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Abstract. Continuous Group-Key Agreement (CGKA) allows a group
of users to maintain a shared key. It is the fundamental cryptographic
primitive underlying group messaging schemes and related protocols,
most notably TreeKEM, the underlying key agreement protocol of the
Messaging Layer Security (MLS) protocol, a standard for group messag-
ing by the IETF. CKGA works in an asynchronous setting where parties
only occasionally must come online, and their messages are relayed by
an untrusted server. The most expensive operation provided by CKGA
is that which allows for a user to refresh their key material in order to
achieve forward secrecy (old messages are secure when a user is compro-
mised) and post-compromise security (users can heal from compromise).
One caveat of early CGKA protocols is that these update operations had
to be performed sequentially, with any user wanting to update their key
material having had to receive and process all previous updates. Late
versions of TreeKEM do allow for concurrent updates at the cost of a
communication overhead per update message that is linear in the num-
ber of updating parties. This was shown to be indeed necessary when
achieving PCS in just two rounds of communication by [Bienstock et
al. TCC’20].

The recently proposed protocol CoCoA [Alwen et al. Eurocrypt’22],
however, shows that this overhead can be reduced if PCS requirements
are relaxed, and only a logarithmic number of rounds is required. The
natural question, thus, is whether CoCoA is optimal in this setting.

In this work we answer this question, providing a lower bound on the
cost (concretely, the amount of data to be uploaded to the server) for
CGKA protocols that heal in an arbitrary k number of rounds, that shows
that CoCoA is very close to optimal. Additionally, we extend CoCoA to
heal in an arbitrary number of rounds, and propose a modification of it,
with a reduced communication cost for certain k.

We prove our bound in a combinatorial setting where the state of the
protocol progresses in rounds, and the state of the protocol in each round
is captured by a set system, each set specifying a set of users who share a
secret key. We show this combinatorial model is equivalent to a symbolic
model capturing building blocks including PRFs and public-key encryp-
tion, related to the one used by Bienstock et al.
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Our lower bound is of order k · n1+1/(k−1)/ log(k), where 2 ≤ k ≤
log(n) is the number of updates per user the protocol requires to heal.
This generalizes the n2 bound for k = 2 from Bienstock et al.. This
bound almost matches the k · n1+2/(k−1) or k2 · n1+1/(k−1) efficiency we
get for the variants of the CoCoA protocol also introduced in this paper.

1 Introduction

A fundamental task underlying various cryptographic protocols is to agree upon,
and maintain, a secret key amongst a group of users. A prominent example is
continuous group-key agreement (CGKA) [3], which underlies group messaging
applications. Here, a group of users wants to maintain a shared secret key, that
then can be used for private communication amongst the group members.

CGKA is defined in an asynchronous setting, where parties are online only
occasionally, and the exchanged messages are relayed through an untrusted
server (only trusted to provide liveness and thus correctness). CGKA allows
for users to be added or removed from the group. Moreover users can update
their keys, which allows the group to achieve forward secrecy (FS) and post-
compromise security (PCS). FS guarantees that, should a user’s secrets be com-
promised, messages sent in the past remain secure. PCS, in turn, allows the
group to “heal”, i.e. to recover privacy after a compromise occurs.

The most efficient existing protocols for CGKA are TreeKEM [10] and
variants thereof [2,3,7,22,23], which are inspired by logical key hierarchies
(LKH) [25], a popular protocol for multicast encryption (ME) [14]. The study of
these protocols has received a great deal of attention recently, motivated by the
IETF working group on Message Layer Security (MLS) [9], which aims to output
standard for instant group messaging. Said standard employs TreeKEM as the
underlying CGKA. These schemes all arrange keys from a public-key encryption
scheme in trees, known as ratchet trees, where each node is associated with a key,
each user is associated with a leaf, and users should know exactly the (secret)
keys on the path from their leaf to the root (also known as the tree invariant).

A simple ratchet tree with four users is illustrated in Fig. 1. The advantage of
using such a hierarchical tree structure is that replacing a user’s keys in a group
of size n just requires the creation of �log(n)� ciphertexts, while e.g. maintaining
pairwise keys between the users would require n − 1.

Concurrent Updates. Updating keys in a ratchet tree as illustrated in Fig. 1
only works if updates are sequential. That is, if two users want to update, then
they need to do it in order, with the second processing the first user’s update
before creating their own. TreeKEM supports concurrent updates through the
“propose and commit” (P&C) paradigm, but handling concurrency in this way
degrades the nice tree structure and thus efficiency of the protocol. Indeed, after
several users update concurrently, all of their paths to the root but one will lose
their keys, a.k.a. become blank, increasing the in-degrees of nodes in the tree and
thus the cost of that and subsequent operations. This incurs an overhead that
is linear in the number of updating parties, something which was shown to be
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Fig. 1. Left: Illustration of a ratchet tree with n = 4 users {A, B, C, D} where each
key Ki = (pki, ski) is a public/secret key tuple. Right: To update and achieve PCS
Alice rotates keys {K1, K5, K7} by sampling new keys {K1̄, K5̄, K7̄} (blue, shaded
background) and encrypting each secret key under the public key of their parent (blue,
dashed arrows), e.g. K2 → K5̄ corresponds to a ciphertext Encpk2(sk5̄). Given those
ciphertexts, all users can learn the new keys on their path to the root. For example Bob
must decrypt the ciphertexts Encpk2(sk5̄) and Encpk5̄(sk7̄). This requires 2�log(n)� = 4
ciphertexts. However, by deriving the keys {K1̄, K5̄, K7̄} deterministically from a single
seed using a PRG as suggested in [14], we can save the ciphertexts for the solid blue
arrows and only need �log(n)� = 2 ciphertexts. (Color figure online)

optimal by Bienstock, Dodis and Rösler [12], whenever PCS is to be achieved as
soon as all corrupted users update once.

CoCoA [2] takes a different approach, and simply choses a “winner” whenever
there is a conflict, i.e., when two users want to concurrently replace the same key,
as illustrated in Fig. 2. As opposed to the previous scenario, this does not imme-
diately “heal” the state of the concurrently updating parties (in the Figure, key
K7̄ is not secure if Dave’s key K6 was compromised). However, in [2] it is shown
that the group heals (i.e., achieves PCS) after all corrupted users participate in
log(n) (possibly concurrent) update rounds. This is a middle ground between the
immediate concurrent healing of P&C TreeKEM, and the n sequential rounds
needed for non-concurrent versions of TreeKEM.

In this work we prove a lower bound on the communication cost of CGKA
protocols that heal in any number of (up to logarithmic in the group size) rounds.

A Combinatorial Model. Conceptually, our lower bound proof proceed in
two steps. We first derive the lower bounds in a clean and simple combinatorial
model which proceeds in rounds. The state of the protocol for n users in round
t is captured by a set system St ⊆ 2[n], where S ∈ St means that after round t
there is a shared secret amongst the users S not known to the adversary.

In particular, [n] ∈ St means the group [n] = {1, . . . , n} shares a secret,
which has to be satisfied in all rounds with a secure group key.

For example, in the ratchet tree example from Fig. 1 (where users are denoted
{A,B,C,D} not {1, 2, 3, 4}), the sets corresponding to the keys K1, ..,K7 are

St = {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3, 4}}.

If a user u gets compromised, all secrets corresponding to sets containing u
become known to the adversary and thus the sets must be removed, e.g., if we
compromise user 1, the set system becomes

St+1 = {{2}, {3}, {4}, {3, 4}}.
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Fig. 2. Illustration of CoCoA where Alice and Dave concurrently rotate their keys.
Left: state of the ratchet tree before the updates. Middle: Keys {K1̄, K5̄, K7̄} and
{K4̂, K6̂, K7̂} generated by Alice and Dave’s updates respectively. There’s a collision
at the (root) key K7, and the server chooses a “winner” (any rule for choosing winners
will do), in this case Alice. Right: New state of the ratchet tree (Keys in the tree
depicted with shaded background). The new root key is K7̄ while Dave’s K7̂ is ignored.
As K7̄ was encrypted to K6 we do not achieve PCS if Dave’s state {K4, K6, K7} prior
to the update was compromised. But latest once all corrupted parties updated log(n)
times PCS will be achieved (in particular, if Dave updates once more PCS is achieved).

A user u can update and create new sets (keys) as follows. They can always
locally sample a key, creating the singleton {u}. For two sets S, S′ ∈ S, where
u ∈ S (or u ∈ S′), they can create a new set S ∪ S′, by deterministically
deriving a secret from that of S using a PRF, and encrypting it under the public
key of S′. This would get added to S in the next round. Note that indeed all
users in S ∪ S′ are able to derive the secret either deterministically from the
secret associated to S or by decrypting the ciphertext. In the simplest version of
TreeKEM, user 1 performs an update by creating {1}, then {1, 2} = {1} ∪ {2},
then {1, 2, 3, 4} = {1, 2}∪{3, 4} (i.e., the keys K1′ ,K5′ ,K7′ in Fig. 1). Of course,
u is not restricted to create new sets as the union of only two sets, but could also
encrypt the secret using the keys of sets S1, . . . , Sk to form the set S ∪

⋃k
i=1 Si.

The communication cost of this operation, i.e., the number of ciphertexts that
have to be uploaded to the server to communicate the new secret to all members
of the corresponding set, would in this example be k. In Sect. 3.1 we extend this
idea into a self-contained combinatorial model consisting of set system St and
an accompanying cost function Cost required to satisfy properties matching the
intuition given above. In Sect. 3.2 we use it to prove our lower bounds.

The Symbolic Model. While the combinatorial model offers a clean model
for proving lower bounds, it is not obvious how it captures real-world proto-
cols. We show that any lower bound in the combinatorial model implies a lower
bound in a symbolic model capturing pseudorandom functions and public-key
encryption. Most existing CGKA protocols can be captured in this symbolic
model and the fact that lower bounds in the combinatorial model carry over to
the symbolic model justifies the interest of the combinatorial model we propose.
Symbolic models were introduced by Dolev and Yao [18] in public key encryp-
tion, used in multicast encryption by Micciancio and Panjwani [24] and in CGKA
by Bienstock, Dodis, and Rösler [12] and Alwen et al. [1]. In the symbolic model
pseudorandom functions and public-key encryption are treated in an idealized
way by seeing their inputs and outputs as variables with a data type, which,



On the Cost of Post-compromise Security 275

in turn, follow some grammar rules, and ignoring other considerations that an
actual construction may have. The functionality and security of these primitives
are captured by the grammar rules and entailment relations in Sect. 4.1.

1.1 Our Bounds

In this work we prove lower bounds on the communication cost of CGKA pro-
tocols achieving PCS. Moreover, in Sect. 5 we introduce a new protocol, a mod-
ification and generalization of CoCoA. It introduces the necessary number of
rounds to heal as a parameter and, in some cases, improves over the natural
generalization of CoCoA in this setting.

We measure the cost of a protocol in terms of the number of ciphertexts
that users in a group must create (and upload to a server for the other users to
download) to achieve post-compromise security.1 Sometimes, we additionally put
a bound on the number of rounds required for parties to heal. We do not require
forward-secrecy and will also consider groups of a fixed size, i.e., without removals
or additions of users, just updates. Note that both of these make the lower
bounds stronger, as an adversary could always choose to not use add/removes.
Additionally, FS is relatively well understood [3].

We consider the setting where the users do not know who is compromised
or who else will update in any given communication round, and the adversary
schedules who does updates in each round. This is similar to that of [12].

When a user is corrupted, we assume its entire secret state is leaked to
the adversary, who can also observe all its local randomness. We call this the
“randomness corruption” model (RC for short), but we also consider a weaker
“no-randomness corruption” (¬RC) model, where only the secret state is leaked.
In this model, a corrupted user can still create encrypted secrets for other users.
Most protocols are proven secure in the stronger RC model, whereas lower
bounds are naturally stronger in the ¬RC model. Our lower bounds require some
additional restrictions on the CGKAs discussed at the end of the introduction.

Lower Bound. The number k of updates a user is required to make before their
state is guaranteed to heal plays a crucial role. Our security game is parameter-
ized by the number of users n and k. The adversary schedules who updates in
each round, and we require that, at any point, the group key is secure provided
every party who was corrupted in the past was asked to update at least k times
(since their last corruption). Table 1 states our lower bound and upper bound,
as well as existing ones. Our lower bound is roughly n1+1/k · k/ log(k).

The main message here is that we need to allow for logarithmically many
rounds for healing (as in CoCoA) if we want a small logarithmic sender commu-
nication cost per user. In particular, if we insist on a constant number of rounds,
the average cost per user will be of order n1/k.

1 It is possible, as in [2,5], to reduce recipient communication by introducing additional
reliance on the server. We focus on sender communication.
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Table 1. Upper-bounds (top) and lower-bounds (bottom) in the no-information setting
for Ω(n) corrupted users. Communication is measured as total number of ciphertexts
sent to recover from corruption, column “Rounds” indicates the number of update
rounds after which schemes are required to recover from corruption, column “Rand.
corr.”, whether the security model allows the adversary to learn internal randomness of
algorithms. The protocol [12] improves over TreeKEM in that concurrent operations do
not degrade future performance, which is not captured in the table. Our lower-bounds
require CGKA to not allow distributed work (NDW) and not use nested encryption
(NNE). Our bound holds without the extra assumption requiring the protocols to have
publicly-computable update cost (PCU). However, additional properties of it hold when
this assumption is present. We refer the reader to the discussion in Sect. 1.3 below for
more details. Here, αε ≈ ε is some constant depending on ε.

Upper bounds

Scheme Communication Rounds Rand. corr See

TreeKEM and related n2 2 RC [10]

Bienstock, Dodis, Rösler n2 2 ¬RC [12]

CoCoA on k−1
√

n-ary trees n k2 k−1
√

n k RC Sect. 5

CoCoA on 2-ary trees n log(n)2 log(n) RC [2]

CoCoALight on (k−1)/2
√

n-ary trees n k (k−1)/2
√

n k RC Sect. 5

Lower bounds

Restrictions Communication Rounds Rand. corr See

None n2 2 ¬RC [12]

NDW, NNE, PCU∗ n log(n)/ log(log(n)) log(n) ¬RC Cor. 5

NDW, NNE, PCU∗ ε · n · (1+ε)k−1
√

αεn · k/ log(k) k ¬RC Cor. 5

Upper Bound. We introduce in Sect. 5 the protocol CoCoALight, a modifica-
tion of CoCoA that achieves PCS in k ∈ [4, 2 �log(n)� + 1] rounds. This pro-
tocol has a cost k · n1+2/(k−1), which matches the lower bound up to a factor
log(k)/n1/(k−1). In particular, our protocol is only a factor of log(log(n)) from
optimal for k in the order of log(n). In turn, CoCoA (or rather, a straightfor-
ward generalization of it we propose for k ∈ [2, �log(n)� + 1], as opposed to
k = �log(n)� + 1 in the original protocol) has better efficiency for low values of
k. The key insight in our protocol is that users do not need to update all the
keys in their path to heal. In fact, it suffices for them to update keys one by one,
as long as every key in the path is updated twice. We formalize and discuss this
further in Sect. 5 of this paper’s full version [8].

1.2 Our Proofs

The details of the proofs are omitted in this version of the paper and can be
found in the full version [8]. Below we give an intuition.

Proof of the Lower Bound. To prove the lower bound we first show that, if
the protocol can heal from c corruptions in k rounds, then there is some user
whose cost is c1/k. In particular, if c = Θ(n), we get a cost of Θ(n1/k). The
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intuition for this is quite simple, let us give it for c = n. Initially everyone is
corrupted, so our set system is simply {1}, . . . , {n}, after the kth round [n] =
{1, . . . , n} is in our set system. If we denote with si the size of the largest set in
round i, we have s1 = 1, sk = n, which means there must be a round i where
si+1/si ≥ n1/(k−1). Therefore, in this round, the user creating the new set of
size si has cost ≥ n1/(k−1). A slightly more careful argument shows that the
maximum cost of a user in each round adds up to k · c1/(k−1).

To prove our bound we will show that for c = Θ(n) corruptions, we can
adversarially schedule the updates so that a 1/ log(k) fraction of users (and not
just a single one) can be forced to pay close to the maximum cost in each round,
which then adds up to n1+1/(k−1) · k/ log(k).

This adversarial scheduling goes as follows: before each round, the adversary
investigates each user’s cost, should they be asked to update in the next round.
Then, it simply picks a 1/ log(k) fraction of users, all having either very small
cost or, if such a set does not exist, a set of users with roughly the same cost
(we show that such a set of users always exists).

Proof of the Upper Bound. We prove our protocol secure by following the
framework set by [22], which reduces the adaptive security of a CGKA protocol
to that of a game played on graphs. One first defines a so-called safe predicate,
which captures the settings in which security should be guaranteed (i.e. every
corrupted user performed k updates since their last corruption, in our case). This
is implicit in our security game. Then, in order to apply previous results, one
needs to essentially show that key satisfying the safe predicate trivially leaked
as a result of a user corruption during the execution. We do this by associating
to each group key in the execution a recovery graph, made up of those keys
that trivially allow recovery of the group key. Then, through a combinatorial
argument, we show that if the safe predicate holds all keys ever leaked through
a corruption cannot belong to the recovery graph of the challenge key. Security
of the protocol thus follows using the aforementioned framework, in a fashion
similar to that of previous works, such as [2].

1.3 Overcoming Lower Bounds

Proving lower bounds for important protocols serves several purposes. On the
one hand, it can tell us when constructions falling into the model of the lower-
bound cannot be further improved. As we identify a protocol that almost match
our lower bound, this question is basically answered.

However, lower bound proofs can also hint as to where one should look
for constructions overcoming them. One such possibility is to consider building
blocks not captured by the bounds, or seemingly technical assumptions, which
seem crucial for the lower-bound proofs to go through.

More Powerful Building Blocks. The symbolic model we consider (and which
is captured by our combinatorial model) allows the basic primitives of PRFs or
public-key encryption, and thus does not rule out protocols overcoming our lower
bounds if they use more sophisticated tools.
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The “big hammer” in this context is multiparty non-interactive key-
agreement (mNIKE). With this primitive, each user could simply create a single
message to be broadcast, after which any subset of users can locally compute
a shared secret. While this overcomes our lower-bounds, it is just of theoretical
interest, as currently no practical instantiations of mNIKE exist.

There already do exist CGKA protocols using primitives not captured by
our model, in particular rTreeKEM [3] and DeCAF [7]. The variant rTreeKEM
uses secretly-updatable public-key encryption [21] (skUPKE), but this primitive
is used to improve the forward secrecy of the protocol, with no difference to the
(asymptotic) communication cost of the protocol. The CGKA DeCAF also uses
skUPKE, but in order to improve the round complexity for healing: instead of
log(n) rounds as in CoCoA, DeCAF only needs log(c) rounds, with c being the
number of users corrupted.

Note that our lower bound is independent of the number of corrupted users,
but the proof argues based on an adversary which corrupts c = Θ(n) parties. In
this setting DeCAF’s cost matches that of CoCoA and thus adheres to our lower
bound. However, under the promise that few, say constant, users are actually
corrupted, DeCAF heals in a constant number of rounds with cost O(n log(n)).

Finally, two recent works [5,19], explore the use of multi-recipient multi-
message PKE (mmPKE), which allows for much more efficient updates. However,
the improvements save a constant factor in the ciphertext size, and do not have
an influence in the asymptotic cost of the protocols.

Distributing Work. Our bound is restricted to schemes that do not “distribute
the workload of communicating a secret on several users”, in the following sense.
We require that, if in any round a user gets access to a secret they did not previ-
ously possess, then they must have recovered it from a single update message, or
sampled it themselves. All CGKA schemes we are aware of satisfy this property.

Nested Encryption. Finally, we require that users do not create layered cipher-
texts, i.e., those of the form Enc(pk1,Enc(pk2,m)). Again, this is a property that
is satisfied by all CGKA protocols we are aware of. This condition has a similar
flavor as the one of distributing work, with the difference being that, instead of
splitting the communication cost between several users, would enable a user to
spread out communication cost over several rounds.

Publicly-Computable Update Cost. We show that there exists a sequence
of updates such that the lower bound holds. However, this does not mean that
the sequence can be found using only public information. We introduce this
assumption to guarantee that the adversary can tell what cost a user will incur
if asked to update in round t using only public information available at the
end of round t − 1 and this suffices to find the update sequence used in the
proof of the lower bound. We also introduce a stronger version of this property,
which we call offline publicly-computable update cost, that makes it possible to
use public information available at the end of the initialization phase and the
sequence of users who have performed updates in the previous rounds. While
the strong property is satisfied by all protocols we are aware of, it is conceivable
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that protocols exist that overcome our bound, by having a user toss a coin
when asked to update, with the outcome determining whether a “cheap” or
“expensive” update is made.

1.4 Related Work

Protocols. The primitive of CGKA was introduced by Alwen et al. [3], but
constructions existed earlier, notably ART [15] and TreeKEM [10]. These two
were the starting point for the Message Layer Security (MLS) working group by
the IETF. A variety of protocols have since been published, aiming to improve
TreeKEM across different axes.

First, in the non-concurrent setting, [3] propose the use of UPKE in order
to improve on FS; Klein et al. [22] propose an alternative way to handle
dynamic operations with a lower communication cost in certain scenarios; Devi-
gne, Duguey and Fouque [17] propose to use zero-knowledge proof to enhance the
protocol robustness; Alwen et al. [1] initiates the study of efficiency of CGKAs in
the multi-group setting; Hashimoto, Katsumata and Prest [20] provide a wrapper
upgrading non-metadata-hiding CGKAs into metadata-hiding ones.

Concurrency was already mentioned in the initial TreeKEM versions, and
indeed, as mentioned, its new versions allow for a certain degree of it. The first
protocol to explore the idea was Weidner’s Causal TreeKEM [23] with the idea of
updates by re-randomizing (and combining) key material, instead of overwriting
it. The work of Weidner et al. [26] puts forth the notion of decentralized CGKA.
Alwen et al.’s CoCoA [2] analyzes a variant allowing for concurrent healing in
log(n) rounds. A follow-up of this work by Alwen et al. [7] picked up the idea
of [23] and extended it and formally analyzed it, showing that it allows for PCS
in a logarithmic number of rounds in the number of corrupted parties.

Lowerbounds. The main approach is to make use of the symbolic security
model, first introduced by Dolev and Yao [18] and later used by Micciancio
and Panjwani [24] to prove worst case bounds on the update cost of multicast
encryption schemes for a single group.

Regarding CGKAs, in the non-concurrent setting, Alwen et al. [1] provide
lower bounds for the average update cost of an update in any CGKA protocol in
the symbolic model, following and generalizing the approach of [24]. This shows
TreeKEM or other related protocols are indeed optimal in this setting. In the
concurrent setting, i.e. that where we consider the case of healing c corruptions
in less than c rounds, the study of lower bounds was initiated by Bienstock,
Dodis and Rösler [12], who establish lower bounds for protocols achieving PCS
in exactly 2 rounds.2 Last, Bienstock et al. [11] establish a lower bound on the
cost of certain sequences of adds and removes. In particular, they show that any
CGKA has a worst-case communication cost linear in the number of users.
2 Here, we have a tradeoff between the time needed to achieve PCS, and the communi-

cation needed to do so. The picture is slightly more complicated, as in protocols like
TreeKEM, or the protocol proposed in [12], the bigger tradeoff is in the increased
cost of subsequent updates.
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Security. Finally, security of CGKAs has been studied by multiple papers. Secu-
rity against adaptive adversaries with a sub-exponential loss was first proved by
Klein et al. [22]. Active security has been studied by Alwen et al. [4,6] in the
UC model. PCS in the multi-group setting has been studied by Cremers, Hale
and Kohbrok [16], who show shortcomings of a certain version of MLS com-
pared to the (inefficient) pairwise-channels construction. Brzuska, Cornelissen
and Kohbrok [13] apply the State Separating Proofs methodology to analyze the
security of a certain version MLS.

2 Preliminaries

2.1 Definitions and Results from Combinatorics

Definition 1 (Minimal set cover). Let n ∈ N and S ⊆ 2[n]. Then for X ⊆ [n]
we define the min cover of X with respect to S. A minimal set cover (min
cover) minCover⊇(X,S) of X with respect to S is a set T ⊆ S of minimal
cardinality such that X ⊆

⋃
T∈T T , i.e., a minimal subset of S that covers X.

Note that we only require S be contained in the union but no equality.

Proposition 1 (Inequality of arithmetic and geometric means). For
k ∈ N let x1, . . . , xk ∈ R be non-negative such that

∑k
i=1 xi = x. Then

k∏

i=1

xi ≤
(x

k

)k

.

2.2 Continuous Group-Key Agreement

We now establish syntax for continuous group-key agreement (CGKA) schemes.
A CGKA scheme allows a group G of users to agree on a group key that is to be
used to secure communication within the group. In order to be able to recover
from corruption users can also, possibly concurrently, send update messages,
which rotate their key material. On top of this, CGKA schemes normally allow
for group membership to evolve throughout the execution, by adding or remov-
ing users. However, while schemes allowing for theses additional operations are
desirable in practice, the main goal of this work is to establish lower bounds
on the communication complexity of recovering from corruption by concurrent
updates. Thus, we restrict our view to static groups, i.e., we do not require the
functionality of adding users to or removing users from the group. Not consid-
ering adds and removes allows for less technical notation, and we point out that
lower bounds only profit from this restriction, as they hold even for schemes
restricted to static groups. In doing so, our syntax essentially follows that of
[12], with a couple of small differences mentioned below.

A continuous group-key agreement scheme CGKA specifies algorithms Setup,
Init, Update, Process, and GetKey. Algorithms Setup and Init can be used to ini-
tialize the a group G , that since we restrict our view to static groups, throughout
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this work we simply identify with G = [n] for some n ∈ N. Here, Setup is used
to generate every user’s initial internal state and can be thought of as the users
generating a key pair and registering it with a PKI. Init, on the other hand, is
called by one of the users to initialize the group. It generates a control message
that, when processed by the other users, establishes the initial group-key K 0

G .
Afterwards, the scheme proceeds in rounds t, in each of which a subset of users in
G concurrently generate update messages using algorithm Update. The update
messages are in turn processed by the group members resulting in a new group
key K t

G that can be recovered from a user’s internal state using algorithm GetKey.
More formally,

– Setup(n; r) on input the group size n and random coins r belonging to ran-
domness space Rnd outputs public information pub, as well as an initial
state stu for every user u ∈ G = [n].

– Init(stu, pub; r) receives as input a user’s (initial) state, the public informa-
tion pub, and random coins r . Its output (st ′

u,MI u) consists of the initializing
user’s updated state and a control message MI u.

– Update(stu, pub; r) in round t takes as input a user’s current state, the public
information pub, and random coins r . It returns updated state st ′

u and a
update message MU t

u.
– Deterministic algorithm Process(stu, pub,M ) gets as input a user u’s state,

the public information pub, and a set M of control messages that either con-
sists of a single group initialization message MI v, or a family of update mes-
sages (MU v)v. Its output is the processing user’s updated state st ′

u.
– Deterministic algorithm GetKey(stu) on input a user’s state returns u’s view

of current group key KG belonging to key space CGKA.KS.

When comparing to the syntax of [12], one can find two differences. On the
one hand, we chose not to merge algorithms Setup and Init, as in [12], although
this would be possible since we consider the simple setting where a single static
group is created. On the other hand, we include the algorithm GetKey, present
in the original CGKA definition from [3]. This makes it easier to argue the

Fig. 3. Correctness game for continuous group-key agreement scheme CGKA.
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connection between the combinatorial and symbolic models. The two main prop-
erties that we require from a CGKA scheme are correctness and security.

Correctness. For correctness we require that, for every valid sequence of oper-
ations, in every round t, all users agree on the current group key K t

G where
G = [n] is a static group of size n ∈ N. We formalize the notion of correctness
in the game of Fig. 3. The game gets as input n, the user u0 ∈ G initializ-
ing the group, and a sequence (Ut)t of updates to be applied in every round
where Ut ⊆ G. The game returns the value 0 if the execution was correct and
1 otherwise. Accordingly, we say that a scheme CGKA is perfectly correct if,
for every input (n, u0, (Ut)tmax

t=1 ) and all choices of random coins, we have that
0 = CORRECTCGKA(n, u0, (Ut)tmax

t=1 ). For a perfectly correct scheme, we denote
the current group key by KG , instead of K u

G since all users agree on it.

Security. For security, we require that the group key of a CGKA scheme recov-
ers from corruption assuming that every party did at least k updates since
their last corruption. More formally, we consider the security notions of indistin-
guishability of the group key from random (IND-k-PCSmode), and one-wayness
(OW-k-PCSmode). Here, mode ∈ {¬RC,RC} indicates whether the corruption
of a user reveals only their private state in the current round, or also additionally
the random coins they sampled in the round. Thus, we end up with 4 different

Fig. 4. Security games IND-k-PCSmode for indistinguishability and OW-k-PCSmode for
one-wayness of group keys with respect to mode ∈ {RC, ¬RC}. The game is defined
with respect to a scheme CGKA and an adversary A. We require that the adversary’s
first call is to oracle INIT, which can only be queried once.



On the Cost of Post-compromise Security 283

security notions. The weakest, OW-k-PCS¬RC, is used for our lower bounds in
Sect. 3.2 and the strongest, IND-k-PCSRC, for our upper bound of Sect. 5.

The security games are formally defined in Fig. 4. They provide the adver-
sary A with an initialization oracle INIT that allows for a single query, that has
to be made before using any of the other oracles. It enables A to set up a universe
of users and initialize a group. Using oracle ROUND, the adversary can specify
sets of users to concurrently perform updates. All operations are then processed
by the members of the group, and the round counter t is increased. Further, A
can, at any point in time, use the corruption oracle CORR(u) to reveal user u’s
current internal state stu, and, in the case that mode = RC, additionally the
random coins u sampled in the current round while updating. Finally, A, at
an arbitrary point in time t∗, can make a single query to the challenge ora-
cle CHALL, which in Game IND-k-PCSCGKA

mode (A), depending on challenge bit b∗,
returns either the current group key or a uniformly random key. The adversary
wins if it is able to correctly guess b∗ and safety predicate safe-k-PCS holds.
In Game OW-k-PCSCGKA

mode (A), the oracle instead stores the current group key as
challenge key K ∗. This has to be computed by A in order to win, again with
the restriction that safe-k-PCS holds. The predicate safe-k-PCS verifies that,
for every user that at time t∗ is a member of the group, (a) they were never
corrupted after t∗ and (b) since their last corruption before t∗ they performed
at least k updates.

Definition 2 (k-PCS security). Let CGKA be a continuous group-key
agreement scheme, k ∈ N, and mode ∈ {RC,¬RC}. Then CGKA is
IND-k-PCSmode secure, if for every PPT adversary the advantage function
|Pr[IND-k-PCSCGKA

mode (A) ⇒ 1 | b∗ = 1] − Pr[IND-k-PCSCGKA
mode (A) ⇒ 1 | b∗ = 0]| is

negligible.
Further, CGKA is OW-k-PCSmode secure, if for every PPT adversary the

advantage function Pr[OW-k-PCSCGKA
mode (A) ⇒ 1] is negligible.

Remark 1. We make the following observation about the security model.

(i) In this work we are interested in the communication cost of achieving post-
compromise security, and thus ignore attacks breaching forward secrecy, i.e.,
learning group keys from previous rounds by corrupting users. This is encoded
in lines 35 and 36 of the safe predicate, which disallow corrupting users after
the challenged round t∗.

(ii) Our security model is quite weak. In particular, all initialization and update
operations are honestly generated and immediately processed by all users
in synchronous rounds. We point out that this only strengthens our lower
bounds, as they hold even for a security notion far weaker than what one
would aim for in practice. While this leaves open the possibility of improving
on our bounds by switching to a stronger security notion, we point out that
they are closely matched by the upper bound of Sect. 5, which we expect to be
easily made secure in asynchronous settings with a semi-honest server using
standard techniques to ensure consistency (e.g. signatures, a key schedule,
transcript and parent hashes, etc. [2,6,10]).
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Restrictions. Our lower bounds apply to CGKA schemes CGKA satisfying the
following two restrictions.
– CGKA does not use nested encryption (NNE). This means that users do not

create layered ciphertexts of the form Enc(pk1,Enc(pk2,m)).
– CGKA does not distribute work (NDW). This means that, if in any round a

user get access to a secret they did not previously possess, then they must
have either sampled it by themselves or recovered it from the update message
of a single user.

The properties are not directly exploited in our proofs in the combinatorial
model. Instead, we use them to show that bounds in the combinatorial model
also hold in the symbolic model. We defer the restrictions’ formal definitions to
Sect. 4 (Definition 5 and Definition 7), where we will also formally justify their
impact on the combinatorial model. We point out that all CGKA schemes that
we are aware of satisfy both properties.

We also consider an additional property. We say that CGKA has publicly-
computable update cost (PCU) if it is always possible to determine the
size |MU u| of an update that a user u would produce if asked to update given
access only to public information, i.e., pub, as well as the sets of update mes-
sages sent so far. With this additional property we can show that not only there
exists a sequence of updates for which the total communication cost is at least
roughly n1+1/k · k/ log(k), but it is also possible to find the sequence using only
public information. Formally, CGKA schemes with publicly-computable update
cost are defined as follows.

Definition 3 (Publicly-computable update cost). Let CGKA be a CGKA
scheme. Consider an execution of game IND-k-PCSmode (or OW-k-PCSmode).
We say that CGKA has publicly-computable update cost if, for every round t
and for every user u ∈ Gt with internal state st t

u and public information pub,
it is possible to efficiently compute |MU |, where (st ′,MU ) ← Update(st t

u, pub; r)
would be the output of calling the update procedure, from public information at
the end of round t− 1 (i.e., all messages MI 0

u0
and MU t′

u sent in any round t′ ≤
t − 1, the sequence (Ut′)t′≤t−1, n, k, pub and u0). Note that, in particular,
the size of MU must be independent of the random coins r used to generate
the update message. We say that CGKA has offline publicly-computable update
cost if the same property holds using only the initialization messages MI 0

u0
, the

sequence (Ut′)t′≤t−1, n, k, pub and u0.

All CGKA schemes that we are aware of have offline publicly-computable update
cost. For example, for schemes based on ratchet trees, as for example TreeKEM
or CoCoA, the size of every user’s next update is fully determined by the position
of blank and non-blank nodes in the ratchet tree, which can be determined given
just the sequence of update/propose-commit operations.

3 Lower Bounds in the Combinatorial Model

In this section we define a self-contained combinatorial model capturing CGKA
schemes recovering from corruption in k rounds of updates and then prove a
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lower bound on the communication complexity of such schemes. The model is
given in Sect. 3.1, the bound in Sect. 3.2.

3.1 The Combinatorial Model

We now present a purely combinatorial model capturing an adversary interacting
with a correct and secure CGKA scheme built from public-key encryption and
pseudorandom functions. The interaction proceeds in rounds, during which users
schedule update operations and at the end of which a set of users is corrupted.

High-Level Structure. An instance of the combinatorial model is characterized
by a tuple (n, k, tmax, C0) and a sequence (Ut, Ct)tmax

t=1 , where n, k, tmax ∈ N,
C0 ⊆ [n], and Ut, Ct ⊆ [n] for all t. This corresponds to setting up the group G =
[n] and in round 0 corrupting the set of users C0. The sequence (Ut, Ct)tmax

t=1

determines the operations performed in the following tmax rounds, where

– Ut is the set of users performing an update in round t, and
– Ct is the set of users corrupted at the end of round t.

Integer k determines the safety requirement imposed on the CGKA scheme.
More precisely, we aim to capture CGKA schemes that recover from corruption
after k updates, meaning that if every user did at least k updates since the last
round in which they were corrupted, then the group must agree on a secure
key. Formally, consider an instantiation of the combinatorial model with respect
to (n, k, tmax, C0) and (Ut, Ct)t as described above. We say that a round t ∈
{0, . . . , tmax} is safe, if for every user u ∈ G such that u ∈ Ct′ for some t′ there
exist rounds t1, . . . , tk such that

u ∈ Uti
for all i ∈ {1, . . . , k} (1)

and

max{tc ∈ {0, . . . , tmax} : u ∈ Ctc
} < t1 < · · · < tk ≤ t . (2)

Recall that since we want to only argue about post-compromise security but not
forward-secrecy the condition also excludes the corruption of users after round t.

Set System and Cost Function. The main intuition behind the combinatorial
model is to associate the secure PKE and PRF keys present in the CGKA scheme
in round t to the set of users in G that have access to them at this point in
time, i.e., can recover them from their current internal state. Here ‘secure key’
refers to keys that were established by update operations and cannot be trivially
recovered from the adversary. The adversary is able to get access to keys directly
by corrupting users’ states, or by recovering them from protocol messages. The
latter is possible if the message contains an encryption of the key under a key
the adversary has access to, or if it contains the key in plain. In every round
the sets S(sk) of users having access to secure keys sk form a subset of 2G .
Intuitively, security and correctness of a CGKA scheme imply that the system
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Fig. 5. Top: Illustration of a ratchet tree and its associated set system St. Vertices
contain key-pairs (above) and the associated set (below). Keys already present in the
system at time t − 1 are depicted in black and keys added by user 5 in round t
in blue with shaded background. Edges indicate that knowledge secret key of the
source implies knowledge of the one of the sink. Dashed, blue edges correspond to
ciphertexts Encpksource(sk sink) sent by user 5 in round t, solid edges either to keys
derived using a PRF in round t (depicted in blue) or to keys communicated in a
previous round (depicted in black). Accordingly, user 5 generated key-pairs (pk5, sk5)
and (pkd, skd) using fresh randomness, and (pkc, skc) and (pke, ske) using a PRF.
Bottom: Depiction of the sets required to exist by property (iii) using the exam-

ples S = {1, . . . , 7} =
⋃k

i=0 Si and S′ = {5, 6, 7} =
⋃k′

i=0 S′
i with k = 4 and k′ = 1

corresponding to the secret keys ske and skd respectively. We have S0 = {5} = S′
0,

S1 = {1, 2}, S2 = {3}, S3 = {4}, and S4 = {6, 7} = S′
1. Note that the number of

ciphertexts sent to communicate the secret keys corresponding to S and S′ to their
members are 5 > k and 1 = k′ respectively, thus satisfying the inequality on the user’s
cost function required by property (iii). (Color figure online)

of associated sets should satisfy certain properties, and that adding sets to it by
scheduling updates comes at the cost of sending ciphertexts. These properties
are stated below and, looking ahead, will serve as the main tools to derive our
lower bound. For an illustration of the set system corresponding to a ratchet
tree as described in the introduction see Fig. 5 (Top).

Formally, consider an instantiation of the combinatorial model with respect
to (n, k, tmax, C0) and (Ut, Ct)t. We require the existence of a cost function Cost
and a sequence (St)0≤t≤tmax of set systems St ⊆ 2G . The cost function and
sequences are required to satisfy three properties to be given further below. The
cost function takes as input

– the user u ∈ G performing the update operation,
– the round t with 1 ≤ t ≤ tmax, and
– the history Mt = (n, k, (Ut′)1≤t′<t) of sets of users performing updates in the

previous rounds.
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Its output is an integer Cost(u, t,Mt). For better legibility, we will simply write
Cost(u, t) whenever the third input is clear from context.

Note that while the cost of a user’s update in a given round depends on the
operations performed in previous rounds, it does not depend on the sets Ct′ of
users corrupted in previous rounds. The latter is justified, since, looking ahead,
in the security game in the symbolic model, users are not aware whether they
are corrupted or not. However, if asked to update by the adversary, they may
decide to create particular ciphertexts depending on the history of operations
performed so far, as these may have impacted their internal state.

Requirements on Set System and Cost Function. We now give three
properties to be satisfied by the cost function and the set system.

(i) Correctness of the CGKA scheme implies that group members share a com-
mon key. Further, by security, whenever a round is safe, the corresponding
shared key must not be known to the adversary at this point in time.
Formally, if round t is safe we require that G = [n] ∈ St.

(ii) If a user is corrupted in some round, all keys they currently have access to
can also be recovered by the adversary and therefore should be considered
insecure. This is represented by St not containing any sets that include a
party corrupted in round t.
Formally, for all t ∈ {0, . . . , tmax} and all u ∈ Ct we have that S ∈ St implies
that u /∈ S.

(iii) The third property captures how users agree on new keys when using
basic cryptographic primitives (PRFs and PKE) and which cost in terms
of ciphertexts sent is incurred by communicating these keys to other users. A
user u ∈ G can always sample a new key locally. Further, from such a key or
one already present in the system they can derive a chain of new keys using
PRF evaluations. To communicate the key sk to other users they can encrypt
it under a public key pk ′ that must have either been present in the system at
the end of round t−1 or been previously generated by u in round t. From the
resulting ciphertext, every user with access to the corresponding sk ′ is able
to derive sk as well as all keys derived from sk using PRF evaluations. Note
that if sk ′ is insecure, then the adversary can recover sk .

In terms of sets this essentially means that the set S ∈ St of users able
to recover sk can be covered by a union of sets in St−1 (and potentially a
singleton {u} in case user u generated the starting point of the PRF evaluation
chain from fresh randomness) and that the cost of the user communicating sk
to the other members of S should be at least the number of sets forming the
union (where sometimes one ciphertext can be saved, as the key serving as a
starting point of a chain of PRF evaluations needs not be communicated).
Formally, for every t ≥ 1 and every S ∈ St we require that there exist h ∈ N≥0

and S0, . . . , Sh, such that either

S0 = {u} for some u ∈ Ut or S0 ∈ St−1 , (3)
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and if h ≥ 1 then Si ∈ St−1 for all i ∈ {1, . . . , h}. Further, we require that

S ∩ C≤t ⊆
h⋃

i=0

Si (4)

where C≤t =
⋃

0≤t′≤t Ct′ are the users that have been corrupted at least once
in or before round t. And, regarding the cost function, we require that

∃u ∈ S0 ∩ Ut such that Cost(u, t) ≥ h . (5)

Note that if in Eq. 3 we have S0 = {u} then the user in Eq. 5 must be u.
Finally, we can connect the cost of adding a set to the set system St to its
MinCover with respect to St−1. Indeed, for S ∈ St, if u is the user required
to exist by Eq. 5, then by Eqs. 3, 4, and 5

Cost(u, t) ≥ |minCover⊇(S ∩ C≤t,St−1 ∪ {u})| − 1 . (6)

The precise connection between the combinatorial model and the symbolic
model is established in Sect. 4. There, we essentially show that an adversary
playing the OW security game in the symbolic model with respect to a correct
and secure CGKA scheme that satisfies the restrictions described in Sect. 2.2
implies the existence of a set system St satisfying Properties (i)–(iii) if one uses
the number of ciphertexts sent by a user u in round t as cost function Cost(u, t).

3.2 Lower Bound in the Combinatorial Model

We now give a lower bound on the communication cost required to recover
from compromise within k rounds in the combinatorial model. Conceptually,
our proof proceeds in two steps. First, we lower bound the sum of the maximal
per-user update cost over all rounds. This bound is a best-case bound, i.e., it
holds with respect to every sequence (Ut)t of updating users. In a second step we
then prove our main result, a bound on the total cost required to recover from
corruption. This bound is worst case, i.e., it holds with respect to an adversarially
chosen sequence of updating users. Concretely, we will exploit that the cost of a
user u ∈ Ut updating in round t does not depend on the cost of other members
of Ut updating concurrently. This enables us to find a sequence (Ut)t for which
all members of Ut have roughly the same update cost, which yields the desired
bound as the bound on the maximal per-user update cost implies that the cost
of the users in Ut in sufficiently many rounds t must be quite large.

Lower Bound on the Maximal Per-user Update Cost. We first consider
the scenario that after an arbitrary setup phase of tc rounds a set of c users in
G = [n] is corrupted and that after m subsequent rounds of updates we have
G ∈ St (intuitively corresponding to the existence of a secure group key). Below,
we bound the sum of the maximal per-user update cost over the m rounds. Note
that this bound holds irrespective of how the sets Ut of updating users are chosen.
The proposition’s proof is in the full version of this paper [8].
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Proposition 2. Let n, k, tc,m ∈ N, C ⊆ [n], and c = |C| such that ln(c) ≥
m − 1. Let tmax = tc + m and consider an instantiation of the combinatorial
model with respect to (n, k, tmax, C0), (Ut, Ct)t, where Ctc

= C, Ct = ∅ for
t �= tc, and (Ut)t is an arbitrary sequence.

If G = [n] is contained in the set-system Stmax at the end of round tmax =
tc + m, then we have

m∑

t=1

max
u∈Utc+t

Cost(u, tc + t) ≥ (m − 1)
(

m−1
√

c − 1
)
.

From Maximal Per-user Cost to Total-Communication Cost. We now
show that for an adversarially chosen sequence (Ut)t of sets of updating users
actually almost all users have to adhere to the bound derived in the previous
paragraph. Intuitively, after an arbitrary warm up phase of tc rounds and cor-
rupting a linear fraction of users in round tc, we construct (Ut)t such that either
all updating users have roughly the same update cost, or all users have a very
small update cost. This procedure will then be repeated for sufficiently many
rounds to force that a linear fraction of all users in the group has updated at
least k times. In this case the final round tmax must be secure enforcing that
G ∈ Stmax . This allows us to use the bound derived in the previous paragraph to
show that the communication cost of rounds corresponding to the former case
must be substantial. We obtain the following theorem, its proof, as well as the
one of the following corollary, being in the full version of this paper [8].

Theorem 3. Let k, n, tc ∈ N and 0 < ε < 2/5 be a constant such that (1+ε)k ∈
N. Set αε = ε−5/2ε2+ε3

8(1+ε) > 0 and tmax = tc + (1 + ε)k. If 3 ≤ k ≤ ln(αεn),
then for every sequence (Ut)tc

t=1 there exists a set C ⊆ [n] of size �αεn� and a
sequence (Ut)tmax

t=tc+1 such that the instantiation of the combinatorial model with
respect to (n, k, tmax, ∅) and (Ut, Ct)tmax

t=1 , where Ctc
= C and Ct = ∅ if t �= tc,

satisfies

(1+ε)k∑

t=1

Cost(Utc+t) ≥ (k − 1)
4

·
⌊

2εn

5(1 + ε) �log(k)�

⌋ (
(αεn)

1
(1+ε)k−1 − 1

)
.

While we phrased Theorem 3 as a single-stage experiment, i.e., only consider the
communication required to recover from corruptions made in a single round, it
easily carries over to a repeated experiment consisting of repeatedly corrupting
a linear fraction of the users from which the group has to recover within (1+ε)k
rounds of updates. Note, that the setting of Theorem 3 allows for an arbitrary
setup phase (Ut)t≤tc

of tc rounds. Thus, by simply applying the arguments in
the proof iteratively to each recovery phase, we obtain that the derived bound
holds even in an amortized sense, i.e., even in this setting the recovery from each
corruption requires communication of order nk (1+ε)k

√
n/ log(k).

Corollary 4. Let k, n, tc, ε, and αε be as in Theorem 3. Let zmax ∈ N and for
0 ≤ z < zmax set tc,z = tc+z·(tc+(1+ε)k) and tmax = zmax·(tc+(1+ε)k). For all
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collections of sequences (Ut)
tc,z

t=tc,z−tc+1 with 0 ≤ z < zmax, there exist sets Cz ⊆
[n] each of size �αεn� and collections of updates (Ut)

tc,z+(1+ε)k
t=tc,z+1 such that for

every instantiation of the combinatorial model with respect to (n, k, tmax, ∅) and
(Ut, Ct)tmax

t=1 , where Ctc,z
= Cz and Ct = ∅ if t /∈ {tc,z | 0 ≤ z < zmax}, we have

tc,z+(1+ε)k∑

t=tc,z+1

Cost(Utc,z+t) ≥ (k − 1)
4

·
⌊

2εn

5(1 + ε) �log(k)�

⌋ (
(αεn)

1
(1+ε)k−1 − 1

)

for very 0 ≤ z < zmax.

4 Lower Bounds in the Symbolic Model

In this section define CGKA in a symbolic model, an approach introduced for
public key encryption by Dolev and Yao [18], following the work on multicast
encryption by Micciancio and Panjwani [24], and generalized to CGKA by Bien-
stock, Dodis, and Rösler [12], who considered concurrent updates for schemes
recovering in two rounds. A similar model was also used to lower bound the
communication incurred by users in CGKA schemes in order to achieve PCS, in
a setting of multiple groups [1]. We show how the questions we are interested
in can be translated from the symbolic to the combinatorial model of Sect. 3,
which allows us to conclude that the bounds derived in the combinatorial model
also hold with respect to the symbolic model.

4.1 The Symbolic Model

We consider schemes constructed from pseudorandom functions and public-key
encryption, both modeled as idealized primitives that take as input symbolic
variables, and output symbolic variables. To more easily distinguish these from
non-symbolic variables we use typewriter font. We use the following syntax.

(i) Pseudorandom function: Algorithm PRF takes as input a key K and a mes-
sage m and returns a key K′ = PRF(K, m).

(ii) Public-key Encryption: A PKE scheme consists of algorithms (PKE.Gen,
PKE.Enc,PKE.Dec), where PKE.Gen on input of secret key sk returns the
corresponding public key pk. PKE.Enc takes as input a public key pk and
a message m, and outputs a ciphertext c ← PKE.Enc(pk, m) with message
data type. PKE.Dec takes as input a secret key sk and a ciphertext c,
and outputs a message m = PKE.Dec(sk, c). We assume perfect correctness:
PKE.Dec(sk,PKE.Enc(pk, m)) = m for all sk, pk = PKE.Gen(sk), and mes-
sages m.

As data types, we consider messages, public keys, secret keys, symmetric
keys, and random coins, the latter being a terminal type. Which variables can
be recovered from a set of messages M, is captured by the entailment relation �.
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Data type Grammar rules

Message m ← sk, pk,PKE.Enc(pk, m)
Public key pk ← PKE.Gen(sk)
Secret key sk ← K

Key K ← r,PRF(K, m)
Random coin r terminal type

Entailment relation

m ∈ M ⇒ M � m
M � m, pk ⇒ M � PKE.Enc(pk, m)

M � K ⇒ M � PRF(K, m) for all m
M � PKE.Enc(pk, m), sk : pk = PKE.Gen(sk) ⇒ M � m

Note that the entailment relation captures (ideal) correctness and (ideal)
security of PRF and PKE, as recovering a PRF output or an encrypted message
from a ciphertext requires knowledge of the secret key. Security is effectively
captured by the of a sequence of entailment relations that recover the appropriate
message. Examples and further comments (in the setting of multicast encryption)
can be found in [24, Sect. 3.2]. The set of messages which can be recovered from
M using relation � is denoted by Der(M) := {m : M � m}.

We point out that the model of [12] covers more primitives, concretely, dual
PRFs, updatable PKE, and broadcast encryption. It is an interesting open ques-
tion to consider whether a translation to our combinatorial model is also possible
if one takes these additional primitives into account. For a brief discussion on
challenges to overcome if one would allow dual PRFs see Remark 3.

Continuous Group-Key Agreement in the Symbolic Model. A CGKA
scheme CGKA in the symbolic model follows the syntax of Sect. 2.2. Additionally,
we require some of the inputs to CGKA’s algorithms to be symbolic variables.
Concretely, we require that the group keys K, public and internal states pub and
st, random coins r as well as the control messages MI and MU are symbolic. They
can also have a non-symbolic counterpart which we omit as the properties we
study and the security game we consider in the symbolic model do not depend on
the non-symbolic variables. However, we often distinguish between symbolic ran-
dom coins r and non-symbolic randomness r as this is used in some of the proofs.
Intuitively, symbolic randomness represents the new secrets being sampled, while
non-symbolic randomness allows to capture the fact that the algorithms may flip
a coin in order to determine their actions (e.g., the update algorithm might flip
random coins to decide whether to generate certain ciphertexts or not). Further,
we assume that the context symbolic variables, e.g., which key corresponds to
a certain ciphertext, or which keys correspond to a particular set of users, are
implicitly known to the algorithms.

We use the game of Fig. 3 to define correctness of CGKA, where we addi-
tionally require that, for every algorithm, each of its symbolic outputs can
be derived from its symbolic inputs using the entailment relation �. E.g., if
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user u computes (st′
u, MUu) ← Update(stu, pub; r, r), then we require that

st′
u, MUu ∈ Der({stu, pub, r}), and similarly if st′

u ← Process(stu, pub, M) then
it must hold that st′

u ∈ Der({stu, pub, M}).
Regarding security, we target the notion of OW-k-PCS¬RC of Definition 2.

As our goal is to prove lower bounds, using one-wayness as the targeted security
notion only makes our results stronger compared to using indistinguishability.

We structure the game in rounds, that correspond to the oracle calls that
occur between two subsequent calls to oracle ROUND. We say a query to some
oracle was made in round 0 if it was made before the first query to ROUND,
and in round t for t ∈ {1, . . . , tmax}, if it was either the tth query to ROUND,
or, for calls to CHALL or CORR, if it was made after the tth and before the
(t + 1)st query to ROUND. This allows us to fully characterize adversaries A by
the sequence of inputs to the oracles made in each round. For round 0, these
are the input (n,G0, u0) to INIT and the set C0 of corrupted users; for round t,
the set Ut of updating users queried to ROUND, as well as the set Ct of users
corrupted during the round; and finally, t∗ indicating in which round the single
call to CHALL is made. An explicit description of the OW-k-PCS¬RC security
game in the symbolic model can be found in Fig. 7.

Definition 4 (Symbolic k-PCS security). Let CGKA be a continuous group-
key agreement scheme, k ∈ N. Then CGKA is OW-k-PCS¬RC secure, if for all
(n, u0, C0, (Ut, Ct)tmax

t=1 , t∗) it holds that

Pr[OW-k-PCSCGKA
¬RC (n, u0, C0, (Ut, Ct)tmax

t=1 , t∗) ⇒ 1] = 0

where the probability is taken over the non-symbolic randomness.

This notion of security, in which for any sequence (n, u0, C0, (Ut, Ct)tmax
t=1 , t∗)

the game is lost, is standard in the literature of symbolic security and used, for
instance, in [24] and [12]. The requirement that the probability be zero, implies
that the game is not won for every possible choice of non-symbolic randomness.
The reason for this choice rather than requiring that it be a negligible function
in log|R|, where R denotes the set of non-symbolic randomness, is that it may
very well be the case that |R| is small since this is not the randomness used to
sample new keys (when it would be reasonable to work with log|R| as a security
parameter). For instance, one could just flip a coin (i.e., R = {0, 1}).

In the game we require that all symbolic random coins used by users are
generated disjointly. More precisely, if rt

u denotes the set of random coins used
by user u in round t in the init/update procedures, then we require that r ∈ rt

u

implies r /∈ rt′
u′ for all (u, t) �= (u′, t′).

We now define a property of CGKA schemes that we will require for our
bounds. It essentially forbids schemes to generate layered ciphertexts of the
form PKE.Enc(pk2,PKE.Enc(pk2, m)). For some intuition on how it factors into
our translation to the combinatorial model see Remark 3.

Definition 5 (No nested encryption). We say a scheme CGKA does not
use nested encryption if, for all ciphertexts c ← PKE.Enc(pk, m), the encrypted
message is either a secret key or a random coin, i.e., of type sk, K, or r.
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Our goal for the remainder of this section is to show that the task of deriving
lower bounds on the communication complexity of correct and secure CGKA
schemes translates to the analogue in the combinatorial model. To this end,
we define useful secrets, i.e., secret symbolic variables that the adversary is not
able to derive, and associate them to the set of users with knowledge of them.
We prove that these sets satisfy the properties described in Sect. 3.1 for a cost
function that counts the number of messages sent in a given round by a user.

Useful Secrets and Associated Sets. First, we establish some notation. Con-
sider an adversary playing OW-k-PCS¬RC. We denote the set of public messages
sent up to and including round t by Mt, i.e., for t = 0 we set M0 = {pub, MI0u0

} to
be the output of oracle Init; and for every round t ≥ 1 we extend the set by the
output of oracle ROUND: Mt ← Mt−1 ∪ MU, where MU = ROUND(Ut). Further, for
t ≥ 0 we track all variables the adversary learned up to and including round t,
via the corruption oracle, in a set CORt. I.e., at the beginning of round t, the
set CORt is initialized to CORt−1 and, if user u is corrupted in round t, then their
current state stu (meaning the one after all oracle calls of the round) is added to
the set. Note that CORt matches the set CORt, defined in game OW-k-PCS¬RC,
that tracks the values known to the adversary via corruption. This allows us
to define the notion of useful secrets s, i.e., variables of type r, K, and sk that
cannot be derived by the adversary, and associate to them the set of users that
in round t have access to s.

Definition 6 (Useful secrets and associated sets). Consider adversary A
playing game OW-k-PCS¬RC in the symbolic model and let t ∈ N, and s be a
variable of type r, K, or sk generated during the game, before or in round t. We
say that s is useful in round t if s /∈ Der({Mt, CORt}). Let s be useful in round t.
We define the associated set of s in round t as

S(s, t) := {u ∈ [n] | s ∈ Der(sttc,u
u , (rt′

u )tc,u+1≤t′≤t, Mt)} ⊆ [n]

where tc,u := max{t̃ | u ∈ Ct̃ and t̃ ≤ t} (tc,u = −1 if u has never been cor-
rupted). We define the associated set of s after the setup as

S(s,−1) := {u ∈ [n] | s ∈ Der(st−1
u , pub)} ⊆ [n] .

We define the set system in round t as

St := {S(s, t) | s is useful in round t} ⊆ 2[n] .

The intuition behind the definition of S(s, t) is that any user who can derive
the secret s in a round t′ such that tc,u+1 ≤ t′ ≤ t (i.e., s ∈ Der(stt′

u , Mt′)) should
belong to the set S(s, t). This is indeed the case since stt′

u ⊆ Der(stt′−1
u , rt′

u , Mt′)
because symbolic outputs of algorithms can always be derived symbolically from
their symbolic inputs. The notation st−1

u refers to the state that u is assigned
by the Setup algorithm.

We now define what it means for a scheme to not allow users to distribute
work. Intuitively, this requirement says that whenever a secret (be it already
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existing or newly generated) is communicated to a set of users, who did not
yet have access to it, then this communication must have been done by a single
user. For example, this notion excludes schemes in which two users u1, u2, already
sharing a common key, communicate this key to users u3 and u4 by having u1

encrypt it to u3, and u2 encrypt it to u4.
See Fig. 6 for an illustration of a scheme that does make use of distributed

work at hand of a ratchet tree.

Definition 7 (No distributed work). Consider a scheme CGKA and an
execution of game OW-k-PCS¬RC with respect to CGKA in the symbolic model.
For user u and round t let stt

u denote the user’s state in round t and rt
u the

random coins generated in round t. We say that CGKA does not allow users to
distribute work if, for all t and every secret symbolic variable s, we have that
there exists a user u′ such that for every u ∈ S(s, t) \ (S(s, t− 1)∪{u′}) it holds
that s ∈ Der(stt−1

u , Mt−1, MUt
u′) and s ∈ Der(stt−1

u′ , rt
u′ , Mt−1).

Connection to Combinatorial Model. In the following we show that the
three properties required in the combinatorial model are satisfied by the symbolic
model’s associated set system. The first two are quite natural observations, the
last essentially corresponds to a generalization of a statement that is shown in
the proof of [12, Theorem 2] and can be seen as quantifying the cost of adding
new sets to the set system St by updating. We measure the cost in terms of
the number of symbolic variables sent by a user u in round t and denote this
quantity |MUt

u|. When interested in the cost of a round t, we take the sum over
all users u ∈ Ut.

Intuitively, Property (i) is enforced by correctness and security, as on one
hand every member of Gt must be able to derive the current group key from
their state, and the safety predicate being satisfied implies that the group key at
time t∗ must be useful, i.e., Gt∗ ∈ St∗ . Property (ii) corresponds to the simple
fact that no secret derivable from stu can be useful in a round in which the user
gets corrupted, as in this case it can be derived by the adversary as well.

Equivalently, a set S ∈ St cannot contain any users in Ct. Finally, Prop-
erty (iii) corresponds to the intuition, that the secret s belonging to a new
set S = S(s, t) needs to be communicated to (at least) every member u of S. If s
cannot be derived using PRF evaluations from a secret already known to u, then
either it, or a secret which can be derived from using PRF, must be communi-
cated to u by encrypting it to a useful key that was known to the party in the
previous round, i.e., in round t−1. In other words, this determines a covering of
the set S with sets in St−1 and possibly a singleton {u} for some updating user
u ∈ Ut with the property that the number of symbolic variables contained in the
messages exchanged in round t is at least the number of sets in the said cover
minus one. When we consider schemes in which users do not distribute work,
we obtain a simpler statement for property (iii) and it matches Eq. 5 from the
combinatorial model.



On the Cost of Post-compromise Security 295

Fig. 6. Top: Example of a ratchet tree and its associated set system St making use
of distributed work. Vertices contain key-pairs (above) and the associated set (below).
Edges indicate that knowledge of the secret key of the source implies knowledge of
the one of the sink. Dashed edges correspond to ciphertexts Encpksource(sk sink) sent
by user 1 in round t, solid edges either to keys derived using a PRF in round t or
to keys communicated in a previous round. Keys already present in the system at
time t − 1 are depicted in black and keys added by user 1 in round t in blue with
shaded background. The dotted edge corresponds to a ciphertext sent by user 5 in
round t. Note that the associated set of (pka, ska) changes in round t as an effect of
this ciphertext, and that users 6 and 7 need to decrypt ciphertexts sent by two different
users, namely users 1 and 5, in order to recover skd, implying that the scheme does
indeed use distributed work. Bottom: Depiction of the sets proven to exist in Lemma 1
using the example S = {1, . . . , 7} =

⋃k
i=0 Si in the set system depicted above. Note

that k = 4 matches the number of ciphertexts sent in round t to establish S, which,
however, stem from more than a single user (compare Lemma 1; (iii)). (Color figure
online)

Lemma 1. Let CGKA be a perfectly correct continuous group-key agreement
scheme that is OW-k-PCS¬RC-secure and does not use nested encryption. Con-
sider an adversary playing game OW-k-PCS¬RC of Fig. 7 in the symbolic model.

(i) If KGt
is the group key in round t, then S(KGt

, t) = Gt. In particular, if
oracle CHALL is queried in round t∗ and the safety predicate is satisfied then
we have Gt∗ ∈ St∗ .

(ii) If user u was corrupted by the adversary in round t, then for every S ∈ St it
holds that u /∈ S.

(iii) Let t ≥ 1. Recall, that Ut ⊆ [n] indicate the users that updated and for user u
the sets MUt

u correspond to the control messages generated by performing the
corresponding update operation. Then for every set S ∈ St there exist k ∈ N≥0

and sets {Si}k
i=0 such that either

(a) S0 = {u} for some u ∈ Ut, or (b) S0 ∈ St−1
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and, if k ≥ 1, Si ∈ St−1 for every i = 1, . . . , k. Furthermore, it holds that

S ∩ C≤t ⊆
k⋃

i=0

Si and
∑

u∈Ut

|MUt
u| ≥ k .

where C≤t =
⋃

0≤t′≤t Ct′ are the users that have been corrupted at least once
in round t or before. If CGKA does not allow users to distribute work, then
the last statement can be replaced by the following stronger expression:

∃u ∈ S0 ∩ Ut such that |MUt
u| ≥ k .

The lemma’s proof is in the full version of this paper [8].

Remark 2. Looking ahead, we observe the following. Consider an execution of
game OW-k-PCS¬RC in the symbolic model, where CGKA is a perfectly correct,
OW-k-PCS¬RC-secure CGKA scheme which does not use nested encryption and
does not allow users to distribute work, and set Cost(u, t) = |MUt

u| to be the
number of symbolic variables sent by u in round t. Then, by Lemma 1 the
associated set system St (Definition 6) and Cost satisfy all properties of the
combinatorial model described in Sect. 3.1. As a consequence, to prove lower
bounds on the communication cost of CGKA, i.e., the number of ciphertexts sent
during the execution of the game, it is sufficient to lower bound the cost function
for a scheme satisfying the combinatorial model.

Remark 3. Lemma 1 requires that CGKA not use nested encryption, i.e., not
generate encryptions of ciphertexts. On a technical level, this restriction guaran-
tees that for the graph constructed in the lemma’s proof for every edge (s1, s2)
we have that knowledge of secret s1 implies knowledge of s2. On a more intuitive
level, allowing ciphertexts of the form c = Enc(pk2,Enc(pk1, m)) would enable
users to send ciphertext c in one round but release message m in a later round
by at this point in time sending sk2 in the plain, at cost of no additional cipher-
texts. While this does not seem to help with the total communication cost, it
could in principle enable users to distribute their workload over several rounds.
An analogous statement holds, if one allows the use of dual PRFs (as in [12]).

Following the idea outlined in Remark 2 it can be shown that the worst-case
lower bound on the communication cost of CGKA schemes in the combinatorial
model carries over to the symbolic model for OW-k-PCS¬RC-secure schemes.

Corollary 5. Let k, n, tc, ε, and αε be as in Corollary 5 and let CGKA be
a correct and OW-k-PCS¬RC-secure CGKA scheme that does not use nested
encryption, and does not allow users to distribute work. Let zmax ∈ N and for
every integer 0 ≤ z < zmax set tc,z = tc + z · (tc + (1 + ε)k) and tmax =
zmax · (tc + (1 + ε)k).

If 3 ≤ k ≤ ln(αεn), then for an arbitrary setup phase of the group G0 =
Gt = [n] and zmax arbitrary phases of tc rounds of updates (Ut)

tc,z

t=tc,z−tc+1 with
0 ≤ z < zmax and any choice of non-symbolic randomness in the security game
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Fig. 7. Security game OW-k-PCS¬RC in the symbolic model with respect to the
sequence (n, u0, C0, (Ut, Ct)

tmax
t=1 , t∗) of inputs to the oracles.

OW-k-PCS¬RC, there exist sequences of updates (Ut)
tc,z+(1+ε)k
t=tc,z+1 and sets of cor-

rupted users Cz ⊆ [n] each of cardinality �αεn� such that the total communication
cost satisfies

tc,z+(1+ε)k∑

t=tc,z+1

Cost(Utc,z+t) ≥ (k − 1)
4

·
⌊

2εn

5(1 + ε) �log(k)�

⌋ (
(αεn)

1
(1+ε)k−1 − 1

)

for every 0 ≤ z < zmax.
If CGKA has publicly-computable update cost (Definition 3), the sequences of

sets (Ut)
tc,z+(1+ε)k
t=tc,z+1 can be computed online, i.e., Utc,z+t can be computed using

public information from the previous rounds. Furthermore, if CGKA has offline
publicly-computable update cost, the sequence of updates (Ut)

tc,z+(1+ε)k
t=tc,z+1 can be

computed after round tc,z and is independent of the non-symbolic randomness.

The corollary’s proof is in the full version of this paper [8].

5 Upper Bound on the Update Cost

In this section we briefly outline a simple CGKA protocol, inspired by CoCoA [2],
but both more general and, for certain values of k, with a lower total upload
communication cost. Accordingly, we termed it CoCoALight.

This short section assumes knowledge of CoCoA and only aims to give an
intuitive understanding of the ideas behind the proposed protocol. For space
reasons we defer a more thorough discussion on CoCoA and our protocol, as well
as the formal description and security proof to the full version of this work [8].
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The key feature of the protocol is that, as opposed to in CoCoA, users will
not rotate the keys for all nodes in their path in each update, but instead just
rotate the key of a single node. Users keep track, by means of a counter, of which
node they last refreshed, and will, in the following update, sample a new key for
its child, increasing the counter by 1. In the case that two users send ciphertexts
corresponding to the same node in the same round, the server will decide a
winner, as in CoCoA, and thus whose key will be the next one associated to said
node, according to any agreed-upon (potentially deterministic) rule. In the case
of such a collision, the user losing will still “make progress” and increase their
counter, and so, in the following update will attempt to rotate the key at the
next node in their path.

A consequence of rotating a single key per update is that knowledge of parts
of the old state might allow the recovery of this new key. In particular, the
knowledge of the secret key of the parent key of v, when v’s key is being refreshed,
allows the recovery of the latter (as its seed will be encrypted under the former).
Thus, informally, what ensures healing is the progressive rotation of all the path’s
keys after corruption, and starting from the leaf. Thus, in order to guarantee
healing in k rounds, CoCoALight uses trees of depth ≈ k/2, to ensure a rotation
of all keys in the path starting at the leaf happens within that period.

In particular, it can recover from an arbitrary number of corruptions in k
rounds and with a total communication cost in the order of nk k/2

√
n ciphertexts,

without any user coordination. While CoCoA’s communication complexity is
lower for low values of k, CoCoALight’s improves for values of k closer to log(n).
This improvement comes at the drawback of non-immediate forward secrecy,
which requires at least k/2 updates from each user prior to their corruption.
Likewise, we not prove it secure against any type of active adversary and, indeed,
only describe a simple protocol satisfying IND-k-PCSRC security. Nevertheless, it
shows that the lower bound on PCS from the previous section is only log(k)/ k/2

√
n

from being tight, for k ∈ [4, 2�log(n)� + 1]. Concretely, for the case k = log(n),
the gap is of order just log(log(n)).
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