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Abstract. The Non-Interactive Anonymous Router (NIAR) model was
introduced by Shi and Wu [SW21] as an alternative to conventional
solutions to the anonymous routing problem, in which a set of senders
wish to send messages to a set of receivers. In contrast to most known
approaches to support anonymous routing (e.g. mix-nets, DC-nets, etc.),
which rely on a network of routers communicating with users via interac-
tive protocols, the NIAR model assumes a single router and is inherently
non-interactive (after an initial setup phase). In addition to being non-
interactive, the NIAR model is compelling due to the security it provides:
instead of relying on the honesty of some subset of the routers, the NIAR
model requires anonymity even if the router (as well as an arbitrary sub-
set of senders/receivers) is corrupted by an honest-but-curious adversary.

In this paper, we present a protocol for the NIAR model that improves
upon the results from [SW21] in two ways:

– Improved computational efficiency (quadratic to near linear): Our
protocol matches the communication complexity of [SW21] for each
sender/receiver, while reducing the computational overhead for the
router to polylog overhead instead of linear overhead.

– Relaxation of assumptions: Security of the protocol in [SW21] relies
on the Decisional Linear assumption in bilinear groups; while secu-
rity for our protocol follows from the existence of any rate-1 oblivious
transfer (OT) protocol (instantiations of which are known to exist
under the DDH, QR and LWE assumptions [DGI+19,GHO20]).

Keywords: Anonymous Routing · Private-Information Retrieval ·
Permutation Routing · Non-Interactive Protocols

1 Introduction

As the collection and access of digital information in our daily lives becomes
ever-more ubiquitous (internet, local networks, mobile networks, IoT), so too
does the need for the development of technologies to protect access and trans-
mission of this data. While protecting the integrity and access to sensitive data
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remain important tasks, there has been a growing need for anonymity in pro-
tecting data access and communications between users. Throughout this paper,
anonymity will refer to the inability to associate which nodes in a network are
communicating with each other; i.e. the unlinkability between one or more
senders and the associated receiver(s). The conventional approach to provid-
ing such protection (onion routing, mix-nets, and others) relies on a network
of routers relaying messages, where anonymity is only guaranteed if there are
sufficiently many uncorrupted routers. A markedly different approach to this
problem was recently introduced by Shi and Wu [SW21], who proposed using
cryptographic techniques to hide connectivity patterns. Namely, they introduce
the Non-Interactive Anonymous Router (NIAR) model, in which a set of N
receiving nodes wish to receive information from a set of N sending nodes, with
all information passing through a central router. Anonymity in their model is
defined to be the inability to link any sender to the corresponding receiver, even
if the router and (up to N − 2) various (sender, receiver) pairs are susceptible
to attack by an (honest-but-curious1) adversary.

There are a number of real-world scenarios in which the NIAR model as
described above is relevant. The important characteristics of any such application
is that a number of (sender, receiver) pairs wish to anonymously communicate
with each other through a central server, where the messages to be transmit-
ted are large and/or the communication channels are non-ephemeral/indefinite.
These conditions are exhibited, for example, in the following scenarios:

Anonymous Peer-to-Peer Communication. Relevant in settings where a
large set of users wish to communicate anonymously through a central server,
e.g. for a Messaging app, where every communication link is established as a
separate pair of (anonymous) virtual users.

Pub/Sub with Privacy. Because our solution is quasi-linear in message size,
the additional overhead of storing all messages is minimal. We can therefore view
the central router of the NIAR model as delivering each stream of messages it
receives from the N senders into N storage units, rather than delivering them
directly to receivers. In this way, the set of receivers can (privately) subscribe
to an information service/source, and periodically receive updates. Furthermore,
our protocol allows receivers to (privately) subscribe to multiple services at the
same time, without revealing which services they are subscribed to.

Multi-Client PIR/PIW. In a similar spirit as the previous point, viewing
the receivers as storage units, the messages being streamed from the senders
can accumulate (or update previous messages), thus implementing a form of
Private Information Writing (PIW). Depending on the application (in terms

1 Our limitation to HBC adversaries is only needed to ensure Correctness of our pro-
tocol - that receivers get the correct messages. We note that requiring HBC for
correctness is unavoidable, as a malicious router can, for example, not forward any
message (like in PIR and other related primitives). In terms of Security (privacy
of the senders-receivers permutation): so long as the one-time Setup is performed
properly, then security of our protocol will hold in the Malicious adversary setting.
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of which users will ultimately access/read the PIW server), hiding the linkage
between which location each sender writes to versus which location each receiver
reads from may require stronger security requirements, e.g. for our protocol, any
receiver colluding with the central router will learn which sender it is reading
from.

Oblivious Shuffle. A common scenario encountered in MPC protocols is when
two or more parties are secret sharing a list of values, and need to obliviously
permute the list, so that no party knows the permutation. Our protocol can be
used to implement this oblivious shuffle, by viewing one party as acting as all N
senders (for its list of N secret shared values), and sending the permuted shares
via the “central router” (also being simulated by the sending party) to the other
party (who is acting as all N receivers). This process is then reversed, with the
other party sending its shares to the first party, via the same permutation. There
are subtleties that need to be specified, such as ensuring that the permutation
remains unknown to each party (which can be handled as part of the Setup
procedure), and how to amortize the process to ensure efficiency (so the Setup
does not dominate overall cost), but in general a solution in the NIAR model
can be viewed as an instantiation of oblivious shuffle.

Permutation Routing with Anonymity. There has been substantial work in
researching permutation routing (e.g. [AKS83,Lei84,Upf89,MS92]), which was
inspired due to its relevance to parallel computing (for timing the connections
between processors and memory) and fault tolerant routing. Since the NIAR
model is essentially permutation routing with anonymity, any applications of
permutation routing that stand to benefit from hiding the permutation are rel-
evant to our work.

1.1 Technical Challenges

Notice that (assuming PKI) an immediate solution to anonymity in the NIAR
model is to have each sender encrypt their message (under the desired receiver’s
public key or using a shared secret key with the recipient), send the encrypted
message to the center router, and then simply have the router flood all N
(encrypted) messages to each of the N receivers. While this näıve approach
satisfies anonymity (as well as privacy, in that receivers only receive messages
intended for them), it has the pitfall of excessive communication: O(N) for each
receiver, and O(N2) for the router. Shi and Wu [SW21] present a protocol which,
under the Decisional Linear assumption (on certain bilinear groups), achieves
anonymity with minimal communication overhead.

Having re-framed the goal of anonymity to the NIAR model and with the
toolbox of cryptographic techniques at hand, a natural observation is that Pri-
vate Information Retrieval (PIR) can be used as a potential solution. In a (single
server) PIR protocol [KO97], a server stores a database DB of N elements, and
a client issues a query to the server to retrieve the ith element DB[i], for i of
its choice. Security in the PIR model means that the server does not learn any
information about the index i being queried. Thus, if N senders encrypt their
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messages and send them to the router, we can let the router act as a PIR server
with the N concatenated (encrypted) messages forming the contents of the PIR
database. Each receiver can then issue a PIR query to fetch the appropriate
message, and anonymity follows from the security of PIR. As with the proto-
col of [SW21], this solution enjoys both the requisite security features, as well
as having minimal communication overhead (e.g. log N overhead, depending on
the PIR protocol; see survey of PIR results in [OS07]).

An important metric in determining the feasibility of a protocol in the NIAR
model is the end-to-end message transmission time, which depends on the com-
putational burden on each user, and especially that of the central router.

A significant drawback of both the protocol of [SW21]2 and the näıve PIR
solution described above is that they require quadratic (in terms of the number of
users) computation at the router. As this computation cost is likely prohibitive
(or at least extremely inefficient) when there are a large number of users, we set
out to explore the possibility of a NIAR protocol that maintained the minimal
communication burden of the näıve PIR and [SW21] solutions, but reduced
computation overhead (at the router) from O(N2) closer to the optimal O(N).

Our first observation is that the NIAR model is similar to so-called “permu-
tation routing” (see Sect. 2.1), but with an additional anonymity requirement.
Namely, permutation routing seeks to connect N senders to N receivers through
a network, which (from a communication standpoint) is what is required in the
NIAR model. Our main idea was to leverage the efficient routing (and therefore
minimal overhead) of a permutation-routing network, but then to administer
PIR at each node to keep each routing decision hidden, thereby allowing for the
anonymity required by the NIAR model. In particular, we envisioned a solution
in which the central router simulates a virtual permutation-routing network by
itself, where the actual path the messages take (from each of the N senders on
one end of the network to the N receivers at the other end) is hidden (from
the central router) by using PIR along each edge. Namely, at each node of the
(virtual) network, a PIR query is applied to each of the node’s outgoing edges,
where the PIR query (privately) selects a message from one of the node’s incom-
ing edges.

While the above idea captures the spirit of our solution (and indeed, the
idea of layering PIR on top of various routing networks/protocols may have
other interesting applications for anonymizing communication), there are several
complications that required additional consideration:

1. (Virtual) Network Size. Since each outgoing edge in the routing network is
assigned a PIR query, and this PIR query is applied to a (virtual) database
whose size is the number of incoming edges of the node in question, the
computation cost of simulating routing in a virtual network is roughly O(E·I),
where E is the number of edges and I is the number of incoming edges per

2 Router computation is not explicitly measured in the protocol of [SW21], our analysis
of their protocol yields O(N2) computation load on the router: their Multi-Client
Functional Encryption (MCFE) protocol is invoked N times by the router, with each
invocation processing N ciphertexts.
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node. Since E is necessarily at least Ω(N), having a NIAR protocol with only
polylog computation overhead requires that E is at most O(N · polylog N)
and I is O(polylog N).

2. Standard PIR Won’t Work. Even if network size is small (O(N ·polylog(N))),
if the depth (number of nodes a message passes through from sender to
receiver) is not constant, then standard PIR schemes will not work, since
each invocation of PIR typically has O(polylog(N)) bits in the PIR server’s
response, and hence the message size will incur an exponential blow-up with
network depth. For example, even log-depth networks will have messages of
size O(2log N ) = O(N) by the time they reach the last layer of the network,
which is no better than the näıve PIR approach mentioned above.

3. Correctness Requires Edge-Disjoint Paths. Since PIR is being used to hide
routing decisions made at each node/routing gate in the network, this requires
that each outgoing edge forwards the message on (at most) one of the node’s
incoming edges. In particular, if any two paths connecting two different
sender-receiver pairs in the permutation network contain a common edge,
then correctness is compromised. Since a random path selection algorithm
will be crucial to proving anonymity, the given (virtual) permutation net-
work must have the property that, with high probability, a random sample
of paths connecting the sender-receiver pairs are edge-disjoint.

4. Edge-Disjoint Property is Insufficient for Anonymity. While having edge-
disjoint paths is necessary for correctness, it is not sufficient to ensure
anonymity. For example, if the central router is colluding with (N -2) sender-
receiver pairs (and therefore only needs to determine the linkage amongst
the remaining two senders and two receivers), then knowledge that all paths
are edge-disjoint can give the router an advantage in identifying the linkage
between the remaining two senders and two receivers. Namely, the router
knows (via collusion) N -2 paths, and thus can eliminate available options for
the remaining two paths. For example, this attack is viable in the Beneš net-
work (which is commonly used in permutation routing literature; see Sect. 3.1)
making it unsuitable when anonymity is required, and justifying our usage
of a more complex network. Indeed, since permutation-routing networks have
been studied outside of the context of anonymity, to our knowledge there has
not been any research into understanding how network properties and path
selection protocols impact anonymity.

1.2 Overview of Our Results

Our solution to the NIAR problem, which blends techniques from permutation
routing with techniques for hiding routing decisions made at each node of the
(virtual) permutation network, overcomes the challenges outlined in the previ-
ous section as follows. By using familiar permutation-routing networks, which
are inherently small (O(N · polylog(N))), we ensure the network size is suit-
ably small, thus addressing the first potential issue. Furthermore, a common (and
well-studied) feature of many permutation-routing networks is the edge-disjoint
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property, which inspired our choice to use an (extended) Beneš permutation Net-
work, thus addressing the third issue. We observe that there is an inherent ten-
sion between network topology (number of nodes, edges, and depth) in terms of
achieving correctness and anonymity versus low router computation. Our solu-
tion includes carefully selecting appropriate network parameters to balance these
trade-offs. Meanwhile, recent works [DGI+19,GHO20,CGH+21] present so-called
rate-1 PIR protocols, which can address the second issue of exponential growth of
message size per network layer.

Addressing the fourth issue is one of our key technical achievements. In spirit,
the edge-disjoint property is related to anonymity, but as mentioned above, it
is in general insufficient. Identifying a property that is sufficient (and simulta-
neously not over-cumbersome in terms of network size), and then using such a
property to formally argue anonymity, requires some thought and careful anal-
ysis. Informally, this property states that not only are N randomly chosen per-
mutation paths through the network edge-disjoint (w.h.p), but even if the per-
mutation swaps the output nodes of any two input nodes and two new paths are
created to join these, then the collection of the old edges plus the two new sets
of edges are still edge disjoint (w.h.p); see Definition 4.

Assuming rate-1 PIR, we present in Fig. 3 a routing protocol for the NIAR
model that achieves O(log N) per-party communication and O(N · polylog(N))
router computation. At a high level, our protocol dictates that the central router
emulates routing in a permutation network, whereby each routing gate is (virtu-
ally) obliviously evaluated using a rate-1 PIR query/response for each outgoing
edge. Our protocol consists of a setup phase in which the PIR queries that cor-
respond to all outgoing edges of every routing gate are prepared, and then an
online routing phase where a stream of (encrypted) messages are injected by the
senders and routed to the receivers (re-using the setup).

A succinct comparison of our results to other relevant works is in Sect. 2.3.

2 Previous Work

2.1 Permutation Routing

In permutation routing [AKS83,Lei84,Upf89,MS92], messages from a set of N
“input” nodes are routed through a network G to a set of N distinct “out-
put” nodes. Such works attempt to identify networks G with various desired
properties, and protocols within these networks that can efficiently route these
messages, for any possible permutation σ that dictates which input node is con-
nected to which output node. While our work is partially inspired by the routing
networks considered in this line of work, the NIAR model is quite different than
the permutation routing model, both because of the number of routers (one ver-
sus Θ(N log N)) and due to the required privacy of the permutation σ. In other
words, we do not route the messages over a physical routing network (which is
an iterative process that depends on the “depth” of the network), but rather we
design our non-interactive routing protocol using a virtual sorting network.
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2.2 PIR

There has been an extensive amount of work done on the original PIR prob-
lem [CGKS95,KO97] and its variants. Here, we discuss only a few of these works
that are most relevant to us.

Multi-Client PIR. As discussed in the introduction, the NIAR problem can
be solved using multi-client PIR. Indeed, a solution to generic multi-client PIR
in which the PIR server’s work does not scale with the number of users would
imply an efficient solution for NIAR. While no such result is known, we discuss
a few relevant works and why they are insufficient for the NIAR model.

In [IP07], it is demonstrated how a single user can efficiently issue multiple
queries to a PIR server. However, their results rely on a single decoding algo-
rithm, whereas the NIAR model would require distinct decoding keys for each
of the N receivers. [HOWW19] present a related notion of private anonymous
data access; we note that the results in their model do not scale to the full cor-
ruption threshold (N − 2) required in the NIAR security model. Finally, results
in the related areas of Batch Codes [IKOS04] and Public-Key Encryption with
amortized updates [COS10] address a different model, and consequently do not
seem to be directly applicable to the NIAR model.

Rate-1 PIR. A recent line of work [DGI+19,GHO20,CGH+21] has demon-
strated the viability of rate-1 PIR, in which the server response is comparable in
size to the database entry being fetched. Formally, for a database of N elements
each of size B, rate-1 PIR means that the ratio of B to the server response
size approaches 1 as N → ∞. Stated differently, a rate-1 PIR scheme has an
additive constant-stretch term δPIR, such that the server’s response has size
B + δPIR. Rate-1 PIR is known to exist under the DDH, QR and LWE assump-
tions [DGI+19,GHO20].

Doubly Efficient PIR (DEPIR). In a recent result of Lin et al. [LMW22],
they demonstrate a PIR protocol that, after a pre-processing phase that costs
O(N1+ε) in server computation, enjoys polylog N communication and compu-
tation for each PIR query. If this DEPIR protocol were to be used to solve the
NIAR problem (as per the straightforward application described in Sect. 1.1),
the resulting protocol would have O(N1+ε) computation at the router for each
new message packet/bit of the senders (since each database update would trigger
a new “pre-processing” phase of the PIR server).
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N -2 Pairs

=⇒ =⇒
Sender Collusion Receiver Collusion

(and N − 2 Receivers) (and N − 2 Senders)

=⇒ =⇒
Arbitrary

Fig. 1. Various security requirements/settings relevant to the NIAR model. All four
scenarios include collusion with router C, plus: - Top Setting (N -2 Pairs): Corruption
of up to N -2 (sender, receiver) pairs; - Left Setting (Sender Collusion): Corruption of
all senders (and N -2 receivers); - Right Setting (Receiver Collusion): Corruption of all
receivers (and N -2 senders); - Bottom Setting (Arbitrary): Corruption of any 2N − 2
senders/receivers. The implication arrows indicate that a protocol that is secure in one
setting is automatically secure in the other.

2.3 Comparison with Other Results in NIAR Model

The NIAR model was introduced in [SW21], which included several variants
of the security requirement, and offered solutions for these variants. As men-
tioned, our results improve upon those of [SW21] in three main ways: (i) Reduced
router overhead (O(N · polylogN) versus O(N2)); (ii) Seemingly simpler proto-
col based on weaker/more standard cryptographic assumptions; (iii) Improved
practical/observed efficiency (not empirically verified). On the other hand, the
protocol of [SW21] provides protection in different scenarios of security require-
ments. Namely, in terms of Fig. 1, our protocol focuses on the top and left set-
tings, while [SW21] covers the top, right, and bottom settings. However, for all
of the motivating examples discussed in the Introduction, security in the top and
left settings (which our protocol provides) is sufficient.

A recent work of Fernando et al. [FSSV22] improves upon the work of [SW21],
by reducing router computation to O(N · polylogN), which (asymptotically)
matches our result. However, the other comparisons between our work and that
of [SW21] are still valid; namely, our protocol benefits from simpler assumptions
and protocol complexity (e.g. we do not require obfuscation) as well as practical
efficiency, but ours does not offer protection against full receiver collusion.

A summary of the comparison of our results to other relevant results can be
found in the table below, where ˜N = O(N · polylogN) denotes quasi-linear:

3 Preliminaries

3.1 Beneš Network

(The networks mentioned here are common in the permutation routing litera-
ture, see for example [AKS83,Lei84,Upf89,MS92]. Figures depicting each of the
networks described below can be found in the extended version of this paper). In
a butterfly network, N input nodes are connected to N output nodes via a leveled
network of (1 + log N) levels, each with N nodes. A Beneš network appends a



Anonymous Permutation Routing 41

Protocol Anonymity
Levela

Crypto
Assumptions

Comm. Router
Comp.

Permutation
Routing

None N/A ˜N ˜N

Näıve PIR Sender Collusion PIR ˜N N2

DEPIR
[LMW22]b

Sender Collusion Ring LWE ˜N N1+ε

Original
NIAR[SW21]

Receiver Collusion DLIN ˜N N2

Arbitrary Obfuscation ˜N N2

Improved NIAR
[FSSV22]

Arbitrary Obfuscation ˜N ˜N

Our Results Sender Collusion DDH or QR or LWE ˜N ˜N
a Anonymity terminology as defined in Fig. 1. Namely, “Sender Collusion” refers to

potential corruption of the central router, all senders, and up to N − 2 receivers;
and “Arbitrary” refers to potential corruption of the central router and any set
of up to 2N − 2 senders/receivers.

b Analysis of [LMW22] in the context of the NIAR model is not done by Lin et al.,
and the stated characteristics of their protocol in the NIAR setting are ours.

second (inverted) butterfly network to the first; and more generally an extended
Beneš network appends many “blocks” of butterfly networks together. We con-
tinue expanding on this model by replicating each node and edge c times, which
can be conceptualized as coloring them with c distinct colors. Finally, our pro-
tocol will assume wide edges, which means that each edge can simultaneously
route w messages (requiring specification of which of the w “slots” each message
occupies).

3.2 Non-Interactive Anonymous Routing (NIAR)

We adopt the NIAR model of [SW21], in which N senders each has a series of m
(e.g. single-bit) messages they wish to send to a distinct receiver anonymously.
The anonymity guarantee refers to the unlinkability of each sender-receiver pair,
and crucially it must be preserved even if the central router colludes with a
subset of the senders/receivers. Depending on the application, there are various
collusion patterns that may be of interest, see e.g. Fig. 1.

In this paper, we demonstrate our protocol is secure against the top and left
settings (in Fig. 1). We do not consider the right and bottom settings (Receiver
Collusion and Arbitrary) in this paper for two reasons: First, in the main appli-
cation areas for the NIAR model (see Introduction above), the receivers already
know the senders they wish to connect to, so anonymity of the senders (in the case
that all receivers are colluding) is irrelevant. The second reason is because pro-
viding protection in settings when all Receivers collude with the router requires
additional techniques than those considered in this paper. For example in [SW21]
and [FSSV22], the protocol description, performance, and cryptographic hard-
ness assumptions are all more complex in the Arbitrary collusion setting.
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Formally, the (reformulated) NIAR model of [SW21] is as follows:

(Trusted) Setup. Upon input security parameters (1λc, 1λs), number of
senders/receivers N , and permutation σ : [N ] → [N ], the Setup algorithm out-
puts sender keys {pki}i∈[N ], receiver keys3 {(ski, κi)}i∈[N ], and token q for router
C:

({pki}i∈[N ], {(ski, κi)}i∈[N ], q
) ← Setup(1λc , 1λs , N, σ).

Once Setup has been run, the Senders {Si} can communicate arbitrary messages
{mi} = {mi,α} with the Receivers {Ri} through router C.

Send Message. Using key pki, each Sender Si encodes message mi = mi,α

(where α denotes the αth bit of message mi), and sends the result to router C:
ci,α ← Encpki

(mi,α).

Route Message. Upon inputs {ci}i∈[N ] from each Sender Si, and using key
q, router C prepares messages {zi}i∈[N ], and sends these to each Receiver Ri:
(z1, z2, . . . , zN ) ← Route(q, c1, c2, . . . , cN ).

Decode Message. Using keys (ski, κi), each Receiver Ri decodes the message
zi = zi,α received from router C, and outputs m̃i = m̃i,α: m̃i,α ←Decski

(κi, zi,α).

Correctness. An oblivious permutation routing protocol has:

Perfect Correctness: If each receiver Ri outputs message m̃i=mi with probability
1.

λc−Statistical Correctness: If each receiver Ri outputs message m̃i = mi with
probability at least

(

1 − 1
2λc

)

, for security parameter λc.

Security. Informally, anonymity means that if a subset of parties collude
(including router C), the permutation σ (namely, its restriction to non-colluding
parties) should remain unknown. Formally, let A denote a (computationally
bounded, honest-but-curious) adversary. Consider the following challenge game:

1. On input security parameter λ, Adversary A chooses N , two distinct permu-
tations σ0, σ1 on [N ], a set of sender indices SA ⊆ [N ] to corrupt, and a set
of receiver indices RA ⊆ [N ] to corrupt, subject to the following constraints:
(a) |RA| ≤ N − 2;
(b) σ0 and σ1 match for all receivers in RA: ∀ i ∈ RA : σ−1

0 (i) = σ−1
1 (i).

2. Adversary A sends {σ0, σ1} to Challenger C.
3. Challenger C chooses σb ∈ {σ0, σ1} for b ← {0, 1} (e.g. by flipping a coin).
4. Challenger C chooses router token q, encryption keys {pki}i∈[N ], and decryp-

tion keys {ski}i∈[N ]. C sends q, {pki}i∈SA , and {ski}i∈RA to A.
5. For each round α:

(a) Based on knowledge of all prior ciphertexts {ci,α′}α′<α (see next step),
Adversary A chooses messages {m

(0)
i,α}i∈[N ] and {m

(1)
i,α}i∈[N ], subject to

the constraint that all messages bound for a corrupt receiver match: ∀ i

s.t. i = σ−1
0 (j) for some j ∈RA: m

(0)
i,α = m

(1)
i,α. A sends {m

(0)
i,α}, {m

(1)
i,α} to

C.
3 The sender keys {pki} are associated with the receiver keys {ski} via the permutation

σ; namely, secret key skσ(i) can decrypt messages encrypted under pki.
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(b) Challenger C outputs to A ciphertexts {ci,α}i∈[N ], where each ciphertext
is computed as (with b as chosen in Step 3): ci,α = Encpki

(m(b)
i,α).

6. Adversary A outputs a guess b′ ∈ {0, 1} of which permutation {σ0, σ1} Chal-
lenger C chose.

A NIAR protocol is λs-secure if the probability that any computationally
bounded adversary A guesses b correctly is bounded by:

Pr[b′ = b] ≤ 1
2

+
1

2λs
(1)

3.3 Emulating Oblivious Routing in a Virtual Routing Network

In this section, we present the main ideas that connect the NIAR model to the
permutation routing problem. At a high level, the idea is to have the NIAR
router emulate message transmission through a (virtual) routing network that
supports permutation routing between N senders and receivers. In particular, we
view the N senders as input nodes in the routing network, and the N receivers as
the output nodes, and then choose paths through the routing network connecting
each sender to its receiver. The NIAR router then passes messages from each
sender to the designate receiver by routing messages along this path. Note that
this entire network, except the input nodes (corresponding to the senders) and
output nodes (corresponding to the receivers), together with message routing
within it, is entirely simulated by the NIAR router.

In order to preserve anonymity in terms of linkage between each (sender,
receiver) pair, the paths that each message takes through this (virtual) routing
network must remain hidden to the NIAR router. The key primitive that we
utilize to achieve this is called an oblivious routing gate., informally defined as:

Definition 1 (Informal). An oblivious routing gate describes a process in which
the messages on w incoming wires of a gate are routed to its w outgoing wires,
in such a way that the process that is performing the routing is unaware of the
linkage between (incoming wire, outgoing wire) of each message.

Notice that PIR can be used to instantiate an oblivious routing gate, by using
PIR queries to secretly select the incoming edge to read from, and then having
the PIR server (that is doing the actual routing) write its corresponding PIR
response along that outgoing edge; see Fig. 2.

Routing in the NIAR model can be achieved by combining the oblivious
routing gate paradigm with ordinary routing through a permutation network,
as follows:

Definition 2 (Informal). Denote NIAR parameters: N , permutation σ : [N ] →
[N ], “central router” party C, “sender” parties {Si}i∈[N] with messages {mi,α},
“receiver” parties {Ri}i∈[N] , and let G denote a given routing network. An emu-
lated permutation routing protocol ΠEPR performs NIAR routing by having C
route the αth message of each sender {mi} through the (emulated) network G,
in which messages are routing from the incoming edge of a network node to an
outgoing edge via the oblivious routing gate paradigm.
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Due to space limitations, the formal definitions of oblivious routing gate and
emulated permutation routing, as well as example instantiations via PIR, appear
in the extended version.

Fig. 2. Oblivious routing gate (ΠORG) realization via PIR at node μ with 2w incoming
and outgoing edges.

4 Our Protocol

4.1 Overview of Our Solution

Given N pairs of (sender, receiver) nodes and central router C, our protocol
routes messages from the senders to the corresponding receivers via a virtual
routing network G that C emulates where, for each node in the network, the
router C obliviously executes a routing gate by simulating the functionality of a
(rate-1) PIR query. Namely, (as part of trusted setup) each outgoing edge of a
routing gate will have an assigned PIR query, and each incoming edge will have
a value (which represents an encrypted message from one of the senders). Then
the router C obliviously produces a message on each outgoing edge of the routing
gate by running the associated PIR query on this wire against the (virtual) PIR
database of messages (from the incoming wires). The determination of which
incoming edge that a given PIR query (on a routing gate’s outgoing edge) should
specify is established offline during a setup phase, and specifically it is determined
by choosing a random path Pi, for each (senderi, receiveri) pair, through the
(virtual) routing network G. Notice that once PIR queries are assigned (during an
offline setup phase) as per all chosen paths {Pi}, they may be reused indefinitely
during the online routing phase to continuously route new messages for each
(sender, receiver) pair. The main features of our solution are as follows:
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– Correctness. Ensuring each receiver gets every message reduces to showing
that the paths {Pi} connecting each (senderi, receiveri) pair are edge-disjoint.

– Privacy. Since each sender encrypts their messages under the intended
receiver’s public key, receivers can only decipher messages intended for them.

– Anonymity. This property is obtained so long as the paths {Pi} chosen are
“sufficiently edge-disjoint” (for details see Definition 23).

– Communication. To limit the expansion of message size through each (vir-
tual) routing gate, we employ rate-1 PIR, which ensures the final message
size is proportional to the length of the chosen path P through the (virtual)
routing network G; and that any such path is short (i.e. of polylogN length).

– End-to-End Time. Computation of central router C (which, together with
communication, determines end-to-end transmission time) will depend on the
size of the virtual graph G = (V,E). Thus, in order to minimize computa-
tional overhead, |E| should be close to N (e.g. N · polylogN). Notice that
there is inherent tension in minimizing end-to-end time versus satisfying the
Correctness and Anonymity properties: the former requires small |V | and |E|,
while the latter two are readily achieved for larger |V | and |E|. Our protocol
finds appropriate (minimal) parameters to achieve correctness and anonymity,
while introducing minimal end-to-end overhead.

We stress that some relaxed approaches to the NIAR problem actually fail to pro-
vide anonymity. Specifically, the approach of deploying an arbitrary permutation-
routing network (without the extra features that we require), and the approach
of just replacing each gate in the routing network (even a properly selected
network) with PIR, do not seem sufficient, which we argue as follows.

While PIR is the main tool that hides (from central router C and any other
parties it colludes with) the linkage between uncorrupted (sender, receiver) pairs,
applying it näıvely will not provide the desired protection. Namely, if any two
of the paths {Pi} through the virtual routing network have an edge in common,
then a PIR query cannot be assigned to that edge, as there will be conflicting
input edge indices (and conflicting messages on those edges) to select. Since, in
proving anonymity, path selection must be a randomized process (in particular,
edge conflicts cannot be deliberately avoided), our protocol will handle edge
conflicts by producing garbage PIR queries for such edges. While this approach
introduces failures in terms of delivering messages along the conflicting paths
that were chosen for any such (sender, receiver) pairs, the threat to correctness
is overcome by ensuring enough redundancy in the system to account for (the
low probability event of) edge conflicts. However, edge conflicts (and the lack
of edge conflicts), also threatens anonymity: for example, the router C could
observe many messages from (sender, receiver) pairs it has corrupted all pass
through a common node, and the router may also know that the message from
an uncorrupted sender has some probability of passing through this same node.
Thus, the presence or absence of an edge conflict on the set of outgoing edges of
this node may give the router an advantage in determining if the uncorrupted
sender’s path goes through this node, and if so, some probabilistic advantage in
knowing which outgoing edge the path used; and these advantages then threaten
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anonymity since the router may be able to have an advantage in guessing the
ultimate destination (i.e. receiving node) of this path. Demonstrating that this
approach cannot be used to give the router a non-negligible advantage in linking
uncorrupted (sender, receiver) pairs will require: (i) Identifying what property a
network should have to avoid this attack; (ii) Generating such a routing network
that also supports the desired complexity and correctness requirements; (iii) An
appropriate analysis that this property indeed proves anonymity. For example,
the natural candidate property of exhibiting (with high probability on randomly
chosen paths) the edge-disjoint property is insufficient, as it is susceptible to the
above attack.

Figure 3 below gives pseudocode of our ΠAPR protocol (due to space con-
straints, the full protocol can be found in the extended version).

4.2 Analysis of Our Protocol

Theorem 3. Assuming the existence of rate-1 PIR, following trusted setup,4 the
protocol presented in Fig. 3 is λs-secure with λc-statistical correctness, O(log N)
per-party communication, and O(N polylog N) router computation.

Remark. Instead of trusted setup, under appropriate cryptographic hardness
assumptions the ideal functionality ΠORG(G, ĉ, r, l,Π1−PIR) could instead be
realized via generic secure multiparty computation (MPC) techniques. This
would contribute O(N2 polylog N) to the asymptotic cost of the protocol (to
deal the O(N polylog N) rate-1 queries and O(N2 polylog N) reconstruction
keys), but because ΠORG(G, ĉ, r, l,Π1−PIR) is utilized only in the Setup Phase,
this would be incurred as a one-time cost and would not impact cost of the
Routing Phase.

Proof (Theorem 3, Sketch). Let λ := max(λc/(2− log 3), 2 log N + max(λs, 2 +
log log N). Then the specific permutation network G = B(̂N, b, c,w) used in ΠAPR

is a wide-edged, extended and colored Beneš network (see Sect. 3.1) with param-
eters ̂N = N , b = λ − 1, c = 4 · aλ, and w = 1.2 · λ · log N · (1 + log N) (for
aλ := max(2, λ1/(log N−1))).

4 Trusted setup is required for establishing public/secret key pairs for encryption and
for instantiating ideal functionality ΠORG(G, ĉ, r, l, Π1−PIR).
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Anonymous Permutation Routing (APR) Protocol ΠAPR

Input. APR parameters: N , permutation σ : [N ]→ [N ], “central router” party C,
“sender” parties {Si}i∈[N] with messages {mi,α}, “receiver” parties {Ri}i∈[N].

Output. For each party index 1 ≤ i ≤ N , receiver Rσ(i) outputs messages {m̃i,α}.

Setup Phase.

1. Let G = B(N, b, c, w) denote a wide-edged, extended and colored Beneš net-
work (see proof details for appropriate choice of parameters b, c, and w).

2. For each i ∈ [N ]: let (pki, ski) denote a public-key/secret-key pair.
Output: Si ← pki and Rσ(i) ← ski.

3. Let λ := max(λc/(2- log 3), 2 log N +max(λs, 2+ log log N), where λc and λs

denote the desired correctness and security parameters. Repeat λ times:
(a) Choose N random paths {Pi} through G (respecting permutation σ).
(b) Assign rate-1 PIR queries and reconstruction keys to each edge of G, as

per {Pi}. Namely, for a given node μ ∈ G, if some path Pi passes through
node μ along incoming edge Iμ,j and outgoing edge Oμ,k, then write on
edge Oμ,k a rate-1 PIR query that selects the message on incoming edge
Iμ,j , and give the reconstruction key for this PIR query to Receiver Rσ(i).

Routing Phase. Repeat the following procedure for each message {mi,α}:

Senders {Si}.

1. Sender Si encrypts mi= mi,α under pki and sends Encpki(mi) to router C.

Central Router C. Repeat λ times:

1. C runs an emulated permutation routing protocol (Definition 2) with inputs
{Encpki(mi)} (from each sender Si’s Routing Phase Step 1) and rate-1 PIR
queries as per Step (3b) of Setup Phase; and sends the outputs to each
Receiver.

Receivers {Rσ(i)}. Repeat λ times:

1. Use the reconstruction keys (received in Step (3b) of Setup Phase) to traverse
Pi backwards, starting with the final value that it received from C. When
Rσ(i) has traversed backwards to level 0, it will have reconstructed value
Encpki(mi).

Fig. 3. Anonymous Permutation Routing protocol ΠAPR.

Cost. Per-party computation and communication costs for the routing phase
are:

Party Computation Communication
Si Cost(ΠEnc) c

Enc

Ri Cost(ΠDec)+(1+b)·(1+log N)·Cost(ΠPIR-Rec) N/A
C M · |E| · Cost(ΠPIR-Query) N · (2 · c

Enc
+(1+b) ·δPIR)
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where:

– |E| = (2 log N+c)·(c·w ·N·(1+b)) is the number of edges in networkB(N, b, c, w).
– Cost(ΠEnc) is the (computation) cost of encrypting a message m.
– Cost(ΠDec) is the (computation) cost of decrypting a ciphertext Encpki

(m).
– c

Enc
is the size of a ciphertext Encpki

(m).
– δPIR is the constant stretch of the underlying rate-1 PIR protocol Π1−PIR.
– Cost(ΠPIR−Query) is the PIR server cost of Π1−PIR(c ·w, c

Enc
+(1+b) ·δPIR).

– Cost(ΠPIR−Rec) is the cost of running the reconstruction algorithm (on a PIR
response) for Π1−PIR(c · w, c

Enc
+ (1 + b) · δPIR).

Correctness. The intuition for the proof is as follows: Independent of adver-
sarial presence, we first demonstrate bounds of certain properties of routing in
the Beneš network, as per the protocols described in Fig. 3. Namely, we demon-
strate in Corollary 19 that, with overwhelming probability, for any row index
i ∈ [N ] there will exist (at least) one experiment m ∈ [M ] for which the path
Pm,i is edge-disjoint from all other paths {Pm,j}j �=i. Then as per protocol ΠAPR

specification (Step 2b of the Output Parties portion of the Routing Phase; see
Fig. 3), the existence of an edge-disjoint path Pi means that Rσ(i) will update
w̃i ← w̃m,i. By the correctness property of the ideal functionality of ΠORG, this
value will be correct (i.e. it will equal pi).

Formally, with λ = max( λc

2− log 3 , 2 log N + max(λs, 2 + log log N)) ≥ λc

2−log 3 ,
Lemma 19 states that the probability that there exists some row index i ∈ [N ]
for which Pm,i is not edge-disjoint for every experiment m ∈ [M ] is bounded
by:

Pr[X = 0] <

(

3
4

)λ

≤
(

(

3
4

)
1

2−log 3
)λc

=
1

2λc
.

Security. As with the Correctness proof, we first demonstrate (probability
bounds for) a version of the edge-disjoint property in the Beneš graph G
(Sect. 3.1) used in Fig. 3. Namely, we demonstrate in Corollary 27 that, using
the parameters as per ΠAPR (Fig. 3), with overwhelming probability (in λs), for
any pair of row indices i, i′ ∈ [N ] and for every experiment m ∈ [M ], there will
exist a block in which the chosen paths Pm,i and Pm,i′ as well as their alternate
paths P ′

m,i and P ′
m,i′ are each edge-disjoint from all other paths in this block.

Effectively, this means that for any two uncorrupted receiver nodes i, i′ /∈ RA,
that for each experiment there exists some block in which the Adversary will
necessarily lose all ability to distinguish between Pm,i and Pm,i′ by the time
these paths cross through this block. We then use a hybrid argument to show
that the existence of an adversary that can distinguish between two arbitrary
permutations (as per (1)) implies the existence of an adversary who can distin-
guish (with a smaller probability) between two permutations that differ only on
two points; and then this contradicts the existence of a block in which any two
paths become indistinguishable after that block.
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Formally, the proof reduces the NIAR security game (with Challenger invok-
ing the protocol ΠAPR of Fig. 3) to Challenge Game 2, and then uses the indis-
tinguishability of Challenge Game 2 (Lemma 29). To match notation of ΠAPR

with the communication sent to adversary A in the NIAR security game:

For Step 4 of the NIAR security game:
• Encryption keys {pki}: The {pki} from Step 1 of the Setup Phase (Fig. 3).
• Decryption keys {ski}: The {ski} from Step 1 of the Setup Phase, together

with the reconstruction keys {κi} = {(μ, j, κμ,j)} from Step 2b of the
Setup.

• Router token q: The rate-1 PIR queries {qμ,j} from Step 2b of the Setup.
For Step 5b of the NIAR security game:

• Ciphertexts {ci,α}: The encrypted messages {Encpki
(mi,α)} from

Sender’s Step 1 of the Routing Phase (Fig. 3).

First observe that indistinguishability of the distribution of ciphertexts {ci,α} =
{Encpki

(mi,α)} under b = 0 versus b = 1 follows from the security of the encryp-
tion scheme, together with the constraint that all messages bound for a corrupt
receiver must match for b = 0 and b = 1 (see the specified constraint in Step
5a of the NIAR security game). Thus, for any ciphertext ci,α for which Adver-
sary A does not hold the decryption key, the security of the encryption scheme
ensures indistinguishability of this as a ciphertext of m

(0)
i,α versus m

(1)
i,α; and for

any ciphertext ci,α for which Adversary A does hold the decryption key, the
constraint in Step 5a of the NIAR security game dictates that this ciphertext
encodes a common message m

(0)
i,α = m

(1)
i,α.

Next we argue indistinguishability of the encryption keys {pki}i∈SA and the
decryption keys {ski}i∈RA . Notice first that due to the constraint in Step 1b of
the NIAR security game, the distribution of decryption keys {ski}i∈RA looks the
same for b = 0 and b = 1, since σ0 and σ1 necessarily agree here (i.e. they each
map some index j ∈ [N ] to i. Meanwhile, for the distribution of encryption keys,
we focus on indices i ∈ [N ] for which σ0(i) 
= σ1(i). Fix any such i, and define
j = σ0(i) and j′ = σ1(i), so j 
= j′. Again due to the constraint in Step 1b of the
NIAR security game, we have that neither j nor j′ is in RA. This means that
Adversary A does not hold the corresponding decryption key for pki regardless
of whether b = 0 or b = 1, and thus by the security of the encryption scheme,
the distribution of pki for b = 0 appears identical as the distribution when b = 1.

For indistinguishability of the router token q = {qμ,j}: for a given qμ,j

for which Adversary A does not hold the corresponding reconstruction key
κμ,j , indistinguishability follows from the security of the underlying rate-1 PIR
scheme. Conversely, for a given qμ,j for which Adversary A does hold the cor-
responding reconstruction key κμ,j , A learns the input wire index that qμ,j is
selecting. However, the paths chosen through G (see Step (3a) of Setup Phase)
are random and independent of each other and depend only on the given (sender,
receiver) indices. Also, A knows reconstruction key κμ,j if and only if outgoing
edge (μ, j) is on the path leading to a corrupt receiver i ∈ RA. Therefore, we
again rely on the constraint in Step 1b of the NIAR security game to argue that
σ0 and σ1 must agree on the (sender, receiver) indices for this path, so the input
wire index that qμ,j is selecting is the same.



50 P. Bunn et al.

It remains to argue indistinguishability of the reconstruction keys {κi}i∈RA =
{(μ, j, κμ,j)}. If for a given tuple (μ, j, κμ,j) the last component is a valid recon-
struction key (i.e. κμ,j 
= ⊥), then indistinguishability follows the same argument
as above for the router token. On the other hand, if κμ,j 
= ⊥, then as per the
Correctness property of any ΠORG protocol, Adversary A learns that at least
two distinct paths chose outgoing edge (μ, j). Since this is the exact scenario as
Challenge Game 2, the proof now follows from Lemma 29.

5 Correctness and Security

In this section, we present a series of definitions and lemmas that allow us to
argue our main protocol (Fig. 3) satisfies the correctness and security proper-
ties of the NIAR model (Sect. 3.2). The main technical work lies in proving
Security; this requires first defining a key property that networks can exhibit
(Definition 23), then demonstrating that the Beneš Network we use satisfies this
property (Corollary 27), and finally demonstrating how this property ensures
security (see Challenge Games 1 and 2 in Sect. 5.3). As there are a number of
lemmas and definitions to go through, to preserve the flow and focus on the main
ideas, all proofs appear at the end of the paper.

5.1 Probabilities in a Beneš Network

The main goal of this section is to define a property of graphs that will allow us
to formally argue that anonymity is achieved. As mentioned in the Introduction,
this property is a stronger variant of edge-disjointness, which we call “local
reversal edge-disjoint.” Informally:

Definition 4 (Informal). Given any permutation on N sets of (sender, receiver)
pairs, a pairwisei,j reversal refers to swapping the receivers of senders i and j.
When viewing a “block” of a permutation network (which also has N input nodes
and N output nodes), a local pairwisei,j reversal refers to swapping the output
nodes of two input nodes. A set of N + 2 paths through a block, which include
one path for each (sender, receiver) pair plus two ex tra paths connecting sender
i to receiver j (and sender j to receiver i) is said to be local pairwisei,j reversal
edge-disjoint if these N + 2 paths are edge-disjoint. A permutation network is
said to enjoy the local reversal edge-disjoint property if, for any pair of indices
(i, j), w.h.p. there exists a block that is local pairwisei,j reversal edge-disjoint for
N + 2 randomly chosen paths.

Formally, Definitions 23 and 26 define the “local reversal edge-disjoint” property,
and it is used to prove security via Corollary 27 and in the analysis of (12)).

Lemma 5. Suppose that for each input node {νi}N
i=1 of a butterfly network,

a random path Pi of log N steps is performed. For any node μl (at level l ∈
[0, log N ]), let Xμl

denote the random variable that indicates how many of the
paths {Pi} pass through node μl. Then for any integer k ≥ 1:

Pr[Xμl
≥ k] ≤ 2l

k!
(2)
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Lemma 6. Suppose that for each input node5 {νi}N
i=1 of a colored butterfly

network (with replication factor c), a random path Pi of (1 + log N) steps is
performed (the first step chooses the color ĉ ∈ [c]). For any node μl = μĉ,r,l (at
level l ∈ [0, log N ], row r ∈ [N ], and color ĉ ∈ [c]), let Xμl

denote the random
variable that indicates how many of the paths {Pi} pass through node μl. Then
for any integer k ≥ 1:

Pr[Xμl
≥ k] ≤ 2l

k! · ck
(3)

Lemma 7. Suppose that for each input node {νi}N
i=1 of a colored butterfly net-

work (with replication factor c), a random path Pi of (1 + log N) steps is per-
formed (the first step chooses the color ĉ ∈ [c]). For any integer k ≥ 1, let Xk

denote an indicator variable on whether there exists any node μ (in the entire
colored butterfly network) that has more than k (of the N total) random paths
{Pi} pass through it. Then:

Pr[Xk = 1] ≤ 2c · N2

k! · ck
(4)

We now extend a (colored) butterfly network by concatenating several “blocks,”
each block consisting of log N levels, and then finishing with one final level that
is the mirror reflection of a butterfly network:

Definition 8. An extended (colored) Beneš network with b blocks consists of b
butterfly networks concatenated together, followed by a single (reflected) butterfly
network. Additionally, where each pair of blocks are connected, there is a single
level inserted which consists of edges connecting all colors of each node (at each
“row”) to each other. A block j, for j ∈ [1, (1+b)], refers to the (1+log N) levels
(and edges) between levels (j −1) · (1+log N) and j · (1+log N). That is, a block
corresponds to a contiguous set of (1 + log N) levels, whose first log N levels are
a butterfly network, and the last level is the “connecting” level that consists of
all edges connecting the different colors of all nodes on the same “row.”6 The
input level of a block j ∈ [1, 1 + b] is level (j − 1) · (1 + log N), and the output
level is j · (1 + log N) (notice the input level of block b is the same as the output
level of block b − 1).

The following is analogous to Lemma 7, but bounds the probability with respect
to each block of an extended, colored Beneš network:
5 A colored butterfly network can be viewed as c disjoint butterfly networks overlaid on

top of one another. Alternatively, we can view a colored butterfly network as a single
(connected) graph by adding an extra input level (with level index −1) on the far left,
consisting of N input nodes. Then there are c edges emanating from each input node,
connecting it to each of the c colored nodes in level 0 of the corresponding row.

6 In the special case of the (1+b)th block, the first log N levels of this block are a
reflected butterfly network, and the last level of the block is the final “output” level
of the entire network.
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Lemma 9. Let σ : [N ]→ [N ] be an arbitrary permutation on N items. Suppose
that for each input node {νi}N

i=1 of an extended, colored Beneš network with
replication factor c and b blocks, a random path Pi of (1 + b · (1 + log N)) steps
is performed, and then each such path is extended (from level (b · (1 + log N)) to
level (1 + b) · (1 + log N)) by traversing the unique path from the current node
(on level (b · (1 + log N))) to σ(i). For any j ∈ [1, (b + 1)] and for any integer
k ≥ 1, let Xj,k denote an indicator variable on whether there exists any node μj

within block j (i.e. between levels [(j − 1) · (1 + log N), j · (1 + log N) − 1] that
has more than k (of the N total) random paths {Pi} pass through it. Then:

Pr[X1,k = 1] = Pr[X1+b,k = 1] ≤ 2c·N2

k!·ck

∀ j ∈ [2, b] : Pr[Xj,k = 1] ≤ c·N2·(1+log N)
k!·ck (5)

5.2 Permutation Routing Problem

We begin with the definitions that are needed to describe the Permutation Rout-
ing Problem and the desired properties that a successful solution must exhibit.

Definition 10. Given a graph G = (V,E) and a collection of paths {Pi} within
the graph, we say that any given path Pi is edge-disjoint from the others if no
edge in Pi is contained/traversed by any other path. We say the entire collection
of paths {Pi} is edge-disjoint if each individual edge is edge-disjoint.

Definition 11. A Permutation Routing Problem(N,σ,G) is defined as follows:
For input integer N ∈ N, permutation σ : [N ] → [N ], and graph G that has
N designated “input” nodes {I1, I2, . . . , IN} and N designated “output” nodes
{O1, O2, . . . , ON}, construct N edge-disjoint paths through G that connect each
input-output pair (Ii, Oσ(i)).

We extend the notion of the extended, colored Beneš network to a wide-edged
variant, in which each edge has been replicated w times (which can equivalently
be viewed as each edge having capacity w):

Definition 12. A wide-edged, extended, colored Beneš network B(N, b, c, w) is
an extended and colored Beneš network in which, for each level l ∈ [1, (b +(1+
b) · log N)], each edge connecting levels (l-1, l) is replicated w times.

Notice that the added color and edge-width features serve a similar purpose:
they each reduce the probability of an edge conflict (i.e. increase the probability
of being edge-disjoint, as per Definition 10); but they do so in slightly different
ways: the color feature not only introduces new edges, but also additional nodes,
so that once a path chooses a color for a particular block (which happens only at
the start of each block, when there is a transition between levels in which each
edge connects the various “colors” corresponding to the nodes on a common
“row;” it will not conflict (on the present block) with paths that chose another
color. In contrast, the edge-width feature reduces the chances that two paths
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conflict across a given edge; but those same paths may still end up in the same
node at the far end of this edge, and thus may conflict in a later edge.

We now describe a näıve protocol for randomly choosing paths through a
Beneš network:

Definition 13. Given permutation σ : [N ] → [N ] and a wide-edged, extended,
colored Beneš network G = B(N, b, c, w), the Näıve Random Path algorithm
defines N paths {Pi} through G, connecting each input node to each output node
as per σ, as follows: Path Pi, which starts at input node Ii, chooses random
edges for each level through the first b blocks of G = B(N, b, c, w). Then from its
current node on level (b · (1 + log N)), it follows the unique path to destination
node Oσ(i) (by choosing one of the w replicates of each edge along this path).

Definition 14. Given a wide-edged, extended, colored Beneš network
B(N, b, c, w), and given a routing algorithm Π = ΠN,σ,B(N,b,c,w) that attempts
to solve the Permutation Routing Problem (Definition 11), for each i ∈ [N ] and
for each block 1 ≤ j ≤ (1+b), let XΠ(i, j) denote the boolean random variable that
indicates whether Π constructs an edge-disjoint path on the jth block for the
pair (Ii, Oσ(i)). That is, XΠ(i, j) = 1 if the path connecting Ii and Oσ(i) within
the jth block (as specified by Π) is edge-disjoint from all other paths specified
by Π.

We now demonstrate several properties that the Näıve Random Path algorithm
(Definition 13) satisfies:

Lemma 15. Let Π = Πσ
N

denote the Näıve Random Path algorithm (Defini-
tion 13) on a wide-edged, extended, and colored Beneš network B(N, b, c ≥ 2, w).
Then for any i ∈ [0, N ], for any 1 ≤ j ≤ (1 + b), and for any 1 ≤ k ≤ N , the
probability that XΠ(i, j) = 0 (as per Definition 14) is bounded by:

Pr[XΠ(i, j) = 0] ≤ (1 + log N) ·
(

c · N2(1 + log N)
k! · ck

+
k

2w

)

(6)

We now extend Definition 14 (and in particular the indicator random variable
XΠ(i, j) = 0) to a statement about a path Pi being edge-disjoint across the
entire network G:

Definition 16. Given a routing algorithm Π = ΠN,σ,G that attempts to solve
the Permutation Routing Problem (Definition 11), for each i ∈ [N ], let XΠ(i)
denote the boolean random variable that indicates whether Π constructs an edge-
disjoint path for the pair (Ii, Oσ(i)). That is, XΠ(i) = 1 if the path connecting Ii

and Oσ(i) (as specified by Π) is edge-disjoint from all other paths specified by Π.

Lemma 17. Let Π = Πσ
N

denote the Näıve Random Path algorithm (Defini-
tion 13) on a wide-edged, extended, and colored Beneš network B(N, b, c ≥ 2, w).
Then for any i ∈ [N ] and for any 1 ≤ k ≤ N , the probability that XΠ(i) = 0 (as
per Definition 16) is bounded by:

Pr[XΠ(i) = 0] ≤ (1 + b) · (1 + log N) ·
(

c · N2 · (1 + log N)
k! · ck

+
k

2w

)

(7)
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Proof. This follows immediately from Lemma 15 by applying a union bound on
the (1 + b) blocks of the Beneš network B(N, b, c, w).

We are now ready to present the final definition and corresponding statement
that will be required for the correctness property of the protocol in Fig. 3.

Definition 18. Given an (independent) collection {Πm} of M routing algo-
rithms that attempt to solve the Permutation Routing Problem (see Defini-
tion 11) in a wide-edged, extended and colored Beneš network B(N, b, c, w), let
X denote the boolean random variable that indicates if, for every i ∈ [N ], there
exists (at least) one experiment m ∈ [M ] in which XΠm

(i) = 1 (where XΠm
(i)

is the random variable in Definition 16).

Corollary 19. For any security parameter λ and for any input parameters 2n =
N ≥ 64, b = λ − 1, c = 4 · aλ, and w = 1.2 · λ · log N · (1 + log N) (for7

aλ := max(2, λ1/(log N−1))), if the Näıve Random Path algorithm (Definition 13)
is repeated M := λ times, then the probability that X = 0 (Definition 18) is
bounded by:

Pr[X = 0] <

(

3
4

)λ

(8)

Ultimately, Corollary 19 will demonstrate correctness of our routing protocol (3).
However, for the security property, we will need to consider two sets of (input,
output) node pairs. The following definition (which extends Definition 14, but for
two sets of (input, output) pairs of nodes) will be used to capture the requisite
probabilities for our security proof.

Definition 20. Given a wide-edged, extended, colored Beneš network B(N, b, c,
w) and two routing algorithms Π = ΠN,σ,G=B(N,b,c,w) and Π ′ = Π ′

N,σ,G=B(N,b,c,w)

that attempt to solve the Permutation Routing Problem (Definition 11), for any
pair of row indices (i, i′) ∈ [N ] and for any block 1 ≤ j ≤ (1 + b),
let YΠ,Π′(i, i′, j) denote the boolean random variable that indicates whether each of
the four paths {Pi,Pi′ ,P ′

i,P ′
i′} are edge-disjoint from all other paths on block j.

Aside. Notice that Definition 20 is only concerned about what happens on a sin-
gle block of a wide-edged, extended, and colored Beneš network B(N, b, c, w). In
particular, we do not actually require two routing algorithms Π, Π ′ to be defined
on the full network B(N, b, c, w) in order to evaluate whether YΠ,Π′(i, i′, j) equals
zero or one on a given block j ∈ [1, 1 + b] (as per Definition 20); rather, we only
need to know what each algorithm does on block j. Also notice that there is no
requirement that the four paths be edge-disjoint from each other.

Definition 21. Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and a routing algorithm Π = ΠN,σ,G that attempts to solve the
Permutation Routing Problem (Definition 11), and given any pair of row indices
i, i′ ∈ [N ] and any block index j ∈ [1, (1 + b)], define the block j alternate routing
algorithm Π′

i,i′,j as follows:

7 Notice aλ = 2 if λ ≤ N/2.
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– Π ′
i,i′,j is identical to Π on the first (j − 1) blocks.

– On the jth block:
• For all ̂i /∈ {i, i′}: Π ′

i,i′,j is identical to Π.
• Let μi (respectively μi′) denote the node on the output level (which has

level index j · (1 + log N)) of block j that Pi (respectively Pi′) passes
through. Then Π ′

i,i′,j is identical to Π except that the choice of μi versus
μi′ is swapped in Step 2a for i and i′.8

– For all blocks beyond the jth block:
• For all ̂i /∈ {i, i′}: Π ′

i,i′,j is identical to Π.
• For i, i′: Π ′

i,i′,j is identical to Π, except that it has swapped paths Pi and
Pi′ .9

With these definitions in hand, we provide an analogous probability bound for
YΠ,Π′(i, i′, j) as Lemma 15 provided for XΠ(i, j).

Lemma 22. Let Π = Πσ
N

denote the Näıve Random Path algorithm (Defini-
tion 13) on a wide-edged, extended, and colored Beneš network B(N, b, c ≥ 2, w).
Fix any pair of row indices i, i′ ∈ [N ] and any block index j ∈ [1, (1+b)], and let
Π ′ = Π ′

i,i′,j denote the “block j alternate routing protocol” (Definition 21). Then
for any 1 ≤ k ≤ N , the probability that YΠ,Π′(i, i′, j) = 0 (as per Definition 20)
is bounded by:

Pr[YΠ,Π′(i, i′, j) = 0] ≤ 4 · (1 + log N) ·
(

c · N2 · (1 + log N)
k! · ck

+
k

2w

)

(9)

Just as XΠ(i, j) (Definition 14) and the corresponding bound for it (Lemma 15)
were extended from variables/statements about blocks to variables/statements
about the entire network (in the corresponding Definition 16 and Lemma 17), we
likewise extend YΠ,Π′(i, i′, j) (Definition 20) and the corresponding Lemma 22 to
variables/statements about the entire network. However, these extensions differ
slightly from before, as ultimately we only need the existence of a block that
satisfies the key property, as opposed to requiring that all blocks satisfy some
property.

Definition 23. Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and given two routing algorithms Π = ΠN,σ,G and Π ′ = Π ′

N,σ,G

that attempt to solve the Permutation Routing Problem (Definition 11), for any
pair of row indices (i, i′) ∈ [N ], let YΠ,Π′(i, i′) denote the boolean random variable
that indicates whether there exists some block j ∈ [1, (1 + b)] in which the four
paths {Pi,Pi′ ,P ′

i,P ′
i′} are each edge-disjoint from all other paths on block j.

8 Notice that if μi = μi′ , then Π ′
i,i′,j is identical to Π (for all paths {Pi}) on all blocks

through j (including block j).
9 Swapping paths is only necessary for the sake of making sure the paths link

up/connect between blocks (since output node μi and μi′ were swapped in block
j). However, as was noted in the Aside note following Definition 20, the details of
what Π ′

i,i′,j does beyond block j will be irrelevant for the context of Lemmas 22 and
25.
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Definition 24. Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and a routing algorithm Π = ΠN,σ,G that attempts to solve the
Permutation Routing Problem (Definition 11), and given any pair of row indices
i, i′ ∈ [N ], define the alternate routing algorithm Π′

i,i′ as follows:

1. ∀ j ∈ [1, (1+b)], let Π ′
j = Π ′

i,i′,j denote the block j alternate routing algorithm
(Definition 21).

2. Construct Π ′
i,i′ from the family of alternate routing algorithms {Πj} as fol-

lows:
a. If there exists an index j ∈ [1, (1 + b)] such that YΠ,Π′

j
(i, i′, j) = 1 (as

per Definition 14), then let Π ′
i,i′ = Π ′

j (for the minimal j satisfying
YΠ,Π′

j
(i, i′, j) = 1).

b. Otherwise, define Π ′
i,i′ = Π.

Lemma 25. Let Π = Πσ
N

denote the Näıve Random Path algorithm (Defini-
tion 13) on a wide-edged, extended, and colored Beneš network B(N, b, c ≥ 2, w),
let i, i′ ∈ [N ] be any two row indices, and let Π ′ = Π ′

i,i′ be the alternate routing
algorithm (as per Definition 24). Then for any 1 ≤ k ≤ N , the probability that
YΠ,Π′(i, i′) = 0 (as per Definition 23) is bounded by:

Pr[YΠ,Π′(i, i′) = 0] ≤
(

4 · (1 + log N) ·
(

c · N2(1 + log N)
k! · ck

+
k

2w

))(1+b)

(10)

We are now ready to present the final definition and corresponding statement
that will be required for the security proof of the protocol in Fig. 3.

Definition 26. Given an (independent) collection {Πm} of M routing algo-
rithms that attempt to solve the Permutation Routing Problem (Definition 11)
in a wide-edged, extended and colored Beneš network B(N, b, c, w), let Y denote
the boolean random variable that indicates if, for every Πm and every pair of row
indices i, i′ ∈ [N ], that YΠm ,Π′

m
(i, i′) = 1 (where Π ′

m = Π ′
m,i,i′ is the alternate

routing algorithm (Definition 24) and YΠm ,Π′
m

(i, i′) is the corresponding random
variable (Definition 23)).

Corollary 27. For10 any security parameter λ ≥ 8 and any input parameters
2n = N ≥ 64, b = λ − 1, c = 4 · aλ, and w = 1.2 · λ · log N · (1 + log N) (for
aλ := max(2, λ1/(log N−1))), if the Näıve Random Path algorithm (Definition 13)
is repeated M := λ times, then the probability that Y = 0 (Definition 26) is
bounded by:

Pr[Y = 0] <
λ · N2

4λ
(11)

10 Notice that these parameter values all match those in the hypothesis of Corollary 19.
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5.3 Security

Succinctly, security (anonymity) will follow for the routing protocol of Fig. 3
from:

Corollary27 ⇒ (!∃A with non-negligible advantage in Challenge Game 1)
⇒ (!∃A with non-negligible advantage in Challenge Game 2)
⇒ (Routing Protocol of Fig. 3 is secure (per Definition 11)) (12)

In this section, we define Challenge Games 1 and 2, and then demonstrate the
first two implications in (12) (the third implication was already presented in the
proof of Theorem 3).

Challenge Game 1

Input Parameters:

– Number of input/output nodes 2n = N ≥ 64.
– Security parameter λ ≥ 8.
– A wide-edged, extended and colored Beneš network G = B(N, b, c, w), with

parameters as per Corollaries 19 and 27: b = λ − 1, c = 4 · aλ, and w =
1.2 · λ · log N · (1 + log N) (for aλ := max(2, λ1/(log N−1))).

– There are N “global input nodes” on level −1 of the Beneš network G =
B(N, b, c, w), which are denoted: I = {I1, I2, . . . , IN}, and N global output
nodes O = {O1, O2, . . . , ON}.

– Set the experiment replication amount M = λ.

Challenge Game:

1. Challenger C chooses a permutation σ on N elements σ : [N ] → [N ].
2. For each experiment m ∈ [M ]: Challenger C performs the Näıve Random

Path algorithm (Definition 13) Πm = Πm,N,σb,G (for G = B(N, b, c, w)). For
each i ∈ [N ], let Pm,i denote the path chosen (by Πm) that connects nodes
(Ii, σb(Ii)).

3. Let Y be the boolean random variable from Definition 26. If Y = 0, Challenger
C aborts (Adversary A wins).

4. Challenger C chooses any two distinct indices i, i′ ∈ [N ], and gives11 σ|[N ]\{i,i′}
to Adversary A, which is the mapping of σ on all indices except i and i′. Notice
that since σ is a permutation, Adversary A now has complete knowledge of σ,
except for what σ does to i and i′. In particular, there are two range indices
σ(i), σ(i′) ∈ [N ] that are not mapped to (based on what C gives to A). Let
τ denote the permutation that is identical to σ, except that it swaps where
i and i′ are mapped to (so τ(i) = σ(i′) and τ(i′) = σ(i)). Notice that after
this step, Adversary A knows that the permutation chosen by Challenger C
is either σ or τ .

11 This information is also available indirectly from what C gives to A in Step 5 a
below.
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5. (If this step is reached) Since Y = 1, for each run 1 ≤ m ≤ M of the
experiment, we have that alternate routing algorithm Π ′

m,i,i′ must have been
constructed as per Step 2a of Definition 24 (as opposed to Step 2b). Therefore,
let jm ∈ [1, (1 + b)] denote the block index for which Π ′

m,i,i′ is defined as in
Step 2a; i.e. jm (is the minimal index that) satisfies YΠm,Π′

m,jm
(i, i′, jm) = 1.

Then, for each experiment m ∈ [M ]:
(a) [Block Index]: Challenger C gives Adversary A the block index jm (recall

this is the first block for which YΠm,Π′
m,jm

(i, i′, jm) = 1).
(b) [All Non-Interesting Paths]: Challenger C gives Adversary A all paths

{Pm,̂i}̂i/∈{i,i′}.
(c) [Interesting Paths Before Block jm]: Challenger C gives Adversary A,

through the first (jm-1) blocks only, paths Pm,i and Pm,i′ .
(d) [Interesting Paths + Alternate Paths for Block jm]: Denote the two

sub-paths of Pm,i and Pm,i′ that are restricted to block jm (i.e. just
the edges of these paths within block jm) and their two alternate sub-
paths (as specified by alternate routing protocol Π ′

i,i′ (Definition 24)) as:
{Pm,i,jm

,Pm,i′, jm
,P ′

m,i,jm
,P ′

m,i′, jm
}. Then Challenger C gives Adversary A

the unordered set {Pm,i,jm
,Pm,i′, jm

,P ′
m,i,jm

,P ′
m,i′, jm

}.
(e) [(Unordered) Interesting Paths Beyond Block jm]: For each level with

index jm · (1 + log N) ≤ l ≤ (1 + b) · (1 + log N) in G = B(N, b, c, w) that
lies after block jm, Challenger C gives Adversary A the unordered set of
edges {Pm,i,l,Pm,i′,l}l

, where Pm,i,l (resp. Pm,i′,l) denotes the lth edge
on the path Pm,i (resp. on the path Pm,i′). In other words, A learns the
edges (beyond block jm) traversed by paths Pm,i and Pm,i′ , but A is not
explicitly told which edges belong to which path (Pm,i versus Pm,i′).

6. Adversary A outputs a guess whether Challenger’s permutation was σ or τ .

The Adversary A wins Challenge Game 1 either if Challenger C aborts in Step 3,
or if A’s output guess in Step 6 is correct.

The main result for Challenge Game 1 (which is the first implication in (12)) is:

Lemma 28. The probability that an (unbounded) Adversary A wins Challenge
Game 1 is bounded by:

Pr[A wins Challenge Game 1] ≤ 1
2

+
λ · N2

4λ
(13)

Challenge Game 2

Input Parameters:

– Number of input/output nodes 2n = N ≥ 64.
– Security parameter λs. Let λ := 2 log N + max(λs, 2 + log log N).
– A wide-edged, extended and colored Beneš network G = B(N, b, c, w), with

parameters as per Corollaries 19 and 27: b = λ − 1, c = 4 · aλ, and w =
1.2 · λ · log N · (1 + log N) (for aλ := max(2, λ1/(log N−1))).
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– There are N “global input nodes” on level −1 of the Beneš network G =
B(N, b, c, w), which are denoted: I = {I1, I2, . . . , IN}, and N global output
nodes O = {O1, O2, . . . , ON}.

– Set the experiment replication amount M = λ.

Challenge Game:

1. On input security parameter λ, Adversary A chooses N , two distinct permu-
tations σ0, σ1 on [N ], a set of sender indices SA ⊆ [N ] to corrupt, and a set
of receiver indices RA ⊆ [N ] to corrupt; subject to constraints:
(a) |RA| ≤ N − 2;
(b) σ0 and σ1 match for all receivers in RA: ∀ i ∈ RA : σ−1

0 (i) = σ−1
1 (i).

2. Adversary A sends {σ0, σ1} to a Challenger C.
3. Challenger C chooses b ∈ {0, 1} and selects σb ∈ {σ0, σ1}.
4. For each experiment m ∈ [M ]:

(a) Challenger C performs the Näıve Random Path algorithm (Definition 13)
Πm = Πm,N,σb,G (for G = B(N, b, c, w)). For each i ∈ [N ], let Pm,i denote
the path chosen (by Πm) that connects nodes (Ii, Oσb(i)).

(b) Adversary A is given the following information:
– For each i ∈ RA: all edges e ∈ Pm,i that are edge-disjoint from all

other paths Pm,j (for j 
= i).
– The list of edges {e} ∈ G that have at least two distinct paths

Pm,i,Pm,i′ pass through them, with i′ 
= i and i ∈ RA. Notice that
A is given only the identity of the set of edges {e}; in particular, A
is not given the information of which (nor even how many) indices in
[N ] \ RA traverse each such edge.

5. Let Y be the boolean random variable from Definition 26. If Y = 0, Challenger
C aborts (Adversary A wins).

6. Adversary A outputs a guess b′ ∈ {0, 1} of which permutation {σ0, σ1} Chal-
lenger C chose.

We say that the Adversary wins the above challenge if its output is correct.

The main result for Challenge Game 2 (which is the second implication in (12)) is:

Lemma 29. The probability that an (unbounded) Adversary A wins Challenge
Game 2 is bounded by: Pr[A wins Challenge Game 2] ≤ 1

2 + 1
2λs

.
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