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Abstract. Constructing key-agreement protocols in the random oracle
model (ROM) is a viable method to assess the feasibility of develop-
ing public-key cryptography within Minicrypt. Unfortunately, as shown
by Impagliazzo and Rudich (STOC 1989) and Barak and Mahmoody
(Crypto 2009), such protocols can only guarantee limited security: any
�-query protocol can be attacked by an O(�2)-query adversary. This
quadratic gap matches the key-agreement protocol proposed by Merkle
(CACM 78), known as Merkle’s Puzzles.

Besides query complexity, the communication complexity of key-
agreement protocols in theROM is also an interesting question in the realm
of find-grained cryptography, even though only limited security is achiev-
able. Haitner et al. (ITCS 2019) first observed that in Merkle’s Puzzles, to
obtain secrecy against an eavesdropper with O(�2) queries, the honest par-
ties must exchange Ω(�) bits. Therefore, they conjectured that high com-
munication complexity is unavoidable, any �-query protocols with c bits of
communication could be attacked by an O(c · �)-query adversary. This, if
true, will suggest that Merkle’s Puzzle is also optimal regarding commu-
nication complexity. Building upon techniques from communication com-
plexity, Haitner et al. (ITCS 2019) confirmed this conjecture for two types
of key agreement protocols with certain natural properties.

This work affirms the above conjecture for all non-adaptive protocols
with perfect completeness. Our proof uses a novel idea called density
increment argument. This method could be of independent interest as
it differs from previous communication lower bounds techniques (and
bypasses some technical barriers).

Keywords: Key-Agreement · Communication Complexity · Random
Oracle

1 Introduction

Key-agreement protocols [DH76] allow two parties, Alice and Bob, to agree on
a shared private key by communicating over an insecure public channel. Its
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security requires that any (efficient) eavesdropper cannot learn the key from
the transcript. In an early work, Merkle [Mer78] first proposed an ingenious
key-agreement protocol, known as Merkle’s Puzzles, as follows.

Protocol 1 (Merkle’s Puzzles). Let f : [N ] → [M ] be a cryptographic hash
function and let � be a parameter measuring the query complexity of this protocol.
Alice and Bob first agree on a set W ⊆ [N ] of size �2. Then, at the beginning of
the protocol, Alice makes � random queries in W , i.e., f(w1), . . . , f(w�). Sim-
ilarly, Bob makes another � random queries f(w′

1), . . . , f(w′
�). By the birthday

paradox, there is a good chance that {w1, . . . , w�} ∩ {w′
1, . . . , w

′
�} �= ∅. Alice then

sends z1 = f(w1), . . . , z� = f(w�) to Bob, and Bob checks if there is a w′
j in his

query such that f(w′
j) = zi for some i ∈ [�]. If such a pair (w′

j , zi) exists, then
Bob sends zi back to Alice and sets w′

j as his key; otherwise, Bob aborts. Finally,
according to zi, Alice chooses wi as her key.

As long as the function f is collision-free on W , Alice and Bob will agree on the
same key with high probability. In terms of security, if f is modeled as a random
function, we can show that any eavesdropper that breaks this protocol with con-
stant probability has to query a constant fraction of inputs in W ; consequently,
the query complexity of any eavesdropper must be Ω(�2).

On the other hand, Impagliazzo and Rudich [IR89], followed by Barak
and Mahmoody [BMG09], showed that key-agreement protocol is essentially
a public-key primitive and is unlikely to be based only on hardness assump-
tions for symmetric cryptography—any key-agreement protocol only guaran-
tees limited security as long as the symmetric hardness is used in a black-box
way. Specifically, they studied key-agreement protocols in the random oracle
model (ROM). In the ROM, all parties, including the eavesdropper, have ora-
cle access to a random function f : [N ] → [M ], which is an idealization of
symmetric primitives like collision-resistant hash function. The efficiency of par-
ties is measured by the number of queries they make to the oracle (in the
worst case). [IR89] proved that any key-agreement protocols in the ROM with �
queries can be attacked by an eavesdropper with O(�6) queries. [BMG09] further
improved the efficiency of the eavesdropper to O(�2) queries. This result indi-
cates that Merkle’s puzzle is optimal in terms of the number of oracle queries
since it reaches quadratic security. Despite its limited security, the complex-
ity of key-agreement protocols in the ROM is still an interesting question of
fine-grained cryptography. A long line of research has been conducted on the
limitation and possibility of key-agreement protocols in the ROM, in both classi-
cal setting [DH76,Mer78,IR89,BMG09,HMO+19,ACMS23], distributed setting
[DH21] and quantum setting [ACC+22].

Besides oracle queries, another important cost in key-agreement protocols is
the communication cost between Alice and Bob. The communication complex-
ity of (multi-party) protocols, such as key-agreement, optimally-fair coin toss-
ing, statistically hiding commitment schemes, and multi-party computation, has
garnered considerable attention recently [DSLMM11,HHRS15,HMO+19,Cou19,
AHMS20,CN22].
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In this paper, we focus on the communication complexity of key-agreement
protocols: a problem initiated by Haitner et al. [HMO+19]. Concretely, they
observed that the communication complexity of Merkle’s Puzzle is also ˜Ω(�)1,
and they conjectured that high communication cost is unavoidable.

Conjecture 1 ([HMO+19], informal). Let Π = (A,B) be a key-agreement pro-
tocol such that:

1. A and B agree on the same key with high probability;
2. A and B each make at most � queries to the random function (oracle);
3. Π is secure against any adversary with q queries to the random oracle.

Then A and B must communicate Ω(q/�) bits.

As we discussed, Merkle’s puzzle matches the lower bound in this conjecture
for q = Θ(�2). For q = o(�2), an asymmetric version of Merkle’s puzzle also
matches this lower bound.

Protocol 2 (Asymmetric version of Merkle’s Puzzles). Alice and Bob
first fix a domain W of size q. Then Alice makes c := q/� random queries in W
and sends them to Bob. Bob also makes � random queries (in W ) and checks if
there is a common query in accordance with the original Merkle’s Puzzles.

[HMO+19] partly tackled this conjecture for two types of key-agreement pro-
tocols. We say a protocol is non-adaptive if both parties choose all their queries
at the beginning of the protocol (before querying the oracle and communicating);
that is, their queries are determined by their internal randomness. Haitner el al.
[HMO+19] proved that for any protocol Π = (A,B) that satisfies the conditions
in Conjecture 1:

– If Π is non-adaptive and has only two rounds, A and B must exchange Ω(q/�)
bits.

– If the queries are uniformly sampled, then A and B must communicate
Ω(q2/�3) bits.

Note that protocols with uniform queries are also special non-adaptive protocols.
In this paper, we affirm Conjecture 1 for non-adaptive protocols with perfect

completeness, i.e., Alice and Bob agree on the same key with probability 1.
Specifically, we prove the following theorem.

Theorem 3 (Informal). Let Π = (A,B) be a non-adaptive key-agreement
protocol such that:

1. A and B agree on the same key with probability 1;
2. A and B each make at most � queries to the random oracle;
3. Π is secure against any adversary with q queries to the random oracle.

Then A and B must communicate Ω(q/�) bits.
1 We drop low order terms such as log N and log M here.
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Our proof is built on the density increment argument introduced by Yang
and Zhang [YZ22,YZ23], which they used to prove communication lower bounds
for the unique disjointness problem. Looking at our main theorem carefully, we
acknowledge two non-trivial requirements in our statement: non-adaptivity and
perfect completeness. However, these limitations are not inherent in this method.
Therefore, we are optimistic that our method has a good chance to overcome
these two limitations; more details will be discussed in Sect. 1.2.

It is worth noting that Mazor [Maz23] recently devised a non-adaptive pro-
tocol with perfect completeness and quadratic security guarantee. We observed
that this protocol, with minor adjustments, allows a trade-off between com-
munication and security in a similar fashion to Protocol 2. Our result shows
that Mazor’s construction is optimal among non-adaptive protocols with perfect
completeness.

1.1 Proof Overview

Now we give a high-level overview of our proof. Since the execution of key-
agreement protocols and the attacking process involve many random variables,
we first explain our notations.

– We use bold and uppercase letters for random variables and corresponding
regular letters for samples and values, such as f, rA, rB , QA, QB , τ,QE and
fE (uppercase for sets and lowercase for elements and functions).

– Let F be the RO that the parties have access to, which is a random func-
tion from [N ] to [M ]. Moreover, let RA,RB be Alice’s and Bob’s internal
randomness. (RA,RB ,F ) determines the entire execution of key-agreement
protocols.

– Let QA,QB ⊆ [N ] be the queries made by Alice and Bob in the execution,
respectively. Notice that QA,QB is fully determined by RA,RB for non-
adaptive protocols. QA and QB are usually ordered sets since Alice and Bob
make oracle queries one at a time. For the sake of notation convenience, we
sometimes regard QA and QB as unordered sets.

– Let T be the communication transcript between Alice and Bob. Notice that
T is observed by the attacker Eve.

– Let QE ⊆ [N ] be Eve’s queries. Let FE = F (QE ) be Eve’s observations of the
random oracle F . We interpret FE as a partial function: for every x ∈ QE ,
FE(x) = F (x); for all other x, FE(x) = ⊥.

To study the security of key-agreement protocols, Impagliazzo and Rudich
[IR89] observed that the advantage of Alice and Bob over Eve mainly comes from
their intersection queries which have not been queried by Eve, i.e., the knowledge
from (QA∩QB)\QE and F ((QA∩QB)\QE). Based on this insight, they devised
an attacker that aims to guess (and query) the set (QA ∩QB). In order to learn
intersection queries more efficiently, [BMG09] introduced the notion of heavy
query. Given Eve’s current observation, which consists of a transcript τ and a
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partial function fE , an input w ∈ [N ] \ QE is said to be ε-heavy with respect to
(τ, fE) if

Pr[w ∈ (QA ∩ QB) | τ, fE ] ≥ ε.

Now we give an informal description of Eve’s strategy2:

– Stage I. Eve checks if there exists a heavy query conditioned on transcript
τ and her observations of the random oracle fE . If yes, then query them,
update fE , and repeat until there are no heavy queries.

– Stage II. Eve simulates Alice and Bob based on observed information and
outputs Alice’s key in her simulation. In other words, Eve simply outputs a
sample from the distribution of Alice’s key conditioned on observed informa-
tion.

Suppose that Alice and Bob each make at most � queries and set ε = Θ(1/�). A
standard technique can prove that Stage I stops within O(�/ε) = O(�2) queries.
We can also show that in order to clean up all heavy queries (Stage I), Ω(�2)
queries are inevitable. This querying process does not explore strong connections
to communication complexity.

Our Approach. Our main observation is that if Alice and Bob communicate
too little, they cannot utilize their common queries and thus have no advantage
over Eve! Hence, we focus on queries correlated with the transcript τ instead of
all intersection queries. With this in mind, we introduce correlated query as a
refined notion of heavy query.

Definition 1 (ε-correlated set, informal; see Definition 3). Eve’s view
consists of a transcript τ and a partial function fE. We say a set S =
{w1, . . . , wr} ⊆ [N ] is ε-correlated with respect to (τ, fE) if

H (F (w1), . . . ,F (wr) | RA,RB , fE) − H (F (w1), . . . ,F (wr) | RA,RB , fE , τ) ≥ ε,

where H(·) denotes the Shannon entropy.

We use F (S) to denote (F (w1), . . . ,F (wr)) in the future, and F (S) can also
be viewed as a partial function with domain S. A main difference between our
attacker and [BMG09] is that: instead of making ε-heavy queries, we clean up all
ε-correlated sets of size at most 2�. Another difference is that we choose ε = Θ(1)
and [BMG09] set ε = Θ(1/�). Intuitively, this is because a correlated set of size �
is as effective as � single heavy queries. Along these lines, we then have to prove
two things:

– Success. Eve can guess the key of Alice/Bob if there is no ε-correlated set
of size at most 2�.

– Efficiency. Eve can remove all ε-correlated sets (of size at most 2�) after
querying O(c) correlated sets, where c is the number of communication bits
between Alice and Bob. Thus, the query complexity of Eve is O(c · �).

2 This is not exactly the same as [BMG09] due to some technical challenges in
[BMG09].
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Eve Can Guess the Key if There are No Small ε-Correlated Sets. Assume that
the protocol Π is non-adaptive, i.e., QA (or QB) is determined by rA (resp., rB).
To study the success probability of Eve, we consider a rectangle X ×Y as follows.
Every x ∈ X has the form x = (rA, fA) (Alice’s view) and every y ∈ Y has the
form y = (rB , fB) (Bob’s view), where fA, fB have domain QA, QB respectively.
Note that we enumerate x and y independently in the rectangle. Consequently,
some pairs (x, y) in this rectangle may be inconsistent. Concretely, we say that
a pair x = (rA, fA) and y = (rB , fB) is inconsistent if there exists an input
w ∈ QA ∩ QB such that fA(w) �= fB(w). Define an output table as follows:

M(x, y)
def
=

{
Alice’s key output by Π(rA, rB , fA ∪ fB), if fA and fB are consistent;
∗, otherwise.

This table indeed captures all possible executions of the protocol Π. This table
is a partial function because many entries are undefined (the ∗ entries).

During the attack, Eve observes the transcript τ and makes queries to f .
Whenever Eve has observed (τ, fE), we update the table M by removing the
entries that are inconsistent with Eve’s observation, i.e., we update the table to

Mτ,fE
(x, y) def=

{

M(x, y), if (x, y) are consistent with (τ, fE);
∗, otherwise.

Given this observation (τ, fE), the defined entries of Mτ,fE
capture all possible

views of Alice and Bob. Now we say Mτ,fE
is almost monochromatic if almost

all defined entries of Mτ,fE
are equal to the same output b ∈ {0, 1}. 3 A key

step in our proof is to show Mτ,fE
is almost monochromatic provided that the

following conditions are met:

1. Π has perfect completeness;
2. there is no small ε-correlated set respect to (τ, fE).

Once Eve realizes Mτ,fE
is almost monochromatic, she knows that Alice’s key

is b with high probability.

Upper Bound the Number of Eve’s Queries via Density Increment Argu-
ment. This part of our proof is based on the density increment argument in
[YZ22,YZ23]. We first define a density function to capture the amount of hid-
den information in the transcript τ about the random function F , which is not
known by Eve. For every τ and fE , its density function Φ(τ, fE) is defined as

Φ(τ, fE) def= H (F | RA,RB , fE) − H (F | RA,RB , fE , τ) .

If we replace τ and fE with corresponding random variables, T and FE , then
Φ(T ,FE ) equals to I (F ;T | RA,RB ,FE ), the mutual information of F and T
conditioned on RA,RB ,FE . This quantity is strongly related to the information
3 More precisely, ‘almost all’ means if we sample an entry (x, y) according to the prob-

ability that it appears in real execution (conditioned on τ, fE), we have M(x, y) = b
with high probability.
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complexity (IC), a powerful tool for proving lower bounds in communication
complexity [CSWY01,BBCR10]. IC usually refers to the mutual information of
Alice’s input and Bob’s input conditioned on the transcript, so the IC for key-
agreement should look like I (RA,RB ;T ). However, in the ROM, the random
function F is another random resource involved in the computation. Therefore,
we cannot use IC as a black box to study such key-agreement protocols. Instead,
we use the density increment argument proposed by [YZ23], which reinterprets
IC in a white-box manner.

Let us turn back to our proof. The key idea is that whenever Eve queries an
ε-correlated set, the density function decreases by at least ε in expectation. To
make things clearer, we first explain our sampling procedure. There are several
random variables involved in the analysis, including (RA,RB ,F ,T ,S1,S2, . . . ).
Here Si is the query set made by Eve in the i-th round. In our analysis, we do
not sample (RA,RB ,F ) all at once. Instead, we consider these random variables
to be sampled in the following order.

1. We first sample the transcript τ ← T and send it to the attacker.
2. In the i-th round of the attack,

– Eve samples her next query set Si conditioned on
(τ, S1, f(S1), . . . , Si−1, f(Si−1)).
– We sample f(Si) conditional on (τ, S1, f(S1), . . . , Si−1, f(Si−1), Si),
and Eve receives f(Si).

Suppose that at some point, Eve has already observed fE , e.g.,
fE = f(S1 ∪ · · · ∪ Si−1) and decided to query Si next. By definition, Eve only
queries correlated sets, i.e., Si is ε-correlated w.r.t. (τ, fE). And we prove that
for any ε-correlated set Si,

E
f(Si)←F (Si)|τ,fE

[Φ(T , fE ∪ f(Si))] ≤ Φ(T , fE) − ε, (1)

where fE ∪f(Si) is Eve’s updated observation after making oracle queries on Si.
We then finish our argument by observing the following two properties of Φ:

– In the beginning, Φ(T , f∅) ≤ c. Here f∅ denotes the all-empty function since
Eve has no information about the oracle before making any queries.

– Φ is non-negative: Φ(τ, fE) ≥ 0 for all τ, fE .

Equation (1) says that each time Eve queries an ε-correlated set, Φ decreases by ε
(in expectation), so Eve can query at most O(c/ε) = O(c) sets (in expectation),
as we set ε = Θ(1). Since each set queried by Eve is of size at most 2�, we
conclude that the total number of Eve’s queries is O(c�).

Comparison with [HMO+19]. The paper by Haitner et al. uses mostly direct
calculations to derive an upper bound of the mutual information characteriz-
ing the advantage of Alice and Bob over Eve. An important ingredient in their
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proof is that conditioning on Eve’s view does not introduce significant depen-
dency between Alice and Bob; this is true for two-round protocols but fails for
multi-round protocols. Even with perfect completeness, their approach encoun-
ters similar barriers. In contrast, our proof mainly depends on the investigation
of the structure of the table Mτ,fE

, and hence the number of rounds is no longer
a restriction.

1.2 Discussions and Open Problems

In this section, we discuss some open problems and future directions. An imme-
diate question is how to remove the restrictions in our main theorem. We briefly
discuss some potential ways to solve them below.

Protocols with Imperfect Completeness. In our proof, the property of perfect
completeness is used in Lemma 3. The perfect completeness restriction is an
analog of proving deterministic communication complexity, while key-agreement
protocols with imperfect completeness can be likened to randomized communica-
tion protocols. The density increment argument used in this paper was originally
inspired by the proofs of query-to-communication lifting theorems in communi-
cation complexity [RM97,GPW15,GPW17,YZ22]. In communication complex-
ity, past experience suggests that the density increment argument is robust in
the sense that it usually extends to proving randomized communication lower
bounds. For example, the deterministic query-to-communication lifting theorem
was formalized by [GPW15], then [GPW17] proved the extension to the ran-
domized query-to-communication lifting theorem, even though it took several
years.

Protocols with Adaptive Queries. The density increment argument has a good
chance of proving communication lower bounds for adaptive protocols. Particu-
larly, our efficiency proof directly applies to adaptive protocols. Our proof only
utilized the non-adaptivity in Lemma 3. The round-by-round analysis introduced
by Barak and Mahmoody [BMG09] might be helpful to circumvent this obstacle.
Admittedly, the analysis might be slightly more complicated, but we do not see
a fundamental barrier here.

Further Potential Applications. The heavy query technique used in the proof
of [BMG09] has found applications in the context of black-box separations and
black-box security in the random oracle model (see, e.g., [DSLMM11,KSY11,
BKSY11,MP12,HOZ16]). Likewise, it will be interesting to check if our approach
offers fresh perspectives and potential solutions to some open problems. The
following is a list of potential questions.

1. Devise an O(�)-round and O(�2)-query attack for key-argeement protocols in
the ROM [BMG09,MMV11].

2. Consider an M -party protocol where all pairs among M players agree on
secret keys. Given an attack that recovers a constant fraction of the

(

M
2

)

keys
with O(M · �2) oracle queries [DH21].
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3. In the quantum setting, Alice and Bob are capable of conducting quan-
tum computation and classical communication, and the random oracle allows
quantum queries. [ACC+22] introduced the Polynomial Compatibility Con-
jecture and gave an attack (only for protocols with perfect completeness)
assuming this conjecture holds. Devise an attack that has better efficiency or
fewer restrictions.

2 Preliminary

2.1 Notations

For a random variable X, denote x is sampled from (the distribution of ) X as
x ← X; the support of X is defined as supp(X) def= {x : Pr [X = x] > 0}.

Partial Functions. There are many ways to view a partial function f : [N ] →
[M ] ∪ {⊥} with domain Q

def= {w ∈ [N ] : f(w) �= ⊥}: It can be viewed as a func-
tion fQ : Q → [M ], or a list ((wi, f(wi))i∈[Q]. We say two partial functions are
consistent if they agree on the intersection of their domains. For consistent
partial functions f1 and f2, we use f1 ∪ f2 to denote the partial function with
domain Q1 ∪ Q2 and is consistent with f1 and f2.

2.2 Key-Agreement Protocols

Let Π = (A,B) be a two-party protocol consisting of a pair of probabilistic
interactive Turing machines, where the two parties A and B are often referred
to as Alice and Bob. A protocol is called �-oracle-aided if Alice and Bob have
access to an oracle f : [N ] → [M ] and each party makes at most � queries to f .
An oracle-aided protocol is called non-adaptive when both parties choose their
queries before querying the oracle and communicating. Π produces a transcript
τ which is the communication bits between players. The communication com-
plexity of Π, denoted by CC(Π), is the length of the transcript of Π in the
worst case.

We focus on oracle-aided key-agreement protocols in the random oracle
model, where the oracle f is uniformly sampled from the collection of all func-
tions from [N ] to [M ]. Note that the execution of the key-agreement protocol
is completely determined by rA, rB and f , where rA (resp., rB) is Alice’s (resp.,
Bob’s) internal randomness. We call the tuple (rA, rB , f) an extended view . Let
EV = (RA,RB ,F ) denote the distribution of the extended view in a random
execution. For every extended view v = (rA, rB , f), let tran(v), outA(v), outB(v)
be the communication transcript, A’s output, and B’s output respectively, given
the extended view v.

Definition 2 (Key-agreement protocols). Let α, γ ∈ [0, 1], q ∈ N. A protocol
Π = (A,B) is a (α, q, γ)-key-agreement if the following conditions hold:

1. (1 − α)-completeness. Prv←EV [outA(v) = outB(v)] ≥ 1 − α.
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2. (q, γ)-security. For any q-oracle-aided adversary E,

Pr
v=(rA,rB,f)←EV

[

Ef (tran(v)) = outA(v)
] ≤ γ.

Since we aim to prove lower bounds, we assume each party outputs one bit, as per
[HMO+19]. Moreover, [HMO+19] proved that studying the following normalized
key-agreement protocols suffices.

Normalized Key-Agreement Protocols. Following [HMO+19], to simplify the
proof of the lower bound, we can transform the key-agreement protocol Π into
a normalized protocol called Π ′, such that the secret key output by Bob in Π ′

is the first bit of his last query. Formally,

Proposition 1. Let Π be a non-adaptive, �-oracle-aided (α, q, γ)-key-agreement
protocol with communication complexity c. Then there is a non-adaptive (�+1)-
oracle-aided (α, q, γ)-key-agreement protocol Π ′ with communication complexity
c + 1, in which Bob’s output is the first bit of his last query.

2.3 Basic Information Theory

The Shannon entropy of a random variable X is defined as

H(X) def=
∑

x∈supp(X )

Pr [X = x] log
(

1
Pr [X = x]

)

.

The conditional entropy of a random variable X given Y is defined as

H (X | Y ) def= E
y←Y

[H (X | Y = y)] .

We often use (conditional) entropy conditioned on some event E, which is defined
by the same formula where the probability measure Pr [·] is replace by Pr′[·] def=
Pr [·|E] . Entropy conditioned on event E is denoted as H(X|E),H(X|Y , E).

Let X and Y be two (possibly correlated) random variables. The mutual
information of X and Y is defined by

I (X;Y ) def= H(X) − H (X | Y ) = H(Y ) − H (Y | X) .

The conditional mutual information is

I (Xi;Y | X1, . . . ,Xi−1)
def
= H (Xi | X1, . . . ,Xi−1) − H (Xi | Y ,X1, . . . ,Xi−1) .

Proposition 2 (Entropy chain rule). For random variables X1,X2, . . . ,Xn,
it holds that

H(X1,X2, . . . ,Xn) =
n

∑

i=1

H (Xi | X1,X2, . . . ,Xi−1) .
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Proposition 3. (Chain rule for mutual information) For X1,X2, . . . ,Xn are
n random variables and Y is another random variable,

I (X1,X2, . . . ,Xn;Y ) =
n

∑

i=1

I (Xi;Y | X1,X2, . . . ,Xi−1) .

Proposition 4. (Data processing inequality) For two random variables X,Y
and a function f ,

H(f(X)) ≤ H(X) and I (f(X);Y ) ≤ I (X;Y )

3 Communication Complexity of Key-Agreement
Protocols

This section proves the main theorem:

Theorem 4 (Formal version of Theorem 3). Let Π = (A,B) be an �-query-
aided, non-adaptive (0, q, γ)-key-agreement (i.e., Π enjoys perfect completeness),
then

CC(Π) ≥ q

2(� + 1)
· (1 − γ)3

27
− 1 = Ω

(q

�

)

.

By Proposition 1, it suffices to show that

CC(Π) ≥ q

2�
· (1 − γ)3

27
, (2)

for all normalized protocol Π that satisfies the conditions in Theorem 4.
Correlated sets play a central role in our proof; here we give the formal

definition.

Definition 3 (ε-correlated). Let τ be a transcript and fE be a partial function
with domain QE. We say a set S ⊆ [N ] is ε-correlated with respect to (τ, fE)
if

H (F (S) | RA,RB ,F (QE) = fE) − H (F (S) | RA,RB ,F (QE) = fE ∧ T = τ) ≥ ε,

where (RA,RB ,F ) is a random extended view and T
def= tran(RA,RB ,F ).

3.1 Description of the Attacker

The attacker is described in Algorithm 1. In the algorithm, f
(i)
E stands for the

observations of Eve till the end of the i-th iteration. Moreover, we use EV (τ, f (i)
E )
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to denote the distribution of the extended view EV conditioned on the following
two events: (1) the random oracle is consistent with f

(i)
E ; (2) the transcript is τ .

Algorithm 1: The attacker E

Input: transcript τ
Oracle : f : [N ] → [M ]
Output: b ∈ {0, 1,⊥}
Set ε := (1 − γ)2/9
Initialize i := 0 and f

(0)
E as the empty function

while ∃ S ⊆ [N ] s.t. |S| ≤ 2� and is ε-correlated w.r.t. (τ, f (i)
E ) do

Let Si+1 be any ε-correlated set of size at most 2�
Query f on Si+1 and receive f(Si+1)
Set f

(i+1)
E := f

(i)
E ∪ f(Si+1).

i := i + 1
if ∃ b ∈ {0, 1} s.t. Pr

v←EV (τ,f
(i)
E )

[outA(v) = b] ≥ 1 − √
2ε then

Output b
else

Output ⊥

3.2 Success Probability of the Attacker

This subsection analyzes the attacker’s success probability for perfect complete-
ness. We will first introduce the language of the combinatorial rectangle and
then use it to analyze the attacker’s success probability.

Through the Lens of Rectangles. Combinatorial rectangle is a stan-
dard tool in communication complexity. We thus develop this language for key-
agreement protocols in the following.

Let Π be a non-adaptive key-agreement protocol, meaning that queries of
Alice is a function QA(rA) of her internal randomness rA. If fA is a partial
function with domain QA(rA), we call the pair (rA, fA) a profile of Alice. The
profile space of Alice, denoted by X , consists of all possible profiles of Alice,
namely,

X def= {(rA, fA) : fA is a partial function with domain QA(rA)} .

For Bob, we analogously define QB and

Y def= {(rB , fB) : fB is a partial function with domain QB(rB)} .

Given a profile pair (x = (rA, fA), y = (rB , fB)) ∈ X × Y, Alice and Bob can
run the protocol by using fA and fB respectively as oracle answers: when Alice
needs to issue an oracle query w, she takes fA(w) as oracle answer; similarly,
Bob takes fB(w) as oracle answer when querying w. Hence, we can still define
the transcript tran(x, y) and output outA(x, y), outB(x, y).
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Note that some profile pairs are imaginary in the sense that the oracle answers
of Alice and Bob are inconsistent. We say x = (rA, fA) ∈ X and y = (rB , fB) ∈ Y
are consistent if fA and fB are consistent. Define the output table MΠ ∈
{0, 1, ∗}X×Y via

MΠ(x, y) def=

{

outA(x, y), if x, y are consistent;
∗, otherwise.

Let D
def= {(x, y) ∈ X × Y : MΠ(x, y) �= ∗} be the set of all consistent profile

pairs; such profile pairs can be witnessed in real execution.
A set R ⊆ X ×Y is called a rectangle if R = XR ×YR for some XR ⊆ X and

YR ⊆ Y. Let τ be a transcript and fE be a partial function with domain QE .
We care about the profiles that are consistent with fE and produce transcript
τ ; formally, we consider the rectangle Xτ,fE

× Yτ,fE
where

Xτ,fE

def=
{

x = (rA, fA) ∈ X : ∃y = (rB , fB) ∈ Y s.t. fA,fB ,fE are consistent and
tran(x,y)=τ

}

,

and

Yτ,fE

def=
{

y = (rB , fB) ∈ Y : ∃x = (rA, fA) ∈ X s.t. fA,fB ,fE are consistent and
tran(x,y)=τ

}

.

If Π has perfect completeness, the rectangle Xτ,fE
× Yτ,fE

has the following
simple but useful property.

Lemma 1. Assume that Π has perfect completeness. Let (x, y), (x′, y′) ∈
Xτ,fE

× Yτ,fE
for some τ and fE. If MΠ(x, y) = 0 and MΠ(x′, y′) = 1, then

MΠ(x, y′) = MΠ(x′, y) = ∗.
Proof. Assume MΠ(x, y′) �= ∗. Since (x, y′) appears in some execution of Π, by
perfect completeness, we have outA(x, y′) = outB(x, y′). However, outA(x, y′) =
outA(x, y′) = 0 while outB(x, y′) = outB(x′, y′) = 1, a contradiction. The argu-
ment for (x′, y) is similar.

Let QV (τ, fE) denote the query set of Alice and Bob conditioned on (τ, fE),
namely, QV (τ, fE) def= (QA(RA),QB(RB)), where (RA,RB , ·) = EV (τ, fE).
Given (QA, QB) ∈ suppQV (τ, fE), we obtain a subrectangle of Xτ,fE

× Yτ,fE

by adding the restriction that Alice’s (resp., Bob’s) queries is QA (resp., QB).
That is, we consider Xτ,fE

(QA) × Yτ,fE
(QB) where

Xτ,fE
(QA) def= {x = (rA, fA) ∈ Xτ,fE

: QA(rA) = QA} ,

Yτ,fE
(QB) def= {y = (rB , fB) ∈ Yτ,fE

: QB(rB) = QB} .

Definition 4 (Monochromatic Rectangle). A rectangle R ⊆ X ×Y is called
b-monochromatic if R ∩ D �= ∅ and for every (x, y) ∈ R ∩ D, MΠ(x, y) = b;
R is said to be monochromatic if it is b-monochromatic for some b ∈ {0, 1}.
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The following lemma shows that if the protocol is normalized and has perfect
completeness, the rectangle Xτ,fE

× Yτ,fE
has a special structure: It can be

partitioned into monochromatic rectangles according to the queries.

Lemma 2. Suppose Π is normalized and has perfect completeness. Let τ be a
transcript and fE be a partial function. For all (QA, QB) ∈ suppQV (τ, fE), the
rectangle Xτ,fE

(QA) × Yτ,fE
(QB) is monochromatic.

Proof. Since Π is normalized, for any (x, y) ∈ Xτ,fE
(QA)×Yτ,fE

(QB), outB(x, y)
is determined by QB . Moreover, because of perfect completeness, outA(x, y) =
outB(x, y) for all (x, y) ∈ Xτ,fE

(QA)×Yτ,fE
(QB). Thus, Xτ,fE

(QA)×Yτ,fE
(QB)

is monochromatic.

Analyzing the Attacker’s Success Probability. Next, we show that Algo-
rithm 1 breaks the security of normalized protocols. The following lemma char-
acterizes what happens after all small ε-correlated sets are cleaned up; it roughly
says that if there exists no small ε-correlated set, the key is almost determined
conditioned on Eve’s information.

Lemma 3. Let τ be a transcript and fE be a partial function with domain QE.
If there exists no ε-correlated set of size at most 2� w.r.t. (τ, fE), then ∃b ∈ {0, 1}
s.t.

Pr
v←EV (τ,fE)

[outA(v) = b] ≥ 1 −
√

2ε.

Proof. Write δ
def=

√
2ε. Assume towards contradiction that

Pr
v←EV (τ,fE)

[outA(v) = b] > δ,∀b ∈ {0, 1} .

For b ∈ {0, 1}, define

Gb
def
= {(QA, QB) ∈ suppQV (τ, fE) : Xτ,fE (QA) × Yτ,fE (QB) is b-monochromatic} .

By Lemma 2, ∀b ∈ {0, 1},

Pr
v←EV (τ,fE)

[(QA(v),QB(v)) ∈ Gb] = Pr
v←EV (τ,fE)

[outA(v) = b] > δ. (3)

For Q = (QA, QB), Q′ = (Q′
A, Q′

B), define

h(Q, Q
′
)

def
= H (F (QA ∪ QB) | F (QE) = fE)

− H
(
F (QA ∪ QB) | QA(RA) = Q

′
A ∧ QB(RB) = Q

′
B ∧ F (QE) = fE ∧ T = τ

)
,

where (RA,RB ,F ) is a random extended view and T = tran(RA,RB ,F ) as
usual. Then, we have

Claim. For all Q0 = (Q0
A, Q0

B) ∈ G0 and Q1 = (Q1
A, Q1

B) ∈ G1, we have
h(Qb, Q1−b) ≥ 1 for some b ∈ {0, 1}.
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The above claim suggests some kind of correlation with the transcript exists;
next, we prove such correlation gives rise to an ε-correlated set.

Consider the following complete bipartite graph, denoted by G:

1. The left vertex set is V0 and each vertex v ∈ V0 is associated with some
Q(v) ∈ G0.

2. The right vertex set is V1 and each vertex v ∈ V1 is associated with some
Q(v) ∈ G1.

3. For each Q ∈ G0∪G1, the number of vertices associated with Q is proportional
to PrQV (τ,fE) [Q].

We assign an orientation to G as follows: for all v0 ∈ V0, v1 ∈ V1, if
h(Q(v0), Q(v1)) ≥ 1, then the edge {v0, v1} is directed towards v1; otherwise,
{v0, v1} is directed towards v0. Let E(G) denote the set of all directed edges.
By the above claim, each directed edge v → v′ satisfies h(Q(v), Q(v′)) ≥ 1. Let
Γ(v) def= {v′ : (v → v′) ∈ E(G)} denote the set of out-neighbors of v. WLOG,
assume that |V0| ≤ |V1|. By average argument, there exists some v∗ ∈ V0 ∪ V1

such that |Γ(v∗)| ≥ |V0|·|V1|
|V0|+|V1| ≥ |V0|/2.

Say v∗ ∈ Vb∗ , then we have

Pr
v←V1−b∗

[(v∗ → v) ∈ E(G)] =
|Γ(v∗)|
|V1−b∗ | ≥ |V0|

2|V1−b∗ |

=
1

2
· Prv←EV (τ,fE) [(QA(v), QB(v)) ∈ G0]

Prv←EV (τ,fE) [(QA(v), QB(v)) ∈ G1−b∗ ]

>
δ

2
.

Let Q∗ def= Q(v∗). Then we have

E
Q←QV (τ,fE)

[h(Q∗, Q)]

≥ E
Q←QV (τ,fE)

[h(Q∗, Q) | Q ∈ G1−b∗ ] Pr
Q←QV (τ,fE)

[Q ∈ G1−b∗ ]

≥ E
v←V1−b∗

[h(Q(v∗), Q(v))] · δ

≥ Pr
v←V1−b∗

[(v∗ → v) ∈ E(G)] · δ

=
δ2

2
= ε,

(4)

where the second inequality follows from Eq. (3) and the construction of G, and
the third inequality holds because h(Q(v∗), Q(v)) ≥ �[(v∗ → v) ∈ E(G)].

Note that EQ←QV (τ,fE) [h(Q∗, Q)] ≥ ε means that

H (F (Q∗
A ∪ Q∗

B) | F (QE) = fE)
− H (F (Q∗

A ∪ Q∗
B) | QA(RA),QB(RB),F (QE) = fE ∧ T = τ) ≥ ε,
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where Q∗ = (Q∗
A, Q∗

B). Thus, letting ̂Q = Q∗
A ∪ Q∗

B , we have

H
(
F (Q̂) | RA,RB ,F (QE) = fE

)
− H

(
F (Q̂) | RA,RB ,F (QE) = fE ∧ T = τ

)

≥H
(
F (Q̂) | RA,RB ,F (QE) = fE

)

− H
(
F (Q̂) | QA(RA), QB(RB),F (QE) = fE ∧ T = τ

)

=H
(
F (Q̂) | F (QE) = fE

)
− H

(
F (Q̂) | QA(RA), QB(RB),F (QE) = fE ∧ T = τ

)

≥ ε,

where the first inequality is by data processing inequality and the second step
holds as F ( ̂Q),RA,RB are independent. That is, ̂Q is ε-correlated w.r.t. (τ, fE),
a contradiction.

It remains to prove the claim involved in the above proof.

Proof (of Claim). Define

Rb
def= Xτ,fE

(Qb
A) × Yτ,fE

(Qb
B) where b ∈ {0, 1} .

For all (x, y) ∈ R0, (x′, y′) ∈ R1, we have MΠ(x, y) = 0 and MΠ(x′, y′) = 1, and
hence MΠ(x, y′) = ∗ according to Lemma 1. This means that oracle answers in
profile x and profile y′ are inconsistent. Note that all inconsistent queries are in
S

def= Q0
A ∩ Q1

B . Therefore,

supp
(

F (S)|QA(RA)=Q0
A∧QA(RB)=Q0

B∧T =τ∧F (QE)=fE

)

∩ supp
(

F (S)|QA(RA)=Q1
A∧QA(RB)=Q1

B∧T =τ∧F (QE)=fE

)

= ∅.

A simple average argument shows that for some b∗ ∈ {0, 1},
∣

∣

∣supp
(

F (S)|QA(RA)=Qb∗
A ∧QA(RB)=Qb∗

B ∧T =τ∧F (QE)=fE

)∣

∣

∣

≤
∣

∣supp
(

F (S)|F (QE)=fE

)∣

∣

2
.

(5)

Consequently,

Δ def= H (F (S) | F (QE) = fE)

− H
(

F (S) | QA(RA) = Qb∗
A ∧ QB(RB) = Qb∗

B ∧ F (QE) = fE ∧ T = τ
)

≥H (F (S) | F (QE) = fE)

− log
∣

∣

∣supp
(

F (S)|QA(RA)=Qb∗
A ∧QA(RB)=Qb∗

B ∧T =τ∧F (QE)=fE

)∣

∣

∣

≥ log
∣

∣

∣supp
(

F (S)|F |QE
=fE

)∣

∣

∣ − log

∣

∣supp
(

F (S)|F (QE)=fE

)∣

∣

2
=1,
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where the second inequality follows from Eq. 5 and the fact that F (S)|F (QE)=fE

is uniform distribution.
Now that Δ ≥ 1, it suffice to show h(Q1−b∗ , Qb∗) ≥ Δ. Since S ⊆ Q1−b∗

A ∪
Q1−b∗

B , this follows from chain rule:

h(Q1−b∗ , Qb∗) − Δ

=H
(
F (S) | F (QE) = fE

)

− H
(
F (S) | F (S), QA(RA) = Qb∗

A ∧ QB(RB) = Qb∗
B ∧ F (QE) = fE ∧ T = τ

)

≥ 0,

where S
def= (Q1−b∗

A ∪ Q1−b∗
B ) \ S and the inequality holds since F (S)|F (QE)=fE

is uniform distribution (and uniform distribution has maximum entropy).

Corollary 1 (Accuracy of E). Let Π be an �-oracle-aided, non-adaptive
(1, q, γ)−key-agreement. Assume the Π is normalized, then Algorithm 1 guesses
the key correctly with probability at least 1 − √

2ε, i.e.,

Pr
v=(rA,rB,f)←EV

[

Ef (tran(v)) = outA(v)
]

> 1 −
√

2ε.

Proof. By Lemma 3, E outputs outA(v) except with probability less than
√

2ε.

3.3 Efficiency of the Attacker

In this subsection, we analyze the efficiency of the attacker Eve (Algorithm 1)
via the density increment argument [YZ22,YZ23]. We first introduce the den-
sity function. Intuitively, the density function Φ(τ, fE) captures the amount of
hidden information contained in the transcript τ about the random function F
given Eve’s observation of oracle fE . As Eve makes effective queries, she learns
(a constant amount of) information in each iteration, so the density function
decreases by a constant.

Definition 5 (Density function). Let τ be a transcript and fE be a partial
function with domain QE. Define density function Φ via

Φ(τ, fE)
def
= H (F | RA,RB,F (QE) = fE) − H (F | RA,RB,F (QE) = fE ∧ T = τ) ,

where (RA,RB,F ) is a random extended view and T
def= tran(RA,RB,F ).

Lemma 4. The density function Φ satisfies the following properties:

1. Φ is non-negative.
2. Eτ←T [Φ(τ, f∅)] ≤ CC(Π), where f∅ denotes the empty function.
3. If S if ε-correlated w.r.t. (τ, fE), then

E
fS←F (S)|T =τ,F (QE)=fE

[Φ(τ, fE ∪ fS)] ≤ Φ(τ, fE) − ε.
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Proof. We prove these statements as follows.
1. F is uniform distribution conditioned on RA,RB and the event F (QE) = fE .
Hence Φ is non-negative.
2. By definition, we have that

E
τ←T

[Φ(τ, f∅)] = E
τ←T

[H (F | RA,RB) − H (F | RA,RB,T = τ)]

= H (F | RA,RB) − H (F | RA,RB,T )
= I (F ;T | RA,RB)
≤ H(T )
≤ CC(Π).

3. Write Q′
E

def= QE ∪ S. We decompose

Φ(τ, fE) − E
fS←F (S)|T =τ,F (QE)=fE

[Φ(τ, fE ∪ fS)] = φ1 − φ2,

where

φ1
def= H (F | RA,RB,F (QE) = fE)

− E
fS←F (S)|T =τ,F (QE)=fE

[H (F | RA,RB,F (Q′
E) = (fE ∪ fS))] ,

and

φ2
def= H (F | RA,RB,F (QE) = fE ∧ T = τ)

− E
fS←F (S)|τ,fE

[H (F | RA,RB,F (Q′
E) = (fE ∪ fS) ∧ T = τ)] .

Since RA,RB,F are independent, we have (by chain rule)

φ1 = H (F (S) | RA,RB,F (QE) = fE) .

Observe that by the definition of conditional entropy,

E
fS←F (S)|τ,fE

[H (F | RA,RB,F (Q′
E) = (fE ∪ fS) ∧ T = τ)]

= H (F | RA,RB,F (S),F (QE) = fE ∧ T = τ) .

By the chain rule,

φ2 =H (F | RA,RB,F (QE) = fE ∧ T = τ)
− H (F | RA,RB,F (S),F (QE) = fE ∧ T = τ)

=H (F (S) | RA,RB,F (QE) = fE ∧ T = τ) .

(6)

Since S is ε-correlated, we have

H (F (S) | RA,RB,F (QE) = fE) − H (F (S) | RA,RB,F (QE) = fE ∧ T = τ) ≥ ε,

and hence

Φ(τ, fE) − E
fS←F (S)|T =τ,F (QE)=fE

[Φ(τ, fE ∪ fS ] = φ1 − φ2 ≥ ε.
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Following Lemma 4, we can deduce that our attacker E (Algorithm 1) makes
at most CC(Π)/ε iterations in expectation.

Lemma 5 (Efficiency of E). E[# of iterations in the running of E] ≤ CC(Π)
ε .

Proof. Recall the sampling procedure in Sect. 1.1. Then, we define some random
variables in a random execution for analysis. Let F

(i)
E = F

(i−1)
E ∪ F (Si) be the

observations of Eve until the end of the i-th iteration, where F
(0)
E is the empty

function. If E does not enter the i-th iteration, we define F
(i)
E = F

(i−1)
E . Define

a counter variable to record the number of iterations as follows: C0
def= 0 and for

i ≥ 0

Ci+1
def=

{

Ci + 1, if E enters the i-th iteration;
Ci, otherwise.

We claim that for every τ and fE ,

E
[

Φ(T ,F
(i)
E ) − Φ(T ,F

(i+1)
E ) − ε(Ci+1 − Ci) | T = τ ∧ F

(i)
E = fE

]

≥ 0. (7)

To see this, consider the event Enteri
def= ‘E enters the i-th iteration’. Conditioned

on Enteri, Ci+1 − Ci = 1 and by the third item of Lemma 4, the underlined
part is non-negative; conditioned on ¬Enteri, the underlined part equals zero by
definition.

Since Eq. (7) holds for all (τ, fE), we get

E
[

Φ(T ,F
(i)
E ) − Φ(T ,F

(i+1)
E ) − ε(Ci+1 − Ci)

]

≥ 0.

Summing over i = 0, · · · , N − 1, we obtain

E[Φ(T ,F
(0)
E ] − E[Φ(T ,F

(N)
E )] − εE[CN − C0] ≥ 0.

By the first and second items of Lemma 4, we have E[Φ(T ,F
(N)
E )] ≥ 0 and

E[Φ(T ,F
(0)
E )] ≤ CC(Π). Note that C0 = 0 and CN equals the total number of

iterations because there can never be more than N iterations. Therefore, we get

E[# of iterations in the running of E] = E[CN ] ≤ CC(Π)
ε

.

So far, we have bounded the expected number of iterations of Algorithm 1
from above; however, Algorithm 1 could make too many queries in the worst
case. To prove our main theorem, we need an attacker who makes a bounded
number of queries in the worst case. We construct such an attacker by running
E for a limited number of iterations.
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Theorem 5. Let E′ be an attacker who runs E but aborts when the number of
iterations exceeds CC(Π)

ε3/2 . Then the following statements hold:

1. Efficiency: E′ makes at most qE′ = 2� · CC(Π)/ε3/2 oracle queries.
2. Accuracy: The success probability of E′ is at least γ.

Proof. Efficiency holds because E′ queries at most CC(Π)/ε3/2 sets and each set
has size at most 2�. As for accuracy, let β, β′ be the success probability of E,E′

respectively. By the definition of E′, we have

|β′ − β| ≤ Pr [E′ aborts]

= Pr
[

# of iterations in the running of E is more than CC(Π)/ε3/2
]

.

Lemma 5 together with Markov’s inequality shows that this quantity is at most√
ε. Therefore, we have β′ ≥ β −√

ε. By the accuracy of E (Corollary 1) and our
choice of ε (i.e., ε = (1 − γ)2/9), we obtain β′ ≥ 1 − √

2ε − √
ε > 1 − 3

√
ε = γ.

Proving the Main Theorem. Theorem 4 immediately follows from the above
lemma.

Proof (of Theorem 4). Let Π be a protocol that satisfies the conditions of The-
orem 4. It suffices to prove CC(Π) ≥ q

2� · (1−γ)3

27 (Eq. 2), provided that Π is
normalized. Since E′ in theorem 5 succeeds with probability γ and Π is a (q, γ)-
secure by assumption, we must have qE′ > q, which implies

CC(Π) >
q

2�
· ε3/2 =

q

2�
· (1 − γ)3

27
.
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