
Immunizing Backdoored PRGs

Marshall Ball(B) , Yevgeniy Dodis , and Eli Goldin

New York University, New York, USA
{marshall,dodis}@cs.nyu.edu, eli.goldin@nyu.edu

Abstract. A backdoored Pseudorandom Generator (PRG) is a PRG
which looks pseudorandom to the outside world, but a saboteur can break
PRG security by planting a backdoor into a seemingly honest choice of
public parameters, pk, for the system. Backdoored PRGs became increas-
ingly important due to revelations about NIST’s backdoored Dual EC
PRG, and later results about its practical exploitability.

Motivated by this, at Eurocrypt’15 Dodis et al. [22] initiated the ques-
tion of immunizing backdoored PRGs. A k-immunization scheme repeat-
edly applies a post-processing function to the output of k backdoored
PRGs, to render any (unknown) backdoors provably useless. For k = 1,
[22] showed that no deterministic immunization is possible, but then
constructed “seeded” 1-immunizer either in the random oracle model,
or under strong non-falsifiable assumptions. As our first result, we show
that no seeded 1-immunization scheme can be black-box reduced to any
efficiently falsifiable assumption.

This motivates studying k-immunizers for k ≥ 2, which have an addi-
tional advantage of being deterministic (i.e., “seedless”). Indeed, prior
work at CCS’17 [37] and CRYPTO’18 [8] gave supporting evidence that
simple k-immunizers might exist, albeit in slightly different settings.
Unfortunately, we show that simple standard model proposals of [8,37]
(including the XOR function [8]) provably do not work in our setting.
On a positive, we confirm the intuition of [37] that a (seedless) random
oracle is a provably secure 2-immunizer. On a negative, no (seedless)
2-immunization scheme can be black-box reduced to any efficiently falsi-
fiable assumption, at least for a large class of natural 2-immunizers which
includes all “cryptographic hash functions.”

In summary, our results show that k-immunizers occupy a peculiar
place in the cryptographic world. While they likely exist, and can be
made practical and efficient, it is unlikely one can reduce their security
to a “clean” standard-model assumption.

1 Introduction

Pseudorandom number generators (PRGs) expand a short, uniform bit string s
(the “seed”) to a larger sequence of pseudorandom bits X. Beyond their status

M. Ball—Supported in part by the Simons Foundation.
Y. Dodis—Research Supported by NSF grant CNS-2055578, and gifts from JP Morgan,
Protocol Labs and Algorand Foundation.
E. Goldin—Partially supported by a National Science Foundation Graduate Research
Fellowship.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14371, pp. 153–182, 2023.
https://doi.org/10.1007/978-3-031-48621-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48621-0_6&domain=pdf
http://orcid.org/0000-0002-4236-3710
http://orcid.org/0000-0003-1013-6318
http://orcid.org/0000-0002-7975-8281
https://doi.org/10.1007/978-3-031-48621-0_6

154 M. Ball et al.

as a fundamental primitive in cryptography, they are used widely in practi-
cal random number generators, including those in all major operating systems.
Unsurprisingly, PRGs have been target of many attacks over the years. In this
work we focus on a specific, yet prominent, type of PRG attack which arises by
planting a backdoor inside the PRG. This type of attack goes far back to 1983,
when Vazirani and Vazirani [42,43] introduced the notion of “trapdoored PRGs”
and showed the Blum-Blum-Shub PRG is one such example [13]. Their purpose
was not for sabotaging systems, however, but instead they used the property
constructively in a higher level protocol.

NIST Dual EC PRG. Perhaps the most infamous demonstration of the poten-
tial for sabotage is the backdoored NIST Dual EC PRG [1]. Oversimplifying
this example for the sake of presentation (see [17,22,39] for the “real-world”
description), the attack works as follows. The (simplified) PRG is parameterized
by two elliptic curve points; call them P and Q. These points are supposed to be
selected at random and independent from each other, forming the PRG public
parameter pk = (P,Q) which can be reused by multiple PRG instances. Each
new PRG instance then selects a random initial seed s, and can expand into
random-looking elliptic curve points X = sP and Y = sQ. Ignoring the details
of mapping elliptic curve points into bit-strings,1 as well as subsequent itera-
tions of this process, one can conclude that the points (X,Y) are pseudorandom
conditioned on pk = (P,Q). In fact, this is provably so under to widely believed
Decisional Diffie-Hellman (DDH) assumption.

Yet, imagine that the entity selecting points P and Q chooses the second
point Q as Q = dP for a random multiple (“discrete log”) d, and secretly keeps
this multiple as its backdoor sk = d. Notice, the resulting public parameter
distribution pk = (P,Q) is identical to the supposed “honest” distribution, when
Q was selected independently from P . Thus, the outside world cannot detect any
cheating in this step, and could be swayed to use the PRG due to its provable
security under the DDH assumption. Yet, the knowledge of d can easily allow
the attacker to distinguish the output (X,Y) from random; or, worse, predict Y
from X, by noticing that

Y = sQ = s(dP) = d(sP) = dX

While we considerably simplified various low level details of the Dual EC PRG,
the works of [17,39] showed that the above attack idea can be extended to attack-
ing the actual NIST PRG. Moreover, the famous “Juniper Dual EC incident”
(see [16] and references therein) showed that this vulnerability was likely used
for years in a real setting of Juniper Networks VPN system!

Backdoored PRGs. Motivated by these real-world considerations, the work
of Dodis et al. [22] initiated a systematic study of so called backdoored PRGs,
abstracting and generalizing the Dual EC PRG example from above. A back-
doored PRG (K,G) is specified by a (unknown to the public) key generation
algorithm K which outputs public parameters pk, and a hidden backdoor sk.
1 And instead thinking of PRG as outputting pseudorandom elliptic curve points.

Immunizing Backdoored PRGs 155

The “actual PRG” G takes pk and a current PRG state s as input, and gener-
ates the next block of output bits R and the updated (internal) state s. The
initial seed/state s = s0 is assumed to be chosen at random and not con-
trolled/sabotaged by the attacker. We call this modeling honest initialization,
emphasizing that the Dual EC PRG attack was possible even under such assump-
tion. The PRG can then be iterated any number of times q, producing successive
outputs (Ri) and corresponding internal states (si). The basic constraint on the
saboteur is that the joint output X = (R1, . . . , Rq) should be indistinguishable
from uniform given only the public parameters pk (but not the secret backdoor
sk). We call this constraint public security.

Unfortunately, the dual EC PRG example shows that public security—even
when accompanied by a “security proof”—does not make the backdoor PRG
secure against the saboteur, who also knows sk. In fact, [22] showed that the
necessary and sufficient assumption for building effective backdoor PRGs (secure
to public but broken using sk) is the existence of any public-key encryption
scheme with pseudorandom ciphertexts.

1.1 Our Questions: Immunization Countermeasures

While the question of designing backdoored PRGs is fascinating, in this work
we are interested in various countermeasures against backdoor PRGs, a topic of
interest given the reduced trust in PRGs engendered by the possibility of back-
dooring. Obviously, the best countermeasure would be to use only trusted PRGs,
if this is feasible. Alternatively, one could still agree to use a given backdoor PRG,
but attempt to overwrite its public parameters pk. For example, this latter app-
roach is advocated (and formally proven secure) in [5,35]. Unfortunately, these
techniques cannot be applied in many situations. For example, existing propri-
etary software or hardware modules may not be easily changed, or PRG choices
may be mandated by standards, as in the case of FIPS. Additionally, the user
might not have not have direct control over the implementation itself (for exam-
ple, if it is implemented in hardware or the kernel), or might not have capability
or expertise to properly overwrite (potentially hidden or hardwired) value of pk.
Fortunately, there is another approach which is much less intrusive, and seems
to be applicable to virtually any setting: to efficiently post-process the output of
a PRG in an online manner in order to prevent exploitation of the backdoor. We
call such a post-processing strategy an immunizer.2

The question of building such immunizers was formally introduced and stud-
ied by Dodis et al. [22]. For example, the most natural such immunizer would
simply apply a cryptographic hash function C, such as SHA-256 (or SHA-3),
to the current output Ri of the PRG, only providing the saboteur with value

2 Note that the immunizer only processes pseudorandom outputs and does not have
access to the internal state (which is not necessarily available to a user). Indeed, if
one has access to a random initial state, there is a trivial “immunizer” that ignores
the given backdoor PRG, and instead uses the random state to bootstrap a different
(non-backdoored) PRG.

156 M. Ball et al.

Zi = C(Ri) instead of Ri itself. The hope being that hashing the output of a
PRG will provide security even against the suspected backdoor sk.3 Unfortu-
nately, [22] showed that this natural immunizer does not work in general, even
if C is modeled as a Random Oracle (RO)! Moreover, this result easily extends
to any deterministic immunizer C (e.g., bit truncation, etc.).

Instead, the solution proposed by [22] considers a weaker model of proba-
bilistic/seeded immunizers, where it is assumed that some additional, random-
but-public parameter can be chosen after the attacker finalized design of the
backdoor PRG (K,G), and published the public parameters pk. While [22] pro-
vide some positive results for such seeded immunizers, these results were either
in the random oracle model, or based on the existence of so called universal
computational extractors (UCEs) [9]. Thus, we ask the question:

Question 1. Can one built a seeded backdoor PRG immunizer in the standard
model, under an efficiently falsifiable4 assumption?

It turns out that we can use the elegant black-box separation technique of
Wichs [44] to give a negative answer to this question (proof included in the full
version [6]).

Theorem 1. If there is a black-box reduction showing security of a seeded immu-
nizer C from the security of some cryptographic game G, then G is not secure.

Moreover, the availability and trust issues in generating and agreeing on
the public seed required for the immunization make this solution undesirable
or inapplicable for many settings. Thus, we ask the question if deterministic
immunizers could exist in another meaningful model, despite the impossibility
result of [22] mentioned above. And, as a secondary question, if they can be
based on efficiently falsifiable assumptions.

2-Immunizers to Rescue? We notice that the impossibility result of [22]
implicitly (but critically) assumes that only a single honestly-initialized backdoor
PRG is being immunized. Namely, the immunizer C is applied to the output(s)
Ri of a single backdoor PRG (K,G). Instead, we notice that many PRGs allow
to explicitly initialize multiple independent copies. For example, a natural idea
would be to initialize two (random and independent) initial states s and s′ of
the PRG, run these PRGs in parallel, but instead of directly outputting these
outputs Ri and R′

i, respectively, the (“seedless”) immunizer C will output the
value Zi = C(Ri, R

′
i) to the attacker.5 We call such post-processing procedures

2-immunizers.6 More generally, one can consider k-immunizers for k ≥ 2, but
3 This assumption presumes that such C itself is not backdoored.
4 Recall that, loosely speaking, an assumption is efficiently falsifiable if the falseness

of the assumption can be verified (efficiently), given an appropriate witness.
5 Note that again if the post-processing is not sufficiently “simple” (here this means

statelessly processing outputs in an online manner), one can trivially bootstrap “hon-
est” public parameters from many fresh PRG invocations.

6 Drawing inspiration from 2-source extractors [18] to similarly overcome the impos-
sibility of deterministic extraction from a single weak source of randomness.

Immunizing Backdoored PRGs 157

setting k = 2 is obviously the most preferable in practice. As before, our hope
would be that the final outputs (Z1, . . . , Zq) will be pseudorandom even condi-
tioned on the (unknown) backdoor sk, and even if the key generation algorithm
K could depend on the choice of our 2-immunizer C. This is the main question
we study in this work:

Question 2. (Main Question). Can one construct a provably secure 2-immunizer
C against all efficient backdoored PRGs (K,G)?

We note that several natural candidates for such 2-immunizers include XOR,
inner product, or a cryptographic hash function C.

A note on immunizers from computational assumptions. One may won-
der whether it is worth considering immunizers whose security depends on a
computational assumption. After all, if the computational assumption is suffi-
ciently strong to imply that pseudorandom generators exist (as most assump-
tions are), then why would we not just use the corresponding PRG? However,
we think that building a immunizer in this setting is still interesting for two
reasons. First, if we can show that a immunizer exists in this regime, then this
gives evidence that an information-theoretic style immunizer also exists. Second,
there are some scenarios where one has access to PRG outputs but no access to
true randomness (for example if the kernel does not give direct access to its ran-
dom number generator). In this setting, we can use a computational immunizer
to recover full security.

1.2 Related Immunization Settings

Before describing our results, it might be helpful to look at the two conceptually
similar settings considered by Bauer at al. [8,21] and Russell et al. [37].

Detour 1: Backdoored Random Oracles. In this model [8], one assumes
the existence of a truly random oracle G. However, the fact that G might have
been “backdoored” is modeled by providing the attacker with the following leak-
age oracle any polynomial number of times: given any (potentially inefficient)
function g, the attacker can learn the output of g applied to the entire truth-
table of G. For example, one can trivially break the PRG security of a length-
expanding random oracle R = G(s), by simply asking the leakage oracle gR(G)
whether there is a shorter-than-R seed s s.t. G(s) = R.

With this modeling, [8] asked (among other things) whether one can build
2-immunizers for two independent BROs F and G. For example, in case of pseu-
dorandomness, they explicitly asked if H(s) = F (s)⊕G(s) is pseudo-random (for
random seed s), even if the distinguisher can have polynomial number of leak-
age oracle calls to F and G separately (but not jointly). Somewhat surprisingly,
they reduce this question to a plausible conjecture regarding communication
complexity of the classical set-intersection problem (see [15] for a survey of this
problem). Thus, despite not settling this question unconditionally, the results of
[8] suggest that XOR might actually work for the case of PRGs.

158 M. Ball et al.

In addition, [38] studies the question of k-immunizers in the related setting
of “subverted” random oracles (where the subverted oracle differs from the true
one on a small number of inputs). There, a simple yet slightly more complicated
“xor-then-hash” framework is shown to provide a good immunizer.

Detour 2: Kleptographic Setting. While the study of kleptography goes
back to the seminal works of Young and Yung [45–47] (and many others), let us
consider a more recent variant of [37]. This model is quite general, attempting
to formalize the ability of the public to test if a given black-box implementation
is done according to some ideal specification. As a special case, this could in
particular cover the problem of public parameter subversion of PRGs, where the
PRG designer kept some secret information sk, instead of simply choosing pk at
random.

We will comment on the subtleties “kleptographic PRGs” vs “backdoored
PRGs” a bit later, but remark that [37] claimed very simple k-immunizers in
their setting. Specifically they showed that for one-shot PRGs (where there is
no internal state for deriving arbitrarily many pseudorandom bits) in the klep-
tographic setting, random oracle C is a good 2-immunizer, while for k � 2, one
can even have very simple k-immunizers in the standard model. For example,
have each of k PRGs shrink its output to a single bit, and then concatenate
these bits together. Again this suggests that something might work for the more
general case of (stateful) PRGs.

1.3 Our Results for 2-Immunizers

As we see, in both of these related settings it turns out that simple k-immunizers
exist, including XOR and random oracle for k = 2. Can these positive results be
extended to the backdoored PRG setting?

XOR is Insecure. First we start with the simple XOR 2-immunizer C(x, y) =
x⊕y, which is probably the simplest and most natural scheme to consider. More-
over, as we mentioned, the PRG results of [8] for BROs give some supporting
evidence that this 2-immunizer might be secure in the setting of backdoor PRGs.
Unfortunately, we show that this is not the case.7 Intuitively, the BRO modeling
assumes that both generators F and G are modeled as true random oracles with
bounded leakage, which means that both of them have a lot of entropy hidden
from the attacker. In contrast, the backdoor PRG model of [22] (and this work)
allows the attacker to build F and G which are extremely far from having any
non-trivial amount of entropy to the attacker who knows the backdoor sk.

Indeed, our counter-example for the XOR immunizer comes from a more gen-
eral observation, which rules out all 2-immunizers C for which one can build a
public key encryption scheme (Enc,Dec) which has pseudorandom ciphertexts,
and is what we call C-homomorphic. Oversimplifying for the sake of presen-
tation (see Definition 13), we need an encryption scheme where the message

7 Under a widely believed cryptographic assumption mentioned shortly.

Immunizing Backdoored PRGs 159

m—independently encrypted twice under the same public key pk with corre-
sponding ciphertexts x and y—can still be recovered using the secrete key sk
and “C-combined” ciphertext z = C(x, y). If such a scheme exists, the back-
door PRG can simply output independent encryptions of a fixed message (say,
0) as its pseudorandom bits. The C-homomorphic property then ensures that
the attacker can still figure that 0 was encrypted after seeing the combined
ciphertext z = C(x, y), where x and y are now (individually pseudorandom, and
hence secure to public) encryptions of 0. Moreover, we build a simple “XOR-
homomorphic” public key encryption under a variant of the LPN assumption
due to Alekhnovich [3]. Thus, under this assumption we conclude that XOR is
not a secure 2-immunizer.

Theorem 2. Assuming the Alekhnovich assumption (listed in Proposition 1)
holds, XOR is not a secure 2-immunizer.

Inadequacy of Kleptographic Setting for PRGs. Our second obser-
vation is that the kleptographic setting considered by [37]—which extremely
elegant and useful for many other cryptographic primitives (and additionally
considers the dimension of corrupted implementations, which we do not con-
sider) – does not adequately model the practical problem of backdoored PRGs.
In essence, the subverted PRG modeling of [36,37] yields meaningful results
in the stateless (one-time output production) setting, but does not extend to
the practically relevant stateful setting. It is worth noting that while [37] infor-
mally claim (see Remark 3.2 in [36]) a trivial composition theorem to move from
stateless to the (practically relevant) stateful setting, that result happens to be
vacuous.8 In particular, the “ideal specification” of stateful PRGs (implicitly
assumed by the authors in their proofs) requires that stateful PRG would pro-
duce fresh and unrelated outputs, even after rewinding the PRG state to some
prior state. However, PRGs are deterministic after the initial seed is chosen. As
such, even the most secure and “stego-free” implementation will never pass such
rewinding test, as future outputs are predetermined once and for all. Stated dif-
ferently, the “ideal specification” of stateful PRG implicitly assumed by [36,37]
in Remark 3.2 is too strong, and no construction can meet it.9

To see this modeling inadequacy directly, recall that one of the standard
model k-immunizers from [36,37] simply concatenates the first bit of each PRG’s
output. For a stateless (one-time) PRG case, this is secure for trivial (and prac-
tically useless) reasons: each PRG bit should be statistically random, or the
“public” (called the “watchdog” by the authors) will easily catch it. But now
8 In general, we conjecture no such composition result is true under proper modeling

of backdoor PRGs, such as the one in this work. For example, 2-immunization for
stateless PRGs can be effectively instantiated with a sufficiently strong 2-source
extractor. In contrast, our negative result (mentioned later in the Introduction)
rules out such extractors as sufficient for stateful PRGs.

9 Note however, that their modeling does capture pseudorandom number generators
(PRNGs) which accumulate entropy albeit in a setting where one has rewinding
access and the entropy sources are not too adversarial.

160 M. Ball et al.

let us look at the stateful extension,—which could be potentially useful if it was
secure,—and apply it to the the following Dual-EC variant. On a given initial
state s, in round i the variant will output the ith bit of Dual-EC initialized with
s. Syntactically, this is the same (very dangerous) backdoor PRG we would like
to defend against, although made artificially less efficient. Yet, when the “con-
catenation” k-immunizer above is applied to this (stateful) variant, the attacker
still learns full outputs of each of the k PRG copies, and can just do the standard
attack on Dual-EC separately on each copy. This means that this k-immunizer
is blatantly insecure in our setting, for any value of k.

Random Oracle is Secure. Despite the inability to generically import the
positive results of [36,37] to our setting, we can still ask if the random oracle
2-immunizer result claimed by [36,37] is actually true for backdoored PRGs.
Fortunately, we show that this is indeed the case, by giving a direct security
proof.10 In fact, it works even is the so called auxiliary-input ROM (AI-ROM)
defined by Unruh [41] and recently studied by [19,23]. In this model we allow the
saboteur to prepare the backdoor sk and public parameters pk after unbounded
preprocessing of the Random Oracle C. The only constraint of the resulting back-
doored PRG G is that it has to be secure to the public in the standard ROM
(since the public might not have enough resources to run the expensive prepro-
cessing stage). Still, when being fed with outputs zi = C(xi, yi), the saboteur
cannot distinguish them from random even given its polynomial-sized backdoor
sk (which also models whatever auxiliary information about RO C the attacker
computed), and additional polynomial number of queries to C.

Despite appearing rather expected, the proof of this result is quite subtle.
It uses the fact that each independently initialized PRG instances F and G are
unlikely to ever query the random oracle on any of the outputs produced by the
other instance (i.e., F on C(·, yi) and G on C(xi, ·)), because we show that this
will contradict the assumed PRG security of F and G from the public.

Theorem 3. C(X,Y) = RO(X||Y) is a secure 2-immunizer in the AI-ROM.

Back-box Separation From Efficiently Falsifiable Assumptions.

Finally, we consider the question of building a secure 2-immunizer in the stan-
dard model. In this setting, we again use the black-box separation technique of
Wichs [44] to show the following negative result. No function C(x, y), which is
highly dependent on both inputs x ad y, can be proven as a secure 2-immunizer for
backdoor PRGs, via a black-box reduction to any efficiently falsifiable assump-
tion.

The formal definition of “highly dependent” is given in Definition 18, but
intuitively states that there are few “influential” inputs x∗ (resp., y∗) which

10 In particular, the key piece of our proof that was missing in [36,37], is contained
in Lemma 8 of our paper. The important observation (adapted from the seeded
1-immunizers proof in [22]) is that the random oracle outputs reveal negligible infor-
mation about its inputs, and so every PRG round can inductively be treated as the
first round.

Immunizing Backdoored PRGs 161

fix the output of C to a constant, irrespective of the other input. We notice
that most natural functions are clearly highly dependent on both inputs. This
includes XOR, the inner product function, and any cryptographic hash function
heuristically replacing a random oracle, such as SHA-256 or SHA-3.

The latter category is unfortunate, though. While our main positive result
gave plausible evidence that cryptographic hash functions are likely secure as
2-immunizers, our negative result shows that there is no efficiently falsifiable
assumption in the standard model under which we can formally show security
of any such 2-immunizer C.

Theorem 4. Let C be a 2-immunizer which is highly dependent on both inputs.
If there is a black-box reduction showing that C is secure from the security of
some cryptographic game G, then G is not secure.

Weak 2-Immunizers. Given our main positive result is proven in the random
oracle model, we also consider another meaningful type of immunizer which we
call weak 2-immunizer, in hope that it might be easier to instantiate in the
standard model. (For contrast, we will call the stronger immunizer concept con-
sidered so far as strong 2-immunizer.) Recall, in the strong setting the immu-
nizer C was applied to two independently initialized copies of the same backdoor
PRG (K,G). In particular, both copies shared the same public parameters pk.
In contrast, in the weak setting,—in addition to independent seed initialization
above,—we assume the backdoor PRGs were designed by two independent key
generation processes K and K’, producing independent key pairs (pk, sk) and
(pk′, sk′). For example, this could model the fact that competing PRGs were
designed by two different standards bodies (say, US and China). Of course, at
the end we will allow the two saboteurs to “join forces” and try to use both sk
and sk′ when breaking the combined outputs Zi = C(Ri, R

′
i). Curiously, it is

not immediately obvious that a strong 2-immunizer is also a weak one, but we
show that this is indeed the case, modulo a small security loss. In particular, this
implies that our positive result in the random oracle model also gives a weak
2-immunizer.

Of course, the interesting question is whether the relaxation to the weak
setting makes it easier to have standard model instantiations. Unfortunately,
we show that this does not appear to be the case, by extending most of our
impossibility/separation results to the weak setting (as can be seen in their
formal statements). The only exception is the explicit counter-example to the
insecurity of XOR as a weak 2-immunizer, which we leave open (but conjecture
to be true). As partial evidence, we show that the pairing operation (which
looks similar to XOR) is not a weak 2-immunizer under a widely believed SXDH
assumption in pairing based groups [4,7].

Theorem 5. Assuming the SXDH assumption (listed in Conjecture 1) holds for
groups GX , GY , GT , a bilinear map e : GX × GY → GT is not a secure weak
2-immunizer.

162 M. Ball et al.

Open Question. Summarizing, our results largely settle the feasibility of
designing secure 2-immunizers for backdoor PRGs, but leave the following fas-
cinating question open: Is there a 2-immunizer C in the standard model whose
security can be black-box reduced to an efficiently falsifiable assumption?

While we know such C cannot be “highly dependent on both inputs”, which
rules out most natural choices one would consider (including cryptographic hash
function), we do not know if other “unnatural” functions C might actually work.

In the absence of such a function/reduction, there are two alternatives:
First, it may be possible to give a non-black-box reduction from a non-highly

input-dependent function (such as a very good two-source extractor).
Or alternatively, one might try to base the security of C on a non-falsifiable

assumption likely satisfied by a real-world cryptographic hash function. For
example, [22] built seeded 1-immunizers based on the existence of so called uni-
versal computational extractors (UCEs) [9]. Unfortunately, the UCE definition
seems to be inherently fitted for 1-immunizers, and it is unclear (and perhaps
unlikely) that something similar can be done in the 2-immunizer setting, at least
with a security definition that is noticeably simpler than that of 2-immunizers.

1.4 Further Related Work

We briefly mention several related works not mentioned so far.

Extractors. Randomness Extractors convert a weak random source into an
output which is statistically close to uniform. Similar to our setting, while deter-
ministic extraction is impossible in this generality [18], these results can either
be overcome using seeded extractors [31], or two-source extractors [18].

A special class of seeded extractors consider consider sources which could
partially depend on the prior outputs of the extractor (and, hence, indirectly
on the random seed). Such sources are called extractor-dependent [25,33], and
generalize the corresponding notion of oracle-dependent extractors considered
by [20] in the ROM. Conceptually similar to our results, [25] showed a black-box
separation for constructing such extractors from cryptographic hash functions in
the standard model, despite the fact that cryptographic hash functions provably
worked in the ROM [20].

Kleptography. Young and Yung studied what they called kleptography: sub-
version of cryptosystems by modifying encryption algorithms in order to leak
information subliminally [45–47]. Juels and Guajardo [29] propose an immuniza-
tion scheme for kleptographic key-generation protocols that involves publicly-
verifiable injection of private randomness by a trusted entity. More recent work
by Bellare, Paterson, and Rogaway [10] treats a special case of Young and Yung’s
setting for symmetric encryption.

As described in detail above, the works [36,37] consider the idea of using
a random oracle as a 2-immunizer, however their results do not extend to the
stateful setting considered here.

The works [5,34] also consider immunizing corrupted PRGs, however these
results success by modifying the public parameters, as opposed to operating on

Immunizing Backdoored PRGs 163

the PRG output. In other words, the immunizers are not simple and stateless,
and thus not relevant in a situations where a user cannot control the implemen-
tation itself (e.g. if it is implemented in hardware or the kernel).

Steganography and Related Notions. Steganography (see [27,40]) is the
problem of sending a hidden message in communications over a public channel
so that an adversary eavesdropping on the channel cannot even detect the pres-
ence of the hidden message. In this sense backdoor PRG could be viewed as a
steganographic channel where the PRG is trying to communicate information
back to the malicious PRG designer, without the “public” being able to detect
such communication (thinking instead that a random stream is transmitted).

More recently, the works of [28,32] looked at certain types of encryption
schemes which can always be turned into stegonagraphic channels, even if the
dictator demands the users to reveal their purported secret keys.

Finally, the works of [24,30] looked at constructing so called reverse fire-
walls, which probably remove steganographic communication by carefully re-
randomizing messages supposedly exchanged by the parties for some other cryp-
tographic task.

Backdoored Random Oracles. The work of [8] and [12] consider the task
of immunizing random oracles with XOR. However, these consider information
theoretic models of PRG security. An intriguing observation about the findings
of our work is that information theoretic models (such as the backdoored random
oracle model) do not capture the computational advantage that backdoors can
achieve, as is shown by our counterexamples in Sect. 3.

2 Definitions

Definition 1. Two distributions X and Y are called (t, ε)-indistinguishable
(denoted by CDt(X,Y) ≤ ε) if for any algorithm D running in time t,

|Pr[D(X) = 1] − Pr[D(Y) = 1]| ≤ ε.

Definition 2. Let Xλ and Yλ be two families of distributions indexed by λ. If
for all polynomial t(λ) and some negligible ε(λ), Xλ and Yλ are (t(λ), ε(λ))-
indistinguishable, then we say X and Y are computationally indistinguishable
(denoted by CD(X,Y) ≤ negl(λ)).

2.1 Pseudorandom Generators

A pseudorandom generator is a pair of algorithms (K,G). Traditionally, K takes
in randomness and outputs a public parameter. We additionally allow K to
output a secret key to be used for defining trapdoors. To go with our notation
of secret keys, we will denote the public parameter as the public key. For non-
trapdoored PRGs, the secret key is set to null. G is a function that takes in a
public key and a state, and outputs an n-bit output as well as a new state. More
formally, we give the following definitions, adapted from [22]:

164 M. Ball et al.

Definition 3. Let PK,SK be sets of public and secret keys respectively. Let S
be a set we call the state space. A pseudorandom generator (PRG) is a pair of
algorithms (K,G) where

- K : {0, 1}� → PK × SK takes in randomness and outputs a public key pk

and secret key sk. We will denote running K on uniform input as (pk, sk) $←− K.
- G : PK × S → {0, 1}n × S takes in the public key and a state and outputs

n bits as well as the new state.

For ease of notation, we may write G instead of Gpk when the public key is
clear from context.

Definition 4. Let (K,G) be a PRG, pk ∈ PK, s ∈ S. Let s0 = s and let
(ri, si) ← Gpk(si) for i ≥ 1. We call the sequence (r1, . . . , rq) the output of
(K,G), and denote it by outq(Gpk, s) (or outq(G, s)).

For n an integer we will denote by Un the uniform distribution over {0, 1}n.

Definition 5. A PRG (K,G) is a (t, q, δ) publicly secure PRG if K, G both run
in time t and

pk
$←− K

CDt((pk,outq(Gpk,S)), (pk,Uqn)) ≤ δ.

Note that here there is some implied initial distribution over S. This will
depend on the construction, but when unstated we will assume that this distri-
bution is uniform.

Definition 6. A PRG (K,G) is a (t, q, δ) backdoor secure PRG if K, G both
run in time t and

(pk, sk) $←− K

CDt((pk, sk,outq(Gpk,US)), (pk, sk,Uqn)) ≤ δ.

Note that there are PRGs that are (t, q, δ) publicly secure, but not (t′, q, δ′)
backdoor secure even for some t′ << t and δ′ >> δ [22]. The goal of an immu-
nizer is to take in as input some (K,G) which is publicly secure but not backdoor
secure, and transform it generically into a new PRG which is backdoor secure.

2.2 2-Immunizers

Our definition of 2-immunizers will also be based on the definition of immunizers
given in [22]. Note in particular that while the [22] definition of immunizers takes
in the output of one PRG and a random seed, we define 2-immunizers to be
deterministic functions of the output of two PRGs.

We first define notation to express what it means to apply an immunizer to
two PRGs.

Immunizing Backdoored PRGs 165

Definition 7. Let (KX , GX), (KY , GY) be two PRGs and let C : {0, 1}n ×
{0, 1}n → {0, 1}m be a function on the output spaces of the PRGs. We define a
new PRG as follows:

-The key generation algorithm (denoted (KX ,KY)) will be the concatena-
tion of the original two key generation algorithms. More formally, it will run
KX → pkX , skX , KY → pkY , skY and will return pk = (pkX , pkY) and
sk = (skX , skY).

-The pseudorandom generation algorithm, denoted C(GX , GY) will run both
PRGs independently and apply C to the output. Formally, let us denote s =
(sX , sY). If GX(sX) = (rX , s′X) and GY (sY) = (rY , s′Y), then

C(GX , GY)(s) := (C(rX , rY), (s′X , s′Y)).

Note that the output of the PRG will be C applied to the outputs of the
original PRGs. Formally, if outq(GX , sX) = x1, . . . , xq and outq(GY , sY) =
y1, . . . , yq, then

outq(C(GX , GY), (sX , sY)) = C(x1, y1), . . . , C(xq, yq).

Definition 8. A two-input function C is a (t, q, δ, δ′)-secure weak 2-immunizer,
if for any (t, q, δ) publicly secure PRGs (KX , GX), (KY , GY), the PRG
((KX ,KY), C(GX , GY)) is a (t, q, δ′) backdoor secure PRG.

A weak 2-immunizer is effective at immunizing two PRGs as long as the public
parameters are independently sampled. We can also consider the case where the
designers of the two PRGs collude and share public parameters. Identically, we
can consider the case where we run one backdoored PRG on multiple honest
initializations. If a 2-immunizer effectively immunizes in this setting, we call it
a strong 2-immunizer.

Let us first define the syntax

Definition 9. Let (K,G) be a PRG and let C : {0, 1}n ×{0, 1}n → {0, 1}m be a
function on the output space of G. We define a new PRG (denoted (K,C(G,G)))
as follows:

-The key generation algorithm will be K
-The pseudorandom generation algorithm, denoted C(Gpk, Gpk) will run G

twice (with the same public key) on two initial seeds, and apply C to the output.
Formally, let us denote s = (sX , sY). If Gpk(sX) = (rX , s′X) and Gpk(sY) =
(rY , s′Y), then

C(G,G)(s) := (C(rX , rY), (s′X , s′Y))

If x1, . . . , xq = outq(Gpk, sX) and y1, . . . , yq = outq(Gpk, sY) are two out-
puts of G on the same public key and freshly sampled initial states, then

outq(C(G,G), (sX , sY)) = C(x1, y1), . . . , C(xq, yq).

Definition 10. A two-input function C is called a (t, q, δ, δ′)-secure strong 2-
immunizer, if for any (t, q, δ) publicly secure PRG (K,G), the PRG
(K,C(G,G)) is a (t, q, δ′) backdoor secure PRG.

166 M. Ball et al.

Lemma 1. If C is a (t, q, δ, δ′)-secure strong 2-immunizer, then C is a
(t, q, δ, 4δ′)-secure weak 2-immunizer.

For a proof of this lemma, see a full version of this paper [6].

Remark 1. Some traditional definitions of PRGs [11] consider the notion of
forward-secrecy. That is, even PRG security for the first q outputs should still
be maintained even if the q + 1st output is leaked. However, it is impossible
for a 2-immunizer in our model to preserve public forward secrecy. Informally,
given any PRG satisfying forward-secrecy, we can append an encryption of the
initial state to the q + 1st state. This would result in a PRG satisfying public
forward-secrecy but not backdoor forward-secrecy. Since we do not allow the
2-immunizer to view or modify the internal state of the corresponding PRGs in
any way, it is impossible for any 2-immunizer to remove this vulnerability.

3 Counterexamples for Simple 2-Immunizers

In this section we will outline a framework for arguing that simple functions (for
example XOR) do not work as 2-immunizers. To argue that some C is not a
strong 2-immunizer, we will construct a public key encryption scheme suitably
homomorphic under C. We will then note that the PRG which simply encrypts
0 using the randomness of its honest initialization will have a backdoor after
immunization, where the backdoor will be given by the homomorphic property
of the underlying encryption scheme.

To argue that C is not a weak 2-immunizer, we will need to instead construct
two public key encryption schemes which are in jointly homomorphic in a suitable
manner. In this case, the PRGs defined by encrypting 0 under the two public
key encryption schemes defined will allow us to perform an analogous attack on
C.

In particular, we will generically define what it means for public key encryp-
tion schemes to be suitably homomorphic under C, and argue that this property
is enough to show that C is not a 2-immunizer. Note that the definition of suit-
ably homomorphic will depend on whether we are attacking the weak or strong
security of C.

We will then instantiate our generic result with specific public key encryption
schemes, leading to the following theorems.

Theorem 6 (Theorem 2 restated). Assuming the Alekhnovich assumption
(listed in Proposition 1) holds, XOR is not a (poly(λ), 1, negl(λ), negl(λ))-secure
strong 2-immunizer.

Note that there is no simple way to adapt the public key encryption scheme
used to prove this theorem to be sufficiently homomorphic to prove that XOR
is not a weak 2-immunizer. We leave the question as to whether XOR is a weak
2-immunizer as an open question.

Immunizing Backdoored PRGs 167

Definition 11. Let GX , GY , GT be groups of prime order exponential in λ with
generators gX , gY , gT . A bilinear map e : GX ×GY → GT is a function satisfying

e(ga
X , gb

Y) = e(gX , gY)ab = gab
T

Note that requiring e(gX , gY) = gT is a non-standard requirement for bilinear
maps, but will always occur when we restrict the codomain of the bilinear group
to the subgroup defined by its image.

Theorem 7 (Theorem 5 restated). Assuming the SXDH assumption (listed
in Conjecture 1) holds for groups GX , GY , GT , a bilinear map e : GX×GY → GT

is not a (poly(λ), 2, negl(λ),
negl(λ))-secure weak 2-immunizer.

Note that although [8] does not directly argue that a bilinear map is a 2-
immunizer in their model, it is clear that the argument for XOR can be gener-
alized to apply for bilinear maps.

3.1 Public Key Encryption

A public key encryption scheme (PKE) is a triple (Gen,Enc,Dec) where

– Gen outputs a public key, secret key pair (pk, sk),
– Enc takes in the public key pk and a message m, and outputs a ciphertext c,
– Dec takes in the secret key sk and a ciphertext c, and outputs the original

message m.

For security, as we are working with pseudorandom generators, it is useful for
us to require that the encryption schemes themselves be pseudorandom. More
formally,

Definition 12. We say that a public key encryption scheme (Gen,Enc,Dec) is
pseudorandom if for all m,

pk
$←− Gen

CDpoly(λ)((pk,Enc(m)), (pk,U)) ≤ negl(λ)

Note that for our purposes we will require all public key encryption schemes
to be pseudorandom. We remark that this assumption is strictly stronger than
traditional PKE security.

3.2 Strong 2-Immunizers

Definition 13. Let Ce : {0, 1}n ×{0, 1}n → {0, 1}m be some operation. We say
that a public key encryption scheme (Gen,Enc,Dec) is Ce-homomorphic if there
exists some function DecCe

sk such that for all m,

Pr
(pk,sk)

$←−Gen

α,α′ $←−U

[DecCe

sk (Ce(Encpk(m;α),Encpk(m;α′))) = m] ≥ 2
3
.

168 M. Ball et al.

Theorem 8. Let (Gen,Enc,Dec) be a public key encryption scheme and let
Ce be some operation. Then, if (Gen,Enc,Dec) is pseudorandom and Ce-
homomorphic (with homomorphic decryption algorithm DecCe

), then Ce is not
a (poly(λ), 1, negl(λ), negl(λ))-secure strong 2-immunizer.

Proof. We will first construct a PRG (K,G) using (Gen,Enc,Dec), and then we
will show that Ce(G,G) has a backdoor.

Let us first observe that Pr[DecCe

(U) → 0] + Pr[DecCe

(U) → 1] ≤ 1, and so
one of these probabilities will be less than 1

2 . Without loss of generality, assume
Pr[DecCe

(U) → 0] ≤ 1
2 .

Define (K,G) by K := Gen, Gpk(s) := Encpk(0; s). It is clear to see that
(K,G) is a (poly(λ), 1, negl(λ)) publicly secure PRG by the definition of a pseu-
dorandom PKE. Thus, it remains to show an adversary D that can distinguish

(pk, sk, Ce(Encpk(0;U),Encpk(0;U)))

from
(pk, sk,U)

with probability ≥ 1
poly(λ) .

On input (pk, sk, r), D will run DecCe

sk (r) → m and output 1 if and only if
m = 0. It is clear that

Pr[D(pk, sk, Ce(Encpk(0;U),Encpk(0;U))) → 1] ≥ 2
3

by the definition of DecCe

. But note that we assumed Pr[DecCe

(U) → 0] ≤ 1
2 ,

and so
Pr[D(pk, sk,U) → 1] ≤ 1

2

Thus, the advantage of D is ≥ 2
3 − 1

2 = 1
6 ≥ 1

poly(λ)

We remark that while this theorem is stated for q = 1, it is fairly easy to
extend this to arbitrary q by simply appending the corrupted PRGs with a
genuine one.

[3] gives a construction of a public key encryption scheme based off of a vari-
ant of the learning parity with noise problem (which we will call the Alekhnovich
assumption, it is Conjecture 4.7 in his paper). Instead of presenting his under-
lying assumption directly, we will refer to the following proposition:

Proposition 1 [3]: Suppose that the Alekhnovich assumption holds, then for
every m = O(n), k = Θ(

√
n), �, t ≤ poly(n) then

Ai
$←− Um×n, xi

$←− Un, ei
$←−

({0, 1}m

k

)

CDt((Ai, Aixi + ei)�
i=1, (Ai,Um)�

i=1) ≤ negl(n)

Immunizing Backdoored PRGs 169

That is, given a uniformly random m × n binary matrix A, a vector which
differs from an element in the image of the matrix in exactly k places is compu-
tationally indistinguishable from random.

Let us proceed now to the proof of Theorem 6.
We will prove this by showing a pseudorandom ⊕-homomorphic public key

encryption scheme based off of the Alekhnovich assumption.
We claim that if the Alekhnovich assumption holds, the public key encryption

scheme presented in [2] (along with a minor variation) is both pseudorandom and
⊕-homomorphic. Therefore, by Theorem 8, XOR is not a strong 2-immunizer.

First, we present Alekhnovich’s public key encryption scheme in Fig. 1. We
make one minor change to the original scheme, namely we change the value of
the parameter k from

√
n
2 to

√
n
4 . Note that since the underlying proposition

only requires that k = Θ(
√

n), this does not affect the proof of security

Notation:

k =
√

n

4
, m = 2n.

{0, 1}� are vectors in Z
�
2.({0, 1}m

k

)
:= vectors in {0, 1}m

with exactly k 1s.

Gen-A:
A

$
m×n.

x
$

n

e
$

({0, 1}m

k

)

b Ax+ e, M = (b|A).
B

$

U
U

Um×(m−n−1) conditioned on
MTB = 0n.
Output pk = B, sk = (B, e).

Enc-A(1):

c
$ Um.

Output c.

Enc-A(0):

x′ $ Un−1,

e′ $
({0, 1}m

k

)
.

Output c = Bx′ + e′.

Dec-A((B, e), c):
Output 0 if eT c = 0.
Otherwise, output 1.

Fig. 1. Alekhnovich’s PKE scheme (From Sect. 4.4.3).

Proposition 2 [3]: Assuming the Alekhnovich assumption holds,

CD((pk,Enc-A(0)), (pk,Enc-A(1))) ≤ negl(λ)

Corollary 1. Assuming the Alekhnovich assumption holds, (Gen-A,Enc-A,
Dec-A) is pseudorandom.

170 M. Ball et al.

Proposition 3. Assuming the Alekhnovich assumption holds, (Gen-A,Enc-A,
Dec-A) as presented above is ⊕-homomorphic.

The proof of Proposition 3 is in the full version of this paper [6].

3.3 Weak 2-Immunizers

Definition 14. Let Ce : {0, 1}n ×{0, 1}n → {0, 1}m be some operation. We say
a pair of public key encryption schemes (Gen,Enc,Dec) and (Gen′,Enc′,Dec′)
are jointly Ce-homomorphic if there exists some function DecCe

sk,sk′ such that for
all m,

Pr
(pk,sk)

$←−Gen

(pk′,sk′)
$←−Gen′

α,α′ $←−U

[DecCe

sk,sk′(Ce(Encpk(m;α),Enc′
pk′(m;α′))) = m] ≥ 2

3
.

Theorem 9. Let (Gen,Enc,Dec), (Gen′,Enc′,Dec′) be two public key encryp-
tion schemes and let Ce be some operation. Then, if (Gen,Enc,Dec),
(Gen′,Enc′,Dec′) are pseudorandom and jointly Ce-homomorphic (with homo-
morphic decryption algorithm DecCe

), then Ce is not a (poly(λ), 1, negl(λ),
negl(λ))-secure weak 2-immunizer.

Proof. This proof is analogous to the proof of Theorem 8. The corresponding
PRGs are (KX , GX) = (Gen,Enc(0; s)) and (KY , GY) = (Gen′,Enc′(0; s)). The
distinguisher again runs DecCe → 0 and returns 1 if and only if m = 0.

Corollary 2. If there exists (Gen,Enc,Dec), (Gen′,Enc′,Dec′) pseudorandom
and jointly ⊕-homomorphic, then ⊕ is not a (poly(λ), 1,
negl(λ), negl(λ))-secure weak 2-immunizer.

We remark that the Alekhnovich PKE is not jointly ⊕-homomorphic with
itself. We leave it as an open question as to whether such a pair of encryption
schemes exist for XOR, but we suspect that its existence is likely.

Instead, we show that another simple 2-immunizer (namely a bilinear pairing)
is not secure assuming a suitable computational assumption. In particular, we
will rely on the SXDH assumption, defined in [4,7].

Conjecture 1. The Symmetric External Diffie Hellman Assumption (SXDH)
states that there exist groups GX , GY , GT with generators gX , gY , gT such that
-there exists an efficiently computable bilinear map e : GX × GY → GT , -for
uniformly random a, b, c

$←− Z|GX | CD((ga
X , gb

X , gab
X), (ga

X , gb
X , gc

X)) ≤ negl(λ)

(the Diffie Hellman assumption holds for GX), -for uniformly random a, b, c
$←−

Z|GY | CD((ga
Y , gb

Y , gab
Y), (ga

Y , gb
Y , gc

Y)) ≤ negl(λ) (the Diffie Hellman assumption
holds for GY).

Immunizing Backdoored PRGs 171

Note that, as stated in Definition 11 we will require that e(gX , gY) = gT and
that GX , GY , GT are of prime order exponential in λ.

Note that instead of constructing jointly homomorphic public key encryption
schemes under e, we will instead create public key encryption schemes jointly
homomorphic under a related operation. We will then use the fact that this
related operation is not a weak 2-immunizer to show that e is not a weak 2-
immmunizer.

Let GX , GY , GT be cyclic groups of size exponential in λ with an efficiently
computable bilinear map e : GX × GY → GT . Define the 2-immunizer Ce :
(GX × GX) × (GY × GY) → GT by

Ce((aX , bX), (aY , bY)) = (e(aX , bX), e(aY , bY)).

Lemma 2. Assuming the SXDH assumption holds, Ce is not a (poly(λ), 1,
negl(λ), negl(λ))-secure weak 2-immunizer.

We defer the proof of this lemma and the proof of Theorem 7 using Lemma 2
to the full version [6].

4 Positive Result in Random Oracle Model

Although it seems that simple functions will not function well as a 2-immunizer,
we show that a random oracle is a strong 2-immunizer. Heuristically, this means
that a good hash function can be used in practice as a 2-immunizer. Furthermore,
it gives some hope that 2-immunizers may exist in the standard model.

In fact, a random oracle is a strong 2-immunizer even if we allow the adversary
to perform arbitrary preprocessing on the random oracle. This model, introduced
in [41], is known as the Auxiliary Input Random Oracle Model (AI-ROM).

Theorem 10. Let RO : {0, 1}2n → {0, 1}m be a random oracle. For t suf-
ficiently large to allow for simple computations, f(X,Y) = RO(X||Y) is a
(t, q, δ, δ′)-secure strong 2-immunizer with

δ′ =
(

δ +
q2

2n

)
+ 2(t + t2)q

√
δ +

q

2n
.

Corollary 3. f(X,Y) = RO(X||Y) is a (poly(λ), poly(λ), negl(λ), negl(λ))-
secure strong 2-immunizer in the ROM.

Theorem 11 (Theorem 3 restated). f(X,Y) = RO(X||Y) is a
(poly(λ), poly(λ), negl(λ), negl(λ))-secure strong 2-immunizer in the AI-ROM.

The intuition behind Theorem 10 is as follows. Even given the secret and
public keys for a PRG, public security guarantees that the output of each PRG
is unpredicable. Let x1, . . . , xq and y1, . . . , yq be two outputs of a PRG, and let
us consider the perspective of the compromised PRG generating x. Since this
algorithm does not know the seed generating y, each yi is unpredictable to it.

172 M. Ball et al.

Thus, it has no way of seeing any of the outputs of the functions RO(·||yi). But
as long as neither call to the PRG queries the random oracle on xi||yi, there
will be no detectable relationship between the xi’s and RO(xi||yi), and so the
immunizer output will seem truly random.

The extension to the AI-ROM in Theorem 11 comes from standard presam-
pling techniques [23,41], with a full proof included in the full version [6].

4.1 Random Oracle Model Definitions

In the random oracle model (ROM), we treat some function RO as a function
chosen uniformly at random. This provides a good heuristic for security when
the random oracle is instantiated with some suitable hash function. To argue
that some cryptographic primitive is secure in the random oracle model, the
randomness of the random oracle must be baked into the underlying game.

Definition 15. We will denote the random oracle by O : A → B. Two distri-
butions X and Y are (q, t, ε)-indistinguishable in the random oracle model if for
any oracle algorithm DO running in time t making at most q random oracle
calls, ∣∣∣∣∣∣ Pr

O $←−{f :A→B}
[DO(X) = 1] − Pr

O $←−{f :A→B}
[DO(Y) = 1]

∣∣∣∣∣∣ ≤ ε

For simplicity, we will typically set q = t. We will define PRG security in
the random oracle model to be identical to typical PRG security, but with the
computational indistinguishability to be also set in the random oracle model.

Definition 16. Two distributions X and Y are (s, t, ε)-indistinguishable in the
AI-ROM if for any oracle function zO into strings of length s and for any oracle
algorithm DO running in time t,

∣∣∣∣∣∣ Pr
O $←−{f :A→B}

[DO(zO,X) = 1] − Pr
O $←−{f :A→B}

[DO(zO, Y) = 1]

∣∣∣∣∣∣ ≤ ε

We similarly define PRG security in the AI-ROM.

Definition 17. A two-input function C is a (t, q, δ, δ′)-secure strong 2-immu-
nizer in the ROM (respectively AI-ROM), if for any PRG (K,G) which is (t, q, δ)
publicly secure in the ROM, the PRG (K,C(G,G)) is a (t, q, δ′) backdoor secure
PRG in the ROM (respectively AI-ROM).

The definition of a (t, q, δ, δ′)-secure weak 2-immunizer in the ROM/AI-ROM
will be analogous.

Note that in particular our definition for 2-immunizer security in the AI-
ROM only requires that the underlying PRG be secure in the ROM. This is a
stronger definition, and we do this to model the situation where the auxiliary
input represents a backdoor for the underlying PRGs.

Immunizing Backdoored PRGs 173

4.2 Random Oracle is a 2-Immunizer

To show that a random oracle is a strong 2-immunizer, we adapt the proof
structure from [22]. That is, we prove a key information theoretic property about
publicly secure PRGs, and then use this property to bound the probability that
some adversary queries the random oracle on key values.

In particular, let GX , GY be two PRGs with outputs x1, . . . , xq and y1, . . . , yq,
and let RO be a random oracle. We will argue that the only part of the PRG
game for RO(GX , GY) which queries RO(xi, yi) is when the 2-immunizer is
directly called by the game. This is because all parts of the game will only have
access to at most one of xi or yi, and so therefore as the other is information
theoretically unpredictable, they will be unable to query xi and yi to the oracle
at the same time.

Afterwards, we will show that RO is still a strong 2-immunizer even in the
presence of auxiliary input. We will show this by using the presampling lemma
(Theorem ??). The trick we will use is that since our key property is information
theoretic, we can set p for the presampling lemma to be exponential in λ, and
so the security loss we suffer will be negligible.

We begin by stating the following information theoretic lemma. The proof is
in the full version of this paper [6].

Lemma 3. (KEY LEMMA) Let K : {0, 1}� → PK × SK, G : PK × S →
{0, 1}n × S be a (t, q, δ) publicly secure PRG. Let r ∈ {0, 1}� be some initial
randomness. For p ∈ (0, 1), we say that r is p-weak if for (pk, sk) ← K(r),

max
x̃∈{0,1}n

Pr
x1,...,xq

$←−outq(Gpk,US)

[xi = x̃ for some i ∈ [q]] ≥ p.

Denote
p′ := Pr

r∈{0,1}�
[r is p-weak]

Then,
p′ · p2 ≤ q2

(
δ +

q

2n

)
.

Intuitively, we call a public key pk (described using its initial randomness r)
weak if the output of Gpk is predictable. The above lemma gives an upper bound
on the probability of a public key being weak. That is, we show (through an
averaging argument) that every publicly secure PRG has unpredictable output
for most choices of its public parameters.

We now proceed to the proof of Theorem 10.

Proof. Let K : {0, 1}� → PK × SK, G : PK × S → {0, 1}n × S be a (t, q, δ)-
secure PRG. Let D be a distinguisher against f(G,G) running in time t. Let
HONEST be the distribution

(sk, pk) $←− K, sX , sY
$←− S

(pk, sk,outq(C(Gpk, Gpk), (sX , sY)))

174 M. Ball et al.

and let RANDOM be the distribution

(sk, pk) $←− K, (r1, . . . , rq)
$←− Uqm

(pk, sk, r1, . . . , rq)

We want to bound

δ′ = |Pr[D(HONEST) = 1] − Pr[D(RANDOM) = 1]|
Let qK , qG, qD be bounds on the number of times K,G,D query the random

oracle respectively. Note that these are all bounded by t.
Let us consider the case where the distinguisher is given the output of the hon-

est 2-immunizer. We will denote outq(G, sX) = x1, . . . , xq and outq(G, sY) =
y1, . . . , yq. Let BAD be the event that there is some i such that (xi, yi) is queried
to the random oracle more than once. Note that conditioned on BAD, the two
distributions in the distinguishing game are identical. Thus, δ′ ≤ Pr[BAD].

We will break BAD up into five cases, and bound each case separately.

– We define BAD1 to be the event where there exists i, j such that xi = xj and
yi = yj . This corresponds to (xi, yi) be queried to the random oracle more
than once by the game itself.

– We define BAD2 to be the event that K queries xi, yi for some i.
– We define BAD3 to be the event that G queries xi, yi in the process of cal-

culating outq(Gpk, sX).
– We define BAD4 to be the event that G queries xi, yi in the process of cal-

culating outq(Gpk, sY).
– We define BAD5 to be the event that D queries xi, yi.

Lemma 4. Pr[BAD1] ≤ δ + q2

2n

First, we will bound Pr[BAD1]. Let A be an attacker for the underlying PRG
game on (K,G) which on input r1, . . . , rq outputs 1 if ri = rj for some i
= j. It
is clear that Pr[A(pk,outq(Gpk,US)) → 1] ≥ Pr[BAD1], and Pr[A(pk,Uqn) →
1] ≤ q2

2n . But by public security of the PRG, Pr[A(pk,outq(Gpk,US)) → 1] −
Pr[A(pk,Uqn) → 1] ≤ δ Thus, we have

Pr[BAD1] ≤ δ +
q2

2n

Lemma 5. Pr[BAD2] ≤ qqK

√
δ + q

2n

We will bound Pr[BAD2] using the key lemma. We claim that

Pr
r

$←−U�

[r is p-weak] ≥
√

Pr[BAD2]

for some suitable value of p. We will then use the key lemma to get an upper
bound on Pr[BAD2].

Immunizing Backdoored PRGs 175

Let r be such that

Pr[BAD2|(pk, sk) ← K(r)] ≥
√

Pr[BAD2]

We claim then that r is p-weak for some p to be specified later. Let Fr be the
set of random oracle queries made by K(r). We can more precisely state

Pr[BAD2|(pk, sk) ← K(r)] = Pr[(xi, yi) ∈ Fr for some index i|(pk, sk) ← K(r)]

In particular, we can ignore one output and see that this means

Pr
x1,...,xq

$←−outq(Gpk,US)

[xi ∈ Fr for some index i] ≥
√

Pr[BAD2]

But since |Fr| ≤ qK , this means there must be some element x̃ ∈ Fr such that

Pr
x1,...,xq

$←−outq(Gpk,US)

[xi = x̃ for some index i] ≥
√

Pr[BAD2]
qK

.

But this precisely means that r is p-weak, for p =
√

Pr[BAD2]

qK
. Thus,

√
Pr[BAD2] Pr[BAD2] ≤ q2Kq2

(
δ +

q

2n

)

and so as
Pr[BAD2]2 ≤

√
Pr[BAD2] Pr[BAD2],

we have

Pr[BAD2] ≤ qqK

√
δ +

q

2n
.

Lemma 6. Pr[BAD3] ≤ q2qG

√
δ + q

2n

To bound Pr[BAD3], we will again use the key lemma and show that

Pr
r

$←−U�

[r is p-weak] ≥
√

Pr[BAD3]

for some suitable value of p.
Let r be such that

Pr[BAD3|(pk, sk) ← K(r)] ≥
√

Pr[BAD3].

We claim then that r is p-weak for some p to be specified later. Note that
since this probability is the average over s of Pr[BAD3|(pk, sk) ← K(r), sX = s],
there must be some s̃ such that

Pr[BAD3|(pk, sk) ← K(r), sX = s̃] ≥
√

Pr[BAD3].

176 M. Ball et al.

Let Fr,s̃ be the queries made by G when calculating outq(Gpk, s̃). Using a similar
argument as in the previous paragraph, we see that there must be some pair
(x̃, ỹ) ∈ Fr,s̃ such that

Pr
y1,...,yq

$←−outq(Gpk,US)

[yi = ỹ for some index i] ≥
√

Pr[BAD3]
|Fr,s̃| .

But note that |Fr,s̃| ≤ q · qG as it is generated by running G q times. Thus, r is

p-weak for p =
√

Pr[BAD3]

q·qG
. The same algebra as the previous lemma gives us

Pr[BAD3] ≤ q2qG

√
δ +

q

2n

Lemma 7. Pr[BAD4] ≤ q2qG

√
δ + q

2n

The proof of this lemma is analogous to the proof for Pr[BAD3].

Lemma 8. Pr[BAD5] ≤ qqD

√
δ + q

2n

To bound Pr[BAD5], we first notice that at the point when D first queries
xi, yi, the only information available to D is the secret key and the output of
i− 1 random oracle calls. As at this point D has never queried any of its inputs,
the probability that D succeeds at querying any input is the same as if D were
given only the secret key.

Let us fix any initial randomness r ∈ {0, 1}� such that

Pr[BAD5|(pk, sk) ← K(r)] ≥
√

Pr[BAD5].

We can clearly see that

Pr[BAD5|(pk, sk) ← K(r)]

≤ max
F⊆{0,1}n

|F |≤qD

Pr[(xi, yi) ∈ F for some index i|(pk, sk) ← K(r)]

But by union bound we then have

Pr[BAD5|(pk, sk) ← K(r)] ≤ qD max
x̃∈{0,1}n

Pr[xi = x̃ for some i ∈ [q]].

The same reasoning as the previous arguments shows us that r is p-weak for

p =
√

Pr[BAD5]

qD
. Applying the key lemma gives us

Pr[BAD5] ≤ qqD

√
δ +

q

2n

Immunizing Backdoored PRGs 177

Putting all the lemmas together, we have

δ′ ≤ Pr[BAD] ≤
(

δ +
q2

2n

)
+

(
qqK + 2q2qG + qqD

) √
δ +

q

2n

Noting that qK , qG, qD ≤ t gives us our theorem.

5 Black Box Separation (with Limitations)

Definition 18. Let C : {0, 1}n × {0, 1}n → {0, 1}m be a function. We call an
input x ∈ {0, 1}n “left-bad” if maxz∈{0,1}m Pry∈{0,1}n [C(x, y) = z] > 1

2 . We
define what it means for an input to be “right-bad” analogously.

We say that C is highly dependent on both inputs if

Pr
(x,y)

$←−{0,1}2n

[x is “left-bad” OR y is “right-bad”] ≤ negl(λ).

Informally, a two-input function C is highly dependent on both inputs if it
ignores one of its inputs at most a negligible proportion of the time. This is a
rather broad category of functions. In particular, XOR, pairings, inner product,
and random oracles are all highly dependent on both inputs. Furthermore, any
collision resistant hash function must also be highly dependent on both inputs,
otherwise it would be trivial to find a collision.

We show that it is hard to prove security (either weak or strong) for any 2-
immunizer C which is highly dependent on both inputs. Note that one of the most
common and useful techniques for proving security of cryptographic primitives
is to create a black box reduction to some cryptographic assumption. Informally,
a black box reduction transforms an attacker for some cryptographic primitive
into an attacker for a cryptographic assumption. Thus, if the cryptographic
assumption is immune to attack, the cryptographic primitive will be secure.

We show that if a 2-immunizer is highly dependent on both inputs, then there
cannot be any black-box reduction of its security to any falsifiable cryptographic
assumption.

Theorem 12 (Theorem 4 restated). Let C be a weak 2-immunizer which is
highly dependent on both inputs. If there is a black-box reduction showing that C
is (poly(λ), λ, negl(λ),
negl(λ))-secure from the security of some cryptographic game G, then G is not
secure.

As a random oracle is highly dependent on both inputs, any reasonable hash
function should also be highly dependent on both inputs. This implies that
despite the fact that a random oracle is a strong 2-immunizer, it may be hard to
argue security for any particular instantiation of the random oracle. We sketch
the proof of this theorem in the next subsection. For the full argument, see the
full version [6].

178 M. Ball et al.

5.1 Proof Sketch for Theorem 12

The simulatable attacker paradigm. The simulatable attacker paradigm,
first introduced by [14] and formalized by [44], is a method for transform-
ing a black-box reduction into an attack against the underlying assumption.
This paradigm was first used to prove black-box separations from all falsifiable
assumptions in [26].

In particular, let C be a cryptographic protocol with a black-box reduction to
a cryptographic assumption G. Formally, we will describe the black-box reduction
as an oracle algorithm B· which breaks the security of G whenever its oracle is
a (possibly inefficient) adversary breaking the security of C.

A simulatable attack against C is an (inefficient) attack A which breaks the
security game of C, but which can be simulated by an efficient algorithm Sim.
In particular, oracle access to A and Sim should be indistinguishable to the
black-box reduction B·. If this occurs, then since BSim is indistinguishable from
BA, BSim is an efficient attack breaking the security game of G.

Note that in order for this paradigm to make sense, it needs to be the case
that the simulator has more capabilities than the inefficient adversary, other-
wise the simulator itself would be an attack for C. In practice, this is done by
either restricting the oracle queries made by the black-box separation B· or by
restricting the power of the attacker A.

Black-box separations for 2-stage games. In 2013, Wichs showed a a
general framework for proving that two-stage games cannot be reduced to any
falsifiable assumption [44]. In a two-stage security game the adversary consists
of two algorithms which each have individual state, but are not allowed to com-
municate. Thus, a simulatable attack consists of the inefficient attack as well as
two simulators where the simulators do have shared state. This means that it is
conceivable to have a simulator Sim for which oracle access is indistinguishable
from A.

Note that if we have a simulatable attack of this form, then this simulator will
fool every (efficient) black-box reduction. Thus, if we can prove that for every
construction there exists an simulatable attack, this gives a black-box separation
of the security definition from any falsifiable assumption.

Our simulatable attack. Note that an adversary against a 2-immunizer con-
sists of both a set of PRGs and a distinguisher. Here, the PRGs and the dis-
tinguisher are not allowed to share state, and so we can hope to construct a
simulatable attack in the style of [44].

Given C any candidate 2-immunizer, let GX , GY be random functions and let
D(y) be the algorithm which outputs 1 if there exists an (sX , sY) such that y =
outq(C(GX , GY), (sX , sY)). It is clear that GX , GY ,D is an inefficient attack
breaking the security of C.

To simulate this, we simply replace GX , GY with a lazy sampling ora-
cle. That is, the first time GX sees s, it will respond with a random value,
and it will use the same response for future queries of s. To simulate D,
the simulator will check if there exists an already queried (sX , sY) such that

Immunizing Backdoored PRGs 179

y = outq(C(GX , GY), (sX , sY)). Since the adversary is polynomially bounded,
there will only be a polynomial number of already queried points, and so this
simulator is efficient.

It turns out that the only way to distinguish this simulator from the inefficient
adversary is to find some y such that y = outq(C(GX , GY), (sX , sY)) for either
sX or sY unqueried. If neither sX or sY has been queried before, then by a
counting argument it is impossible to guess such a y. But if sX has been queried
before, if C ignores sY then it is possible to guess outq(C(GX , GY), (sX , sY))
without querying sY . To avoid this problem, we simply assume that the output
of C is dependent on both of its inputs, as in Definition 18.

References

1. Recommendation for random number generation using deterministic random bit
generators. National Institute of Standards and Technology: Special Publication
(2012). https://csrc.nist.gov/publications/PubsSPs.html#800-90A

2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS, pp. 298–307. IEEE Computer Society Press (2003)

3. Alekhnovich, M.: More on average case vs approximation complexity. Comput.
Complex. 20(4), 755–786 (2011)

4. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385
(2005). https://eprint.iacr.org/2005/385

5. Ateniese, G., Francati, D., Magri, B., Venturi, D.: Immunization against complete
subversion without random oracles. Theor. Comput. Sci. 859, 1–36 (2021)

6. Ball, M., Dodis, Y., Goldin, E.: Immunizing backdoored prgs. eprint (2023).
https://eprint.iacr.org

7. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage
via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417
(2005). https://eprint.iacr.org/2005/417

8. Bauer, B., Farshim, P., Mazaheri, S.: Combiners for backdoored random oracles. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 272–302.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 10

9. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 398–415.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 23

10. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

11. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36563-X 1

12. Bhattacharyya, R., Nandi, M., Raychaudhuri, A.: Crooked indifferentiability
of enveloped XOR revisited. In: Adhikari, A., Küsters, R., Preneel, B. (eds.)
INDOCRYPT 2021. LNCS, vol. 13143, pp. 73–92. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92518-5 4

13. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

https://csrc.nist.gov/publications/PubsSPs.html#800-90A
https://eprint.iacr.org/2005/385
https://eprint.iacr.org
https://eprint.iacr.org/2005/417
https://doi.org/10.1007/978-3-319-96881-0_10
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.1007/978-3-030-92518-5_4
https://doi.org/10.1007/978-3-030-92518-5_4

180 M. Ball et al.

14. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054117

15. Chattopadhyay, A., Pitassi, T.: The story of set disjointness. SIGACT News 41(3),
59–85 (2010)

16. Checkoway, S., et al.: A systematic analysis of the juniper dual ec incident. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2016, pp. 468–479. Association for Computing Machinery,
New York (2016)

17. Checkoway, S., et al.: On the practical exploitability of dual EC in TLS implemen-
tations. In: Fu, K., Jung, J. (eds.) USENIX Security 2014, pp. 319–335. USENIX
Association (2014)

18. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity (extended abstract). In: 26th FOCS, pp. 429–
442. IEEE Computer Society Press (1985)

19. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 9

20. Coretti, S., Dodis, Y., Karthikeyan, H., Tessaro, S.: Seedless fruit is the sweet-
est: random number generation, revisited. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 205–234. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 8

21. Dodis, Y., Farshim, P., Mazaheri, S., Tessaro, S.: Towards defeating backdoored
random oracles: indifferentiability with bounded adaptivity. In: Pass, R., Pietrzak,
K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 241–273. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64381-2 9

22. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 5

23. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles with
auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 16

24. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 13

25. Dodis, Y., Vaikuntanathan, V., Wichs, D.: Extracting randomness from extractor-
dependent sources. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12105, pp. 313–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45721-1 12

26. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press (2011)

27. Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 6

28. Horel, T., Park, S., Richelson, S., Vaikuntanathan, V.: How to subvert backdoored
encryption: Security against adversaries that decrypt all ciphertexts. In: Blum, A.
(ed.) ITCS 2019, vol. 124, pp. 42:1–42:20. LIPIcs (2019)

https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-030-26948-7_8
https://doi.org/10.1007/978-3-030-26948-7_8
https://doi.org/10.1007/978-3-030-64381-2_9
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/978-3-030-45721-1_12
https://doi.org/10.1007/978-3-030-45721-1_12
https://doi.org/10.1007/3-540-45708-9_6

Immunizing Backdoored PRGs 181

29. Juels, A., Guajardo, J.: RSA key generation with verifiable randomness. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 357–374. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 26

30. Mironov, I., Stephens-Davidowitz, N.: Cryptographic Reverse Firewalls. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–
686. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

31. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996)

32. Persiano, G., Phan, D.H., Yung, M.: Anamorphic encryption: private communica-
tion against a dictator. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT
2022. LNCS, vol. 13276, pp. 34–63. Springer, Heidelberg (2022). https://doi.org/
10.1007/978-3-031-07085-3 2

33. Quach, W., Waters, B., Wichs, D.: Targeted lossy functions and applications. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 424–453.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 15

34. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: clipping the power
of kleptographic attacks. Cryptology ePrint Archive, Report 2015/695 (2015).
https://eprint.iacr.org/2015/695

35. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 2

36. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against
a kleptographic adversary. Cryptology ePrint Archive, Paper 2016/530 (2016).
https://eprint.iacr.org/2016/530

37. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against a
kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.) ACM CCS 2017, pp. 907–922. ACM Press (2017)

38. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 241–
271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 9

39. Shumow, D., Ferguson, N.: On the possibility of a back door in the nist sp800-90
dual ec prng. In: Proceedings of Crypto 2007 (2007). https://rump2007.cr.yp.to/
15-shumow.pdf

40. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D.
(ed.) CRYPTO 1983, Plenum Press, New York, USA, pp. 51–67 (1983)

41. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5 12

42. Vazirani, U.V., Vazirani, V.V.: Trapdoor pseudo-random number generators, with
applications to protocol design. In: 24th FOCS, pp. 23–30. IEEE Computer Society
Press (1983)

43. Vazirani, U.V., Vazirani, V.V.: Efficient and secure pseudo-random number gen-
eration (extended abstract). In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984.
LNCS, vol. 196, pp. 193–202. Springer, Heidelberg (1985). https://doi.org/10.1007/
3-540-39568-7 17

44. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
Kleinberg, R.D. (ed.) ITCS 2013, pp. 111–126. ACM (2013)

45. Young, A., Yung, M.: The dark side of “Black-Box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

https://doi.org/10.1007/3-540-45664-3_26
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-031-07085-3_2
https://doi.org/10.1007/978-3-031-07085-3_2
https://doi.org/10.1007/978-3-030-84259-8_15
https://eprint.iacr.org/2015/695
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://eprint.iacr.org/2016/530
https://doi.org/10.1007/978-3-319-96881-0_9
https://rump2007.cr.yp.to/15-shumow.pdf
https://rump2007.cr.yp.to/15-shumow.pdf
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/3-540-39568-7_17
https://doi.org/10.1007/3-540-39568-7_17
https://doi.org/10.1007/3-540-68697-5_8

182 M. Ball et al.

46. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

47. Young, A., Yung, M.: Kleptography from standard assumptions and applications.
In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 271–290.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4 18

https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/978-3-642-15317-4_18

	Immunizing Backdoored PRGs
	1 Introduction
	1.1 Our Questions: Immunization Countermeasures
	1.2 Related Immunization Settings
	1.3 Our Results for 2-Immunizers
	1.4 Further Related Work

	2 Definitions
	2.1 Pseudorandom Generators
	2.2 2-Immunizers

	3 Counterexamples for Simple 2-Immunizers
	3.1 Public Key Encryption
	3.2 Strong 2-Immunizers
	3.3 Weak 2-Immunizers

	4 Positive Result in Random Oracle Model
	4.1 Random Oracle Model Definitions
	4.2 Random Oracle is a 2-Immunizer

	5 Black Box Separation (with Limitations)
	5.1 Proof Sketch for Theorem 12

	References

