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Abstract. Consider a state-level adversary who observes and stores
large amounts of encrypted data from all users on the Internet, but does
not have the capacity to store it all. Later, it may target certain “persons
of interest” in order to obtain their decryption keys. We would like to
guarantee that, if the adversary’s storage capacity is only (say) 1% of the
total encrypted data size, then even if it can later obtain the decryption
keys of arbitrary users, it can only learn something about the contents of
(roughly) 1% of the ciphertexts, while the rest will maintain full security.
This can be seen as an extension of incompressible cryptography (Dziem-
bowski CRYPTO’06, Guan, Wichs and Zhandry EUROCRYPT’22) to
the multi-user setting. We provide solutions in both the symmetric key
and public key setting with various trade-offs in terms of computational
assumptions and efficiency.

As the core technical tool, we study an information-theoretic problem
which we refer to as “multi-instance randomness extraction”. Suppose
X1, . . . , Xt are correlated random variables whose total joint min-entropy
rate is α, but we know nothing else about their individual entropies. We
choose t random and independent seeds S1, . . . , St and attempt to indi-
vidually extract some small amount of randomness Yi = Ext(Xi; Si) from
each Xi. We’d like to say that roughly an α-fraction of the extracted
outputs Yi should be indistinguishable from uniform even given all the
remaining extracted outputs and all the seeds. We show that this indeed
holds for specific extractors based on Hadamard and Reed-Muller codes.

1 Introduction

Bounded-Storage Mass Surveillance. We consider a scenario where a powerful
(e.g., state-level) adversary wants to perform mass surveillance of the popula-
tion. Even if the population uses encryption to secure all communication, the
adversary can collect large amounts of encrypted data from the users (e.g., by
monitoring encrypted traffic on the Internet). The data is encrypted and hence
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the adversary does not learn anything about its contents when it is collected.
However, the adversary may store this data for the future. Later, it may identify
various “persons of interest” and perform expensive targeted attacks to get their
secret keys (e.g., by remote hacking or by physically compromising their devices).
We will assume the adversary is capable of eventually getting any secret key of
any user of its choosing. Can we still achieve any meaningful notion of security
against such mass-surveillance?

One option is to rely on cryptosystems having forward secrecy [19], which
exactly addresses the problem of maintaining security even if the secret key is
later compromised. Unfortunately, forward-secure encryption schemes inherently
require either multi-round interaction between the sender and receiver or for the
receiver to perform key updates, both of which can be impractical or impossible
in many natural scenarios. Without these, it may seem that no reasonable secu-
rity is possible – if the adversary collects all the ciphertexts and later can get
any secret key, clearly it can also get any plaintext!

In this work, we restrict the adversary to have bounded storage, which is much
smaller than the total of size of all the encrypted data it can observe. This is a
reasonable assumption since the total communication of an entire population is
likely huge.1 As a running example throughout the introduction, we will assume
that the adversary’s storage capacity is 1% of the total encrypted data size. We
allow the adversary to observe all the encrypted data simultaneously and then
compress it in some arbitrary way to fit within its storage budget. Later, the
adversary can get any secret key of any user of its choosing, and eventually it
may even get all the keys of all the users. What kind of security guarantees can
we provide in this setting?

Clearly, the adversary can simply store 1% of the ciphertexts and discard the
remaining 99%, which will allow it to later compromise the security of 1% of
the users by getting their secret keys. While one may pessimistically see this as
a significant privacy violation already, we optimistically regard this as a poten-
tially reasonable privacy outcome that’s vastly preferable to the adversary being
able to compromise all the users. For example, if the adversary later chooses
a random user and wants to learn something about their data, it will only be
able to do so with 1% probability, even if it can get their secret key. But can we
argue that this is the best that the adversary can do? In particular, we’d like to
say that, no mater what compression strategy the adversary employs, it will be
unable to learn anything about the contents of 99% of the ciphertexts, even if
it later gets all the secret keys. Unfortunately, this is not generically true. For
example, the adversary could store the first 1% of the bits of every ciphertext. If
the encryption scheme is (e.g.,) the one-time pad, then an adversary who later
learns the secret keys would later be able to learn the first 1% of every encrypted
message of every user, which may provide a pretty good idea of the overall mes-
sage contents. In fact, it can get even worse than this. If the encryption scheme
is fully homomorphic, the adversary can individually compress each ciphertext

1 Global annual Internet traffic has long surpassed 1 zettabyte (1021 bytes) [4], while
total world-wide datacenter storage is only a couple zettabytes in 2022 [11].
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into a small evaluated ciphertext encrypting some arbitrary predicate of the data
(e.g., was the message insulting of the supreme leader), and therefore learn the
outcome of this predicate about the encrypted data of every user. Even worse, if
the encryption scheme is multi-key fully homomorphic, the adversary can derive
a compressed ciphertext that encrypts the output of a joint computation over
all the data of all the users, as long as the output is sufficiently small. Thus,
in general, an adversary whose storage capacity is only 1%, may still be able to
learn some partial information about the encrypted messages of a 100% of the
users. The question is then, whether or not it is indeed possible to guarantee
only 1% of users are compromised, and if so to actually design such a scheme.

Connection to Incompressible Cryptography. Encryption schemes that offer pro-
tection against bounded-storage mass surveillance can be seen as a generalization
of incompressible encryption [6,15,17] to the setting of multiple ciphertexts. To
clarify the distinction, we refer to the earlier notion of incompressible encryption
as individually incompressible and our new notion as multi-incompressible.

In an individually incompressible encryption scheme, we can make the size
of a ciphertext flexibly large, and potentially huge (e.g., many gigabytes). An
adversary observes a single ciphertext, but cannot store it in its entirety and
can instead only store some compressed version of it. Security dictates that
even if the adversary later gets the user’s secret key, it cannot learn anything
about the encrypted message. The work of [15] gave a construction of one-time
symmetric-key encryption with information-theoretic security in this setting, and
the work of [17] showed how to achieve public-key encryption in this setting,
under the minimal assumption that standard public-key encryption exists. The
works of [6,17] also constructed such public-key encryption schemes having rate
1, meaning that the size of the message can be almost as large as the ciphertext
size, and the latter work even showed how to do so under specific but standard
public-key assumptions.

In our new notion of multi-incompressible encryption, we also have the flex-
ibility to make the ciphertext size arbitrarily large. But now the adversary
observes a large number of ciphertexts from many users and compresses them
down to something that’s roughly an α-fraction of the size of all the original
ciphertexts, for some α. In particular, the adversary’s storage may be much
larger than a single ciphertext. Later the adversary gets all the secret keys, and
we want to say that the adversary can only learn something about a (roughly)
α-fraction of the messages, but cannot learn anything about the rest.

Our new notion of multi-incompressibility implies individual incompressibil-
ity. In particular, in the case of a single ciphertext, unless the adversary stores
essentially all of it (i.e., α ≈ 1), it cannot learn anything about the encrypted
message (= 100% of the messages). But our notion is significantly more general.
For example, individual incompressibility does not even offer any guarantees if
an adversary can take even 2 ciphertexts and compress them down to the size of
1, while multi-incompressibility ensures that one of the messages stays secure.

Formalizing multi-incompressibility is tricky: the natural indistinguishability-
based approach would be to insist that the encryptions of two lists of messages
are indistinguishable. But unlike individually incompressible encryption, in our
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setting the adversary can always learn something, namely the messages con-
tained in ciphertexts it chose to store. We therefore need a fine-grained notion
which captures that some messages to be learned, but other messages remain
completely hidden. We give details on our solution below.

Extracting Randomness Against Correlated Sources. Before getting to our
results, we discuss randomness extraction, which is a central tool in all existing
constructions of incompressible encryption. A randomness extractor Ext takes
as input a source of imperfect randomness X and uses it to distill out some
(nearly) uniformly random string Y . Here, we consider seeded extractors, which
use a public uniformly random seed S as a catalyst to extract Y = Ext(X;S),
such that Y should be (nearly) uniform even conditioned on the seed S.

While randomness extraction is very well studied, it is most often in the single-
use case, where a single string Y = Ext(X;S) is extracted from a single source X
having sufficient entropy. Here we ask: what if many strings Yi = Ext(Xi;Si) are
extracted from multiple sources Xi respectively (using independent random seeds
Si), but where the sources Xi may be arbitrarily correlated? What guarantees can
be made? We consider the case where we only know that the total joint entropy of
all the sources is high, but we know nothing else about their individual entropies;
indeed some of the sources may have no entropy at all! In this case, clearly not all of
the extracted values Yi can be uniform, and some may even be entirely determinis-
tic. One may nevertheless hope that some of the extracted values remain uniform,
where the fraction of uniform values roughly correlates to combined total entropy
rate of all the sources. To the best of our knowledge, randomness extraction in this
setting has not been studied before.

1.1 Our Results

Formalizing Multi-user Incompressible Encryption. We first provide definitions
for multi-user incompressible encryption. We depart from the indistinguishability-
based definitions of the prior work on incompressible cryptography [6,15,17], and
instead give a simulation-based definition. Essentially, it says that anything that
an adversary can learn by taking many ciphertexts of different users, compress-
ing them down sufficiently, and later getting all the secret keys, can be simulated
by a simulator that can only ask to see some small fraction of the plaintexts but
learns nothing about the remaining ones. In the single-instance case, this defini-
tion implies indistinguishability-based security, but appears stronger. Neverthe-
less, existing constructions and proofs are readily adapted to satisfy simulation
security. The distinction becomes more important in the multi-user setting, how-
ever, where simulation security allows us to naturally define what it means for some
messages to be revealed and some to remain hidden.

Multi-instance Randomness Extractors. As our main technical tool, we explore a
new kind of extractor that we call a multi-instance randomness extractor, which
aims to solve the extraction problem outlined above. Syntactically, this is a stan-
dard extractor Y = Ext(X;S) that takes as input a source X and a seed S and
outputs some short randomness Y . However, we now imagine that the extractor
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is applied separately to t correlated sources Xi, with each invocation using an
independent seed Si, to derive extracted values Yi = Ext(Xi;Si). The only guar-
antee on the sources is that the total joint min-entropy of X = (X1, . . . , Xt) is
sufficiently high. Any individual source Xi, however, may actually be determin-
istic (have 0 entropy), in which case the corresponding extracted value Yi is of
course not random. However, provided the total min-enropy rate of X is high, it
is guaranteed that many of the t extracted values are statistically-close uniform.
Ideally, if the joint min-entropy rate of X is α, we would hope that roughly αt
of the extracted values are uniform.

Formalizing the above requires some care. For example, it may be the case
that X is chosen by selecting a random index i∗ ← [t], setting Xi∗ to be all 0’s,
and choosing the remaining block Xj for j �= i∗ uniformly at random. In that
case X has a very high entropy rate, but for any fixed index i, the min-entropy of
Xi is small (at most log t since with polynomial probability 1/t the value of Xi is
all 0’s), and not enough to extract even 1 bit with negligible bias. Therefore, we
cannot argue that Yi = Ext(Xi;Si) is close to uniform for any particular index
i! Instead, we allow the set of indices i, for which Yi is close to uniform, itself be
a random variable correlated with X. (See Definition 3.)

We show constructions of multi-instance randomness extractors nearing the
optimal number of uniform extracted values. In particular, we show that if the
joint min-entropy rate of X = (X1, . . . , Xt) is α then there exists some random
variable IX denoting a subset of ≈ α ·t indices in [t] such that nobody can distin-
guish between seeing all the extracted values Yi = Ext(Xi;Si) versus replacing
all the Yi for i ∈ IX by uniform, even given all the seeds Si. (See Corollary 1.)
Our constructions are based on Hadamard codes (long seed) and Reed-Muller
codes (short seed). While the constructions themselves are standard, our anal-
ysis is novel, leveraging the list-decodability of the codes, plus a property we
identify called hinting. Hinting roughly means that the values of {Ext(x;Si)}i

on some particular exponentially large set of pairwise independent seeds Si can
be compressed into a single small hint, of size much smaller than x. This hinting
property is a crucial feature in the local list-decoding algorithms for these codes,
but appears not to have been separately formalized/utilized as a design goal for
an extractor.2

Applications. We then show that multi-instance randomness extraction can
be used essentially as a drop-in replacement for standard randomness extrac-
tors in prior constructions of individual incompressible encryption, lifting them
to multi-incompressible encryption. As concrete applications, we obtain multi-
incompressible encryption in a variety of settings:
2 The work of [1] studied a notion of extractors for “Somewhere Honest Entropic

Look Ahead” (SHELA) sources. The notions are largely different and unrelated.
In particular: (i) in our work X is an arbitrary source of sufficient entropy while
[1] places additional restrictions, (ii) we use a seeded extractor while [1] wants a
deterministic extractor, (iii) we apply the seeded extractor separately on each Xi

while [1] applies it jointly on the entire X, (iv) we guarantee that a large fraction
of extracted outputs is uniform even if the adversary sees the rest, while in [1] the
adversary cannot see the rest.
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– A symmetric key scheme with information-theoretic security, by replacing the
extractor in [15].

– A “rate-1” symmetric key scheme, meaning the ciphertext is only slightly
larger than the message. Here, we assume either decisional composite residu-
osity (DCR) or learning with errors (LWE), matching [6]3.

– A public key scheme, assuming any ordinary public key encryption scheme,
matching [17].

– A rate-1 public key scheme, under the same assumptions as [6]4. The scheme
has large public keys.

– A rate-1 public key scheme that additionally has succinct public keys, assum-
ing general functional encryption, matching [17].

In all cases, we guarantee that if the adversary’s storage is an α fraction of
the total size of all the ciphertexts, then it can only learn something about a
β ≈ α fraction of the encrypted messages. We can make β = α − 1/p(λ) for
any polynomial p in the security parameter λ, by choosing a sufficiently large
ciphertext size.

Multiple Ciphertexts Per User. Prior work, in addition to only considering a
single user, also only considers a single ciphertext per user. Perhaps surprisingly,
security does not compose, and indeed for any fixed secret key size, we explain
that simulation security for unbounded messages is impossible.

We therefore develop schemes for achieving a bounded number of ciphertexts
per user. We show how to modify each of the constructions above to achieve
multi-ciphertext security under the same assumptions.

The Random Oracle Model. In the full version [18] of the paper, we also show
how to construct symmetric key multi-user incompressible encryption with an
unbounded number of ciphertexts per user and also essentially optimal secret
key and ciphertext sizes, from random oracles. This shows that public key tools
are potentially not inherent to rate-1 symmetric incompressible encryption.

1.2 Concurrent Work

A concurrent and independent work of Dinur et al. [12] (Sect. 6.2) considers
an extraction problem that turns out to be equivalent to our notion of Multi-
Instance Randomness Extractor. They study this problem in a completely dif-
ferent context of differential-privacy lower bounds. They show that (in our lan-
guage) universal hash functions are “multi-instance randomness extractors” with
good parameters, similar to the ones in our work. While conceptually similar,
the results are technically incomparable since we show our result for hinting
3 One subtlety is that, for all of our rate-1 constructions, we need a PRG secure

against non-uniform adversaries, whereas the prior work could have used a PRG
against uniform adversaries.

4 [6] explores CCA security, but in this work for simplicity we focus only on CPA
security.
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extractors while they show it for universal hash functions. One advantage of our
result is that we show how to construct hinting extractors with short seeds, while
universal hash functions inherently require a long seed. Their proof is completely
different from the one in our paper.

The fact that multi-instance randomness extractors have applications in dif-
ferent contexts, as demonstrated in our work and Dinur et al. [12], further jus-
tifies them as a fundamental primitive of independent interest. We believe that
having two completely different techniques/approaches to this problem is both
interesting and valuable.

1.3 Our Techniques: Multi-instance Randomness Extraction

We discuss how to construct a multi-instance randomness extractor Ext. Recall,
we want to show that, if the joint min-entropy rate of X = (X1, . . . , Xt) is α then
there exists some random variable IX denoting a subset of ≈ α·t indices in [t] such
that the distribution (Si, Yi = Ext(Xi;Si))i∈[t] is statistically indistinguishable
from (Si, Zi)i∈[t] where Zi is uniformly random for i ∈ IX and Zi = Yi otherwise.

A Failed Approach. A natural approach would be to try to show that every stan-
dard seeded extractor is also a “multi-instance randomness extractor”. As a first
step, we would show that there is some random variable IX denoting a large sub-
set of [t] such that the values Xi for i ∈ IX have large min-entropy conditioned
on i ∈ IX . Indeed, such results are known; see for example the “block-entropy
lemma” of [13] (also [9,16]). In fact, one can even show a slightly stronger state-
ment that the random variables Xi for i ∈ IX have high min-entropy even con-
ditioned on all past blocks X1, . . . , Xi−1. However, it cannot be true that Xi has
high min-entropy conditioned on all other blocks past and future (for example,
think of X being uniform subject to

⊕t
i=1 Xi = 0). Unfortunately, this prevents

us for using the block-entropy lemma to analyze multi-instance extraction, where
the adversary sees some extracted outputs from all the blocks.5 It remains as
a fascinating open problem whether every standard seeded extractor is also a
multi-instance randomness extractor or if there is some counterexample.6

Our Approach. We are able to show that particular seeded extractors Ext
based on Hadamard or Reed-Muller codes are good multi-instance randomness

5 This strategy would allow us to only prove a very weak version of multi-instance
extraction when the number of blocks t is sufficiently small. In this case we can
afford to lose the t extracted output bits from the entropy of each block. However,
in our setting, we think of the number of blocks t as huge, much larger than the
size/entropy of each individual block.

6 We were initially convinced that the general result does hold and invested much
effort trying to prove it via some variant of the above approach without success. We
also mentioned the problem to several experts in the field who had a similar initial
reaction, but were not able to come up with a proof.
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extractors. For concreteness, let us consider the Hadamard extractor Ext(x; s) =
〈x, s〉.7 Our proof proceeds in 3 steps:

Step 1: Switch quantifiers. We need to show that there exists some random
variable IX such that every statistical distinguisher fails to distinguish between
the two distributions (Si, Yi)i∈[t] and (Si, Zi)i∈[t]. We can use von Neumann’s
minimax theorem to switch the order quantifiers.8 Therefore, it suffices to show
that for every (randomized) statistical distinguisher D there is some random
variable IX such that D fails to distinguish the above distributions.

Step 2: Define IX . For any fixed x = (x1, . . . , xt) we define the set Ix to con-
sist of indices i ∈ [t] such that D fails to distinguish between the hybrid dis-
tributions ({Sj}j∈[t], Z1, . . . , Zi−1, Yi, . . . , Yt) versus ({Sj}j∈[t], Z1, . . . , Zi, Yi+1,
. . . , Yt), where in both distributions we condition on X = x. In other words, these
are the indices where we can replace the next extracted output by random and fool
the distinguisher. We then define the random variable IX that chooses the correct
set Ix according to X. It is easy to show via a simple hybrid argument that with
this definition of IX it is indeed true that D fails to distinguish (Si, Yi)i∈[t] and
(Si, Zi)i∈[t].

Step 3: Argue that IX is large. We still need to show that IX is a large set,
containing ≈ α · t indices. To do so, we show that if IX were small (with non
negligible probability) then we could “guess” X with sufficiently high probability
that would contradict X having high min-entropy. In particular, we provide a
guessing strategy such that for any x for which Ix is small, our strategy has a
sufficiently high chance of guessing x. First, we guess the small set Ix ⊆ [t] as well
as all of the blocks xi for i ∈ Ix uniformly at random. For the rest of the blocks
i �∈ Ix, we come up with a guessing strategy that does significantly better than
guessing randomly. We rely on the fact that distinguishing implies predicting,
to convert the distinguisher D into a predictor P such that for all i �∈ Ix we
have: P (Si, {Sj ,Ext(xj ;Sj)}j∈[t]\{i}) = Ext(xi;Si) with probability significantly
better than 1/2. Now we would like to use the fact that the Hadamard code
(Ext(x; s) = 〈x, s〉)s is list-decodable to argue that we can use such predictor P to
derive a small list of possibilities for x. Unfortunately, there is a problem with this
argument. To call the predictor, the predictor requires an auxiliary input, namely
auxi = {Sj ,Ext(xj ;Sj)}j∈[t]\{i}. Supplying the auxi in turn requires knowing at
least t bits about x. We could hope to guess a good choice of auxi, but there
may be a different good choice for each i ∈ [t], and therefore we would need to
guess a fresh t bits of information about x just to recover each block xi, which
when |xi| < t is worse than the trivial approach of guessing xi directly! Instead,
we use a trick inspired by the proof of the Goldreich-Levin theorem. For each

7 For the sake of exposition, here we only show the case where the extractor output
is a single bit. In Sect. 3, we construct extractors with multiple-bit outputs.

8 Think of the above as a 2 player game where one player chooses IX , the other chooses
the distinguisher and the payout is the distinguishing advantage; the minimax the-
orem says that the value of the game is the same no matter which order the players
go in.
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block j ∈ [t], we guess the values of b(k) := 〈xj , S
(k)
j 〉 for a very small “base

set” of h random seeds S
(1)
j , . . . , S

(h)
j . We can then expand this small “base

set” of seeds into an exponentially larger “expanded set” of Q = 2h − 1 seeds
S
(K)
j :=

∑
k∈K S

(k)
j for K ⊆ [h] \ ∅, and derive guesses for b(K) := 〈xj , S

(K)
j 〉

by setting b(K) =
∑

k∈K b(k). By linearity, the expanded set of guesses is correct
if the base set is correct, and moreover the expanded sets of seeds (S(K)

j )K

are pairwise independent for different sets K. Therefore, for each set K, we can
derive the corresponding aux

(K)
i . We can now apply Chebyshev’s bound to argue

that if for each i we take the majority value for P (Si, aux
(K)
i ) across all Q sets

K, it is likely equal to Ext(xi;Si) with probability significantly better than 1/2.
Notice that we got our saving by only guessing ht bits about x = (x1, . . . , xt)
for some small value h (roughly log(1/ε) if we want indistinguishability ε) and
were able to use these guesses to recover all the blocks xi for i �∈ Ix.

Generalizing. We generalize the above analysis for the Hadamard extractor to
any extractor that is list-decodable and has a “hinting” property as discussed
above. In particular, this also allows us to use a Reed-Muller based extractor
construction with a much smaller seed and longer output length.

1.4 Our Techniques: Multi-incompressible Encryption

We then move to considering incompressible encryption in the multi-user setting.

Definition. We propose a simulation-based security definition for multi-instance
incompressible encryption. Roughly, the simulator first needs to simulate all
the ciphertexts for all the instances without seeing any of the message queries,
corresponding to the fact that at this point the adversary can’t learn anything
about any of the messages. To model the adversary then learning the secret
keys, we add a second phase where the simulator can query for a subset of the
messages, and then must simulate all the private keys. We require that no space-
bounded distinguisher can distinguish between the receiving real encryptions/real
private keys vs receiving simulated encryptions/keys. The number of messages
the simulator can query will be related to the storage bound of the distinguisher.

Upgrading to Multi-incompressible Encryption Using Multi-instance Randomness
Extraction. All prior standard-model constructions of individual incompress-
ible encryption [6,15,17] utilize a randomness extractor. For example, Dziem-
bowski [15] gives the following simple construction of a symmetric key incom-
pressible encryption scheme:

– The secret key k is parsed as (s, k′) where s is a seed for a randomness
extractor, and k′ is another random key.

– To encrypt a message m, choose a large random string R, and output c =
(R, d = Ext(R; s) ⊕ k′ ⊕ m).

The intuition for (individual) incompressible security is that an adversary
that cannot store essentially all of c can in particular not store all of R, meaning
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R has min-entropy conditioned on the adversary’s state. The extraction guar-
antee then shows that Ext(R; s) can be replaced with a random string, thus
masking the message m.

We demonstrate that our multi-instance randomness extractors can be used
as a drop-in replacement for ordinary random extractors in all prior constructions
of individual incompressible encryption, upgrading them to multi-incompressible
encryption. In the case of [15], this is almost an immediate consequence of our
multi-instance randomness extractor definition. Our simulator works by first
choosing random s for each user, and sets the ciphertexts of each user to be
random strings. Then it obtains from the multi-instance randomness extractor
guarantee the set of indices i where Yi is close to uniform. For these indices, it
sets k′ to be a uniform random string. This correctly simulates the secret keys
for these i.

For i where Yi is not uniform, the simulator then queries for messages for
these i. It programs k′ as k′ = d ⊕ Ext(R; s) ⊕ m; decryption under such k′

will correctly yield m. Thus, we correctly simulate the view of the adversary,
demonstrating multi-incompressible security.

Remark 1. The set of indices where Yi is uniform will in general not be efficiently
computable, and multi-instance randomness extraction only implies that the set
of indices exist. Since our simulator must know these indices, our simulator is
therefore inefficient. In general, an inefficient simulator seems inherent in the
standard model, since the adversary’s state could be scrambled in a way that
hides which ciphertexts it is storing.

We proceed to show that various constructions from [6,17] are also secure
in the multi-user setting, when plugging in multi-instance randomness extrac-
tors. In all cases, the proof is essentially identical to the original single-user
counterpart, except that the crucial step involving extraction is replaced with
the multi-instance randomness extraction guarantee. We thus obtain a variety
of parameter size/security assumption trade-offs, essentially matching what is
known for the single-user setting.

One small issue that comes up is that, once we have invoked the multi-
instance randomness extractor, the simulation is inefficient. This presents a prob-
lem in some of the security proofs, specifically in the “rate-1” setting where mes-
sages can be almost as large as ciphertexts. In the existing proofs in this setting,
there is a computational hybrid step that comes after applying the extractor.
Naively, this hybrid step would seem to be invalid since the reduction now has
to be inefficient. We show, however, that the reduction can be made efficient as
long as it is non-uniform, essentially having the choice of indices (and maybe
some other quantities) provided as non-uniform advice. As long as the under-
lying primitive for these post-extraction hybrids has non-uniform security, the
security proof follows.

Multiple Ciphertexts Per User. We also consider the setting where there may be
multiple ciphertexts per user, which has not been considered previously.
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It is not hard to see that having an unbounded number of ciphertexts per
user is impossible in the standard model. This is because the simulator has to
simulate everything but the secret key without knowing the message. Then, for
the ciphertexts stored by the adversary, the simulator queries for the underlying
messages and must generate the secret key so that those ciphertexts decrypt to
the given messages. By incompressiblity, this means the secret key length must
be at least as large as the number of messages.

We instead consider the case of bounded ciphertexts per user. For a stateful
encryption scheme, it is trivial to upgrade a scheme supporting one ciphertext
per user into one supporting many: simply have the secret key be a list of one-
time secret keys. In the symmetric key setting, this can be made stateless by
utilizing k-wise independent hash functions.

In the public key setting, achieving a stateless construction requires more
work, and we do not believe there is a simple generic construction. We show
instead how to modify all the existing constructions to achieve multiple cipher-
texts per user. Along the way, we show an interesting combinatorial approach to
generically lifting non-committing encryption to the many-time setting without
sacrificing ciphertext rate.

2 Preliminaries

Notation-wise, for n ∈ N, we let [n] denote the ordered set {1, 2, . . . , n}. We use
capital bold letters to denote a matrix M. Lowercase bold letters denote vectors
v. Let Mi,j denote the element on the i-th row, and j-th column of M, and vi

denote the i-th element of v.

Lemma 1 (Johnson Bound, Theorem 3.1 of [20]). Let C ⊆ Σn with |Σ| = q
be any q-ary error-correcting code with relative distance p0 = 1 − (1 + ρ) 1q for
ρ > 0, meaning that for any two distinct values x, y ∈ C, the Hamming distance
between x, y is at least p0 · n. Then for any δ >

√
ρ(q − 1) there exists some

L ≤ (q−1)2

δ2−ρ(q−1) such that the code is (p1 = (1 − (1 + δ) 1q ), L)-list decodable,
meaning that for any y ∈ Σn

q there exist at most L codewords x ∈ C that are
within Hamming distance p1n of y.

Lemma 2 (Distinguishing implies Predicting). For any randomized func-
tion D : {0, 1}n × {0, 1}m → {0, 1} there exists some randomized function
P : {0, 1}n → {0, 1}m such that for any jointly distributed random variables
(A,B) over {0, 1}n × {0, 1}m:
if Pr[D(A,B) = 1] − Pr[D(A,Um) = 1] ≥ ε then Pr[P (A) = B] ≥ 1

2m (1 + ε).

Proof. Define P (a) as follows. Sample a random b0 ← {0, 1}m, if D(a, b0) = 1
output b0 else sample a fresh b1 ← {0, 1}m and output b1.
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Define p = Pr[D(A,Um) = 1]. Let B0, B1 be independent random variables
that are uniform over {0, 1}m corresponding to the strings b0, b1 . Then we have

Pr[P (A) = B] = Pr[D(A,B0) = 1 ∧ B0 = B] + Pr[D(A,B0) = 0 ∧ B1 = B]
= Pr[B0 = B] Pr[D(A,B) = 1] + Pr[D(A,B0) = 0] Pr[B1 = B]

=
1

2m
(ε + p) + (1 − p)

1
2m

=
1

2m
(1 + ε).

��
Min-Entropy Extractor. Recall the definition for average min-entropy:

Definition 1 (Average Min-Entropy). For two jointly distributed random
variables (X,Y ), the average min-entropy of X conditioned on Y is defined as

H∞(X|Y ) = − logE
y

$←Y
[max

x
Pr[X = x|Y = y]].

Lemma 3 ([14]). For random variables X,Y where Y is supported over a set
of size T , we have H∞(X|Y ) ≥ H∞(X,Y ) − log T ≥ H∞(X) − log T.

Definition 2 (Extractor [23]). A function Extract : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε) strong average min-entropy extractor if, for all jointly
distributed random variables (X,Y ) where X takes values in {0, 1}n and
H∞(X|Y ) ≥ k, we have that (Ud,Extract(X;Ud), Y ) is ε-close to (s, Um, Y ),
where Ud and Um are uniformly random strings of length d and m respectively.

Remark 2. Any strong randomness extractor is also a strong average min-
entropy extractor, with a constant loss in ε.

Definitions of incompressible encryption and functional encryption can be
found in the full version [18] of the paper.

3 Multi-instance Randomness Extraction

3.1 Defining Multi-instance Extraction

Definition 3 (Multi-instance Randomness Extraction). A function Ext :
{0, 1}n×{0, 1}d → {0, 1}m is (t, α, β, ε)-multi-instance extracting if the following
holds. Let X = (X1, . . . , Xt) be any random variable consisting of blocks Xi ∈
{0, 1}n such that H∞(X) ≥ α · tn. Then, there exists some random variable IX

jointly distributed with X, such that IX is supported over sets I ⊆ [t] of size
|I| ≥ β · t and:

(S1, . . . , St,Ext(X1;S1), . . . ,Ext(Xt;St)) ≈ε (S1, . . . , St, Z1, . . . , Zt)

where Si ∈ {0, 1}d are uniformly random and independent seeds, and Zi ∈
{0, 1}m is sampled independently and uniformly random for i ∈ IX while
Zi = Ext(Xi;Si) for i �∈ IX .

In other words, the above definition says that if we use a “multi-instance extract-
ing” extractor with independent seeds to individually extract from t correlated
blocks that have a joint entropy-rate of α, then seeing all the extracted outputs
is indistinguishable from replacing some carefully chosen β-fraction by uniform.
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3.2 Hinting Extractors

Definition 4 (Hinting Extractor). A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a (δ, L, h,Q)-hinting extractor if it satisfies the following:

– List Decodable: If we think of ECC(x) = (Ext(x; s))s∈{0,1}d as a (2d, n)Σ={0,1}m

error-correcting code over the alphabet Σ = {0, 1}m, then the code is (p =
1 − (1 + δ)2−m, L)-list decodable, meaning that for any y ∈ Σ2d , the number
of codewords that are within Hamming distance p · 2d of y is at most L.

– Pairwise-Independent Hint: There exist some functions hint : {0, 1}n×{0, 1}τ

→ {0, 1}h, along with rec0 and rec1 such that:
• For all x ∈ {0, 1}n, r ∈ {0, 1}τ , if we define σ = hint(x; r), {s1, . . . , sQ} =
rec0(r), and {y1, . . . , yQ} = rec1(σ, r), then Ext(x; si) = yi for all i ∈ [Q].

• Over a uniformly random r ← {0, 1}τ , the Q seeds {s1, . . . , sQ} = rec0(r),
are individually uniform over {0, 1}d and pairwise independent.

Intuitively, the pairwise-independent hint property says that there is a small
(size h) hint about x that allows us to compute Ext(x; si) for a large (size Q) set
of pairwise independent seeds si. We generally want Q to be exponential in h.

The list-decoding property, on the other hand, is closely related to the
standard definition of strong randomness extractors. Namely, if Ext is a (k, ε)-
extractor then it is also (p = 1 − (1 + δ)2−m, 2k)-list decodable for δ = ε · 2m,
and conversely, if it is (p = 1 − (1 + δ)2−m, 2k)-list deocdable then it is a
(k + m + log(1/δ), δ)-extractor (see Proposition 6.25 in [26]).

Construction 1: Hadamard. Define Ext : {0, 1}n×{0, 1}n → {0, 1}m via Ext(x; s)
= 〈x, s〉, where we interpret x, s as elements of Fn̂

2m for n̂ := n/m and all the
operations are over F2m . The seed length is d = n bits and the output length is
m bits.

Lemma 4. The above Ext : {0, 1}n×{0, 1}n → {0, 1}m is a (δ, L, h,Q)-hinting
extractor for any h, δ > 0 with Q ≥ 2h−m and L ≤ 22m/δ2.

Proof. The list-decoding bounds on δ, L come from the Johnson bound (Lemma
1) with q = 2m, ρ = 0. For pairwise-independent hints, let ĥ = h/m and define
hint(x;R) to parse R ∈ F

ĥ×n̂
2m and output σ = R · x�, which has bit-size h. Let

V ⊆ F
ĥ
2m be a set of vectors such that any two distinct vectors v1 �= v2 ∈ V

are linearly independent. Such a set V exists of size Q = (2m)ĥ−1 + (2m)ĥ−2 +
· · · + 2m + 1 ≥ 2h−m, e.g., by letting V be the set of all non-zero vectors whose
left-most non-zero entry is a 1. Define rec0(R) so that it outputs {sv = v ·
R}v∈V . Correspondingly, rec1(σ,R) outputs {yv = 〈v, σ〉}v∈V . It’s easy to see
that the seeds sv are individually uniform and pairwise independent, since for
any linearly-independent v1 �= v2 ∈ V and the value sv1 = v1R and sv2 = v2R
are random and independent over a random choice of the matrix R. Moreover
for all seeds sv we have

Ext(x, sv) = 〈sv, x〉 = v · R · x� = 〈v, σ〉 = yv.

��
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Construction 2: Hadamard ◦ Reed-Muller. Define Ext(f ; s = (s1, s2)) = 〈f(s1),

s2〉, where f ∈ F

(
�+g

g

)

2w is interpreted as a �-variate polynomial of total degree
g over some field of size 2w > g, and s1 ∈ F

�
2w is interpreted as an input to

the polynomial (this is Reed-Muller).9 Then y = f(s1) and s2 are interpreted
as a values in F

w/m
2m and the inner-product 〈y, s2〉 is computed over F2m (this is

Hadamard). So overall, in bits, the input length is n = w · (�+g
g

)
, the seed length

is d = w(� + 1) and the output length is m. This code has relative distance
1 − ( 1

2m + g
2w ) = 1 − 1

2m (1 + g
2w−m ).

Lemma 5. For any w, �, g,m, δ such that 2w > g and m divides w, if we set
n = w · (

�+g
g

)
, d = w(� + 1) then the above Ext : {0, 1}n × {0, 1}d → {0, 1}m

is an (δ, L, h,Q)-hinting extractor with δ =
√

g22m/2w, L = 22m

δ2−g22m/2w , h =
w · (g + 1), Q = 2w.

In particular, for any n,m,w such that m divides w, we can set � = g = log n
to get an (δ, L, h,Q)-hinting extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(w log n), δ = 2m+log log n−w/2, h = O(w log n) and Q = 2w.

Proof. The list-decoding bounds on δ, L come from the Johnson bound (Lemma
1) with q = 2m, ρ = g

2w−m . On the other hand, for pairwise-independent hints,
we can define hint(f ; r) as follows. Parse r = (r0, r1, s11, . . . , s

Q
1 ) with r0, r1 ∈ F

�
2w

and si
1 ∈ F

w/m
2m . Let f̂(i) = f(r0 + i · r1) be a univariate polynomial of degree g

and define the hint σ = f̂ to be the description of this polynomial. Define {si =
(si

0, s
i
1))} = rec0(r) for i ∈ F2w by setting si

0 = r0 + i ·r1. Define {yi} = rec1(σ, r)
via yi = 〈f̂(i), si

1〉. It is easy to check correctness and pairwise independence
follows from the fact that the values si

0 = r0 + i · r1 are pairwise independent
over the randomness r0, r1. ��

3.3 Hinting-Extractors Are Multi-instance-Extracting

Lemma 6 (Multi-instance-Extraction Lemma). Let Ext : {0, 1}n×{0, 1}d

→ {0, 1}m be a (δ, L, h,Q)-hinting extractor. Then, for any t, α > 0 such that
Q ≥ 2t 2

2m

δ2 , it is also (t, α, β, ε)-multi-instance extracting with ε = 6tδ and β =
α − log L+h+log t+log(1/ε)+3

n .

Proof. Our proof follows a sequence of steps.

Step 0: Relax the Size Requirement. We modify the statement of the lemma as
follows. Instead of requiring that |IX | ≥ β · t holds with probability 1, we relax
this to requiring that Pr[|IX | < β · t] ≤ ε/4. On the other hand, we strengthen
the requirement on statistical indisitnguishability from ε to ε/2:

(S1, . . . , St,Ext(X1;S1), . . . ,Ext(X1;St)) ≈ε/2 (S1, . . . , St, Z1, . . . , Zt).

This modified variant of the lemma implies the original.
9 Since the the input to the extractor is interpreted as a polynomial, we will denote

it by f rather than the usual x to simplify notation.
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To see this, notice that we can replace the set IX that satisfies the modified
variant with I ′

X which is defined as I ′
X := IX when |IX | ≥ βt and I ′

X :=
{1, . . . , βt} else. The set I ′

X then satisfies the original variant. In particular,
we can prove the indisintinguishability guarantee of the original lemma via a
hybrid argument: replace I ′

X by IX (ε/4 statistical distance), switch from the
left distribution to right distribution (ε/2 statistical distance), replace IX back
by I ′

X (ε/4 statistical distance) for a total distance of ε.

Step 1: Change quantifiers. We need to prove that: for all X with H∞(X) ≥
α · tn, there exists some random variable IX ⊆ [t] with Pr[|IX | < βt] ≤ ε/4
such that for all (inefficient) distinguishers D:

|Pr[D(S1, . . . , St, Y1, . . . , Yt) = 1] − Pr[D(S1, . . . , St, Z1, . . . , Zt) = 1]| ≤ ε/2
(1)

where we define Yi = Ext(Xi;Si), and the random variables Zi are defined as
in the Lemma. By the min-max theorem, we can switch the order of the last
two quantifiers. In particular, it suffices to prove that: for all X with H∞(X) ≥
α · tn and for all (inefficient, randomized) distinguishers D there exists some
random variable IX ⊆ [t] with Pr[|IX | < βt] ≤ ε/4 such that Eq. ( 1) holds.

We can apply min-max because a distribution over inefficient distinguishers D
is the same as a single randomized inefficient distinguisher D and a distribution
over random variables IX is the same as a single random variable IX .

Step 2: Define IX . Fix a (inefficient/randomized) distinguisher D.
For any fixed value x ∈ {0, 1}n·t, we define a set Ix ⊆ [t] iteratively as follows.

Start with Ix := ∅. For i = 1, . . . , t add i to Ix if
(

Pr[D(S1, . . . , St, Z
x
1 . . . , Zx

i−1, Y
x
i , Y x

i+1, . . . , Y
x
t ) = 1]

− Pr[D(S1, . . . , St, Z
x
1 , . . . , Zx

i−1, Um, Y x
1+1, . . . , Y

x
t ) = 1]

)

≤ 3δ (2)

where Si is uniform over {0, 1}d, Y x
j = Ext(xj ;Sj) and for j < i we define Zx

j to
be uniformly random over {0, 1}m for j ∈ Ix, while Zx

j = Y x
j for j �∈ Ix. Note

that Y x
i = (Yi|X = x) and Zx

i = (Zi|X = x).
Define IX to be the random variable over the above sets Ix where x is chosen

according to X. With the above definition, Eq. 1 holds since:

Pr[D(S1, . . . , St, Y1, . . . , Yt) = 1] − Pr[D(S1, . . . , St, Z1, . . . , Zt) = 1]
= Ex←X Pr[D(S1, . . . , St, Y1, . . . , Yt) = 1|X = x]

− Pr[[D(S1, . . . , St, Z1, . . . , Zt) = 1|X = x]
= Ex←X Pr[D(S1, . . . , St, Y

x
1 , . . . , Y x

t ) = 1] − Pr[D(S1, . . . , St, Z
x
1 , . . . , Zx

t ) = 1]

= Ex←X

∑

i∈[t]

(
Pr[D(S1, . . . , St, Z

x
1 , . . . , Zx

i−1, Y
x
i , Y x

i+1, . . . , Y
x
t ) = 1]

− Pr[D(S1, . . . , St, Z
x
1 , . . . , Zx

i−1, Z
x
i , Y x

i+1, . . . , Y
x
t ) = 1]

)

︸ ︷︷ ︸
(∗)

≤ 3tδ = ε/2
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The last line follows since, for any x and any i ∈ [t], if i �∈ Ix then Y x
i = Zx

i

and therefore (∗) = 0, and if i ∈ Ix then (∗) ≤ 3δ by the way we defined Ix in
Eq. (2).

Step 3: Argue IX is large. We are left to show that

Pr[|IX | < β · t] ≤ ε/4. (3)

We do this via a proof by contradiction. Assume otherwise that (3) does not hold.
Then we show that we can guess X with high probability, which contradicts the
fact that X has high min-entropy. In particular, we define a randomized function
guess() such that, for any x for which |Ix| < β · t, we have:

Pr
x̂←guess()

[x̂ = x] ≥ 1
4

(
tβt+12htLt2βtn

)−1
. (4)

Then, assuming (3) does not hold, we have

Pr
x̂←guess(),x←X

[x̂ = x] ≥ Pr
x←X

[|Ix| < βt] Pr
x̂←guess(),x←X

[x̂ = x | |Ix| < βt]

≥ ε

16
(
tβt+12htLt2βtn

)−1
.

which contradicts H∞(X) ≥ αtn.
Before defining the function guess(), we note that by the definition of Ix in

Eq. (2) and the“distinguishing implies predicting” lemma (Lemma 2), there exist
some predictors Pi (depending only on D), such that, for all x ∈ {0, 1}n and
i �∈ Ix, we have:

Pr[Pi(S1, . . . , St, Z
x
1 , . . . , Zx

i−1, Y
x
i+1, . . . , Y

x
t ) = Y x

i ] ≥ 1
2m

(1 + 3δ) (5)

The guessing strategy. We define guess() using these predictors Pi as follows:

1. Sample values r1, . . . , rt with ri ← {0, 1}τ .
2. Sample a set Îx ⊆ [t] of size |Îx| ≤ βt uniformly at random.
3. Sample values σ̂i ← {0, 1}h for i �∈ Îx uniformly at random.
4. Sample values x̂i ← {0, 1}n for i ∈ Îx uniformly at random.
5. Let {s1i , . . . , s

Q
i } = rec0(ri), and {y1

i , . . . , yQ
i } = rec1(σ̂i, ri).

6. Use all of the above values to define, for each i �∈ Îx, a randomized function
P̂i(s) which chooses a random j∗ ← [Q] and outputs:

P̂i(s) = Pi(s
j∗
1 , . . . , sj∗

i−1, s, s
j∗
i+1, . . . , s

j∗
t , zj∗

1 , . . . , zj∗
i−1, y

j∗
i+1, . . . , y

j∗
t )

where zj∗
i := yj∗

i if i �∈ Îx and zj∗
i ← {0, 1}m if i ∈ Îx.

7. For each i �∈ Îx, define cwi ∈ Σ2d by setting cwi[s] ← P̂i(s), where Σ =
{0, 1}m. Let Xi be the list of at most L values x̃i such that the Hamming
distance between ECC(x̃i) and cwi is at most (1 + δ)2d, as in Definition 4.
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8. For each i �∈ Îx, sample x̂i ← Xi.
9. Output x̂ = (x̂1, . . . , x̂t).

Fix any x such that |Ix| < βt and let us analyze Prx̂←guess()[x̂ = x].

Event E0. Let E0 be the event that Îx = Ix and, for all i ∈ Ix: x̂i = xi

and σ̂i = hint(xi, ri). Then Pr[E0] ≥ (
tβt+12ht2βtn

)−1
. Let us condition on E0

occurring for the rest of the analysis. In this case, we can replace all the “hatted”
values Îx, σ̂i, x̂i with their “unhatted” counterparts Ix, σi = hint(xi, ri), xi and
we have yj

i = Ext(xi; s
j
i ). Furthermore, since the “hatted” values were chosen

uniformly at random, E0 is independent of the choice of r1, . . . , rt and of all the
“unhatted” values above; therefore conditioning on E0 does not change their
distribution.

Event E1. Now, for any fixed choice of r1, . . . , rt, define the corresponding pro-
cedure P̂i to be “good” if

Pr
s←{0,1}d

[P̂i(s) = Ext(xi; s)] ≥ (1 + 2δ)
1

2m
,

where the probability is over the choice of s ← {0, 1}d and the internal random-
ness of P̂i (i.e., the choice of the index j∗ ← [Q] and the values zj∗

i ← {0, 1}m

for i ∈ Ix). Let E1 be the event that for all i �∈ Ix we have P̂i is good, where the
event is over the choice of r1, . . . , rt. Define random variables V j

i over the choice
of r1, . . . , rt where

V j
i = Pr

s←{0,1}d
[P̂i(s) = Ext(xi; s) | j∗ = j]

= Pr
s←{0,1}d

[Pi(s
j
1, . . . , s

j
i−1, s, s

j
i+1, . . . , s

j
t , z

j
1, . . . , z

j
i−1, y

j
i+1, . . . , y

j
t ) = Ext(xi; s)].

and Vi :=
∑

j∈Q V j
i . Then P̂i is good iff Vi ≥ Q(1 + 2δ) 1

2m . By Eq. (5), we have
E[Vi] =

∑
j E[V j

i ] ≥ Q(1 + 3δ) 1
2m . Furthermore, for any fixed i, the variables

V j
i are pairwise independent by Definition 4 and the fact that V j

i only depends
on sj

i . Therefore V ar[Vi] =
∑

j V ar[V j
i ] ≤ Q. We can apply the Chebyshev

inequality to get:

Pr[E1|E0] ≥ 1 − Pr
[

∃i �∈ Ix : Vi < Q(1 + 2δ)
1

2m

]

≥ 1 −
∑

i	∈Ix

Pr
[

Vi < Q(1 + 2δ)
1

2m

]

≥ 1 −
∑

i	∈Ix

Pr
[

|Vi − E[Vi]| > Qδ
1

2m

]

≥ 1 − t
22m

δ2Q
≥ 1

2

Event E2. Now fix any choice of the values in steps (1)–(6) such that E0, E1

hold. Let cwi be the values sampled in step 7. Define the event E2 to hold if for
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all i �∈ Ix the value cwi agrees with ECC(xi) in at least (1 + δ)2d−m coordinates,
where the probability is only over the internal randomness used to sample the
components cwi(s) ← P̂i(s). We can define random variables W s

i which are 1 if
cwi(s) = Ext(xi; s) and 0 otherwise. These variables are mutually independent
(since each invocation of P̂i uses fresh internal randomness) and E[

∑
s W s

i ] =
2d Prs[P̂i(s) = Ext(xi; s)] ≥ (1 + 2δ)2d−m. Therefore, by the Chernoff bound:

Pr[E2|E1 ∧ E0] = 1 − Pr[∃i �∈ Ix :
∑

s

W s
i ≤ (1 + δ)2d−m]

≥ 1 −
∑

i	∈Ix

Pr[
∑

s

W s
i ≤ (1 + δ)2d−m]

≥ 1 − t · e−δ22d−m/8 ≥ 1
2

Event E3. Finally, fix any choice of the values in steps (1)–(7) such that
E0, E1, E2 hold. Let E3 be the event that for each i �∈ Îx if x̂i ← Xi is the
value sampled in step (8) then x̂i = xi. Then Pr[E3|E2 ∧ E1 ∧ E0] ≥ (

1
L

)t.
Therefore, our guess is correct if E0, E1, E2, E3 all occur, which gives us the
bound in Eq. (4). ��
Corollary 1. For any n,m, t, ε > 0, α > 0, there exist extractors Ext : {0, 1}n ×
{0, 1}d → {0, 1}m that are (t, α, β, ε)-multi-instance extracting with either:

1. seed length d = n and β = α − O(m+log t+log(1/ε))
n , or

2. seed length d = O((log n)(m + log log n + log t + log(1/ε))) and β = α − O(d)
n .

In particular, letting λ denote the security parameter, for any input length n =
ω(λ log λ) with n < 2λ, for number of blocks t < 2λ, any entropy rate α > 0,
there exists an extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with output length
m = λ and seed length d = O(λ log n), which is a (t, α, β, ε = 2−λ)-multi-instance
randomness extractor with β = α−o(1). In other words, the fraction of extracted
values that can be replaced by uniform is nearly α.

4 Multi-user Security for Incompressible Encryption

Utilizing multi-instance randomness extractors, we can now explore the multi-
user setting for incompressible encryptions. But first, we need to formally define
what it means for an incompressible PKE or SKE scheme to be multi-user secure.

We propose a simulation-based security definition. Roughly, the simulator
first needs to simulate all the ciphertexts for all the instances without seeing
any of the message queries. So far, this is akin to the standard semantic security
notion for encryption. But we need to now model the fact that the adversary can
store ciphertexts for later decryption, at which point it has all the private keys.
We therefore add a second phase where the simulator can query for a subset of the
messages, and then must simulate all the private keys. We require that no space-
bounded distinguisher can distinguish between receiving real encryptions/real
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private keys vs receiving simulated encryptions/keys. The number of messages
the simulator can query is related to the storage bound of the distinguisher.

Put formally, let Π = (Gen,Enc,Dec) be a public key encryption scheme,
to define simulation-based incompressible ciphertext security for the multiple-
instance setting, consider the following two experiments:

– In the real mode experiment, the adversary A = (A1,A2) interacts with the
challenger C, who has knowledge of all the adversary’s challenge messages.
Real Mode ExpRealΠC,A=(A1,A2)(λ, η, �, S):
1. For i ∈ [η], the challenger C runs Gen(1λ, 1S) to sample (pki, ski).
2. The challenger C sends all the pki’s to A1.
3. For each i ∈ [η], A1 can produce up to � message queries {mi,j}j∈[�]. The

adversary submits all of the message queries in one single batch {mi,j}i,j

and receives {cti,j}i,j where cti,j ← Enc(pki,mi,j).
4. A1 produces a state st of size at most S.
5. On input of st, {mi,j}i,j , {(pki, ski)}i, A2 outputs a bit 1/0.

– In the ideal mode experiment, the adversary A = (A1,A2) interacts with a
simulator S, which needs to simulate the view of the adversary with no/partial
knowledge of the challenge messages.
Ideal Mode ExpIdealΠS,A=(A1,A2)(λ, η, �, q, S):
1. For i ∈ [η], the simulator S samples pki.
2. The simulator S sends all the pki’s to A1.
3. For each i ∈ [η], and j ∈ [�], A1 produces mi,j . All of the queries {mi,j}i,j

are submitted in one batch and the simulator S produces {cti,j}i,j without
seeing {mi,j}i,j .

4. A1 produces a state st of size at most S.
5. The simulator now submits up to q number of (i, j) index pairs, and

receives the corresponding messages mi,j ’s. Then S simulates all the secret
keys ski’s.

6. On input of st, {mi,j}i,j , {(pki, ski)}i, A2 outputs a bit 1/0.
Notice that the simulator needs to simulate the ciphertexts first without
knowing the corresponding messages, and then sample the secret keys so
that the ciphertexts appear appropriate under the given messages.

Definition 5 (Multi-instance Simulation-Based CPA Security). For
security parameters λ, η(λ), �(λ), q(λ) and S(λ), a public key encryption scheme
Π = (Gen,Enc,Dec) is (η, �, q, S)-MULT-SIM-CPA secure if for all PPT adver-
saries A = (A1,A2), there exists a simulator S such that:
∣
∣
∣Pr

[
ExpRealΠC,A(λ, η, �, S) = 1

]
− Pr

[
ExpIdealΠS,A(λ, η, �, q, S) = 1

]∣
∣
∣ ≤ negl(λ).

Remark 3. If � = 1, we say that the scheme has only single-ciphertext-per-user
security. For � > 1, we say that the scheme has multi-ciphertext-per-user security.

Remark 4. Notice that by replacing the underlying PKE scheme with a Sym-
metric Key Encryption (SKE) scheme and modifying corresponding syntaxes
(sample only sk’s instead of (pk, sk) pairs, and remove step 2 of the experiments
where the adversary receives the pk’s), we can also get a MULT-SIM-CPA security
definition for SKE schemes.
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5 Symmetric Key Incompressible Encryption

In this section, we explore the multi-user security of incompressible SKEs, both
in the low-rate setting and the rate-1 setting. We also present a generic lifting
technique to obtain an SKE with multi-ciphertext-per-user security from an SKE
with single-ciphertext-per-user security.

5.1 Low Rate Incompressible SKE

For low rate incompressible SKE, it follows almost immediately from multi-
instance randomness extractors that the forward-secure storage by Dziem-
bowski [15] is MULT-SIM-CPA secure (by using multi-instance randomness
extractors as the “BSM function” and One Time Pad (OTP) as the underly-
ing SKE primitive).

First, let us recall the construction by Dziembowski [15], with the multi-
instance randomness extractors and OTP plugged in.

Construction 1 (Forward-Secure Storage [15]). Let λ and S be secu-
rity parameters. Given Ext : {0, 1}n × {0, 1}d → {0, 1}w a (t, α, β, ε)-multi-
instance randomness extractor as defined in Definition 3 where the seed length
d = poly(λ), output length w = poly(λ) and n = S

(1−α)t + poly(λ), the construc-
tion Π = (Gen,Enc,Dec) for message space {0, 1}w works as follows:

– Gen(1λ, 1S): Sample a seed s ← {0, 1}d for the randomness extractor, and a
key k′ ← {0, 1}w. Output k = (s, k′).

– Enc(k,m): To encrypt a message m, first parse k = (s, k′) and sample a
long randomness R ← {0, 1}n. Compute the ciphertext as ct = (R, ct′ =
Ext(R; s) ⊕ k′ ⊕ m).

– Dec(k, ct): First, parse ct = (R, ct′) and k = (s, k′). Then compute m =
Ext(R; s) ⊕ k′ ⊕ ct′.

Correctness is straightforward. Construction 1 is also MULT-SIM-CPA secure.
Essentially, the simulator simply sends cti’s as uniformly random strings. Then
when the simulator sends the keys, it would use the simulator for the multi-
instance randomness extractor to get the index subset I ⊂ [η], and for i ∈ I,
send ki as a uniformly random string. For i �∈ I, it samples the extractor seed
si and then compute k′

i = mi ⊕ Ext(Ri; si) ⊕ ct′i. Notice that for i �∈ I, ct′i =
mi ⊕Ext(Ri; si)⊕k′

i, and for i ∈ I, ct′i = mi ⊕ui ⊕k′
i where ui is a w-bit uniform

string. This is now just the definition of multi-instance randomness extractors.

Theorem 1. Let λ, S be security parameters. If Ext : {0, 1}n×{0, 1}d → {0, 1}w

is a (t, α, β, ε)-multi-instance randomness extractor with d,w = poly(λ) and n =
S

(1−α)t +poly(λ), then Construction 1 is (t, 1, (1−β)t, S)-MULT-SIM-CPA secure.

For a formal hybrid proof of Theorem 1, see the full version [18].
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Remark 5. While MULT-SIM-CPA security only requires that no PPT adver-
saries can distinguish between the real mode and the ideal mode experiments,
what we have proved for construction 1 here is that it is actually MULT-SIM-
CPA secure against all (potentially computationally unbounded) adversaries, and
hence is information theoretically MULT-SIM-CPA secure.

5.2 Rate-1 Incompressible SKE

Branco, Döttling and Dujmovic [6] construct rate-1 incompressible SKE from
HILL-Entropic Encodings [22], extractors and PRGs. We show that by replacing
the extractors with multi-instance randomness extractors and slightly modifying
the scheme, we get MULT-SIM-CPA security.

First, we recall the definitions and security requirements of a HILL-Entropic
Encoding scheme [22].

Definition 6 (HILL-Entropic Encoding [22]). Let λ be the security param-
eter. An (α, β)-HILL-Entropic Encoding in the common random string setting
is a pair of PPT algorithms Code = (Enc,Dec) that works as follows:

– Enccrs(1λ,m) → c: On input the common random string crs, the security
parameter, and a message, outputs a codeword c.

– Deccrs(c) → m: On input the common random string and a codeword, outputs
the decoded message m.

It satisfies the following properties.

Correctness. For all λ ∈ N and m ∈ {0, 1}∗, Pr[Deccrs(Enccrs(1λ,m)) = m] ≥
1 − negl(λ).

α-Expansion. For all λ, k ∈ N and for all m ∈ {0, 1}k, |Enccrs(1λ,m)| ≤ α(λ, k).

β-HILL-Entropy. There exists a simulator algorithm SimEnc such that for all
polynomial k = k(λ) and any ensemble of messages m = {mλ} of length k(λ),
consider the following real mode experiment:

– crs ← {0, 1}t(λ,k)

– c ← Enccrs(1λ,mλ)

and let CRS, C denote the random variables for the corresponding values in
the real mode experiment. Also consider the following simulated experiment:

– (crs′, c′) ← SimEnc(1λ,mλ)

and let CRS′, C ′ be the corresponding random variables in the simulated experi-
ment. We require that (CRS, C) ≈c (CRS′, C ′) and that H∞(C ′|CRS′) ≥ β(λ, k).

Moran and Wichs [22] show that we can construct HILL-Entropic Encod-
ings in the CRS model from either the Decisional Composite Residuosity (DCR)
assumption [10,24] or the Learning with Errors (LWE) problem [25]. Their con-
struction achieves α(λ, k) = k(1 + o(1)) + poly(λ) and β(λ, k) = k(1 − o(1)) −
poly(λ), which we call a “good” HILL-entropic encoding.

Now we reproduce the construction from [6] with the multi-instance random-
ness extractors and some other minor changes (highlighted below).
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Construction 2 ([6]). Let λ and S be security parameters. Given Ext : {0, 1}n

× {0, 1}d → {0, 1}w a (t, α, β, ε)-multi-instance randomness extractor where the
seed length d = poly(λ), w = poly(λ) and n = S

(1−α)t+poly(λ), Code = (Enc,Dec)
a “good” (α′, β′)-HILL-Entropic Encoding scheme, and PRG : {0, 1}w → {0, 1}n

a pseudorandom generator secure against non-uniform adversaries, the construc-
tion Π = (Gen,Enc,Dec) for message space {0, 1}n works as follows:

– Gen(1λ, 1S): Sample a seed s ← {0, 1}d for the randomness extractor, a com-
mon random string crs ∈ {0, 1}poly(λ,n) for the HILL-Entropic Encoding, and
a random pad r ← {0, 1}n. Output k = (s, r, crs).

– Enc(k,m): To encrypt a message m, first parse k = (s, r, crs) and sample a
random PRG seed s′ ← {0, 1}w. Compute c1 = Code.Enccrs(1λ,PRG(s′) ⊕r
⊕m) and c2 = s′ ⊕ Ext(c1, s). The final ciphertext is ct = (c1, c2).

– Dec(k, ct): First, parse ct = (c1, c2) and k = (s, r, crs). Then compute s′ =
Ext(c1; s) ⊕ c2 and obtain m = Code.Deccrs(c1) ⊕ PRG(s′) ⊕r.

Correctness follows from the original construction and should be easy to
verify. Notice that by the α′-expansion of the “good” HILL-entropic encoding,
the ciphertexts have length (1 + o(1))n + w + poly(λ) = (1 + o(1))n + poly(λ)
(the poly(λ) part is independent of n), while the messages have length n. Hence
the scheme achieves an optimal rate of 1 ((1 − o(1)) to be exact). The keys are
bit longer though, having size d + n + poly(λ, n) = n + poly(λ, n). Furthermore,
Moran and Wichs [22] show that the CRS needs to be at least as long as the
message being encoded. Thus the key has length at least 2n + poly(λ).

Theorem 2. If Ext : {0, 1}n × {0, 1}d → {0, 1}w is a (t, α, β, ε)-multi-instance
randomness extractor with n = S

(1−α)t + poly(λ), Code = (Enc,Dec) is a
“good” HILL-entropic encoding with β′-HILL-entropy, and PRG is a pseudo-
random generator secure against non-uniform adversaries, then Construction 2
is (t, 1, (1 − β)t, S)-MULT-SIM-CPA secure.

The hybrid proof essentially follows the same structure from [6], except for a
different extractor step, the inclusion of the random pad r and the requirement
of PRG to be secure against non-uniform attackers. For the detailed hybrid proof
of Theorem 2, see the full version [18].

5.3 Dealing with Multiple Messages per User

Above we have showed MULT-SIM-CPA security for SKE schemes where the
number of messages per user � is equal to 1. Here, we show how we can gener-
ically lift a SKE scheme with single-message-per-user MULT-SIM-CPA security
to multiple-messages-per-user MULT-SIM-CPA security.

Construction 3. Let λ, S be security parameters. Given SKE = (Gen,Enc,Dec)
a (η, 1, q, S)-MULT-SIM-CPA secure SKE with key space {0, 1}n10 and F a
10 Here we assume SKE’s keys are uniformly random n-bit strings. This is without loss

of generality since we can always take the key to be the random coins for Gen.
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class of �-wise independent functions with range {0, 1}n, we construct Π =
(Gen,Enc,Dec) as follows.

– Gen(1λ, 1S): Sample a random function f ← F . Output k = f .
– Enc(k = f,m) : Sample a short random string r with |r| = polylog(�), compute

k′ = f(r), and get c ← SKE.Enc(k′,m). Output ct = (r, c).
– Dec(k = f, ct = (r, c)) : Compute k′ = f(r), and output m ← SKE.Dec(k′, c).

Correctness should be easy to verify given the correctness of the underlying
SKE scheme and the deterministic property of the �-wise independent functions.

Lemma 7. If SKE is a (η, 1, q, S)-MULT-SIM-CPA secure SKE with key space
{0, 1}n and F is a class of �-wise independent functions with range {0, 1}n, then
Construction 3 is (η/�, �, q, S − η · polylog(�))-MULT-SIM-CPA secure.

Proof. We prove this through a reduction. We show that if there is an adver-
sary A = (A1,A2) that breaks the (η/�, �, q, S − η · polylog(�))-MULT-SIM-CPA
security of Π, then we can construct an adversary A′ = (A′

1,A′
2) that breaks

the (η, 1, q, S)-MULT-SIM-CPA security of SKE. A′ = (A′
1,A′

2) works as follows:

– A′
1: First, run A1 to get a list of message queries {mi,j}i∈[η/�],j∈[�]. Let

m′
i = m(i/�)+1,((i−1) mod �)+1 for i ∈ [η]. Notice that here we are essen-

tially flattening the list of messages. Submit the list {m′
i}i∈[η] and receive

{ct′i}i∈[η]. Reconstruct cti,j = (ri,j , ct
′
(i−1)·�+j) for i ∈ [η/�] and j ∈ [�], where

ri,j is a uniformly random string sampled from {0, 1}polylog(�). Notice that
the ri,j ’s have no collisions under the same i with overwhelming probability.
Send the list of ciphertexts {cti,j}i,j back to A1 and receive a state st. Out-
put the state st′ = (st, {ri,j}i,j). The size of the state is |st| + η · polylog(�) ≤
S − η · polylog(�) + η · polylog(�) = S.

– A′
2: First receive st′ = (st, {ri,j}i,j), {m′

i}i∈[η], {k′
i}i∈[η] from the challenger /

simulator. Reorganize mi,j = m′
(i−1)·�+j for i ∈ [η/�] and j ∈ [�]. Construct

ki as an �-wise independent function fi s.t. for all i ∈ [η/�] and j ∈ [�],
fi(ri,j) = k′

(i−1)·�+j . Send st, {mi,j}i∈[η/�],j∈[�], {ki = fi}i∈[η/�] to A2 and
receive a bit b. Output b.

Notice that A′ perfectly simulates the view for A. If A says it is in the real
mode, this means the ciphertexts are faithful encryptions of the message queries,
and hence A′ should be in the real mode as well, and vice versa. Therefore,
construction 3 is (η/�, �, q, S − η · polylog(�))-MULT-SIM-CPA secure. ��

6 Public Key Incompressible Encryption

Here we explore multi-user security of incompressible Public Key Encryptions
(PKEs), considering constructions from [6,17]. Unlike the SKE setting, where
we can generically lift single-ciphertext-per-user security to multi-ciphertext-per-
user security, here we show how to obtain multi-ciphertext security by modifying
each construction specifically.
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6.1 Low Rate Incompressible PKE

For low rate incompressible PKE, we show that the construction from [17] is
MULT-SIM-CPA secure by plugging in the multi-instance randomness extractor.
Then, we upgrade the construction to have multi-ciphertext-per-user security by
upgrading the functionality of the underlying functional encryption scheme.

Construction 4 ([17] with Multi-Instance Randomness Extractor).
Given FE = (Setup,KeyGen, Enc,Dec) a single-key selectively secure func-
tional encryption scheme and a (t, α, β, ε)-multi-instance randomness extrac-
tor Ext : {0, 1}n × {0, 1}d → {0, 1}w, with d = poly(λ), w = poly(λ) and
n = S

(1−α)t + poly(λ), the construction Π = (Gen,Enc,Dec) with message space
{0, 1}w works as follows:

– Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate
the secret key for the following function fv with a hardcoded v ∈ {0, 1}d+w:

fv(s′ = (s, pad), flag) =

{
s′ if flag = 0
s′ ⊕ v if flag = 1

.

Output pk = FE.mpk and sk = FE.skfv
← FE.KeyGen(FE.msk, fv).

– Enc(pk,m): Sample a random tuple s′ = (s, pad) where s ∈ {0, 1}d is used
as a seed for the extractor and pad ∈ {0, 1}w is used as a one-time pad. The
ciphertext consists of three parts: FE.ct ← FE.Enc(FE.mpk, (s′, 0)), a long
randomness R ∈ {0, 1}n, and z = Ext(R; s) ⊕ pad ⊕ m.

– Dec(sk, ct = (FE.ct, R, z)): First, obtain s′ ← FE.Dec(FE.skfv
,FE.ct), and

then use the seed s to compute Ext(R; s) ⊕ z ⊕ pad to recover m.

The correctness follows from the original construction.

Theorem 3. If FE is a single-key selectively secure functional encryption
scheme and Ext : {0, 1}n × {0, 1}d → {0, 1}w is a (t, α, β, ε)-multi-instance ran-
domness extractor with d,w = poly(λ) and n = S

(1−α)t +poly(λ), then Construc-
tion 4 is (t, 1, (1 − β)t, S)-MULT-SIM-CPA secure.

For the sequence of hybrids, see the full version [18]. The proofs of the hybrid
arguments are identical to those from [17], except for the extractor step, which
is analogous to the proof of Lemma 5.2 in the full version [18].

Upgrading to Multiple Ciphertexts per User. Additionally, We show that
the constructions from [17] can be upgraded to have multi-ciphertext-per-user
security. Essentially, all we need is to upgrade the functionality of the underly-
ing functional encryption scheme to work for a slightly more generalized class
of functions. We will need functions f{vi}i

(s, flag) = s ⊕ vflag for hard coded
values v1, . . . , v� and a special v0 being the all 0 string. Notice that the origi-
nal GWZ construction [17] can be viewed as using functions that are a special
case where � = 1. We show how to construct FE schemes for such f{vi}i

func-
tions from plain PKE in the full version [18]. With this new class of functions,
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we can achieve (t, �, (1 − β)�t, S)-MULT-SIM-CPA security. In the hybrid proof
where we replace FE.Enc(FE.mpk, (s′, 0)) with FE.Enc(FE.mpk, (s′ ⊕ v, 1)), now
for the j-th message query for the i-th user where i ∈ [t] and j ∈ [�], we replace
FE.Enc(FE.mpki, (s′

i,j , 0)) with FE.Enc(FE.mpki, (s′
i,j ⊕ vi,j , j)). The rest of the

hybrid proof follows analogously.

6.2 Rate-1 Incompressible PKE

For rate-1 incompressible PKE, we first show that we can easily plug in the
multi-instance randomness extractor to the construction by Guan, Wichs and
Zhandry [17]. We also provide a generalization on the construction by Branco,
Döttling and Dujmovic [6] using a Key Encapsulation Mechanism (KEM) with a
special non-committing property. For both constructions, we show how to adapt
them to allow for multi-ciphertext-per-user security.

Construction by [17]. We first reproduce the rate-1 PKE construction from
[17], with the multi-instance randomness extractors plugged in.

Construction 5 ([17]). Given FE = (Setup,KeyGen, Enc,Dec) a rate-1 func-
tional encryption scheme satisfying single-key semi-adaptive security, Ext :
{0, 1}n × {0, 1}d → {0, 1}w a (t, α, β, ε)-multi-instance randomness extractor
with d,w = poly(λ), n = S

(1−α)t + poly(λ) and PRG : {0, 1}w → {0, 1}n a secure
PRG against non-uniform adversaries, the construction Π = (Gen,Enc,Dec) for
message space {0, 1}n works as follows:

– Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate
the secret key for the following function fv,s with a hardcoded large random
pad v ∈ {0, 1}n and a small extractor seed s ∈ {0, 1}d:

fv,s(x, flag) =

{
x if flag = 0
PRG(Extract(x; s)) ⊕ v if flag = 1

.

Output pk = FE.mpk and sk = FE.skfv,s
← FE.KeyGen(FE.msk, fv,s).

– Enc(pk,m): The ciphertext is simply an encryption of (m, 0) using the under-
lying FE scheme, i.e. FE.ct ← FE.Enc(FE.mpk, (m, 0)).

– Dec(sk, ct): Decryption also corresponds to FE decryption. The output is sim-
ply FE.Dec(FE.skfv,s

, ct) = fv,s(m, 0) = m as desired.

Correctness easily follows from the original construction. The rate of the
construction is the rate of the underlying FE multiplied by n

n+1 . If the FE has
rate (1 − o(1)), the construction has rate (1 − o(1)) as desired.

Theorem 4. If FE = (Setup,KeyGen,Enc,Dec) is a single-key semi-adaptively
secure FE scheme, Ext : {0, 1}n×{0, 1}d → {0, 1}w is a (t, α, β, ε)-multi-instance
randomness extractor, with d,w = poly(λ) and n = S

(1−α)t + poly(λ), and
PRG : {0, 1}w → {0, 1}n is a PRG secure against non-uniform adversaries,
then Construction 5 is (t, 1, (1 − β)t, S)-MULT-SIM-CPA secure.
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For the sequence of hybrids to prove Theorem 4, see the full version [18].
For the proofs of each hybrid argument, see the original [17] paper, since they
are identical except for the extractor step (analogous to Lemma 5.2 in the full
version [18]) and the PRG against non-uniform attackers step (analogous to
Lemma 5.8 in the full version [18]).

Upgrading to Multiple Ciphertexts per User. Upgrading Construction 5
to multi-ciphertext-per-user security is rather straightforward. Since the con-
struction already requires a full functionality FE scheme, we just modify the
class of functions that the underlying FE scheme uses, without introducing any
new assumptions. Specifically, we now use f{vj}j ,{sj}j

with hard-coded values
vj ∈ {0, 1}n and sj ∈ {0, 1}d for j ∈ [�] that behaves as follows:

f{vj}j ,{sj}j
(x, flag) =

{
x if flag = 0
PRG(Extract(x; sflag)) ⊕ vflag if flag ∈ [�]

.

This gives us (t, �, (1 − α)�t, S)-MULT-SIM-CPA security. Notice that this
modification does slightly harm the rate of the scheme, since the flag is now
log(�) bits instead of one bit, but asymptotically the rate is still (1 − o(1)).

The hybrid proof works analogously to that of Theorem 4, except that in the
hybrid proof where we swap the FE encryption of (m, 0) to (R, 1), we now swap
from (mi,j , 0) to (Ri,j , j) for the j-th ciphertext from the i-th user.

Generalization of Construction by [6]. [6] show how to lift a rate-1 incom-
pressible SKE scheme to a rate-1 incompressible PKE scheme using a Key Encap-
sulation Mechanism [8] from programmable Hash Proof Systems (HPS) [7,21].
Their construction satisfies CCA2 security. We show that if we are to relax the
security notion to only CPA security, all we need for the lifting is a Key Encap-
sulation Mechanism with a non-committing property, defined below.

Definition 7 (Key Encapsulation Mechanism [8]). Let λ be the security
parameters, a Key Encapsulation Mechanism (KEM) is a tuple of algorithms
Π = (KeyGen,Encap,Decap) that works as follows:

– KeyGen(1λ, 1Lk) → (pk, sk): The key generation algorithm takes as input the
security parameter and the desired symmetric key length Lk, outputs a pair
of public key and private key (pk, sk).

– Encap(pk) → (k, c): The encapsulation algorithm takes the public key pk,
produces a symmetric key k ∈ {0, 1}Lk , and a header c that encapsulates k.

– Decap(sk, c) → k: The decapsulation algorithm takes as input the private key
sk and a header c, and decapsulates the header to get the symmetric key k.

Definition 8 (Correctness of KEM). A key encapsulation mechanism
KEM = (KeyGen,Encap,Decap) is said to be correct if:

Pr

⎡

⎣k′ = k :
(pk, sk) ← KeyGen(1λ, 1Lk)

(k, c) ← Encap(pk)
k′ ← Decap(sk, c)

⎤

⎦ ≥ 1 − negl(λ).
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Definition 9 (Non-Committing). A key encapsulation mechanism KEM =
(KeyGen,Encap,Decap) is said to be non-committing if there exists a pair of
simulator algorithm (Sim1,Sim2) such that Sim1(1λ, 1Lk) outputs a simulated
public key pk′, a header c′ and a state st with |st| = poly(λ,Lk), and for any
given target key k′ ∈ {0, 1}Lk , Sim2(st, k′) outputs the random coins rKeyGen and
rEncap. We require that if we run the key generation and encapsulation algorithm
using these random coins, we will get the desired pk′, c′, and k′, .:

Pr

⎡

⎣
pk′ = pk
k′ = k
c′ = c

:
(pk, sk) ← KeyGen(1λ, 1Lk ; rKeyGen)

(k, c) ← Encap(pk; rEncap)

⎤

⎦ ≥ 1 − negl(λ).

Kindly notice that by the correctness property, Decap(sk, c′) → k′.

This non-committing property allows us to commit to a public key and header
first, but then later able to reveal it as an encapsulation of an arbitrary symmetric
key in the key space. And it will be impossible to distinguish the simulated public
key and header from the ones we get from faithfully running KeyGen and Encap.

Using this non-committing KEM, we are able to construct rate-1 incompress-
ible PKE from rate-1 incompressible SKE, with multi-user security in mind. This
is a generalization of the construction by [6].

Construction 6 (Generalization of [6]). For security parameters λ, S, given
KEM = (KeyGen,Encap,Decap) a non-commiting KEM and SKE = (Gen,
Enc,Dec) a rate-1 incompressible SKE for message space {0, 1}n, we construct
rate-1 incompressible PKE Π = (Gen,Enc,Dec) for message space {0, 1}n as
follows:

– Gen(1λ, 1S): First, run SKE.Gen(1λ, 1S) to determine the required symmet-
ric key length Lk under security parameters λ, S. Then run (pk, sk) ←
KEM.KeyGen(1λ, 1Lk) and output (pk, sk).

– Enc(pk,m): First, run (k, c0) ← KEM.Encap(pk) to sample a symmetric key
k, and encapsulate it into a header c0. Then compute c1 ← SKE.Enc(k,m).
The ciphertext is the tuple (c0, c1).

– Dec(sk, ct = (c0, c1)): Decapsulate c0 with sk to obtain k ← KEM.Decap(sk,
c0), and then use k to decrypt c1 and get m ← SKE.Dec(k, c1).

Correctness follows from the correctness of the underlying incompressible
SKE and the KEM scheme. In terms of the rate, to achieve a rate-1 incom-
pressible PKE, we would require the KEM to produce “short” headers, i.e.
|c0| = poly(λ) independent of Lk (notice that Lk = poly(λ, n) and needs to
be at least as large as n). We can build such KEMs using various efficient encap-
sulation techniques [2,3,5]. With the short header and an incompressible SKE
with rate (1 − o(1)), the ciphertext length is n/(1 − o(1)) + poly(λ), yielding an
ideal rate of (1 − o(1)) for the construction. However, these KEMs require long
public keys, as opposed to the short public keys in Construction 5.

For security, we prove that if the underlying SKE has MULT-SIM-CPA secu-
rity, then Construction 6 has MULT-SIM-CPA security as well.
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Theorem 5. If KEM is a non-commiting KEM, and SKE is a (η, 1, q, S)-
MULT-SIM-CPA secure SKE with message space {0, 1}n, then Construction 6
is (η, 1, q, S − η · poly(λ, n))-MULT-SIM-CPA secure.

Proof. We prove this through a reduction. We show that if there is an adversary
A = (A1,A2) that breaks the (η, 1, q, S − η · poly(λ, n))-MULT-SIM-CPA secu-
rity of Π, then we can construct an adversary A′ = (A′

1,A′
2) that breaks the

(η, 1, q, S)-MULT-SIM-CPA security of SKE. A′ = (A′
1,A′

2) works as follows:

– A′
1: Use the security parameters λ, S to determine the key length Lk

for the underlying SKE11. For each i ∈ [η], obtain (pki, c0,i,KEM.sti) ←
KEM.Sim1(1λ, 1Lk). Send {pki}i to A1 to get a list of message queries {mi}i.
Then, forward the list {mi}i to the challenger/simulator and receive a list
of ciphertexts {ct′i}i. Construct cti = (c0,i, ct

′
i), and send all {cti}i to A1 to

receive a state st. Output the state st′ = (st, {KEM.sti}i). The size of the
state is |st| + η · poly(λ,Lk) ≤ S − η · poly(λ, n) + η · poly(λ, n) = S.

– A′
2: First receive st′ = (st, {KEM.sti}i), {mi}i, {ki}i from the challenger/

simulator. For each i ∈ [η], run (rKeyGeni , rEncapi ) ← KEM.Sim2(KEM.sti, ki),
and (pki, ski) ← KEM.KeyGen(1λ, 1Lk ; rKeyGeni ). Notice that pki matches the
pki produced previously by A′

1 due to the non-committing property of the
KEM. Send st, {mi}i, {(pki, ski)}i to A2 and receive a bit b. Output b.

Notice that A′ perfectly simulates the view for A. If A says it is in the real
mode interacting with the challenger, this means the ciphertexts cti’s are faith-
ful encryptions of the message queries mi’s for all i ∈ [η]. Then we have SKE.Dec
(ki, ct

′
i) = mi, and hence A′ is also in the real mode. The converse also holds true.

Therefore, construction 6 is (η, 1, q, S − η · poly(λ, n))-MULT-SIM-CPA secure. ��

Upgrading to Multiple Ciphertexts per User. Next we show how to
upgrade Construction 6 to have multi-ciphertext-per-user security. All we need
is to upgrade the KEM to be �-strongly non-committing, defined as below.

Definition 10 (�-Strongly Non-Committing). A key encapsulation mecha-
nism KEM = (KeyGen,Encap,Decap) is said to be �-strongly non-committing if
there exists a pair of simulator algorithm (Sim1,Sim2) such that Sim1(1λ, 1Lk)
outputs a simulated public key pk′, a set of simulated headers C′ = {c′

1, c
′
2, . . . , c

′
�}

and a state st with |st| = poly(λ,Lk, �), and for any given set of target keys
K′ = {k′

1, k
′
2, . . . , k

′
�} where k′

i ∈ {0, 1}Lk for all i ∈ [�], Sim2(st,K′) outputs a
set of random coin pairs {(rKeyGeni , rEncapi )}i∈[�]. We require that if we run the
key generation and encapsulation algorithm using the i-th pair of these random
coins, we will get the desired pk′, c′

i, and k′
i, i.e. for all i ∈ [�]:

Pr

⎡

⎣
pk′ = pk
k′

i = k
c′
i = c

:
(pk, sk) ← KeyGen(1λ, 1Lk ; rKeyGeni )

(k, c) ← Encap(pk; rEncapi )

⎤

⎦ ≥ 1 − negl(λ).

Kindly notice that by the correctness property, Decap(sk, c′
i) → k′

i.

11 For the ease of syntax, we imagine the security parameters to be part of the public
parameters always accessible to the adversary.
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We show how to construct �-strongly non-committing KEMs by composing
plain non-committing KEMs in the full version [18].

To get multi-ciphertext security, we simply plug in the �-strongly non-
committing KEM in place of the plain non-committing KEM in construction 6.
The resulting construction has (η/�, �, q, S−η·poly(λ, n, �))-MULT-SIM-CPA secu-
rity. The security proof follows analogous from that of Theorem 5.
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