for simpler analyses of
protocols, but comes at the cost that parties must wait for the worst-case
delay in each round before they can proceed.

The asynchronous setting. Here no assumptions are made on the clocks
or on the bound of message delivery (other than that each message will
be eventually delivered), and messages may be adversarially delayed by an
arbitrary (yet finite) amount of time. The main challenge is that timeouts
cannot be used, implying the inability to distinguish a slow honest party from
a silent, noncooperative corrupted party. On the positive side, asynchronous
protocols can advance as fast as the network allows, irrespectively of the
worst-case delay, and each party can proceed to the next step as soon as it
gets sufficiently many messages.

The feasibility of BA is inherently related to the synchrony assumptions of
the system. Synchronous BA with perfect security is achievable with determinis-
tic protocols for t < n/3 [15,54,74]; this bound is tight in the plain model1 even
when considering weaker, computational security [17,47,74], but can be over-
come with setup assumptions, yielding computationally secure BA [37], and even
information-theoretically secure BA [75], for t < n/2.2 On the other hand, deter-
ministic asynchronous BA (A-BA) is impossible even facing a single crash failure
[48], and randomized solutions are a necessity. Following Ben-Or [9] and Rabin
[76], information-theoretic randomized A-BA has been achieved with t < n/3
corruptions [2,18,24], which, as opposed to the synchronous case, is a tight bound
even given setup and cryptographic assumptions [19,39].
1 That is, without setup assumptions and without imposing resource restrictions on

the adversary.
2 The bound t < n/2 is tight for BA [49]; however, under the same setup assumptions,

broadcast can be solved for any number of corruptions.
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Round Complexity of BA. In the synchronous setting, it is known that deter-
ministic BA requires t + 1 rounds [37,46], a bound that is matched by early
feasibility results [37,54,74]. It is also known that t-secure randomized BA for
t ∈ Θ(n) cannot terminate in a strict constant number of rounds [26,29,60]; yet,
expected constant-round protocols have been constructed both for t < n/3 in the
plain model [45] and for t < n/2 in the PKI model [50,61].3 The latter protocols
follow the approach of Rabin [76] and rely on an oblivious common coin (OCC),
that is, a distributed coin-tossing protocol over a domain V such that the output
of every honest party is a common random value v ∈ V with constant probabil-
ity p, but with probability 1 − p is independently and adversarially chosen; the
coin toss is “oblivious” since the parties cannot distinguish between a successful
coin toss and an adversarial one.4

Loosely speaking, round complexity in the asynchronous setting can be
defined based on the expected number of times an honest party has to alternate
between sending and receiving messages that are “causally related” [36]. In an
unpublished manuscript, Feldman [41] generalized the expected-constant-round
synchronous protocol of [42] to asynchronous networks with t < n/4; at the core
of the construction lies a binary (asynchronous) OCC protocol which actu-
ally has resiliency min(t′, �n/3� − 1), where t′ is the corruption threshold of an
asynchronous verifiable secret sharing (A-VSS) scheme.5 Canetti and Rabin [24]
constructed A-VSS for t < n/3, thereby obtaining A-BA in expected-constant
rounds for the optimal threshold t < n/3.

Concurrent BA. All of the above constructions are for solving a single instance of
BA. However, most applications, particularly MPC protocols, require compos-
ing multiple instances of BA: sequentially, in parallel, or concurrently. While
the composition of synchronous, deterministic protocols is relatively simple
(although care must be taken in the cryptographic setting [65]), composing
expected-constant-round protocols with probabilistic termination is a much more
challenging task.

Indeed, Ben-Or and El-Yaniv [11,12] observed that running m instances
of a probabilistic-termination protocol in parallel may incur a blow-up in the
expected number of rounds until they all terminate. The technical reason is that
the expectation of the maximum of m independent, identically distributed ran-
dom variables does not necessarily equal the maximum of their expectations. In
particular, for expected-constant-round BA with a geometric termination prob-
ability (which is the case in all known protocols), the parallel composition of m
instances terminates after expected Θ(logm) rounds [31]. Further, even when all
3 Fitzi and Garay [50] devised expected-constant-round BA for t < n/2 in the

PKI model under number-theoretic assumptions. Katz and Koo [61] established a
similar result from the minimal assumption of digital signatures, which yields an
information-theoretic variant using pseudo-signatures [75].

4 This primitive is sometimes known as a “weak” common coin in the literature.
5 Feldman’s A-VSS suffers from a negligible error probability. An errorless A-VSS

scheme for t < n/4 is given in [10] and used to construct a perfectly secure asyn-
chronous MPC protocol with resiliency t < n/4.
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parties start the protocol together, simultaneous termination is not guaranteed
as the adversary can force some honest parties to terminate after the others;
although this gap can be reduced to a single round, inaccurate sequential re-
synchronization of � instances of BA may lead to an exponential blow up in � if
not done with care [64]. Following [12,61,64,65], recent works have shown how
to compose synchronous BA in a round-preserving way with simulation-based
security in Canetti’s framework for universal composability (UC) [23], with opti-
mal resiliency and perfect security in the plain model for t < n/3 [31], and with
cryptographic security in the PKI model for t < n/2 [32].

In the asynchronous setting, the parties are not assumed to begin the proto-
col at the same time, so intuitively, sequential composition is not problematic.
However, running m instances of expected-constant-round A-BA concurrently
would yield a Θ(logm) blowup as in the synchronous case. Ben-Or and El-Yaniv
[12] further showed how to execute m instances of A-BA in expected-constant
rounds and with optimal resiliency t < n/3; however, their solution is more com-
plicated than the synchronous one. In addition, they only prove a property-based
security definition of A-BA that does not necessarily address modern security
requirements such as security under composition, or facing adaptive adversaries.

1.1 Concurrent A-BA in Expected-Constant Rounds: Cracks
in the Concrete

The underlying idea behind the synchronous protocol of Ben-Or and El-
Yaniv [12] for parallel BA is to execute each BA instance multiple times over the
same inputs, but only for a constant number of rounds. For a suitable choice of
parameters, this ensures that with high probability each party will have obtained
at least one output value in each such batch. To coordinate these outputs, the
parties then run an oblivious leader election (OLE) protocol, which guarantees
that with constant probability, a random leader is elected. In the event that
the leader is honest and the parties obtained an output in each batch (which,
again, occurs with constant probability) the parties will terminate; otherwise
they repeat the process.

The same general technique underlies Ben-Or and El-Yaniv’s asynchronous
protocol, but great care is needed to deal with the low message dispersion inher-
ent in asynchronous networks while maintaining optimal resiliency t < n/3. A
closer look at their security proof indeed raises a number of subtle issues. First,
they point to Canetti and Rabin [24] for instantiating the (asynchronous) OLE
primitive used in their construction (called A-Election()). (Recall that Canetti
and Rabin construct an OCC to obtain A-BA in expected-constant rounds; an
n-valued OCC would indeed imply OLE.) As it turns out, the OCC construc-
tion in [24, Sec. 8] (as well as the more detailed versions [22, Sec. 5.7] and [25,
Sec. 8]) is only binary (i.e., it only works for V = {0, 1}), and it does not seem
straightforward to generalize to larger (non-constant-sized) domains.

Further, running log n executions of a binary OCC in parallel to make it
multi-valued yields only 1/poly(n) probability of agreement, and as long as the
coin is not perfectly fair (i.e., non-oblivious and unbiased, which is impossible in
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the asynchronous setting [77]), that would not imply OLE with constant success
probability. We note that Patra et al. [73] claim to construct a (t + 1)-bit asyn-
chronous OCC, but their main focus is on communication complexity, and the
agreement probability of their protocol is no better than would be obtained by
running t + 1 executions of a binary OCC protocol (i.e., exponentially small).
Techniques used to get OLE in the synchronous setting [42,61] do not seem
to extend in asynchrony for t < n/3 (we elaborate on this in Sect. 1.2). Thus,
to the best of our knowledge, no existing OCC construction is simultaneously
optimally resilient, multi-valued, and asynchronous, without relying on com-
putational assumptions (in Sect. 1.3 we discuss solutions in the cryptographic
setting).

Second, there is a subtle issue in the logic of one of the proofs in [12].
This issue raises concerns about the validity of the proof claiming an expected-
constant round complexity of one of the main subroutines—namely, the Πselect

subroutine, which handles the shortcomings of their message-distribution mech-
anism. Specifically, in the analysis of Πselect it is claimed that if the leader is
chosen from a certain set, the protocol will terminate. However, further examina-
tion reveals that there are scenarios in which the protocol may not terminate for
certain leaders from that set. As a result, this issue casts doubt on the promised
expected-constant round complexity of their concurrent A-BA protocol.

Finally, the concurrent asynchronous (resp., synchronous) BA protocol in
[12] relies on multi-valued asynchronous (resp., synchronous) BA in expected-
constant rounds.6 Recall that running the binary protocols in [45] or [24] ω(1)
times in parallel would terminate in expected ω(1) rounds, so they cannot be
naïvely used for this task. In the synchronous setting, Turpin and Coan [79]
extended binary BA to multi-valued BA for t < n/3 with an overhead of just
two rounds. Ben-Or and El-Yaniv claim that this technique can be adapted
for asynchronous networks by using Bracha’s “A-Cast” primitive [18] for mes-
sage distribution. However, a closer look reveals that although the Turpin-Coan
extension works (with appropriate modifications) in the asynchronous setting for
t < n/5, it provably does not work when t ≥ n/5, regardless of the specific
choice of the underlying binary A-BA protocol and even when the adversary is
limited to static corruptions (see further discussion in the full version of this
paper [33]).

More recently, an optimally resilient multi-valued A-BA protocol with
expected-constant round complexity was proposed by Patra [72], but it relies
on the Agreement on a Common Subset (ACS) protocol in [14]; however, as
we explain below, this ACS protocol does not achieve expected-constant round
complexity without some modifications, which require either expected-constant-
round concurrent A-BA (this would be circular), or information-theoretic asyn-
chronous OLE with optimal resiliency. Fortunately, Mostéfaoui and Raynal [70]
recently gave a black-box, constant-round reduction from multi-valued to binary

6 This is true even if one is interested only in binary concurrent BA (i.e., when the
input vectors consist of bits). Multi-valued BA is needed to agree on the leader’s
output vector.
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A-BA for t < n/3,7 using just one invocation of the underlying binary protocol
as in [79].

We emphasize that the asynchronous protocol of Ben-Or and El-Yaniv
[11,12] lies, either explicitly or implicitly, at the core of virtually every round-
efficient asynchronous MPC construction [8,10,14,16,30,36,57,58,66]. The con-
cerns raised above regarding the result of [12] render this extensive follow-up
work unsound. In this paper, we revisit this seminal result and rectify these
issues.

1.2 Overview of Our Results

We now present an overview of our results, which are three-fold, including a
detailed exposition of our techniques.

Multi-valued and Asynchronous Oblivious Common Coin. As a starting point,
we look at the binary asynchronous OCC protocol of Canetti and Rabin [24].
The idea (following the approach of [45] in the synchronous setting and [41] in
the asynchronous setting) is that each party secret-shares a random vote for each
party, using an optimally resilient A-VSS scheme. Each party accepts t + 1 of
the votes cast for him (at least one of which must have come from an honest
party), and once it is determined that enough secrets have been fixed (based
on several rounds of message exchange, using Bracha’s A-Cast primitive [18] for
message distribution), the parties begin reconstructing the accepted votes. The
sum or “tally” of these votes becomes the value associated with the corresponding
party. After computing the values associated with an appropriate set of at least
n − t parties, an honest party outputs 0 if at least one of those tallies is 0,
and outputs 1 otherwise. Note that each tally must be uniformly random, and
the properties of A-Cast guarantee that no two honest parties can disagree on
the value of any given tally (although up to t tallies may be “missing” in an
honest party’s local view); moreover, Canetti and Rabin show using a counting
argument that at least n/3 of the tallies are known to all honest parties (i.e.,
common to their local views). This can be used to show that with probability
at least 1/4 all honest parties output 0, and similarly for 1.

In the conference version of Feldman and Micali’s paper [42], there is a brief
remark suggesting that the synchronous version of the above protocol can be
modified to obtain (oblivious) leader election.8 Rather than outputting a bit,
parties output the index of the party whose tally is minimum; when the domain
of secrets is large enough, with constant probability the same honest party is
chosen. This approach was fully materialized by Katz and Koo [61] for t < n/3
in the information-theoretic setting and t < n/2 in the computational setting.

7 They are also concerned with obtaining O(n2) message complexity. The novelty of
their result, even without this more stringent requirement, does not seem to be
acknowledged in the paper.

8 This claim no longer appears in the ICALP [43] or journal [45] versions of the paper,
or in Feldman’s thesis [44].
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We note that what is obtained is not exactly OLE as we have defined it, as the
adversary can of course bias the index of the elected party, but nevertheless, this
is sufficient for the concurrent BA protocols of Ben-Or and El-Yaniv [12].

Unfortunately, the approach effective in the synchronous setting cannot be
directly applied to the asynchronous setting while maintaining optimal resiliency.
The challenge arises from the fact that the adversary can selectively remove t
coordinates from the honest parties’ local views of the tallies, ensuring that the
leader is not chosen from the parties corresponding to those missing coordinates.
This poses a significant obstacle as the original concurrent A-BA protocol by
Ben-Or and El-Yaniv [12] terminates successfully when the leader is honest and
selected from an adversarially chosen subset of n − 2t parties. Consequently,
when t < n/3, the size of this subset is only t + 1, allowing the adversary to
reduce the probability of choosing an appropriate leader to as low as 1

n−t . The
same issue arises in our simplified concurrent A-BA protocol, where we also
require the leader to be selected from an adversarially chosen subset of parties,
but with size greater than n/3. Again, when t < n/3, this subset can be of
size t + 1, leading to the same challenge. However, when t < n/4, the set of
potential appropriate leaders becomes larger in both concurrent A-BA protocols,
enabling us to circumvent this issue. Therefore, in addition to the inherent value
in obtaining a true OCC (where a successful coin toss produces a uniform value),
we specifically need such a primitive to obtain optimal resiliency for concurrent
A-BA.

In conclusion, no OLE construction—and therefore no concurrent A-BA pro-
tocol in expected-constant rounds—exists with optimal resiliency t < n/3 in
asynchronous networks. We now describe our solution to this problem, which
is based on the following simple combinatorial observation. If we work over a
field of size N ∈ Θ(n2), then with constant probability, at least one value will
be repeated in the global view of tallies, and, moreover, all repeats will occur
within the subset of indices known to all honest parties. The intuition for this
fact is that when N ∈ O(n2) there is, due to the birthday paradox, at least
one repeat in any constant fraction of the indices with constant probability, and
when N ∈ Ω(n2), there are no repeats at all with constant probability. There is a
“sweet spot” between these extremes that can be leveraged to extract shared ran-
domness: Honest parties output the value that is repeated in their local views
of the tallies and has the minimum index in the vector of tallies. With this
modification of Canetti and Rabin’s protocol [24], we obtain the first n2-valued
asynchronous OCC for t < n/3 in the information-theoretic setting. We remark
that the above combinatorial observation at the heart of our construction may
be of independent interest.

It is straightforward to extend our OCC protocol to accommodate arbi-
trary domains V . One approach is to work over a prime field of size at least
lcm(n2, |V |). In this setting, we can still identify “repeats” by considering the
tallies modulo n2. Once the repeat with minimum index is determined, we can
generate a common random output by reducing the corresponding (original) field
element modulo |V |. In particular, when |V | = n, we get asynchronous OLE with
optimal resiliency.
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Proving the security of our multi-valued OCC protocol in a simulation-based
manner is not without its own challenges. The issue is that the simulator must
expose a view of the vector of tallies that both adheres to the distribution in the
real world and is consistent with the random value chosen by the OCC function-
ality (in the case of a successful coin toss) in the ideal world. While the simulator
can easily determine the exact set of indices known to all honest parties from its
internal execution with the real-world adversary, properly sampling the “repeat
pattern” according to these constraints is a delicate task; furthermore, since the
functionality is only parameterized by a (constant) lower bound on the probabil-
ity of a successful coin toss, the simulator must handle the complementary case
carefully in order to avoid skewing the distribution. It is not immediately clear
how to perform this inverse sampling efficiently.

A heavy-handed solution is to simply have the functionality sample the tallies
itself, and then determine the output based on the location of repeats relative
to the subset of indices (supplied by the simulator) that are known to all honest
parties. This protocol-like functionality would certainly allow for simulation—
and would in fact be sufficient for our purposes—but its guarantees are more
difficult to reason about and, more importantly, it cannot be realized by other
protocols! Instead, we construct a simulator that, given the exact probabilities
of certain events in the protocol, can also efficiently sample from those events,
potentially conditioned on the output of a successful coin toss. By selecting the
appropriate sampling procedure, the simulator can derive a vector of tallies that
preserves the (perfect) indistinguishability of the real and ideal worlds. Equipped
with the means to carry out the inverse sampling, we can now realize a more
abstract (and natural) OCC functionality, which is ready to be plugged into
higher-level protocols.

Simplified Concurrent A-BA. Ben-Or and El-Yaniv [12] devised an expected-
constant-round concurrent A-BA protocol. However, in addition to relying on
unspecified building blocks, as mentioned above, it suffers from logical issues in
its proof. Although our new OCC protocol can instantiate the missing primitive,
doubts remain about the expected-constant round complexity due to a lingering
issue in the proof. This issue stems from the steps taken to address low message
dispersion, and the possibility of resolving it without changing the protocol is
unclear. To tackle this, we redesign the message-distribution phase, avoiding
the problem in the proof and obtaining stronger guarantees. These guarantees
simplify the protocol structure, achieving a level of simplicity comparable to the
synchronous solution.

In more detail, we build on Ben-Or and El-Yaniv’s work, where parties ini-
tiate multiple executions for each A-BA instance that are “truncated” after a
fixed number of iterations. However, we adopt a different approach to message
distribution, allowing us to establish the rest of the protocol based on the sim-
pler structure of their synchronous solution. Similarly to [12], we set parameters
to ensure that each party receives at least one output from each batch of trun-
cated A-BA executions (for each instance) with constant probability. Based on
their local results from those truncated A-BAs, parties create suggestions for the
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final output. Subsequently, the message-distribution phase begins with parties
running a binary A-BA to verify a precondition, ensuring the ability to validate
each other’s suggestions. If they choose to proceed, they A-Cast their sugges-
tions and only accept those they can validate using their local results from the
truncated A-BAs. This validation relies on the property that honest parties ter-
minate within two consecutive iterations in each A-BA execution, ensuring the
validity of suggestions even when provided by corrupted parties. Once parties
receive n − t suggestions, they proceed by A-Casting the set of the first n − t
suggestions they receive, along with the identity of their providers. The checked
precondition guarantees that everyone can move on to the next step.

Parties then wait until they receive enough suggestions and enough sets,
ensuring that at least n − t sets are completely contained within the set of
suggestions they received. By employing a counting argument similar to [24,
41], we can ensure the delivery of suggestions from at least n/3 parties to all
honest participants. Moreover, the validation process applied to the suggestions
guarantees that each honest party only accepts valid suggestions, even if they
originate from corrupted sources. These robust guarantees in the distribution
of suggested outputs establish that the n/3 suggestions commonly received by
honest parties are legitimate outputs. This enables us to directly utilize the
synchronous protocol in the asynchronous setting.

We employ our new asynchronous OCC protocol to elect a leader for party
coordination. Every party adopts the leader’s suggestion and runs a multi-valued
A-BA to handle the obliviousness of the leader-election mechanism. If the leader
is chosen from those n/3 commonly received suggestions, all honest parties initi-
ate the A-BA protocol with the leader’s suggestion and output the same value.
If the leader is not among those n/3 parties, precautions are taken to ensure
no malicious value is output. For this purpose, we utilize an “intrusion-tolerant”
A-BA protocol that guarantees the output to be either a default value or one of
the honest parties’ inputs.9 Finally, parties run a binary A-BA to determine if
they have reached consensus on a non-default value and terminate.

By following the above approach, we overcome the issues in the proof and
achieve a significantly simpler protocol structure for the asynchronous setting
compared to the one presented in [12]. Somewhat surprisingly, the resulting
protocol is conceptually as simple as its synchronous counterpart.

Applications to Asynchronous MPC. Asynchronous MPC crucially relies on ACS
for determining the set of input providers [10]; this task commonly boils down
to concurrently executing n instances of A-BA. Our expected-constant-round
concurrent A-BA protocol can be directly plugged into the asynchronous MPC
protocols in [8,10,30,57,58,66], preserving their (expected) round complexity.
9 Ben-Or and El-Yaniv [12] introduced and used a strengthened property for (A-)BA

without naming it, which was later called “non-intrusion” validity in [70]. Non-
intrusion validity lies between standard validity and “strong” validity [50], as it
requires that a value decided by an honest party is either an honest party’s input
or a special symbol ⊥ (i.e., the adversary cannot intrude malicious values into the
output).
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However, despite folklore belief, concurrent A-BA cannot be used in a black-
box way in the BKR protocol [14] to achieve asynchronous MPC with round
complexity linear in the depth of the circuit. The issue (as pointed out in [1,83])
is that the ACS protocol outlined in [14] assigns input values for certain A-BA
instances based on the outputs of other instances. This problem also affects other
works like [16,36] that rely on [14].

Fortunately, this issue can be readily addressed by modifying the ACS pro-
tocol from BCG [10] (which is secure for t < n/3). Recall that this protocol
involves a preprocessing step for distributing input shares before initiating con-
current A-BA, which necessitates O(log n) rounds. Replacing the O(log n)-round
preprocessing step with the constant-round “gather” protocol described in [4]-
an enhanced version of Canetti and Rabin’s counting argument [24]-results in
an ACS protocol with constant round complexity. This modified ACS protocol
can be seamlessly integrated into both [10] and [14], effectively rendering their
round complexity independent of the number of parties. Alternatively, one can
leverage the expected-constant-round ACS protocol recently proposed by Abra-
ham et al. [1], or the one by Duan et al. [38] (instantiating all building blocks
with information-theoretic realizations; in particular, the assumption of a “Rabin
dealer” [76], used for leader election, can be replaced by our multi-valued OCC).

Composable Treatment of Expected-Constant-Round Concurrent A-BA. We
choose to work in Canetti’s Universal Composability (UC) framework [23], and
as such, we prove the security of our protocols in a simulation-based manner. The
UC framework provides strong composability guarantees when secure protocols
are run as a subroutine in higher-level protocols (this is absolutely critical in
our context given that expected-constant-round concurrent A-BA is a key build-
ing block in many round-efficient cryptographic protocols, as mentioned above),
and even in a priori unknown or highly adversarial environments (such as asyn-
chronous networks). Moreover, it enables us to provide a modular, bottom-up
security analysis. However, obtaining a composable and round-preserving treat-
ment of “probabilistic-termination” BA is non-trivial, as pointed out by Cohen et
al. [31,32] in the synchronous setting. In the following, we discuss some unique
issues in asynchrony and how we address them.

To model eventual message delivery, we follow [30,36,62] and require parties
to repeatedly attempt fetching messages from the network. The first D such
requests are ignored by the functionality, where D is a value provided by the
adversary in unary so that it remains bounded by the adversary’s running time
(i.e., so that messages cannot be delayed indefinitely). It is straightforward then
to derive a formal notion of asynchronous rounds in UC, based on this mech-
anism. We remark that unlike in the synchronous setting [62], (asynchronous)
rounds cannot be used by the environment to distinguish the real and ideal
worlds in the asynchronous setting. Thus, as opposed to [31,32], our functional-
ities are round-unaware. Similarly, we do not need to deal with standard issues
in sequential composition, namely, non-simultaneous start/termination (“slack”),
since asynchronous protocols are already robust to slack. Indeed, it is entirely
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possible that some parties receive output from a (secure) asynchronous protocol
before other parties have even started the protocol!

On the other hand, the issue of input incompleteness is trickier to address.
This refers to the problem that in the asynchronous setting, the inputs of up
to t honest parties may not be considered in the result of the computation;
the remaining n − t parties form a “core set” of input providers. Note that in
the worst case, the core set is adversarially chosen and includes all corrupted
parties. Prior work [30,36] allowed the adversary to send an explicit core set to
the functionality; however, this approach does not always accurately model what
happens in the real world, and can cause difficulties in the simulation. Instead,
our solution is to allow the adversary to define the core set implicitly, by delaying
the submission of inputs to the functionality in the same way that it delays the
release of outputs from the functionality. Using this novel modeling approach, we
obtain updated functionalities for some standard asynchronous primitives that
more accurately capture realizable security guarantees.

1.3 Additional Related Work

As mentioned earlier, the t + 1 lower bounds for deterministic BA [37,46] were
extended to rule out strict-constant-round t-secure randomized BA for t = Θ(n)
[26,29,60]; these bounds show that any such r-round BA must fail with proba-
bility at least (c · r)−r for a constant c, a result that is matched by the protocol
of [55]. Cohen et al. [35] showed that for t > n/3, two-round BA are unlikely
to reach agreement with constant probability, implying that the expected round
complexity must be larger; this essentially matches Micali’s BA [68] that termi-
nates in three rounds with probability 1/3. Attiya and Censor-Hillel [6] extended
the results on worst-case round complexity for t = Θ(n) from [29,60] to the asyn-
chronous setting, showing that any r-round A-BA must fail with probability 1/cr

for some constant c.
In the dishonest-majority setting, expected-constant-round broadcast proto-

cols were initially studied by Garay et al. [53], who established feasibility for
t = n/2 + O(1) as well as a negative result. A line of work [27,51,78,80,81]
established expected-constant-round broadcast for any constant fraction of cor-
ruptions under cryptographic assumptions.

Synchronous and (binary) asynchronous OCC protocols in the information-
theoretic setting were discussed earlier. Using the synchronous protocol in [12],
Micali and Rabin [69] showed how to realize a perfectly unbiased common coin
in expected-constant rounds for t < n/3 over secure channels (recall that this
task is impossible in asynchronous networks [77]). In the cryptographic setting,
both synchronous and asynchronous OCC protocols with optimal resiliency are
known, relying on various computational assumptions; we mention a few here.
Beaver and So [7] gave two protocols tolerating t < n/2 corruptions in syn-
chronous networks, which are secure under the quadratic residuosity assumption
and the hardness of factoring, respectively. Cachin et al. [21] presented two pro-
tocols for t < n/3 and asynchronous networks, which are secure in the random
oracle model based on the RSA and Diffie-Hellman assumptions, respectively.
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Nielsen [71] showed how to eliminate the random oracle and construct an asyn-
chronous OCC protocol relying on standard assumptions alone (RSA and DDH).
Although these constructions are for asynchronous networks, they can be read-
ily extended to work in synchronous networks for t < n/2 (e.g., so that they
can be used in the computationally secure BA protocol from [50]). We also note
that while the resiliency bounds for asynchronous OCC protocols coincide in the
information-theoretic and computational settings, working in the latter typically
yields expected-constant-round A-BA protocols that are much more efficient in
terms of communication complexity (i.e., interaction) than the unconditionally
secure protocol of Canetti and Rabin [24].

Lastly, we discuss solutions to multi-valued A-BA in the computational
setting. Cachin et al. [20] studied a more general version of this problem, in
which the validity property is replaced with “external” validity, where the out-
put domain can be arbitrarily large but the agreed-upon value must only satisfy
an application-specific predicate. They gave a construction for multi-valued “val-
idated” A-BA that runs in expected-constant rounds for t < n/3, assuming a
PKI and a number of threshold cryptographic primitives (including an asyn-
chronous OCC), and used it to obtain an efficient protocol for asynchronous
atomic broadcast. Recently, Abraham et al. [5] (and follow-ups, e.g., [4,52,67])
have improved the communication complexity. The work of Fitzi and Garay [50]
also considered strong (A-)BA. Here we require “strong” validity: the common
output must have been one of the honest parties’ inputs (note that this is equiv-
alent to standard validity in the binary case). When the size of the input domain
is m > 2, neither a Turpin-Coan-style reduction [79] nor the obvious approach
of running logm parallel executions of a binary protocol would suffice to realize
this stronger notion of agreement; indeed, Fitzi and Garay showed that strong
A-BA is possible if and only if t < n/(m + 1). This bound holds in both the
information-theoretic and computational settings. Their unconditionally secure
asynchronous protocol actually involves oblivious coin flipping on the domain,
but m > 2 forces t < n/4 and the binary asynchronous OCC protocols in [24,41]
can be extended to multi-valued in this regime, as discussed in Sect. 1.2.

In the next section, we start with some preliminaries. Due to space con-
straints, we refer the reader to the full version [33] for proofs and other details.

2 Model and Preliminaries

For m ∈ N, we use [m] to denote the set {1, . . . , m}.
We prove our constructions secure in the UC framework [23], with which

we assume the reader has some familiarity. However, the base communication
model in UC is completely unprotected. To capture asynchronous networks with
eventual message delivery, we work in a hybrid model with access to the multi-
use asynchronous secure message transmission functionality Fa-smt, which was
introduced in [36] and is itself based on the (single-use) eventual-delivery secure
channel functionality Fed-sec from [62]. In the full version [33], we include a formal
specification of Fa-smt.
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The functionality Fa-smt models a secure eventual-delivery channel between a
sender Ps and receiver Pr.10 To reflect the adversary’s ability to delay the mes-
sage by an arbitrary finite duration (even when Ps and Pr are not corrupted),
the functionality operates in a “pull” mode, managing a message buffer M and
a counter D that represents the current message delay. This counter is decre-
mented every time Pr tries to fetch a message, which is ultimately sent once the
counter hits 0. The adversary can at any time provide an additional integer delay
T , and if it wishes to immediately release the messages, it needs only to submit
a large negative value. It is important to note that T must be encoded in unary;
this ensures that the delay, while arbitrary, remains bounded by the adversary’s
computational resources or running time. Also, note that Fa-smt guarantees even-
tual message delivery assuming that the environment gives sufficient resources
to the protocol, i.e., activates Pr sufficiently many times.

Finally, we note that while the UC framework has no notion of time, and
we are in the asynchronous setting (with eventual message delivery) where par-
ties may proceed at different rates, one can still formally define a notion of
asynchronous rounds along the lines of [36], which will be referred to in our
statements. We defer an in-depth discussion to the full version [33], as there are
some subtleties that need to be addressed.

3 Ideal Functionalities for a Few Standard Primitives

In this section, we present ideal functionalities for asynchronous primitives used
in our constructions. This seemingly simple task requires careful consideration of
certain aspects, as the adversary’s ability to delay messages in the network has
an upstream impact on the achievable security guarantees of distributed tasks. In
particular, the adversary can obstruct the output release procedure and impede
honest parties’ participation. To model delayed output release, we extend the
mechanism discussed in Sect. 2 (using per-party delay counters). However, to
model delayed participation, we introduce a novel and more natural approach
that addresses limitations of prior work and more closely captures the effects of
asynchrony.

3.1 Modeling Delayed Participation

In the asynchronous setting, honest parties cannot distinguish whether uncoop-
erative parties are corrupted and intentionally withholding messages, or if they
are honest parties whose messages have been delayed. Consequently, when the
number of corruptions is upper-bounded by t, waiting for the participation of
the last t parties can result in an indefinite wait. In ideal functionalities, this
translates to expecting participation and/or input only from a subset of adver-
sarially chosen parties, known as the “core set,” with a size of n − t. Observe

10 Recall that while (concurrent) A-BA is not a private task, secure channels are needed
to construct an OCC.
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that the value of t is closely related to the behavior of the functionality. In this
work, we specifically consider optimal resiliency, where t = �n

3 �−1. However, our
functionalities can be easily adapted to accommodate other resiliency bounds.

In our modeling approach, the adversary implicitly determines the core set by
strategically delaying participation (or input submission) to the functionality. If
we instruct the ideal functionality to proceed once n−t parties have participated,
the adversary can precisely determine the core set by manipulating the order of
participation (or input submissions). To accommodate arbitrary but finite delays
for input submissions, we employ a technique similar to the one we use for
the output-release mechanism. That is, in addition to a per-party output delay
counter, there is an input delay counter (updatable by the adversary) which
is decremented every time the party pings the functionality; once the counter
reaches zero, the party is allowed to participate.

This approach contrasts with the work of Cohen [30] and Coretti et al. [36],
wherein the adversary (simulator) explicitly sends a core set to the function-
ality. Obtaining the core set from the adversary all at once does not accurately
mimic real-world executions and requires careful consideration to ensure the
implementation works in all scenarios. For instance, a challenging case to model
is when the simulator sets the core set, but the environment never activates
some parties in that core set. If not handled properly, this situation can lead to
either the ideal functionality stalling indefinitely while the real-world execution
proceeds, or allowing for core sets of smaller sizes, neither of which is acceptable.

There are other aspects of modeling the core set that can potentially cause
issues. If the simulator is required to set the core set early on, it may encounter
issues during the simulation because in some real-world protocols, such as the
asynchronous MPC protocol of Ben-Or et al. [14], the core set is not fixed in the
early stages of the execution. Similarly, if the functionality allows late submission
of the core set, then when using the functionality as a hybrid, the adversary can
potentially stall the functionality unless appropriate preventive mechanisms are
in place. In contrast, implicitly defining the core set by delaying parties’ partic-
ipation aligns more closely with real-world executions, reducing the probability
of errors. Additionally, it can potentially simplify the simulation process, as the
simulator can gradually define the core set as the protocol progresses.

3.2 Ideal Functionalities for a Few Standard Primitives

We now cast a few standard asynchronous primitives as UC functionalities, fol-
lowing our novel modeling approach. We also present security statements show-
ing how classical protocols can be used to realize these primitives.

Asynchronous Broadcast (A-Cast). The first essential primitive used in both our
OCC and concurrent A-BA protocols, which also finds numerous applications in
other asynchronous protocols, is Bracha’s Asynchronous Broadcast (A-Cast) [18].
A-Cast enables a distinguished sender to distribute its input, such that if an hon-
est party outputs a value, then all honest parties must (eventually) output the
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same value. Moreover, if the sender is honest, then all honest parties must (even-
tually) output the sender’s input. While these are essentially the agreement and
validity properties required from regular (synchronous) broadcast, we stress that
honest parties may not terminate when the sender is corrupted. We formulate
A-Cast as the ideal functionality Fa-cast, presented in the full version [33].

Note that although A-Cast is a single-sender primitive, assuming it can pro-
ceed to the output generation phase without sufficient participation from other
parties is too idealized. A realizable functionality should only proceed to the
output generation phase when n− t parties (which may include the sender) have
participated. Parties demonstrate their participation by sending (dummy) input
messages, followed by issuing fetch requests to the functionality. An important
technicality here is that the participation of parties before the sender initiates
the session should not contribute to the count. Therefore, Fa-cast starts a session
only once the input from the sender is received. Consequently, any efforts for
participation before that point will not be taken into account. An implication
of this design choice when using Fa-cast as a hybrid is that parties other than
the sender will not know when the session has started. As a result, they should
constantly switch between sending input messages and fetch requests until they
receive the output.

Bracha’s asynchronous broadcast protocol [18] can be used to UC-realize
Fa-cast with perfect security:

Proposition 1. Fa-cast can be UC-realized with perfect security in the Fa-smt-
hybrid model, in constant rounds and against an adaptive and malicious t-
adversary, provided t < n

3 .

Asynchronous Verifiable Secret Sharing (A-VSS). Another crucial primitive we
require, mainly for our OCC protocol, is Asynchronous Verifiable Secret Sharing
(A-VSS). A-VSS allows a dealer to secret-share a value among all parties, ensur-
ing that no unauthorized subset of colluding parties can learn any information
about the secret. However, any authorized subset of parties should be able to
efficiently reconstruct the secret using their shares. The term “verifiable” reflects
that the dealer cannot cheat, for example by causing the reconstruction to fail or
by inducing inconsistent output values from honest parties. In particular, when-
ever the sharing phase succeeds, any authorized subset of parties should be able
to efficiently complete the reconstruction phase, and all honest parties doing so
must recover the same secret. Moreover, if the dealer is honest, the sharing phase
must always succeed, and everyone should recover the value originally shared by
the dealer. In our context, we consider only the threshold access structure, where
a subset of parties can recover the secret if and only if it contains at least 1/3
of the parties. The formulation of A-VSS as an ideal functionality, Fa-vss, can be
found in the full version [33].

A-VSS, being a single-sender primitive, also requires the participation of
at least n − t parties to be realizable. We adopt a similar approach to Fa-cast

in modeling this requirement. Parties other than the dealer demonstrate their
participation by sending (dummy) input messages and issuing fetch requests,
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ensuring that the minimum participation threshold is met for the A-VSS protocol
to proceed. Also, it is important to note that Fa-vss only initiates a session once
it receives the first input from the dealer. Any participation efforts made before
that point are not taken into account.

The A-VSS protocol given by Canetti and Rabin in [24] can be used to UC-
realize Fa-vss with statistical security for t < n/3. This result is formally stated
in the following proposition. It is worth noting that perfectly secure A-VSS is
impossible for t ≥ n/4 [3,14].

Proposition 2. For any finite field F (with |F| > n), FF

a-vss can be UC-realized
with statistical security, in constant rounds and in the Fa-smt-hybrid model
against an adaptive and malicious t-adversary, provided t < n

3 .

Asynchronous Byzantine Agreement (A-BA). We use A-BA for both binary
and multi-valued domains V in our revised concurrent A-BA protocol. In this
primitive, each party Pi has an input vi ∈ V . The goal is for all parties to
output the same value, such that if n − 2t input values are the same, that value
is chosen as the output; otherwise, the adversary determines the output. We
initially consider corruption-unfair A-BA, where the adversary learns the input
of each party the moment it is provided. Corruption fairness, as introduced in [59]
and later coined in [34], essentially ensures that the (adaptive) adversary cannot
corrupt a party and subsequently influence the input value of that party based
on the original input value. It is worth noting that corruption-fair A-BA can
easily be defined by avoiding leaking honest parties’ inputs before the output is
generated. We formulate A-BA as the ideal functionality Fa-ba, presented in the
full version [33].

The functionality Fa-ba encompasses an additional property known as “non-
intrusion” validity (see Sect. 1.2). In a nutshell, this property guarantees that no
malicious value can be present in the output. In other words, the output must
be either an honest party’s input or a default value ⊥. This stronger notion of
A-BA is vital for the security of our concurrent A-BA protocol.

The expected-constant-round binary A-BA protocol of Canetti and
Rabin [24] can be used to UC-realize FV

a-ba with statistical security for binary
domains (|V | = 2) and t < n/3. However, our concurrent A-BA protocol (and
the one in [12]) require multi-valued A-BA, where |V | is not constant (in fact,
exponential), in expected-constant rounds. Ben-Or and El-Yaniv [12] claim that
the constant-round reduction of multi-valued to binary BA proposed by Turpin
and Coan [79], which works in the synchronous setting for t < n/3, can be
extended to work in the asynchronous setting by using A-Cast for message dis-
tribution. However, in the full version of the paper [33], we demonstrate that
the asynchronous version of this reduction works if and only if t < n/6, even
when using A-Cast and considering a static adversary. Some additional modifi-
cations can improve this bound to t < n/5, but achieving optimal resiliency is
not straightforward.

More recently, Mostéfaoui and Raynal [70] presented a constant-round trans-
formation from binary to multi-valued A-BA that works for t < n/3. Further-
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more, the resulting protocol satisfies the non-intrusion validity property men-
tioned above. By applying this transformation to the binary A-BA protocol of
Canetti and Rabin [24], we can UC-realize FV

a-ba for arbitrary V with statistical
security:

Proposition 3. For any domain V , FV
a-ba can be UC-realized with statistical

security in the Fa-smt-hybrid model, in expected-constant rounds and against an
adaptive and malicious t-adversary, provided t < n

3 .

4 Asynchronous Oblivious Common Coin

As highlighted in the Introduction, none of the existing OCC proposals is
simultaneously information-theoretic, asynchronous, multi-valued, and optimally
resilient. Furthermore, no straightforward adaptation of the existing schemes
yields an OCC with all of these properties. In this section, we propose our own
OCC protocol that aims to satisfy all of these properties. Recall that we are
primarily interested in the case where the output domain has size equal to the
number of parties; this can be used for asynchronous OLE (defined in Sect. 5),
which sets the stage for concurrent A-BA in expected-constant rounds.

At a high level, our protocol is based on the binary OCC of Feldman [41] and
Canetti and Rabin [24], and incorporates a novel combinatorial technique derived
from our observation stated in Lemma 1 below. By leveraging this lemma, we
unveil interesting and powerful properties of the local views formed during the
protocol’s execution, leading to enhanced extraction capabilities. In fact, instead
of extracting a single bit, by choosing appropriate parameters we can extract
random values from any arbitrary domain still with a constant probability.

A-OCC Ideal Functionality. An oblivious common coin is parameterized by a
set V and some constant probability p. Each party starts with an empty input
λ, and every party Pi outputs a value from V where with probability at least
p > 0 every party outputs the same uniformly random value x ∈ V and with
probability 1 − p the adversary chooses each party’s output.11

The above goal can be translated to a UC functionality as follows: Initially,
the ideal functionality samples a “fairness bit” b ← Bernoulli(p) and a random
value y

R←− V . Then, if b = 1 or no meaningful input is received from the
adversary, it outputs y to every party. However, if b = 0 and meaningful input
is received from the adversary, it assigns each party the value provided by the
adversary. The functionality also informs the adversary about the fairness bit and
the random value once they have been sampled. Asynchronous aspects, including
delayed output release and participation, are handled as in Sect. 3. The resulting
functionality is shown in Fig. 1.

11 It is important to note that the term “oblivious” in this context refers to the fact
that parties do not learn whether an agreement on a random coin value has been
achieved or not, while the adversary does.
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Functionality FV,p
a-occ

The functionality is parameterized by a set V of possible outcomes and a fairness
probability p, and it proceeds as follows. At the first activation, verify that sid =
(P, sid′), where P is a player set of size n. For each Pi ∈ P, initialize yi to a default
value ⊥, participatedi ..= 0, and delay values Dinput

i = Doutput
i

..= 1. Also initialize
a, y, and b to ⊥, and t ..= �n

3
� − 1.

Upon receiving (delay, sid, Pi, type, D) from the adversary for Pi ∈ P, type ∈
{input, output}, and D ∈ Z represented in unary notation, update Dtype

i
..=

max(1, Dtype
i +D) and send (delay-set, sid) to the adversary.

Upon receiving (input, sid) from Pi ∈ P (or the adversary on behalf of cor-
rupted Pi), run the Input Submission Procedure and send (leakage, sid, Pi)
and any other messages set by the Input Release Procedure to the adversary.
Upon receiving (replace, sid, v) from the adversary, record a ..= v.
Upon receiving (fetch, sid) from Pi ∈ P (or the adversary on behalf of cor-
rupted Pi) run the Input Submission and Output Release Procedures, and
send (fetched, sid, Pi) to the adversary and any messages set by the Output
Release Procedure to Pi.

Input Submission Procedure: If participatedi = 0 and (input, sid) was already
received from Pi, then do:

1. Update Dinput
i

..= Dinput
i − 1.

2. If Dinput
i = 0 then set participatedi

..= 1.
3. If b = ⊥ then sample a “fairness bit” b ← Bernoulli(p) and a random value

y
R←− V , and set (reveal, sid, b, y) to be sent to the adversary.

Output Release Procedure: If
∑n

j=1 participatedj ≥ n − t then do:

1. Update Doutput
i

..= Doutput
i − 1.

2. If Doutput
i = 0, then do the following. If yi = ⊥:

• If b = 1 or a cannot be parsed as (a1, . . . , an) ∈ V n, set yk ..= y for each
Pk ∈ P.

• If b = 0 and a can be parsed as (a1, . . . , an) ∈ V n, set yk ..= ak for each
Pk ∈ P.

Additionally, set (output, sid, yi) to be sent to Pi.

Fig. 1. The asynchronous OCC functionality.

The A-OCC Protocol. We proceed to present our asynchronous and multi-valued
OCC protocol. We begin by discussing all the essential building blocks employed
in our protocol. Subsequently, we provide a high-level overview of the protocol,
highlighting its key ideas. A detailed description appears in the full version [33].

The basic building blocks of our A-OCC protocol are A-VSS and A-Cast. A-
VSS enables parties to contribute by privately providing their local randomness
and only revealing this randomness when the contributions to the output are
determined. Thus, A-VSS ensures the secrecy and verifiability of the shared
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secrets in an asynchronous setting. The A-VSS primitive is formally modeled as
the ideal functionality Fa-vss, described in Sect. 3.2. On the other hand, A-Cast
facilitates communication among parties by providing stronger guarantees than
simple message distribution. This is especially crucial in asynchronous settings
where challenges such as low message dispersion can occur. A-Cast helps in
overcoming these challenges and ensures reliable message dissemination among
the parties. We use the ideal functionality Fa-cast, described in Sect. 3.2, to model
this primitive.

As previously mentioned, our multi-valued protocol is built upon existing
binary A-OCC constructions [24,41] and introduces a novel combinatorial tech-
nique for extracting values from arbitrary domains. In both the binary protocol
and our proposed protocol, each party secret-shares n random elements from a
field. It can be observed that at some point during the protocol execution, a vec-
tor of length n consisting of random elements from the same field is established
(with up to t missing values due to asynchrony). For each coordinate of this vec-
tor, random elements shared by t+1 parties are utilized to prevent the adversary,
controlling up to t parties, from biasing any specific coordinate. Subsequently,
each party starts reconstructing secrets shared by other parties to form the same
vector locally. In the asynchronous setting, due to the low dispersion of messages,
not all coordinates can be reconstructed by honest parties. This can result in dif-
ferent parties reconstructing different subsets of coordinates. However, by using
mechanisms to improve message dispersion, as originally demonstrated by Feld-
man [41], it has been proven that when t ≤ n/3, while the local vectors of honest
parties may have up to t missing coordinates, they have an overlap of size at
least n/3.12 This is significant because without such mechanisms, and allowing
for t missing components when n = 3t + 1, the overlap in the local vectors of
just four parties could be empty.

Traditionally, existing protocols extract a single bit from the local views of
the random vector by instructing parties to take all existing coordinates modulo
n and output 0 if any coordinate is 0 or output 1 otherwise. In contrast, our
protocol represents a significant improvement by going beyond the extraction of
a single bit from the local views of the random vector. This enhanced randomness
extraction is through a combinatorial observation regarding vectors of random
values, as formulated in Lemma 1. This observation, allows the parties to agree
non-interactively on certain coordinates of the random vector with a constant
probability, while also ensuring that these agreed-upon coordinates lie within
their overlap section. The minimum such coordinate is then used to select a
common output value from the vector.

Another important observation regarding existing binary A-OCC protocols
is the lack of a proper termination mechanism. This poses significant challenges
as network delays can cause parties to operate out of sync. In such cases, some

12 Feldman calculated the size of the overlap, denoted as x, based on the number of
participants n and the maximum number of corruptions t. The general relation is
x ≥ n − t − t2

n−2t
, which yields x ≥ n/3 and x ≥ 5n/8 when t ≤ n/3 and t ≤ n/4,

respectively. This argument was later used in [24] to achieve optimal resiliency.
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parties may receive the output before completing their role in the execution,
and if they stop, others may not be able to generate the output at all. This
directly affects the simulator’s ability to accurately simulate the protocol, espe-
cially in managing input and output delays in the ideal functionality. This is
mainly because, unlike the protocol, the ideal functionality ensures that once a
party receives the output, sufficient participation has occurred, and any other
party, regardless of others’ participation, can fetch the output if sufficiently acti-
vated. One potential solution could be invoking A-BA on the output at the end;
however, this would create a circular dependency since A-OCC itself is used
in A-BA. Instead, we choose to adopt a simpler approach inspired by Bracha’s
termination mechanism. This approach resolves the participation issue without
causing deadlocks and ensures agreement once all parties initiate the procedure
with the same value. The formal description of our asynchronous OCC protocol
Πa-occ appears in the full version [33].

Having described our A-OCC protocol, we proceed to present the formal secu-
rity statement that demonstrates how the protocol UC-realizes Fa-occ. However,
we first state a combinatorial observation regarding vectors of random values
that facilitates the security proof. We formulate this observation separately in
the following lemma, as it may be of independent interest.

Lemma 1. Let V be a vector of n values chosen independently and uniformly
at random from a set S of size N ∈ Θ(n2), and let α be a constant satisfying
0 < α ≤ 1. Then for any subset of indices I ⊆ [n] such that |I| ≥ αn, with
constant probability p there is at least one repeated value in V ; moreover, all of
the repeated values are constrained to the indices in I.

With the groundwork laid out, we now state the security of protocol Πa-occ:

Theorem 1. There exists a probability p ∈ Θ(1) such that for any integer
domain V , protocol ΠV

a-occ UC-realizes FV,p
a-occ with perfect security in the (Fa-cast,

FF

a-vss)-hybrid model where F is the smallest prime field of size at least lcm(|V |,
n2), in constant rounds and in the presence of an adaptive and malicious t-
adversary, provided t < n

3 .

5 Concurrent A-BA in Expected-Constant Rounds

In this section, we dive into the important problem of achieving concurrent A-
BA in an expected-constant number of rounds. As discussed in the Introduction,
Ben-Or and El-Yaniv [12] highlighted the potential issue of running multiple
executions of a probabilistic-termination protocol in parallel, which could lead
to an increase in the expected number of rounds required for all executions
to terminate. The concurrent A-BA protocol proposed in [12] relies on A-OLE
and multi-valued A-BA, which can be instantiated using our A-OCC protocol
from Sect. 4 and the extended A-BA protocol from [24,70], respectively. However,
during our analysis, we discovered certain issues in their analysis that cast doubt
on the expected-constant round complexity of one of their main building blocks
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and, consequently, their concurrent A-BA protocol. For a more comprehensive
presentation of these issues, see the full version of the paper [33]. It is unclear
how to address these issues without modifying the protocol itself.

To rectify these concerns, we modify the underlying message distribution
mechanism and incorporate an additional layer of message validation. These
changes not only resolve the identified issues, but also significantly simplify the
protocol. It is worth emphasizing that our revised concurrent A-BA protocol
achieves a level of simplicity that is comparable to the synchronous version pro-
posed in [12]. This accomplishment is significant because when designing an
asynchronous counterpart to a synchronous protocol, achieving a level of sim-
plicity on par with the synchronous version is often considered the ideal outcome.
In the following, we describe an ideal functionality for concurrent A-BA, our pro-
tocol, and its required building blocks, and provide a security statement.

Concurrent A-BA Ideal Functionality. Concurrent A-BA, as the name suggests,
refers to a primitive that enables parties to solve N instances of A-BA concur-
rently. We are primarily interested in the case N = n, corresponding to the
emulation of n ideal A-BA primitives, commonly used in asynchronous MPC
protocols to form the core set and overcome low message dispersion. However,
in our study, we consider a more general version that allows for a broader range
of values for N . In this setting, each party Pi initiates the concurrent A-BA by
providing N values, namely vi,1, . . . , vi,N . Subsequently, all parties receive the
same set of N output values, denoted as y1, . . . , yN . Each individual output value
yj is computed based on the input values v1,j , . . . , vn,j , following the prescribed
procedure outlined in the standard A-BA primitive. Specifically, if n − 2t input
values are identical, that common value is selected as the output; otherwise, the
output is determined by the adversary. We capture the task of concurrent A-BA
using the ideal functionality Fconc-a-ba, defined in the full version [33]. Since we
are able to achieve non-intrusion validity (i.e., for each instance, the correspond-
ing output must be either ⊥ or the corresponding input of an honest party), we
consider an intrusion-tolerant concurrent A-BA functionality.

Building Blocks. Our concurrent A-BA protocol relies on A-Cast as the funda-
mental communication primitive due to its enhanced guarantees compared to
basic message distribution mechanisms. The ideal functionality Fa-cast, which
models the A-Cast primitive, was described in Sect. 3.2.

As another crucial building block, our protocol incorporates asynchronous
oblivious leader election (A-OLE) as a coordination mechanism among the par-
ties. A-OLE enables parties to randomly elect a leader from among themselves.
The term “oblivious” indicates that parties are unaware of whether or not agree-
ment on a random leader has been achieved. In our concurrent A-BA protocol,
similar to the approach described in [12], there comes a point where all parties
suggest outputs, and A-OLE assists them in reaching agreement on the output
by adopting the suggestion of the elected leader. To capture the task of A-OLE,
we parameterize the A-OCC functionality Fa-occ, given in Sect. 4, by a domain
with size equal to the number of parties. This yields an ideal functionality for
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A-OLE, denoted as Fa-ole, which is defined as F [n],p
a-occ for appropriate p ∈ Θ(1).

Recall from Theorem 1 that Fa-ole can be realized using protocol Π
[n]
a-occ.

Our concurrent A-BA protocol leverages both binary and multi-valued A-BA.
Binary A-BA is employed to achieve agreement on critical decisions within the
protocol, such as whether to continue a particular iteration, or whether to ter-
minate the protocol. On the other hand, the use of multi-valued A-BA addresses
the inherent obliviousness of the A-OLE primitive by providing a means for par-
ties to reach an agreement on the output. The ideal functionality for A-BA was
described in Sect. 3.2.

As in [12], another essential component in our concurrent A-BA protocol
is truncated executions of an A-BA protocol limited to a predefined number of
iterations, consequently implying a fixed number of rounds. In the spirit of [31],
we model those executions with the ideal functionality Ftrunc-a-ba, defined in the
full version [33]. Ftrunc-a-ba is parameterized with V , p, and itr, where V denotes
the domain, p represents the termination probability in each iteration, and itr
indicates the maximum number of iterations in the execution.

This ideal functionality also encapsulates a “1-shift” property for termina-
tion, meaning that all honest parties produce the output within two consecutive
iterations. We note that the adversary has the discretion to determine which
parties discover the output first. Unlike a traditional A-BA functionality that
outputs a single value, Ftrunc-a-ba produces a vector of values that includes the
output after each iteration of the execution. Modeling the 1-shift property and
providing outputs for all iterations is crucial since our concurrent A-BA protocol
relies on those properties of truncated executions of A-BA.

It is worth mentioning that FV,p,itr
trunc-a-ba can be implemented by executing any

intrusion-tolerant A-BA protocol with the 1-shift property and a termination
probability of p in each iteration, precisely for itr iterations, and concatenating
the output of all iterations to get the final output (with λ representing iterations
without output). Canetti and Rabin’s binary A-BA protocol [24] possesses the
desired properties of intrusion tolerance and terminating with a constant proba-
bility in each iteration. However, using Bracha’s technique for termination [18] in
Canetti and Rabin’s binary A-BA protocol does not admit the 1-shift property.
The main reason is that parties may take the shortcut and use Bracha termina-
tion messages to generate the output in their very early iterations. Fortunately,
Bracha’s termination procedure is unnecessary in the truncated execution of
Canetti and Rabin’s binary A-BA protocol. This is primarily due to the fact
that all parties will naturally terminate after a fixed number of iterations. With
this adjustment, Canetti and Rabin’s binary A-BA protocol also successfully
attains the 1-shift property. Moreover, Mostéfaoui and Raynal’s multi-valued A-
BA protocol [70] offers intrusion tolerance, the 1-shift property, and terminating
with a constant probability in each iteration if the underlying binary A-BA used
in their construction also exhibits these characteristics. Thus, we can formulate
the following proposition about realizing FV,p,itr

trunc-a-ba.

Proposition 4. For some constant probability p, any domain V , and any inte-
ger itr, FV,p,itr

trunc-a-ba can be UC-realized with statistical security in the Fa-smt-hybrid
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model, in constant rounds and in the presence of an adaptive and malicious
t-adversary, provided t < n/3.

The above statement guarantees statistical security since the A-BA proto-
cols we consider rely on the A-VSS primitive, which can only be realized with
statistical security when t < n/3. In fact, by working in the Fa-vss-hybrid model,
we can achieve perfectly secure Ftrunc-a-ba. We remark that the intrusion toler-
ance of Ftrunc-a-ba is not a requirement in our concurrent A-BA protocol; however,
employing a non-intrusion-tolerant version of truncated A-BA will naturally lead
to a non-intrusion-tolerant concurrent A-BA protocol.

The New Concurrent A-BA Protocol. Our protocol builds on the core ideas
presented in [12]. In addition to instantiating the missing OLE building block
using our OCC protocol from Sect. 4, we address the issue in the analysis by
redesigning the message distribution phase. Our revised message distribution
mechanism not only resolves the issue in the proof but also provides stronger
guarantees, which in turn simplifies the final protocol design. In fact, apart
from the message distribution phase, the overall structure of our protocol closely
resembles the synchronous version of the protocol described in [12].

Before diving into the high-level description of our protocol, we highlight the
choices we made in the message distribution mechanism and discuss some alter-
native approaches that fail to meet our requirements. In the eventual-delivery
model, at least n − t parties will receive each other’s messages if they wait for a
sufficient duration, as messages from honest parties will eventually be delivered
to one another, but determining the exact waiting time required is not straight-
forward. One possible approach is to instruct parties to A-Cast the identities of
the parties from which they have received messages. After constructing a graph
with parties as vertices and adding edges between parties that have reported
message receipts from each other, we can look for a clique of size n − t; how-
ever, finding a maximum clique is known to be NP-complete and also difficult
to approximate [40].

To overcome this challenge, one possible approach is to investigate alternative
structures that offer weaker guarantees regarding message dispersion but can be
efficiently identified [10,14,22,72]. However, it is important to note that this
approach does not guarantee the precise message dispersion required for our
specific application. In our analysis, it is crucial that all honest parties receive
messages from a linear fraction of other parties. Even finding a clique of size n−t
does not guarantee this level of message dispersion, rendering this approach
unsuitable for our protocol. Thus, we adopt another approach that has been
used in prior works [24,41], and extend it by incorporating a precondition check
before the process and introducing a validation layer during the execution. These
additions enhance the guarantees, making them more suitable and effective for
our specific purpose. We proceed to explain our protocol.

Similar to the (synchronous) protocol described in [12], in our concurrent A-
BA protocol, each party initiates for every A-BA instance a batch of m executions
of the A-BA protocol (over the same inputs) for a fixed number of iterations,
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denoted as itr. If the A-BA protocol has a termination probability of at least
a constant value p in each iteration, which is the case for most existing A-BA
protocols, suitable values of m and itr can be determined so that each party
obtains at least one output value for each batch. Each party then selects an
output for each instance and forms a suggestion for the final output. The next
paragraph, which explains the mechanism for distributing suggestions among
parties, is our main modification to the protocol. Then, for the remaining part,
we can use a similar structure as the synchronous version of the protocol.

Firstly, parties initiate a binary A-BA protocol to determine a specific con-
dition that allows for choosing and validating suggested outputs later in the
execution. Based on the outcome of this binary A-BA, parties decide whether to
continue or start over. In the case of continuation, parties perform A-Cast oper-
ations to distribute their suggestions and wait to receive suggestions from other
parties. Each party only accepts an A-Cast message containing a suggested out-
put if the value is consistent with the outputs obtained from their own truncated
A-BA executions. This validation step is crucial as it ensures that even corrupted
parties provide acceptable (correct) suggestions. The validation is based on the
1-shift property of A-BA that ensures all honest parties terminate within two
consecutive iterations. Parties wait to accept A-Casts of suggested outputs from
at least n − t parties and then A-Cast the set of all these n − t suggestions
along with the identities of the corresponding senders. They continue accepting
A-Casts of suggestions and sets until they receive at least n−t sets that are fully
contained within their accepted suggestions. At this point, a sufficient number
of messages have been exchanged, and using a counting argument similar to the
one in [24,41], it can be deduced that at least n/3 parties have their suggested
outputs received by all honest parties.

After the message distribution phase described above, our protocol proceeds
similarly to the synchronous protocol presented in [12]. Specifically, parties exe-
cute OLE to elect a random leader to adopt its suggested output. Subsequently,
a multi-valued A-BA is performed on the adopted output to address the obliv-
ious nature of OLE. Finally, a binary A-BA is executed to determine whether
an agreement on the output has been reached, resulting in the termination or
restarting of the protocol. The intrusion-tolerance property of multi-valued A-
BA is crucial to make sure that the result of the agreement on the output is
not provided by a corrupted party. It is worth noting that the favorable sce-
nario occurs when the leader is among the n/3 parties whose suggested outputs
have been accepted by all honest parties. If the leader is elected randomly, this
event happens with a probability of 1/3. In this case, all parties adopt the same
output, leading to termination in the subsequent A-BA calls.

It is worth noting that the set of n/3 parties whose suggested outputs have
been accepted by all honest parties may only contain a single honest party. This
single honest party can only be elected with a probability of O(1/n) by the OLE.
However, due to the validation step in the message-distribution phase, there is no
longer a need to ensure that an honest leader is elected, as the suggested values
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from corrupted parties are considered valid outputs. Refer to the full version [33]
for a formal description of protocol Πconc-a-ba.

We now consider the security of our concurrent A-BA protocol. Before stating
the theorem, it is worth noting that the specific parameters of the hybrid model,
which combine the different ideal functionalities, are not explicitly specified in
the theorem statement. However, they can be determined from the protocol’s
parameters and are integral to the overall security guarantees of the protocol.
Now, let us state the theorem formally:

Theorem 2. For any domain V , integer N , constant 0 < p < 1, and constant
integer itr > 1, setting m ..= log 1

1−p
N , the protocol ΠV,N,m,p,itr

conc-a-ba UC-realizes

FV,N
conc-a-ba with statistical security in the (Fa-cast,Fa-ba,Ftrunc-a-ba,Fa-ole)-hybrid

model, in expected-constant rounds and in the presence of an adaptive and mali-
cious t-adversary, provided t < n/3.
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