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Abstract. A classic result in the theory of interactive proofs shows that
a special-sound Σ-protocol is automatically a proof of knowledge. This
result is very useful to have, since the latter property is typically tricky
to prove from scratch, while the former is often easy to argue— if it is
satisfied. While classic Σ-protocols often are special-sound, this is unfor-
tunately not the case for many recently proposed, highly efficient inter-
active proofs, at least not in this strict sense. Motivated by this, the
original result was recently generalized to k-special-sound Σ-protocols
(for arbitrary, polynomially bounded k), and to multi-round versions
thereof. This generalization is sufficient to analyze (e.g.) Bulletproofs-
like protocols, but is still insufficient for many other examples.

In this work, we push the relaxation of the special soundness prop-
erty to the extreme, by allowing an arbitrary access structure Γ to specify
for which subsets of challenges it is possible to compute a witness, when
given correct answers to these challenges (for a fixed first message). Con-
cretely, for any access structure Γ , we identify parameters tΓ and κΓ ,
and we show that any Γ -special-sound Σ-protocol is a proof of knowl-
edge with knowledge error κΓ if tΓ is polynomially bounded. Similarly
for multi-round protocols.

We apply our general result to a couple of simple but important exam-
ple protocols, where we obtain a tight knowledge error as an immediate
corollary. Beyond these simple examples, we analyze the FRI protocol.
Here, showing the general special soundness notion is non-trivial, but
can be done (for a certain range of parameters) by recycling some of
the techniques used to argue ordinary soundness of the protocol (as an
IOP). Again as a corollary, we then derive that the FRI protocol, as an
interactive proof by using a Merkle-tree commitment, has a knowledge
extractor with almost optimal knowledge error, with the caveat that the
extractor requires (expected) quasi-polynomial time.

Finally, building up on the technique for the parallel repetition of k-
special-sound Σ-protocols, we show the same strong parallel repetition
result for Γ -special-sound Σ-protocol and its multi-round variant.
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1 Introduction

Background. A key feature of an interactive proof is soundness, which requires
that the verifier will not accept a false statement, i.e., an instance x that is not
in the considered language, except with bounded probability. In many situa-
tions however, a stronger notion of soundness is needed: knowledge soundness.
Informally, knowledge soundness requires the prover to know a witness w that
certifies that x is a true statement, in order for the verifier to accept (except
with bounded probability). More formally, this is captured by the existence of
an efficient extractor, which has (rewindable) oracle access to any, possibly dis-
honest, prover, and which outputs a witness w for the considered statement x
with a probability that is tightly related to the probability of the prover making
the verifier accept.

Since their introduction, interactive proofs that satisfy knowledge soundness,
typically referred to proofs of knowledge then, have found a myriad of applica-
tions. However, showing that an interactive proof satisfies knowledge soundness
is typically non-trivial — often significantly more involved than showing ordi-
nary soundness. By default, it involves designing the extractor, and proving that
it “does the job.” We got spoiled in the past, where most of the considered
interactive proofs were Σ-protocols, i.e., public-coin 3-round interactive proofs,
and had the additional property of being special-sound. Indeed, this made life
rather easy since special-soundness is a property that is usually quite easy to
prove, and that implies ordinary and knowledge soundness via a general clas-
sical result. Thus, knowledge soundness was often obtained (almost) for free.
However, this has changed in recent years, where the focus has shifted towards
finding highly efficient interactive proofs (where efficiency is typically measured
via the communication complexity, verification time, etc.); many of these highly
efficient solutions are not special-sound, and thus require a knowledge-soundness
proof from scratch.

Given this situation, it would be desirable to have stronger versions of the
generic “special-soundness ⇒ knowledge soundness” result that applies to a
weaker notion of special-soundness, which then hopefully is satisfied by these
new cutting-edge interactive proofs. One step in this direction was recently made
in [2,3], where the above implication was extended to k-special-sound interac-
tive proofs, and, even more generally, to (k1, . . . , kμ)-special-sound multi-round
public-coin interactive proofs, for arbitrary positive integer parameters, subject
to being suitably bounded from above (e.g., k ≤ poly(|x|)). Rather naturally,
k-special-soundness means that from accepting responses to k pairwise distinct
challenges for one fixed message, a witness can be efficiently computed (so that
2-special-soundness coincides with the classical special-soundness property); for
the multi-round version, a suitable tree of transcripts is needed for computing a
witness. This weaker notion of special-soundness is in particular sufficient to ana-
lyze Bulletproofs-like protocols, and so we directly obtain knowledge soundness
for these protocols.

However, this weaker notion still falls short of capturing many of the recent
highly-efficient interactive proofs. For instance, a commonly used amortization
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technique, where the prover proves a random linear combination of n statements
(instead of proving all the statements individually), requires correct responses for
n linearly independent challenge vectors in order to compute a witness. Another
example comes from the design principle to first construct a highly efficient
probabilistically checkable proof (PCP) or interactive oracle proof (IOP), and
then to compile it into a standard (public-coin) interactive proof in the natural
way by means of a Merkle-tree commitment [11–13]. Also here, one does not
obtain a special-sound protocol in the above generalized sense (or then only for
a too large parameter); instead, one requires challenges that correspond to sets
whose union covers all (or sufficiently many of) the leaves of the Merkle tree, in
order to obtain a witness.

Our Technical Results. In this paper, we push the weakening of the
special-soundness property to the extreme. For Σ-protocols, in the spirit of ordi-
nary or k-special-soundness, the notion of special-soundness that we consider
in this work requires that a witness can be efficiently computed from accepting
responses to sufficiently many pairwise distinct challenges, but now “sufficiently
many” is captured by an arbitrary monotone (access) structure Γ , i.e., an arbi-
trary monotone set of subsets of the challenge set. This gives rise to the notion
of Γ -special-soundness, which coincides with k-special-soundness in the special
case where Γ is the threshold access structure with threshold k. This naturally
extends to multi-round public-coin interactive proofs, leading to the notion of
(Γ1, . . . , Γμ)-special-soundness. Similar notions were considered in [9,10] in the
setting of commit-and-open Σ-protocols, and in some more constrained form,
where the monotone structures are replaced by matroids, in [14,15].

We cannot expect for every Γ that a Γ -special-sound protocol is a proof of
knowledge. Instead, we identify parameters tΓ and κΓ , determined by the struc-
ture Γ , and for any Γ -special-sound Σ-protocol we prove existence of an extrac-
tor that has an knowledge error κΓ and an expected running time that scales
with tΓ . Thus, as long as tΓ ≤ poly(|x|), Γ -special-soundness implies knowledge
soundness. Similarly for (Γ1, . . . , Γμ)-special-sound multi-round protocols.

The construction of our extractor for Γ -special-sound protocols (and its
multi-round generalization) is inspired by the extractor construction from [3]. As
a nice consequence, we can recycle the line of reasoning from [3] to prove strong
parallel repetition and extend it to our general notion of special-soundness, show-
ing that also here the knowledge error of a parallel repetition decreases expo-
nentially with the number of repetitions. For this result, we refer to the full
version [1].

Applications. Our general technique gives immediate, tight results for
simple but important example protocols. For example, applied to the above
mentioned amortization technique of proving a random linear combination, we
directly obtain knowledge extraction with a knowledge error that matches the
trivial cheating probability. Similarly, applied to the natural interactive proof for
a Merkle commitment, where the prover is challenged to open a random subset
(of a certain size), we obtain a knowledge error that matches the probability of
one faulty node not being opened.
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In order to demonstrate the usefulness of our result beyond the above simple
examples, we analyze the (interactive) FRI protocol [5].1 We prove that for a
certain range of parameters, when instantiated with a Merkle tree commitment
using a collision resistant hash function (or with any non-interactive, computa-
tionally binding vector commitment scheme with local openings), the protocol
admits a knowledge extractor with knowledge error essentially matching the triv-
ial cheating probability with the following caveat: the knowledge extractor runs
only in (expected) quasi-polynomial time. (At least, this is true if the protocol is
run for logarithmically many rounds, as is typically done. For a natural constant-
round variant, which requires more total communication, we can obtain nearly
optimal knowledge soundness, i.e., here the knowledge extractor runs in expected
polynomial time.) In more detail, for any proximity parameter δ up to δ < 1−ρ

4 ,
where ρ is the relative rate of the considered code, we establish the existence
a knowledge extractor running in expected time NO(log N) which, when given
oracle access to a (potentially dishonest) prover P∗, succeeds with probability
at least ε(P∗)− ((1− δ)t +O(N/|F|)), where N is the length of the code, t is the
number of repetitions of a certain verification step, and ε(P∗) is the probability
P∗ convinces the verifier to accept.2 For context, the trivial cheating proba-
bility for the protocol is max{(1 − δ)t, 1/|F|}. In contrast to the above simple
examples, arguing that the FRI protocol is (Γ1, . . . , Γμ)-special-soundness is not
trivial; however, technical results from [5] can be recycled in order to show this,
and then the existence of the knowledge extractor follows immediately from our
generic result. While proving the existence of a quasi-polynomial time extractor
does not suffice for establishing the standard notion of knowledge soundness, we
believe that it still offers a nontrivial guarantee with the potential for practical
relevance.

A final example, which we would like to briefly discuss, is parallel repetition.
This example shows that our generic technique does not always work. For sim-
plicity, consider a k-special-sound Σ-protocol with k > 2 (but the discussion also
applies to multi-round protocols, and to our generalized notion of special sound-
ness). Then, its t-fold parallel repetition is not k-special-sound anymore (unless
k = 2). One can argue that it is

(
(k−1)t+1

)
-special-sound — but this parameter

is exponential in t, and thus one cannot directly conclude knowledge soundness.
On the other hand, equipped with our generalized notion, one can observe that
the parallel repetition is Γ -special-sound for Γ being the structure that accepts
a list of challenge vectors, each vector of length t, if there is one position where
the challenge vectors feature at least k different values. Unfortunately, also here,

1 We point out that, when considering the FRI protocol for an actual hash function
(rather than the random oracle), ordinary soundness is meaningless: the existence of
an opening of a Merkle commitment with a certain (not too obscure) property holds
trivially. Thus, it is crucial to argue knowledge soundness in this case.

2 For the constant-round variant, we obtain genuine knowledge-soundness (1 − δ)t +
O(N/|F|), that is here the knowledge extractor’s expected running time is NO(1).
We also point out that a simple argument can be used to show knowledge soundness
(1− 2μδ)t + O(N/|F|), where μ is the number of rounds; however, this result is only
meaningful for fairly extreme parameters.
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the crucial parameter tΓ turns out to be exponential for this structure Γ , and
so our generic result does not imply knowledge soundness. Fortunately, for this
particular and important example, the parallel repetition result from [3] applies
in case of k-special-sound protocols (and its multi-round generalization), and
our extension (see the full version [1]) of the parallel repetition applies in case of
arbitrary (Γ1, . . . , Γμ)-special-sound protocols. Thus, after all, we can still argue
(optimal) knowledge soundness in this case.

In conclusion, we expect that with our generic result for (Γ1, . . . , Γμ)-special-
sound protocols (which requires control over certain parameters to be applica-
ble), and with our general parallel repetition result, our work offers powerful tools
for proving knowledge soundness of many sophisticated proofs of knowledge.

2 Preliminaries

We write N0 = N∪{0} for the set of nonnegative integers. Further, for any q ∈ Z,
Zq = Z/qZ denotes the ring of integers modulo q.

2.1 Interactive Proofs

Let us now introduce some standard terminology and definitions with respect to
interactive proofs. We follow standard conventions as presented in [4].

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation, containing statement-witness
pairs (x;w). We assume all relations to be NP-relations, i.e., verifying that
(x;w) ∈ R takes time polynomial in |x|. An interactive proof for a relation
R aims to allow a prover P to convince a verifier V that a public statement x
admits a (secret) witness w, i.e., (x;w) ∈ R, or even that the knows a witness w
for x.

An interactive proof with three communication rounds, where we may assume
the prover to send the first and final message, is called a Σ-protocol. Further, an
interactive proof is said to be public-coin if the verifier publishes all its random
coins. In this case, we may assume all the verifier’s messages to be sampled
uniformly at random from finite (challenge) sets.

An interactive proof is said to be complete if for any statement witness pair
(x;w) an honest execution results in an accepting transcript (with high proba-
bility). It is sound if a dishonest prover cannot convince an honest verifier on
public inputs x that do not admit a witness w, i.e., on false statements x. More
precisely, (P,V) is sound if V rejects false statements x with high probability.
The stronger notion of knowledge soundness requires that (potentially dishon-
est) provers that succeed in convincing the verifier with large enough probability
must actually “know” a witness w. We will mainly be interested in analyzing the
knowledge soundness of interactive proofs. For this reason, we formally define
this property below.

Definition 1 (Knowledge Soundness). An interactive proof (P,V) for rela-
tion R is knowledge sound with knowledge error κ : N → [0, 1] if there exists a
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positive polynomial q and an algorithm E, called a knowledge extractor, with the
following properties. Given input x and black-box oracle access to a (potentially
dishonest) prover P∗, the extractor E runs in an expected number of steps that is
polynomial in |x| (counting queries to P∗ as a single step) and outputs a witness
w ∈ R(x) with probability

Pr
(
(x; EP∗

(x)) ∈ R
)

≥ ε(P∗, x) − κ(|x|)
q(|x|) ,

where ε(P∗, x) := Pr
(
(P∗,V)(x) = accept

)
is the success probability of P∗ on

public input x.

Remark 1 (Interactive Arguments). In some cases, soundness and knowledge
soundness only hold with respect to computationally bounded provers, i.e.,
unbounded provers can falsely convince a verifier. Computationally (knowledge)
sound protocols are referred to as interactive arguments. Proving soundness of
interactive arguments can be significantly more complicated than proving sound-
ness of interactive proofs. However, in the context of knowledge soundness, an
interactive argument for relation R can oftentimes be cast as an interactive proof
for a modified relation

R′ = {(x;w) : (x;w) ∈ R or w solves some computational problem} .

Hence, in this case the knowledge extractor will either output a witness w with
respect to the original relation w, or it will output the solution to some compu-
tational problem, e.g., a discrete logarithm relation. In fact, our analysis of the
FRI protocol in Sect. 7 exemplifies this general principle. For this reason, knowl-
edge soundness of interactive arguments can typically be analyzed via knowledge
extractors that are originally defined for interactive proofs. Therefore, we will
focus on the analyzes of interactive proofs.

Proving knowledge soundness of Σ-protocols directly is a nontrivial task, as it
requires the construction of an efficient knowledge extractor. It is typically much
easier to prove a related threshold special-soundness property, which states that
a witness can be extracted from a sufficiently large set of colliding and accepting
transcripts.

Definition 2 (k-out-of-N Special-Soundness). Let k,N ∈ N. A 3-round
public-coin interactive proof Π = (P,V) for relation R, with challenge set of
cardinality N ≥ k, is k-out-of-N special-sound if there exists an algorithm that,
on input a statement x and k accepting transcripts (a, c1, z1), . . . (a, ck, zk) with
common first message a and pairwise distinct challenges c1, . . . , ck, runs in poly-
nomial time and outputs a witness w such that (x;w) ∈ R. We also say Π is
k-special-sound and, if k = 2, it is simply said to be special-sound.

It is known that k-out-of-N special-soundness implies knowledge sound-
ness with knowledge error (k − 1)/N . Recently, the multi-round generalization
(k1, . . . , kμ)-out-of-(N1, . . . , Nμ) special-soundness has become relevant. It is now
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known that also this generalization tightly implies knowledge soundness [2]. For
a formal definition, we refer either to [2] or to Sect. 6 where we generalize this
(multi-round) notion beyond the threshold setting.

2.2 Geometric Distribution

This work adapts the extractor of [3]. For this reason, we also need the following
preliminaries on the geometric distribution from their work.

A random variable B with two possible outcomes, denoted 0 (failure) and
1 (success), is said to follow a Bernoulli distribution with parameter p if p =
Pr(B = 1). Sampling from a Bernoulli distribution is also referred to as running
a Bernoulli trial. The probability distribution of the number X of independent
and identical Bernoulli trials needed to obtain a success is called the geometric
distribution with parameter p = Pr(X = 1). In this case Pr(X = k) = (1 −
p)k−1p for all k ∈ N and we write X ∼ Geo(p). For two independent geometric
distributions we have the following lemma.

Lemma 1. Let X ∼ Geo(p) and Y ∼ Geo(q) be independently distributed.
Then,

Pr(X ≤ Y ) =
p

p + q − pq
≥ p

p + q
.

3 A Generalized Notion of Special-Soundness
for Σ-Protocols

In this section, we define a generalized notion of special-soundness. To this end,
we first recall the definition of monotone structures.

Definition 3 (Monotone Structure). Let C be a nonempty finite set and let
Γ ⊆ 2C be a family of subsets of C. Then, Γ or (Γ, C) is said to be a monotone
structure if it is closed under taking supersets, i.e., S ∈ Γ and S ⊆ T ⊆ C
implies T ∈ Γ .

In some textbooks monotone structures Γ do not contain the empty set ∅ by
definition, which is equivalent to Γ �= 2C , and they are required to be nonempty,
which is equivalent to C ∈ Γ . For convenience, we also consider Γ = ∅ and
Γ = 2C to be monotone structures. Then, for any D ⊆ C, the restriction

Γ |D = {S ⊆ D : S ∈ Γ} ⊆ 2D

defines a monotone structure (Γ |D,D).

Definition 4 (Minimal Set). Let (Γ, C) be a monotone structure. A set S ∈ Γ
is minimal if none of its proper subsets are in Γ , i.e., for all T � S it holds that
T /∈ Γ . Further, M(Γ ) ⊆ Γ denotes the set of minimal elements of Γ .
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Definition 5 (Distance to a Monotone Structure). For a nonempty mon-
otone structure (Γ, C), we define the following distance function:

dΓ : 2C → N0 , S �→ min
T∈Γ

|T \ S| .

Equivalently,
dΓ : 2C → N0 , S �→ min

T⊆C
{|T | : S ∪ T ∈ Γ} .

If Γ = ∅, we define dΓ to be identically equal to ∞.

The value dΓ (S) ∈ N0 equals the minimum number of elements that have to
be added to the set S to obtain an element of Γ . In particular, dΓ (S) = 0 if and
only if S ∈ Γ . Hence, it shows how close S is to the monotone structure Γ .

The key observation is now that typical knowledge extractors for interactive
proofs proceed by extracting some set of accepting transcripts from a dishonest
prover attacking the interactive proof. Subsequently, the knowledge extractor
computes a witness from this set of accepting transcripts. Clearly, the set of
sets of accepting transcripts from which a witness can be computed is closed
under taking supersets, i.e., it is a monotone structure. Therefore, the following
special-soundness notion for 3-round Σ-protocols follows naturally.

Definition 6 (Γ -out-of-C Special-Soundness). Let (Γ, C) be a monotone
structure. A 3-round public-coin interactive proof (P,V) for relation R, with
challenge set C, is Γ -out-of-C special-sound if there exists an algorithm that, on
input a statement x and a set of accepting transcripts (a, c1, z1), . . . , (a, ck, zk)
with common first message a and such that {c1, . . . , ck} ∈ Γ , runs in polynomial
time and outputs a witness w ∈ R(x). We also say (P,V) is Γ -special-sound.

The above definition is a generalization of k-out-of-N special-soundness,
where the extractability is guaranteed when given k colliding accepting tran-
scripts with common first message a and pairwise distinct challenges ci that are
elements of a challenge set with cardinality N . Hence, when Γ contains all sets
of cardinality at least k, i.e., it is a threshold monotone structure, Γ -out-of-C
special-soundness reduces to k-out-of-N special-soundness, where N = |C|.

Remark 2. Formally, the monotone structure (Γ, C) of Definition 6 may depend
on the size |x| of the public input x, i.e., it should actually be replaced by an
ensemble (Γλ, Cλ) of monotone structures indexed by the size λ ∈ N of the
public input of (P,V). For simplicity, we will abuse notation by ignoring this
dependency and simply writing (Γ, C).

4 Knowledge Extraction for Γ -out-of-C Special-Sound
Σ-Protocols

Our goal is to prove that, for certain monotone structures (Γ, C), Γ -out-of-C
special-soundness (tightly) implies knowledge soundness, and to determine the
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corresponding knowledge error. In order to prove this, we construct a knowledge
extractor that, by querying a prover P∗ attacking the interactive proof, obtains
a set of accepting transcripts with common first message and for which the
challenges form a set in Γ . Without loss of generality we may assume P∗ to be
deterministic,3 i.e., P∗ always outputs the same first message a. Hence, P∗ can
be viewed as a (deterministic) function

P∗ : C → {0, 1}∗ c �→ y = (a, c, z) ,

that on input a challenge c ∈ C outputs a protocol transcript y = (a, c, z).
Let A ⊆ C be the set of challenges for which P∗ succeeds, i.e., A = {c ∈ C :

V (P∗(c)) = 1}. Then the goal of the extractor is to find a set B ∈ Γ |A. The
difficulty is that the extractor is only given oracle access to P∗ and therefore does
not know the set A. For this reason, extractors typically proceed recursively as
follows: if at some point the extractor has found some S ⊆ A with S /∈ Γ , it will
try new challenges c ∈ C until P∗ succeeds. The hope is then that S ∪ {c} ⊆ A
is “closer” to Γ |A than S. More precisely, the extractor tries to find a c ∈ A ⊆ C
such that dΓ |A(S ∪ {c}) < dΓ |A(S). Note that not all challenges c shorten the
distance to Γ |A, e.g., dΓ |A(S ∪ {c}) = dΓ |A(S) for all c ∈ S. Since the extractor
does not know the set A, it cannot evaluate this distance function.

However, for any S, the challenge set C can be partitioned into a partition
of “useless” challenges and a partition of “potentially useful” challenges. The
useless challenges are the c ∈ C such that dΓ |A(S ∪ {c}) = dΓ |A(S) for all A ⊆ C
containing S, i.e., for all A useless challenges will not shorten the distance to
Γ |A. For instance, all c ∈ S are useless challenges for any S and any Γ . However,
in some settings the set of useless challenges is larger than S, and in general this
observation is crucial for the extractor to be efficient. In fact, this is the case
for all interactive proofs that warrant a generalization of the existing threshold
special-soundness notion. All challenges c ∈ C that are not useless are potentially
useful, i.e., for these challenges there exist an A ⊆ C containing S such that
dΓ |A(S ∪ {c}) < dΓ |A(S). The set of useful challenges is denoted UΓ (S), where
the function UΓ is formally defined below.

Definition 7 (Useful Elements). For a monotone structure (Γ, C), we define
the following function:

UΓ : 2C → 2C , S �→
{
c ∈ C \ S : ∃A ∈ Γ s.t. S ⊂ A ∧ A \ {c} /∈ Γ

}
.

Note that Γ = ∅ implies UΓ (S) = ∅ for all S ⊆ C. Moreover, if Γ is nonempty,
UΓ (S) = ∅ if and only if S ∈ Γ .

The following lemma shows that for any c ∈ UΓ (S), there exists an A ∈ Γ
containing S ∪ {c} such that

dΓ |A(S ∪ {c}) < dΓ |A(S) ,

i.e., the challenges c ∈ UΓ (S) are indeed potentially useful to the extractor. Even
more so, it is essential that the extractor considers all challenges c ∈ UΓ (S). For
3 See [3] for a proof of this claim.
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every c ∈ UΓ (S), it might namely be the case that the A ∈ Γ that “certifies” c,
i.e., the A such that S ⊂ A and A \ {c} /∈ Γ , corresponds to the challenges for
which the prover P∗ succeeds. Since A \ {c} /∈ Γ , the extractor can only succeed
if it considers the challenge c ∈ UΓ (S) at some point.

The same lemma shows that challenges c /∈ UΓ (S) will never decrease the
distance, i.e., they are indeed useless to the extractor. More precisely, if c /∈
UΓ (S), for every A ∈ Γ containing S ∪ {c} it holds that

dΓ |A(S ∪ {c}) = dΓ |A(S) .

Lemma 2. Let (Γ, C) be a monotone structure and S ⊂ C. Then c ∈ UΓ (S) if
and only if there exists an A ∈ Γ containing S ∪ {c} such that

dΓ |A(S ∪ {c}) < dΓ |A(S) .

For the proof of Lemma 2, we refer the to the full version [1].
We also derive the following lemma, which shows that even if all useless

challenges c ∈ C \ UΓ (S) are added to the set S ∈ 2C \ Γ , the resulting subset is
still not in Γ .

Lemma 3. Let (Γ, C) be a monotone structure and S ∈ 2C \ Γ . Then,
(C \ UΓ (S)) ∪ S /∈ Γ .

For the proof of Lemma 3, we refer the to the full version [1].
The knowledge extractor will be restricted to sampling challenges that are

potentially useful. The value tΓ defines the maximum number of accepting tran-
scripts that the extractor has to find, before it succeeds and obtains the accepting
transcripts for a set S ∈ Γ . The efficiency of our knowledge extractor will depend
on tΓ . A formal definition is given below. Further, in Sect. 5, we describe the
monotone structure and corresponding k-values for three (classes of) interactive
proofs and explain their relevance.

Definition 8 (t-value). Let (Γ, C) be a monotone structure and S ⊆ C. Then

tΓ (S) := max

{

t ∈ N0 :
∃c1, . . . , ct ∈ C s.t.

ci ∈ UΓ

(
S ∪ {c1, . . . , ci−1}

)
∀i

}

.

Further,
tΓ := tΓ (∅) .

It is easily seen that tΓ (S) = 0 if and only if S ∈ Γ or Γ = ∅. Further, the
following lemma shows that adding an element c ∈ UΓ (S) to S decreases the
corresponding k-value. This lemma plays a pivotal role in our recursive extraction
algorithm.

Lemma 4. Let (Γ, C) be a nonempty monotone structure and let S ⊆ C such
that S /∈ Γ . Then, for all c ∈ UΓ (S),

tΓ (S ∪ {c}) < tΓ (S) .
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For the proof of Lemma 4, we refer the to the full version [1].
As in [3], we describe our technical results in a more abstract language.

This will later allow us to easily derive composition results and handle more
complicated scenarios, such as multi-round interactive proofs and parallel com-
positions. To this end, let us consider a finite set C, a probabilistic algorithm
A : C → {0, 1}∗ and a verification function V : C × {0, 1}∗ → {0, 1}. An output
y ← A(c) of the algorithm A on input c ∈ C is said to be accepting or correct if
V (c, y) = 1. The success probability of A is denoted as

ε(A) := Pr
(
V

(
C,A(C)

)
= 1

)
,

where C is uniformly random in C. The obvious instantiation of A is given by a
deterministic dishonest prover P∗ attacking an interactive proof Π on input x.
Note that even though it is sufficient to consider deterministic provers P∗, we
allow the algorithm A to be probabilistic. This generalization is essential when
considering multiround interactive proofs and parallel repetitions [3].

Now let Γ ⊆ 2C be a nonempty monotone structure. Then, for any S ⊂ C
with UΓ (S) �= ∅, we define

εΓ (A, S) := Pr
(
V (C,A(C)) = 1 | C ∈ UΓ (S)

)
.

Typically, UΓ (∅) = C and thus ε(A) = εΓ (A, ∅), i.e., all challenges c ∈ C are
potentially useful. However, this is not necessarily the case.

Given oracle access to A, the goal of the extractor is to find correct outputs
y1, . . . , yk for challenges c1, . . . , ck ∈ C such that {c1, . . . , ck} ∈ Γ , i.e., such that
V (ci, yi) = 1 for all i. If A corresponds to a dishonest prover attacking a Γ -out-
of-C special-sound interactive proof on some input x, a witness w for statement x
can be efficiently computed from the outputs y1, . . . , yk.

Let us further define the following quality measure for the algorithm A:

δΓ (A) := min
S /∈Γ

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
. (1)

The value δΓ (A) defines a “punctured” success probability of A, i.e., it equals the
success probability of A when the challenge c is sampled uniformly at random
from some set C \ S ⊇ UΓ (S) such that S is not in the monotone structure.
We will show that the value δΓ (A) measures how well we can extract from the
algorithm A. The value δΓ (A) is a generalization of the measure

δk(A) := min
S⊆C:|S|=k−1

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
,

defined in [3].4 However, when restricting to threshold monotone structures,
there is a syntactic difference between the definitions of δk(A) and δΓ (A). To
see this, let Tk denote the monotone structure containing all subsets of C with
cardinality at least k. Then, in the definition of δk(A) the minimum is over all

4 In the original version of [3], the restriction was |S| < k. Here, when considering
3-round protocols, this makes no difference, but it does for the multi-round case.
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sets of cardinality exactly k−1, whereas the corresponding δTk
(A) is a minimum

over all sets of size at most k − 1. In the threshold case this makes no difference:
it is easily seen that there always exists a (maximal) set of size k − 1 that
minimizes δTk

(A) and so indeed δTk
(A) = δk(A). A similar result does not hold

for arbitrary access structures, i.e., in general the minimum may not be attained
by a maximal set S /∈ Γ . This issue will reoccur in a more substantial way when
addressing multi-round protocols.

For any set T ∈ 2C \ Γ , we also define

δΓ (A, T ) := min
S:S∪T /∈Γ

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
.

Since S ∪ T /∈ Γ implies S ∪ T ′ /∈ Γ for all T ′ ⊆ T , it follows that

δΓ (A, T ′) ≤ δΓ (A, T ), ∀T ′ ⊆ T . (2)

Further, by Lemma 3, it follows that
(
C \ UΓ (T )

)
∪ T /∈ Γ for all T /∈ Γ .

Hence,
δΓ (A, T ) = min

S:S∪T /∈Γ
Pr

(
V (C,A(C)) = 1 | C /∈ S

)

≤ Pr
(
V (C,A(C)) = 1 | C /∈ C \ UΓ (T )

)

= Pr
(
V (C,A(C)) = 1 | C ∈ UΓ (T )

)

= εΓ (A, T ) .

(3)

We are now ready to define and analyze our extraction algorithm for Γ -out-
of-C special-sound interactive Σ-protocols. The extractor is defined in Fig. 1 and
its properties are summarized in the following lemma.

Lemma 5 (Extraction Algorithm - Σ-protocols). Let (Γ, C) be a
nonempty monotone structure and let V : C ×{0, 1}∗ → {0, 1}. Then there exists
an oracle algorithm EΓ with the following properties: The algorithm EA

Γ , given
oracle access to a (probabilistic) algorithm A : C → {0, 1}∗, requires an expected
number of at most 2tΓ − 1 queries to A and, with probability at least δΓ (A)/tΓ ,
it outputs pairs (c1, y1), (c2, y2), . . . , (ck, yk) ∈ C × {0, 1}∗ with V (ci, yi) = 1 for
all i and {c1, . . . , ck} ∈ Γ .

Proof. The extractor EA
Γ (S) is formally defined in Fig. 1. It takes as input a

subset S ∈ 2C \ Γ . The input S represents the set of accepting challenges that
the extractor has already found, i.e., the goal of EA

Γ (S) is to find pairs (ci, yi)
such that V (ci, yi) = 1 and {c1, . . . , ck} ∪ S ∈ Γ . Further, we define

EA
Γ := EA

Γ (∅) .

First note that, since Γ �= ∅ and thus UΓ (S) �= ∅ for all S /∈ Γ , the extractor
is well-defined. Let us now analyze the success probability and the expected
number of A-queries of the extractor.
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Parameters: a nonempty monotone structure (Γ, and an S 2 Γ .
Oracle access to: Algorithm : 0, 1 and verification function
V : 0, 1 0, 1 .

– Sample c1 UΓ (S) uniformly at random and evaluate y1 (c1).
– If V (c1, y1) = 0, abort and output .
– If V (c1, y1) = 1 and c1 S Γ , output (c1, y1) 0, 1 .
– Else, set coin = 0 and repeat

run Γ (S c1 );
set coin V d, (d) for d UΓ (S) sampled uniformly at random;

until either Γ (S c1 ) outputs pairs (c2, y2), . . . , (ck, yk) (for some k) with
V (ci, yi) = 1 for all i and S c1, c2, . . . , ck Γ or until coin = 1.

Output: In the former case, output pairs (c1, y1), . . . , (ck, yk) 0, 1 with
V (ci, yi) = 1 for all i and c1, . . . , ck S Γ . In the latter case, output .

Fig. 1. Recursive Expected Polynomial Time Extractor EA
Γ (S).

Success Probability. By induction over tΓ (S), we will prove that EA
Γ (S)

succeeds with probability at least

δΓ (A, S)
tΓ (S)

.

We first consider the base case. To this end, let S ⊆ C with tΓ (S) = 1. Then,
by Lemma 4, for all c1 ∈ UΓ (S), it holds that tΓ (S ∪ {c1}) = 0 and thus
S ∪ {c1} ∈ Γ . Therefore, the extractor succeeds if and only if V

(
c1,A(c1)

)
= 1

for the c1 sampled from UΓ (S). Hence, the success probability of the extractor
equals

εΓ (A, S) ≥ δΓ (A, S) ,

where the inequality follows from Eq. 3. This proves the bound on the success
probability for the base case tΓ (S) = 1.

Let us now consider an arbitrary subset S ⊆ C with tΓ (S) > 1 and assume
that the claimed bound holds for all subsets T ⊆ C with tΓ (T ) < tΓ (S).

In the first step, the extractor succeeds with probability εΓ (A, S) in finding
a c1 ∈ UΓ (S) and y1 ← A(c1) with V (c1, y1) = 1. If {c1} ∪ S ∈ Γ , the extrac-
tor has successfully completed its task. If not, the extractor starts running two
geometric experiments until one of them finishes. In the first geometric exper-
iment the extractor repeatedly runs EA

Γ (S ∪ {c1}). By Lemma 4, it holds that
tΓ (S ∪ {c1}) < tΓ (S). Hence, by the induction hypothesis, EA

Γ (S∪{c1}) succeeds
with probability

p ≥ δΓ (A, S ∪ {c1})
tΓ (S ∪ {c1})

≥ δΓ (A, S)
tΓ (S) − 1

,

where the second inequality follows from Eq. 2 and Lemma 4. In the second geo-
metric experiment, the extractor tosses a coin that returns heads with probability
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q := εΓ (A, S) .

The second step of the extractor succeeds if the second geometric experiment
does not finish before the first, and so by Lemma 1 this probability is lower
bounded as follows

Pr
(
Geo(p) ≤ Geo(q)

)
≥ p

p + q
≥

δΓ (A,S)
tΓ (S)−1

δΓ (A,S)
tΓ (S)−1 + εΓ (A, S)

≥
δΓ (A,S)
tΓ (S)−1

εΓ (A,S)
tΓ (S)−1 + εΓ (A, S)

=
δΓ (A, S)

tΓ (S) · εΓ (A, S)
,

where the second inequality follows from the monotonicity of the function x �→
x

x+q and the third inequality follows from the fact that δΓ (A, S) ≤ εΓ (A, S)
(Eq. 3).

Since the first step of the extractor succeeds with probability εΓ (A, S), it
follows that EA

Γ (S) succeeds with probability at least δΓ (A, S)/tΓ (S) for all
S ∈ 2C \ Γ , which proves the claimed bound. In particular, EA

Γ succeeds with
probability at least δΓ (A)/tΓ .

Expected Number of A-Queries. By induction over tΓ (S), we will prove
that the expected number of A-queries QΓ (S) made by EA

Γ (S) is upper bounded
as follows:

QΓ (S) ≤ 2tΓ (S) − 1 .

We first consider the base case. To this end, let S ⊆ C with tΓ (S) = 1. In this
case, {c1}∪S ∈ Γ for all c1 ∈ UΓ (S). Hence, EA

Γ (S) either succeeds or fails after
making exactly one A-query, i.e., QΓ (S) = 1 = 2tΓ (S) − 1, which proves the
base case.

Let us now consider an arbitrary subset S ⊆ C with tΓ (S) > 1 and assume
that QΓ (T ) ≤ 2tΓ (T ) − 1 for all subsets T ⊆ C with tΓ (T ) < tΓ (S).

The extractor EA
Γ (S) first samples c1 ←R UΓ (S) uniformly at random and

evaluates y1 ← A(c1). This requires exactly one A-query. After this step the
extractor aborts with probability 1 − εΓ (A, S). Otherwise, and if {c1} ∪ S /∈ Γ ,
it continues running the two geometric experiments until either one of them
finishes. The second geometric experiment finishes in an expected number of
1/εΓ (A, S) trials and requires exactly one A-query per trial. Hence, the total
expected number of trials for both experiments is at most 1/εΓ (A, S). Further,
since tΓ (S ∪ {c1}) < tΓ (S) (Lemma 4) and by the induction hypotheses, the
expected number of A-queries of the first geometric experiment is at most

QΓ (S ∪ {c1}) ≤ 2tΓ (S ∪ {c1}) − 1 ≤ 2tΓ (S) − 3 ,

per iteration, where the second inequality follows again from Lemma 4. Hence,
every iteration of the repeat loop requires an expected number of at most
2tΓ (S) − 2 A-queries.
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From this it follows that

QΓ (S) ≤ 1 + εΓ (A, S)
2tΓ (S) − 2
εΓ (A, S)

= 2tΓ (S) − 1 ,

for all S ∈ 2C \ Γ . In particular, EA
Γ requires an expected number of at most

2tΓ − 1 A-queries, which completes the proof of the lemma.
��

By basic probability theory, for any S /∈ Γ ,

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
=

Pr
(
V (C,A(C)) = 1 ∧ C /∈ S

)

Pr
(
C /∈ S

)

≥
Pr

(
V (C,A(C)) = 1) − Pr

(
C ∈ S

)

Pr
(
C /∈ S

)

=
ε(A) − Pr

(
C ∈ S

)

1 − Pr
(
C ∈ S

)

=
ε(A) − |S| / |C|

1 − |S| / |C| .

Hence, taking the minimum over all S /∈ Γ shows that

δΓ (A) ≥ ε(A) − κΓ

1 − κΓ
, (4)

where κΓ = maxS /∈Γ |S| / |C|. In Γ -out-of-C special-sound interactive proofs, a
dishonest prover can potentially take any S /∈ Γ and choose the first message so
that it will succeed if the verifier chooses a challenge c ∈ S. Hence, κΓ equals
the trivial cheating strategy for Γ -out-of-C special-sound interactive proofs.

Since the extractor succeeds with probability at least δΓ (A)/tΓ , the following
theorem follows.

Theorem 1. Let (P,V) be a Γ -out-of-C special-sound Σ-protocol such that tΓ is
polynomial in the size |x| of the public input statement x of (P,V) and sampling
from UΓ (S) takes polynomial time (in |x|) for all S with |S| < tΓ . Then (P,V)
is knowledge sound with knowledge error κΓ = maxS /∈Γ |S| / |C|.

5 Examples

In this section, we describe three very simple interactive proofs and their special-
soundness properties. The first example shows that for the special case of k-out-
of-N special-soundness notion, we recover the known results. The second and
third example present techniques that have found numerous applications, but
cannot be analyzed via their threshold special-soundness properties, i.e., these
interactive proofs require an alternative analysis. Our knowledge extractor offers
the means to easily handle these interactive proof as well. Finally, the fourth
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example shows that our generic techniques do not always suffice. In Sect. 7, we
will consider a more complicated protocol and demonstrate how our techniques
enable a knowledge soundness analysis of the multi-round protocol FRI [5].

Example 1 (Threshold Access Structures). Let C be a finite set with cardinal-
ity N , and let Γ be the monotone structure that contains all subsets of C of
cardinality at least k ≤ N . Then a Γ -out-of-C special-sound interactive proof is
also k-out-of-N special-sound. Moreover, UΓ (A) = C \ A for all A /∈ Γ , tΓ = k,
and κΓ = (k − 1)/N . Hence, in the case of k-out-of-N special-soundness, we
recover the results from [3].

Example 2 (Standard Amortization Technique). Let F be a finite field and let Ψ
be an F-linear map. The following amortization technique, known from Σ-
protocol theory, allows a prover to prove knowledge of n Ψ -preimages x1, . . . , xn

of P1, . . . , Pn for essentially the cost of one. The amortization technique is a
2-round protocol that proceeds as follows. First, the verifier samples a challenge
vector c = (c1, . . . , cn) ∈ F

n uniformly at random. Second, upon receiving the
challenge vector c, the prover responds with the element z =

∑n
i=1 cixi. Finally,

the verifier checks that Ψ(z) =
∑n

i=1 ciPi. Hence, instead of sending n preimages
the prover only has to send one preimage.

The n preimages x1, . . . , xn of P1, . . . , Pn can be extracted from accepting
transcripts (c1, z1), . . . , (ck, zk) if the challenge vectors c1, . . . , ck span the vector
space F

n. Hence, the amortization protocol is Γ -out-of-Fn special-sound, where Γ
is the monotone structure that contains all subsets spanning F

n. Further, tΓ = n,
UΓ (A) = F

n \ span(A) for all A /∈ Γ ; and κΓ = 1/ |F|; thus, we obtain optimal
knowledge soundness.

At the same time, the amortization protocol is (|F|n−1+1)-out-of-|F|n special-
sound, i.e., the threshold special-soundness parameter of this protocol is |F|n−1+
1, which is much larger than tΓ = n. In fact, the parameter |F|n−1 + 1 is typically
not polynomially bounded, in which case knowledge soundness can not be derived
from this threshold special-soundness property.

Example 3 (Merkle Tree Commitments). Let us now consider an interactive
proof for proving knowledge of the opening of a Merkle tree commitment P ,
i.e., P is the root of a Merkle tree and the prover claims to know all n leafs. To
verify this claim, the verifier selects a subset S of k (distinct) indices between 1
and n uniformly at random. The prover sends the corresponding leafs together
with their validation paths, which are checked by the verifier.

An opening of the commitment P can be extracted from accepting transcripts
(S1, z1), . . . , (S�, z�) if the subsets Si cover {1, . . . , n}. Hence, this interactive
proof is Γ -out-of-C, where

C = {S ⊆ {1, . . . , n} : |S| = k} and Γ =
{
D ⊆ C :

⋃

S∈D
S = {1, . . . , n}

}
.

Further, tΓ = n − k + 1, UΓ (D) = {A ∈ C : A �⊆
⋃

S∈D S} for all D /∈ Γ , and
κΓ = (n − k)/n; thus, we obtain optimal knowledge soundness.
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The threshold special-soundness parameter of this protocol is
(
n−1

k

)
+ 1 which

is typically much larger than tΓ = n − k + 1. Hence, also in this case our
generalization provides a much more efficient knowledge extractor.

This simple interactive proof is an essential component in many more compli-
cated protocols based on probabilistically checkable proofs (PCPs), interactive
oracle proofs (IOPs) or MPC-in-the-head.

Example 4 (Parallel Repetition). Finally, we consider an example where our
generic technique does not work. To this end, let Πt be the t-fold parallel
composition of a k-out-of-N special-sound interactive proof Π with challenge
set C, i.e., Πt has challenge set Ct. Then, as discussed in the introduction, Πt

is
(
(k − 1)t + 1

)
-out-of-N t special-sound, i.e., its threshold special-soundness

parameter (k − 1)t + 1 grows exponentially in t (if k > 2).
The parallel repetition Πt is also Γ -out-of-Ct special-sound, where Γ contains

all subsets of challenge vectors c ∈ Ct such that there is one position 1 ≤ i ≤ t
where the challenge vectors feature at least k different values. Then, κΓ = (k −
1)t/N t. However, tΓ = (k−1)t+1, i.e., tΓ equals the threshold special-soundness
parameter and grows exponentially in t. Hence, in this particular example, the
correct access structure does not yield an efficient extractor. Fortunately, here
we can apply the parallel repetition result of [3].

6 Knowledge Extraction for Multi-round Interactive
Proofs

Let us now move to the analysis of multi-round interactive proofs (P,V). To this
end, we first generalize the notion of Γ -out-of-C special-soundness to multi-round
interactive proofs. A 2μ+1-round interactive proof is said to be (Γ1, . . . , Γμ)-out-
of-(C1, . . . , Cμ) if there exists an efficient algorithm that can extract a witness
from appropriate trees of transcripts. Before we formally define trees of tran-
scripts, we first define the related trees of challenges.

Definition 9 (Tree of Challenges). Let (Γi, Ci) be monotone structures for
1 ≤ i ≤ μ. A set containing a single challenge vector (c1, . . . , cμ) ∈ C1 ×
· · · × Cμ is also referred to as a (1, . . . , 1)-tree of challenges. Further, for
1 ≤ t ≤ μ, a (1, . . . , 1, Γt, . . . , Γμ)-tree Tt of challenges is the union of several
(1, . . . , 1, Γt+1, . . . , Γμ)-trees, such that

– The first t − 1 coordinates of all c ∈ Tt ⊆ C1 × · · · × Cμ are equal;
– The t-th coordinates of the tree elements form an element in Γt, i.e.,

{c ∈ Ct : ∃(c1, . . . , ct−1, c, ct+1, . . . , cμ) ∈ Tt} ∈ Γt .

Trivially, the verifier’s messages in a transcript of a 2μ + 1-round interactive
proof with challenge sets C1, . . . , Cμ form a (1, . . . , 1)-tree of challenges. Hence,
by adding the prover’s messages we obtain a (1, . . . , 1)-tree of transcripts, and
thus, in the obvious way, we obtain the notion of a tree of transcripts. The
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only additional requirement is that the prover’s messages collide, i.e., they are
uniquely determined by the challenges received before sending the message. In
particular, the first message of every transcript is the same. Note that if the
transcripts are generated by a deterministic prover, this property is guaranteed
to hold.

Definition 10 (Tree of Transcripts). Let (Γi, Ci) be monotone structures for
1 ≤ i ≤ μ. Let (P,V) be a 2μ + 1-round public-coin interactive proof with chal-
lenge sets C1, . . . , Cμ. A (Γ1, . . . , Γμ)-tree of transcripts is a set of protocol tran-
scripts, such that

– The corresponding set of challenge vectors, obtained by ignoring the prover’s
messages, is a (Γ1, . . . , Γμ)-tree of challenges;

– The prover’s messages collide, i.e., if two transcripts (a0, c1, a1, . . . , cμ, aμ)
and (a′

0, c
′
1, a

′
1, . . . , c

′
μ, a′

μ) are both in the tree, and ci = c′
i for all i ≤ j, then

also ai = a′
i for all i ≤ j.

Prior works (e.g., [2,7,8]) considered (k1, . . . , kμ)-trees, where ki ∈ N for all i.
These are special cases of the above defined trees. More precisely, if Γi = {S ⊆
Ci : |S| ≥ ki}, a (k1, . . . , kμ)-tree is the same as a (Γ1, . . . , Γt)-tree.

We are now ready to define a generalized multi-round special-soundness
notion.

Definition 11 ((Γ1, . . . , Γμ)-out-of-(C1, . . . , Cμ) Special-Soundness). Let
(Γi, Ci) be monotone structures for 1 ≤ i ≤ μ. A 2μ + 1-round public-coin inter-
active proof (P,V) for relation R, with challenge sets C1, . . . , Cμ, is (Γ1, . . . , Γμ)-
out-of-(C1, . . . , Cμ) special-sound if there exists a polynomial time algorithm that,
on input a statement x and a (Γ1, . . . , Γμ)-tree of accepting transcripts, outputs
a witness w ∈ R(x). We also say that (P,V) is (Γ1, . . . , Γμ)-special-sound.

Remark 3. The monotone access structure
(
ΓTree(Γ), C1 × · · · × Cμ

)
, where Γ =

(Γ1, . . . , Γμ) and

ΓTree(Γ1, . . . , Γμ) := {S ⊆ C1 × · · · × Cμ : S contains a (Γ1, . . . , Γμ)-tree} ,

allows one to cast a multi-round (Γ1, . . . , Γμ)-out-of-(C1, . . . , Cμ) special-sound
interactive proof as a Γ -out-of-C special-sound interactive proof. Therefore, in
principle, one could immediately apply the results from Sect. 4. However, typi-
cally, this results in an inefficient knowledge extractor. More precisely, the value
tΓTree(Γ), and thus the expected running time of the extractor, grows linearly
in the product of the sizes of the challenge sets C1, . . . , Cμ−1. For this reason,
our multi-round knowledge extractor will proceed recursively over the different
rounds.

Our goal is now to prove that, for appropriate monotone structures,
(Γ1, . . . , Γμ)-out-of-(C1, . . . , Cμ) special-soundness (tightly) implies knowledge
soundness. As before, again borrowing the notation from [3], we present our
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results in a more abstract language. To this end, let A : C1 × · · · × Cμ → {0, 1}∗

be a probabilistic algorithm and

V : C1 × · · · × Cμ × {0, 1}∗ → {0, 1}

a verification function. The success probability of A is denoted as

ε(A) := Pr
(
V

(
C,A(C)

)
= 1

)
,

where C is distributed uniformly at random over C1 × · · · × Cμ. The obvious
instantiation of A is again a deterministic prover P∗ attacking a (Γ1, . . . , Γμ)-
out-of-(C1, . . . , Cμ) special-sound interactive proof.

It turns out that defining the multi-round version of δΓ is somewhat subtle.
In the case of a k-special sound protocol, it is defined in [3] as

δV
k (A) :=

min
S1···Sμ

Pr
(
V (C,A(C)) = 1

∣
∣ C1 �∈ S1, C2 �∈ S2(C1), C3 �∈ S2(C1, C2), . . .

)

where the minimum is over all sets S1 ⊂ 2C1 with |S1| = k1 − 1, all functions
S2 : C1 → 2C2 with |S2(c1)| = k2 − 1 for all c1 ∈ C1, etc.5 Thus, the natural
extension to (Γ1, . . . , Γμ)-special-sound protocols would be to use the very same
expression but minimize over all (maximal) sets S1 ⊂ 2C1 with S1 /∈ Γ1, all
functions S2 : C1 → 2C2 with S2(c1) (maximal and) not in Γ2 for all c1 ∈ C1, etc.

However, writing Γ = (Γ1, Γ2, . . . , Γμ), it turns out that defining δV
Γ in this

way will not lead to the desired results. In essence, the problem lies in the
fact that the condition C2 �∈ S2(C1) may bias the distribution of C1, namely
when S2(c1) has different cardinality for different choices of c1. This issue is
avoided in the threshold case by requiring the Si’s to be maximal sets; here
in the general case, this does not work, since different maximal sets may have
different cardinality.

Because of this reason, we define δV
Γ by the following, harder to comprehend,

expression:

δV
Γ (A) := min

S1···Sμ

∑

c

Pr
(
V

(
C,A(C)

)
= 1 ∧ C = c | C1 /∈ S1,

C2 /∈ S2(c1), . . . , Cμ /∈ Sμ(c1, . . . , cμ)
)
,

(5)

where, as in the above approach, the minimum is over all sets S1 ⊂ 2C1 with
S1 /∈ Γ1, all functions S2 : C1 → 2C2 with S2(c1) /∈ Γ2 for all c1 ∈ C1, etc.

5 In the original version of [3], the restriction was |Si| < ki, i.e., the sets were not
required to be maximal (this makes no difference for μ = 1, but it does for the multi-
round case, where the min is not necessarily attained by maximal sets). However, in
an updated version, this was changed to the above (in essence because of a similar
issue as discussed below).
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Remark 4. Note that, in the special case of 3-round interactive proofs, i.e., if
μ = 1, it holds that

δV
Γ (A) = min

S /∈Γ

∑

c

Pr
(
V

(
C,A(C)

)
= 1 ∧ C = c | C /∈ S

)

= min
S /∈Γ

Pr
(
V

(
C,A(C)

)
= 1 | C /∈ S

)
.

Hence, the multi-round version of δ defined in Eq. 5, is indeed a generalization
of the 3-round version defined in Eq. 1.

Remark 5. Let us consider the multi-round threshold case, i.e., let Tk =
(Tk1 , . . . , Tkμ

) with Tki
the monotone structure containing all subsets of Ci with

cardinality at least ki for all i. Then, although not immediately obvious, it turns
out that δTk

(A) = δk(A) for all A.

By observing that for the non-vanishing terms in the sum, exploiting the
independence of V

(
c,A(c)

)
and C for a fixed c,

Pr
(
V

(
C,A(C)

)
= 1 | C = c, C1 /∈ S1, C2 /∈ S2(c1), · · ·

)

= Pr
(
V

(
c,A(c)

)
= 1 | C = c, C1 /∈ S1, C2 /∈ S2(c1), · · ·

)

= Pr
(
V

(
c,A(c)

)
= 1

)
,

we can re-write the definition as

δV
Γ (A) = min

S1···Sμ

∑

c

Pr
(
V

(
c,A(c)

)
= 1

)
Pr

(
C = c | C1 /∈ S1, C2 /∈ S2(c1), · · ·

)

= min
S1···Sμ

∑

c

Pr
(
V

(
c,A(c)

)
= 1

)
Pr

(
C1 = c1 | C1 /∈ S1

)
· · ·

· · · Pr
(
Cμ = cμ | Cμ /∈ Sμ(c1, . . . , cμ−1)

)
.

This shows that the definition captures the success probability of A when the
challenges are samples as follows (for given sets/functions S1, S2, . . ., over which
the minimum is then taken): c1 is sampled uniformly at random subject to being
outside of S1. Then, c2 is sampled uniformly at random subject to being outside
of S2(c1). And so forth. We repeat, in general this is not the same as sampling
c1, . . . , cμ uniformly at random subject to c1 /∈ S2, c2 /∈ S2(c1), etc., which biases
the choice of c1 towards those for which S2(c1) is small(er), while with the above
sampling there is no bias on c1 (beyond the exclusion from S1). Defining δV

Γ in
this way is crucial to our work. Oftentimes, the verification function V is clear
from context, in which case we simply write δΓ(A) instead of δV

Γ (A).
Any choice of sets/functions S1, . . . , Sμ considered in the minimization in

Eq. 5 defines a subset

X = {(c1, . . . , cμ) ∈ C1 × · · · × Cμ | c1 ∈ S1 ∨ · · · ∨ cμ ∈ Sμ(c1, . . . , cμ−1)}

that does not contain a Γ-tree. Hence, again the success probability is punc-
tured by removing some set X from which we cannot extract and thus, for
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which a dishonest prover may (potentially) be successful. Moreover, every sub-
set of C1 × · · · × Cμ that does not contain a Γ-tree is contained in a set X of
this form. Hence, if a prover has positive success probability outside all such
subsets X, i.e., if δV

Γ (A) > 0, then extraction of a Γ-tree of accepting transcripts
is in principle possible. However, it is far less obvious that extraction can also
be done efficiently. The following lemma shows that, for appropriate monotone
structures (Γi, Ci), an efficient extraction algorithm indeed exists. This is a gen-
eralization of [3, Lemma 4]. Using the notation we introduced here, their proof
almost immediately carries over to this more generic setting. For completeness,
we present the proof below.

Lemma 6 (Multi-round Extraction Algorithm). Let Γ = (Γ1, . . . , Γμ)
and C = C1 × · · · × Cμ be such that (Γi, Ci) are nonempty monotone structures
for all i. Further, let T :=

∏μ
i=1 tΓi

and V : C × {0, 1}∗ → {0, 1}. Then, there
exists an algorithm EA so that, given oracle access to any (probabilistic) algo-
rithm A : C → {0, 1}∗, EA requires an expected number of at most 2μ · T queries
to A and, with probability at least δΓ(A)/T , outputs pairs (ci, yi) ∈ C × {0, 1}∗

such that {ci}i is a Γ-tree with V (ci, yi) = 1 for all i.

For the proof of Lemma 6, we refer to the full version [1].
Let us now derive a lower bound on the value δV

Γ (A). To this end, for
c = (c1, . . . , cμ) ∈ C1 × · · · × Cμ, we write V (c) as a shorthand for V (c,A(c)).
Furthermore, for any fixed choices of S1, S2, . . . , Sμ, as in the definition of δΓ(A)
(Eq. 5), we introduce the event

Ω(c) :=
[
C1 /∈ S1 ∧ C2 /∈ S2(c1) ∧ · · · ∧ Cμ /∈ Sμ(c1, . . . , cμ−1)

]
.

Then,
∑

c

Pr
(
V (c) = 1 ∧ C = c | Ω(c)

)
≥

∑

c

Pr
(
V (c) = 1 ∧ Ω(c) ∧ C = c

)

=
∑

c

Pr
(
V (C) = 1 ∧ Ω(C) ∧ C = c

)

= Pr
(
V (C) = 1 ∧ Ω(C)

)

≥ Pr
(
V (C) = 1

)
− Pr

(
¬Ω(C)

)
.

Now note that

Pr
(
¬Ω(C)

)
= 1 − Pr

(
Ω(C)

)

= 1 − Pr
(
C1 /∈ S1

)
Pr

(
C2 /∈ S2(C1) | C1 /∈ S1

)
· · ·

≤ 1 −
(

1 − max
S1 /∈Γ1

|S1|
|C1|

)(
1 − max

S2 /∈Γ1

|S2|
|C2|

)
· · ·

= κΓ ,

(6)

where

κΓ := max
S /∈ΓTree(Γ)

|S|
|C| = 1 −

μ∏

i=1

(
1 − max

Si /∈Γi

|Si|
|Ci|

)
= 1 −

μ∏

i=1

(1 − κΓi
) .
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We thus obtain that
δΓ(A) ≥ ε(A) − κΓ . (7)

These observations complete the proof of the following theorem.

Theorem 2. Let (P,V) be a (Γ1, . . . , Γμ)-out-of-(C1, . . . , Cμ) special-sound
interactive proof such that TΓ =

∏μ
i=1 tΓi

is polynomial in the size |x| of the
public input statement x of (P,V) and sampling from UΓi

(Si) takes polynomial
time (in |x|) for all 1 ≤ i ≤ μ and Si ⊂ Ci with |Si| < tΓi

. Then (P,V) is
knowledge sound with knowledge error

κΓ = 1 −
μ∏

i=1

(
1 − max

Si /∈Γi

|Si|
|Ci|

)
.

7 Analysis of the FRI-Protocol

In this section we show how to use our generalized notion of special-soundness to
demonstrate the existence of a quasi-polynomial time knowledge extractor with
essentially optimal success probability for the Fast Reed-Solomon Interactive
Oracle Proof of Proximity due to Ben-Sasson et al. [5], assuming it has been
compiled into an interactive proof the natural way (i.e., the oracles are replaced
by compact commitments to the vectors with a local opening functionality).
We first provide the necessary background on the protocol before providing our
analysis. We remark that we use ideas that were implicit in prior works; our
main aim in this section is to demonstrate the utility of our generalized special-
soundness notion and the accompanying knowledge extractor.

7.1 Preliminaries on Reed-Solomon Codes

Let F be a finite field of cardinality q and S ⊆ F. Given a polynomial f(X) ∈ F[X]
we let f(S) = (f(s))s∈S denote the vector of evaluations of f over the domain S
(given in some arbitrary, but fixed, order). For an integer � we write S·� for the
set of �-powers of elements in S, i.e. {s� : s ∈ S}.6

For any 0 ≤ ρ ≤ 1, the Reed-Solomon code RS[F, S, ρ] ⊆ F
|S| consists of

all evaluations over the domain S of polynomials F (X) ∈ F[X] of degree less
than ρ|S|. In notation,

RS[F, S, ρ] := {F (S) : F (X) ∈ F[X] ∧ deg(F ) < ρ|S|} .

In the sequel we will assume S is a multiplicative subgroup of F
∗ of order a

power of 2, with the understanding that our analysis should generalize readily
to other “smooth” evaluation domains for FRI protocols. We further set ρ = 2−r

6 We use this somewhat cumbersome notation as we will later need to denote j-fold
Cartesian products of sets, and for this operation we will use the standard notation
Sj .
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for an integer r < log2(|S|), which implies ρ|S| ∈ N and that the dimension of
RS[F, S, ρ] is precisely ρ|S|.

Letting N = |S|, we therefore have S = 〈ω〉 = {1, ω, ω2, . . . , ωN−1},
where ω is a primitive N -th root of unity. Note then that S·2 = 〈ω2〉 =
{1, ω2, ω4, . . . , ωN−2} is a multiplicative subgroup of F

∗ of order N/2. More
generally, for any j = 1, 2, . . . , log2(N), S·2j

= 〈ω2j 〉 is multiplicative subgroup
of F

∗ of order N/2j .
Given two polynomials f(X), g(X) ∈ F[X] we let dS(f, g) := |{s ∈ S :

f(s) �= g(s)}| denote the number of points s ∈ S on which f and g differ. Equiv-
alently, it denotes the (unnormalized) Hamming distance between the vectors
f(S) and g(S).

Given a polynomial f ∈ F[X], we let

δS(f) :=
minF {dS(f, F ) : F ∈ F[X], deg(F ) < ρ|S|}

|S| .

In other words, δS(f) denotes the relative Hamming distance of f(S) to a closest
codeword in RS[F, S, ρ].

7.2 FRI-Protocol

Let Of be an oracle implementing some function f : S → F, which of course
uniquely corresponds to a polynomial of degree less than N = |S|. We are
interested in the situation where a prover claims that f(X) is in fact a polynomial
of degree < ρN , i.e., that f(S) ∈ RS[F, S, ρ]. In order to verify this, the verifier
may make queries to Of , but it is easy to see that in order to catch a lying
prover the verifier must query each s ∈ S (or at least Ω(|S|) such points in order
to catch the prover with good probability).

Thus, for soundness, we will be satisfied with rejecting oracles implementing
functions that are far from low degree, i.e., such that δS(f) ≥ δ. However,
here as well we cannot hope to catch cheating verifiers without making at least
ρN + 1 queries (as ρN evaluations are always consistent with some polynomial
of degree < ρN). It turns out to be possible to make significantly less (i.e., just
logarithmically many) oracle queries if we allow the verifier to interact with the
prover.

The resulting protocols are referred to as interactive oracle proofs of proximity
(IOPPs). In order to demonstrate the utility of our general special soundness
notion, we will show how to analyze the Fast Reed-Solomon Interactive Oracle
Proof of Proximity (FRI-protocol) [5].

In order to implement the oracle Of cryptographically, one makes use of a
compact commitment scheme, typically via a Merkle tree [6]. In the following we
denote the commitment to the vector F (S) = (F (s))s∈S with public parameters
pp by P ← Compp(F (S)) and the local opening information for s ∈ S as γs.
For example, in the case of a Merkle tree the public parameters pp would be a
description of the hash function used, while γs would give hash values for the co-
path of the leaf corresponding to s. We also assume access to a procedure Locpp
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which takes as input a commitment P , a domain element s, a value ys ∈ F and
the opening information γs and outputs 1 if and only if γs indeed certifies that
P opens to ys on the element s.

We can therefore view the (cryptographically compiled version of the) FRI-
protocol as an interactive proof for the pair of relations (R0,Rδ ∪ Rcoll), where
for a parameter β ∈ [0, 1) we define

Rβ :=
{
(P, pp;F,B, (γs)s∈B) : deg(F ) < ρN ∧ |B| ≥ (1 − β)N

∧ ∀s ∈ B, Locpp(P, s, F (s), γs) = 1
}

,

while

Rcoll :=
{
(pp; s, y, y′, γ, γ′) : y �= y′ ∧ Locpp(P, s, y, γ) = 1

∧ Locpp(P, s, y′, γ′) = 1
}

.

This means that completeness holds with respect to relation R0 and sound-
ness holds with respect to Rδ ∪Rcoll, where the latter refers to the “or-relation”
which accepts a witness for one or the other instance. On the one hand, this says
that a prover that committed to a low-degree polynomial will indeed convince
the verifier of this fact. On the other hand, if a prover has a good probability of
convincing the verifier then we can either extract a commitment to many coor-
dinates that agree with a low-degree polynomial, or we can extract two distinct
local openings from the same commitment (invalidating the binding property of
the commitment).7

Folding. An important ingredient in the FRI-protocol is a folding operation. For
our specific choice of S, it is defined as follows: for f(X) ∈ F[X] and c ∈ F, we
define

Fold
(
f(X), c

)
= g(X) ∈ F[X]

such that

g(X2) =
f(X) + f(−X)

2
+ c

f(X) − f(−X)
2X

.

Intuitively, this folding operation considers the even-power monomials of f(X)
and the odd-power monomials separately, obtains from these terms two poly-
nomials of degree deg(f)/2, and takes a random linear combination of these
polynomials. Importantly, the polynomial g(X) can then naturally be viewed
as having degree roughly deg(f)/2 (i.e., the degree is halved) and its domain
is naturally viewed as S·2 = 〈ω2〉, which has order N/2. That is, the folded
polynomial has its degree and domain halved.

A one round version of the FRI-protocol thus proceeds as follows. First, the
prover commits to F (S), where it promises that F (S) ∈ RS[F, S, ρ]. The verifier

7 Observe that this is a concrete instantiation of the idea alluded to in Remark 1: we
can either extract a witness to the desired relation, or a solution to a computationally
hard problem.
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picks a random challenge c ∈ F, sends it to the prover, and the prover responds
with the folding G of F around c. The verifier first checks that deg(G) < ρN/2.
If yes, the verifier then chooses t points s1, . . . , st ∈ S (each uniformly at random
and thus possibly colliding), and asks for the evaluations of F on all points ±si.
It then checks that these evaluations are consistent with G, i.e., that G(s2i ) =
f(si)+f(−si)

2 + c f(si)−f(−si)
2si

for all 1 ≤ i ≤ t, and of course that these are indeed
the values the prover committed to initially.

7.3 Analyzing the FRI-Protocol

In order to analyze the FRI-protocol, we must create an extractor that takes as
input folding challenges and then openings for various points s ∈ S that are
consistent with the folded polynomials (which are assumed to be low-degree).
From two distinct folding challenges c, c′ ∈ F, if G(X) and G′(X) are the foldings
around c and c′ respectively of the function the prover committed to, then we
can create the following polynomial:

F (X) = X
G(X2) − G′(X2)

c − c′ +
cG′(X2) − c′G(X2)

c − c′ .

Note that if G and G′ have degree less than ρN/2, then indeed F would have
degree less than ρN .

The extractor may also rewind the second phase of the protocol to obtain
sets A and A′ covering at least (1 − δ) fraction of S. We can then conclude that
we have consistent openings on their intersection A ∩ A′ (assuming that we do
not violate the binding property of the commitment, i.e., that we do not extract
a witness for the relation Rcoll). The intersection A∩A′ covers a (1−2δ) fraction
of S, so we have found a low-degree polynomial agreeing with the commitment
on a (1 − 2δ) fraction of the points of S.

At this point, we could iterate this argument. However, iterating this argu-
ment over μ folding rounds would cause us to only prove that the prover commit-
ted to a function that agrees with a low-degree polynomial on a (1−2μδ)-fraction
of the coordinates (assuming that we did not extract a collision in the commit-
ment). This is quite unsatisfactory, as we would like to have μ logarithmic in N
and δ ∈ (0, 1) a constant. Fortunately, by relying on ideas from prior works
(specifically, [5]) we can show that we can indeed extract a low-degree polyno-
mial agreeing with the commitment on a (1 − δ) fraction of coordinates (or, of
course, a violation to the binding property of the commitment).

In order to analyze the soundness of the FRI-protocol more effectively, we
will need the following coset-distance from f to RS[F, S, ρ]:

ΔS(f) := min
F∈F[X], deg(F )<ρN

|{s ∈ S : f(s) �= F (s) ∨ f(−s) �= F (−s)}|
N

.

This distance notion has been used in prior works [5]. Observe that ΔS(f) ≥
δS(f). Intuitively, this measure is useful because it allows for a more careful
accounting of how the Hamming metric behaves under the folding operation than
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the above näıve analysis. For this reason, our extractor will succeed assuming a
bound on ΔS(f) rather than just δS(f).

The following lemma quantifies this intuition, by characterizing the set of
challenges c that could cause the Hamming metric to decrease when a function
f is folded around c. These ideas are implicit in [5, Lemma 4.4]; we restate them
in a language that is convenient for us. The full version of this work [1] includes
a proof of the following lemma.

Lemma 7. Let f(X) ∈ F[X] be such that ΔS(f) < (1 − ρ)/2. The number of
choices for c ∈ F such that δS·2

(
Fold(f, c)

)
< ΔS(f) is at most N .

In particular, if there exist pairwise distinct c0, . . . , cN ∈ F such that
δS·2

(
Fold(f, c)

)
≤ δ for all i ∈ {0, 1, . . . , N}, then ΔS(f) ≤ δ.

We now precisely define the notion of special-soundness that we will prove
the FRI-protocol with one folding iteration satisfies. Informally, for the folding
round the previous lemma tells us we need N + 1 challenges to extract, while for
the second round we need enough local openings of the commitment to reveal a
(1 − δ)-fraction of the values that the prover committed to. We now make this
formal.

Let
C := St =

{
(s1, s2, . . . , st) : si ∈ S ∀i} .

For a challenge c = (s1, . . . , st) ∈ C we denote by

B(c) = {s1,−s1, s2,−s2, . . . , st,−st}

the set8 of elements of S that appear in the challenge tuple c, along with their
negations. That is, it is the set of points that will be queried by the verifier
if it samples (s1, s2, . . . , st) in the final verification step. Let (ΓN+1, F) be the
monotone structure that contains all subsets of F of cardinality at least N + 1,
and let (Γ, C) be the monotone structure that contains all subsets of C that cover
at least a (1 − δ)-fraction of S, i.e.,

A ∈ Γ ⊂ 2C ⇐⇒
∣
∣
∣
∣
∣

⋃

c∈A

B(c)

∣
∣
∣
∣
∣
≥ (1 − δ)N .

Theorem 3 (FRI-protocol (one folding iteration)). Let ρ = 2−r for some
r ∈ {0, 1, . . . ,m} and let δ ∈ (0, 1) be such that δ < 1−ρ

4 . The FRI-Protocol is
perfectly complete with respect to relation R0 and (ΓN+1, Γ )-out-of-(F, C) special-
sound with respect to relation Rδ ∪ Rcoll.

Proof. Completeness: This is immediate from prior work (e.g., [5]). To make
our proof self-contained, we note that this follows immediately from the following
facts concerning a polynomial F (X) ∈ F[X]:

– if F has degree < ρN then Fold(F, c) has degree < ρN/2 for any c ∈ F; and

8 That is, we explicitly remove repetitions, so B(c) is not interpreted as a multi-set.
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– for any s ∈ S and c ∈ F, Fold(F, c)(s2) = F (s)+F (−s)
2 + cF (s)−F (−s)

2s .

Soundness: We must extract a witness for either the relation Rδ or the relation
Rcoll given a (ΓN+1, Γ )-tree of accepting transcripts. Such a tree of transcripts
consists of the following:

– folding challenges c0, . . . , cN ∈ F,
– polynomials G0, . . . , GN ∈ F[X] of degree less than ρN

2 ,

– subsets A0, . . . , AN ⊆ C, each satisfying
∣
∣
∣
⋃

c∈Aj
B(c)

∣
∣
∣ ≥ (1 − δ)N , and

– for each 0 ≤ j ≤ N , for each s ∈
⋃

c∈Aj
B(c), opening information γsj for the

element s. Let ysj ∈ F be the element for which Locpp(P, s, ysj , γsj) = 1.

Let Bj :=
⋃

c∈Aj
B(c) for 0 ≤ j ≤ N , and observe that these sets are closed

under negation (i.e., s ∈ Bj ⇐⇒ −s ∈ Bj).
Suppose there exists j �= j′ such that, for some s ∈ Bj ∩Bj′ , ysj �= ysj′ . Then,

we may output the following witness for the relation Rcoll: (s, ysj , ysj′ , γsj , γ
′
sj).

We may now assume that the above does not occur. In other words, for each
s ∈ B̄ := B0 ∪ . . . ∪ BN the set {ysj : s ∈ Bj} is in fact a singleton set; denote
its unique element by ys. We also let γs := γsj where j is the smallest element
in {0, 1, . . . , N} such that s ∈ Bj (this is just an arbitrary tie-breaking rule).

For each j ∈ {0, 1, . . . , N}, the polynomial Gj and the elements ys for s ∈ Bj

satisfy the following relation:

Gj(s2) =
ys + y−s

2
+ cj

ys − y−s

2 s
.

Let f(X) ∈ F[X] be a polynomial consistent with the ys’s, i.e., for all s ∈ B̄ we
have f(s) = ys. Furthermore, for reasons to be clear later, we let f be different
to the polynomial F0 defined below outside of B̄, i.e., f(s) �= F0(s) for all s �∈ B̄.
Then, for each j ∈ {0, 1, . . . , N} and all s2 such that {±s} ⊆ Bj , we have

Gj(s2) = Fold
(
f, cj

)
(s2) .

We conclude that Fold
(
f, cj

)
and Gj agree on at least (1− δ)N

2 elements of S·2.
As deg(Gj) < ρN

2 it follows that

δS·2
(
Fold

(
f, cj

))
≤ δ .

By Lemma 7, if we establish that ΔS(f) < 1−ρ
2 , it in fact then follows that

ΔS(f) ≤ δ, which in turn implies δS(f) ≤ δ. As 2δ < 1−ρ
2 by assumption, it

suffices for us to show ΔS(f) ≤ 2δ. We focus on proving this now.
Consider the polynomial

F0(X) := X
G0(X2) − G1(X2)

c0 − c1
+

c0G1(X2) − c1G0(X2)
c0 − c1

.
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Since the degrees of G0 and G1 are smaller than ρN
2 , it follows that deg(F0) <

ρN . Furthermore, we note that for all s ∈ B0∩B1 we have f(s) = F0(s). Indeed,

F0(s) = s · G0(s2) − G1(s2)
c0 − c1

+
c0G1(s2) − c1G0(s2)

c0 − c1

=
s

c0 − c1

[
f(s) + f(−s)

2
+ c0

f(s) − f(−s)
2 s

−
(

f(s) + f(−s)
2

+ c1
f(s) − f(−s)

2 s

)]

+
1

c0 − c1

[
c0 ·

(
f(s) − f(−s)

2
+ c1

f(s) − f(−s)
2 s

)

−c1 ·
(

f(s) + f(−s)
2

+ c0
f(s) − f(−s)

2 s

)]

=
s

c0 − c1
· (c0 − c1)

f(s) − f(−s)
2 s

+
1

c0 − c1
· (c0 − c1)

f(s) + f(−s)
2

=
f(s) − f(−s)

2
+

f(s) + f(−s)
2

= f(s) .

From this, we can conclude that f and F0 agree on at least (1 − 2δ)N/2 pairs
{±s}: here, we use the fact that as B0 and B1 are closed under negation, so is
B0 ∩ B1. Thus, the number of s ∈ S for which f(s) �= F0(s) or f(−s) �= F0(−s)
is at most 2δN . Recalling deg(F0) < ρN , we conclude ΔS(f) ≤ 2δ, as desired.

Thus, we have found that ΔS(f) ≤ δ, which in particular means δS(f) ≤ δ,
as desired. Let F (X) denote the (necessarily unique) polynomial of degree < ρN
such that dS(F (S), f(S)) ≤ δN . As dS(F0(S), f(S)) ≤ 2δN it also follows that
dS(F0(S), F (S)) ≤ 3δN < 1 − ρ. As F0(S), F (S) ∈ RS[F, S, ρ] and this code has
minimum distance 1 − ρ, it must be that F0(S) = F (S), which further implies
F0(X) = F (X) (as polynomials).

We can therefore extract a polynomial of degree < ρN that agrees with
the function f(X) on a (1 − δ) fraction of coordinates: namely, the polynomial
F0(X). Furthermore, since f differs from F0 outside of B̄ = B0 ∪ . . . ∪ BN (by
the choice of f), we can find a subset B ⊆ B̄ of size at least (1 − δ)N for which
f(s) = F0(s) for all s ∈ B. We may therefore output the following witness for
Rδ: (F0(X), B, (γs)s∈B). ��

We are now in position to apply the machinery developed in Sect. 6 to con-
clude the following bound on the knowledge error.

Corollary 1 (Knowledge Error of FRI-protocol (one folding itera-
tion)). Let ρ = 2−r for some r ∈ {0, 1, . . . ,m} and let δ ∈ (0, 1) be such that
δ < 1−ρ

4 . The FRI-Protocol is knowledge sound with respect to relation Rδ ∪Rcoll

with knowledge error

κ := 1 −
(

1 − N

|F|

)(

1 − (�(1 − δ)N� − 1)t

N t

)

≤ N

|F| + (1 − δ)t .
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Proof. Theorem 3 shows that the FRI-Protocol is (ΓN+1, Γ )-out-of-(F, C) special-
sound. To apply Theorem 2, we must first establish that tΓ ·tΓN+1 ≤ NO(1). And
this is indeed the case, as

tΓ ≤ �(1 − δ)N� and tΓN+1 ≤ N + 1 .

We now establish the knowledge error. For this, it suffices to note that
maxS /∈ΓN+1

|S|
|F| = N

|F| while

max
A/∈Γ

|A|
|C| =

(�(1 − δ)N� − 1)t

N t
≤ (1 − δ)t .

To see the first equality, first note that if A /∈ Γ then
⋃

c∈A B(c) has cardinality
less than (1 − δ)N , so A the number of s ∈ S which can appear in a challenge
c ∈ A is at most (1 − δ)N ; as this is an integer, it is at most �(1 − δ)N� − 1.
That is, for some subset T ⊆ S with |T | ≤ �(1 − δ)N� − 1, A ⊆ T t, and
|T t| ≤ ((1 − δ)N/2)t. The equality holds as we can certainly choose A = T t

for some T ⊆ S of size �(1 − δ)N� − 1. For the denominator, as C = St it has
cardinality |S|t = N t. ��

7.4 Additional Folding Iterations

The above analysis can naturally be extended to handle more folding iterations.
Let F0 := F be the low degree polynomial the prover commits to in the first
round. We have folding rounds i = 1, . . . , μ, and in round i the verifier sends
a challenge ci−1 ∈ F and the prover provides a commitment to Fi(S·2i

) where
Fi(X) = Fold(Fi−1, ci−1)(X). After these folding iterations, the verifier picks t
points s1, . . . , st ∈ S independently and uniformly at random and then checks
that for all i = 1, . . . , μ and j = 1, . . . , t, we have

Fi

(
s2

i

j

)
=

Fi−1

(
s2

i−1

j

)
+ Fi−1

(
− s2

i−1

j

)

2
+ ci−1

Fi−1

(
s2

i−1

j

)
− Fi−1

(
− s2

i−1

j

)

2sj
.

The recursive structure of the extractor implies that after μ folding iterations
we obtain a protocol with the following generalized special-soundness guarantee.

Theorem 4 (FRI-protocol (μ folding iterations).). Let ρ = 2−r for some
r ∈ {0, 1, . . . ,m} and let δ ∈ (0, 1) be such that δ < 1−ρ

4 . Let μ ∈ N be such
that μ ≤ log2 N , and for i = 1, 2, . . . , μ let Ni := N/2i−1. The FRI-protocol
with μ folding iterations is perfectly complete with respect to relation R0 and
(ΓN1+1, ΓN2+1, . . . , ΓNμ+1, Γ )-out-of-(F, F, . . . , F, C) special-sound with respect to
relation Rδ ∪ Rcoll.

This yields the following corollary regarding the knowledge error. However,
we note that for μ = Ω(log N) the knowledge extractor only runs in expected
quasi-polynomial time, preventing us from being able to claim the standard
notion of knowledge soundness. Nonetheless we believe that the guarantee is
meaningful. For the proof, we refer to the full version [1].



Generalized Special-Sound Interactive Proofs 453

Corollary 2 (Knowledge Error of FRI-protocol (μ folding iterations)).
Let N = 2n for some n ∈ N, let ρ = 2−r for some r ∈ {0, 1, . . . ,m} and let
δ ∈ (0, 1) be such that δ < 1−ρ

4 . Let μ ∈ N be such that μ ≤ log2 N , and for
i = 1, 2, . . . , μ let Ni := N/2i−1. There exists a function q(N,μ) = NO(μ) such
that the following holds.

There exists an extraction algorithm that, when given oracle access to a
(potentially dishonest prover) P∗ and input x of size N for the FRI-protocol,
runs in time ≤ q(N,μ) and outputs a witness in the relation Rδ ∪ Rcoll with
probability at least

ε(P∗, x) − κ(N,μ)
q(N,μ)

where

κ(N,μ) := 1 −
(

μ∏

i=1

(
1 − Ni

|F|

))

·
(

1 − (�(1 − δ)N� − 1)t

N t

)

≤
μ∑

i=1

Ni

|F| + (1 − δ)t ≤ 2N

|F| + (1 − δ)t .
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