
Searching for ELFs in the Cryptographic
Forest

Marc Fischlin(B) and Felix Rohrbach

Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
{marc.fischlin,felix.rohrbach}@cryptoplexity.de

http://www.cryptoplexity.de

Abstract. Extremely Lossy Functions (ELFs) are families of functions
that, depending on the choice during key generation, either operate in
injective mode or instead have only a polynomial image size. The choice
of the mode is indistinguishable to an outsider. ELFs were introduced
by Zhandry (Crypto 2016) and have been shown to be very useful in
replacing random oracles in a number of applications.

One open question is to determine the minimal assumption needed
to instantiate ELFs. While all constructions of ELFs depend on some
form of exponentially-secure public-key primitive, it was conjectured that
exponentially-secure secret-key primitives, such as one-way functions,
hash functions or one-way product functions, might be sufficient to build
ELFs. In this work we answer this conjecture mostly negative: We show
that no primitive, which can be derived from a random oracle (which
includes all secret-key primitives mentioned above), is enough to con-
struct even moderately lossy functions in a black-box manner. However,
we also show that (extremely) lossy functions themselves do not imply
public-key cryptography, leaving open the option to build ELFs from
some intermediate primitive between the classical categories of secret-key
and public-key cryptography. (The full version can be found at https://
eprint.iacr.org/2023/1403.)

1 Introduction

Extremely lossy functions, or short ELFs, are collections of functions that sup-
port two modes: the injective mode, in which each image has exactly one preim-
age, and the lossy mode, in which the function merely has a polynomial image
size. The mode is defined by a seed or public key pk which parameterizes the
function. The key pk itself should not reveal whether it describes the injective
mode or the lossy mode. In case the lossy mode does not result in a polynomially-
sized image, but the function compresses by at least a factor of 2, we will speak
of a (moderately) lossy function (LF).

Extremely lossy functions were introduced by Zhandry [31,32] to replace
the use of the random oracle model in some cases. The random oracle model
(ROM) [4] introduces a truly random function to which all parties have access
to. This random function turned out to be useful in modeling hash functions for
security proofs of real-world protocols. However, such a truly random function
c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14371, pp. 207–236, 2023.
https://doi.org/10.1007/978-3-031-48621-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48621-0_8&domain=pdf
http://orcid.org/0000-0003-0597-8297
http://orcid.org/0000-0001-9331-0865
https://eprint.iacr.org/2023/1403
https://eprint.iacr.org/2023/1403
https://doi.org/10.1007/978-3-031-48621-0_8

208 M. Fischlin and F. Rohrbach

clearly does not exist in reality and it has been shown that no hash function can
replace such an oracle without some protocols becoming insecure [11]. Therefore,
a long line of research aims to replace the random oracle by different modeling of
hash functions, e.g., by the notion of correlation intractability [11] or by Universal
Computational Extractors (UCEs) [3]. However, all these attempts seem to have
their own problems: Current constructions of correlation intractability require
extremely strong assumptions [10], while for UCEs, it is not quite clear which
versions are instantiable [5,9]. Extremely lossy functions, in turn, can be built
from relatively standard assumptions.

Indeed, it turns out that extremely lossy functions are useful in remov-
ing the need for a random oracle in many applications: Zhandry shows it can
be used to generically boost selective security to adaptive security in signa-
tures and identity-based encryption, construct a hash function which is output
intractable, point obfuscation in the presence of auxiliary information and many
more [31,32]. Agrikola, Couteau and Hofheinz [1] show that ELFs can be used to
construct probabilistic indistinguishability obfuscation from only polynomially-
secure indistinguishability obfuscation. In 2022, Murphy, O’Neill and Zaheri [23]
used ELFs to give full instantiations of the OAEP and Fujisaki-Okamoto trans-
forms. Recently, Brzuska et al. [8] improve on the instantiation of the Fujisaki-
Okamoto transform and instantiate the hash-then-evaluate paradigm for pseu-
dorandom functions using ELFs.

While maybe not as popular as their extreme counterpart, moderately lossy
functions have their own applications as well: Braverman, Hassidim and Kalai [7]
build leakage-resistant pseudo-entropy functions from lossy functions, and Dodis,
Vaikuntanathan and Wichs [12] use lossy functions to construct extractor-
dependent extractors with auxiliary information.

1.1 Our Contributions

One important open question for extremely lossy functions, as well as for mod-
erately lossy functions, is the minimal assumption to build them. The construc-
tions presented by Zhandry are based on the exponential security of the deci-
sional Diffie-Hellman problem, but he conjectures that public-key cryptography
should not be necessary and suggests for future work to try to construct ELFs
from exponentially-secure symmetric primitives (As Zhandry shows as well in
his work, polynomial security assumptions are unlikely to be enough for ELFs1).
Holmgren and Lombardi [17] wondered whether their definition of one-way prod-
uct functions might suffice to construct ELFs.

For moderately lossy functions, the picture is quite similar: While all current
constructions require (polynomially-secure) public-key cryptography, it is gen-
1 ELFs can be distinguished efficiently using a super-logarithmic amount of non-

determinism. It is consistent with our knowledge, however, that NP with an
super-logarithmic amount of non-determinism is solvable in polynomial time while
polynomially-secure cryptographic primitives exist. Any construction of ELFs from
polynomially-secure cryptographic primitives would therefore change our under-
standing of NP-hardness.

Searching for ELFs in the Cryptographic Forest 209

erally assumed that public-key cryptography should not be necessary for them
and that private-key assumptions should suffice (see, e.g., [28]).

In this work, we answer the questions about building (extremely) lossy func-
tions from symmetric-key primitive mostly negative: There exists no fully-black
box construction of extremely lossy functions, or even moderately lossy functions,
from a large number of primitives, including exponentially-secure one-way func-
tions, exponentially-secure collision resistant hash functions or one-way product
functions. Indeed, any primitive that exists unconditionally relative to a random
oracle is not enough. We will call this family of primitives Oraclecrypt, in refer-
ence to the famous naming convention by Impagliazzo [19], in which Minicrypt
refers to the family of primitives that can be built from one-way functions in a
black-box way.

Note that most of the previous reductions and impossibility results, such as
the renowned result about the impossibility of building key exchange protocols
from black-box one-wayness [20], are in fact already cast in the Oraclecrypt
world. We only use this term to emphasize that we also rule out primitives that
are usually not included in Minicrypt, like collision resistant hash functions [30].

On the other hand, we show that public-key primitives might not strictly be
needed to construct ELFs or moderately lossy functions. Specifically, we show
that no fully black-box construction of key agreement is possible from (mod-
erately) lossy functions, and extend this result to prevent any fully black-box
construction even from extremely lossy functions (for a slightly weaker setting,
though). This puts the primitives lossy functions and extremely lossy functions
into the intermediate area between the two classes Oraclecrypt and Public-Key
Cryptography.

(E)LFs

Oraclecrypt

Public Key Cryptography

Theorem 4

Theorem 1

Fig. 1. We show both an oracle separation between Oraclecrypt and (E)LFs as well as
(E)LFs and key agreement.

Finally, we discuss the relationship of lossy functions to hard-on-average
problems in SZK, the class of problems that have a statistical zero-knowledge

210 M. Fischlin and F. Rohrbach

proof. We see hard-on-average SZK as a promising minimal assumption to build
lossy functions from – indeed, it is already known that hard-on-average SZK
problems follow from lossy functions with sufficient lossiness. While we leave
open the question of building such a construction for future work, we give a
lower bound for hard-on-average SZK problems that might be of independent
interest, showing that hard-on-average SZK problems cannot be built from any
Oraclecrypt primitive in a fully black-box way. While this is already known for
some primitives in Oraclecrypt [6], these results do not generalize to all Oracle-
crypt primitives as our proof does.

Note that all our impossibility results only rule out black-box constructions,
leaving the possibility of future non-black-box constructions. However, while
there is a growing number of non-black-box constructions in the area of cryp-
tography, the overwhelming majority of constructions are still black-box con-
structions. Further, as all mentioned primitives like exponentially-secure one-way
functions, extremely lossy functions or key agreement might exist uncondition-
ally, ruling out black-box constructions is the best we can hope for to show that
a construction probably does not exist.

1.2 Our Techniques

Our separation of Oraclecrypt primitives and extremely/moderately lossy func-
tions is based on the famous oracle separation by Impagliazzo and Rudich [20]: We
first introduce a strong oracle that makes sure no complexity-based cryptography
exists unconditionally, and then add an independent random oracle that allows
for specific cryptographic primitives (specifically, all Oraclecrypt primitives) to
exist again. We then show that relative to these oracles, (extremely) lossy func-
tions do not exist by constructing a distinguisher between the injective and lossy
mode for any candidate construction. A key ingredient here is that we can identify
the heavy queries in a lossy function with high probability with just polynomially
many queries to the random oracle, a common technique used for example in the
work by Bitansky and Degwekar [6]. Finally, we use the two-oracle technique by
Hsiao and Reyzin [18] to fix a set of oracles. We note that our proof technique is
similar to a technique in the work by Pietrzak, Rosen and Segev to show that the
lossiness of lossy functions cannot be increased well in a black-box way [27]. Our
separation result for SZK, showing that primitives in Oraclecrypt may not suffice
to derive hard problems in SZK, follows a similar line of reasoning.

Our separation between lossy functions and key agreement is once more based
on the work by Impagliazzo and Rudich [20], but this time using their specific
result for key agreement protocols. Similar to the techniques in [14], we try
to compile out the lossy function to be then able to apply the Impagliazzo-
Rudich adversary: We first show that one can build (extremely) lossy function
oracles relative to a random oracle (where the lossy function itself is efficiently
computable via oracle calls, but internally makes an exponentially number of
random oracle evaluations). The heart of our separation is then a simulation
lemma showing that any efficient game relative to our (extremely) lossy function
oracle can be simulated efficiently and sufficiently close given only access to a

Searching for ELFs in the Cryptographic Forest 211

random oracle. Here, sufficiently close means an inverse polynomial gap between
the two cases but where the polynomial can be set arbitrarily. Given this we
can apply the key agreement separation result of Impagliazzo and Rudich [20],
with a careful argument that the simulation gap does not infringe with their
separation.

1.3 Related Work

Lossy Trapdoor Functions. Lossy trapdoor functions were defined by Peikert and
Waters in [25,26] who exclusively considered such functions to have a trapdoor
in injective mode. Whenever we talk about lossy functions in this work, we refer
to the moderate version of extremely lossy functions which does not necessarily
have a trapdoor. The term extremely lossy function (ELFs) is used as before
to capture strongly compressing lossy functions, once more without requiring a
trapdoor for the injective case.

Targeted Lossy Functions. Targeted lossy functions were introduced by Quach,
Waters and Wichs [28] and are a relaxed version of lossy functions in which the
lossiness only applies to a small set of specified inputs. The motivation of the
authors is the lack of progress in creating lossy functions from other assumptions
than public-key cryptography. Targeted lossy functions, however, can be built
from Minicrypt assumptions, and, as the authors show, already suffices for many
applications, such as construct extractor-dependent extractors with auxiliary
information and pseudo-entropy functions. Our work very much supports this
line of research, as it shows that any further progress in creating lossy functions
from Minicrypt/Oraclecrypt assumptions is unlikely (barring some construction
using non-black-box techniques) and underlines the need of such a relaxation for
lossy functions, if one wants to build them from Minicrypt assumptions.

Amplification of Lossy Functions. Pietrzak, Rosen and Segev [27] show that it
is impossible to improve the relative lossiness of a lossy function in a black-box
way by more than a logarithmic amount. This translates into another obstacle
in building ELFs, even when having access to a moderately lossy function. Note
that this result strengthens our result, as we show that even moderately lossy
functions cannot be built from anything in Oraclecrypt.

2 Preliminaries

This is a shortened version of the preliminaries, omitting some standard defini-
tions. The full version [13] of the paper contains the complete preliminaries.

2.1 Lossy Functions

A lossy function can be either injective or compressing, depending on the mode
the public key pk has been generated with. The desired mode (inj or loss) is passed

212 M. Fischlin and F. Rohrbach

as argument to a (randomized) key generating algorithm Gen, together with the
security parameter 1λ. We sometimes write pkinj or pkloss to emphasize that the
public key has been generated in either mode, and also Geninj(·) = Gen(·, inj) as
well as Genloss(·) = Gen(·, loss) to explicitly refer to key generation in injective
and lossy mode, respectively. The type of key is indistinguishable to outsiders.
This holds even though the adversary can evaluate the function via deterministic
algorithm Eval under this key, taking 1λ, a key pk and a value x of input length
in(λ) as input, and returning an image fpk(x) of an implicitly defined function
f . We usually assume that 1λ is included in pk and thus omit 1λ for Eval’s input.

In the literature, one can find two slightly different definitions of lossy func-
tion. One, which we call the strict variant, requires that for any key generated in
injective or lossy mode, the corresponding function is perfectly injective or lossy.
In the non-strict variant this only has to hold with overwhelming probability
over the choice of the key pk. We define both variants together:

Definition 1 (Lossy Functions). An ω-lossy function consists of two efficient
algorithms (Gen,Eval) of which Gen is probabilistic and Eval is deterministic and
it holds that:

(a) For pkinj ←$Gen(1λ, inj) the function Eval(pkinj, ·) : {0, 1}in(λ) → {0, 1}∗ is
injective with overwhelming probability over the choice of pkinj.

(b) For pkloss ←$Gen(1λ, loss), the function Eval(pkloss, ·) : {0, 1}in(λ) → {0, 1}∗

is ω-compressing i.e.,
∣
∣{Eval(pkloss, {0, 1}in(λ))}

∣
∣ ≤ 2in(λ)−ω, with over-

whelming probability over the choice of pkloss.
(c) The random variables Geninj and Genloss are computationally indistinguish-

able.

We call the function strict if properties (a) and (b) hold with probability 1.

Extremely lossy functions need a more fine-grained approach where the key
generation algorithm takes an integer r between 1 and 2in(λ) instead of inj or loss.
This integer determines the image size, with r = 2in(λ) asking for an injective
function. As we want to have functions with a sufficiently high lossiness that
the image size is polynomial, say, p(λ), we cannot allow for any polynomial
adversary. This is so because an adversary making p(λ) + 1 many random (but
distinct) queries to the evaluating function will find a collision in case that pk
was lossy, while no collision will be found for an injective key. Instead, we define
the minimal r such that Gen(1λ, 2λ) and Gen(1λ, r) are indistinguishable based
on the runtime and desired advantage of the adversary:

Definition 2 (Extremely Lossy Function). An extremely lossy function
consists of two efficient algorithms (Gen,Eval) of which Gen is probabilistic and
Eval is deterministic and it holds that:

(a) For r = 2in(λ) and pk ←$Gen(1λ, r) the function Eval(pk, ·) : {0, 1}in(λ) →
{0, 1}∗ is injective with overwhelming probability.

(b) For r < 2in(λ) and pk ←$Gen(1λ, r) the function Eval(pk, ·) : {0, 1}in(λ) →
{0, 1}∗ has an image size of at most r with overwhelming probability.

Searching for ELFs in the Cryptographic Forest 213

(c) For any polynomials p and d there exists a polynomial q such that for any
adversary A with a runtime bounded by p(λ) and any r ∈ [q(λ), 2in(λ)],
algorithm A distinguishes Gen(1λ, 2in(λ)) from Gen(1λ, r) with advantage at
most 1

d(λ) .

Note that extremely lossy functions do indeed imply the definition of (mod-
erately) lossy functions (as long as the lossiness-parameter ω still leaves an
exponential-sized image size in the lossy mode):

Lemma 1. Let (Gen,Eval) be an extremely lossy function. Then (Gen,Eval) is
also a (moderately) lossy function with lossiness parameter ω = 0.9λ.

The proof for this lemma can be found in the full version [13].

2.2 Oraclecrypt

In his seminal work [19], Impagliazzo introduced five possible worlds we might be
living in, including two in which computational cryptography exists: Minicrypt,
in which one-way functions exist, but public-key cryptography does not, and
Cryptomania, in which public-key cryptography exists as well. In reference to this
classification, cryptographic primitives that can be built from one-way functions
in a black-box way are often called Minicrypt primitives.

In this work, we are interested in the set of all primitives that exist relative
to a truly random function. This of course includes all Minicrypt primitives, as
one-way functions exist relative to a truly random function (with high proba-
bility), but it also includes a number of other primitives, like collision-resistant
hash functions and exponentially-secure one-way functions, for which we don’t
know that they exist relative to a one-way function, or even have a black-box
impossibility result. In reference to the set of Minicrypt primitives, we will call
all primitives existing relative to a truly random function Oraclecrypt primitives.

Definition 3 (Oraclecrypt). We say that a cryptographic primitive is an Ora-
clecrypt primitive, if there exists an implementation relative to truly random
function oracle (except for a measure zero of random oracles).

We will now show that by this definition, indeed, many symmetric primitives
are Oraclecrypt primitives:

Lemma 2. The following primitives are Oraclecrypt primitives:

– Exponentially-secure one-way functions,
– Exponentially-secure collision resistant hash functions,
– One-way product functions.

We moved the proof for this lemma to the full version [13].

214 M. Fischlin and F. Rohrbach

3 On the Impossibility of Building (E)LFs in Oraclecrypt

In this chapter, we will show that we cannot build lossy functions from a num-
ber of symmetric primitives, including (exponentially-secure) one-way functions,
collision-resistant hash functions and one-way product functions, in a black-box
way. Indeed, we will show that any primitive in Oraclecrypt is not enough to
build lossy functions. As extremely lossy functions imply (moderately) lossy
functions, this result applies to them as well.

Note that for exponentially-secure one-way functions, this was already known
for lossy functions that are sufficiently lossy: Lossy functions with sufficient
lossiness imply collision-resistant hash functions, and Simon’s result [30] sep-
arates these from (exponentially-secure) one-way functions. However, this does
not apply for lossy functions with e.g. only a constant number of bits of lossiness.

Theorem 1. There exists no fully black-box construction of lossy functions from
any Oraclecrypt primitive, including exponentially-secure one-way functions, col-
lision resistant hash functions, and one-way product functions.

Our proof for this Theorem follows a proof idea by Pietrzak, Rosen and
Segev [27], which they used to show that lossy functions cannot be amplified
well, i.e., one cannot build a lossy function which is very compressing in the
lossy mode from a lossy function that is only slightly compressing in the lossy
mode. Conceptually, we show an oracle separation between lossy functions and
Oraclecrypt: For this, we will start by introducing two oracles, a random oracle
and a modified PSPACE oracle. We will then, for a candidate construction of a
lossy function based on the random oracle and a public key pk, approximate the
heavy queries asked by Eval(pk, ·) to the random oracle. Next, we show that this
approximation of the set of heavy queries is actually enough for us approximating
the image size of Eval(pk, ·) (using our modified PSPACE oracle) and therefore
gives an efficient way to distinguish lossy keys from injective keys. Finally, we
have to fix a set of oracles (instead of arguing with a distribution of oracles) and
then use the two-oracle technique [18] to show the theorem. Due to the use of
the two-oracle techique, we only get an impossibility result for fully black-box
constructions (see [18] and [2] for a discussion of different types of black-box
constructions).

3.1 Introducing the Oracles

A common oracle to use in an oracle separation in cryptography is the PSPACE
oracle, as relative to this oracle, all non-information theoretic cryptography is
broken. As we do not know which (or whether any) cryptographic primitives
exist unconditionally, this is a good way to level the playing field. However,
in our case, PSPACE is not quite enough. In our proof, we want to calculate
the image size of a function relative to a (newly chosen) random oracle. It is
not possible to simulate this oracle by lazy-sampling, though, as to calculate
the image size of a function, we might have to save an exponentially large set

Searching for ELFs in the Cryptographic Forest 215

of queries, which is not possible in PSPACE. Therefore, we give the PSPACE
oracle access to its own random oracle O′ : {0, 1}λ → {0, 1}λ and will give every
adversary access to PSPACEO′

.
The second oracle is a random oracle O : {0, 1}λ → {0, 1}λ. Now, we

know that a number of primitives exist relative to a random function, including
exponentially-secure one-way functions, collision-resistant hash functions and
even more complicated primitives like one-way product functions. Further, they
still exist if we give the adversary access to PSPACEO′

, too, as O′ is independent
from O and PSPACEO′

does not have direct access to O.
We will now show that every candidate construction of a lossy function with

access to O can be broken by an adversary AO,PSPACEO′
. Note that we do not

give the construction access to PSPACEO′
—this is necessary, as O′ should look

like a randomly sampled oracle to the construction. However, giving the construc-
tion access to PSPACEO′

would enable the construction to behave differently
for this specific oracle O′. Not giving the construction access to the oracle is fine,
however, as we are using the two-oracle technique.

Our proof for Theorem 1 will now work in two steps. First, we will show that
with overwhelming probability over independently sampled O and O′, no lossy
functions exist relative to O and PSPACEO′

. However, for an oracle separation,
we need one fixed oracle. Therefore, as a second step (Sect. 3.4), we will use
standard techniques to select one set of oracles relative to which any of our
Oraclecrypt primitives exist, but lossy functions do not.

For the first step, we will now define how our definition of lossy functions
with access to both oracles looks like:

Definition 4 (Lossy functions with Oracle Access). A family of functions
EvalO(pk, ·) : {0, 1}in(λ) → {0, 1}∗ with public key pk and access to the oracles O
is called ω-lossy if there exist two PPT algorithms Geninj and Genloss such that
for all λ ∈ N,

(a) For all pk in [GenO
inj(1

λ)] ∪ [GenO
loss(1

λ)], EvalO(pk, ·) is computable in poly-
nomial time in λ,

(b) For pk ←$GenO
inj(1

λ), EvalO(pk, ·) is injective with overwhelming probability
(over the choice of pk as well as the random oracle O),

(c) For pk ←$GenO
loss(1

λ), EvalO(pk, ·) is ω-compressing with overwhelming prob-
ability (over the choice of pk as well as the random oracle O)

(d) The random variables GenO
inj and GenO

loss are computationally indistinguish-

able for any polynomial-time adversary AO,PSPACEO′
with access to both O

and PSPACEO′
.

3.2 Approximating the Set of Heavy Queries

In the next two subsections, we will construct an adversary AO,PSPACEO′
against

lossy functions with access to the random oracle O as described in Definition 4.

216 M. Fischlin and F. Rohrbach

Let (GenO,EvalO) be some candidate implementation of a lossy function rel-
ative to the oracle O. Further, let pk ← GenO

? be some public key generated by
either Geninj or Genloss. Looking at the queries asked by the lossy function to
O, we can divide them into two parts: The queries asked during the generation
of the key pk, and the queries asked during the execution of EvalO(pk, ·). We
will denote the queries asked during the generation of pk by the set QG. As the
generation algorithm has to be efficient, QG has polynomial size. Let kG be the
maximal number of queries asked by any of the two generators. Further, denote
by kf the maximum number of queries of EvalO(pk, x) for any pk and x—again,
kf is polynomial. Finally, let k = max {kG, kf}.

The set of all queries done by Eval(pk,)̇ for a fixed key pk might be of expo-
nential size, as the function might ask different queries for each input x. However,
we are able to shrink the size of the relevant subset significantly, if we concen-
trate on heavy queries—queries that appear for a significant fraction of all inputs
x:

Definition 5 (Heavy Queries). Let k be the maximum number of O-queries
made by the generator GenO

? , or the maximum number of queries of Eval(pk, ·)
over all inputs x ∈ {0, 1}in(λ), whichever is higher. Fix some key pk and a
random oracle O. We call a query q to O heavy if, for at least a 1

10k -fraction of
x ∈ {0, 1}in(λ), the evaluation Eval(pk, x) queries O about q at some point. We
denote by QH the set of all heavy queries (for pk,O).

The set of heavy queries is polynomial, as EvalO(pk, ·) only queries the oracle
a polynomial number of times and each heavy query has to appear in a poly-
nomial fraction of all x. Further, we will show that the adversary AO,PSPACEO′

is able to approximate the set of heavy queries, and that this approximation is
actually enough to decide whether pk was generated in injective or in lossy mode.
We will start with a few key observations that help us prove this statement.

The first one is that the generator, as it is an efficiently-computable function,
will only query O at polynomially-many positions, and these polynomially-many
queries already define whether the function is injective or lossy:

Observation 1. Let QG denote the queries by the generator. For a random
pk ← GenO

inj generated in injective mode and a random O′ that is consistent with
QG, the image size of EvalO

′
(pk, ·) is 2λ (except with a negligible probability over

the choice of pk and O′). Similarly, for a random pk ← GenO
loss generated in lossy

mode and a random O′ that is consistent with QG, the image size of EvalO
′
(pk, ·)

is at most 2λ−1 (except with a negligible probability over the choice of pk and
O′).

This follows directly from the definition: As GenO
? has no information about O

except the queries QG, properties (2) and (3) of Definition 1 have to hold for
every random oracle that is consistent with O on QG. We will use this multiple
times in the proof to argue that queries to O that are not in QG are, essentially,
useless randomness for the construction, as the construction has to work with
almost any possible answer returned by these queries.

Searching for ELFs in the Cryptographic Forest 217

An adversary is probably very much interested in learning the queries QG.
There is no way to capture them in general, though. Here, we need our second
key observation. Lossiness is very much a global property: to switch a function
from lossy to injective, at least half of all inputs x to EvalO(pk, x) must produce a
different result, and vice versa. However, as we learned from the first observation,
whether EvalO(pk, ·) is lossy or injective, depends just on QG. Therefore, some
queries in QG must be used over and over again for different inputs x—and will
therefore appear in the heavy set QH . Further, due to the heaviness of these
queries, the adversary is indeed able to learn them!

Our proof works alongside these two observations: First, we show in Lemma 3
that for any candidate lossy function, an adversary is able to compute a set
Q̂H of the interesting heavy queries. Afterwards, we show in Lemma 5 that we
can use Q̂H to decide whether EvalO(pk, ·) is lossy or injective, breaking the
indistinguishability property of the lossy function.

Lemma 3. Let EvalO(pk, ·) be a (non-strict) lossy function and pk ← GenO
? (1

λ)
for oracle O. Then we can compute in probabilistic polynomial-time (in λ) a set
Q̂H which contains all heavy queries of EvalO(pk, ·) for pk,O with overwhelming
probability.

Proof. To find the heavy queries we will execute EvalO(pk, x) for t random inputs
x and record all queries to O in Q̂H . We will now argue that, with high proba-
bility, Q̂H contains all heavy queries.

First, recall that a query is heavy if it appears for at least an ε-fraction of
inputs to EvalO(pk, ·) for ε = 1

10k . Therefore, the probability for any specific
heavy query qheavy to not appear in Q̂H after the t evaluations can be bounded
by

Pr
[

qheavy /∈ Q̂H

]

= (1 − ε)t ≤ 2−εt.

Furthermore, there exist at most k
ε heavy queries, because each heavy query

accounts for at least ε·2in(λ) of the at most k·2in(λ) possible queries of EvalO(pk, x)
when iterating over all x. Therefore, the probability that any heavy query qheavy
is not included in Q̂H is given by

Pr
[

∃qheavy /∈ Q̂H

]

≤ k

ε
· 2−εt

Choosing t = 10kλ we get

Pr
[

∃qheavy /∈ Q̂H

]

≤ 10k2 · 2−λ

which is negligible. Therefore, with all but negligible probability, all heavy queries
are included in Q̂H . �	

3.3 Distinguishing Lossiness from Injectivity

We next make the transition from oracle O to our PSPACE-augmenting ora-
cle O′. According to the previous subsection, we can compute (a superset Q̂H

218 M. Fischlin and F. Rohrbach

of) the heavy queries efficiently. Then we can fix the answers of oracle O on
such frequently asked queries in Q̂H , but otherwise use the independent ora-
cle O′ instead. Denote this partly-set oracle by O′

|Q̂H
. Then the distinguisher

for injective and lossy keys, given some pk, can approximate the image size of
#im(EvalO

′
|Q̂H (pk, ·)) with the help of its PSPACEO′

oracle and thus also derives
a good approximiation for the actual oracle O. This will be done in Lemma 5.

We still have to show that the non-heavy queries do not violate the above
approach. According to the proof of Lemma 4 it suffices to look at the case that
the image sizes of oracles R := O′

|Q̂H
and for oracle R′ := O′

|Q̂H∪QG
, where we

als fix on the key generator’s non-heavy queries to values from O, cannot differ
significantly. Put differently, missing out the generator’s non-heavy queries QG

in Q̂H only slightly affects the image size of EvalO
′
|Q̂H (pk, ·), and we can proceed

with our approach to consider only heavy queries.

Lemma 4. Let pk ← GenR
? (1λ) and Qnonh

G = {q1, . . . , qk′} be the k′ generator’s
queries to R in QG when computing pk that are not heavy for pk,R. Then,
for any oracle R′ that is identical to R everywhere except for the queries in
Qnonh

G , i.e., R(q) = R′(q) for any q /∈ Qnonh
G , the image sizes of EvalR(pk, ·) and

EvalR
′
(pk, ·) differ by at most 2in(λ)

10 .

Proof. As the queries in Qnonh
G are non-heavy, every qi ∈ Qnonh

G is queried for at
most 2in(λ)

10k inputs x to EvalR(pk, ·) when evaluating the function. Therefore, any
change in the oracle R at qi ∈ Qnonh

G affects the output of EvalR(pk, ·) for at most
2in(λ)

10k inputs. Hence, when considering the oracle R′, which differs from R only
on the k′ queries from Qnonh

G , moving from R to R′ for evaluating EvalR(pk, ·)
changes the output for at most k′2in(λ)

10k inputs x. In other words, letting Δf

denote the set of all x such that EvalR(pk, x) queries some q ∈ Qnonh
G during the

evaluation, we know that

|Δf | ≤ k′2in(λ)

10k
and

EvalR(pk, x) = EvalR
′
(pk, x) for all x
∈ Δf .

We are interested in the difference of the two image sizes of EvalR(pk, ·) and
EvalR

′
(pk, ·). Each x ∈ Δf may add or subtract an image in the difference,

depending on whether the modified output EvalR
′
(pk, x) introduces a new image

or redirects the only image EvalR(pk, x) to an already existing one. Therefore,
the difference between the image sizes is at most

∣
∣
∣#im(EvalR(pk, ·)) − #im(EvalR

′
(pk, ·))

∣
∣
∣ ≤ k′2in(λ)

10k
≤ 2in(λ)

10
,

where the last inequality is due to k′ ≤ k. �	

Searching for ELFs in the Cryptographic Forest 219

Lemma 5. Given Q̂H ⊇ QH , we can decide correctly whether EvalO(pk, ·) is
lossy or injective with overwhelming probability.

Proof. As described in Sect. 3.1, we give the adversary, who has to distinguish a
lossy key from a injective key, access to PSPACEO′

, where O′ is another random
oracle sampled independently of O. This is necessary for the adversary, as we
want to calculate the image size of EvalO

′
(pk, ·) relative to a random oracle O′,

and we cannot do this in PSPACE with lazy sampling.
We will consider the following adversary A: It defines an oracle O′

|Q̂H
that is

identical to O′ for all queries q
∈ Q̂H and identical to O for all queries q ∈ Q̂H .
Then, it calculates the image size

#im(EvalO
′
|Q̂H (pk, ·)) =

∣
∣
∣{EvalO

′
|Q̂H (pk, {0, 1}in(λ))}

∣
∣
∣ .

Note that this can be done efficiently using PSPACEO′
as well as polynomially

many queries to O. If #im(EvalO
′
|Q̂H (pk, ·)) is bigger than 3

42
in(λ), A will guess

that EvalO(pk, ·) is injective, and lossy otherwise. For simplicity reasons, we will
assume from now on that pk was generated by Geninj—the case where pk was
generated by Genloss follows by a symmetric argument.

First, assume that all queries QG of the generator are included in Q̂H . In this
case, any O′ that is consistent with QH is also consistent with all the information
Geninj have about O. However, this means that by definition, EvalO(pk, ·) has
to be injective with overwhelming probability, and therefore, an adversary can
easily check whether pk was created by Geninj.

Otherwise, let q1, . . . , qk′ be a set of queries in QG which are not included
in Q̂H . With overwhelming probability, this means that q1, . . . , qk′ are all non-
heavy. We now apply Lemma 4 for oracles R := O′

|Q̂H
and R′ := O′

|Q̂H∪QG
.

These two oracles may only differ on the non-heavy queries in QG, where R
coincides with O′ and R′ coincides with O; otherwise the oracles are identical.
Lemma 4 tells us that this will change the image size by at most 2in(λ)

10 . Therefore,
with overwhelming probability, the image size calculated by the distinguisher is
bounded from below by

#im(EvalO
′
|Q̂H (pk, ·)) ≥ 2in(λ) − 2in(λ)

10
≥ 3

4
2in(λ)

and the distinguisher will therefore correctly decide that EvalO(pk, ·) is in injec-
tive mode. �	
Theorem 2. Let O and O′ be two independent random oracles. Then, with over-
whelming probability over the choice of the two random oracles, lossy functions
do not exist relative the oracles O and PSPACEO′

.

Proof. Given the key pk, our distinguisher (with oracle access to random oracle
O) against the injective and lossy mode first runs the algorithm of Lemma 3

220 M. Fischlin and F. Rohrbach

to efficiently construct a super set Q̂H of the heavy queries QH for pk,O. This
succeeds with overwhelming probability, and from now on we assume that indeed
QH ⊆ Q̂H . Then our algorithm continues by running the decision procedure of
Lemma 5 to distinguish the cases. Using the PSPACEO′

oracle, the latter can
also be carried out efficiently. �	

3.4 Fixing an Oracle

We have shown now (in Theorem 2) that no lossy function exists relative to a ran-
dom oracle with overwhelming probability. However, to prove our main theorem,
we have to show that there exists one fixed oracle relative to which one-way func-
tions (or collision-resistant hash functions, or one-way product functions) exist,
but lossy functions do not.

In Lemma 2, we have already shown that (exponentially-secure) one-way
functions, collision-resistant hash functions and one-way product functions exist
relative to a random oracle with high probability. In the next lemma, we will
show that there exists a fixed oracle relative to which exponentially-secure one-
way functions exist, but lossy functions do not. The proofs for existence of oracles
relative to which exponentially-secure collision-resistant hash functions or one-
way product functions, but no lossy functions exist follow similarly.

Lemma 6. There exists a fixed set of oracles O, PSPACEO′
such that relative

to these oracles, one-way functions using O exist, but no construction of lossy
functions from O exists.

Now, our main theorem of this section directly follows from this lemma (and
its variants for the other primitives):

Theorem 1 (restated). There exists no fully black-box construction of lossy
functions from any Oraclecrypt primitive, including exponentially-secure one-
way functions, collision resistant hash functions, and one-way product functions.

The proof of Lemma 6 and Theorem 1 follow from standard techniques for
fixing oracles and can be found in the full version [13].

4 On the Impossibility of Building Key Agreement
Protocols from (Extremely) Lossy Functions

In the previous section we showed that lossy functions cannot be built from many
symmetric primitives in a black-box way. This raises the question if lossy func-
tions and extremely lossy functions might be inherent asymmetric primitives.
In this section we provide evidence to the contrary, showing that key agreement
cannot be built from lossy functions in a black-box way. For this, we adapt the
proof by Impagliazzo and Rudich [20] showing that key agreement cannot be
built from one-way functions to our setting. We extend this result to also hold
for extremely lossy functions, but in a slightly weaker setting.

Searching for ELFs in the Cryptographic Forest 221

4.1 Lossy Function Oracle

We specify our lossy function oracle relative to a (random) permutation ora-
cle Π, and further sample (independently of Π) a second random permutation
Γ as integral part of our lossy function oracle. The core idea of the oracle is
to evaluate EvalΓ,Π(pkinj, x) = Π(pkinj‖ax + b) for the injective mode, but set
EvalΓ,Π(pkloss, x) = Π(pkloss‖setlsb(ax+ b)) for the lossy mode, where a, b describe
a pairwise independent hash permutation ax+ b over the field GF(2μ) with a
= 0
and setlsb sets the least significant bit to 0. Then the lossy function is clearly
two to one. The values a, b will be chosen during key generation and placed into
the public key, but we need to hide them from the adversary in order to make
the keys of the two modes indistinguishable. Else a distinguisher, given pk, could
check if EvalΓ,Π(pk, x) = EvalΓ,Π(pk, x′) for appropriately computed x
= x′ with
setlsb(ax + b) = setlsb(ax′ + b). Therefore, we will use the secret permutation Γ
to hide the values in the public key. We will denote the preimage of pk under Γ as
pre-key.

Another feature of our construction is to ensure that the adversary cannot gen-
erate a lossy key pkloss without calling GenΓ,Π in lossy mode, while allowing it to
generate keys in injective mode. We accomplish this by having a value k in our
public pre-key that is zero for lossy keys and may take any non-zero value for an
injective public key. Therefore, with overwhelming probability, any key generated
by the adversary without a call to the GenΓ,Π oracle will be an injective key.

We finally put both ideas together. For key generation we hide a, b and also
the string k by creating pk as a commitment to the values, pk ← Γ (k‖a‖b‖z)
for random z. To unify calls to Γ in regard of the security parameter λ,
we will choose all entries in the range of λ/5.2 When receiving pk the eval-
uation algorithm EvalΓ,Π first recovers the preimage k‖a‖b‖z under Π, then
checks if k signals injective or lossy mode, and then computes Π(a‖b‖ax + b)
resp. Π(a‖b‖setlsb(ax + b)) as the output.

Definition 6 (Lossy Function Oracle). Let Π,Γ be permutation oracles
with Π,Γ : {0, 1}λ → {0, 1}λ for all λ. Let μ = μ(λ) = �(λ − 2)/5� and pad =
pad(λ) = λ− 2− 5μ define the length that the rounding-off loses to λ− 2 in total
(such that pad ∈ {0, 1, 2, 3, 4}). Define the lossy function (GenΓ,Π,EvalΓ,Π) with
input length in(λ) = μ(λ) relative to Π and Γ now as follows:

Key Generation: Oracle GenΓ,Π on input 1λ and either mode inj or loss picks
random b ←$ {0, 1}μ, z ←$ {0, 1}2μ+pad and random a, k ←$ {0, 1}μ \ {0μ}.
For mode inj the algorithm returns Γ (k‖a‖b‖z). For mode loss the algorithm
returns Γ (0μ‖a‖b‖z) instead.

Evaluation: On input pk ∈ {0, 1}λ and x ∈ {0, 1}μ algorithm EvalΓ,Π first
recovers (via exhaustive search) the preimage k‖a‖b‖z of pk under Γ for
k, a, b ∈ {0, 1}μ, z ∈ {0, 1}2μ+pad. Check that a
= 0 in the field GF(2μ).
If any check fails then return ⊥. Else, next check if k = 0μ. If so, return
Π(a‖b‖setlsb(ax + b)), else return Π(a‖b‖ax + b).

2 For moderately lossy function we could actually use λ/4 but for compatibility to the
extremely lossy case it is convenient to use λ/5 already here.

222 M. Fischlin and F. Rohrbach

We now show that there exist permutations Π and Γ such that relative
to Π and the lossy function oracle (GenΓ,Π,EvalΓ,Π), lossy functions exist, but
key agreement does not. We will rely on the seminal result by Impagliazzo and
Rudich [20] showing that no key agreement exists relative to a random permu-
tation. Note that we do not give direct access to Γ—it will only be accessed by
the lossy functions oracle and is considered an integral part of it.

The following lemma is the technical core of our results. It says that the
partly exponential steps of the lossy-function oracles GenΓ,Π and EvalΓ,Π in our
construction can be simulated sufficiently close and efficiently through a stateful
algorithm Wrap, given only oracle access to Π, even if we filter out the mode
for key generation calls. For this we define security experiments as efficient algo-
rithms Game with oracle access to an adversary A and lossy function oracles
GenΓ,Π,EvalΓ,Π,Π and which produces some output, usually indicating if the
adversary has won or not. We note that we can assume for simplicity that A
makes oracle queries to the lossy function oracles and Π via the game only.
Algorithm Wrap will be black-box with respect to A and Game but needs to
know the total number p(λ) of queries the adversary and the game make to the
primitive and the quality level α(λ) of the simulation upfront.

Lemma 7 (Simulation Lemma). Let Filter be a deterministic algorithm
which for calls (1λ,mode) to GenΓ,Π only outputs 1λ and leaves any input to
calls to EvalΓ,Π and to Π unchanged. For any polynomial p(λ) and any inverse
polynomial α(λ) there exists an efficient algorithm Wrap such that for any effi-
cient algorithm A, any efficient experiment Game making at most p(λ) calls
to the oracle, the statistical distance between GameA,(GenΓ,Π,EvalΓ,Π,Π)(1λ) and

GameA,WrapGenΓ,Π,Π◦Filter is at most α(λ). Furthermore Wrap initially makes a poly-
nomial number of oracle calls to GenΓ,Π, but then makes at most two calls to Π
for each query.

In fact, since GenΓ,Π is efficient relative to Γ , and Wrap only makes calls to
GenΓ,Π for all values up to a logarithmic length L0, we can also write WrapΓ|L0 ,Π

to denote the limited access to the Γ -oracle. We also note that the (local) state
of Wrap only consists of such small preimage-image pairs of Γ and Π for such
small values (but Wrap later calls Π also about longer inputs).

Proof. The proof strategy is to process queries of Game and A efficiently given
only access to Π, making changes to the oracle gradually, depending on the type
of query. The changes will be actually implemented by our stateful algorithm
Wrap, and eventually we will add Filter at the end. To do so, we will perform
a series of games hops where we change the behavior of the key generation
and evaluation oracles. For each game Game1,Game2, . . . let Gamei(λ) be the
randomized output of the game with access to A. Let p(λ) denote the total
number of oracle queries the game itself and A make through the game, and let
Game0(λ) be the original attack of A with the defined oracles. The final game
will then immediately give our algorithm Wrap with the upstream Filter. We give
an overview over all the game hops in Fig. 2.

Searching for ELFs in the Cryptographic Forest 223

Game Genloss Geninj Eval(pk, x) Π(x)

Game0 pk GenΓ,Π
loss (1

λ)

return pk

pk GenΓ,Π
inj (1

λ)

return pk

y EvalΓ,Π(pk, x)

return y

Π(x)

Game2 (pk, b) $ {0, 1}6μ

a $ {0, 1}μ
�=0µ

k $ {0, 1}μ
�=0µ

stpk (k, a, b)

return pk

(pk, b) $ {0, 1}6μ

a $ {0, 1}μ
�=0µ

stpk (0μ, a, b)

return pk

if stpk = ⊥
k, b $ {0, 1}2μ

a $ {0, 1}μ
�=0µ

stpk (k, a, b)

(k, a, b) stpk

if k = 0μ

return Π(pk‖setlsb(ax + b))

else

return Π(pk‖ax + b)

Π(x)

Game3 [. . .]

stpk (loss, a, b)

[. . .]

[. . .]

stpk (inj, a, b)

[. . .]

if stpk = ∅
b $ {0, 1}μ

a $ {0, 1}μ
�=0µ

stpk (inj, a, b)

(mode, a, b) stpk

if mode = loss

return Π(pk‖setlsb(ax + b))

else

return Π(pk‖ax + b)

Π(x)

Game4 [. . .]

stpk (a, b)

[. . .]

[. . .]

stpk (a, b)

[. . .]

[. . .]

stpk (a, b)

a, b stpk

return Π(pk‖ax + b)

Π(x)

Game5 [. . .] [. . .] [. . .]

return Π1(pk‖ax + b)

Π1(x)

Game6 pk $ {0, 1}5μ

return pk

pk $ {0, 1}5μ

return pk

a‖b‖ · · · Π0(pk)

return Π1(pk‖ax + b)

Π1(x)

Game7 [. . .] [. . .] return Π0(pk‖x) Π1(x)

Fig. 2. An overview of all the game hops. Note that for simplicity we ignored the
modifications related to inputs of length L0 here, in particular the game hop to Game1.

Game1. In the first game hops we let Wrap collect all information about very short
queries (of length related to L0) in a list and use this list to answer subsequent
queries. Change the oracles as follows. Let

L0 := L0(λ) := � log2(80α−1(λ) · p(λ)2 + p(λ))�.
Then our current version of algorithm Wrap, upon initialization, queries Π about
all inputs of size at most 2L0 and stores the list of queries and answers. The

224 M. Fischlin and F. Rohrbach

reason for using 2L0 is that the evaluation algorithm takes as input a key of
security parameter λ and some input of size μ ≈ λ/5, such that we safely cover
all evaluations for keys of security size λ ≤ L0.

Further, for any security parameter less than 2L0, our algorithm queries
GenΓ,Π for λ22L0 times; recall that we do not assume that parties have direct
access to Γ but only via GenΓ,Π. This way, for any valid key, we know that it
was created at some point except with probability (1 − 2−2L0)λ2

2L0 ≤ 2−λ and
therefore the probability that any key was not generated is at most 2L02−λ,
which is negligible. Further, for every public key, it evaluates EvalΓ,Π at x = 0
and uses the precomputed list for Π to invert, revealing the corresponding a and
b. Note that all of this can be done in polynomial time.

Any subsequent query to GenΓ,Π for security parameter at most L0, as well
as to EvalΓ,Π for a public keys of size at most L0 (which corresponds to a key
for security parameter at most L0), as well as to Π for inputs of size at most
2L0, are answered by looking up all necessary data in the list. If any data is
missing, we will return ⊥. Note that as long as we do not return ⊥, this is only a
syntactical change. As returning ⊥ happens at most with negligible probability
over the randomness of Wrap,

SD (Game0,Game1) ≤ 22L02−λ.

From now one we will implicitly assume that queries of short security length up
to L0 are answered genuinely with the help of tables and do not mention this
explicitly anymore.

Game2. In this game, we will stop using the lossy function oracles altogether, and
instead introduce a global state for the Wrap algorithm. Note that this state will
be shared between all parties having access to the oracles (via Wrap). Now, for
every call to GenΓ,Π, we do the following: If the key is created in injective mode,
Wrap will sample b ←$ {0, 1}μ and a, k ←$ {0, 1}μ \ {0μ}, if the key is created in
lossy mode, it sets k = 0μ. Further, it samples a public key pk ←$ {0, 1}5μ+pad,
and sets the state stpk ← (k, a, b). Finally it returns pk. Any call to EvalΓ,Π(pk, x)
will be handled as follows: First, Wrap checks whether a state for pk exists. If
this is not the case, we generate k, a, b ←$ {0, 1}μ (with checking that a
= 0)
and save stpk ← (k, a, b). Then, we read (k, a, b) ← stpk from the (possibly just
initialized) state and return Π(a‖b‖ax + b).

What algorithmWrap does here can be seen as emulating Γ . However, there are
two differences: We do not sample z, and we allow for collisions. The collisions can
be of either of two types: Either we sample the same (random) public key pk = pk′

but for different state values (k, a, b)
= (k′, a′, b′), or we sample the same values
(k, a, b) = (k′, a′, b′) but end up with different public keys pk
= pk′. In this case, an
algorithm that finds such a collision of size at least μ for μ ≥ L0/5—smaller values
are precomputed and still answered as before— could be able to distinguish the two
games. Still, the two games are statistically close since such collisions happen with
probability at most 2−2L0/5+1 for each pair of generated keys:

SD (Game2,Game1) ≤ 2p(λ)2 · 2−2L0/5+1 ≤ α(λ)
8

Searching for ELFs in the Cryptographic Forest 225

Game3. Next, instead of generating and saving a value k depending on the lossy
or injective mode, we just save a label inj or loss for the mode the key was
created for. Further, whenever EvalΓ,Π(pk, x) is called on a public key without
saved state, i.e., if it has not been created via key generation, then we always
label this key as injective.

The only way the adversary is able to recognize the game hop change is
because a self-chosen public key, not determined by key generation, will now
never be lossy (or will be invalid because a = 0). However, any adversarially
chosen string of size at least 5μ ≥ L0 would only describe a lossy key with
probability at most 1

2μ−p(λ) and yield an invalid a = 0 with the same probability.
Hence, taking into account that the adversary learns at most p(λ) values about Γ
though genuinely generated keys, and the adversary makes at most p(λ) queries,
the statistical difference between the two games is small:

SD (Game2,Game3) ≤ 2p(λ) · 1
2−L0/5+1 − p(λ)

≤ α(λ)
8

.

Game4. Now, we remove the label inj or loss again. Wrap will now, for any call
to Eval, calculate everything in injective mode.

There are two ways an adversary can distinguish between the two games:
Either by inverting Π, e.g., noting that the last bit in the preimage is not
as expected, or by finding a pair x
= x′ for a lossy key pkloss such that
Eval(pkloss, x) = Eval(pkloss, x

′) in Game3. Inverting Π (or guessing a and b) only
succeeds with probability 2(p(λ)+1)

2μ . For the probability of finding a collision,
note that viewing the random permutation Π as being lazy sampled shows that
the answers are chosen independently of the input (except for repeating previous
answers), and especially of a, b for any lossy public key of the type considered
here. Hence, we can imagine to choose a, b for any possible pairs of inputs only
after x, x′ have been determined. But then the probability of creating a collision
among the p(λ)2 many pairs for the same key is at most 2p(λ)2

2μ for μ > L0/5.
Therefore, the distance between these two games is bounded by

SD (Game3,Game4) ≤ 3(p(λ) + p(λ)2) · 2−L0/5+1 ≤ α(λ)
8

.

Game5. We split the random permutation Π to have two oracles. For β ∈ {0, 1}
and x ∈ {0, 1}5μ, we now define Πβ(x) = Π(β‖x)1...5μ−1, i.e., we add a prefix
β and drop the last bit. We now replace any use of Π in Wrap, including direct
queries to Π, by Π1.

Would Π1 be a permutation, this would be a perfect simulation. However,
Π1 is not even injective anymore, but finding a collision is still very unlikely (as
random functions are collision resistant). In particular, using once more that we
only look at sufficiently large values, the statistical distance of the games is still
small:

SD (Game4,Game5) ≤ 2p(λ)2

25μ
≤ α(λ)

8
.

226 M. Fischlin and F. Rohrbach

Game6. Next, we stop using the global state st for information about the values
related to a public key (except for keys of security parameter at most L0). The
wrapper for Gen now only generates a uniformly random pk and returns it. For
Eval calls, Wrap instead calculates a‖b ← Π0(pk) on the fly. Note that there
is a small probability of 2−L0/5+1 of a = 0, yielding an invalid key. Except for
this, since the adversary does not have access to Π0, this game otherwise looks
completely identical to the adversary:

SD (Game5,Game6) ≤ p(λ) · 2−L0/5+1 ≤ α(λ)
8

.

Game7. For our final game, we use Π0 to evaluate the lossy function:

EvalΠ(pk, x) = Π0(pk‖x).

Note that, as A has no access to Π0, calls to Eval in Game7 are random for A.
For Game6, calls to Eval looks random as long as A does not invert Π1, which
happens at most with probability 2(p(λ)+1)

2μ . Therefore, the statistical distance
between the two games is bound by

SD (Game6,Game7) ≤ 3p(λ) · 2−2L0/5+1 ≤ α(λ)
8

.

In the final game the algorithm Wrap now does not need to save any state
related to large public keys, and it behaves identically for the lossy and injective
generators. We can therefore safely add our algorithm Filter, stripping off the
mode before passing key generation requests to Wrap. Summing up the statistical
distances we obtain a maximal statistical of 7

8α(λ) ≤ α(λ) between the original
game and the one with our algorithms Wrap and Filter. �	

We next argue that the simulation lemma allows us to conclude immediately
that the function oracle in Definition 6 is indeed a lossy function:

Theorem 3. The function in Definition 6 is a lossy function for lossiness
parameter 2.

The proof can be found in the full version [13].

4.2 Key Exchange

We next argue that given our oracle-based lossy function in the previous section
one cannot build a secure key agreement protocol based only this lossy function
(and having also access to Π). The line of reasoning follows the one in the
renowned work by Impagliazzo and Rudich [20]. They show that one cannot build
a secure key agreement protocol between Alice and Bob, given only a random
permutation oracle Π. To this end they argue that, if we can find NP-witnesses
efficiently, say, if we have access to a PSPACE oracle, then the adversary with

Searching for ELFs in the Cryptographic Forest 227

oracle access to Π can efficiently compute Alice’s key given only a transcript of
a protocol run between Alice and Bob (both having access to Π).

We use the same argument as in [20] here, noting that according to our
Simulation Lemma 7 we could replace the lossy function oracle relative to Π
by our algorithm WrapΠ . This, however, requires some care, especially as Wrap
does not provide access to the original Π.

We first define (weakly) secure key exchange protocols relative to some ora-
cle (or a set of oracles) O. We assume that we have an interactive protocol
〈

AliceO,BobO
〉

between two efficient parties, both having access to the oracle

O. The interactive protocol execution for security parameter 1λ runs the inter-
active protocol between AliceO(1λ; zA) for randomness zA and BobO(1λ, zB)
with randomness zB , and we define the output to be a triple (kA, T, kB) ←
〈

AliceO(1λ; zA),BobO(1λ; zB)
〉

, where kA is the local key output by Alice, T is
the transcript of communication between the two parties, and kB is the local
key output by Bob. When talking about probabilities over this output we refer
to the random choice of randomness zA and zB .

Note that we define completeness in a slightly non-standard way by allowing
the protocol to create non-matching keys with a polynomial (but non-constant)
probability, compared to the negligible probability the standard definition would
allow. The main motivation for this definition is that it makes our proof easier,
but as we will prove a negative result, this relaxed definition makes our result
even stronger.

Definition 7. A key agreement protocol 〈Alice,Bob〉 relative to an oracle O is

complete if there exists an at least linear polynomial p(λ) such that for all large
enough security parameters λ:

Pr
[

kA
= kB : (kA, T, kB) ←$

〈

AliceΠ(1λ),BobO(1λ)
〉]

≤ 1
p(λ)

.

secure if for any efficient adversary A the probability that

Pr
[

k∗ = kA : (kA, T, kB) ←$

〈

AliceO(1λ),BobO(1λ)
〉

, k∗ ←$AO(1λ, T)
]

is negligible.

Theorem 4. There exist random oracles Π and Γ such that relative to GenΓ,Π,
EvalΓ,Π, Π and PSPACE, the function oracle (GenΓ,Π,EvalΓ,Π) from Definition 6
is a lossy function, but no construction of secure key agreement from GenΓ,Π,
EvalΓ,Π and Π exists.

From this theorem and using the two-oracle technique, the following corollary
follows directly:

Corollary 1. There exists no fully black-box construction of a secure key agree-
ment protocol from lossy functions.

228 M. Fischlin and F. Rohrbach

Proof (Theorem 4). Assume, to the contrary, that a secure key agreement exists
relative to these oracles. We first note that it suffices to consider adversaries in
the Wrap-based scenario. That is, A obtains a transcript T generated by the
execution of AliceWrapΓ,Π◦Filter(1λ; zA) with BobWrapΓ,Π◦Filter(1λ; zA) where Wrap
is initialized with randomness zW and itself interacts with Π. Note that WrapΠ ◦
Filter is efficiently computable and only requires local state (holding the oracle
tables for small values), so we can interpret the wrapper as part of Alice and
Bob without needing any additional communication between the two parties—
see Fig. 3.

Fig. 3. The two parties Alice and Bob get access to the Wrap ◦ Filter algorithm with
internal access to the permutations Γ and Π, instead of having access to the lossy
function oracles as well as direct access to Π.

We now prove the following two statements about the key agreement protocol
in the wrapped mode:

1. For non-constant α(λ), the protocol 〈AliceWrapΓ,Π◦Filter,BobWrapΓ,Π◦Filter〉 still
fulfills the completeness property of the key agreement, i.e., at most with
polynomial probability, the keys generated by Alice and Bob differ; and

2. there exists a successful adversary EWrapΓ,Π◦Filter,PSPACE with additional
PSPACE access, that, with at least polynomial probability, recovers the key
from the transcript of Alice and Bob.

If we show these two properties, we have derived a contradiction: If there exists
a successful adversary against the wrapped version of the protocol, then this
adversary must also be successful against the protocol with the original oracles
with at most a negligible difference in the success probability – otherwise, this
adversary could be used as a distinguisher between the original and the wrapped
oracles, contradicting the Simulation Lemma 7.

Completeness. The first property holds by the Simulation Lemma: Assume there
exists a protocol between Alice and Bob such that in the original game, the keys
generated differ for at most a polynomial probability 1

p(λ) , while in the case

Searching for ELFs in the Cryptographic Forest 229

where we replace the access to the oracles by WrapΓ,Π ◦Filter for some α(λ), the
keys differ with constant probability 1

cα
. In such a case, we could—in a thought

experiment— modify Alice and Bob to end their protocol by revealing their
keys. A distinguisher could now tell from the transcripts whether the keys of
the parties differ or match. Such a distinguisher would however now be able to
distinguish between the oracles and the wrapper with probability 1

cα
− 1

p(λ) , which
is larger than α(λ) for large enough security parameters, which is a contradiction
to the Simulation Lemma.

Attack. For the second property, we will argue that the adversary by Impagli-
azzo and Rudich from their seminal work on key agreement from one-way func-
tions [20] works in our case as well. For this, first note that the adversary has
access to both Π1 (by Π-calls to Wrap) and Π0 (by Eval-calls to Wrap) and Wrap
also makes the initial calls to Γ . Combining Γ , Π0 and Π1 into a single function
we can apply the Impagliazzo-Rudich adversary. Specifically, [20, Theorem 6.4]
relates the agreement error, denoted ε here, to the success probability approxi-
mately 1 − 2ε of breaking the key agreement protocol. Hence, let ε(λ) be the at
most polynomial error rate of the original key exchange protocol. We choose now
α(λ) sufficiently small such that ε(λ)+α(λ) is an acceptable error rate for a key
exchange, i.e., at most 1/4. Then this key exchange using the wrapped oracles is
a valid key exchange using only our combined random oracle, and therefore, we
can use the Impagliazzo-Rudich adversary to recover the key with non-negligible
probability.

Fixing the Oracles. Finally, we have to fix the random permutations Π and
Γ such that the Simulation Lemma holds and the Impagliazzo-Rudich attack
works. This happens again using standard techniques – see the full version [13]
for a proof. �	

4.3 ELFs

We will show next that our result can also be extended to show that no fully
black-box construction of key agreement from extremely lossy functions is possi-
ble. However, we are only able to show a slightly weaker result: In our separation,
we only consider constructions that access the extremely lossy function on the
same security parameter as used in the key agreement protocol. We call such
constructions security-level-preserving. This leaves the theoretic possibility of
building key agreement from extremely lossy functions of (significantly) smaller
security parameters. At the same time it simplifies the proof of the Simulation
Lemma for this case significantly since we can omit the step where Wrap samples
Γ for all small inputs, and we can immediately work with the common negligible
terms.

We start by defining an ELF oracle. In general, the oracle is quite similar to
our lossy function oracle. Especially, we still distinguish between an injective and
a lossy mode, and make sure that any key sampled without a call to the GenΓ,Π

ELF

oracle will be injective with overwhelming probability. For the lossy mode, we

230 M. Fischlin and F. Rohrbach

now of course have to save the parameter r in the public key. Instead of using
setlsb to lose one bit of information, we take the result of ax + b (calculated in
GF (2μ)) modulo r (calculated on the integers) to allow for the more fine-grained
lossiness that is required by ELFs.

Definition 8 (Extremely Lossy Function Oracle). Let Π,Γ be permuta-
tion oracles with Π,Γ : {0, 1}λ → {0, 1}λ for all λ. Let μ = μ(λ) = �(λ − 2)/5�
and pad = pad(λ) = λ − 2 − 5μ defines the length that the rounding-off loses to
λ − 2 in total (such that pad ∈ {0, 1, 2, 3, 4}. Define the extremely lossy function
(GenΓ,Π

ELF,Eval
Γ,Π
ELF) with input length in(λ) = μ(λ) relative to Γ and Π now as

follows:

Key Generation: The oracle GenΓ,Π
ELF, on input 1λ and mode r, picks random

b ←$ {0, 1}μ, z ←$ {0, 1}μ+pad and random a, k ←$ {0, 1}μ \ {0μ}. For mode
r = 2in(λ) the algorithm returns Γ (k‖a‖b‖r‖z). For mode r < 2in(λ) the
algorithm returns Γ (0μ‖a‖b‖r‖z) instead.

Evaluation: On input pk ∈ {0, 1}λ and x ∈ {0, 1}μ algorithm EvalΓ,Π
ELF first

recovers (via exhaustive search) the preimage k‖a‖b‖r‖z of pk under Γ for
k, a, b, r ∈ {0, 1}μ, z ∈ {0, 1}μ+pad. Check that a
= 0 in the field GF(2μ).
If any check fails then return ⊥. Else, next check if k = 0m. If so, return
Π(a‖b‖(ax + b mod r)), else return Π(a‖b‖ax + b).

We can now formulate versions of Theorem 4 and Corollary 1 for the
extremely lossy case.

Theorem 5. There exist random oracles Π and Γ such that relative to GenΓ,Π
ELF,

EvalΓ,Π
ELF, Π and PSPACE, the extremely lossy function oracle (GenΓ,Π

ELF,Eval
Γ,Π
ELF)

from Definition 8 is indeed an ELF, but no security-level-preserving construction
of secure key agreement from GenΓ,Π

ELF,Eval
Γ,Π
ELF and Π exists.

Corollary 2. There exists no fully black-box security-level-preserving construc-
tion of a secure key agreement protocol from extremely lossy functions.

Proving Theorem 5 only needs minor modifications of the proof of Theorem 4
to go through. Indeed, the only real difference lies in a modified Simulation
Lemma for ELFs, which we will formulate next, together with a proof sketch
that explains where differences arrive in the proof compared to the original
Simulation Lemma. To stay as close to the previous proof as possible, we will
continue to distinguish between an injective generator Geninj(1

λ) and a lossy
generator Genloss(1

λ, r), where the latter also receives the parameter r.

Lemma 8 (Simulation Lemma (ELFs)). Let Filter be a deterministic algo-
rithm which for calls (1λ,mode) to GenΓ,Π

ELF only outputs 1λ and leaves any input
to calls to EvalΓ,Π

ELF and to Π unchanged. There exists an efficient algorithm Wrap
such that for any polynomials p and d′ there exists a polynomial q such that for
any adversary A which makes at most p(λ) queries to the oracles, any efficient

Searching for ELFs in the Cryptographic Forest 231

experiment Game making calls to the GenΓ,Π
ELF oracle with r > q(λ) the distin-

guishing advantage between GameA,(GenΓ,Π
ELF,EvalΓ,Π

ELF,Π)(1λ) and GameA,WrapΠ◦Filter is
at most 1

d′(λ) for sufficiently large λ. Furthermore Wrap makes at most two calls
to Π for each query.

Proof (Sketch). We will now describe how the game hops differ from the proof of
Lemma 7, and how these changes affect the advantage of the distinguisher. Note
that allowing only access to the ELF oracle at the current security parameter
allows us to argue that differences between game hops are negligible, instead of
having to give a concrete bound.

Game1. stays identical to Game0 – as we only allow access to the ELF oracle at
the current security level, precomputing all values smaller than some L0 is not
necessary here.

Game2. introduces changes similar to Game2 in Lemma 7 – however, we now of
course also have to save the parameter r in the state. Again, the only notable
difference to the distinguisher is that we sample pk independently of the public
key parameters and therefore, collisions might happen more often. However, the
probability for this is clearly negligible:

SD (Game1,Game2) ≤ negl(λ)

Game3. replaces k with a label inj or loss. Again, the only noticeable difference is
that keys sampled without calling Geninj or Genloss will now always be injective,
while they are lossy with probability 2−μ in Game2, yielding only a negligible
difference between the two games however.

SD (Game2,Game3) ≤ negl(λ)

Game4. is the game where we start to always evaluate in injective mode. There are
two options a distinguisher might distinguish between the two games: Either by
inverting Π, or by finding a collision for a lossy key. Inverting Π only happens
with probability 2(p(λ)+1)

2μ , while finding a collision happens with probability
2p(λ)2

r . Let d(λ) = d′(λ)
2 be the advantage we want to allow for the distinguisher

in this game hop. Choosing q(λ) = 4p(λ)2d(λ) for the bound on r of the ELF,
we get

AdvGame3,Game4
A ≤ 1

d(λ)

Game4 is now identical to Game4 in the proof of Lemma 7 (except for the
different handling of calls to security parameters smaller than L0). Therefore, all
game hops up to Game7 are identical to the ones in the proof of Lemma 7, with
the statistical difference being negligible for all of them. Therefore, the overall
advantage of an distinguisher is bounded by 1

d(λ) + negl(λ) ≤ 1
d′(λ) for large

enough security parameters λ.
�	

232 M. Fischlin and F. Rohrbach

Let 〈AliceGenΓ,Π
ELF,EvalΓ,Π

ELF,Π ,BobGenΓ,Π
ELF,EvalΓ,Π

ELF,Π〉 be some candidate key agreement
protocol with completeness error 1

ε(λ) < 1
8 that makes at most p(λ) queries in

sum, and let 1
d′(λ) < 1

8 be the advantage bound for any adversary against the
key agreement we are trying to reach.

To determine the correct parameters for the ELF oracle, we need to know how
many queries the Impagliazzo-Rudich adversary makes against the transcript
of the wrapped version of the protocol 〈AliceWrapΠ◦Filter,BobWrapΠ◦Filter〉, which
depends on the number of queries of the protocol. Note that we know that WrapΠ

makes at most two queries to Π for each internal query of Alice or Bob, so we
know that the wrapped version makes at most 2p(λ) queries to Π. Let p′(λ) be
the number of queries needed by the Impagliazzo-Rudich protocol.

First, we have to show that completeness still holds for the wrapped version of
the protocol. The wrapped protocol has an error rate of at most 1

ε′ < 1
ε +

1
d′ ≤ 1

4 ,
as otherwise, we would have a successful distinguisher for the Simulation Lemma.
Further, as the error rate 1

ε′ is smaller than 1
4 , we know that Impagliazzo-Rudich

will have a success probability of at least 1
2 .

Further, we know from the Simulation Lemma that we need d(λ) = d′(λ)
2

for it to hold. Therefore, we set the bound for r in the ELF oracle to q(λ) =
4p′(λ)2d(λ). Now, the Impagliazzo-Rudich attack has to be successful for the
original protocol with polynomial probability 1

d′′ , as otherwise, there would be
an distinguisher for the Simulation Lemma with advantage 1

2 − negl(λ) > 1
d′(λ) .

Fixing oracles Π,Γ such that (GenΓ,Π
ELF,Eval

Γ,Π
ELF) is an ELF, while the Impagliazzo-

Rudich attack is successful yields the Theorem.

5 Relationship of Lossy Functions to Statistical
Zero-Knowledge

The complexity class (average-case) SZK, introduced by Goldwasser, Micali and
Rackoff [16], contains all languages that can be proven by a statistical zero-
knowledge proof, and is often characterized by its complete promise problem
(average-case) Statistical Distance [29]. Hardness of Statistical Zero-Knowledge
follows from a number of algebraic assumptions like Discrete Logarithm [15]
and lattice problems [22] and the existence of some Minicrypt primitives like
one-way functions [24] and distributional collision resistant hash functions [21]
follow from hard problems in SZK – it is not known to follow from any Minicrypt
assumptions, however, and for some, e.g., collision-resistant hash functions, there
exist black-box separations [6].

Therefore, average-case hard problems in SZK seem to be a natural candidate
for a non-public key assumption to build lossy functions from. Intuitively, one
can see similarities between lossy functions and statistical distance: Both are, in
a sense, promise problems, if one looks at the image size of a lossy function with
a large gap between the injective mode and the lossy mode. Further, it is known
that hard problems in SZK follow from lossy functions (this seems to be folklore
knowledge – we give a proof for this fact in the full version.

Searching for ELFs in the Cryptographic Forest 233

Note that a construction of lossy functions would also be interesting from
a different perspective: As collision-resistant hash functions can be build from
sufficiently lossy functions, a construction of (sufficiently) lossy functions from
average-case SZK hardness would mean that collision resistance follows from
average-case SZK hardness. However, right now, this is only known for distribu-
tional collision resistance, a weaker primitive [21].

(E)LFs

Oraclecrypt

Public Key Cryptography

Theorem 4

Theorem 1

avg-SZK

Theorem 6

?

Fig. 4. We show an oracle separation between Oraclecrypt and average-case SZK as
well. The question whether lossy functions can be build from average-case SZK is still
open.

Alas, we are unable to either give a construction of a lossy function from
a hard-on-average statistical zero-knowledge problem or to prove an black-box
impossibility result between the two, leaving this as an interesting open question
for future work. Instead, we give a lower bound on the needed assumptions for
hard-on-average problems in SZK by showing that no Oraclecrypt primitive can
be used in a black-box way to construct a hard-on-average problem in SZK – this
serves as hint that indeed SZK is an interesting class of problems to look at for
building lossy functions, but the result might also be interesting independently.

Note some Oraclecrypt primitives, such a separation already exists: For exam-
ple, Bitansky and Degwekar give an oracle separation between collision-resistant
hash functions and (even worst-case) hard problems in SZK. However, this result
uses a Simon-style oracle separation (using a break -oracle that depends on the
random oracle), which means that the result is specific to the primitive and does
not easily generalize to all Oraclecrypt primitives.

Theorem 6. There exists no black-box construction of an hard-on-average prob-
lem in SZK from any Oraclecrypt primitive.

Our proof techniques is quite similar to Chap. 3: First, we will reuse the
oracles O and PSPACEO′

. We assume there exists an hard-on-average statistical
distance problem relative to these random oracles. We will then calculate the

234 M. Fischlin and F. Rohrbach

heavy queries of the circuits produced by the statistical distance problem and
show that the heavy queries are sufficient to decide whether the circuits are
statistically far from each other or not, yielding a contradiction to the assumed
hardness-on-average of statistical distance. The complete proof can be found in
the full version.

Acknowledgments. We thank the anonymous reviewers for valuable comments.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-

dation) - SFB 1119 - 236615297 and by the German Federal Ministry of Education and
Research and the Hessian Ministry of Higher Education, Research, Science and the Arts
within their joint support of the National Research Center for Applied Cybersecurity
ATHENE.

References

1. Agrikola, T., Couteau, G., Hofheinz, D.: The usefulness of sparsifiable inputs: how
to avoid Subexponential iO. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020. LNCS, vol. 12110, pp. 187–219. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45374-9_7

2. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1

3. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 398–415.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_23

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press (1993). https://doi.org/10.1145/
168588.168596

5. Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leak-
age and UCE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS,
vol. 9563, pp. 542–564. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49099-0_20

6. Bitansky, N., Degwekar, A.: On the complexity of collision resistant hash functions:
new and old black-box separations. In: Hofheinz, D., Rosen, A. (eds.) Theory of
Cryptography. LNCS, vol. 11891, pp. 422–450. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-36030-6_17

7. Braverman, M., Hassidim, A., Kalai, Y.T.: Leaky pseudo-entropy functions. In:
Chazelle, B. (ed.) Innovations in Computer Science - ICS 2011, Tsinghua Uni-
versity, Beijing, China, January 7–9, 2011. Proceedings, pp. 353–366. Tsinghua
University Press (2011). http://conference.iiis.tsinghua.edu.cn/ICS2011/content/
papers/17.html

8. Brzuska, C., Couteau, G., Egger, C., Karanko, P., Meyer, P.: New random oracle
instantiations from extremely lossy functions. Cryptology ePrint Archive, Report
2023/1145 (2023). https://eprint.iacr.org/2023/1145

9. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2_11

https://doi.org/10.1007/978-3-030-45374-9_7
https://doi.org/10.1007/978-3-030-45374-9_7
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-662-49099-0_20
https://doi.org/10.1007/978-3-662-49099-0_20
https://doi.org/10.1007/978-3-030-36030-6_17
https://doi.org/10.1007/978-3-030-36030-6_17
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/17.html
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/17.html
https://eprint.iacr.org/2023/1145
https://doi.org/10.1007/978-3-662-44371-2_11

Searching for ELFs in the Cryptographic Forest 235

10. Canetti, R., Chen, Y., Reyzin, L.: On the correlation intractability of obfuscated
pseudorandom functions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part
I. LNCS, vol. 9562, pp. 389–415. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49096-9_17

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press (1998).
https://doi.org/10.1145/276698.276741

12. Dodis, Y., Vaikuntanathan, V., Wichs, D.: Extracting Randomness from Extractor-
Dependent Sources. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I.
LNCS, vol. 12105, pp. 313–342. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1_12

13. Fischlin, M., Rohrbach, F.: Searching for ELFs in the cryptographic forest. Cryp-
tology ePrint Archive, Report 2023/1403. https://eprint.iacr.org/2023/1403

14. Garg, S., Hajiabadi, M., Mahmoody, M., Mohammed, A.: Limits on the power
of garbling techniques for public-key encryption. In: Shacham, H., Boldyreva, A.
(eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 335–364. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96878-0_12

15. Goldreich, O., Kushilevitz, E.: A perfect zero-knowledge proof system for a problem
equivalent to the discrete logarithm. J. Cryptol. 6(2), 97–116 (1993). https://doi.
org/10.1007/BF02620137

16. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press
(1985). https://doi.org/10.1145/22145.22178

17. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions
(or: One-way product functions and their applications). In: Thorup, M. (ed.) 59th
FOCS, pp. 850–858. IEEE Computer Society Press (2018). https://doi.org/10.
1109/FOCS.2018.00085

18. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8_6

19. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Min-
nesota, USA, June 19–22, 1995, pp. 134–147. IEEE Computer Society (1995).
https://doi.org/10.1109/SCT.1995.514853

20. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press (1989). https://doi.org/
10.1145/73007.73012

21. Komargodski, I., Yogev, E.: On distributional collision resistant hashing. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp.
303–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_11

22. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 282–298. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45146-4_17

23. Murphy, A., O’Neill, A., Zaheri, M.: Instantiability of classical random-oracle-
model encryption transforms. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022,
Part IV. LNCS, vol. 13794, pp. 323–352. Springer, Heidelberg (2022). https://doi.
org/10.1007/978-3-031-22972-5_12

https://doi.org/10.1007/978-3-662-49096-9_17
https://doi.org/10.1007/978-3-662-49096-9_17
https://doi.org/10.1145/276698.276741
https://doi.org/10.1007/978-3-030-45721-1_12
https://doi.org/10.1007/978-3-030-45721-1_12
https://eprint.iacr.org/2023/1403
https://doi.org/10.1007/978-3-319-96878-0_12
https://doi.org/10.1007/BF02620137
https://doi.org/10.1007/BF02620137
https://doi.org/10.1145/22145.22178
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1145/73007.73012
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/978-3-319-96881-0_11
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/978-3-031-22972-5_12
https://doi.org/10.1007/978-3-031-22972-5_12

236 M. Fischlin and F. Rohrbach

24. Ostrovsky, R.: One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In: Proceedings of the Sixth Annual Structure in Complexity
Theory Conference, Chicago, Illinois, USA, June 30 - July 3, 1991, pp. 133–138.
IEEE Computer Society (1991). https://doi.org/10.1109/SCT.1991.160253

25. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press (2008). https://
doi.org/10.1145/1374376.1374406

26. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J.
Comput. 40(6), 1803–1844 (2011)

27. Pietrzak, K., Rosen, A., Segev, G.: Lossy functions do not amplify well. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 458–475. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28914-9_26

28. Quach, W., Waters, B., Wichs, D.: Targeted lossy functions and applications. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp.
424–453. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_15

29. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J.
ACM 50(2), 196–249 (2003). https://doi.org/10.1145/636865.636868

30. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions
be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998, Part
I. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054137

31. Zhandry, M.: The magic of ELFs. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 479–508. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4_18

32. Zhandry, M.: The Magic of ELFs. J. Cryptol. 32(3), 825–866 (2018). https://doi.
org/10.1007/s00145-018-9289-9

https://doi.org/10.1109/SCT.1991.160253
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1007/978-3-642-28914-9_26
https://doi.org/10.1007/978-3-030-84259-8_15
https://doi.org/10.1145/636865.636868
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/978-3-662-53018-4_18
https://doi.org/10.1007/978-3-662-53018-4_18
https://doi.org/10.1007/s00145-018-9289-9
https://doi.org/10.1007/s00145-018-9289-9

	Searching for ELFs in the Cryptographic Forest
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Lossy Functions
	2.2 Oraclecrypt

	3 On the Impossibility of Building (E)LFs in Oraclecrypt
	3.1 Introducing the Oracles
	3.2 Approximating the Set of Heavy Queries
	3.3 Distinguishing Lossiness from Injectivity
	3.4 Fixing an Oracle

	4 On the Impossibility of Building Key Agreement Protocols from (Extremely) Lossy Functions
	4.1 Lossy Function Oracle
	4.2 Key Exchange
	4.3 ELFs

	5 Relationship of Lossy Functions to Statistical Zero-Knowledge
	References

