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Abstract. Anonymous transfer, recently introduced by Agrikola,
Couteau and Maier [3] (TCC ’22), allows a sender to leak a message
anonymously by participating in a public non-anonymous discussion in
which everyone knows who said what. This opens up the intriguing pos-
sibility of using cryptography to ensure strong anonymity guarantees in
a seemingly non-anonymous environment.

The work of [3] presented a lower bound on anonymous transfer, rul-
ing out constructions with strong anonymity guarantees (where the adver-
sary’s advantage in identifying the sender is negligible) against arbi-
trary polynomial-time adversaries. They also provided a (heuristic) upper
bound, giving a scheme with weak anonymity guarantees (the adversary’s
advantage in identifying the sender is inverse in the number of rounds)
against fine-grained adversaries whose run-time is bounded by some fixed
polynomial that exceeds the run-time of the honest users. This leaves
a large gap between the lower bound and the upper bound, raising the
intriguing possibility that one may be able to achieve weak anonymity
against arbitrary polynomial time adversaries, or strong anonymity a-
gainst fine grained adversaries.

In this work, we present improved lower bounds on anonymous transfer,
that rule out both of the above possibilities:

– We rule out the existence of anonymous transfer with any non-trivial
anonymity guarantees against general polynomial time adversaries.

– Even if we restrict ourselves to fine-grained adversaries whose run-
time is essentially equivalent to that of the honest parties, we can-
not achieve strong anonymity, or even quantitatively improve over the
inverse polynomial anonymity guarantees (heuristically) achieved by
[3].

Consequently, constructions of anonymous transfer can only provide
security against fine-grained adversaries, and even in that case they
achieve at most weak quantitative forms of anonymity.

1 Introduction

Consider the following question:

Can a sender leak a message anonymously, by exclusively participating in
a public non-anonymous discussion where everyone sees who said what?
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In particular, we consider a setting where the participants are having a seemingly
innocuous discussion (e.g., about favorite cat videos). The discussion is public
and non-anonymous, meaning that the participants are using their real identi-
ties and everyone knows who said what.1 The non-sender participants are having
a real conversation about this topic. On the other hand, the sender is carefully
choosing what to say in a way that looks like she is participating in the conversa-
tion, but her real goal is to leak a secret document (e.g., NSA’s polynomial-time
factoring algorithm). At the end of the discussion, anyone should be able to
look at the transcript of the conversation and reconstruct the secret document,
without learning anything about which of the participants was the actual sender
responsible for leaking it. Despite its conceptual importance and simplicity, this
question has not been studied until recently, perhaps because it may appear
“obviously impossible”.

A formal study of the question was recently initiated by Agrikola, Couteau
and Maier in [3], who, perhaps surprisingly, raise the intriguing possibility of
answering it positively using cryptography. They do so by introducing a new
cryptographic primitive, dubbed anonymous transfer (henceforth AT), to cap-
ture the setting above. An anonymous transfer involves a sender with a secret
document, along with unaware dummy participants who send uniformly random
messages.2 The parties run for some number of rounds, where in each round the
sender and each participant sends a message. At the end of the protocol anyone
can reconstruct the secret document with high probability given the transcript.
However, the transcript cannot be used to identify who the sender is among the
participants.

Crucially, anonymous transfer does not rely on the availability of any (weak)
anonymous channels, nor on the availability of trusted third parties during the
execution. Instead, all protocol messages are assumed to be traceable to their
respective senders, and all other dummy participants only passively send ran-
dom messages. The simplicity of the setting makes it both a natural question
to explore, and raises very intriguing possibility of “creating” anonymity in a
seemingly non-anonymous environment.

Anonymous Transfer and Whistleblowing. One central motivation for studying
anonymous transfer is its relation to whistleblowing, where whistleblowers wish
to leak confidential and oftentimes sensitive information, while operating in a
potentially untrusted environment. The whistleblowers themselves usually risk
being subjected to both harsh social, financial, and even legal consequences if
caught [1,4,13]. One natural mitigation for those risks is the use appropriate
1 For concreteness, the public discussion could occur over Facebook or Twitter, and

users need to be logged in with their true identity.
2 This departs from our informal setting, where a real discussion occurred, while we

now assume that “real discussions” are uniformly random. Various works, including
[12,15,16] show how to embed uniform randomness into real discussions. Concretely,
it suffices to (randomly) encode uniformly random messages to the distribution rep-
resenting the (non-necessarily uniform) communication pattern, in a way that the
random messages can be decoded.
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tools, typically cryptographic ones, to ensure anonymity of the leak. And indeed,
a large body of work is devoted to build such tools.

One crucial aspect of these tools is the assumptions made on resources avail-
able to the whistleblower, which we would ideally like to minimize. From a
practical perspective, it seems unreasonable to assume the general availabil-
ity of, say, anonymous channels or online trusted parties to whistleblowers. In
fact, even given the availability of such anonymous channels, their use alone
could potentially be incriminating. From a more theoretical perspective, cryp-
tographic solutions leveraging such assumptions could be seen as bootstrapping
weaker forms of anonymity. Unfortunately, as far as we are aware, except the
work of [3], all prior work on whistleblowing assume the availability of an online
form of trust, and thus do not seem to answer the initial question we consider.
In contrast, [3] asks the intriguing question of whether cryptography can create
forms of anonymity in a more fundamental sense.

Prior Work on Anonymous Transfer. Along with introducing anonymous trans-
fer, [3] gives both lower bounds, and, perhaps surprisingly, plausibility results
on its feasibility. Let us introduce some notation. The correctness error ε = ε(λ)
of an anonymous transfer is the probability secret documents fail to be recon-
structed, and the anonymity δ = δ(λ) of an AT is the advantage a transcript of
the AT provides towards identifying the sender.3 An AT is in general interactive,
and consists of c = c(λ) rounds of interaction.

On the negative side, [3] shows that no protocol can satisfy close to ideal
forms of correctness and security, namely ε, δ = negl(λ), against all polyno-
mial time adversaries. They supplement this lower bound with a plausibility
result, by giving heuristic constructions of anonymous transfer with fine-grained
security. This heuristic construction provides negligible correctness error, but
weaker anonymity guarantees (namely δ ≈ 1/c, where c is the number of rounds),
and only against a restricted class of fine-grained adversaries, who are allowed
restricted to be at most O(c) times more powerful than honest users, which are
argued secure by relying on ideal obfuscation.

Still, the work of [3] leaves open the possibility of building anonymous transfer
with non-optimal correctness and security guarantees (e.g., δ ≤ 1/c) secure
against arbitrary polynomial-time attacks.

Our Results. In this work, we give improved lower bounds for anonymous trans-
fer, largely ruling out potential improvements over the heuristic upper bound
from [3]. Throughout this exposition, we will consider the case of 2 partici-
pants, one sender and a non-sender; [3] shows that lower bounds in that setting
translates to lower bounds for any larger number of parties. Our main theorem
shows that anonymous transfer with any non-trivial anonymity against general
polynomial-time attackers is impossible, solving a conjecture explicitly stated in
[3].

3 In this work, we use the convention that an AT is stronger as ε, δ tend to 0; this is
the opposite convention of [3] where this held whenever ε, δ tend to 1.
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Theorem 1 (Informal). For any 2-party anonymous transfer protocol for
ω(log λ)-bit messages with correctness error ε, for all polynomial α = α(λ), there
exists a polynomial-time adversary that identifies the sender with probability at
least 1 − ε − 1/α.

Note that, the probability of identifying the sender is essentially optimal, as,
with probability ε, the sender might act as a dummy party, and therefore this
rules out any non-trivial constructions.

Our attack runs in polynomial-time, but where the polynomial is fairly large.
This unfortunately does not match the run-time of allowed adversaries in the
heuristic construction of [3].

As a secondary result, we show that even in the setting of fine-grained adver-
saries whose run-time is essentially equivalent to that of the honest parties, we
can identify senders with probability 1/c whenever the secret document can
be reconstructed. This shows that, even in the fine-grained setting, one can-
not improve on the quantitative anonymity guarantees achieved by the heuristic
construction of [3].

Theorem 2 (Informal). For any 2-party anonymous transfer protocol for
ω(log λ)-bit messages, with correctness error ε, and having c-round of inter-
action, there exists a fine-grained adversary whose run-time matches that of the
reconstruction procedure up to additive constant factors, that identifies the sender
with probability at least (1 − ε − negl(λ))/c.

Theorem 2 in particular rules out all fine-grained protocols with a polynomial
number of rounds, if both δ and ε are negligible. For comparison, the lower bound
of [3] rules out very similar parameters, but where the run-time of the adversary
is m(λ) = λ · cg times larger than the one of the reconstruction procedure, for
some arbitrary constant g > 0.

Related Work on Whistleblowing. Current solutions for anonymous messaging
and anonymous whistleblowing include systems based on onion routing [10], mix-
nets [7], and Dining Cryptographer networks or DC-nets [2,6,9,11,14]. Addition-
ally, there have been other applications developed that utilize new techniques
inspired by the models mentioned previously [5,8,9]. Each of these solutions,
however, intrinsically assumes that there exists non-colluding honest servers that
participate to ensure anonymity. [3] is the first to introduce a model which does
not rely on this assumption. Impossibility results could be interpreted as evi-
dence that such an assumption is in fact necessary.

Open Problems. The main open question left by [3] and this work is the construc-
tion of fine-grained anonymous transfer matching their heuristic construction,
but under standard assumptions.

Additionally, our attack in Theorem1 runs in fairly large polynomial time,
which does not tightly match the fine-grained security proved in the heuristic
construction of [3]. We leave for future work the possibility of improving the
run-time of an attack matching the properties of Theorem1.
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2 Technical Overview

Anonymous Transfer. Let us first recall some basic syntax and notations for
anonymous transfer (henceforth AT), introduced in [3]. In this overview, we will
focus on 2-party anonymous transfer, which features a sender, a dummy party
and an external receiver.4,5 The sender takes as input a message μ to transfer.
The sender and the dummy party exchange messages in synchronous rounds,
with the restriction that the dummy party only sends random bits. An execution
of the transfer spans over c rounds of interaction, where both parties send a
message at each round. Given a full transcript, the external receiver can (attempt
to) reconstruct the original message. We say that an AT has ε correctness error
if the reconstruction procedure fails to recover μ with probability at most ε; and
that it is δ-anonymous if no adversary has advantage greater than δ in identifying
the sender amongst the two participating parties over a random guess, where the
adversary can choose the message to be sent.6 We refer to Sect. 3.1 for formal
definitions.

In that setting, [3] showed the following lower bound on AT.

Theorem 3 ([3], paraphrased). Every (two-party, silent receiver) AT with
ε-correctness and δ-anonymity against all polynomial-time adversary, and con-
sisting of c rounds, satisfies δ · c ≥ 1−ε

2 − 1/m(λ) for all polynomial m(λ).

In particular, no AT can satisfy δ, ε = negl(λ) (assuming c = poly(λ), which
holds if participants are polynomial-time). More precisely, [3] show, for all poly-
nomial m(λ), an attack with runtime m(λ) · poly(λ) with advantage at least
1
c · ( 1−ε

2 − 1/m(λ)).
The main limitation of Theorem 3 is that it does not rule out the existence

of AT protocols with anonymity δ scaling inverse-polynomially with the number
of rounds c, e.g. δ = 1/c. In other words, the trade-off between correctness and
security could potentially be improved by relying on a large amount of interac-
tion. And indeed, [3] does provide a plausibility result, where, assuming ideal
obfuscation, there exists a fine-grained AT with δ ≈ 1/c, ε = negl(λ), so that
anonymity does improve with the number of rounds. A secondary limitation
is that, because the attack corresponding to Theorem3 needs to call the hon-
est algorithms a polynomial number of times (even though the polynomial can
arbitrarily small), this potentially leaves room for “very fine-grained” protocols,
where security would only hold against adversaries running in mild super-linear
time compared to honest users.

4 Anonymous transfer can also be defined with more than a single “dummy” party.
We focus for simplicity on the 2-party case for this overview, and will show how to
extend the attacks to the N -party case subsequently.

5 We consider here “silent” receivers who do not send any messages—this is similarly
known to be sufficient for lower bounds [3].

6 We remind the reader that [3] takes different conventions than ours for ε and δ. With
our notation, an AT satisfies stronger properties as ε and δ get smaller and closer to
0, and are ideally negligible in the security parameter.
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Our main results are stronger generic attacks on anonymous transfer proto-
cols.

A General Blueprint for Our Attacks. The core idea behind all our attacks is a
simple notion of progress associated to any (potentially partial) transcript of an
AT. We do so by associating a real value p ∈ [0, 1]R to partial transcripts of an
AT, as follows. We can complete any partial transcripts, replacing all missing
messages by uniformly random ones, and attempt to recover the input message
μ ← {0, 1}� from the sender. For a partial transcript, we define p ∈ [0, 1]R to be
the probability that a random completion of the transcript allows to recover μ.

The next step is to attribute partial evolutions of p, as the transcript gets
longer, to parties in the protocol. Namely if, after party A sends the ith message
in the transcript, the value of the protocol evolves from pi−1 to pi, and we
attribute to A some progress dependent on pi−1 and pi. We then make the
following observations: the empty transcript has value p0 = 1/2� close to 0 (if μ
is chosen uniformly at random), and full transcripts have (on expectation) value
p2c = 1− ε close to 1 by correctness. Our main leverage is that messages sent by
the unaware, dummy participant in an AT do not significantly change the value
of a partial transcript: this is because, in our random completion of transcripts,
messages from the dummy party follow their real distribution. Furthermore, as
long as the final value p2c is significantly larger than the initial value p0, then
a significant amount of total progress has to be made at some point. Therefore
the messages from the sender have to significantly bias the values of partial
transcripts towards 1.

This results in the following blueprint for identifying the sender of the AT.
We first estimate the contribution of each party towards total progress, namely,
the evolution of the values p associated to partial transcripts where the last
message was sent from that party.7 Then, we argue that (1) the contribution of
the dummy party is likely to be small overall and (2) the total contribution of
both parties is fairly large (on expectation), from which we conclude that the
party whose messages contributed the most to increasing the value p is likely to
be the AT sender.

Covert Cheating Games. We abstract out this recipe as a natural game, that we
call a covert cheating game. A covert cheating game played by two players A and
B, who take 2c alternate turns moving a point, or current state of the game, on
the real interval [0, 1]. One player is designed to be a bias inducer, and the other
a neutral party. The initial state is p0, and the final state is p2c is either 0 or 1.
We say that a strategy has success rate pf > p0 if E[p2c] ≥ pf , regardless of the
identity of the bias inducer. The neutral party is restricted to exclusively making
randomized moves that do not affect the current state on expectation. The goal
of a third player, the observer C, is to determine, given access to the states of
the game, which player is the bias inducer. Our main technical contribution is

7 In an AT, rounds are by default synchronous; for the sake of this general blueprint,
any arbitrary sequentialization of the messages would be meaningful.
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to show generic observer strategies for this game. We refer to Definition 3 for a
more detailed definition.

We use this abstraction to capture the fact that our attacks use the AT in
a specific black-box sense, namely, only to measure out values p ∈ [0, 1]R, and
using all the AT algorithms in a black-box manner. Overall, our abstraction of
attacks on ATs as strategies in a game captures a natural family of black-box
distinguishing algorithms, which we believe capture most reasonable attacks on
AT.8 Indeed, it is not clear how to leverage any non-black-box use of honest user
algorithms, as they could potentially be obfuscated (and indeed, the plausibility
result of [3] does rely on obfuscated programs to be run by honest users). We
believe this game to be natural enough to see other applications in the future.

In the rest of the technical overview, we focus on describing generic attacks
in the language of covert cheating games.

A Generic “Free-Lunch” Attack. We describe our first attack on the game intro-
duced above, which corresponds to a proof sketch of Theorem 2. Our attack is
very simple, and only leverages the fact that, on expectation over a random
move, moves done by the bias inducer bias the outcome by an additive term
(pf − p0)/c, while moves from the neutral party do not add any bias. Suppose
the game consists of c rounds (each consisting of one move from each party
A,B), and that party A makes the first move, so that A makes the odd moves
2k + 1, and B makes the even moves 2k. Our strategy is to pick a random move
k ← [c] from A, whose kth move makes the game evolve from state p2k to p2k+1.
We simply output “A is the bias inducer” with probability p2k+1 (and B with
probability 1 − p2k+1).

The main idea is that if A is the neutral party, then on expectation p2k+1 =
p2k, and thus our strategy outputs A with probability pk. On the other hand, if
A is the bias inducer, our strategy outputs A with probability p2k+1.9 Because B
is then a neutral party, B’s total expected contribution is 0, namely Ek[p2k+2 −
p2k+1] = 0, so that the advantage of our algorithm towards determining A is:

Ek[p2k+1 − p2k] = Ek[p2k+1 − p2k + (p2k+2 − p2k+1)
︸ ︷︷ ︸

0

] = (pf − p0)/c.

The cost of our attack is the cost of obtaining a single sample with probability
p2k+1. Going back to AT, this corresponds to the cost of running the honest users’
algorithms once (namely, attempting to reconstruct the message of a random
completion of a randomly chosen partial transcript with last message from A).
We conclude no AT can provide security with parameters from Theorem 2, in

8 More precisely, strategies are black-box in the AT algorithms, but need to consider
full transcripts in a slightly non-black-box way (namely, by separating messages and
considering random continuations).

9 Technically, the quantities pk when A is the neutral party and pk when A is the
bias inducer are not necessarily related. But without loss of generality, the strategies
used by the bias inducer and the neutral party are independent of their identity as
A or B, in which case the quantities p2k are equal.
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any fine-grained setting (as long as adversaries are allowed to be in the same
complexity class as honest users).

A Generic Attack with Large Advantage. We now describe a slightly more
involved attack that achieves stronger advantage, at the cost of running in larger
polynomial time. The main inspiration behind this new attack comes from taking
a closer look on the restriction that the neutral party’s moves do not change the
game state on expectation. We observe that this is a more stringent restriction
if the current game state p is close to 0. For concreteness, if the current state of
the game is p = 1/2, then the neutral party could potentially move the state to
p′ = 0 or p′ = 1 with probability 1/2 each, inducing a large change of the value
of p. However, starting at p � 0, Markov’s inequality ensures that p′ cannot be
too large.

This motivates us to consider a different quantification of progress where
additive progress close to 0 is weighed more significantly than additive progress
at large constants (e.g. 1/2). We do so by considering a multiplicative form of
progress associated to moves and players. Namely, if the ith move of the game
transforms the game state from pi−1 to pi, then we define the multiplicative
progress associated with the move as10

ri =
pi

pi−1
.

The total progress associated with a player would then be the product of the
progress associated with its moves.

Our blueprint still applies in this context. The total progress of all the moves
combined is11

∏

i∈[2c]

ri =
∏

i∈[2c]

pi

pi−1
=

pf

p0
,

and so one of the players (on expectation) needs to have progress at least
√

pf/p0.
Furthermore, one can show that the restriction on neutral party’s moves implies
that the product of the ri associated to the neutral party is 1 on expectation.
Namely, denoting N the set of indices corresponding to moves made by the
neutral party: E [

∏

N ri] = 1. Markov’s inequality then gives:

Pr

[

∏

N

ri ≥
√

pf

p0

]

≤
√

p0
pf

.

10 One technically needs to be careful handling cases where pi = 0 for some i. We
largely ignore this technicality in this overview. For concreteness, it will be enough
to output a random guess if this happens, and observe that, for games resulting from
an AT, this happens with probability at most 1 − pf , and therefore does not affect
our advantage too much. We refer to Sect. 4.3 for more details.

11 Actually, the total progress is only guaranteed to be pf/p0 on expectation, which
induces several technical issues. We will assume the progress is always equal to
pf/p0 for the sake of this overview, and we refer to Sect. 4.2 for more details on the
issues and a solution.
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Overall, this shows that with good probability 1 − √p0/pf , the sender has a
large total contribution, and the dummy party has a small contribution, so that
an attacker can identify them with at least such a probability.

We are unfortunately not done yet, because observers do not have direct
access to the real values p ∈ [0, 1]: they are only given the ability to sample
coins with probability p (going back to AT, recall that this is done by sampling
a random completion of a transcript and testing whether the reconstructed mes-
sage matched the sender’s message). This is problematic: from the perspective
of a polynomial-time observer, the values p = negl(λ) and p = 0 are indistin-
guishable, given only sampling access. How can we then ensure that the ratios
ri = pi/pi−1 are even well-defined (that is, that pi−1 �= 0)?

We solve this issue by conditioning our product to be over moves i ≥ i∗,
such that for all i > i∗, pi ≥ τ for some small accuracy threshold p0 < τ < pf

(think τ = 1/poly(λ)), and where we set the convention pi∗ = τ . Now the ratios
are well-defined, and the total contribution is now pf/τ . It remains to argue
that the product corresponding to the neutral party is small. While we might
have biased the distribution of the neutral party by conditioning on the product
starting at i∗, we argue by a union bound that, with sufficiently high probability
1 − c

√

τ/pf , all “suffix-products” from the dummy party are small (namely,
smaller than

√

pf/τ)
Summing up, our final observer strategy estimates all the pi up to some

sufficiently good precision (using Chernoff) so that the product of the ri =
pi/pi−1 is ensured to be accurate, as long as all the terms pi that appear in the
product are large enough compared to our threshold τ . We refer to Sect. 4.4 for
more formal details.

Taking a step back, the major strength of Theorem1 is that the advantage of
the associated attack is independent of the number of rounds: only its running
time scales with the number of rounds (in order to ensure sufficient precision
with Chernoff bounds). This is in our eyes a quantitative justification that mul-
tiplicative progress is better suited to identify bias in a covert cheating game.

Extending the Lower Bound to N Parties. Last, we sketch how to extend our
attack from Theorem 1 to the N -party setting, which consists of a sender inter-
acting with N − 1 dummy parties. Our first step is to observe that our attacks
described above directly translate to targeted-predicting attacks, which correctly
identify the sender given the promise that the sender is either party i ∈ [N ] or
j ∈ [N ] where i �= j are arbitrary but fixed for the targeted predictor. This fol-
lows from [3], which builds a 2-party AT from any N -party AT, while preserving
targeted-predicting security.12 In other words, given the promise that the sender
is either party i or party j, we can correctly identify the sender with the same
guarantees as in Theorem 1 (or even Theorem 2).

However, we ideally wish to obtain general predicting attacks that do not
rely on any additional information to correctly output the identity of the sender.

12 This is done by considering all the messages sent by parties k �= i, j as part of the
CRS of the new 2-party protocol.



12 W. Quach et al.

We generically upgrade any targeted-predicting attack to a standard predicting
attack, while preserving the advantage δ, as follows. The attack simply runs the
targeted-predicting attack on all pairs of distinct indices {(i, j) | i, j ∈ [N ], i �= j},
and outputs as the sender the party i∗ that got designated as the sender in all
the runs (i∗, j), j �= i∗.13 Now, if i∗ is the sender of the N -party AT, an union
bound implies that the probability that all the internal runs (i∗, j), j �= i∗ of
the targeted-predicting attack correctly point out to i∗ as the sender is at least
δ′ ≥ 1 − N(1 − δ). Starting with the attack from Theorem1 with α′ = N · α,14

we obtain the same lower bound as Theorem1 in the N -party setting, at the
cost of a poly(N) overhead in the runtime of our attack.15

3 Preliminaries and Definitions

Notations. When X is a distribution, or a random variable following this dis-
tribution, we let x ← X denote the process of sampling x according to the
distribution X. If X is a set, we let x ← X denote sampling x uniformly at
random from X; if Alg is a randomized algorithm, we denote by x ← Alg the
process of sampling an output of Alg using uniformly random coins. We use the
notation [k] to denote the set {1, . . . , k} where k ∈ N, and [0, 1]R to denote the
real interval {x ∈ R | 0 ≤ x ≤ 1}. We denote by negl(λ) functions f such that
f(λ) = 1/λω(1).

Chernoff Bound. We will use the following (multiplicative) form of Chernoff-
Hoeffding inequality.

Lemma 1 (Multiplicative Chernoff). Suppose X1, · · · ,Xn are independent
Bernouilli variables with common mean p. Then, for all t > 0, we have:

Pr

[

n
∑

i=1

Xi /∈ [(1 − t) · np, (1 + t) · np)]

]

≤ 2e−2t2p2n.

3.1 Anonymous Transfer

We recall here the notion anonymous transfer, introduced in [3]. Throughout
most of this work, we focus the two-party setting, involving a sender, a dummy
non-sender and a (silent) receiver.16

13 Note that there is at most one such index. If no such index exist, our attack, say,
outputs party 1.

14 This corresponds to setting δ = 1 − 1/α′, conditioned on executions where the
message can be correctly reconstructed. We refer to Sect. 5.3 for more details.

15 The overhead arises from both the O(N2) calls to the internal distinguisher, and the
runtime of the internal distinguisher itself which is poly(α′) = poly(N) · α.

16 The work of [3] more generally considers a setting with N parties, namely a sender
and N − 1 dummy parties. Our work focuses on the two-party case, but our main
result extend to the N -party case: see Remark 4 and Sect. 5.3 for more details.
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Definition 1. ((Two-Party, Silent-Receiver) Anonymous Transfer);
adapted from [3]). A two-party anonymous transfer (AT) Π�

AT , with cor-
rectness error ε ∈ [0, 1]R, anonymity δ ∈ [0, 1]R, consisting of c ∈ N rounds and
message length � ∈ N (all possibly functions of λ), is a tuple of PPT algorithms
(Setup,Transfer,Reconstruct) with the following specifications:

– Setup(1λ) takes as input a unary encoding of the security parameter λ and
outputs a common reference string crs.

– Transfer(crs, b, μ) takes as input a common reference string crs, the index of
the sender b ∈ {0, 1}, the message to be transferred μ ∈ {0, 1}�, and outputs
a transcript π. Transcripts π consists of c rounds of interaction between the
sender and the dummy party, where the dummy party (with index 1 − b)
sends uniform and independent messages at each round, and the each message
from the sender depends on the partial transcript so far, with a next message
function implicitly defined by Transfer(crs, b, μ).
By default, we assume that the receiver does not send any messages (namely,
the receiver is silent).17

– Reconstruct(crs, π) takes as input a common reference string crs, a transcript
π and outputs a message μ′ ∈ {0, 1}�.
By default, we assume that Reconstruct is deterministic.18

We require that the following properties are satisfied.

ε-Correctness. An anonymous transfer Π�
AT has correctness error ε if, for all

large enough security parameter λ, index b ∈ {0, 1}, message length � ∈ poly(λ),
and all message μ ∈ {0, 1}�, we have:

Pr

⎡

⎣

crs ←− Setup(1λ)
π ←− Transfer(crs, b, μ)
μ′ ← Reconstruct(crs, π)

: μ′ �= μ

⎤

⎦ ≤ ε.

δ-Anonymity. An anonymous transfer Π�
AT is δ-anonymous if, for all PPT algo-

rithm D, all large enough security parameter λ, message length � ∈ poly(λ), and
all message μ ∈ {0, 1}�,

∣

∣

∣

∣

Pr[π(0) ←− Transfer(crs, 0,m) : D(π(0)) = 1]
- Pr[π(1) ←− Transfer(crs, 1,m) : D(π(1)) = 1]

∣

∣

∣

∣
≤ δ, (1)

where the probability is over the randomness of Setup, Transfer, and the internal
randomness of D.

We alternatively say that Π�
AT is δ-anonymous with respect to a class of

adversaries C, if Eq. (1) holds instead for all distinguishers D ∈ C.

Definition 2. We say that an anonymous transfer is symmetric if the next
message function of the sender, implicitly defined by Transfer(crs, b, μ) where b
is the sender, does not depend on b, and if Reconstruct does not depend on the
identities of the participants.
17 This is without loss of generality; see Remark 2.
18 This is without loss of generality; see Remark 3.
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Remark 1. (Comparison with [3]). Our notation and definitions are slightly dif-
ferent but equivalent from the ones from [3]. With our conventions, ε denotes a
correctness error, and δ denotes a (bound on a) distinguishing advantage, and
therefore an AT has stronger correctness (resp. stronger anonymity) guarantees
as ε, δ decrease. This is the opposite of [3], where guarantees gets better as their
parameters ε, δ tend to 1.

Our definition of correctness error is over the random choice of crs ← Setup,
while it is worst case over crs in [3]. Because this defines a larger class of protocols,
ruling out the definition above makes our lower bounds stronger.

Our definition of δ-anonymity is formulated specifically for the two-party
case, and is worded differently from theirs, which states, up to the mapping
δ �→ 1 − δ discussed above:

∣

∣

∣

∣
Pr

b←{0,1}

[

π(b) ← Transfer(crs, b,m) : D(π(b)) = b
]

− 1
2

∣

∣

∣

∣
≤ δ

2
. (2)

However one can easily show that both definitions correspond to the same value
δ .

Remark 2 (Silent Receivers). As noted in [3], without loss of generality, the
receiver in an anonymous transfer can be made silent, namely, does not send
any messages in the protocol execution. This is because its random tape can be
hard-coded in the CRS.

Remark 3 (Deterministic reconstruction). We observe that Reconstruct can be
assumed to be deterministic without loss of generality; this is because random
coins for Reconstruct can be sampled and included in the common reference
string crs.

Remark 4 (AT with larger number of parties). [3] more generally defines anony-
mous transfer with a larger number of participants N ∈ N. We refer to [3, Def-
inition 3] for a formal definition.19 The main difference (in the silent receiver
case), is that δ is defined as an advantage over random guessing among the N
participants. Namely, Eq. (2) becomes:

∣

∣

∣

∣
Pr

k←[N ]

[

π(k) ← Transfer(crs, k,m) : D(π(k)) = k
]

− 1
N

∣

∣

∣

∣
≤ δ · N − 1

N
.

In particular, while the indistinguishability-based definition in Eq. (1) and the
predicting-based definition in Eq. (2) are equivalent in the two-party setting, it
is not immediately clear that this holds in the N -party setting. Looking ahead,
in order to extend our results from the 2-party to the N -party setting, our main
observation is to show that this equivalence in fact holds, up to some mild loss
in the parameters. We refer to Sect. 5.3 for more details.

19 We remind the reader that the quantity δ in [3] corresponds to 1 − δ for us. Addi-
tionally, in this version of the definition, we do not include the receiver in the count
for the number of parties.
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4 Identifying Covert Cheaters

In this section, we introduce our abstraction of the covert cheating games, and
then show generic strategies for the game.

4.1 Covert Cheating Game

We define a covert cheating game as follows.

Definition 3 (Covert Cheating Game). Let c ∈ N, p0 ∈]0, 1[R be parame-
ters.

– Setup, players and roles. A covert cheating game is played by two (ran-
domized) players A and B, who can agree on a strategy in advance. They play
against an observer C. During setup, one party is (randomly) designated as
the bias inducer while the other is designated as the neutral party.

– Execution and states of a game. An execution of the game consists of
players A and B take alternate moves making moves in the game, with the
convention that player A makes the first move. The game consists of c rounds
(that is, 2c total moves, c moves from A and c moves from B), where c ∈ N

is a parameter of the game. At any point during the game, the current state
of a game is represented by a real number p ∈ [0, 1]R. The final state of the
game is a bit p2c ∈ {0, 1} (where one can consider 1 as a winning outcome
for the players A,B, and 0 as a losing outcome).
For k ∈ [c], if A is the bias inducer, we will use either of the notations
X2k−1 = X

(A)
2k−1 (resp. X2k = X

(B)
2k ), to denote the random variable associated

to the state resulting from A (resp. B) making its kth move. In other words,
the superscript in X

(A)
2k−1 (resp. X

(B)
2k ) is a redundant notation to make remind

the reader that A (resp. B) made the (2k − 1)st (resp. (2k)th) move of the
game.
Similarly, for k ∈ [c], if B is the bias inducer, we will use either of the
notations Y2k−1 = Y

(A)
2k−1 (resp. Y2k = Y

(B)
2k ), to denote the random variable

associated to the state resulting from A (resp. B) making its kth move. Again,
the redundant superscript is used to make the player associated to the move
explicit.
The initial state of the game is defined as p0 ∈]0, 1[R, where p0 is a parameter
of the game. In other words, X0 = Y0 = p0.
We say that a strategy for A and B has success rate pf if E[X2c] ≥ pf and
E[Y2c] ≥ pf .

– Rules on moves. The neutral party is restricted to making moves that do
not change the state of the game on expectation, namely, the moves behave as
martingales with respect to the current game state. More formally, with our
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notation, for all k ∈ [c], we have:20

E[X(B)
2k |X2k−1, · · · ,X0] = X2k−1. (3)

E[Y (A)
2k−1|Y2k, · · · , Y0] = Y2k−2. (4)

where the first equation (resp. second equation) corresponds to A (resp. B)
being the bias inducer.

– Objective of the game. The goal of the game is, for the bias inducer, to
be covert with respect to the observer C, while maintaining a high success
rate pf (namely, a high probability of ending up at 1 in the final state). The
observer C has access to intermediate states of the execution pi ← Xi (if A
is the bias inducer, or pi ← Yi otherwise) via a (distribution of) oracles O.
In each oracle O is hard-coded a sequence of 2c states of the game pi, i ≤ 2c
induced by an execution of the game. We will respectively denote by O(A)

(resp. O(B)) (the distribution of) oracles corresponding to when A (resp. B)
is designated as the bias inducer. We consider the following variants of the
oracles O ∈ {O(A),O(B)}.
– Sampling access. We say that the observer C gets sampling access to game

states pi ∈ [0, 1]R, if oracles O are probabilistic oracles such that, for all
i ∈ [2c], O(i) = 1 with probability pi, and O(i) = 0 with probability 1−pi,
where the randomness is uniformly and independently sampled at each
oracle call. This is our default notion of access.

– Direct access. We say that an observer gets direct access to game states
pi ∈ [0, 1]R, if oracles O are defined as Odirect(i) = pi ∈ [0, 1]R for all
i ∈ [2c].

We say that the bias inducer successfully δ-fools a class C of observers with
respect to sampling access if for every algorithm C ∈ C, we have:

∣

∣

∣Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
] ∣

∣

∣ ≤ δ,

where CO(X)
, where X ∈ {A,B}, denotes the experiment of sampling O ←

O(X ) (which is defined as sampling a random execution of the game when X
is the bias inducer, yielding states pi, i ≤ 2c, and defining O with respect to
{pi}), and giving C oracle access to O.
We say that the bias inducer successfully δ-fools a class C of observers with
respect to direct access if the observer C gets oracle access to Odirect instead.

– (Optional Property): Symmetricity. We say that a strategy for players
A and B is symmetric if:

∀k ∈ [c], E [X2k] = E [Y2k] , (5)

that is, the state of the game is (on expectation) independent of the identity
of the bias inducer, whenever the bias inducer and the neutral party made
an identical number of moves (which happens after an even number of total
moves).

20 We technically are also conditioning the expectations X, Y on all the prior moves
instead, but are omitting them for ease of notation. See Remark 5.
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– (Optional Property): Absorption. We say that a strategy is absorbent
(implicitly, with respect to states 0 and 1) if, for all i ∈ [2c] and bit b ∈ {0, 1}:

{Xi = b} =⇒ {∀j ≥ i,Xj = b}. (6)

Remark 5 (Implicit Conditioning on Prior Moves.). We allow the strategies
from A and B to be adaptive, namely, to depend on prior moves. As a result, all
the expectations on random variables Xi, Yi are technically always considered
conditioned on all the prior moves. For ease of notation, we will not make this
conditioning explicit, and will always implicitly consider the conditional version
of expectations for these variables (and resulting variables defined as a function
of Xi, Yi).

4.2 Attack 1: Free-Lunch Attack with Weak Distinguishing
Guarantees

We show here that there exists a very efficient generic observer strategy given
sampling access to game states with small but non-negligible distinguishing
advantage. Namely:

Theorem 4 (Free-Lunch Distinguisher). For any covert cheating game ,
consisting of 2c total moves, with starting state p0 and satisfying symmetricity
(see Definition 3, Eq. (5)), and any strategy for that game with success rate
pf > p0, there exists an observer strategy C∗ that determines the identity of the
bias inducer with advantage δ = pf−p0

c , by making a single call to the sampling
oracle O.

In other words, the strategy does not δ-fool the class of observers making a
single sampling oracle call.

Proof. We build our observer strategy as follows:

Observer C∗:

– Pick a random k ← [c]. Output O(2k − 1) ∈ {0, 1}.

In other words, C∗ picks a random move from A, and outputs 1 with proba-
bility the state of the game after A’s kth move. Let us analyze the advantage of
C∗.

Suppose A is the bias inducer. Then:

Ek←[c]

[

O(A)(2k − 1)
]

= E [X2k−1] ,

and we furthermore have by Eq. (3) that for all k ∈ [c]21:

E

[

X
(B)
2k − X

(A)
2k−1

]

= 0, (7)

21 Recall that each expectation is implicitly conditioned on prior moves (Remark 5).
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namely, B’s moves do not change X on expectation.
Suppose now that B is the bias inducer. Then, Eq. (4) gives that for all

k ∈ [c]:
E

[

Y
(A)
2k−1 − Y

(B)
2k−2

]

= 0, (8)

namely, A’s moves do not change Y on expectation. This gives:

Ek←[c]

[

O(B)(2k − 1)
]

= E [Y2k−1]

= E [Y2k−2]
= E [X2k−2] ,

where the second equality comes from Eq. (8), and the last equality follows by
symmetry if k > 1 (Eq. (5)), or as X0 = Y0 = p0 if k = 1.

Overall, we obtain that the advantage of C∗ is, by telescoping:
∣

∣

∣Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
] ∣

∣

∣

≥ Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
]

= E
k

$←[c]

[

X
(A)
2k−1 − Y

(A)
2k−1

]

= E
k

$←[c]

[

X
(A)
2k−1 − X

(B)
2k−2

]

=
∑

k∈[c]

E

[

X
(A)
2k−1 − X

(B)
2k−2

]

c
+

E

[

X
(B)
2k − X

(A)
2k−1

]

c
︸ ︷︷ ︸

=0 (Eq.(7))

=
E [X2c − X0]

c

=
pf − p0

c

which concludes the proof.

Remark 6 (Correct predictions). Our attack provides a slightly better guarantee
than stated in Theorem 4: it correctly outputs the identity of the bias inducer
(say by associating output 1 to A being the bias inducer), as opposed to simply
distinguishing them. In other words, we have:

Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
]

=
pf − p0

c
.

4.3 Attack 2.1: A Strong Attack Given Direct Access to States

Next, we describe a generic attack with large advantage, given direct access to
game states. We refer to the technical overview (Sect. 2) for an intuition of the
attack. Compared to the exposition in the technical overview, the main difference
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is that we have to deal with games where the end state is not consistently pf ,
but rather 0 or 1 with expectation pf . This does lead to technical complications.
Indeed, one crucial argument in our proof is that the (multiplicative) contribu-
tion of the neutral party is 1 on expectation, which allows us to call Markov’s
inequality. However, switching to the expectation statement, conditioning on the
end state being 1 might skew the contribution of the neutral party, which might
prevent us from concluding. Instead, we carefully define several useful events,
which allows us to compute the advantage of our strategy without ever condi-
tioning on successful runs. More precisely, we now prove the slightly stronger
statement that for all winning executions (that is, such that p2c = 1), we only
fail to identify the sender with small probability

√
p0.22

Last, there is a minor technicality in how to handle denominators being equal
to 0 (again, where we do not wish to condition on denominators not being equal
to 0), which we solve by requiring a stronger, but natural “absorption” property
of the covert cheating game (Definition 3, Eq. (6)).

Theorem 5 (Strong Distinguisher given Direct Access). For any covert
cheating game satisfying absorption (Definition 3, Eq. (6)), consisting of 2c total
moves, with starting state p0 > 0, and any strategy for that game with success
rate pf > 2

√
p0, there exists an observer strategy C∗ that determines the identity

of the bias inducer with advantage at least pf − 2
√

p0 given 2c oracle calls to the
direct access oracle Odirect (Definition 3).

Proof. We describe the observer strategy.

Observer C∗:

– Compute for all i ∈ [2c]: pi = Odirect(i). If p2c = 0, output a random bit
β ← {0, 1} .
Otherwise, compute:

t(A) =
c
∏

k=1

p2k−1

p2k−2
,

t(B) =
c
∏

k=1

p2k

p2k−1
,

with the convention that t(A) = 1 (resp. t(B) = 1) if p2k−2 = 0 for some
k ∈ [c] (resp. if p2k−1 = 0 for some k ∈ [c]).

– Output 1 (that we associate to outputting “A”) if t(A) ≥
√

1
p0

. Otherwise,

if t(B) ≥
√

1
p0

, output 0 (that we associate to outputting “B”). Otherwise,

output ⊥.23

22 This is a stronger statement in the sense that observers can test whether an execution
is winning, and therefore can output an arbitrary bit p2c �= 1.

23 Technically, ⊥ can be replaced by any arbitrary output, e.g. 0; but considering this
output separately is in our eyes conceptually cleaner.
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Let us analyze the advantage of C∗.

Case 1: A is the bias inducer. Suppose A is the bias inducer. We define the
following events:

CORRECTA := {X2c = 1} ;

LARGE
(A)
A :=

{

t(A) ≥
√

1
p0

}

;

SMALL
(B)
A :=

{

t(B) <

√

1
p0

}

;

GOODA := CORRECTA ∧ LARGE
(A)
A ∧ SMALL

(B)
A .

Note that if GOODA occurs, our algorithm is correct when A is the bias inducer.
We argue that GOODA occurs with high probability. We start by analyzing the
contribution t(B) of B.

Lemma 2. We have:
Pr[SMALL

(B)
A ] ≥ 1 − √

p0.

Proof. For k ∈ [c], let us define the partial product of ratios associated to B:

P
(B)
k =

k
∏

j=1

X
(B)
2j

X
(A)
2j−1

,

with the convention that P
(B)
k = 1 if p2j−1 = 0 for some j ∈ [k], and observe

that:
t(B) ← P (B)

c .

First, observe that

E[P (B)
1 ] =

E[X(B)
1 ]

p0
= 1,

by Eq. (4).
Let k ∈ {2, · · · , c}; suppose that E[P (B)

k−1] = 1. We have:

E[P (B)
k ] = EY0,···Y2k−1

[

E[P (B)
k |Y0, · · · , Y2k−1]

]

= Ep0,···p2k−1

[

E

[

P
(B)
k−1 · X

(B)
2k

X
(A)
2k−1

∣

∣

∣

∣

∣

Y0 = p0, · · · , Y2k−1 = p2k−1

]]

= Ep0,···p2k−1

[

E

[

P
(B)
k−1 · X

(B)
2k

p2k−1

∣

∣

∣

∣

∣

Y0 = p0, · · · , Y2k−1 = p2k−1

]]

= Ep0,···p2k−1

⎡

⎣ t
(B)
k−1 ·

E

[

X
(B)
2k

]

p2k−1

∣

∣

∣

∣

∣

∣

Y0 = p0, · · · , Y2k−1 = p2k−1

⎤

⎦

= Ep0,···p2k−1

[

t
(B)
k−1

∣

∣

∣Y0 = p0, · · · , Y2k−1 = p2k−1

]

= P
(B)
k−1,
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where we define t
(B)
k−1 = t

(B)
k−1(p0, · · · , p2k) as: t

(B)
k−1 =

∏k−1
j=1

p2j
p2j−1

, and where the
second to last equality follows by Eq. (4), and with the convention that a fraction
with denominator 0 is equal to 1. Therefore, for all k ∈ [c] (and in particular
k = c − 1), we have:

E[P (B)
k ] = 1. (9)

Markov’s inequality thus gives:

Pr[¬SMALL
(B)
A ] = Pr

[

P
(B)
k ≥

√

1
p0

]

≤ √
p0,

which concludes the proof of Lemma 2.

Next, by definition of success rate and pf , we have Pr[CORRECTA] ≥ pf . Thus:

Pr
[

CORRECTA ∧ SMALL
(B)
A

]

≥ Pr [CORRECTA]−Pr
[

¬SMALL
(B)
A

]

≥ pf−√
p0.

Last, we observe that CORRECTA∧SMALL
(B)
A implies CORRECTA∧LARGE

(A)
A ∧

SMALL
(B)
A . Indeed, suppose CORRECTA occurs. By absorption of the game

Eq. (6), none of the terms used in a denominator equal 0 (otherwise the final
state would be 0). Furthermore, whenever CORRECTA occurs, we have by a
telescoping product:

t(A) · t(B) = 1,

and therefore, t(B) <
√

1/p0 (given by SMALL
(B)
A ) implies that t(A) ≥ √

1/p0,
namely that LARGE

(A)
A occurs.

Overall, this ensures:

Pr[GOODA] ≥ Pr[CORRECTA ∧ SMALL
(B)
A ] ≥ pf − √

p0,

and therefore C∗ will be correct with probability at least pf −√
p0 when A is the

bias inducer when CORRECTA occurs, and correct with probability 1/2 when
¬CORRECTA occurs (which occurs with probability 1 − pf by definition of pf ).
In other words, when A is the bias inducer, C∗ outputs 1 with probability at
least pf − √

p0 + (1 − pf )/2.

Case 2: B is the bias inducer. Suppose now B is the bias inducer. We can
similarly define:

CORRECTB := {Y2c = 1} ;

LARGE
(B)
B :=

{

t(B) ≥
√

1
p0

}

;

SMALL
(A)
B :=

{

t(A) <

√

1
p0

}

;

GOODB := LARGE
(A)
A ∧ SMALL

(B)
A .
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An almost identical analysis (using random variables X instead of Y , and shifting
the indices appropriately) shows that

Pr[GOODB ] ≥ pf − √
p0,

and therefore C∗ will be correct with probability at least pf − √
p0 + (1 − pf )/2

when B is the bias inducer.

Wrapping Up. Overall, the advantage of C∗ is
∣

∣

∣Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
] ∣

∣

∣ ≥ Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
]

≥ 2(pf − √
p0) − 1 + (1 − pf ) = pf − 2

√
p0,

which concludes the proof.

4.4 Attack 2.2: A Strong Attack Given Sampling Access to States

Next, we port our attack from Sect. 4.3 to the much weaker sampling setting.
Overall, this new attack

– works in the much weaker sampling setting, and does not require the game
to satisfy absorption (Eq. (6)),

– but has slightly weaker advantage ≈ pf − 1/poly(λ) while requiring p0 to
be fairly small (the advantage holding for any poly(λ) of our choice, as long
as p0 is small enough), and has a quite larger polynomial sample complexity
q ≈ c6 · poly(λ) with respect to the sampling oracle.24

Our new analysis is more involved, as to carefully estimate the multiplica-
tive progress of the players despite having imperfect access to the game states pi.
The main problem arises when the state of the game becomes (say, exponentially
close or even equal to) 0. Indeed, such states are indistinguishable from the state
being actually 0 from the view of a polynomial-time observer with only sam-
pling access to the state. However, they cannot be treated using an absorption
argument (Eq. (6)), like in Theorem 5: this is because Eq. (6) only holds for the
two states 0 and 1. We solve this by thresholdizing the (partial) products, and
only considering “suffix-products” (that is, over indices i ≥ i∗ for some index
i∗) when all the probabilities handled are large enough (say � 1/c2). We refer
to Sect. 2 for an intuition for the attack.

One difference with the overview in Sect. 2 is, again, that the strategy from
the players A,B do not necessarily finish at state p2c ≥ pf ; this guarantee only
holds on expectation. We solve this issue similarly to Theorem5, by defining
several useful events, and argue that products associated to the neutral party are
small with high probability without (significantly) conditioning. And similarly
to Theorem 5, we prove a slightly stronger result: for all winning executions of
24 Looking ahead, this large sample complexity is a result of the techniques we use in

our analysis which require us compute precise estimations for each game state.
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the game (that is, such that p2c = 1), we only fail to identify the sender with
probability ≈ 1/poly(λ).

Overall, we present an attack with guarantees comparable with the ones from
Theorem 5. Even if the analysis is quite tedious and notation-heavy, it is still very
similar in spirit to the one of Theorem5.

Theorem 6 (Strong Distinguisher given Sampling Access). Let α(λ) ≥
1 be a polynomial. For all covert cheating game satisfying p0 ≤ O

(
1

c2α2

)

, and
any strategy with success rate pf ≥ 1/α(λ), there exists an observer C∗ that
determines the identity of the bias inducer with advantage at least pf − 1/α −
negl(λ).

Furthermore, the observer makes c6α4ω(log2 λ) calls to the sampling oracle
O.

In particular, if p0 = negl(λ), there is, for all polynomial α, an observer
strategy with advantage at least pf − 1/α − negl(λ), with a query complexity of
c6α4ω(log2 λ).

Proof. Suppose the covert cheating game satisfies the constraints on p0 and pf ;
observe that in particular p0 ≤ pf .

We describe our attack, which uses the following parameters:

– τ = τ(λ, c) ∈ [0, 1]R, a threshold precision for our estimation procedure. We
will use τ = 1/(64c2 · α2(λ)) where α is specified in Theorem 6.

– t = t(λ, c) ∈ [0, 1]R, a multiplicative approximation factor for our estimation.
We will use t = 1/2c.

– s = poly(λ, c, τ, t), a number of repetitions for our estimation. We will set
s = c6 · poly(λ), so that s = log c·ω(log λ)

τ2t2 .

Observer C∗:

1. ( Estimation of pi’s):
– Set p̃0 = p0.
– For i = 1 to 2c:

• For j = 1 to s, sample bj ← O(i).
• Compute p̃i = 1

s

∑s
j=1 bj .

– If p̃2c ≤ 1 − τ , output a random bit β ← {0, 1}.25

– Otherwise, let i∗ be the largest index in [0, 2c] such that p̃i ≤ τ (which
exists as we set p0 = p̃0 ≤ τ).

2. (Estimation of partial numerator and denominator): Compute

˜t(A)
num =

c
∏

k | 2k−2≥i∗
p̃2k−1.

˜t(B)
num =

1
p̃2c

c
∏

k | 2k−1≥i∗
p̃2k

t(A)
denom = K(A) ·

c
∏

k | 2k−1≥i∗
p̃2k−2,

˜t(B)
denom = K(B) ·

c
∏

k | 2k≥i∗
p̃2k−1,

25 The choice of the specific output doesn’t matter for the sake of the analysis, as long
as is the same distribution whenever A or B is the bias inducer.
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where K(A) =

{

1 if i∗ is odd
τ if i∗ is even,

and K(B) =

{

τ if i∗ is odd
1 if i∗ is even.

In other words, this computes partial products starting at i∗ with the con-
vention p̃i∗ = τ (which only appears in one denominator, according to the
parity of i∗), and p̃2c = 1.

3. Output: Output 1 (that we associate to outputting “A”) if

˜t(A) :=
˜

t
(A)
num

˜
t
(A)
denom

≥
√

1
τ

.

Otherwise, output 0 (that we associate to outputting “B”) if

˜t(B) :=
˜

t
(B)
num

˜
t
(B)
denom

≥
√

1
τ

.

Otherwise, output ⊥.26

Let us analyze the advantage of C∗.

Case 1. A is the bias inducer. We define the following events, similar to the proof
of Theorem 5, adapted to the approximate setting:

CORRECTA := {p̃2c ≥ 1 − t} ;

LARGE
(A)
A :=

{

˜t(A) ≥
√

1
τ

}

;

SMALL
(B)
A :=

{

˜t(B) <

√

1
τ

}

;

GOODA := CORRECTA ∧ LARGE
(A)
A ∧ SMALL

(B)
A .

We furthermore define the following auxiliary events related to the accuracy of
the estimation procedure:

BAD0 := {∀i s.t. pi ≥ τ, p̃i /∈ [(1 − t) pi, (1 + t) pi]} ;
BAD1 := {pi∗ ≤ 2τ} .

We first argue that these auxiliary events only hold with negligible probability.

Lemma 3. We have: Pr[¬BAD0 ∧ ¬BAD1] = negl(λ).

Proof. This follows from routine Chernoff bounds. Define:

BAD2 := {∃i > i∗, pi ≤ τ/2} .

26 Again, ⊥ can be replaced by any arbitrary output, e.g. 0; but considering this output
separately is in our eyes conceptually cleaner.
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Combining Chernoff (Lemma 1 with t = 1) with an union bound over the at
most 2c indices i gives Pr[BAD2] ≤ 2c · e−8sτ2

. Whenever BAD2 does not occur,
we have Pr[BAD0 ∧ ¬BAD2] ≤ 4c · e−2τ2t2s by another combination of Chernoff
and an union bound, which overall yields:

Pr[BAD0] ≤ 6c · e−8τ2t2 s ≤ negl(λ),

as long as τ2t2s ≥ log(c)ω(log λ), which holds by our setting of s.
Similarly, a Chernoff bound with t = 2 gives Pr[BAD1] ≤ e−8τ2s, which is

negligible as long as τ2s ≥ ω(log λ).

We want to prove two main claims, namely:

(1) Whenever GOODA occurs, C∗ correctly outputs 1.
(2) GOODA occurs with sufficiently high probability (Sect. 4.4).

Claim (1) follows, similarly to the case in the proof of Theorem5, from the claim
that CORRECTA ∧ SMALL

(B)
A holding implies CORRECTA ∧ LARGE

(A)
A

∧ SMALL
(B)
A holds except with negligible probability. Indeed, whenever

CORRECTA and BAD0 occur, we have

˜t(A) · ˜t(B) = 1,

and therefore ˜t(B) < 1
2 ·√1/τ (given by SMALL

(B)
A ) implies that t(A) ≥ 2

√

1/τ ,
namely that LARGE

(A)
A occurs, and Lemma 3 concludes the claim.

It therefore suffices to prove (2).

Claim. We have:

Pr[GOODA] ≥ pf − 4c · √
τ − negl(λ).

We first show a few intermediate lemmas.

Proof (Proof of Sect. 4.4). We proceed similarly as in Sect. 4.3. We start by
showing that:

Pr[SMALL
(B)
A ] ≥ Pr[SMALL

(B)
A ∧ ¬BAD0 ∧ ¬BAD1] ≥ 1−c ·√τ −negl(λ). (10)

By a similar analysis to Sect. 4.3, using Eq. (4), we have that for any fixed i ∈ [2c]:

Pr

⎡

⎣

c
∏

k|2k−1≥i

p
(B)
2k

p
(A)
2k−1

≥ 1
4

·
√

1
τ

⎤

⎦ ≤ 4
√

τ .

A union bound over i = 2k − 1 ∈ [2c], (there are c different such products),
then gives:

Pr

⎡

⎣∃i ∈ [2c],
c
∏

k|2k−1≥i

p
(B)
2k

p
(a)
2k−1

≥ 1
4

·
√

1
τ

⎤

⎦ ≤ 4c · √
τ .
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Furthermore, whenever ¬BAD1 occurs, we have p∗
i ≤ 2τ , that is 1/p∗

i ≥ 2/τ , so
that, using Lemma 3:

Pr

⎡

⎣

1
2

·
c
∏

k|2k−1≥i∗

p
′(B)
2k

p
′(A)
2k−1

≥ 1
4

·
√

1
τ

⎤

⎦ ≤ 4c · √τ + negl(λ),

where p′ are defined as p′
i∗ = τ , and p′

i = pi for all i �= i∗.
Last, whenever ¬BAD0 additionally occurs, we have:

˜

t
(B)
num

˜
t
(B)
denom

=
1

K(B)
· 1
p̃2c

·
∏c

k | 2k−1≥i∗ p̃2k
∏c

k | 2k≥i∗ p̃2k−1

≤
(

1 + t

1 − t

)c c
∏

k | 2k−1≥i∗

p
′(B)
2k

p
′(A)
2k−1

≤ 2 ·
c
∏

k|2k−1≥i∗

p
′(B)
2k

p
′(A)
2k−1

,

whenever t ≤ 1/2c. Therefore:

Pr[¬SMALL
(B)
A ] = Pr

⎡

⎣

˜

t
(B)
num

˜
t
(B)
denom

≥
√

1
τ

⎤

⎦ ≤ 4c · √τ + negl(λ).

Next, we have that if ¬BAD0 holds, then Pr[CORRECTA] ≥ pf (by definition
of pf ), and therefore Pr[CORRECTA] ≥ pf − negl(λ), and thus

Pr
[

CORRECTA ∧ SMALL
(B)
A ∧ LARGE

(B)
A

]

≥ Pr
[

CORRECTA ∧ SMALL
(B)
A

]

− negl(λ)

≥ Pr [CORRECTA] − Pr
[

¬SMALL
(B)
A

]

− negl(λ)

≥ pf − 4c
√

τ − negl(λ),

which concludes the proof of Sect. 4.4.

Overall, if A is the bias inducer, given C∗ outputs 1 with probability 1/2 when-
ever ¬CORRECTA occurs, we have:

Pr
[

CO(A)
= 1
]

≥ pf − 4c
√

τ +
1 − pf

2
− negl(λ).

Case 2. B is the bias inducer. Similarly to Sect. 4.3, we define and analyze the
analogues of the events when B is the bias inducer, and conclude that in this
case, C∗ outputs 0 with probability at least pf − 4c

√
τ + 1−pf

2 − negl(λ).
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Wrapping Up. Overall, the advantage of C∗ is
∣

∣

∣Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
] ∣

∣

∣

≥ Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
]

≥ pf − 4c
√

τ +
1 − pf

2
− 1 + (pf − 4c

√
τ +

1 − pf

2
) − negl(λ)

= pf − 8c
√

τ − negl(λ), (11)

and plugging in the parameters in the beginning of the proof gives 8c
√

τ = 1/α,
which concludes the proof.

Remark 7 (Correct predictions). Again, our attack provides a slightly better
guarantee than stated in Theorem 6: it correctly outputs the identity of the bias
inducer (say by associating output 1 to A being the bias inducer), as opposed
to simply distinguishing them. In other words, we have:

Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
]

= pf − 8c
√

τ − negl(λ).

Looking ahead, we will crucially use this fact to extend our result to the many-
party case.

Remark 8 (Cost of the Attack, and Fine-grained Guarantees). The sampling
complexity of our strategy C∗ is a large, but fixed polynomial c6 · α4 · ω(log2 λ).
Concretely, in the setting where pf ≥ K for a constant K, and p0 = negl(λ),
we obtain attack with constant advantage (or even advantage 1− 1/poly if pf =
1 − 1/poly) which has a fixed overhead sampling cost as a function of c.

In other words, our attack rules out combinations of games and strategies
that δ-fool fine-grained observers with sample complexity m(c), if m is allowed
to be a large enough polynomial.27

5 Lower Bounds on Anonymous Transfer

In this section, we tie the attacks on covert cheating games in Sect. 4 to impossi-
bility results for anonymous transfer, thus obtaining Theorem8 and Theorem 9.
Last, we show how to extend Theorem 8 to the N -party setting in Sect. 5.3.

5.1 Reducing Anonymous Transfer to Covert Cheating Games

Theorem 7. Let Π�
AT be a two-party anonymous transfer protocol, with cor-

rectness error ε ∈ [0, 1]R, anonymity δ ∈ [0, 1]R with respect to a class C of

27 Here, we implicitly take the convention that, because players make c moves, they have
complexity at least c. This is informal, and there is a mismatch: we are comparing
sample complexity of C∗ against standard complexity of A and B. The translation
to AT lower bounds will make this statement more precise.
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adversaries, consisting of c ∈ N rounds and message length � ∈ N (all possibly
functions of λ) and satisfying deterministic reconstruction (which is without loss
of generality, see Remark 3).

Then there exists a covert cheating game, along with player strategy, where
the game consists of c rounds, the initial state of the game is 2−�, the expected
final state is pf = 1 − ε and the player strategy δ-fools observers in C.

Moreover, the covert cheating game satisfies absorption (Definition 3,
Eq. (6)), and is symmetric if Π�

AT is symmetric (Definition 2).

Proof. Let Π�
AT = (Setup,Transfer,Reconstruct) be an AT with the notation of

Theorem 7. We define our game as follows.

– Players and roles. The players of the game are the participants of the AT.
The bias inducer is the sender of the AT using a uniformly random message
μ ← {0, 1}�, the neutral party is the dummy party of the AT, and observers
are distinguishers.

– Execution and states. Moves in the covert cheating game are messages sent
in the AT. In other words, a full execution of the game is a full AT transcript.
Because moves in the covert cheating game are sequential, we sequentialize
the messages of the AT by consider player A to move first within the round.
This induces an order of messages, indexed by i ∈ [2c].
Let us fix an execution of the game, that is a full AT transcript π ←
Transfer(crs, b, μ), where crs ← Setup(1λ) and μ ← {0, 1}�. The associated
states of the game pi, where i ∈ [2c], are defined as follows. Let π[i] denote
the partial transcript consisting of the first i messages of the protocol Transfer
(with the sequential order from above). Let π[i] denote the distribution of
randomly completed partial transcripts, where π[i] is completed with 2c − i
uniformly sampled random message to obtain a full transcript. We then define:

pi = p(crs, π[i]) := Pr
[

μ′ ← Reconstruct(crs, π[i]) : μ′ = μ
]

,

where μ ← {0, 1}� is the input to the AT sender. The probability is over the
randomness of the random completion (recall that Reconstruct is determinis-
tic).
The initial state of the game is p0 = 1/2�, over the sole randomness of μ ←
{0, 1}�.
Π�

AT having correctness error ε implies that the resulting covert cheating
strategies have success rate pf = 1 − ε. Furthermore, the final state satisfies
p2c ∈ {0, 1} by determinism of Reconstruct and definition of p2c (as there is
no randomness in Reconstruct(crs, π)).

– Restriction on the neutral party. We argue that Eqs. (3) and (4) hold.
This is because in an AT, dummy messages are sampled uniformly at random,
and are therefore identically distributed as its counterpart obtained from
random completion. More formally, supposing A is the bias inducer/sender,
we have for all k ∈ [c] that the completions (π[2k − 1]‖msg) where msg is
a random AT protocol message, and π[2k − 1] are identically distributed by
definition of completion, so that
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E[X(B)
2k |X2k−1, · · · ,X0]

= Emsg

[

Pr
[

μ′ ← Reconstruct(crs, (π[2k − 1]‖msg)) : μ′ = μ
]]

= Pr
[

μ′ ← Reconstruct(crs, π[2k − 1]) : μ′ = μ
]

= X2k−1,

and similarly when B is the bias inducer/sender.
– Observers and security. Given an AT transcript, we implement a sam-

pling oracle as follows. On input i, sample π[i] and compute μ′ ←
Reconstruct(crs, π[i]) Output 1 if μ′ = μ, and 0 otherwise. By definition, this
procedure tosses a coin with probability pi.
Overall, if an observer strategy distinguishes O(A) from O(B) in time t, with
q sampling oracle queries and advantage δ, then there exists a distinguisher
for the AT running in time t + q · (n + ρ(c)) with advantage δ, where n is the
complexity of computing Reconstruct and ρ(c) is the complexity of sampling
c uniformly random protocol messages.

– Absorption. Because completions are sampled uniformly random from the
whole message space of the protocol, by definition of pi, pi = 1 implies that
all completions of π[i] recover μ, which implies that all possible continuations
of π[i] satisfy p = 1. Similarly, pi = 0 implies that all completions of π[i] fail
to recover μ, so that all continuations of π[i] satisfy p = 0.

– Symmetricity. Suppose the AT is symmetric (Definition 2), and let k ∈ [c].
Then (1) by symmetry of Reconstruct, Reconstruct(crs, π[2k]) is identically
distributed as Reconstruct(crs,Mirror(π[2k])), where Mirror flips the identities
of the participants in the transcript and (2) by symmetry of Transfer, the
unordered set (dummy(A),msg(B)) is identically distributed as (dummy(B),
msg(A)). We can therefore replace all the consecutive pairs of messages
(2j−1, 2j) from {dummy

(A)
2j−1,msg

(B)
2j } to {msg

(A)
2j−1, dummy

(B)
2j }, for all j ≤ k,

without changing the distribution of the outcome of Reconstruct. Doing so 2k
times gives:

E[X2k] = E[Y2k].

5.2 Lower Bounds on Anonymous Transfer

We first rule out the existence of AT with non-trivial correctness error ε and
anonymity δ, that are secure against arbitrary polynomial-time adversaries. We
do so by combining Theorem6 with Theorem 7, which gives the following:

Theorem 8. Suppose Π�
AT is a (two-party, silent receiver) anonymous transfer

satisfying deterministic reconstruction, and with � ≥ ω(log λ)-bit messages, with
correctness error ε, and δ-anonymous against all polynomial-time adversaries.
Then, for all polynomial α = α(λ):

δ ≥ 1 − ε − 1/α(λ).
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We observe that the relation between δ and ε is almost tight (up to 1/poly(λ)
factors), namely matches a trivial construction, (See full version).

Remark 9 (Ruling out other versions of AT). Thanks to the transformations in
Sect. 3, Theorem 8 also rules out other versions of AT, including (all combinations
of) the following: AT with non-silent receiver, AT with randomized reconstruc-
tion, AT with a large number N of parties (by considering δ′ = (N − 1) · δ).

Remark 10 (Ruling out strong fine-grained results). In fact, denoting n = n(λ)
the running time of Reconstruct, the attack obtained by combining Theorem6
with Theorem 7 runs in time m(λ) = n · c6 ·ω(log2(λ)), and therefore Theorem 8
further rules out schemes that are secure against adversaries running in fixed
polynomial overhead over honest users m ≤ n7. In other words, fine-grained
results for non-trivial parameters will at most provide security against adver-
saries running in time m.

Next, we rule out the existence of fine-grained AT, but for a smaller set
of parameters. We do so by combining Theorem 4 with Theorem 7. Note that
Theorem 4 requires the AT to be symmetric; this is without loss of generality
(See full version). This overall gives the following:

Theorem 9. There are no fine-grained AT with �-bit messages, correctness
error ε, and anonymity δ, such that:

δ · c ≥ 1 − ε − 1/2�.

More precisely, denoting n = n(λ) the maximum runtime of Transfer,Reconstruct,
and ρ(c) is the cost of sampling c uniformly random protocol messages, combin-
ing Theorem 4 with Theorem 7 gives an attack with complexity n(λ) + ρ(c) ≤
2n(λ).

5.3 Extension to Anonymous Transfer with Many Parties

In this section, we show that Theorem 8 extends to rule out anonymous trans-
fer with any polynomial number N of parties.28 More precisely, we prove the
following result.

Theorem 10. Let N = N(λ) be any polynomial. Suppose Π�
AT is an N -party

(silent receiver) anonymous transfer satisfying deterministic reconstruction, with
� ≥ ω(log λ)-bit messages, with correctness error ε, and δ-anonymous against all
polynomial-time adversaries. Then, for all polynomial α = α(λ):

δ ≥ 1 − ε − 1/α(λ).
28 Looking ahead, doing so comes at a mild loss in the resulting anonymity δ. While

this loss is mild starting from Theorem 8 yielding the main result of the section,
it is quite significant when starting from Theorem 9, in which case the anonymity
guarantees we obtain are similar to the ones of [3]. We therefore focus on Theorem 8
in this section.
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We refer to the technical overview for a sketch, and the full version for a full
proof.
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