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Preface

The 21st Theory of Cryptography Conference (TCC 2023) was held during November
29 – December 2, 2023, at Academia Sinica in Taipei, Taiwan. It was sponsored by the
International Association for Cryptologic Research (IACR). The general chairs of the
conference were Kai-Min Chung and Bo-Yin Yang.

The conference received 168 submissions, of which the Program Committee (PC)
selected 68 for presentation giving an acceptance rate of 40%. Each submission was
reviewed by at least three PC members in a single-blind process. The 39 PC members
(including PC chairs), all top researchers in our field, were helped by 195 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised versions of the 68 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

We are extremely grateful toKevinMcCurley for providing fast and reliable technical
support for the HotCRP review software. We also thank Kay McKelly for her help with
the conference website.

This was the ninth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year, the Test of Time Award Committee
selected the following paper, published at TCC 2007: “Multi-authority Attribute Based
Encryption” byMelissa Chase. The award committee recognized this paper for “the first
attribute-based encryption scheme in which no small subset of authorities can compro-
mise user privacy, inspiring further work in decentralized functional encryption.” The
author was invited to deliver a talk at TCC 2023.

This year, TCC awarded a Best Young Researcher Award for the best paper authored
solely by young researchers. The award was given to the paper “Memory Checking for
Parallel RAMs” by Surya Mathialagan.

We are greatly indebted to the many people who were involved in making TCC 2023
a success. First of all, a big thanks to the most important contributors: all the authors
who submitted fantastic papers to the conference. Next, we would like to thank the PC
members for their hard work, dedication, and diligence in reviewing and selecting the
papers. We are also thankful to the external reviewers for their volunteered hard work
and investment in reviewing papers and answering questions. For running the conference
itself,we are very grateful to the general chairs,Kai-MinChung andBo-YinYang, aswell
as the staff at Academia Sinica (Institute of Information Science and Research Center of
Information Technology Innovation). For helpwith these proceedings, we thank the team
at Springer. We appreciate the sponsorship from IACR, Hackers in Taiwan, Quantum
Safe Migration Center (QSMC), NTT Research and BTQ. Finally, we are thankful to
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Tal Malkin and the TCC Steering Committee as well as the entire thriving and vibrant
TCC community.

October 2023 Guy Rothblum
Hoeteck Wee
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Lower Bounds on Anonymous
Whistleblowing

Willy Quach1(B), LaKyah Tyner2, and Daniel Wichs2,3

1 Weizmann Institute of Science, Rehovot, Israel
quach.w@northeastern.edu

2 Northeastern University, Boston, MA, USA
tyner.l@northeastern.edu, wichs@ccs.neu.edu

3 NTT Research, Sunnyvale, CA, USA

Abstract. Anonymous transfer, recently introduced by Agrikola,
Couteau and Maier [3] (TCC ’22), allows a sender to leak a message
anonymously by participating in a public non-anonymous discussion in
which everyone knows who said what. This opens up the intriguing pos-
sibility of using cryptography to ensure strong anonymity guarantees in
a seemingly non-anonymous environment.

The work of [3] presented a lower bound on anonymous transfer, rul-
ing out constructions with strong anonymity guarantees (where the adver-
sary’s advantage in identifying the sender is negligible) against arbi-
trary polynomial-time adversaries. They also provided a (heuristic) upper
bound, giving a scheme with weak anonymity guarantees (the adversary’s
advantage in identifying the sender is inverse in the number of rounds)
against fine-grained adversaries whose run-time is bounded by some fixed
polynomial that exceeds the run-time of the honest users. This leaves
a large gap between the lower bound and the upper bound, raising the
intriguing possibility that one may be able to achieve weak anonymity
against arbitrary polynomial time adversaries, or strong anonymity a-
gainst fine grained adversaries.

In this work, we present improved lower bounds on anonymous transfer,
that rule out both of the above possibilities:

– We rule out the existence of anonymous transfer with any non-trivial
anonymity guarantees against general polynomial time adversaries.

– Even if we restrict ourselves to fine-grained adversaries whose run-
time is essentially equivalent to that of the honest parties, we can-
not achieve strong anonymity, or even quantitatively improve over the
inverse polynomial anonymity guarantees (heuristically) achieved by
[3].

Consequently, constructions of anonymous transfer can only provide
security against fine-grained adversaries, and even in that case they
achieve at most weak quantitative forms of anonymity.

1 Introduction

Consider the following question:

Can a sender leak a message anonymously, by exclusively participating in
a public non-anonymous discussion where everyone sees who said what?

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14371, pp. 3–32, 2023.
https://doi.org/10.1007/978-3-031-48621-0_1
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4 W. Quach et al.

In particular, we consider a setting where the participants are having a seemingly
innocuous discussion (e.g., about favorite cat videos). The discussion is public
and non-anonymous, meaning that the participants are using their real identi-
ties and everyone knows who said what.1 The non-sender participants are having
a real conversation about this topic. On the other hand, the sender is carefully
choosing what to say in a way that looks like she is participating in the conversa-
tion, but her real goal is to leak a secret document (e.g., NSA’s polynomial-time
factoring algorithm). At the end of the discussion, anyone should be able to
look at the transcript of the conversation and reconstruct the secret document,
without learning anything about which of the participants was the actual sender
responsible for leaking it. Despite its conceptual importance and simplicity, this
question has not been studied until recently, perhaps because it may appear
“obviously impossible”.

A formal study of the question was recently initiated by Agrikola, Couteau
and Maier in [3], who, perhaps surprisingly, raise the intriguing possibility of
answering it positively using cryptography. They do so by introducing a new
cryptographic primitive, dubbed anonymous transfer (henceforth AT), to cap-
ture the setting above. An anonymous transfer involves a sender with a secret
document, along with unaware dummy participants who send uniformly random
messages.2 The parties run for some number of rounds, where in each round the
sender and each participant sends a message. At the end of the protocol anyone
can reconstruct the secret document with high probability given the transcript.
However, the transcript cannot be used to identify who the sender is among the
participants.

Crucially, anonymous transfer does not rely on the availability of any (weak)
anonymous channels, nor on the availability of trusted third parties during the
execution. Instead, all protocol messages are assumed to be traceable to their
respective senders, and all other dummy participants only passively send ran-
dom messages. The simplicity of the setting makes it both a natural question
to explore, and raises very intriguing possibility of “creating” anonymity in a
seemingly non-anonymous environment.

Anonymous Transfer and Whistleblowing. One central motivation for studying
anonymous transfer is its relation to whistleblowing, where whistleblowers wish
to leak confidential and oftentimes sensitive information, while operating in a
potentially untrusted environment. The whistleblowers themselves usually risk
being subjected to both harsh social, financial, and even legal consequences if
caught [1,4,13]. One natural mitigation for those risks is the use appropriate
1 For concreteness, the public discussion could occur over Facebook or Twitter, and

users need to be logged in with their true identity.
2 This departs from our informal setting, where a real discussion occurred, while we

now assume that “real discussions” are uniformly random. Various works, including
[12,15,16] show how to embed uniform randomness into real discussions. Concretely,
it suffices to (randomly) encode uniformly random messages to the distribution rep-
resenting the (non-necessarily uniform) communication pattern, in a way that the
random messages can be decoded.
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tools, typically cryptographic ones, to ensure anonymity of the leak. And indeed,
a large body of work is devoted to build such tools.

One crucial aspect of these tools is the assumptions made on resources avail-
able to the whistleblower, which we would ideally like to minimize. From a
practical perspective, it seems unreasonable to assume the general availabil-
ity of, say, anonymous channels or online trusted parties to whistleblowers. In
fact, even given the availability of such anonymous channels, their use alone
could potentially be incriminating. From a more theoretical perspective, cryp-
tographic solutions leveraging such assumptions could be seen as bootstrapping
weaker forms of anonymity. Unfortunately, as far as we are aware, except the
work of [3], all prior work on whistleblowing assume the availability of an online
form of trust, and thus do not seem to answer the initial question we consider.
In contrast, [3] asks the intriguing question of whether cryptography can create
forms of anonymity in a more fundamental sense.

Prior Work on Anonymous Transfer. Along with introducing anonymous trans-
fer, [3] gives both lower bounds, and, perhaps surprisingly, plausibility results
on its feasibility. Let us introduce some notation. The correctness error ε = ε(λ)
of an anonymous transfer is the probability secret documents fail to be recon-
structed, and the anonymity δ = δ(λ) of an AT is the advantage a transcript of
the AT provides towards identifying the sender.3 An AT is in general interactive,
and consists of c = c(λ) rounds of interaction.

On the negative side, [3] shows that no protocol can satisfy close to ideal
forms of correctness and security, namely ε, δ = negl(λ), against all polyno-
mial time adversaries. They supplement this lower bound with a plausibility
result, by giving heuristic constructions of anonymous transfer with fine-grained
security. This heuristic construction provides negligible correctness error, but
weaker anonymity guarantees (namely δ ≈ 1/c, where c is the number of rounds),
and only against a restricted class of fine-grained adversaries, who are allowed
restricted to be at most O(c) times more powerful than honest users, which are
argued secure by relying on ideal obfuscation.

Still, the work of [3] leaves open the possibility of building anonymous transfer
with non-optimal correctness and security guarantees (e.g., δ ≤ 1/c) secure
against arbitrary polynomial-time attacks.

Our Results. In this work, we give improved lower bounds for anonymous trans-
fer, largely ruling out potential improvements over the heuristic upper bound
from [3]. Throughout this exposition, we will consider the case of 2 partici-
pants, one sender and a non-sender; [3] shows that lower bounds in that setting
translates to lower bounds for any larger number of parties. Our main theorem
shows that anonymous transfer with any non-trivial anonymity against general
polynomial-time attackers is impossible, solving a conjecture explicitly stated in
[3].

3 In this work, we use the convention that an AT is stronger as ε, δ tend to 0; this is
the opposite convention of [3] where this held whenever ε, δ tend to 1.
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Theorem 1 (Informal). For any 2-party anonymous transfer protocol for
ω(log λ)-bit messages with correctness error ε, for all polynomial α = α(λ), there
exists a polynomial-time adversary that identifies the sender with probability at
least 1 − ε − 1/α.

Note that, the probability of identifying the sender is essentially optimal, as,
with probability ε, the sender might act as a dummy party, and therefore this
rules out any non-trivial constructions.

Our attack runs in polynomial-time, but where the polynomial is fairly large.
This unfortunately does not match the run-time of allowed adversaries in the
heuristic construction of [3].

As a secondary result, we show that even in the setting of fine-grained adver-
saries whose run-time is essentially equivalent to that of the honest parties, we
can identify senders with probability 1/c whenever the secret document can
be reconstructed. This shows that, even in the fine-grained setting, one can-
not improve on the quantitative anonymity guarantees achieved by the heuristic
construction of [3].

Theorem 2 (Informal). For any 2-party anonymous transfer protocol for
ω(log λ)-bit messages, with correctness error ε, and having c-round of inter-
action, there exists a fine-grained adversary whose run-time matches that of the
reconstruction procedure up to additive constant factors, that identifies the sender
with probability at least (1 − ε − negl(λ))/c.

Theorem 2 in particular rules out all fine-grained protocols with a polynomial
number of rounds, if both δ and ε are negligible. For comparison, the lower bound
of [3] rules out very similar parameters, but where the run-time of the adversary
is m(λ) = λ · cg times larger than the one of the reconstruction procedure, for
some arbitrary constant g > 0.

Related Work on Whistleblowing. Current solutions for anonymous messaging
and anonymous whistleblowing include systems based on onion routing [10], mix-
nets [7], and Dining Cryptographer networks or DC-nets [2,6,9,11,14]. Addition-
ally, there have been other applications developed that utilize new techniques
inspired by the models mentioned previously [5,8,9]. Each of these solutions,
however, intrinsically assumes that there exists non-colluding honest servers that
participate to ensure anonymity. [3] is the first to introduce a model which does
not rely on this assumption. Impossibility results could be interpreted as evi-
dence that such an assumption is in fact necessary.

Open Problems. The main open question left by [3] and this work is the construc-
tion of fine-grained anonymous transfer matching their heuristic construction,
but under standard assumptions.

Additionally, our attack in Theorem1 runs in fairly large polynomial time,
which does not tightly match the fine-grained security proved in the heuristic
construction of [3]. We leave for future work the possibility of improving the
run-time of an attack matching the properties of Theorem1.
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2 Technical Overview

Anonymous Transfer. Let us first recall some basic syntax and notations for
anonymous transfer (henceforth AT), introduced in [3]. In this overview, we will
focus on 2-party anonymous transfer, which features a sender, a dummy party
and an external receiver.4,5 The sender takes as input a message μ to transfer.
The sender and the dummy party exchange messages in synchronous rounds,
with the restriction that the dummy party only sends random bits. An execution
of the transfer spans over c rounds of interaction, where both parties send a
message at each round. Given a full transcript, the external receiver can (attempt
to) reconstruct the original message. We say that an AT has ε correctness error
if the reconstruction procedure fails to recover μ with probability at most ε; and
that it is δ-anonymous if no adversary has advantage greater than δ in identifying
the sender amongst the two participating parties over a random guess, where the
adversary can choose the message to be sent.6 We refer to Sect. 3.1 for formal
definitions.

In that setting, [3] showed the following lower bound on AT.

Theorem 3 ([3], paraphrased). Every (two-party, silent receiver) AT with
ε-correctness and δ-anonymity against all polynomial-time adversary, and con-
sisting of c rounds, satisfies δ · c ≥ 1−ε

2 − 1/m(λ) for all polynomial m(λ).

In particular, no AT can satisfy δ, ε = negl(λ) (assuming c = poly(λ), which
holds if participants are polynomial-time). More precisely, [3] show, for all poly-
nomial m(λ), an attack with runtime m(λ) · poly(λ) with advantage at least
1
c · ( 1−ε

2 − 1/m(λ)).
The main limitation of Theorem 3 is that it does not rule out the existence

of AT protocols with anonymity δ scaling inverse-polynomially with the number
of rounds c, e.g. δ = 1/c. In other words, the trade-off between correctness and
security could potentially be improved by relying on a large amount of interac-
tion. And indeed, [3] does provide a plausibility result, where, assuming ideal
obfuscation, there exists a fine-grained AT with δ ≈ 1/c, ε = negl(λ), so that
anonymity does improve with the number of rounds. A secondary limitation
is that, because the attack corresponding to Theorem3 needs to call the hon-
est algorithms a polynomial number of times (even though the polynomial can
arbitrarily small), this potentially leaves room for “very fine-grained” protocols,
where security would only hold against adversaries running in mild super-linear
time compared to honest users.

4 Anonymous transfer can also be defined with more than a single “dummy” party.
We focus for simplicity on the 2-party case for this overview, and will show how to
extend the attacks to the N -party case subsequently.

5 We consider here “silent” receivers who do not send any messages—this is similarly
known to be sufficient for lower bounds [3].

6 We remind the reader that [3] takes different conventions than ours for ε and δ. With
our notation, an AT satisfies stronger properties as ε and δ get smaller and closer to
0, and are ideally negligible in the security parameter.
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Our main results are stronger generic attacks on anonymous transfer proto-
cols.

A General Blueprint for Our Attacks. The core idea behind all our attacks is a
simple notion of progress associated to any (potentially partial) transcript of an
AT. We do so by associating a real value p ∈ [0, 1]R to partial transcripts of an
AT, as follows. We can complete any partial transcripts, replacing all missing
messages by uniformly random ones, and attempt to recover the input message
μ ← {0, 1}� from the sender. For a partial transcript, we define p ∈ [0, 1]R to be
the probability that a random completion of the transcript allows to recover μ.

The next step is to attribute partial evolutions of p, as the transcript gets
longer, to parties in the protocol. Namely if, after party A sends the ith message
in the transcript, the value of the protocol evolves from pi−1 to pi, and we
attribute to A some progress dependent on pi−1 and pi. We then make the
following observations: the empty transcript has value p0 = 1/2� close to 0 (if μ
is chosen uniformly at random), and full transcripts have (on expectation) value
p2c = 1− ε close to 1 by correctness. Our main leverage is that messages sent by
the unaware, dummy participant in an AT do not significantly change the value
of a partial transcript: this is because, in our random completion of transcripts,
messages from the dummy party follow their real distribution. Furthermore, as
long as the final value p2c is significantly larger than the initial value p0, then
a significant amount of total progress has to be made at some point. Therefore
the messages from the sender have to significantly bias the values of partial
transcripts towards 1.

This results in the following blueprint for identifying the sender of the AT.
We first estimate the contribution of each party towards total progress, namely,
the evolution of the values p associated to partial transcripts where the last
message was sent from that party.7 Then, we argue that (1) the contribution of
the dummy party is likely to be small overall and (2) the total contribution of
both parties is fairly large (on expectation), from which we conclude that the
party whose messages contributed the most to increasing the value p is likely to
be the AT sender.

Covert Cheating Games. We abstract out this recipe as a natural game, that we
call a covert cheating game. A covert cheating game played by two players A and
B, who take 2c alternate turns moving a point, or current state of the game, on
the real interval [0, 1]. One player is designed to be a bias inducer, and the other
a neutral party. The initial state is p0, and the final state is p2c is either 0 or 1.
We say that a strategy has success rate pf > p0 if E[p2c] ≥ pf , regardless of the
identity of the bias inducer. The neutral party is restricted to exclusively making
randomized moves that do not affect the current state on expectation. The goal
of a third player, the observer C, is to determine, given access to the states of
the game, which player is the bias inducer. Our main technical contribution is

7 In an AT, rounds are by default synchronous; for the sake of this general blueprint,
any arbitrary sequentialization of the messages would be meaningful.
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to show generic observer strategies for this game. We refer to Definition 3 for a
more detailed definition.

We use this abstraction to capture the fact that our attacks use the AT in
a specific black-box sense, namely, only to measure out values p ∈ [0, 1]R, and
using all the AT algorithms in a black-box manner. Overall, our abstraction of
attacks on ATs as strategies in a game captures a natural family of black-box
distinguishing algorithms, which we believe capture most reasonable attacks on
AT.8 Indeed, it is not clear how to leverage any non-black-box use of honest user
algorithms, as they could potentially be obfuscated (and indeed, the plausibility
result of [3] does rely on obfuscated programs to be run by honest users). We
believe this game to be natural enough to see other applications in the future.

In the rest of the technical overview, we focus on describing generic attacks
in the language of covert cheating games.

A Generic “Free-Lunch” Attack. We describe our first attack on the game intro-
duced above, which corresponds to a proof sketch of Theorem 2. Our attack is
very simple, and only leverages the fact that, on expectation over a random
move, moves done by the bias inducer bias the outcome by an additive term
(pf − p0)/c, while moves from the neutral party do not add any bias. Suppose
the game consists of c rounds (each consisting of one move from each party
A,B), and that party A makes the first move, so that A makes the odd moves
2k + 1, and B makes the even moves 2k. Our strategy is to pick a random move
k ← [c] from A, whose kth move makes the game evolve from state p2k to p2k+1.
We simply output “A is the bias inducer” with probability p2k+1 (and B with
probability 1 − p2k+1).

The main idea is that if A is the neutral party, then on expectation p2k+1 =
p2k, and thus our strategy outputs A with probability pk. On the other hand, if
A is the bias inducer, our strategy outputs A with probability p2k+1.9 Because B
is then a neutral party, B’s total expected contribution is 0, namely Ek[p2k+2 −
p2k+1] = 0, so that the advantage of our algorithm towards determining A is:

Ek[p2k+1 − p2k] = Ek[p2k+1 − p2k + (p2k+2 − p2k+1)
︸ ︷︷ ︸

0

] = (pf − p0)/c.

The cost of our attack is the cost of obtaining a single sample with probability
p2k+1. Going back to AT, this corresponds to the cost of running the honest users’
algorithms once (namely, attempting to reconstruct the message of a random
completion of a randomly chosen partial transcript with last message from A).
We conclude no AT can provide security with parameters from Theorem 2, in

8 More precisely, strategies are black-box in the AT algorithms, but need to consider
full transcripts in a slightly non-black-box way (namely, by separating messages and
considering random continuations).

9 Technically, the quantities pk when A is the neutral party and pk when A is the
bias inducer are not necessarily related. But without loss of generality, the strategies
used by the bias inducer and the neutral party are independent of their identity as
A or B, in which case the quantities p2k are equal.
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any fine-grained setting (as long as adversaries are allowed to be in the same
complexity class as honest users).

A Generic Attack with Large Advantage. We now describe a slightly more
involved attack that achieves stronger advantage, at the cost of running in larger
polynomial time. The main inspiration behind this new attack comes from taking
a closer look on the restriction that the neutral party’s moves do not change the
game state on expectation. We observe that this is a more stringent restriction
if the current game state p is close to 0. For concreteness, if the current state of
the game is p = 1/2, then the neutral party could potentially move the state to
p′ = 0 or p′ = 1 with probability 1/2 each, inducing a large change of the value
of p. However, starting at p � 0, Markov’s inequality ensures that p′ cannot be
too large.

This motivates us to consider a different quantification of progress where
additive progress close to 0 is weighed more significantly than additive progress
at large constants (e.g. 1/2). We do so by considering a multiplicative form of
progress associated to moves and players. Namely, if the ith move of the game
transforms the game state from pi−1 to pi, then we define the multiplicative
progress associated with the move as10

ri =
pi

pi−1
.

The total progress associated with a player would then be the product of the
progress associated with its moves.

Our blueprint still applies in this context. The total progress of all the moves
combined is11

∏

i∈[2c]

ri =
∏

i∈[2c]

pi

pi−1
=

pf

p0
,

and so one of the players (on expectation) needs to have progress at least
√

pf/p0.
Furthermore, one can show that the restriction on neutral party’s moves implies
that the product of the ri associated to the neutral party is 1 on expectation.
Namely, denoting N the set of indices corresponding to moves made by the
neutral party: E [

∏

N ri] = 1. Markov’s inequality then gives:

Pr

[

∏

N

ri ≥
√

pf

p0

]

≤
√

p0
pf

.

10 One technically needs to be careful handling cases where pi = 0 for some i. We
largely ignore this technicality in this overview. For concreteness, it will be enough
to output a random guess if this happens, and observe that, for games resulting from
an AT, this happens with probability at most 1 − pf , and therefore does not affect
our advantage too much. We refer to Sect. 4.3 for more details.

11 Actually, the total progress is only guaranteed to be pf/p0 on expectation, which
induces several technical issues. We will assume the progress is always equal to
pf/p0 for the sake of this overview, and we refer to Sect. 4.2 for more details on the
issues and a solution.
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Overall, this shows that with good probability 1 − √p0/pf , the sender has a
large total contribution, and the dummy party has a small contribution, so that
an attacker can identify them with at least such a probability.

We are unfortunately not done yet, because observers do not have direct
access to the real values p ∈ [0, 1]: they are only given the ability to sample
coins with probability p (going back to AT, recall that this is done by sampling
a random completion of a transcript and testing whether the reconstructed mes-
sage matched the sender’s message). This is problematic: from the perspective
of a polynomial-time observer, the values p = negl(λ) and p = 0 are indistin-
guishable, given only sampling access. How can we then ensure that the ratios
ri = pi/pi−1 are even well-defined (that is, that pi−1 �= 0)?

We solve this issue by conditioning our product to be over moves i ≥ i∗,
such that for all i > i∗, pi ≥ τ for some small accuracy threshold p0 < τ < pf

(think τ = 1/poly(λ)), and where we set the convention pi∗ = τ . Now the ratios
are well-defined, and the total contribution is now pf/τ . It remains to argue
that the product corresponding to the neutral party is small. While we might
have biased the distribution of the neutral party by conditioning on the product
starting at i∗, we argue by a union bound that, with sufficiently high probability
1 − c

√

τ/pf , all “suffix-products” from the dummy party are small (namely,
smaller than

√

pf/τ)
Summing up, our final observer strategy estimates all the pi up to some

sufficiently good precision (using Chernoff) so that the product of the ri =
pi/pi−1 is ensured to be accurate, as long as all the terms pi that appear in the
product are large enough compared to our threshold τ . We refer to Sect. 4.4 for
more formal details.

Taking a step back, the major strength of Theorem1 is that the advantage of
the associated attack is independent of the number of rounds: only its running
time scales with the number of rounds (in order to ensure sufficient precision
with Chernoff bounds). This is in our eyes a quantitative justification that mul-
tiplicative progress is better suited to identify bias in a covert cheating game.

Extending the Lower Bound to N Parties. Last, we sketch how to extend our
attack from Theorem 1 to the N -party setting, which consists of a sender inter-
acting with N − 1 dummy parties. Our first step is to observe that our attacks
described above directly translate to targeted-predicting attacks, which correctly
identify the sender given the promise that the sender is either party i ∈ [N ] or
j ∈ [N ] where i �= j are arbitrary but fixed for the targeted predictor. This fol-
lows from [3], which builds a 2-party AT from any N -party AT, while preserving
targeted-predicting security.12 In other words, given the promise that the sender
is either party i or party j, we can correctly identify the sender with the same
guarantees as in Theorem 1 (or even Theorem 2).

However, we ideally wish to obtain general predicting attacks that do not
rely on any additional information to correctly output the identity of the sender.

12 This is done by considering all the messages sent by parties k �= i, j as part of the
CRS of the new 2-party protocol.
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We generically upgrade any targeted-predicting attack to a standard predicting
attack, while preserving the advantage δ, as follows. The attack simply runs the
targeted-predicting attack on all pairs of distinct indices {(i, j) | i, j ∈ [N ], i �= j},
and outputs as the sender the party i∗ that got designated as the sender in all
the runs (i∗, j), j �= i∗.13 Now, if i∗ is the sender of the N -party AT, an union
bound implies that the probability that all the internal runs (i∗, j), j �= i∗ of
the targeted-predicting attack correctly point out to i∗ as the sender is at least
δ′ ≥ 1 − N(1 − δ). Starting with the attack from Theorem1 with α′ = N · α,14

we obtain the same lower bound as Theorem1 in the N -party setting, at the
cost of a poly(N) overhead in the runtime of our attack.15

3 Preliminaries and Definitions

Notations. When X is a distribution, or a random variable following this dis-
tribution, we let x ← X denote the process of sampling x according to the
distribution X. If X is a set, we let x ← X denote sampling x uniformly at
random from X; if Alg is a randomized algorithm, we denote by x ← Alg the
process of sampling an output of Alg using uniformly random coins. We use the
notation [k] to denote the set {1, . . . , k} where k ∈ N, and [0, 1]R to denote the
real interval {x ∈ R | 0 ≤ x ≤ 1}. We denote by negl(λ) functions f such that
f(λ) = 1/λω(1).

Chernoff Bound. We will use the following (multiplicative) form of Chernoff-
Hoeffding inequality.

Lemma 1 (Multiplicative Chernoff). Suppose X1, · · · ,Xn are independent
Bernouilli variables with common mean p. Then, for all t > 0, we have:

Pr

[

n
∑

i=1

Xi /∈ [(1 − t) · np, (1 + t) · np)]

]

≤ 2e−2t2p2n.

3.1 Anonymous Transfer

We recall here the notion anonymous transfer, introduced in [3]. Throughout
most of this work, we focus the two-party setting, involving a sender, a dummy
non-sender and a (silent) receiver.16

13 Note that there is at most one such index. If no such index exist, our attack, say,
outputs party 1.

14 This corresponds to setting δ = 1 − 1/α′, conditioned on executions where the
message can be correctly reconstructed. We refer to Sect. 5.3 for more details.

15 The overhead arises from both the O(N2) calls to the internal distinguisher, and the
runtime of the internal distinguisher itself which is poly(α′) = poly(N) · α.

16 The work of [3] more generally considers a setting with N parties, namely a sender
and N − 1 dummy parties. Our work focuses on the two-party case, but our main
result extend to the N -party case: see Remark 4 and Sect. 5.3 for more details.
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Definition 1. ((Two-Party, Silent-Receiver) Anonymous Transfer);
adapted from [3]). A two-party anonymous transfer (AT) Π�

AT , with cor-
rectness error ε ∈ [0, 1]R, anonymity δ ∈ [0, 1]R, consisting of c ∈ N rounds and
message length � ∈ N (all possibly functions of λ), is a tuple of PPT algorithms
(Setup,Transfer,Reconstruct) with the following specifications:

– Setup(1λ) takes as input a unary encoding of the security parameter λ and
outputs a common reference string crs.

– Transfer(crs, b, μ) takes as input a common reference string crs, the index of
the sender b ∈ {0, 1}, the message to be transferred μ ∈ {0, 1}�, and outputs
a transcript π. Transcripts π consists of c rounds of interaction between the
sender and the dummy party, where the dummy party (with index 1 − b)
sends uniform and independent messages at each round, and the each message
from the sender depends on the partial transcript so far, with a next message
function implicitly defined by Transfer(crs, b, μ).
By default, we assume that the receiver does not send any messages (namely,
the receiver is silent).17

– Reconstruct(crs, π) takes as input a common reference string crs, a transcript
π and outputs a message μ′ ∈ {0, 1}�.
By default, we assume that Reconstruct is deterministic.18

We require that the following properties are satisfied.

ε-Correctness. An anonymous transfer Π�
AT has correctness error ε if, for all

large enough security parameter λ, index b ∈ {0, 1}, message length � ∈ poly(λ),
and all message μ ∈ {0, 1}�, we have:

Pr

⎡

⎣

crs ←− Setup(1λ)
π ←− Transfer(crs, b, μ)
μ′ ← Reconstruct(crs, π)

: μ′ �= μ

⎤

⎦ ≤ ε.

δ-Anonymity. An anonymous transfer Π�
AT is δ-anonymous if, for all PPT algo-

rithm D, all large enough security parameter λ, message length � ∈ poly(λ), and
all message μ ∈ {0, 1}�,

∣

∣

∣

∣

Pr[π(0) ←− Transfer(crs, 0,m) : D(π(0)) = 1]
- Pr[π(1) ←− Transfer(crs, 1,m) : D(π(1)) = 1]

∣

∣

∣

∣
≤ δ, (1)

where the probability is over the randomness of Setup, Transfer, and the internal
randomness of D.

We alternatively say that Π�
AT is δ-anonymous with respect to a class of

adversaries C, if Eq. (1) holds instead for all distinguishers D ∈ C.

Definition 2. We say that an anonymous transfer is symmetric if the next
message function of the sender, implicitly defined by Transfer(crs, b, μ) where b
is the sender, does not depend on b, and if Reconstruct does not depend on the
identities of the participants.
17 This is without loss of generality; see Remark 2.
18 This is without loss of generality; see Remark 3.
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Remark 1. (Comparison with [3]). Our notation and definitions are slightly dif-
ferent but equivalent from the ones from [3]. With our conventions, ε denotes a
correctness error, and δ denotes a (bound on a) distinguishing advantage, and
therefore an AT has stronger correctness (resp. stronger anonymity) guarantees
as ε, δ decrease. This is the opposite of [3], where guarantees gets better as their
parameters ε, δ tend to 1.

Our definition of correctness error is over the random choice of crs ← Setup,
while it is worst case over crs in [3]. Because this defines a larger class of protocols,
ruling out the definition above makes our lower bounds stronger.

Our definition of δ-anonymity is formulated specifically for the two-party
case, and is worded differently from theirs, which states, up to the mapping
δ �→ 1 − δ discussed above:

∣

∣

∣

∣
Pr

b←{0,1}

[

π(b) ← Transfer(crs, b,m) : D(π(b)) = b
]

− 1
2

∣

∣

∣

∣
≤ δ

2
. (2)

However one can easily show that both definitions correspond to the same value
δ .

Remark 2 (Silent Receivers). As noted in [3], without loss of generality, the
receiver in an anonymous transfer can be made silent, namely, does not send
any messages in the protocol execution. This is because its random tape can be
hard-coded in the CRS.

Remark 3 (Deterministic reconstruction). We observe that Reconstruct can be
assumed to be deterministic without loss of generality; this is because random
coins for Reconstruct can be sampled and included in the common reference
string crs.

Remark 4 (AT with larger number of parties). [3] more generally defines anony-
mous transfer with a larger number of participants N ∈ N. We refer to [3, Def-
inition 3] for a formal definition.19 The main difference (in the silent receiver
case), is that δ is defined as an advantage over random guessing among the N
participants. Namely, Eq. (2) becomes:

∣

∣

∣

∣
Pr

k←[N ]

[

π(k) ← Transfer(crs, k,m) : D(π(k)) = k
]

− 1
N

∣

∣

∣

∣
≤ δ · N − 1

N
.

In particular, while the indistinguishability-based definition in Eq. (1) and the
predicting-based definition in Eq. (2) are equivalent in the two-party setting, it
is not immediately clear that this holds in the N -party setting. Looking ahead,
in order to extend our results from the 2-party to the N -party setting, our main
observation is to show that this equivalence in fact holds, up to some mild loss
in the parameters. We refer to Sect. 5.3 for more details.

19 We remind the reader that the quantity δ in [3] corresponds to 1 − δ for us. Addi-
tionally, in this version of the definition, we do not include the receiver in the count
for the number of parties.
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4 Identifying Covert Cheaters

In this section, we introduce our abstraction of the covert cheating games, and
then show generic strategies for the game.

4.1 Covert Cheating Game

We define a covert cheating game as follows.

Definition 3 (Covert Cheating Game). Let c ∈ N, p0 ∈]0, 1[R be parame-
ters.

– Setup, players and roles. A covert cheating game is played by two (ran-
domized) players A and B, who can agree on a strategy in advance. They play
against an observer C. During setup, one party is (randomly) designated as
the bias inducer while the other is designated as the neutral party.

– Execution and states of a game. An execution of the game consists of
players A and B take alternate moves making moves in the game, with the
convention that player A makes the first move. The game consists of c rounds
(that is, 2c total moves, c moves from A and c moves from B), where c ∈ N

is a parameter of the game. At any point during the game, the current state
of a game is represented by a real number p ∈ [0, 1]R. The final state of the
game is a bit p2c ∈ {0, 1} (where one can consider 1 as a winning outcome
for the players A,B, and 0 as a losing outcome).
For k ∈ [c], if A is the bias inducer, we will use either of the notations
X2k−1 = X

(A)
2k−1 (resp. X2k = X

(B)
2k ), to denote the random variable associated

to the state resulting from A (resp. B) making its kth move. In other words,
the superscript in X

(A)
2k−1 (resp. X

(B)
2k ) is a redundant notation to make remind

the reader that A (resp. B) made the (2k − 1)st (resp. (2k)th) move of the
game.
Similarly, for k ∈ [c], if B is the bias inducer, we will use either of the
notations Y2k−1 = Y

(A)
2k−1 (resp. Y2k = Y

(B)
2k ), to denote the random variable

associated to the state resulting from A (resp. B) making its kth move. Again,
the redundant superscript is used to make the player associated to the move
explicit.
The initial state of the game is defined as p0 ∈]0, 1[R, where p0 is a parameter
of the game. In other words, X0 = Y0 = p0.
We say that a strategy for A and B has success rate pf if E[X2c] ≥ pf and
E[Y2c] ≥ pf .

– Rules on moves. The neutral party is restricted to making moves that do
not change the state of the game on expectation, namely, the moves behave as
martingales with respect to the current game state. More formally, with our
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notation, for all k ∈ [c], we have:20

E[X(B)
2k |X2k−1, · · · ,X0] = X2k−1. (3)

E[Y (A)
2k−1|Y2k, · · · , Y0] = Y2k−2. (4)

where the first equation (resp. second equation) corresponds to A (resp. B)
being the bias inducer.

– Objective of the game. The goal of the game is, for the bias inducer, to
be covert with respect to the observer C, while maintaining a high success
rate pf (namely, a high probability of ending up at 1 in the final state). The
observer C has access to intermediate states of the execution pi ← Xi (if A
is the bias inducer, or pi ← Yi otherwise) via a (distribution of) oracles O.
In each oracle O is hard-coded a sequence of 2c states of the game pi, i ≤ 2c
induced by an execution of the game. We will respectively denote by O(A)

(resp. O(B)) (the distribution of) oracles corresponding to when A (resp. B)
is designated as the bias inducer. We consider the following variants of the
oracles O ∈ {O(A),O(B)}.
– Sampling access. We say that the observer C gets sampling access to game

states pi ∈ [0, 1]R, if oracles O are probabilistic oracles such that, for all
i ∈ [2c], O(i) = 1 with probability pi, and O(i) = 0 with probability 1−pi,
where the randomness is uniformly and independently sampled at each
oracle call. This is our default notion of access.

– Direct access. We say that an observer gets direct access to game states
pi ∈ [0, 1]R, if oracles O are defined as Odirect(i) = pi ∈ [0, 1]R for all
i ∈ [2c].

We say that the bias inducer successfully δ-fools a class C of observers with
respect to sampling access if for every algorithm C ∈ C, we have:

∣

∣

∣Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
] ∣

∣

∣ ≤ δ,

where CO(X)
, where X ∈ {A,B}, denotes the experiment of sampling O ←

O(X ) (which is defined as sampling a random execution of the game when X
is the bias inducer, yielding states pi, i ≤ 2c, and defining O with respect to
{pi}), and giving C oracle access to O.
We say that the bias inducer successfully δ-fools a class C of observers with
respect to direct access if the observer C gets oracle access to Odirect instead.

– (Optional Property): Symmetricity. We say that a strategy for players
A and B is symmetric if:

∀k ∈ [c], E [X2k] = E [Y2k] , (5)

that is, the state of the game is (on expectation) independent of the identity
of the bias inducer, whenever the bias inducer and the neutral party made
an identical number of moves (which happens after an even number of total
moves).

20 We technically are also conditioning the expectations X, Y on all the prior moves
instead, but are omitting them for ease of notation. See Remark 5.
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– (Optional Property): Absorption. We say that a strategy is absorbent
(implicitly, with respect to states 0 and 1) if, for all i ∈ [2c] and bit b ∈ {0, 1}:

{Xi = b} =⇒ {∀j ≥ i,Xj = b}. (6)

Remark 5 (Implicit Conditioning on Prior Moves.). We allow the strategies
from A and B to be adaptive, namely, to depend on prior moves. As a result, all
the expectations on random variables Xi, Yi are technically always considered
conditioned on all the prior moves. For ease of notation, we will not make this
conditioning explicit, and will always implicitly consider the conditional version
of expectations for these variables (and resulting variables defined as a function
of Xi, Yi).

4.2 Attack 1: Free-Lunch Attack with Weak Distinguishing
Guarantees

We show here that there exists a very efficient generic observer strategy given
sampling access to game states with small but non-negligible distinguishing
advantage. Namely:

Theorem 4 (Free-Lunch Distinguisher). For any covert cheating game ,
consisting of 2c total moves, with starting state p0 and satisfying symmetricity
(see Definition 3, Eq. (5)), and any strategy for that game with success rate
pf > p0, there exists an observer strategy C∗ that determines the identity of the
bias inducer with advantage δ = pf−p0

c , by making a single call to the sampling
oracle O.

In other words, the strategy does not δ-fool the class of observers making a
single sampling oracle call.

Proof. We build our observer strategy as follows:

Observer C∗:

– Pick a random k ← [c]. Output O(2k − 1) ∈ {0, 1}.

In other words, C∗ picks a random move from A, and outputs 1 with proba-
bility the state of the game after A’s kth move. Let us analyze the advantage of
C∗.

Suppose A is the bias inducer. Then:

Ek←[c]

[

O(A)(2k − 1)
]

= E [X2k−1] ,

and we furthermore have by Eq. (3) that for all k ∈ [c]21:

E

[

X
(B)
2k − X

(A)
2k−1

]

= 0, (7)

21 Recall that each expectation is implicitly conditioned on prior moves (Remark 5).
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namely, B’s moves do not change X on expectation.
Suppose now that B is the bias inducer. Then, Eq. (4) gives that for all

k ∈ [c]:
E

[

Y
(A)
2k−1 − Y

(B)
2k−2

]

= 0, (8)

namely, A’s moves do not change Y on expectation. This gives:

Ek←[c]

[

O(B)(2k − 1)
]

= E [Y2k−1]

= E [Y2k−2]
= E [X2k−2] ,

where the second equality comes from Eq. (8), and the last equality follows by
symmetry if k > 1 (Eq. (5)), or as X0 = Y0 = p0 if k = 1.

Overall, we obtain that the advantage of C∗ is, by telescoping:
∣

∣

∣Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
] ∣

∣

∣

≥ Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
]

= E
k

$←[c]

[

X
(A)
2k−1 − Y

(A)
2k−1

]

= E
k

$←[c]

[

X
(A)
2k−1 − X

(B)
2k−2

]

=
∑

k∈[c]

E

[

X
(A)
2k−1 − X

(B)
2k−2

]

c
+

E

[

X
(B)
2k − X

(A)
2k−1

]

c
︸ ︷︷ ︸

=0 (Eq.(7))

=
E [X2c − X0]

c

=
pf − p0

c

which concludes the proof.

Remark 6 (Correct predictions). Our attack provides a slightly better guarantee
than stated in Theorem 4: it correctly outputs the identity of the bias inducer
(say by associating output 1 to A being the bias inducer), as opposed to simply
distinguishing them. In other words, we have:

Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
]

=
pf − p0

c
.

4.3 Attack 2.1: A Strong Attack Given Direct Access to States

Next, we describe a generic attack with large advantage, given direct access to
game states. We refer to the technical overview (Sect. 2) for an intuition of the
attack. Compared to the exposition in the technical overview, the main difference
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is that we have to deal with games where the end state is not consistently pf ,
but rather 0 or 1 with expectation pf . This does lead to technical complications.
Indeed, one crucial argument in our proof is that the (multiplicative) contribu-
tion of the neutral party is 1 on expectation, which allows us to call Markov’s
inequality. However, switching to the expectation statement, conditioning on the
end state being 1 might skew the contribution of the neutral party, which might
prevent us from concluding. Instead, we carefully define several useful events,
which allows us to compute the advantage of our strategy without ever condi-
tioning on successful runs. More precisely, we now prove the slightly stronger
statement that for all winning executions (that is, such that p2c = 1), we only
fail to identify the sender with small probability

√
p0.22

Last, there is a minor technicality in how to handle denominators being equal
to 0 (again, where we do not wish to condition on denominators not being equal
to 0), which we solve by requiring a stronger, but natural “absorption” property
of the covert cheating game (Definition 3, Eq. (6)).

Theorem 5 (Strong Distinguisher given Direct Access). For any covert
cheating game satisfying absorption (Definition 3, Eq. (6)), consisting of 2c total
moves, with starting state p0 > 0, and any strategy for that game with success
rate pf > 2

√
p0, there exists an observer strategy C∗ that determines the identity

of the bias inducer with advantage at least pf − 2
√

p0 given 2c oracle calls to the
direct access oracle Odirect (Definition 3).

Proof. We describe the observer strategy.

Observer C∗:

– Compute for all i ∈ [2c]: pi = Odirect(i). If p2c = 0, output a random bit
β ← {0, 1} .
Otherwise, compute:

t(A) =
c
∏

k=1

p2k−1

p2k−2
,

t(B) =
c
∏

k=1

p2k

p2k−1
,

with the convention that t(A) = 1 (resp. t(B) = 1) if p2k−2 = 0 for some
k ∈ [c] (resp. if p2k−1 = 0 for some k ∈ [c]).

– Output 1 (that we associate to outputting “A”) if t(A) ≥
√

1
p0

. Otherwise,

if t(B) ≥
√

1
p0

, output 0 (that we associate to outputting “B”). Otherwise,

output ⊥.23

22 This is a stronger statement in the sense that observers can test whether an execution
is winning, and therefore can output an arbitrary bit p2c �= 1.

23 Technically, ⊥ can be replaced by any arbitrary output, e.g. 0; but considering this
output separately is in our eyes conceptually cleaner.
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Let us analyze the advantage of C∗.

Case 1: A is the bias inducer. Suppose A is the bias inducer. We define the
following events:

CORRECTA := {X2c = 1} ;

LARGE
(A)
A :=

{

t(A) ≥
√

1
p0

}

;

SMALL
(B)
A :=

{

t(B) <

√

1
p0

}

;

GOODA := CORRECTA ∧ LARGE
(A)
A ∧ SMALL

(B)
A .

Note that if GOODA occurs, our algorithm is correct when A is the bias inducer.
We argue that GOODA occurs with high probability. We start by analyzing the
contribution t(B) of B.

Lemma 2. We have:
Pr[SMALL

(B)
A ] ≥ 1 − √

p0.

Proof. For k ∈ [c], let us define the partial product of ratios associated to B:

P
(B)
k =

k
∏

j=1

X
(B)
2j

X
(A)
2j−1

,

with the convention that P
(B)
k = 1 if p2j−1 = 0 for some j ∈ [k], and observe

that:
t(B) ← P (B)

c .

First, observe that

E[P (B)
1 ] =

E[X(B)
1 ]

p0
= 1,

by Eq. (4).
Let k ∈ {2, · · · , c}; suppose that E[P (B)

k−1] = 1. We have:

E[P (B)
k ] = EY0,···Y2k−1

[

E[P (B)
k |Y0, · · · , Y2k−1]

]

= Ep0,···p2k−1

[

E

[

P
(B)
k−1 · X

(B)
2k

X
(A)
2k−1

∣

∣

∣

∣

∣

Y0 = p0, · · · , Y2k−1 = p2k−1

]]

= Ep0,···p2k−1

[

E

[

P
(B)
k−1 · X

(B)
2k

p2k−1

∣

∣

∣

∣

∣

Y0 = p0, · · · , Y2k−1 = p2k−1

]]

= Ep0,···p2k−1

⎡

⎣ t
(B)
k−1 ·

E

[

X
(B)
2k

]

p2k−1

∣

∣

∣

∣

∣

∣

Y0 = p0, · · · , Y2k−1 = p2k−1

⎤

⎦

= Ep0,···p2k−1

[

t
(B)
k−1

∣

∣

∣Y0 = p0, · · · , Y2k−1 = p2k−1

]

= P
(B)
k−1,
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where we define t
(B)
k−1 = t

(B)
k−1(p0, · · · , p2k) as: t

(B)
k−1 =

∏k−1
j=1

p2j
p2j−1

, and where the
second to last equality follows by Eq. (4), and with the convention that a fraction
with denominator 0 is equal to 1. Therefore, for all k ∈ [c] (and in particular
k = c − 1), we have:

E[P (B)
k ] = 1. (9)

Markov’s inequality thus gives:

Pr[¬SMALL
(B)
A ] = Pr

[

P
(B)
k ≥

√

1
p0

]

≤ √
p0,

which concludes the proof of Lemma 2.

Next, by definition of success rate and pf , we have Pr[CORRECTA] ≥ pf . Thus:

Pr
[

CORRECTA ∧ SMALL
(B)
A

]

≥ Pr [CORRECTA]−Pr
[

¬SMALL
(B)
A

]

≥ pf−√
p0.

Last, we observe that CORRECTA∧SMALL
(B)
A implies CORRECTA∧LARGE

(A)
A ∧

SMALL
(B)
A . Indeed, suppose CORRECTA occurs. By absorption of the game

Eq. (6), none of the terms used in a denominator equal 0 (otherwise the final
state would be 0). Furthermore, whenever CORRECTA occurs, we have by a
telescoping product:

t(A) · t(B) = 1,

and therefore, t(B) <
√

1/p0 (given by SMALL
(B)
A ) implies that t(A) ≥ √

1/p0,
namely that LARGE

(A)
A occurs.

Overall, this ensures:

Pr[GOODA] ≥ Pr[CORRECTA ∧ SMALL
(B)
A ] ≥ pf − √

p0,

and therefore C∗ will be correct with probability at least pf −√
p0 when A is the

bias inducer when CORRECTA occurs, and correct with probability 1/2 when
¬CORRECTA occurs (which occurs with probability 1 − pf by definition of pf ).
In other words, when A is the bias inducer, C∗ outputs 1 with probability at
least pf − √

p0 + (1 − pf )/2.

Case 2: B is the bias inducer. Suppose now B is the bias inducer. We can
similarly define:

CORRECTB := {Y2c = 1} ;

LARGE
(B)
B :=

{

t(B) ≥
√

1
p0

}

;

SMALL
(A)
B :=

{

t(A) <

√

1
p0

}

;

GOODB := LARGE
(A)
A ∧ SMALL

(B)
A .
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An almost identical analysis (using random variables X instead of Y , and shifting
the indices appropriately) shows that

Pr[GOODB ] ≥ pf − √
p0,

and therefore C∗ will be correct with probability at least pf − √
p0 + (1 − pf )/2

when B is the bias inducer.

Wrapping Up. Overall, the advantage of C∗ is
∣

∣

∣Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
] ∣

∣

∣ ≥ Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
]

≥ 2(pf − √
p0) − 1 + (1 − pf ) = pf − 2

√
p0,

which concludes the proof.

4.4 Attack 2.2: A Strong Attack Given Sampling Access to States

Next, we port our attack from Sect. 4.3 to the much weaker sampling setting.
Overall, this new attack

– works in the much weaker sampling setting, and does not require the game
to satisfy absorption (Eq. (6)),

– but has slightly weaker advantage ≈ pf − 1/poly(λ) while requiring p0 to
be fairly small (the advantage holding for any poly(λ) of our choice, as long
as p0 is small enough), and has a quite larger polynomial sample complexity
q ≈ c6 · poly(λ) with respect to the sampling oracle.24

Our new analysis is more involved, as to carefully estimate the multiplica-
tive progress of the players despite having imperfect access to the game states pi.
The main problem arises when the state of the game becomes (say, exponentially
close or even equal to) 0. Indeed, such states are indistinguishable from the state
being actually 0 from the view of a polynomial-time observer with only sam-
pling access to the state. However, they cannot be treated using an absorption
argument (Eq. (6)), like in Theorem 5: this is because Eq. (6) only holds for the
two states 0 and 1. We solve this by thresholdizing the (partial) products, and
only considering “suffix-products” (that is, over indices i ≥ i∗ for some index
i∗) when all the probabilities handled are large enough (say � 1/c2). We refer
to Sect. 2 for an intuition for the attack.

One difference with the overview in Sect. 2 is, again, that the strategy from
the players A,B do not necessarily finish at state p2c ≥ pf ; this guarantee only
holds on expectation. We solve this issue similarly to Theorem5, by defining
several useful events, and argue that products associated to the neutral party are
small with high probability without (significantly) conditioning. And similarly
to Theorem 5, we prove a slightly stronger result: for all winning executions of
24 Looking ahead, this large sample complexity is a result of the techniques we use in

our analysis which require us compute precise estimations for each game state.
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the game (that is, such that p2c = 1), we only fail to identify the sender with
probability ≈ 1/poly(λ).

Overall, we present an attack with guarantees comparable with the ones from
Theorem 5. Even if the analysis is quite tedious and notation-heavy, it is still very
similar in spirit to the one of Theorem5.

Theorem 6 (Strong Distinguisher given Sampling Access). Let α(λ) ≥
1 be a polynomial. For all covert cheating game satisfying p0 ≤ O

(
1

c2α2

)

, and
any strategy with success rate pf ≥ 1/α(λ), there exists an observer C∗ that
determines the identity of the bias inducer with advantage at least pf − 1/α −
negl(λ).

Furthermore, the observer makes c6α4ω(log2 λ) calls to the sampling oracle
O.

In particular, if p0 = negl(λ), there is, for all polynomial α, an observer
strategy with advantage at least pf − 1/α − negl(λ), with a query complexity of
c6α4ω(log2 λ).

Proof. Suppose the covert cheating game satisfies the constraints on p0 and pf ;
observe that in particular p0 ≤ pf .

We describe our attack, which uses the following parameters:

– τ = τ(λ, c) ∈ [0, 1]R, a threshold precision for our estimation procedure. We
will use τ = 1/(64c2 · α2(λ)) where α is specified in Theorem 6.

– t = t(λ, c) ∈ [0, 1]R, a multiplicative approximation factor for our estimation.
We will use t = 1/2c.

– s = poly(λ, c, τ, t), a number of repetitions for our estimation. We will set
s = c6 · poly(λ), so that s = log c·ω(log λ)

τ2t2 .

Observer C∗:

1. ( Estimation of pi’s):
– Set p̃0 = p0.
– For i = 1 to 2c:

• For j = 1 to s, sample bj ← O(i).
• Compute p̃i = 1

s

∑s
j=1 bj .

– If p̃2c ≤ 1 − τ , output a random bit β ← {0, 1}.25

– Otherwise, let i∗ be the largest index in [0, 2c] such that p̃i ≤ τ (which
exists as we set p0 = p̃0 ≤ τ).

2. (Estimation of partial numerator and denominator): Compute

˜t(A)
num =

c
∏

k | 2k−2≥i∗
p̃2k−1.

˜t(B)
num =

1
p̃2c

c
∏

k | 2k−1≥i∗
p̃2k

t(A)
denom = K(A) ·

c
∏

k | 2k−1≥i∗
p̃2k−2,

˜t(B)
denom = K(B) ·

c
∏

k | 2k≥i∗
p̃2k−1,

25 The choice of the specific output doesn’t matter for the sake of the analysis, as long
as is the same distribution whenever A or B is the bias inducer.
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where K(A) =

{

1 if i∗ is odd
τ if i∗ is even,

and K(B) =

{

τ if i∗ is odd
1 if i∗ is even.

In other words, this computes partial products starting at i∗ with the con-
vention p̃i∗ = τ (which only appears in one denominator, according to the
parity of i∗), and p̃2c = 1.

3. Output: Output 1 (that we associate to outputting “A”) if

˜t(A) :=
˜

t
(A)
num

˜
t
(A)
denom

≥
√

1
τ

.

Otherwise, output 0 (that we associate to outputting “B”) if

˜t(B) :=
˜

t
(B)
num

˜
t
(B)
denom

≥
√

1
τ

.

Otherwise, output ⊥.26

Let us analyze the advantage of C∗.

Case 1. A is the bias inducer. We define the following events, similar to the proof
of Theorem 5, adapted to the approximate setting:

CORRECTA := {p̃2c ≥ 1 − t} ;

LARGE
(A)
A :=

{

˜t(A) ≥
√

1
τ

}

;

SMALL
(B)
A :=

{

˜t(B) <

√

1
τ

}

;

GOODA := CORRECTA ∧ LARGE
(A)
A ∧ SMALL

(B)
A .

We furthermore define the following auxiliary events related to the accuracy of
the estimation procedure:

BAD0 := {∀i s.t. pi ≥ τ, p̃i /∈ [(1 − t) pi, (1 + t) pi]} ;
BAD1 := {pi∗ ≤ 2τ} .

We first argue that these auxiliary events only hold with negligible probability.

Lemma 3. We have: Pr[¬BAD0 ∧ ¬BAD1] = negl(λ).

Proof. This follows from routine Chernoff bounds. Define:

BAD2 := {∃i > i∗, pi ≤ τ/2} .

26 Again, ⊥ can be replaced by any arbitrary output, e.g. 0; but considering this output
separately is in our eyes conceptually cleaner.
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Combining Chernoff (Lemma 1 with t = 1) with an union bound over the at
most 2c indices i gives Pr[BAD2] ≤ 2c · e−8sτ2

. Whenever BAD2 does not occur,
we have Pr[BAD0 ∧ ¬BAD2] ≤ 4c · e−2τ2t2s by another combination of Chernoff
and an union bound, which overall yields:

Pr[BAD0] ≤ 6c · e−8τ2t2 s ≤ negl(λ),

as long as τ2t2s ≥ log(c)ω(log λ), which holds by our setting of s.
Similarly, a Chernoff bound with t = 2 gives Pr[BAD1] ≤ e−8τ2s, which is

negligible as long as τ2s ≥ ω(log λ).

We want to prove two main claims, namely:

(1) Whenever GOODA occurs, C∗ correctly outputs 1.
(2) GOODA occurs with sufficiently high probability (Sect. 4.4).

Claim (1) follows, similarly to the case in the proof of Theorem5, from the claim
that CORRECTA ∧ SMALL

(B)
A holding implies CORRECTA ∧ LARGE

(A)
A

∧ SMALL
(B)
A holds except with negligible probability. Indeed, whenever

CORRECTA and BAD0 occur, we have

˜t(A) · ˜t(B) = 1,

and therefore ˜t(B) < 1
2 ·√1/τ (given by SMALL

(B)
A ) implies that t(A) ≥ 2

√

1/τ ,
namely that LARGE

(A)
A occurs, and Lemma 3 concludes the claim.

It therefore suffices to prove (2).

Claim. We have:

Pr[GOODA] ≥ pf − 4c · √
τ − negl(λ).

We first show a few intermediate lemmas.

Proof (Proof of Sect. 4.4). We proceed similarly as in Sect. 4.3. We start by
showing that:

Pr[SMALL
(B)
A ] ≥ Pr[SMALL

(B)
A ∧ ¬BAD0 ∧ ¬BAD1] ≥ 1−c ·√τ −negl(λ). (10)

By a similar analysis to Sect. 4.3, using Eq. (4), we have that for any fixed i ∈ [2c]:

Pr

⎡

⎣

c
∏

k|2k−1≥i

p
(B)
2k

p
(A)
2k−1

≥ 1
4

·
√

1
τ

⎤

⎦ ≤ 4
√

τ .

A union bound over i = 2k − 1 ∈ [2c], (there are c different such products),
then gives:

Pr

⎡

⎣∃i ∈ [2c],
c
∏

k|2k−1≥i

p
(B)
2k

p
(a)
2k−1

≥ 1
4

·
√

1
τ

⎤

⎦ ≤ 4c · √
τ .
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Furthermore, whenever ¬BAD1 occurs, we have p∗
i ≤ 2τ , that is 1/p∗

i ≥ 2/τ , so
that, using Lemma 3:

Pr

⎡

⎣

1
2

·
c
∏

k|2k−1≥i∗

p
′(B)
2k

p
′(A)
2k−1

≥ 1
4

·
√

1
τ

⎤

⎦ ≤ 4c · √τ + negl(λ),

where p′ are defined as p′
i∗ = τ , and p′

i = pi for all i �= i∗.
Last, whenever ¬BAD0 additionally occurs, we have:

˜

t
(B)
num

˜
t
(B)
denom

=
1

K(B)
· 1
p̃2c

·
∏c

k | 2k−1≥i∗ p̃2k
∏c

k | 2k≥i∗ p̃2k−1

≤
(

1 + t

1 − t

)c c
∏

k | 2k−1≥i∗

p
′(B)
2k

p
′(A)
2k−1

≤ 2 ·
c
∏

k|2k−1≥i∗

p
′(B)
2k

p
′(A)
2k−1

,

whenever t ≤ 1/2c. Therefore:

Pr[¬SMALL
(B)
A ] = Pr

⎡

⎣

˜

t
(B)
num

˜
t
(B)
denom

≥
√

1
τ

⎤

⎦ ≤ 4c · √τ + negl(λ).

Next, we have that if ¬BAD0 holds, then Pr[CORRECTA] ≥ pf (by definition
of pf ), and therefore Pr[CORRECTA] ≥ pf − negl(λ), and thus

Pr
[

CORRECTA ∧ SMALL
(B)
A ∧ LARGE

(B)
A

]

≥ Pr
[

CORRECTA ∧ SMALL
(B)
A

]

− negl(λ)

≥ Pr [CORRECTA] − Pr
[

¬SMALL
(B)
A

]

− negl(λ)

≥ pf − 4c
√

τ − negl(λ),

which concludes the proof of Sect. 4.4.

Overall, if A is the bias inducer, given C∗ outputs 1 with probability 1/2 when-
ever ¬CORRECTA occurs, we have:

Pr
[

CO(A)
= 1
]

≥ pf − 4c
√

τ +
1 − pf

2
− negl(λ).

Case 2. B is the bias inducer. Similarly to Sect. 4.3, we define and analyze the
analogues of the events when B is the bias inducer, and conclude that in this
case, C∗ outputs 0 with probability at least pf − 4c

√
τ + 1−pf

2 − negl(λ).
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Wrapping Up. Overall, the advantage of C∗ is
∣

∣

∣Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
] ∣

∣

∣

≥ Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
]

≥ pf − 4c
√

τ +
1 − pf

2
− 1 + (pf − 4c

√
τ +

1 − pf

2
) − negl(λ)

= pf − 8c
√

τ − negl(λ), (11)

and plugging in the parameters in the beginning of the proof gives 8c
√

τ = 1/α,
which concludes the proof.

Remark 7 (Correct predictions). Again, our attack provides a slightly better
guarantee than stated in Theorem 6: it correctly outputs the identity of the bias
inducer (say by associating output 1 to A being the bias inducer), as opposed
to simply distinguishing them. In other words, we have:

Pr
[

CO(A)
= 1
]

− Pr
[

CO(B)
= 1
]

= pf − 8c
√

τ − negl(λ).

Looking ahead, we will crucially use this fact to extend our result to the many-
party case.

Remark 8 (Cost of the Attack, and Fine-grained Guarantees). The sampling
complexity of our strategy C∗ is a large, but fixed polynomial c6 · α4 · ω(log2 λ).
Concretely, in the setting where pf ≥ K for a constant K, and p0 = negl(λ),
we obtain attack with constant advantage (or even advantage 1− 1/poly if pf =
1 − 1/poly) which has a fixed overhead sampling cost as a function of c.

In other words, our attack rules out combinations of games and strategies
that δ-fool fine-grained observers with sample complexity m(c), if m is allowed
to be a large enough polynomial.27

5 Lower Bounds on Anonymous Transfer

In this section, we tie the attacks on covert cheating games in Sect. 4 to impossi-
bility results for anonymous transfer, thus obtaining Theorem8 and Theorem 9.
Last, we show how to extend Theorem 8 to the N -party setting in Sect. 5.3.

5.1 Reducing Anonymous Transfer to Covert Cheating Games

Theorem 7. Let Π�
AT be a two-party anonymous transfer protocol, with cor-

rectness error ε ∈ [0, 1]R, anonymity δ ∈ [0, 1]R with respect to a class C of

27 Here, we implicitly take the convention that, because players make c moves, they have
complexity at least c. This is informal, and there is a mismatch: we are comparing
sample complexity of C∗ against standard complexity of A and B. The translation
to AT lower bounds will make this statement more precise.
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adversaries, consisting of c ∈ N rounds and message length � ∈ N (all possibly
functions of λ) and satisfying deterministic reconstruction (which is without loss
of generality, see Remark 3).

Then there exists a covert cheating game, along with player strategy, where
the game consists of c rounds, the initial state of the game is 2−�, the expected
final state is pf = 1 − ε and the player strategy δ-fools observers in C.

Moreover, the covert cheating game satisfies absorption (Definition 3,
Eq. (6)), and is symmetric if Π�

AT is symmetric (Definition 2).

Proof. Let Π�
AT = (Setup,Transfer,Reconstruct) be an AT with the notation of

Theorem 7. We define our game as follows.

– Players and roles. The players of the game are the participants of the AT.
The bias inducer is the sender of the AT using a uniformly random message
μ ← {0, 1}�, the neutral party is the dummy party of the AT, and observers
are distinguishers.

– Execution and states. Moves in the covert cheating game are messages sent
in the AT. In other words, a full execution of the game is a full AT transcript.
Because moves in the covert cheating game are sequential, we sequentialize
the messages of the AT by consider player A to move first within the round.
This induces an order of messages, indexed by i ∈ [2c].
Let us fix an execution of the game, that is a full AT transcript π ←
Transfer(crs, b, μ), where crs ← Setup(1λ) and μ ← {0, 1}�. The associated
states of the game pi, where i ∈ [2c], are defined as follows. Let π[i] denote
the partial transcript consisting of the first i messages of the protocol Transfer
(with the sequential order from above). Let π[i] denote the distribution of
randomly completed partial transcripts, where π[i] is completed with 2c − i
uniformly sampled random message to obtain a full transcript. We then define:

pi = p(crs, π[i]) := Pr
[

μ′ ← Reconstruct(crs, π[i]) : μ′ = μ
]

,

where μ ← {0, 1}� is the input to the AT sender. The probability is over the
randomness of the random completion (recall that Reconstruct is determinis-
tic).
The initial state of the game is p0 = 1/2�, over the sole randomness of μ ←
{0, 1}�.
Π�

AT having correctness error ε implies that the resulting covert cheating
strategies have success rate pf = 1 − ε. Furthermore, the final state satisfies
p2c ∈ {0, 1} by determinism of Reconstruct and definition of p2c (as there is
no randomness in Reconstruct(crs, π)).

– Restriction on the neutral party. We argue that Eqs. (3) and (4) hold.
This is because in an AT, dummy messages are sampled uniformly at random,
and are therefore identically distributed as its counterpart obtained from
random completion. More formally, supposing A is the bias inducer/sender,
we have for all k ∈ [c] that the completions (π[2k − 1]‖msg) where msg is
a random AT protocol message, and π[2k − 1] are identically distributed by
definition of completion, so that
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E[X(B)
2k |X2k−1, · · · ,X0]

= Emsg

[

Pr
[

μ′ ← Reconstruct(crs, (π[2k − 1]‖msg)) : μ′ = μ
]]

= Pr
[

μ′ ← Reconstruct(crs, π[2k − 1]) : μ′ = μ
]

= X2k−1,

and similarly when B is the bias inducer/sender.
– Observers and security. Given an AT transcript, we implement a sam-

pling oracle as follows. On input i, sample π[i] and compute μ′ ←
Reconstruct(crs, π[i]) Output 1 if μ′ = μ, and 0 otherwise. By definition, this
procedure tosses a coin with probability pi.
Overall, if an observer strategy distinguishes O(A) from O(B) in time t, with
q sampling oracle queries and advantage δ, then there exists a distinguisher
for the AT running in time t + q · (n + ρ(c)) with advantage δ, where n is the
complexity of computing Reconstruct and ρ(c) is the complexity of sampling
c uniformly random protocol messages.

– Absorption. Because completions are sampled uniformly random from the
whole message space of the protocol, by definition of pi, pi = 1 implies that
all completions of π[i] recover μ, which implies that all possible continuations
of π[i] satisfy p = 1. Similarly, pi = 0 implies that all completions of π[i] fail
to recover μ, so that all continuations of π[i] satisfy p = 0.

– Symmetricity. Suppose the AT is symmetric (Definition 2), and let k ∈ [c].
Then (1) by symmetry of Reconstruct, Reconstruct(crs, π[2k]) is identically
distributed as Reconstruct(crs,Mirror(π[2k])), where Mirror flips the identities
of the participants in the transcript and (2) by symmetry of Transfer, the
unordered set (dummy(A),msg(B)) is identically distributed as (dummy(B),
msg(A)). We can therefore replace all the consecutive pairs of messages
(2j−1, 2j) from {dummy

(A)
2j−1,msg

(B)
2j } to {msg

(A)
2j−1, dummy

(B)
2j }, for all j ≤ k,

without changing the distribution of the outcome of Reconstruct. Doing so 2k
times gives:

E[X2k] = E[Y2k].

5.2 Lower Bounds on Anonymous Transfer

We first rule out the existence of AT with non-trivial correctness error ε and
anonymity δ, that are secure against arbitrary polynomial-time adversaries. We
do so by combining Theorem6 with Theorem 7, which gives the following:

Theorem 8. Suppose Π�
AT is a (two-party, silent receiver) anonymous transfer

satisfying deterministic reconstruction, and with � ≥ ω(log λ)-bit messages, with
correctness error ε, and δ-anonymous against all polynomial-time adversaries.
Then, for all polynomial α = α(λ):

δ ≥ 1 − ε − 1/α(λ).
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We observe that the relation between δ and ε is almost tight (up to 1/poly(λ)
factors), namely matches a trivial construction, (See full version).

Remark 9 (Ruling out other versions of AT). Thanks to the transformations in
Sect. 3, Theorem 8 also rules out other versions of AT, including (all combinations
of) the following: AT with non-silent receiver, AT with randomized reconstruc-
tion, AT with a large number N of parties (by considering δ′ = (N − 1) · δ).

Remark 10 (Ruling out strong fine-grained results). In fact, denoting n = n(λ)
the running time of Reconstruct, the attack obtained by combining Theorem6
with Theorem 7 runs in time m(λ) = n · c6 ·ω(log2(λ)), and therefore Theorem 8
further rules out schemes that are secure against adversaries running in fixed
polynomial overhead over honest users m ≤ n7. In other words, fine-grained
results for non-trivial parameters will at most provide security against adver-
saries running in time m.

Next, we rule out the existence of fine-grained AT, but for a smaller set
of parameters. We do so by combining Theorem 4 with Theorem 7. Note that
Theorem 4 requires the AT to be symmetric; this is without loss of generality
(See full version). This overall gives the following:

Theorem 9. There are no fine-grained AT with �-bit messages, correctness
error ε, and anonymity δ, such that:

δ · c ≥ 1 − ε − 1/2�.

More precisely, denoting n = n(λ) the maximum runtime of Transfer,Reconstruct,
and ρ(c) is the cost of sampling c uniformly random protocol messages, combin-
ing Theorem 4 with Theorem 7 gives an attack with complexity n(λ) + ρ(c) ≤
2n(λ).

5.3 Extension to Anonymous Transfer with Many Parties

In this section, we show that Theorem 8 extends to rule out anonymous trans-
fer with any polynomial number N of parties.28 More precisely, we prove the
following result.

Theorem 10. Let N = N(λ) be any polynomial. Suppose Π�
AT is an N -party

(silent receiver) anonymous transfer satisfying deterministic reconstruction, with
� ≥ ω(log λ)-bit messages, with correctness error ε, and δ-anonymous against all
polynomial-time adversaries. Then, for all polynomial α = α(λ):

δ ≥ 1 − ε − 1/α(λ).
28 Looking ahead, doing so comes at a mild loss in the resulting anonymity δ. While

this loss is mild starting from Theorem 8 yielding the main result of the section,
it is quite significant when starting from Theorem 9, in which case the anonymity
guarantees we obtain are similar to the ones of [3]. We therefore focus on Theorem 8
in this section.
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We refer to the technical overview for a sketch, and the full version for a full
proof.
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Abstract. The Non-Interactive Anonymous Router (NIAR) model was
introduced by Shi and Wu [SW21] as an alternative to conventional
solutions to the anonymous routing problem, in which a set of senders
wish to send messages to a set of receivers. In contrast to most known
approaches to support anonymous routing (e.g. mix-nets, DC-nets, etc.),
which rely on a network of routers communicating with users via interac-
tive protocols, the NIAR model assumes a single router and is inherently
non-interactive (after an initial setup phase). In addition to being non-
interactive, the NIAR model is compelling due to the security it provides:
instead of relying on the honesty of some subset of the routers, the NIAR
model requires anonymity even if the router (as well as an arbitrary sub-
set of senders/receivers) is corrupted by an honest-but-curious adversary.

In this paper, we present a protocol for the NIAR model that improves
upon the results from [SW21] in two ways:

– Improved computational efficiency (quadratic to near linear): Our
protocol matches the communication complexity of [SW21] for each
sender/receiver, while reducing the computational overhead for the
router to polylog overhead instead of linear overhead.

– Relaxation of assumptions: Security of the protocol in [SW21] relies
on the Decisional Linear assumption in bilinear groups; while secu-
rity for our protocol follows from the existence of any rate-1 oblivious
transfer (OT) protocol (instantiations of which are known to exist
under the DDH, QR and LWE assumptions [DGI+19,GHO20]).

Keywords: Anonymous Routing · Private-Information Retrieval ·
Permutation Routing · Non-Interactive Protocols

1 Introduction

As the collection and access of digital information in our daily lives becomes
ever-more ubiquitous (internet, local networks, mobile networks, IoT), so too
does the need for the development of technologies to protect access and trans-
mission of this data. While protecting the integrity and access to sensitive data
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remain important tasks, there has been a growing need for anonymity in pro-
tecting data access and communications between users. Throughout this paper,
anonymity will refer to the inability to associate which nodes in a network are
communicating with each other; i.e. the unlinkability between one or more
senders and the associated receiver(s). The conventional approach to provid-
ing such protection (onion routing, mix-nets, and others) relies on a network
of routers relaying messages, where anonymity is only guaranteed if there are
sufficiently many uncorrupted routers. A markedly different approach to this
problem was recently introduced by Shi and Wu [SW21], who proposed using
cryptographic techniques to hide connectivity patterns. Namely, they introduce
the Non-Interactive Anonymous Router (NIAR) model, in which a set of N
receiving nodes wish to receive information from a set of N sending nodes, with
all information passing through a central router. Anonymity in their model is
defined to be the inability to link any sender to the corresponding receiver, even
if the router and (up to N − 2) various (sender, receiver) pairs are susceptible
to attack by an (honest-but-curious1) adversary.

There are a number of real-world scenarios in which the NIAR model as
described above is relevant. The important characteristics of any such application
is that a number of (sender, receiver) pairs wish to anonymously communicate
with each other through a central server, where the messages to be transmit-
ted are large and/or the communication channels are non-ephemeral/indefinite.
These conditions are exhibited, for example, in the following scenarios:

Anonymous Peer-to-Peer Communication. Relevant in settings where a
large set of users wish to communicate anonymously through a central server,
e.g. for a Messaging app, where every communication link is established as a
separate pair of (anonymous) virtual users.

Pub/Sub with Privacy. Because our solution is quasi-linear in message size,
the additional overhead of storing all messages is minimal. We can therefore view
the central router of the NIAR model as delivering each stream of messages it
receives from the N senders into N storage units, rather than delivering them
directly to receivers. In this way, the set of receivers can (privately) subscribe
to an information service/source, and periodically receive updates. Furthermore,
our protocol allows receivers to (privately) subscribe to multiple services at the
same time, without revealing which services they are subscribed to.

Multi-Client PIR/PIW. In a similar spirit as the previous point, viewing
the receivers as storage units, the messages being streamed from the senders
can accumulate (or update previous messages), thus implementing a form of
Private Information Writing (PIW). Depending on the application (in terms

1 Our limitation to HBC adversaries is only needed to ensure Correctness of our pro-
tocol - that receivers get the correct messages. We note that requiring HBC for
correctness is unavoidable, as a malicious router can, for example, not forward any
message (like in PIR and other related primitives). In terms of Security (privacy
of the senders-receivers permutation): so long as the one-time Setup is performed
properly, then security of our protocol will hold in the Malicious adversary setting.
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of which users will ultimately access/read the PIW server), hiding the linkage
between which location each sender writes to versus which location each receiver
reads from may require stronger security requirements, e.g. for our protocol, any
receiver colluding with the central router will learn which sender it is reading
from.

Oblivious Shuffle. A common scenario encountered in MPC protocols is when
two or more parties are secret sharing a list of values, and need to obliviously
permute the list, so that no party knows the permutation. Our protocol can be
used to implement this oblivious shuffle, by viewing one party as acting as all N
senders (for its list of N secret shared values), and sending the permuted shares
via the “central router” (also being simulated by the sending party) to the other
party (who is acting as all N receivers). This process is then reversed, with the
other party sending its shares to the first party, via the same permutation. There
are subtleties that need to be specified, such as ensuring that the permutation
remains unknown to each party (which can be handled as part of the Setup
procedure), and how to amortize the process to ensure efficiency (so the Setup
does not dominate overall cost), but in general a solution in the NIAR model
can be viewed as an instantiation of oblivious shuffle.

Permutation Routing with Anonymity. There has been substantial work in
researching permutation routing (e.g. [AKS83,Lei84,Upf89,MS92]), which was
inspired due to its relevance to parallel computing (for timing the connections
between processors and memory) and fault tolerant routing. Since the NIAR
model is essentially permutation routing with anonymity, any applications of
permutation routing that stand to benefit from hiding the permutation are rel-
evant to our work.

1.1 Technical Challenges

Notice that (assuming PKI) an immediate solution to anonymity in the NIAR
model is to have each sender encrypt their message (under the desired receiver’s
public key or using a shared secret key with the recipient), send the encrypted
message to the center router, and then simply have the router flood all N
(encrypted) messages to each of the N receivers. While this näıve approach
satisfies anonymity (as well as privacy, in that receivers only receive messages
intended for them), it has the pitfall of excessive communication: O(N) for each
receiver, and O(N2) for the router. Shi and Wu [SW21] present a protocol which,
under the Decisional Linear assumption (on certain bilinear groups), achieves
anonymity with minimal communication overhead.

Having re-framed the goal of anonymity to the NIAR model and with the
toolbox of cryptographic techniques at hand, a natural observation is that Pri-
vate Information Retrieval (PIR) can be used as a potential solution. In a (single
server) PIR protocol [KO97], a server stores a database DB of N elements, and
a client issues a query to the server to retrieve the ith element DB[i], for i of
its choice. Security in the PIR model means that the server does not learn any
information about the index i being queried. Thus, if N senders encrypt their
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messages and send them to the router, we can let the router act as a PIR server
with the N concatenated (encrypted) messages forming the contents of the PIR
database. Each receiver can then issue a PIR query to fetch the appropriate
message, and anonymity follows from the security of PIR. As with the proto-
col of [SW21], this solution enjoys both the requisite security features, as well
as having minimal communication overhead (e.g. log N overhead, depending on
the PIR protocol; see survey of PIR results in [OS07]).

An important metric in determining the feasibility of a protocol in the NIAR
model is the end-to-end message transmission time, which depends on the com-
putational burden on each user, and especially that of the central router.

A significant drawback of both the protocol of [SW21]2 and the näıve PIR
solution described above is that they require quadratic (in terms of the number of
users) computation at the router. As this computation cost is likely prohibitive
(or at least extremely inefficient) when there are a large number of users, we set
out to explore the possibility of a NIAR protocol that maintained the minimal
communication burden of the näıve PIR and [SW21] solutions, but reduced
computation overhead (at the router) from O(N2) closer to the optimal O(N).

Our first observation is that the NIAR model is similar to so-called “permu-
tation routing” (see Sect. 2.1), but with an additional anonymity requirement.
Namely, permutation routing seeks to connect N senders to N receivers through
a network, which (from a communication standpoint) is what is required in the
NIAR model. Our main idea was to leverage the efficient routing (and therefore
minimal overhead) of a permutation-routing network, but then to administer
PIR at each node to keep each routing decision hidden, thereby allowing for the
anonymity required by the NIAR model. In particular, we envisioned a solution
in which the central router simulates a virtual permutation-routing network by
itself, where the actual path the messages take (from each of the N senders on
one end of the network to the N receivers at the other end) is hidden (from
the central router) by using PIR along each edge. Namely, at each node of the
(virtual) network, a PIR query is applied to each of the node’s outgoing edges,
where the PIR query (privately) selects a message from one of the node’s incom-
ing edges.

While the above idea captures the spirit of our solution (and indeed, the
idea of layering PIR on top of various routing networks/protocols may have
other interesting applications for anonymizing communication), there are several
complications that required additional consideration:

1. (Virtual) Network Size. Since each outgoing edge in the routing network is
assigned a PIR query, and this PIR query is applied to a (virtual) database
whose size is the number of incoming edges of the node in question, the
computation cost of simulating routing in a virtual network is roughly O(E·I),
where E is the number of edges and I is the number of incoming edges per

2 Router computation is not explicitly measured in the protocol of [SW21], our analysis
of their protocol yields O(N2) computation load on the router: their Multi-Client
Functional Encryption (MCFE) protocol is invoked N times by the router, with each
invocation processing N ciphertexts.
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node. Since E is necessarily at least Ω(N), having a NIAR protocol with only
polylog computation overhead requires that E is at most O(N · polylog N)
and I is O(polylog N).

2. Standard PIR Won’t Work. Even if network size is small (O(N ·polylog(N))),
if the depth (number of nodes a message passes through from sender to
receiver) is not constant, then standard PIR schemes will not work, since
each invocation of PIR typically has O(polylog(N)) bits in the PIR server’s
response, and hence the message size will incur an exponential blow-up with
network depth. For example, even log-depth networks will have messages of
size O(2log N ) = O(N) by the time they reach the last layer of the network,
which is no better than the näıve PIR approach mentioned above.

3. Correctness Requires Edge-Disjoint Paths. Since PIR is being used to hide
routing decisions made at each node/routing gate in the network, this requires
that each outgoing edge forwards the message on (at most) one of the node’s
incoming edges. In particular, if any two paths connecting two different
sender-receiver pairs in the permutation network contain a common edge,
then correctness is compromised. Since a random path selection algorithm
will be crucial to proving anonymity, the given (virtual) permutation net-
work must have the property that, with high probability, a random sample
of paths connecting the sender-receiver pairs are edge-disjoint.

4. Edge-Disjoint Property is Insufficient for Anonymity. While having edge-
disjoint paths is necessary for correctness, it is not sufficient to ensure
anonymity. For example, if the central router is colluding with (N -2) sender-
receiver pairs (and therefore only needs to determine the linkage amongst
the remaining two senders and two receivers), then knowledge that all paths
are edge-disjoint can give the router an advantage in identifying the linkage
between the remaining two senders and two receivers. Namely, the router
knows (via collusion) N -2 paths, and thus can eliminate available options for
the remaining two paths. For example, this attack is viable in the Beneš net-
work (which is commonly used in permutation routing literature; see Sect. 3.1)
making it unsuitable when anonymity is required, and justifying our usage
of a more complex network. Indeed, since permutation-routing networks have
been studied outside of the context of anonymity, to our knowledge there has
not been any research into understanding how network properties and path
selection protocols impact anonymity.

1.2 Overview of Our Results

Our solution to the NIAR problem, which blends techniques from permutation
routing with techniques for hiding routing decisions made at each node of the
(virtual) permutation network, overcomes the challenges outlined in the previ-
ous section as follows. By using familiar permutation-routing networks, which
are inherently small (O(N · polylog(N))), we ensure the network size is suit-
ably small, thus addressing the first potential issue. Furthermore, a common (and
well-studied) feature of many permutation-routing networks is the edge-disjoint
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property, which inspired our choice to use an (extended) Beneš permutation Net-
work, thus addressing the third issue. We observe that there is an inherent ten-
sion between network topology (number of nodes, edges, and depth) in terms of
achieving correctness and anonymity versus low router computation. Our solu-
tion includes carefully selecting appropriate network parameters to balance these
trade-offs. Meanwhile, recent works [DGI+19,GHO20,CGH+21] present so-called
rate-1 PIR protocols, which can address the second issue of exponential growth of
message size per network layer.

Addressing the fourth issue is one of our key technical achievements. In spirit,
the edge-disjoint property is related to anonymity, but as mentioned above, it
is in general insufficient. Identifying a property that is sufficient (and simulta-
neously not over-cumbersome in terms of network size), and then using such a
property to formally argue anonymity, requires some thought and careful anal-
ysis. Informally, this property states that not only are N randomly chosen per-
mutation paths through the network edge-disjoint (w.h.p), but even if the per-
mutation swaps the output nodes of any two input nodes and two new paths are
created to join these, then the collection of the old edges plus the two new sets
of edges are still edge disjoint (w.h.p); see Definition 4.

Assuming rate-1 PIR, we present in Fig. 3 a routing protocol for the NIAR
model that achieves O(log N) per-party communication and O(N · polylog(N))
router computation. At a high level, our protocol dictates that the central router
emulates routing in a permutation network, whereby each routing gate is (virtu-
ally) obliviously evaluated using a rate-1 PIR query/response for each outgoing
edge. Our protocol consists of a setup phase in which the PIR queries that cor-
respond to all outgoing edges of every routing gate are prepared, and then an
online routing phase where a stream of (encrypted) messages are injected by the
senders and routed to the receivers (re-using the setup).

A succinct comparison of our results to other relevant works is in Sect. 2.3.

2 Previous Work

2.1 Permutation Routing

In permutation routing [AKS83,Lei84,Upf89,MS92], messages from a set of N
“input” nodes are routed through a network G to a set of N distinct “out-
put” nodes. Such works attempt to identify networks G with various desired
properties, and protocols within these networks that can efficiently route these
messages, for any possible permutation σ that dictates which input node is con-
nected to which output node. While our work is partially inspired by the routing
networks considered in this line of work, the NIAR model is quite different than
the permutation routing model, both because of the number of routers (one ver-
sus Θ(N log N)) and due to the required privacy of the permutation σ. In other
words, we do not route the messages over a physical routing network (which is
an iterative process that depends on the “depth” of the network), but rather we
design our non-interactive routing protocol using a virtual sorting network.
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2.2 PIR

There has been an extensive amount of work done on the original PIR prob-
lem [CGKS95,KO97] and its variants. Here, we discuss only a few of these works
that are most relevant to us.

Multi-Client PIR. As discussed in the introduction, the NIAR problem can
be solved using multi-client PIR. Indeed, a solution to generic multi-client PIR
in which the PIR server’s work does not scale with the number of users would
imply an efficient solution for NIAR. While no such result is known, we discuss
a few relevant works and why they are insufficient for the NIAR model.

In [IP07], it is demonstrated how a single user can efficiently issue multiple
queries to a PIR server. However, their results rely on a single decoding algo-
rithm, whereas the NIAR model would require distinct decoding keys for each
of the N receivers. [HOWW19] present a related notion of private anonymous
data access; we note that the results in their model do not scale to the full cor-
ruption threshold (N − 2) required in the NIAR security model. Finally, results
in the related areas of Batch Codes [IKOS04] and Public-Key Encryption with
amortized updates [COS10] address a different model, and consequently do not
seem to be directly applicable to the NIAR model.

Rate-1 PIR. A recent line of work [DGI+19,GHO20,CGH+21] has demon-
strated the viability of rate-1 PIR, in which the server response is comparable in
size to the database entry being fetched. Formally, for a database of N elements
each of size B, rate-1 PIR means that the ratio of B to the server response
size approaches 1 as N → ∞. Stated differently, a rate-1 PIR scheme has an
additive constant-stretch term δPIR, such that the server’s response has size
B + δPIR. Rate-1 PIR is known to exist under the DDH, QR and LWE assump-
tions [DGI+19,GHO20].

Doubly Efficient PIR (DEPIR). In a recent result of Lin et al. [LMW22],
they demonstrate a PIR protocol that, after a pre-processing phase that costs
O(N1+ε) in server computation, enjoys polylog N communication and compu-
tation for each PIR query. If this DEPIR protocol were to be used to solve the
NIAR problem (as per the straightforward application described in Sect. 1.1),
the resulting protocol would have O(N1+ε) computation at the router for each
new message packet/bit of the senders (since each database update would trigger
a new “pre-processing” phase of the PIR server).
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N -2 Pairs

=⇒ =⇒
Sender Collusion Receiver Collusion

(and N − 2 Receivers) (and N − 2 Senders)

=⇒ =⇒
Arbitrary

Fig. 1. Various security requirements/settings relevant to the NIAR model. All four
scenarios include collusion with router C, plus: - Top Setting (N -2 Pairs): Corruption
of up to N -2 (sender, receiver) pairs; - Left Setting (Sender Collusion): Corruption of
all senders (and N -2 receivers); - Right Setting (Receiver Collusion): Corruption of all
receivers (and N -2 senders); - Bottom Setting (Arbitrary): Corruption of any 2N − 2
senders/receivers. The implication arrows indicate that a protocol that is secure in one
setting is automatically secure in the other.

2.3 Comparison with Other Results in NIAR Model

The NIAR model was introduced in [SW21], which included several variants
of the security requirement, and offered solutions for these variants. As men-
tioned, our results improve upon those of [SW21] in three main ways: (i) Reduced
router overhead (O(N · polylogN) versus O(N2)); (ii) Seemingly simpler proto-
col based on weaker/more standard cryptographic assumptions; (iii) Improved
practical/observed efficiency (not empirically verified). On the other hand, the
protocol of [SW21] provides protection in different scenarios of security require-
ments. Namely, in terms of Fig. 1, our protocol focuses on the top and left set-
tings, while [SW21] covers the top, right, and bottom settings. However, for all
of the motivating examples discussed in the Introduction, security in the top and
left settings (which our protocol provides) is sufficient.

A recent work of Fernando et al. [FSSV22] improves upon the work of [SW21],
by reducing router computation to O(N · polylogN), which (asymptotically)
matches our result. However, the other comparisons between our work and that
of [SW21] are still valid; namely, our protocol benefits from simpler assumptions
and protocol complexity (e.g. we do not require obfuscation) as well as practical
efficiency, but ours does not offer protection against full receiver collusion.

A summary of the comparison of our results to other relevant results can be
found in the table below, where ˜N = O(N · polylogN) denotes quasi-linear:

3 Preliminaries

3.1 Beneš Network

(The networks mentioned here are common in the permutation routing litera-
ture, see for example [AKS83,Lei84,Upf89,MS92]. Figures depicting each of the
networks described below can be found in the extended version of this paper). In
a butterfly network, N input nodes are connected to N output nodes via a leveled
network of (1 + log N) levels, each with N nodes. A Beneš network appends a
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Protocol Anonymity
Levela

Crypto
Assumptions

Comm. Router
Comp.

Permutation
Routing

None N/A ˜N ˜N

Näıve PIR Sender Collusion PIR ˜N N2

DEPIR
[LMW22]b

Sender Collusion Ring LWE ˜N N1+ε

Original
NIAR[SW21]

Receiver Collusion DLIN ˜N N2

Arbitrary Obfuscation ˜N N2

Improved NIAR
[FSSV22]

Arbitrary Obfuscation ˜N ˜N

Our Results Sender Collusion DDH or QR or LWE ˜N ˜N
a Anonymity terminology as defined in Fig. 1. Namely, “Sender Collusion” refers to

potential corruption of the central router, all senders, and up to N − 2 receivers;
and “Arbitrary” refers to potential corruption of the central router and any set
of up to 2N − 2 senders/receivers.

b Analysis of [LMW22] in the context of the NIAR model is not done by Lin et al.,
and the stated characteristics of their protocol in the NIAR setting are ours.

second (inverted) butterfly network to the first; and more generally an extended
Beneš network appends many “blocks” of butterfly networks together. We con-
tinue expanding on this model by replicating each node and edge c times, which
can be conceptualized as coloring them with c distinct colors. Finally, our pro-
tocol will assume wide edges, which means that each edge can simultaneously
route w messages (requiring specification of which of the w “slots” each message
occupies).

3.2 Non-Interactive Anonymous Routing (NIAR)

We adopt the NIAR model of [SW21], in which N senders each has a series of m
(e.g. single-bit) messages they wish to send to a distinct receiver anonymously.
The anonymity guarantee refers to the unlinkability of each sender-receiver pair,
and crucially it must be preserved even if the central router colludes with a
subset of the senders/receivers. Depending on the application, there are various
collusion patterns that may be of interest, see e.g. Fig. 1.

In this paper, we demonstrate our protocol is secure against the top and left
settings (in Fig. 1). We do not consider the right and bottom settings (Receiver
Collusion and Arbitrary) in this paper for two reasons: First, in the main appli-
cation areas for the NIAR model (see Introduction above), the receivers already
know the senders they wish to connect to, so anonymity of the senders (in the case
that all receivers are colluding) is irrelevant. The second reason is because pro-
viding protection in settings when all Receivers collude with the router requires
additional techniques than those considered in this paper. For example in [SW21]
and [FSSV22], the protocol description, performance, and cryptographic hard-
ness assumptions are all more complex in the Arbitrary collusion setting.
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Formally, the (reformulated) NIAR model of [SW21] is as follows:

(Trusted) Setup. Upon input security parameters (1λc, 1λs), number of
senders/receivers N , and permutation σ : [N ] → [N ], the Setup algorithm out-
puts sender keys {pki}i∈[N ], receiver keys3 {(ski, κi)}i∈[N ], and token q for router
C:

({pki}i∈[N ], {(ski, κi)}i∈[N ], q
) ← Setup(1λc , 1λs , N, σ).

Once Setup has been run, the Senders {Si} can communicate arbitrary messages
{mi} = {mi,α} with the Receivers {Ri} through router C.

Send Message. Using key pki, each Sender Si encodes message mi = mi,α

(where α denotes the αth bit of message mi), and sends the result to router C:
ci,α ← Encpki

(mi,α).

Route Message. Upon inputs {ci}i∈[N ] from each Sender Si, and using key
q, router C prepares messages {zi}i∈[N ], and sends these to each Receiver Ri:
(z1, z2, . . . , zN ) ← Route(q, c1, c2, . . . , cN ).

Decode Message. Using keys (ski, κi), each Receiver Ri decodes the message
zi = zi,α received from router C, and outputs m̃i = m̃i,α: m̃i,α ←Decski

(κi, zi,α).

Correctness. An oblivious permutation routing protocol has:

Perfect Correctness: If each receiver Ri outputs message m̃i=mi with probability
1.

λc−Statistical Correctness: If each receiver Ri outputs message m̃i = mi with
probability at least

(

1 − 1
2λc

)

, for security parameter λc.

Security. Informally, anonymity means that if a subset of parties collude
(including router C), the permutation σ (namely, its restriction to non-colluding
parties) should remain unknown. Formally, let A denote a (computationally
bounded, honest-but-curious) adversary. Consider the following challenge game:

1. On input security parameter λ, Adversary A chooses N , two distinct permu-
tations σ0, σ1 on [N ], a set of sender indices SA ⊆ [N ] to corrupt, and a set
of receiver indices RA ⊆ [N ] to corrupt, subject to the following constraints:
(a) |RA| ≤ N − 2;
(b) σ0 and σ1 match for all receivers in RA: ∀ i ∈ RA : σ−1

0 (i) = σ−1
1 (i).

2. Adversary A sends {σ0, σ1} to Challenger C.
3. Challenger C chooses σb ∈ {σ0, σ1} for b ← {0, 1} (e.g. by flipping a coin).
4. Challenger C chooses router token q, encryption keys {pki}i∈[N ], and decryp-

tion keys {ski}i∈[N ]. C sends q, {pki}i∈SA , and {ski}i∈RA to A.
5. For each round α:

(a) Based on knowledge of all prior ciphertexts {ci,α′}α′<α (see next step),
Adversary A chooses messages {m

(0)
i,α}i∈[N ] and {m

(1)
i,α}i∈[N ], subject to

the constraint that all messages bound for a corrupt receiver match: ∀ i

s.t. i = σ−1
0 (j) for some j ∈RA: m

(0)
i,α = m

(1)
i,α. A sends {m

(0)
i,α}, {m

(1)
i,α} to

C.
3 The sender keys {pki} are associated with the receiver keys {ski} via the permutation

σ; namely, secret key skσ(i) can decrypt messages encrypted under pki.
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(b) Challenger C outputs to A ciphertexts {ci,α}i∈[N ], where each ciphertext
is computed as (with b as chosen in Step 3): ci,α = Encpki

(m(b)
i,α).

6. Adversary A outputs a guess b′ ∈ {0, 1} of which permutation {σ0, σ1} Chal-
lenger C chose.

A NIAR protocol is λs-secure if the probability that any computationally
bounded adversary A guesses b correctly is bounded by:

Pr[b′ = b] ≤ 1
2

+
1

2λs
(1)

3.3 Emulating Oblivious Routing in a Virtual Routing Network

In this section, we present the main ideas that connect the NIAR model to the
permutation routing problem. At a high level, the idea is to have the NIAR
router emulate message transmission through a (virtual) routing network that
supports permutation routing between N senders and receivers. In particular, we
view the N senders as input nodes in the routing network, and the N receivers as
the output nodes, and then choose paths through the routing network connecting
each sender to its receiver. The NIAR router then passes messages from each
sender to the designate receiver by routing messages along this path. Note that
this entire network, except the input nodes (corresponding to the senders) and
output nodes (corresponding to the receivers), together with message routing
within it, is entirely simulated by the NIAR router.

In order to preserve anonymity in terms of linkage between each (sender,
receiver) pair, the paths that each message takes through this (virtual) routing
network must remain hidden to the NIAR router. The key primitive that we
utilize to achieve this is called an oblivious routing gate., informally defined as:

Definition 1 (Informal). An oblivious routing gate describes a process in which
the messages on w incoming wires of a gate are routed to its w outgoing wires,
in such a way that the process that is performing the routing is unaware of the
linkage between (incoming wire, outgoing wire) of each message.

Notice that PIR can be used to instantiate an oblivious routing gate, by using
PIR queries to secretly select the incoming edge to read from, and then having
the PIR server (that is doing the actual routing) write its corresponding PIR
response along that outgoing edge; see Fig. 2.

Routing in the NIAR model can be achieved by combining the oblivious
routing gate paradigm with ordinary routing through a permutation network,
as follows:

Definition 2 (Informal). Denote NIAR parameters: N , permutation σ : [N ] →
[N ], “central router” party C, “sender” parties {Si}i∈[N] with messages {mi,α},
“receiver” parties {Ri}i∈[N] , and let G denote a given routing network. An emu-
lated permutation routing protocol ΠEPR performs NIAR routing by having C
route the αth message of each sender {mi} through the (emulated) network G,
in which messages are routing from the incoming edge of a network node to an
outgoing edge via the oblivious routing gate paradigm.
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Due to space limitations, the formal definitions of oblivious routing gate and
emulated permutation routing, as well as example instantiations via PIR, appear
in the extended version.

Fig. 2. Oblivious routing gate (ΠORG) realization via PIR at node μ with 2w incoming
and outgoing edges.

4 Our Protocol

4.1 Overview of Our Solution

Given N pairs of (sender, receiver) nodes and central router C, our protocol
routes messages from the senders to the corresponding receivers via a virtual
routing network G that C emulates where, for each node in the network, the
router C obliviously executes a routing gate by simulating the functionality of a
(rate-1) PIR query. Namely, (as part of trusted setup) each outgoing edge of a
routing gate will have an assigned PIR query, and each incoming edge will have
a value (which represents an encrypted message from one of the senders). Then
the router C obliviously produces a message on each outgoing edge of the routing
gate by running the associated PIR query on this wire against the (virtual) PIR
database of messages (from the incoming wires). The determination of which
incoming edge that a given PIR query (on a routing gate’s outgoing edge) should
specify is established offline during a setup phase, and specifically it is determined
by choosing a random path Pi, for each (senderi, receiveri) pair, through the
(virtual) routing network G. Notice that once PIR queries are assigned (during an
offline setup phase) as per all chosen paths {Pi}, they may be reused indefinitely
during the online routing phase to continuously route new messages for each
(sender, receiver) pair. The main features of our solution are as follows:
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– Correctness. Ensuring each receiver gets every message reduces to showing
that the paths {Pi} connecting each (senderi, receiveri) pair are edge-disjoint.

– Privacy. Since each sender encrypts their messages under the intended
receiver’s public key, receivers can only decipher messages intended for them.

– Anonymity. This property is obtained so long as the paths {Pi} chosen are
“sufficiently edge-disjoint” (for details see Definition 23).

– Communication. To limit the expansion of message size through each (vir-
tual) routing gate, we employ rate-1 PIR, which ensures the final message
size is proportional to the length of the chosen path P through the (virtual)
routing network G; and that any such path is short (i.e. of polylogN length).

– End-to-End Time. Computation of central router C (which, together with
communication, determines end-to-end transmission time) will depend on the
size of the virtual graph G = (V,E). Thus, in order to minimize computa-
tional overhead, |E| should be close to N (e.g. N · polylogN). Notice that
there is inherent tension in minimizing end-to-end time versus satisfying the
Correctness and Anonymity properties: the former requires small |V | and |E|,
while the latter two are readily achieved for larger |V | and |E|. Our protocol
finds appropriate (minimal) parameters to achieve correctness and anonymity,
while introducing minimal end-to-end overhead.

We stress that some relaxed approaches to the NIAR problem actually fail to pro-
vide anonymity. Specifically, the approach of deploying an arbitrary permutation-
routing network (without the extra features that we require), and the approach
of just replacing each gate in the routing network (even a properly selected
network) with PIR, do not seem sufficient, which we argue as follows.

While PIR is the main tool that hides (from central router C and any other
parties it colludes with) the linkage between uncorrupted (sender, receiver) pairs,
applying it näıvely will not provide the desired protection. Namely, if any two
of the paths {Pi} through the virtual routing network have an edge in common,
then a PIR query cannot be assigned to that edge, as there will be conflicting
input edge indices (and conflicting messages on those edges) to select. Since, in
proving anonymity, path selection must be a randomized process (in particular,
edge conflicts cannot be deliberately avoided), our protocol will handle edge
conflicts by producing garbage PIR queries for such edges. While this approach
introduces failures in terms of delivering messages along the conflicting paths
that were chosen for any such (sender, receiver) pairs, the threat to correctness
is overcome by ensuring enough redundancy in the system to account for (the
low probability event of) edge conflicts. However, edge conflicts (and the lack
of edge conflicts), also threatens anonymity: for example, the router C could
observe many messages from (sender, receiver) pairs it has corrupted all pass
through a common node, and the router may also know that the message from
an uncorrupted sender has some probability of passing through this same node.
Thus, the presence or absence of an edge conflict on the set of outgoing edges of
this node may give the router an advantage in determining if the uncorrupted
sender’s path goes through this node, and if so, some probabilistic advantage in
knowing which outgoing edge the path used; and these advantages then threaten
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anonymity since the router may be able to have an advantage in guessing the
ultimate destination (i.e. receiving node) of this path. Demonstrating that this
approach cannot be used to give the router a non-negligible advantage in linking
uncorrupted (sender, receiver) pairs will require: (i) Identifying what property a
network should have to avoid this attack; (ii) Generating such a routing network
that also supports the desired complexity and correctness requirements; (iii) An
appropriate analysis that this property indeed proves anonymity. For example,
the natural candidate property of exhibiting (with high probability on randomly
chosen paths) the edge-disjoint property is insufficient, as it is susceptible to the
above attack.

Figure 3 below gives pseudocode of our ΠAPR protocol (due to space con-
straints, the full protocol can be found in the extended version).

4.2 Analysis of Our Protocol

Theorem 3. Assuming the existence of rate-1 PIR, following trusted setup,4 the
protocol presented in Fig. 3 is λs-secure with λc-statistical correctness, O(log N)
per-party communication, and O(N polylog N) router computation.

Remark. Instead of trusted setup, under appropriate cryptographic hardness
assumptions the ideal functionality ΠORG(G, ĉ, r, l,Π1−PIR) could instead be
realized via generic secure multiparty computation (MPC) techniques. This
would contribute O(N2 polylog N) to the asymptotic cost of the protocol (to
deal the O(N polylog N) rate-1 queries and O(N2 polylog N) reconstruction
keys), but because ΠORG(G, ĉ, r, l,Π1−PIR) is utilized only in the Setup Phase,
this would be incurred as a one-time cost and would not impact cost of the
Routing Phase.

Proof (Theorem 3, Sketch). Let λ := max(λc/(2− log 3), 2 log N + max(λs, 2 +
log log N). Then the specific permutation network G = B(̂N, b, c,w) used in ΠAPR

is a wide-edged, extended and colored Beneš network (see Sect. 3.1) with param-
eters ̂N = N , b = λ − 1, c = 4 · aλ, and w = 1.2 · λ · log N · (1 + log N) (for
aλ := max(2, λ1/(log N−1))).

4 Trusted setup is required for establishing public/secret key pairs for encryption and
for instantiating ideal functionality ΠORG(G, ĉ, r, l, Π1−PIR).



Anonymous Permutation Routing 47

Anonymous Permutation Routing (APR) Protocol ΠAPR

Input. APR parameters: N , permutation σ : [N ]→ [N ], “central router” party C,
“sender” parties {Si}i∈[N] with messages {mi,α}, “receiver” parties {Ri}i∈[N].

Output. For each party index 1 ≤ i ≤ N , receiver Rσ(i) outputs messages {m̃i,α}.

Setup Phase.

1. Let G = B(N, b, c, w) denote a wide-edged, extended and colored Beneš net-
work (see proof details for appropriate choice of parameters b, c, and w).

2. For each i ∈ [N ]: let (pki, ski) denote a public-key/secret-key pair.
Output: Si ← pki and Rσ(i) ← ski.

3. Let λ := max(λc/(2- log 3), 2 log N +max(λs, 2+ log log N), where λc and λs

denote the desired correctness and security parameters. Repeat λ times:
(a) Choose N random paths {Pi} through G (respecting permutation σ).
(b) Assign rate-1 PIR queries and reconstruction keys to each edge of G, as

per {Pi}. Namely, for a given node μ ∈ G, if some path Pi passes through
node μ along incoming edge Iμ,j and outgoing edge Oμ,k, then write on
edge Oμ,k a rate-1 PIR query that selects the message on incoming edge
Iμ,j , and give the reconstruction key for this PIR query to Receiver Rσ(i).

Routing Phase. Repeat the following procedure for each message {mi,α}:

Senders {Si}.

1. Sender Si encrypts mi= mi,α under pki and sends Encpki(mi) to router C.

Central Router C. Repeat λ times:

1. C runs an emulated permutation routing protocol (Definition 2) with inputs
{Encpki(mi)} (from each sender Si’s Routing Phase Step 1) and rate-1 PIR
queries as per Step (3b) of Setup Phase; and sends the outputs to each
Receiver.

Receivers {Rσ(i)}. Repeat λ times:

1. Use the reconstruction keys (received in Step (3b) of Setup Phase) to traverse
Pi backwards, starting with the final value that it received from C. When
Rσ(i) has traversed backwards to level 0, it will have reconstructed value
Encpki(mi).

Fig. 3. Anonymous Permutation Routing protocol ΠAPR.

Cost. Per-party computation and communication costs for the routing phase
are:

Party Computation Communication
Si Cost(ΠEnc) c

Enc

Ri Cost(ΠDec)+(1+b)·(1+log N)·Cost(ΠPIR-Rec) N/A
C M · |E| · Cost(ΠPIR-Query) N · (2 · c

Enc
+(1+b) ·δPIR)
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where:

– |E| = (2 log N+c)·(c·w ·N·(1+b)) is the number of edges in networkB(N, b, c, w).
– Cost(ΠEnc) is the (computation) cost of encrypting a message m.
– Cost(ΠDec) is the (computation) cost of decrypting a ciphertext Encpki

(m).
– c

Enc
is the size of a ciphertext Encpki

(m).
– δPIR is the constant stretch of the underlying rate-1 PIR protocol Π1−PIR.
– Cost(ΠPIR−Query) is the PIR server cost of Π1−PIR(c ·w, c

Enc
+(1+b) ·δPIR).

– Cost(ΠPIR−Rec) is the cost of running the reconstruction algorithm (on a PIR
response) for Π1−PIR(c · w, c

Enc
+ (1 + b) · δPIR).

Correctness. The intuition for the proof is as follows: Independent of adver-
sarial presence, we first demonstrate bounds of certain properties of routing in
the Beneš network, as per the protocols described in Fig. 3. Namely, we demon-
strate in Corollary 19 that, with overwhelming probability, for any row index
i ∈ [N ] there will exist (at least) one experiment m ∈ [M ] for which the path
Pm,i is edge-disjoint from all other paths {Pm,j}j �=i. Then as per protocol ΠAPR

specification (Step 2b of the Output Parties portion of the Routing Phase; see
Fig. 3), the existence of an edge-disjoint path Pi means that Rσ(i) will update
w̃i ← w̃m,i. By the correctness property of the ideal functionality of ΠORG, this
value will be correct (i.e. it will equal pi).

Formally, with λ = max( λc

2− log 3 , 2 log N + max(λs, 2 + log log N)) ≥ λc

2−log 3 ,
Lemma 19 states that the probability that there exists some row index i ∈ [N ]
for which Pm,i is not edge-disjoint for every experiment m ∈ [M ] is bounded
by:

Pr[X = 0] <

(

3
4

)λ

≤
(

(

3
4

)
1

2−log 3
)λc

=
1

2λc
.

Security. As with the Correctness proof, we first demonstrate (probability
bounds for) a version of the edge-disjoint property in the Beneš graph G
(Sect. 3.1) used in Fig. 3. Namely, we demonstrate in Corollary 27 that, using
the parameters as per ΠAPR (Fig. 3), with overwhelming probability (in λs), for
any pair of row indices i, i′ ∈ [N ] and for every experiment m ∈ [M ], there will
exist a block in which the chosen paths Pm,i and Pm,i′ as well as their alternate
paths P ′

m,i and P ′
m,i′ are each edge-disjoint from all other paths in this block.

Effectively, this means that for any two uncorrupted receiver nodes i, i′ /∈ RA,
that for each experiment there exists some block in which the Adversary will
necessarily lose all ability to distinguish between Pm,i and Pm,i′ by the time
these paths cross through this block. We then use a hybrid argument to show
that the existence of an adversary that can distinguish between two arbitrary
permutations (as per (1)) implies the existence of an adversary who can distin-
guish (with a smaller probability) between two permutations that differ only on
two points; and then this contradicts the existence of a block in which any two
paths become indistinguishable after that block.
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Formally, the proof reduces the NIAR security game (with Challenger invok-
ing the protocol ΠAPR of Fig. 3) to Challenge Game 2, and then uses the indis-
tinguishability of Challenge Game 2 (Lemma 29). To match notation of ΠAPR

with the communication sent to adversary A in the NIAR security game:

For Step 4 of the NIAR security game:
• Encryption keys {pki}: The {pki} from Step 1 of the Setup Phase (Fig. 3).
• Decryption keys {ski}: The {ski} from Step 1 of the Setup Phase, together

with the reconstruction keys {κi} = {(μ, j, κμ,j)} from Step 2b of the
Setup.

• Router token q: The rate-1 PIR queries {qμ,j} from Step 2b of the Setup.
For Step 5b of the NIAR security game:

• Ciphertexts {ci,α}: The encrypted messages {Encpki
(mi,α)} from

Sender’s Step 1 of the Routing Phase (Fig. 3).

First observe that indistinguishability of the distribution of ciphertexts {ci,α} =
{Encpki

(mi,α)} under b = 0 versus b = 1 follows from the security of the encryp-
tion scheme, together with the constraint that all messages bound for a corrupt
receiver must match for b = 0 and b = 1 (see the specified constraint in Step
5a of the NIAR security game). Thus, for any ciphertext ci,α for which Adver-
sary A does not hold the decryption key, the security of the encryption scheme
ensures indistinguishability of this as a ciphertext of m

(0)
i,α versus m

(1)
i,α; and for

any ciphertext ci,α for which Adversary A does hold the decryption key, the
constraint in Step 5a of the NIAR security game dictates that this ciphertext
encodes a common message m

(0)
i,α = m

(1)
i,α.

Next we argue indistinguishability of the encryption keys {pki}i∈SA and the
decryption keys {ski}i∈RA . Notice first that due to the constraint in Step 1b of
the NIAR security game, the distribution of decryption keys {ski}i∈RA looks the
same for b = 0 and b = 1, since σ0 and σ1 necessarily agree here (i.e. they each
map some index j ∈ [N ] to i. Meanwhile, for the distribution of encryption keys,
we focus on indices i ∈ [N ] for which σ0(i) 
= σ1(i). Fix any such i, and define
j = σ0(i) and j′ = σ1(i), so j 
= j′. Again due to the constraint in Step 1b of the
NIAR security game, we have that neither j nor j′ is in RA. This means that
Adversary A does not hold the corresponding decryption key for pki regardless
of whether b = 0 or b = 1, and thus by the security of the encryption scheme,
the distribution of pki for b = 0 appears identical as the distribution when b = 1.

For indistinguishability of the router token q = {qμ,j}: for a given qμ,j

for which Adversary A does not hold the corresponding reconstruction key
κμ,j , indistinguishability follows from the security of the underlying rate-1 PIR
scheme. Conversely, for a given qμ,j for which Adversary A does hold the cor-
responding reconstruction key κμ,j , A learns the input wire index that qμ,j is
selecting. However, the paths chosen through G (see Step (3a) of Setup Phase)
are random and independent of each other and depend only on the given (sender,
receiver) indices. Also, A knows reconstruction key κμ,j if and only if outgoing
edge (μ, j) is on the path leading to a corrupt receiver i ∈ RA. Therefore, we
again rely on the constraint in Step 1b of the NIAR security game to argue that
σ0 and σ1 must agree on the (sender, receiver) indices for this path, so the input
wire index that qμ,j is selecting is the same.
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It remains to argue indistinguishability of the reconstruction keys {κi}i∈RA =
{(μ, j, κμ,j)}. If for a given tuple (μ, j, κμ,j) the last component is a valid recon-
struction key (i.e. κμ,j 
= ⊥), then indistinguishability follows the same argument
as above for the router token. On the other hand, if κμ,j 
= ⊥, then as per the
Correctness property of any ΠORG protocol, Adversary A learns that at least
two distinct paths chose outgoing edge (μ, j). Since this is the exact scenario as
Challenge Game 2, the proof now follows from Lemma 29.

5 Correctness and Security

In this section, we present a series of definitions and lemmas that allow us to
argue our main protocol (Fig. 3) satisfies the correctness and security proper-
ties of the NIAR model (Sect. 3.2). The main technical work lies in proving
Security; this requires first defining a key property that networks can exhibit
(Definition 23), then demonstrating that the Beneš Network we use satisfies this
property (Corollary 27), and finally demonstrating how this property ensures
security (see Challenge Games 1 and 2 in Sect. 5.3). As there are a number of
lemmas and definitions to go through, to preserve the flow and focus on the main
ideas, all proofs appear at the end of the paper.

5.1 Probabilities in a Beneš Network

The main goal of this section is to define a property of graphs that will allow us
to formally argue that anonymity is achieved. As mentioned in the Introduction,
this property is a stronger variant of edge-disjointness, which we call “local
reversal edge-disjoint.” Informally:

Definition 4 (Informal). Given any permutation on N sets of (sender, receiver)
pairs, a pairwisei,j reversal refers to swapping the receivers of senders i and j.
When viewing a “block” of a permutation network (which also has N input nodes
and N output nodes), a local pairwisei,j reversal refers to swapping the output
nodes of two input nodes. A set of N + 2 paths through a block, which include
one path for each (sender, receiver) pair plus two ex tra paths connecting sender
i to receiver j (and sender j to receiver i) is said to be local pairwisei,j reversal
edge-disjoint if these N + 2 paths are edge-disjoint. A permutation network is
said to enjoy the local reversal edge-disjoint property if, for any pair of indices
(i, j), w.h.p. there exists a block that is local pairwisei,j reversal edge-disjoint for
N + 2 randomly chosen paths.

Formally, Definitions 23 and 26 define the “local reversal edge-disjoint” property,
and it is used to prove security via Corollary 27 and in the analysis of (12)).

Lemma 5. Suppose that for each input node {νi}N
i=1 of a butterfly network,

a random path Pi of log N steps is performed. For any node μl (at level l ∈
[0, log N ]), let Xμl

denote the random variable that indicates how many of the
paths {Pi} pass through node μl. Then for any integer k ≥ 1:

Pr[Xμl
≥ k] ≤ 2l

k!
(2)
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Lemma 6. Suppose that for each input node5 {νi}N
i=1 of a colored butterfly

network (with replication factor c), a random path Pi of (1 + log N) steps is
performed (the first step chooses the color ĉ ∈ [c]). For any node μl = μĉ,r,l (at
level l ∈ [0, log N ], row r ∈ [N ], and color ĉ ∈ [c]), let Xμl

denote the random
variable that indicates how many of the paths {Pi} pass through node μl. Then
for any integer k ≥ 1:

Pr[Xμl
≥ k] ≤ 2l

k! · ck
(3)

Lemma 7. Suppose that for each input node {νi}N
i=1 of a colored butterfly net-

work (with replication factor c), a random path Pi of (1 + log N) steps is per-
formed (the first step chooses the color ĉ ∈ [c]). For any integer k ≥ 1, let Xk

denote an indicator variable on whether there exists any node μ (in the entire
colored butterfly network) that has more than k (of the N total) random paths
{Pi} pass through it. Then:

Pr[Xk = 1] ≤ 2c · N2

k! · ck
(4)

We now extend a (colored) butterfly network by concatenating several “blocks,”
each block consisting of log N levels, and then finishing with one final level that
is the mirror reflection of a butterfly network:

Definition 8. An extended (colored) Beneš network with b blocks consists of b
butterfly networks concatenated together, followed by a single (reflected) butterfly
network. Additionally, where each pair of blocks are connected, there is a single
level inserted which consists of edges connecting all colors of each node (at each
“row”) to each other. A block j, for j ∈ [1, (1+b)], refers to the (1+log N) levels
(and edges) between levels (j −1) · (1+log N) and j · (1+log N). That is, a block
corresponds to a contiguous set of (1 + log N) levels, whose first log N levels are
a butterfly network, and the last level is the “connecting” level that consists of
all edges connecting the different colors of all nodes on the same “row.”6 The
input level of a block j ∈ [1, 1 + b] is level (j − 1) · (1 + log N), and the output
level is j · (1 + log N) (notice the input level of block b is the same as the output
level of block b − 1).

The following is analogous to Lemma 7, but bounds the probability with respect
to each block of an extended, colored Beneš network:
5 A colored butterfly network can be viewed as c disjoint butterfly networks overlaid on

top of one another. Alternatively, we can view a colored butterfly network as a single
(connected) graph by adding an extra input level (with level index −1) on the far left,
consisting of N input nodes. Then there are c edges emanating from each input node,
connecting it to each of the c colored nodes in level 0 of the corresponding row.

6 In the special case of the (1+b)th block, the first log N levels of this block are a
reflected butterfly network, and the last level of the block is the final “output” level
of the entire network.
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Lemma 9. Let σ : [N ]→ [N ] be an arbitrary permutation on N items. Suppose
that for each input node {νi}N

i=1 of an extended, colored Beneš network with
replication factor c and b blocks, a random path Pi of (1 + b · (1 + log N)) steps
is performed, and then each such path is extended (from level (b · (1 + log N)) to
level (1 + b) · (1 + log N)) by traversing the unique path from the current node
(on level (b · (1 + log N))) to σ(i). For any j ∈ [1, (b + 1)] and for any integer
k ≥ 1, let Xj,k denote an indicator variable on whether there exists any node μj

within block j (i.e. between levels [(j − 1) · (1 + log N), j · (1 + log N) − 1] that
has more than k (of the N total) random paths {Pi} pass through it. Then:

Pr[X1,k = 1] = Pr[X1+b,k = 1] ≤ 2c·N2

k!·ck

∀ j ∈ [2, b] : Pr[Xj,k = 1] ≤ c·N2·(1+log N)
k!·ck (5)

5.2 Permutation Routing Problem

We begin with the definitions that are needed to describe the Permutation Rout-
ing Problem and the desired properties that a successful solution must exhibit.

Definition 10. Given a graph G = (V,E) and a collection of paths {Pi} within
the graph, we say that any given path Pi is edge-disjoint from the others if no
edge in Pi is contained/traversed by any other path. We say the entire collection
of paths {Pi} is edge-disjoint if each individual edge is edge-disjoint.

Definition 11. A Permutation Routing Problem(N,σ,G) is defined as follows:
For input integer N ∈ N, permutation σ : [N ] → [N ], and graph G that has
N designated “input” nodes {I1, I2, . . . , IN} and N designated “output” nodes
{O1, O2, . . . , ON}, construct N edge-disjoint paths through G that connect each
input-output pair (Ii, Oσ(i)).

We extend the notion of the extended, colored Beneš network to a wide-edged
variant, in which each edge has been replicated w times (which can equivalently
be viewed as each edge having capacity w):

Definition 12. A wide-edged, extended, colored Beneš network B(N, b, c, w) is
an extended and colored Beneš network in which, for each level l ∈ [1, (b +(1+
b) · log N)], each edge connecting levels (l-1, l) is replicated w times.

Notice that the added color and edge-width features serve a similar purpose:
they each reduce the probability of an edge conflict (i.e. increase the probability
of being edge-disjoint, as per Definition 10); but they do so in slightly different
ways: the color feature not only introduces new edges, but also additional nodes,
so that once a path chooses a color for a particular block (which happens only at
the start of each block, when there is a transition between levels in which each
edge connects the various “colors” corresponding to the nodes on a common
“row;” it will not conflict (on the present block) with paths that chose another
color. In contrast, the edge-width feature reduces the chances that two paths
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conflict across a given edge; but those same paths may still end up in the same
node at the far end of this edge, and thus may conflict in a later edge.

We now describe a näıve protocol for randomly choosing paths through a
Beneš network:

Definition 13. Given permutation σ : [N ] → [N ] and a wide-edged, extended,
colored Beneš network G = B(N, b, c, w), the Näıve Random Path algorithm
defines N paths {Pi} through G, connecting each input node to each output node
as per σ, as follows: Path Pi, which starts at input node Ii, chooses random
edges for each level through the first b blocks of G = B(N, b, c, w). Then from its
current node on level (b · (1 + log N)), it follows the unique path to destination
node Oσ(i) (by choosing one of the w replicates of each edge along this path).

Definition 14. Given a wide-edged, extended, colored Beneš network
B(N, b, c, w), and given a routing algorithm Π = ΠN,σ,B(N,b,c,w) that attempts
to solve the Permutation Routing Problem (Definition 11), for each i ∈ [N ] and
for each block 1 ≤ j ≤ (1+b), let XΠ(i, j) denote the boolean random variable that
indicates whether Π constructs an edge-disjoint path on the jth block for the
pair (Ii, Oσ(i)). That is, XΠ(i, j) = 1 if the path connecting Ii and Oσ(i) within
the jth block (as specified by Π) is edge-disjoint from all other paths specified
by Π.

We now demonstrate several properties that the Näıve Random Path algorithm
(Definition 13) satisfies:

Lemma 15. Let Π = Πσ
N

denote the Näıve Random Path algorithm (Defini-
tion 13) on a wide-edged, extended, and colored Beneš network B(N, b, c ≥ 2, w).
Then for any i ∈ [0, N ], for any 1 ≤ j ≤ (1 + b), and for any 1 ≤ k ≤ N , the
probability that XΠ(i, j) = 0 (as per Definition 14) is bounded by:

Pr[XΠ(i, j) = 0] ≤ (1 + log N) ·
(

c · N2(1 + log N)
k! · ck

+
k

2w

)

(6)

We now extend Definition 14 (and in particular the indicator random variable
XΠ(i, j) = 0) to a statement about a path Pi being edge-disjoint across the
entire network G:

Definition 16. Given a routing algorithm Π = ΠN,σ,G that attempts to solve
the Permutation Routing Problem (Definition 11), for each i ∈ [N ], let XΠ(i)
denote the boolean random variable that indicates whether Π constructs an edge-
disjoint path for the pair (Ii, Oσ(i)). That is, XΠ(i) = 1 if the path connecting Ii

and Oσ(i) (as specified by Π) is edge-disjoint from all other paths specified by Π.

Lemma 17. Let Π = Πσ
N

denote the Näıve Random Path algorithm (Defini-
tion 13) on a wide-edged, extended, and colored Beneš network B(N, b, c ≥ 2, w).
Then for any i ∈ [N ] and for any 1 ≤ k ≤ N , the probability that XΠ(i) = 0 (as
per Definition 16) is bounded by:

Pr[XΠ(i) = 0] ≤ (1 + b) · (1 + log N) ·
(

c · N2 · (1 + log N)
k! · ck

+
k

2w

)

(7)
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Proof. This follows immediately from Lemma 15 by applying a union bound on
the (1 + b) blocks of the Beneš network B(N, b, c, w).

We are now ready to present the final definition and corresponding statement
that will be required for the correctness property of the protocol in Fig. 3.

Definition 18. Given an (independent) collection {Πm} of M routing algo-
rithms that attempt to solve the Permutation Routing Problem (see Defini-
tion 11) in a wide-edged, extended and colored Beneš network B(N, b, c, w), let
X denote the boolean random variable that indicates if, for every i ∈ [N ], there
exists (at least) one experiment m ∈ [M ] in which XΠm

(i) = 1 (where XΠm
(i)

is the random variable in Definition 16).

Corollary 19. For any security parameter λ and for any input parameters 2n =
N ≥ 64, b = λ − 1, c = 4 · aλ, and w = 1.2 · λ · log N · (1 + log N) (for7

aλ := max(2, λ1/(log N−1))), if the Näıve Random Path algorithm (Definition 13)
is repeated M := λ times, then the probability that X = 0 (Definition 18) is
bounded by:

Pr[X = 0] <

(

3
4

)λ

(8)

Ultimately, Corollary 19 will demonstrate correctness of our routing protocol (3).
However, for the security property, we will need to consider two sets of (input,
output) node pairs. The following definition (which extends Definition 14, but for
two sets of (input, output) pairs of nodes) will be used to capture the requisite
probabilities for our security proof.

Definition 20. Given a wide-edged, extended, colored Beneš network B(N, b, c,
w) and two routing algorithms Π = ΠN,σ,G=B(N,b,c,w) and Π ′ = Π ′

N,σ,G=B(N,b,c,w)

that attempt to solve the Permutation Routing Problem (Definition 11), for any
pair of row indices (i, i′) ∈ [N ] and for any block 1 ≤ j ≤ (1 + b),
let YΠ,Π′(i, i′, j) denote the boolean random variable that indicates whether each of
the four paths {Pi,Pi′ ,P ′

i,P ′
i′} are edge-disjoint from all other paths on block j.

Aside. Notice that Definition 20 is only concerned about what happens on a sin-
gle block of a wide-edged, extended, and colored Beneš network B(N, b, c, w). In
particular, we do not actually require two routing algorithms Π, Π ′ to be defined
on the full network B(N, b, c, w) in order to evaluate whether YΠ,Π′(i, i′, j) equals
zero or one on a given block j ∈ [1, 1 + b] (as per Definition 20); rather, we only
need to know what each algorithm does on block j. Also notice that there is no
requirement that the four paths be edge-disjoint from each other.

Definition 21. Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and a routing algorithm Π = ΠN,σ,G that attempts to solve the
Permutation Routing Problem (Definition 11), and given any pair of row indices
i, i′ ∈ [N ] and any block index j ∈ [1, (1 + b)], define the block j alternate routing
algorithm Π′

i,i′,j as follows:

7 Notice aλ = 2 if λ ≤ N/2.
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– Π ′
i,i′,j is identical to Π on the first (j − 1) blocks.

– On the jth block:
• For all ̂i /∈ {i, i′}: Π ′

i,i′,j is identical to Π.
• Let μi (respectively μi′) denote the node on the output level (which has

level index j · (1 + log N)) of block j that Pi (respectively Pi′) passes
through. Then Π ′

i,i′,j is identical to Π except that the choice of μi versus
μi′ is swapped in Step 2a for i and i′.8

– For all blocks beyond the jth block:
• For all ̂i /∈ {i, i′}: Π ′

i,i′,j is identical to Π.
• For i, i′: Π ′

i,i′,j is identical to Π, except that it has swapped paths Pi and
Pi′ .9

With these definitions in hand, we provide an analogous probability bound for
YΠ,Π′(i, i′, j) as Lemma 15 provided for XΠ(i, j).

Lemma 22. Let Π = Πσ
N

denote the Näıve Random Path algorithm (Defini-
tion 13) on a wide-edged, extended, and colored Beneš network B(N, b, c ≥ 2, w).
Fix any pair of row indices i, i′ ∈ [N ] and any block index j ∈ [1, (1+b)], and let
Π ′ = Π ′

i,i′,j denote the “block j alternate routing protocol” (Definition 21). Then
for any 1 ≤ k ≤ N , the probability that YΠ,Π′(i, i′, j) = 0 (as per Definition 20)
is bounded by:

Pr[YΠ,Π′(i, i′, j) = 0] ≤ 4 · (1 + log N) ·
(

c · N2 · (1 + log N)
k! · ck

+
k

2w

)

(9)

Just as XΠ(i, j) (Definition 14) and the corresponding bound for it (Lemma 15)
were extended from variables/statements about blocks to variables/statements
about the entire network (in the corresponding Definition 16 and Lemma 17), we
likewise extend YΠ,Π′(i, i′, j) (Definition 20) and the corresponding Lemma 22 to
variables/statements about the entire network. However, these extensions differ
slightly from before, as ultimately we only need the existence of a block that
satisfies the key property, as opposed to requiring that all blocks satisfy some
property.

Definition 23. Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and given two routing algorithms Π = ΠN,σ,G and Π ′ = Π ′

N,σ,G

that attempt to solve the Permutation Routing Problem (Definition 11), for any
pair of row indices (i, i′) ∈ [N ], let YΠ,Π′(i, i′) denote the boolean random variable
that indicates whether there exists some block j ∈ [1, (1 + b)] in which the four
paths {Pi,Pi′ ,P ′

i,P ′
i′} are each edge-disjoint from all other paths on block j.

8 Notice that if μi = μi′ , then Π ′
i,i′,j is identical to Π (for all paths {Pi}) on all blocks

through j (including block j).
9 Swapping paths is only necessary for the sake of making sure the paths link

up/connect between blocks (since output node μi and μi′ were swapped in block
j). However, as was noted in the Aside note following Definition 20, the details of
what Π ′

i,i′,j does beyond block j will be irrelevant for the context of Lemmas 22 and
25.
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Definition 24. Given a wide-edged, extended, and colored Beneš network G =
B(N, b, c, w), and a routing algorithm Π = ΠN,σ,G that attempts to solve the
Permutation Routing Problem (Definition 11), and given any pair of row indices
i, i′ ∈ [N ], define the alternate routing algorithm Π′

i,i′ as follows:

1. ∀ j ∈ [1, (1+b)], let Π ′
j = Π ′

i,i′,j denote the block j alternate routing algorithm
(Definition 21).

2. Construct Π ′
i,i′ from the family of alternate routing algorithms {Πj} as fol-

lows:
a. If there exists an index j ∈ [1, (1 + b)] such that YΠ,Π′

j
(i, i′, j) = 1 (as

per Definition 14), then let Π ′
i,i′ = Π ′

j (for the minimal j satisfying
YΠ,Π′

j
(i, i′, j) = 1).

b. Otherwise, define Π ′
i,i′ = Π.

Lemma 25. Let Π = Πσ
N

denote the Näıve Random Path algorithm (Defini-
tion 13) on a wide-edged, extended, and colored Beneš network B(N, b, c ≥ 2, w),
let i, i′ ∈ [N ] be any two row indices, and let Π ′ = Π ′

i,i′ be the alternate routing
algorithm (as per Definition 24). Then for any 1 ≤ k ≤ N , the probability that
YΠ,Π′(i, i′) = 0 (as per Definition 23) is bounded by:

Pr[YΠ,Π′(i, i′) = 0] ≤
(

4 · (1 + log N) ·
(

c · N2(1 + log N)
k! · ck

+
k

2w

))(1+b)

(10)

We are now ready to present the final definition and corresponding statement
that will be required for the security proof of the protocol in Fig. 3.

Definition 26. Given an (independent) collection {Πm} of M routing algo-
rithms that attempt to solve the Permutation Routing Problem (Definition 11)
in a wide-edged, extended and colored Beneš network B(N, b, c, w), let Y denote
the boolean random variable that indicates if, for every Πm and every pair of row
indices i, i′ ∈ [N ], that YΠm ,Π′

m
(i, i′) = 1 (where Π ′

m = Π ′
m,i,i′ is the alternate

routing algorithm (Definition 24) and YΠm ,Π′
m

(i, i′) is the corresponding random
variable (Definition 23)).

Corollary 27. For10 any security parameter λ ≥ 8 and any input parameters
2n = N ≥ 64, b = λ − 1, c = 4 · aλ, and w = 1.2 · λ · log N · (1 + log N) (for
aλ := max(2, λ1/(log N−1))), if the Näıve Random Path algorithm (Definition 13)
is repeated M := λ times, then the probability that Y = 0 (Definition 26) is
bounded by:

Pr[Y = 0] <
λ · N2

4λ
(11)

10 Notice that these parameter values all match those in the hypothesis of Corollary 19.
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5.3 Security

Succinctly, security (anonymity) will follow for the routing protocol of Fig. 3
from:

Corollary27 ⇒ (!∃A with non-negligible advantage in Challenge Game 1)
⇒ (!∃A with non-negligible advantage in Challenge Game 2)
⇒ (Routing Protocol of Fig. 3 is secure (per Definition 11)) (12)

In this section, we define Challenge Games 1 and 2, and then demonstrate the
first two implications in (12) (the third implication was already presented in the
proof of Theorem 3).

Challenge Game 1

Input Parameters:

– Number of input/output nodes 2n = N ≥ 64.
– Security parameter λ ≥ 8.
– A wide-edged, extended and colored Beneš network G = B(N, b, c, w), with

parameters as per Corollaries 19 and 27: b = λ − 1, c = 4 · aλ, and w =
1.2 · λ · log N · (1 + log N) (for aλ := max(2, λ1/(log N−1))).

– There are N “global input nodes” on level −1 of the Beneš network G =
B(N, b, c, w), which are denoted: I = {I1, I2, . . . , IN}, and N global output
nodes O = {O1, O2, . . . , ON}.

– Set the experiment replication amount M = λ.

Challenge Game:

1. Challenger C chooses a permutation σ on N elements σ : [N ] → [N ].
2. For each experiment m ∈ [M ]: Challenger C performs the Näıve Random

Path algorithm (Definition 13) Πm = Πm,N,σb,G (for G = B(N, b, c, w)). For
each i ∈ [N ], let Pm,i denote the path chosen (by Πm) that connects nodes
(Ii, σb(Ii)).

3. Let Y be the boolean random variable from Definition 26. If Y = 0, Challenger
C aborts (Adversary A wins).

4. Challenger C chooses any two distinct indices i, i′ ∈ [N ], and gives11 σ|[N ]\{i,i′}
to Adversary A, which is the mapping of σ on all indices except i and i′. Notice
that since σ is a permutation, Adversary A now has complete knowledge of σ,
except for what σ does to i and i′. In particular, there are two range indices
σ(i), σ(i′) ∈ [N ] that are not mapped to (based on what C gives to A). Let
τ denote the permutation that is identical to σ, except that it swaps where
i and i′ are mapped to (so τ(i) = σ(i′) and τ(i′) = σ(i)). Notice that after
this step, Adversary A knows that the permutation chosen by Challenger C
is either σ or τ .

11 This information is also available indirectly from what C gives to A in Step 5 a
below.
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5. (If this step is reached) Since Y = 1, for each run 1 ≤ m ≤ M of the
experiment, we have that alternate routing algorithm Π ′

m,i,i′ must have been
constructed as per Step 2a of Definition 24 (as opposed to Step 2b). Therefore,
let jm ∈ [1, (1 + b)] denote the block index for which Π ′

m,i,i′ is defined as in
Step 2a; i.e. jm (is the minimal index that) satisfies YΠm,Π′

m,jm
(i, i′, jm) = 1.

Then, for each experiment m ∈ [M ]:
(a) [Block Index]: Challenger C gives Adversary A the block index jm (recall

this is the first block for which YΠm,Π′
m,jm

(i, i′, jm) = 1).
(b) [All Non-Interesting Paths]: Challenger C gives Adversary A all paths

{Pm,̂i}̂i/∈{i,i′}.
(c) [Interesting Paths Before Block jm]: Challenger C gives Adversary A,

through the first (jm-1) blocks only, paths Pm,i and Pm,i′ .
(d) [Interesting Paths + Alternate Paths for Block jm]: Denote the two

sub-paths of Pm,i and Pm,i′ that are restricted to block jm (i.e. just
the edges of these paths within block jm) and their two alternate sub-
paths (as specified by alternate routing protocol Π ′

i,i′ (Definition 24)) as:
{Pm,i,jm

,Pm,i′, jm
,P ′

m,i,jm
,P ′

m,i′, jm
}. Then Challenger C gives Adversary A

the unordered set {Pm,i,jm
,Pm,i′, jm

,P ′
m,i,jm

,P ′
m,i′, jm

}.
(e) [(Unordered) Interesting Paths Beyond Block jm]: For each level with

index jm · (1 + log N) ≤ l ≤ (1 + b) · (1 + log N) in G = B(N, b, c, w) that
lies after block jm, Challenger C gives Adversary A the unordered set of
edges {Pm,i,l,Pm,i′,l}l

, where Pm,i,l (resp. Pm,i′,l) denotes the lth edge
on the path Pm,i (resp. on the path Pm,i′). In other words, A learns the
edges (beyond block jm) traversed by paths Pm,i and Pm,i′ , but A is not
explicitly told which edges belong to which path (Pm,i versus Pm,i′).

6. Adversary A outputs a guess whether Challenger’s permutation was σ or τ .

The Adversary A wins Challenge Game 1 either if Challenger C aborts in Step 3,
or if A’s output guess in Step 6 is correct.

The main result for Challenge Game 1 (which is the first implication in (12)) is:

Lemma 28. The probability that an (unbounded) Adversary A wins Challenge
Game 1 is bounded by:

Pr[A wins Challenge Game 1] ≤ 1
2

+
λ · N2

4λ
(13)

Challenge Game 2

Input Parameters:

– Number of input/output nodes 2n = N ≥ 64.
– Security parameter λs. Let λ := 2 log N + max(λs, 2 + log log N).
– A wide-edged, extended and colored Beneš network G = B(N, b, c, w), with

parameters as per Corollaries 19 and 27: b = λ − 1, c = 4 · aλ, and w =
1.2 · λ · log N · (1 + log N) (for aλ := max(2, λ1/(log N−1))).
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– There are N “global input nodes” on level −1 of the Beneš network G =
B(N, b, c, w), which are denoted: I = {I1, I2, . . . , IN}, and N global output
nodes O = {O1, O2, . . . , ON}.

– Set the experiment replication amount M = λ.

Challenge Game:

1. On input security parameter λ, Adversary A chooses N , two distinct permu-
tations σ0, σ1 on [N ], a set of sender indices SA ⊆ [N ] to corrupt, and a set
of receiver indices RA ⊆ [N ] to corrupt; subject to constraints:
(a) |RA| ≤ N − 2;
(b) σ0 and σ1 match for all receivers in RA: ∀ i ∈ RA : σ−1

0 (i) = σ−1
1 (i).

2. Adversary A sends {σ0, σ1} to a Challenger C.
3. Challenger C chooses b ∈ {0, 1} and selects σb ∈ {σ0, σ1}.
4. For each experiment m ∈ [M ]:

(a) Challenger C performs the Näıve Random Path algorithm (Definition 13)
Πm = Πm,N,σb,G (for G = B(N, b, c, w)). For each i ∈ [N ], let Pm,i denote
the path chosen (by Πm) that connects nodes (Ii, Oσb(i)).

(b) Adversary A is given the following information:
– For each i ∈ RA: all edges e ∈ Pm,i that are edge-disjoint from all

other paths Pm,j (for j 
= i).
– The list of edges {e} ∈ G that have at least two distinct paths

Pm,i,Pm,i′ pass through them, with i′ 
= i and i ∈ RA. Notice that
A is given only the identity of the set of edges {e}; in particular, A
is not given the information of which (nor even how many) indices in
[N ] \ RA traverse each such edge.

5. Let Y be the boolean random variable from Definition 26. If Y = 0, Challenger
C aborts (Adversary A wins).

6. Adversary A outputs a guess b′ ∈ {0, 1} of which permutation {σ0, σ1} Chal-
lenger C chose.

We say that the Adversary wins the above challenge if its output is correct.

The main result for Challenge Game 2 (which is the second implication in (12)) is:

Lemma 29. The probability that an (unbounded) Adversary A wins Challenge
Game 2 is bounded by: Pr[A wins Challenge Game 2] ≤ 1

2 + 1
2λs

.
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Abstract. Anonymous routing is an important cryptographic primi-
tive that allows users to communicate privately on the Internet, with-
out revealing their message contents or their contacts. Until the very
recent work of Shi and Wu (Eurocrypt’21), all classical anonymous rout-
ing schemes are interactive protocols, and their security rely on a thresh-
old number of the routers being honest. The recent work of Shi and Wu
suggested a new abstraction called Non-Interactive Anonymous Router
(NIAR), and showed how to achieve anonymous routing non-interactively
for the first time. In particular, a single untrusted router receives a token
which allows it to obliviously apply a permutation to a set of encrypted
messages from the senders. Shi and Wu’s construction suffers from two
drawbacks: 1) the router takes time quadratic in the number of senders
to obliviously route their messages; and 2) the scheme is proven secure
only in the presence of static corruptions.

In this work, we show how to construct a non-interactive anonymous
router scheme with sub-quadratic router computation, and achieving secu-
rity in the presence of adaptive corruptions. To get this result, we assume
the existence of indistinguishability obfuscation and one-way functions.
Our final result is obtained through a sequence of stepping stones. First,
we show how to achieve the desired efficiency, but with security under
static corruption and in a selective, single-challenge setting. Then, we go
through a sequence of upgrades which eventually get us the final result.
We devise various new techniques along the way which lead to some addi-
tional results. In particular, our techniques for reasoning about a network
of obfuscated programs may be of independent interest.

1 Introduction

Anonymous communication systems allow users to communicate without reveal-
ing their identities and messages. The earliest design of an anonymous communi-
cation system goes back to Chaum [22] who proposed the design of an encrypted
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email service that additionally hides the identities of the sender and the receiver.
Since then, numerous approaches have been proposed to build anonymous
routing schemes [1,10,22,23,27,28,30,38,51,55,56,58] – a key component of
anonymous communication systems. These include mix-nets [1,10,22], the Din-
ing Cryptographers’ nets [3,23,28], onion routing [19,29,30,38], multi-party-
computation-based approaches [4,42,54], multi-server PIR-write [27,35,49], as
well as variants [55,56,58].

However, all of these routing schemes are interactive, where many servers or
routers engage in an interactive protocol to achieve routing. The security relies
on threshold type assumptions, e.g., majority or at least one of the routers must
be honest. This is unsatisfactory since the threshold-based trust model increases
the barrier of adoption, the interactivity leads to higher network latency, and
finally, the schemes provide no guarantees when all routers may be malicious, or
worse yet, colluding with a subset of the receivers and senders.

The recent work of Shi and Wu [53] was the first to study the feasibility of
non-interactive anonymous routing (NIAR) with a single, untrusted router which
can additionally collude with a subset of senders and receivers. The setting is
as follows: there are n senders and n receivers, and each sender u wants to talk
to a unique receiver v = π(u) given by the routing permutation π. The NIAR
scheme has a trusted setup that given a routing permutation π outputs encryp-
tion keys for senders, decryption keys for receivers, and a routing token for the
router that secretly encrypts the routing permutation. In each time step, each
sender uses its encryption key to encrypt a message. The router upon collecting
all the n ciphertexts applies the routing token to permute them and convert them
into n transformed ciphertexts, and delivers each receiver a single transformed
ciphertext. Each receiver learns their message by decrypting the received cipher-
text with their key. The computation of the permuted ciphertexts can be viewed
as the router obliviously applying the routing permutation π, without learning π.

NIAR was shown to have numerous applications in [53] including realizing a
non-interactive anonymous shuffle (NIAS) where n senders send encryptions of
their private messages to an entity called shuffler who, upon decryption, learns
a permutation of the senders’ messages, without learning the mapping between
each message and the corresponding sender. A NIAS scheme can be used to
instantiate the shuffle model adopted in a line of work on distributed, differen-
tially private mechanisms [7,8,13,24,32,36]. We can realize such a NIAS con-
struction from NIAR by having the shuffler act on behalf of the NIAR router
and all n receivers, as long as the underlying NIAR scheme provides meaningful
security even when all the receivers collude with the router – termed as receiver-
insider security by Shi and Wu [53].

Shi and Wu [53] give a NIAR scheme that satisfies receiver-insider security
assuming the hardness of the decisional linear problem. Their scheme not only
supports an unbounded number of time steps, but also has good efficiency fea-
tures: each sender only needs to send Oλ(1) bits per time step to encrypt a bit,1

1 Throughout the paper, we use Oλ(·) to hide poly(λ) multiplicative factors where λ
denotes the security parameter.
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moreover, the sender and receiver keys are Oλ(1) and the public parameters are
Oλ(n) in size. However, Shi and Wu’s scheme suffers from two main drawbacks.

– First, their token size and router computation per time step are both quadratic
in the number of users n, that is, Oλ(n2). We also stress that the quadratic
router computation drawback pertains not only to the work of Shi and
Wu [53]. As Gordon et al. [39] pointed out, even in classical, interactive
anonymous routing constructions [22,23,42,54], the total router computation
is typically Ω(nm) where n and m denote the number of clients and routers,
respectively—therefore, in a peer-to-peer environment where the clients also
act as routers, the total computation would be quadratic in n.

– Shi and Wu’s construction is proven secure only under static corruption, i.e.,
the adversary must specify all corrupt senders and receivers upfront. This
leaves open an interesting question whether we can construct a NIAR scheme
that is secure against adaptive corruptions, i.e., when the adversary can
dynamically decide which players to corrupt.

The status quo gives rise to the following natural questions:

1. Can we have a NIAR scheme with subquadratic router computation?
2. Can we have a NIAR scheme secure against adaptive corruptions?

1.1 Main Result

In this paper, we construct a new NIAR scheme that simultaneously answers
both of the above questions affirmatively. In particular, our new NIAR construc-
tion achieves ˜Oλ(n) router computation per time step where ˜Oλ(·) hides both
poly(λ, log n) factors; moreover, it achieves security in the presence of adaptive
corruptions. In terms of assumptions, we need the existence of indistinguishabil-
ity obfuscator (iO) [16,33,34,44,57] and one-way functions.

Theorem 1.1 (Informal: NIAR with subquadratic router computation). Let λ
be a security parameter. Let n = n(λ) be the number of senders/receivers. Then,
assuming the existence of indistinguishability obfuscator and one-way functions,
there exists a NIAR scheme (in the receiver insider protection setting) that satis-
fies security under adaptive corruptions. Further, the asymptotical performance
bounds are as follows:

1. the token size and router computation per time step is ˜Oλ(n);
2. the per-sender communication and encryption time per bit of the message is

˜Oλ(1);
3. each sender key is of length ˜Oλ(1), each receiver key is of length Oλ(1).

Technical Highlights. The above result is obtained through a sequence of
stepping stones.

– Techniques for reasoning about a network of obfuscated programs. First, we
show how to achieve the desired efficiency, but under a relaxed notion of secu-
rity, that is, assuming static corruptions and a selective, single-challenge set-
ting. To achieve this, we use a gate-by-gate obfuscation approach. Specifically,
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we break up one big circuit into a network of smaller circuits to obfuscate,
through the use of a quasilinear-sized routing network. In this network, each
smaller circuit is of size polylogarithmic in the number of senders, thus helping
us meet our efficiency goals even after obfuscating each of the smaller circuits.
We also devise new techniques for reasoning about a network of obfuscated
programs. Specifically, we propose a new notion of a Somewhere Statistically
Unforgeable (SSU) signature which may be of independent interest, and we
show how to construct SSU signatures from either iO + one-way functions,
or from fully homomorphic encryption.

– New techniques for upgrading from selective and static security to fully adap-
tive security. Next, we want to remove the static corruption and selective-
single-challenge restrictions. What is interesting is that the standard complex-
ity leveraging techniques completely fail in our context due to our efficiency
requirements. Therefore, we devise various new techniques for upgrading the
security of the scheme, which eventually gets us the final result. An important
consequence of our techniques is that we only incur a polynomial security loss
when performing the upgrades. A key insight in our upgrade is to consider
the following single-inversion restriction on the adversary: it must submit two
permutations seperated by a single inversion in the two worlds, i.e., the two
permutations are almost identical except for swapping the destinations of a
pair of senders. We prove that security w.r.t. a single inversion is in fact equiv-
alent to security w.r.t two arbitrary permutations.
Along the way, we also explore the relationship of different definitions of
NIAR security, and get several additional results (see Sect. 1.2) which may be
of independent interest.

1.2 Additional Results

Impossibility of Simulation Security for Adaptive Corruptions. Shi and
Wu [53] showed that assuming static corruption, indistinguishability-based secu-
rity is equivalent to simulation-based security for NIAR. We revisit the two
definitional approaches in the context of adaptive corruption. Somewhat sur-
prisingly, we show that indistinguishability-based security and simulation-based
security are not equivalent in the context of adaptive corruption. In our paper,
we focus on achieving indistinguishability-based security under adaptive corrup-
tions, since we prove that the simulation-based notion is impossible for adaptive
corruptions. However, our construction does satisfy simulation-based security
under static corruptions due to the equivalence of the two notions under static
corruptions.

Theorem 1.2 (Informal: Impossibility of simulation security for adaptive cor-
ruptions). There does not exist a NIAR scheme (in the receiver insider protection
setting) that achieves simulation-based security under adaptive corruptions (even
with subexponential security assumptions).
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Adaptively Secure NIAR with O(n2) Router Computation from Stan-
dard Assumptions. Our techniques for upgrading from selective/static to adap-
tive security can be of independent interest. For example, we can apply the same
upgrade techniques to the previous NIAR scheme by Shi and Wu [53], which
gives an adaptively secure NIAR scheme with Oλ(n2) router computation from
standard assumptions.

Corollary 1.3 (Informal: quadratic computation NIAR scheme assuming bilin-
ear maps). Assume standard bilinear map assumptions. There exists a NIAR
scheme (in the receiver insider protection setting) that satisfies security under
adaptive corruptions, and the asymptotical performance bounds are as follows:

1. the token size and router computation per time step is Oλ(n2);
2. the per-sender communication and encryption time per bit of the message is

˜Oλ(1);
3. each sender key is of length ˜Oλ(1), each receiver key is of length Oλ(1).

Static-to-Adaptive-Corruption Compiler for Other Settings. In Appen-
dices H and I, we show that our static-to-adaptive-corruption compiler also works
for non-interactive differentially anonymous router schemes as introduced by
Bünz et al. [18], and NIAR schemes with sender insider protection as introduced
by Bunn et al. [17].

1.3 Related Work and Open Questions

Techniques for Reasoning About a Network of Obfuscated Programs.
To the best of our knowledge, the only other works that used the gate-by-gate
obfuscation technique are the Jain and Jin [43] and Canetti et al. [21]. However,
our techniques are fundamentally different in nature from the previous works.
With Jain and Jin’s techniques, the evaluator will need to spend poly(n) time
to evaluate each obfuscated gate whereas for our construction, each obfuscated
gate takes only poly(λ, log n) time to evaluate, which is important for our effi-
ciency claims. Our network of iOs idea also differs fundamentally from Canetti et
al. [21], which builds leveled fully-homomorphic encryption scheme from iO. In
our setting, there are multiple encrypters some of whom may be corrupt, whereas
in the setting of Canetti et al. [21], there is a single encrypter who is assumed
to be honest—so their setting is a lot easier.

Another line of works [5,12,20,43,46] constructs indistinguishability obfus-
cation for Turing machines and RAM programs. A natural question is whether
obfuscating the routing network modelled as a Turing machine or RAM pro-
gram can result in the required sub-quadratic routing efficiency. Unfortunately,
prior approaches [5,12,20,43,46] suffer from evaluation time that is polynomial
in the input length—in the case of the routing network, it would result in poly(n)
runtime. Therefore, we cannot directly use existing iO for Turing machines or
RAMs as a blackbox to achieve the desired efficiency. This is also another way
to see why our results are non-trivial.
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Additional Related Work. The recent work of Bünz, Hu, Matsuo and Shi [18]
made an attempt at answering the question. They could not fully achieve the
above goal, but did suggest a scheme with O(λ

1
γ · n1+γ) router computation

for any γ ∈ (0, 1). Their scheme has two significant drawbacks. First, their
subquadratic router computation comes at the price of relaxing the security def-
inition to (ε, δ)-differential privacy [31]. In other words, their scheme ensures
that the adversary’s views are indistinguishable only for two neighboring routing
permutations (whereas full security requires indistinguishability for any two rout-
ing permutations). Not only is differential privacy a significantly weaker security
notion, it can also leads to additional complications in terms of managing the
privacy budget. Second, their poly(λ) dependency is not a fixed one—to improve
the dependence on the parameter n, we want to choose an arbitrarily small γ,
however, this would significantly blow up the polynomial dependence on the
security parameter λ.

Comparison with Concurrent Work. We stress that in this paper, we focus
on constructing a NIAR scheme whose security is sufficient for instantiating a
non-interactive anonymous shuffler. As mentioned earlier, the shuffler application
is important in the context of distributed differentially private mechanisms in
the so-called “shuffle model”. For this application to work, we need the NIAR
scheme to satisfy a notion of security called receiver-insider protection, that is,
corrupt receivers (possibly colluding with the router and some corrupt senders)
should not learn which honest senders have sent the message.

In comparison, the elegant concurrent work by Bunn, Kushilevitz, and Ostro-
vsky [17] solves the dual problem as ours. Their syntax is the same as ours, but
their security guarantees are for the sender insider protection setting, and are not
sufficient for instantiating the shuffler application. In particular, in the sender
insider protection setting, corrupt senders (possibly colluding with the router
and some corrupt receivers) should not learn which honest receivers are receiv-
ing their messages.

From a technical standpoint, sender insider protection is akin to Private
Information Retrieval (PIR) [25,26]. In fact, if we allow quadratic router com-
putation, a NIAR scheme with a sender insider protection is implied by PIR
which is known from standard, polynomial-strength assumptions. By contrast,
PIR does not directly lead to NIAR with receiver-insider security (even if router
computation efficiency is a non-concern). In fact, NIAR with receiver insider
protection is technically akin to multi-client functional encryption (MCFE) with
function-hiding security. Technically, a NIAR scheme with receiver-insider pro-
tection implies a function-hiding MCFE for the selection functionality with the
bounded, upfront key queries2. So far, the only known way to achieve receiver-
insider security (i.e., the work by Shi and Wu [53]) also uses function-hiding,

2 In this sense, our adaptive corruption result is also interesting in the context of
function-hiding MCFE since how to get function-hiding MCFE under adaptive cor-
ruption was not known earlier. The recent work of Shi and Vanjani [52] showed a
function-hiding MCFE scheme for inner-product computation under static corrup-
tion, relying on standard bilinear group assumptions.
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multi-client functional encryption as a building block. For this reason, receiver
insider protection is technically more challenging based on the existing knowl-
edge and techniques.

Bunn et al. [17] did not discuss the issue of adaptive corruption in the context
of their primitive. Interestingly, our work’s static-to-adaptive compiler can also
be applied to their sender insider protection setting.

Finally, from a technical perspective, Bunn et al.’s main idea is to use a
rate-1 PIR scheme where they reuse the clients’ PIR queries at the router over
multiple sessions. To cut the router computation to quasi-linear, they also rely
an oblivious routing network. In their paper, they construct and analyze a new
oblivious routing network for this purpose. Alternatively, they can also directly
use the same oblivious routing network that we use in our paper, which is directly
borrowed from the earlier algorithms literature [6,50].

Open Questions. Our feasibility results naturally raise several open questions
for future work. Can we achieve subquadratic router computation from standard
assumptions without using indistinguishability obfuscation? Can we construct a
scheme with good concrete performance? Can we strengthen the security of
the scheme to get full insider protection (as defined by [53]) from standard
assumptions?

2 Technical Roadmap

To get the above result, we had to go through multiple intermediate steps, where
we first construct schemes with relaxed security notions and then gradually lift
them to full security. In this process, we develop several interesting new tech-
niques and building blocks that may be of independent interest. At a very high
level, our blueprint and techniques are summarized below:

2.1 Single Selective Challenge and Static Corruptions

Our first step is to construct a NIAR scheme with quasilinear router computation,
but we relax the definitions and only require security when the adversary has to
upfront commit to 1) all corrupt senders and receivers and 2) a single challenge
time step along with the corresponding challenge plaintext vectors. In this step,
we encounter multiple challenges.

DefinitionalChallenge for Single, Selective Security. First, it turns out that
even defining a meaningful selective notion of security (in the static corruption
setting) is non-trivial, because it is unclear how the non-challenge rounds should
behave. This definition should satisfy two goals: first, the non-challenge rounds
should contain no information about the permutation. This is because our tech-
niques below crucially rely on this. Second, the definition should generalize natu-
rally to full security. We discuss these issues in more detail in Appendix D.
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Gate-by-Gate Obfuscation for Efficiency. Next, we consider how to get a
NIAR scheme with quasilinear router computation under the relaxed security. To
start with, it is helpful to imagine an inefficient scheme where the router’s token
is an obfuscated circuit that encodes the entire permutation π as well as encryp-
tion and decryption keys. Now, upon receiving the n incoming ciphertexts, the
obfuscated circuit decrypts the incoming ciphertexts, applies the permutation π,
and reencrypts the outcomes using each receiver’s respective key. The intuition
if we treat the obfuscation as a black box which completely hides its internals,
then it should hide everything about π and the honest parties’ plaintexts beyond
what the corrupted parties are allowed to decrypt.

There are two problems with this approach. First, the seminal work of [9]
showed that it is impossible to achieve an “virtual black-box” (VBB) obfusca-
tion scheme that perfectly hides its internals. Second, even forgetting about the
security analysis, all known obfuscation schemes have large polynomial blowup
in the input size; there is no obfuscation scheme that even comes close to a
quadratic blowup, let alone subquadratic. This clearly does not meet our effi-
ciency requirement.

Our idea to solve this efficiency problem is to break up one big circuit into
a network of smaller circuits to obfuscate, through the use of a quasilinear-sized
routing network. In this routing network, each gate has only polylogarithmically
sized inputs and outputs, and there are O(n) such gates. Now, if we obfuscate
each gate separately and create a network of obfuscated gates, then the total
size of all obfuscated gates would be quasilinear.

It turns out that this idea would only work if the underlying routing network
has a special “obliviousness” property, that is, a corrupt sender cannot infer from
its own route the destinations of honest senders (see Definition B.1). Fortunately,
we were able to get such a routing network using known techniques from the
oblivious sorting literature (although the notion of “obliviousness” there is of a
different nature).

New Techniques for Reasoning About a Network of Obfuscated Pro-
grams. We now turn to the challenges involved in reasoning about the security
of “networked obfuscated programs”. To solve these challenges, we develop tech-
niques which we believe have potential to be useful in future applications. In
particular, when the output of one obfuscated gate is fed into another, we want
to ensure that the adversary does not tamper with the output in between. To
achieve this, we would like to have each obfuscated gate authenticate its own
outputs, and have the next obfuscated gate verify the authentication information
before proceeding to the computation.

As mentioned before, it is well-known that VBB obfuscation is impossible,
and it is only possible to achieve a much more restrictive notion called indistin-
guishability obfuscation (iO). iO achieves a much weaker notion of security: it
only guarantees that obfuscations of two functionally equivalent programs are
indistinguishable. As is evident from prior works, computationally secure primi-
tives are generally incompatible with the functional equivalence requirements of
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iO. Therefore, we need to develop new iO-compatible techniques for authentica-
tion.

A New Notion of Somewhere-Statistically-Unforgeable Signatures. To
this end, one of our contributions is to introduce a new building block called
a Somewhere Statistically Unforgeable (SSU) signature scheme. Informally, in
an SSU signature scheme, there are three modes to sample the signing and
verification keys: normal mode, punctured mode, and the binding mode.

– Normal mode: the signing and verification keys behave same as in standard
digital signatures.

– Punctured mode: the signing key is punctured w.r.t. a set of points X but
the verification key is normal. Intuitively, this means that no valid signature
can be computed using the signing algorithm for points outside of the set X
when using the punctured signing key.

– Binding mode: here, both the signing and verification keys are binding w.r.t. a
sets of points X. Intuitively, this means that, with overwhelming probability,
no valid signatures exist for points outside of the set X w.r.t. a randomly
sampled binding verification key. In other words, this means that statistical
unforgeability holds somewhere (points outside the set X) in the binding
mode.

SSU signatures can be used to sign/verify tuples of the form (t,m), where t
denotes a round and m denotes a message. For a fixed round t∗ and message m∗,
we specifically focus on a set Xt∗,m∗ which contains pairs (t,m) as follows:

– For all t �= t∗, (t,m) ∈ Xt∗,m∗ for all m ∈ {0, 1}len.
– For t = t∗, there is a single pair (t∗,m∗) ∈ Xt∗,m∗ , and for all m′ �= m∗,

(t∗,m′) /∈ Xt∗,m∗ .

Intuitively, we can use this restriction to restrict the behavior of the network
of circuits during the challenge round t∗. Note that both the round t∗ and the
message m∗ must be fixed when generating the keys of the signature scheme,
hence (among other reasons) why the techniques here achieve a selective notion
of security for the NIAR scheme.

For our network of iO proof to go through, we need the following impor-
tant property from the SSU signature. We require that the distributions to be
computationally indistinguishable:

(

punctured signing key,
normal verification key

)

≡c

(

binding signing key,
binding verification key

)

This property is critical when we perform a layer-by-layer hybrid argument in
our proofs.

We stress that for technical reasons explained below, this property is impor-
tant for our “networked obfuscated programs” techniques to work. This property
also differentiates our SSU signature scheme from previous known puncturable
signature schemes [11,40,41]. The main difference from previous puncturable sig-
nature schemes is that we need the two verification keys to be indistinguishable



NIAR with Quasi-Linear Router Computation 71

even in the presence of some signing key, whereas the previous schemes required
that the two verification keys be indistinguishable in absence of any signing key.

We show how to construct such a SSU signature scheme from puncturable
PRFs, single-point binding (SPB) signatures, and single-point binding (SPB)
hash functions3. In Sect. 2.4, we provide some intuition of how we constuct such
SSU signatures. We know how to construct puncturable PRFs from one-way
functions [14,15,37,45], SPB signatures from one-way functions [40], and SPB
hash function from indistinguishability obfuscation or leveled fully homomorphic
encryption [40]. Plugging in these instantiations, we obtain the following theorem
which may be of independent interest:

Theorem 2.1 (Informal: SSU signatures). Assuming the existence of one-way
functions and indistinguishability obfuscation, or assuming leveled fully homo-
morphic encryption, there exists a somewhere statistically unforgeable signature
scheme for the family of sets Xt∗,m∗ defined above.

Network of iOs: Proof Highlight. We sketch our proof outline, focusing on
the part that makes use of the aforementioned property of our SSU signature.
In our construction, a ciphertext encrypts the message as well as the route it
should be sent along. Imprecisely speaking then, each gate does the following:
decrypts the incoming ciphertexts and verifies the input message signature (to
authenticate the message) and route signature (to authenticate the route); and
if valid, it performs the routing, encrypts the output messages (along with the
routing information), and uses an output signing key to sign them. Our proof
goes through a sequence of hybrids sketched below4.

– First, starting from the real-world experiment, through a sequence of hybrids,
we hard-wire the route signatures on corrupt wires (which are shared across
all time steps)—we defer the details of these hybrids to the subsequent tech-
nical sections so we can focus on the part of proof that uses aforementioned
property of our SSU signatures.

– Next, through a layer-by-layer hybrid sequence, we want to switch to a world
in which for challenge time step t∗, honest and filler wires’ ciphertexts and sig-
natures (for both messages and routes) are hard-wired in the obfuscated gate
and the obfuscated gate only accepts an incoming ciphertext that matches
the hiredwired one. Except for the honest-to-corrupt wires in the last layers

3 Informally speaking, SPB signatures have a special single-point binding property
which states that it is possible to generate a special verification key w.r.t. a message
m∗ s.t. it only accepts a single signature for m∗. Similarly, SPB hash functions have
a special single-point binding property which states that it is possible to generate a
special hash key w.r.t. a message m∗ s.t. no hash collisions exist on m∗.

4 Our formal proof in the technical sections actually first proves single, selective-
challenge, static security only for an adversary subject to the following restrictions:
it must corrupt all receivers, and submit two permutations that differ by a single
inversion. We prove that even this weaker version is sufficient for our upgrade all the
way to full security under adaptive corruption.
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which are hard-wired encryptions of the actual messages to be received by the
corrupt receiver, for all other honest/filler wires, the hired-wired ciphertexts
are encryptions of fillers. In this new world, the challenge ciphertexts for hon-
est senders are also random encryptions of fillers; therefore, for the challenge
time step t∗, the adversary’s view contains no information about honest-to-
honest and honest-to-corrupt routes, as well as honest-to-honest messages.
As described below, this layer-by-layer hybrid is where we critically need the
aforementioned security property from the SSU signatures.

• Assuming that layer i’s input verification key is already switched to bind-
ing, we can then switch layer i’s output signing key to a punctured signing
key by using iO security (since the binding verification key already ensure
that the punctured messages will never pass through);

• Next, we make the following replacement by relying on the security of the
SSU signature scheme:

(punctured signing key: layer i, normal verification key: layer i + 1)
=⇒ (binding signing key: layer i, binding verification key: layer i + 1)

• At this moment, by relying on iO security, we can hard-wire the cipher-
texts and signatures for t∗ on honest/filler wires, such that the obfuscated
gate only accepts the input on the wire if it matches the hard-wired value.

2.2 Removing the Selective Challenge Restriction

Recall that the techniques above are able to achieve a limited notion of security,
which we call “selective single-challenge” security. The selective notion requires
that the adversary submit not just two permutations π(0) and π(1) upfront, but
additionally commit to both a challenge round t∗ and the set {x

(0)
u,t∗ , x

(1)
u,t∗}u∈HS

of challenge plaintexts to be used during round t∗ for the honest senders HS ,
two for each honest sender. Recall that we use the SSU signature scheme above,
and we puncture the signing and verification keys at round t∗ and at the target
plaintexts, which we hardcode in the obfuscated gates during the inner hybrids.
This is essentially why we need this data upfront.

Standard Complexity Leveraging Fails. The standard tool to achieve
such a transformation is complexity leveraging. Namely, to run the adaptive-
query single-challenge with the selective scheme, we guess the values t∗ and
{x

(0)
u,t∗ , x

(1)
u,t∗}u∈HS

at the beginning of the experiment. This incurs a security
loss proportional to 2α, where α is the number of bits needed to represent t∗ and
{x

(0)
u,t∗ , x

(1)
u,t∗}u∈HS

. We stress that due to our efficiency requirements, complexity
leveraging fails completely even if we are willing to accept the (sub-)exponential
loss in the security reduction. More specifically, α can be as large as O(n), which
means that the selective-secure NIAR scheme would have to be 2O(n)-secure
for the reduction to be meaningful. Thus we must adopt a security parameter
greater than n in all the underlying primitives, including the iO scheme, resulting
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in poly(n) cost and thus defeating our efficiency goals. This problem seems inher-
ent with our techniques, because as explained above, we hardcode information
about each x

(b)
u,t∗ for all honest u in the obfuscated gates.

Removing the Selective Challenge Restriction Through Equivalence
to Single-Inversion Security. For removing the selective challenge restriction,
our key insight is to define a single-inversion notion of NIAR security, and using
single-inversion security as a stepping stone. In normal NIAR security (under
static corruption), we want security to hold for two arbitrary admissible per-
mutations. In single-inversion security, we consider two admissible permutations
where only a pair of honest senders’ destinations are swapped.

If we can prove equivalence to single-inversion security, then we can do the
selective-query to adaptive-query upgrade for single-inversion security. In this
case, a standard complexity leveraging argument has only polynomial security
loss as explained below. Specifically, with single-inversion security, the reduction
only needs to guess the challenge time step t∗ and the challenge plaintexts of
the two swapped honest users in the two worlds—without loss of generality, we
can assume that each sender’s plaintext is a single bit, since we can always get a
multi-bit scheme by parallel composition of multiple single-bit schemes. Further,
we assume that the reduction is given an upper bound on the p.p.t. adversary’s
running time. Therefore, the space of the guesses is polynomially bounded.

The remaining technicality is proving equivalence to single-inversion security.
At first sight, it might be tempting to conclude that this is obvious, since given
π(0) and π(1), we can always swap a pair of honest senders at a time to eventu-
ally transform π(0) to π(1). However, correctly implementing this idea is subtle.
Specifically, we need any pair of adjacent hybrids to be not trivially distinguish-
able by the adversary, where the adversary is subject to the admissibility rules
of the beginning and the end hybrids. We prove that given any beginning and
end hybrids, we can indeed construct a sequence of intermediate hybrids, each
time swapping a pair of honest senders’ destinations and their messages, such
that each pair of adjacent hybrids satisfy the aforementioned constraint.

2.3 Achieving Security for Adaptive Corruptions

So far, we have constructed a NIAR scheme that achieves security under static
corruptions but adaptive queries. The last question remaining is how to upgrade
the scheme to get security even under adaptive corruptions.

A first idea that comes to mind is to again attempt complexity leveraging.
Again, unfortunately, due to our efficiency requirements, complexity leveraging
completely does not work even if we are willing to suffer from (sub-)exponential
losses in the reduction. Suppose that the reduction guesses which set of players
the adversary will corrupt. Since there are 2n possible guesses, for the parameters
to work in the complexity leveraging, we must adopt a security parameter that
is greater than n in the underlying iO scheme, which results in at least poly(n)
blowup.
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A New Compiler for Upgrading to Adaptive Corruptions. Instead of
complexity leveraging, we construct a new compiler that compiles a NIAR
scheme secure under static corruption to a NIAR scheme secure under adap-
tive corruption, with only polynomial loss in the security reduction.

The compiler is very simple: each sender will first encrypt their plaintext using
a PRF that is secure against selective opening (which is implied by standard PRF
security as shown by Abraham et al. [2]), before encrypting it using the NIAR
scheme that is secure under static corruption. For proving that this construction
secure against adaptive corruptions, we will go through the following key steps:

– First, suppose we want to prove single-inversion security when all the receivers
are corrupt. Now, when the reduction receives the two permutations π(0)

and π(1), it may assume that only the inverted pair of senders are honest.
Therefore, in this case, security under adaptive corruption is the same as
security under static corruption.

– Next, still assuming that all receivers are corrupt, we want to prove security
under adaptive corruption for any two arbitrary permutations. For this step,
we need to prove the equivalence of security under two arbitrary permutations
and single-inversion security, but now for the scenario when the senders can
be adaptively corrupted. The technicalities in this proof are similar to the
counterpart for the static corruption case; however, the argument becomes
somewhat more involved now that the senders can be adaptively corrupt.

– Finally, we show how to remove the assumption where the receivers must
be all corrupted upfront, and allow the adversary to adaptively corrupt the
receivers. This step will rely on the selective-opening security of the PRF
which is implied by standard PRF security [2].

2.4 SSU Signature Construction

In this section, we give an informal overview of our SSU signature construction.
Our scheme is inspired by the well-known Merkle signature scheme [48] which
can upgrade a one-time signature scheme such as Lamport signatures [47] to
a multi-use signature. Recall that the Merkle signature construction works as
follows:

– There is a signing key and verification key pair (for a one-time signature
scheme) at every node u in the tree denoted (sku, vku), and the pair (sku, vku)
are sampled using PRFk(u). The final verification key is vkroot, and the secret
signing key is (k, skroot).

– To sign a new message m, pick the next unused leaf, and consider the path
from the root to the leaf. Let {vk0 = vkroot, vk1, vk2, . . . , vkd} be the verifica-
tion keys corresponding to nodes on the path from the root to the selected
leaf, and let {vk′

1, . . . , vk
′
d} denote the verification keys for the siblings of these

nodes. The signer uses sk0 to sign H(vk1, vk′
1), uses sk1 to sign H(vk2, vk′

2),
and so on where we use H(·) to denote a hash function. Finally, use skd to
sign hash of the actual message H(m). The resulting signature contains all
d + 1 signatures as well as {vk1, vk

′
1, . . . , vkd, vk

′
d}.
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– Verification is done in the most natural manner.

Recall that we want to construct an SSU signature scheme for the set Xt∗,m∗ ,
such that in the binding mode, the only message that can be signed for the time
step t∗ is m∗. We will modify the Merkle signature scheme as follows:

– Imagine that each leaf of the tree corresponds to some time step t. To sign a
message x under the time step t, the signer will use the leaf node correspond-
ing to t.

– We use a punctured PRF instead of a standard PRF to generate the (vku, sku)
pair for every tree node u.

– Instead of an arbitrary one-time signature scheme, we want to use a one-
time signature scheme with a single-point binding (SPB) property, that is,
there is a binding setup which takes a message m∗ as input, and generates
a verification key vk∗ such that the only message that can pass verification
is m∗; and moreover, a computationally bounded adversary cannot tell that
vk∗ is generated using the binding mode.

– Instead of using a normal hash function H(·), we will use a single-point bind-
ing (SPB) hash function. We will create one SPB hash instance per level of
the tree, and include the hash keys in both the signing and verification keys.
An SPB hash function has a binding setup mode that takes m∗ as input and
generates a binding hash key hk∗ such that m∗ does not have any collision;
moreover, a computationally bounded adversary cannot tell that hk∗ is a
binding key.

Punctured Key. To puncture the signing key such that one can sign only x∗

at t∗, puncture the PRF key such that one is unable to compute the signing and
verification key pairs on the path from the root to the leaf t∗. Additionally, we
can use the unpunctured key to pre-sign the message m∗ and t∗ and include this
signature in the punctured signing key.

Binding Key. For the binding-mode setup, we want to generate a binding
signing key and a binding verification key such that for t∗, only the message x∗

has a unique valid signature. The binding mode also punctures the PRF key in
the same way as the punctured mode. However, for the path from the root to the
leaf at t∗, we no longer generate the (sku, vku) honestly by using the unpunctured
PRF key. Instead, we will call the binding setup of the SPB signatures and SPB
hashes. Specifically, on the path from the root to the leaf t∗, we will run the
binding setup algorithms of the SPB signature scheme such that at the leaf t∗,
we can only sign hash of t∗||x∗; and at any non-leaf node on the path, we can
only sign a unique hash (of the two children’s verification keys). Further, we run
the binding setup algorithms of the SPB hash functions, such that at level i of
the tree, the pair (vki, vk

′
i) to be hashed has no collisions, where (vki, vk

′
i) are

verification keys corresponding to the level-i node on the path to leaf t∗ (recall
that vki is generated using the binding mode of the SPB signature), and its
sibling. After we generate all these keys, we again pre-sign (t∗, x∗) using these
keys.
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As a result, the binding verification key is vkroot and the hash keys which
are generated using the binding mode of the SPB signature and hash schemes;
and the binding signing key is the punctured PRF key, as well as the pre-signed
signature for (t∗,m∗), and the binding hash keys.

Formal Description and Proofs. We defer the formal description of the SSU
signature and its proofs to Sect. 5 and Appendix C.

Organization of Rest of the Paper. In Sect. 3, we define NIAR, and in Sect. 4
and Appendix B, we present preliminaries. In Sect. 5, we define SSU signatures
and in Appendix C, we present a construction along with proofs of correctness
and security. In Sect. 6, we construct a NIAR scheme secure against a static
and all-receiver-corrupting adversary and present the security proof in Appen-
dices D and E. In Appendix F, we present a compiler that transforms the above
NIAR scheme to one with full security, i.e., removing the static and all-receiver-
corrupting restrictions on the adversary. In Appendices H and I, we show that
this compiler also works for differentially anonymous and sender insider protec-
tion settings. In Appendix G, we present the impossibility of NIAR simulation
security for adaptive corruptions. All appendices are available in the online full
version: https://eprint.iacr.org/2022/1395.

3 Definitions for NIAR

In this section, we define the syntax and security for NIAR, focusing on the
strongest definition of full security against adaptive corruptions.

3.1 Syntax

We begin with the syntax. A Non-Interactive Anonymous Router (NIAR) is
a cryptographic scheme consisting of the following, possibly randomized algo-
rithms:

– ({eku}u∈[n], {rku}u∈[n], tk) ← Setup(1λ, len, n, π): the trusted Setup algo-
rithm takes the security parameter 1λ, the length of the messages len, the
number of senders/receivers n, and a permuation π. The algorithm outputs a
sender key for each sender denoted {eku}u∈[n], a receiver key for each receiver
denoted {rku}u∈[n], and a token for the router denoted tk.

– ctu,t ← Enc(eku, xu,t, t): sender u uses its sender key eku to encrypt the
message xu,t ∈ {0, 1}len where t denotes the current time step. The Enc
algorithm produces a ciphertext ctu,t.

– (ct′1,t, ct
′
2,t, . . . , ct

′
n,t) ← Rte(tk, ct1,t, ct2,t, . . . , ctn,t): the routing algorithm

Rte takes pk and its token tk (which encodes some permutation π), and
n ciphertexts received from the n senders denoted ct1,t, ct2,t, . . . , ctn,t, and
produces transformed ciphertexts ct′1,t, ct

′
2,t, . . . , ct

′
n,t where ct′u,t is destined

for the receiver u ∈ [n].

https://eprint.iacr.org/2022/1395
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– x ← Dec(rku, ct′u,t, t): the decryption algorithm Dec takes a receiver key rku,
a transformed ciphertext ct′u,t, a time step t, and outputs a message x.

Correctness of NIAR. Correctness requires that with probability 1, the fol-
lowing holds for any λ, len ∈ N, any (x1, x2, . . . , xn) ∈ {0, 1}len·n, and any t:
let ({eku}u∈[n], {rku}u∈[n], tk) ← Setup(1λ, len, n, π), let ctu,t ← Enc(eku, xu, t)
for u ∈ [n], let (ct′1,t, ct

′
2,t, . . . , ct

′
n,t) ← Rte(tk, ct1,t, ct2,t, . . ., ctn,t), and let

x′
u ← Dec(rku, ct′u,t, t) for u ∈ [n]; it must be that x′

π(u) = xu for every u ∈ [n].

3.2 NIAR Full Security

In this section, we present a security notion for NIAR against a very strong
adversary. In particular, we allow such an adversary to (a) adaptively corrupt
the set of senders and receivers, and (b) adaptively ask for encryptions of cho-
sen plaintext under the senders’ keys that are not yet corrupted. Our security
definition is a strict generalization of the “receiver-insider corruption” notion
introduced by Shi and Wu [53] which captured only static corruptions of users.

We formalize our definition via the experiment NIARFullb,A which is
parametrized by some challenge bit b and a stateful non-uniform p.p.t. adver-
sary A. At the beginning of the experiment, adversary A submits two challenge
permutations π(0) and π(1) over [n] for its choice of n. At any time in the experi-
ment, the adversary can choose to corrupt a sender or receiver, and it will receive
the secret key for the newly corrupted player. The adversary receives tk, and then
in each time step, it can submit two plaintext vectors {x

(0)
u,t, x

(1)
u,t}u∈HS

for the
set of currently honest senders HS . The challenger will encrypt the plaintexts
indexed by b ∈ {0, 1}, and at the end of the experiment, the adversary’s job is to
distinguish which world b the challenger is in. The adversary must be subject to
a set of admissibility rules such that it cannot trivially distinguish which world
it is in.

More formally, our full NIAR security game is defined as follows, where Cor(·)
is the following oracle: upon receiving a sender or receiver identity,

– return its corresponding secret key;
– in case the newly corrupted player is a sender, additionally return all the

historical random coins consumed by the Enc algorithm during the previous
time steps;

– update the honest sender set HS and honest receiver set HR accordingly.

NIAR Full Security Experiment NIARFullb,A(1λ).

1. (n, len, π(0), π(1)) ← A(1λ).
2. HS = [n], HR = [n].
3. ({eku}u∈[n], {rku}u∈[n], tk) ← Setup(1λ, len, n, π(b)).
4. For t = 1, 2, . . .:

– if t = 1: {x
(0)
u,t, x

(1)
u,t}u∈HS

← ACor(·)(tk);

else {x
(0)
u,t, x

(1)
u,t}u∈HS

← ACor(·)({CTu,t−1}u∈HS
).
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– for all u ∈ HS , CTu,t ← Enc(eku, x
(b)
u,t, t).

5. At any time, A may halt and output an arbitrary function of its view. The
experiment then also halts and returns the output of A.

In the above definition, if the adversary wants to specify an initially corrupt
set, it can simply make calls to the corruption oracle Cor(·) at the beginning of
t = 1. Therefore, without loss of generality, we may assume that the initially
corrupt set before the challenger calls Setup is empty.

Admissibility. We state some admissibility rules on the adversary to make sure
that the adversary cannot trivially distinguish whether it is in world b = 0 or
b = 1. Our admissibility rule corresponds to the “receiver-insider protection”
version of Shi and Wu [53], which is sufficient for building a non-interactive
anonymous shuffler. Basically, we assume that senders know their receivers but
receivers do not know their senders. Therefore, if the adversary corrupts some
senders, the adversary will know the corrupt senders’ receivers. We remark that
Shi and Wu [53] additionally described a “full insider protection” notion where
it is assumed that neither senders nor receivers know who they are paired with.
Their “full insider protection” construction requires polynomial in n evaluation
time and uses indistinguishable obfuscation and bilinear group assumptions [53].
It remains an open question how to reduce the evaluation time for the “full
insider protection” version.

Henceforth, if a player remains honest at the end of the execution, we say
that it is eventually honest; otherwise we say that it is eventually corrupt. We
say that A is admissible iff with probability 1, the following holds where HS

and HR refer to the eventually honest sender and receiver set, and define KR =
[n] \ HR,KS = [n] \ HS to be the eventually corrupt sender and receiver sets:

1. For all eventually corrupt senders u ∈ KS , π(0)(u) = π(1)(u).
2. For any eventually corrupt sender u ∈ KS , for any t in which u was not

corrupt yet, x
(0)
u,t = x

(1)
u,t. In other words, here we require that in the two

alternate worlds b = 0 or b = 1, every eventually corrupt sender should be
sending the same message in all rounds before it was corrupted.

3. For all rounds t, and for any v ∈ KR ∩ π(0)(HS) = KR ∩ π(1)(HS), x
(0)
u0,t =

x
(1)
u1,t where for b ∈ {0, 1}, ub := (π(b))−1(v). In other words, here we require

that in the two alternate worlds b = 0 or 1, every eventually corrupt receiver
receiving from an eventually honest sender must receive the same message in
all rounds.

Definition 3.1 (NIAR full security). We say that a NIAR scheme is fully secure
iff for any non-uniform p.p.t. admissible A, its views in the two experiments
NIARFull0,A(1λ) and NIARFull1,A(1λ) are computationally indistinguishable.
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4 Preliminaries

Whenever we refer to an adversary in the paper henceforth, we implicitly mean
it to be a non-uniform adversary. We discuss the notations next and defer the
additional preliminaries to Appendix B.

4.1 Notations

We say that a function negl : N → R is negligible, if for every constant c > 0
and for all sufficiently large λ ∈ N we have negl(λ) < λ−c. Two distribution
ensembles {Xλ

0 }λ and {Xλ
1 }λ are computationally indistinguishable if for every

p.p.t. adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N, |Pr[x ← Xλ

0 : A(x) = 0] − Pr[x ← Xλ
1 : A(x) = 0]| ≤ negl(λ). We use ‘ ’

to denote that a value is irrelevant. For instance, in (a, , c) the second value is
irrelevant and can be anything. Often times, we use a short hand {yi : i ∈ [n]} to
denote an ordered sequence (y1, . . . , yn). For instance, {yi : i ∈ [n]} ← f(t, {xi :
i ∈ [n]}) means (y1, . . . , yn) ← f(t, x1, . . . , xn).

5 Somewhere Statistically Unforgeable (SSU) Signatures

In this section, we define SSU signatures and provide an informal construction.

5.1 Definition

We consider an SSU signature scheme where the signing and verification algo-
rithms both take a counter t (i.e., time step) in addition to the message x to be
signed. We refer to t as the round. Specifically, an SSU signature scheme contains
the following algorithms:

– (sk, vk, pp) ← Setup(1λ, tlen, len): takes as input the security parameter 1λ,
the length of the round tlen ≥ 0, the length of the messages to be signed
len > 0, and outputs a signing key sk, a verification key vk, and a public
parameter pp.

– σ ← Sign(pp, sk, t, x): a deterministic algorithm that takes as input a public
parameter pp, a singing key sk, along with a round t ∈ {0, 1}tlen (t = ⊥ in
case tlen = 0) and a message x ∈ {0, 1}len and outputs a signature σ for x
w.r.t. t.

– (0 or 1) ← Vf(pp, vk, t, x, σ): takes as input a public paramter pp, a verifica-
tion key vk, a round t, a message x, and a signature σ, and outputs either 1
for accept or 0 for reject.

– (sk, ˜sk, vk, pp) ← PuncturedSetup(1λ, tlen, len, t∗, x∗): takes as input the
security parameter 1λ, the length of the round tlen, the length of the messages
to be signed len, a round t∗ ∈ {0, 1}tlen (t∗ = ⊥ in case tlen = 0) and a message
x∗ ∈ {0, 1}len, and outputs a signing key sk, a punctured signing key ˜sk, a
verification key vk, and a public paramter pp.
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– (sk∗, vk∗, pp∗) ← BindingSetup(1λ, tlen, len, t∗, x∗): takes as input the secu-
rity parameter 1λ, the length of the round tlen, the length of the messages to
be signed len, a round t∗ ∈ {0, 1}tlen (t∗ = ⊥ in case tlen = 0) and message
x∗ ∈ {0, 1}len, and outputs a binding signing key sk∗, a binding verification
key vk∗, and a binding public paramter pp∗.

– σ ← PSign(pp, ˜sk, t, x): a deterministic algorithm that takes as input a public
paramter pp, a punctured signing key ˜sk generated by PuncturedSetup, a
round t and a message x, and outputs a signature σ for x w.r.t. t.

Correctness of SSU signature. An SSU signature is said to be correct iff the
following holds,

– For all λ, len, tlen ∈ N, t ∈ {0, 1}tlen, x ∈ {0, 1}len,

Pr
[

(sk, vk, pp) ← Setup(1λ, tlen, len)
σ ← Sign(pp, sk, t, x) : Vf(pp, vk, t, x, σ) = 1

]

= 1.

– For all λ, len, tlen ∈ N, t∗, t ∈ {0, 1}tlen, x∗, x ∈ {0, 1}len such that it is not the
case that t = t∗ and x �= x∗,

Pr

[

(sk, ˜sk, vk, pp) ← PuncturedSetup(1λ, tlen, len, t∗, x∗) :
Sign(pp, sk, t, x) = PSign(pp, ˜sk, t, x)

]

= 1.

Definition 5.1 (Security for SSU Signatures). An SSU signature is said to be
secure if it has the following properties:

– Identical distribution of normal keys output by Setup and
PuncturedSetup. For any λ, len, tlen ∈ N, any t∗ ∈ {0, 1}tlen, any x∗ ∈
{0, 1}len, we have the following where ≡ denotes identical distribution:

{(sk, vk, pp) ← Setup(1λ, tlen, len) : output (sk, vk, pp)}
≡{(sk, ˜sk, vk, pp) ← PuncturedSetup(1λ, tlen, len, t∗, x∗) : output (sk, vk, pp)}

– Indistinguishability of punctured and binding setups. For any len and
tlen that are polynomially bounded by λ, any t∗ ∈ {0, 1}tlen, any x∗ ∈ {0, 1}len,
we have the following where ≈ denotes computational indistinguishability:

{(sk, ˜sk, vk, pp) ← PuncturedSetup(1λ, tlen, len, t∗, x∗) : output (˜sk, vk, pp)}
≈{(sk∗, vk∗, pp∗) ← BindingSetup(1λ, tlen, len, t∗, x∗) : output (sk∗, vk∗, pp∗)}

– Statistical unforgeability at (t∗, x∗). For any len, tlen that are polynomi-
ally bounded in λ, there exists a negligible function negl(·), such that for any
t∗ ∈ {0, 1}tlen, x∗ ∈ {0, 1}len, for any λ,

Pr
[

(sk∗, vk∗, pp∗) ← BindingSetup(1λ, tlen, len, t∗, x∗) :
∃ (σ, x) s.t. x �= x∗ ∧ Vf(pp∗, vk∗, t∗, x, σ) = 1

]

≤ negl(λ),

Pr

[

(sk∗, vk∗, pp∗) ← BindingSetup(1λ, tlen, len, t∗, x∗) :
∃ σ �= PSign(pp∗, sk∗, t∗, x∗) s.t. Vf(pp∗, vk∗, t∗, x∗, σ) = 1

]

≤ negl(λ).
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5.2 SSU Signatures: Informal Construction

Let Σ = (Σ.Gen,Σ.Sign,Σ.Vf ,Σ.GenBind) be a single-point binding (SPB)
signature scheme. Let H = (H.Gen,H.Hash,H.GenBind) be a single-point
binding (SPB) hash function. Let PPRF be a puncturable PRF. The SSU sig-
nature scheme is based on a binary tree of SPB signatures intuitively described
in Figs. 1a and 1b. We present the formal construction in Appendix C.

sib3u3

u0

t = 0,       1,       2,       3,       4,       5,       6,       7.

σ3 = Sign( sku3 , Hash( hk3 , t || x ) )

σ2 = Sign( sku2 , Hash( hk2 , vku3 || vksib3 ) )

σ1 = Sign( sku1 , Hash( hk1 , vksib2 || vku2 ) )

σ0 = Sign( sku0 , Hash( hk0 , vku1 || vksib1 ) )

u1
sib1

u2
sib2

hk0

hk1

hk2

hk3

Level 0

Level 1

Level 2

Level 3

(a) Sign and PuncturedSetup. For each node ui, (skui , vkui
) is generated using

Σ.Gen with PPRF.Eval(K, ui) as the randomness seed. A signature σ on message x for
t = 2 consists of σ := ((σ0, vku1 , vksib1), (σ1, vku2 , vksib2), (σ2, vku3 , vksib3), σ3).

PuncturedSetup at the point (t, x) outputs a punctured key ˜sk that consists of the
PPRF key punctured at the set {u0, u1, u2, u3} and σ.

sib3u3

u0

t = 0,       1,       2,       3,       4,       5,       6,       7.

( vku3 , σ3 ) = GenBind( Hash( hk3 , t || x ) )

( vku2 , σ2 ) = GenBind( Hash( hk2 , vku3 || vksib3 ) )

( vku1 , σ1 ) = GenBind( Hash( hk1 , vksib2 || vku2 ) )

( vku0 , σ0 ) = GenBind( Hash( hk0 , vku1 || vksib1 ) )

sib2 u2

u1
sib1

hk0 = GenBind( vku1 || vksib1 )
Level 0

Level 1

Level 2

Level 3

hk1 = GenBind( vksib2 || vku2 )

hk2 = GenBind( vku3 || vksib3 )

hk3 = GenBind( t || x )

(b) BindingSetup. For nodes ui ∈ {u0, u1, u2, u3}, (vkui
, σu) is generated using

Σ.GenBind with PPRF.Eval(K, ui) as the randomness seed. BindingSetup at the
point (t, x) outputs a binding key sk∗ that consists of the PPRF key punctured at the

set {u0, u1, u2, u3} and a signature σ on message x for t = 2, where
σ := ((σ0, vku1 , vksib1), (σ1, vku2 , vksib2), (σ2, vku3 , vksib3), σ3).

Fig. 1. SSU Signatures informal construction

6 NIAR for a Static and All-Receiver-Corrupting
Adversary

In this section, we first introduce a basic NIAR scheme which we prove secure
under an adversary who is restricted to make all corruption queries upfront,
and moreover, it must always corrupt all receivers—we call such an adversary
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a static, all-receiver-corrupting adversary. This is same as the adversary in the
full security game in Definition 3.1 except with the aforementioned restrictions.
For sake of completeness, we define this version of security in Definition A.1.

Later in Appendix F, we give a compiler that transforms the scheme in
this section to one with full security, i.e., removing the static and all-receiver-
corrupting restrictions on the adversary.

Notation. To describe our construction more formally, it will be helpful to
introduce some notation for the routing network. Recall that a routing network
for n senders and n receivers is a layered directed acyclic graph that has O(log n)
layers numbered from 0, 1, . . . , L. Each sender u ∈ [n] is assigned to the (2u−1)-
th wire in the input layer (i.e., layer-0), and each receiver v ∈ [n] is assigned to
the (2v − 1)-th wire in the output layer (i.e., layer-L). Let G be the number of
gates contained in each of the L − 1 intermediate layers. There are (L − 1) · G
gates overall, and we refer to the g-th gate in the 
-th layer by the tuple (
, g) ∈
[L − 1] × [G]. Let W = O(log2 λ) be the number of incoming and outgoing wires
in each gate. Overall, there are L × [2n] wires where we index the i-th wire
in the 
-th layer by the tuple (
, i) ∈ [L] × [2n].5 We refer to the W incoming
wires of every gate (
, g) by the set Input(�,g) ⊆ [2n] and the W outgoing wires
by the set Output(�,g) ⊆ [2n]. In other words, the wires coming into gate (
, g)
are the set {(
, w)}w∈Input(�,g)

, and the wires outgoing from gate (
, g) are the
set {(
 + 1, w)}w∈Output(�,g)

. Finally, recall that a route rteu from sender u to
receiver v is a sequence of wires (j1, . . . , jL) where j� is a wire in the 
-th layer
for all 
 ∈ [L]. Based on the description of routing network, also recall that
j1 = 2u − 1 ∈ [2n] and jL = 2v − 1 ∈ [2n].

6.1 Construction

Simplifying assumption. Throughout this section, we shall assume that the
message length len = 1. This assumption is without loss of generality, since we
can always parallel-compose multiple NIAR schemes where len = 1 to get a
NIAR scheme for len > 1.

We now describe our basic NIAR scheme in detail.

Keys associated with wires. In our construction, each wire (
, i) in the routing
network will have the following associated with it:

– A PRF key k(�,i), which will be used to encrypt and decrypt the (signed)
message along with its routing information on the wire;

– A message signing key tuple (mpp(�,i),msk(�,i),mvk(�,i)), which will later be
used by the corresponding sender or obfuscated gate to sign the message to
be sent to the wire;

5 To be more precise there are c · n wires in each layer for constant c ≥ 2, but for
simplicity we assume c = 2 as this is achieved by our proposed instantiation.
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– A route signing key tuple (rpp(�,i), rsk(�,i), rvk(�,i)), which will be used by the
Setup algorithm to sign the routes and by the obfuscated gates to verify the
routes before performing the routing.

Hardcoded values. Gate(�,g) has hardcoded the following values:

– For each wire i ∈ Input(�,g) in layer �: k(�,i), mpp(�,i), mvk(�,i), rpp(�,i), rvk(�,i).

– For each wire i ∈ Output(�,g) in layer � + 1: k(�+1,i), mpp(�+1,i), msk(�+1,i).

Procedure. Gate(�,g) takes as input a round t and a set of ciphertexts {CT(�,i) :
i ∈ Input(�,g)} corresponding to the input wires. It computes as follows.

1. For each input wire i ∈ Input(�,g):
(a) If � = 1 and i is even, continue to next i. // Filler, ignored.

(b) Decrypt and authenticate the message/route:
i. Compute y = CT(�,i) ⊕ PRF(k(�,i), t) and parse y as (x, rte, msig).

ii. Abort if Sig.Vf(mpp(�,i), mvk(�,i), t, (x, rte), msig) = 0.

iii. If x = ⊥filler and rte = ⊥filler, continue to the next i. // Filler, ignored.

iv. Parse rte as (rte, rsig), rte as (j1, . . . , jL), and rsig as (rsig1, . . . , rsigL).
Abort if j� �= i or the next hop j�+1 /∈ Output(�,g) or
Sig.Vf(rpp(�,i), rvk(�,i), 1, rte, rsig�) = 0.

(c) Prepare the output ciphertext CT(�+1,j�+1):
i. For convenience, set j = j�+1.

ii. If CT(�+1,j) has already been computed, then abort.

iii. Else if � + 1 < L (intermediate layer), first compute a new message
signature msig′ = Sig.Sign(mpp(�+1,j), msk(�+1,j), t, (x, rte)). Then,
compute the ciphertext CT(�+1,j) = (x, rte, msig′) ⊕ PRF(k(�+1,j), t).

iv. Else if � + 1 = L (output layer), compute the ciphertext CT(L,j) =
x ⊕ PRF(k(L,j), t).

2. For each j ∈ Output(�,g) such that CT(�+1,j) has not been computed yet,
compute filler ciphertexts:
(a) Set x = ⊥filler and rte = ⊥filler.

(b) Compute msig′ = Sig.Sign(mpp(�+1,j), msk(�+1,j), t, (x, rte)).

(c) Compute CT(�+1,j) = (x, rte, msig′) ⊕ PRF(k(�+1,j), t).

3. Output {CT(�+1,i) : i ∈ Output(�,g)}.

Fig. 2. The circuit Gate(�,g).
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Circuit for Each Gate. We first describe the circuit for each gate to be obfus-
cated later in our construction. The circuit Gate(�,g) denotes the g-th gate in the

-th layer. It receives a ciphertext on each input wire and decrypts it using a
PRF key to obtain a tuple (x, rte,msig), where x is a message, rte is the authen-
ticated route, and msig is a message signature. It verifies the message signature
msig on the tuple (x, rte). Next, it performs route authentication and prepares
the output ciphertext which varies depending on whether the wire is filler or
not. A wire is filler if x = ⊥filler and rte = ⊥filler. For a filler input wire, no route
authentication is performed as there is no route associated with it. Computing
output ciphertext for filler output wires is deferred to later as the circuit does
not know which are filler output wires at the moment. For a non-filler input wire
i, the circuit parses rte = (rte, rsig) and verifies that the route rte is valid using
rsig. Then, it parses rte = (j1, . . . , jL). If j� = i, then it finds the corresponding
non-filler output wire j�+1 from the rte and computes a new message signature
msig′ and then a new ciphertext for the output wire in the natural manner. At
the end, all output wires which do not have any ciphertext assigned to them
are interpreted as filler wires and the circuit computes message signature and
ciphertext similarly by setting x = ⊥filler and rte = ⊥filler. In Fig. 2 we describe
the circuit formally and in more detail, where Sig is a SSU signature scheme
constructed in Sect. 5 and PRF is a puncturable PRF.

We next describe the Setup algorithm.

Setup Algorithm. Given a routing permutation π, the Setup algorithm first
sets tlen = log2(λ). Then, it runs the AssignRoutes algorithm to sample a set
of edge-disjoint routes {rteu}u∈[n] between each sender/receiver pair. Then, for
every wire (
, i) ∈ [L]× [2n] in the routing network we sample (a) PRF key k(�,i)
for encryption, (b) a signature key pair (rsk(�,i), rvk(�,i), rpp(�,i)) for signing routes,
and (c) a signature key pair (msk(�,i),mvk(�,i),mpp(�,i)) for signing messages.
Looking ahead, when proving security, the route signature keys for wires assigned
to corrupt senders’ routes, and the message signature keys for all other wires will
be punctured to ensure “uniqueness of routes and plaintexts”.

Given the above set of keys, consider a sender/receiver pair (u, v) with route
rteu = (j1, . . . , jL). Then sender u’s sender key eku and receiver v’s decryption
key rkv are defined as follows, where rsig� is the signature on rteu computed using
the route public param rpp(�,j�)

and route signing key rsk(�,j�).

eku =
(

k(1,j1),mpp(1,j1)
,msk(1,j1), rteu = (rteu, rsigu = (rsig1, . . . , rsigL))

)

, rkv = k(L,jL) .

Lastly, the routing token tk is then defined as follows, where the circuit
Gate(�,g) is as described in Fig. 2.

tk = {iO(Gate(�,g)) : (
, g) × [L − 1] × [G]}.

More formally, the Setup algorithm is as in Fig. 3.
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Setup(1λ, len = 1, n, π): on inputs the security parameter 1λ, the individual
message length len = 1, the number of parties n, and the permutation π, Setup
does the following:

1. Set tlen = log2(λ).

2. Sampling Routes: Run the AssignRoutes procedure (Appendix B.1) on
inputs (1λ, n, π). Abort if it outputs ⊥. Else parse the output as a set of edge-
disjoint routes {rteu}u∈[n] between each sender/receiver pair. Let 0, . . . , L be
the layers in the resulting network. Let G be the number of gates contained
in each of the L − 1 intermediate layers. Let W be the number of incoming
and outgoing wires in each gate. Then, for all u ∈ [n], the size of the string
rteu is lenrte = L · log(2n).

3. Sampling Wire Keys: For each wire (�, i) in [L] × [2n]:
(a) Sample PRF key k(�,i) PRF.Gen(1λ) as the encryption key for this

wire.

(b) To sign and verify routes of length lenrte, sample route signature keys

(rsk(�,i), rvk(�,i), rpp(�,i)) Sig.Setup(1λ, 0, lenrte) .

Suppose that the resulting route signatures will be of size polyrsig(λ) for
some polynomials polyrsig. Then, the messages signed will be of length
lenm = tlen + 1 + L · log(2n) + L · polyrsig(λ). To sign and verify messages
of length lenm, sample message signature keys

(msk(�,i), mvk(�,i), mpp(�,i)) Sig.Setup(1λ, tlen, lenm) .

4. Signing Routes: For each sender u ∈ [n] do the following:
(a) Parse rteu = (j1, . . . , jL). Sign rteu using route signing keys for

each wire along rteu, that is, for � ∈ [L] compute rsig� =
Sig.Sign(rpp(�,j�)

, rsk(�,j�), 1, rte).

(b) Set rteu = (rteu, rsigu = (rsig1, . . . , rsigL)).

5. Setting Routing Token:
(a) For each merge-split gate (�, g) in [L−1]× [G], compute an indistinguisha-

bility obfuscation Gate(�,g) iO(1λ, Gate(�,g)) of the circuit Gate(�,g)

described in Figure 2.

(b) Set tk = {Gate(�,g) : � ∈ [L − 1], g ∈ [G]}.
6. Setting Sender Keys: For each u ∈ [n], set eku =

(k(1,j1), mpp(1,j1)
, msk(1,j1), rteu).

7. Setting Receiver Keys: For each v ∈ [n], set rkv = k(L,2v−1).

8. Output ({eku}u∈[n], {rku}u∈[n], tk).

Fig. 3. The Setup algorithm
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Next, we describe how encryption, routing and decryption work.

Encryption Algorithm. For a sender u to send a message x to its receiver
for time step t, the sender first computes a message signature msig for the tuple
(x, rteu) for round t, and encrypts the tuple (x, rteu,msig) using its PRF key.

Enc(eku, xu, t) on input user u’s encryption key eku and plaintext xu and
the round t, does the following:
1. Parse eku as (k,mpp,msk, rteu).
2. Compute the message signature msig = Sig.Sign(mpp,msk, t, (xu, rteu)).
3. Compute the ciphertext CTu = (xu, rteu,msig) ⊕ PRF(k, t).
4. Output CTu.

Routing Algorithm. The router receives a routing token tk from the Setup
algorithm. It consists of obfuscation of each gate in the routing network as
described in Fig. 2. During each round t, the router receives n ciphertexts
CT1, . . . ,CTn from the n senders. Before processing the ciphertexts through
the routing network, the router sets the 2n ciphertexts CT(1,1), . . . ,CT(1,2n) for
the first layer as follows. For all i ∈ [n], it sets CT(1,2i−1) = CTi as the real
ciphertexts and CT(1,2i) = ⊥filler as the filler ciphertexts, where ⊥filler is a special
string. Next, the router uses the token tk to route the 2n ciphertexts in the first
layer through the routing network to obtain the 2n ciphertexts in the last layer
L: CT(L,1), . . . ,CT(L,2n). Finally, to all receivers i ∈ [n], the router sends the
ciphertexts CT′

i = CT(L,2i−1). More formally,

Rte(tk, t,CT1,CT2, . . . ,CTn) on input the router token tk along with the
round number t, and ciphertexts CT1, . . . ,CTn, does the following:
1. Parse tk = {Gate(�,g) : 
 ∈ [L − 1], g ∈ [G]}.
2. Compute ciphertexts for the input layer:

(a) For all k ∈ [n], set CT(1,2k−1) = CTk. // Real ciphertexts
(b) For all k ∈ [n], set CT(1,2k) = ⊥filler. // Filler ciphertexts

3. Compute network of iO obfuscated gates layer-by-layer, that is, for layer

 = 1, . . . , L−1, evaluate all the obfuscated gates at this layer as follows.
For each g ∈ [G], let Input(�,g) and Output(�,g) be the set of input and
output wires of gate Gate(�,g). Then, evaluate the circuit

{CT(�+1,i) : i ∈ Output(�,g)} = Gate(�,g)(t, {CT(�,i) : i ∈ Input(�,g)}).

4. Output (CT′
1 = CT(L,1),CT′

2 = CT(L,3), . . . ,CT′
n = CT(L,2n−1)).
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Decryption Algorithm. A receiver u learns its intended message by just
decrypting the received ciphertext using its PRF key. More formally,

Dec(rku,CT′
u, t) on input user u’s receiver key rku, output ciphertext CT′

u,
and a time step t, does the following: Output y = CT′

u ⊕ PRF(rku, t).

6.2 Efficiency Analysis

Recall that we assume len = 1 since for multi-bit messages, since we can always
parallel-compose multiple NIAR schemes where len = 1 to get a NIAR scheme
for len > 1. In the analysis below, we argue that the router computation per
time is bounded by ˜Oλ(n) where ˜Oλ hides poly(λ, log n) factors for some fixed
poly(·).

Recall that the routing network consists of layers 0, . . . , L, where L =
O(log n). In each of the L − 1 intermediate layers, there are G = 2n/W number
of gates, where W = O(log2 λ) is the number of incoming and outgoing wires in
each gate.

Size of Hardcoded Values in Each Gate. Each incoming wire has the follow-
ing hardcoded: PRF key of size poly(λ), route public parameters of size poly(λ)
and route verification key of size poly(λ), message public parameters of size
poly(λ) and message verification key of size poly(λ). Each outgoing wire has the
following hardcoded: PRF key of size poly(λ), message public parameters of size
poly(λ) and message signing key of size poly(λ, tlen) = poly(λ) as tlen = log2(λ).

Size of Ciphertexts. Each route signature is of size polyrsig(λ). and each
message signature is of size polymsig(λ). Therefore, the ciphertexts are of size
tlen + 1 + L · log(2n) + L · polyrsig(λ) + polymsig(λ) = poly(λ, log n).

Size and Running Time of Each Gate. Each gate has W incoming and
outgoing wires and each gate processes W ciphertexts, where W = O(log2 λ).
Therefore, each gate has poly(λ) amount of hardcoded information and processes
poly(λ, log n) amount of inputs. Based on the operations inside each gate, we can
then conclude that each gate is of size poly(λ, log n). Then, accounting for the
polynomial blowup of the iO obfuscator, we can conclude that the size of each
obfuscated gate is still poly(λ, log n) and the router can run each obfuscated
circuit in time poly(λ, log n).

Router Computation per Time Step. Observe that for each time step, the
router computes each of the obfuscated circuits at most once. Since there are at
most Õ(n) gates, we can conclude that the router computation per time step is
bounded by ˜Oλ(n) where ˜Oλ hides poly(λ, log n) factors for some fixed poly(·).
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Sender and Receiver Key Sizes, Computation and Communication per
Time Step. Sender key size is bounded by the size of the route which is ˜Oλ(1).
For every sender, computation and communication per time step is ˜Oλ(1). Each
receiver’s key contains a PRF key which is Oλ(1) in size. For every receiver,
computation and communication per time step is Oλ(1).

6.3 Static Security Theorem

In Appendices D and E, we prove the following theorem, which shows that
the above construction satisfies static security as long as the adversary always
corrupts all receivers. In Appendix F, we give a compiler that further compiles
the scheme to one that satisfies full security under adaptive corruptions, and
without any restrictions on the adversary.

Theorem 6.1. Suppose PRF is a secure puncturable PRF, Sig is a secure deter-
ministic SSU signature scheme, and iO is a secure indistinguishability obfusca-
tion scheme. Then, our NIAR construction in Sect. 6.1 satisfies full static cor-
ruption security (Definition A.1) subject to an all-receiver-corrupting adversary.

We give a proof roadmap of Theorem 6.1 below.

Proof Roadmap. We prove Theorem 6.1 through a sequence of steps.

– In Definition D.1, we define indistinguishability w.r.t. inversions against an
adversary that additionally satisfies the selective single-challenge restriction.
Then, we present an Upgrade Theorem stated in Theorem D.2 which shows
how to remove the selective single-challenge and inversion restrictions.

– Next, to complete the proof of Theorem 6.1, it suffices to prove security under
the selective single-challenge and single inversion restrictions. We show this
in Theorem E.1.
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Abstract. Consider a state-level adversary who observes and stores
large amounts of encrypted data from all users on the Internet, but does
not have the capacity to store it all. Later, it may target certain “persons
of interest” in order to obtain their decryption keys. We would like to
guarantee that, if the adversary’s storage capacity is only (say) 1% of the
total encrypted data size, then even if it can later obtain the decryption
keys of arbitrary users, it can only learn something about the contents of
(roughly) 1% of the ciphertexts, while the rest will maintain full security.
This can be seen as an extension of incompressible cryptography (Dziem-
bowski CRYPTO’06, Guan, Wichs and Zhandry EUROCRYPT’22) to
the multi-user setting. We provide solutions in both the symmetric key
and public key setting with various trade-offs in terms of computational
assumptions and efficiency.

As the core technical tool, we study an information-theoretic problem
which we refer to as “multi-instance randomness extraction”. Suppose
X1, . . . , Xt are correlated random variables whose total joint min-entropy
rate is α, but we know nothing else about their individual entropies. We
choose t random and independent seeds S1, . . . , St and attempt to indi-
vidually extract some small amount of randomness Yi = Ext(Xi; Si) from
each Xi. We’d like to say that roughly an α-fraction of the extracted
outputs Yi should be indistinguishable from uniform even given all the
remaining extracted outputs and all the seeds. We show that this indeed
holds for specific extractors based on Hadamard and Reed-Muller codes.

1 Introduction

Bounded-Storage Mass Surveillance. We consider a scenario where a powerful
(e.g., state-level) adversary wants to perform mass surveillance of the popula-
tion. Even if the population uses encryption to secure all communication, the
adversary can collect large amounts of encrypted data from the users (e.g., by
monitoring encrypted traffic on the Internet). The data is encrypted and hence
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the adversary does not learn anything about its contents when it is collected.
However, the adversary may store this data for the future. Later, it may identify
various “persons of interest” and perform expensive targeted attacks to get their
secret keys (e.g., by remote hacking or by physically compromising their devices).
We will assume the adversary is capable of eventually getting any secret key of
any user of its choosing. Can we still achieve any meaningful notion of security
against such mass-surveillance?

One option is to rely on cryptosystems having forward secrecy [19], which
exactly addresses the problem of maintaining security even if the secret key is
later compromised. Unfortunately, forward-secure encryption schemes inherently
require either multi-round interaction between the sender and receiver or for the
receiver to perform key updates, both of which can be impractical or impossible
in many natural scenarios. Without these, it may seem that no reasonable secu-
rity is possible – if the adversary collects all the ciphertexts and later can get
any secret key, clearly it can also get any plaintext!

In this work, we restrict the adversary to have bounded storage, which is much
smaller than the total of size of all the encrypted data it can observe. This is a
reasonable assumption since the total communication of an entire population is
likely huge.1 As a running example throughout the introduction, we will assume
that the adversary’s storage capacity is 1% of the total encrypted data size. We
allow the adversary to observe all the encrypted data simultaneously and then
compress it in some arbitrary way to fit within its storage budget. Later, the
adversary can get any secret key of any user of its choosing, and eventually it
may even get all the keys of all the users. What kind of security guarantees can
we provide in this setting?

Clearly, the adversary can simply store 1% of the ciphertexts and discard the
remaining 99%, which will allow it to later compromise the security of 1% of
the users by getting their secret keys. While one may pessimistically see this as
a significant privacy violation already, we optimistically regard this as a poten-
tially reasonable privacy outcome that’s vastly preferable to the adversary being
able to compromise all the users. For example, if the adversary later chooses
a random user and wants to learn something about their data, it will only be
able to do so with 1% probability, even if it can get their secret key. But can we
argue that this is the best that the adversary can do? In particular, we’d like to
say that, no mater what compression strategy the adversary employs, it will be
unable to learn anything about the contents of 99% of the ciphertexts, even if
it later gets all the secret keys. Unfortunately, this is not generically true. For
example, the adversary could store the first 1% of the bits of every ciphertext. If
the encryption scheme is (e.g.,) the one-time pad, then an adversary who later
learns the secret keys would later be able to learn the first 1% of every encrypted
message of every user, which may provide a pretty good idea of the overall mes-
sage contents. In fact, it can get even worse than this. If the encryption scheme
is fully homomorphic, the adversary can individually compress each ciphertext

1 Global annual Internet traffic has long surpassed 1 zettabyte (1021 bytes) [4], while
total world-wide datacenter storage is only a couple zettabytes in 2022 [11].
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into a small evaluated ciphertext encrypting some arbitrary predicate of the data
(e.g., was the message insulting of the supreme leader), and therefore learn the
outcome of this predicate about the encrypted data of every user. Even worse, if
the encryption scheme is multi-key fully homomorphic, the adversary can derive
a compressed ciphertext that encrypts the output of a joint computation over
all the data of all the users, as long as the output is sufficiently small. Thus,
in general, an adversary whose storage capacity is only 1%, may still be able to
learn some partial information about the encrypted messages of a 100% of the
users. The question is then, whether or not it is indeed possible to guarantee
only 1% of users are compromised, and if so to actually design such a scheme.

Connection to Incompressible Cryptography. Encryption schemes that offer pro-
tection against bounded-storage mass surveillance can be seen as a generalization
of incompressible encryption [6,15,17] to the setting of multiple ciphertexts. To
clarify the distinction, we refer to the earlier notion of incompressible encryption
as individually incompressible and our new notion as multi-incompressible.

In an individually incompressible encryption scheme, we can make the size
of a ciphertext flexibly large, and potentially huge (e.g., many gigabytes). An
adversary observes a single ciphertext, but cannot store it in its entirety and
can instead only store some compressed version of it. Security dictates that
even if the adversary later gets the user’s secret key, it cannot learn anything
about the encrypted message. The work of [15] gave a construction of one-time
symmetric-key encryption with information-theoretic security in this setting, and
the work of [17] showed how to achieve public-key encryption in this setting,
under the minimal assumption that standard public-key encryption exists. The
works of [6,17] also constructed such public-key encryption schemes having rate
1, meaning that the size of the message can be almost as large as the ciphertext
size, and the latter work even showed how to do so under specific but standard
public-key assumptions.

In our new notion of multi-incompressible encryption, we also have the flex-
ibility to make the ciphertext size arbitrarily large. But now the adversary
observes a large number of ciphertexts from many users and compresses them
down to something that’s roughly an α-fraction of the size of all the original
ciphertexts, for some α. In particular, the adversary’s storage may be much
larger than a single ciphertext. Later the adversary gets all the secret keys, and
we want to say that the adversary can only learn something about a (roughly)
α-fraction of the messages, but cannot learn anything about the rest.

Our new notion of multi-incompressibility implies individual incompressibil-
ity. In particular, in the case of a single ciphertext, unless the adversary stores
essentially all of it (i.e., α ≈ 1), it cannot learn anything about the encrypted
message (= 100% of the messages). But our notion is significantly more general.
For example, individual incompressibility does not even offer any guarantees if
an adversary can take even 2 ciphertexts and compress them down to the size of
1, while multi-incompressibility ensures that one of the messages stays secure.

Formalizing multi-incompressibility is tricky: the natural indistinguishability-
based approach would be to insist that the encryptions of two lists of messages
are indistinguishable. But unlike individually incompressible encryption, in our
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setting the adversary can always learn something, namely the messages con-
tained in ciphertexts it chose to store. We therefore need a fine-grained notion
which captures that some messages to be learned, but other messages remain
completely hidden. We give details on our solution below.

Extracting Randomness Against Correlated Sources. Before getting to our
results, we discuss randomness extraction, which is a central tool in all existing
constructions of incompressible encryption. A randomness extractor Ext takes
as input a source of imperfect randomness X and uses it to distill out some
(nearly) uniformly random string Y . Here, we consider seeded extractors, which
use a public uniformly random seed S as a catalyst to extract Y = Ext(X;S),
such that Y should be (nearly) uniform even conditioned on the seed S.

While randomness extraction is very well studied, it is most often in the single-
use case, where a single string Y = Ext(X;S) is extracted from a single source X
having sufficient entropy. Here we ask: what if many strings Yi = Ext(Xi;Si) are
extracted from multiple sources Xi respectively (using independent random seeds
Si), but where the sources Xi may be arbitrarily correlated? What guarantees can
be made? We consider the case where we only know that the total joint entropy of
all the sources is high, but we know nothing else about their individual entropies;
indeed some of the sources may have no entropy at all! In this case, clearly not all of
the extracted values Yi can be uniform, and some may even be entirely determinis-
tic. One may nevertheless hope that some of the extracted values remain uniform,
where the fraction of uniform values roughly correlates to combined total entropy
rate of all the sources. To the best of our knowledge, randomness extraction in this
setting has not been studied before.

1.1 Our Results

Formalizing Multi-user Incompressible Encryption. We first provide definitions
for multi-user incompressible encryption. We depart from the indistinguishability-
based definitions of the prior work on incompressible cryptography [6,15,17], and
instead give a simulation-based definition. Essentially, it says that anything that
an adversary can learn by taking many ciphertexts of different users, compress-
ing them down sufficiently, and later getting all the secret keys, can be simulated
by a simulator that can only ask to see some small fraction of the plaintexts but
learns nothing about the remaining ones. In the single-instance case, this defini-
tion implies indistinguishability-based security, but appears stronger. Neverthe-
less, existing constructions and proofs are readily adapted to satisfy simulation
security. The distinction becomes more important in the multi-user setting, how-
ever, where simulation security allows us to naturally define what it means for some
messages to be revealed and some to remain hidden.

Multi-instance Randomness Extractors. As our main technical tool, we explore a
new kind of extractor that we call a multi-instance randomness extractor, which
aims to solve the extraction problem outlined above. Syntactically, this is a stan-
dard extractor Y = Ext(X;S) that takes as input a source X and a seed S and
outputs some short randomness Y . However, we now imagine that the extractor
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is applied separately to t correlated sources Xi, with each invocation using an
independent seed Si, to derive extracted values Yi = Ext(Xi;Si). The only guar-
antee on the sources is that the total joint min-entropy of X = (X1, . . . , Xt) is
sufficiently high. Any individual source Xi, however, may actually be determin-
istic (have 0 entropy), in which case the corresponding extracted value Yi is of
course not random. However, provided the total min-enropy rate of X is high, it
is guaranteed that many of the t extracted values are statistically-close uniform.
Ideally, if the joint min-entropy rate of X is α, we would hope that roughly αt
of the extracted values are uniform.

Formalizing the above requires some care. For example, it may be the case
that X is chosen by selecting a random index i∗ ← [t], setting Xi∗ to be all 0’s,
and choosing the remaining block Xj for j �= i∗ uniformly at random. In that
case X has a very high entropy rate, but for any fixed index i, the min-entropy of
Xi is small (at most log t since with polynomial probability 1/t the value of Xi is
all 0’s), and not enough to extract even 1 bit with negligible bias. Therefore, we
cannot argue that Yi = Ext(Xi;Si) is close to uniform for any particular index
i! Instead, we allow the set of indices i, for which Yi is close to uniform, itself be
a random variable correlated with X. (See Definition 3.)

We show constructions of multi-instance randomness extractors nearing the
optimal number of uniform extracted values. In particular, we show that if the
joint min-entropy rate of X = (X1, . . . , Xt) is α then there exists some random
variable IX denoting a subset of ≈ α ·t indices in [t] such that nobody can distin-
guish between seeing all the extracted values Yi = Ext(Xi;Si) versus replacing
all the Yi for i ∈ IX by uniform, even given all the seeds Si. (See Corollary 1.)
Our constructions are based on Hadamard codes (long seed) and Reed-Muller
codes (short seed). While the constructions themselves are standard, our anal-
ysis is novel, leveraging the list-decodability of the codes, plus a property we
identify called hinting. Hinting roughly means that the values of {Ext(x;Si)}i

on some particular exponentially large set of pairwise independent seeds Si can
be compressed into a single small hint, of size much smaller than x. This hinting
property is a crucial feature in the local list-decoding algorithms for these codes,
but appears not to have been separately formalized/utilized as a design goal for
an extractor.2

Applications. We then show that multi-instance randomness extraction can
be used essentially as a drop-in replacement for standard randomness extrac-
tors in prior constructions of individual incompressible encryption, lifting them
to multi-incompressible encryption. As concrete applications, we obtain multi-
incompressible encryption in a variety of settings:
2 The work of [1] studied a notion of extractors for “Somewhere Honest Entropic

Look Ahead” (SHELA) sources. The notions are largely different and unrelated.
In particular: (i) in our work X is an arbitrary source of sufficient entropy while
[1] places additional restrictions, (ii) we use a seeded extractor while [1] wants a
deterministic extractor, (iii) we apply the seeded extractor separately on each Xi

while [1] applies it jointly on the entire X, (iv) we guarantee that a large fraction
of extracted outputs is uniform even if the adversary sees the rest, while in [1] the
adversary cannot see the rest.
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– A symmetric key scheme with information-theoretic security, by replacing the
extractor in [15].

– A “rate-1” symmetric key scheme, meaning the ciphertext is only slightly
larger than the message. Here, we assume either decisional composite residu-
osity (DCR) or learning with errors (LWE), matching [6]3.

– A public key scheme, assuming any ordinary public key encryption scheme,
matching [17].

– A rate-1 public key scheme, under the same assumptions as [6]4. The scheme
has large public keys.

– A rate-1 public key scheme that additionally has succinct public keys, assum-
ing general functional encryption, matching [17].

In all cases, we guarantee that if the adversary’s storage is an α fraction of
the total size of all the ciphertexts, then it can only learn something about a
β ≈ α fraction of the encrypted messages. We can make β = α − 1/p(λ) for
any polynomial p in the security parameter λ, by choosing a sufficiently large
ciphertext size.

Multiple Ciphertexts Per User. Prior work, in addition to only considering a
single user, also only considers a single ciphertext per user. Perhaps surprisingly,
security does not compose, and indeed for any fixed secret key size, we explain
that simulation security for unbounded messages is impossible.

We therefore develop schemes for achieving a bounded number of ciphertexts
per user. We show how to modify each of the constructions above to achieve
multi-ciphertext security under the same assumptions.

The Random Oracle Model. In the full version [18] of the paper, we also show
how to construct symmetric key multi-user incompressible encryption with an
unbounded number of ciphertexts per user and also essentially optimal secret
key and ciphertext sizes, from random oracles. This shows that public key tools
are potentially not inherent to rate-1 symmetric incompressible encryption.

1.2 Concurrent Work

A concurrent and independent work of Dinur et al. [12] (Sect. 6.2) considers
an extraction problem that turns out to be equivalent to our notion of Multi-
Instance Randomness Extractor. They study this problem in a completely dif-
ferent context of differential-privacy lower bounds. They show that (in our lan-
guage) universal hash functions are “multi-instance randomness extractors” with
good parameters, similar to the ones in our work. While conceptually similar,
the results are technically incomparable since we show our result for hinting
3 One subtlety is that, for all of our rate-1 constructions, we need a PRG secure

against non-uniform adversaries, whereas the prior work could have used a PRG
against uniform adversaries.

4 [6] explores CCA security, but in this work for simplicity we focus only on CPA
security.
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extractors while they show it for universal hash functions. One advantage of our
result is that we show how to construct hinting extractors with short seeds, while
universal hash functions inherently require a long seed. Their proof is completely
different from the one in our paper.

The fact that multi-instance randomness extractors have applications in dif-
ferent contexts, as demonstrated in our work and Dinur et al. [12], further jus-
tifies them as a fundamental primitive of independent interest. We believe that
having two completely different techniques/approaches to this problem is both
interesting and valuable.

1.3 Our Techniques: Multi-instance Randomness Extraction

We discuss how to construct a multi-instance randomness extractor Ext. Recall,
we want to show that, if the joint min-entropy rate of X = (X1, . . . , Xt) is α then
there exists some random variable IX denoting a subset of ≈ α·t indices in [t] such
that the distribution (Si, Yi = Ext(Xi;Si))i∈[t] is statistically indistinguishable
from (Si, Zi)i∈[t] where Zi is uniformly random for i ∈ IX and Zi = Yi otherwise.

A Failed Approach. A natural approach would be to try to show that every stan-
dard seeded extractor is also a “multi-instance randomness extractor”. As a first
step, we would show that there is some random variable IX denoting a large sub-
set of [t] such that the values Xi for i ∈ IX have large min-entropy conditioned
on i ∈ IX . Indeed, such results are known; see for example the “block-entropy
lemma” of [13] (also [9,16]). In fact, one can even show a slightly stronger state-
ment that the random variables Xi for i ∈ IX have high min-entropy even con-
ditioned on all past blocks X1, . . . , Xi−1. However, it cannot be true that Xi has
high min-entropy conditioned on all other blocks past and future (for example,
think of X being uniform subject to

⊕t
i=1 Xi = 0). Unfortunately, this prevents

us for using the block-entropy lemma to analyze multi-instance extraction, where
the adversary sees some extracted outputs from all the blocks.5 It remains as
a fascinating open problem whether every standard seeded extractor is also a
multi-instance randomness extractor or if there is some counterexample.6

Our Approach. We are able to show that particular seeded extractors Ext
based on Hadamard or Reed-Muller codes are good multi-instance randomness

5 This strategy would allow us to only prove a very weak version of multi-instance
extraction when the number of blocks t is sufficiently small. In this case we can
afford to lose the t extracted output bits from the entropy of each block. However,
in our setting, we think of the number of blocks t as huge, much larger than the
size/entropy of each individual block.

6 We were initially convinced that the general result does hold and invested much
effort trying to prove it via some variant of the above approach without success. We
also mentioned the problem to several experts in the field who had a similar initial
reaction, but were not able to come up with a proof.
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extractors. For concreteness, let us consider the Hadamard extractor Ext(x; s) =
〈x, s〉.7 Our proof proceeds in 3 steps:

Step 1: Switch quantifiers. We need to show that there exists some random
variable IX such that every statistical distinguisher fails to distinguish between
the two distributions (Si, Yi)i∈[t] and (Si, Zi)i∈[t]. We can use von Neumann’s
minimax theorem to switch the order quantifiers.8 Therefore, it suffices to show
that for every (randomized) statistical distinguisher D there is some random
variable IX such that D fails to distinguish the above distributions.

Step 2: Define IX . For any fixed x = (x1, . . . , xt) we define the set Ix to con-
sist of indices i ∈ [t] such that D fails to distinguish between the hybrid dis-
tributions ({Sj}j∈[t], Z1, . . . , Zi−1, Yi, . . . , Yt) versus ({Sj}j∈[t], Z1, . . . , Zi, Yi+1,
. . . , Yt), where in both distributions we condition on X = x. In other words, these
are the indices where we can replace the next extracted output by random and fool
the distinguisher. We then define the random variable IX that chooses the correct
set Ix according to X. It is easy to show via a simple hybrid argument that with
this definition of IX it is indeed true that D fails to distinguish (Si, Yi)i∈[t] and
(Si, Zi)i∈[t].

Step 3: Argue that IX is large. We still need to show that IX is a large set,
containing ≈ α · t indices. To do so, we show that if IX were small (with non
negligible probability) then we could “guess” X with sufficiently high probability
that would contradict X having high min-entropy. In particular, we provide a
guessing strategy such that for any x for which Ix is small, our strategy has a
sufficiently high chance of guessing x. First, we guess the small set Ix ⊆ [t] as well
as all of the blocks xi for i ∈ Ix uniformly at random. For the rest of the blocks
i �∈ Ix, we come up with a guessing strategy that does significantly better than
guessing randomly. We rely on the fact that distinguishing implies predicting,
to convert the distinguisher D into a predictor P such that for all i �∈ Ix we
have: P (Si, {Sj ,Ext(xj ;Sj)}j∈[t]\{i}) = Ext(xi;Si) with probability significantly
better than 1/2. Now we would like to use the fact that the Hadamard code
(Ext(x; s) = 〈x, s〉)s is list-decodable to argue that we can use such predictor P to
derive a small list of possibilities for x. Unfortunately, there is a problem with this
argument. To call the predictor, the predictor requires an auxiliary input, namely
auxi = {Sj ,Ext(xj ;Sj)}j∈[t]\{i}. Supplying the auxi in turn requires knowing at
least t bits about x. We could hope to guess a good choice of auxi, but there
may be a different good choice for each i ∈ [t], and therefore we would need to
guess a fresh t bits of information about x just to recover each block xi, which
when |xi| < t is worse than the trivial approach of guessing xi directly! Instead,
we use a trick inspired by the proof of the Goldreich-Levin theorem. For each

7 For the sake of exposition, here we only show the case where the extractor output
is a single bit. In Sect. 3, we construct extractors with multiple-bit outputs.

8 Think of the above as a 2 player game where one player chooses IX , the other chooses
the distinguisher and the payout is the distinguishing advantage; the minimax the-
orem says that the value of the game is the same no matter which order the players
go in.
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block j ∈ [t], we guess the values of b(k) := 〈xj , S
(k)
j 〉 for a very small “base

set” of h random seeds S
(1)
j , . . . , S

(h)
j . We can then expand this small “base

set” of seeds into an exponentially larger “expanded set” of Q = 2h − 1 seeds
S
(K)
j :=

∑
k∈K S

(k)
j for K ⊆ [h] \ ∅, and derive guesses for b(K) := 〈xj , S

(K)
j 〉

by setting b(K) =
∑

k∈K b(k). By linearity, the expanded set of guesses is correct
if the base set is correct, and moreover the expanded sets of seeds (S(K)

j )K

are pairwise independent for different sets K. Therefore, for each set K, we can
derive the corresponding aux

(K)
i . We can now apply Chebyshev’s bound to argue

that if for each i we take the majority value for P (Si, aux
(K)
i ) across all Q sets

K, it is likely equal to Ext(xi;Si) with probability significantly better than 1/2.
Notice that we got our saving by only guessing ht bits about x = (x1, . . . , xt)
for some small value h (roughly log(1/ε) if we want indistinguishability ε) and
were able to use these guesses to recover all the blocks xi for i �∈ Ix.

Generalizing. We generalize the above analysis for the Hadamard extractor to
any extractor that is list-decodable and has a “hinting” property as discussed
above. In particular, this also allows us to use a Reed-Muller based extractor
construction with a much smaller seed and longer output length.

1.4 Our Techniques: Multi-incompressible Encryption

We then move to considering incompressible encryption in the multi-user setting.

Definition. We propose a simulation-based security definition for multi-instance
incompressible encryption. Roughly, the simulator first needs to simulate all
the ciphertexts for all the instances without seeing any of the message queries,
corresponding to the fact that at this point the adversary can’t learn anything
about any of the messages. To model the adversary then learning the secret
keys, we add a second phase where the simulator can query for a subset of the
messages, and then must simulate all the private keys. We require that no space-
bounded distinguisher can distinguish between the receiving real encryptions/real
private keys vs receiving simulated encryptions/keys. The number of messages
the simulator can query will be related to the storage bound of the distinguisher.

Upgrading to Multi-incompressible Encryption Using Multi-instance Randomness
Extraction. All prior standard-model constructions of individual incompress-
ible encryption [6,15,17] utilize a randomness extractor. For example, Dziem-
bowski [15] gives the following simple construction of a symmetric key incom-
pressible encryption scheme:

– The secret key k is parsed as (s, k′) where s is a seed for a randomness
extractor, and k′ is another random key.

– To encrypt a message m, choose a large random string R, and output c =
(R, d = Ext(R; s) ⊕ k′ ⊕ m).

The intuition for (individual) incompressible security is that an adversary
that cannot store essentially all of c can in particular not store all of R, meaning
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R has min-entropy conditioned on the adversary’s state. The extraction guar-
antee then shows that Ext(R; s) can be replaced with a random string, thus
masking the message m.

We demonstrate that our multi-instance randomness extractors can be used
as a drop-in replacement for ordinary random extractors in all prior constructions
of individual incompressible encryption, upgrading them to multi-incompressible
encryption. In the case of [15], this is almost an immediate consequence of our
multi-instance randomness extractor definition. Our simulator works by first
choosing random s for each user, and sets the ciphertexts of each user to be
random strings. Then it obtains from the multi-instance randomness extractor
guarantee the set of indices i where Yi is close to uniform. For these indices, it
sets k′ to be a uniform random string. This correctly simulates the secret keys
for these i.

For i where Yi is not uniform, the simulator then queries for messages for
these i. It programs k′ as k′ = d ⊕ Ext(R; s) ⊕ m; decryption under such k′

will correctly yield m. Thus, we correctly simulate the view of the adversary,
demonstrating multi-incompressible security.

Remark 1. The set of indices where Yi is uniform will in general not be efficiently
computable, and multi-instance randomness extraction only implies that the set
of indices exist. Since our simulator must know these indices, our simulator is
therefore inefficient. In general, an inefficient simulator seems inherent in the
standard model, since the adversary’s state could be scrambled in a way that
hides which ciphertexts it is storing.

We proceed to show that various constructions from [6,17] are also secure
in the multi-user setting, when plugging in multi-instance randomness extrac-
tors. In all cases, the proof is essentially identical to the original single-user
counterpart, except that the crucial step involving extraction is replaced with
the multi-instance randomness extraction guarantee. We thus obtain a variety
of parameter size/security assumption trade-offs, essentially matching what is
known for the single-user setting.

One small issue that comes up is that, once we have invoked the multi-
instance randomness extractor, the simulation is inefficient. This presents a prob-
lem in some of the security proofs, specifically in the “rate-1” setting where mes-
sages can be almost as large as ciphertexts. In the existing proofs in this setting,
there is a computational hybrid step that comes after applying the extractor.
Naively, this hybrid step would seem to be invalid since the reduction now has
to be inefficient. We show, however, that the reduction can be made efficient as
long as it is non-uniform, essentially having the choice of indices (and maybe
some other quantities) provided as non-uniform advice. As long as the under-
lying primitive for these post-extraction hybrids has non-uniform security, the
security proof follows.

Multiple Ciphertexts Per User. We also consider the setting where there may be
multiple ciphertexts per user, which has not been considered previously.
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It is not hard to see that having an unbounded number of ciphertexts per
user is impossible in the standard model. This is because the simulator has to
simulate everything but the secret key without knowing the message. Then, for
the ciphertexts stored by the adversary, the simulator queries for the underlying
messages and must generate the secret key so that those ciphertexts decrypt to
the given messages. By incompressiblity, this means the secret key length must
be at least as large as the number of messages.

We instead consider the case of bounded ciphertexts per user. For a stateful
encryption scheme, it is trivial to upgrade a scheme supporting one ciphertext
per user into one supporting many: simply have the secret key be a list of one-
time secret keys. In the symmetric key setting, this can be made stateless by
utilizing k-wise independent hash functions.

In the public key setting, achieving a stateless construction requires more
work, and we do not believe there is a simple generic construction. We show
instead how to modify all the existing constructions to achieve multiple cipher-
texts per user. Along the way, we show an interesting combinatorial approach to
generically lifting non-committing encryption to the many-time setting without
sacrificing ciphertext rate.

2 Preliminaries

Notation-wise, for n ∈ N, we let [n] denote the ordered set {1, 2, . . . , n}. We use
capital bold letters to denote a matrix M. Lowercase bold letters denote vectors
v. Let Mi,j denote the element on the i-th row, and j-th column of M, and vi

denote the i-th element of v.

Lemma 1 (Johnson Bound, Theorem 3.1 of [20]). Let C ⊆ Σn with |Σ| = q
be any q-ary error-correcting code with relative distance p0 = 1 − (1 + ρ) 1q for
ρ > 0, meaning that for any two distinct values x, y ∈ C, the Hamming distance
between x, y is at least p0 · n. Then for any δ >

√
ρ(q − 1) there exists some

L ≤ (q−1)2

δ2−ρ(q−1) such that the code is (p1 = (1 − (1 + δ) 1q ), L)-list decodable,
meaning that for any y ∈ Σn

q there exist at most L codewords x ∈ C that are
within Hamming distance p1n of y.

Lemma 2 (Distinguishing implies Predicting). For any randomized func-
tion D : {0, 1}n × {0, 1}m → {0, 1} there exists some randomized function
P : {0, 1}n → {0, 1}m such that for any jointly distributed random variables
(A,B) over {0, 1}n × {0, 1}m:
if Pr[D(A,B) = 1] − Pr[D(A,Um) = 1] ≥ ε then Pr[P (A) = B] ≥ 1

2m (1 + ε).

Proof. Define P (a) as follows. Sample a random b0 ← {0, 1}m, if D(a, b0) = 1
output b0 else sample a fresh b1 ← {0, 1}m and output b1.
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Define p = Pr[D(A,Um) = 1]. Let B0, B1 be independent random variables
that are uniform over {0, 1}m corresponding to the strings b0, b1 . Then we have

Pr[P (A) = B] = Pr[D(A,B0) = 1 ∧ B0 = B] + Pr[D(A,B0) = 0 ∧ B1 = B]
= Pr[B0 = B] Pr[D(A,B) = 1] + Pr[D(A,B0) = 0] Pr[B1 = B]

=
1

2m
(ε + p) + (1 − p)

1
2m

=
1

2m
(1 + ε).

��
Min-Entropy Extractor. Recall the definition for average min-entropy:

Definition 1 (Average Min-Entropy). For two jointly distributed random
variables (X,Y ), the average min-entropy of X conditioned on Y is defined as

H∞(X|Y ) = − logE
y

$←Y
[max

x
Pr[X = x|Y = y]].

Lemma 3 ([14]). For random variables X,Y where Y is supported over a set
of size T , we have H∞(X|Y ) ≥ H∞(X,Y ) − log T ≥ H∞(X) − log T.

Definition 2 (Extractor [23]). A function Extract : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε) strong average min-entropy extractor if, for all jointly
distributed random variables (X,Y ) where X takes values in {0, 1}n and
H∞(X|Y ) ≥ k, we have that (Ud,Extract(X;Ud), Y ) is ε-close to (s, Um, Y ),
where Ud and Um are uniformly random strings of length d and m respectively.

Remark 2. Any strong randomness extractor is also a strong average min-
entropy extractor, with a constant loss in ε.

Definitions of incompressible encryption and functional encryption can be
found in the full version [18] of the paper.

3 Multi-instance Randomness Extraction

3.1 Defining Multi-instance Extraction

Definition 3 (Multi-instance Randomness Extraction). A function Ext :
{0, 1}n×{0, 1}d → {0, 1}m is (t, α, β, ε)-multi-instance extracting if the following
holds. Let X = (X1, . . . , Xt) be any random variable consisting of blocks Xi ∈
{0, 1}n such that H∞(X) ≥ α · tn. Then, there exists some random variable IX

jointly distributed with X, such that IX is supported over sets I ⊆ [t] of size
|I| ≥ β · t and:

(S1, . . . , St,Ext(X1;S1), . . . ,Ext(Xt;St)) ≈ε (S1, . . . , St, Z1, . . . , Zt)

where Si ∈ {0, 1}d are uniformly random and independent seeds, and Zi ∈
{0, 1}m is sampled independently and uniformly random for i ∈ IX while
Zi = Ext(Xi;Si) for i �∈ IX .

In other words, the above definition says that if we use a “multi-instance extract-
ing” extractor with independent seeds to individually extract from t correlated
blocks that have a joint entropy-rate of α, then seeing all the extracted outputs
is indistinguishable from replacing some carefully chosen β-fraction by uniform.
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3.2 Hinting Extractors

Definition 4 (Hinting Extractor). A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a (δ, L, h,Q)-hinting extractor if it satisfies the following:

– List Decodable: If we think of ECC(x) = (Ext(x; s))s∈{0,1}d as a (2d, n)Σ={0,1}m

error-correcting code over the alphabet Σ = {0, 1}m, then the code is (p =
1 − (1 + δ)2−m, L)-list decodable, meaning that for any y ∈ Σ2d , the number
of codewords that are within Hamming distance p · 2d of y is at most L.

– Pairwise-Independent Hint: There exist some functions hint : {0, 1}n×{0, 1}τ

→ {0, 1}h, along with rec0 and rec1 such that:
• For all x ∈ {0, 1}n, r ∈ {0, 1}τ , if we define σ = hint(x; r), {s1, . . . , sQ} =
rec0(r), and {y1, . . . , yQ} = rec1(σ, r), then Ext(x; si) = yi for all i ∈ [Q].

• Over a uniformly random r ← {0, 1}τ , the Q seeds {s1, . . . , sQ} = rec0(r),
are individually uniform over {0, 1}d and pairwise independent.

Intuitively, the pairwise-independent hint property says that there is a small
(size h) hint about x that allows us to compute Ext(x; si) for a large (size Q) set
of pairwise independent seeds si. We generally want Q to be exponential in h.

The list-decoding property, on the other hand, is closely related to the
standard definition of strong randomness extractors. Namely, if Ext is a (k, ε)-
extractor then it is also (p = 1 − (1 + δ)2−m, 2k)-list decodable for δ = ε · 2m,
and conversely, if it is (p = 1 − (1 + δ)2−m, 2k)-list deocdable then it is a
(k + m + log(1/δ), δ)-extractor (see Proposition 6.25 in [26]).

Construction 1: Hadamard. Define Ext : {0, 1}n×{0, 1}n → {0, 1}m via Ext(x; s)
= 〈x, s〉, where we interpret x, s as elements of Fn̂

2m for n̂ := n/m and all the
operations are over F2m . The seed length is d = n bits and the output length is
m bits.

Lemma 4. The above Ext : {0, 1}n×{0, 1}n → {0, 1}m is a (δ, L, h,Q)-hinting
extractor for any h, δ > 0 with Q ≥ 2h−m and L ≤ 22m/δ2.

Proof. The list-decoding bounds on δ, L come from the Johnson bound (Lemma
1) with q = 2m, ρ = 0. For pairwise-independent hints, let ĥ = h/m and define
hint(x;R) to parse R ∈ F

ĥ×n̂
2m and output σ = R · x�, which has bit-size h. Let

V ⊆ F
ĥ
2m be a set of vectors such that any two distinct vectors v1 �= v2 ∈ V

are linearly independent. Such a set V exists of size Q = (2m)ĥ−1 + (2m)ĥ−2 +
· · · + 2m + 1 ≥ 2h−m, e.g., by letting V be the set of all non-zero vectors whose
left-most non-zero entry is a 1. Define rec0(R) so that it outputs {sv = v ·
R}v∈V . Correspondingly, rec1(σ,R) outputs {yv = 〈v, σ〉}v∈V . It’s easy to see
that the seeds sv are individually uniform and pairwise independent, since for
any linearly-independent v1 �= v2 ∈ V and the value sv1 = v1R and sv2 = v2R
are random and independent over a random choice of the matrix R. Moreover
for all seeds sv we have

Ext(x, sv) = 〈sv, x〉 = v · R · x� = 〈v, σ〉 = yv.

��
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Construction 2: Hadamard ◦ Reed-Muller. Define Ext(f ; s = (s1, s2)) = 〈f(s1),

s2〉, where f ∈ F

(
�+g

g

)

2w is interpreted as a �-variate polynomial of total degree
g over some field of size 2w > g, and s1 ∈ F

�
2w is interpreted as an input to

the polynomial (this is Reed-Muller).9 Then y = f(s1) and s2 are interpreted
as a values in F

w/m
2m and the inner-product 〈y, s2〉 is computed over F2m (this is

Hadamard). So overall, in bits, the input length is n = w · (�+g
g

)
, the seed length

is d = w(� + 1) and the output length is m. This code has relative distance
1 − ( 1

2m + g
2w ) = 1 − 1

2m (1 + g
2w−m ).

Lemma 5. For any w, �, g,m, δ such that 2w > g and m divides w, if we set
n = w · (

�+g
g

)
, d = w(� + 1) then the above Ext : {0, 1}n × {0, 1}d → {0, 1}m

is an (δ, L, h,Q)-hinting extractor with δ =
√

g22m/2w, L = 22m

δ2−g22m/2w , h =
w · (g + 1), Q = 2w.

In particular, for any n,m,w such that m divides w, we can set � = g = log n
to get an (δ, L, h,Q)-hinting extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(w log n), δ = 2m+log log n−w/2, h = O(w log n) and Q = 2w.

Proof. The list-decoding bounds on δ, L come from the Johnson bound (Lemma
1) with q = 2m, ρ = g

2w−m . On the other hand, for pairwise-independent hints,
we can define hint(f ; r) as follows. Parse r = (r0, r1, s11, . . . , s

Q
1 ) with r0, r1 ∈ F

�
2w

and si
1 ∈ F

w/m
2m . Let f̂(i) = f(r0 + i · r1) be a univariate polynomial of degree g

and define the hint σ = f̂ to be the description of this polynomial. Define {si =
(si

0, s
i
1))} = rec0(r) for i ∈ F2w by setting si

0 = r0 + i ·r1. Define {yi} = rec1(σ, r)
via yi = 〈f̂(i), si

1〉. It is easy to check correctness and pairwise independence
follows from the fact that the values si

0 = r0 + i · r1 are pairwise independent
over the randomness r0, r1. ��

3.3 Hinting-Extractors Are Multi-instance-Extracting

Lemma 6 (Multi-instance-Extraction Lemma). Let Ext : {0, 1}n×{0, 1}d

→ {0, 1}m be a (δ, L, h,Q)-hinting extractor. Then, for any t, α > 0 such that
Q ≥ 2t 2

2m

δ2 , it is also (t, α, β, ε)-multi-instance extracting with ε = 6tδ and β =
α − log L+h+log t+log(1/ε)+3

n .

Proof. Our proof follows a sequence of steps.

Step 0: Relax the Size Requirement. We modify the statement of the lemma as
follows. Instead of requiring that |IX | ≥ β · t holds with probability 1, we relax
this to requiring that Pr[|IX | < β · t] ≤ ε/4. On the other hand, we strengthen
the requirement on statistical indisitnguishability from ε to ε/2:

(S1, . . . , St,Ext(X1;S1), . . . ,Ext(X1;St)) ≈ε/2 (S1, . . . , St, Z1, . . . , Zt).

This modified variant of the lemma implies the original.
9 Since the the input to the extractor is interpreted as a polynomial, we will denote

it by f rather than the usual x to simplify notation.
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To see this, notice that we can replace the set IX that satisfies the modified
variant with I ′

X which is defined as I ′
X := IX when |IX | ≥ βt and I ′

X :=
{1, . . . , βt} else. The set I ′

X then satisfies the original variant. In particular,
we can prove the indisintinguishability guarantee of the original lemma via a
hybrid argument: replace I ′

X by IX (ε/4 statistical distance), switch from the
left distribution to right distribution (ε/2 statistical distance), replace IX back
by I ′

X (ε/4 statistical distance) for a total distance of ε.

Step 1: Change quantifiers. We need to prove that: for all X with H∞(X) ≥
α · tn, there exists some random variable IX ⊆ [t] with Pr[|IX | < βt] ≤ ε/4
such that for all (inefficient) distinguishers D:

|Pr[D(S1, . . . , St, Y1, . . . , Yt) = 1] − Pr[D(S1, . . . , St, Z1, . . . , Zt) = 1]| ≤ ε/2
(1)

where we define Yi = Ext(Xi;Si), and the random variables Zi are defined as
in the Lemma. By the min-max theorem, we can switch the order of the last
two quantifiers. In particular, it suffices to prove that: for all X with H∞(X) ≥
α · tn and for all (inefficient, randomized) distinguishers D there exists some
random variable IX ⊆ [t] with Pr[|IX | < βt] ≤ ε/4 such that Eq. ( 1) holds.

We can apply min-max because a distribution over inefficient distinguishers D
is the same as a single randomized inefficient distinguisher D and a distribution
over random variables IX is the same as a single random variable IX .

Step 2: Define IX . Fix a (inefficient/randomized) distinguisher D.
For any fixed value x ∈ {0, 1}n·t, we define a set Ix ⊆ [t] iteratively as follows.

Start with Ix := ∅. For i = 1, . . . , t add i to Ix if
(

Pr[D(S1, . . . , St, Z
x
1 . . . , Zx

i−1, Y
x
i , Y x

i+1, . . . , Y
x
t ) = 1]

− Pr[D(S1, . . . , St, Z
x
1 , . . . , Zx

i−1, Um, Y x
1+1, . . . , Y

x
t ) = 1]

)

≤ 3δ (2)

where Si is uniform over {0, 1}d, Y x
j = Ext(xj ;Sj) and for j < i we define Zx

j to
be uniformly random over {0, 1}m for j ∈ Ix, while Zx

j = Y x
j for j �∈ Ix. Note

that Y x
i = (Yi|X = x) and Zx

i = (Zi|X = x).
Define IX to be the random variable over the above sets Ix where x is chosen

according to X. With the above definition, Eq. 1 holds since:

Pr[D(S1, . . . , St, Y1, . . . , Yt) = 1] − Pr[D(S1, . . . , St, Z1, . . . , Zt) = 1]
= Ex←X Pr[D(S1, . . . , St, Y1, . . . , Yt) = 1|X = x]

− Pr[[D(S1, . . . , St, Z1, . . . , Zt) = 1|X = x]
= Ex←X Pr[D(S1, . . . , St, Y

x
1 , . . . , Y x

t ) = 1] − Pr[D(S1, . . . , St, Z
x
1 , . . . , Zx

t ) = 1]

= Ex←X

∑

i∈[t]

(
Pr[D(S1, . . . , St, Z

x
1 , . . . , Zx

i−1, Y
x
i , Y x

i+1, . . . , Y
x
t ) = 1]

− Pr[D(S1, . . . , St, Z
x
1 , . . . , Zx

i−1, Z
x
i , Y x

i+1, . . . , Y
x
t ) = 1]

)

︸ ︷︷ ︸
(∗)

≤ 3tδ = ε/2
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The last line follows since, for any x and any i ∈ [t], if i �∈ Ix then Y x
i = Zx

i

and therefore (∗) = 0, and if i ∈ Ix then (∗) ≤ 3δ by the way we defined Ix in
Eq. (2).

Step 3: Argue IX is large. We are left to show that

Pr[|IX | < β · t] ≤ ε/4. (3)

We do this via a proof by contradiction. Assume otherwise that (3) does not hold.
Then we show that we can guess X with high probability, which contradicts the
fact that X has high min-entropy. In particular, we define a randomized function
guess() such that, for any x for which |Ix| < β · t, we have:

Pr
x̂←guess()

[x̂ = x] ≥ 1
4

(
tβt+12htLt2βtn

)−1
. (4)

Then, assuming (3) does not hold, we have

Pr
x̂←guess(),x←X

[x̂ = x] ≥ Pr
x←X

[|Ix| < βt] Pr
x̂←guess(),x←X

[x̂ = x | |Ix| < βt]

≥ ε

16
(
tβt+12htLt2βtn

)−1
.

which contradicts H∞(X) ≥ αtn.
Before defining the function guess(), we note that by the definition of Ix in

Eq. (2) and the“distinguishing implies predicting” lemma (Lemma 2), there exist
some predictors Pi (depending only on D), such that, for all x ∈ {0, 1}n and
i �∈ Ix, we have:

Pr[Pi(S1, . . . , St, Z
x
1 , . . . , Zx

i−1, Y
x
i+1, . . . , Y

x
t ) = Y x

i ] ≥ 1
2m

(1 + 3δ) (5)

The guessing strategy. We define guess() using these predictors Pi as follows:

1. Sample values r1, . . . , rt with ri ← {0, 1}τ .
2. Sample a set Îx ⊆ [t] of size |Îx| ≤ βt uniformly at random.
3. Sample values σ̂i ← {0, 1}h for i �∈ Îx uniformly at random.
4. Sample values x̂i ← {0, 1}n for i ∈ Îx uniformly at random.
5. Let {s1i , . . . , s

Q
i } = rec0(ri), and {y1

i , . . . , yQ
i } = rec1(σ̂i, ri).

6. Use all of the above values to define, for each i �∈ Îx, a randomized function
P̂i(s) which chooses a random j∗ ← [Q] and outputs:

P̂i(s) = Pi(s
j∗
1 , . . . , sj∗

i−1, s, s
j∗
i+1, . . . , s

j∗
t , zj∗

1 , . . . , zj∗
i−1, y

j∗
i+1, . . . , y

j∗
t )

where zj∗
i := yj∗

i if i �∈ Îx and zj∗
i ← {0, 1}m if i ∈ Îx.

7. For each i �∈ Îx, define cwi ∈ Σ2d by setting cwi[s] ← P̂i(s), where Σ =
{0, 1}m. Let Xi be the list of at most L values x̃i such that the Hamming
distance between ECC(x̃i) and cwi is at most (1 + δ)2d, as in Definition 4.



Multi-instance Randomness Extraction 109

8. For each i �∈ Îx, sample x̂i ← Xi.
9. Output x̂ = (x̂1, . . . , x̂t).

Fix any x such that |Ix| < βt and let us analyze Prx̂←guess()[x̂ = x].

Event E0. Let E0 be the event that Îx = Ix and, for all i ∈ Ix: x̂i = xi

and σ̂i = hint(xi, ri). Then Pr[E0] ≥ (
tβt+12ht2βtn

)−1
. Let us condition on E0

occurring for the rest of the analysis. In this case, we can replace all the “hatted”
values Îx, σ̂i, x̂i with their “unhatted” counterparts Ix, σi = hint(xi, ri), xi and
we have yj

i = Ext(xi; s
j
i ). Furthermore, since the “hatted” values were chosen

uniformly at random, E0 is independent of the choice of r1, . . . , rt and of all the
“unhatted” values above; therefore conditioning on E0 does not change their
distribution.

Event E1. Now, for any fixed choice of r1, . . . , rt, define the corresponding pro-
cedure P̂i to be “good” if

Pr
s←{0,1}d

[P̂i(s) = Ext(xi; s)] ≥ (1 + 2δ)
1

2m
,

where the probability is over the choice of s ← {0, 1}d and the internal random-
ness of P̂i (i.e., the choice of the index j∗ ← [Q] and the values zj∗

i ← {0, 1}m

for i ∈ Ix). Let E1 be the event that for all i �∈ Ix we have P̂i is good, where the
event is over the choice of r1, . . . , rt. Define random variables V j

i over the choice
of r1, . . . , rt where

V j
i = Pr

s←{0,1}d
[P̂i(s) = Ext(xi; s) | j∗ = j]

= Pr
s←{0,1}d

[Pi(s
j
1, . . . , s

j
i−1, s, s

j
i+1, . . . , s

j
t , z

j
1, . . . , z

j
i−1, y

j
i+1, . . . , y

j
t ) = Ext(xi; s)].

and Vi :=
∑

j∈Q V j
i . Then P̂i is good iff Vi ≥ Q(1 + 2δ) 1

2m . By Eq. (5), we have
E[Vi] =

∑
j E[V j

i ] ≥ Q(1 + 3δ) 1
2m . Furthermore, for any fixed i, the variables

V j
i are pairwise independent by Definition 4 and the fact that V j

i only depends
on sj

i . Therefore V ar[Vi] =
∑

j V ar[V j
i ] ≤ Q. We can apply the Chebyshev

inequality to get:

Pr[E1|E0] ≥ 1 − Pr
[

∃i �∈ Ix : Vi < Q(1 + 2δ)
1

2m

]

≥ 1 −
∑

i	∈Ix

Pr
[

Vi < Q(1 + 2δ)
1

2m

]

≥ 1 −
∑

i	∈Ix

Pr
[

|Vi − E[Vi]| > Qδ
1

2m

]

≥ 1 − t
22m

δ2Q
≥ 1

2

Event E2. Now fix any choice of the values in steps (1)–(6) such that E0, E1

hold. Let cwi be the values sampled in step 7. Define the event E2 to hold if for
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all i �∈ Ix the value cwi agrees with ECC(xi) in at least (1 + δ)2d−m coordinates,
where the probability is only over the internal randomness used to sample the
components cwi(s) ← P̂i(s). We can define random variables W s

i which are 1 if
cwi(s) = Ext(xi; s) and 0 otherwise. These variables are mutually independent
(since each invocation of P̂i uses fresh internal randomness) and E[

∑
s W s

i ] =
2d Prs[P̂i(s) = Ext(xi; s)] ≥ (1 + 2δ)2d−m. Therefore, by the Chernoff bound:

Pr[E2|E1 ∧ E0] = 1 − Pr[∃i �∈ Ix :
∑

s

W s
i ≤ (1 + δ)2d−m]

≥ 1 −
∑

i	∈Ix

Pr[
∑

s

W s
i ≤ (1 + δ)2d−m]

≥ 1 − t · e−δ22d−m/8 ≥ 1
2

Event E3. Finally, fix any choice of the values in steps (1)–(7) such that
E0, E1, E2 hold. Let E3 be the event that for each i �∈ Îx if x̂i ← Xi is the
value sampled in step (8) then x̂i = xi. Then Pr[E3|E2 ∧ E1 ∧ E0] ≥ (

1
L

)t.
Therefore, our guess is correct if E0, E1, E2, E3 all occur, which gives us the
bound in Eq. (4). ��
Corollary 1. For any n,m, t, ε > 0, α > 0, there exist extractors Ext : {0, 1}n ×
{0, 1}d → {0, 1}m that are (t, α, β, ε)-multi-instance extracting with either:

1. seed length d = n and β = α − O(m+log t+log(1/ε))
n , or

2. seed length d = O((log n)(m + log log n + log t + log(1/ε))) and β = α − O(d)
n .

In particular, letting λ denote the security parameter, for any input length n =
ω(λ log λ) with n < 2λ, for number of blocks t < 2λ, any entropy rate α > 0,
there exists an extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with output length
m = λ and seed length d = O(λ log n), which is a (t, α, β, ε = 2−λ)-multi-instance
randomness extractor with β = α−o(1). In other words, the fraction of extracted
values that can be replaced by uniform is nearly α.

4 Multi-user Security for Incompressible Encryption

Utilizing multi-instance randomness extractors, we can now explore the multi-
user setting for incompressible encryptions. But first, we need to formally define
what it means for an incompressible PKE or SKE scheme to be multi-user secure.

We propose a simulation-based security definition. Roughly, the simulator
first needs to simulate all the ciphertexts for all the instances without seeing
any of the message queries. So far, this is akin to the standard semantic security
notion for encryption. But we need to now model the fact that the adversary can
store ciphertexts for later decryption, at which point it has all the private keys.
We therefore add a second phase where the simulator can query for a subset of the
messages, and then must simulate all the private keys. We require that no space-
bounded distinguisher can distinguish between receiving real encryptions/real
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private keys vs receiving simulated encryptions/keys. The number of messages
the simulator can query is related to the storage bound of the distinguisher.

Put formally, let Π = (Gen,Enc,Dec) be a public key encryption scheme,
to define simulation-based incompressible ciphertext security for the multiple-
instance setting, consider the following two experiments:

– In the real mode experiment, the adversary A = (A1,A2) interacts with the
challenger C, who has knowledge of all the adversary’s challenge messages.
Real Mode ExpRealΠC,A=(A1,A2)(λ, η, �, S):
1. For i ∈ [η], the challenger C runs Gen(1λ, 1S) to sample (pki, ski).
2. The challenger C sends all the pki’s to A1.
3. For each i ∈ [η], A1 can produce up to � message queries {mi,j}j∈[�]. The

adversary submits all of the message queries in one single batch {mi,j}i,j

and receives {cti,j}i,j where cti,j ← Enc(pki,mi,j).
4. A1 produces a state st of size at most S.
5. On input of st, {mi,j}i,j , {(pki, ski)}i, A2 outputs a bit 1/0.

– In the ideal mode experiment, the adversary A = (A1,A2) interacts with a
simulator S, which needs to simulate the view of the adversary with no/partial
knowledge of the challenge messages.
Ideal Mode ExpIdealΠS,A=(A1,A2)(λ, η, �, q, S):
1. For i ∈ [η], the simulator S samples pki.
2. The simulator S sends all the pki’s to A1.
3. For each i ∈ [η], and j ∈ [�], A1 produces mi,j . All of the queries {mi,j}i,j

are submitted in one batch and the simulator S produces {cti,j}i,j without
seeing {mi,j}i,j .

4. A1 produces a state st of size at most S.
5. The simulator now submits up to q number of (i, j) index pairs, and

receives the corresponding messages mi,j ’s. Then S simulates all the secret
keys ski’s.

6. On input of st, {mi,j}i,j , {(pki, ski)}i, A2 outputs a bit 1/0.
Notice that the simulator needs to simulate the ciphertexts first without
knowing the corresponding messages, and then sample the secret keys so
that the ciphertexts appear appropriate under the given messages.

Definition 5 (Multi-instance Simulation-Based CPA Security). For
security parameters λ, η(λ), �(λ), q(λ) and S(λ), a public key encryption scheme
Π = (Gen,Enc,Dec) is (η, �, q, S)-MULT-SIM-CPA secure if for all PPT adver-
saries A = (A1,A2), there exists a simulator S such that:
∣
∣
∣Pr

[
ExpRealΠC,A(λ, η, �, S) = 1

]
− Pr

[
ExpIdealΠS,A(λ, η, �, q, S) = 1

]∣
∣
∣ ≤ negl(λ).

Remark 3. If � = 1, we say that the scheme has only single-ciphertext-per-user
security. For � > 1, we say that the scheme has multi-ciphertext-per-user security.

Remark 4. Notice that by replacing the underlying PKE scheme with a Sym-
metric Key Encryption (SKE) scheme and modifying corresponding syntaxes
(sample only sk’s instead of (pk, sk) pairs, and remove step 2 of the experiments
where the adversary receives the pk’s), we can also get a MULT-SIM-CPA security
definition for SKE schemes.
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5 Symmetric Key Incompressible Encryption

In this section, we explore the multi-user security of incompressible SKEs, both
in the low-rate setting and the rate-1 setting. We also present a generic lifting
technique to obtain an SKE with multi-ciphertext-per-user security from an SKE
with single-ciphertext-per-user security.

5.1 Low Rate Incompressible SKE

For low rate incompressible SKE, it follows almost immediately from multi-
instance randomness extractors that the forward-secure storage by Dziem-
bowski [15] is MULT-SIM-CPA secure (by using multi-instance randomness
extractors as the “BSM function” and One Time Pad (OTP) as the underly-
ing SKE primitive).

First, let us recall the construction by Dziembowski [15], with the multi-
instance randomness extractors and OTP plugged in.

Construction 1 (Forward-Secure Storage [15]). Let λ and S be secu-
rity parameters. Given Ext : {0, 1}n × {0, 1}d → {0, 1}w a (t, α, β, ε)-multi-
instance randomness extractor as defined in Definition 3 where the seed length
d = poly(λ), output length w = poly(λ) and n = S

(1−α)t + poly(λ), the construc-
tion Π = (Gen,Enc,Dec) for message space {0, 1}w works as follows:

– Gen(1λ, 1S): Sample a seed s ← {0, 1}d for the randomness extractor, and a
key k′ ← {0, 1}w. Output k = (s, k′).

– Enc(k,m): To encrypt a message m, first parse k = (s, k′) and sample a
long randomness R ← {0, 1}n. Compute the ciphertext as ct = (R, ct′ =
Ext(R; s) ⊕ k′ ⊕ m).

– Dec(k, ct): First, parse ct = (R, ct′) and k = (s, k′). Then compute m =
Ext(R; s) ⊕ k′ ⊕ ct′.

Correctness is straightforward. Construction 1 is also MULT-SIM-CPA secure.
Essentially, the simulator simply sends cti’s as uniformly random strings. Then
when the simulator sends the keys, it would use the simulator for the multi-
instance randomness extractor to get the index subset I ⊂ [η], and for i ∈ I,
send ki as a uniformly random string. For i �∈ I, it samples the extractor seed
si and then compute k′

i = mi ⊕ Ext(Ri; si) ⊕ ct′i. Notice that for i �∈ I, ct′i =
mi ⊕Ext(Ri; si)⊕k′

i, and for i ∈ I, ct′i = mi ⊕ui ⊕k′
i where ui is a w-bit uniform

string. This is now just the definition of multi-instance randomness extractors.

Theorem 1. Let λ, S be security parameters. If Ext : {0, 1}n×{0, 1}d → {0, 1}w

is a (t, α, β, ε)-multi-instance randomness extractor with d,w = poly(λ) and n =
S

(1−α)t +poly(λ), then Construction 1 is (t, 1, (1−β)t, S)-MULT-SIM-CPA secure.

For a formal hybrid proof of Theorem 1, see the full version [18].
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Remark 5. While MULT-SIM-CPA security only requires that no PPT adver-
saries can distinguish between the real mode and the ideal mode experiments,
what we have proved for construction 1 here is that it is actually MULT-SIM-
CPA secure against all (potentially computationally unbounded) adversaries, and
hence is information theoretically MULT-SIM-CPA secure.

5.2 Rate-1 Incompressible SKE

Branco, Döttling and Dujmovic [6] construct rate-1 incompressible SKE from
HILL-Entropic Encodings [22], extractors and PRGs. We show that by replacing
the extractors with multi-instance randomness extractors and slightly modifying
the scheme, we get MULT-SIM-CPA security.

First, we recall the definitions and security requirements of a HILL-Entropic
Encoding scheme [22].

Definition 6 (HILL-Entropic Encoding [22]). Let λ be the security param-
eter. An (α, β)-HILL-Entropic Encoding in the common random string setting
is a pair of PPT algorithms Code = (Enc,Dec) that works as follows:

– Enccrs(1λ,m) → c: On input the common random string crs, the security
parameter, and a message, outputs a codeword c.

– Deccrs(c) → m: On input the common random string and a codeword, outputs
the decoded message m.

It satisfies the following properties.

Correctness. For all λ ∈ N and m ∈ {0, 1}∗, Pr[Deccrs(Enccrs(1λ,m)) = m] ≥
1 − negl(λ).

α-Expansion. For all λ, k ∈ N and for all m ∈ {0, 1}k, |Enccrs(1λ,m)| ≤ α(λ, k).

β-HILL-Entropy. There exists a simulator algorithm SimEnc such that for all
polynomial k = k(λ) and any ensemble of messages m = {mλ} of length k(λ),
consider the following real mode experiment:

– crs ← {0, 1}t(λ,k)

– c ← Enccrs(1λ,mλ)

and let CRS, C denote the random variables for the corresponding values in
the real mode experiment. Also consider the following simulated experiment:

– (crs′, c′) ← SimEnc(1λ,mλ)

and let CRS′, C ′ be the corresponding random variables in the simulated experi-
ment. We require that (CRS, C) ≈c (CRS′, C ′) and that H∞(C ′|CRS′) ≥ β(λ, k).

Moran and Wichs [22] show that we can construct HILL-Entropic Encod-
ings in the CRS model from either the Decisional Composite Residuosity (DCR)
assumption [10,24] or the Learning with Errors (LWE) problem [25]. Their con-
struction achieves α(λ, k) = k(1 + o(1)) + poly(λ) and β(λ, k) = k(1 − o(1)) −
poly(λ), which we call a “good” HILL-entropic encoding.

Now we reproduce the construction from [6] with the multi-instance random-
ness extractors and some other minor changes (highlighted below).
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Construction 2 ([6]). Let λ and S be security parameters. Given Ext : {0, 1}n

× {0, 1}d → {0, 1}w a (t, α, β, ε)-multi-instance randomness extractor where the
seed length d = poly(λ), w = poly(λ) and n = S

(1−α)t+poly(λ), Code = (Enc,Dec)
a “good” (α′, β′)-HILL-Entropic Encoding scheme, and PRG : {0, 1}w → {0, 1}n

a pseudorandom generator secure against non-uniform adversaries, the construc-
tion Π = (Gen,Enc,Dec) for message space {0, 1}n works as follows:

– Gen(1λ, 1S): Sample a seed s ← {0, 1}d for the randomness extractor, a com-
mon random string crs ∈ {0, 1}poly(λ,n) for the HILL-Entropic Encoding, and
a random pad r ← {0, 1}n. Output k = (s, r, crs).

– Enc(k,m): To encrypt a message m, first parse k = (s, r, crs) and sample a
random PRG seed s′ ← {0, 1}w. Compute c1 = Code.Enccrs(1λ,PRG(s′) ⊕r
⊕m) and c2 = s′ ⊕ Ext(c1, s). The final ciphertext is ct = (c1, c2).

– Dec(k, ct): First, parse ct = (c1, c2) and k = (s, r, crs). Then compute s′ =
Ext(c1; s) ⊕ c2 and obtain m = Code.Deccrs(c1) ⊕ PRG(s′) ⊕r.

Correctness follows from the original construction and should be easy to
verify. Notice that by the α′-expansion of the “good” HILL-entropic encoding,
the ciphertexts have length (1 + o(1))n + w + poly(λ) = (1 + o(1))n + poly(λ)
(the poly(λ) part is independent of n), while the messages have length n. Hence
the scheme achieves an optimal rate of 1 ((1 − o(1)) to be exact). The keys are
bit longer though, having size d + n + poly(λ, n) = n + poly(λ, n). Furthermore,
Moran and Wichs [22] show that the CRS needs to be at least as long as the
message being encoded. Thus the key has length at least 2n + poly(λ).

Theorem 2. If Ext : {0, 1}n × {0, 1}d → {0, 1}w is a (t, α, β, ε)-multi-instance
randomness extractor with n = S

(1−α)t + poly(λ), Code = (Enc,Dec) is a
“good” HILL-entropic encoding with β′-HILL-entropy, and PRG is a pseudo-
random generator secure against non-uniform adversaries, then Construction 2
is (t, 1, (1 − β)t, S)-MULT-SIM-CPA secure.

The hybrid proof essentially follows the same structure from [6], except for a
different extractor step, the inclusion of the random pad r and the requirement
of PRG to be secure against non-uniform attackers. For the detailed hybrid proof
of Theorem 2, see the full version [18].

5.3 Dealing with Multiple Messages per User

Above we have showed MULT-SIM-CPA security for SKE schemes where the
number of messages per user � is equal to 1. Here, we show how we can gener-
ically lift a SKE scheme with single-message-per-user MULT-SIM-CPA security
to multiple-messages-per-user MULT-SIM-CPA security.

Construction 3. Let λ, S be security parameters. Given SKE = (Gen,Enc,Dec)
a (η, 1, q, S)-MULT-SIM-CPA secure SKE with key space {0, 1}n10 and F a
10 Here we assume SKE’s keys are uniformly random n-bit strings. This is without loss

of generality since we can always take the key to be the random coins for Gen.
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class of �-wise independent functions with range {0, 1}n, we construct Π =
(Gen,Enc,Dec) as follows.

– Gen(1λ, 1S): Sample a random function f ← F . Output k = f .
– Enc(k = f,m) : Sample a short random string r with |r| = polylog(�), compute

k′ = f(r), and get c ← SKE.Enc(k′,m). Output ct = (r, c).
– Dec(k = f, ct = (r, c)) : Compute k′ = f(r), and output m ← SKE.Dec(k′, c).

Correctness should be easy to verify given the correctness of the underlying
SKE scheme and the deterministic property of the �-wise independent functions.

Lemma 7. If SKE is a (η, 1, q, S)-MULT-SIM-CPA secure SKE with key space
{0, 1}n and F is a class of �-wise independent functions with range {0, 1}n, then
Construction 3 is (η/�, �, q, S − η · polylog(�))-MULT-SIM-CPA secure.

Proof. We prove this through a reduction. We show that if there is an adver-
sary A = (A1,A2) that breaks the (η/�, �, q, S − η · polylog(�))-MULT-SIM-CPA
security of Π, then we can construct an adversary A′ = (A′

1,A′
2) that breaks

the (η, 1, q, S)-MULT-SIM-CPA security of SKE. A′ = (A′
1,A′

2) works as follows:

– A′
1: First, run A1 to get a list of message queries {mi,j}i∈[η/�],j∈[�]. Let

m′
i = m(i/�)+1,((i−1) mod �)+1 for i ∈ [η]. Notice that here we are essen-

tially flattening the list of messages. Submit the list {m′
i}i∈[η] and receive

{ct′i}i∈[η]. Reconstruct cti,j = (ri,j , ct
′
(i−1)·�+j) for i ∈ [η/�] and j ∈ [�], where

ri,j is a uniformly random string sampled from {0, 1}polylog(�). Notice that
the ri,j ’s have no collisions under the same i with overwhelming probability.
Send the list of ciphertexts {cti,j}i,j back to A1 and receive a state st. Out-
put the state st′ = (st, {ri,j}i,j). The size of the state is |st| + η · polylog(�) ≤
S − η · polylog(�) + η · polylog(�) = S.

– A′
2: First receive st′ = (st, {ri,j}i,j), {m′

i}i∈[η], {k′
i}i∈[η] from the challenger /

simulator. Reorganize mi,j = m′
(i−1)·�+j for i ∈ [η/�] and j ∈ [�]. Construct

ki as an �-wise independent function fi s.t. for all i ∈ [η/�] and j ∈ [�],
fi(ri,j) = k′

(i−1)·�+j . Send st, {mi,j}i∈[η/�],j∈[�], {ki = fi}i∈[η/�] to A2 and
receive a bit b. Output b.

Notice that A′ perfectly simulates the view for A. If A says it is in the real
mode, this means the ciphertexts are faithful encryptions of the message queries,
and hence A′ should be in the real mode as well, and vice versa. Therefore,
construction 3 is (η/�, �, q, S − η · polylog(�))-MULT-SIM-CPA secure. ��

6 Public Key Incompressible Encryption

Here we explore multi-user security of incompressible Public Key Encryptions
(PKEs), considering constructions from [6,17]. Unlike the SKE setting, where
we can generically lift single-ciphertext-per-user security to multi-ciphertext-per-
user security, here we show how to obtain multi-ciphertext security by modifying
each construction specifically.
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6.1 Low Rate Incompressible PKE

For low rate incompressible PKE, we show that the construction from [17] is
MULT-SIM-CPA secure by plugging in the multi-instance randomness extractor.
Then, we upgrade the construction to have multi-ciphertext-per-user security by
upgrading the functionality of the underlying functional encryption scheme.

Construction 4 ([17] with Multi-Instance Randomness Extractor).
Given FE = (Setup,KeyGen, Enc,Dec) a single-key selectively secure func-
tional encryption scheme and a (t, α, β, ε)-multi-instance randomness extrac-
tor Ext : {0, 1}n × {0, 1}d → {0, 1}w, with d = poly(λ), w = poly(λ) and
n = S

(1−α)t + poly(λ), the construction Π = (Gen,Enc,Dec) with message space
{0, 1}w works as follows:

– Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate
the secret key for the following function fv with a hardcoded v ∈ {0, 1}d+w:

fv(s′ = (s, pad), flag) =

{
s′ if flag = 0
s′ ⊕ v if flag = 1

.

Output pk = FE.mpk and sk = FE.skfv
← FE.KeyGen(FE.msk, fv).

– Enc(pk,m): Sample a random tuple s′ = (s, pad) where s ∈ {0, 1}d is used
as a seed for the extractor and pad ∈ {0, 1}w is used as a one-time pad. The
ciphertext consists of three parts: FE.ct ← FE.Enc(FE.mpk, (s′, 0)), a long
randomness R ∈ {0, 1}n, and z = Ext(R; s) ⊕ pad ⊕ m.

– Dec(sk, ct = (FE.ct, R, z)): First, obtain s′ ← FE.Dec(FE.skfv
,FE.ct), and

then use the seed s to compute Ext(R; s) ⊕ z ⊕ pad to recover m.

The correctness follows from the original construction.

Theorem 3. If FE is a single-key selectively secure functional encryption
scheme and Ext : {0, 1}n × {0, 1}d → {0, 1}w is a (t, α, β, ε)-multi-instance ran-
domness extractor with d,w = poly(λ) and n = S

(1−α)t +poly(λ), then Construc-
tion 4 is (t, 1, (1 − β)t, S)-MULT-SIM-CPA secure.

For the sequence of hybrids, see the full version [18]. The proofs of the hybrid
arguments are identical to those from [17], except for the extractor step, which
is analogous to the proof of Lemma 5.2 in the full version [18].

Upgrading to Multiple Ciphertexts per User. Additionally, We show that
the constructions from [17] can be upgraded to have multi-ciphertext-per-user
security. Essentially, all we need is to upgrade the functionality of the underly-
ing functional encryption scheme to work for a slightly more generalized class
of functions. We will need functions f{vi}i

(s, flag) = s ⊕ vflag for hard coded
values v1, . . . , v� and a special v0 being the all 0 string. Notice that the origi-
nal GWZ construction [17] can be viewed as using functions that are a special
case where � = 1. We show how to construct FE schemes for such f{vi}i

func-
tions from plain PKE in the full version [18]. With this new class of functions,
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we can achieve (t, �, (1 − β)�t, S)-MULT-SIM-CPA security. In the hybrid proof
where we replace FE.Enc(FE.mpk, (s′, 0)) with FE.Enc(FE.mpk, (s′ ⊕ v, 1)), now
for the j-th message query for the i-th user where i ∈ [t] and j ∈ [�], we replace
FE.Enc(FE.mpki, (s′

i,j , 0)) with FE.Enc(FE.mpki, (s′
i,j ⊕ vi,j , j)). The rest of the

hybrid proof follows analogously.

6.2 Rate-1 Incompressible PKE

For rate-1 incompressible PKE, we first show that we can easily plug in the
multi-instance randomness extractor to the construction by Guan, Wichs and
Zhandry [17]. We also provide a generalization on the construction by Branco,
Döttling and Dujmovic [6] using a Key Encapsulation Mechanism (KEM) with a
special non-committing property. For both constructions, we show how to adapt
them to allow for multi-ciphertext-per-user security.

Construction by [17]. We first reproduce the rate-1 PKE construction from
[17], with the multi-instance randomness extractors plugged in.

Construction 5 ([17]). Given FE = (Setup,KeyGen, Enc,Dec) a rate-1 func-
tional encryption scheme satisfying single-key semi-adaptive security, Ext :
{0, 1}n × {0, 1}d → {0, 1}w a (t, α, β, ε)-multi-instance randomness extractor
with d,w = poly(λ), n = S

(1−α)t + poly(λ) and PRG : {0, 1}w → {0, 1}n a secure
PRG against non-uniform adversaries, the construction Π = (Gen,Enc,Dec) for
message space {0, 1}n works as follows:

– Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate
the secret key for the following function fv,s with a hardcoded large random
pad v ∈ {0, 1}n and a small extractor seed s ∈ {0, 1}d:

fv,s(x, flag) =

{
x if flag = 0
PRG(Extract(x; s)) ⊕ v if flag = 1

.

Output pk = FE.mpk and sk = FE.skfv,s
← FE.KeyGen(FE.msk, fv,s).

– Enc(pk,m): The ciphertext is simply an encryption of (m, 0) using the under-
lying FE scheme, i.e. FE.ct ← FE.Enc(FE.mpk, (m, 0)).

– Dec(sk, ct): Decryption also corresponds to FE decryption. The output is sim-
ply FE.Dec(FE.skfv,s

, ct) = fv,s(m, 0) = m as desired.

Correctness easily follows from the original construction. The rate of the
construction is the rate of the underlying FE multiplied by n

n+1 . If the FE has
rate (1 − o(1)), the construction has rate (1 − o(1)) as desired.

Theorem 4. If FE = (Setup,KeyGen,Enc,Dec) is a single-key semi-adaptively
secure FE scheme, Ext : {0, 1}n×{0, 1}d → {0, 1}w is a (t, α, β, ε)-multi-instance
randomness extractor, with d,w = poly(λ) and n = S

(1−α)t + poly(λ), and
PRG : {0, 1}w → {0, 1}n is a PRG secure against non-uniform adversaries,
then Construction 5 is (t, 1, (1 − β)t, S)-MULT-SIM-CPA secure.
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For the sequence of hybrids to prove Theorem 4, see the full version [18].
For the proofs of each hybrid argument, see the original [17] paper, since they
are identical except for the extractor step (analogous to Lemma 5.2 in the full
version [18]) and the PRG against non-uniform attackers step (analogous to
Lemma 5.8 in the full version [18]).

Upgrading to Multiple Ciphertexts per User. Upgrading Construction 5
to multi-ciphertext-per-user security is rather straightforward. Since the con-
struction already requires a full functionality FE scheme, we just modify the
class of functions that the underlying FE scheme uses, without introducing any
new assumptions. Specifically, we now use f{vj}j ,{sj}j

with hard-coded values
vj ∈ {0, 1}n and sj ∈ {0, 1}d for j ∈ [�] that behaves as follows:

f{vj}j ,{sj}j
(x, flag) =

{
x if flag = 0
PRG(Extract(x; sflag)) ⊕ vflag if flag ∈ [�]

.

This gives us (t, �, (1 − α)�t, S)-MULT-SIM-CPA security. Notice that this
modification does slightly harm the rate of the scheme, since the flag is now
log(�) bits instead of one bit, but asymptotically the rate is still (1 − o(1)).

The hybrid proof works analogously to that of Theorem 4, except that in the
hybrid proof where we swap the FE encryption of (m, 0) to (R, 1), we now swap
from (mi,j , 0) to (Ri,j , j) for the j-th ciphertext from the i-th user.

Generalization of Construction by [6]. [6] show how to lift a rate-1 incom-
pressible SKE scheme to a rate-1 incompressible PKE scheme using a Key Encap-
sulation Mechanism [8] from programmable Hash Proof Systems (HPS) [7,21].
Their construction satisfies CCA2 security. We show that if we are to relax the
security notion to only CPA security, all we need for the lifting is a Key Encap-
sulation Mechanism with a non-committing property, defined below.

Definition 7 (Key Encapsulation Mechanism [8]). Let λ be the security
parameters, a Key Encapsulation Mechanism (KEM) is a tuple of algorithms
Π = (KeyGen,Encap,Decap) that works as follows:

– KeyGen(1λ, 1Lk) → (pk, sk): The key generation algorithm takes as input the
security parameter and the desired symmetric key length Lk, outputs a pair
of public key and private key (pk, sk).

– Encap(pk) → (k, c): The encapsulation algorithm takes the public key pk,
produces a symmetric key k ∈ {0, 1}Lk , and a header c that encapsulates k.

– Decap(sk, c) → k: The decapsulation algorithm takes as input the private key
sk and a header c, and decapsulates the header to get the symmetric key k.

Definition 8 (Correctness of KEM). A key encapsulation mechanism
KEM = (KeyGen,Encap,Decap) is said to be correct if:

Pr

⎡

⎣k′ = k :
(pk, sk) ← KeyGen(1λ, 1Lk)

(k, c) ← Encap(pk)
k′ ← Decap(sk, c)

⎤

⎦ ≥ 1 − negl(λ).
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Definition 9 (Non-Committing). A key encapsulation mechanism KEM =
(KeyGen,Encap,Decap) is said to be non-committing if there exists a pair of
simulator algorithm (Sim1,Sim2) such that Sim1(1λ, 1Lk) outputs a simulated
public key pk′, a header c′ and a state st with |st| = poly(λ,Lk), and for any
given target key k′ ∈ {0, 1}Lk , Sim2(st, k′) outputs the random coins rKeyGen and
rEncap. We require that if we run the key generation and encapsulation algorithm
using these random coins, we will get the desired pk′, c′, and k′, .:

Pr

⎡

⎣
pk′ = pk
k′ = k
c′ = c

:
(pk, sk) ← KeyGen(1λ, 1Lk ; rKeyGen)

(k, c) ← Encap(pk; rEncap)

⎤

⎦ ≥ 1 − negl(λ).

Kindly notice that by the correctness property, Decap(sk, c′) → k′.

This non-committing property allows us to commit to a public key and header
first, but then later able to reveal it as an encapsulation of an arbitrary symmetric
key in the key space. And it will be impossible to distinguish the simulated public
key and header from the ones we get from faithfully running KeyGen and Encap.

Using this non-committing KEM, we are able to construct rate-1 incompress-
ible PKE from rate-1 incompressible SKE, with multi-user security in mind. This
is a generalization of the construction by [6].

Construction 6 (Generalization of [6]). For security parameters λ, S, given
KEM = (KeyGen,Encap,Decap) a non-commiting KEM and SKE = (Gen,
Enc,Dec) a rate-1 incompressible SKE for message space {0, 1}n, we construct
rate-1 incompressible PKE Π = (Gen,Enc,Dec) for message space {0, 1}n as
follows:

– Gen(1λ, 1S): First, run SKE.Gen(1λ, 1S) to determine the required symmet-
ric key length Lk under security parameters λ, S. Then run (pk, sk) ←
KEM.KeyGen(1λ, 1Lk) and output (pk, sk).

– Enc(pk,m): First, run (k, c0) ← KEM.Encap(pk) to sample a symmetric key
k, and encapsulate it into a header c0. Then compute c1 ← SKE.Enc(k,m).
The ciphertext is the tuple (c0, c1).

– Dec(sk, ct = (c0, c1)): Decapsulate c0 with sk to obtain k ← KEM.Decap(sk,
c0), and then use k to decrypt c1 and get m ← SKE.Dec(k, c1).

Correctness follows from the correctness of the underlying incompressible
SKE and the KEM scheme. In terms of the rate, to achieve a rate-1 incom-
pressible PKE, we would require the KEM to produce “short” headers, i.e.
|c0| = poly(λ) independent of Lk (notice that Lk = poly(λ, n) and needs to
be at least as large as n). We can build such KEMs using various efficient encap-
sulation techniques [2,3,5]. With the short header and an incompressible SKE
with rate (1 − o(1)), the ciphertext length is n/(1 − o(1)) + poly(λ), yielding an
ideal rate of (1 − o(1)) for the construction. However, these KEMs require long
public keys, as opposed to the short public keys in Construction 5.

For security, we prove that if the underlying SKE has MULT-SIM-CPA secu-
rity, then Construction 6 has MULT-SIM-CPA security as well.
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Theorem 5. If KEM is a non-commiting KEM, and SKE is a (η, 1, q, S)-
MULT-SIM-CPA secure SKE with message space {0, 1}n, then Construction 6
is (η, 1, q, S − η · poly(λ, n))-MULT-SIM-CPA secure.

Proof. We prove this through a reduction. We show that if there is an adversary
A = (A1,A2) that breaks the (η, 1, q, S − η · poly(λ, n))-MULT-SIM-CPA secu-
rity of Π, then we can construct an adversary A′ = (A′

1,A′
2) that breaks the

(η, 1, q, S)-MULT-SIM-CPA security of SKE. A′ = (A′
1,A′

2) works as follows:

– A′
1: Use the security parameters λ, S to determine the key length Lk

for the underlying SKE11. For each i ∈ [η], obtain (pki, c0,i,KEM.sti) ←
KEM.Sim1(1λ, 1Lk). Send {pki}i to A1 to get a list of message queries {mi}i.
Then, forward the list {mi}i to the challenger/simulator and receive a list
of ciphertexts {ct′i}i. Construct cti = (c0,i, ct

′
i), and send all {cti}i to A1 to

receive a state st. Output the state st′ = (st, {KEM.sti}i). The size of the
state is |st| + η · poly(λ,Lk) ≤ S − η · poly(λ, n) + η · poly(λ, n) = S.

– A′
2: First receive st′ = (st, {KEM.sti}i), {mi}i, {ki}i from the challenger/

simulator. For each i ∈ [η], run (rKeyGeni , rEncapi ) ← KEM.Sim2(KEM.sti, ki),
and (pki, ski) ← KEM.KeyGen(1λ, 1Lk ; rKeyGeni ). Notice that pki matches the
pki produced previously by A′

1 due to the non-committing property of the
KEM. Send st, {mi}i, {(pki, ski)}i to A2 and receive a bit b. Output b.

Notice that A′ perfectly simulates the view for A. If A says it is in the real
mode interacting with the challenger, this means the ciphertexts cti’s are faith-
ful encryptions of the message queries mi’s for all i ∈ [η]. Then we have SKE.Dec
(ki, ct

′
i) = mi, and hence A′ is also in the real mode. The converse also holds true.

Therefore, construction 6 is (η, 1, q, S − η · poly(λ, n))-MULT-SIM-CPA secure. ��

Upgrading to Multiple Ciphertexts per User. Next we show how to
upgrade Construction 6 to have multi-ciphertext-per-user security. All we need
is to upgrade the KEM to be �-strongly non-committing, defined as below.

Definition 10 (�-Strongly Non-Committing). A key encapsulation mecha-
nism KEM = (KeyGen,Encap,Decap) is said to be �-strongly non-committing if
there exists a pair of simulator algorithm (Sim1,Sim2) such that Sim1(1λ, 1Lk)
outputs a simulated public key pk′, a set of simulated headers C′ = {c′

1, c
′
2, . . . , c

′
�}

and a state st with |st| = poly(λ,Lk, �), and for any given set of target keys
K′ = {k′

1, k
′
2, . . . , k

′
�} where k′

i ∈ {0, 1}Lk for all i ∈ [�], Sim2(st,K′) outputs a
set of random coin pairs {(rKeyGeni , rEncapi )}i∈[�]. We require that if we run the
key generation and encapsulation algorithm using the i-th pair of these random
coins, we will get the desired pk′, c′

i, and k′
i, i.e. for all i ∈ [�]:

Pr

⎡

⎣
pk′ = pk
k′

i = k
c′
i = c

:
(pk, sk) ← KeyGen(1λ, 1Lk ; rKeyGeni )

(k, c) ← Encap(pk; rEncapi )

⎤

⎦ ≥ 1 − negl(λ).

Kindly notice that by the correctness property, Decap(sk, c′
i) → k′

i.

11 For the ease of syntax, we imagine the security parameters to be part of the public
parameters always accessible to the adversary.
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We show how to construct �-strongly non-committing KEMs by composing
plain non-committing KEMs in the full version [18].

To get multi-ciphertext security, we simply plug in the �-strongly non-
committing KEM in place of the plain non-committing KEM in construction 6.
The resulting construction has (η/�, �, q, S−η·poly(λ, n, �))-MULT-SIM-CPA secu-
rity. The security proof follows analogous from that of Theorem 5.
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Abstract. The notion of “efficiently testable circuits” (ETC) was
recently put forward by Baig et al. (ITCS’23). Informally, an ETC com-
piler takes as input any Boolean circuit C and outputs a circuit/inputs
tuple (C′,T) where (completeness) C′ is functionally equivalent to C
and (security) if C′ is tampered in some restricted way, then this can
be detected as C′ will err on at least one input in the small test set
T. The compiler of Baig et al. detects tampering even if the adversary
can tamper with all wires in the compiled circuit. Unfortunately, the
model requires a strong “conductivity” restriction: the compiled circuit
has gates with fan-out up to 3, but wires can only be tampered in one
way even if they have fan-out greater than one. In this paper, we solve
the main open question from their work and construct an ETC compiler
without this conductivity restriction. While Baig et al. use gadgets com-
puting the AND and OR of particular subsets of the wires, our compiler
computes inner products with random vectors. We slightly relax their
security notion and only require that tampering is detected with high
probability over the choice of the randomness. Our compiler increases
the size of the circuit by only a small constant factor. For a parameter
λ (think λ ≤ 5), the number of additional input and output wires is
|C|1/λ, while the number of test queries to detect an error with constant
probability is around 22λ.

1 Introduction

Circuit Testing. Detecting errors in circuits is of interest in various areas of
engineering and computer science. In circuit manufacturing, the focus is on effi-
ciently detecting errors that randomly occur during production [10]. Querying
circuits on a few carefully chosen inputs and checking the output for correctness
will typically detect a large fraction of the faulty ones.

Private Circuits (PC). The cryptographic community has long focused on errors
that are intentionally introduced by an adversary, as such “tampering” or “fault
c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14371, pp. 123–152, 2023.
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attacks” can be used to extract cryptographic secrets [7,8]. Compared to testing
in manufacturing, protecting circuits against fault attacks is more difficult for
at least two reasons (1) the errors are not just random but can be targeted on
specific wires or gates in the circuit (2) the errors introduced by tampering must
not just be detected, but the circuit must be prevented to leak any information.

For this challenging setting of private circuits (PC), Ishai, Prabhakaran,
Sahai, and Wagner [24] construct a circuit compiler that given (the descrip-
tion of) any circuit C and some parameter k outputs (the description of) a
functionally equivalent circuit Ck (i.e., C(X) = Ck(X) for all X) which is secure
against fault attacks that can tamper with up to k wires with each query (the
faults can be persistent, so ultimately the entire circuit can be tampered with),
while blowing up the circuit size by a factor of k2. The efficacy of the compiler
can be somewhat improved by allowing some small information leakage [22].

Efficiently Testable Circuits (ETC). Efficiently testable circuits (ETC), recently
introduced in [3], considers a setting that “lies in between” testing for benign
errors and private circuits. An ETC compiler takes any Boolean circuit C :
Z

s
2 → Z

t
2 and maps it to a tuple (Ctest : Zs+s′

2 → Z
t+t′
2 ,Ttest ⊂ Z

s+s′
2 ) where Ctest

is functionally equivalent to C and Ttest is a test set that will catch any (non-
trivial) tampering on Ctest. A bit more formally, by saying Ctest is functionally
equivalent to C we mean ∀X ∈ Z

s
2 : Ctest(X‖0s′

)|t = C(X) (S|t denotes the t
bit prefix of S, ‖ is concatenation and 0s is the string of s zeros).

The security property states that if for a wire tampering τ on Ctest the
tampered circuit Cτ

test errs on at least one of the (exponentially many) inputs
X‖0s′

(i.e., the t bit prefix of the output is not C(X)), then Cτ
test will err on at

least one input in the (small) test set

∀τ : ∃X ∈ Z
s
2 s.t. Cτ

test(X‖0s)|t �=

=C(X)
︷ ︸︸ ︷

Ctest(X‖0s′
)|t ⇒

∃T ∈ Ttest s.t. Cτ
test(T ) �= Ctest(T ) (1)

ETC aims at detecting adversarial errors like PC, but unlike PC, this detec-
tion only happens during a dedicated testing phase, not implicitly with every
query. Thus ETC cannot be used to replace PCs which aim to protect secrets
on a device that is under adversarial control and can be tampered with. Instead,
they ensure that a circuit correctly evaluates on all inputs, even if it was under
adversarial control in the past.

Using ETC can also be useful to detect benign errors, particularly in set-
tings where one doesn’t want to accept a non-trivial probability of missing a
fault, which is the case for the heuristic techniques currently deployed in cir-
cuit manufacturing. One such setting is in space exploration where faults can
be catastrophic, and to make matters worse, the high radiation in outer space is
likely to cause additional faults. Here the ability to run a cheap test repeatedly
in a black-box way is useful.

While ETCs provide a weaker security guarantee than PC in terms of how
tampering is detected, the construction of the ETC from [3] achieves security
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under a much stronger tampering model than what is known for PC. Further-
more, ETCs are much more efficient and rely on weaker assumptions: the ETC
compiler from [3] blows the circuit up by a small constant factor while allowing
for tampering with all wires. On the other hand, in Private Circuits II [24], to
detect tampering with k wires already requires a blow up of k2.

Conductivity. A major restriction of both, the PC compiler [24] and the ETC
compiler from [3], is the fact that wire tamperings are assumed to be conductive:
while a wire can be tampered (set to constant 0 or 1, or toggling) arbitrarily,
if this wire has fan-out greater than 1, i.e., leads to more than one destination
which can be an input to another gate or an output wire, all must carry the
same value and cannot be tampered individually.1 This is an arguably unrealistic
assumption and not does not capture real tampering attacks: Why should, say,
cutting the wire at the input of one gate affect the value at another gate to
which this wire is connected? While any circuit can easily be turned into a
functionally equivalent one where all wires have fan-out 1 by using copy gates
COPY(b) = (b, b), applying this to the circuit produced by the compiler from [3]
will completely break its security as we will sketch below.

Our Contribution. In this work we solve the main open problem left in [3] and
construct an ETC compiler that maps a circuit C to an ETC (Ctest,Ttest) where
|Ttest| ≤ 6 and Ctest has fan-out 1, which means it doesn’t rely on the conductivity
assumption as there’s nothing to conduct.2

To get a practical construction with few extra output wires, we need to gen-
eralize the notion of ETCs and make it probabilistic. Whether efficient deter-
ministic ETCs without the conductivity assumption exist is an interesting open
question (our construction can be “derandomized”, but this would lead to an
impractically large test set of size |C|2). Concretely, the inputs in our test set
Ttest are shorter than Ctest’s input, and during testing the remaining inputs must
be chosen at random. The soundness guarantee ∃T ∈ Ttest s.t. Cτ

test(T ) �= Ctest(T )
from Eq. (1) is adapted to a probabilistic guarantee

∃T ∈ Ttest s.t. Pr
R
[Cτ

test(T‖R) �= Ctest(T‖R)] ≥ 1/22λ (2)

where λ ∈ N0 is a parameter specifying the number of layers in the testing sub-
circuit. A larger λ will decrease the extra input/output wires but will increase
the required number of test queries, a reasonable range for λ is 1 to 4.

1 The conductivity assumption for the PC compiler from [24] is slightly stronger than
ours, as they additionally assume that “faults on the output side of a NOT gate
propagate to the input side”.

2 Ensuring non-conductivity by making sure the fan-out is 1 is done for clarity of
exposition. To get a fan-out 1 circuit our complied circuit requires numerous COPY
gates. In an actual physical circuit any of those COPY gates can be simply removed
by increasing the fan-out of the input wire to that gate by one.
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Size, Query and Randomness Efficiency. The number of extra input/output
wires is roughly (cf. Table 1 for the exact numbers) λ ·|C|1/(λ+1), e.g. for a circuit
with 232 (≈ four billion) gates and λ = 3 we need roughly 3·28 = 768 extra input
and output wires. By repeating the testing κ times with fresh randomness, the
probability that we fail to detect a non-trivial tampering is at most (1−1/22λ)κ,
which for our example is < 0.5 for λ = 3, κ = 45. The number of test queries
required for this testing is |Ttest| · κ = 6 · 45 = 270 (as we don’t know which of
the T ∈ Ttest satisfies Eq. (2) we have to query with all of them). The number of
random bits required for this testing is κ · λ · |C|1/(λ+1) = 45 · 768 = 34560 (each
test query T ∈ Ttest must be concatenated with λ·|C|1/(λ+1) random bits, we can
use the same randomness for each T ∈ Ttest, but assume fresh randomness for
each of the κ runs of the test). We can get the probability of missing a fault down
to any 2−α by repeating the above test α times. This is already quite practical
despite the fact that in this work we focused on a clean exposition rather than
improving concrete parameters.

2 ETC Compilers and Their Security

2.1 The Construction from [3] Using Conductivity

Before we describe our construction, let us first give a short summary of the ETC
compiler from [3]. The basic construction using a toy circuit C(x1, x2, x3, x4) =
(x1 ∧ x2) ∨ (x3 ∨ x4) as input is illustrated in Fig. 1.

Fig. 1. The compiler from [3] illustrated on
a toy circuit.

Wire Covering. In a first step, they
compile the basic circuit C into
a tuple (Cwire,Twire) where Cwire is
functionally equivalent to C and Twire

is a wire covering for Cwire, which
means for every wire w in C and
b ∈ {0, 1} there is some X ∈ Twire

such that w carries the value b if C
is evaluated on X. For the toy cir-
cuit C we can use (Cwire = C,Twire =
{0000, 1111}) (here Cwire = C, but in
general we need up to 3 extra input
wires and some extra XOR gates to
compile C to Cwire).

A Naive Construction with Conductivity. From (Cwire,Twire) [3] then further
construct their ETC (Ctest,Ttest). A naive construction is to let the test set be
the wire covering set, i.e., Ttest = Twire, and derive Ctest from Cwire by increasing
the fan-out of every internal wire by one, and use the extra wire as an output.
This way any tampering of a wire will be observable on one of the outputs.

Of course, having |Cwire| many output wires is completely impractical so
they must be compressed, and we’ll sketch how this is done below, but let us
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first emphasize here that conductivity is absolutely crucial even for this naive
construction, a concrete example is given in [3]. Looking ahead, a key observation
we make in this work is that by using a more general “gate covering” set, this
naive construction will detect tampering even without conductivity.

Compressing the Output. The work of [3] reduce the number of additional output
wires by connecting every wire w in Cwire to one “OR gadget” and one “AND
gadget” in a careful way (so they get fan-out 3, in the figure those gadgets are the
purple and cyan subcircuits). These gadgets have just a one bit output (for our
toy example we just need one OR and one AND gadget). There’s also an extra
input bit c (for control) and for every X ∈ Twire in the wire covering, the test set
Ttest contains two inputs, X‖0 and X‖1, i.e., one where the control is 0 and one
where it’s 1. The wires are connected to the gadgets such that whenever there’s
some tampering on the internal circuit, some gadget will compute the wrong
value on some X ∈ Ttest. The extra control bit is necessary so this holds even if
the adversary can also tamper with the gadgets themselves. Understanding the
details of their construction and proof are not necessary for the current paper,
so we refer to their paper for more details.

2.2 Our Construction Without Conductivity

Overcoming Conductivity. Without conductivity, the design principle outlined
above, i.e., routing internal wires to some gadgets that try to catch errors, is not
sufficient as errors on the internal wires can potentially be “tampered back” to
the correct value on the external wires. Our construction makes this approach
work even when we cannot rely on conductivity. Instead of trying to catch any
tampering error, our gadgets (which compute inner products) are only guaran-
teed to catch tamperings on a test set if some wire “loses information”, which
means the wire carries different values on two inputs from the test set, but after
tampering the values are identical. A key observation is that one can’t undo
information loss by tampering a wire. Fortunately, this already will be enough;
we prove a dichotomy showing that every tampering either loses information on
a “gate covering” set of inputs, or the tampering is additive. The latter case can
easily be detected by checking the correctness of the regular (as opposed to the
gadget) output on an arbitrary input. We will now illustrate our compiler using
the toy circuit C shown in Fig. 2.(A).

Gate Covering. Like in [3], in a first step we compile our circuit C into a wire
covering. That is, a tuple (Cwire,Twire) where Cwire is functionally equivalent to C
and for every wire in Cwire and every b ∈ {0, 1} there’s an X ∈ Cwire s.t. w takes
value b on evaluation Cwire(X). For our toy example, we use (Cwire = C,Twire =
{0000, 1010, 1101}) as shown in Fig. 2.(A).

We then compile (Cwire,Twire) into a gate covering (Cgate,Tgate). By this we
mean a tuple where Cgate is functionally equivalent to Cwire when padding the
(at most two) new inputs to 0, i.e., Cwire(X) = Cgate(X‖02). A gate covering is
a wire covering, but additionally, we require that for every gate g, and for every
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AND
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z6C = Cwire Cgate Ctest,0

0 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(C)

Ttest = Tgate{

y1

Fig. 2. Illustration of our toy circuit C (A) with a wire covering set Twire =
{0000, 1010, 1101} (B) after adding two extra control inputs c1, c2 and XORing them
into the circuit to get a gate covering set Tgate = {X‖00 : X ∈ Twire} ∪ 000010 (in our
toy example the 2nd control c2 and the 2nd input 000001 is not required). (C) We get
our 0th layer ETC (Ctest,0,Ttest) setting Ttest = Tgate and adding copy gates to route
the output of every AND,OR and XOR to a new output zi.

possible input to that gate, there’s a X ∈ Tgate such that g is queried on those
inputs. There’s one relaxation, for XOR gates we just require that three out of
the four inputs {00, 01, 10, 11} are covered. In Fig. 2.(B) we illustrate how to
compile the wire covering into a gate covering. This requires adding two extra
control bits c1, c2 as inputs, some copy gates to create enough copies of those
controls, and some XOR gates which add those controls to some carefully chosen
wires. The gate cover set Tgate contains X‖00 for every X ∈ Twire, and additional
two inputs which are all 0 except on c1 and c2, respectively. For our toy example
we actually just need one control c1.

Our “0th layer” ETC (Ctest,0,Ttest), as illustrated in Fig. 2.(C), is derived from
(Cgate,Tgate) by setting Ttest = Tgate, and Ctest,0 is derived from Cgate by adding
a copy gate to the output of every AND,OR and XOR gate (except if that wire
is an output already) to create fresh outputs z1, z2, . . . , z6. Note that by adding
copy gates Ttest remains a gate covering for Ctest,0. We will need this fact below.

Of course, the ETC is not practical as there are way too many output wires.
Before describing how to compress those outputs we discuss why (Ctest,0,Ttest)
is an ETC, i.e., why any non-trivial tampering on the circuit will already cause
an error on the outputs for some input in Ttest.

Information Loss. As we want a non-conductive circuit, we must use copy gates
to route the internal wire values to the outputs and can’t just use gates with
higher fan-out as in [3]. But now the adversary can tamper with the wires leading
to the zi’s individually and thus potentially undo any error in the circuit (Fig. 3).

We show that for any circuit with a gate covering – we’ll use (Ctest,0,Ttest)
from Fig. 2 as running example – every tampering τ is either additive in the sense
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Fig. 3. Illustration of the types on tamperings τ on circuits with gate coverings using
the toy example (C,Tgate) from Fig. 2. Toggling three wires as indicated in (D) has no
effect, i.e., Cτ (X) = C(X) for all inputs X. Toggling two wires as in (E) creates an
additive tampering where Cτ (X) = C(X) ⊕ B (here B = 100000), and thus is easily
detected with just one query on any input. Tamperings that are not additive create
“information loss” at the output of some internal gate, i.e., for two inputs T0, T1 ∈
Ttest, some wire will have different values without tampering, but the same value with
tampering as illustrated in (F). As we copy all output wires and use them as outputs
(and tampering a wire cannot “undo” information loss), we’ll observe information loss
also on one of the zi values (illustrated is the loss on z5 for inputs 000000 and 110100).

that for some fixed B we have ∀X : Cτ
0 (X) = C0(X)⊕ B or there’s information

loss on some wire w that is the output of a AND,OR or XOR gate, which means
there are two inputs X0,X1 ∈ Ttest such that the wire w carries different values
in the evaluations C0(X0) and C0(X1), but the same value in the evaluations
Cτ

0 (X0) and Cτ
0 (X1) of the tampered circuit.

By construction, in our C0 circuit every such wire w is copied (w′, w′′) ←
COPY(w) and w′′ is then routed to the output. Here we crucially rely on the
fact that we don’t merely have arbitrary errors like in [3] but information loss,
which cannot be undone even by tampering w′′ independently from w,w′.

Let us shortly sketch why (C0,Ttest) is an ETC. Consider any tampering τ .
As argued above, the tampering is either (1) additive or (2) we have information
loss on the outputs. In case (1) for some B we have Cτ

0 (X) = C0(X)⊕B. Recall
that C0’s outputs contain the actual outputs yi and the zi’s used for the testing.
If B doesn’t flip any of the yi’s, then this tampering does not affect correctness
and we don’t have to bother. If B flips (i.e., XORs a 1 to 0) at least one yi, we’ll
observe the mistake by querying C0 on an arbitrary input. In case (2) there is at
least one output out (could be a yi or zi value) and two inputs T0, T1 ∈ Ttest s.t.
out has the same value in evaluations Cτ

0 (T0), Cτ
0 (T1), but it should be different,

thus it will be wrong in one of the two evaluations.
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Fig. 4. (G) Illustration of the “information loss preserving” compression circuit (in
purple) attached to 0th layer ETC Ctest,0 from Fig. 2.(C) to get a 1st layer ETC C1.
(H) For the two inputs T0 = 000000, T1 = 110100 to Ctest,0 we have information loss
on the z5 and also z6 output. For randomness R = 011, Q = 001 we then also observe
information loss at the z′

2 output of Ctest,1 on inputs T0‖R, T1‖Q.

Compressing the Output. The 0th layer ETC (C0,Ttest) is not practical as the
number of output wires required for testing is linear in the size of the circuit.

To compress the output we construct a gadget circuit G : {0, 1}nin+r →
{0, 1}nin/r that takes an nin bit string and r random bits as input and outputs
an nout = nin/r bits. This compressing circuit on input X‖R chops X into nout

strings X1, . . . , Xnout
, it then computes and outputs the inner products 〈Xi, R〉

of each Xi with R. For nin = 6, r = 3 this gadget is illustrated by the purple
subcircuit in Fig. 4.G.

We will prove that even if the compressing circuit is tampered with, it will
“preserve information loss” with good probability over the randomness. More
formally, we consider any four inputs X0,X1,X

′
0,X

′
1 where at least in one

position i the X0,X1 values are distinct, but the X ′
0,X

′
1 values are not, i.e.,

∃i : X0[i] �= X1[i] and X ′
0[i] = X ′

1[i]. Now for any tampering τ and random
R,Q consider the values

(Y0, Y1, Y2, Y3) = (G(X0‖R), G(X1‖R), G(X0‖Q), G(X1‖Q))
(Y ′

0 , Y ′
1 , Y ′

2 , Y ′
3) = (Gτ (X ′

0‖R), Gτ (X ′
1‖R), Gτ (X ′

0‖Q), Gτ (X ′
1‖Q))

Then PrR,Q

[

∃i, k < j : Yk[i] �= Yj [i] and Y ′
k[i] = Y ′

j [i]
]

≥ 1/2.
Setting r ≈ √

nin we get nout = nin/r ≈ √
nin and thus can replace nin

output wires with
√

nin input and output wires (in our toy example we had
nin = 6 and r = �

√
6� = 3, nout = �

√
6�=2).

If we apply the compression gadget just once, it is sufficient to prove that with
good probability some of the outputs are wrong, i.e., that for some j : Yj �= Y ′

j .
We prove a more general property of information loss at the output of the gadget
so we can cascade them. To balance the number of additional input and output
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wires, for λ layers we compress the number of wires at each layer by a factor
λ+1

√
n which results in just λ+1

√
n additional output and λ · λ+1

√
n input wires.

The main disadvantage of choosing a larger λ is the fact that the probability
of detecting a tampering decreases, and one thus must make more test queries.
Concretely, we must make |Ttest|2λ ≤ 6 · 2λ queries to be guaranteed to catch a
tampering with probability 2−λ. By repeating this κ times we can amplify the
success probability to 1 − (1 − 2−λ)κ at the cost of making κ · 6 · 2λ queries.

In practice, a very small λ will be sufficient, for example with λ = 4 we get
a total of around 64 output and 256 input wires for a circuit with 232 (around 4
billion) gates, and setting κ = 11 requires 11 ·6 ·24 = 1056 queries to get a > 0.5
detection probability (that’s what’s guaranteed in the worst case by our security
proof, as we did not optimize for constant, the practical security is certainly
much better). Table 1 summarizes the efficiency of our ETC compiler.

Table 1. Summary of the efficiency of our ETC compiler which first compiles the input
circuit C into a (functionally equivalent) Cwire with a wire covering set Twire. This is
then compiled into a circuit Cgate with a gate covering set Tgate, which is then compiled
into the 0th later ETC Ctest,0 with the test set Ttest. We then compress the additional
output wires from 4n (i.e., linear in |C| = n) to the λ + 1th root of that by applying
λ ≥ 1 layers of our compression gadget. The testing is now probabilistic but can be
repeated with fresh randomness until one gets the desired.

C Cwire Cgate Ctest,0 Ctest,λ, λ ∈ N
+

Number of gates n ≤ (3 + o(1))|C| ≤ (7 + o(1))|C| ≤ |Cgate| + 2 · 4n ≤ |Ctest,0| + 2 · 4n
≤ 3n + o(n) ≤ 7n + o(n) ≤ 15n + o(n) ≤ 23n + o(n)

Input size s ≤ s + 3 ≤ s + 5 ≤ s + 5 ≤ s + 5 + λ · λ+1
√
4n

Output size t t t ≤ t + 4n ≤ t + λ+1
√
4n

Cover/Test size |Twire| ≤ 4 |Tgate| ≤ 6 |Ttest| ≤ 6 |Ttest| ≤ 6

Success Probability N/A N/A 1 2−2λ

Randomness (bits) 0 0 0 λ · λ+1
√
4n

2.3 More Related Work

Testing circuits is a major topic in hardware manufacturing, the books [6,10] dis-
cuss heuristics for testing and practical issues of the problem. Circuit-compilers
(as used in this work) which harden a circuit against some “physical attacks” in a
provably secure way were first introduced for leakage attacks (concretely, leaking
values of a small number of wires) by Ishai et al. in [25]. Based on this compiler
they later also gave a compiler to protect against tampering [24]. This line of
research was continued in a sequence of papers on tampering wires [13,14,21,23]
or gates [19,26,28]. As discussed in the introduction, these compilers aim at
protecting secrets in the circuit, while efficiently testable circuits [3] only aim at
detecting tampering in a special test phase.



132 M. A. Baig et al.

Apart from compilers, a line of research was pioneered by Micali and Reyzin
in [30] on reductions or composition of cryptographic building blocks to pre-
vent “general” leakage. The first cryptographic primitive achieving security
against a general notion of leakage (bounded leakage) from standard crypto-
graphic building blocks is the leakage-resilient cipher from [17], by now we have
leakage-resilient variants of most basic cryptographic primitives including sig-
natures [9,20] or MACS [5], an excellent overview on the area is [27]. Unfortu-
nately for tampering no construction secure against general tampering – or even
a notion of what “general tampering” means – exists. Although Non-malleable
codes [18] can protect data in memory (rather than during computation) from
very general classes of tampering attacks [1,4,12,15,29].

The most powerful physical attack model is Trojans, where an attacker can
not just tamper the circuit, but completely replace it. Some limited provable-
security results against this class of attacks are [11,16]. There are few attempts
to use general verifiable computation to certify the output of circuits [2,31].

3 Preliminaries

We use notations and a tampering model similar to [3].

3.1 Notation for Circuits

Circuits can be modeled as directed acyclic graphs (DAGs), and we will exten-
sively use standard graph theory notation. Concretely, a circuit is modeled as
a DAG Cγ = (V,E) where vertices refer to gates and the directed edges refer
to wires. The circuit definition Cγ comes with a labeling function γ : V → G
which assigns specific gates to the vertices, where G is the set of gates allowed.
We will often omit the parameter γ since it is chosen when specifying the circuit
and cannot be changed. Each wire carries a bit from Z2, and each gate is taken
from the set of allowed gates G (including {AND,OR,XOR,COPY,NOT} and
two special {in,out} gates).

For v ∈ V , let E−(v) = {(u, v) ∈ E} and E+(v) = {(v, u) ∈ E} be the
sets of v’s incoming and outgoing edges, respectively. For e = (u, v) ∈ E we
define V −(e) = u and V +(e) = v. We split the vertices into three sets V =
I ∪ G ∪ O, where I = {I1, I2, ..., Is} are vertices which are assigned to in, and
O = {O1, O2, ..., Ot} are these assigned to out. Given Cγ = (V,E) and an input
X = (x1, . . . , xs) ∈ Z

s
2 we define a valuation function

valCγ ,X : V ∪ E → Z2 (3)

which assigns each gate the value it outputs and each wire the value it holds
when the circuit is evaluated on X. More formally the valuation function for
vertices v ∈ V and edges e ∈ E is defined as
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valCγ ,X=(x1,x2,...,xs)(v) =

{

xi, if v = Ii.

γ(v)(valCγ ,X(E−(v))), otherwise.

valCγ ,X(e) = valCγ ,X(V −(e)).

We will sometimes just write valX if the circuit considered is clear from the
context. The behaviour of the circuit C can be associated with the function
that it evaluates, i.e. C : Z

s
2 → Z

t
2. We can define this function as follows:

C(X) = (valC,X(O1), valC,X(O2), ..., valC,X(Ot)).

3.2 Tampering Model

We consider an adversary who can arbitrarily tamper with every wire of the
circuit, i.e. flip its value, set it to 0, set it to 1, or leave it untampered. Unlike
[3] or [24], we do not take advantage of the conductivity assumption. This means,
we operate on circuits with conductivity 1, where all nodes n ∈ V of a circuit
C have fan-in and fan-out equal to an inherent fan in, fan-out of γ(n), and all
output wires of all nodes can be tampered independently. We assume that the
input circuit is not conductive. In [3], the authors assumed k-conductivity, i.e. a
value of some wire in the circuit could be copied to at most k distinct destinations
with a restriction that all of them must be tampered equally. Without loss of
generality, every k-conductive circuit can be transformed into a 1-conductive
circuit, as by using COPY gates, every k-conductive circuit can be turned into
a non-conductive one while at most doubling the circuit size and increasing the
depth by a factor �log(k)�.

The tampering of a wire is described by a function Z2 → Z2 from the set
of possible bit tamper functions T = {id,neg, one, zero}. The tampering of an
entire circuit C = (V,E) is defined by a function τ : E → T mapping each wire
to a tampering function. For convenience, we sometimes write τe to denote τ(e).

Now we can extend our notion of the valuation to also take tampering into
account in order to define the valuation of a tampered circuit

valτX : V ∪ E → Z2.

The only difference to the (non-tampered) valuation function from Eq. (3) is
that we apply the tampering to each value of an edge after it is being computed,
formally:

valτCγ ,X=(x1,2,...,xs)(v) =

{

xi, if v = Ii.

γ(v)(valτCγ ,X(E−(v))), otherwise.

valτCγ ,X(e) = τe(valτCγ ,X(V −(e))).

By Cτ we can again understand a function that describes the input-
output behavior of the tampered circuit: Cτ (X) = (valτC,X(O1), valτC,X(O2), ...,
valτC,X(Ot)) (Fig. 5).
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Fig. 5. Examples of 2 − conductive (left circuit) and 1 − conductive (right circuit)
circuits. A single wire on the left circuit is copied to two destinations. The adversary
can apply only a single tampering to this wire. On the right circuit, this wire is divided
into three parts with a COPY gate. The adversary can apply separate tampering to
each of these parts.

4 Gate Covering Sets

The authors of [3] developed a notion of wire covering set Twire. It is a set of
inputs to a specific circuit, such that every wire is evaluated to both 0 and 1, given
some inputs from the test set Twire (see Definition 1 below). Moreover, the paper
states that every circuit can be efficiently compiled into its wire-covered version
(Theorem 10 from [3]). We denote the compilation procedure (Algorithm 10
from [3]) as Algorithm A. It compiles a circuit C into a functionally equivalent
Cwire, along with its wire covering set Twire.

Definition 1 (Definition 4 from [3]). The set Twire is a wire covering set for
a circuit C if ∀ e ∈ E(C), b ∈ {0, 1} ∃ X ∈ Twire : valC,X(e) = b.

In this paper, we develop a stronger notion called gate covering set. Here,
we not only require covering all wires of the circuit, but also pairs of wires that
form an input to multi-input gates (in our model the and,or,xor gates).

Before we proceed, we expand our notation by the sequences of the input
values to the gate i.e., by (valC,X(e))e∈E−(v) we understand the sequence of the
values given to v, when the circuit is evaluated on the input X. E.g. for a gate
v in a circuit C that is evaluated on 0 and 1 given input X to C, we write
(valC,X(e))e∈E−(v) = 01. Now, we give the definition of the gate covering set.

Definition 2. Tgate is a gate covering set for a circuit C with gate assignment
γ if it satisfies:

• ∀v∈V (C) : γ(v)∈{COPY,NOT,OUTPUT} : |{(valC,X(e))e∈E−(v) : X ∈ Tgate}| ≥ 2,
• ∀v∈V (C) : γ(v)∈{AND,OR} : |{(valC,X(e))e∈E−(v) : X ∈ Tgate}| = 4,
• ∀v∈V (C) : γ(v)∈{XOR} : |{(valC,X(e))e∈E−(v) : X ∈ Tgate}| ≥ 3.

We call a circuit with a gate-covering set a gate-covered circuit. Any node in
a circuit that has enough evaluation sequences as in the Definition 2, given any
test set, we call gate-covered.

To construct a gate covering of a circuit we first use the recalled Algorithm
A to obtain a wire covering of the circuit and then we go through the multi-
input gates of the intermediary circuit topologically to ensure that they are
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evaluated on a sufficient number of their inputs combinations. In the algorithm,
it is sufficient to add XOR gates to the input wires of the topologically traversed
gates of the circuit to gate-cover them. The Algorithm 1 describes a procedure
that takes as input a circuit C and outputs a functionally-equivalent circuit Cgate

along with a gate-covering set Tgate for Cgate.

Algorithm 1: Algorithm for constructing a gate covering set for C

Input: C : Zs
2 → Z

t
2

Output: Cgate,Tgate

1 (Cwire : Z
s+sw
2 → Z

t
2,Twire) = Algorithm A(C) /* Wire-covered intermediary

circuit */
2 Initialize Cgate = Cwire

3 Initialize Tgate = Twire

4 Append 00 to every X ∈ Tgate

5 X0 = 0s+sw10
6 X1 = 0s+sw01
7 for v ∈ V (Cgate) : γ(v) ∈ {OR,AND,XOR} (processed in a topological order) do
8 S = {(valC,X(e))e∈E−(v) : X ∈ Tgate} /* Assert |S| ≥ 2 */
9 for ei ∈ {00, 01, 10, 11} \ S do

10 pi = (valC,Xi(e))e∈E−(v) /* Get current valuation of the v’s
input wires on the input Xi */

11 for j ∈ {0, 1} do
12 if ei[j] 
= pi[j] then

/* Given the input Xi, the s + sw + i’th input wire of
the circuit has value 1 */

13 Update Cgate by adding a XOR gate that has one of the inputs
connected s + sw + i’th input wire of the circuit and its second
input is the j’th input wire of v. The output of the XOR gate
will be a new j’th input of v /* When the control bits
X0, X1 are used at least twice, one needs to use
linear number of COPY gates in the construction to
assure that Cgate remains non-conductive */

14 return Cgate,Tgate ∪ {X0, X1}

Proposition 1. The Algorithm 1 transforms a circuit C into a functionally
equivalent circuit Cgate along with gate-covering set Tgate.

Proof. It is easy to see that the circuit Cgate is functionally equivalent to C, since
it does not add any new output bits to the circuit, and all the new gates are XOR
gates connected via a sequence of COPY gates to the new control bits. Whenever
these bits are set to 0, the new XOR gates do not affect the behaviour of the
circuit. Note that after adding the new XOR gates, all of the wires connected
directly to the old gates of the circuit remain wire-covered by the old test set
adjusted by adding 00 to its every input. What is more, the new control bits
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wire-cover every new wire added to the circuit. This implies that every gate from
the set {COPY,NOT,OUTPUT} in the updated circuit is trivially gate-covered
(evaluated to both 0, 1 given some inputs from the test set).

When we topologically go through the gates from the set {OR,AND,XOR}
of the intermediary circuit, we can see that since the input wires to the cir-
cuit are wire-covered by the adjusted old test set, then these gates are par-
tially covered before and after adding new XOR gates to their input wires (i.e.
{(valC,X(e))e∈E−(v) : X ∈ Tgate} ≥ 2). In the step 9 of the Algorithm, we add
XOR gates connected to the new control bits to cover at most two missing eval-
uation sequences. The XOR gates added during the topological procedure are
evaluated on two distinct input sequences, given inputs from the adjusted old
wire-covering set. The third distinct input comes from setting their respective
control bit to 1 ��

Proposition 2. For any circuit C with max fan-in 2, number of gates n, the
Algorithm 1 creates a circuit with additional 5 input bits, test set of size 6,
additional 6n gates.

Proof. The Algorithm A from [3] compiles into a circuit with additional 3 input
bits, test set of size 4 and adds at most n XOR gates and n COPY gates. Now,
adding 2 input bits and 2 test inputs to the test set in the second part of
Algorithm 1, and adding at most 2n XOR gates and 2n COPY gates during the
iteration concludes the result ��

5 Information Loss in Gate-Covered Circuits

In this section, we define information loss and show that it is easily trackable in
any Cgate that has a gate-covering set Tgate. For any such circuit, we show the
following property: for any tampering applied to the wires of the Cgate, either we
observe an information loss on one of the output wires of the multi-input gates
AND,OR,XOR (given only the inputs from the gate-covering set Tgate), or the
output wires of the circuit are always set to a constant value or always toggled
or always correctly evaluated.

Theorem 1. For any circuit Cgate : Zs
2 → Z

t
2 with gate-covering set Tgate, for

any tampering function τ applied to the circuit then at least one of the following
holds:

• Information loss on multi-input gates

∃X0,X1∈Tgate, n∈V (Cgate) : γ(n)∈{AND,OR,XOR} :

(

valX0,Cgate(n) = 0 ∧ valX1,Cgate(n) = 1
)

∧
(

valτX0,Cgate
(n) = valτX1,Cgate

(n)
)

• Constant output

∃i∈[t],c∈{0,1}∀X ∈ Z
s
2 : Cτ

gate(X)[i] = c
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• At most toggled output

∃T∈{0,1}t∀X ∈ Z
s
2 : Cτ

gate(X) = Cgate(X) + T

Proof. The proof follows a modular argument. For this, we need a definition of
Topological Layers of Computation on any circuit Cγ . In the definition below,
we say that a wire e is connected to a gate g in a circuit Cγ described with a
DAG (denoted by predicate connectedCγ

(g, e) holds) if and only if there exists
a direct connection or connection going through a path of COPY or NOT gates
between g and the predecessor of e in the circuit.

Definition 3 (Topological Layers of Computation). For any circuit C, we
recursively define its Topological Layers of Computation:

• 0th-layer of Computation L0 = I(C)
• ith-layer of Computation Li = {g ∈ V (Cγ) : ∀e∈E−(g) : connectedCγ

(g′, e)
for some g′ ∈ L0 ∪ . . . ∪ Li−1 and γ(g) ∈ {XOR,AND,OR}}.

By Gi(C) we denote a subgraph induced by the layers L0, . . . ,Li of the circuit.
Below we consider C = Cgate. We run an experiment that evaluates layer by

layer the tampered C (assuming C has L + 1 layers). In the i’th layer either
there is an information loss and we stop the experiment or the output of the
layer is at most toggled [see event E2 below] and the experiment proceeds to the
next layer. We define the following predicates for a gate g in layer i:

• E1(g, i) holds if g ∈ Li ∧ ∃X0,X1∈T′valX0,C(g) = 0 ∧ valX1,C(g) = 1 ∧
valτX0,C(g) = valτX1,C(g),

• E2(g, i) holds if g ∈ Li ∧ ∀X∈Z
s
2
: valτX,C(g) = valX,C(g) + f

[

τ(e) : e ∈

E(Gi(C))
]

.

In the 0th-layer of the circuit, by definition of the tampering function, for any
node g ∈ L0(C): X ∈ Z

s
2 : valτX,C(g) = valX,C(g). This implies event E2(g, 0) on

any gate from this layer. We prove the following for the tampered circuit C:

∀τ(C),i∈{1,...,L} : ∀j∈{0,...,i−1},g′∈Lj
: E2(g′, j) =⇒ ∀g∈Li(C) : E1(g, i) ∨ E2(g, i)

We first study the gates of the first layer:

• The AND gate in the 1st-layer is connected to the input gates only via a
sequence of COPY and NOT gates. The computation on this gate can be
described as Pg(a, b) = a·b. The tampered output of the gate is P̃g(a, b) = ã·b̃,
where ã ∈ {a, a + 1, 0, 1}, b̃ ∈ {b, b + 1, 0, 1}. The tampering of a wire a is
set to 1 or 0 whenever there is a constant tampering on its path from the
0thlayer, a+1 or b+1 whenever on the path there is an odd number of toggle
tamperings, and a or b whenever there is an even number of toggle tamperings
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on the path. Whenever ã = 0 ∨ b̃ = 0, then P̃g(a, 1) = 0 and P (a, 1) = a, we
get an information loss. Now, since by the construction of the Algorithm 2,
the wire P is connected via a COPY to the output, the event E1(g, 1) occurs.
In other cases:

– if ã = 1 (or b̃ = 1), P (a, 1) = a and P̃ (a, 1) = const. (resp. P (b, 1) = b
and P̃ (b, 1) = const.) [E1(g, 1) occurs],

– when ã = a + 1 (or b̃ = b + 1), then P (1, b) = b and P̃ (1, b) = 0 (resp.
P (1, a) = 1 and P̃ (a, 1) = 0) [E1(g, 1) occurs],

– otherwise P̃ (a, b) = ab [E2(g, 1) occurs].
• Similar argument as above applies for the OR gate,
• The input wires of the XOR gate are also connected only via a sequence of
COPY and NOT gates to the input. We observe that Pg(a, b) = a+ b, and the
tampered output P̃g(a, b) = ã+ b̃, where ã ∈ {a, a+1, 0, 1}, b̃ ∈ {b, b+1, 0, 1}.

– if ã = const. (or b̃ = const.), P (a, 0) = a and P̃ (a, 0) = const. (resp.
P (0, b) = b and P̃ (0, b) = const.) [E1(g, 1) occurs],

– when ã = a+ ca, b̃ = b+ cb, then P (a, b) = a+ b, P̃ (a, b) = a+ b+ ca + cb

[E2(g, 1) occurs].

In the i’th layer, the inputs to all of the gates are, again, connected to the gates
of the previous layers only via a sequence of COPY, NOT gates. Now, once the
induction assumption holds in the layers {1, . . . , i − 1}, the event E2 on all gates
assures that the case analysis from the first layer may be repeated, but the
tampered wires ã, b̃ will now get a constant tampering 0 or 1, or a toggle bit
depending on the tamperings chosen on the edges of the graph induced by layers
from the set {0, . . . , i}.

This implies that on multi-input gates of the circuit, we either get event E1 or
E2. Whenever the event E1 occurs, the information loss on one of the multi-input
gates of the circuit occurs. Otherwise only the event E2 on these gates may occur.
The OUTPUT gates of the circuit are connected via a sequence of COPY and
NOT gates to the gates of the topological layers of computation of the circuit.
If on their paths one finds a constant tampering, then some output bit is set
constant; if only toggles are found there, the output bits are at most toggled ��

5.1 Routing the Information Loss in Gate-Covered Circuits

In this section, we show that any gate-covered circuit can be converted to another
gate-covered circuit for which any information loss that appears on its multi-
input gates is routed to the output of the circuit. We present Algorithm 2 that
adds a COPY gate to the output wires of the multi-input gates in the gate-
covered circuit. The added COPY gates forward one copy of the original wires
to their previous destinations and another copy directly to the output (Fig 6).
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a b a b

COPY

P P

Fig. 6. Adding a COPY gate to the wire P in the Algorithm 2. This creates two wires;
the left one is connected to the previous successor of the wire P , and the right one
is sent to the output of the circuit. Algorithm 2 takes into account only the wires P
which originate at AND,OR,XOR gates in the original circuit.

Algorithm 2: Algorithm for Routing the Information Loss in a Gate-
Covered C
Input: Cgate : Z

s
2 → Z

t
2,Tgate

Output: Ctest,0,T0

1 Initialize Ctest,0 = Cgate, T0 = Tgate

2 for g ∈ V (Cgate) do
3 if g ∈ {AND,OR,XOR} ∧ E+(g) is not an output wire of Ctest,0 then
4 Insert to Ctest,0 a COPY gate between g and V +(w).
5 One of the output wires of the new gate should go to V +(w), the other

one should be left as an additional output wire of the modified circuit.
6 return Ctest,0,T0

Proposition 3 The Algorithm 2 transforms a gate-covered circuit Cgate : Zs
2 →

Z
t
2 with gate-covering set Tgate into another gate-covered circuit Ctest,0 : Zs

2 →
Z

t+t0
2 with additional output bits and the same gate-covering set, T0 = Tgate,

where one observes for any tampering τ of the circuit Ctest,0 at least one of the
following holds:

• Information loss on output: ∃b ∈ {0, 1},X0,X1 ∈ T0, i ∈ {1, . . . , t + t0}
such that

valX0 (Ctest,0)[i] = 0, valX1 (Ctest,0)[i] = 1, valτX0
(Ctest,0)[i] = valτX1

(Ctest,0)[i] = b

• At most toggled output

∃B∈{0,1}t∀X ∈ Z
s
2 ∃Y ∈ Z

t0
2 : Cτ

test,0(X) = Cgate(X)‖Y + B||0t0

Proof. It is easy to see that the same test set T0 = Tgate is a gate covering set
for the transformed Ctest,0. Now, according to Theorem 1 on the transformed
circuit the following cases may follow:
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1. Information-loss on one of the multi-input gates of Ctest,0: in this case, one of
the output wires of Ctest,0 is connected via a COPY gate to the output of the
multi-input gate and the information loss is propagated to this wire.

2. One of the output wires of Ctest,0 always evaluates to a constant value: in this
case, we observe an information loss on this wire because it is wire-covered
according to the definition of the gate-covering set T0.

3. At most, toggled output on the circuit.

6 Minimizing the Number of External Wires

AND OR

AND

z1

z3

z2

z5

z6

x1 x2 x3 x4 c1 c2

y1

z4

x1 x2 x3 x4 c1 c2

y1

G

r1 r2

p1 p2

Fig. 7. To reduce the number of external wires, we add a compressing gadget Gn,λ,d.

In the previous Section, we introduced the notion of information loss and
showed that without limitations on the number of additional input/output wires,
the tamper-resilience can be achieved for 1-conductive circuits. For practical
reasons, the number of the external wires, nexternal, is more limited compared
to the number of internal wires, ninternal. Typically, the external wires are on
the border of a square which contains internal wires [6,10], thus a convincing
relation between these numbers can be given by n2

external ≤ c ·ninternal, where c is
some constant. Unfortunately, in the construction given in the previous Section,
the number of external wires in the compiled circuit is linear in the number of
the internal wires in the original ones, which is not practical to implement in
a real-life circuit. Thus, in this section, we focus on minimizing the number of
external wires in our precompiled circuit.

We will define a compressing gadget Gn,λ,d. The gadget will compress an
input of length n. It will be composed of λ layers of smaller sub-gadgets each
of which will need d additional wires with uniformly random bits as input. The
gadget Gn,λ,d will take λ·d additional input wires and will have a limited number
of output wires (much lower than the number of its input wires - see Fig. 7). We
will show that even if the adversary tampers with the compressing gadget Gn,λ,d,
the information loss on any of its input wires will survive through it and can
be detected on the output of the gadget with sufficiently high probability. In
practice, we will be able to keep λ at most 5.



Efficiently Testable Circuits Without Conductivity 141

6.1 Construction of One Layer Compression

Fig. 8. Construction of - Sm,d. The dotted
red triangle represents the copying tree, �k.
The dotted green triangle represents the xor-
ing tree, �d.

The Gn,λ,d gadget consists of λ lay-
ers that we define as subgadgets Sm,d

(with varying parameter m). The
single-layer compression gadget Sm,d

compresses m bit input into
⌈

m
d

⌉

bit output (using d additional input
wires which will be uniformly ran-
dom bits during the testing proce-
dure). For ease of analysis, we can
consider m to be a multiple of d (oth-
erwise we can add m −

⌊
m
d

⌋

spare
input wires set to 0 to the Sm,d

single-layer gadget). Sometimes we
refer to Sm,d as simply Sd when m
is clear from the context.

Sm,d takes m + d wires as input, where d are additional inputs composed
of uniformly random bits, and outputs m

d wires. First, Sm,d divides the input
sequence that it receives (say z1, z2, . . . , zm) into m

d blocks of length d

(

(z1, . . . , zd), (zd+1, . . . , z2d), . . . , (z(m
d −1)d+1, . . . z(m

d −1)d+d)
)

.

Then using the additional sequence of d input bits r1, ..., rd it outputs the value
of the inner product of each length d block of z′s and the additional sequence.
More formally, for Sm,d given input wires (z1, ..., zm) and additional input wires
(r1, ..., rd), Sm,d outputs m

d bits:

Sm,d ((zi)i=1,...,m, (ri)i=1,...,d) =

⎛

⎝

∑

j=1,...,d

zid+j · rj

⎞

⎠

i=0,..., m
d −1

.

The construction of Sm,d is shown in Fig. 8. An instantiation with m = 8, d =
4 is shown in Fig. 10. Construction of Sm,d needs as building blocks 2 types of
gadgets: copying tree (with fan-in 1, but high fan-out) consisting of COPY gates
and xoring tree (with high fan-in, but fan-out 1) consisting of XOR gates. They
are realized by tree-like gadgets that we denote with the following symbols -
�m′ ,�d (see Fig. 9).

The copying tree, �m′ , takes a single wire as input and outputs m′ wires
which, as the name suggests, are copies of the input in untampered computation.
This is achieved by a complete binary tree with m′ leaves where the root is the
input, the leaves are the output and all internal nodes are COPY gates. The
direction of computation is from the root to the leaves.

The xoring tree, �d takes d wires as input and outputs 1 wire which in the
untampered circuit is the xor of all the inputs. It achieves this by a complete
binary tree with d leaves, where leaves are the input, the root is the output and
all nodes are XOR gates. The direction of computation is from the leaves to the
root. From the construction above, we obtain the following properties of Sm,d.
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Fig. 9. The gadgets �, � are realized by
complete binary trees with COPY,XOR
in nodes, respectively.

Fig. 10. A single layer of compression -
Sm,d (in this case m = 8, d = 4). Trapezi-
ums represent copy gates. The dotted red
triangle represents the copying tree, �2.
The dotted green triangle represents the
xoring tree, �4.

Lemma 1. For the Sm,d gadget with m input wires and additional d input wires
for randomness (Fig. 8), the following holds: (1) The number of output wires is
m
d , (2) The depth is less than log m

d +log d+1 = logm+1, (3) The total number
of gates is less than d · m

d + n + m
d · d = 3m (number of gates in the copying

trees, plus the number of multiplication gates plus number of gates in the xoring
trees).

6.2 Composing the Layers

Now we are ready to present the full construction of Gn,λ,d. This is achieved by
simply adding λ layers of Sm,d gadgets, with varying parameter m depending on
the layer (see Fig. 11). The first layer of S takes as input the input wires to the
gadget G; the next layer takes as input the output of the previous layer, and so
on. We change the parameter m of inputs to Sm,d in each layer accordingly. The
output of the last layer is the output of the G. Every layer reduces the number
of output wires by a factor of d. Every layer is given d extra input wires which
would be uniformly random bits.

Intuition: In Proposition 3, it was shown, that any non-trivial tampering implies
an error on the standard output wires or an information loss on the auxiliary
output wires (which are input wires to the compressing gadget G). Here we focus
on the second case. We can conclude, that if there is any error on the input wire
corresponding to the value zi (what is implied by the information loss), we may
hope it to survive through λ of the Sd layers - sometimes the value on this
particular wire will be changing the value of the respective inner product, and
sometimes not, independent of everything else except the value of some rj .
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Fig. 11. The compressing gadget Gn,λ,d con-
sists of λ layers of the compression subgad-
gets Sm,d, where the number of input wires
m decreases layer by layer. Example param-
eters are n = 16, λ = 3, d = 2.

From the construction above, we
obtain the following.

Lemma 2. Let Gn,λ,d receive a
sequence of length n = m · dλ as
an input to be compressed. Then
the following statements are true:
(1) Gn,λ,d outputs m bits. (2) It
needs λ ·d auxiliary random bits. (3)
The depth of Gn,λ,d is bounded by
λ · (log n + 1). (4) The total num-
ber of its gates is not greater than
∑λ−1

i=0

(

3 n
di

)

= 3nd−d1−λ

d−1 .

6.3 Information Losing Tuples

Recall that in Proposition 3, we show that any meaningful error of computation
will result in an information loss on one of the output wires of the precompiled
circuit. In the following Sections, we will describe that the Gn,λ,d gadget prop-
agates the information loss on some of its input wires to one of its output wires
with good probability. The reason that we focus on the propagation of the infor-
mation loss, not a single error on computation is that the values of the input the
Gn,λ,d gadget and the tamperings may be adversarially chosen in a way that the
error vanishes. E.g. imagine a wire in Gn,λ,d that is (almost) always evaluated to
0 on the test inputs in an untampered evaluation, and the adversarial tampering
flips the value of this wire to 1, given some specific inputs. Then the adversary
may undo the wrong evaluation on this wire with another constant tampering.
In general, it is easy for an adversary to undo the (almost) always correct or
(almost) always incorrect evaluations. We will thus make use of the information
loss - a pair of evaluations on a single wire that ensures that this wire evaluates
to both 0 and 1, and an error occurs on one of these evaluations.

We introduce the notion of information-losing tuples which separates the idea
of information loss from the process of evaluation of the whole circuit. In the
definition below the n-ary vectors over Z2 denoted with Xi denote honest eval-
uations of n wires and the vectors denoted with Yi denote tampered evaluations
of the same wires of some circuit C.

Definition 4. We say that (X1, ...,Xm;Y1, ..., Ym) - a tuple of n-ary vectors over
Z2 - is an information-losing tuple if ∃i,j,k ((Xi[k] �= Xj [k]) ∧ (Yi[k] = Yj [k])) .
The triple (i, j, k) is called an information-losing witness for
(X1, ...,Xm;Y1, ..., Ym)

Recall Proposition 3. Let (Xi), (Yi) denote the values on the output wires of
Cgate, C

τ
gate for the gate covering set Tgate = (Ti). Then information loss on the

output means, that ((Xi), (Yi)) forms an information-losing tuple if the informa-
tion loss occurs on the output of the circuit.
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6.4 Algebraic Values on the Wires

Now we analyze what are the (parameterized by the input) possible values on
wires in tampered realization of Gn,λ,d. We will use an algebraic notation for
the computation on the circuit. The wires of the circuit carry not only the
elements of Z2, but elements of a ring of multivariate polynomials over Z2. The
indeterminates of this ring for a single circuit will be associated with its input
wires and will be denoted with lowercase letters; sometimes we will be using
auxiliary indeterminates. To compute the results of the val function, we simply
extrapolate the functions from G to the ring. From now on, whenever we refer
to value on the wire, we allow the value to be an element of the ring.

In this setting, how does the tampering of the wire affect its value? It works
the same way as before - toggling is simply adding 1 to the polynomial, and
setting 0/1 is setting the polynomial to be equal to 0/1, without indeterminates.
Therefore we can make some observations on the gadgets �,� (from Fig. 9),
and the output of the multiplication gates in Sd.

Proposition 4 (Output of the Copying Trees). Let �τ be given r as input,
and r′ be any of its output. Then r′ ∈ {0, 1, r, r + 1}.

Every output of a copying tree is either constant, toggled or the original value of
its single input wire, depending on the number of toggling or constant tamperings
on the path from the root of the copying tree to the output wire.

Proposition 5 (Output of the Xoring Trees). Let a1, ..., ad be the input
values to �τ and p be its output. Then p = β +

∑

i=1,...,d αiai, where αi, β ∈
{0, 1}.

The single output of the xoring tree is a linear combination of its input. If there
is a constant tampering on a path from some input wire to the output wire, the
coefficient αi of the input value ai is set to 0, the coefficient β depends on the
number of toggling tamperings and values of the constant tamperings.

Proposition 6 (Output of the Multiplication Gates). Let (zi, ri) be a
pair of input wires to some multiplication gate in Sτ and let multi denote the
output value of this multiplication gate. Then multi = αi(zi)ri + βi(zi), where
αi, βi are linear functions over Z2 for all i’s.

Given that for any fixed τ on Sτ , tamp(zi) ∈ {0, 1, zi, zi + 1}, tamp(ri) ∈
{0, 1, ri, ri + 1}, we can set multi = tamp(zi) · tamp(ri). The above Proposi-
tion states that for the fixed tampering τ , the output value of the multiplication
gate mi can be described as a linear function of ri.

Proposition 7 (Output of the One Layer Compression Gagdet).
Let pm be the output value of the gadget �τ from the construction of Sτ

d

which takes as input values zmd+1, zmd+2, ..., zmd+d, r1, r2, ..., rd. Then pm =
β(zmd+1, ..., zmd+d) +

∑

i=1,...,d αi(zmd+i)ri, where αi and βi are linear (mul-
tilinear) functions over Z2.

Given the Propositions 4, 5, 6, in Proposition 7 we can conclude on the output
values of Sm′d,d given values z1, ..., zm′d; r1, ..., rd as input in the above statement.
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6.5 Information Loss Survival for Sd

Now, we will prove that information loss survives a single-layer computation Sd

with probability at least 1
2 . Since the full compression gadget Gn,λ,d is built

using λ layers of Sd gadgets, this result will lead us to the final conclusion, that
Gn,λ,d compresses the size of the output and propagates the information loss to
the output with a probability at least 1/2λ.

We are given an information-losing tuple (X1, ...,Xz;Xτ
1 , ...,Xτ

z ) which rep-
resents z different (untampered and tampered) evaluation vectors of input wires
to the single layer compressing gadget Sd. Given z uniformly random pairs of
randomness vectors Ri, Qi each of the evaluation vectors Xi will be used twice
as the input to the gadget Sd. This will suffice to propagate the information loss
to the output of the gadget with good probability.

Theorem 2 (Information Loss Through One Layer). Let (X1, ...,Xz;Xτ
1 ,

...,Xτ
z ) be an information-losing tuple. Let Ri, Qi for i = 1, ..., z be vectors in

Z
d
2 chosen independently and uniformly at random. Let

Yi = Sd(Xi|Ri), Yi+z = Sd(Xi|Qi), Y τ
i = Sτ

d (X
τ
i |Ri), Y τ

i+z = Sτ
d (X

τ
i |Qi),

for i = 1, ..., z. Then (Y1, ..., Y2z;Y τ
1 , ..., Y τ

2z) is an information-losing tuple with
probability at least 1

2 .

Proof. Let (i, j, k) be a information-loss witness for (X1, ...,Xz;Xτ
1 , ...,Xτ

z ).
Then

(Xi[k] �= Xj [k]) ∧
(

Xτ
i [k] = Xτ

j [k]
)

. (4)

Denote the input to Sd by U = (x1, ..., xd, r1, ..., rd). Let Os be the s’th output
wire of S which is possibly affected by the value of xk. Obviously s = �k

d�, and
k = sd + k′ where k′ ∈ [d]. Then the value of the selected output wire in the
untampered Sd is:

valU (Os) =
∑

t=1,...,d

xsd+trt =
∑

t=1,...,d

γt(xsd+t)rt, (5)

where γt is the identity function. From Proposition 7 we know, that the tampered
value of the selected output wire can be described with the following expression:

valτU (Os) =
∑

t=1,...,d

αt (xsd+t) rt + βt (xsd+t) , (6)

where αi and βi are linear (multilinear) functions over Z2.
Now we can instantiate (x1, ..., xz) four times, with Xi,Xj ,X

′
iX

′
j . In every

such case αt(·), βt(·), γt(·) are evaluated to some elements of Z2. Let us denote
these elements with β

X′
i

t = βt(X ′
i[sd + t]). Since (i, j, k) is the witness of infor-

mation loss we know, that γXi

k′ �= γ
Xj

k′ , α
X′

i

k′ = α
X′

j

k′ . WLOG let γXi

k′ �= α
X′

i

k′ .
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Moreover, the evaluations 5, 6 are simply linear/affine combinations of r1, ...rd
over Z2, respectively. Consider,

DIFFi(r1, ..., rt) := valXi|r1,...,rd
(Os)− valτX′

i|r1,...,rd
(Os) = rk′ +

∑

t=1,...,d;t �=t′
δtrt + εi, (7)

for some εi, δt ∈ Z2.
Now let instantiate (r1, ..., rd) with uniform random variable R over Z

d
2.

Firstly, observe that Pr[DIFFi(R) = 1] = 1
2 which means, that for the pair

Xi,X
′
i for exactly half of the choices of R there will occur an error on the

Os - i.e. the expected and actual values will differ. Since DIFFj(r1, ..., rt) =
valXj |r1,...,rd

(Os) − valτX′
j |r1,...,rd

(Os) =
∑

t=1,...,d κtrt + εj , for some εj , κt ∈ Z2,
we know that Pr[DIFFj(R) = 1] ∈

{

0, 1
2 , 1

}

. Thus for the pair Xj ,X
′
j there is

an error never or always or for half of the choices of R. Finally,
{

1
2

}

⊆
{

Pr[valXi|R(Os) = 0],Pr[valXj |R(Os) = 0]
}

⊆
{

0,
1
2

}

. (8)

The first inclusion is true since 1 ∈ {γXi

k′ , γ
Xj

k′ }. The second inclusion is true,
since valXi|R(Os), valXj |R(Os) are linear combinations of rt’s.

Let us denote x1(R) = S(Xi|R)[k′], x2(R) = S(Xj |R)[k′], y1(R) =
Sτ (Xτ

i |R)[k′], y2(R) = Sτ (Xτ
j |R)[k′]. Informally speaking, for independent and

uniformly random Ri, Rj , Qi, Qj the tuple V below
V = (x1(Ri), x1(Qi), x2(Rj), x2(Qj); y1(Ri), y1(Qi), y2(Rj), y2(Qj)) contains a
tampered evaluation y1 that has an error with probability 1/2 with respect to
its correct evaluation x1 and at least one evaluation x1 or x2 that is correctly
evaluated to 1. Now, we can use Lemma 3 below to prove the above informal
statement and say that given uniformly random Ri, Rj , Qi, Qj , the tuple V is an
information-losing tuple with a probability of at least 1/2.

Thus we conclude that (Y1, ..., Y2z;Y τ
1 , ..., Y τ

2z) is an information-losing tuple
with at least one of (i, j, k′), (i, j+z, k′), (i+z, j, k′), (i+z, j+z, k′) as a witness
with probability at least 1/2. ��

Finally, we formulate the Lemma which lets us conclude that the information
loss survives a single layer of compression Sd with probability at least 1/2.

Lemma 3. Let x1, x2, y1, y2 be functions from Z
d
2 to Z2, and let R be a random

variable over Z
d
2, such that:

Pr[x1(R) = y1(R)] =
1
2
, (9)

Pr[x2(R) = y2(R)] ∈
{

0,
1
2
, 1

}

, (10)

{

1
2

}

⊆ {Pr[x1(R) = 0],Pr[x2(R) = 0]} ⊆
{

1
2
, 1

}

, (11)
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Then for independent and uniformly random R1, R2, Q1, Q2 the tuple

(x1(R1), x1(Q1), x2(R2), x2(Q2); y1(R1), y1(Q1), y2(R2), y2(Q2))

is information losing with probability ≥ 1
2 .

Proof. We want to show that for any constraints with probability ≥ 1
2 the tuple

(x1(R1), x1(Q1), x2(R2), x2(Q2); y1(R1), y1(Q1), y2(R2), y2(Q2)) has some two
x′s different and corresponding y′s being equal. Consider any four tuples
(a, a′), (b, b′), (c, c′) and (d, d′) where a, b, c, d, a′, b′, c′, d′ ∈ {0, 1}. First, we claim
that (a, b, c, d; a′, b′, c′, d′) forms an information-losing tuple if and only if none of
the following is true: (1) a = b = c = d, (2) (a = a′)∧(b = b′)∧(c = c′)∧(d = d′),
(3) (a = 1 − a′) ∧ (b = 1 − b′) ∧ (c = 1 − c′) ∧ (d = 1 − d′).

Clearly, if any of the above conditions is true then (a, b, c, d; a′, b′, c′, d′) is not
information-losing. For the reverse, assume none of the conditions is true. WLOG
let a = 1, b = 0. WLOG we have two cases c = 1, d = 1 or c = 1, d = 0. In the
first case, if b′ = 0, then at least one of a′, c′, d′ must be 0, otherwise, condition
2 above would hold. WLOG let a′ = 0. Thus a �= b but a′ = b′ and we get
information loss. Similarly, if b′ = 1 using condition 3, we will find information
loss. In the second case of a = 1, b = 0, c = 1, d = 0, if a′ �= c′, then b′ = a′ or c′

hence information loss. If a′ = c′, then we get information loss if either b′ or d′

is equal to a′. The only way for neither b′ nor d′ to be equal to a′ is for one of
conditions 2 or 3 to hold true, but this would be a contradiction.

Thus we define three events corresponding to the three conditions above:

E1: x1(R1) = x1(Q1) = x2(R2) = x2(Q2)
E2: (x1(R1) = y1(R1)) ∧ (x1(Q1) = y1(Q1)) ∧ (x2(R2) = y2(R2)) ∧ (x2(Q2) =

y2(Q2))
E3: (x1(R1) = 1 − y1(R1)) ∧ (x1(Q1) = 1 − y1(Q1)) ∧ (x2(R2) = 1 − y2(R2)) ∧

(x2(Q2) = 1 − y2(Q2))

Thus given a tuple of evaluations

V = (x1(R1), x1(Q1), x2(R2), x2(Q2); y1(R1), y1(Q1), y2(R2), y2(Q2)),

we get that Pr[V is information losing] = 1 − Pr[E1 ∨ E2 ∨ E3].
We will bound Pr[E1 ∨E2 ∨E3] ≤ 1

2 , thus proving the desired result. For this
we first use union bound to get Pr[E1 ∨ E2 ∨ E3] ≤ Pr[E1] + Pr[E2 ∨ E3]. Now
for Pr[E1], we have that at either Pr[x1 = 0] = 1

2 or Pr[x2 = 0] = 1
2 (eq. 11).

Thus Pr[x1(R1) = x1(Q1) = x2(R2) = x2(Q2)] ≤ 1
4 .

For Pr[E2 ∨ E3] ≤ Pr[E2] + Pr[E3]. We have three cases by eq. 10:

1. Pr[x2(R) = y2(R)] = 0: In this case Pr[E2] = 0. Additionally using eq. 9 we
get that Pr[E3] = 1

4 . Hence, Pr[E2 ∨ E3] = 1
4

2. Pr[x2(R) = y2(R)] = 1: In this case Pr[E3] = 0. Additionally using eq. 9 we
get that Pr[E2] = 1

4 . Hence, Pr[E2 ∨ E3] = 1
4

3. Pr[x2(R) = y2(R)] = 1
2 : Additionally using eq. 9 we get Pr[E2] = Pr[E3] = 1

16 .
Hence, Pr[E2 ∨ E3] ≤ 1

8

We get Pr[E1 ∨ E2 ∨ E3] ≤ 1
2 , and the probability of inf. loss at least 1

2 . �
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7 The Compiler

Finally, building upon results from the previous sections, we define a compiler
that compiles any circuit C : Z

s
2 → Z

t
2 into another functionally equivalent

circuit Ctest,λ : Zs+s′
2 → Z

t+t′
2 such that for any non-trivial tampering of the

circuit Ctest,λ, running the testing procedure on the tampered Ctest,λ, one always
detects an error with high probability.

Algorithm 3: The Compiler
Input: C : Zs

2 → Z
t
2, λ

Output: Ctest,λ

1 Compile circuit C into a gate-covered Cgate : Z
s+sg

2 → Z
t
2,Tgate, by running

Algorithm 1 on it
2 Add the COPY gates that route the information loss in the gate-covered circuit

to the testing gadget, by running Algorithm 2 on the pair Cgate,Tgate. This
procedure gives a circuit with additional t0 output bits -
Ctest,0 : Z

s+sg

2 → Z
t+t0
2 along with a test set T0

3 Append the Gn,λ,d gadget to the t0 wires added in the previous step, where

d = t
1

λ+1
0 �. This step adds sλ wires to the input of the circuit, but replaces

the t0 output bits created in the previous step with λ new output bits,
producing a circuit Ctest,λ : Z

s+sg+sλ
2 → Z

t+tλ
2

4 return Ctest,λ

Theorem 3 (Testing Probability of Final Circuit). On input circuit
C : Zs

2 → Z
t
2 along with parameter λ, Algorithm 3 outputs a circuit Ctest,λ :

Z
s+sg+sλ

2 → Z
t+tλ
2 such that for any tampering τ of Ctest,λ if

∃X ∈ Z
s
2 : Cτ

test,λ(X||0sg+sλ) �= Ctest,λ(X||0sg+sλ)

then when observing behaviour of the circuit Ctest,λ on its test set Ttest,

• Either the output is wrong:

∃X ∈ Ttest : Cτ
test,λ(X||0sλ) �= Ctest,λ(X||0sλ),

• or the testing gadget detects an inconsistency:

∃X ∈ Ttest : Pr
R←Z

sλ
2

[

Cτ
test,λ(X||R) �= Ctest,λ(X||R)

]

≥ 1
22λ

.

Proof. By the Proposition 3 we know that either we observe an information loss
on the first t bits of the intermediary circuit Ctest,0 or its output is toggled, or
we observe information loss on t0 wires added during Step 2 of the Algorithm 3,
or the output is always correct. Any error on the first t bits of the circuit will
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be detected on at least of query from (T0 ⊆ Ttest is the gate-covering set of
the Ctest,0 (Propositions 1 and 3)). Next, when we append the gadget Gn,λ,d

to the remaining t0 wires of the construction. By Theorem 2 we know that the
information loss on these wires survives with probability 1/2 in each layer when
queried with fresh randomness twice. Hence the information loss would survive
with probability 1/2λ if we query with two fresh randomness vectors in each layer.
Thus if we query with only one random string the probability of information loss
surviving and hence the error showing up on the output is 1

2λ /2λ = 1/22λ. �

Testing Procedure . Given any circuit Cτ
test,λ with any tampering τ on its wires

we test it by querying it on all the test inputs in Ttest along with uniform random
R ∈ Z

sλ
2 . We can repeat the testing procedure κ times with fresh randomness to

get the probability of catching an error 1 − (1 − 1/22λ)κ

Circuit Parameters. For any circuit C : Zs
2 → Z

t
2 with n gates, using the

Algorithm 3 with parameter λ. The first step of the Algorithm produces a gate-
covered circuit Cgate with 5 new input bits and a test set of size 6 and creates a
circuit of size ≈ 7n gates (see Proposition 2). The second step of the algorithm
adds XOR and COPY gate to every nonlinear gate of the circuit, adding ≈ 2 · 4n
gates and roughly ≈ 4n output wires (in the previous estimation at least 3n out
of 7n gates are the COPY gates). The third step of the algorithm replaces the
4n intermediary wires with ≈ L · λ+1

√
4n input bits and ≈ λ+1

√
4n output bits.

8 Conclusions and Open Problems

In this work, we construct an efficiently testable circuit compiler that detects
tampering on all wires and does not assume conductivity, solving one of the two
open problems put forward in [3] (the other being a construction that can handle
tampering of all gates). Unlike in [3], our testing procedure is randomized, and
it’s an interesting open question whether this is inherent. We can “derandomize”
our construction by using λ = log(n) layers and then making test queries for all
22λ = n2 possible choices of the randomness. The number of test queries will be
quadratic in the size of the circuit, which is not practical.

We hope that more applications, besides testing and security against tam-
pering, will be found in the future as was the case for non-malleable codes [18]
(like ETC, non-malleable codes originally also aimed at preventing tampering,
but only on static memory ). E.g., an arithmetic version of our ETC could have
applications to multiparty computation (as it would strengthen the additive tam-
pering notion used in [23]), or to the construction of succinct proofs systems,
where starting from an ETC rather than a general (arithmetic) circuit could give
some security benefits, like avoiding a trusted setup, and instead just checking
whether the setup works on all the values in the testset.
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Abstract. A backdoored Pseudorandom Generator (PRG) is a PRG
which looks pseudorandom to the outside world, but a saboteur can break
PRG security by planting a backdoor into a seemingly honest choice of
public parameters, pk, for the system. Backdoored PRGs became increas-
ingly important due to revelations about NIST’s backdoored Dual EC
PRG, and later results about its practical exploitability.

Motivated by this, at Eurocrypt’15 Dodis et al. [22] initiated the ques-
tion of immunizing backdoored PRGs. A k-immunization scheme repeat-
edly applies a post-processing function to the output of k backdoored
PRGs, to render any (unknown) backdoors provably useless. For k = 1,
[22] showed that no deterministic immunization is possible, but then
constructed “seeded” 1-immunizer either in the random oracle model,
or under strong non-falsifiable assumptions. As our first result, we show
that no seeded 1-immunization scheme can be black-box reduced to any
efficiently falsifiable assumption.

This motivates studying k-immunizers for k ≥ 2, which have an addi-
tional advantage of being deterministic (i.e., “seedless”). Indeed, prior
work at CCS’17 [37] and CRYPTO’18 [8] gave supporting evidence that
simple k-immunizers might exist, albeit in slightly different settings.
Unfortunately, we show that simple standard model proposals of [8,37]
(including the XOR function [8]) provably do not work in our setting.
On a positive, we confirm the intuition of [37] that a (seedless) random
oracle is a provably secure 2-immunizer. On a negative, no (seedless)
2-immunization scheme can be black-box reduced to any efficiently falsi-
fiable assumption, at least for a large class of natural 2-immunizers which
includes all “cryptographic hash functions.”

In summary, our results show that k-immunizers occupy a peculiar
place in the cryptographic world. While they likely exist, and can be
made practical and efficient, it is unlikely one can reduce their security
to a “clean” standard-model assumption.

1 Introduction

Pseudorandom number generators (PRGs) expand a short, uniform bit string s
(the “seed”) to a larger sequence of pseudorandom bits X. Beyond their status
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as a fundamental primitive in cryptography, they are used widely in practi-
cal random number generators, including those in all major operating systems.
Unsurprisingly, PRGs have been target of many attacks over the years. In this
work we focus on a specific, yet prominent, type of PRG attack which arises by
planting a backdoor inside the PRG. This type of attack goes far back to 1983,
when Vazirani and Vazirani [42,43] introduced the notion of “trapdoored PRGs”
and showed the Blum-Blum-Shub PRG is one such example [13]. Their purpose
was not for sabotaging systems, however, but instead they used the property
constructively in a higher level protocol.

NIST Dual EC PRG. Perhaps the most infamous demonstration of the poten-
tial for sabotage is the backdoored NIST Dual EC PRG [1]. Oversimplifying
this example for the sake of presentation (see [17,22,39] for the “real-world”
description), the attack works as follows. The (simplified) PRG is parameterized
by two elliptic curve points; call them P and Q. These points are supposed to be
selected at random and independent from each other, forming the PRG public
parameter pk = (P,Q) which can be reused by multiple PRG instances. Each
new PRG instance then selects a random initial seed s, and can expand into
random-looking elliptic curve points X = sP and Y = sQ. Ignoring the details
of mapping elliptic curve points into bit-strings,1 as well as subsequent itera-
tions of this process, one can conclude that the points (X,Y ) are pseudorandom
conditioned on pk = (P,Q). In fact, this is provably so under to widely believed
Decisional Diffie-Hellman (DDH) assumption.

Yet, imagine that the entity selecting points P and Q chooses the second
point Q as Q = dP for a random multiple (“discrete log”) d, and secretly keeps
this multiple as its backdoor sk = d. Notice, the resulting public parameter
distribution pk = (P,Q) is identical to the supposed “honest” distribution, when
Q was selected independently from P . Thus, the outside world cannot detect any
cheating in this step, and could be swayed to use the PRG due to its provable
security under the DDH assumption. Yet, the knowledge of d can easily allow
the attacker to distinguish the output (X,Y ) from random; or, worse, predict Y
from X, by noticing that

Y = sQ = s(dP ) = d(sP ) = dX

While we considerably simplified various low level details of the Dual EC PRG,
the works of [17,39] showed that the above attack idea can be extended to attack-
ing the actual NIST PRG. Moreover, the famous “Juniper Dual EC incident”
(see [16] and references therein) showed that this vulnerability was likely used
for years in a real setting of Juniper Networks VPN system!

Backdoored PRGs. Motivated by these real-world considerations, the work
of Dodis et al. [22] initiated a systematic study of so called backdoored PRGs,
abstracting and generalizing the Dual EC PRG example from above. A back-
doored PRG (K,G) is specified by a (unknown to the public) key generation
algorithm K which outputs public parameters pk, and a hidden backdoor sk.
1 And instead thinking of PRG as outputting pseudorandom elliptic curve points.
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The “actual PRG” G takes pk and a current PRG state s as input, and gener-
ates the next block of output bits R and the updated (internal) state s. The
initial seed/state s = s0 is assumed to be chosen at random and not con-
trolled/sabotaged by the attacker. We call this modeling honest initialization,
emphasizing that the Dual EC PRG attack was possible even under such assump-
tion. The PRG can then be iterated any number of times q, producing successive
outputs (Ri) and corresponding internal states (si). The basic constraint on the
saboteur is that the joint output X = (R1, . . . , Rq) should be indistinguishable
from uniform given only the public parameters pk (but not the secret backdoor
sk). We call this constraint public security.

Unfortunately, the dual EC PRG example shows that public security—even
when accompanied by a “security proof”—does not make the backdoor PRG
secure against the saboteur, who also knows sk. In fact, [22] showed that the
necessary and sufficient assumption for building effective backdoor PRGs (secure
to public but broken using sk) is the existence of any public-key encryption
scheme with pseudorandom ciphertexts.

1.1 Our Questions: Immunization Countermeasures

While the question of designing backdoored PRGs is fascinating, in this work
we are interested in various countermeasures against backdoor PRGs, a topic of
interest given the reduced trust in PRGs engendered by the possibility of back-
dooring. Obviously, the best countermeasure would be to use only trusted PRGs,
if this is feasible. Alternatively, one could still agree to use a given backdoor PRG,
but attempt to overwrite its public parameters pk. For example, this latter app-
roach is advocated (and formally proven secure) in [5,35]. Unfortunately, these
techniques cannot be applied in many situations. For example, existing propri-
etary software or hardware modules may not be easily changed, or PRG choices
may be mandated by standards, as in the case of FIPS. Additionally, the user
might not have not have direct control over the implementation itself (for exam-
ple, if it is implemented in hardware or the kernel), or might not have capability
or expertise to properly overwrite (potentially hidden or hardwired) value of pk.
Fortunately, there is another approach which is much less intrusive, and seems
to be applicable to virtually any setting: to efficiently post-process the output of
a PRG in an online manner in order to prevent exploitation of the backdoor. We
call such a post-processing strategy an immunizer.2

The question of building such immunizers was formally introduced and stud-
ied by Dodis et al. [22]. For example, the most natural such immunizer would
simply apply a cryptographic hash function C, such as SHA-256 (or SHA-3),
to the current output Ri of the PRG, only providing the saboteur with value

2 Note that the immunizer only processes pseudorandom outputs and does not have
access to the internal state (which is not necessarily available to a user). Indeed, if
one has access to a random initial state, there is a trivial “immunizer” that ignores
the given backdoor PRG, and instead uses the random state to bootstrap a different
(non-backdoored) PRG.
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Zi = C(Ri) instead of Ri itself. The hope being that hashing the output of a
PRG will provide security even against the suspected backdoor sk.3 Unfortu-
nately, [22] showed that this natural immunizer does not work in general, even
if C is modeled as a Random Oracle (RO)! Moreover, this result easily extends
to any deterministic immunizer C (e.g., bit truncation, etc.).

Instead, the solution proposed by [22] considers a weaker model of proba-
bilistic/seeded immunizers, where it is assumed that some additional, random-
but-public parameter can be chosen after the attacker finalized design of the
backdoor PRG (K,G), and published the public parameters pk. While [22] pro-
vide some positive results for such seeded immunizers, these results were either
in the random oracle model, or based on the existence of so called universal
computational extractors (UCEs) [9]. Thus, we ask the question:

Question 1. Can one built a seeded backdoor PRG immunizer in the standard
model, under an efficiently falsifiable4 assumption?

It turns out that we can use the elegant black-box separation technique of
Wichs [44] to give a negative answer to this question (proof included in the full
version [6]).

Theorem 1. If there is a black-box reduction showing security of a seeded immu-
nizer C from the security of some cryptographic game G, then G is not secure.

Moreover, the availability and trust issues in generating and agreeing on
the public seed required for the immunization make this solution undesirable
or inapplicable for many settings. Thus, we ask the question if deterministic
immunizers could exist in another meaningful model, despite the impossibility
result of [22] mentioned above. And, as a secondary question, if they can be
based on efficiently falsifiable assumptions.

2-Immunizers to Rescue? We notice that the impossibility result of [22]
implicitly (but critically) assumes that only a single honestly-initialized backdoor
PRG is being immunized. Namely, the immunizer C is applied to the output(s)
Ri of a single backdoor PRG (K,G). Instead, we notice that many PRGs allow
to explicitly initialize multiple independent copies. For example, a natural idea
would be to initialize two (random and independent) initial states s and s′ of
the PRG, run these PRGs in parallel, but instead of directly outputting these
outputs Ri and R′

i, respectively, the (“seedless”) immunizer C will output the
value Zi = C(Ri, R

′
i) to the attacker.5 We call such post-processing procedures

2-immunizers.6 More generally, one can consider k-immunizers for k ≥ 2, but
3 This assumption presumes that such C itself is not backdoored.
4 Recall that, loosely speaking, an assumption is efficiently falsifiable if the falseness

of the assumption can be verified (efficiently), given an appropriate witness.
5 Note that again if the post-processing is not sufficiently “simple” (here this means

statelessly processing outputs in an online manner), one can trivially bootstrap “hon-
est” public parameters from many fresh PRG invocations.

6 Drawing inspiration from 2-source extractors [18] to similarly overcome the impos-
sibility of deterministic extraction from a single weak source of randomness.
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setting k = 2 is obviously the most preferable in practice. As before, our hope
would be that the final outputs (Z1, . . . , Zq) will be pseudorandom even condi-
tioned on the (unknown) backdoor sk, and even if the key generation algorithm
K could depend on the choice of our 2-immunizer C. This is the main question
we study in this work:

Question 2. (Main Question). Can one construct a provably secure 2-immunizer
C against all efficient backdoored PRGs (K,G)?

We note that several natural candidates for such 2-immunizers include XOR,
inner product, or a cryptographic hash function C.

A note on immunizers from computational assumptions. One may won-
der whether it is worth considering immunizers whose security depends on a
computational assumption. After all, if the computational assumption is suffi-
ciently strong to imply that pseudorandom generators exist (as most assump-
tions are), then why would we not just use the corresponding PRG? However,
we think that building a immunizer in this setting is still interesting for two
reasons. First, if we can show that a immunizer exists in this regime, then this
gives evidence that an information-theoretic style immunizer also exists. Second,
there are some scenarios where one has access to PRG outputs but no access to
true randomness (for example if the kernel does not give direct access to its ran-
dom number generator). In this setting, we can use a computational immunizer
to recover full security.

1.2 Related Immunization Settings

Before describing our results, it might be helpful to look at the two conceptually
similar settings considered by Bauer at al. [8,21] and Russell et al. [37].

Detour 1: Backdoored Random Oracles. In this model [8], one assumes
the existence of a truly random oracle G. However, the fact that G might have
been “backdoored” is modeled by providing the attacker with the following leak-
age oracle any polynomial number of times: given any (potentially inefficient)
function g, the attacker can learn the output of g applied to the entire truth-
table of G. For example, one can trivially break the PRG security of a length-
expanding random oracle R = G(s), by simply asking the leakage oracle gR(G)
whether there is a shorter-than-R seed s s.t. G(s) = R.

With this modeling, [8] asked (among other things) whether one can build
2-immunizers for two independent BROs F and G. For example, in case of pseu-
dorandomness, they explicitly asked if H(s) = F (s)⊕G(s) is pseudo-random (for
random seed s), even if the distinguisher can have polynomial number of leak-
age oracle calls to F and G separately (but not jointly). Somewhat surprisingly,
they reduce this question to a plausible conjecture regarding communication
complexity of the classical set-intersection problem (see [15] for a survey of this
problem). Thus, despite not settling this question unconditionally, the results of
[8] suggest that XOR might actually work for the case of PRGs.
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In addition, [38] studies the question of k-immunizers in the related setting
of “subverted” random oracles (where the subverted oracle differs from the true
one on a small number of inputs). There, a simple yet slightly more complicated
“xor-then-hash” framework is shown to provide a good immunizer.

Detour 2: Kleptographic Setting. While the study of kleptography goes
back to the seminal works of Young and Yung [45–47] (and many others), let us
consider a more recent variant of [37]. This model is quite general, attempting
to formalize the ability of the public to test if a given black-box implementation
is done according to some ideal specification. As a special case, this could in
particular cover the problem of public parameter subversion of PRGs, where the
PRG designer kept some secret information sk, instead of simply choosing pk at
random.

We will comment on the subtleties “kleptographic PRGs” vs “backdoored
PRGs” a bit later, but remark that [37] claimed very simple k-immunizers in
their setting. Specifically they showed that for one-shot PRGs (where there is
no internal state for deriving arbitrarily many pseudorandom bits) in the klep-
tographic setting, random oracle C is a good 2-immunizer, while for k � 2, one
can even have very simple k-immunizers in the standard model. For example,
have each of k PRGs shrink its output to a single bit, and then concatenate
these bits together. Again this suggests that something might work for the more
general case of (stateful) PRGs.

1.3 Our Results for 2-Immunizers

As we see, in both of these related settings it turns out that simple k-immunizers
exist, including XOR and random oracle for k = 2. Can these positive results be
extended to the backdoored PRG setting?

XOR is Insecure. First we start with the simple XOR 2-immunizer C(x, y) =
x⊕y, which is probably the simplest and most natural scheme to consider. More-
over, as we mentioned, the PRG results of [8] for BROs give some supporting
evidence that this 2-immunizer might be secure in the setting of backdoor PRGs.
Unfortunately, we show that this is not the case.7 Intuitively, the BRO modeling
assumes that both generators F and G are modeled as true random oracles with
bounded leakage, which means that both of them have a lot of entropy hidden
from the attacker. In contrast, the backdoor PRG model of [22] (and this work)
allows the attacker to build F and G which are extremely far from having any
non-trivial amount of entropy to the attacker who knows the backdoor sk.

Indeed, our counter-example for the XOR immunizer comes from a more gen-
eral observation, which rules out all 2-immunizers C for which one can build a
public key encryption scheme (Enc,Dec) which has pseudorandom ciphertexts,
and is what we call C-homomorphic. Oversimplifying for the sake of presen-
tation (see Definition 13), we need an encryption scheme where the message

7 Under a widely believed cryptographic assumption mentioned shortly.
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m—independently encrypted twice under the same public key pk with corre-
sponding ciphertexts x and y—can still be recovered using the secrete key sk
and “C-combined” ciphertext z = C(x, y). If such a scheme exists, the back-
door PRG can simply output independent encryptions of a fixed message (say,
0) as its pseudorandom bits. The C-homomorphic property then ensures that
the attacker can still figure that 0 was encrypted after seeing the combined
ciphertext z = C(x, y), where x and y are now (individually pseudorandom, and
hence secure to public) encryptions of 0. Moreover, we build a simple “XOR-
homomorphic” public key encryption under a variant of the LPN assumption
due to Alekhnovich [3]. Thus, under this assumption we conclude that XOR is
not a secure 2-immunizer.

Theorem 2. Assuming the Alekhnovich assumption (listed in Proposition 1)
holds, XOR is not a secure 2-immunizer.

Inadequacy of Kleptographic Setting for PRGs. Our second obser-
vation is that the kleptographic setting considered by [37]—which extremely
elegant and useful for many other cryptographic primitives (and additionally
considers the dimension of corrupted implementations, which we do not con-
sider) – does not adequately model the practical problem of backdoored PRGs.
In essence, the subverted PRG modeling of [36,37] yields meaningful results
in the stateless (one-time output production) setting, but does not extend to
the practically relevant stateful setting. It is worth noting that while [37] infor-
mally claim (see Remark 3.2 in [36]) a trivial composition theorem to move from
stateless to the (practically relevant) stateful setting, that result happens to be
vacuous.8 In particular, the “ideal specification” of stateful PRGs (implicitly
assumed by the authors in their proofs) requires that stateful PRG would pro-
duce fresh and unrelated outputs, even after rewinding the PRG state to some
prior state. However, PRGs are deterministic after the initial seed is chosen. As
such, even the most secure and “stego-free” implementation will never pass such
rewinding test, as future outputs are predetermined once and for all. Stated dif-
ferently, the “ideal specification” of stateful PRG implicitly assumed by [36,37]
in Remark 3.2 is too strong, and no construction can meet it.9

To see this modeling inadequacy directly, recall that one of the standard
model k-immunizers from [36,37] simply concatenates the first bit of each PRG’s
output. For a stateless (one-time) PRG case, this is secure for trivial (and prac-
tically useless) reasons: each PRG bit should be statistically random, or the
“public” (called the “watchdog” by the authors) will easily catch it. But now
8 In general, we conjecture no such composition result is true under proper modeling

of backdoor PRGs, such as the one in this work. For example, 2-immunization for
stateless PRGs can be effectively instantiated with a sufficiently strong 2-source
extractor. In contrast, our negative result (mentioned later in the Introduction)
rules out such extractors as sufficient for stateful PRGs.

9 Note however, that their modeling does capture pseudorandom number generators
(PRNGs) which accumulate entropy albeit in a setting where one has rewinding
access and the entropy sources are not too adversarial.
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let us look at the stateful extension,—which could be potentially useful if it was
secure,—and apply it to the the following Dual-EC variant. On a given initial
state s, in round i the variant will output the ith bit of Dual-EC initialized with
s. Syntactically, this is the same (very dangerous) backdoor PRG we would like
to defend against, although made artificially less efficient. Yet, when the “con-
catenation” k-immunizer above is applied to this (stateful) variant, the attacker
still learns full outputs of each of the k PRG copies, and can just do the standard
attack on Dual-EC separately on each copy. This means that this k-immunizer
is blatantly insecure in our setting, for any value of k.

Random Oracle is Secure. Despite the inability to generically import the
positive results of [36,37] to our setting, we can still ask if the random oracle
2-immunizer result claimed by [36,37] is actually true for backdoored PRGs.
Fortunately, we show that this is indeed the case, by giving a direct security
proof.10 In fact, it works even is the so called auxiliary-input ROM (AI-ROM)
defined by Unruh [41] and recently studied by [19,23]. In this model we allow the
saboteur to prepare the backdoor sk and public parameters pk after unbounded
preprocessing of the Random Oracle C. The only constraint of the resulting back-
doored PRG G is that it has to be secure to the public in the standard ROM
(since the public might not have enough resources to run the expensive prepro-
cessing stage). Still, when being fed with outputs zi = C(xi, yi), the saboteur
cannot distinguish them from random even given its polynomial-sized backdoor
sk (which also models whatever auxiliary information about RO C the attacker
computed), and additional polynomial number of queries to C.

Despite appearing rather expected, the proof of this result is quite subtle.
It uses the fact that each independently initialized PRG instances F and G are
unlikely to ever query the random oracle on any of the outputs produced by the
other instance (i.e., F on C(·, yi) and G on C(xi, ·)), because we show that this
will contradict the assumed PRG security of F and G from the public.

Theorem 3. C(X,Y ) = RO(X||Y ) is a secure 2-immunizer in the AI-ROM.

Back-box Separation From Efficiently Falsifiable Assumptions.

Finally, we consider the question of building a secure 2-immunizer in the stan-
dard model. In this setting, we again use the black-box separation technique of
Wichs [44] to show the following negative result. No function C(x, y), which is
highly dependent on both inputs x ad y, can be proven as a secure 2-immunizer for
backdoor PRGs, via a black-box reduction to any efficiently falsifiable assump-
tion.

The formal definition of “highly dependent” is given in Definition 18, but
intuitively states that there are few “influential” inputs x∗ (resp., y∗) which

10 In particular, the key piece of our proof that was missing in [36,37], is contained
in Lemma 8 of our paper. The important observation (adapted from the seeded
1-immunizers proof in [22]) is that the random oracle outputs reveal negligible infor-
mation about its inputs, and so every PRG round can inductively be treated as the
first round.
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fix the output of C to a constant, irrespective of the other input. We notice
that most natural functions are clearly highly dependent on both inputs. This
includes XOR, the inner product function, and any cryptographic hash function
heuristically replacing a random oracle, such as SHA-256 or SHA-3.

The latter category is unfortunate, though. While our main positive result
gave plausible evidence that cryptographic hash functions are likely secure as
2-immunizers, our negative result shows that there is no efficiently falsifiable
assumption in the standard model under which we can formally show security
of any such 2-immunizer C.

Theorem 4. Let C be a 2-immunizer which is highly dependent on both inputs.
If there is a black-box reduction showing that C is secure from the security of
some cryptographic game G, then G is not secure.

Weak 2-Immunizers. Given our main positive result is proven in the random
oracle model, we also consider another meaningful type of immunizer which we
call weak 2-immunizer, in hope that it might be easier to instantiate in the
standard model. (For contrast, we will call the stronger immunizer concept con-
sidered so far as strong 2-immunizer.) Recall, in the strong setting the immu-
nizer C was applied to two independently initialized copies of the same backdoor
PRG (K,G). In particular, both copies shared the same public parameters pk.
In contrast, in the weak setting,—in addition to independent seed initialization
above,—we assume the backdoor PRGs were designed by two independent key
generation processes K and K’, producing independent key pairs (pk, sk) and
(pk′, sk′). For example, this could model the fact that competing PRGs were
designed by two different standards bodies (say, US and China). Of course, at
the end we will allow the two saboteurs to “join forces” and try to use both sk
and sk′ when breaking the combined outputs Zi = C(Ri, R

′
i). Curiously, it is

not immediately obvious that a strong 2-immunizer is also a weak one, but we
show that this is indeed the case, modulo a small security loss. In particular, this
implies that our positive result in the random oracle model also gives a weak
2-immunizer.

Of course, the interesting question is whether the relaxation to the weak
setting makes it easier to have standard model instantiations. Unfortunately,
we show that this does not appear to be the case, by extending most of our
impossibility/separation results to the weak setting (as can be seen in their
formal statements). The only exception is the explicit counter-example to the
insecurity of XOR as a weak 2-immunizer, which we leave open (but conjecture
to be true). As partial evidence, we show that the pairing operation (which
looks similar to XOR) is not a weak 2-immunizer under a widely believed SXDH
assumption in pairing based groups [4,7].

Theorem 5. Assuming the SXDH assumption (listed in Conjecture 1) holds for
groups GX , GY , GT , a bilinear map e : GX × GY → GT is not a secure weak
2-immunizer.
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Open Question. Summarizing, our results largely settle the feasibility of
designing secure 2-immunizers for backdoor PRGs, but leave the following fas-
cinating question open: Is there a 2-immunizer C in the standard model whose
security can be black-box reduced to an efficiently falsifiable assumption?

While we know such C cannot be “highly dependent on both inputs”, which
rules out most natural choices one would consider (including cryptographic hash
function), we do not know if other “unnatural” functions C might actually work.

In the absence of such a function/reduction, there are two alternatives:
First, it may be possible to give a non-black-box reduction from a non-highly

input-dependent function (such as a very good two-source extractor).
Or alternatively, one might try to base the security of C on a non-falsifiable

assumption likely satisfied by a real-world cryptographic hash function. For
example, [22] built seeded 1-immunizers based on the existence of so called uni-
versal computational extractors (UCEs) [9]. Unfortunately, the UCE definition
seems to be inherently fitted for 1-immunizers, and it is unclear (and perhaps
unlikely) that something similar can be done in the 2-immunizer setting, at least
with a security definition that is noticeably simpler than that of 2-immunizers.

1.4 Further Related Work

We briefly mention several related works not mentioned so far.

Extractors. Randomness Extractors convert a weak random source into an
output which is statistically close to uniform. Similar to our setting, while deter-
ministic extraction is impossible in this generality [18], these results can either
be overcome using seeded extractors [31], or two-source extractors [18].

A special class of seeded extractors consider consider sources which could
partially depend on the prior outputs of the extractor (and, hence, indirectly
on the random seed). Such sources are called extractor-dependent [25,33], and
generalize the corresponding notion of oracle-dependent extractors considered
by [20] in the ROM. Conceptually similar to our results, [25] showed a black-box
separation for constructing such extractors from cryptographic hash functions in
the standard model, despite the fact that cryptographic hash functions provably
worked in the ROM [20].

Kleptography. Young and Yung studied what they called kleptography: sub-
version of cryptosystems by modifying encryption algorithms in order to leak
information subliminally [45–47]. Juels and Guajardo [29] propose an immuniza-
tion scheme for kleptographic key-generation protocols that involves publicly-
verifiable injection of private randomness by a trusted entity. More recent work
by Bellare, Paterson, and Rogaway [10] treats a special case of Young and Yung’s
setting for symmetric encryption.

As described in detail above, the works [36,37] consider the idea of using
a random oracle as a 2-immunizer, however their results do not extend to the
stateful setting considered here.

The works [5,34] also consider immunizing corrupted PRGs, however these
results success by modifying the public parameters, as opposed to operating on
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the PRG output. In other words, the immunizers are not simple and stateless,
and thus not relevant in a situations where a user cannot control the implemen-
tation itself (e.g. if it is implemented in hardware or the kernel).

Steganography and Related Notions. Steganography (see [27,40]) is the
problem of sending a hidden message in communications over a public channel
so that an adversary eavesdropping on the channel cannot even detect the pres-
ence of the hidden message. In this sense backdoor PRG could be viewed as a
steganographic channel where the PRG is trying to communicate information
back to the malicious PRG designer, without the “public” being able to detect
such communication (thinking instead that a random stream is transmitted).

More recently, the works of [28,32] looked at certain types of encryption
schemes which can always be turned into stegonagraphic channels, even if the
dictator demands the users to reveal their purported secret keys.

Finally, the works of [24,30] looked at constructing so called reverse fire-
walls, which probably remove steganographic communication by carefully re-
randomizing messages supposedly exchanged by the parties for some other cryp-
tographic task.

Backdoored Random Oracles. The work of [8] and [12] consider the task
of immunizing random oracles with XOR. However, these consider information
theoretic models of PRG security. An intriguing observation about the findings
of our work is that information theoretic models (such as the backdoored random
oracle model) do not capture the computational advantage that backdoors can
achieve, as is shown by our counterexamples in Sect. 3.

2 Definitions

Definition 1. Two distributions X and Y are called (t, ε)-indistinguishable
(denoted by CDt(X,Y ) ≤ ε) if for any algorithm D running in time t,

|Pr[D(X) = 1] − Pr[D(Y ) = 1]| ≤ ε.

Definition 2. Let Xλ and Yλ be two families of distributions indexed by λ. If
for all polynomial t(λ) and some negligible ε(λ), Xλ and Yλ are (t(λ), ε(λ))-
indistinguishable, then we say X and Y are computationally indistinguishable
(denoted by CD(X,Y ) ≤ negl(λ)).

2.1 Pseudorandom Generators

A pseudorandom generator is a pair of algorithms (K,G). Traditionally, K takes
in randomness and outputs a public parameter. We additionally allow K to
output a secret key to be used for defining trapdoors. To go with our notation
of secret keys, we will denote the public parameter as the public key. For non-
trapdoored PRGs, the secret key is set to null. G is a function that takes in a
public key and a state, and outputs an n-bit output as well as a new state. More
formally, we give the following definitions, adapted from [22]:
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Definition 3. Let PK,SK be sets of public and secret keys respectively. Let S
be a set we call the state space. A pseudorandom generator (PRG) is a pair of
algorithms (K,G) where

- K : {0, 1}� → PK × SK takes in randomness and outputs a public key pk

and secret key sk. We will denote running K on uniform input as (pk, sk) $←− K.
- G : PK × S → {0, 1}n × S takes in the public key and a state and outputs

n bits as well as the new state.

For ease of notation, we may write G instead of Gpk when the public key is
clear from context.

Definition 4. Let (K,G) be a PRG, pk ∈ PK, s ∈ S. Let s0 = s and let
(ri, si) ← Gpk(si) for i ≥ 1. We call the sequence (r1, . . . , rq) the output of
(K,G), and denote it by outq(Gpk, s) (or outq(G, s)).

For n an integer we will denote by Un the uniform distribution over {0, 1}n.

Definition 5. A PRG (K,G) is a (t, q, δ) publicly secure PRG if K, G both run
in time t and

pk
$←− K

CDt((pk,outq(Gpk,S)), (pk,Uqn)) ≤ δ.

Note that here there is some implied initial distribution over S. This will
depend on the construction, but when unstated we will assume that this distri-
bution is uniform.

Definition 6. A PRG (K,G) is a (t, q, δ) backdoor secure PRG if K, G both
run in time t and

(pk, sk) $←− K

CDt((pk, sk,outq(Gpk,US)), (pk, sk,Uqn)) ≤ δ.

Note that there are PRGs that are (t, q, δ) publicly secure, but not (t′, q, δ′)
backdoor secure even for some t′ << t and δ′ >> δ [22]. The goal of an immu-
nizer is to take in as input some (K,G) which is publicly secure but not backdoor
secure, and transform it generically into a new PRG which is backdoor secure.

2.2 2-Immunizers

Our definition of 2-immunizers will also be based on the definition of immunizers
given in [22]. Note in particular that while the [22] definition of immunizers takes
in the output of one PRG and a random seed, we define 2-immunizers to be
deterministic functions of the output of two PRGs.

We first define notation to express what it means to apply an immunizer to
two PRGs.
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Definition 7. Let (KX , GX), (KY , GY ) be two PRGs and let C : {0, 1}n ×
{0, 1}n → {0, 1}m be a function on the output spaces of the PRGs. We define a
new PRG as follows:

-The key generation algorithm (denoted (KX ,KY )) will be the concatena-
tion of the original two key generation algorithms. More formally, it will run
KX → pkX , skX , KY → pkY , skY and will return pk = (pkX , pkY ) and
sk = (skX , skY ).

-The pseudorandom generation algorithm, denoted C(GX , GY ) will run both
PRGs independently and apply C to the output. Formally, let us denote s =
(sX , sY ). If GX(sX) = (rX , s′X) and GY (sY ) = (rY , s′Y ), then

C(GX , GY )(s) := (C(rX , rY ), (s′X , s′Y )).

Note that the output of the PRG will be C applied to the outputs of the
original PRGs. Formally, if outq(GX , sX) = x1, . . . , xq and outq(GY , sY ) =
y1, . . . , yq, then

outq(C(GX , GY ), (sX , sY )) = C(x1, y1), . . . , C(xq, yq).

Definition 8. A two-input function C is a (t, q, δ, δ′)-secure weak 2-immunizer,
if for any (t, q, δ) publicly secure PRGs (KX , GX), (KY , GY ), the PRG
((KX ,KY ), C(GX , GY )) is a (t, q, δ′) backdoor secure PRG.

A weak 2-immunizer is effective at immunizing two PRGs as long as the public
parameters are independently sampled. We can also consider the case where the
designers of the two PRGs collude and share public parameters. Identically, we
can consider the case where we run one backdoored PRG on multiple honest
initializations. If a 2-immunizer effectively immunizes in this setting, we call it
a strong 2-immunizer.

Let us first define the syntax

Definition 9. Let (K,G) be a PRG and let C : {0, 1}n ×{0, 1}n → {0, 1}m be a
function on the output space of G. We define a new PRG (denoted (K,C(G,G)))
as follows:

-The key generation algorithm will be K
-The pseudorandom generation algorithm, denoted C(Gpk, Gpk) will run G

twice (with the same public key) on two initial seeds, and apply C to the output.
Formally, let us denote s = (sX , sY ). If Gpk(sX) = (rX , s′X) and Gpk(sY ) =
(rY , s′Y ), then

C(G,G)(s) := (C(rX , rY ), (s′X , s′Y ))

If x1, . . . , xq = outq(Gpk, sX) and y1, . . . , yq = outq(Gpk, sY ) are two out-
puts of G on the same public key and freshly sampled initial states, then

outq(C(G,G), (sX , sY )) = C(x1, y1), . . . , C(xq, yq).

Definition 10. A two-input function C is called a (t, q, δ, δ′)-secure strong 2-
immunizer, if for any (t, q, δ) publicly secure PRG (K,G), the PRG
(K,C(G,G)) is a (t, q, δ′) backdoor secure PRG.
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Lemma 1. If C is a (t, q, δ, δ′)-secure strong 2-immunizer, then C is a
(t, q, δ, 4δ′)-secure weak 2-immunizer.

For a proof of this lemma, see a full version of this paper [6].

Remark 1. Some traditional definitions of PRGs [11] consider the notion of
forward-secrecy. That is, even PRG security for the first q outputs should still
be maintained even if the q + 1st output is leaked. However, it is impossible
for a 2-immunizer in our model to preserve public forward secrecy. Informally,
given any PRG satisfying forward-secrecy, we can append an encryption of the
initial state to the q + 1st state. This would result in a PRG satisfying public
forward-secrecy but not backdoor forward-secrecy. Since we do not allow the
2-immunizer to view or modify the internal state of the corresponding PRGs in
any way, it is impossible for any 2-immunizer to remove this vulnerability.

3 Counterexamples for Simple 2-Immunizers

In this section we will outline a framework for arguing that simple functions (for
example XOR) do not work as 2-immunizers. To argue that some C is not a
strong 2-immunizer, we will construct a public key encryption scheme suitably
homomorphic under C. We will then note that the PRG which simply encrypts
0 using the randomness of its honest initialization will have a backdoor after
immunization, where the backdoor will be given by the homomorphic property
of the underlying encryption scheme.

To argue that C is not a weak 2-immunizer, we will need to instead construct
two public key encryption schemes which are in jointly homomorphic in a suitable
manner. In this case, the PRGs defined by encrypting 0 under the two public
key encryption schemes defined will allow us to perform an analogous attack on
C.

In particular, we will generically define what it means for public key encryp-
tion schemes to be suitably homomorphic under C, and argue that this property
is enough to show that C is not a 2-immunizer. Note that the definition of suit-
ably homomorphic will depend on whether we are attacking the weak or strong
security of C.

We will then instantiate our generic result with specific public key encryption
schemes, leading to the following theorems.

Theorem 6 (Theorem 2 restated). Assuming the Alekhnovich assumption
(listed in Proposition 1) holds, XOR is not a (poly(λ), 1, negl(λ), negl(λ))-secure
strong 2-immunizer.

Note that there is no simple way to adapt the public key encryption scheme
used to prove this theorem to be sufficiently homomorphic to prove that XOR
is not a weak 2-immunizer. We leave the question as to whether XOR is a weak
2-immunizer as an open question.
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Definition 11. Let GX , GY , GT be groups of prime order exponential in λ with
generators gX , gY , gT . A bilinear map e : GX ×GY → GT is a function satisfying

e(ga
X , gb

Y ) = e(gX , gY )ab = gab
T

Note that requiring e(gX , gY ) = gT is a non-standard requirement for bilinear
maps, but will always occur when we restrict the codomain of the bilinear group
to the subgroup defined by its image.

Theorem 7 (Theorem 5 restated). Assuming the SXDH assumption (listed
in Conjecture 1) holds for groups GX , GY , GT , a bilinear map e : GX×GY → GT

is not a (poly(λ), 2, negl(λ),
negl(λ))-secure weak 2-immunizer.

Note that although [8] does not directly argue that a bilinear map is a 2-
immunizer in their model, it is clear that the argument for XOR can be gener-
alized to apply for bilinear maps.

3.1 Public Key Encryption

A public key encryption scheme (PKE) is a triple (Gen,Enc,Dec) where

– Gen outputs a public key, secret key pair (pk, sk),
– Enc takes in the public key pk and a message m, and outputs a ciphertext c,
– Dec takes in the secret key sk and a ciphertext c, and outputs the original

message m.

For security, as we are working with pseudorandom generators, it is useful for
us to require that the encryption schemes themselves be pseudorandom. More
formally,

Definition 12. We say that a public key encryption scheme (Gen,Enc,Dec) is
pseudorandom if for all m,

pk
$←− Gen

CDpoly(λ)((pk,Enc(m)), (pk,U)) ≤ negl(λ)

Note that for our purposes we will require all public key encryption schemes
to be pseudorandom. We remark that this assumption is strictly stronger than
traditional PKE security.

3.2 Strong 2-Immunizers

Definition 13. Let Ce : {0, 1}n ×{0, 1}n → {0, 1}m be some operation. We say
that a public key encryption scheme (Gen,Enc,Dec) is Ce-homomorphic if there
exists some function DecCe

sk such that for all m,

Pr
(pk,sk)

$←−Gen

α,α′ $←−U

[DecCe

sk (Ce(Encpk(m;α),Encpk(m;α′))) = m] ≥ 2
3
.
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Theorem 8. Let (Gen,Enc,Dec) be a public key encryption scheme and let
Ce be some operation. Then, if (Gen,Enc,Dec) is pseudorandom and Ce-
homomorphic (with homomorphic decryption algorithm DecCe

), then Ce is not
a (poly(λ), 1, negl(λ), negl(λ))-secure strong 2-immunizer.

Proof. We will first construct a PRG (K,G) using (Gen,Enc,Dec), and then we
will show that Ce(G,G) has a backdoor.

Let us first observe that Pr[DecCe

(U) → 0] + Pr[DecCe

(U) → 1] ≤ 1, and so
one of these probabilities will be less than 1

2 . Without loss of generality, assume
Pr[DecCe

(U) → 0] ≤ 1
2 .

Define (K,G) by K := Gen, Gpk(s) := Encpk(0; s). It is clear to see that
(K,G) is a (poly(λ), 1, negl(λ)) publicly secure PRG by the definition of a pseu-
dorandom PKE. Thus, it remains to show an adversary D that can distinguish

(pk, sk, Ce(Encpk(0;U),Encpk(0;U)))

from
(pk, sk,U)

with probability ≥ 1
poly(λ) .

On input (pk, sk, r), D will run DecCe

sk (r) → m and output 1 if and only if
m = 0. It is clear that

Pr[D(pk, sk, Ce(Encpk(0;U),Encpk(0;U))) → 1] ≥ 2
3

by the definition of DecCe

. But note that we assumed Pr[DecCe

(U) → 0] ≤ 1
2 ,

and so
Pr[D(pk, sk,U) → 1] ≤ 1

2

Thus, the advantage of D is ≥ 2
3 − 1

2 = 1
6 ≥ 1

poly(λ)

We remark that while this theorem is stated for q = 1, it is fairly easy to
extend this to arbitrary q by simply appending the corrupted PRGs with a
genuine one.

[3] gives a construction of a public key encryption scheme based off of a vari-
ant of the learning parity with noise problem (which we will call the Alekhnovich
assumption, it is Conjecture 4.7 in his paper). Instead of presenting his under-
lying assumption directly, we will refer to the following proposition:

Proposition 1 [3]: Suppose that the Alekhnovich assumption holds, then for
every m = O(n), k = Θ(

√
n), �, t ≤ poly(n) then

Ai
$←− Um×n, xi

$←− Un, ei
$←−

({0, 1}m

k

)

CDt((Ai, Aixi + ei)�
i=1, (Ai,Um)�

i=1) ≤ negl(n)
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That is, given a uniformly random m × n binary matrix A, a vector which
differs from an element in the image of the matrix in exactly k places is compu-
tationally indistinguishable from random.

Let us proceed now to the proof of Theorem 6.
We will prove this by showing a pseudorandom ⊕-homomorphic public key

encryption scheme based off of the Alekhnovich assumption.
We claim that if the Alekhnovich assumption holds, the public key encryption

scheme presented in [2] (along with a minor variation) is both pseudorandom and
⊕-homomorphic. Therefore, by Theorem 8, XOR is not a strong 2-immunizer.

First, we present Alekhnovich’s public key encryption scheme in Fig. 1. We
make one minor change to the original scheme, namely we change the value of
the parameter k from

√
n
2 to

√
n
4 . Note that since the underlying proposition

only requires that k = Θ(
√

n), this does not affect the proof of security

Notation:

k =
√

n

4
, m = 2n.

{0, 1}� are vectors in Z
�
2.({0, 1}m

k

)
:= vectors in {0, 1}m

with exactly k 1s.

Gen-A:
A

$
m×n.

x
$

n

e
$

({0, 1}m

k

)

b Ax+ e, M = (b|A).
B

$

U
U

Um×(m−n−1) conditioned on
MTB = 0n.
Output pk = B, sk = (B, e).

Enc-A(1):

c
$ Um.

Output c.

Enc-A(0):

x′ $ Un−1,

e′ $
({0, 1}m

k

)
.

Output c = Bx′ + e′.

Dec-A((B, e), c):
Output 0 if eT c = 0.
Otherwise, output 1.

Fig. 1. Alekhnovich’s PKE scheme (From Sect. 4.4.3).

Proposition 2 [3]: Assuming the Alekhnovich assumption holds,

CD((pk,Enc-A(0)), (pk,Enc-A(1))) ≤ negl(λ)

Corollary 1. Assuming the Alekhnovich assumption holds, (Gen-A,Enc-A,
Dec-A) is pseudorandom.



170 M. Ball et al.

Proposition 3. Assuming the Alekhnovich assumption holds, (Gen-A,Enc-A,
Dec-A) as presented above is ⊕-homomorphic.

The proof of Proposition 3 is in the full version of this paper [6].

3.3 Weak 2-Immunizers

Definition 14. Let Ce : {0, 1}n ×{0, 1}n → {0, 1}m be some operation. We say
a pair of public key encryption schemes (Gen,Enc,Dec) and (Gen′,Enc′,Dec′)
are jointly Ce-homomorphic if there exists some function DecCe

sk,sk′ such that for
all m,

Pr
(pk,sk)

$←−Gen

(pk′,sk′)
$←−Gen′

α,α′ $←−U

[DecCe

sk,sk′(Ce(Encpk(m;α),Enc′
pk′(m;α′))) = m] ≥ 2

3
.

Theorem 9. Let (Gen,Enc,Dec), (Gen′,Enc′,Dec′) be two public key encryp-
tion schemes and let Ce be some operation. Then, if (Gen,Enc,Dec),
(Gen′,Enc′,Dec′) are pseudorandom and jointly Ce-homomorphic (with homo-
morphic decryption algorithm DecCe

), then Ce is not a (poly(λ), 1, negl(λ),
negl(λ))-secure weak 2-immunizer.

Proof. This proof is analogous to the proof of Theorem 8. The corresponding
PRGs are (KX , GX) = (Gen,Enc(0; s)) and (KY , GY ) = (Gen′,Enc′(0; s)). The
distinguisher again runs DecCe → 0 and returns 1 if and only if m = 0.

Corollary 2. If there exists (Gen,Enc,Dec), (Gen′,Enc′,Dec′) pseudorandom
and jointly ⊕-homomorphic, then ⊕ is not a (poly(λ), 1,
negl(λ), negl(λ))-secure weak 2-immunizer.

We remark that the Alekhnovich PKE is not jointly ⊕-homomorphic with
itself. We leave it as an open question as to whether such a pair of encryption
schemes exist for XOR, but we suspect that its existence is likely.

Instead, we show that another simple 2-immunizer (namely a bilinear pairing)
is not secure assuming a suitable computational assumption. In particular, we
will rely on the SXDH assumption, defined in [4,7].

Conjecture 1. The Symmetric External Diffie Hellman Assumption (SXDH)
states that there exist groups GX , GY , GT with generators gX , gY , gT such that
-there exists an efficiently computable bilinear map e : GX × GY → GT , -for
uniformly random a, b, c

$←− Z|GX | CD((ga
X , gb

X , gab
X ), (ga

X , gb
X , gc

X)) ≤ negl(λ)

(the Diffie Hellman assumption holds for GX), -for uniformly random a, b, c
$←−

Z|GY | CD((ga
Y , gb

Y , gab
Y ), (ga

Y , gb
Y , gc

Y )) ≤ negl(λ) (the Diffie Hellman assumption
holds for GY ).
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Note that, as stated in Definition 11 we will require that e(gX , gY ) = gT and
that GX , GY , GT are of prime order exponential in λ.

Note that instead of constructing jointly homomorphic public key encryption
schemes under e, we will instead create public key encryption schemes jointly
homomorphic under a related operation. We will then use the fact that this
related operation is not a weak 2-immunizer to show that e is not a weak 2-
immmunizer.

Let GX , GY , GT be cyclic groups of size exponential in λ with an efficiently
computable bilinear map e : GX × GY → GT . Define the 2-immunizer Ce :
(GX × GX) × (GY × GY ) → GT by

Ce((aX , bX), (aY , bY )) = (e(aX , bX), e(aY , bY )).

Lemma 2. Assuming the SXDH assumption holds, Ce is not a (poly(λ), 1,
negl(λ), negl(λ))-secure weak 2-immunizer.

We defer the proof of this lemma and the proof of Theorem 7 using Lemma 2
to the full version [6].

4 Positive Result in Random Oracle Model

Although it seems that simple functions will not function well as a 2-immunizer,
we show that a random oracle is a strong 2-immunizer. Heuristically, this means
that a good hash function can be used in practice as a 2-immunizer. Furthermore,
it gives some hope that 2-immunizers may exist in the standard model.

In fact, a random oracle is a strong 2-immunizer even if we allow the adversary
to perform arbitrary preprocessing on the random oracle. This model, introduced
in [41], is known as the Auxiliary Input Random Oracle Model (AI-ROM).

Theorem 10. Let RO : {0, 1}2n → {0, 1}m be a random oracle. For t suf-
ficiently large to allow for simple computations, f(X,Y ) = RO(X||Y ) is a
(t, q, δ, δ′)-secure strong 2-immunizer with

δ′ =
(

δ +
q2

2n

)
+ 2(t + t2)q

√
δ +

q

2n
.

Corollary 3. f(X,Y ) = RO(X||Y ) is a (poly(λ), poly(λ), negl(λ), negl(λ))-
secure strong 2-immunizer in the ROM.

Theorem 11 (Theorem 3 restated). f(X,Y ) = RO(X||Y ) is a
(poly(λ), poly(λ), negl(λ), negl(λ))-secure strong 2-immunizer in the AI-ROM.

The intuition behind Theorem 10 is as follows. Even given the secret and
public keys for a PRG, public security guarantees that the output of each PRG
is unpredicable. Let x1, . . . , xq and y1, . . . , yq be two outputs of a PRG, and let
us consider the perspective of the compromised PRG generating x. Since this
algorithm does not know the seed generating y, each yi is unpredictable to it.
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Thus, it has no way of seeing any of the outputs of the functions RO(·||yi). But
as long as neither call to the PRG queries the random oracle on xi||yi, there
will be no detectable relationship between the xi’s and RO(xi||yi), and so the
immunizer output will seem truly random.

The extension to the AI-ROM in Theorem 11 comes from standard presam-
pling techniques [23,41], with a full proof included in the full version [6].

4.1 Random Oracle Model Definitions

In the random oracle model (ROM), we treat some function RO as a function
chosen uniformly at random. This provides a good heuristic for security when
the random oracle is instantiated with some suitable hash function. To argue
that some cryptographic primitive is secure in the random oracle model, the
randomness of the random oracle must be baked into the underlying game.

Definition 15. We will denote the random oracle by O : A → B. Two distri-
butions X and Y are (q, t, ε)-indistinguishable in the random oracle model if for
any oracle algorithm DO running in time t making at most q random oracle
calls, ∣∣∣∣∣∣ Pr

O $←−{f :A→B}
[DO(X) = 1] − Pr

O $←−{f :A→B}
[DO(Y ) = 1]

∣∣∣∣∣∣ ≤ ε

For simplicity, we will typically set q = t. We will define PRG security in
the random oracle model to be identical to typical PRG security, but with the
computational indistinguishability to be also set in the random oracle model.

Definition 16. Two distributions X and Y are (s, t, ε)-indistinguishable in the
AI-ROM if for any oracle function zO into strings of length s and for any oracle
algorithm DO running in time t,

∣∣∣∣∣∣ Pr
O $←−{f :A→B}

[DO(zO,X) = 1] − Pr
O $←−{f :A→B}

[DO(zO, Y ) = 1]

∣∣∣∣∣∣ ≤ ε

We similarly define PRG security in the AI-ROM.

Definition 17. A two-input function C is a (t, q, δ, δ′)-secure strong 2-immu-
nizer in the ROM (respectively AI-ROM), if for any PRG (K,G) which is (t, q, δ)
publicly secure in the ROM, the PRG (K,C(G,G)) is a (t, q, δ′) backdoor secure
PRG in the ROM (respectively AI-ROM).

The definition of a (t, q, δ, δ′)-secure weak 2-immunizer in the ROM/AI-ROM
will be analogous.

Note that in particular our definition for 2-immunizer security in the AI-
ROM only requires that the underlying PRG be secure in the ROM. This is a
stronger definition, and we do this to model the situation where the auxiliary
input represents a backdoor for the underlying PRGs.
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4.2 Random Oracle is a 2-Immunizer

To show that a random oracle is a strong 2-immunizer, we adapt the proof
structure from [22]. That is, we prove a key information theoretic property about
publicly secure PRGs, and then use this property to bound the probability that
some adversary queries the random oracle on key values.

In particular, let GX , GY be two PRGs with outputs x1, . . . , xq and y1, . . . , yq,
and let RO be a random oracle. We will argue that the only part of the PRG
game for RO(GX , GY ) which queries RO(xi, yi) is when the 2-immunizer is
directly called by the game. This is because all parts of the game will only have
access to at most one of xi or yi, and so therefore as the other is information
theoretically unpredictable, they will be unable to query xi and yi to the oracle
at the same time.

Afterwards, we will show that RO is still a strong 2-immunizer even in the
presence of auxiliary input. We will show this by using the presampling lemma
(Theorem ??). The trick we will use is that since our key property is information
theoretic, we can set p for the presampling lemma to be exponential in λ, and
so the security loss we suffer will be negligible.

We begin by stating the following information theoretic lemma. The proof is
in the full version of this paper [6].

Lemma 3. (KEY LEMMA) Let K : {0, 1}� → PK × SK, G : PK × S →
{0, 1}n × S be a (t, q, δ) publicly secure PRG. Let r ∈ {0, 1}� be some initial
randomness. For p ∈ (0, 1), we say that r is p-weak if for (pk, sk) ← K(r),

max
x̃∈{0,1}n

Pr
x1,...,xq

$←−outq(Gpk,US)

[xi = x̃ for some i ∈ [q]] ≥ p.

Denote
p′ := Pr

r∈{0,1}�
[r is p-weak]

Then,
p′ · p2 ≤ q2

(
δ +

q

2n

)
.

Intuitively, we call a public key pk (described using its initial randomness r)
weak if the output of Gpk is predictable. The above lemma gives an upper bound
on the probability of a public key being weak. That is, we show (through an
averaging argument) that every publicly secure PRG has unpredictable output
for most choices of its public parameters.

We now proceed to the proof of Theorem 10.

Proof. Let K : {0, 1}� → PK × SK, G : PK × S → {0, 1}n × S be a (t, q, δ)-
secure PRG. Let D be a distinguisher against f(G,G) running in time t. Let
HONEST be the distribution

(sk, pk) $←− K, sX , sY
$←− S

(pk, sk,outq(C(Gpk, Gpk), (sX , sY )))
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and let RANDOM be the distribution

(sk, pk) $←− K, (r1, . . . , rq)
$←− Uqm

(pk, sk, r1, . . . , rq)

We want to bound

δ′ = |Pr[D(HONEST ) = 1] − Pr[D(RANDOM) = 1]|
Let qK , qG, qD be bounds on the number of times K,G,D query the random

oracle respectively. Note that these are all bounded by t.
Let us consider the case where the distinguisher is given the output of the hon-

est 2-immunizer. We will denote outq(G, sX) = x1, . . . , xq and outq(G, sY ) =
y1, . . . , yq. Let BAD be the event that there is some i such that (xi, yi) is queried
to the random oracle more than once. Note that conditioned on BAD, the two
distributions in the distinguishing game are identical. Thus, δ′ ≤ Pr[BAD].

We will break BAD up into five cases, and bound each case separately.

– We define BAD1 to be the event where there exists i, j such that xi = xj and
yi = yj . This corresponds to (xi, yi) be queried to the random oracle more
than once by the game itself.

– We define BAD2 to be the event that K queries xi, yi for some i.
– We define BAD3 to be the event that G queries xi, yi in the process of cal-

culating outq(Gpk, sX).
– We define BAD4 to be the event that G queries xi, yi in the process of cal-

culating outq(Gpk, sY ).
– We define BAD5 to be the event that D queries xi, yi.

Lemma 4. Pr[BAD1] ≤ δ + q2

2n

First, we will bound Pr[BAD1]. Let A be an attacker for the underlying PRG
game on (K,G) which on input r1, . . . , rq outputs 1 if ri = rj for some i 
= j. It
is clear that Pr[A(pk,outq(Gpk,US)) → 1] ≥ Pr[BAD1], and Pr[A(pk,Uqn) →
1] ≤ q2

2n . But by public security of the PRG, Pr[A(pk,outq(Gpk,US)) → 1] −
Pr[A(pk,Uqn) → 1] ≤ δ Thus, we have

Pr[BAD1] ≤ δ +
q2

2n

Lemma 5. Pr[BAD2] ≤ qqK

√
δ + q

2n

We will bound Pr[BAD2] using the key lemma. We claim that

Pr
r

$←−U�

[r is p-weak] ≥
√

Pr[BAD2]

for some suitable value of p. We will then use the key lemma to get an upper
bound on Pr[BAD2].
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Let r be such that

Pr[BAD2|(pk, sk) ← K(r)] ≥
√

Pr[BAD2]

We claim then that r is p-weak for some p to be specified later. Let Fr be the
set of random oracle queries made by K(r). We can more precisely state

Pr[BAD2|(pk, sk) ← K(r)] = Pr[(xi, yi) ∈ Fr for some index i|(pk, sk) ← K(r)]

In particular, we can ignore one output and see that this means

Pr
x1,...,xq

$←−outq(Gpk,US)

[xi ∈ Fr for some index i] ≥
√

Pr[BAD2]

But since |Fr| ≤ qK , this means there must be some element x̃ ∈ Fr such that

Pr
x1,...,xq

$←−outq(Gpk,US)

[xi = x̃ for some index i] ≥
√

Pr[BAD2]
qK

.

But this precisely means that r is p-weak, for p =
√

Pr[BAD2]

qK
. Thus,

√
Pr[BAD2] Pr[BAD2] ≤ q2Kq2

(
δ +

q

2n

)

and so as
Pr[BAD2]2 ≤

√
Pr[BAD2] Pr[BAD2],

we have

Pr[BAD2] ≤ qqK

√
δ +

q

2n
.

Lemma 6. Pr[BAD3] ≤ q2qG

√
δ + q

2n

To bound Pr[BAD3], we will again use the key lemma and show that

Pr
r

$←−U�

[r is p-weak] ≥
√

Pr[BAD3]

for some suitable value of p.
Let r be such that

Pr[BAD3|(pk, sk) ← K(r)] ≥
√

Pr[BAD3].

We claim then that r is p-weak for some p to be specified later. Note that
since this probability is the average over s of Pr[BAD3|(pk, sk) ← K(r), sX = s],
there must be some s̃ such that

Pr[BAD3|(pk, sk) ← K(r), sX = s̃] ≥
√

Pr[BAD3].
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Let Fr,s̃ be the queries made by G when calculating outq(Gpk, s̃). Using a similar
argument as in the previous paragraph, we see that there must be some pair
(x̃, ỹ) ∈ Fr,s̃ such that

Pr
y1,...,yq

$←−outq(Gpk,US)

[yi = ỹ for some index i] ≥
√

Pr[BAD3]
|Fr,s̃| .

But note that |Fr,s̃| ≤ q · qG as it is generated by running G q times. Thus, r is

p-weak for p =
√

Pr[BAD3]

q·qG
. The same algebra as the previous lemma gives us

Pr[BAD3] ≤ q2qG

√
δ +

q

2n

Lemma 7. Pr[BAD4] ≤ q2qG

√
δ + q

2n

The proof of this lemma is analogous to the proof for Pr[BAD3].

Lemma 8. Pr[BAD5] ≤ qqD

√
δ + q

2n

To bound Pr[BAD5], we first notice that at the point when D first queries
xi, yi, the only information available to D is the secret key and the output of
i− 1 random oracle calls. As at this point D has never queried any of its inputs,
the probability that D succeeds at querying any input is the same as if D were
given only the secret key.

Let us fix any initial randomness r ∈ {0, 1}� such that

Pr[BAD5|(pk, sk) ← K(r)] ≥
√

Pr[BAD5].

We can clearly see that

Pr[BAD5|(pk, sk) ← K(r)]

≤ max
F⊆{0,1}n

|F |≤qD

Pr[(xi, yi) ∈ F for some index i|(pk, sk) ← K(r)]

But by union bound we then have

Pr[BAD5|(pk, sk) ← K(r)] ≤ qD max
x̃∈{0,1}n

Pr[xi = x̃ for some i ∈ [q]].

The same reasoning as the previous arguments shows us that r is p-weak for

p =
√

Pr[BAD5]

qD
. Applying the key lemma gives us

Pr[BAD5] ≤ qqD

√
δ +

q

2n



Immunizing Backdoored PRGs 177

Putting all the lemmas together, we have

δ′ ≤ Pr[BAD] ≤
(

δ +
q2

2n

)
+

(
qqK + 2q2qG + qqD

) √
δ +

q

2n

Noting that qK , qG, qD ≤ t gives us our theorem.

5 Black Box Separation (with Limitations)

Definition 18. Let C : {0, 1}n × {0, 1}n → {0, 1}m be a function. We call an
input x ∈ {0, 1}n “left-bad” if maxz∈{0,1}m Pry∈{0,1}n [C(x, y) = z] > 1

2 . We
define what it means for an input to be “right-bad” analogously.

We say that C is highly dependent on both inputs if

Pr
(x,y)

$←−{0,1}2n

[x is “left-bad” OR y is “right-bad”] ≤ negl(λ).

Informally, a two-input function C is highly dependent on both inputs if it
ignores one of its inputs at most a negligible proportion of the time. This is a
rather broad category of functions. In particular, XOR, pairings, inner product,
and random oracles are all highly dependent on both inputs. Furthermore, any
collision resistant hash function must also be highly dependent on both inputs,
otherwise it would be trivial to find a collision.

We show that it is hard to prove security (either weak or strong) for any 2-
immunizer C which is highly dependent on both inputs. Note that one of the most
common and useful techniques for proving security of cryptographic primitives
is to create a black box reduction to some cryptographic assumption. Informally,
a black box reduction transforms an attacker for some cryptographic primitive
into an attacker for a cryptographic assumption. Thus, if the cryptographic
assumption is immune to attack, the cryptographic primitive will be secure.

We show that if a 2-immunizer is highly dependent on both inputs, then there
cannot be any black-box reduction of its security to any falsifiable cryptographic
assumption.

Theorem 12 (Theorem 4 restated). Let C be a weak 2-immunizer which is
highly dependent on both inputs. If there is a black-box reduction showing that C
is (poly(λ), λ, negl(λ),
negl(λ))-secure from the security of some cryptographic game G, then G is not
secure.

As a random oracle is highly dependent on both inputs, any reasonable hash
function should also be highly dependent on both inputs. This implies that
despite the fact that a random oracle is a strong 2-immunizer, it may be hard to
argue security for any particular instantiation of the random oracle. We sketch
the proof of this theorem in the next subsection. For the full argument, see the
full version [6].
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5.1 Proof Sketch for Theorem 12

The simulatable attacker paradigm. The simulatable attacker paradigm,
first introduced by [14] and formalized by [44], is a method for transform-
ing a black-box reduction into an attack against the underlying assumption.
This paradigm was first used to prove black-box separations from all falsifiable
assumptions in [26].

In particular, let C be a cryptographic protocol with a black-box reduction to
a cryptographic assumption G. Formally, we will describe the black-box reduction
as an oracle algorithm B· which breaks the security of G whenever its oracle is
a (possibly inefficient) adversary breaking the security of C.

A simulatable attack against C is an (inefficient) attack A which breaks the
security game of C, but which can be simulated by an efficient algorithm Sim.
In particular, oracle access to A and Sim should be indistinguishable to the
black-box reduction B·. If this occurs, then since BSim is indistinguishable from
BA, BSim is an efficient attack breaking the security game of G.

Note that in order for this paradigm to make sense, it needs to be the case
that the simulator has more capabilities than the inefficient adversary, other-
wise the simulator itself would be an attack for C. In practice, this is done by
either restricting the oracle queries made by the black-box separation B· or by
restricting the power of the attacker A.

Black-box separations for 2-stage games. In 2013, Wichs showed a a
general framework for proving that two-stage games cannot be reduced to any
falsifiable assumption [44]. In a two-stage security game the adversary consists
of two algorithms which each have individual state, but are not allowed to com-
municate. Thus, a simulatable attack consists of the inefficient attack as well as
two simulators where the simulators do have shared state. This means that it is
conceivable to have a simulator Sim for which oracle access is indistinguishable
from A.

Note that if we have a simulatable attack of this form, then this simulator will
fool every (efficient) black-box reduction. Thus, if we can prove that for every
construction there exists an simulatable attack, this gives a black-box separation
of the security definition from any falsifiable assumption.

Our simulatable attack. Note that an adversary against a 2-immunizer con-
sists of both a set of PRGs and a distinguisher. Here, the PRGs and the dis-
tinguisher are not allowed to share state, and so we can hope to construct a
simulatable attack in the style of [44].

Given C any candidate 2-immunizer, let GX , GY be random functions and let
D(y) be the algorithm which outputs 1 if there exists an (sX , sY ) such that y =
outq(C(GX , GY ), (sX , sY )). It is clear that GX , GY ,D is an inefficient attack
breaking the security of C.

To simulate this, we simply replace GX , GY with a lazy sampling ora-
cle. That is, the first time GX sees s, it will respond with a random value,
and it will use the same response for future queries of s. To simulate D,
the simulator will check if there exists an already queried (sX , sY ) such that
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y = outq(C(GX , GY ), (sX , sY )). Since the adversary is polynomially bounded,
there will only be a polynomial number of already queried points, and so this
simulator is efficient.

It turns out that the only way to distinguish this simulator from the inefficient
adversary is to find some y such that y = outq(C(GX , GY ), (sX , sY )) for either
sX or sY unqueried. If neither sX or sY has been queried before, then by a
counting argument it is impossible to guess such a y. But if sX has been queried
before, if C ignores sY then it is possible to guess outq(C(GX , GY ), (sX , sY ))
without querying sY . To avoid this problem, we simply assume that the output
of C is dependent on both of its inputs, as in Definition 18.
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Abstract. Constructing key-agreement protocols in the random oracle
model (ROM) is a viable method to assess the feasibility of develop-
ing public-key cryptography within Minicrypt. Unfortunately, as shown
by Impagliazzo and Rudich (STOC 1989) and Barak and Mahmoody
(Crypto 2009), such protocols can only guarantee limited security: any
�-query protocol can be attacked by an O(�2)-query adversary. This
quadratic gap matches the key-agreement protocol proposed by Merkle
(CACM 78), known as Merkle’s Puzzles.

Besides query complexity, the communication complexity of key-
agreement protocols in theROM is also an interesting question in the realm
of find-grained cryptography, even though only limited security is achiev-
able. Haitner et al. (ITCS 2019) first observed that in Merkle’s Puzzles, to
obtain secrecy against an eavesdropper with O(�2) queries, the honest par-
ties must exchange Ω(�) bits. Therefore, they conjectured that high com-
munication complexity is unavoidable, any �-query protocols with c bits of
communication could be attacked by an O(c · �)-query adversary. This, if
true, will suggest that Merkle’s Puzzle is also optimal regarding commu-
nication complexity. Building upon techniques from communication com-
plexity, Haitner et al. (ITCS 2019) confirmed this conjecture for two types
of key agreement protocols with certain natural properties.

This work affirms the above conjecture for all non-adaptive protocols
with perfect completeness. Our proof uses a novel idea called density
increment argument. This method could be of independent interest as
it differs from previous communication lower bounds techniques (and
bypasses some technical barriers).

Keywords: Key-Agreement · Communication Complexity · Random
Oracle

1 Introduction

Key-agreement protocols [DH76] allow two parties, Alice and Bob, to agree on
a shared private key by communicating over an insecure public channel. Its
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security requires that any (efficient) eavesdropper cannot learn the key from
the transcript. In an early work, Merkle [Mer78] first proposed an ingenious
key-agreement protocol, known as Merkle’s Puzzles, as follows.

Protocol 1 (Merkle’s Puzzles). Let f : [N ] → [M ] be a cryptographic hash
function and let � be a parameter measuring the query complexity of this protocol.
Alice and Bob first agree on a set W ⊆ [N ] of size �2. Then, at the beginning of
the protocol, Alice makes � random queries in W , i.e., f(w1), . . . , f(w�). Sim-
ilarly, Bob makes another � random queries f(w′

1), . . . , f(w′
�). By the birthday

paradox, there is a good chance that {w1, . . . , w�} ∩ {w′
1, . . . , w

′
�} �= ∅. Alice then

sends z1 = f(w1), . . . , z� = f(w�) to Bob, and Bob checks if there is a w′
j in his

query such that f(w′
j) = zi for some i ∈ [�]. If such a pair (w′

j , zi) exists, then
Bob sends zi back to Alice and sets w′

j as his key; otherwise, Bob aborts. Finally,
according to zi, Alice chooses wi as her key.

As long as the function f is collision-free on W , Alice and Bob will agree on the
same key with high probability. In terms of security, if f is modeled as a random
function, we can show that any eavesdropper that breaks this protocol with con-
stant probability has to query a constant fraction of inputs in W ; consequently,
the query complexity of any eavesdropper must be Ω(�2).

On the other hand, Impagliazzo and Rudich [IR89], followed by Barak
and Mahmoody [BMG09], showed that key-agreement protocol is essentially
a public-key primitive and is unlikely to be based only on hardness assump-
tions for symmetric cryptography—any key-agreement protocol only guaran-
tees limited security as long as the symmetric hardness is used in a black-box
way. Specifically, they studied key-agreement protocols in the random oracle
model (ROM). In the ROM, all parties, including the eavesdropper, have ora-
cle access to a random function f : [N ] → [M ], which is an idealization of
symmetric primitives like collision-resistant hash function. The efficiency of par-
ties is measured by the number of queries they make to the oracle (in the
worst case). [IR89] proved that any key-agreement protocols in the ROM with �
queries can be attacked by an eavesdropper with O(�6) queries. [BMG09] further
improved the efficiency of the eavesdropper to O(�2) queries. This result indi-
cates that Merkle’s puzzle is optimal in terms of the number of oracle queries
since it reaches quadratic security. Despite its limited security, the complex-
ity of key-agreement protocols in the ROM is still an interesting question of
fine-grained cryptography. A long line of research has been conducted on the
limitation and possibility of key-agreement protocols in the ROM, in both classi-
cal setting [DH76,Mer78,IR89,BMG09,HMO+19,ACMS23], distributed setting
[DH21] and quantum setting [ACC+22].

Besides oracle queries, another important cost in key-agreement protocols is
the communication cost between Alice and Bob. The communication complex-
ity of (multi-party) protocols, such as key-agreement, optimally-fair coin toss-
ing, statistically hiding commitment schemes, and multi-party computation, has
garnered considerable attention recently [DSLMM11,HHRS15,HMO+19,Cou19,
AHMS20,CN22].



Communication Lower Bounds of Key-Agreement Protocols 187

In this paper, we focus on the communication complexity of key-agreement
protocols: a problem initiated by Haitner et al. [HMO+19]. Concretely, they
observed that the communication complexity of Merkle’s Puzzle is also ˜Ω(�)1,
and they conjectured that high communication cost is unavoidable.

Conjecture 1 ([HMO+19], informal). Let Π = (A,B) be a key-agreement pro-
tocol such that:

1. A and B agree on the same key with high probability;
2. A and B each make at most � queries to the random function (oracle);
3. Π is secure against any adversary with q queries to the random oracle.

Then A and B must communicate Ω(q/�) bits.

As we discussed, Merkle’s puzzle matches the lower bound in this conjecture
for q = Θ(�2). For q = o(�2), an asymmetric version of Merkle’s puzzle also
matches this lower bound.

Protocol 2 (Asymmetric version of Merkle’s Puzzles). Alice and Bob
first fix a domain W of size q. Then Alice makes c := q/� random queries in W
and sends them to Bob. Bob also makes � random queries (in W ) and checks if
there is a common query in accordance with the original Merkle’s Puzzles.

[HMO+19] partly tackled this conjecture for two types of key-agreement pro-
tocols. We say a protocol is non-adaptive if both parties choose all their queries
at the beginning of the protocol (before querying the oracle and communicating);
that is, their queries are determined by their internal randomness. Haitner el al.
[HMO+19] proved that for any protocol Π = (A,B) that satisfies the conditions
in Conjecture 1:

– If Π is non-adaptive and has only two rounds, A and B must exchange Ω(q/�)
bits.

– If the queries are uniformly sampled, then A and B must communicate
Ω(q2/�3) bits.

Note that protocols with uniform queries are also special non-adaptive protocols.
In this paper, we affirm Conjecture 1 for non-adaptive protocols with perfect

completeness, i.e., Alice and Bob agree on the same key with probability 1.
Specifically, we prove the following theorem.

Theorem 3 (Informal). Let Π = (A,B) be a non-adaptive key-agreement
protocol such that:

1. A and B agree on the same key with probability 1;
2. A and B each make at most � queries to the random oracle;
3. Π is secure against any adversary with q queries to the random oracle.

Then A and B must communicate Ω(q/�) bits.
1 We drop low order terms such as log N and log M here.
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Our proof is built on the density increment argument introduced by Yang
and Zhang [YZ22,YZ23], which they used to prove communication lower bounds
for the unique disjointness problem. Looking at our main theorem carefully, we
acknowledge two non-trivial requirements in our statement: non-adaptivity and
perfect completeness. However, these limitations are not inherent in this method.
Therefore, we are optimistic that our method has a good chance to overcome
these two limitations; more details will be discussed in Sect. 1.2.

It is worth noting that Mazor [Maz23] recently devised a non-adaptive pro-
tocol with perfect completeness and quadratic security guarantee. We observed
that this protocol, with minor adjustments, allows a trade-off between com-
munication and security in a similar fashion to Protocol 2. Our result shows
that Mazor’s construction is optimal among non-adaptive protocols with perfect
completeness.

1.1 Proof Overview

Now we give a high-level overview of our proof. Since the execution of key-
agreement protocols and the attacking process involve many random variables,
we first explain our notations.

– We use bold and uppercase letters for random variables and corresponding
regular letters for samples and values, such as f, rA, rB , QA, QB , τ,QE and
fE (uppercase for sets and lowercase for elements and functions).

– Let F be the RO that the parties have access to, which is a random func-
tion from [N ] to [M ]. Moreover, let RA,RB be Alice’s and Bob’s internal
randomness. (RA,RB ,F ) determines the entire execution of key-agreement
protocols.

– Let QA,QB ⊆ [N ] be the queries made by Alice and Bob in the execution,
respectively. Notice that QA,QB is fully determined by RA,RB for non-
adaptive protocols. QA and QB are usually ordered sets since Alice and Bob
make oracle queries one at a time. For the sake of notation convenience, we
sometimes regard QA and QB as unordered sets.

– Let T be the communication transcript between Alice and Bob. Notice that
T is observed by the attacker Eve.

– Let QE ⊆ [N ] be Eve’s queries. Let FE = F (QE ) be Eve’s observations of the
random oracle F . We interpret FE as a partial function: for every x ∈ QE ,
FE(x) = F (x); for all other x, FE(x) = ⊥.

To study the security of key-agreement protocols, Impagliazzo and Rudich
[IR89] observed that the advantage of Alice and Bob over Eve mainly comes from
their intersection queries which have not been queried by Eve, i.e., the knowledge
from (QA∩QB)\QE and F ((QA∩QB)\QE). Based on this insight, they devised
an attacker that aims to guess (and query) the set (QA ∩QB). In order to learn
intersection queries more efficiently, [BMG09] introduced the notion of heavy
query. Given Eve’s current observation, which consists of a transcript τ and a
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partial function fE , an input w ∈ [N ] \ QE is said to be ε-heavy with respect to
(τ, fE) if

Pr[w ∈ (QA ∩ QB) | τ, fE ] ≥ ε.

Now we give an informal description of Eve’s strategy2:

– Stage I. Eve checks if there exists a heavy query conditioned on transcript
τ and her observations of the random oracle fE . If yes, then query them,
update fE , and repeat until there are no heavy queries.

– Stage II. Eve simulates Alice and Bob based on observed information and
outputs Alice’s key in her simulation. In other words, Eve simply outputs a
sample from the distribution of Alice’s key conditioned on observed informa-
tion.

Suppose that Alice and Bob each make at most � queries and set ε = Θ(1/�). A
standard technique can prove that Stage I stops within O(�/ε) = O(�2) queries.
We can also show that in order to clean up all heavy queries (Stage I), Ω(�2)
queries are inevitable. This querying process does not explore strong connections
to communication complexity.

Our Approach. Our main observation is that if Alice and Bob communicate
too little, they cannot utilize their common queries and thus have no advantage
over Eve! Hence, we focus on queries correlated with the transcript τ instead of
all intersection queries. With this in mind, we introduce correlated query as a
refined notion of heavy query.

Definition 1 (ε-correlated set, informal; see Definition 3). Eve’s view
consists of a transcript τ and a partial function fE. We say a set S =
{w1, . . . , wr} ⊆ [N ] is ε-correlated with respect to (τ, fE) if

H (F (w1), . . . ,F (wr) | RA,RB , fE) − H (F (w1), . . . ,F (wr) | RA,RB , fE , τ) ≥ ε,

where H(·) denotes the Shannon entropy.

We use F (S) to denote (F (w1), . . . ,F (wr)) in the future, and F (S) can also
be viewed as a partial function with domain S. A main difference between our
attacker and [BMG09] is that: instead of making ε-heavy queries, we clean up all
ε-correlated sets of size at most 2�. Another difference is that we choose ε = Θ(1)
and [BMG09] set ε = Θ(1/�). Intuitively, this is because a correlated set of size �
is as effective as � single heavy queries. Along these lines, we then have to prove
two things:

– Success. Eve can guess the key of Alice/Bob if there is no ε-correlated set
of size at most 2�.

– Efficiency. Eve can remove all ε-correlated sets (of size at most 2�) after
querying O(c) correlated sets, where c is the number of communication bits
between Alice and Bob. Thus, the query complexity of Eve is O(c · �).

2 This is not exactly the same as [BMG09] due to some technical challenges in
[BMG09].
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Eve Can Guess the Key if There are No Small ε-Correlated Sets. Assume that
the protocol Π is non-adaptive, i.e., QA (or QB) is determined by rA (resp., rB).
To study the success probability of Eve, we consider a rectangle X ×Y as follows.
Every x ∈ X has the form x = (rA, fA) (Alice’s view) and every y ∈ Y has the
form y = (rB , fB) (Bob’s view), where fA, fB have domain QA, QB respectively.
Note that we enumerate x and y independently in the rectangle. Consequently,
some pairs (x, y) in this rectangle may be inconsistent. Concretely, we say that
a pair x = (rA, fA) and y = (rB , fB) is inconsistent if there exists an input
w ∈ QA ∩ QB such that fA(w) �= fB(w). Define an output table as follows:

M(x, y)
def
=

{
Alice’s key output by Π(rA, rB , fA ∪ fB), if fA and fB are consistent;
∗, otherwise.

This table indeed captures all possible executions of the protocol Π. This table
is a partial function because many entries are undefined (the ∗ entries).

During the attack, Eve observes the transcript τ and makes queries to f .
Whenever Eve has observed (τ, fE), we update the table M by removing the
entries that are inconsistent with Eve’s observation, i.e., we update the table to

Mτ,fE
(x, y) def=

{

M(x, y), if (x, y) are consistent with (τ, fE);
∗, otherwise.

Given this observation (τ, fE), the defined entries of Mτ,fE
capture all possible

views of Alice and Bob. Now we say Mτ,fE
is almost monochromatic if almost

all defined entries of Mτ,fE
are equal to the same output b ∈ {0, 1}. 3 A key

step in our proof is to show Mτ,fE
is almost monochromatic provided that the

following conditions are met:

1. Π has perfect completeness;
2. there is no small ε-correlated set respect to (τ, fE).

Once Eve realizes Mτ,fE
is almost monochromatic, she knows that Alice’s key

is b with high probability.

Upper Bound the Number of Eve’s Queries via Density Increment Argu-
ment. This part of our proof is based on the density increment argument in
[YZ22,YZ23]. We first define a density function to capture the amount of hid-
den information in the transcript τ about the random function F , which is not
known by Eve. For every τ and fE , its density function Φ(τ, fE) is defined as

Φ(τ, fE) def= H (F | RA,RB , fE) − H (F | RA,RB , fE , τ) .

If we replace τ and fE with corresponding random variables, T and FE , then
Φ(T ,FE ) equals to I (F ;T | RA,RB ,FE ), the mutual information of F and T
conditioned on RA,RB ,FE . This quantity is strongly related to the information
3 More precisely, ‘almost all’ means if we sample an entry (x, y) according to the prob-

ability that it appears in real execution (conditioned on τ, fE), we have M(x, y) = b
with high probability.
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complexity (IC), a powerful tool for proving lower bounds in communication
complexity [CSWY01,BBCR10]. IC usually refers to the mutual information of
Alice’s input and Bob’s input conditioned on the transcript, so the IC for key-
agreement should look like I (RA,RB ;T ). However, in the ROM, the random
function F is another random resource involved in the computation. Therefore,
we cannot use IC as a black box to study such key-agreement protocols. Instead,
we use the density increment argument proposed by [YZ23], which reinterprets
IC in a white-box manner.

Let us turn back to our proof. The key idea is that whenever Eve queries an
ε-correlated set, the density function decreases by at least ε in expectation. To
make things clearer, we first explain our sampling procedure. There are several
random variables involved in the analysis, including (RA,RB ,F ,T ,S1,S2, . . . ).
Here Si is the query set made by Eve in the i-th round. In our analysis, we do
not sample (RA,RB ,F ) all at once. Instead, we consider these random variables
to be sampled in the following order.

1. We first sample the transcript τ ← T and send it to the attacker.
2. In the i-th round of the attack,

– Eve samples her next query set Si conditioned on
(τ, S1, f(S1), . . . , Si−1, f(Si−1)).
– We sample f(Si) conditional on (τ, S1, f(S1), . . . , Si−1, f(Si−1), Si),
and Eve receives f(Si).

Suppose that at some point, Eve has already observed fE , e.g.,
fE = f(S1 ∪ · · · ∪ Si−1) and decided to query Si next. By definition, Eve only
queries correlated sets, i.e., Si is ε-correlated w.r.t. (τ, fE). And we prove that
for any ε-correlated set Si,

E
f(Si)←F (Si)|τ,fE

[Φ(T , fE ∪ f(Si))] ≤ Φ(T , fE) − ε, (1)

where fE ∪f(Si) is Eve’s updated observation after making oracle queries on Si.
We then finish our argument by observing the following two properties of Φ:

– In the beginning, Φ(T , f∅) ≤ c. Here f∅ denotes the all-empty function since
Eve has no information about the oracle before making any queries.

– Φ is non-negative: Φ(τ, fE) ≥ 0 for all τ, fE .

Equation (1) says that each time Eve queries an ε-correlated set, Φ decreases by ε
(in expectation), so Eve can query at most O(c/ε) = O(c) sets (in expectation),
as we set ε = Θ(1). Since each set queried by Eve is of size at most 2�, we
conclude that the total number of Eve’s queries is O(c�).

Comparison with [HMO+19]. The paper by Haitner et al. uses mostly direct
calculations to derive an upper bound of the mutual information characteriz-
ing the advantage of Alice and Bob over Eve. An important ingredient in their
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proof is that conditioning on Eve’s view does not introduce significant depen-
dency between Alice and Bob; this is true for two-round protocols but fails for
multi-round protocols. Even with perfect completeness, their approach encoun-
ters similar barriers. In contrast, our proof mainly depends on the investigation
of the structure of the table Mτ,fE

, and hence the number of rounds is no longer
a restriction.

1.2 Discussions and Open Problems

In this section, we discuss some open problems and future directions. An imme-
diate question is how to remove the restrictions in our main theorem. We briefly
discuss some potential ways to solve them below.

Protocols with Imperfect Completeness. In our proof, the property of perfect
completeness is used in Lemma 3. The perfect completeness restriction is an
analog of proving deterministic communication complexity, while key-agreement
protocols with imperfect completeness can be likened to randomized communica-
tion protocols. The density increment argument used in this paper was originally
inspired by the proofs of query-to-communication lifting theorems in communi-
cation complexity [RM97,GPW15,GPW17,YZ22]. In communication complex-
ity, past experience suggests that the density increment argument is robust in
the sense that it usually extends to proving randomized communication lower
bounds. For example, the deterministic query-to-communication lifting theorem
was formalized by [GPW15], then [GPW17] proved the extension to the ran-
domized query-to-communication lifting theorem, even though it took several
years.

Protocols with Adaptive Queries. The density increment argument has a good
chance of proving communication lower bounds for adaptive protocols. Particu-
larly, our efficiency proof directly applies to adaptive protocols. Our proof only
utilized the non-adaptivity in Lemma 3. The round-by-round analysis introduced
by Barak and Mahmoody [BMG09] might be helpful to circumvent this obstacle.
Admittedly, the analysis might be slightly more complicated, but we do not see
a fundamental barrier here.

Further Potential Applications. The heavy query technique used in the proof
of [BMG09] has found applications in the context of black-box separations and
black-box security in the random oracle model (see, e.g., [DSLMM11,KSY11,
BKSY11,MP12,HOZ16]). Likewise, it will be interesting to check if our approach
offers fresh perspectives and potential solutions to some open problems. The
following is a list of potential questions.

1. Devise an O(�)-round and O(�2)-query attack for key-argeement protocols in
the ROM [BMG09,MMV11].

2. Consider an M -party protocol where all pairs among M players agree on
secret keys. Given an attack that recovers a constant fraction of the

(

M
2

)

keys
with O(M · �2) oracle queries [DH21].
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3. In the quantum setting, Alice and Bob are capable of conducting quan-
tum computation and classical communication, and the random oracle allows
quantum queries. [ACC+22] introduced the Polynomial Compatibility Con-
jecture and gave an attack (only for protocols with perfect completeness)
assuming this conjecture holds. Devise an attack that has better efficiency or
fewer restrictions.

2 Preliminary

2.1 Notations

For a random variable X, denote x is sampled from (the distribution of ) X as
x ← X; the support of X is defined as supp(X) def= {x : Pr [X = x] > 0}.

Partial Functions. There are many ways to view a partial function f : [N ] →
[M ] ∪ {⊥} with domain Q

def= {w ∈ [N ] : f(w) �= ⊥}: It can be viewed as a func-
tion fQ : Q → [M ], or a list ((wi, f(wi))i∈[Q]. We say two partial functions are
consistent if they agree on the intersection of their domains. For consistent
partial functions f1 and f2, we use f1 ∪ f2 to denote the partial function with
domain Q1 ∪ Q2 and is consistent with f1 and f2.

2.2 Key-Agreement Protocols

Let Π = (A,B) be a two-party protocol consisting of a pair of probabilistic
interactive Turing machines, where the two parties A and B are often referred
to as Alice and Bob. A protocol is called �-oracle-aided if Alice and Bob have
access to an oracle f : [N ] → [M ] and each party makes at most � queries to f .
An oracle-aided protocol is called non-adaptive when both parties choose their
queries before querying the oracle and communicating. Π produces a transcript
τ which is the communication bits between players. The communication com-
plexity of Π, denoted by CC(Π), is the length of the transcript of Π in the
worst case.

We focus on oracle-aided key-agreement protocols in the random oracle
model, where the oracle f is uniformly sampled from the collection of all func-
tions from [N ] to [M ]. Note that the execution of the key-agreement protocol
is completely determined by rA, rB and f , where rA (resp., rB) is Alice’s (resp.,
Bob’s) internal randomness. We call the tuple (rA, rB , f) an extended view . Let
EV = (RA,RB ,F ) denote the distribution of the extended view in a random
execution. For every extended view v = (rA, rB , f), let tran(v), outA(v), outB(v)
be the communication transcript, A’s output, and B’s output respectively, given
the extended view v.

Definition 2 (Key-agreement protocols). Let α, γ ∈ [0, 1], q ∈ N. A protocol
Π = (A,B) is a (α, q, γ)-key-agreement if the following conditions hold:

1. (1 − α)-completeness. Prv←EV [outA(v) = outB(v)] ≥ 1 − α.
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2. (q, γ)-security. For any q-oracle-aided adversary E,

Pr
v=(rA,rB,f)←EV

[

Ef (tran(v)) = outA(v)
] ≤ γ.

Since we aim to prove lower bounds, we assume each party outputs one bit, as per
[HMO+19]. Moreover, [HMO+19] proved that studying the following normalized
key-agreement protocols suffices.

Normalized Key-Agreement Protocols. Following [HMO+19], to simplify the
proof of the lower bound, we can transform the key-agreement protocol Π into
a normalized protocol called Π ′, such that the secret key output by Bob in Π ′

is the first bit of his last query. Formally,

Proposition 1. Let Π be a non-adaptive, �-oracle-aided (α, q, γ)-key-agreement
protocol with communication complexity c. Then there is a non-adaptive (�+1)-
oracle-aided (α, q, γ)-key-agreement protocol Π ′ with communication complexity
c + 1, in which Bob’s output is the first bit of his last query.

2.3 Basic Information Theory

The Shannon entropy of a random variable X is defined as

H(X) def=
∑

x∈supp(X )

Pr [X = x] log
(

1
Pr [X = x]

)

.

The conditional entropy of a random variable X given Y is defined as

H (X | Y ) def= E
y←Y

[H (X | Y = y)] .

We often use (conditional) entropy conditioned on some event E, which is defined
by the same formula where the probability measure Pr [·] is replace by Pr′[·] def=
Pr [·|E] . Entropy conditioned on event E is denoted as H(X|E),H(X|Y , E).

Let X and Y be two (possibly correlated) random variables. The mutual
information of X and Y is defined by

I (X;Y ) def= H(X) − H (X | Y ) = H(Y ) − H (Y | X) .

The conditional mutual information is

I (Xi;Y | X1, . . . ,Xi−1)
def
= H (Xi | X1, . . . ,Xi−1) − H (Xi | Y ,X1, . . . ,Xi−1) .

Proposition 2 (Entropy chain rule). For random variables X1,X2, . . . ,Xn,
it holds that

H(X1,X2, . . . ,Xn) =
n

∑

i=1

H (Xi | X1,X2, . . . ,Xi−1) .
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Proposition 3. (Chain rule for mutual information) For X1,X2, . . . ,Xn are
n random variables and Y is another random variable,

I (X1,X2, . . . ,Xn;Y ) =
n

∑

i=1

I (Xi;Y | X1,X2, . . . ,Xi−1) .

Proposition 4. (Data processing inequality) For two random variables X,Y
and a function f ,

H(f(X)) ≤ H(X) and I (f(X);Y ) ≤ I (X;Y )

3 Communication Complexity of Key-Agreement
Protocols

This section proves the main theorem:

Theorem 4 (Formal version of Theorem 3). Let Π = (A,B) be an �-query-
aided, non-adaptive (0, q, γ)-key-agreement (i.e., Π enjoys perfect completeness),
then

CC(Π) ≥ q

2(� + 1)
· (1 − γ)3

27
− 1 = Ω

(q

�

)

.

By Proposition 1, it suffices to show that

CC(Π) ≥ q

2�
· (1 − γ)3

27
, (2)

for all normalized protocol Π that satisfies the conditions in Theorem 4.
Correlated sets play a central role in our proof; here we give the formal

definition.

Definition 3 (ε-correlated). Let τ be a transcript and fE be a partial function
with domain QE. We say a set S ⊆ [N ] is ε-correlated with respect to (τ, fE)
if

H (F (S) | RA,RB ,F (QE) = fE) − H (F (S) | RA,RB ,F (QE) = fE ∧ T = τ) ≥ ε,

where (RA,RB ,F ) is a random extended view and T
def= tran(RA,RB ,F ).

3.1 Description of the Attacker

The attacker is described in Algorithm 1. In the algorithm, f
(i)
E stands for the

observations of Eve till the end of the i-th iteration. Moreover, we use EV (τ, f (i)
E )
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to denote the distribution of the extended view EV conditioned on the following
two events: (1) the random oracle is consistent with f

(i)
E ; (2) the transcript is τ .

Algorithm 1: The attacker E

Input: transcript τ
Oracle : f : [N ] → [M ]
Output: b ∈ {0, 1,⊥}
Set ε := (1 − γ)2/9
Initialize i := 0 and f

(0)
E as the empty function

while ∃ S ⊆ [N ] s.t. |S| ≤ 2� and is ε-correlated w.r.t. (τ, f (i)
E ) do

Let Si+1 be any ε-correlated set of size at most 2�
Query f on Si+1 and receive f(Si+1)
Set f

(i+1)
E := f

(i)
E ∪ f(Si+1).

i := i + 1
if ∃ b ∈ {0, 1} s.t. Pr

v←EV (τ,f
(i)
E )

[outA(v) = b] ≥ 1 − √
2ε then

Output b
else

Output ⊥

3.2 Success Probability of the Attacker

This subsection analyzes the attacker’s success probability for perfect complete-
ness. We will first introduce the language of the combinatorial rectangle and
then use it to analyze the attacker’s success probability.

Through the Lens of Rectangles. Combinatorial rectangle is a stan-
dard tool in communication complexity. We thus develop this language for key-
agreement protocols in the following.

Let Π be a non-adaptive key-agreement protocol, meaning that queries of
Alice is a function QA(rA) of her internal randomness rA. If fA is a partial
function with domain QA(rA), we call the pair (rA, fA) a profile of Alice. The
profile space of Alice, denoted by X , consists of all possible profiles of Alice,
namely,

X def= {(rA, fA) : fA is a partial function with domain QA(rA)} .

For Bob, we analogously define QB and

Y def= {(rB , fB) : fB is a partial function with domain QB(rB)} .

Given a profile pair (x = (rA, fA), y = (rB , fB)) ∈ X × Y, Alice and Bob can
run the protocol by using fA and fB respectively as oracle answers: when Alice
needs to issue an oracle query w, she takes fA(w) as oracle answer; similarly,
Bob takes fB(w) as oracle answer when querying w. Hence, we can still define
the transcript tran(x, y) and output outA(x, y), outB(x, y).
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Note that some profile pairs are imaginary in the sense that the oracle answers
of Alice and Bob are inconsistent. We say x = (rA, fA) ∈ X and y = (rB , fB) ∈ Y
are consistent if fA and fB are consistent. Define the output table MΠ ∈
{0, 1, ∗}X×Y via

MΠ(x, y) def=

{

outA(x, y), if x, y are consistent;
∗, otherwise.

Let D
def= {(x, y) ∈ X × Y : MΠ(x, y) �= ∗} be the set of all consistent profile

pairs; such profile pairs can be witnessed in real execution.
A set R ⊆ X ×Y is called a rectangle if R = XR ×YR for some XR ⊆ X and

YR ⊆ Y. Let τ be a transcript and fE be a partial function with domain QE .
We care about the profiles that are consistent with fE and produce transcript
τ ; formally, we consider the rectangle Xτ,fE

× Yτ,fE
where

Xτ,fE

def=
{

x = (rA, fA) ∈ X : ∃y = (rB , fB) ∈ Y s.t. fA,fB ,fE are consistent and
tran(x,y)=τ

}

,

and

Yτ,fE

def=
{

y = (rB , fB) ∈ Y : ∃x = (rA, fA) ∈ X s.t. fA,fB ,fE are consistent and
tran(x,y)=τ

}

.

If Π has perfect completeness, the rectangle Xτ,fE
× Yτ,fE

has the following
simple but useful property.

Lemma 1. Assume that Π has perfect completeness. Let (x, y), (x′, y′) ∈
Xτ,fE

× Yτ,fE
for some τ and fE. If MΠ(x, y) = 0 and MΠ(x′, y′) = 1, then

MΠ(x, y′) = MΠ(x′, y) = ∗.
Proof. Assume MΠ(x, y′) �= ∗. Since (x, y′) appears in some execution of Π, by
perfect completeness, we have outA(x, y′) = outB(x, y′). However, outA(x, y′) =
outA(x, y′) = 0 while outB(x, y′) = outB(x′, y′) = 1, a contradiction. The argu-
ment for (x′, y) is similar.

Let QV (τ, fE) denote the query set of Alice and Bob conditioned on (τ, fE),
namely, QV (τ, fE) def= (QA(RA),QB(RB)), where (RA,RB , ·) = EV (τ, fE).
Given (QA, QB) ∈ suppQV (τ, fE), we obtain a subrectangle of Xτ,fE

× Yτ,fE

by adding the restriction that Alice’s (resp., Bob’s) queries is QA (resp., QB).
That is, we consider Xτ,fE

(QA) × Yτ,fE
(QB) where

Xτ,fE
(QA) def= {x = (rA, fA) ∈ Xτ,fE

: QA(rA) = QA} ,

Yτ,fE
(QB) def= {y = (rB , fB) ∈ Yτ,fE

: QB(rB) = QB} .

Definition 4 (Monochromatic Rectangle). A rectangle R ⊆ X ×Y is called
b-monochromatic if R ∩ D �= ∅ and for every (x, y) ∈ R ∩ D, MΠ(x, y) = b;
R is said to be monochromatic if it is b-monochromatic for some b ∈ {0, 1}.
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The following lemma shows that if the protocol is normalized and has perfect
completeness, the rectangle Xτ,fE

× Yτ,fE
has a special structure: It can be

partitioned into monochromatic rectangles according to the queries.

Lemma 2. Suppose Π is normalized and has perfect completeness. Let τ be a
transcript and fE be a partial function. For all (QA, QB) ∈ suppQV (τ, fE), the
rectangle Xτ,fE

(QA) × Yτ,fE
(QB) is monochromatic.

Proof. Since Π is normalized, for any (x, y) ∈ Xτ,fE
(QA)×Yτ,fE

(QB), outB(x, y)
is determined by QB . Moreover, because of perfect completeness, outA(x, y) =
outB(x, y) for all (x, y) ∈ Xτ,fE

(QA)×Yτ,fE
(QB). Thus, Xτ,fE

(QA)×Yτ,fE
(QB)

is monochromatic.

Analyzing the Attacker’s Success Probability. Next, we show that Algo-
rithm 1 breaks the security of normalized protocols. The following lemma char-
acterizes what happens after all small ε-correlated sets are cleaned up; it roughly
says that if there exists no small ε-correlated set, the key is almost determined
conditioned on Eve’s information.

Lemma 3. Let τ be a transcript and fE be a partial function with domain QE.
If there exists no ε-correlated set of size at most 2� w.r.t. (τ, fE), then ∃b ∈ {0, 1}
s.t.

Pr
v←EV (τ,fE)

[outA(v) = b] ≥ 1 −
√

2ε.

Proof. Write δ
def=

√
2ε. Assume towards contradiction that

Pr
v←EV (τ,fE)

[outA(v) = b] > δ,∀b ∈ {0, 1} .

For b ∈ {0, 1}, define

Gb
def
= {(QA, QB) ∈ suppQV (τ, fE) : Xτ,fE (QA) × Yτ,fE (QB) is b-monochromatic} .

By Lemma 2, ∀b ∈ {0, 1},

Pr
v←EV (τ,fE)

[(QA(v),QB(v)) ∈ Gb] = Pr
v←EV (τ,fE)

[outA(v) = b] > δ. (3)

For Q = (QA, QB), Q′ = (Q′
A, Q′

B), define

h(Q, Q
′
)

def
= H (F (QA ∪ QB) | F (QE) = fE)

− H
(
F (QA ∪ QB) | QA(RA) = Q

′
A ∧ QB(RB) = Q

′
B ∧ F (QE) = fE ∧ T = τ

)
,

where (RA,RB ,F ) is a random extended view and T = tran(RA,RB ,F ) as
usual. Then, we have

Claim. For all Q0 = (Q0
A, Q0

B) ∈ G0 and Q1 = (Q1
A, Q1

B) ∈ G1, we have
h(Qb, Q1−b) ≥ 1 for some b ∈ {0, 1}.
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The above claim suggests some kind of correlation with the transcript exists;
next, we prove such correlation gives rise to an ε-correlated set.

Consider the following complete bipartite graph, denoted by G:

1. The left vertex set is V0 and each vertex v ∈ V0 is associated with some
Q(v) ∈ G0.

2. The right vertex set is V1 and each vertex v ∈ V1 is associated with some
Q(v) ∈ G1.

3. For each Q ∈ G0∪G1, the number of vertices associated with Q is proportional
to PrQV (τ,fE) [Q].

We assign an orientation to G as follows: for all v0 ∈ V0, v1 ∈ V1, if
h(Q(v0), Q(v1)) ≥ 1, then the edge {v0, v1} is directed towards v1; otherwise,
{v0, v1} is directed towards v0. Let E(G) denote the set of all directed edges.
By the above claim, each directed edge v → v′ satisfies h(Q(v), Q(v′)) ≥ 1. Let
Γ(v) def= {v′ : (v → v′) ∈ E(G)} denote the set of out-neighbors of v. WLOG,
assume that |V0| ≤ |V1|. By average argument, there exists some v∗ ∈ V0 ∪ V1

such that |Γ(v∗)| ≥ |V0|·|V1|
|V0|+|V1| ≥ |V0|/2.

Say v∗ ∈ Vb∗ , then we have

Pr
v←V1−b∗

[(v∗ → v) ∈ E(G)] =
|Γ(v∗)|
|V1−b∗ | ≥ |V0|

2|V1−b∗ |

=
1

2
· Prv←EV (τ,fE) [(QA(v), QB(v)) ∈ G0]

Prv←EV (τ,fE) [(QA(v), QB(v)) ∈ G1−b∗ ]

>
δ

2
.

Let Q∗ def= Q(v∗). Then we have

E
Q←QV (τ,fE)

[h(Q∗, Q)]

≥ E
Q←QV (τ,fE)

[h(Q∗, Q) | Q ∈ G1−b∗ ] Pr
Q←QV (τ,fE)

[Q ∈ G1−b∗ ]

≥ E
v←V1−b∗

[h(Q(v∗), Q(v))] · δ

≥ Pr
v←V1−b∗

[(v∗ → v) ∈ E(G)] · δ

=
δ2

2
= ε,

(4)

where the second inequality follows from Eq. (3) and the construction of G, and
the third inequality holds because h(Q(v∗), Q(v)) ≥ �[(v∗ → v) ∈ E(G)].

Note that EQ←QV (τ,fE) [h(Q∗, Q)] ≥ ε means that

H (F (Q∗
A ∪ Q∗

B) | F (QE) = fE)
− H (F (Q∗

A ∪ Q∗
B) | QA(RA),QB(RB),F (QE) = fE ∧ T = τ) ≥ ε,
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where Q∗ = (Q∗
A, Q∗

B). Thus, letting ̂Q = Q∗
A ∪ Q∗

B , we have

H
(
F (Q̂) | RA,RB ,F (QE) = fE

)
− H

(
F (Q̂) | RA,RB ,F (QE) = fE ∧ T = τ

)

≥H
(
F (Q̂) | RA,RB ,F (QE) = fE

)

− H
(
F (Q̂) | QA(RA), QB(RB),F (QE) = fE ∧ T = τ

)

=H
(
F (Q̂) | F (QE) = fE

)
− H

(
F (Q̂) | QA(RA), QB(RB),F (QE) = fE ∧ T = τ

)

≥ ε,

where the first inequality is by data processing inequality and the second step
holds as F ( ̂Q),RA,RB are independent. That is, ̂Q is ε-correlated w.r.t. (τ, fE),
a contradiction.

It remains to prove the claim involved in the above proof.

Proof (of Claim). Define

Rb
def= Xτ,fE

(Qb
A) × Yτ,fE

(Qb
B) where b ∈ {0, 1} .

For all (x, y) ∈ R0, (x′, y′) ∈ R1, we have MΠ(x, y) = 0 and MΠ(x′, y′) = 1, and
hence MΠ(x, y′) = ∗ according to Lemma 1. This means that oracle answers in
profile x and profile y′ are inconsistent. Note that all inconsistent queries are in
S

def= Q0
A ∩ Q1

B . Therefore,

supp
(

F (S)|QA(RA)=Q0
A∧QA(RB)=Q0

B∧T =τ∧F (QE)=fE

)

∩ supp
(

F (S)|QA(RA)=Q1
A∧QA(RB)=Q1

B∧T =τ∧F (QE)=fE

)

= ∅.

A simple average argument shows that for some b∗ ∈ {0, 1},
∣

∣

∣supp
(

F (S)|QA(RA)=Qb∗
A ∧QA(RB)=Qb∗

B ∧T =τ∧F (QE)=fE

)∣

∣

∣

≤
∣

∣supp
(

F (S)|F (QE)=fE

)∣

∣

2
.

(5)

Consequently,

Δ def= H (F (S) | F (QE) = fE)

− H
(

F (S) | QA(RA) = Qb∗
A ∧ QB(RB) = Qb∗

B ∧ F (QE) = fE ∧ T = τ
)

≥H (F (S) | F (QE) = fE)

− log
∣

∣

∣supp
(

F (S)|QA(RA)=Qb∗
A ∧QA(RB)=Qb∗

B ∧T =τ∧F (QE)=fE

)∣

∣

∣

≥ log
∣

∣

∣supp
(

F (S)|F |QE
=fE

)∣

∣

∣ − log

∣

∣supp
(

F (S)|F (QE)=fE

)∣

∣

2
=1,
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where the second inequality follows from Eq. 5 and the fact that F (S)|F (QE)=fE

is uniform distribution.
Now that Δ ≥ 1, it suffice to show h(Q1−b∗ , Qb∗) ≥ Δ. Since S ⊆ Q1−b∗

A ∪
Q1−b∗

B , this follows from chain rule:

h(Q1−b∗ , Qb∗) − Δ

=H
(
F (S) | F (QE) = fE

)

− H
(
F (S) | F (S), QA(RA) = Qb∗

A ∧ QB(RB) = Qb∗
B ∧ F (QE) = fE ∧ T = τ

)

≥ 0,

where S
def= (Q1−b∗

A ∪ Q1−b∗
B ) \ S and the inequality holds since F (S)|F (QE)=fE

is uniform distribution (and uniform distribution has maximum entropy).

Corollary 1 (Accuracy of E). Let Π be an �-oracle-aided, non-adaptive
(1, q, γ)−key-agreement. Assume the Π is normalized, then Algorithm 1 guesses
the key correctly with probability at least 1 − √

2ε, i.e.,

Pr
v=(rA,rB,f)←EV

[

Ef (tran(v)) = outA(v)
]

> 1 −
√

2ε.

Proof. By Lemma 3, E outputs outA(v) except with probability less than
√

2ε.

3.3 Efficiency of the Attacker

In this subsection, we analyze the efficiency of the attacker Eve (Algorithm 1)
via the density increment argument [YZ22,YZ23]. We first introduce the den-
sity function. Intuitively, the density function Φ(τ, fE) captures the amount of
hidden information contained in the transcript τ about the random function F
given Eve’s observation of oracle fE . As Eve makes effective queries, she learns
(a constant amount of) information in each iteration, so the density function
decreases by a constant.

Definition 5 (Density function). Let τ be a transcript and fE be a partial
function with domain QE. Define density function Φ via

Φ(τ, fE)
def
= H (F | RA,RB,F (QE) = fE) − H (F | RA,RB,F (QE) = fE ∧ T = τ) ,

where (RA,RB,F ) is a random extended view and T
def= tran(RA,RB,F ).

Lemma 4. The density function Φ satisfies the following properties:

1. Φ is non-negative.
2. Eτ←T [Φ(τ, f∅)] ≤ CC(Π), where f∅ denotes the empty function.
3. If S if ε-correlated w.r.t. (τ, fE), then

E
fS←F (S)|T =τ,F (QE)=fE

[Φ(τ, fE ∪ fS)] ≤ Φ(τ, fE) − ε.



202 M.-Y. Huang et al.

Proof. We prove these statements as follows.
1. F is uniform distribution conditioned on RA,RB and the event F (QE) = fE .
Hence Φ is non-negative.
2. By definition, we have that

E
τ←T

[Φ(τ, f∅)] = E
τ←T

[H (F | RA,RB) − H (F | RA,RB,T = τ)]

= H (F | RA,RB) − H (F | RA,RB,T )
= I (F ;T | RA,RB)
≤ H(T )
≤ CC(Π).

3. Write Q′
E

def= QE ∪ S. We decompose

Φ(τ, fE) − E
fS←F (S)|T =τ,F (QE)=fE

[Φ(τ, fE ∪ fS)] = φ1 − φ2,

where

φ1
def= H (F | RA,RB,F (QE) = fE)

− E
fS←F (S)|T =τ,F (QE)=fE

[H (F | RA,RB,F (Q′
E) = (fE ∪ fS))] ,

and

φ2
def= H (F | RA,RB,F (QE) = fE ∧ T = τ)

− E
fS←F (S)|τ,fE

[H (F | RA,RB,F (Q′
E) = (fE ∪ fS) ∧ T = τ)] .

Since RA,RB,F are independent, we have (by chain rule)

φ1 = H (F (S) | RA,RB,F (QE) = fE) .

Observe that by the definition of conditional entropy,

E
fS←F (S)|τ,fE

[H (F | RA,RB,F (Q′
E) = (fE ∪ fS) ∧ T = τ)]

= H (F | RA,RB,F (S),F (QE) = fE ∧ T = τ) .

By the chain rule,

φ2 =H (F | RA,RB,F (QE) = fE ∧ T = τ)
− H (F | RA,RB,F (S),F (QE) = fE ∧ T = τ)

=H (F (S) | RA,RB,F (QE) = fE ∧ T = τ) .

(6)

Since S is ε-correlated, we have

H (F (S) | RA,RB,F (QE) = fE) − H (F (S) | RA,RB,F (QE) = fE ∧ T = τ) ≥ ε,

and hence

Φ(τ, fE) − E
fS←F (S)|T =τ,F (QE)=fE

[Φ(τ, fE ∪ fS ] = φ1 − φ2 ≥ ε.
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Following Lemma 4, we can deduce that our attacker E (Algorithm 1) makes
at most CC(Π)/ε iterations in expectation.

Lemma 5 (Efficiency of E). E[# of iterations in the running of E] ≤ CC(Π)
ε .

Proof. Recall the sampling procedure in Sect. 1.1. Then, we define some random
variables in a random execution for analysis. Let F

(i)
E = F

(i−1)
E ∪ F (Si) be the

observations of Eve until the end of the i-th iteration, where F
(0)
E is the empty

function. If E does not enter the i-th iteration, we define F
(i)
E = F

(i−1)
E . Define

a counter variable to record the number of iterations as follows: C0
def= 0 and for

i ≥ 0

Ci+1
def=

{

Ci + 1, if E enters the i-th iteration;
Ci, otherwise.

We claim that for every τ and fE ,

E
[

Φ(T ,F
(i)
E ) − Φ(T ,F

(i+1)
E ) − ε(Ci+1 − Ci) | T = τ ∧ F

(i)
E = fE

]

≥ 0. (7)

To see this, consider the event Enteri
def= ‘E enters the i-th iteration’. Conditioned

on Enteri, Ci+1 − Ci = 1 and by the third item of Lemma 4, the underlined
part is non-negative; conditioned on ¬Enteri, the underlined part equals zero by
definition.

Since Eq. (7) holds for all (τ, fE), we get

E
[

Φ(T ,F
(i)
E ) − Φ(T ,F

(i+1)
E ) − ε(Ci+1 − Ci)

]

≥ 0.

Summing over i = 0, · · · , N − 1, we obtain

E[Φ(T ,F
(0)
E ] − E[Φ(T ,F

(N)
E )] − εE[CN − C0] ≥ 0.

By the first and second items of Lemma 4, we have E[Φ(T ,F
(N)
E )] ≥ 0 and

E[Φ(T ,F
(0)
E )] ≤ CC(Π). Note that C0 = 0 and CN equals the total number of

iterations because there can never be more than N iterations. Therefore, we get

E[# of iterations in the running of E] = E[CN ] ≤ CC(Π)
ε

.

So far, we have bounded the expected number of iterations of Algorithm 1
from above; however, Algorithm 1 could make too many queries in the worst
case. To prove our main theorem, we need an attacker who makes a bounded
number of queries in the worst case. We construct such an attacker by running
E for a limited number of iterations.
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Theorem 5. Let E′ be an attacker who runs E but aborts when the number of
iterations exceeds CC(Π)

ε3/2 . Then the following statements hold:

1. Efficiency: E′ makes at most qE′ = 2� · CC(Π)/ε3/2 oracle queries.
2. Accuracy: The success probability of E′ is at least γ.

Proof. Efficiency holds because E′ queries at most CC(Π)/ε3/2 sets and each set
has size at most 2�. As for accuracy, let β, β′ be the success probability of E,E′

respectively. By the definition of E′, we have

|β′ − β| ≤ Pr [E′ aborts]

= Pr
[

# of iterations in the running of E is more than CC(Π)/ε3/2
]

.

Lemma 5 together with Markov’s inequality shows that this quantity is at most√
ε. Therefore, we have β′ ≥ β −√

ε. By the accuracy of E (Corollary 1) and our
choice of ε (i.e., ε = (1 − γ)2/9), we obtain β′ ≥ 1 − √

2ε − √
ε > 1 − 3

√
ε = γ.

Proving the Main Theorem. Theorem 4 immediately follows from the above
lemma.

Proof (of Theorem 4). Let Π be a protocol that satisfies the conditions of The-
orem 4. It suffices to prove CC(Π) ≥ q

2� · (1−γ)3

27 (Eq. 2), provided that Π is
normalized. Since E′ in theorem 5 succeeds with probability γ and Π is a (q, γ)-
secure by assumption, we must have qE′ > q, which implies

CC(Π) >
q

2�
· ε3/2 =

q

2�
· (1 − γ)3

27
.
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Abstract. Extremely Lossy Functions (ELFs) are families of functions
that, depending on the choice during key generation, either operate in
injective mode or instead have only a polynomial image size. The choice
of the mode is indistinguishable to an outsider. ELFs were introduced
by Zhandry (Crypto 2016) and have been shown to be very useful in
replacing random oracles in a number of applications.

One open question is to determine the minimal assumption needed
to instantiate ELFs. While all constructions of ELFs depend on some
form of exponentially-secure public-key primitive, it was conjectured that
exponentially-secure secret-key primitives, such as one-way functions,
hash functions or one-way product functions, might be sufficient to build
ELFs. In this work we answer this conjecture mostly negative: We show
that no primitive, which can be derived from a random oracle (which
includes all secret-key primitives mentioned above), is enough to con-
struct even moderately lossy functions in a black-box manner. However,
we also show that (extremely) lossy functions themselves do not imply
public-key cryptography, leaving open the option to build ELFs from
some intermediate primitive between the classical categories of secret-key
and public-key cryptography. (The full version can be found at https://
eprint.iacr.org/2023/1403.)

1 Introduction

Extremely lossy functions, or short ELFs, are collections of functions that sup-
port two modes: the injective mode, in which each image has exactly one preim-
age, and the lossy mode, in which the function merely has a polynomial image
size. The mode is defined by a seed or public key pk which parameterizes the
function. The key pk itself should not reveal whether it describes the injective
mode or the lossy mode. In case the lossy mode does not result in a polynomially-
sized image, but the function compresses by at least a factor of 2, we will speak
of a (moderately) lossy function (LF).

Extremely lossy functions were introduced by Zhandry [31,32] to replace
the use of the random oracle model in some cases. The random oracle model
(ROM) [4] introduces a truly random function to which all parties have access
to. This random function turned out to be useful in modeling hash functions for
security proofs of real-world protocols. However, such a truly random function
c© International Association for Cryptologic Research 2023
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clearly does not exist in reality and it has been shown that no hash function can
replace such an oracle without some protocols becoming insecure [11]. Therefore,
a long line of research aims to replace the random oracle by different modeling of
hash functions, e.g., by the notion of correlation intractability [11] or by Universal
Computational Extractors (UCEs) [3]. However, all these attempts seem to have
their own problems: Current constructions of correlation intractability require
extremely strong assumptions [10], while for UCEs, it is not quite clear which
versions are instantiable [5,9]. Extremely lossy functions, in turn, can be built
from relatively standard assumptions.

Indeed, it turns out that extremely lossy functions are useful in remov-
ing the need for a random oracle in many applications: Zhandry shows it can
be used to generically boost selective security to adaptive security in signa-
tures and identity-based encryption, construct a hash function which is output
intractable, point obfuscation in the presence of auxiliary information and many
more [31,32]. Agrikola, Couteau and Hofheinz [1] show that ELFs can be used to
construct probabilistic indistinguishability obfuscation from only polynomially-
secure indistinguishability obfuscation. In 2022, Murphy, O’Neill and Zaheri [23]
used ELFs to give full instantiations of the OAEP and Fujisaki-Okamoto trans-
forms. Recently, Brzuska et al. [8] improve on the instantiation of the Fujisaki-
Okamoto transform and instantiate the hash-then-evaluate paradigm for pseu-
dorandom functions using ELFs.

While maybe not as popular as their extreme counterpart, moderately lossy
functions have their own applications as well: Braverman, Hassidim and Kalai [7]
build leakage-resistant pseudo-entropy functions from lossy functions, and Dodis,
Vaikuntanathan and Wichs [12] use lossy functions to construct extractor-
dependent extractors with auxiliary information.

1.1 Our Contributions

One important open question for extremely lossy functions, as well as for mod-
erately lossy functions, is the minimal assumption to build them. The construc-
tions presented by Zhandry are based on the exponential security of the deci-
sional Diffie-Hellman problem, but he conjectures that public-key cryptography
should not be necessary and suggests for future work to try to construct ELFs
from exponentially-secure symmetric primitives (As Zhandry shows as well in
his work, polynomial security assumptions are unlikely to be enough for ELFs1).
Holmgren and Lombardi [17] wondered whether their definition of one-way prod-
uct functions might suffice to construct ELFs.

For moderately lossy functions, the picture is quite similar: While all current
constructions require (polynomially-secure) public-key cryptography, it is gen-
1 ELFs can be distinguished efficiently using a super-logarithmic amount of non-

determinism. It is consistent with our knowledge, however, that NP with an
super-logarithmic amount of non-determinism is solvable in polynomial time while
polynomially-secure cryptographic primitives exist. Any construction of ELFs from
polynomially-secure cryptographic primitives would therefore change our under-
standing of NP-hardness.
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erally assumed that public-key cryptography should not be necessary for them
and that private-key assumptions should suffice (see, e.g., [28]).

In this work, we answer the questions about building (extremely) lossy func-
tions from symmetric-key primitive mostly negative: There exists no fully-black
box construction of extremely lossy functions, or even moderately lossy functions,
from a large number of primitives, including exponentially-secure one-way func-
tions, exponentially-secure collision resistant hash functions or one-way product
functions. Indeed, any primitive that exists unconditionally relative to a random
oracle is not enough. We will call this family of primitives Oraclecrypt, in refer-
ence to the famous naming convention by Impagliazzo [19], in which Minicrypt
refers to the family of primitives that can be built from one-way functions in a
black-box way.

Note that most of the previous reductions and impossibility results, such as
the renowned result about the impossibility of building key exchange protocols
from black-box one-wayness [20], are in fact already cast in the Oraclecrypt
world. We only use this term to emphasize that we also rule out primitives that
are usually not included in Minicrypt, like collision resistant hash functions [30].

On the other hand, we show that public-key primitives might not strictly be
needed to construct ELFs or moderately lossy functions. Specifically, we show
that no fully black-box construction of key agreement is possible from (mod-
erately) lossy functions, and extend this result to prevent any fully black-box
construction even from extremely lossy functions (for a slightly weaker setting,
though). This puts the primitives lossy functions and extremely lossy functions
into the intermediate area between the two classes Oraclecrypt and Public-Key
Cryptography.

(E)LFs

Oraclecrypt

Public Key Cryptography

Theorem 4

Theorem 1

Fig. 1. We show both an oracle separation between Oraclecrypt and (E)LFs as well as
(E)LFs and key agreement.

Finally, we discuss the relationship of lossy functions to hard-on-average
problems in SZK, the class of problems that have a statistical zero-knowledge
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proof. We see hard-on-average SZK as a promising minimal assumption to build
lossy functions from – indeed, it is already known that hard-on-average SZK
problems follow from lossy functions with sufficient lossiness. While we leave
open the question of building such a construction for future work, we give a
lower bound for hard-on-average SZK problems that might be of independent
interest, showing that hard-on-average SZK problems cannot be built from any
Oraclecrypt primitive in a fully black-box way. While this is already known for
some primitives in Oraclecrypt [6], these results do not generalize to all Oracle-
crypt primitives as our proof does.

Note that all our impossibility results only rule out black-box constructions,
leaving the possibility of future non-black-box constructions. However, while
there is a growing number of non-black-box constructions in the area of cryp-
tography, the overwhelming majority of constructions are still black-box con-
structions. Further, as all mentioned primitives like exponentially-secure one-way
functions, extremely lossy functions or key agreement might exist uncondition-
ally, ruling out black-box constructions is the best we can hope for to show that
a construction probably does not exist.

1.2 Our Techniques

Our separation of Oraclecrypt primitives and extremely/moderately lossy func-
tions is based on the famous oracle separation by Impagliazzo and Rudich [20]: We
first introduce a strong oracle that makes sure no complexity-based cryptography
exists unconditionally, and then add an independent random oracle that allows
for specific cryptographic primitives (specifically, all Oraclecrypt primitives) to
exist again. We then show that relative to these oracles, (extremely) lossy func-
tions do not exist by constructing a distinguisher between the injective and lossy
mode for any candidate construction. A key ingredient here is that we can identify
the heavy queries in a lossy function with high probability with just polynomially
many queries to the random oracle, a common technique used for example in the
work by Bitansky and Degwekar [6]. Finally, we use the two-oracle technique by
Hsiao and Reyzin [18] to fix a set of oracles. We note that our proof technique is
similar to a technique in the work by Pietrzak, Rosen and Segev to show that the
lossiness of lossy functions cannot be increased well in a black-box way [27]. Our
separation result for SZK, showing that primitives in Oraclecrypt may not suffice
to derive hard problems in SZK, follows a similar line of reasoning.

Our separation between lossy functions and key agreement is once more based
on the work by Impagliazzo and Rudich [20], but this time using their specific
result for key agreement protocols. Similar to the techniques in [14], we try
to compile out the lossy function to be then able to apply the Impagliazzo-
Rudich adversary: We first show that one can build (extremely) lossy function
oracles relative to a random oracle (where the lossy function itself is efficiently
computable via oracle calls, but internally makes an exponentially number of
random oracle evaluations). The heart of our separation is then a simulation
lemma showing that any efficient game relative to our (extremely) lossy function
oracle can be simulated efficiently and sufficiently close given only access to a
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random oracle. Here, sufficiently close means an inverse polynomial gap between
the two cases but where the polynomial can be set arbitrarily. Given this we
can apply the key agreement separation result of Impagliazzo and Rudich [20],
with a careful argument that the simulation gap does not infringe with their
separation.

1.3 Related Work

Lossy Trapdoor Functions. Lossy trapdoor functions were defined by Peikert and
Waters in [25,26] who exclusively considered such functions to have a trapdoor
in injective mode. Whenever we talk about lossy functions in this work, we refer
to the moderate version of extremely lossy functions which does not necessarily
have a trapdoor. The term extremely lossy function (ELFs) is used as before
to capture strongly compressing lossy functions, once more without requiring a
trapdoor for the injective case.

Targeted Lossy Functions. Targeted lossy functions were introduced by Quach,
Waters and Wichs [28] and are a relaxed version of lossy functions in which the
lossiness only applies to a small set of specified inputs. The motivation of the
authors is the lack of progress in creating lossy functions from other assumptions
than public-key cryptography. Targeted lossy functions, however, can be built
from Minicrypt assumptions, and, as the authors show, already suffices for many
applications, such as construct extractor-dependent extractors with auxiliary
information and pseudo-entropy functions. Our work very much supports this
line of research, as it shows that any further progress in creating lossy functions
from Minicrypt/Oraclecrypt assumptions is unlikely (barring some construction
using non-black-box techniques) and underlines the need of such a relaxation for
lossy functions, if one wants to build them from Minicrypt assumptions.

Amplification of Lossy Functions. Pietrzak, Rosen and Segev [27] show that it
is impossible to improve the relative lossiness of a lossy function in a black-box
way by more than a logarithmic amount. This translates into another obstacle
in building ELFs, even when having access to a moderately lossy function. Note
that this result strengthens our result, as we show that even moderately lossy
functions cannot be built from anything in Oraclecrypt.

2 Preliminaries

This is a shortened version of the preliminaries, omitting some standard defini-
tions. The full version [13] of the paper contains the complete preliminaries.

2.1 Lossy Functions

A lossy function can be either injective or compressing, depending on the mode
the public key pk has been generated with. The desired mode (inj or loss) is passed
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as argument to a (randomized) key generating algorithm Gen, together with the
security parameter 1λ. We sometimes write pkinj or pkloss to emphasize that the
public key has been generated in either mode, and also Geninj(·) = Gen(·, inj) as
well as Genloss(·) = Gen(·, loss) to explicitly refer to key generation in injective
and lossy mode, respectively. The type of key is indistinguishable to outsiders.
This holds even though the adversary can evaluate the function via deterministic
algorithm Eval under this key, taking 1λ, a key pk and a value x of input length
in(λ) as input, and returning an image fpk(x) of an implicitly defined function
f . We usually assume that 1λ is included in pk and thus omit 1λ for Eval’s input.

In the literature, one can find two slightly different definitions of lossy func-
tion. One, which we call the strict variant, requires that for any key generated in
injective or lossy mode, the corresponding function is perfectly injective or lossy.
In the non-strict variant this only has to hold with overwhelming probability
over the choice of the key pk. We define both variants together:

Definition 1 (Lossy Functions). An ω-lossy function consists of two efficient
algorithms (Gen,Eval) of which Gen is probabilistic and Eval is deterministic and
it holds that:

(a) For pkinj ←$Gen(1λ, inj) the function Eval(pkinj, ·) : {0, 1}in(λ) → {0, 1}∗ is
injective with overwhelming probability over the choice of pkinj.

(b) For pkloss ←$Gen(1λ, loss), the function Eval(pkloss, ·) : {0, 1}in(λ) → {0, 1}∗

is ω-compressing i.e.,
∣
∣{Eval(pkloss, {0, 1}in(λ))}

∣
∣ ≤ 2in(λ)−ω, with over-

whelming probability over the choice of pkloss.
(c) The random variables Geninj and Genloss are computationally indistinguish-

able.

We call the function strict if properties (a) and (b) hold with probability 1.

Extremely lossy functions need a more fine-grained approach where the key
generation algorithm takes an integer r between 1 and 2in(λ) instead of inj or loss.
This integer determines the image size, with r = 2in(λ) asking for an injective
function. As we want to have functions with a sufficiently high lossiness that
the image size is polynomial, say, p(λ), we cannot allow for any polynomial
adversary. This is so because an adversary making p(λ) + 1 many random (but
distinct) queries to the evaluating function will find a collision in case that pk
was lossy, while no collision will be found for an injective key. Instead, we define
the minimal r such that Gen(1λ, 2λ) and Gen(1λ, r) are indistinguishable based
on the runtime and desired advantage of the adversary:

Definition 2 (Extremely Lossy Function). An extremely lossy function
consists of two efficient algorithms (Gen,Eval) of which Gen is probabilistic and
Eval is deterministic and it holds that:

(a) For r = 2in(λ) and pk ←$Gen(1λ, r) the function Eval(pk, ·) : {0, 1}in(λ) →
{0, 1}∗ is injective with overwhelming probability.

(b) For r < 2in(λ) and pk ←$Gen(1λ, r) the function Eval(pk, ·) : {0, 1}in(λ) →
{0, 1}∗ has an image size of at most r with overwhelming probability.
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(c) For any polynomials p and d there exists a polynomial q such that for any
adversary A with a runtime bounded by p(λ) and any r ∈ [q(λ), 2in(λ)],
algorithm A distinguishes Gen(1λ, 2in(λ)) from Gen(1λ, r) with advantage at
most 1

d(λ) .

Note that extremely lossy functions do indeed imply the definition of (mod-
erately) lossy functions (as long as the lossiness-parameter ω still leaves an
exponential-sized image size in the lossy mode):

Lemma 1. Let (Gen,Eval) be an extremely lossy function. Then (Gen,Eval) is
also a (moderately) lossy function with lossiness parameter ω = 0.9λ.

The proof for this lemma can be found in the full version [13].

2.2 Oraclecrypt

In his seminal work [19], Impagliazzo introduced five possible worlds we might be
living in, including two in which computational cryptography exists: Minicrypt,
in which one-way functions exist, but public-key cryptography does not, and
Cryptomania, in which public-key cryptography exists as well. In reference to this
classification, cryptographic primitives that can be built from one-way functions
in a black-box way are often called Minicrypt primitives.

In this work, we are interested in the set of all primitives that exist relative
to a truly random function. This of course includes all Minicrypt primitives, as
one-way functions exist relative to a truly random function (with high proba-
bility), but it also includes a number of other primitives, like collision-resistant
hash functions and exponentially-secure one-way functions, for which we don’t
know that they exist relative to a one-way function, or even have a black-box
impossibility result. In reference to the set of Minicrypt primitives, we will call
all primitives existing relative to a truly random function Oraclecrypt primitives.

Definition 3 (Oraclecrypt). We say that a cryptographic primitive is an Ora-
clecrypt primitive, if there exists an implementation relative to truly random
function oracle (except for a measure zero of random oracles).

We will now show that by this definition, indeed, many symmetric primitives
are Oraclecrypt primitives:

Lemma 2. The following primitives are Oraclecrypt primitives:

– Exponentially-secure one-way functions,
– Exponentially-secure collision resistant hash functions,
– One-way product functions.

We moved the proof for this lemma to the full version [13].
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3 On the Impossibility of Building (E)LFs in Oraclecrypt

In this chapter, we will show that we cannot build lossy functions from a num-
ber of symmetric primitives, including (exponentially-secure) one-way functions,
collision-resistant hash functions and one-way product functions, in a black-box
way. Indeed, we will show that any primitive in Oraclecrypt is not enough to
build lossy functions. As extremely lossy functions imply (moderately) lossy
functions, this result applies to them as well.

Note that for exponentially-secure one-way functions, this was already known
for lossy functions that are sufficiently lossy: Lossy functions with sufficient
lossiness imply collision-resistant hash functions, and Simon’s result [30] sep-
arates these from (exponentially-secure) one-way functions. However, this does
not apply for lossy functions with e.g. only a constant number of bits of lossiness.

Theorem 1. There exists no fully black-box construction of lossy functions from
any Oraclecrypt primitive, including exponentially-secure one-way functions, col-
lision resistant hash functions, and one-way product functions.

Our proof for this Theorem follows a proof idea by Pietrzak, Rosen and
Segev [27], which they used to show that lossy functions cannot be amplified
well, i.e., one cannot build a lossy function which is very compressing in the
lossy mode from a lossy function that is only slightly compressing in the lossy
mode. Conceptually, we show an oracle separation between lossy functions and
Oraclecrypt: For this, we will start by introducing two oracles, a random oracle
and a modified PSPACE oracle. We will then, for a candidate construction of a
lossy function based on the random oracle and a public key pk, approximate the
heavy queries asked by Eval(pk, ·) to the random oracle. Next, we show that this
approximation of the set of heavy queries is actually enough for us approximating
the image size of Eval(pk, ·) (using our modified PSPACE oracle) and therefore
gives an efficient way to distinguish lossy keys from injective keys. Finally, we
have to fix a set of oracles (instead of arguing with a distribution of oracles) and
then use the two-oracle technique [18] to show the theorem. Due to the use of
the two-oracle techique, we only get an impossibility result for fully black-box
constructions (see [18] and [2] for a discussion of different types of black-box
constructions).

3.1 Introducing the Oracles

A common oracle to use in an oracle separation in cryptography is the PSPACE
oracle, as relative to this oracle, all non-information theoretic cryptography is
broken. As we do not know which (or whether any) cryptographic primitives
exist unconditionally, this is a good way to level the playing field. However,
in our case, PSPACE is not quite enough. In our proof, we want to calculate
the image size of a function relative to a (newly chosen) random oracle. It is
not possible to simulate this oracle by lazy-sampling, though, as to calculate
the image size of a function, we might have to save an exponentially large set
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of queries, which is not possible in PSPACE. Therefore, we give the PSPACE
oracle access to its own random oracle O′ : {0, 1}λ → {0, 1}λ and will give every
adversary access to PSPACEO′

.
The second oracle is a random oracle O : {0, 1}λ → {0, 1}λ. Now, we

know that a number of primitives exist relative to a random function, including
exponentially-secure one-way functions, collision-resistant hash functions and
even more complicated primitives like one-way product functions. Further, they
still exist if we give the adversary access to PSPACEO′

, too, as O′ is independent
from O and PSPACEO′

does not have direct access to O.
We will now show that every candidate construction of a lossy function with

access to O can be broken by an adversary AO,PSPACEO′
. Note that we do not

give the construction access to PSPACEO′
—this is necessary, as O′ should look

like a randomly sampled oracle to the construction. However, giving the construc-
tion access to PSPACEO′

would enable the construction to behave differently
for this specific oracle O′. Not giving the construction access to the oracle is fine,
however, as we are using the two-oracle technique.

Our proof for Theorem 1 will now work in two steps. First, we will show that
with overwhelming probability over independently sampled O and O′, no lossy
functions exist relative to O and PSPACEO′

. However, for an oracle separation,
we need one fixed oracle. Therefore, as a second step (Sect. 3.4), we will use
standard techniques to select one set of oracles relative to which any of our
Oraclecrypt primitives exist, but lossy functions do not.

For the first step, we will now define how our definition of lossy functions
with access to both oracles looks like:

Definition 4 (Lossy functions with Oracle Access). A family of functions
EvalO(pk, ·) : {0, 1}in(λ) → {0, 1}∗ with public key pk and access to the oracles O
is called ω-lossy if there exist two PPT algorithms Geninj and Genloss such that
for all λ ∈ N,

(a) For all pk in [GenO
inj(1

λ)] ∪ [GenO
loss(1

λ)], EvalO(pk, ·) is computable in poly-
nomial time in λ,

(b) For pk ←$GenO
inj(1

λ), EvalO(pk, ·) is injective with overwhelming probability
(over the choice of pk as well as the random oracle O),

(c) For pk ←$GenO
loss(1

λ), EvalO(pk, ·) is ω-compressing with overwhelming prob-
ability (over the choice of pk as well as the random oracle O)

(d) The random variables GenO
inj and GenO

loss are computationally indistinguish-

able for any polynomial-time adversary AO,PSPACEO′
with access to both O

and PSPACEO′
.

3.2 Approximating the Set of Heavy Queries

In the next two subsections, we will construct an adversary AO,PSPACEO′
against

lossy functions with access to the random oracle O as described in Definition 4.
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Let (GenO,EvalO) be some candidate implementation of a lossy function rel-
ative to the oracle O. Further, let pk ← GenO

? be some public key generated by
either Geninj or Genloss. Looking at the queries asked by the lossy function to
O, we can divide them into two parts: The queries asked during the generation
of the key pk, and the queries asked during the execution of EvalO(pk, ·). We
will denote the queries asked during the generation of pk by the set QG. As the
generation algorithm has to be efficient, QG has polynomial size. Let kG be the
maximal number of queries asked by any of the two generators. Further, denote
by kf the maximum number of queries of EvalO(pk, x) for any pk and x—again,
kf is polynomial. Finally, let k = max {kG, kf}.

The set of all queries done by Eval(pk, )̇ for a fixed key pk might be of expo-
nential size, as the function might ask different queries for each input x. However,
we are able to shrink the size of the relevant subset significantly, if we concen-
trate on heavy queries—queries that appear for a significant fraction of all inputs
x:

Definition 5 (Heavy Queries). Let k be the maximum number of O-queries
made by the generator GenO

? , or the maximum number of queries of Eval(pk, ·)
over all inputs x ∈ {0, 1}in(λ), whichever is higher. Fix some key pk and a
random oracle O. We call a query q to O heavy if, for at least a 1

10k -fraction of
x ∈ {0, 1}in(λ), the evaluation Eval(pk, x) queries O about q at some point. We
denote by QH the set of all heavy queries (for pk,O).

The set of heavy queries is polynomial, as EvalO(pk, ·) only queries the oracle
a polynomial number of times and each heavy query has to appear in a poly-
nomial fraction of all x. Further, we will show that the adversary AO,PSPACEO′

is able to approximate the set of heavy queries, and that this approximation is
actually enough to decide whether pk was generated in injective or in lossy mode.
We will start with a few key observations that help us prove this statement.

The first one is that the generator, as it is an efficiently-computable function,
will only query O at polynomially-many positions, and these polynomially-many
queries already define whether the function is injective or lossy:

Observation 1. Let QG denote the queries by the generator. For a random
pk ← GenO

inj generated in injective mode and a random O′ that is consistent with
QG, the image size of EvalO

′
(pk, ·) is 2λ (except with a negligible probability over

the choice of pk and O′). Similarly, for a random pk ← GenO
loss generated in lossy

mode and a random O′ that is consistent with QG, the image size of EvalO
′
(pk, ·)

is at most 2λ−1 (except with a negligible probability over the choice of pk and
O′).

This follows directly from the definition: As GenO
? has no information about O

except the queries QG, properties (2) and (3) of Definition 1 have to hold for
every random oracle that is consistent with O on QG. We will use this multiple
times in the proof to argue that queries to O that are not in QG are, essentially,
useless randomness for the construction, as the construction has to work with
almost any possible answer returned by these queries.
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An adversary is probably very much interested in learning the queries QG.
There is no way to capture them in general, though. Here, we need our second
key observation. Lossiness is very much a global property: to switch a function
from lossy to injective, at least half of all inputs x to EvalO(pk, x) must produce a
different result, and vice versa. However, as we learned from the first observation,
whether EvalO(pk, ·) is lossy or injective, depends just on QG. Therefore, some
queries in QG must be used over and over again for different inputs x—and will
therefore appear in the heavy set QH . Further, due to the heaviness of these
queries, the adversary is indeed able to learn them!

Our proof works alongside these two observations: First, we show in Lemma 3
that for any candidate lossy function, an adversary is able to compute a set
Q̂H of the interesting heavy queries. Afterwards, we show in Lemma 5 that we
can use Q̂H to decide whether EvalO(pk, ·) is lossy or injective, breaking the
indistinguishability property of the lossy function.

Lemma 3. Let EvalO(pk, ·) be a (non-strict) lossy function and pk ← GenO
? (1

λ)
for oracle O. Then we can compute in probabilistic polynomial-time (in λ) a set
Q̂H which contains all heavy queries of EvalO(pk, ·) for pk,O with overwhelming
probability.

Proof. To find the heavy queries we will execute EvalO(pk, x) for t random inputs
x and record all queries to O in Q̂H . We will now argue that, with high proba-
bility, Q̂H contains all heavy queries.

First, recall that a query is heavy if it appears for at least an ε-fraction of
inputs to EvalO(pk, ·) for ε = 1

10k . Therefore, the probability for any specific
heavy query qheavy to not appear in Q̂H after the t evaluations can be bounded
by

Pr
[

qheavy /∈ Q̂H

]

= (1 − ε)t ≤ 2−εt.

Furthermore, there exist at most k
ε heavy queries, because each heavy query

accounts for at least ε·2in(λ) of the at most k·2in(λ) possible queries of EvalO(pk, x)
when iterating over all x. Therefore, the probability that any heavy query qheavy
is not included in Q̂H is given by

Pr
[

∃qheavy /∈ Q̂H

]

≤ k

ε
· 2−εt

Choosing t = 10kλ we get

Pr
[

∃qheavy /∈ Q̂H

]

≤ 10k2 · 2−λ

which is negligible. Therefore, with all but negligible probability, all heavy queries
are included in Q̂H . �	

3.3 Distinguishing Lossiness from Injectivity

We next make the transition from oracle O to our PSPACE-augmenting ora-
cle O′. According to the previous subsection, we can compute (a superset Q̂H



218 M. Fischlin and F. Rohrbach

of) the heavy queries efficiently. Then we can fix the answers of oracle O on
such frequently asked queries in Q̂H , but otherwise use the independent ora-
cle O′ instead. Denote this partly-set oracle by O′

|Q̂H
. Then the distinguisher

for injective and lossy keys, given some pk, can approximate the image size of
#im(EvalO

′
|Q̂H (pk, ·)) with the help of its PSPACEO′

oracle and thus also derives
a good approximiation for the actual oracle O. This will be done in Lemma 5.

We still have to show that the non-heavy queries do not violate the above
approach. According to the proof of Lemma 4 it suffices to look at the case that
the image sizes of oracles R := O′

|Q̂H
and for oracle R′ := O′

|Q̂H∪QG
, where we

als fix on the key generator’s non-heavy queries to values from O, cannot differ
significantly. Put differently, missing out the generator’s non-heavy queries QG

in Q̂H only slightly affects the image size of EvalO
′
|Q̂H (pk, ·), and we can proceed

with our approach to consider only heavy queries.

Lemma 4. Let pk ← GenR
? (1λ) and Qnonh

G = {q1, . . . , qk′} be the k′ generator’s
queries to R in QG when computing pk that are not heavy for pk,R. Then,
for any oracle R′ that is identical to R everywhere except for the queries in
Qnonh

G , i.e., R(q) = R′(q) for any q /∈ Qnonh
G , the image sizes of EvalR(pk, ·) and

EvalR
′
(pk, ·) differ by at most 2in(λ)

10 .

Proof. As the queries in Qnonh
G are non-heavy, every qi ∈ Qnonh

G is queried for at
most 2in(λ)

10k inputs x to EvalR(pk, ·) when evaluating the function. Therefore, any
change in the oracle R at qi ∈ Qnonh

G affects the output of EvalR(pk, ·) for at most
2in(λ)

10k inputs. Hence, when considering the oracle R′, which differs from R only
on the k′ queries from Qnonh

G , moving from R to R′ for evaluating EvalR(pk, ·)
changes the output for at most k′2in(λ)

10k inputs x. In other words, letting Δf

denote the set of all x such that EvalR(pk, x) queries some q ∈ Qnonh
G during the

evaluation, we know that

|Δf | ≤ k′2in(λ)

10k
and

EvalR(pk, x) = EvalR
′
(pk, x) for all x 
∈ Δf .

We are interested in the difference of the two image sizes of EvalR(pk, ·) and
EvalR

′
(pk, ·). Each x ∈ Δf may add or subtract an image in the difference,

depending on whether the modified output EvalR
′
(pk, x) introduces a new image

or redirects the only image EvalR(pk, x) to an already existing one. Therefore,
the difference between the image sizes is at most

∣
∣
∣#im(EvalR(pk, ·)) − #im(EvalR

′
(pk, ·))

∣
∣
∣ ≤ k′2in(λ)

10k
≤ 2in(λ)

10
,

where the last inequality is due to k′ ≤ k. �	
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Lemma 5. Given Q̂H ⊇ QH , we can decide correctly whether EvalO(pk, ·) is
lossy or injective with overwhelming probability.

Proof. As described in Sect. 3.1, we give the adversary, who has to distinguish a
lossy key from a injective key, access to PSPACEO′

, where O′ is another random
oracle sampled independently of O. This is necessary for the adversary, as we
want to calculate the image size of EvalO

′
(pk, ·) relative to a random oracle O′,

and we cannot do this in PSPACE with lazy sampling.
We will consider the following adversary A: It defines an oracle O′

|Q̂H
that is

identical to O′ for all queries q 
∈ Q̂H and identical to O for all queries q ∈ Q̂H .
Then, it calculates the image size

#im(EvalO
′
|Q̂H (pk, ·)) =

∣
∣
∣{EvalO

′
|Q̂H (pk, {0, 1}in(λ))}

∣
∣
∣ .

Note that this can be done efficiently using PSPACEO′
as well as polynomially

many queries to O. If #im(EvalO
′
|Q̂H (pk, ·)) is bigger than 3

42
in(λ), A will guess

that EvalO(pk, ·) is injective, and lossy otherwise. For simplicity reasons, we will
assume from now on that pk was generated by Geninj—the case where pk was
generated by Genloss follows by a symmetric argument.

First, assume that all queries QG of the generator are included in Q̂H . In this
case, any O′ that is consistent with QH is also consistent with all the information
Geninj have about O. However, this means that by definition, EvalO(pk, ·) has
to be injective with overwhelming probability, and therefore, an adversary can
easily check whether pk was created by Geninj.

Otherwise, let q1, . . . , qk′ be a set of queries in QG which are not included
in Q̂H . With overwhelming probability, this means that q1, . . . , qk′ are all non-
heavy. We now apply Lemma 4 for oracles R := O′

|Q̂H
and R′ := O′

|Q̂H∪QG
.

These two oracles may only differ on the non-heavy queries in QG, where R
coincides with O′ and R′ coincides with O; otherwise the oracles are identical.
Lemma 4 tells us that this will change the image size by at most 2in(λ)

10 . Therefore,
with overwhelming probability, the image size calculated by the distinguisher is
bounded from below by

#im(EvalO
′
|Q̂H (pk, ·)) ≥ 2in(λ) − 2in(λ)

10
≥ 3

4
2in(λ)

and the distinguisher will therefore correctly decide that EvalO(pk, ·) is in injec-
tive mode. �	
Theorem 2. Let O and O′ be two independent random oracles. Then, with over-
whelming probability over the choice of the two random oracles, lossy functions
do not exist relative the oracles O and PSPACEO′

.

Proof. Given the key pk, our distinguisher (with oracle access to random oracle
O) against the injective and lossy mode first runs the algorithm of Lemma 3
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to efficiently construct a super set Q̂H of the heavy queries QH for pk,O. This
succeeds with overwhelming probability, and from now on we assume that indeed
QH ⊆ Q̂H . Then our algorithm continues by running the decision procedure of
Lemma 5 to distinguish the cases. Using the PSPACEO′

oracle, the latter can
also be carried out efficiently. �	

3.4 Fixing an Oracle

We have shown now (in Theorem 2) that no lossy function exists relative to a ran-
dom oracle with overwhelming probability. However, to prove our main theorem,
we have to show that there exists one fixed oracle relative to which one-way func-
tions (or collision-resistant hash functions, or one-way product functions) exist,
but lossy functions do not.

In Lemma 2, we have already shown that (exponentially-secure) one-way
functions, collision-resistant hash functions and one-way product functions exist
relative to a random oracle with high probability. In the next lemma, we will
show that there exists a fixed oracle relative to which exponentially-secure one-
way functions exist, but lossy functions do not. The proofs for existence of oracles
relative to which exponentially-secure collision-resistant hash functions or one-
way product functions, but no lossy functions exist follow similarly.

Lemma 6. There exists a fixed set of oracles O, PSPACEO′
such that relative

to these oracles, one-way functions using O exist, but no construction of lossy
functions from O exists.

Now, our main theorem of this section directly follows from this lemma (and
its variants for the other primitives):

Theorem 1 (restated). There exists no fully black-box construction of lossy
functions from any Oraclecrypt primitive, including exponentially-secure one-
way functions, collision resistant hash functions, and one-way product functions.

The proof of Lemma 6 and Theorem 1 follow from standard techniques for
fixing oracles and can be found in the full version [13].

4 On the Impossibility of Building Key Agreement
Protocols from (Extremely) Lossy Functions

In the previous section we showed that lossy functions cannot be built from many
symmetric primitives in a black-box way. This raises the question if lossy func-
tions and extremely lossy functions might be inherent asymmetric primitives.
In this section we provide evidence to the contrary, showing that key agreement
cannot be built from lossy functions in a black-box way. For this, we adapt the
proof by Impagliazzo and Rudich [20] showing that key agreement cannot be
built from one-way functions to our setting. We extend this result to also hold
for extremely lossy functions, but in a slightly weaker setting.
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4.1 Lossy Function Oracle

We specify our lossy function oracle relative to a (random) permutation ora-
cle Π, and further sample (independently of Π) a second random permutation
Γ as integral part of our lossy function oracle. The core idea of the oracle is
to evaluate EvalΓ,Π(pkinj, x) = Π(pkinj‖ax + b) for the injective mode, but set
EvalΓ,Π(pkloss, x) = Π(pkloss‖setlsb(ax+ b)) for the lossy mode, where a, b describe
a pairwise independent hash permutation ax+ b over the field GF(2μ) with a 
= 0
and setlsb sets the least significant bit to 0. Then the lossy function is clearly
two to one. The values a, b will be chosen during key generation and placed into
the public key, but we need to hide them from the adversary in order to make
the keys of the two modes indistinguishable. Else a distinguisher, given pk, could
check if EvalΓ,Π(pk, x) = EvalΓ,Π(pk, x′) for appropriately computed x 
= x′ with
setlsb(ax + b) = setlsb(ax′ + b). Therefore, we will use the secret permutation Γ
to hide the values in the public key. We will denote the preimage of pk under Γ as
pre-key.

Another feature of our construction is to ensure that the adversary cannot gen-
erate a lossy key pkloss without calling GenΓ,Π in lossy mode, while allowing it to
generate keys in injective mode. We accomplish this by having a value k in our
public pre-key that is zero for lossy keys and may take any non-zero value for an
injective public key. Therefore, with overwhelming probability, any key generated
by the adversary without a call to the GenΓ,Π oracle will be an injective key.

We finally put both ideas together. For key generation we hide a, b and also
the string k by creating pk as a commitment to the values, pk ← Γ (k‖a‖b‖z)
for random z. To unify calls to Γ in regard of the security parameter λ,
we will choose all entries in the range of λ/5.2 When receiving pk the eval-
uation algorithm EvalΓ,Π first recovers the preimage k‖a‖b‖z under Π, then
checks if k signals injective or lossy mode, and then computes Π(a‖b‖ax + b)
resp. Π(a‖b‖setlsb(ax + b)) as the output.

Definition 6 (Lossy Function Oracle). Let Π,Γ be permutation oracles
with Π,Γ : {0, 1}λ → {0, 1}λ for all λ. Let μ = μ(λ) = �(λ − 2)/5� and pad =
pad(λ) = λ− 2− 5μ define the length that the rounding-off loses to λ− 2 in total
(such that pad ∈ {0, 1, 2, 3, 4}). Define the lossy function (GenΓ,Π,EvalΓ,Π) with
input length in(λ) = μ(λ) relative to Π and Γ now as follows:

Key Generation: Oracle GenΓ,Π on input 1λ and either mode inj or loss picks
random b ←$ {0, 1}μ, z ←$ {0, 1}2μ+pad and random a, k ←$ {0, 1}μ \ {0μ}.
For mode inj the algorithm returns Γ (k‖a‖b‖z). For mode loss the algorithm
returns Γ (0μ‖a‖b‖z) instead.

Evaluation: On input pk ∈ {0, 1}λ and x ∈ {0, 1}μ algorithm EvalΓ,Π first
recovers (via exhaustive search) the preimage k‖a‖b‖z of pk under Γ for
k, a, b ∈ {0, 1}μ, z ∈ {0, 1}2μ+pad. Check that a 
= 0 in the field GF(2μ).
If any check fails then return ⊥. Else, next check if k = 0μ. If so, return
Π(a‖b‖setlsb(ax + b)), else return Π(a‖b‖ax + b).

2 For moderately lossy function we could actually use λ/4 but for compatibility to the
extremely lossy case it is convenient to use λ/5 already here.
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We now show that there exist permutations Π and Γ such that relative
to Π and the lossy function oracle (GenΓ,Π,EvalΓ,Π), lossy functions exist, but
key agreement does not. We will rely on the seminal result by Impagliazzo and
Rudich [20] showing that no key agreement exists relative to a random permu-
tation. Note that we do not give direct access to Γ—it will only be accessed by
the lossy functions oracle and is considered an integral part of it.

The following lemma is the technical core of our results. It says that the
partly exponential steps of the lossy-function oracles GenΓ,Π and EvalΓ,Π in our
construction can be simulated sufficiently close and efficiently through a stateful
algorithm Wrap, given only oracle access to Π, even if we filter out the mode
for key generation calls. For this we define security experiments as efficient algo-
rithms Game with oracle access to an adversary A and lossy function oracles
GenΓ,Π,EvalΓ,Π,Π and which produces some output, usually indicating if the
adversary has won or not. We note that we can assume for simplicity that A
makes oracle queries to the lossy function oracles and Π via the game only.
Algorithm Wrap will be black-box with respect to A and Game but needs to
know the total number p(λ) of queries the adversary and the game make to the
primitive and the quality level α(λ) of the simulation upfront.

Lemma 7 (Simulation Lemma). Let Filter be a deterministic algorithm
which for calls (1λ,mode) to GenΓ,Π only outputs 1λ and leaves any input to
calls to EvalΓ,Π and to Π unchanged. For any polynomial p(λ) and any inverse
polynomial α(λ) there exists an efficient algorithm Wrap such that for any effi-
cient algorithm A, any efficient experiment Game making at most p(λ) calls
to the oracle, the statistical distance between GameA,(GenΓ,Π,EvalΓ,Π,Π)(1λ) and

GameA,WrapGenΓ,Π,Π◦Filter is at most α(λ). Furthermore Wrap initially makes a poly-
nomial number of oracle calls to GenΓ,Π, but then makes at most two calls to Π
for each query.

In fact, since GenΓ,Π is efficient relative to Γ , and Wrap only makes calls to
GenΓ,Π for all values up to a logarithmic length L0, we can also write WrapΓ|L0 ,Π

to denote the limited access to the Γ -oracle. We also note that the (local) state
of Wrap only consists of such small preimage-image pairs of Γ and Π for such
small values (but Wrap later calls Π also about longer inputs).

Proof. The proof strategy is to process queries of Game and A efficiently given
only access to Π, making changes to the oracle gradually, depending on the type
of query. The changes will be actually implemented by our stateful algorithm
Wrap, and eventually we will add Filter at the end. To do so, we will perform
a series of games hops where we change the behavior of the key generation
and evaluation oracles. For each game Game1,Game2, . . . let Gamei(λ) be the
randomized output of the game with access to A. Let p(λ) denote the total
number of oracle queries the game itself and A make through the game, and let
Game0(λ) be the original attack of A with the defined oracles. The final game
will then immediately give our algorithm Wrap with the upstream Filter. We give
an overview over all the game hops in Fig. 2.
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Game Genloss Geninj Eval(pk, x) Π(x)

Game0 pk GenΓ,Π
loss (1

λ)

return pk

pk GenΓ,Π
inj (1

λ)

return pk

y EvalΓ,Π(pk, x)

return y

Π(x)

Game2 (pk, b) $ {0, 1}6μ

a $ {0, 1}μ
�=0µ

k $ {0, 1}μ
�=0µ

stpk (k, a, b)

return pk

(pk, b) $ {0, 1}6μ

a $ {0, 1}μ
�=0µ

stpk (0μ, a, b)

return pk

if stpk = ⊥
k, b $ {0, 1}2μ

a $ {0, 1}μ
�=0µ

stpk (k, a, b)

(k, a, b) stpk

if k = 0μ

return Π(pk‖setlsb(ax + b))

else

return Π(pk‖ax + b)

Π(x)

Game3 [. . . ]

stpk (loss, a, b)

[. . . ]

[. . . ]

stpk (inj, a, b)

[. . . ]

if stpk = ∅
b $ {0, 1}μ

a $ {0, 1}μ
�=0µ

stpk (inj, a, b)

(mode, a, b) stpk

if mode = loss

return Π(pk‖setlsb(ax + b))

else

return Π(pk‖ax + b)

Π(x)

Game4 [. . . ]

stpk (a, b)

[. . . ]

[. . . ]

stpk (a, b)

[. . . ]

[. . . ]

stpk (a, b)

a, b stpk

return Π(pk‖ax + b)

Π(x)

Game5 [. . . ] [. . . ] [. . . ]

return Π1(pk‖ax + b)

Π1(x)

Game6 pk $ {0, 1}5μ

return pk

pk $ {0, 1}5μ

return pk

a‖b‖ · · · Π0(pk)

return Π1(pk‖ax + b)

Π1(x)

Game7 [. . . ] [. . . ] return Π0(pk‖x) Π1(x)

Fig. 2. An overview of all the game hops. Note that for simplicity we ignored the
modifications related to inputs of length L0 here, in particular the game hop to Game1.

Game1. In the first game hops we let Wrap collect all information about very short
queries (of length related to L0) in a list and use this list to answer subsequent
queries. Change the oracles as follows. Let

L0 := L0(λ) := � log2(80α−1(λ) · p(λ)2 + p(λ))�.
Then our current version of algorithm Wrap, upon initialization, queries Π about
all inputs of size at most 2L0 and stores the list of queries and answers. The
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reason for using 2L0 is that the evaluation algorithm takes as input a key of
security parameter λ and some input of size μ ≈ λ/5, such that we safely cover
all evaluations for keys of security size λ ≤ L0.

Further, for any security parameter less than 2L0, our algorithm queries
GenΓ,Π for λ22L0 times; recall that we do not assume that parties have direct
access to Γ but only via GenΓ,Π. This way, for any valid key, we know that it
was created at some point except with probability (1 − 2−2L0)λ2

2L0 ≤ 2−λ and
therefore the probability that any key was not generated is at most 2L02−λ,
which is negligible. Further, for every public key, it evaluates EvalΓ,Π at x = 0
and uses the precomputed list for Π to invert, revealing the corresponding a and
b. Note that all of this can be done in polynomial time.

Any subsequent query to GenΓ,Π for security parameter at most L0, as well
as to EvalΓ,Π for a public keys of size at most L0 (which corresponds to a key
for security parameter at most L0), as well as to Π for inputs of size at most
2L0, are answered by looking up all necessary data in the list. If any data is
missing, we will return ⊥. Note that as long as we do not return ⊥, this is only a
syntactical change. As returning ⊥ happens at most with negligible probability
over the randomness of Wrap,

SD (Game0,Game1) ≤ 22L02−λ.

From now one we will implicitly assume that queries of short security length up
to L0 are answered genuinely with the help of tables and do not mention this
explicitly anymore.

Game2. In this game, we will stop using the lossy function oracles altogether, and
instead introduce a global state for the Wrap algorithm. Note that this state will
be shared between all parties having access to the oracles (via Wrap). Now, for
every call to GenΓ,Π, we do the following: If the key is created in injective mode,
Wrap will sample b ←$ {0, 1}μ and a, k ←$ {0, 1}μ \ {0μ}, if the key is created in
lossy mode, it sets k = 0μ. Further, it samples a public key pk ←$ {0, 1}5μ+pad,
and sets the state stpk ← (k, a, b). Finally it returns pk. Any call to EvalΓ,Π(pk, x)
will be handled as follows: First, Wrap checks whether a state for pk exists. If
this is not the case, we generate k, a, b ←$ {0, 1}μ (with checking that a 
= 0)
and save stpk ← (k, a, b). Then, we read (k, a, b) ← stpk from the (possibly just
initialized) state and return Π(a‖b‖ax + b).

What algorithmWrap does here can be seen as emulating Γ . However, there are
two differences: We do not sample z, and we allow for collisions. The collisions can
be of either of two types: Either we sample the same (random) public key pk = pk′

but for different state values (k, a, b) 
= (k′, a′, b′), or we sample the same values
(k, a, b) = (k′, a′, b′) but end up with different public keys pk 
= pk′. In this case, an
algorithm that finds such a collision of size at least μ for μ ≥ L0/5—smaller values
are precomputed and still answered as before— could be able to distinguish the two
games. Still, the two games are statistically close since such collisions happen with
probability at most 2−2L0/5+1 for each pair of generated keys:

SD (Game2,Game1) ≤ 2p(λ)2 · 2−2L0/5+1 ≤ α(λ)
8
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Game3. Next, instead of generating and saving a value k depending on the lossy
or injective mode, we just save a label inj or loss for the mode the key was
created for. Further, whenever EvalΓ,Π(pk, x) is called on a public key without
saved state, i.e., if it has not been created via key generation, then we always
label this key as injective.

The only way the adversary is able to recognize the game hop change is
because a self-chosen public key, not determined by key generation, will now
never be lossy (or will be invalid because a = 0). However, any adversarially
chosen string of size at least 5μ ≥ L0 would only describe a lossy key with
probability at most 1

2μ−p(λ) and yield an invalid a = 0 with the same probability.
Hence, taking into account that the adversary learns at most p(λ) values about Γ
though genuinely generated keys, and the adversary makes at most p(λ) queries,
the statistical difference between the two games is small:

SD (Game2,Game3) ≤ 2p(λ) · 1
2−L0/5+1 − p(λ)

≤ α(λ)
8

.

Game4. Now, we remove the label inj or loss again. Wrap will now, for any call
to Eval, calculate everything in injective mode.

There are two ways an adversary can distinguish between the two games:
Either by inverting Π, e.g., noting that the last bit in the preimage is not
as expected, or by finding a pair x 
= x′ for a lossy key pkloss such that
Eval(pkloss, x) = Eval(pkloss, x

′) in Game3. Inverting Π (or guessing a and b) only
succeeds with probability 2(p(λ)+1)

2μ . For the probability of finding a collision,
note that viewing the random permutation Π as being lazy sampled shows that
the answers are chosen independently of the input (except for repeating previous
answers), and especially of a, b for any lossy public key of the type considered
here. Hence, we can imagine to choose a, b for any possible pairs of inputs only
after x, x′ have been determined. But then the probability of creating a collision
among the p(λ)2 many pairs for the same key is at most 2p(λ)2

2μ for μ > L0/5.
Therefore, the distance between these two games is bounded by

SD (Game3,Game4) ≤ 3(p(λ) + p(λ)2) · 2−L0/5+1 ≤ α(λ)
8

.

Game5. We split the random permutation Π to have two oracles. For β ∈ {0, 1}
and x ∈ {0, 1}5μ, we now define Πβ(x) = Π(β‖x)1...5μ−1, i.e., we add a prefix
β and drop the last bit. We now replace any use of Π in Wrap, including direct
queries to Π, by Π1.

Would Π1 be a permutation, this would be a perfect simulation. However,
Π1 is not even injective anymore, but finding a collision is still very unlikely (as
random functions are collision resistant). In particular, using once more that we
only look at sufficiently large values, the statistical distance of the games is still
small:

SD (Game4,Game5) ≤ 2p(λ)2

25μ
≤ α(λ)

8
.
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Game6. Next, we stop using the global state st for information about the values
related to a public key (except for keys of security parameter at most L0). The
wrapper for Gen now only generates a uniformly random pk and returns it. For
Eval calls, Wrap instead calculates a‖b ← Π0(pk) on the fly. Note that there
is a small probability of 2−L0/5+1 of a = 0, yielding an invalid key. Except for
this, since the adversary does not have access to Π0, this game otherwise looks
completely identical to the adversary:

SD (Game5,Game6) ≤ p(λ) · 2−L0/5+1 ≤ α(λ)
8

.

Game7. For our final game, we use Π0 to evaluate the lossy function:

EvalΠ(pk, x) = Π0(pk‖x).

Note that, as A has no access to Π0, calls to Eval in Game7 are random for A.
For Game6, calls to Eval looks random as long as A does not invert Π1, which
happens at most with probability 2(p(λ)+1)

2μ . Therefore, the statistical distance
between the two games is bound by

SD (Game6,Game7) ≤ 3p(λ) · 2−2L0/5+1 ≤ α(λ)
8

.

In the final game the algorithm Wrap now does not need to save any state
related to large public keys, and it behaves identically for the lossy and injective
generators. We can therefore safely add our algorithm Filter, stripping off the
mode before passing key generation requests to Wrap. Summing up the statistical
distances we obtain a maximal statistical of 7

8α(λ) ≤ α(λ) between the original
game and the one with our algorithms Wrap and Filter. �	

We next argue that the simulation lemma allows us to conclude immediately
that the function oracle in Definition 6 is indeed a lossy function:

Theorem 3. The function in Definition 6 is a lossy function for lossiness
parameter 2.

The proof can be found in the full version [13].

4.2 Key Exchange

We next argue that given our oracle-based lossy function in the previous section
one cannot build a secure key agreement protocol based only this lossy function
(and having also access to Π). The line of reasoning follows the one in the
renowned work by Impagliazzo and Rudich [20]. They show that one cannot build
a secure key agreement protocol between Alice and Bob, given only a random
permutation oracle Π. To this end they argue that, if we can find NP-witnesses
efficiently, say, if we have access to a PSPACE oracle, then the adversary with
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oracle access to Π can efficiently compute Alice’s key given only a transcript of
a protocol run between Alice and Bob (both having access to Π).

We use the same argument as in [20] here, noting that according to our
Simulation Lemma 7 we could replace the lossy function oracle relative to Π
by our algorithm WrapΠ . This, however, requires some care, especially as Wrap
does not provide access to the original Π.

We first define (weakly) secure key exchange protocols relative to some ora-
cle (or a set of oracles) O. We assume that we have an interactive protocol
〈

AliceO,BobO
〉

between two efficient parties, both having access to the oracle

O. The interactive protocol execution for security parameter 1λ runs the inter-
active protocol between AliceO(1λ; zA) for randomness zA and BobO(1λ, zB)
with randomness zB , and we define the output to be a triple (kA, T, kB) ←
〈

AliceO(1λ; zA),BobO(1λ; zB)
〉

, where kA is the local key output by Alice, T is
the transcript of communication between the two parties, and kB is the local
key output by Bob. When talking about probabilities over this output we refer
to the random choice of randomness zA and zB .

Note that we define completeness in a slightly non-standard way by allowing
the protocol to create non-matching keys with a polynomial (but non-constant)
probability, compared to the negligible probability the standard definition would
allow. The main motivation for this definition is that it makes our proof easier,
but as we will prove a negative result, this relaxed definition makes our result
even stronger.

Definition 7. A key agreement protocol 〈Alice,Bob〉 relative to an oracle O is

complete if there exists an at least linear polynomial p(λ) such that for all large
enough security parameters λ:

Pr
[

kA 
= kB : (kA, T, kB) ←$

〈

AliceΠ(1λ),BobO(1λ)
〉]

≤ 1
p(λ)

.

secure if for any efficient adversary A the probability that

Pr
[

k∗ = kA : (kA, T, kB) ←$

〈

AliceO(1λ),BobO(1λ)
〉

, k∗ ←$AO(1λ, T )
]

is negligible.

Theorem 4. There exist random oracles Π and Γ such that relative to GenΓ,Π,
EvalΓ,Π, Π and PSPACE, the function oracle (GenΓ,Π,EvalΓ,Π) from Definition 6
is a lossy function, but no construction of secure key agreement from GenΓ,Π,
EvalΓ,Π and Π exists.

From this theorem and using the two-oracle technique, the following corollary
follows directly:

Corollary 1. There exists no fully black-box construction of a secure key agree-
ment protocol from lossy functions.
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Proof (Theorem 4). Assume, to the contrary, that a secure key agreement exists
relative to these oracles. We first note that it suffices to consider adversaries in
the Wrap-based scenario. That is, A obtains a transcript T generated by the
execution of AliceWrapΓ,Π◦Filter(1λ; zA) with BobWrapΓ,Π◦Filter(1λ; zA) where Wrap
is initialized with randomness zW and itself interacts with Π. Note that WrapΠ ◦
Filter is efficiently computable and only requires local state (holding the oracle
tables for small values), so we can interpret the wrapper as part of Alice and
Bob without needing any additional communication between the two parties—
see Fig. 3.

Fig. 3. The two parties Alice and Bob get access to the Wrap ◦ Filter algorithm with
internal access to the permutations Γ and Π, instead of having access to the lossy
function oracles as well as direct access to Π.

We now prove the following two statements about the key agreement protocol
in the wrapped mode:

1. For non-constant α(λ), the protocol 〈AliceWrapΓ,Π◦Filter,BobWrapΓ,Π◦Filter〉 still
fulfills the completeness property of the key agreement, i.e., at most with
polynomial probability, the keys generated by Alice and Bob differ; and

2. there exists a successful adversary EWrapΓ,Π◦Filter,PSPACE with additional
PSPACE access, that, with at least polynomial probability, recovers the key
from the transcript of Alice and Bob.

If we show these two properties, we have derived a contradiction: If there exists
a successful adversary against the wrapped version of the protocol, then this
adversary must also be successful against the protocol with the original oracles
with at most a negligible difference in the success probability – otherwise, this
adversary could be used as a distinguisher between the original and the wrapped
oracles, contradicting the Simulation Lemma 7.

Completeness. The first property holds by the Simulation Lemma: Assume there
exists a protocol between Alice and Bob such that in the original game, the keys
generated differ for at most a polynomial probability 1

p(λ) , while in the case
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where we replace the access to the oracles by WrapΓ,Π ◦Filter for some α(λ), the
keys differ with constant probability 1

cα
. In such a case, we could—in a thought

experiment— modify Alice and Bob to end their protocol by revealing their
keys. A distinguisher could now tell from the transcripts whether the keys of
the parties differ or match. Such a distinguisher would however now be able to
distinguish between the oracles and the wrapper with probability 1

cα
− 1

p(λ) , which
is larger than α(λ) for large enough security parameters, which is a contradiction
to the Simulation Lemma.

Attack. For the second property, we will argue that the adversary by Impagli-
azzo and Rudich from their seminal work on key agreement from one-way func-
tions [20] works in our case as well. For this, first note that the adversary has
access to both Π1 (by Π-calls to Wrap) and Π0 (by Eval-calls to Wrap) and Wrap
also makes the initial calls to Γ . Combining Γ , Π0 and Π1 into a single function
we can apply the Impagliazzo-Rudich adversary. Specifically, [20, Theorem 6.4]
relates the agreement error, denoted ε here, to the success probability approxi-
mately 1 − 2ε of breaking the key agreement protocol. Hence, let ε(λ) be the at
most polynomial error rate of the original key exchange protocol. We choose now
α(λ) sufficiently small such that ε(λ)+α(λ) is an acceptable error rate for a key
exchange, i.e., at most 1/4. Then this key exchange using the wrapped oracles is
a valid key exchange using only our combined random oracle, and therefore, we
can use the Impagliazzo-Rudich adversary to recover the key with non-negligible
probability.

Fixing the Oracles. Finally, we have to fix the random permutations Π and
Γ such that the Simulation Lemma holds and the Impagliazzo-Rudich attack
works. This happens again using standard techniques – see the full version [13]
for a proof. �	

4.3 ELFs

We will show next that our result can also be extended to show that no fully
black-box construction of key agreement from extremely lossy functions is possi-
ble. However, we are only able to show a slightly weaker result: In our separation,
we only consider constructions that access the extremely lossy function on the
same security parameter as used in the key agreement protocol. We call such
constructions security-level-preserving. This leaves the theoretic possibility of
building key agreement from extremely lossy functions of (significantly) smaller
security parameters. At the same time it simplifies the proof of the Simulation
Lemma for this case significantly since we can omit the step where Wrap samples
Γ for all small inputs, and we can immediately work with the common negligible
terms.

We start by defining an ELF oracle. In general, the oracle is quite similar to
our lossy function oracle. Especially, we still distinguish between an injective and
a lossy mode, and make sure that any key sampled without a call to the GenΓ,Π

ELF

oracle will be injective with overwhelming probability. For the lossy mode, we
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now of course have to save the parameter r in the public key. Instead of using
setlsb to lose one bit of information, we take the result of ax + b (calculated in
GF (2μ)) modulo r (calculated on the integers) to allow for the more fine-grained
lossiness that is required by ELFs.

Definition 8 (Extremely Lossy Function Oracle). Let Π,Γ be permuta-
tion oracles with Π,Γ : {0, 1}λ → {0, 1}λ for all λ. Let μ = μ(λ) = �(λ − 2)/5�
and pad = pad(λ) = λ − 2 − 5μ defines the length that the rounding-off loses to
λ − 2 in total (such that pad ∈ {0, 1, 2, 3, 4}. Define the extremely lossy function
(GenΓ,Π

ELF,Eval
Γ,Π
ELF) with input length in(λ) = μ(λ) relative to Γ and Π now as

follows:

Key Generation: The oracle GenΓ,Π
ELF, on input 1λ and mode r, picks random

b ←$ {0, 1}μ, z ←$ {0, 1}μ+pad and random a, k ←$ {0, 1}μ \ {0μ}. For mode
r = 2in(λ) the algorithm returns Γ (k‖a‖b‖r‖z). For mode r < 2in(λ) the
algorithm returns Γ (0μ‖a‖b‖r‖z) instead.

Evaluation: On input pk ∈ {0, 1}λ and x ∈ {0, 1}μ algorithm EvalΓ,Π
ELF first

recovers (via exhaustive search) the preimage k‖a‖b‖r‖z of pk under Γ for
k, a, b, r ∈ {0, 1}μ, z ∈ {0, 1}μ+pad. Check that a 
= 0 in the field GF(2μ).
If any check fails then return ⊥. Else, next check if k = 0m. If so, return
Π(a‖b‖(ax + b mod r)), else return Π(a‖b‖ax + b).

We can now formulate versions of Theorem 4 and Corollary 1 for the
extremely lossy case.

Theorem 5. There exist random oracles Π and Γ such that relative to GenΓ,Π
ELF,

EvalΓ,Π
ELF, Π and PSPACE, the extremely lossy function oracle (GenΓ,Π

ELF,Eval
Γ,Π
ELF)

from Definition 8 is indeed an ELF, but no security-level-preserving construction
of secure key agreement from GenΓ,Π

ELF,Eval
Γ,Π
ELF and Π exists.

Corollary 2. There exists no fully black-box security-level-preserving construc-
tion of a secure key agreement protocol from extremely lossy functions.

Proving Theorem 5 only needs minor modifications of the proof of Theorem 4
to go through. Indeed, the only real difference lies in a modified Simulation
Lemma for ELFs, which we will formulate next, together with a proof sketch
that explains where differences arrive in the proof compared to the original
Simulation Lemma. To stay as close to the previous proof as possible, we will
continue to distinguish between an injective generator Geninj(1

λ) and a lossy
generator Genloss(1

λ, r), where the latter also receives the parameter r.

Lemma 8 (Simulation Lemma (ELFs)). Let Filter be a deterministic algo-
rithm which for calls (1λ,mode) to GenΓ,Π

ELF only outputs 1λ and leaves any input
to calls to EvalΓ,Π

ELF and to Π unchanged. There exists an efficient algorithm Wrap
such that for any polynomials p and d′ there exists a polynomial q such that for
any adversary A which makes at most p(λ) queries to the oracles, any efficient
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experiment Game making calls to the GenΓ,Π
ELF oracle with r > q(λ) the distin-

guishing advantage between GameA,(GenΓ,Π
ELF,EvalΓ,Π

ELF,Π)(1λ) and GameA,WrapΠ◦Filter is
at most 1

d′(λ) for sufficiently large λ. Furthermore Wrap makes at most two calls
to Π for each query.

Proof (Sketch). We will now describe how the game hops differ from the proof of
Lemma 7, and how these changes affect the advantage of the distinguisher. Note
that allowing only access to the ELF oracle at the current security parameter
allows us to argue that differences between game hops are negligible, instead of
having to give a concrete bound.

Game1. stays identical to Game0 – as we only allow access to the ELF oracle at
the current security level, precomputing all values smaller than some L0 is not
necessary here.

Game2. introduces changes similar to Game2 in Lemma 7 – however, we now of
course also have to save the parameter r in the state. Again, the only notable
difference to the distinguisher is that we sample pk independently of the public
key parameters and therefore, collisions might happen more often. However, the
probability for this is clearly negligible:

SD (Game1,Game2) ≤ negl(λ)

Game3. replaces k with a label inj or loss. Again, the only noticeable difference is
that keys sampled without calling Geninj or Genloss will now always be injective,
while they are lossy with probability 2−μ in Game2, yielding only a negligible
difference between the two games however.

SD (Game2,Game3) ≤ negl(λ)

Game4. is the game where we start to always evaluate in injective mode. There are
two options a distinguisher might distinguish between the two games: Either by
inverting Π, or by finding a collision for a lossy key. Inverting Π only happens
with probability 2(p(λ)+1)

2μ , while finding a collision happens with probability
2p(λ)2

r . Let d(λ) = d′(λ)
2 be the advantage we want to allow for the distinguisher

in this game hop. Choosing q(λ) = 4p(λ)2d(λ) for the bound on r of the ELF,
we get

AdvGame3,Game4
A ≤ 1

d(λ)

Game4 is now identical to Game4 in the proof of Lemma 7 (except for the
different handling of calls to security parameters smaller than L0). Therefore, all
game hops up to Game7 are identical to the ones in the proof of Lemma 7, with
the statistical difference being negligible for all of them. Therefore, the overall
advantage of an distinguisher is bounded by 1

d(λ) + negl(λ) ≤ 1
d′(λ) for large

enough security parameters λ.
�	
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Let 〈AliceGenΓ,Π
ELF,EvalΓ,Π

ELF,Π ,BobGenΓ,Π
ELF,EvalΓ,Π

ELF,Π〉 be some candidate key agreement
protocol with completeness error 1

ε(λ) < 1
8 that makes at most p(λ) queries in

sum, and let 1
d′(λ) < 1

8 be the advantage bound for any adversary against the
key agreement we are trying to reach.

To determine the correct parameters for the ELF oracle, we need to know how
many queries the Impagliazzo-Rudich adversary makes against the transcript
of the wrapped version of the protocol 〈AliceWrapΠ◦Filter,BobWrapΠ◦Filter〉, which
depends on the number of queries of the protocol. Note that we know that WrapΠ

makes at most two queries to Π for each internal query of Alice or Bob, so we
know that the wrapped version makes at most 2p(λ) queries to Π. Let p′(λ) be
the number of queries needed by the Impagliazzo-Rudich protocol.

First, we have to show that completeness still holds for the wrapped version of
the protocol. The wrapped protocol has an error rate of at most 1

ε′ < 1
ε +

1
d′ ≤ 1

4 ,
as otherwise, we would have a successful distinguisher for the Simulation Lemma.
Further, as the error rate 1

ε′ is smaller than 1
4 , we know that Impagliazzo-Rudich

will have a success probability of at least 1
2 .

Further, we know from the Simulation Lemma that we need d(λ) = d′(λ)
2

for it to hold. Therefore, we set the bound for r in the ELF oracle to q(λ) =
4p′(λ)2d(λ). Now, the Impagliazzo-Rudich attack has to be successful for the
original protocol with polynomial probability 1

d′′ , as otherwise, there would be
an distinguisher for the Simulation Lemma with advantage 1

2 − negl(λ) > 1
d′(λ) .

Fixing oracles Π,Γ such that (GenΓ,Π
ELF,Eval

Γ,Π
ELF) is an ELF, while the Impagliazzo-

Rudich attack is successful yields the Theorem.

5 Relationship of Lossy Functions to Statistical
Zero-Knowledge

The complexity class (average-case) SZK, introduced by Goldwasser, Micali and
Rackoff [16], contains all languages that can be proven by a statistical zero-
knowledge proof, and is often characterized by its complete promise problem
(average-case) Statistical Distance [29]. Hardness of Statistical Zero-Knowledge
follows from a number of algebraic assumptions like Discrete Logarithm [15]
and lattice problems [22] and the existence of some Minicrypt primitives like
one-way functions [24] and distributional collision resistant hash functions [21]
follow from hard problems in SZK – it is not known to follow from any Minicrypt
assumptions, however, and for some, e.g., collision-resistant hash functions, there
exist black-box separations [6].

Therefore, average-case hard problems in SZK seem to be a natural candidate
for a non-public key assumption to build lossy functions from. Intuitively, one
can see similarities between lossy functions and statistical distance: Both are, in
a sense, promise problems, if one looks at the image size of a lossy function with
a large gap between the injective mode and the lossy mode. Further, it is known
that hard problems in SZK follow from lossy functions (this seems to be folklore
knowledge – we give a proof for this fact in the full version.
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Note that a construction of lossy functions would also be interesting from
a different perspective: As collision-resistant hash functions can be build from
sufficiently lossy functions, a construction of (sufficiently) lossy functions from
average-case SZK hardness would mean that collision resistance follows from
average-case SZK hardness. However, right now, this is only known for distribu-
tional collision resistance, a weaker primitive [21].

(E)LFs

Oraclecrypt

Public Key Cryptography

Theorem 4

Theorem 1

avg-SZK

Theorem 6

?

Fig. 4. We show an oracle separation between Oraclecrypt and average-case SZK as
well. The question whether lossy functions can be build from average-case SZK is still
open.

Alas, we are unable to either give a construction of a lossy function from
a hard-on-average statistical zero-knowledge problem or to prove an black-box
impossibility result between the two, leaving this as an interesting open question
for future work. Instead, we give a lower bound on the needed assumptions for
hard-on-average problems in SZK by showing that no Oraclecrypt primitive can
be used in a black-box way to construct a hard-on-average problem in SZK – this
serves as hint that indeed SZK is an interesting class of problems to look at for
building lossy functions, but the result might also be interesting independently.

Note some Oraclecrypt primitives, such a separation already exists: For exam-
ple, Bitansky and Degwekar give an oracle separation between collision-resistant
hash functions and (even worst-case) hard problems in SZK. However, this result
uses a Simon-style oracle separation (using a break -oracle that depends on the
random oracle), which means that the result is specific to the primitive and does
not easily generalize to all Oraclecrypt primitives.

Theorem 6. There exists no black-box construction of an hard-on-average prob-
lem in SZK from any Oraclecrypt primitive.

Our proof techniques is quite similar to Chap. 3: First, we will reuse the
oracles O and PSPACEO′

. We assume there exists an hard-on-average statistical
distance problem relative to these random oracles. We will then calculate the



234 M. Fischlin and F. Rohrbach

heavy queries of the circuits produced by the statistical distance problem and
show that the heavy queries are sufficient to decide whether the circuits are
statistically far from each other or not, yielding a contradiction to the assumed
hardness-on-average of statistical distance. The complete proof can be found in
the full version.
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Abstract. Sponge paradigm, used in the design of SHA-3, is an alter-
native hashing technique to the popular Merkle-Damg̊ard paradigm. We
revisit the problem of finding B-block-long collisions in sponge hash func-
tions in the auxiliary-input random permutation model, in which an
attacker gets a piece of S-bit advice about the random permutation and
makes T (forward or inverse) oracle queries to the random permutation.

Recently, significant progress has been made in the Merkle-Damg̊ard
setting and optimal bounds are known for a large range of parameters,
including all constant values of B. However, the sponge setting is widely
open: there exist significant gaps between known attacks and security
bounds even for B = 1.

Freitag, Ghoshal and Komargodski (CRYPTO 2022) showed a novel
attack for B = 1 that takes advantage of the inverse queries and achieves
advantage ˜Ω(min(S2T 2/22c, (S2T/22c)2/3) + T 2/2r), where r is bit-rate
and c is the capacity of the random permutation. However, they only
showed an ˜O(ST/2c + T 2/2r) security bound, leaving open an intrigu-
ing quadratic gap. For B = 2, they beat the general security bound by
Coretti, Dodis, Guo (CRYPTO 2018) for arbitrary values of B. However,
their highly non-trivial argument is quite laborious, and no better (than
the general) bounds are known for B ≥ 3.

In this work, we study the possibility of proving better security bounds
in the sponge setting. To this end,

– For B = 1, we prove an improved ˜O(S2T 2/22c+S/2c+T/2c+T 2/2r)
bound. Our bound strictly improves the bound by Freitag et al., and
is optimal for ST 2 ≤ 2c.

– For B = 2, we give a considerably simpler and more modular proof,
recovering the bound obtained by Freitag et al.

– We obtain our bounds by adapting the recent multi-instance tech-
nique of Akshima, Guo and Liu (CRYPTO 2022) which bypasses
the limitations of prior techniques in the Merkle-Damg̊ard setting.
To complement our results, we provably show that the recent multi-
instance technique cannot further improve our bounds for B = 1, 2,
and the general bound by Correti et al., for B ≥ 3.
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Overall, our results yield state-of-the-art security bounds for finding
short collisions and fully characterize the power of the multi-instance
technique in the sponge setting.

Keywords: Collision · hash functions · Sponge · multi-instance ·
pre-computation · auxiliary input

1 Introduction

Sponge paradigm [BDPA07,BDPA08] is a novel domain extension technique for
handling arbitrary long inputs based on a permutation F : [R]× [C] → [R]× [C]
(where C := 2c, R := 2r for bit-rate r and capacity c) with fixed input length.
Specifically, a B-block message m = (m1, · · · ,mB) with mi ∈ [R] is hashed into
SPF (a,m) as follows: initialize (x0, y0) = (0, a), and compute

(xi, yi) = F (xi−1 ⊕ mi, yi−1) for 1 ≤ i ≤ B; finally output xB

where a ∈ [C] is the initialization salt1. We say m �= m′ is a pair of B-
block collision with respect to a salt a if they both have at most B blocks
and SPF (a,m) = SPF (a,m′).

Sponge paradigm is an important alternative hashing technique to the popu-
lar Merkle-Damg̊ard (MD) paradigm [Mer89,Dam89]. Notably, it has been used
in the most recent hashing standard SHA-3. In this work, we are interested in
the collision resistance property of sponge hash functions against preprocessing
attackers, which can have an arbitrary (but bounded) precomputed advice about
F to help.

Recently, several works have rigorously studied the algorithms for colli-
sion finding using preprocessing for Merkle-Damg̊ard hash functions [DGK17,
CDGS18,ACDW20,GK22,AGL22,FGK23], and significant progress has been
made towards fully determining the optimal security bounds for all values of
B [GK22,AGL22]. However, unlike the MD setting, the sponge setting draws
much less attention [CDG18,FGK22], and our understanding is quite unsatis-
factory. Significant gaps exist between known attacks and security bounds even
for B = 1.

All of them [CDG18,FGK22] studied this question in the auxiliary-
input random permutation model (AI-RPM) proposed by Coretti, Dodis and
Guo [CDG18]. In this model, F is treated as a random permutation, and an
adversary A consists of a pair of algorithms (A1,A2). In the offline stage, (com-
putationally unbounded) A1 precomputes S bits of advice about F . In the online
1 In some practical sponge applications like SHA-3, this salt is usually set to 0. How-

ever, when we study the collision resistance of sponge hash functions in the auxiliary
input model, such a fixed salt will make finding collisions trivial. [CDG18] identified
this need for salting the hash functions for collision resistance in the auxiliary input
model and so we are interested in the security bounds against a random initialization
salt (just like what prior works [CDG18,ACDW20,AGL22,FGK22] did). See more
details on the definition of the auxiliary input model below in Sect. 2.4.
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stage, A2 takes this advice, and receive a random challenge salt a as the initial-
ization salt of F . Next, it makes T oracle queries to F or F−1 during the attack,
and finally output two messages that form the collision. We remark that inverse
queries are not allowed in the MD setting, since the hash functions used by MD
are usually one-way functions, while in sponge F is a invertible permutation.

Freitag, Ghoshal and Komargodski [FGK22] showed a novel attack for
B = 1 that takes advantage of the inverse queries and applies the func-
tion inversion algorithms by Hellman [Hel80]. This attack achieves advan-
tage Ω(min(S2T 2/C2, (S2T/C2)2/3) + T 2/R). This is particularly interesting
because it suggests that for some range of parameters (e.g., ST 2 ≥ C), 1-
block sponge hashing is less secure than 1-block MD hashing (for which the
trivial attack by storing S collisions is known to be optimal [DGK17]). For
B ≥ 2, Freitag et al., based on an analogous attack for MD hashing given by
Akshima, Cash, Drucker and Wee [ACDW20], showed an attack with advantage
˜Ω(STB/C + T 2/min(C,R)) (the notations ˜Ω, ˜O hides poly-log factors).

In terms of security upper bounds, Coretti, Dodis and Guo [CDG18] proved
an ˜O(ST 2/C +T 2/R) bound for any B, showing the optimality of the attack for
finding B ≈ T -length collisions. For other choices of B, only sub-optimal bounds
are known for B ≤ 2, and no better bound than ˜O(ST 2/C + T 2/R) is known
for any B ≥ 3. Specifically, Freitag et al. showed an ˜O(ST/C +T 2/R) bound for
B = 1 and ˜O(ST/C + S2T 4/C2 + T 2/min(C,R)) bound for B = 2. Therefore,
there is still a quadratic gap between the attack and security upper bound even
for B = 1. On the contrast, optimal bounds are known for all constant values of
B in the MD setting [DGK17,ACDW20,GK22,AGL22].

That motivates us to study the following question in this paper:

What is the optimal bound for B=1?
Is there a better attack or security upper bound?

From the technical level, we are particularly interested in the multi-instance
technique used to prove nearly optimal bounds for MD hashing [AGL22].
Specifically, it has recently been observed that the sequential random multi-
instance technique by [AGL22] (referred to as multi-instance games technique in
[AGL22]) subsumes the popular presampling technique [CDGS18,CDG18] and
sequential distinct multi-instance technique [ACDW20] (referred to as multi-
instance problem technique in [AGL22]). In the MD setting, it bypasses prov-
able limitations of presampling technique [CDG18] and gives more modular
proofs than sequential distinct multi-instance technique [ACDW20]. Moreover,
the sequential random multi-instance technique successfully gave optimal bounds
for various primitives even in the quantum setting [CGLQ20]. Therefore, we set
out to understand the following question,

Can we prove better bounds or provide simpler proofs using multi-instance
games?

In this work, we answer both questions.
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1.1 Our Results

Our first contribution is an improved bound for B = 1.

Theorem 1 (Informal). The advantage of the best adversary with S-bit advice
and T queries for finding 1-block collisions in sponge hash functions in the
auxiliary-input random permutation model, is

˜O

(

S2T 2

C2
+

S

C
+

T

C
+

T 2

R

)

.

Our bound strictly improves the ˜O(ST/C + T 2/R) bound, and matches the
best known attacks for most ranges of parameters. Note that S/C, T/C, T 2/R
terms match trivial or standard attacks, and the S2T 2/C2 term matches the
attack min(S2T 2/C2, (S2T/C2)2/3) by [FGK22] as long as ST 2 ≤ C. Notably,
our bound is optimal for ST 2 ≤ C.

We believe that further bridging the gap between the attack by [FGK22] and
our bound is challenging. This is because their attack is obtained via connections
with the function inversion problem for which an analogues gap exists. Bridging
the gap for function inversion problem is a long standing open problem, and
better security bounds would imply new classical circuit lower bounds, as shown
by Corrigan-Gibbs and Kogan [CGK19].

Our second contribution is a considerably simpler proof for B = 2, recovering
one of the main results of [FGK22]. The original proof classified the collision
structure into over 20 types, while we only need 8 types. This is possible because
we do a careful analysis using the MI-games technique from [AGL22].

Theorem 2 (Informal). The advantage of the best adversary with S-bit advice
and T queries for finding 2-block collisions in sponge hash functions in the
auxiliary-input random permutation model, is

˜O

(

ST

C
+

S2T 4

C2
+

T 2

min(C,R)

)

.

We note that the term ST/C+T 2/min(C,R) matches the best known attack
by [FGK22]. Therefore the above bound is optimal when the S2T 4/C2 term
doesn’t dominate the sum, i.e., ST 3 ≤ C. However, this leaves an intriguing
possibility of obtaining a better attack than ST/C for ST 3 > C, which will
further confirm that sponge hashing is less secure than the MD hashing against
preprocessing attackers (this message has been conveyed for B = 1 by [FGK22]).

We prove our results using the sequential distinct multi-instance technique
(referred to as multi-instance problem technique in [AGL22]), and the sequen-
tial random multi-instance technique (referred to as the multi-instance game
techniques in [AGL22]). It illustrates the power of the multi-instance technique
over prior techniques in the sponge setting. The sequential distinct MI technique
bypasses the limitation of the presampling technique (for B = 1) and sequential
random MI technique gives more modular proofs (for B = 2). A comparison of
our results with the prior works is summarized in Table 1.
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The difference between sequential distinct MI technique and sequential ran-
dom MI technique is in how the challenge games are defined. As the name
suggests, in sequential distinct MI technique the game picks a random set of
distinct challenge problems, the adversary is presented with one instance of the
challenge problem at a time and has to solve all the instances of the distinct
challenge problems to win. Whereas in the sequential random MI technique, the
game picks a new randomly chosen instance of challenge problem each time,
and the adversary gets that challenge only after solving all the previous chal-
lenges. Picking a random instance of the challenge problem allows the sequence
of challenges to be independent of each other.

Roughly speaking, the sequential MI technique reduces proving ε security in
the auxiliary input model against (S, T )-algorithms to proving (ε/2)S security
in the (S, T )-multi-instance game. There are S stages in this game, and the
adversary need to win all the S stages to win the whole game. In the ith stage,
the adversary will first receive a challenge salt ai, then make T queries to F
(or F−1 for sponge), and finally output a pair of messages mA,mB such that
SPF (ai,mA) = SPF (ai,mB). The adversary is allowed to use the queries from
previous stages, but is no longer allowed to store advice bits. (See Sect. 2.4 for
relevant definitions.)

Given that the sequential MI technique is used successfully to prove optimal
bounds for various problems, such as finding 2-block collision in MD hash func-
tions [AGL22], we wonder why we cannot prove better bounds for B = 2 in the
sponge setting: is it an issue of our proofs or the technique. Therefore, we set
out to understand the limitation of this technique.

Our third contribution is the following theorem, which implies that it is
impossible to prove better bounds for any B using the sequential multi-instance
technique in the sponge setting.

Theorem 3 (Informal). Suppose S, T,R ≥ 16. There are adversaries for find-
ing 1-block collisions with advantage ( ˜Ω(S2T 2/C2))S, and adversaries for find-
ing 2-block collisions with advantage ( ˜Ω(S2T 4/C))S, and adversaries for finding
3-block collisions with advantage ( ˜Ω(ST 2/C))S when T 2 < R, in the (S, T )-
multi-instance games of sponge hash functions.

These lower bounds give limitations on the bound one can prove with multi-
instance techniques. In particular, it implies that (using the multi-instance tech-
nique) the S2T 2/C2 term obtained in Theorem 1 cannot be improved. It also
explains why Theorem 2 (also [FGK22]) cannot prove better than S2T 4/C2, and
why no non-trivial bounds (i.e., better than ST 2/C) can be proved for B ≥ 3.
Together with our new security upper bounds and the general known bound2

for the multi-instance games (summarized in Table 2), we fully characterize the
power of the multi-instance technique in the sponge setting. As the bounds in
Theorem 1, Theorem 2 and the general O(ST 2/C + T 2/R) bound are the best

2 [CDG18] proved an ˜O(ST2

C
+ T2

R
) bound using presampling which implies an

( ˜O(ST2

C
+ T2

R
))S multi-instance security.
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one can prove using the multi-instance technique, other novel techniques are
required to obtain optimal bounds for collision resistance of sponge in the AI
setting. In Sect. 1.3, we point out potential techniques for future directions.

Table 1. Asymptotic security bounds on the security of finding B-block-long collisions
in sponge hash functions constructed from a random permutation F : [R] × [C] �→
[R] × [C] against (S, T )-algorithms. For simplicity, logarithmic terms and constant
factors are omitted and S, T ≥ 1.

Best known attacks Previous Security bounds Our Security bounds

B = 1
min(S2T2

C2 , (S2T
C2 )2/3) +

T2

R
+ S

C
+ T

C

ST
C

+ T2

R
[FGK22] S2T2

C2 + S
C

+ T
C

+ T2

R
[Theorem 1]

B = 2 ST
C

+ T2

min(C,R)
ST
C

+ S2T4

C2 + T2

min(C,R)
[FGK22] ST

C
+ S2T4

C2 + T2

min(C,R)
[Theorem 2]

3 ≤ B ≤ T STB
C

+ T2

min(R,C)
ST2

C
+ T2

R
[CDG18] –

Table 2. Asymptotic bounds on the security finding B-block-long collisions in sponge
hash functions constructed from a random permutation F : [R] × [C] �→ [R] × [C] in

the (S, T )-multi-instance games. We note that naive attacks can achieve ( ˜Ω(S/C))S ,

( ˜Ω(T/C))S and ( ˜Ω(T 2/R))S advantage in (S, T )-MI games model.

Our attacks Security bounds

B = 1
(

˜Ω
(

S2T2

C2

))S

[Theorem 10]
(

˜O
(

S2T2

C2 + S
C

+ T
C

+ T2

R

))S

[Theorem 8]

B = 2
(

˜Ω
(

S2T4

C2

))S

[Theorem 11]
(

˜O
(

ST
C

+ S2T4

C2 + T
min(C,R)

))S

[Lemma 2]

3 ≤ B ≤ T
(

˜Ω
(

ST2

C

))S

[Theorem 12]
(

˜O
(

ST2

C
+ T2

R

))S

1.2 Technical Overview

In this section, we present an overview of our proofs using reduction to the
the multi-instance game model to analyze security bounds of B-block collision
finding for B = 1 and B = 2, followed by our attacks for B = 1, B = 2 and
B ≥ 3 in the multi-instance game model.

The high level idea is: the multi-instance approach [AGL22,CGLQ20,IK10,
ACDW20,GK22,FGK22] reduces proving the security of a problem with S-bit
advice to proving the security of S random instances of the problem. If the
instances are given at once, then we call it “parallel” multiple instance problem,
and if the instances are presented one at a time, we call it“sequential” multi-
instance game. [AGL22] showed that if any adversary (with no advice) can solve
S random instances of the problem “sequentially” with success probability at
most δS , then any adversary with S-bit advice can solve one instance of the
problem with success probability at most 2δ. We note that security bounds for
“parallel” multiple instance problem implies security bounds for corresponding
“sequential” multiple instance games. Henceforth, we always mean sequential
multi-instance games when we refer to multi-instance games in this paper.
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Our Proof for B=1. We use the compression technique from [DTT10] to analyze
our multi-instance games. The compression technique (refer to Theorem 5 for the
precise statement) states that for a pair of encoding and decoding algorithms
that can compress a random function by at least log 1/ε bits, succeeds with
probability at most ε. Here, we will design a pair of encoding and decoding
algorithm, such that whenever an adversary A wins the multi-instance game,
the encoder can use this adversary A to compress F . The challenge is to show
that the encoder can compress ‘enough’ bits using this A to obtain the desired
(upper) bound on the success probability of the adversary A.

To get an idea, we first look at the simplest case. Say there is only 1 stage
in the game (i.e., S = 1), and the adversary makes two forward queries that
collide for the challenge salt a. In other words the adversary queries F (m1, a)
and F (m2, a) such that their outputs are in (m, ∗). This means the first part of
the outputs for both the queries is the same (which is m in this case). Here we
can use 2 pointers, each log T bits long, to store the positions of the two colliding
forward queries among the adversary’s forward queries, and remove m from F ’s
mapping table corresponding to the second query (Since we know it equals to
the first part of output of the first query). This saves log R bits. Therefore, we
can get an O(T 2/R) upper bound as per Theorem 5.

However, for S > 1, pointing to the forward colliding queries trivially requires
log(ST )-sized pointers (as the adversary makes a total of ST queries). This gives
the bound ε ≤ S2T 2/C which is not good enough. We can do better by storing
the colliding queries for all the challenge salts together in an unordered set. The
same idea works when the first occurring of the colliding queries is an inverse
query and second one is a forward query. Refer to Sect. 3.1.2 for more details
about compressing in these cases.

Another possibility is that the adversary always outputs two inverse queries,
say F−1(mi, ai1) = (mi1 , ai) and F−1(mi, ai2) = (mi2 , ai), as the collision. Then
we can compress using that the second part of the output for all these queries
will be in a1, . . . , aS .

The trickiest case is when the adversary first makes a forward query, say
F (mi1 , ai) = (mi, ai1), then an inverse query, say F−1(mi, ai2) = (mi2 , ai) as
the collision. The trivial thing to do is to compress only the inverse query as
above. However, it will only achieve an O(ST/C)S bound, which is not enough
for our results. We use the idea that the output salt of the inverse query is not
just in a1, . . . , aS but in fact it is one of the salts that is input to a forward query
with output of the form (mi, ∗). The issue is the number of salts in a1, . . . , aS

meeting this requirement could still be ‘large’. When that happens we have to
compress the output of the forward queries as well to get enough compression.
Refer to Sect. 3.1.2 for more details about this case and how to deal with an
adversary that finds different types of collisions for different challenge salts.

Our Proof for B=2. For B = 2, we will use the proof strategy of Akshima et
al. [AGL22] for dealing with B = 2 in the MD setting. The main difference is
that we have to additionally deal with inverse queries in our analysis. We provide
a high level overview of their proof, and describe where our proof differs due to
inverse queries.
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Recall that, to prove the sequential multi-instance security, it is sufficient
to bound the advantage of any adversary that finds a 2-block collision for a
fresh salt a, conditioned on it finds 2-block collisions for all the previous random
challenge salts a1, · · · , aS .

Following the terminology of Akshima et al. [AGL22], we call these ST queries
made during the first S rounds as offline queries, and among the T queries made
for a, we call the queries that were not made during the first S rounds as online
queries. Moreover, we focus on the case that the new salt a has never been queried
among the offline queries (because the other case happens with probability at
most ST/N). As a result, all queries starting with the challenge salt a have to
be online queries.

Akshima et al. [AGL22] studied how can the previous ST queries be helpful
for this round of game? The main observation of Akshima et al. [AGL22] is
that although the adversary learns about the function from the offline queries,
and in the worst case, the offline queries could be very helpful. However, the
helpful worst offline queries are not typical and can be tolerated by refining the
technique. To do this, they define a bunch of helpful “high knowledge gaining”
events among previous ST queries including, 1) there are more than S distinct
salts with 1-block collision, 2) there are more than S2 pairs of queries forming
collisions, 3) there are more than S distinct salts with self-loops. They show that
these events happen with sufficiently small probability, and conditioned on none
of them happens, no online algorithms can find 2-block collisions with advantage
better than the desired bound.

Now the question is what changes when inverse queries are allowed? The high
knowledge gaining events are essentially the same, however some of these events
can easily happen when inverse queries are allowed. In particular, for event 2),
it was hard to form collisions (under the first part of output) among ST forward
queries F (x1, y1), . . . , F (xST , yST ). However, if we make ST inverse queries with
form F−1(0, y1), . . . , F−1(0, yST ), then we have Ω((ST )2) pairs of input pairs
such that their evaluations in the forward direction form collision (under the
first part of output). Given such a set of offline queries, one can find 2-block
collisions for a new salt with probability at least Ω(S2T 4/C2). Fortunately, this
is the worst we can get, and we can prove the advantage is at most O(S2T 4/C2)
with adjusted high knowledge gaining events.

Our Attacks for B=1,2,3 in the MI Model. We present three simple attacks for
finding collisions in the multi-instance model and show their analysis. The main
high level idea for all of these attacks is to accumulate relevant high knowledge
events in each round to help with the next round.

We briefly illustrate the core idea of our attacks, starting with the attack
for B = 1. In the ith round, the adversary makes T queries F−1(0, iT + j) for
j = 0, . . . , T−1. The intuition is that via these inverse queries, the expected num-
ber of salts for which a collision is found (i.e. For a salt a, there exist two inverse
queries F−1(0, x) = (m1, a) and F−1(0, y) = (m2, a)) is Ω((iT )2/C2) in previous
i-rounds. Therefore, once the random challenge salt in the ith round is one of
these ‘solved’ salt, then we are already done. Overall, the probability of finding
collisions in each of the S rounds in this manner is at least (Ω(S2T 2/C2))S . We
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note that this is just the intuition, and we have to carefully deal with the corre-
lations between winning in previous rounds and the expected events happening
in previous rounds.

For B = 2, the most helpful event is to accumulate a lot of pairs of queries
whose first part of output forms a collision. The best way of doing so is to spend
an half of the queries in each round to make inverse queries of queries of form
F−1(0, ∗), and spend the other half of the queries trying to hit two of these
queries from the current challenge salt ai. With high probability there will be
Ω(i2T 2/C2) such pairs, and one can win the ith stage with probability at least
Ω(i2T 4/C2).

For B = 3, the most helpful event is to have at least Ω(iT ) salts such that
there are 2-block collisions starting from these salts. Specifically, we first try to
find 1-block collision collisions starting from a salt y, and then make queries of
form F−1(∗, y) to generate these Ω(iT ) salts. Then, with Ω(iT 2/C) probability
one can hit one of these salts from the challenge salt and form a 3-block collision.
We refer to Fig. 7 and Sect. 5 for the details and analysis of these attacks.

1.3 Discussions and Open Problems

Is STB-Conjecture True for Sponge Hashing? Akshima et al. [ACDW20] con-
jectured that the best attack with time T and space S for finding collisions
of length B ≥ 2 in salted MD hash functions built using compression func-
tions with n-bit output achieves advantage Θ((STB + T 2)/2n). It is natural to
consider a similar STB-conjecture for sponge hash functions, conjecturing the
Θ(STB/C + T 2/min(R,C)) attack by Freitag et al. [FGK22] is optimal for
B ≥ 2. However, this conjecture is only proved for very large B ≈ T [CDG18],
and sponge hash is provably less secure than MD hash [FGK22] for B = 1. It will
be extremely interesting to either prove or refute the sponge STB-conjecture. To
start with, is the STB-conjecture true for B = 2 in sponge?

Better Attacks for B=2? The current security upper bound for B = 2 suggests
that there may exist an attack with advantage Ω(S2T 4/C2) in the auxiliary-
input random permutation model. And we show an attack in the multi-instance
model with advantage (Ω(S2T 4/C2))S . Can we utilize similar ideas to show a
corresponding attack in the auxiliary-input random permutation model?

Better Bounds via Stateless Multi-instance Games? Our results characterize the
power of the multi-instance technique in the sponge setting by presenting attacks
in the model of Akshima et al. [AGL22]. We observe that, a variant of the reduc-
tion of Akshima et al. [AGL22] allows one to consider more restricted multiple-
instance games, where the adversary is stateless and doesn’t remember infor-
mation from previous rounds. Because our attacks require knowing queries from
previous rounds, our attacks don’t apply to stateless multi-instance games. We
remark that analyzing stateless adversary for multi-instance games is non-trivial
because, although the challenges are independent, the same random permutation
is reused in multiple rounds. We hope that the study of stateless multi-instance
games will shed light on how to obtain optimal bounds for finding collisions in
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sponge and potentially close the gap for MD other major open problem (such as
function inversion) in this area.

Other Related Works. In a recent work [GGPS23], Golovnev et al. presented
an algorithm for function inversion which works for any S, T such that TS2 ·
max{S, T} = ˜Θ(C3) (where C is the size of the range of function) and improves
over the Fiat and Noar algorithm when S < T . We mention that the time-
space tradeoffs of many other cryptographic primitives, such as one-way func-
tions, pseudorandom random generators, discrete discrete logarithm have been
studied in various idealized models [DTT10,CHM20,CGK18,CGK19,GGKL21,
DGK17,CDG18,CDGS18]. Recently, Ghoshal and Tessaro studied the pre-image
resistance and collision-resistance security of preprocessing attacks with bounded
offline and online queries for Merkle-Damg̊ard construction in [GT23].

2 Preliminaries

2.1 Notations

For any positive integer N , we write [N ] to denote the set {1, . . . , N}. For any
non-negative integers N, k,

(

[N ]
k

)

is used to denote the collection of all k-sized
subsets of [N ]. For any finite set X, x ←$ X indicates x is a uniform random
variable in X. We write X+ to indicate a tuple of one or more elements from X.

2.2 Random Permutation Model

Random Permutation model is an idealized model where a function is modelled
as a random permutation sampled uniformly from all possible permutations.

Lazy Sampling. One useful property of modelling a function, say F , as a random
permutation is that sampling F uniformly at random is equivalent to initializing
F with ⊥ for every input and sampling the responses uniformly at random
without replacement as and when the input is queried.

2.3 Sponge Hash Functions

A cryptographic hash function is a function that takes input of arbitrary length
and outputs a fixed length string. They are widely used in security applications
such as digital signatures, message authentication codes and password hashing.
In practice, several hash functions, including SHA-3, are based on the popular
Sponge Construction.

A sponge based hash function internally uses a permutation function of fixed
length domain. We will treat this permutation as a random permutation for the
purpose of analyzing it’s security.

We will parameterize our sponge function SP as a function in [R]+×[C] → [R]
such that it uses a random permutation, denoted by F , on [R] × [C] where [R]
corresponds to the set of messages and [C] corresponds to the set of salts. Note
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that as F is a permutation, its inverse, denoted F−1, is an efficiently computable
function. Hence, any entity that can query F can also query F−1.

Say F (m,a) = (m′, a′) for some m,m′ ∈ [R] and a, a′ ∈ [C], then will use
F (m,a)[1], F (m,a)[2] to denote the first and second element from the output
tuple. In other words, F (m,a)[1] = m′ and F (m,a)[2] = a′.

A message m is called a B-block message if it can be written as m =
m1|| . . . ||mB where each mi ∈ [R]. Then for a B-block message m =
m1||m2|| . . . ||mB and some a ∈ [C], we define the function SPF (m,a) as fol-
lows:

1. Initialize (x0, y0) = (0, a).
2. For the ith block, compute (xi, yi) = F (xi−1 ⊕ mi, yi−1).
3. Return xB.

Collisions. For a given a ∈ [C], two distinct messages m,m′ ∈ [R]+ are said to
form a collision, if

SPF (m,a) = SPF (m′, a)

2.4 Definitions

We establish some definitions in this subsection which will be used throughtout
the paper.

Definition 1. We refer to two queries (m1, a1) and (m2, a2) as same or not
distinct if one of the following holds true:

1. when both queries are made to F (or F−1), a1 = a2 and m1 = m2

2. (m1, a1) is made to F (or F−1), (m2, a2) is made to F−1 (or F ) and
F (m1, a1) = (m2, a2) (or F−1(m1, a1) = (m2, a2))

If two queries are not same, then they are referred to as distinct.

Next, we define an AI-adversary against collision resistance in Sponge func-
tions.

Definition 2. A pair of algorithms A = (A1,A2) is an (S, T )-AI adversary for
SPF if

– A1 has unbounded access to F (and F−1), and outputs S bits of advice,
denoted σ

– A2 takes σ and a challenge salt a ∈ [C] as input, makes T queries to F or
F−1, and outputs m,m′.

Next, we define the security game for B-block collision-resistance against the
(S, T )-AI adversary.

Definition 3. For any fixed random permutation F : [R] × [C] → [R] × [C], a
salt a ∈ [C] and B which is a function of R,C, we define the game B-AICR in
Fig. 1.
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Game B-AICRF,a(A)

σ ← AF
1

m, m′ ← AF/F−1

2 (σ, a)
If m or m′ consists of more than B blocks

Then Return 0
If m �= m′ and SPF (m, a) = SPF (m′, a)

Then Return 1
Else Return 0

Fig. 1. Security game B-AICRF,a(A)

For any (S, T )-AI adversary A, its advantage is denoted by AdvAICRB-SP(A) and
defined as the probability that for a uniformly random permutation F and a ran-
dom salt a ∈ [C], the game B-AICRF,a(A) returns 1. For any functions S, T,B, we
define (S, T,B)-auxiliary input collision resistance of Sponge functions, denoted by
AdvAICRB-SP(S,T), as the maximum advantage taken over all (S, T )-AI adversaries.

It is known from several prior works that security in the AI model is closely
related to the security in the multi-instance model. In this work, we will analyze
the security in the MI model and use this relation to obtain security bounds in
the AI model. To this end, we formally define the multi-instance (MI) adversary
and two versions of the security game for collision resistance against the MI
adversary next.

Definition 4. A stateful algorithm A is an (S, T )-MI adversary against colli-
sion resistance in SPF if for every i ∈ [S]:

– A takes a salt ai ∈ [C] as input
– A makes T queries to F or F−1

– A outputs mi,m
′
i.

We define the security games next.

Definition 5. For any fixed random permutation F : [R]× [C] → [R]× [C], fixed
B and S that are functions of R,C, we define the game B-MICRS in Fig. 2.

Game B-MICRS
F(A)

For i ∈ [S]:
Sample ai ← [C] at uniformly random without replacement

mi, m
′
i ← AF/F−1

(ai)
If mi or m′

i consists of more than B blocks
Then Return 0

If mi = m′
i or SPF (mi, ai) �= SPF (m′

i, ai)
Then Return 0

Return 1

Fig. 2. Security game B-MICRS
F(A)
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For any (S, T )-MI adversary A, its advantage is denoted by AdvMICR
B-SP (A) and

defined as the probability that for a uniformly random permutation F , the game
B-MICRS

F(A) returns 1. For any functions S, T,B, we define (S, T,B)-multi-
instance collision resistance of Sponge functions, denoted by AdvMICR

B-SP (S,T), as
the maximum advantage taken over all (S, T )-MI adversaries.

Next, we define another game for the MI adversary and it is differs from the
one above only in the way it samples salts uniformly at random with replacement.

Definition 6. For any fixed random permutation F : [R]× [C] → [R]× [C], fixed
B and S that are functions of R,C, we define the game B-rand-MICRS in Fig. 3.

Game B-rand-MICRS
F(A)

For i ∈ [S]:
Sample ai ←$ [C]

mi, m
′
i ← AF/F−1

(ai)
If mi or m′

i consists of more than B blocks
Then Return 0

If mi = m′
i or SPF (mi, ai) �= SPF (m′

i, ai)
Then Return 0

Return 1

Fig. 3. Security game B-rand-MICRS
F(A)

Advrand-MICR
B-SP (A) and Advrand-MICR

B-SP (S,T) are analogously defined for (S, T )-MI
adversaries as in Definition 5.

2.5 Relevant Results

We will use the following theorems in our proofs:

Theorem 4 (Chernoff bounds). Suppose x1, . . . ,xt are independent random
variables. Let x =

∑t
i=1 xi and μ = E[x]. For any δ ≥ 0, it holds that

Pr[x ≥ (1 + δ)μ] ≤ exp
(−δ2μ

2 + δ

)

.

Theorem 5 ([DTT10]). For any pair of encoding and decoding algorithms
(Enc,Dec), where Enc : {0, 1}x → {0, 1}y and Dec : {0, 1}y → {0, 1}x, such that
Dec(Enc(z)) = z with probability at least ε where z ← {0, 1}x, then y ≥ x−log 1

ε .

This is the compression theorem we mentioned earlier, and we will use it
frequently in our proofs.

Theorem 6. For any S, T,B and δ ∈ [0, 1], if Advrand-MICR
B-SP (S,T) ≤ δS, then

AdvAICRB-SP ≤ 2δ.
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Such a theorem relating AI-security to MI-security has been used in several
prior works. Refer to theorem 3 in [AGL22] for more details and proof.

Theorem 7. For any S, T,B,C, if AdvMICR
B-SP (u,T) ≤ δu for all u ∈ [S], then

Advrand-MICR
B-SP (S,T) ≤ (δ + S

C )S.

Proof. Fix an arbitrary (S, T )-MI adversary A. Let Xi be an indicator that A
wins on the ith instance, i.e., finds B-block collision on ai (ith challenge salt).
Then

Advrand-MICR
B-SP (A) = Pr[X1 ∧ · · · ∧ XS ] =

S∏

i=1

Pr[Xi|X<i]

≤
S∏

i=1

(Pr[ai = aj for some j < i] + Pr[Xi|X<i ∧ ai �= aj for all j < i])

=
S∏

i=1

(
i − 1

C
+ δ

)
≤

(
S

C
+ δ

)S

where the third equality follows from the fact that AdvMICR
B-SP (u,T) ≤ δu for every

u ∈ [S]. �
This theorem relates the advantage of an MI-adversary that receives ran-

dom challenge salts (which can possibly repeat) to an MI-adversary that always
receives distinct challenge salts.

3 Improved Bound for B = 1 (Optimal When ST 2 ≤ C)

Theorem 8. For any S, T,R,C such that S ≥ 212,max{ST
C , T 2

R } < 1
8e9 , then

AdvAICR1-SP(S,T) = ˜O

(

T2

R
+

S

C
+

T

C
+

(

ST

C

)2
)

To prove this theorem, we first reduce AI-security to MI-security via Theorem
6 and Theorem 7. Now we only need to look at the advantage bound for any MI-
adversary A in game B-MICRS

F(A). In this game, all the challenge salts a1, . . . , aS

are different, and unlike the AI model, here the adversary doesn’t have any advice
(except the information from previous stages).

In fact, we have the following lemma, which we will prove in the next section:

Lemma 1. For any S, T,R,C such that S ≥ 212,max{ST
C , T 2

R } < 1
8e9 , then

AdvMICR
1-SP =

(

˜O

(

T2

R
+

T

C
+

(

ST

C

)2
))S

Now we can prove the main theorem.

Proof. (Proof of Theorem 8). The Theorem is immediate from Theorem 6, The-
orem 7 and Lemma 1.
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3.1 Proof of Lemma 1

We will prove the lemma via compression. In Sect. 3.1.1 and 3.1.2, we will design
a set of encoding and decoding algorithms, such that given any MI-adversary A,
if A wins on ‘too many’ S-sized subsets of [C], we can use fewer bits to describe
the function F (i.e. compress it). However, this contradicts with Theorem 5 and
thus bounds the number of S-sized subsets of [C] any adversary can succeed on.
In Sect. 3.1.3, we will first analyze the number of bits our algorithm can save,
and then finally prove Lemma 1 via compression argument. To this end, we first
identify the types of 1-block collisions.

3.1.1 Type of Collisions

Due to the existence of F−1, there are 3 possible types of collisions when B = 1. A
pair of collision (m1,m2) on salt a, such that F (m1, a) = (m,a1) and F (m2, a) =
(m,a2), can be classified into cases according to the type and relative position
of the corresponding “fresh” queries as made by the adversary.

Here a query F (m1, a) = (m,a1) is “fresh” means that neither F (m1, a) nor
F−1(m,a1) has been queried previously. A query to F is referred to as a forward
query and a query to F−1 is referred to as an inverse query.

WLOG we assume F (m1, a) or F−1(m,a1) is queried for the first time before
F (m2, a) or F−1(m,a2) is queried for the first time. Then the 3 types of collisions
are as follows:

– Type 1: The second fresh query is of the form F (m2, a), i.e. the first fresh
query from the collision can be either a forward query or an inverse query
but the second one is a forward query.

– Type 2: The fresh queries are of the form F−1(m,a1) and F−1(m,a2), i.e.
both fresh queries are inverse queries (that queries F−1).

– Type 3: The fresh queries are of the form F (m1, a) and F−1(m,a2) (i.e. the
first fresh query is a forward query, and the second fresh query is an inverse
query).

See Fig. 4 for details.

3.1.2 Encoding and Decoding Algorithms

Now we state our encoding and decoding algorithms for the random permutation
function F : [R] × [C] → [R] × [C]. Let A be an (S, T )-MI adversary that wins
the game, i.e. succeeds on S different challenge salts a1, . . . , aS . Generally, in
the encoding algorithm, we will store a partial mapping table of F that contains
answers to all the queries made by A in order, except the entries (corresponding
to the mappings) we delete from the table, followed by the remaining of the
function table (not queried by A) in the lexicographic order. Note that we will
store some extra bits apart from the function table that will help recover the
deleted entries from the table. In the decoding algorithm, we will restore the
removed entries using these extra bits, and thus restore the entire function table.

The encoding algorithm is as follows:
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✮

✮

(a) Type 1

✮

(b) Type 2

✮

(c) Type 3

Fig. 4. All 3 types of collisions. Line directed → represents query to F and line directed
← represents query to F −1. ● represents that (output/input of) the two queries share
the salt. ✮ represents that (output/input of) the two queries share the message. The
dotted line means this query occurs first, and the solid line means this query occurs
later than the dotted line query.

1. Simulate A on F and a1, . . . , aS , and maintain a table that contains the
response to each query made by A in order (e.g. If the first query made by
the adversary is F (m′, a′) = (m,a), then the first entry will be (m,a)).

2. As A succeeds on a1, . . . , aS , it is guaranteed to output S pairs of messages
that form collision with each of a1, . . . , aS under SPF in the simulation.
According to the collision types in Sect. 3.1.1, divide the salts into 3 sets
S1,S2,S3, respectively. Denote Si = |Si| for i = 1, 2, 3, i.e. Si is the size for
set Si.

3. For salts in set S1:
(a) Use log S bits to store S1 (i.e. the number of salts in S1).
(b) Use 2 log

(

ST
S1

)

bits to store in an unordered fashion the set containing
indices of fresh queries that form collisions for each salt in S1. (Since for
each salt there are exactly 2 queries that form the collision, and there are
ST possible locations for each such query, we need 2 log

(

ST
S1

)

to store this
set.)

(c) For each pair of collision F (mi1 , ai) = (mi, a
′) (or F−1(mi, a

′) =
(mi1 , ai)) and F (mi2 , ai) = (mi, a

′′) in the order of occurrence, remove
mi in the output of the second query (i.e. the first part of output), but
keep the second part. Namely, we remove the the response to F (mi2 , ai)
in the function table, but use extra log C bits to store the second part,
i.e. a′′. So after this step, we remove S1 entries from the function table,
and stored the size of S1 in log S bits, the set in 2 log

(

ST
S1

)

bits and second
part of the S1 entries in S1 log C bits.

4. For salts in set S2:
(a) Use log S bits to store S2.
(b) Use 2 log

(

ST
S2

)

bits to store the set of indices of fresh queries that form
collision for each salt in S2.

(c) For each stored query F−1(m,a′) = (m′, ai), use log S bits to store the salt
index i (since ai is among a1, . . . , aS), and remove ai from the response
of the query. (Still, it means that we remove the corresponding entry in
the function table, and use log R extra bits to store m′.)
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5. For salts in set S3, depending on the parameters S, T,R, there are two corre-
sponding strategies of compression:
(a) When ST > R:

i. Use log S bits to store S3.
ii. Use 2 log

(

ST
S3

)

bits to store the positions of fresh queries which form
the collision for each salt ai ∈ S3. (There will be S3 inverse queries
and S3 forward queries.)

iii. For each stored inverse query F−1(mi, a
′) = (mi2 , ai), count the num-

ber of stored forward query F (mj1 , aj) = (mj , a
′′) in previous step,

such that j < i and mj = mi. Denote this number by qmi
. Then

we use extra log qmi
bits to indicate which forward query is exactly

the matching query for the current inverse query (Since the matching
query must be within these qmi

stored queries). Finally, remove the
second part of output of these S3 inverse queries (i.e. remove ai).

iv. For m ∈ [R], let Q(m) be the set of stored forward queries
F (mi1 , ai) = (mi, a

′) in step 5(a)ii where mi = m. Denote Qm =
|Q(m)|, i.e. the size of Q(m). Notice all the values qm defined in
step 5(a)iii also satisfy qm ≤ Qm (since qm only counts the previous
queries).
Now, if there exists m such that Qm > log STR, we will use extra
bits to save information about these forward queries (since their first
part of output are all m):
(a) Use log S bits to indicate the number of m such that Qm >

log STR.
(b) For each such m:

– Use log R bits to store m.
– Use log S3 bits to store Qm. (Since all the elements in Q(m)

are from stored forward queries, the size is at most S3.)
– Use log

(

S3
Qm

)

bits to store the positions of queries in Q(m)
(among stored forward queries in step 5(a)ii), i.e. the queries
with first part of output being m.

– Remove the first part of output of all these Qm queries (i.e.
remove m in the output).

For convenience, we denote Qtot =
∑

m∈[R]:Qm>log STR Qm.
(b) When ST ≤ R:

i. Use log S bits to store S3.
ii. Use log

(

ST
S3

)

bits to store the positions of fresh inverse queries which
find the collision for each salt ai ∈ S3. (There will be S3 inverse
queries.) Notice we no longer store forward queries.

iii. For each stored inverse query F−1(mi, a
′) = (mi2 , ai), count the num-

ber of all forward queries F (mj1 , aj) = (mj , a
′′) such that j < i and

mj = mi. Denote this number be qmi
. Then we use extra log qmi

bits to indicate which forward query is exactly the matching query
for the current inverse query. (Notice qmi

can be as large as ST .)
Finally, remove the second part of output of these S3 inverse queries
(i.e. remove ai).
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iv. For m ∈ [R], denote Q(m) be the set of all queries F (mi1 , ai) =
(mi, a

′) (or F−1(mi, a
′) = (mi1 , ai)) such that mi = m, and Qm be

the size of Q(m). Further, denote Km be the number of stored inverse
queries F−1(mi, a

′′) = (mi2 , ai) in step 5(b)ii such that mi = m.
Obviously Km ≤ Qm. Further, all the values qm occurred in step
5(b)iii also satisfy qm ≤ Qm (since qm only counts the previous
queries).
Now, if there exists m such that Qm > log STR and Km ≥ 1, we will
use extra bits to save information about these forward queries (since
their first part of output are all m):
A. Use log S bits to indicate the number of m such that Qm >

log STR.
B. For each such m:

– Use log R bits to store m.
– Use log ST bits to store Qm. (Notice now Qm can be as large

as ST .)
– Use log

(

ST
Qm

)

bits to store the indices of the queries whose first
part of response is m. (Notice since we don’t store the for-
ward queries in step 5(b)ii, here we need log

(

ST
Qm

)

instead of
log

(

S3
Qm

)

.)
– Remove the first part of the response to all these Qm queries

(i.e. remove m in the output).
For convenience, we denote Qtot =

∑

m∈[R]:Qm>log STR,Km≥1 Qm, and
Ktot =

∑

m∈[R]:Qm>log STR,Km≥1 Km. Since Km ≤ Qm for any m, we
have Ktot ≤ Qtot.

6. The final output of the encoding algorithm will be the extra bits generated
in steps 3-5 (except step 5(a)iii and 5(b)iii), followed by the function table
(with some entries deleted) that contains responses of the queries, followed by
the remaining function table of F that remains unqueried by the adversary,
followed by the extra bits in step 5(a)iii and 5(b)iii in the order that the
corresponding query is made by the adversary.

Next, we state our decoding algorithm which can fully recover the random
permutation function F (for a succeeding adversary).

1. Read out the first part of generated extra bits according to encoding step 3–5.
For example, for step 3, we first read S1, then according to S1 we know the
value of 2 log

(

ST
S1

)

, so we can continue reading out the indices of the stored
queries, etc. After this step we will know the total number of removed queries
in the table, and thus we know the starting point of the second part of extra
bits.

2. Now simulate the adversary A on the given salts a1, . . . , aS . During the pro-
cess, A will make several oracle queries to either F or F−1, and we know
from the extra bits whether we have removed the corresponding entry in the
(partial) function table or not.

– If the query is not removed from the function table, we simply read the
next entry from the table and answer it directly.
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– Otherwise, it must have been deleted in one of the encoding steps 3–5.
Formally, we must have stored information about this query in either step
3b, 4b, 5(a)ii, 5(a)ivB, 5(b)ii or 5(b)ivB.

• It is stored in encoding step 3b. Thus it must be a forward query
with form F (m0, a) = (?, a′) (we know a′ since we have stored it
when encoding, but we don’t know the first part). Then we look at
the whole stored query set in step 3b. Since all challenge salts are
different, we can uniquely determine its corresponding first occurring
query F (m1, a) = (m,a′) or F−1(m,a′) = (m1, a) according to a .
Hence, we know F (m0, a) = (m,a′).

• It is stored in encoding step 4b. Thus it must be an inverse query of
the form F−1(m,a) = (m′, ?). From the stored index i we immediately
know F−1(m,a) = (m′, ai).

• It is stored in encoding step 5(a)ii or 5(b)iii. Thus it must be an inverse
query of the form F−1(m,a0) = (m′, ?). Further, we also know a
log qm pointer to its corresponding forward query F (m1, a) = (m,a1)
or F−1(m,a1) = (m1, a). (Since we already know all the previous
queries, we can easily recover the set Q(m) and know the value qm,
and then we can read the next log qm bits from the second part of extra
bits, and determine the specific query.) Then we know F−1(m,a0) =
(m′, a).

• It is stored in encoding step 5(a)ivB or 5(b)ivB. Then it must be a
forward query of the form F (m′, a′) = (?, a′′). Since we have stored
the corresponding m for this query, we know F (m′, a′) = (m,a′′).

3. Continue reading out the function table of F that are not queried by the
adversary.

Therefore, as long as the adversary A can successfully find all the S collisions,
we can correctly restore the the function F .

3.1.3 Number of Bits Saved

In this section, we will analyze the number of bits we can compress using our
encoding algorithm, and then prove Lemma 1.

In our algorithm, the compression comes from deleting several entries of the
function table of F and storing some extra (lesser number of) bits for learning
those deleted entries. The following claim shows the compression from removing
these entries:

Claim 1. Suppose in the encoding algorithm we removed y entries from the
function table, and stored x extra bits for information. Then we can save at least
y(log RC − 1) − x bits via the compression.

Proof. In order to count the saving, we first need to know how many bits are
needed to store these rows originally. Note that the adversary A only queries at
most ST values of F , and touches at most 2ST (message,salt) pairs (either in
the input of the query, or from output of the query), so there will be at least
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RC − 2ST ≥ RC
2 untouched pairs. Therefore, for each query, there are at least

RC
2 different possible outputs (since the output can be any of the untouched

pairs), and we need at least log RC − 1 bits to store these entries. Since it’s true
for any query, we originally need at least y(log RC−1) to store all these removed
entries, so we can save at least y(log RC − 1) − x bits. �
Next, we analyze the savings according to the types of collisions:

– In step 3, we stored log S+2 log
(

ST
S1

)

+S1 log C extra bits. Besides, we deleted
S1 entries from the function table. Therefore, according to the above claim,
we can save at least

L1 :=S1(log RC − 1) − log S − 2 log
(

ST

S1

)

− S1 log C

= S1(log R − 1) − log S − 2 log
(

ST

S1

)

bits.
– In step 4, we stored log S +2 log

(

ST
S2

)

+2S2 log S +2S2 log R bits, and deleted
2S2 entries from the function table. Then we can save at least

L2 := 2S2(log C − 1) − log S − 2S2 log S − 2 log
(

ST

S2

)

bits.
– In step 5:

• When ST > R, we first stored log S + 2 log
(

ST
S3

)

+ log S bits, and for
each query we stored an log qmi

bit pointer. Further, for each large Qi,
we stored log R + log S3 + log

(

S3
Qi

)

bits. What we saved is the second
part of output of S3 inverse queries, which is at least S3(log C − 1) bits,
and the first part of the response to the queries in Qi, which is at least
Qi(log R − 1) bits. Therefore, we can save at least

L3 :=S3(logC − 1) +
∑

i:Qi>log STR

Qi(logR − 1) − 2 log S

− 2 log
(ST

S3

)
−

∑

i:Qi>log STR

(
logS3 + log

(S3

Qi

)
+ logR

)
−

∑

i

Qi logQi

bits.
• When ST ≤ R, similarly we can save at least

L3 :=S3(logC − 1) +
∑

i:Qi>log STR,Ki≥1

Qi(logR − 1) − 2 logS

log
(ST

S3

)
−

∑

i:Qi>log STR,Ki≥1

(
log ST + log

(ST

Qi

)
+ logR

)
−

∑

i

Ki logQi

bits.

Based on the above analysis, we have the following claims:
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Claim 2. Suppose S ≥ 212,max{ST
C , T 2

R } < 1
8e9 . When ST > R:

2L1+L2+L3 =

(

˜O

(

T 2

R
+

(

ST

C

)2
))S

Claim 3. Suppose S ≥ 212,max{ST
C , T 2

R } < 1
8e9 . When ST ≤ R:

2L1+L2+L3 =

(

˜O

(

T 2

R
+

(

ST

C

)2

+
T

C

))S

The proof for these claims can be found in the full version of the paper on
ePrint Archive.

Proof. (Proof of Lemma 1). For any adversary A, denote ε = AdvMICR
1-SP (A).

According to Theorem 5, Claim 2 and Claim 3:

log ε ≤ L1 + L2 + L3

ε ≤ 2L1+L2+L3

≤
(

˜O

(

T 2

R
+

(

ST

C

)2

+
T

C

))S

Since it holds for any A, according to definition of AdvMICR
1-SP , this completes the

proof. �

4 A Simpler Proof for B = 2

In this section we analyze the lower bound for 2-block collisions in Sponge hash
functions in the AI model via reduction to MI model. Our bound in the MI
model matches the attack in the MI model (refer to Sect. 5.2).

Theorem 9. For any S, T,C and R,

AdvAICR2-SP(S,T) = ˜O

(

(

ST2

C

)2

+
ST

C
+

T2

C
+

T2

R

)

.

From Theorem 6 , we know it suffices to prove the following lemma in order to
prove Theorem 9.

Lemma 2. For any S, T,C and R,

Advrand-MICR
2-SP (S,T) =

(

˜O

(

(

ST2

C

)2

+
ST

C
+

T2

C
+

T2

R

))S

.
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Next, we present the proof for Lemma 2 with several details omitted to save
space. For full details please refer to the full version of the paper on Cryptology
ePrint Archive.

(Proof of Lemma 2). We assume F is a random permutation from [R] × [C] →
[R] × [C] which is lazily sampled. Fix an arbitrary (S, T )-MI adversary A.

Let Xi be the indicator that A wins on the ith instance, i.e., finds 2-block
collision on ai. Then we make the following claim:

Claim 4.

Pr[X1 ∧ · · · ∧ XS ] ≤
S

∏

i=1

(

Pr[Xi|X<i ∧ Ei] +
Pr[Ei]
Pr[X<i]

)

for any event Ei.

The proof of Claim 4 can be found in the full version of the paper.
Say we want to bound Pr[X1 ∧ · · · ∧ XS ] by δS , then it is sufficient to

bound Pr[Xi|X<i] by δ for an arbitrary i ∈ [S]. As in [AGL22], when ana-
lyzing Pr[Xi|X<i], we will refer to the stage before receiving the ith challenge
salt ai as the offline stage and the stage after receiving ai as online stage.

Definition 7. Database is defined as the set of sampled distinct queries on
F/F−1 and their responses.
The set of distinct queries made in the offline stage (i.e., before receiving the
challenge salt as input) are referred to as offline queries. The set of distinct
queries made in the online stage (i.e., after receiving the challenge salt as input)
that had not been made in the offline phase are referred to as the online queries.

Following the Claim 4, our high-level strategy would be to define the ‘good’
events and then bound the two terms separately to obtain our results. It is
worth noting that we can assume Pr[X<i] ≥ δi. Otherwise Pr[X<i+1] ≤ δi holds
trivially.

To this end we first define the ‘good’ events. For j ∈ [4], let’s define Ei
j to

be the event that there exists at least 10i log R of Type j structures (shown in
Fig. 5) from distinct a in the offline queries of ith instance. Let’s define the event
Ei := Ei

1 ∨ Ei
2 ∨ Ei

3 ∨ Ei
4.

Next, we analyze the probability of the events Ei
j for all j ∈ [4].

Claim 5. For any i ∈ [S] and T 2 ≤ R/2, Pr[Ei
j ] ≤ R−10i for j ∈ {1, 2}.

Claim 6. For any i ∈ [S] and ST 2 ≤ C/2, Pr[Ei
j ] ≤ R−10i for j ∈ {3, 4}.

We omit the proofs of Claim 5 and 6 here and those proofs can be found in
the full version of the paper.

Claims 5 and 6 are sufficient to show that Pr[Ei]
Pr[X<i]

≤ ∑4
j=1

Pr[Ei
j ]

Pr[X<i]
is small

enough. Now we need to bound the term Pr[Xi|X<i ∧ Ei]. To this end, we will
have to analyze all the types of two block collisions that can be found in Sponge
hash functions. First, we give some definitions and then identify all the types of
2-block collisions in the next claim.
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a ✮

(a) Type 1

a ✮

(b) Type 2

a ✮

(c) Type 3

a ✮

(d) Type 4

Fig. 5. The top line represents the query that occurs first, and the bottom line rep-
resents the query that occurs later. → represents a query to F and ← represents a
query to F −1. ● represents that (output/input of) the two queries share the salt. ✮

represents that (output/input of) the two queries share the message.

Claim 7. To find a 2-block collision on ai for any i ∈ [S], the queries in the
database should satisfy at least one of the following conditions:

1. There exists an offline query that takes (∗, ai) as input or outputs (∗, ai).
2. There exists an online query such that it’s output is (∗, ai).
3. There exist two online queries with corresponding outputs (m′, a′) and

(m′′, a′′) such that either m′ = m′′ or a′ = a′′.
4. There exist an online query, say it’s output is denoted by (m,a), and an offline

query, say it’s input is denoted by (m′, a′) and output is denoted by (m′′, a′′),
such that a ∈ {a′, a′′} and m ∈ {m′,m′′}.

5. There exist two offline queries and one online query where:
– input and output of the first (occurring) offline query is denoted by (m′, a′)

and (m′′, a′′) respectively
– the second offline query is to F and it’s input and output is denoted by

(�′, b′) and (�′′, b′′) respectively
– the output of the online query is denoted by (m,a)

Then either a = b′ = a′ and �′′ = m′′ or a = b′ = a′′ and �′′ = m′. In
other words, the offline queries form either Type 1 or Type 2 structure and
the output salt of the online is the same as the input salt of the second offline
query.

6. There exist two offline queries and one online query where:
– input and output of the first (occurring) offline query is denoted by (m′, a′)

and (m′′, a′′) respectively
– the second offline query is to F−1 and it’s input and output is denoted by

(�′, b′) and (�′′, b′′) respectively
– the output of the online query is denoted by (m,a)

Then either a = b′′ = a′ and �′ = m′′ or a = b′′ = a′′ and �′ = m′. In
other words, the offline queries form either Type 3 or Type 4 structure and
the output salt of the online is the same as the output salt of the second offline
query.

7. There exist an offline query and two online queries where:
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– input and output of the offline query us denoted by (m′, a′) and (m′′, a′′)
respectively

– output of the two online queries is denoted by (m,a) and (�, b)
Then a ∈ {a′, a′′} and either � ∈ {m′,m′′} or b ∈ {a′, a′′}.

8. There exist two offline queries and two online queries where:
– input and output of one offline query is denoted by (∗, a′) and (∗, a′′)

respectively
– input and output of the other offline query is denoted by (∗, b′) and (∗, b′′)

respectively
– output of the two online queries is denoted by (∗, a) and (∗, b)

Then a ∈ {a′, a′′} and b ∈ {b′, b′′}.

ai

(a) 1 Query collision

ai

✮
ai

ai ✮

(b) 2 Query collisions

ai

✮
ai

✮

(c) 3 Query collisions

ai

✮

(d) 4 Query collision

Fig. 6. Line represents query to F/F −1. Each line could be directed → for query to F
or ← for query to F −1. ● represents that (output/input of) the two queries share the
salt. ✮ represents that (output/input of) the two queries share the message.

Proof. First, we identify all the types of 2-block collisions for Sponge hash func-
tions in Fig. 6. Note that each line shown in the figure could be depicting an
offline/online query and a query to F/F−1. We next show that all the possible
types of collisions satisfy at least one of the cases in the claim.

First let’s consider when none of the colliding queries (i.e., queries involved
in collision) is an offline query. Then for the type of collision depicted in Fig. 6a
will satisfy case 2 in the claim. And all the other types of collisions (depicted in
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Fig. 6b, 6c, 6d) will satisfy case 3 in the claim when all the colliding queries are
online queries.

Next, let’s consider when exactly one of the colliding queries is an offline
query. For the collision types depicted in Fig. 6a and the first two in Fig. 6b, this
one offline query will necessary have the node ai at one end (in other words, the
offline query will have input/output of the form (∗, ai)) and will satisfy case 1 in
the claim. Similarly for the remaining collision types, if the offline query is the
one with node ai at one end, the colliding queries will satisfy case 1 in the claim.
For the third collision type in Fig. 6b, when the offline query is the one depicted
by the curved line, it will satisfy case 4 in the claim. All the remaining collision
types will satisfy case 7 in the claim when the one offline query is depicted by a
line that does not have the node ai at one of its ends.

Next, we consider when two or more of the colliding queries are offline queries.
Again if even one of these offline queries is depicted by a line that has the node
ai at one end, they will satisfy case 1 in the claim. Otherwise, the first collision
type depicted in Fig. 6c will satisfy one of case 5 or 6 in the claim. The collision
type depicted in Fig. 6d will satisfy case 8 in the claim. �

Finally, we analyze each case in Claim 7 and show that it’s advantage is
bounded by ˜O((ST 2/C)2+ST/C+T 2/C+T 2/R) for any i ∈ [S] when X<i∧Ei.

Case 1: As F/F−1 are lazily sampled and there are at most iT offline queries,
the probability is bounded by 2iT/C.

Case 2: For each of the T online queries, the probability it’s output is (∗, a) is
1/C. Therefore, the probability is bounded by T/C.

Case 3: By birthday bound, T online queries implies the probability of finding
collision is bounded by T 2/C + T 2/R.

Case 4: Fix an offline query and the probability that output of at least one of the
T online queries can be completely determined by the input and output of the
fixed offline query is 4/RC. Thus, the probability is bounded by 4ST 2/RC.

Case 5: Conditioned on Ei
1 ∧ Ei

2, there exists at most 10i log R pair of offline
queries each that form Type 1 and Type 2 structure. Thus, the probabil-
ity that the output salt of each of the T online queries hitting either Type
1 or Type 2 structure is 20i log R/C. Thus, the probability is bounded by
20iT log R/C.

Case 6: Conditioned on Ei
3 ∧ Ei

4, there exists at most 10i log R pair of offline
queries each that form Type 3 and Type 4 structure. Thus, the probabil-
ity that the output salt of each of the T online queries hitting either Type
3 or Type 4 structure is 20i log R/C. Thus, the probability is bounded by
20iT log R/C.

Case 7: Fix an offline query. Then the probability that output salt of one online
query is input/output salt of the fixed offline query and output salt or message
of one online query is input/output salt or message respectively of the fixed
offline query is 2/C · (2/R + 2/C). Thus, the probability is bounded by 4ST ·
T 2/C · (1/R + 1/C).
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Case 8: Fix two offline queries. Then the probability that output of two online
queries is input/output salt of one fixed offline query each is 2/C · 2/C. Then
the probability is bounded by 4ST 2/C · ST 2/C.

�

5 Limitations for the Multi-instance Model

In this section, we will show that finding collisions is easy in the multi-instance
model. For sponge, we will present 3 different attacks, one for each of parameter
range B = 1, B = 2 and B ≥ 3. It’s worth noticing that the advantage of our
attack matches the security bound given by Theorem 8 and [FGK22] in all cases.
Therefore, we can not hope to prove better bounds unless we find a better model.

...

...

ai

✮

(a) 1-Block collision
attack

ai

...
✮

(b) 2-Block collision
attack

ai

...

...

...

...

✮
...

✮

✮

(c) 3-Block collision attack

Fig. 7. Attacks for sponge in multi-instance model. Dashed line represent online query.
Solid line represents offline/online query. Line directed → represents query to F and
line directed ← represents query to F −1. ● represents that (output/input of) the two
queries share the salt. ✮ represents that (output/input of) the two queries share the
message.
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5.1 Attacks for Sponge in Multi-instance Model When B = 1

Theorem 10. Suppose S, T ≥ 8 and ST
C ≤ 1

2 . There exists an (S, T )-MI adver-
sary A such that:

AdvMICR
1-SP (A) =

(

˜Ω

(

S2T2

C2

))S

.

�
Proof. For the ith stage of an MI game, let the challenge salt be denoted by ai.
In this stage, we will use the following strategy:

– We make T queries F−1(0, (i − 1) · T + j) where j ∈ [T ].
– Among all the (online and offline) queries, if there are two different

queries F−1(0, j1) = (m1, aj1) and F−1(0, j2) = (m2, aj2), such that

aj1 = aj2 = ai

Then we output the message pair (m1), (m2) as the collision.

See Fig. 7a for reference. The correctness of the attack is immediate.
Next we analyze the lower bound on the success probability of the attack

stated above. Define event Ei: There are exactly 2 queries (among the iT queries
in the first i stages) hitting ai. If Ei happens, then we will definitely win the ith

stage. Consider the event E1 ∧ E2 ∧ . . . ∧ ES :

Pr[E1 ∧ E2 ∧ . . . ∧ ES ] =

(

S
∏

i=1

(

iT − 2(i − 1)
2

)

1
C2

)

(

1 − S

C

)ST−2S

≥
S

∏

i=1

(

iT

2
· iT

4
· 1
2C2

(

1 − S

C

)T−2
)

≥
S

∏

i=1

(

i2 T 2

16C2

(

1 − S(T − 2)
C

))

≥
(

T 2

16C2
· 1
2

)S S
∏

i=1

i2 ≥
(

S2 T 2

16C2 log2 S

)S

where the first inequality holds using i(T − 2) ≥ iT
2 (as T ≥ 8), second to

last inequality holds using ST
C ≤ 1

2 , and the last inequality is due to the fact

S! ≥ (

S
e

)S
and e < log S.

This event gives a lower bound of success probability of our attack, which is

already
(

˜Ω
(

S2T 2

C2

))S

.
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5.2 Attacks for Sponge in Multi-instance Model When B = 2

Theorem 11. Suppose S, T ≥ 8 and ST 2

C ≤ 1
2 . There exists an (S, T )-MI adver-

sary A such that:

AdvMICR
2-SP (A) =

(

˜Ω

(

S2T4

C2

))S

.

Proof. Again we denote the challenge salt for the ith stage of the MI game by
ai. We maintain a counter x (initially set to 0) through the whole game. The
strategy in the ith stage of the game for any i ∈ [S] will be as follows:

1. First, we make T
2 queries in the following way:

(a) If the query F−1(0, x) is fresh, we make this query. (Recall that
a query F−1(m,a) = (m′, a′) is fresh if neither F−1(m,a) nor
F (m′, a′) is queried before.)

(b) Set x ← x + 1.
We will repeat until T

2 fresh queries have been made in step (a).
2. Next, we make T

2 queries F (j, ai) where j ∈ [T
2 ].

3. If there are at least 2 queries in step 2 that are not fresh, they must
have the form F (m1, ai) = (0, j1) and F (m2, ai) = (0, j2) ( Since all
the challenge salts ai are different, their first occurrence must be in
step 1 of some previous stages, which must have form F−1(0, ∗) =
(∗, ai)). Then we output the message pair (m1), (m2) as the collision.

4. Otherwise, if there exist two different online queries F (j1, ai) =
(m1, ai1), F (j2, ai) = (m2, ai2) from step 2, and two different (online
or offline) queries F−1(0, j3) = (m3, ai3), F

−1(0, j4) = (m4, ai4) from
step 1 such that

ai1 = ai3

ai2 = ai4

Then we output the message pair (j1,m1 ⊕ m3), (j2,m2 ⊕ m4) as the
collision.

See Fig. 7b for reference. One may wonder that the adversary may not find
enough queries in step 1(a). However, if it happens, since all the C queries
F−1(0, i) (where i ∈ [0, C)) are different, it means at least C − iT

2 > 3ST queries
are not fresh (since ST < C

2 ), which is impossible since there are at most iT
different queries till now. Hence, as long as we can find such queries in step 3 or
4, we will succeed in this stage.

Next, we analyze the success probability of this attack. Suppose we are in
stage i. Let Qi be the indicator variable whether the adversary can find such
queries in step 3 or 4. Similarly, let Q<i be the indicator variable that the
adversary succeeds in finding such queries in each of the stages 1, . . . , i − 1.

We define another indicator variable Ei for the event: number of new salts
a′ appeared in the output of queries F (j′, ai) = (j′′, a′) in step 1 for stage i is
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no less than T
4 (here “new salt” means that this salt has not been the output

of any queries in step 1, including the previous stages). Analogous to Q<i, we
define E<i to be the indicator variable that Ej = 1 for all j < i. We will show
that despite the extra requirement of these events happening, our attack still
achieves the desired advantage.

To solve the problem, we analyze the conditional probability Pr[Qi = 1∧Ei =
1|Q<i = 1∧E<i = 1] for each stage i. To begin with, given that E<i = 1∧Q<i =
1, we know that at least (i−1)T

4 distinct salts appeared in step 1 from previous
stages. Therefore, for Ei = 0 to happen T

2 queries in step 1 will generate less
than T

4 new salts (i.e. more than T
4 queries generate old salts). However, there

are at most iT
2 salts visited in step 1 so far. Hence, we have

Pr[Ei = 0|Q<i = 1 ∧ E<i = 1] ≤
(T

2
T
4

)(

iT

2C

)
T
4

≤ (2e)
T
4

(

iT

2C

)
T
4

=
(

eiT

C

)
T
4

Therefore,

Pr[Ei = 1|Q<i = 1 ∧ E<i = 1] ≥ 1 −
(

eiT

C

)
T
4

≥ 1 −
(

eiT 2

4C

)

≥ 1
2

Since ST 2

C < 1
2 .

Next, given Ei = 1, we compute a lower bound of the probability for Qi = 1.
Since Ei = 1 and E<i = 1, we know there are at least iT

4 salts visited in step
1. Besides, if the adversary fails in step 3, then there are at least T

2 − 1 ≥ T
4

fresh queries in step 2. Now we only consider a special case that the adversary
can succeed (which gives a lower bound on probability of event Qi = 1): The
adversary fails in step 3, and among the first T

4 fresh online queries in step 2,
exactly 2 of them hits two of the first iT

4 new salts in step 1:

Pr[Qi = 1|Ei = 1 ∧ Q<i = 1 ∧ E<i = 1] ≥
(T

4

2

)(

iT

4C

)2 (

1 − iT

4C

)
T
4 −2

≥ T 2

64

(

iT

4C

)2 (

1 − iT 2

16C

)

≥ i2 T 4

211C

Since ST 2

C ≤ 1
2 .

Hence,

Pr[Qi = 1 ∧ Ei = 1|Q<i = 1 ∧ E<i = 1]
= Pr[Ei = 1|Q<i = 1 ∧ E<i = 1] · Pr[Qi = 1|Ei = 1 ∧ Q<i = 1 ∧ E<i = 1]

≥ 1
2

· i2 T 4

211C
=

i2 T 4

212C2
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Finally, the advantage of our attack is at least:

Pr[Q1 = 1 ∧ Q2 = 1 . . . ∧ QS = 1]
≥ Pr[Q1 = 1 ∧ Q2 = 1 . . . ∧ QS = 1 ∧ E1 = 1 ∧ E2 = 1 . . . ∧ ES = 1]

=
S

∏

i=1

Pr[Qi = 1 ∧ Ei = 1|Q<i = 1 ∧ E<i = 1]

≥
S

∏

i=1

(

i2 T 4

212C2

)

≥
(

S2 T 4

212C2 log2 S

)S

which proves the theorem. �

5.3 Attacks for Sponge in Multi-instance Model When B ≥ 3

Theorem 12. Suppose R,S, T ≥ 16, ST 2

C ≤ 1
2 and T 2

R ≤ 1. For any B ≥ 3,
there exists an (S, T )-MI adversary A such that:

AdvMICR
B-SP (A) =

(

˜Ω

(

ST2

C

))S

.

The assumption T 2

R ≤ 1 is required, otherwise the trivial birthday attack will
already have Ω(1) advantage even in the Auxiliary-Input setting.

Proof. We will propose an attack that only uses 3-block messages, which is valid
for any B ≥ 3. Our attack is as follows:

– Initially set x ← 0, y ← 0.
– For stage i of the MI game (let the challenge salt in this stage be ai):

1. First, we make T
2 queries in the following fashion:

(a) If F−1(x, y) is fresh, we make this query.
(b) Set x ← x + 1.
(c) If x ≥ R, we set y ← y + 1 and x ← 0.
We repeat until T/2 new fresh queries are made in (a).

2. Next, we make T/2−2 queries of the form F (j, ai) where j ∈ [T
2 ].

3. If any query in step 2 is not fresh, it must have form F (m1, ai) =
(j1, y′) where 0 ≤ y′ ≤ y (Similarly, this is since that the first
occurrence of this query must be in step 1(a), which has form
F−1(∗, y′) = (∗, ai)). Then we make two extra queries F (0, y′)
and F (1, y′). If F (0, y′)[1] = F (1, y′)[1], we output the message
pair (m1, j1), (m1, j1 ⊕ 1) as the collision.

4. Otherwise, if there exists one online query F (j1, ai) = (m1, ai1)
and one (online or offline) query F−1(j2, y′) = (m2, ai2) such that
ai1 = ai2 , then we make two extra queries F (0, y′) and F (1, y′).
If F (0, y′)[1] = F (1, y′)[1], we output the message pair (j1,m1 ⊕
m2, j2), (j1,m1 ⊕ m2, j2 ⊕ 1) as the collision.
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See Fig. 7c for reference. Recall that F (0, y′)[1] means the first part of output
(i.e. message) of query F (0, y′). Our attack will need to form y + 1 of the struc-
tures shown in the figure. Notice that since we introduced y, the adversary may
eventually check all possible F−1(x, y), and thus will always find enough queries
in step 1(a) (since ST

RC < 1
2 ).

First, we claim that y ≤ ST
R after all S stages of execution. This is because if

any query in step 1(a) is not fresh, then it has occurred before in step 2–4 (of a
previous stage). However, there are at most ST

2 such queries in total. Therefore,
the number of queries that are fresh in step 1(a) is at least yR − ST

2 (There can
be more fresh queries if any of F−1(i, y) is fresh for some 0 ≤ i < x). Further,
we know that there are exactly ST

2 fresh queries in step 1(a) after S stages, so
we have yR − ST

2 ≤ ST
2 , which means y ≤ ST

R .
Let us define an indicator variable Wi as whether F (0, i)[1] = F (1, i)[1], and

variable W = W0 ∧ W1 ∧ . . . ∧ Wy. If W = 1 and that we find such queries in
step 3 or 4, it’s not hard to check that our output forms a valid collision and we
win this stage.

First, we claim that the event W = 1 will happen with large enough probabil-
ity via lazy-sampling. For i ∈ [y], F (0, i) and F (1, i) are sampled in order with-
out replacement. For any i ∈ [y] and for some m, the probability F (1, i)[1] = m
depends on the number of previous samples that had output (m, ∗). Note that
there can be at most 2i + 1 such samples. Therefore,

Pr[W = 1] =

y∏

i=0

Pr[Wi = 1|W<i = 1] =

y∏

i=0

Pr[F (1, i)[1] = F (0, i)[1]|W<i = 1]

≥
y∏

i=0

C − (2i + 1)

RC − (2i + 1)
≥

(
C − (2y + 1)

RC

)y+1

≥
(

C/2

RC

)y+1

=

(
1

2R

)y+1

where the last inequality uses that 2y + 1 ≤ 4ST/R ≤ C/2.
Next, we focus on the probability of finding such queries. We define

Qi, Q<i, Ei, E<i the same way as in Sect. 5.2. With the same analysis, we have

Pr[Ei = 1|Q<i = 1 ∧ E<i = 1] ≥ 1
2

Now, given Ei = 1, we need to lower bound the probability for Qi = 1 again.
Here, we consider the case that the adversary fails in step 3, and that there is
exactly 1 online query (Since the adversary fails in step 3, this query must be
fresh) that hits the first iT

4 new salts (from step 1):

Pr[Qi = 1|Ei = 1 ∧ Q<i = 1 ∧ E<i = 1] ≥
(

T

2
− 2

)

· iT

4C

(

1 − iT

4C

)
T
2 −3

≥ iT 2

16C

(

1 − iT 2

8C

)

≥ iT 2

32C
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Hence

Pr[Qi = 1 ∧ Ei = 1|Q<i = 1 ∧ E<i = 1]
= Pr[Ei = 1|Q<i = 1 ∧ E<i = 1] · Pr[Qi = 1|Ei = 1 ∧ Q<i = 1 ∧ E<i = 1]

≥ iT 2

64C

Finally, the success probability of our attack will be at least

Pr[W = 1 ∧ Q1 = 1 ∧ Q2 = 1 . . . ∧ QS = 1]
≥ Pr[W ∧ Q1 = 1 ∧ Q2 = 1 . . . ∧ QS = 1 ∧ E1 = 1 ∧ E2 = 1 . . . ∧ ES = 1]

= Pr[W = 1] ·
S

∏

i=1

Pr[Qi = 1 ∧ Ei = 1|Q<i = 1 ∧ E<i = 1]

≥
(

1
R

)y+1 S
∏

i=1

(

iT 2

64C

)

≥
(

T 2

64C

(

1
R

)
2T
R

)S S
∏

i=1

i

≥
(

T 2

64C

(

1
2

)
2T log R

R

)S
(

S

log S

)S

≥
(

ST 2

256C log S

)S

where third to last inequality holds as y + 1 ≤ 2ST
R (as explained above), while

the last inequality holds since T√
R

≤ 1 and log R√
R

≤ 1 �.
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Abstract. Continuous Group-Key Agreement (CGKA) allows a group
of users to maintain a shared key. It is the fundamental cryptographic
primitive underlying group messaging schemes and related protocols,
most notably TreeKEM, the underlying key agreement protocol of the
Messaging Layer Security (MLS) protocol, a standard for group messag-
ing by the IETF. CKGA works in an asynchronous setting where parties
only occasionally must come online, and their messages are relayed by
an untrusted server. The most expensive operation provided by CKGA
is that which allows for a user to refresh their key material in order to
achieve forward secrecy (old messages are secure when a user is compro-
mised) and post-compromise security (users can heal from compromise).
One caveat of early CGKA protocols is that these update operations had
to be performed sequentially, with any user wanting to update their key
material having had to receive and process all previous updates. Late
versions of TreeKEM do allow for concurrent updates at the cost of a
communication overhead per update message that is linear in the num-
ber of updating parties. This was shown to be indeed necessary when
achieving PCS in just two rounds of communication by [Bienstock et
al. TCC’20].

The recently proposed protocol CoCoA [Alwen et al. Eurocrypt’22],
however, shows that this overhead can be reduced if PCS requirements
are relaxed, and only a logarithmic number of rounds is required. The
natural question, thus, is whether CoCoA is optimal in this setting.

In this work we answer this question, providing a lower bound on the
cost (concretely, the amount of data to be uploaded to the server) for
CGKA protocols that heal in an arbitrary k number of rounds, that shows
that CoCoA is very close to optimal. Additionally, we extend CoCoA to
heal in an arbitrary number of rounds, and propose a modification of it,
with a reduced communication cost for certain k.

We prove our bound in a combinatorial setting where the state of the
protocol progresses in rounds, and the state of the protocol in each round
is captured by a set system, each set specifying a set of users who share a
secret key. We show this combinatorial model is equivalent to a symbolic
model capturing building blocks including PRFs and public-key encryp-
tion, related to the one used by Bienstock et al.
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Our lower bound is of order k · n1+1/(k−1)/ log(k), where 2 ≤ k ≤
log(n) is the number of updates per user the protocol requires to heal.
This generalizes the n2 bound for k = 2 from Bienstock et al.. This
bound almost matches the k · n1+2/(k−1) or k2 · n1+1/(k−1) efficiency we
get for the variants of the CoCoA protocol also introduced in this paper.

1 Introduction

A fundamental task underlying various cryptographic protocols is to agree upon,
and maintain, a secret key amongst a group of users. A prominent example is
continuous group-key agreement (CGKA) [3], which underlies group messaging
applications. Here, a group of users wants to maintain a shared secret key, that
then can be used for private communication amongst the group members.

CGKA is defined in an asynchronous setting, where parties are online only
occasionally, and the exchanged messages are relayed through an untrusted
server (only trusted to provide liveness and thus correctness). CGKA allows
for users to be added or removed from the group. Moreover users can update
their keys, which allows the group to achieve forward secrecy (FS) and post-
compromise security (PCS). FS guarantees that, should a user’s secrets be com-
promised, messages sent in the past remain secure. PCS, in turn, allows the
group to “heal”, i.e. to recover privacy after a compromise occurs.

The most efficient existing protocols for CGKA are TreeKEM [10] and
variants thereof [2,3,7,22,23], which are inspired by logical key hierarchies
(LKH) [25], a popular protocol for multicast encryption (ME) [14]. The study of
these protocols has received a great deal of attention recently, motivated by the
IETF working group on Message Layer Security (MLS) [9], which aims to output
standard for instant group messaging. Said standard employs TreeKEM as the
underlying CGKA. These schemes all arrange keys from a public-key encryption
scheme in trees, known as ratchet trees, where each node is associated with a key,
each user is associated with a leaf, and users should know exactly the (secret)
keys on the path from their leaf to the root (also known as the tree invariant).

A simple ratchet tree with four users is illustrated in Fig. 1. The advantage of
using such a hierarchical tree structure is that replacing a user’s keys in a group
of size n just requires the creation of �log(n)� ciphertexts, while e.g. maintaining
pairwise keys between the users would require n − 1.

Concurrent Updates. Updating keys in a ratchet tree as illustrated in Fig. 1
only works if updates are sequential. That is, if two users want to update, then
they need to do it in order, with the second processing the first user’s update
before creating their own. TreeKEM supports concurrent updates through the
“propose and commit” (P&C) paradigm, but handling concurrency in this way
degrades the nice tree structure and thus efficiency of the protocol. Indeed, after
several users update concurrently, all of their paths to the root but one will lose
their keys, a.k.a. become blank, increasing the in-degrees of nodes in the tree and
thus the cost of that and subsequent operations. This incurs an overhead that
is linear in the number of updating parties, something which was shown to be
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Fig. 1. Left: Illustration of a ratchet tree with n = 4 users {A, B, C, D} where each
key Ki = (pki, ski) is a public/secret key tuple. Right: To update and achieve PCS
Alice rotates keys {K1, K5, K7} by sampling new keys {K1̄, K5̄, K7̄} (blue, shaded
background) and encrypting each secret key under the public key of their parent (blue,
dashed arrows), e.g. K2 → K5̄ corresponds to a ciphertext Encpk2(sk5̄). Given those
ciphertexts, all users can learn the new keys on their path to the root. For example Bob
must decrypt the ciphertexts Encpk2(sk5̄) and Encpk5̄(sk7̄). This requires 2�log(n)� = 4
ciphertexts. However, by deriving the keys {K1̄, K5̄, K7̄} deterministically from a single
seed using a PRG as suggested in [14], we can save the ciphertexts for the solid blue
arrows and only need �log(n)� = 2 ciphertexts. (Color figure online)

optimal by Bienstock, Dodis and Rösler [12], whenever PCS is to be achieved as
soon as all corrupted users update once.

CoCoA [2] takes a different approach, and simply choses a “winner” whenever
there is a conflict, i.e., when two users want to concurrently replace the same key,
as illustrated in Fig. 2. As opposed to the previous scenario, this does not imme-
diately “heal” the state of the concurrently updating parties (in the Figure, key
K7̄ is not secure if Dave’s key K6 was compromised). However, in [2] it is shown
that the group heals (i.e., achieves PCS) after all corrupted users participate in
log(n) (possibly concurrent) update rounds. This is a middle ground between the
immediate concurrent healing of P&C TreeKEM, and the n sequential rounds
needed for non-concurrent versions of TreeKEM.

In this work we prove a lower bound on the communication cost of CGKA
protocols that heal in any number of (up to logarithmic in the group size) rounds.

A Combinatorial Model. Conceptually, our lower bound proof proceed in
two steps. We first derive the lower bounds in a clean and simple combinatorial
model which proceeds in rounds. The state of the protocol for n users in round
t is captured by a set system St ⊆ 2[n], where S ∈ St means that after round t
there is a shared secret amongst the users S not known to the adversary.

In particular, [n] ∈ St means the group [n] = {1, . . . , n} shares a secret,
which has to be satisfied in all rounds with a secure group key.

For example, in the ratchet tree example from Fig. 1 (where users are denoted
{A,B,C,D} not {1, 2, 3, 4}), the sets corresponding to the keys K1, ..,K7 are

St = {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3, 4}}.

If a user u gets compromised, all secrets corresponding to sets containing u
become known to the adversary and thus the sets must be removed, e.g., if we
compromise user 1, the set system becomes

St+1 = {{2}, {3}, {4}, {3, 4}}.
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Fig. 2. Illustration of CoCoA where Alice and Dave concurrently rotate their keys.
Left: state of the ratchet tree before the updates. Middle: Keys {K1̄, K5̄, K7̄} and
{K4̂, K6̂, K7̂} generated by Alice and Dave’s updates respectively. There’s a collision
at the (root) key K7, and the server chooses a “winner” (any rule for choosing winners
will do), in this case Alice. Right: New state of the ratchet tree (Keys in the tree
depicted with shaded background). The new root key is K7̄ while Dave’s K7̂ is ignored.
As K7̄ was encrypted to K6 we do not achieve PCS if Dave’s state {K4, K6, K7} prior
to the update was compromised. But latest once all corrupted parties updated log(n)
times PCS will be achieved (in particular, if Dave updates once more PCS is achieved).

A user u can update and create new sets (keys) as follows. They can always
locally sample a key, creating the singleton {u}. For two sets S, S′ ∈ S, where
u ∈ S (or u ∈ S′), they can create a new set S ∪ S′, by deterministically
deriving a secret from that of S using a PRF, and encrypting it under the public
key of S′. This would get added to S in the next round. Note that indeed all
users in S ∪ S′ are able to derive the secret either deterministically from the
secret associated to S or by decrypting the ciphertext. In the simplest version of
TreeKEM, user 1 performs an update by creating {1}, then {1, 2} = {1} ∪ {2},
then {1, 2, 3, 4} = {1, 2}∪{3, 4} (i.e., the keys K1′ ,K5′ ,K7′ in Fig. 1). Of course,
u is not restricted to create new sets as the union of only two sets, but could also
encrypt the secret using the keys of sets S1, . . . , Sk to form the set S ∪

⋃k
i=1 Si.

The communication cost of this operation, i.e., the number of ciphertexts that
have to be uploaded to the server to communicate the new secret to all members
of the corresponding set, would in this example be k. In Sect. 3.1 we extend this
idea into a self-contained combinatorial model consisting of set system St and
an accompanying cost function Cost required to satisfy properties matching the
intuition given above. In Sect. 3.2 we use it to prove our lower bounds.

The Symbolic Model. While the combinatorial model offers a clean model
for proving lower bounds, it is not obvious how it captures real-world proto-
cols. We show that any lower bound in the combinatorial model implies a lower
bound in a symbolic model capturing pseudorandom functions and public-key
encryption. Most existing CGKA protocols can be captured in this symbolic
model and the fact that lower bounds in the combinatorial model carry over to
the symbolic model justifies the interest of the combinatorial model we propose.
Symbolic models were introduced by Dolev and Yao [18] in public key encryp-
tion, used in multicast encryption by Micciancio and Panjwani [24] and in CGKA
by Bienstock, Dodis, and Rösler [12] and Alwen et al. [1]. In the symbolic model
pseudorandom functions and public-key encryption are treated in an idealized
way by seeing their inputs and outputs as variables with a data type, which,
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in turn, follow some grammar rules, and ignoring other considerations that an
actual construction may have. The functionality and security of these primitives
are captured by the grammar rules and entailment relations in Sect. 4.1.

1.1 Our Bounds

In this work we prove lower bounds on the communication cost of CGKA pro-
tocols achieving PCS. Moreover, in Sect. 5 we introduce a new protocol, a mod-
ification and generalization of CoCoA. It introduces the necessary number of
rounds to heal as a parameter and, in some cases, improves over the natural
generalization of CoCoA in this setting.

We measure the cost of a protocol in terms of the number of ciphertexts
that users in a group must create (and upload to a server for the other users to
download) to achieve post-compromise security.1 Sometimes, we additionally put
a bound on the number of rounds required for parties to heal. We do not require
forward-secrecy and will also consider groups of a fixed size, i.e., without removals
or additions of users, just updates. Note that both of these make the lower
bounds stronger, as an adversary could always choose to not use add/removes.
Additionally, FS is relatively well understood [3].

We consider the setting where the users do not know who is compromised
or who else will update in any given communication round, and the adversary
schedules who does updates in each round. This is similar to that of [12].

When a user is corrupted, we assume its entire secret state is leaked to
the adversary, who can also observe all its local randomness. We call this the
“randomness corruption” model (RC for short), but we also consider a weaker
“no-randomness corruption” (¬RC) model, where only the secret state is leaked.
In this model, a corrupted user can still create encrypted secrets for other users.
Most protocols are proven secure in the stronger RC model, whereas lower
bounds are naturally stronger in the ¬RC model. Our lower bounds require some
additional restrictions on the CGKAs discussed at the end of the introduction.

Lower Bound. The number k of updates a user is required to make before their
state is guaranteed to heal plays a crucial role. Our security game is parameter-
ized by the number of users n and k. The adversary schedules who updates in
each round, and we require that, at any point, the group key is secure provided
every party who was corrupted in the past was asked to update at least k times
(since their last corruption). Table 1 states our lower bound and upper bound,
as well as existing ones. Our lower bound is roughly n1+1/k · k/ log(k).

The main message here is that we need to allow for logarithmically many
rounds for healing (as in CoCoA) if we want a small logarithmic sender commu-
nication cost per user. In particular, if we insist on a constant number of rounds,
the average cost per user will be of order n1/k.

1 It is possible, as in [2,5], to reduce recipient communication by introducing additional
reliance on the server. We focus on sender communication.
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Table 1. Upper-bounds (top) and lower-bounds (bottom) in the no-information setting
for Ω(n) corrupted users. Communication is measured as total number of ciphertexts
sent to recover from corruption, column “Rounds” indicates the number of update
rounds after which schemes are required to recover from corruption, column “Rand.
corr.”, whether the security model allows the adversary to learn internal randomness of
algorithms. The protocol [12] improves over TreeKEM in that concurrent operations do
not degrade future performance, which is not captured in the table. Our lower-bounds
require CGKA to not allow distributed work (NDW) and not use nested encryption
(NNE). Our bound holds without the extra assumption requiring the protocols to have
publicly-computable update cost (PCU). However, additional properties of it hold when
this assumption is present. We refer the reader to the discussion in Sect. 1.3 below for
more details. Here, αε ≈ ε is some constant depending on ε.

Upper bounds

Scheme Communication Rounds Rand. corr See

TreeKEM and related n2 2 RC [10]

Bienstock, Dodis, Rösler n2 2 ¬RC [12]

CoCoA on k−1
√

n-ary trees n k2 k−1
√

n k RC Sect. 5

CoCoA on 2-ary trees n log(n)2 log(n) RC [2]

CoCoALight on (k−1)/2
√

n-ary trees n k (k−1)/2
√

n k RC Sect. 5

Lower bounds

Restrictions Communication Rounds Rand. corr See

None n2 2 ¬RC [12]

NDW, NNE, PCU∗ n log(n)/ log(log(n)) log(n) ¬RC Cor. 5

NDW, NNE, PCU∗ ε · n · (1+ε)k−1
√

αεn · k/ log(k) k ¬RC Cor. 5

Upper Bound. We introduce in Sect. 5 the protocol CoCoALight, a modifica-
tion of CoCoA that achieves PCS in k ∈ [4, 2 �log(n)� + 1] rounds. This pro-
tocol has a cost k · n1+2/(k−1), which matches the lower bound up to a factor
log(k)/n1/(k−1). In particular, our protocol is only a factor of log(log(n)) from
optimal for k in the order of log(n). In turn, CoCoA (or rather, a straightfor-
ward generalization of it we propose for k ∈ [2, �log(n)� + 1], as opposed to
k = �log(n)� + 1 in the original protocol) has better efficiency for low values of
k. The key insight in our protocol is that users do not need to update all the
keys in their path to heal. In fact, it suffices for them to update keys one by one,
as long as every key in the path is updated twice. We formalize and discuss this
further in Sect. 5 of this paper’s full version [8].

1.2 Our Proofs

The details of the proofs are omitted in this version of the paper and can be
found in the full version [8]. Below we give an intuition.

Proof of the Lower Bound. To prove the lower bound we first show that, if
the protocol can heal from c corruptions in k rounds, then there is some user
whose cost is c1/k. In particular, if c = Θ(n), we get a cost of Θ(n1/k). The
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intuition for this is quite simple, let us give it for c = n. Initially everyone is
corrupted, so our set system is simply {1}, . . . , {n}, after the kth round [n] =
{1, . . . , n} is in our set system. If we denote with si the size of the largest set in
round i, we have s1 = 1, sk = n, which means there must be a round i where
si+1/si ≥ n1/(k−1). Therefore, in this round, the user creating the new set of
size si has cost ≥ n1/(k−1). A slightly more careful argument shows that the
maximum cost of a user in each round adds up to k · c1/(k−1).

To prove our bound we will show that for c = Θ(n) corruptions, we can
adversarially schedule the updates so that a 1/ log(k) fraction of users (and not
just a single one) can be forced to pay close to the maximum cost in each round,
which then adds up to n1+1/(k−1) · k/ log(k).

This adversarial scheduling goes as follows: before each round, the adversary
investigates each user’s cost, should they be asked to update in the next round.
Then, it simply picks a 1/ log(k) fraction of users, all having either very small
cost or, if such a set does not exist, a set of users with roughly the same cost
(we show that such a set of users always exists).

Proof of the Upper Bound. We prove our protocol secure by following the
framework set by [22], which reduces the adaptive security of a CGKA protocol
to that of a game played on graphs. One first defines a so-called safe predicate,
which captures the settings in which security should be guaranteed (i.e. every
corrupted user performed k updates since their last corruption, in our case). This
is implicit in our security game. Then, in order to apply previous results, one
needs to essentially show that key satisfying the safe predicate trivially leaked
as a result of a user corruption during the execution. We do this by associating
to each group key in the execution a recovery graph, made up of those keys
that trivially allow recovery of the group key. Then, through a combinatorial
argument, we show that if the safe predicate holds all keys ever leaked through
a corruption cannot belong to the recovery graph of the challenge key. Security
of the protocol thus follows using the aforementioned framework, in a fashion
similar to that of previous works, such as [2].

1.3 Overcoming Lower Bounds

Proving lower bounds for important protocols serves several purposes. On the
one hand, it can tell us when constructions falling into the model of the lower-
bound cannot be further improved. As we identify a protocol that almost match
our lower bound, this question is basically answered.

However, lower bound proofs can also hint as to where one should look
for constructions overcoming them. One such possibility is to consider building
blocks not captured by the bounds, or seemingly technical assumptions, which
seem crucial for the lower-bound proofs to go through.

More Powerful Building Blocks. The symbolic model we consider (and which
is captured by our combinatorial model) allows the basic primitives of PRFs or
public-key encryption, and thus does not rule out protocols overcoming our lower
bounds if they use more sophisticated tools.
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The “big hammer” in this context is multiparty non-interactive key-
agreement (mNIKE). With this primitive, each user could simply create a single
message to be broadcast, after which any subset of users can locally compute
a shared secret. While this overcomes our lower-bounds, it is just of theoretical
interest, as currently no practical instantiations of mNIKE exist.

There already do exist CGKA protocols using primitives not captured by
our model, in particular rTreeKEM [3] and DeCAF [7]. The variant rTreeKEM
uses secretly-updatable public-key encryption [21] (skUPKE), but this primitive
is used to improve the forward secrecy of the protocol, with no difference to the
(asymptotic) communication cost of the protocol. The CGKA DeCAF also uses
skUPKE, but in order to improve the round complexity for healing: instead of
log(n) rounds as in CoCoA, DeCAF only needs log(c) rounds, with c being the
number of users corrupted.

Note that our lower bound is independent of the number of corrupted users,
but the proof argues based on an adversary which corrupts c = Θ(n) parties. In
this setting DeCAF’s cost matches that of CoCoA and thus adheres to our lower
bound. However, under the promise that few, say constant, users are actually
corrupted, DeCAF heals in a constant number of rounds with cost O(n log(n)).

Finally, two recent works [5,19], explore the use of multi-recipient multi-
message PKE (mmPKE), which allows for much more efficient updates. However,
the improvements save a constant factor in the ciphertext size, and do not have
an influence in the asymptotic cost of the protocols.

Distributing Work. Our bound is restricted to schemes that do not “distribute
the workload of communicating a secret on several users”, in the following sense.
We require that, if in any round a user gets access to a secret they did not previ-
ously possess, then they must have recovered it from a single update message, or
sampled it themselves. All CGKA schemes we are aware of satisfy this property.

Nested Encryption. Finally, we require that users do not create layered cipher-
texts, i.e., those of the form Enc(pk1,Enc(pk2,m)). Again, this is a property that
is satisfied by all CGKA protocols we are aware of. This condition has a similar
flavor as the one of distributing work, with the difference being that, instead of
splitting the communication cost between several users, would enable a user to
spread out communication cost over several rounds.

Publicly-Computable Update Cost. We show that there exists a sequence
of updates such that the lower bound holds. However, this does not mean that
the sequence can be found using only public information. We introduce this
assumption to guarantee that the adversary can tell what cost a user will incur
if asked to update in round t using only public information available at the
end of round t − 1 and this suffices to find the update sequence used in the
proof of the lower bound. We also introduce a stronger version of this property,
which we call offline publicly-computable update cost, that makes it possible to
use public information available at the end of the initialization phase and the
sequence of users who have performed updates in the previous rounds. While
the strong property is satisfied by all protocols we are aware of, it is conceivable
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that protocols exist that overcome our bound, by having a user toss a coin
when asked to update, with the outcome determining whether a “cheap” or
“expensive” update is made.

1.4 Related Work

Protocols. The primitive of CGKA was introduced by Alwen et al. [3], but
constructions existed earlier, notably ART [15] and TreeKEM [10]. These two
were the starting point for the Message Layer Security (MLS) working group by
the IETF. A variety of protocols have since been published, aiming to improve
TreeKEM across different axes.

First, in the non-concurrent setting, [3] propose the use of UPKE in order
to improve on FS; Klein et al. [22] propose an alternative way to handle
dynamic operations with a lower communication cost in certain scenarios; Devi-
gne, Duguey and Fouque [17] propose to use zero-knowledge proof to enhance the
protocol robustness; Alwen et al. [1] initiates the study of efficiency of CGKAs in
the multi-group setting; Hashimoto, Katsumata and Prest [20] provide a wrapper
upgrading non-metadata-hiding CGKAs into metadata-hiding ones.

Concurrency was already mentioned in the initial TreeKEM versions, and
indeed, as mentioned, its new versions allow for a certain degree of it. The first
protocol to explore the idea was Weidner’s Causal TreeKEM [23] with the idea of
updates by re-randomizing (and combining) key material, instead of overwriting
it. The work of Weidner et al. [26] puts forth the notion of decentralized CGKA.
Alwen et al.’s CoCoA [2] analyzes a variant allowing for concurrent healing in
log(n) rounds. A follow-up of this work by Alwen et al. [7] picked up the idea
of [23] and extended it and formally analyzed it, showing that it allows for PCS
in a logarithmic number of rounds in the number of corrupted parties.

Lowerbounds. The main approach is to make use of the symbolic security
model, first introduced by Dolev and Yao [18] and later used by Micciancio
and Panjwani [24] to prove worst case bounds on the update cost of multicast
encryption schemes for a single group.

Regarding CGKAs, in the non-concurrent setting, Alwen et al. [1] provide
lower bounds for the average update cost of an update in any CGKA protocol in
the symbolic model, following and generalizing the approach of [24]. This shows
TreeKEM or other related protocols are indeed optimal in this setting. In the
concurrent setting, i.e. that where we consider the case of healing c corruptions
in less than c rounds, the study of lower bounds was initiated by Bienstock,
Dodis and Rösler [12], who establish lower bounds for protocols achieving PCS
in exactly 2 rounds.2 Last, Bienstock et al. [11] establish a lower bound on the
cost of certain sequences of adds and removes. In particular, they show that any
CGKA has a worst-case communication cost linear in the number of users.
2 Here, we have a tradeoff between the time needed to achieve PCS, and the communi-

cation needed to do so. The picture is slightly more complicated, as in protocols like
TreeKEM, or the protocol proposed in [12], the bigger tradeoff is in the increased
cost of subsequent updates.
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Security. Finally, security of CGKAs has been studied by multiple papers. Secu-
rity against adaptive adversaries with a sub-exponential loss was first proved by
Klein et al. [22]. Active security has been studied by Alwen et al. [4,6] in the
UC model. PCS in the multi-group setting has been studied by Cremers, Hale
and Kohbrok [16], who show shortcomings of a certain version of MLS com-
pared to the (inefficient) pairwise-channels construction. Brzuska, Cornelissen
and Kohbrok [13] apply the State Separating Proofs methodology to analyze the
security of a certain version MLS.

2 Preliminaries

2.1 Definitions and Results from Combinatorics

Definition 1 (Minimal set cover). Let n ∈ N and S ⊆ 2[n]. Then for X ⊆ [n]
we define the min cover of X with respect to S. A minimal set cover (min
cover) minCover⊇(X,S) of X with respect to S is a set T ⊆ S of minimal
cardinality such that X ⊆

⋃
T∈T T , i.e., a minimal subset of S that covers X.

Note that we only require S be contained in the union but no equality.

Proposition 1 (Inequality of arithmetic and geometric means). For
k ∈ N let x1, . . . , xk ∈ R be non-negative such that

∑k
i=1 xi = x. Then

k∏

i=1

xi ≤
(x

k

)k

.

2.2 Continuous Group-Key Agreement

We now establish syntax for continuous group-key agreement (CGKA) schemes.
A CGKA scheme allows a group G of users to agree on a group key that is to be
used to secure communication within the group. In order to be able to recover
from corruption users can also, possibly concurrently, send update messages,
which rotate their key material. On top of this, CGKA schemes normally allow
for group membership to evolve throughout the execution, by adding or remov-
ing users. However, while schemes allowing for theses additional operations are
desirable in practice, the main goal of this work is to establish lower bounds
on the communication complexity of recovering from corruption by concurrent
updates. Thus, we restrict our view to static groups, i.e., we do not require the
functionality of adding users to or removing users from the group. Not consid-
ering adds and removes allows for less technical notation, and we point out that
lower bounds only profit from this restriction, as they hold even for schemes
restricted to static groups. In doing so, our syntax essentially follows that of
[12], with a couple of small differences mentioned below.

A continuous group-key agreement scheme CGKA specifies algorithms Setup,
Init, Update, Process, and GetKey. Algorithms Setup and Init can be used to ini-
tialize the a group G , that since we restrict our view to static groups, throughout
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this work we simply identify with G = [n] for some n ∈ N. Here, Setup is used
to generate every user’s initial internal state and can be thought of as the users
generating a key pair and registering it with a PKI. Init, on the other hand, is
called by one of the users to initialize the group. It generates a control message
that, when processed by the other users, establishes the initial group-key K 0

G .
Afterwards, the scheme proceeds in rounds t, in each of which a subset of users in
G concurrently generate update messages using algorithm Update. The update
messages are in turn processed by the group members resulting in a new group
key K t

G that can be recovered from a user’s internal state using algorithm GetKey.
More formally,

– Setup(n; r) on input the group size n and random coins r belonging to ran-
domness space Rnd outputs public information pub, as well as an initial
state stu for every user u ∈ G = [n].

– Init(stu, pub; r) receives as input a user’s (initial) state, the public informa-
tion pub, and random coins r . Its output (st ′

u,MI u) consists of the initializing
user’s updated state and a control message MI u.

– Update(stu, pub; r) in round t takes as input a user’s current state, the public
information pub, and random coins r . It returns updated state st ′

u and a
update message MU t

u.
– Deterministic algorithm Process(stu, pub,M ) gets as input a user u’s state,

the public information pub, and a set M of control messages that either con-
sists of a single group initialization message MI v, or a family of update mes-
sages (MU v)v. Its output is the processing user’s updated state st ′

u.
– Deterministic algorithm GetKey(stu) on input a user’s state returns u’s view

of current group key KG belonging to key space CGKA.KS.

When comparing to the syntax of [12], one can find two differences. On the
one hand, we chose not to merge algorithms Setup and Init, as in [12], although
this would be possible since we consider the simple setting where a single static
group is created. On the other hand, we include the algorithm GetKey, present
in the original CGKA definition from [3]. This makes it easier to argue the

Fig. 3. Correctness game for continuous group-key agreement scheme CGKA.
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connection between the combinatorial and symbolic models. The two main prop-
erties that we require from a CGKA scheme are correctness and security.

Correctness. For correctness we require that, for every valid sequence of oper-
ations, in every round t, all users agree on the current group key K t

G where
G = [n] is a static group of size n ∈ N. We formalize the notion of correctness
in the game of Fig. 3. The game gets as input n, the user u0 ∈ G initializ-
ing the group, and a sequence (Ut)t of updates to be applied in every round
where Ut ⊆ G. The game returns the value 0 if the execution was correct and
1 otherwise. Accordingly, we say that a scheme CGKA is perfectly correct if,
for every input (n, u0, (Ut)tmax

t=1 ) and all choices of random coins, we have that
0 = CORRECTCGKA(n, u0, (Ut)tmax

t=1 ). For a perfectly correct scheme, we denote
the current group key by KG , instead of K u

G since all users agree on it.

Security. For security, we require that the group key of a CGKA scheme recov-
ers from corruption assuming that every party did at least k updates since
their last corruption. More formally, we consider the security notions of indistin-
guishability of the group key from random (IND-k-PCSmode), and one-wayness
(OW-k-PCSmode). Here, mode ∈ {¬RC,RC} indicates whether the corruption
of a user reveals only their private state in the current round, or also additionally
the random coins they sampled in the round. Thus, we end up with 4 different

Fig. 4. Security games IND-k-PCSmode for indistinguishability and OW-k-PCSmode for
one-wayness of group keys with respect to mode ∈ {RC, ¬RC}. The game is defined
with respect to a scheme CGKA and an adversary A. We require that the adversary’s
first call is to oracle INIT, which can only be queried once.
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security notions. The weakest, OW-k-PCS¬RC, is used for our lower bounds in
Sect. 3.2 and the strongest, IND-k-PCSRC, for our upper bound of Sect. 5.

The security games are formally defined in Fig. 4. They provide the adver-
sary A with an initialization oracle INIT that allows for a single query, that has
to be made before using any of the other oracles. It enables A to set up a universe
of users and initialize a group. Using oracle ROUND, the adversary can specify
sets of users to concurrently perform updates. All operations are then processed
by the members of the group, and the round counter t is increased. Further, A
can, at any point in time, use the corruption oracle CORR(u) to reveal user u’s
current internal state stu, and, in the case that mode = RC, additionally the
random coins u sampled in the current round while updating. Finally, A, at
an arbitrary point in time t∗, can make a single query to the challenge ora-
cle CHALL, which in Game IND-k-PCSCGKA

mode (A), depending on challenge bit b∗,
returns either the current group key or a uniformly random key. The adversary
wins if it is able to correctly guess b∗ and safety predicate safe-k-PCS holds.
In Game OW-k-PCSCGKA

mode (A), the oracle instead stores the current group key as
challenge key K ∗. This has to be computed by A in order to win, again with
the restriction that safe-k-PCS holds. The predicate safe-k-PCS verifies that,
for every user that at time t∗ is a member of the group, (a) they were never
corrupted after t∗ and (b) since their last corruption before t∗ they performed
at least k updates.

Definition 2 (k-PCS security). Let CGKA be a continuous group-key
agreement scheme, k ∈ N, and mode ∈ {RC,¬RC}. Then CGKA is
IND-k-PCSmode secure, if for every PPT adversary the advantage function
|Pr[IND-k-PCSCGKA

mode (A) ⇒ 1 | b∗ = 1] − Pr[IND-k-PCSCGKA
mode (A) ⇒ 1 | b∗ = 0]| is

negligible.
Further, CGKA is OW-k-PCSmode secure, if for every PPT adversary the

advantage function Pr[OW-k-PCSCGKA
mode (A) ⇒ 1] is negligible.

Remark 1. We make the following observation about the security model.

(i) In this work we are interested in the communication cost of achieving post-
compromise security, and thus ignore attacks breaching forward secrecy, i.e.,
learning group keys from previous rounds by corrupting users. This is encoded
in lines 35 and 36 of the safe predicate, which disallow corrupting users after
the challenged round t∗.

(ii) Our security model is quite weak. In particular, all initialization and update
operations are honestly generated and immediately processed by all users
in synchronous rounds. We point out that this only strengthens our lower
bounds, as they hold even for a security notion far weaker than what one
would aim for in practice. While this leaves open the possibility of improving
on our bounds by switching to a stronger security notion, we point out that
they are closely matched by the upper bound of Sect. 5, which we expect to be
easily made secure in asynchronous settings with a semi-honest server using
standard techniques to ensure consistency (e.g. signatures, a key schedule,
transcript and parent hashes, etc. [2,6,10]).
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Restrictions. Our lower bounds apply to CGKA schemes CGKA satisfying the
following two restrictions.
– CGKA does not use nested encryption (NNE). This means that users do not

create layered ciphertexts of the form Enc(pk1,Enc(pk2,m)).
– CGKA does not distribute work (NDW). This means that, if in any round a

user get access to a secret they did not previously possess, then they must
have either sampled it by themselves or recovered it from the update message
of a single user.

The properties are not directly exploited in our proofs in the combinatorial
model. Instead, we use them to show that bounds in the combinatorial model
also hold in the symbolic model. We defer the restrictions’ formal definitions to
Sect. 4 (Definition 5 and Definition 7), where we will also formally justify their
impact on the combinatorial model. We point out that all CGKA schemes that
we are aware of satisfy both properties.

We also consider an additional property. We say that CGKA has publicly-
computable update cost (PCU) if it is always possible to determine the
size |MU u| of an update that a user u would produce if asked to update given
access only to public information, i.e., pub, as well as the sets of update mes-
sages sent so far. With this additional property we can show that not only there
exists a sequence of updates for which the total communication cost is at least
roughly n1+1/k · k/ log(k), but it is also possible to find the sequence using only
public information. Formally, CGKA schemes with publicly-computable update
cost are defined as follows.

Definition 3 (Publicly-computable update cost). Let CGKA be a CGKA
scheme. Consider an execution of game IND-k-PCSmode (or OW-k-PCSmode).
We say that CGKA has publicly-computable update cost if, for every round t
and for every user u ∈ Gt with internal state st t

u and public information pub,
it is possible to efficiently compute |MU |, where (st ′,MU ) ← Update(st t

u, pub; r)
would be the output of calling the update procedure, from public information at
the end of round t− 1 (i.e., all messages MI 0

u0
and MU t′

u sent in any round t′ ≤
t − 1, the sequence (Ut′)t′≤t−1, n, k, pub and u0). Note that, in particular,
the size of MU must be independent of the random coins r used to generate
the update message. We say that CGKA has offline publicly-computable update
cost if the same property holds using only the initialization messages MI 0

u0
, the

sequence (Ut′)t′≤t−1, n, k, pub and u0.

All CGKA schemes that we are aware of have offline publicly-computable update
cost. For example, for schemes based on ratchet trees, as for example TreeKEM
or CoCoA, the size of every user’s next update is fully determined by the position
of blank and non-blank nodes in the ratchet tree, which can be determined given
just the sequence of update/propose-commit operations.

3 Lower Bounds in the Combinatorial Model

In this section we define a self-contained combinatorial model capturing CGKA
schemes recovering from corruption in k rounds of updates and then prove a
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lower bound on the communication complexity of such schemes. The model is
given in Sect. 3.1, the bound in Sect. 3.2.

3.1 The Combinatorial Model

We now present a purely combinatorial model capturing an adversary interacting
with a correct and secure CGKA scheme built from public-key encryption and
pseudorandom functions. The interaction proceeds in rounds, during which users
schedule update operations and at the end of which a set of users is corrupted.

High-Level Structure. An instance of the combinatorial model is characterized
by a tuple (n, k, tmax, C0) and a sequence (Ut, Ct)tmax

t=1 , where n, k, tmax ∈ N,
C0 ⊆ [n], and Ut, Ct ⊆ [n] for all t. This corresponds to setting up the group G =
[n] and in round 0 corrupting the set of users C0. The sequence (Ut, Ct)tmax

t=1

determines the operations performed in the following tmax rounds, where

– Ut is the set of users performing an update in round t, and
– Ct is the set of users corrupted at the end of round t.

Integer k determines the safety requirement imposed on the CGKA scheme.
More precisely, we aim to capture CGKA schemes that recover from corruption
after k updates, meaning that if every user did at least k updates since the last
round in which they were corrupted, then the group must agree on a secure
key. Formally, consider an instantiation of the combinatorial model with respect
to (n, k, tmax, C0) and (Ut, Ct)t as described above. We say that a round t ∈
{0, . . . , tmax} is safe, if for every user u ∈ G such that u ∈ Ct′ for some t′ there
exist rounds t1, . . . , tk such that

u ∈ Uti
for all i ∈ {1, . . . , k} (1)

and

max{tc ∈ {0, . . . , tmax} : u ∈ Ctc
} < t1 < · · · < tk ≤ t . (2)

Recall that since we want to only argue about post-compromise security but not
forward-secrecy the condition also excludes the corruption of users after round t.

Set System and Cost Function. The main intuition behind the combinatorial
model is to associate the secure PKE and PRF keys present in the CGKA scheme
in round t to the set of users in G that have access to them at this point in
time, i.e., can recover them from their current internal state. Here ‘secure key’
refers to keys that were established by update operations and cannot be trivially
recovered from the adversary. The adversary is able to get access to keys directly
by corrupting users’ states, or by recovering them from protocol messages. The
latter is possible if the message contains an encryption of the key under a key
the adversary has access to, or if it contains the key in plain. In every round
the sets S(sk) of users having access to secure keys sk form a subset of 2G .
Intuitively, security and correctness of a CGKA scheme imply that the system
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Fig. 5. Top: Illustration of a ratchet tree and its associated set system St. Vertices
contain key-pairs (above) and the associated set (below). Keys already present in the
system at time t − 1 are depicted in black and keys added by user 5 in round t
in blue with shaded background. Edges indicate that knowledge secret key of the
source implies knowledge of the one of the sink. Dashed, blue edges correspond to
ciphertexts Encpksource(sk sink) sent by user 5 in round t, solid edges either to keys
derived using a PRF in round t (depicted in blue) or to keys communicated in a
previous round (depicted in black). Accordingly, user 5 generated key-pairs (pk5, sk5)
and (pkd, skd) using fresh randomness, and (pkc, skc) and (pke, ske) using a PRF.
Bottom: Depiction of the sets required to exist by property (iii) using the exam-

ples S = {1, . . . , 7} =
⋃k

i=0 Si and S′ = {5, 6, 7} =
⋃k′

i=0 S′
i with k = 4 and k′ = 1

corresponding to the secret keys ske and skd respectively. We have S0 = {5} = S′
0,

S1 = {1, 2}, S2 = {3}, S3 = {4}, and S4 = {6, 7} = S′
1. Note that the number of

ciphertexts sent to communicate the secret keys corresponding to S and S′ to their
members are 5 > k and 1 = k′ respectively, thus satisfying the inequality on the user’s
cost function required by property (iii). (Color figure online)

of associated sets should satisfy certain properties, and that adding sets to it by
scheduling updates comes at the cost of sending ciphertexts. These properties
are stated below and, looking ahead, will serve as the main tools to derive our
lower bound. For an illustration of the set system corresponding to a ratchet
tree as described in the introduction see Fig. 5 (Top).

Formally, consider an instantiation of the combinatorial model with respect
to (n, k, tmax, C0) and (Ut, Ct)t. We require the existence of a cost function Cost
and a sequence (St)0≤t≤tmax of set systems St ⊆ 2G . The cost function and
sequences are required to satisfy three properties to be given further below. The
cost function takes as input

– the user u ∈ G performing the update operation,
– the round t with 1 ≤ t ≤ tmax, and
– the history Mt = (n, k, (Ut′)1≤t′<t) of sets of users performing updates in the

previous rounds.
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Its output is an integer Cost(u, t,Mt). For better legibility, we will simply write
Cost(u, t) whenever the third input is clear from context.

Note that while the cost of a user’s update in a given round depends on the
operations performed in previous rounds, it does not depend on the sets Ct′ of
users corrupted in previous rounds. The latter is justified, since, looking ahead,
in the security game in the symbolic model, users are not aware whether they
are corrupted or not. However, if asked to update by the adversary, they may
decide to create particular ciphertexts depending on the history of operations
performed so far, as these may have impacted their internal state.

Requirements on Set System and Cost Function. We now give three
properties to be satisfied by the cost function and the set system.

(i) Correctness of the CGKA scheme implies that group members share a com-
mon key. Further, by security, whenever a round is safe, the corresponding
shared key must not be known to the adversary at this point in time.
Formally, if round t is safe we require that G = [n] ∈ St.

(ii) If a user is corrupted in some round, all keys they currently have access to
can also be recovered by the adversary and therefore should be considered
insecure. This is represented by St not containing any sets that include a
party corrupted in round t.
Formally, for all t ∈ {0, . . . , tmax} and all u ∈ Ct we have that S ∈ St implies
that u /∈ S.

(iii) The third property captures how users agree on new keys when using
basic cryptographic primitives (PRFs and PKE) and which cost in terms
of ciphertexts sent is incurred by communicating these keys to other users. A
user u ∈ G can always sample a new key locally. Further, from such a key or
one already present in the system they can derive a chain of new keys using
PRF evaluations. To communicate the key sk to other users they can encrypt
it under a public key pk ′ that must have either been present in the system at
the end of round t−1 or been previously generated by u in round t. From the
resulting ciphertext, every user with access to the corresponding sk ′ is able
to derive sk as well as all keys derived from sk using PRF evaluations. Note
that if sk ′ is insecure, then the adversary can recover sk .

In terms of sets this essentially means that the set S ∈ St of users able
to recover sk can be covered by a union of sets in St−1 (and potentially a
singleton {u} in case user u generated the starting point of the PRF evaluation
chain from fresh randomness) and that the cost of the user communicating sk
to the other members of S should be at least the number of sets forming the
union (where sometimes one ciphertext can be saved, as the key serving as a
starting point of a chain of PRF evaluations needs not be communicated).
Formally, for every t ≥ 1 and every S ∈ St we require that there exist h ∈ N≥0

and S0, . . . , Sh, such that either

S0 = {u} for some u ∈ Ut or S0 ∈ St−1 , (3)
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and if h ≥ 1 then Si ∈ St−1 for all i ∈ {1, . . . , h}. Further, we require that

S ∩ C≤t ⊆
h⋃

i=0

Si (4)

where C≤t =
⋃

0≤t′≤t Ct′ are the users that have been corrupted at least once
in or before round t. And, regarding the cost function, we require that

∃u ∈ S0 ∩ Ut such that Cost(u, t) ≥ h . (5)

Note that if in Eq. 3 we have S0 = {u} then the user in Eq. 5 must be u.
Finally, we can connect the cost of adding a set to the set system St to its
MinCover with respect to St−1. Indeed, for S ∈ St, if u is the user required
to exist by Eq. 5, then by Eqs. 3, 4, and 5

Cost(u, t) ≥ |minCover⊇(S ∩ C≤t,St−1 ∪ {u})| − 1 . (6)

The precise connection between the combinatorial model and the symbolic
model is established in Sect. 4. There, we essentially show that an adversary
playing the OW security game in the symbolic model with respect to a correct
and secure CGKA scheme that satisfies the restrictions described in Sect. 2.2
implies the existence of a set system St satisfying Properties (i)–(iii) if one uses
the number of ciphertexts sent by a user u in round t as cost function Cost(u, t).

3.2 Lower Bound in the Combinatorial Model

We now give a lower bound on the communication cost required to recover
from compromise within k rounds in the combinatorial model. Conceptually,
our proof proceeds in two steps. First, we lower bound the sum of the maximal
per-user update cost over all rounds. This bound is a best-case bound, i.e., it
holds with respect to every sequence (Ut)t of updating users. In a second step we
then prove our main result, a bound on the total cost required to recover from
corruption. This bound is worst case, i.e., it holds with respect to an adversarially
chosen sequence of updating users. Concretely, we will exploit that the cost of a
user u ∈ Ut updating in round t does not depend on the cost of other members
of Ut updating concurrently. This enables us to find a sequence (Ut)t for which
all members of Ut have roughly the same update cost, which yields the desired
bound as the bound on the maximal per-user update cost implies that the cost
of the users in Ut in sufficiently many rounds t must be quite large.

Lower Bound on the Maximal Per-user Update Cost. We first consider
the scenario that after an arbitrary setup phase of tc rounds a set of c users in
G = [n] is corrupted and that after m subsequent rounds of updates we have
G ∈ St (intuitively corresponding to the existence of a secure group key). Below,
we bound the sum of the maximal per-user update cost over the m rounds. Note
that this bound holds irrespective of how the sets Ut of updating users are chosen.
The proposition’s proof is in the full version of this paper [8].
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Proposition 2. Let n, k, tc,m ∈ N, C ⊆ [n], and c = |C| such that ln(c) ≥
m − 1. Let tmax = tc + m and consider an instantiation of the combinatorial
model with respect to (n, k, tmax, C0), (Ut, Ct)t, where Ctc

= C, Ct = ∅ for
t �= tc, and (Ut)t is an arbitrary sequence.

If G = [n] is contained in the set-system Stmax at the end of round tmax =
tc + m, then we have

m∑

t=1

max
u∈Utc+t

Cost(u, tc + t) ≥ (m − 1)
(

m−1
√

c − 1
)
.

From Maximal Per-user Cost to Total-Communication Cost. We now
show that for an adversarially chosen sequence (Ut)t of sets of updating users
actually almost all users have to adhere to the bound derived in the previous
paragraph. Intuitively, after an arbitrary warm up phase of tc rounds and cor-
rupting a linear fraction of users in round tc, we construct (Ut)t such that either
all updating users have roughly the same update cost, or all users have a very
small update cost. This procedure will then be repeated for sufficiently many
rounds to force that a linear fraction of all users in the group has updated at
least k times. In this case the final round tmax must be secure enforcing that
G ∈ Stmax . This allows us to use the bound derived in the previous paragraph to
show that the communication cost of rounds corresponding to the former case
must be substantial. We obtain the following theorem, its proof, as well as the
one of the following corollary, being in the full version of this paper [8].

Theorem 3. Let k, n, tc ∈ N and 0 < ε < 2/5 be a constant such that (1+ε)k ∈
N. Set αε = ε−5/2ε2+ε3

8(1+ε) > 0 and tmax = tc + (1 + ε)k. If 3 ≤ k ≤ ln(αεn),
then for every sequence (Ut)tc

t=1 there exists a set C ⊆ [n] of size �αεn� and a
sequence (Ut)tmax

t=tc+1 such that the instantiation of the combinatorial model with
respect to (n, k, tmax, ∅) and (Ut, Ct)tmax

t=1 , where Ctc
= C and Ct = ∅ if t �= tc,

satisfies

(1+ε)k∑

t=1

Cost(Utc+t) ≥ (k − 1)
4

·
⌊

2εn

5(1 + ε) �log(k)�

⌋ (
(αεn)

1
(1+ε)k−1 − 1

)
.

While we phrased Theorem 3 as a single-stage experiment, i.e., only consider the
communication required to recover from corruptions made in a single round, it
easily carries over to a repeated experiment consisting of repeatedly corrupting
a linear fraction of the users from which the group has to recover within (1+ε)k
rounds of updates. Note, that the setting of Theorem 3 allows for an arbitrary
setup phase (Ut)t≤tc

of tc rounds. Thus, by simply applying the arguments in
the proof iteratively to each recovery phase, we obtain that the derived bound
holds even in an amortized sense, i.e., even in this setting the recovery from each
corruption requires communication of order nk (1+ε)k

√
n/ log(k).

Corollary 4. Let k, n, tc, ε, and αε be as in Theorem 3. Let zmax ∈ N and for
0 ≤ z < zmax set tc,z = tc+z·(tc+(1+ε)k) and tmax = zmax·(tc+(1+ε)k). For all
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collections of sequences (Ut)
tc,z

t=tc,z−tc+1 with 0 ≤ z < zmax, there exist sets Cz ⊆
[n] each of size �αεn� and collections of updates (Ut)

tc,z+(1+ε)k
t=tc,z+1 such that for

every instantiation of the combinatorial model with respect to (n, k, tmax, ∅) and
(Ut, Ct)tmax

t=1 , where Ctc,z
= Cz and Ct = ∅ if t /∈ {tc,z | 0 ≤ z < zmax}, we have

tc,z+(1+ε)k∑

t=tc,z+1

Cost(Utc,z+t) ≥ (k − 1)
4

·
⌊

2εn

5(1 + ε) �log(k)�

⌋ (
(αεn)

1
(1+ε)k−1 − 1

)

for very 0 ≤ z < zmax.

4 Lower Bounds in the Symbolic Model

In this section define CGKA in a symbolic model, an approach introduced for
public key encryption by Dolev and Yao [18], following the work on multicast
encryption by Micciancio and Panjwani [24], and generalized to CGKA by Bien-
stock, Dodis, and Rösler [12], who considered concurrent updates for schemes
recovering in two rounds. A similar model was also used to lower bound the
communication incurred by users in CGKA schemes in order to achieve PCS, in
a setting of multiple groups [1]. We show how the questions we are interested
in can be translated from the symbolic to the combinatorial model of Sect. 3,
which allows us to conclude that the bounds derived in the combinatorial model
also hold with respect to the symbolic model.

4.1 The Symbolic Model

We consider schemes constructed from pseudorandom functions and public-key
encryption, both modeled as idealized primitives that take as input symbolic
variables, and output symbolic variables. To more easily distinguish these from
non-symbolic variables we use typewriter font. We use the following syntax.

(i) Pseudorandom function: Algorithm PRF takes as input a key K and a mes-
sage m and returns a key K′ = PRF(K, m).

(ii) Public-key Encryption: A PKE scheme consists of algorithms (PKE.Gen,
PKE.Enc,PKE.Dec), where PKE.Gen on input of secret key sk returns the
corresponding public key pk. PKE.Enc takes as input a public key pk and
a message m, and outputs a ciphertext c ← PKE.Enc(pk, m) with message
data type. PKE.Dec takes as input a secret key sk and a ciphertext c,
and outputs a message m = PKE.Dec(sk, c). We assume perfect correctness:
PKE.Dec(sk,PKE.Enc(pk, m)) = m for all sk, pk = PKE.Gen(sk), and mes-
sages m.

As data types, we consider messages, public keys, secret keys, symmetric
keys, and random coins, the latter being a terminal type. Which variables can
be recovered from a set of messages M, is captured by the entailment relation �.
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Data type Grammar rules

Message m ← sk, pk,PKE.Enc(pk, m)
Public key pk ← PKE.Gen(sk)
Secret key sk ← K

Key K ← r,PRF(K, m)
Random coin r terminal type

Entailment relation

m ∈ M ⇒ M � m
M � m, pk ⇒ M � PKE.Enc(pk, m)

M � K ⇒ M � PRF(K, m) for all m
M � PKE.Enc(pk, m), sk : pk = PKE.Gen(sk) ⇒ M � m

Note that the entailment relation captures (ideal) correctness and (ideal)
security of PRF and PKE, as recovering a PRF output or an encrypted message
from a ciphertext requires knowledge of the secret key. Security is effectively
captured by the of a sequence of entailment relations that recover the appropriate
message. Examples and further comments (in the setting of multicast encryption)
can be found in [24, Sect. 3.2]. The set of messages which can be recovered from
M using relation � is denoted by Der(M) := {m : M � m}.

We point out that the model of [12] covers more primitives, concretely, dual
PRFs, updatable PKE, and broadcast encryption. It is an interesting open ques-
tion to consider whether a translation to our combinatorial model is also possible
if one takes these additional primitives into account. For a brief discussion on
challenges to overcome if one would allow dual PRFs see Remark 3.

Continuous Group-Key Agreement in the Symbolic Model. A CGKA
scheme CGKA in the symbolic model follows the syntax of Sect. 2.2. Additionally,
we require some of the inputs to CGKA’s algorithms to be symbolic variables.
Concretely, we require that the group keys K, public and internal states pub and
st, random coins r as well as the control messages MI and MU are symbolic. They
can also have a non-symbolic counterpart which we omit as the properties we
study and the security game we consider in the symbolic model do not depend on
the non-symbolic variables. However, we often distinguish between symbolic ran-
dom coins r and non-symbolic randomness r as this is used in some of the proofs.
Intuitively, symbolic randomness represents the new secrets being sampled, while
non-symbolic randomness allows to capture the fact that the algorithms may flip
a coin in order to determine their actions (e.g., the update algorithm might flip
random coins to decide whether to generate certain ciphertexts or not). Further,
we assume that the context symbolic variables, e.g., which key corresponds to
a certain ciphertext, or which keys correspond to a particular set of users, are
implicitly known to the algorithms.

We use the game of Fig. 3 to define correctness of CGKA, where we addi-
tionally require that, for every algorithm, each of its symbolic outputs can
be derived from its symbolic inputs using the entailment relation �. E.g., if
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user u computes (st′
u, MUu) ← Update(stu, pub; r, r), then we require that

st′
u, MUu ∈ Der({stu, pub, r}), and similarly if st′

u ← Process(stu, pub, M) then
it must hold that st′

u ∈ Der({stu, pub, M}).
Regarding security, we target the notion of OW-k-PCS¬RC of Definition 2.

As our goal is to prove lower bounds, using one-wayness as the targeted security
notion only makes our results stronger compared to using indistinguishability.

We structure the game in rounds, that correspond to the oracle calls that
occur between two subsequent calls to oracle ROUND. We say a query to some
oracle was made in round 0 if it was made before the first query to ROUND,
and in round t for t ∈ {1, . . . , tmax}, if it was either the tth query to ROUND,
or, for calls to CHALL or CORR, if it was made after the tth and before the
(t + 1)st query to ROUND. This allows us to fully characterize adversaries A by
the sequence of inputs to the oracles made in each round. For round 0, these
are the input (n,G0, u0) to INIT and the set C0 of corrupted users; for round t,
the set Ut of updating users queried to ROUND, as well as the set Ct of users
corrupted during the round; and finally, t∗ indicating in which round the single
call to CHALL is made. An explicit description of the OW-k-PCS¬RC security
game in the symbolic model can be found in Fig. 7.

Definition 4 (Symbolic k-PCS security). Let CGKA be a continuous group-
key agreement scheme, k ∈ N. Then CGKA is OW-k-PCS¬RC secure, if for all
(n, u0, C0, (Ut, Ct)tmax

t=1 , t∗) it holds that

Pr[OW-k-PCSCGKA
¬RC (n, u0, C0, (Ut, Ct)tmax

t=1 , t∗) ⇒ 1] = 0

where the probability is taken over the non-symbolic randomness.

This notion of security, in which for any sequence (n, u0, C0, (Ut, Ct)tmax
t=1 , t∗)

the game is lost, is standard in the literature of symbolic security and used, for
instance, in [24] and [12]. The requirement that the probability be zero, implies
that the game is not won for every possible choice of non-symbolic randomness.
The reason for this choice rather than requiring that it be a negligible function
in log|R|, where R denotes the set of non-symbolic randomness, is that it may
very well be the case that |R| is small since this is not the randomness used to
sample new keys (when it would be reasonable to work with log|R| as a security
parameter). For instance, one could just flip a coin (i.e., R = {0, 1}).

In the game we require that all symbolic random coins used by users are
generated disjointly. More precisely, if rt

u denotes the set of random coins used
by user u in round t in the init/update procedures, then we require that r ∈ rt

u

implies r /∈ rt′
u′ for all (u, t) �= (u′, t′).

We now define a property of CGKA schemes that we will require for our
bounds. It essentially forbids schemes to generate layered ciphertexts of the
form PKE.Enc(pk2,PKE.Enc(pk2, m)). For some intuition on how it factors into
our translation to the combinatorial model see Remark 3.

Definition 5 (No nested encryption). We say a scheme CGKA does not
use nested encryption if, for all ciphertexts c ← PKE.Enc(pk, m), the encrypted
message is either a secret key or a random coin, i.e., of type sk, K, or r.
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Our goal for the remainder of this section is to show that the task of deriving
lower bounds on the communication complexity of correct and secure CGKA
schemes translates to the analogue in the combinatorial model. To this end,
we define useful secrets, i.e., secret symbolic variables that the adversary is not
able to derive, and associate them to the set of users with knowledge of them.
We prove that these sets satisfy the properties described in Sect. 3.1 for a cost
function that counts the number of messages sent in a given round by a user.

Useful Secrets and Associated Sets. First, we establish some notation. Con-
sider an adversary playing OW-k-PCS¬RC. We denote the set of public messages
sent up to and including round t by Mt, i.e., for t = 0 we set M0 = {pub, MI0u0

} to
be the output of oracle Init; and for every round t ≥ 1 we extend the set by the
output of oracle ROUND: Mt ← Mt−1 ∪ MU, where MU = ROUND(Ut). Further, for
t ≥ 0 we track all variables the adversary learned up to and including round t,
via the corruption oracle, in a set CORt. I.e., at the beginning of round t, the
set CORt is initialized to CORt−1 and, if user u is corrupted in round t, then their
current state stu (meaning the one after all oracle calls of the round) is added to
the set. Note that CORt matches the set CORt, defined in game OW-k-PCS¬RC,
that tracks the values known to the adversary via corruption. This allows us
to define the notion of useful secrets s, i.e., variables of type r, K, and sk that
cannot be derived by the adversary, and associate to them the set of users that
in round t have access to s.

Definition 6 (Useful secrets and associated sets). Consider adversary A
playing game OW-k-PCS¬RC in the symbolic model and let t ∈ N, and s be a
variable of type r, K, or sk generated during the game, before or in round t. We
say that s is useful in round t if s /∈ Der({Mt, CORt}). Let s be useful in round t.
We define the associated set of s in round t as

S(s, t) := {u ∈ [n] | s ∈ Der(sttc,u
u , (rt′

u )tc,u+1≤t′≤t, Mt)} ⊆ [n]

where tc,u := max{t̃ | u ∈ Ct̃ and t̃ ≤ t} (tc,u = −1 if u has never been cor-
rupted). We define the associated set of s after the setup as

S(s,−1) := {u ∈ [n] | s ∈ Der(st−1
u , pub)} ⊆ [n] .

We define the set system in round t as

St := {S(s, t) | s is useful in round t} ⊆ 2[n] .

The intuition behind the definition of S(s, t) is that any user who can derive
the secret s in a round t′ such that tc,u+1 ≤ t′ ≤ t (i.e., s ∈ Der(stt′

u , Mt′)) should
belong to the set S(s, t). This is indeed the case since stt′

u ⊆ Der(stt′−1
u , rt′

u , Mt′)
because symbolic outputs of algorithms can always be derived symbolically from
their symbolic inputs. The notation st−1

u refers to the state that u is assigned
by the Setup algorithm.

We now define what it means for a scheme to not allow users to distribute
work. Intuitively, this requirement says that whenever a secret (be it already
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existing or newly generated) is communicated to a set of users, who did not
yet have access to it, then this communication must have been done by a single
user. For example, this notion excludes schemes in which two users u1, u2, already
sharing a common key, communicate this key to users u3 and u4 by having u1

encrypt it to u3, and u2 encrypt it to u4.
See Fig. 6 for an illustration of a scheme that does make use of distributed

work at hand of a ratchet tree.

Definition 7 (No distributed work). Consider a scheme CGKA and an
execution of game OW-k-PCS¬RC with respect to CGKA in the symbolic model.
For user u and round t let stt

u denote the user’s state in round t and rt
u the

random coins generated in round t. We say that CGKA does not allow users to
distribute work if, for all t and every secret symbolic variable s, we have that
there exists a user u′ such that for every u ∈ S(s, t) \ (S(s, t− 1)∪{u′}) it holds
that s ∈ Der(stt−1

u , Mt−1, MUt
u′) and s ∈ Der(stt−1

u′ , rt
u′ , Mt−1).

Connection to Combinatorial Model. In the following we show that the
three properties required in the combinatorial model are satisfied by the symbolic
model’s associated set system. The first two are quite natural observations, the
last essentially corresponds to a generalization of a statement that is shown in
the proof of [12, Theorem 2] and can be seen as quantifying the cost of adding
new sets to the set system St by updating. We measure the cost in terms of
the number of symbolic variables sent by a user u in round t and denote this
quantity |MUt

u|. When interested in the cost of a round t, we take the sum over
all users u ∈ Ut.

Intuitively, Property (i) is enforced by correctness and security, as on one
hand every member of Gt must be able to derive the current group key from
their state, and the safety predicate being satisfied implies that the group key at
time t∗ must be useful, i.e., Gt∗ ∈ St∗ . Property (ii) corresponds to the simple
fact that no secret derivable from stu can be useful in a round in which the user
gets corrupted, as in this case it can be derived by the adversary as well.

Equivalently, a set S ∈ St cannot contain any users in Ct. Finally, Prop-
erty (iii) corresponds to the intuition, that the secret s belonging to a new
set S = S(s, t) needs to be communicated to (at least) every member u of S. If s
cannot be derived using PRF evaluations from a secret already known to u, then
either it, or a secret which can be derived from using PRF, must be communi-
cated to u by encrypting it to a useful key that was known to the party in the
previous round, i.e., in round t−1. In other words, this determines a covering of
the set S with sets in St−1 and possibly a singleton {u} for some updating user
u ∈ Ut with the property that the number of symbolic variables contained in the
messages exchanged in round t is at least the number of sets in the said cover
minus one. When we consider schemes in which users do not distribute work,
we obtain a simpler statement for property (iii) and it matches Eq. 5 from the
combinatorial model.
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Fig. 6. Top: Example of a ratchet tree and its associated set system St making use
of distributed work. Vertices contain key-pairs (above) and the associated set (below).
Edges indicate that knowledge of the secret key of the source implies knowledge of
the one of the sink. Dashed edges correspond to ciphertexts Encpksource(sk sink) sent
by user 1 in round t, solid edges either to keys derived using a PRF in round t or
to keys communicated in a previous round. Keys already present in the system at
time t − 1 are depicted in black and keys added by user 1 in round t in blue with
shaded background. The dotted edge corresponds to a ciphertext sent by user 5 in
round t. Note that the associated set of (pka, ska) changes in round t as an effect of
this ciphertext, and that users 6 and 7 need to decrypt ciphertexts sent by two different
users, namely users 1 and 5, in order to recover skd, implying that the scheme does
indeed use distributed work. Bottom: Depiction of the sets proven to exist in Lemma 1
using the example S = {1, . . . , 7} =

⋃k
i=0 Si in the set system depicted above. Note

that k = 4 matches the number of ciphertexts sent in round t to establish S, which,
however, stem from more than a single user (compare Lemma 1; (iii)). (Color figure
online)

Lemma 1. Let CGKA be a perfectly correct continuous group-key agreement
scheme that is OW-k-PCS¬RC-secure and does not use nested encryption. Con-
sider an adversary playing game OW-k-PCS¬RC of Fig. 7 in the symbolic model.

(i) If KGt
is the group key in round t, then S(KGt

, t) = Gt. In particular, if
oracle CHALL is queried in round t∗ and the safety predicate is satisfied then
we have Gt∗ ∈ St∗ .

(ii) If user u was corrupted by the adversary in round t, then for every S ∈ St it
holds that u /∈ S.

(iii) Let t ≥ 1. Recall, that Ut ⊆ [n] indicate the users that updated and for user u
the sets MUt

u correspond to the control messages generated by performing the
corresponding update operation. Then for every set S ∈ St there exist k ∈ N≥0

and sets {Si}k
i=0 such that either

(a) S0 = {u} for some u ∈ Ut, or (b) S0 ∈ St−1
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and, if k ≥ 1, Si ∈ St−1 for every i = 1, . . . , k. Furthermore, it holds that

S ∩ C≤t ⊆
k⋃

i=0

Si and
∑

u∈Ut

|MUt
u| ≥ k .

where C≤t =
⋃

0≤t′≤t Ct′ are the users that have been corrupted at least once
in round t or before. If CGKA does not allow users to distribute work, then
the last statement can be replaced by the following stronger expression:

∃u ∈ S0 ∩ Ut such that |MUt
u| ≥ k .

The lemma’s proof is in the full version of this paper [8].

Remark 2. Looking ahead, we observe the following. Consider an execution of
game OW-k-PCS¬RC in the symbolic model, where CGKA is a perfectly correct,
OW-k-PCS¬RC-secure CGKA scheme which does not use nested encryption and
does not allow users to distribute work, and set Cost(u, t) = |MUt

u| to be the
number of symbolic variables sent by u in round t. Then, by Lemma 1 the
associated set system St (Definition 6) and Cost satisfy all properties of the
combinatorial model described in Sect. 3.1. As a consequence, to prove lower
bounds on the communication cost of CGKA, i.e., the number of ciphertexts sent
during the execution of the game, it is sufficient to lower bound the cost function
for a scheme satisfying the combinatorial model.

Remark 3. Lemma 1 requires that CGKA not use nested encryption, i.e., not
generate encryptions of ciphertexts. On a technical level, this restriction guaran-
tees that for the graph constructed in the lemma’s proof for every edge (s1, s2)
we have that knowledge of secret s1 implies knowledge of s2. On a more intuitive
level, allowing ciphertexts of the form c = Enc(pk2,Enc(pk1, m)) would enable
users to send ciphertext c in one round but release message m in a later round
by at this point in time sending sk2 in the plain, at cost of no additional cipher-
texts. While this does not seem to help with the total communication cost, it
could in principle enable users to distribute their workload over several rounds.
An analogous statement holds, if one allows the use of dual PRFs (as in [12]).

Following the idea outlined in Remark 2 it can be shown that the worst-case
lower bound on the communication cost of CGKA schemes in the combinatorial
model carries over to the symbolic model for OW-k-PCS¬RC-secure schemes.

Corollary 5. Let k, n, tc, ε, and αε be as in Corollary 5 and let CGKA be
a correct and OW-k-PCS¬RC-secure CGKA scheme that does not use nested
encryption, and does not allow users to distribute work. Let zmax ∈ N and for
every integer 0 ≤ z < zmax set tc,z = tc + z · (tc + (1 + ε)k) and tmax =
zmax · (tc + (1 + ε)k).

If 3 ≤ k ≤ ln(αεn), then for an arbitrary setup phase of the group G0 =
Gt = [n] and zmax arbitrary phases of tc rounds of updates (Ut)

tc,z

t=tc,z−tc+1 with
0 ≤ z < zmax and any choice of non-symbolic randomness in the security game
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Fig. 7. Security game OW-k-PCS¬RC in the symbolic model with respect to the
sequence (n, u0, C0, (Ut, Ct)

tmax
t=1 , t∗) of inputs to the oracles.

OW-k-PCS¬RC, there exist sequences of updates (Ut)
tc,z+(1+ε)k
t=tc,z+1 and sets of cor-

rupted users Cz ⊆ [n] each of cardinality �αεn� such that the total communication
cost satisfies

tc,z+(1+ε)k∑

t=tc,z+1

Cost(Utc,z+t) ≥ (k − 1)
4

·
⌊

2εn

5(1 + ε) �log(k)�

⌋ (
(αεn)

1
(1+ε)k−1 − 1

)

for every 0 ≤ z < zmax.
If CGKA has publicly-computable update cost (Definition 3), the sequences of

sets (Ut)
tc,z+(1+ε)k
t=tc,z+1 can be computed online, i.e., Utc,z+t can be computed using

public information from the previous rounds. Furthermore, if CGKA has offline
publicly-computable update cost, the sequence of updates (Ut)

tc,z+(1+ε)k
t=tc,z+1 can be

computed after round tc,z and is independent of the non-symbolic randomness.

The corollary’s proof is in the full version of this paper [8].

5 Upper Bound on the Update Cost

In this section we briefly outline a simple CGKA protocol, inspired by CoCoA [2],
but both more general and, for certain values of k, with a lower total upload
communication cost. Accordingly, we termed it CoCoALight.

This short section assumes knowledge of CoCoA and only aims to give an
intuitive understanding of the ideas behind the proposed protocol. For space
reasons we defer a more thorough discussion on CoCoA and our protocol, as well
as the formal description and security proof to the full version of this work [8].
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The key feature of the protocol is that, as opposed to in CoCoA, users will
not rotate the keys for all nodes in their path in each update, but instead just
rotate the key of a single node. Users keep track, by means of a counter, of which
node they last refreshed, and will, in the following update, sample a new key for
its child, increasing the counter by 1. In the case that two users send ciphertexts
corresponding to the same node in the same round, the server will decide a
winner, as in CoCoA, and thus whose key will be the next one associated to said
node, according to any agreed-upon (potentially deterministic) rule. In the case
of such a collision, the user losing will still “make progress” and increase their
counter, and so, in the following update will attempt to rotate the key at the
next node in their path.

A consequence of rotating a single key per update is that knowledge of parts
of the old state might allow the recovery of this new key. In particular, the
knowledge of the secret key of the parent key of v, when v’s key is being refreshed,
allows the recovery of the latter (as its seed will be encrypted under the former).
Thus, informally, what ensures healing is the progressive rotation of all the path’s
keys after corruption, and starting from the leaf. Thus, in order to guarantee
healing in k rounds, CoCoALight uses trees of depth ≈ k/2, to ensure a rotation
of all keys in the path starting at the leaf happens within that period.

In particular, it can recover from an arbitrary number of corruptions in k
rounds and with a total communication cost in the order of nk k/2

√
n ciphertexts,

without any user coordination. While CoCoA’s communication complexity is
lower for low values of k, CoCoALight’s improves for values of k closer to log(n).
This improvement comes at the drawback of non-immediate forward secrecy,
which requires at least k/2 updates from each user prior to their corruption.
Likewise, we not prove it secure against any type of active adversary and, indeed,
only describe a simple protocol satisfying IND-k-PCSRC security. Nevertheless, it
shows that the lower bound on PCS from the previous section is only log(k)/ k/2

√
n

from being tight, for k ∈ [4, 2�log(n)� + 1]. Concretely, for the case k = log(n),
the gap is of order just log(log(n)).
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Abstract. The generic-group model (GGM) aims to capture algorithms
working over groups of prime order that only rely on the group opera-
tion, but do not exploit any additional structure given by the concrete
implementation of the group. In it, it is possible to prove information-
theoretic lower bounds on the hardness of problems like the discrete
logarithm (DL) or computational Diffie-Hellman (CDH). Thus, since its
introduction, it has served as a valuable tool to assess the concrete secu-
rity provided by cryptographic schemes based on such problems. A work
on the related algebraic-group model (AGM) introduced a method, used
by many subsequent works, to adapt GGM lower bounds for one problem
to another, by means of conceptually simple reductions.

In this work, we propose an alternative approach to extend GGM
bounds from one problem to another. Following an idea by Yun [EC15],
we show that, in the GGM, the security of a large class of problems
can be reduced to that of geometric search-problems. By reducing the
security of the resulting geometric-search problems to variants of the
search-by-hypersurface problem, for which information theoretic lower
bounds exist, we give alternative proofs of several results that used the
AGM approach.

The main advantage of our approach is that our reduction from geo-
metric search-problems works, as well, for the GGM with preprocessing
(more precisely the bit-fixing GGM introduced by Coretti, Dodis and
Guo [Crypto18]). As a consequence, this opens up the possibility of trans-
ferring preprocessing GGM bounds from one problem to another, also
by means of simple reductions. Concretely, we prove novel preprocessing
bounds on the hardness of the d-strong discrete logarithm, the d-strong
Diffie-Hellman inversion, and multi-instance CDH problems, as well as
a large class of Uber assumptions. Additionally, our approach applies to
Shoup’s GGM without additional restrictions on the query behavior of
the adversary, while the recent works of Zhang, Zhou, and Katz [AC22]
and Zhandry [Crypto22] highlight that this is not the case for the AGM
approach.
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1 Introduction

The Generic Group Model. The concrete security provided by a crypto-
graphic scheme is typically assessed following the reductionist approach: one
first shows that its security is implied by the hardness of a problem, and then
analyzes the best running times of algorithms solving said problem. Regarding
the second step, for schemes defined over a group G = 〈g〉 of prime order p,
the generic-group model (GGM) has proven itself a valuable tool. It is an ideal-
ized model that, on the one hand, is assumed to be meaningful for elliptic-curve
groups, which are heavily relied on in practice. On the other hand, it allows to
derive information-theoretic lower bounds on the number of group operations
required to solve problems, like the discrete logarithm and Diffie-Hellman prob-
lems (as well as many of their variants).

The model aims to capture algorithms that are generic in the sense of being
applicable to any group G of prime order p. Algorithms of this type only make
use of the group operation, but do not exploit any additional structure given
by the concrete implementation of the group. There have been several efforts of
formalize this requirement. In Shoup’s definition [28] of the model, the adver-
sary gets access to group elements via abstract labels, i.e., uniformly random
bitstrings, and to the group operation via an oracle. The variant by Maurer [21],
on the other hand, gives access to group elements using abstract handles. All
problems that are definable in Maurer’s GGM are also definable in Shoup’s,
but the other direction does not hold. In fact, Zhandry [32] recently showed
that Maurer’s GGM (and the more commonly used extension thereof, which
Zhandry calls type-safe model) fails to capture many textbook techniques that
are captured by Shoup’s GGM. An additional difference is that Maurer’s model
does not capture preprocessing algorithms. For more details on the differences
between the models we refer to [32].

In this work we focus on Shoup’s model, which we will simply refer to as
the generic-group model, or GGM, from here on. In it, group elements gx are
represented by labels σ ∈ {0, 1}�. A generic algorithm receives as input some
labels and, typically, either has to compute a discrete logarithm or the label
of a certain group element. To do so, it has access to a group operation ora-
cle GrpOp. This takes as input two labels and returns the label of the product
of the corresponding group elements.

As an example of how one typically argues hardness of problems in the GGM,
we briefly sketch the bound on the discrete logarithm (DL) problem, as proven
in [28]. Here, a secret exponent x ←$ Zp is sampled and the adversary receives as
input labels σg, σgx corresponding to g and gx. In the proof, each label σ is asso-
ciated to a linear function Fσ ∈ Zp[X] as follows. The adversary’s inputs σg,
σgx are associated to 1 and X, and whenever the group-operation oracle is
queried on labels σ, σ′, their product GrpOp(σ, σ′) is associated to the func-
tion Fσ′′ = Fσ + Fσ′ . Then, one checks whether Fσ′′ equals any of the functions
defined previously. If so, the corresponding label is used; if not, a fresh label σ′′

is sampled. The idea being that, in this way, group elements which are equal
can be identified, as every label σ corresponds to a group element of the form
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gFσ(x). However, this simulation of the GGM works only as long as there exists
no Fσ �= Fσ′ with Fσ(x) = Fσ′(x), in which case the adversary would receive two
different labels for the same group element. Accordingly, the proof bounds the
probability of this event happening, and, in case that it does not, the probability
of the adversary winning.

In [31], Yun considers a natural generalization of the discrete-logarithm prob-
lem, namely the task to solve several DL instances. In the proof of his bound,
he shows that one can perfectly simulate the GGM group-operation oracle in a
reduction from the so-called search-by-hyperplane problem (SHP). In this prob-
lem, the adversary has to find a hidden value �x ∈ Z

m
p (here m is the number of

discrete logarithm instances that have to be solved) by using hyperplane queries
that, on input an affine function F , return whether F (�x) = 0 or not; exactly
what is needed in the GGM to check whether a group operation query should
be answered with an already defined label. By proving an information-theoretic
lower bound on the hardness of SHP, one then is able to obtain bounds on the
hardness of the original problem in the GGM. This approach was later gen-
eralized by Auerbach, Giacon, and Kiltz [2] to allow the function F to be a
multivariate polynomial of bounded degree. This is needed, for example, if one
wants to argue about problems involving decisional Diffie-Hellman oracles, or
“higher-degree” problems like the d-strong discrete-logarithm problem.

The GGM and Preprocessing. In practice most cryptosystems rely only on a
few standardized groups, which makes preprocessing attacks particularly viable.
The power of those attacks was demonstrated by Mihalcik [22]; Lee, Cheon, and
Hong [20]; and Bernstein and Lange [6], who construct generic algorithms with
preprocessing that solve the DL problem in a group of order p in time p1/3.
The authors thereby circumvented the lower bound in the GGM of p1/2 without
preprocessing established by Shoup [28].

Two recent works extend the GGM to adversaries allowed to perform
unbounded preprocessing before the problem instance is sampled. Both derive
lower bounds on the hardness of variants of the discrete logarithm and Diffie-
Hellman problems. Corrigan-Gibbs and Kogan [15] leverage compression argu-
ments, Coretti, Dodis and Guo [14] a pre-sampling technique by Unruh [29].
The latter work defines two variants of the GGM allowing for preprocessing:
the auxiliary input (AI-GGM) and bit-fixing (BF-GGM) generic-group models.
In the AI-GGM, the adversary is able to perform unbounded preprocessing on
the whole labeling function to generate an advice string of bounded size before
receiving the problem instance. In the preprocessing phase of the BF-GGM, on
the other hand, it is able to choose labels of a bounded number of group elements,
but does not have access to the remainder of the labeling function. The authors
show that, under certain conditions, bounds in the BF-GGM, which is typically
easier to work with, also hold in the AI-GGM. To derive a preprocessing bound
on the hardness of computing multiple discrete logarithms, the latter work also
uses a reduction from SHP.

Generic Group Lower Bounds via Algebraic Reductions. A related
restricted class of algorithms working over G consists of so called algebraic algo-



304 B. Auerbach et al.

rithms, first considered by Boneh and Venkatesan [12], and later further formal-
ized by Pallier and Vergnaud [25]. Fuchsbauer, Kiltz, and Loss [16] abstract such
algorithms in their algebraic-group model (AGM) as follows. While an algorithm
with input g0, . . . , gk ∈ G in the AGM gets explicit access to the group G, it
has to provide an algebraic justification for every element h ∈ G that it out-
puts. More precisely, together with h, it has to produce a0, . . . , ak ∈ Zp such
that h =

∏k
i=0 gai

i .
In the paper, the authors introduce an approach that, assuming existing

generic-group lower bounds for problem P1, allows to extend the bound to a
different problem P2 by means of a conceptually simple reduction, which they
describe as follows.

(i) If adversary A against P2 is generic, we may assume w.l.o.g. that it is
algebraic.

(ii) Construct a generic reduction from P1 to P2 that exploits the algebraic
justifications that A has to provide for all group elements it computes.

(iii) Now, since the existence of generic solver for P2 implies a generic solver for
P1, and since P1 is hard, P2 must be as well.

As this approach is conceptually simpler than establishing GGM bounds for P2

from scratch, and typically leads to cleaner proofs, the idea of analyzing problems
and schemes in the algebraic group model was picked up by many subsequent
works [1,2,5,17–19,23].

As it is relevant to our discussion on preprocessing below, we provide some
intuition on point (i). Here, the idea is that a generic reduction interacting with
generic adversary A is able to compute the required algebraic justification by
itself, as long as A queries the group-operation oracle only on labels it previ-
ously received as input. Indeed, in this case the justification can be computed
inductively as follows. If σ1 and σ2 are the labels, and the reduction already
recorded their algebraic justifications �a1 and �a2 in a previous step, then a justi-
fication of the product of the two group elements is given by �a1 + �a2.

The AGM and Preprocessing. Despite the fact that both the work on the
algebraic-group model [16] and the one on the GGM with preprocessing [14]
have been taken up in many subsequent works, the approach of transferring pre-
processing bounds from one problem to ones for another with simple reductions
has stayed elusive so far. One presumed reason for this is that, in this setting,
one cannot argue that the reduction is able to compute an algebraic justification
from the generic adversary’s queries. Indeed, the argument outlined above cru-
cially relies on the adversary only querying labels of group elements it previously
received as input. However, in the preprocessing setting, the adversary receives as
input an advice string, computed during an unbounded precomputation phase.
And, as the advice might contain labels not accessible to the reduction, e.g.
encryptions of labels under a key hard coded into the adversary’s code, this
poses an obstacle to the reduction’s ability to compute algebraic justifications
for group elements computed by the adversary. Maurer’s GGM does not allow
for preprocessing (see e.g. [32]).
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The AGM and Shoup’s GGM. A recent work by Zhang, Zhou, and Katz [33]
showed that the AGM approach of transferring lower bounds in Shoups’s GGM
outlined above requires caution. Concretely, they construct a problem, the so
called bit-encoding problem, that is at least as hard as the discrete logarithm
problem in the AGM, but can be trivially solved in the GGM. This shows that
point (i) in the approach outlined above does not hold in general. As discussed
above, one would like to argue that the reduction is able to compute the required
justification of group elements produced by the adversary A by itself, which is
possible if A never queries for group operations on labels it did not previously
receive as input. However, this cannot be guaranteed in general, a fact that is
exploited in the bit-encoding problem of [33], which can be won by returning
such a label.

Note that the bit-encoding problem is definable in Shoup’s GGM but not in
Maurer’s GGM. In fact, Zhandry [32] formally proved that the AGM approach is
valid for all problems that are definable in Maurer’s GGM, so the AGM approach
is valid for most “natural” problems. However, we point out that several results
in prior work [1,2,16–19] argue about the generic-group model in the presence
of a random oracle, as is often the case when analyzing cryptographic schemes,
instead of problems purely defined over groups. Opposed to Shoup’s model,
random oracles have to be explicitly modeled in Maurer’s model. However, it is
unclear, as far as we know, whether one may assume generic algorithms to be
algebraic given this additional oracle.

1.1 Our Contributions

In this work we present a new proof technique to derive lower bounds in the
GGM that improves over the AGM approach in the following ways:

– It also applies to the bit-fixing generic-group model of [14]. Since bounds in
the BF-GGM can be carried over to the AI-GGM, this opens up the possibility
of extending preprocessing bounds from one problem to another by means of
a reduction between the problems;

– It applies to Shoup’s GGM in its full generality.

Generalizing the idea introduced in [31], we show that, in the GGM, the
security of a large class of computational problems can be reduced to that of
analogous geometric search-problems. We then propose to construct reductions
between the obtained geometric search-problems. Interestingly, several reduc-
tions from prior work using the AGM approach turn out to have a geometric
equivalent. Further, the geometric analogue of several discrete-logarithm type
problems are special cases of the search-by-hypersurface problem [2], for which
information theoretic bounds exist. As a consequence, we obtain alternative
proofs of several GGM bounds from prior work that relied on AGM reduc-
tions with the additional benefit, that for all considered problems that can also
be expressed in the AI-GGM we obtain the corresponding preprocessing lower
bounds essentially for free.
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GGM / AI-GGM problems

Geometric search-problems

geo-MI-DL

(lower bound [2])

MI-DL

geo-MI-CDH

MI-CDH
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]

algebraic adversaries
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Fig. 1. Our proposed way of deriving GGM and AI-GGM lower bounds at the example
of the multi-instance CDH problem, compared to the approach taken in [2]. Arrows
indicate reductions from source to sink. The dashed arrow indicates that the reduction
holds with respect to algebraic adversaries, and thus is restricted to (Maurer’s) GGM,
but does not apply to the AI-GGM.

For a visualization, through a concrete example, of our proposed approach
compared to the one using the AGM, see Fig. 1. We now describe our results in
more detail.

From Generic-Group Problems to Geometry. In Sect. 3 we show that, in
the GGM, the security of a large class of computational problems can be reduced
to the security of a corresponding geometric search-problem. We try to capture
as many problems of interest as possible to prevent that this technical step has
to be redone in future work. Thus, we phrase our result in terms of a family
of Uber problems MI-Uber, in the style of [10,27]. In this type of problems, a
vector of secret exponents �x = (x1, . . . , xt) is sampled from Z

t
p, and the adversary

receives as input group elements of the form gF (�x), where F ∈ Zp[X1, . . . , Xt].
Then, it has to compute group elements of the form gF ∗(�x), for some F ∗ ∈ Zp( �X).
Note that our definition of MI-Uber extends the definitions of Uber problems
in [10,27]. It captures many Diffie-Hellman-type problems including e.g. the d-
strong Diffie-Hellman-inversion [8] problem, as we allow the target function to
be rational. Further, we cover m-out-of-n multi-instance problems, in which the
adversary has to produce at least m out of n target group elements, and allow
access to decisional oracles, such as, for example, a decisional Diffie-Hellman
(DDH) oracle.

The corresponding geometric search-problem geo-MI-Uber roughly looks as
follows. A secret vector �x = (x1, . . . xt) is sampled uniformly at random from
Z

t
p and the adversary has access to an evaluation oracle Eval that, on input a

polynomial F̂ , returns whether the point �x satisfies F̂ (�x) = 0 or not.1 As in
prior work, queries of this form are sufficient to (almost) perfectly simulate the

1 We refer to these problems as geometric search-problems, since queries of this type
can be seen as testing whether the hypersurface in Z

t
p defined by F̂ contains �x or

not.
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group-operation oracle in the GGM. The problems considered in previous works
were connected to variants of the discrete logarithm problem, and so the adver-
sary’s goal was to compute �x. In geo-MI-Uber, on the other hand, the adversary
has to compute a polynomial F̂ such that (F ∗ − F̂ )(�x) = 0 for the challenge
polynomial F ∗. To prevent ending up with a trivial problem, e.g., by having the
adversary simply output F ∗, we have to restrict the space of admissible F̂ . Our
main observation regarding this is that all solutions our reduction will obtain
from a generic adversary interacting with MI-Uber will be an affine combinations
of the input polynomials �F . Restricting the solutions in geo-MI-Uber to this form
turns out to be sufficient to not end up with trivial problems. Essentially, we
show the following.

For every adversary A against MI-Uber making at most q queries, there
exists an adversary B making at most O(q2) queries such that

AdvMI-Uber(B) ≥ Advgeo-MI-Uber(A) − O(dmaxq
2)

p
,

where dmax is the highest degree of the polynomials �F .

The loss in our reduction stems from carefully accounting for the possibility of
the adversary querying its group-operation oracle on labels it did not previously
receive. We point out that our formal result allows for more flexibility regard-
ing this error term, and shows that it can reduced exponentially, albeit at the
cost of increasing the reductions query count (see Theorem 2). When reducing
from a geometric search-problem, queries of this type turn out to not be an
issue, in contrast to a generic reduction interacting with a generic algorithm.
The main difference is that, here, the reduction simulates the labeling function.
Thus, undefined labels simply correspond to uniformly random, unused group
elements, that can be sampled by the reduction itself. However, additional Eval
queries are required to ensure consistency with the previous simulation and,
in unlikely events, the reduction might get unlucky and not find an appropri-
ate group element. We point out that, so far, queries of this type were either
assumed to not occur [2,31] or not accounted for in the advantage [14].

We extend our result in two ways. First, we show that an analogous result
holds in the bit-fixing generic-group model (BF-GGM) of [14]. As the paper uses
a reduction from SHP to argue about the hardness of solving multiple discrete
logarithms in the preprocessing setting, it is not surprising that our reduction
from geo-MI-Uber to MI-Uber carries over to the BF-GGM. However, it requires
additional queries to account for the labels chosen by the adversary.

Finally, we show an analogous result for the generic-group model for bilinear
groups. We cover groups of types 1, 2, and 3. The main additional challenge
in this setting is to carefully restrict the range of admissible queries to the
evaluation oracle according to the bilinear group’s type.
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As we work in Shoup’s model, our approach is compatible with nonpro-
grammable random oracles, which in this setting either take as input or have
as output labels in {0, 1}�. As an example of a reduction to a geometric search-
problem in the programmable ROM, we revisit the treatment of BLS signatures
from [16], establishing the same GGM bound of q2/p.

Reductions Between Geometric Search-Problems and Application to
Concrete Problems. In Sect. 4 we derive generic group lower bounds on the
hardness of several problems in the GGM, the AI-GGM, and the bilinear GGM.
To do so, we construct simple reductions between the geometric analogue geo-P
of the problem P and variants of the search-by-hypersurface (SHS) problem
of [2]. In the easiest case, both problems are defined with respect to the same
oracle Eval, and the reduction can simply forward all queries and find the solution
to SHS among the roots of polynomials related to the one output by the geo-P
solver as a solution. In other cases, where SHS is defined with respect to secrets
(z1, . . . , zs), and P expects input (x1, . . . , xt) with s ≤ t, our reductions will
implicitly set xi = a0 +

∑s
i=0 aizi with known ai ∈ Zp. This enables them to

answer Evalgeo-P(F ) queries by the adversary, for F ∈ Zp[X1, . . . , Xt], with the
response to EvalSHS(F (X ′

1(�Z), . . . , X ′
t(�Z))), where X ′

i = a0 +
∑s

i=0 aiZi. Again,
the reduction will solve its SHS challenge by returning a root of a polynomial
related to the one output as a solution by the geo-P solver.

We point out that our reductions are very close in concept to typical reduc-
tions in the AGM. In those, the reduction also translates an algebraic justification
into a polynomial, and solves its DL challenge by finding its roots. Similarly, the
processing of Eval challenges corresponds to an AGM reduction re-randomizing
and expanding its challenge. An example of this would be the generation of
a CDH challenge (X = Zaxgbx , Y = Zaygby ) from a discrete-logarithm chal-
lenge Z ∈ G using known exponents ax, ay, bx, by ∈ Zp.

As a consequence, some of our reductions can be seen as easy, direct trans-
lations of reductions from prior work to the geometric setting. We see this as
an attractive feature of our approach. Concretely, we are able to formally jus-
tify the bounds using the AGM + RO approach for the multi-instance gap-
CDH problem [2] (targeted at Hashed-ElGamal key-encapsulation) and BLS
signatures [16]. Further, we derive new preprocessing bounds for the d-strong
discrete logarithm, d-strong Diffie-Hellman inversion, and multi-instance CDH
problems, as well as a large class of Uber assumptions. Regarding the latter, a
recent work by Bauer, Farshim, Harasser, and O’Neill [4] proves a lower bound
in the AI-GGM for a decisional Uber problem. In turn their bound holds also
for the easier, corresponding computational Uber problem. However, the bound
obtained with our approach substantially improves on it. For an overview on our
bounds see Table 1.
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Table 1. Our GGM and AI-GGM bounds on the advantage of adversaries in groups
of size p. Integer q denotes the number of queries, s the size of the advice string, the
expressions are to be understood as Õ. For problem (m, n)MI-CDH, n denotes the
number of challenges, m the number of required solutions, and the bounds hold for
arbitrary r (see Remark 1 for a comparison to prior work). For problems Uber and
Uberφ we denote by d the largest degree of the input polynomials. For BLS signatures,
we denote by qRO the number of random oracle queries made by the adversary. Bounds
without references are new and for the other ones we give alternative proofs. References
marked with ∗ proved the respective bounds using AGM + RO.

Model Problem Bound See

GGM

(m, n)MI-gap-DL, (m, n)MI-gap-CDH
(

rq2

mp

)m
+ q

(
q
p

)r
[2]∗, Corollary 9

AI-GGM

d-strong-DL, d-strong-DHI d(sq2+q2)
p

Corollary 5

(m, n)MI-DL, (m, n)MI-CDH
(

q2s+rq2

mp

)m
+ q

(
q
p

)r
Corollary 10

Uber dq2

p
+

√
sq2

p
[4]

Uber d(sq2+q2)
p

Corollary 8

Bil GGM

Uberφ
dq2

p
[10,27], Corollary 12

BLS signatures
q2+q2

RO
p

[16]∗, Corollary 14

Open Questions and Future Work. Our results are limited to computational
problems. So, a natural question is whether decisional problems like DDH also
have a geometric equivalent; and, if so, whether reductions to SHS variants are
possible, e.g., following an analogous approach to the one taken by Rotem and
Segev [26], who extend the definition of the AGM to capture decisional problems.
A second interesting direction would be to extend the equivalence results of
BF-GGM and AI-GGM from [14] to allow for decisional oracles, as this would
open up the possibility of proving preprocessing bounds in the bilinear GGM
via simple reductions.

Further Related Work. The gap-CDH problem was first introduced by
Okamoto and Pointcheval [24]. Ying and Kunihiro [30] prove GGM lower bounds
on the hardness of (m,n)MI-DL. Bauer, Fuchsbauer, and Plouviez [17] on the
hardness of the one-more-discrete logarithm problem. The latter uses techniques
reminiscent of [31]. Blocki and Lee [7] prove preprocessing GGM bounds on the
hardness of (1, n)MI-DL.

2 Preliminaries

2.1 Notation

We use the following conventions. We denote the set of natural numbers up to n
by [n] := {1, . . . , n} and the set including 0 by [n]0 := {0, . . . , n}. Typically we
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use lower case letters to refer to elements of Z or R, and upper case letters for
indeterminants or functions. For prime p and vector of indeterminants �X we often
work over the multivariate ring of polynomials Zp[ �X], which we will sometimes
see as a vector space over Zp. For a set of polynomials F = {F1, . . . , Fk}, we
denote by Span(F) := {F ∈ Zp[ �X] | ∃ai ∈ Zp : F =

∑k
i=1 aiFi} its linear

span. The ring of rational functions is denoted by Zp( �X) := {F1/F2 | F1, F2 ∈
Zp[ �X], F2 �= 0}.

Algorithms A are typically depicted using sans-serif font. Throughout this
work we assume that p ∈ N is a fixed prime, known to all adversaries and
reductions. We denote the truth value of a statement E by [E].

2.2 Generic-Group Model

We recall Shoup’s generic group model (GGM). We consider 4 variants of it: the
original one as introduced in [28], its extension to bilinear groups [9], and the
auxiliar-input (i.e., preprocessing) and bit-fixing variants introduced in [14].

Generic-Group Model. We consider groups G = 〈g〉 of prime order p gener-
ated by g. While we use this notation for ease of exposition when giving intuitive
descriptions of problems over G, if we explicitly work in the generic group model,
we identify (G, ·) with (Zp,+) via the isomorphism x 
→ gx. In the GGM, adver-
saries get access to group elements via abstract labels, and to the group operation
via an oracle. More precisely, let � ≥ �log(p) and let L : Zp ↪→ {0, 1}� be an
injection sampled uniformly at random from the set of all injections into {0, 1}�.
We denote the range of L by R := L(Zp) ⊆ {0, 1}�. An adversary A in the generic
group model receives as input labels σ0, . . . , σt, with σi = L(hi) for some group
elements hi ∈ Zp. Typically, it has to compute either the label of some group
element or some discrete logarithm. It has access to the group operation via the
oracle GrpOp(σ1, σ2), which first checks whether both input labels σ1 and σ2 are
in R, returning ⊥ if not, and then returns the label σ = L(L−1(σ1) + L−1(σ2))
corresponding to the group operation applied to the two group elements. In some
problems, A additionally will have access to decisional oracles such as, for exam-
ple, a decisional Diffie-Hellman oracle. These take as input one or more labels
and return 0 or 1 depending on whether a certain relation of the correspond-
ing group elements holds. We measure the running time of A as the (worst-case)
number of oracle queries made and typically denote this value by q. As this work
only considers computational problems P, the advantage of adversary A in this
model and any of its variants is given by AdvP(A) := Pr[A solves P].

Preprocessing and Bit-Fixing Generic-Group Models. We now recall
the auxiliary-input (AI-GGM) and bit-fixing (BF-GGM) generic group models.
Again, both models consider a group isomorphic to (Zp,+). Adversaries A =
(A1,A2) proceed in two stages, and are parameterized by both advice size s and
the number of oracle queries q made by A2. We refer to such adversaries as (s, q)-
adversaries. BF-GGM is additionally parameterized by M ≤ p, the number of
values of the labeling function that can be chosen by A1.
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For problems P defined in the AI-GGM, the unbounded preprocessing
phase A1 receives as input the full description of the labeling function L : Zp →
{0, 1}�, that is a uniformly random sampled injection, and returns a state Γ of
bit-size at most s. A2 receives as input Γ and the problem instance. It has access
to the group-operation oracle GrpOp(σ1, σ2) = L(L−1(σ1) + L−1(σ2)), that it
can query up to q times. As before, A’s advantage is defined as AdvP(A) :=
Pr[A solves P].

For problems P defined in the BF-GGM, the range R of the labeling function
is first sampled uniformly at random from all size p subsets of {0, 1}�. Unbounded
algorithm A1 receives R as input and returns a state Γ of bit size at most s, as
well as a list (σi, ai)i of at most M elements, with σi ∈ R and ai ∈ Zp, such that
all σi and all ai are distinct. Then, the labeling function L is chosen uniformly
at random from all bijections between Zp and R that satisfy L(ai) = σi for all
i, and A2 is invoked on Γ and the problem instance. It has access to group-
operation oracle GrpOp(σ1, σ2) = L(L−1(σ1) + L−1(σ2)), that it can query up
to q times.

We recall the following theorem, which establishes that hardness in the
BF-GGM implies hardness in the AI-GGM.

Theorem 1 ([14] Thm. 1). Let P be a single-stage computational problem
defined over generic groups, and γ > 0. Assume that for M ≥ 6(q + log(γ−1)) ·
qcomb the advantage of every (s, q)-adversary solving P in the BF-GGM is
bounded by ε′, where qcomb is the combined query count of A and the problem envi-
ronment P . Then, in the AI-GGM every (s, q)-adversary has advantage bounded
by

ε ≤ 2ε′ + γ ,

Generic Group Model for Bilinear Groups. In the setting of bilinear groups
one considers groups G1, G2, GT , all of prime order p, equipped with a bilinear
map e : G1 × G2 → GT . Accordingly, the extension of the GGM to bilinear
groups is obtained by considering three different i.i.d. random injections Lj :
Zp ↪→ {0, 1}� for j ∈ {1, 2, T}, with images Rj respectively. The group-operation
oracle GrpOp(j, σ1, σ2) can now be queried with respect to any of the label
functions, and thus takes an extra input. The bilinear-map oracle Bil(σ1, σ2)
takes as input two labels σ1 ∈ R1 and σ2 ∈ R2, and outputs the label σ =
LT (L−1

1 (σ1) · L−1
2 (σ2)) ∈ RT .

Different types of bilinear group used in practice differ by the (non)-existence
of efficiently computable isomorphisms between G1 and G2. Thus, depending on
type φ ∈ {1, 2, 3}, algorithms might additionally have access to oracles Iso :
G2 → G1 mapping σ 
→ L1(L−1

2 (σ)); and Iso−1 : G1 → G2 mapping σ 
→
L2(L−1

1 (σ)). If φ = 1 algorithms have access to both Iso and Iso−1, if φ = 2 only
to Iso, and if φ = 3 to none of the two.
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Problem SHS(n, d)
00 �a ←$ Z

n
p

01 �b ← AEval

02 return [�a = �b]

Oracle Eval(F )
03 if deg(F ) > d
04 return ⊥
05 return [F (�a) = 0]

Fig. 2. Search-by-Hypersurface problem parameterized dimension n and degree d.

2.3 Search-by-Hypersurface Problem

We recall the Search-by-Hypersurface problem (SHS(n, d)) [2] for dimension n
and degree d, that can be seen as a generalization of Yun’s Search-by-Hyperplane
problem [31] to degrees larger than 1. In the problem, a vector �a = (a1, . . . , an)
sampled uniformly at random from Z

n
p has to be recovered by an adversary A.

To do so, A receives no input, but has access to oracle Eval that, on input a
hypersurface in Z

n
p of degree at most d, tells whether �a lies on the hypersurface

or not. More precisely, Eval takes as input polynomials F ∈ Z[X1, . . . , Xn] of
degree at most d and returns 1 if F (�a) = 0 and 0 else. For a formal definition
see Fig. 2. We now recall an information theoretic lower bound on the hardness
of SHS.

Lemma 1 ([2], Lemma 6). Let n, d, q ∈ N. Then, every adversary A that
makes at most q queries in game SHS(n, d) has an advantage bounded by

AdvSHS(n,d)(A) ≤
(

d

p

)n

·
n∑

i=0

(
q

i

)

≤ 1
2

·
(

e dq

pn

)n

,

where e is Euler’s number.

3 From Generic Group Problems to Geometric
Search-Problems

In this section we show that the hardness of a large class of problems in the
generic group model(s) can be reduced to the hardness of a corresponding geo-
metric search-problem. In prior work (plain GGM [2,31], bit-fixing GGM [14])
this approach was taken to prove bounds on the hardness of specific discrete-
logarithm type problems. We show that it can be generalized as follows.

We introduce the first geometric search-problems corresponding to problems
that require the adversary to compute group elements instead of hidden expo-
nents. For these problems the solution is going to be a polynomial/hypersurface
(similar to the ones the adversary is allowed to query for) from a restricted range
of admittable solutions. The latter is necessary to not end up with a trivial prob-
lem. We define such problems both for the plain GGM and the bit-fixing GGM
and then extend our approach to the setting of bilinear groups. We phrase our
results in terms of Uber-assumptions in the style of [10,27], where we in particu-
lar allow multi-instance problems and access to decisional oracles. The latter, as
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well as the bilinear map e in the case of bilinear groups, require us to carefully
restrict the geometric-search problem’s range of admittable evaluation-oracle
inputs in a way that enables us to carry over AGM reductions to reductions
between the corresponding geometric search-problems to in Sect. 4. This restric-
tion is in contrast to prior work, where the only restriction was the degree of the
queried polynomial.

Section 3.1 covers the plain GGM, Sect. 3.2 the bit-fixing GGM, and Sect. 3.3
the bilinear GGM.

3.1 From GGM to Geometric Search-Problems

Considered Problems. Our goal is to capture as many problems in the generic
group model as possible, so we state our transformation to geometric search-
problems for Uber problem

MI-Uber(t, (m,n), F1, . . . , Fk, F ∗
1 , . . . , F ∗

n ,W1, . . . ,Ws)

where t,m, n ∈ N with m ≤ n, Fi ∈ Zp[X1, . . . , Xt], F ∗
i ∈ Zp(X1, . . . , Xt), and

Wi ∈ Zp[Z1, . . . , Zsi
] for some si. The parameters have the following role.

Parameter Role Example: gap-CDH

t # secrets x1, . . . , xt in Zp t = 2, secrets x, y

n # target group elements 1

m required solutions 1

F1, . . . , Fk input group elements F1 = X ∼ gx, F2 = Y ∼ gy

F ∗
1 , . . . , F ∗

n target group elements F ∗
1 = XY ∼ gxy

W1, . . . , Ws decisional oracles DDH-oracle: W1 = X ′Y ′ − Z′

A MI-Uber adversary A for vector of secrets �x = (x1, . . . , xt) receives as
input (g, gF1(�x), . . . , gFk(�x)) and has to output an index set I ⊆ [n] of size at
least m as well as group elements hi such that hi = gF ∗

i (�x) for all i ∈ I. It
has access to the group operation, as well as decisional oracles Wi which, on
input si many group elements hj = gyj , returns 1 if gWi( �yj) = 1 (or equivalently
Wi(�yj) = 0) and 0 if not. For a formal definition of MI-Uber in the generic-
group model see Fig. 3. We point out that the binary encoding game of [33] used
to separate the GGM and AGM does not fall under the umbrella of MI-Uber
because the adversary of the binary encoding game does not get a description
of the target group element via a polynomial.

Associated Geometric Search-Problem. We now define the geometric
search problem associated to MI-Uber(t, (m,n), �F , �F ∗, �W ), called geo-MI-Uber
(t, (m,n), �F , �F ∗, �W ). It is parameterized by a set of integers and variables with
the same restrictions as MI-Uber, some of which take different roles, as fol-
lows. A vector �x = (x1, . . . , xt) ←$ Z

t
p is sampled uniformly at random. The
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goal of adversary A is to return index set I ⊆ [n] of size m, and polynomi-
als F̂i ∈ Zp[X1, . . . , Xt] such that F̂i(�x) − F ∗

i (�x) = 0 for all i ∈ I. To do so,
A receives no input, but has access to oracle Eval, which on input a polyno-
mial F ′ ∈ Zp[X1, . . . , Xt] returns 1 if F ′(�x) = 0 and 0 else. Note that this
corresponds to the query, whether the hypersurface in Z

t
p defined by F ′ con-

tains �x or not. We make the additional requirement that all output solutions F̂i

lie in the linear span Span(1, F1, . . . , Fk) of the input polynomials and impose
the same requirement on inputs to Eval.2 The restriction on solutions ensures
that geo-MI-Uber is non-trivial as long as MI-Uber is; If MI-Uber cannot be
trivially solved, we must have that (sufficiently many) F ∗

i /∈ Span(�F ) as else
one could compute a valid solution with a small number of group-operation
queries. Accordingly, in this case geo-MI-Uber does not admit the trivial solu-
tion of simply outputting m of the F ∗

i . The restriction on the inputs to Eval,
on the other hand, turns out to be useful when construction reductions between
geometric search-problems. Finally, each Wi ∈ Zp[Z1, . . . , Zsi

] corresponds to
oracle DecWi

, which on input of F ′
1, . . . , F

′
si

∈ Span(1, F1, . . . , Fk) returns 1 if
(Wi(F ′

1, . . . , F
′
si

))(�x) = Wi(F ′
1(�x), . . . , F ′

si
(�x)) = 0, and 0 if not.3 For a formal

definition of the problem see Fig. 3.
In the following we give the reduction from geo-MI-Uber to MI-Uber. The

key observation is that, by using the oracle Eval, the reduction can simulate the
view of the MI-Uber adversary A without knowledge of the secret �x.

Theorem 2. Let t,m, n, k, s ∈ N with m ≤ n, and consider vectors �F =
(F1, . . . , Fk), �F ∗ = (F ∗

1 , . . . , F ∗
n) of polynomials and rational functions with

Fi ∈ Zp[X1, . . . , Xt], F ∗
i ∈ Zp(X1, . . . , Xt) for all i, and �W = (W1, . . . ,Ws)

with Wi ∈ Zp[Z1, . . . , Zsi
] for some si ∈ N.

Let r ∈ N and A a MI-Uber(t, (m,n), �F , �F ∗, �W )-solver in the GGM,
which makes at most q oracle queries. Then, there exists a geo-MI-Uber
(t, (m,n), �F , �F ∗, �W ) solver B that for dmax := maxi(deg(Fi)) and smax :=
max(maxi(si), 2) makes at most

q2 · smaxr + q · ((ksmax + m)(r − 1) + k + 1
)

+ k
(
k + 1 + m(r − 1)

) ≈ q2smaxr

2 Alternatively, one could also make this requirement explicit by changing the inputs
to Eval to be a vector (a0, . . . , ak) ∈ Z

k
p and return whether �x lies on the hypersur-

face defined by a0 +
∑k

i=1 aiFi. The requirement for solutions F̂i could be adapted
accordingly.

3 As is the case for Eval, oracle Dec corresponds to evaluating containment in a hyper-
surface, albeit, one of degree possibly higher than the ones in the linear span of
the input polynomials. Thus, one could incorporate DecWi into Eval by expand-
ing the range of admissible polynomials for the latter from Span(1, F1, . . . , Fk)
to also include polynomials of the form Wi(F

′
1, . . . , F

′
si

) ∈ Zp[X1, . . . , Xt] for
F ′

j ∈ Span(1, F1, . . . , Fk). However, we decided to keep the oracles separated in
order to have a clearer conceptual distinction between the group-operation oracle
and decisional oracles.
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Problem MI-Uber(t, (m, n), �F , �F ∗, �W )
00 L ←$ Inj(Zp, {0, 1}�)
01 �x ←$ Z

t
p

02 σ0 ← L(1)
03 for i = 1, . . . , k
04 σi ← L(Fi(�x))
05 (I, (σ̂i)i∈I) ← AGrpOp,(DecWi

)i(σ0, . . . , σk)
06 require I ⊆ [n] ∧ |I| ≥ m
07 return [∀i ∈ [I] : σ̂i = L(F ∗

i (�x))]

Oracle GrpOp(σ, σ′)
08 require σ, σ′ ∈ L(Zp)
09 return L(L−1(σ) + L−1(σ′))

Oracle DecWi(σ
′
1, . . . , σ

′
si

)
10 require σ′

j ∈ L(Zp) for j ∈ [si]
11 return [Wi(L−1(σ̃1), . . . , L−1(σ̃si)) = 0]

Problem geo-MI-Uber(t, (m, n), �F , �F ∗, �W )
12 �x ←$ Z

t
p

13 (I, (F̂i)i∈I) ← AEval,(DecWi
)i

14 require F̂i ∈ Span(1, �F ) for all i ∈ I
15 require I ⊆ [n] ∧ |I| ≥ m
16 return [∀i ∈ I : (F ∗

i − F̂i)(�x) = 0]

Oracle Eval(F ′)
17 require F ′ ∈ Span(1, �F )
18 return [F ′(�x) = 0]

Oracle DecWi(F
′
1, . . . , F

′
si

)

19 require F ′
j ∈ Span(1, �F ) for all j ∈ [si]

20 return [Wi(F
′
1(�x), . . . , F ′

si
(�x)) = 0]

Fig. 3. Problems MI-Uber (in the GGM) and the corresponding geometric search prob-
lem geo-MI-Uber parameterized by t, m, n ∈ N, and polynomials �F = (F1, . . . , Fk),
�F ∗ = (F ∗

1 , . . . , F ∗
n) with Fi ∈ Zp[X1, . . . , Xt], F ∗

i ∈ Zp(X1, . . . , Xt) for all i, in
the presence of decisional oracles defined by polynomials �W = (W1, . . . , Ws) with
Wi ∈ Zp[Z1, . . . , Zsi ] for some si ∈ N. Inj(Zp, {0, 1}�) denotes the set of injections from
Zp to label space {0, 1}�.

queries and satisfies

Advgeo-MI-Uber(t,(m,n), �F , �F ∗, �W )(B)

≥AdvMI-Uber(t,(m,n), �F , �F ∗, �W )(A) − (qsmax + m) ·
(

(q + k) · dmax

p

)r

.

Proof. The geo-MI-Uber solver B receives as input the number of indeterminates
t and the polynomials �F rational functions �F ∗ and has access to oracles Eval,
(DecWi

)i. To simulate the view of the MI-Uber solver A, B needs to construct
input (σ0, . . . , σk) and reply to oracle queries made by A. To do this in a con-
sistent manner, B samples labels on the fly and maintains a table T that stores
all previously recorded labels σ, each together with a corresponding polyno-
mial P ( �X) ∈ Span(1, �F ) in the indeterminates X1, . . . , Xt. The labels σ will
correspond to a perfect simulation of MI-Uber such that we have L−1(σ) = P (�x)
for every entry (P, σ) in T . To make sure that the simulation is consistent, B
needs to check that no two polynomials P, P ′ such that P (�x) = P ′(�x) get paired
with different labels. This would be equivalent to a group element receiving
two different labels. Hence, before sampling a new label for a polynomial P , B
needs to check that there is no previously recorded polynomial P ′ in T such that
(P − P ′)(�x) = 0 using the oracle Eval. Note that, if P, P ′ ∈ Span(1, �F ) then
so is P − P ′, and thus the oracle will not return ⊥. In more detail, B does the
following.
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– It samples the range R ⊆ {0, 1}� uniformly at random from all subsets of
{0, 1}� of size p.4

– To create the input (σ0, σ1, . . . , σk) for A, B does the following: first, it sam-
ples σ0 ←$ R, stores (0, σ0) in T , and then iteratively defines σi as follows.
To create σi for i ∈ [k], it queries Eval on Fi − P ′ for all previously recorded
polynomials P ′ in T . If the answer is 1 for some P ′, it sets σi to the corre-
sponding label of P ′. Otherwise, it chooses a random unused value from R
and stores (Fi, σi). Note that all polynomials stored so far in T trivially lie in
Span(1, F1, . . . , Fk), and entries (P, σ) defined so far are consistent with the
property L−1(σ) = P (�x).

– Then B runs A(σ0, σ1, . . . , σk). When A makes a query (σ, σ′) to GrpOp, B
does the following:

– First, it checks if σ and σ′ have been recorded in T . If σ has not been
recorded, checks if σ ∈ R and answers ⊥ if not. Otherwise, B makes r
attempts at assigning σ a constant unused element in Zp that is consistent
with the simulation so far. In particular, B will repeat the following steps
up to r times. It starts by sampling a random unused element a ←$ Zp.
If this is the r̃th attempt, with r̃ < r, it queries Eval on a − P for all
previously recorded (non-constant) polynomials P in T . If Eval outputs 1
for some P , adversary B tries again with a new random unrecorded a ←$

Zp. If Eval does not output 1 for any of the queries or if it is the rth time
of sampling a, it stores the pair (a, σ) in T , where a is to be interpreted as
a constant polynomial. It then does the same if σ′ has not been recorded.

– Let P, P ′ be the polynomials corresponding to labels σ, σ′. For all pre-
viously recorded polynomials P ′′ in T , B queries P + P ′ − P ′′ to oracle
Eval. If Eval outputs 1 for any of the P ′′, it looks up the corresponding
label σ′′ in T and sends σ′′ to A. Otherwise, B samples a random σ′′ from
the unused values in R and sends it to A. Then it stores (P + P ′, σ′′) in
T .

– Note that, again, all newly stored polynomials are elements of Span(1, �F )
and that, if for all (P̂ , σ̂) ∈ T we had that L−1(σ̂) = P̂ (�x), then the same
holds for all elements added to the table during either of these steps.

– When A makes a query (σ′
1, . . . , σ

′
si

) to one of the decisional oracles DecWi
,

B does the following:
– It first checks if for all j ∈ [si], σ′

j has been recorded in T . If not, it
proceeds as in the analogous case of group operation queries described
above, assigning a random constant to it.

– Then, it queries DecWi
on (F ′

1, . . . , F
′
si

), where F ′
1, . . . , F

′
r are the polyno-

mials corresponding to σ′
1 . . . , σ′

si
respectively. Sends the answer of DecWi

to A.

4 We measure the running time of generic algorithms by their query count. So, both
sampling from R and checking whether σ ∈ R need not be efficiently computable.
We use this approach for ease of exposition, but point out that these operations can
easily be adapted to be done efficiently by sampling R on the fly.



Generic-Group Lower Bounds via Reductions 317

– Note that for all j it holds that L−1(σ′
j) = F ′

j(�x), and so the query is
answered correctly, since we have that

Wi(L−1(σ′
1), . . . ,L−1(σ′

si
)) = Wi(F ′

1(�x), . . . , F ′
si

�x) .

– When A outputs (I, (σ̂i)i∈I), B checks for every i ∈ I whether σ̂i has pre-
viously been recorded in T with corresponding polynomial F̂i. If not, it is
treated as in the analogous case of group operation queries described above.
Then B outputs (I, (F̂i)i∈I) as its solution. Note that the check of line 14 will
succeed, as F̂i ∈ Span(1, �F ) for all i.

We now count the number of queries made by B. First, note that to set up A’s
input, B adds 1 constant and k arbitrary entries to T and makes at most k(k+1)
queries to Eval. During the execution of A, every query to GrpOp or DecWi

adds
up to smax constant and one arbitrary polynomial to T . Thus, at the q′th query,
T contains at most k + 1 + (smax + 1)q′ entries, of which at most k + q′ are not
constant. As the check against previously unrecorded labels needs to be done
only with respect to non-constant polynomials, the q′th query requires at most
(r −1)smax(k + q′)+ (k +1+(smax +1)q′) queries to Eval. Finally, to handle A’s
output, B makes up to (r−1)m additional checks against the at most (k+q) non-
constant entries in T . Summing up we can bound the number of queries made
by B by q2 · smaxr + q · ((ksmax + m)(r − 1) + k + 1)+k (k + 1 + m(r − 1)) . To
show that

Advgeo-MI-Uber(t,(m,n), �F , �F ∗, �W )(B)

≥AdvMI-Uber(t,(m,n), �F , �F ∗, �W )(A) − (qsmax + m) ·
(

(q + k) · dmax

p

)r

,

we define the event bad = {∃(a, σa), (P, σP ) ∈ T | a constant, P not constant :
P (�x)−a = 0} , which corresponds to B assigning a label σ it did not previously
receive to a constant in a way not consistent with the simulation. Observe that
in the case that bad does not occur, we have L−1(σ) = P (�x) for all (P, σ) stored
in T , and the view of A is a perfect simulation of the MI-Uber game with hidden
value �x. Thus, in this case we have that (F̂i − F ∗

i )(�x) = 0 ⇔ L−1(σ̂i) = F̂i(�x) =
F ∗

i (�x) for all i ∈ I, and B wins exactly if A wins.
Finally, when assigning a constant to a previously unseen σ the probability

that B does so inconsistently is at most ((q+k)dmax/p)r. Indeed, by the Schwartz-
Zippel Lemma, the probability the sampled constant is in the set of roots of any
polynomial P is at most dmax/p and, for each of the r attempts at finding a
constant, at most (q + k) polynomials have to be checked. As the reduction has
to sample at most (qsmax + m) constants, the bound follows. ��

Before turning to the setting of BF-GGM we make a couple observations.

Remark 1. (i) As opposed to prior work, our reduction does not fully preserve

the advantage of A, but introduces an error term of order ∼ q
(

qdmax
p

)r

. The
term, as well as some of the additional queries that B has to make, stems
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from handling group-operation queries on labels, that the adversary did
not previously receive. The reduction B handles such queries by assigning
them a random, unused discrete logarithm. The number r corresponds to
the number of attempts made for each such query to find a constant that
is consistent with the simulation so far.
Looking ahead, the loss in advantage will not cause issues when deriving
lower bounds, as the bounds we obtain on the advantage of B will, for most
problems, be of order q2dmax/p. Hence, in this case we can simply choose
r = 1. The only exception are multi-instance (gap) CDH problems, for
which the advantage of B decays exponentially in the number of instances
that have to be solved. For these we end up with worse bounds than the
ones from literature (However, if one only considers the number of queries
required to achieve constant success probability the bound stays the same).
We point out that in the reductions of [2,31] it is assumed that A never
queries on labels it did not previously receive. In light of the work by Zhang,
Zhou, and Katz [33] this seems hard to formally justify unless the range of
labels is very sparse in {0, 1}�, as is assumed in [31]. In [14], such queries
are handled in the same way that we do. However, neither the probability
of failing to sample an adequate discrete logarithm, nor the additional Eval
queries to verify its consistency with the simulation, were factored in the
advantage and query count, respectively, of their reduction.

(ii) One can easily adapt Theorem 2 to discrete-logarithm variants of MI-Uber,
in which A receives the same input and has access to the same oracles,
but instead of computing target group elements has to compute at least m
of the x1, . . . , xt. The corresponding geometric search-problem would have
access to the same oracles as in geo-MI-Uber, and also have to compute at
least m of the xi.

(iii) Theorem 2 also holds if in both problems the adversaries have oracle access
to a random oracle, i.e., a uniformly random function RO : R → {0, 1}�′

for some �′. In this case, the reduction can simply forward all RO queries.
Thus, the computed GGM bounds also apply to cryptographic schemes
making use of such oracles, as for example in [2,7,17,18]. In the case of
a random oracle into the group, i.e., RO; {0, 1}∗ → {0, 1}�, the reduction
can simulate the random oracle, and associate previously unseen labels to
a constant polynomial as discussed in point (i). For an example of this type
of reduction, see our result for BLS signatures in Sect. 4.2 and [1,19].

3.2 Extension to the Bit-Fixing Generic-Group Model

In this section we show that the translation of problems to geometric search-
problems also works in the BF-GGM. In combination with Theorem1 and a
reduction between the corresponding geometric problems, like the ones presented
in Sect. 4, this enables us to carry over preprocessing lower-bounds from one
problem to another.

We again consider Uber problems MI-Uber and geo-MI-Uber of Fig. 3. How-
ever, in this section we will restrict to problems without decision oracles, i.e., we
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assume that �W = ε is the empty vector. We stress that the reason for this is that
the preprocessing GGM and bit-fixing GGM, as well as the translation between
the two in Theorem 1, are defined without decisional oracles. If one was able to
extend both models to allow for such oracles (or to the setting of bilinear groups)
and establish their equivalence, we do not see any obstacles for our translation
to geometric search-problems to carry over as well.

We show that the security of MI-Uber in the bit-fixing GGM reduces to
the security of geo-MI-Uber (which does not have a preprocessing phase). The
proof follows the one of Theorem 2, the main difference being that, since in
the preprocessing phase A1 fixes the labels of a number of group elements, the
reduction is required to add a corresponding amount of constant polynomials to
its table T . This leads to a larger amount of queries to oracle Eval.

Recall that the BF-GGM is parameterized by M ∈ N, the number of
labels chosen by A1 in the preprocessing phase. A2 receives as input both the
advice Γ ← A1(R) and the problem instance as defined in Fig. 3. We obtain the
following result. Its proof is in the full version of this paper [3].

Theorem 3. Let t,m, n, k ∈ N with m ≤ n, and consider vectors �F =
(F1, . . . , Fk), �F ∗ = (F ∗

1 , . . . , F ∗
n) of polynomials and rational functions with

Fi ∈ Zp[X1, . . . , Xt], F ∗
i ∈ Zp(X1, . . . , Xt) for all i. Further, let dmax :=

maxi(deg(Fi)). Let r ∈ N and let A = (A1,A2) be a MI-Uber(t, (m,n), �F , �F ∗)
solver in the BF-GGM which makes at most q queries. Using A, we can construct
a geo-MI-Uber solver B that makes at most

q
(
M+(2r+1)q

)
+kM+q

(
rk+1+m(r−1)

)
+k

(
k+1+m(r−1)

) ≈ q(M+(2r+1)q)

queries and satisfies

Advgeo-MI-Uber(t,(m,n), �F , �F ∗)(B)

≥AdvMI-Uber(t,(m,n), �F , �F ∗)(A) − (2q + m)
(

(q + k) · dmax

p

)r

.

3.3 Extension to the GGM for Bilinear Groups

In this section we generalize the result of Sect. 3.1 to the setting of bilinear
groups. In Fig. 4 we define the

MI-Uberφ(t, (m,n1, n2, nT ), �F1, �F2, �FT , �F ∗
1 , �F ∗

2
�F ∗

T ,W1, . . . ,Ws)

problem for bilinear groups of type φ and the corresponding geometric problem

geo-MI-Uberφ(t, (m,n1, n2, nT ), �F1, �F2, �FT , �F ∗
1 , �F ∗

2
�F ∗

T ,W1, . . . ,Ws) .

Again, t ∈ N is the number of secrets in Zp and m ∈ N is the number of
solutions the adversary A is required to output. The input and target polynomials
are now divided into three vectors �F1, �F2, �FT and �F ∗

1 , �F ∗
2 , �F ∗

T respectively, that
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correspond to the three groups G1, G2, GT , where we have dim(�F ∗
J ) = nJ for J ∈

{1, 2, T}. The polynomials Wi define decisional oracles which, on input si many
group elements defined by exponents y1,1, . . . y1,r1 , y2,1, . . . y2,r2 , yT,1, . . . yT,rT

for
generators g1, g2, gT , return 1 if Wi(y1,1, . . . y1,r1 , y2,1, . . . y2,r2 , yT,1, . . . yT,rT

) = 0
and 0 if not. In MI-Uberφ, the adversary A receives as input
(
g1, g2, gT , g

�F1,1(�x)
1 , . . . , g

F1,k1 (�x)
1 , g

F2,1(�x)
2 , . . . , g

F2,k2 (�x)
2 , g

FT,1(�x)
T , . . . , g

FT,kT
(�x)

T

)

and has to output three index sets I1 ⊆ [n1], I2 ⊆ [n2], IT ⊆ [nT ] such that

|I1|+ |I2|+ |IT | ≥ m, as well as group elements hJ,i = g
F ∗

J,i(�x)

J for all J ∈ {1, 2, T}
and all i ∈ IJ .

In geo-MI-Uberφ, a vector �x = (x1, . . . , xt) ← Z
t
p is sampled uniformly at

random and A has to output three sets I1 ⊆ [n1], I2 ⊆ [n2], IT ⊆ [nT ] such that
|I1| + |I2| + |IT | ≥ m, as well as polynomials PJ,i such that PJ,i(�x) = F ∗

J,i(�x) for
all J ∈ {1, 2, T} and all i ∈ IJ . The adversary A does not receive any input but
has access to the oracle Eval, that takes queries of the form (J, P ) and returns
1 if P (�x) = 0 and 0 else. Here, P ∈ Zp[X1, . . . , Xt] is a polynomial that satisfies
certain restrictions depending on the type φ of the bilinear group, which we
explain in more detail below. Before we give the reduction from geo-MI-Uberφ

to MI-Uberφ in Theorem 4, we define some useful notation.

Notation. Let �R, �S, �F be vectors of polynomials. In this section we will use the
following notation:

Span(�R, �S) := Span(R1, . . . , Rdim(�R), S1, . . . , Sdim(�S))

denotes the linear span of the polynomials in the entries of the vectors �R and �S.
We further define three different types of spans:

Span1(�R, �S, �F , φ) :=

{
Span(�R, �S) if φ ∈ {1, 2},

Span(�R) if φ = 3;

Span2(�R, �S, �F , φ) :=

{
Span(�R, �S) if φ = 1,

Span(�S) if φ ∈ {2, 3};

SpanT (�R, �S, �F , φ) := Span(�F ,Span1(�R, �S, �F , φ) · Span2(�R, �S, �F , φ)).

If �R defines elements in G1, �S defines elements in G2 and �F defines elements in
GT , we have that the elements in SpanJ(�R, �S, �F , φ) correspond to exactly those
elements in group GJ that can be obtained from the input elements by perform-
ing group operations, evaluating the bilinear map and applying the isomorphism
between groups G1 and G2.

We obtain the following result. Its proof is in the full version of this paper [3].

Theorem 4. Let t,m, n1, n2, nT , k1, k2, kT ∈ N with m ≤ n1 + n2 + nT , and
consider vectors �F1 = (F1,1, . . . , F1,k1), �F2 = (F2,1, . . . , F2,k2), �FT = (FT,1, . . . ,

FT,kT
), �F ∗

1 = (F ∗
1,1, . . . , F

∗
1,n1

), �F ∗
2 = (F ∗

2,1, . . . , F
∗
2,n2

), �F ∗
T = (F ∗

T,1, . . . , F
∗
T,nT

)
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Problem MI-Uberφ(t, (m, n1, n2, nT ), �F1, �F2, �FT , �F ∗
1 , �F ∗

2 , �F ∗
T , W1, . . . , Ws)

00 �x ←$ Z
t
p

01 σ1,0 ← L1(1)

02 σ2,0 ← L2(1)

03 σT,0 ← LT (1)

04 for J ∈ {1, 2, T }
05 for i = 1, . . . , kJ

06 σJ,i ← LJ (FJ,i(�x))

07 (I1, I2, IT , (σ̂1,i)i∈I1
, (σ̂2,i)i∈I2

, (σ̂T,i)i∈IT
) ← A

Iso,Iso−1,GrpOp,Bil,(DecWi
)i∈[s] ((σ1,i)i∈[k1]0

, (σ2,i)i∈[k2]0
, (σT,i)i∈[kT ]0

)

08 require I1 ⊆ [n1] ∧ I2 ⊆ [n2] ∧ IT ⊆ [nT ] ∧ |I1| + |I2| + |IT | ≥ m

09 return [∀J ∈ {1, 2, T } ∀i ∈ [IJ ] : σ̂J,i = LJ (F ∗
J,i(�x))]

Oracle Iso(σ)

10 require φ ∈ {1, 2} ∧ σ ∈ L2(Zp)

11 return L1(L−1
2 (σ))

Oracle Iso−1(σ)

12 require φ = 1 ∧ σ ∈ L1(Zp)

13 return L2(L−1
1 (σ))

Oracle GrpOp(J, σ, σ̂)

14 require J ∈ {1, 2, T } ∧ σ, σ̂ ∈ LJ (Zp)

15 return LJ (L−1
J

(σ) + L−1
J

(σ̂))

Oracle Bil(σ, σ̂)

16 require σ ∈ L1(Zp) ∧ σ̂ ∈ L2(Zp)

17 return LT (L−1
1 (σ) · L−1

2 (σ̂))

Oracle DecWi
(σ̃1,1, . . . , σ̃1,s1 , σ̃2,1, . . . , σ̃2,s2 , σ̃T,1, . . . , σ̃T,sT

)

18 require σ̃J,j ∈ LJ (Zp) for all J ∈ {1, 2, T } and all j ∈ [sJ ]

19 return [Wi((L−1
1 (σ̃1,j))j∈[s1], (L−1

2 (σ̃2,j))j∈[s2], (L−1
T

(σ̃T,j))j∈[sT ]) = 0]

Problem geo-MI-Uberφ(t, (m, n1, n2, nT ), �F1, �F2, �FT , �F ∗
1 , �F ∗

2 , �F ∗
T , W1, . . . , Ws)

00 �x ←$ Z
t
p

01 (I1, I2, IT , (P̂1,i)i∈I1
, (P̂2,i)i∈I2

, (P̂T,i)i∈IT
) ← A

Iso,Eval,Bil,(DecWi
)i∈[s]

02 require I1 ⊆ [n1], I2 ⊆ [n2], IT ⊆ [nT ] ∧ |I1| + |I2| + |IT | ≥ m

03 require ∀J ∈ {1, 2, T } ∀i ∈ IJ : P̂J,i ∈ SpanJ (�F1, �F2, �FT , φ)

04 return [∀J ∈ {1, 2, T } ∀i ∈ IJ : (P̂i − F ∗
J,i)(�x) = 0]

Oracle Iso(P1, P2)

05 require PJ ∈ SpanJ (�F1, �F2, �FT , φ) for all J ∈ {1, 2}
06 return [(P1 − P2)(�x) = 0]

Oracle Eval(J, P )

07 require J ∈ {1, 2, T } and P ∈ SpanJ (�F1, �F2, �FT , φ)

08 return [P (�x) = 0]

Oracle Bil(P1, P2, P3)

09 require PJ ∈ SpanJ (�F1, �F2, �FT , φ) for all J ∈ {1, 2, T }
10 return [(P1 · P2 − P3)(�x) = 0]

Oracle DecWi
(F̃1,1, . . . , F̃1,s1 , F̃2,1, . . . , F̃2,s2 , F̃T,1, . . . , F̃T,sT

)

11 require F̃J,j /∈ SpanJ (�F1, �F2, �FT , φ) for all J ∈ {1, 2, T } and all j ∈ [sJ ]

12 return [Wi(F̃1,1, . . . , F̃1,s1 , F̃2,1, . . . , F̃2,s2 , F̃T,1, . . . , F̃T,sT
)(�x) = 0]

Fig. 4. The problems MI-Uberφ (in the bilinear GGM) and geo-MI-Uberφ for bilinear
groups of type φ ∈ {1, 2, 3} parameterized by t, m, n1, n2, nT , and vectors of polynomi-
als �F1, �F2, �FT , �F ∗

1 , �F ∗
2

�F ∗
T of different dimensions with entries in Zp[X1, . . . , Xt] and in

Zp(X1, . . . , Xt) respectively, where dim( �F ∗
J ) = nJ for J ∈ {1, 2, T}. The polynomials

W1, . . . , Ws define decisional oracles DecWi .

of polynomials with FJ,i ∈ Zp[X1, . . . , Xt], F ∗
J,i ∈ Zp(X1, . . . , Xt) for all J ∈

{1, 2, T} and all i and �W = (W1, . . . ,Ws) with Wi ∈ Zp[Z1, . . . , Zsi
] for some

si ∈ N. Let k = k1 + k2 + kT .
Let r ∈ N and A be a MI-Uber-solver in the GGM, which makes at most q

oracle queries. Then, there exists a geo-MI-Uber solver B that, for

dmax := max
(
max

i
(deg(FT,i)), 2max

i
(deg(F1,i)), 2max

i
(deg(F2,i))

)

and smax := max(maxi(si), 2), makes at most k(k + 3) + q((r − 1)smax(k + q) +
k + 3 + (smax + 1)q) + (r − 1)m(k + q) ≈ smaxq

2r queries and satisfies

Advgeo-MI-Uber(t,(m,n1,n2,n3), �F1, �F2, �FT , �F ∗
1 , �F ∗

2
�F ∗

T ,W1,...,Ws)(B)

≥AdvMI-Uber(t,(m,n1,n2,n3), �F1, �F2, �FT , �F ∗
1 , �F ∗

2
�F ∗

T ,W1,...,Ws)(A)

− (qsmax + m)
(

(q + k) · dmax

p

)r

.
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4 Reductions Between Geometric Search-Problems

In this section we derive bounds in the GGM and AI-GGM (in Sect. 4.1) and
bilinear GGM (in Sect. 4.2) for several problems. Building on the results from
Sect. 3, which show a reduction to the considered problem from its geomet-
ric version, we show that there is a reduction from a variant of the search-by-
hyperplane problem to the geometric problem. Using the lower bounds on the
hardness of SHS then gives us the desired GGM bounds. Interestingly, several
of our reductions closely mirror generic reductions in the AGM following the
approach introduced in [16]. While the bounds in the GGM and bilinear GGM
are not new and either have been proven directly in the GGM or by following
the AGM approach, we think they serve as nice examples on how reductions
between geometric-search problems can serve as a replacement of the AGM app-
roach. The bounds in the AI-GGM, on the other hand, are novel. In particular,
we point out that preprocessing bounds for the multi-instance CDH problem
seem hard to obtain with a direct reduction from SHS(m, 2) (compare Fig. 1).

As a further result, in Sect. 4.2 we revisit the tight AGM+RO reduction
of [16] between the security of BLS signatures [11] and the discrete logarithm
problem. We give a reduction from SHS(1, 2) to BLS security in the bilinear
GGM + RO and thus obtain a GGM lower bound of order q2/p, matching that
of [16].

4.1 Reductions Between Geometric Search-Problems in the GGM
and AI-GGM

Preprocessing Bounds for d-strong-DL and d-strong-DHI in the GGM.
As a warm-up, in this section we give a simple reduction between the geometric
search variants of the d-strong discrete logarithm (d-strong-DL) and d-strong
Diffie-Hellman inversion [8] (d-strong-DHI) problems. Since we identify the for-
mer with the special case SHS(1, d) of the search-by-hypersurface problem, for
which bounds of its hardness exist, we obtain new bounds on the hardness of the
two problems in the AI-GGM. While the problems are arguably more interest-
ing in the bilinear GGM, which is unfortunately not covered in the translation
between BF-GGM and AI-GGM, we think this example nicely illustrates the sim-
plicity of our approach compared to directly proving the corresponding bounds
in the BF-GGM.

Recall that in both problems the adversary receives as input group ele-
ments (g, gx, . . . , gxd

) for x ←$ Zp and has access to no decisional oracles. In
d-strong-DL the goal is to compute x, in d-strong-DHI the group element g1/x

(assuming x �= 0). We define geo-d-strong-DL = SHS(1, d), i.e., adversary A has
access to oracle Eval accepting all univariate polynomials of degree at most d,
and has to return x. Note that the d-strong Diffie-Hellman inversion problem is
the special case MI-Uber(1, (1, 1), (X, . . . ,Xd), (1/X)) of the Uber problem. We
obtain the following.
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Lemma 2. Let d ∈ N. Then, for every adversary A against geo-d-strong-DHI
making at most q queries, there exist adversary B against geo-d-strong-DL mak-
ing at most q + d + 1 queries such that

Advgeo-d-strong-DL(B) ≥ Advgeo-d-strong-DHI(A) .

Proof. Note that the case x = 0 can be efficiently recognized by B. Thus assume
x �= 0. Further, note that the two games only differ by the expected solution
and winning condition. Indeed in both games oracle Eval is defined with respect
to indeterminate x and answers queries for polynomials in Span(1,X, . . . ,Xd),
i.e., all polynomials of degree at most d. Thus, adversary B can provide A with
a perfect simulation of d-strong-DHI by simply forwarding all Eval queries. Let
F̂ ← AEval. If A wins, then we have

∑d
i=0 aiXi = F̂ ∈ Span(1, �X), and 1/x =

∑d
i=0 aix

i = F̂ (x). As x �= 0 there exists ai �= 0. Thus the polynomial F =
X · F̂ (X) − 1 is nontrivial, of degree at most d + 1, and x must be one of its at
most d + 1 roots. B computes all roots yj of F , uses at most d + 1 queries of the
form X − yj to Eval to determine x, and returns it as its solution. ��
As a consequence we obtain the following preprocessing bounds.

Corollary 5. Let A, B be (s, q)-adversaries with q ≥ d in the AI-GGM against
d-strong-DL and d-strong-DHI, respectively. Then we have Advd-strong-DL(A) ∈
Õ

(
d(sq2+q2)

p

)
and Advd-strong-DHI(B) ∈ Õ

(
d(sq2+q2)

p

)
.

Proof. By Lemma 1, every adversary against geo-d-strong-DL = SHS(1, d)
making at most q′ queries has advantage bounded by e dq′/p. Thus, if we set
q′ = q(M + 3q) + Mq + q(k + 1) + k(k + 1) ∈ O(q2 + qM) and r = 1, by The-
orem 3, every (s, q)-adversary against d-strong-DL in BF-GGM has advantage
bounded by

edq′

p
+

2dq2 + 2d2q + dq + d2

p
∈ O

(
dq2 + dqM

p

)

as a larger advantage would contradict the bound for geo-d-strong-DL. Now the
statement follows from Theorem 1 by observing that qcomb = q + d �log(p), and
setting γ = 1/p and M = 6(s + log(p))(q + d �log(p)).

Regarding the bound for d-strong-DHI, by Lemma 2 we can bound the advan-
tage of every q′-adversary against geo-d-strong-DHI by e d(q′ + d + 1)/p. Then,
the second part of the statement follows analogously to the above. ��

From geo-d-strong-DL to geo-Uber. We now consider Uber(t, F1, . . . , Fk,

F ∗) := MI-Uber(t, (1, 1), �F , F ∗), the subclass of single instance Uber problems
without decisional oracles. As before, to make the problem nontrivial, we require
that F ∗ /∈ Span(�F ). Note that this class contains several problems considered in
the AGM setting in prior work as, for example, the CDH, square Diffie-Hellman,
and strong Diffie-Hellman assumptions [16], as well as the CDH variants in cyclic
groups and bilinear groups of [23].
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We give a reduction from geo-d-strong-DL = SHS(1, d) to geo-Uber by trans-
lating the AGM reduction from d-strong-DL to Uber in [5] to the geometric set-
ting. A key idea of the reduction in [5] is to rerandomize the element gx obtained
from the d-strong-DL game by raising it to random powers yi and multiplying
the result by gzi for random zi. This implicitly sets the secrets for the Uber
adversary to xi = yix + zi. We adapt this idea to our setting by letting the
reduction explicitly set the secrets for the geo-Uber solver to Pi = yiX + zi for
random values yi, zi, where X is an indeterminate. Then, when the geo-Uber
outputs a multivariate polynomial, the reduction substitutes in the Pi for the
corresponding variables and solves the resulting univariate polynomial for X. In
the proof of Theorem6 we make use of the following fact.

Lemma 3 ([5, Lemma 2.1]). Let F (X1, . . . , Xt) ∈ Zp[X1, . . . , Xt] be a multi-
variate polynomial of degree d. Then F (y1X + z1, y2X + z2, . . . , ytX + zt) is a
polynomial in Zp([y1, . . . , yt, z1, . . . , zt])[X] and its coefficient of maximal degree
is a polynomial in Zp[y1, . . . , yt] of degree d.

Theorem 6. Let A be a geo-Uber(t, F1, ..., Fk, F ∗) solver which makes at most
q queries, where F ∗, F1, . . . , Fk are polynomials in t indeterminates of degree
at most d, such that F ∗ /∈ Span(1, F1, . . . , Fk). Using A, we can construct a
geo-d-strong-DL solver B that makes q + d queries and satisfies

Advgeo-d-strong-DL(B) = Advgeo-Uber(t,F1,...,Fk,F ∗)(A) − d

p
.

Proof. The geo-d-strong-DL solver B needs to find one hidden value x ∈ Zp, but
construct t independent hidden values �x = (x1, . . . , xt) ∈ Z

t
p for the geo-Uber

solver A. To this end, B sets up polynomials Pi = yiX +zi for all i ∈ [t], where X
is an indeterminate, and yi, zi are i.i.d. uniform values from Zp. It then provides
A with a perfect simulation of geo-Uber for the choice of secrets xi = Pi(x) =
yix + zi as described below. Note that, indeed, �x is uniformly random in Z

t
p.

B has access to the geo-d-strong-DL oracle Eval, that takes as input univariate
polynomials of degree at most d. In order to run A, it needs to answer evaluation
queries made by the latter, which consist of n-dimensional polynomials spanned
by 1, F1, . . . , Fk. When A makes a hypersurface query P , B first checks whether
P is a polynomial in t variables X1, . . . , Xt in the span of 1, F1, . . . , Fk, and
outputs ⊥ if not. Otherwise, B sets Xi = Pi for all i ∈ [t] and then queries
the resulting univariate polynomial P (P1(X), ..., Pk(X)) to the geo-d-strong-DL
oracle Eval. Note that, since P is in the span of 1, F1, . . . , Fk, which have total
degree at most d, the degree of the resulting univariate polynomial is at most d,
by Lemma 3. So, Eval answers the query with 0 or 1. By choice of the xi, we have
that P (x1, . . . , xt) = 0 ⇔ P (P1(x), . . . , Pt(x)) = 0, so B can simply forward this
answer to A.

Finally, A outputs a t-dimensional polynomial F̂ (X1, . . . , Xt). Consider the
polynomial F (X1, . . . , Xt) = F ∗ − F̂ . B checks whether F has at least one
(non-constant) non-zero coefficient and aborts if not. Observe that, since F ∗ /∈
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Span(1, F1, . . . , Fk), if we also have F̂ ∈ Span(1, F1, . . . , Fk) (which is a condition
for A to succeed), we obtain that F will indeed have at least one (non-constant)
non-zero coefficient.

Now, B sets Xi = Pi(X) in F (X1, . . . , Xt) to obtain a univariate polynomial
of degree at most d. By Lemma 3, this polynomial is non-zero with probability
1−d/p, since the highest degree coefficient depends on the yi, which are uniformly
random. B computes the roots r1, . . . , rd of this polynomial and then queries
X − ri to Eval for all i ∈ [d]. If Eval outputs 1 for one of the roots, B outputs
that root. To show that

Advgeo-d-strong-DL(B) = Advgeo-Uber(n,F1,...,Fk,F ∗)(A) − d

p
,

we note that the view of A is a perfect simulation of the geo-Uber game. Further,
by the definition of geo-Uber, if A succeeds, then �x must be a root of F . ��
We obtain the following bounds in the GGM and AI-GGM.

Corollary 7. In the GGM , every adversary A against problem Uber(t, �F , F ∗)
making at most q queries, has advantage

AdvUber(t, �F ,F ∗)(A) ∈ Õ
(

dq2

p

)

,

where d is the maximum among the total degrees of �F and F ∗.

Corollary 8. Every (s, q)-adversary A against problem Uber(t, �F , F ∗) in the
AI-GGM, has advantage

AdvUber(t, �F ,F ∗)(A) ∈ Õ
(

d(sq2 + q2)
p

)

.

The proofs of the corollaries are in the full version of this paper [3].

From (m, m)geo-MI-gap-DL to (m, n)geo-MI-gap-CDH. In this section
we revisit the GGM lower bounds for the multi-instance gap-CDH problem
from [2]. We (re)establish the claimed bound in the GGM and additionally obtain
new preprocessing bounds for the (m,n)MI-CDH problem. To do so, we show
that, for m,n ∈ N with m ≤ n, the algebraic reduction from (m,m)MI-gap-DL
to (m,n)MI-gap-CDH in [2, Thm. 5] can easily be translated to one for the
corresponding geometric search problems.

Recall that the (m,m)MI-gap-DL problem requires A, on input (g, gx1 . . . ,
gxm), to return all discrete logarithms x1, . . . , xm. In the (m,n)MI-gap-CDH
problem, on the other hand, the adversary gets as input (g, gx1 , . . . ,
gxn , gy1 , . . . , gyn), and has to return an index set I ⊆ [n] of size at least m, as well
as the group elements gxiyi for all i ∈ I. In both problems the term “gap” refers
to the fact that the adversary has access to a DDH oracle that, on input group ele-
ments (gx′

, gy′
, gz′

), returns 1 if gx′y′
= gz′

and 0 else. Thus, (m,n)MI-gap-CDH
corresponds to the special case of MI-Uber, where 2n indeterminates x1, . . . , xn,



326 B. Auerbach et al.

y1, . . . , yn are sampled, the input polynomials are X1, . . . , Xn, Y1, . . . , Yn, the
target polynomials X1Y1, . . . , XnYn, and there is one decisional oracle defined
by the polynomial Z1Z2 − Z3.

The corresponding geometric search problem (m,n)geo-MI-gap-CDH thus
samples �x, �y ←$ Z

n
p , and requires adversary A to return an index set I ⊆ [n]

of size at least m, as well as polynomials F̂i ∈ Span(1, �X, �Y ), such that for
all i ∈ I we have F̂i(�x, �y) − xiyi = 0. To do so, A has access to oracles Eval,
that on input F ∈ Span(1, �X, �Y ) returns [F (�x, �y) = 0], and Dec, that on input
F1, F2, F3 ∈ Span(1, �X, �Y ) returns [(F1 · F2 − F3)(�x, �y) = 0].

Problem (m,m)geo-MI-gap-DL samples �z ←$ Z
m
p , and requires adversary A

to return all of �z. A has access to oracles Eval, that on input of F ∈ Span(1, �Z)
returns [F (�Z) = 0], and Dec, that on input of F1, F2, F3 ∈ Span(1, �Z) returns
[(F1 · F2 − F3)(�z) = 0].

Regarding our reduction between the geometric search-problems we obtain
the following result. It allows to formally reestablish the lower bounds from [2]
on the hardness of (m,n)MI-gap-CDH in the generic group model. Afterwards,
we derive new preprocessing bounds for (m,n)MI-CDH. The proofs are in the
full version of this paper [3].

Lemma 4. Let m ≤ n ∈ N and let A be an adversary against
(m,n)geo-MI-gap-CDH that makes at most q queries to oracles Eval and Dec.
Then, there exists an adversary B against (m,m)geo-MI-gap-DL making the
same number of oracles queries such that

Adv(m,m)geo-MI-gap-DL(B) ≥ 2−mAdv(m,n)geo-MI-gap-CDH(A) .

Corollary 9. Let m ≤ n ≤ p. For every r ∈ N, in the generic group model
every adversary A against problem (m,n)MI-gap-CDH that makes at most q
oracle queries has advantage bounded by

Adv(m,m)MI-gap-CDH(A) ∈ Õ
((

rq2

mp

)m

+ q

(
q

p

)r )

In particular, to achieve constant success probability it is necessary that q ∈
Ω(

√
mp). The same bound holds with respect to (m,n)MI-gap-DL.

Regarding preprocessing we obtain the following new lower bound.

Corollary 10. Let m ≤ n ≤ p. For every r ∈ N, in the generic group model with
preprocessing every adversary A against problem (m,n)MI-CDH that receives
advice bounded by s and makes at most q oracle queries has advantage bounded
by

Adv(m,m)MI-CDH(A) ∈ Õ
((

q2 s + rq2

mp

)m

+ q

(
q

p

)r )

.

In particular, to achieve constant success probability it is necessary that q2s ∈
Ω̃(mp). The same bound holds for (m,n)MI-DL.
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4.2 Reductions Between Geometric Search-Problems Corresponding
to the Bilinear GGM

From geo-2d-strong-DL to geo-MI-Uberφ in bilinear groups. In this
section we revisit the lower bound for the

Uberφ := MI-Uberφ(t, (1, 0, 0, 1), �F1, �F2, �FT , F ∗
1 , F ∗

2 , F ∗
T )

problem in the bilinear GGM from [10,13]. While the bound in Theorem11 is
of the same order as in [10,13], it demonstrates how to apply our techniques in
bilinear groups. Their proofs are similar to the ones for Uber in the GGM and
AI-GGM. The proof of Theorem11 closely follows the proof of [5, Theorem 3.5]
and can be found in the full version of his paper [3].

Theorem 11. Let A be a geo-MI-Uberφ(t, (1, 0, 0, 1), �F1, �F2, �FT , F ∗
1 , F ∗

2 , F ∗
T )

solver which makes at most q queries, where F ∗
J , FJ,i for J ∈ {1, 2, T} and

i ∈ [kJ ] are polynomials in t indeterminates of total degree at most d; and such
that there is J̃ ∈ {1, 2, T} such that F ∗

J̃
/∈ SpanJ̃(�F1, �F2, �FT , φ). Using A, we

can construct a geo-2d-strong-DL solver B in GJ̃ that makes q + 2d queries and
satisfies

Advgeo-2d-strong-DL(B) = Advgeo-MI-Uber(t,(1,0,0,1), �F1, �F2, �FT ,F ∗
T )(A) − 2d

p
.

Corollary 12. Let A be an adversary against Uberφ in the bilinear GGM that

makes at most q oracle queries. Then AdvUberφ(A) ∈ Õ
(

q2d+dqk+d2+dk2

p

)
.

The corollary’s proof can be found in the full version of this paper [3].

Security of BLS Signatures in the Bilinear GGM. In this section we give
a tight reduction from geo-2-strong-DL = SHS(1, 2) to the unforgeability of BLS
signatures under chosen-message attacks defined in Fig. 5. We closely follow the
proof in [16, Section 6]. Recall that we work in the generic group model for
bilinear groups that we presented in Sect. 2.2. The bilinear groups are of type 1
so, to not explicitly have to work with the isomorphism oracle, we can simply
set G := G1 = G2.

Theorem 13. Let A be an UF-CMABLS(p, G, GT , g, e) solver in the random-
oracle model which makes at most q group-operation, bilinear map, and signing
queries and at most qRO random-oracle queries. Using A, we can construct a
geo-2-strong-DL solver B that makes O(q2) queries and satisfies

Advgeo-2-strong-DL(B)

≥1
2
AdvUF-CMABLS(p,G,GT ,g,e)(A) − 4q(3q + 2)

p
− qRO(qRO + q)

p
.
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BLSGen(p, G, GT, g, e)
00 sk = x ← Zp

01 pk := gx

02 return (pk, sk)

BLSSig(m, sk)
03 s := H(m)sk

04 return s

BLSVer(m, s)
05 return [e(H(m), pk) = e(s, g)]

Problem UF-CMABLS(p, G, GT , g, e)
06 sk = x ← Zp

07 pk := gx

08 Q := ∅
09 σ0 ← L1(g)
10 σpk ← L1(pk)
11 (m∗, σs∗) ← ASign,RO,GrpOp,Bil(σ0, σpk)
12 s∗ := L−1

1 (σs∗)
13 return [m∗ /∈ Q ∧ BLSVer(m∗, s∗)]

Oracle Sign(σm)
14 m := L−1

1 (σm)
15 Q := Q ∪ {m}
16 s ← RO(m)sk

17 σs ← L1(s)
18 return σs

Oracle RO(m)
19 if �(m, σm) ∈ TRO

20 σm ←$ {0, 1}�

21 TRO ←∪ (m, σm)
22 return σm

Oracle GrpOp(σ, σ̂)
23 require σ, σ̂ ∈ L1(Zp)
24 return L1(L−1

1 (σ) + L−1
1 (σ̂))

Oracle Bil(σ, σ̂)
25 require σ, σ̂ ∈ L1(Zp)
26 return LT (L−1

1 (σ) + L−1
1 (σ̂))

Fig. 5. Top: BLS signature scheme. Bottom: Unforgeability-under-chosen-message-
attack problem for with respect to BLS signatures in the bilinear GGM + ROM,
where the random oracle returns group elements of G1.

Corollary 14. In the bilinear GGM for groups of type 1 and programmable
random-oracle model every adversary A that make at most q group-operation,
bilinear map, and signing queries and at most qRO random-oracle queries has
advantage of order O((q2 + q2RO)/p).

The theorem’s and corollary’s proofs can be found in the full version of this
paper [3].
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Abstract. A succinct non-interactive argument (SNARG) is called
holographic if the verifier runs in time sub-linear in the input length when
given oracle access to an encoding of the input. We present holographic
SNARGs for P and Batch-NP under the learning with errors (LWE)
assumption. Our holographic SNARG for P has a verifier that runs in
time poly(λ, log T, log n) for T -time computations and n-bit inputs (λ is
the security parameter), while our holographic SNARG for Batch-NP
has a verifier that runs in time poly(λ, T, log k) for k instances of T -time
computations. Before this work, constructions with the same asymptotic
efficiency were known in the designated-verifier setting or under the sub-
exponential hardness of the LWE assumption. We obtain our holographic
SNARGs (in the public-verification setting under the polynomial hard-
ness of the LWE assumption) by constructing holographic SNARGs for
certain hash computations and then applying known/trivial transforma-
tions.

As an application, we use our holographic SNARGs to weaken the
assumption needed for a recent public-coin 3-round zero-knowledge (ZK)
argument [Kiyoshima, CRYPTO 2022]. Specifically, we use our holo-
graphic SNARGs to show that a public-coin 3-round ZK argument exists
under the same assumptions as the state-of-the-art private-coin 3-round
ZK argument [Bitansky et al., STOC 2018].

1 Introduction

SNARGs. Informally speaking, a succinct argument [29] (or delegation
scheme [14]) is an argument system with small communication complexity and
fast verification time. In a typical setting, the statement to be proven contains
a description of a computation and an input to the computation; the prover’s
task is to convince the verifier that the output of the computation is 1. A typical
efficiency requirement is that the communication complexity and the verification
time are polylogarithmic in the complexity of the computation.

When succinct arguments are non-interactive in the common ran-
dom/reference string (CRS) model, they are commonly referred to as suc-
cinct non-interactive arguments (SNARGs). Initially, the study of SNARGs

This work was done while the author was a member of NTT Research.
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was focused on constructing SNARGs for all NP computations (i.e., the goal
was to design SNARGs that can prove the correctness of any NP computa-
tions). However, for such a large class of computations, positive results were only
obtained in the idealized model (e.g., the random oracle model) or under non-
standard cryptographic assumptions (e.g., extractability assumptions). Recently,
a growing number of works showed that SNARGs for useful subclasses of
NP computations, such as deterministic computations and Batch-NP com-
putations,1 can be obtained in the standard model under standard crypto-
graphic assumptions. Specifically, Kalai, Raz, and Rothblum [26] and subsequent
works (e.g., [2,4,18,24]) constructed designated-verifier SNARGs for such sub-
classes under the learning with errors (LWE) assumption. (Designated-verifier
SNARGs are weaker than standard SNARGs in that they are not publicly ver-
ifiable, i.e., only the owner of a secret verification key can verify the correct-
ness of proofs.) More recently, Choudhuri, Jain, and Jin [11] and other works
(e.g., [9,13,21,22,28,31,33]) constructed (publicly verifiable) SNARGs for such
subclasses under various standard cryptographic assumptions (e.g., the LWE
assumption).
Holographic SNARGs. SNARGs are called holographic if the verifier runs in
time sub-linear in the length of the input when given oracle access to an encoding
of the input.2 In many cases, the holographic property is naturally satisfied when
SNARGs are constructed based on code-theoretic techniques, and it often comes
with additional useful properties such as (i) input encoding having a simple
algebraic structure (e.g., a low-degree polynomial) and (ii) verification that only
makes non-adaptive queries to the encoding of the input.

The holographic property of existing SNARGs has been used crucially in
some applications. For example, in the application to 2-message arguments of
proximity [27], the holographic property of the underlying SNARG [26] was
used to reduce the task of proving the correctness of an arbitrary deterministic
computation to a much simpler task of proving that the encoding of the com-
putation input has certain values at certain positions. Other examples include
applications to succinct probabilistically checkable arguments [5] and 3-round
zero-knowledge argument [3,30], where the holographic property of the under-
lying SNARGs was used to have succinct verification in the setting where the
entire input is not available to the verifier.

Existing holographic SNARGs are, however, less powerful than state-of-the-
art non-holographic SNARGs. Concretely, compared with the non-holographic
SNARGs of Choudhuri et al. [11] and subsequent works [13,28,31,33] (which are
publicly verifiable, can be used for deterministic polynomial-time computations

1 In SNARGs for Batch-NP computations, a statement consists of multiple instances
of an NP language, and the prover tries to convince the verifier that all the instances
belong to the language. The communication complexity and the verification time are
required to be smaller than the naive check.

2 The holographic property has also been considered for interactive oracle proofs
(IOPs) [7,8] and interactive proofs/arguments [5,15]. The term “holography” was
initially used in the context of probabilistically checkable proofs (PCPs) [1].



Holographic SNARGs for P and Batch-NP from (Polynomially Hard) LWE 335

and Batch-NP computations, and are based on standard polynomial hardness
assumptions), existing holographic SNARGs are either (i) not publicly verifi-
able [4,26] or (ii) based on sub-exponential hardness assumptions [22,30].

Because of this gap, some applications of holographic SNARGs only obtained
sub-optimal results. For example, in the application to 3-round zero-knowledge
arguments [3,30], the existing constructions are either (i) private-coin (as the
underlying holographic SNARG [26] is not publicly verifiable) or (ii) based
on a sub-exponential hardness assumption (as the underlying holographic
SNARG [22] is based on a sub-exponential hardness assumption).

1.1 Our Results

We give holographic SNARGs for deterministic polynomial-time computations
and Batch-NP computations under the polynomial hardness of the LWE assump-
tion. The holographic verifier of our SNARGs makes non-adaptive queries to the
low-degree extension (LDE) of the computation input.3

Theorem (informal, see Theorem 5 and Corollary 2). Under the LWE
assumption, there exist holographic SNARGs for deterministic polynomial-time
computations and Batch-NP computations.

– For security parameter λ and any deterministic T -time computation with
input length n, the CRS generator runs in time poly(λ, log T, log n), the prover
runs in time poly(λ, T, n), and the verifier runs in time poly(λ, log T, log n)
given oracle access to the LDE of the computation input.

– For security parameter λ and any Batch-NP computation that consists of
k instances of a T -time non-deterministic computation, the CRS generator
runs in time poly(λ, T, log k), the prover runs in time poly(λ, T, k), and the
verifier runs in time poly(λ, T, log k) given oracle access to the LDE of the
concatenation of the k instances.

Given the LDE of a long input, our SNARG verifiers run in time sub-linear
in the input length.

At a high level, our result can be seen as a holographic version of the result
of Choudhuri, Jain, and Jin [11] (where SNARGs for deterministic computations
and Batch-NP computations are given under the LWE assumption). However,
in the adaptive-statement setting, our holographic soundness notion is weaker
than the non-holographic counterparts since the input to be encoded is required
to be fixed non-adaptively before the CRS is sampled (see, e.g., Definition 13 for
the soundness notion that our holographic SNARG for Batch-NP satisfies).

As an application of the above result, we give the following result.

Theorem (informal, see Theorem 6). Assume the existence of (polyno-
mially compressing) keyless hash functions that are multi-collision resistant
against slightly super-polynomial-time adversaries, and additionally assume
slightly super-polynomial hardness of the LWE assumption. Then, there exists
a public-coin 3-round zero-knowledge argument for NP.
3 For the definition of low-degree extensions, see, e.g., [14].
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We obtain this result by relying on a known transformation [3,30]. The assump-
tions in this result are the same as those that are needed for the state-of-the-
art private-coin 3-round zero-knowledge argument [3], and they are weaker than
those that are needed for the state-of-the-art public-coin 3-round zero-knowledge
argument [30] (concretely, sub-exponential hardness is not necessary for the LWE
assumption). In short, this result closes the gap between the assumptions needed
for private-coin 3-round zero-knowledge arguments and those needed for public-
coin ones.

1.2 Related Work

The following is a brief review of existing SNARGs that have verification time
sub-linear in the input length. (We focus on those that are publicly verifi-
able and based on well-studied falsifiable assumptions.) For deterministic com-
putations, the aforementioned work by Choudhuri et al. [11] constructed a
SNARG for RAM computations [12,24], where the verifier runs in time sub-
linear in the length of the initial memory when given a short digest of the
initial memory. (The digest can be computed by the verifier in a one-time
expensive pre-processing phase.) For Batch-NP computations, some of the exist-
ing constructions (e.g., [11,33]) have the verifier that first runs in an expen-
sive offline phase and subsequently checks the proof in time sub-linear in the
number of the instances. As a special case of SNARGs for Batch-NP, the work
by Choudhuri et al. [11] defined and constructed a batch argument (BARG)
for the index language, where the statement to be proven is restricted to the
form ∀i ∈ [k]∃wi ∈ {0, 1}∗ s.t. C(i, wi) = 1 for a Boolean circuit C, and the
verifier runs in time sub-linear in k if C is of size sub-linear in k. (A simi-
lar notion was also considered by Kalai, Vaikuntanathan, and Zhang [28].) As
a related notion, Devadas, Goyal, Kalai, and Vaikuntanathan [13] considered
hashed BARGs, where the verifier runs in sub-linear time when given a (some-
where extractable [11,20]) hash of the instances.

2 Technical Overviews

2.1 Holographic SNARG for P

Overall Approach. Our starting point is the work by Choudhuri, Jain,
and Jin (CJJ) [11], which gives a (non-holographic) SNARG for deterministic
polynomial-time computation under the LWE assumption. In the CJJ SNARG,
the computation to be proven is modeled as a RAM computation, and the input
to the computation is viewed as the initial memory. Importantly, the verifier only
uses the input to obtain the digest of the initial memory, and the digest is sim-
ply the Merkle tree-hash of the input. Thus, the CJJ SANRG is non-holographic
only because the verifier needs to compute the Merkle tree-hash of the input.4

4 Most of the existing schemes (e.g., [21,28,31,33]) are also (implicitly) designed for
RAM computations and are non-holographic for the same reason.
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Recently, it was shown that the CJJ SNARG can be made holographic under
the sub-exponential hardness of the LWE assumption [30]. The main idea was
to delegate the computation of the Merkle tree-hash to the prover. That is, the
prover was modified to additionally create the Merkle tree-hash of the input
along with a holographic proof about the correctness of the Merkle tree-hash.
The key point was that the correctness of Merkle tree-hash computations can be
proved in a holographic way using the SNARG by Jawale, Kalai, Khurana, and
Zhang (JKKZ) [22] (which is holographic and can be used for any log-uniform
bounded-depth deterministic computations). This approach requires the sub-
exponential hardness of the LWE assumption since the JKKZ SNARG is based
on the sub-exponential hardness of the LWE assumption.

We make the CJJ SNARG holographic under the polynomial hardness of the
LWE assumption. Our approach is to design a holographic SNARG that is tai-
lored to Merkle tree-hash computations, expecting that such a restricted SNARG
is easier to construct under the polynomial hardness assumption. Concretely, our
target is a SNARG such that (i) for a statement of the form (x, h, rt), the prover
can prove that rt ∈ {0, 1}λ is the Merkle tree-hash of x ∈ {0, 1}∗ under the hash
function h : {0, 1}2λ → {0, 1}λ, (ii) the soundness holds even against cheating
provers that adaptively choose rt, and (iii) the verifier runs in time sub-linear in
|x| when it is given oracle access to an encoding of x.

We achieve our goal in two steps. First, we obtain a holographic SNARG for
tree-hash computations under the LWE assumption while assuming the existence
of a holographic SNARG for another specific computation with a weak soundness
guarantee. Next, we construct the required holographic SNARG under the LWE
assumption. Below, we use the following tools in both steps.

1. Somewhere extractable (SE) hash functions [11,20]: Like the Merkle
tree-hash scheme, an SE hash function SEH.Hash with a random public key h
can create a hash value rt = SEH.Hash(h, x) and short certificates {certi}i∈[N ]

for a long message x = (x1, . . . , xN ). Moreover, for any i∗ ∈ [N ], we can
sample h with trapdoor information td so that the following hold.

– Somewhere extractability. With overwhelming probability over the sam-
pling of h, any hash value rt uniquely determines its pre-image in position
i∗. Furthermore, a PPT extractor SEH.Ext can extract the unique i∗-th
position value v given (td, rt).

– Index hiding. The public key h hides the binding index i∗.
An SE hash function can be obtained under the LWE assumption [20]. It can
be generalized to support multiple binding indices naturally, and its complex-
ity (such as the description size of the hash function) scales linearly in the
number of binding indices.

2. Batch arguments (BARGs) for the index language [11]: BARGs for
the index language are a special case of SNARGs for Batch-NP computations:
for a Boolean circuit C and an integer k ∈ N, the statement to be proven is
that ∀i ∈ [k]∃wi ∈ {0, 1}∗ s.t. C(i, wi) = 1. (Unlike the general case, BARGs
for the index language can have verification time sub-linear in k since the
verifier no longer needs to take k instances explicitly.) A BARG for the index
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language can be obtained under the LWE assumption [11]. Its CRS generation
and verifier run in time polylogarithmic in k, and it satisfies a stronger notion
of soundness, semi-adaptive somewhere soundness, guaranteeing that for any
i∗ ∈ [k], the CRS can be sampled so that giving an accepting proof for an
adaptively chosen circuit C is infeasible as long as �w s.t. C(i∗, w) = 1.

Step 1. Holographic SNARG for Tree-Hashing from Somewhere-
Sound Holographic SNARG for SE-Hashing. We construct a holographic
SNARG for tree-hashing computations by using what we call a somewhere-sound
holographic SNARG for SE-hash computations.

We start by giving an insecure candidate construction as a motivating exam-
ple. Recall that in SNARGs for tree-hash computations, for a statement (x, h, rt),
the prover proves that rt ∈ {0, 1}λ is the Merkle tree-hash of x ∈ {0, 1}∗ under
the hash function h : {0, 1}2λ → {0, 1}λ, where the verifier is given oracle access
to an encoding of x. At a high level, we consider a construction that follows the
commit-and-prove paradigm, where the prover (i) hashes all the nodes of the
tree-hash of x in the layer-by-layer basis and (ii) uses a BARG for the index lan-
guage to prove that the hashed nodes constitute a Merkle tree; the verifier verifies
all the BARG proofs and checks whether the hash of the top layer is the hash of
rt. See Fig. 1 for a detailed description. Clearly, the construction in Fig. 1 is not
sound since nothing is proved about the consistency between x and the hash val-
ues. More concretely, the problem is that the verifier does not check whether rt�
is the hash value of x w.r.t. the hash function hSEH

� . Since we want the verifier to

be holographic, we cannot let the verifier check SEH.Hash(hSEH
� , x) ?= rt� directly.

We thus augment the candidate construction with a holographic SNARG that
proves the consistency between rt� and x.

To see in more detail what type of SNARGs is needed to make the candi-
date construction secure, assume that a cheating prover P∗ breaks the sound-
ness of the candidate construction. That is, given (x, h), the cheating prover
P∗ adaptively chooses rt and makes V output 1 despite TreeHashh(x) �=
rt, where TreeHashh(x) denotes the tree-hash of x under the hash func-
tion h. (For simplicity, we assume that P∗ succeeds with probability 1.) Let
{nodei,σ}i∈{0,...,�},σ∈{0,...,2i−1} denote the correct nodes of TreeHashh(x). Then,
we consider the following claim.

Claim (Informal). ∀i ∈ {0, . . . , �}, ∃σ ∈ {0, . . . , 2i − 1} s.t. if hSEH
i is sampled in

the CRS generation in a way that it is binding in position σ, the hash value rti
that P ∗ provides as a part of an accepting proof π satisfies SEH.Ext(tdSEHi , rti) �=
nodei,σ,5 where tdSEHi is the trapdoor corresponding to hSEH

i .

In words, this claim says that from each of the hash values {rti}i∈{0,...,�} that P∗

provides as the layer-by-layer hashes of the nodes of TreeHashh(x), we can extract

5 In this overview, we view rti as a hash of a vector that consists of 2i blocks, where
each block is a λ-bit string. Thus, SEH.Ext extracts a λ-bit string as the σ-th position
of the pre-image. .
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Building blocks: (i) SEH.Hash—an SE hash function. (ii) BARGidx—a BARG
for the index language.

CRS generation: The CRS generation algorithm samples λ public keys

hSEH
0 , . . . , hSEH

λ−1 of SEH.Hash and a CRS of BARGidx.
Prover P: The prover P is given a binary string x ∈ {0, 1}∗, a hash function
h : {0, 1}2λ → {0, 1}λ, and a hash value rt ∈ {0, 1}λ.

1. Compute the nodes {nodei,σ}i∈{0,...,�},σ∈{0,...,2i−1} of the tree-hash of x
using h. That is, do the following.
(a) Partition x into 2� blocks blk0, . . . , blk2�−1 such that |blk0| = · · · =

|blk2�−1| = λ. (We assume for simplicity that |x| = 2�λ for � ∈ N.)
(b) Let node�,σ := blkσ for ∀σ ∈ {0, . . . , 2� − 1}, and let nodei,σ :=

h(nodei+1,2σ ‖nodei+1,2σ+1) for ∀i ∈ {� − 1, . . . , 0}, σ ∈ {0, . . . , 2i − 1}.
2. Compute rti := SEH.Hash(hSEH

i , xi) for ∀i ∈ {0, . . . , �}, where xi := nodei,0 ‖
· · ·‖nodei,2i−1 is the concatenation of the nodes at the i-th level.

3. For ∀i ∈ {0, . . . , � − 1}, use BARGidx to compute a proof πi about the con-
sistency between rti and rti+1, i.e., prove that for ∀σ ∈ {0, . . . , 2i − 1}, there
exists a pair of triples (node(P), node(L), node(R)), (cert(P), cert(L), cert(R)) s.t.
(i) cert(P) certifies that the σ-th position of the pre-image of rti is node(P),
(ii) (cert(L), cert(R)) certifies that the 2σ-th and 2σ+1-st positions of the pre-
image of rti+1 are (node(L), node(R)), and (iii) h(node(L) ‖node(R)) = node(P).

4. Output π := ({rti}i∈{0,...,�}, {πi}i∈{0,...,�−1}) as a proof.

Verifier V: The verifier V is given (h, rt) and π = ({rti}i∈{0,...,�},
{πi}i∈{0,...,�−1}) along with oracle access to an encoding of x. Then, V outputs 1
iff (i) each πi is an accepting w.r.t. (rti, rti+1) and (ii) SEH.Hash(hSEH

0 , rt) = rt0.

Fig. 1. A candidate construction of holographic tree-hash SNARGs

a node that disagrees with the correct nodes {nodei,σ}i∈{0,...,�},σ∈{0,...,2i−1} in a
certain position σ. We prove this claim by induction on i.

Base case. When i = 0 and σ = 0, the claim holds trivially because of our
assumption that P∗ breaks the soundness of the candidate construction.

Inductive step. Assume that the claim holds for i − 1 and σi−1. The index
hiding property of hSEH

i guarantees that the claim remains to hold even
when hSEH

i is statistically binding in positions 2σi−1 and 2σi−1 + 1. Then,
the semi-adaptive somewhere soundness of πi guarantees that when we
extract the statistically fixed values ñodei−1,σi−1 := SEH.Ext(tdSEHi−1 , rti−1) and
(ñodei,2σi−1 , ñodei,2σi−1+1) := SEH.Ext(tdSEHi , rti), they satisfy h(ñodei,2σi−1 ‖
ñodei,2σi−1+1) = ñodei−1,σi−1 . Since we assumed ñodei−1,σi−1 �= nodei−1,σi−1 ,
we conclude that ∃σi ∈ {2σi−1, 2σi−1 + 1} ⊆ {0, . . . , 2i − 1} s.t. ñodei,σi

�=
nodei,σi

as desired.
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For i = �, the above claim implies that a cheating prover can break the soundness
of the candidate scheme only when ∃σ ∈ {0, . . . , 2�−1} s.t. the hash value rt� that
the prover provides satisfies Ext(tdSEH� , rt�) �= blkσ, i.e., the extractor extracts
a node that disagrees with the σ-th block of x. Thus, we need a holographic
SNARG that prevents this type of inconsistency.

In conclusion, to make the candidate construction secure, we need a holo-
graphic SNARG that satisfies the following.

Holographic completeness. The prover can convince the verifier when given
a statement (x, h, rt) s.t. SEH.Hash(h, x) = rt. The verifier is given (h, rt) as
explicit inputs and is given oracle access to an encoding of x. The verifier
runs in time sub-linear in |x| (ideally, polylogarithmic in |x|).

Somewhere soundness. For any x and σ ∈ {0, . . . , |x| − 1}, and for an honest
CRS and a random SE hash function key h that is statistically binding in
position σ, no PPT prover can provide a hash value rt and an accepting proof
satisfying SEH.Ext(tdSEH, rt) �= xσ, where tdSEH is the trapdoor corresponding
to h.

Note that the somewhere soundness does not guarantee SEH.Hash(h, x) = rt. It
only guarantees that for any σ, if we extract the σ-th position value from rt, the
extracted value agrees with x. This guarantee is sufficient since the above claim
guarantees that any successful cheating prover breaks this type of consistency
in a randomly chosen σ with non-negligible probability.

Step 2. Somewhere Sound Holographic SNARG for SE-Hashing from
LWE. Similarly to recent SNARGs (e.g., [11,21,22,28]), our construction is
obtained by using a correlation-intractable (CI) hash function [6]. Roughly
speaking, a hash function family {Hλ = {h : Xλ → Yλ}}λ∈N is correlation
intractable for a relation ensemble R = {Rλ ⊆ Xλ × Yλ}λ∈N if no PPT adver-
sary can find x ∈ Xλ s.t. (x, h(x)) ∈ Rλ for a random h ∈ Hλ. It is known that a
CI hash function family exists for efficiently product verifiable relation ensembles
under the LWE assumption [17], where a relation Rλ ⊆ Xλ × Y t

λ is efficiently
product verifiable if we have (x, (y1, . . . , yt)) ∈ Rλ iff each yi is included in a
small efficiently verifiable set. More concretely, we use the following result [17].

Theorem (Informal. See Sect. 3.2). Fix any (arbitrarily small) constant
δ, ρ ∈ [0, 1] and any function t(λ) = Ω(λδ). Then, under the LWE assumption,
there exists a hash function family that is correlation intractable for any relation
ensemble R = {Rλ ⊆ Xλ × Y

t(λ)
λ }λ∈N that satisfies the following: for every λ

and x ∈ Xλ, (i) the set Rx := {(y1, . . . , yt) | (x, (y1, . . . , yt)) ∈ Rλ} ⊆ Y
t(λ)
λ has

a decomposition Rx = S1×S2×· · ·×St(λ), (ii) each Si satisfies |Si| ≤ ρ|Yλ|, and
(iii) each Si is efficiently verifiable, i.e., there exists a polynomial-size circuit C
such that C(x, y, i) = 1 iff y ∈ Si. Furthermore, each hash function in the family
can be evaluated in time poly(log|Xλ|, |Yλ|, tλ, |C|).

In our SNARG construction, we use the following encoding scheme for holo-
graphic verification. For a finite field F and a subset H ⊆ F, the low-degree



Holographic SNARGs for P and Batch-NP from (Polynomially Hard) LWE 341

extension (LDE) x̂ of x ∈ {0, 1}n is defined by first viewing x as a function
x : H

m → {0, 1} for m := 
log|H| n� and next defining x̂ : F
m → F as the

unique m-variate polynomial that satisfies x̂|Hm ≡ x with individual degree at
most |H| − 1. (In this paper, F and H are chosen so that |H| = O(log n) and
|F| = poly(|H|).) What is crucial for us is that LDEs are linear tensor codes. In
particular, the LDE x̂ of x satisfies the following for any m′ ∈ {1, . . . , m − 1}.

Property 1. View x̂ : F
m → F as a |F|m′ × |F|m−m′

matrix s.t. the i-th row
is the truth table of x̂(i, ·) : F

m−m′ → F, where i ∈ {1, . . . , |F|m′} is mapped
to an element of F

m′
by a canonical bijection. Then, each row is a valid LDE

of length F
m−m′

. In particular, the i-th row x̂(i, ·) is the LDE of x̂(i, ·)|
Hm−m′ ,

where x̂(i, ·)|
Hm−m′ is the restriction of x̂(i, ·) to the domain H

m−m′
. Similarly,

the j-th column x̂(·, j) is the LDE of x̂(·, j)|
Hm′ for ∀j ∈ {1, . . . , |F|m−m′}.

Jumping ahead, we use the above property to obtain our SNARG in a recur-
sive way. The prover creates a proof for x by recursively creating a proof for
x̂(i, ·)|

Hm−m′ for certain i. To verify the recursive proof, the verifier makes queries
to x̂(i, ·), which is indeed the LDE of x̂(i, ·)|

Hm−m′ because of the above property.
(The above property was used previously in a similar context by [32].)

Now, let us describe our construction. Recall that in holographic SNARGs for
SE-hash computations, a statement consists of an input x, an SE hash function
key h, and a hash value rt, which are supposed to satisfy SEH.Hash(h, x) = rt. For
simplicity, we view x as a function x : H

m → F, where F and H are those to be
used to compute the LDE for the verifier. Also, we assume for simplicity that the
security parameter λ is a power of |H|. Let mλ := log|H| λ, δ := 1/(m/mλ�+1),
and α := λδ�. Then, our construction is obtained recursively based on the input
length m. When m < mλ, the CRS generation and the prover do nothing, and
the verifier directly checks SEH.Hash(h, x) ?= rt, where the verifier obtains x
by using its oracle access to the LDE of x. When m ≥ mλ, our construction
proceeds as described in Fig. 2. At a high level, the prover first views the LDE x̂
as a |F|mλ×|F|m−mλ matrix and obtains an SE hash value for each row (restricted
to H

m−mλ as suggested above). Then, the prover selects α rows based on the
indices that are obtained by applying a CI hash function to the SE hash values,
and recursively creates proofs about these rows. (The prover also creates batch
proofs about the correctness of the SE hash values.)

Completeness can be verified by inspection. In particular, the verifier accepts
the batch proof πidx and the recursive proofs {πci

}ci∈Sc because of the above-
described property of LDEs. Also, intuitively the efficiency requirement holds
since the number of recursive executions is at most α�m/mλ�+1 ≤ λ.

To see somewhere soundness, we start with a toy case. For a statement
(x, h, rt), consider a prover that behaves honestly for an incorrect statement
(x′, h, rt′) s.t. x′ �= x and SEH.Hash(h, x′) = rt′. Since x′ �= x, their LDEs x̂, x̂′

(viewed as matrices) disagree in a certain column, say, the v∗-th one. Since the
v∗-th columns of x̂, x̂′ are valid LDEs of length |F|mλ (i.e., they are mλ-variate
polynomials of individual degree at most |H| − 1), it follows that they agree in
at most a ρ := mλ(|H| − 1)/|F| fraction of the positions. Thus, if we set |F| large
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Building blocks: (i) SEH.Hash—an SE hash function. (ii) BARGidx—a BARG
for the index language. (iii) H = {Hλ}λ∈N—a hash function family that is
correlation intractable for efficiently product verifiable relation ensembles.

CRS generation: Sample an SE hash function key h′, a CI hash function

hCIH ∈ Hλ, and a CRS of BARGidx. Also, recursively sample a CRS of itself for
input length m − mλ.
Prover P: Given (x, h, rt) and the CRS, compute a proof π as follows.

1. Compute the LDE x̂ : F
m → F of x and view x̂ as a |F|mλ ×|F|m−mλ matrix.

For each u ∈ F
mλ , let x̂(u,∗) denote the u-th row of the matrix.

(a) Compute rtu := SEH.Hash(h′, x(u,∗)) for ∀u ∈ F
mλ , where x(u,∗) :=

x̂(u,∗)|Hm−mλ .
(b) For ∀u ∈ H

mλ , use BARGidx to compute a proof πidx
u for the consistency

between rt and rtu (i.e., prove that ∀v ∈ H
m−mλ∃x′

u,v ∈ F s.t. both rt
and rtu have x′

u,v in the appropriate positions of their pre-images).
(c) Use BARGidx to compute a proof πidx proving that each column

that is hashed to {rtu}u∈F
mλ is a valid LDE (i.e., prove that ∀v ∈

H
m−mλ∃x′

(∗,v) : H
mλ → F s.t. the values in the v-th position of the

pre-images of {rtu}u∈F
mλ constitute the LDE of x′

(∗,v)).

2. Apply hCIH to {rtu}u∈H
mλ to obtain Sc := (c1, . . . , cα) ∈ F

mλ × · · · × F
mλ .

3. For ∀ci ∈ Sc, recursively invoke the prover P for the statement
(x(ci,∗), h

′, rtci) to obtain a proof πci .
4. Output π := ({rtu}u∈F

mλ , {πidx
u }u∈H

mλ , πidx, {πci}ci∈Sc).

Verifier V: Given (h, rt, π), the CRS, and oracle access to the LDE x̂:

1. Parse π as ({rtu}u∈F
mλ , {πidx

u }u∈H
mλ , πidx, {πci}ci∈Sc).

2. Apply hCIH to {rtu}u∈H
mλ to obtain Sc := (c1, . . . , cα) ∈ F

mλ × · · · × F
mλ .

3. Output 1 iff all of the proofs {πidx
u }u∈H

mλ , πidx, {πci}ci∈Sc are accepting,
where each recursive proof πci is verified for the statement (x(ci,∗), h

′, rtci)
by recursively invoking the verifier V with oracle x̂(ci, ·).

Fig. 2. Overview of our holographic SNARG for SE-hashing (when m ≥ mλ).

enough, x̂ and x̂′ disagree in a constant fraction of the rows. By temporarily
thinking as if hCIH is a truly random function, we conclude that with high prob-
ability, one of the recursive proofs is created for a row in which x̂ and x̂′ disagree.
Thus, after the recursions, the verifier rejects the proof in the base case.

Let us observe somewhere soundness in more detail. Naturally, we show the
somewhere soundness by relying on the somewhere soundness of the recursive
executions. Assume for contradiction that a PPT cheating prover P∗ breaks the
somewhere soundness, i.e., ∃x : H

m → F and σ = (u∗,v∗) ∈ H
mλ × H

m−mλ =
H

m s.t. for a random SE hash function key h that is statistically binding in posi-
tion (u∗,v∗), the cheating prover P∗ produces an accepting proof π along with
a hash value rt s.t. SEH.Ext(td, rt) �= x(u∗,v∗), where td is the trapdoor corre-
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sponding to h. Note that, due to the index hiding property of the underlying SE
hash function, P∗ breaks the somewhere soundness even when the CRS genera-
tion algorithm samples the SE hash function key h′ in a way that h′ is statistically
binding in position v∗. Let {x̃(u,v∗)}u∈F

mλ denote the column that we can extract
by using SEH.Ext for the hash values {rtu}u∈F

mλ that P∗ provides as the hashes
of the rows. To use P∗ to break the soundness of a recursive proof, we show that
∃i ∈ [α] s.t. the i-th recursive statement (x(ci,∗), h

′, rtci
) is false, i.e., the ci-th row

of the extracted column {x̃(u,v∗)}u∈F
mλ disagrees with the correct value x̂(ci,v∗).

Put differently, we show that the output (c1, . . . , cα) of the CI hash function is
not included in the set S1 × · · · × Sα s.t. Si := {c ∈ F

mλ | x̃(c,v∗) = x̂(c,v∗)}.
Toward this goal, we can use the correlation intractability of hCIH straightfor-
wardly since we have |Si| ≤ ρ|F|mλ for a constant ρ as shown below.6

Let x̃(∗,v∗) : F
mλ → F be the function representing the extracted column,

i.e., x̃(∗,v∗) : u �→ x̃(u,v∗). The somewhere soundness of BARGidx guaran-
tees that x̃(∗,v∗) is a valid LDE s.t. x̃(∗,v∗)(u∗) = SEH.Ext(td, rt). Since
we assumed SEH.Ext(td, rt) �= x(u∗,v∗) for contradiction, it follows that
x̃(∗,v∗) and x̂(·,v∗) are valid LDEs that disagree in position u∗. Thus, by
appropriately setting the parameter of the LDE, we can guarantee that
x̃(∗,v∗) and x̂(·,v∗) disagree in a constant fraction of positions.

Thus, the correlation intractability of hCIH guarantees that ∃i ∈ [α] s.t.
x̃(ci,v∗) �= x̂(ci,v∗), i.e., the recursive statement (x(ci,∗), h

′, rtci
) is false. Thus,

we can break the soundness of a recursive execution and reach a contradiction.

2.2 Holographic SNARG for Batch-NP

Our starting point is the non-holographic SNARG for Batch-NP by Choudhuri,
Jain, and Jin (CJJ) [11], which is non-holographic only in that the verifier com-
putes an SE hash of the instances. Concretely, the CJJ SNARG works as follows.
For k instances x1, . . . , xk of an NP language L, the prover computes a hash rt
of the instances using an SE hash function and then uses a BARG for the index
language to prove the following for each i ∈ [k]: (i) the i-th position of the pre-
image of the hash rt can be opened to an instance x̃i and (ii) x̃i ∈ L. The verifier
computes the SE hash of the instances and verifies the BARG proof.

We make the CJJ SNARG holographic by letting the prover send the hash
of the instances along with a holographic proof about the correctness of the
hash. For the analysis of the CJJ SNARG to go through, the proof about the
SE hash needs to have the following weak form of soundness: if the i-th instance
is extracted from the hash, the extracted instance is equal to xi. This form
of soundness is precisely what our somewhere-sound holographic SNARG for
SE-hashing guarantees. Thus, combining it with the CJJ SNARG suffices.

6 Si is efficiently verifiable by a circuit that has {tdu}u∈F
mλ and {x̂(u,v∗)}u∈F

mλ as
hardwired inputs.
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3 Preliminaries

We use λ to denote the security parameter. For any finite field F, a subset H ⊆ F,
and an integer m ∈ N, the low-degree extension (LDE) of a function x : H

m → F

(or its truth table) is denoted by LDEF,H,m(x). More details about LDEs and
other standard notations are explained in the full version of this paper.

3.1 Hash Functions

A hash function family for a domain-codomain ensemble {(Xλ, Yλ)}λ∈N can be
modeled by two algorithms H = (Gen,Hash), where Gen(1λ) outputs a key h
and Hash(h, x) outputs the hash value y ∈ Yλ of x ∈ Xλ. A hash function family
is called public-coin [19] if Gen(1λ) outputs a uniformly random string. We use
Hλ to denote the range of Gen(1λ), use h ← Hλ as a shorthand of h ← Gen(1λ),
and use h(x) as a shorthand of Hash(h, x).

For any h : {0, 1}2λ → {0, 1}λ and � ∈ N, the tree-hash of a string x ∈
{0, 1}2�λ is defined as follows: (i) partition x into 2� blocks blk0, . . . , blk2�−1

of length λ; (ii) let node�,σ := blkσ for ∀σ ∈ {0, . . . , 2� − 1} and nodei,σ :=
h(nodei+1,2σ ‖nodei+1,2σ+1) for ∀i ∈ {� − 1, . . . , 0}, σ ∈ {0, . . . , 2i − 1}, and (iii)
define the tree-hash, denoted as TreeHashh(x), to be node0,0.

3.2 Correlation-Intractable Hash Functions

We recall the definition of correlation-intractable hash functions [6].

Definition 1. Let H = (Gen,Hash) be a hash function family and
{(Xλ, Yλ)}λ∈N be its domain-codomain ensemble. Then, H is correlation
intractable for a relation ensemble R = {Rλ ⊆ Xλ × Yλ}λ∈N if for every PPT
algorithm A, there exists a negligible function negl such that for every λ ∈ N and
z ∈ {0, 1}∗,

Pr
[

(x, y) ∈ Rλ

∣

∣ h ← Gen(1λ); x ← A(h, z); y := Hash(h, x)
] ≤ negl(λ) .

Next, we recall a result by Holmgren, Lombardi, and Rothblum [17] about
correlation intractability for efficiently verifiable product relations.

Definition 2. ([16, Definition 3.1]). A relation R ⊆ X×Y t is said to be a prod-
uct relation if for every x ∈ X, the set Rx := {(y1, . . . , yt) | (x, (y1, . . . , yt)) ∈
R} ⊆ Y t has a decomposition Rx = S1 × S2 × · · · × St, where S1, . . . , St ⊆ Y
may depend on x.

Definition 3. ([16, Definition 3.3], slightly generalized). For any T ∈ N, a prod-
uct relation R ⊆ X × Y t is called T -time product verifiable if there exists
a size-T circuit C such that for every input x ∈ X with the corresponding sets
S1, . . . , St as in Definition 2, it holds that C(x, y, i) = 1 iff y ∈ Si.7

7 The definition is slightly modified in that the size of C is required to be bounded by
T rather than an arbitrary polynomial.
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Definition 4. ([16, Definition 3.4]). For any ρ ∈ [0, 1], a product relation R ⊆
X × Y t is said to have product sparsity ρ if for every input x ∈ X, the sets
S1, . . . , St as in Definition 2 have size at most ρ|Y |.
Theorem 1 ([16, Theorem 5.1]). Let T : N → N and ρ : N → [0, 1] be
functions and R = {Rλ ⊆ Xλ × Y tλ

λ }λ∈N be an ensemble of product relations
such that (i) each Rλ is T (λ)-time product verifiable with product sparsity ρ(λ),
(ii) |Yλ|, log|Xλ|, T (λ), and tλ are all upper bounded by λO(1), and (iii) tλ ≥
λ/ log(1/ρ(λ)). Let X := {Xλ}λ∈N, Y := {Yλ}λ∈N and t := {tλ}λ∈N. Then, for
the domain-codomain ensemble {Xλ, Y tλ

λ }λ∈N, there exists a hash function family
H that is correlation intractable for R under the LWE assumption. Moreover,
H depends only on (X,Y, ρ, t, T ) (and is otherwise independent of R) and can
be evaluated in time poly(log|Xλ|, |Yλ|, tλ, T (λ)).

Several remarks about Theorem 1 are given below. First, the correlation-
intractable hash function family H of Theorem 1 can be made public-coin.
Also, H can be efficiently determined given (X,Y, ρ, t, T ), and its corre-
lation intractability holds for a negligible function that depends only on
(X,Y, ρ, t, T ) (and is otherwise independent of R). Additionally, as mentioned in
[16, Section 5.1], the condition tλ ≥ λ/ log(1/ρ(λ)) in Theorem 1 can be weak-
ened to tλ ≥ λδ/ log(1/ρ(λ)) for an arbitrarily small constant δ > 0. Similarly, if
the LWE assumption holds against slightly super-polynomial-time adversaries,
the condition can be weakened to tλ ≥ λ1/τ(λ)/ log(1/ρ(λ)) for a super-constant
function τ(λ) = ω(1). (For details, see the full version of this paper.)

3.3 Somewhere Extractable Hash Functions

We recall the definition of somewhere extractable hash functions [9,11,20]. The
following definition is adapted from [10, Section 3.5]. For the differences from the
original definition, see the full version of this paper.

Definition 5. A somewhere extractable hash function family consists of
a tuple of algorithms (Gen,TGen,Hash,Open,Ver,Ext) satisfying the following.

– Syntax. Gen and TGen are probabilistic and the others are deterministic.
– Opening correctness. For every λ ∈ N, N ∈ [2λ], MI ∈ [N ], i ∈ [N ], and

m = (m1, . . . ,mN ) ∈ {0, 1}N ,

Pr
[

Ver(h, rt,mi, i, certi) = 1
∣

∣

∣

∣

h ← Gen(1λ, N, 1MI ); rt := Hash(h,m)
certi := Open(h,m, i)

]

= 1 .

– Key indistinguishability. For every PPT algorithms (A1,A2) and polyno-
mial polyN , there exists a negligible function negl such that for every λ ∈ N,
N ≤ polyN (λ), and z ∈ {0, 1}∗,

∣

∣

∣

∣

∣

∣

∣

∣

Pr
[

A2(st, h) = 1
∣

∣

∣

∣

(st, I) ← A1(1λ, N, z)
h ← Gen(1λ, N, 1|I|)

]

−Pr
[

A2(st, h) = 1
∣

∣

∣

∣

(st, I) ← A1(1λ, N, z)
(h, td) ← TGen(1λ, N, I)

]

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(λ) .
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– Somewhere (statistical) extractability. For any polynomial polyI , there
exists a negligible function negl such that for every λ ∈ N, N ∈ [2λ], and
I ⊆ [N ] such that |I| ≤ polyI(λ),

Pr
[∃ rt,mi∗ , i∗, certi∗ s.t.

i∗ ∈ I ∧ Ver(h, rt,mi∗ , i∗, certi∗) = 1 ∧ m̃i∗ �= mi∗

]

≤ negl(λ) ,

where (i) the probability is taken over (h, td) ← TGen(1λ, N, I) and (ii) m̃i∗

is defined by {m̃i}i∈I := Ext(td, rt).
– Efficiency. In the above opening correctness experiment, the following hold.

• The key generation Gen runs in time poly(λ, log N,MI).
• The hashing algorithm Hash runs in time poly(λ,N) and outputs a hash

value rt of length poly(λ, log N,MI).
• The opening algorithm Open runs in time poly(λ,N) and outputs a cer-

tificate certi of length poly(λ, log N,MI).
• The verifier Ver runs in time poly(λ, log N,MI).

Also, in the above extractability experiment, the following hold.
• The trapdoor key generation TGen runs in time poly(λ, log N,MI).
• The extractor Ext runs in time poly(λ, log N,MI).

As observed in [11], the LWE-based (public-coin) hash functions family by
Hubacek and Wichs [20] is somewhere extractable.

Theorem 2. Under the LWE assumption, there exists a (public-coin) some-
where extractable hash function family.

Somewhere Extractable Hash for Non-binary Alphabets. In this paper,
somewhere extractable hash functions are also used for strings over a finite field
F, where Definition 5 is straightforwardly generalized for non-binary alphabets.
Concretely, v = (v1, . . . , vN ) ∈ F

N is hashed by hashing (v1,j , . . . , vN,j) for every
j ∈ [log|F|], where vi,j is the j-th bit of vi. The running time of Gen remains the
same since the same key can be used for all the hashes, while the complexities
related to the other algorithms increase by a multiplicative factor log|F|.

3.4 SNARGs for P (a.k.a. Non-Interactive TM Delegations)

We recall the definition of SNARGs for P, a.k.a. publicly verifiable non-interactive
Turing-machine delegation schemes. The following definitions are adapted from
those given in [23, Section 3.1]. A major difference from the original definitions
is that we consider schemes for two-input Turing machines and define sound-
ness in the partially adaptive setting [5], where the first input is non-adaptively
determined while the second one is adaptively chosen by the prover. For other
differences, see the full version of this paper.

Definition 6. For a (deterministic) Turing machine M , let

LM := {(χ, T ) | M accepts χ within T steps} .
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Definition 7. For a (deterministic) two-input Turing machine M and pair of
functions TGen : N×N → N, Lπ : N×N → N, a triple of algorithms (Gen,P,V) is
called a partially adaptive publicly verifiable non-interactive delegation
scheme for M with setup time TGen and proof length Lπ if it satisfies the
following.

– Syntax. Gen is probabilistic and the others are deterministic.
– Completeness. For every λ, T, n1, n2 ∈ N and χ = (χ1, χ2) ∈ {0, 1}n1 ×

{0, 1}n2 such that n := n1 + n2 ≤ T ≤ 2λ and (χ, T ) ∈ LM ,

Pr
[

V(crs, χ, π) = 1
∣

∣ crs ← Gen(1λ, T, n1, n2); π := P(crs, χ)
]

= 1 .

– Partially adaptive soundness. For every PPT algorithm P∗ and triple
of polynomials polyT , polyn1

, polyn2
, there exists a negligible function negl

such that for every λ ∈ N, T ≤ polyT (λ), n1 ≤ polyn1
(λ), n2 ≤ polyn2

(λ),
χ1 ∈ {0, 1}n1 , and z ∈ {0, 1}∗,

Pr
[

V(crs, χ, π) = 1
∧ (χ, T ) �∈ LM

∣

∣

∣

∣

crs ← Gen(1λ, T, n1, n2)
(χ2, π) ← P∗(crs, χ1, z); χ := (χ1, χ2)

]

≤ negl(λ) .

– Efficiency. In the above completeness experiment, the following hold.
• The setup algorithm Gen runs in time TGen(λ, T, n1, n2).
• The prover P runs in time poly(λ, T ) and outputs a proof π of length

Lπ(λ, T, n1, n2).
• The verifier V runs in time O(Lπ) + poly(λ, n).8

A publicly verifiable non-interactive delegation scheme is called public-coin if
the setup algorithm Gen is public-coin, i.e., it just outputs a string that is sampled
uniformly randomly (possibly along with various parameters that are determined
deterministically based on the input of Gen).

Definition 8. For a super-polynomial function γ, a partially adaptive publicly
verifiable non-interactive delegation scheme is called γ-secure if the partial
adaptive soundness holds even when (i) the adversary P∗ runs in time poly(γ(λ))
and (ii) the polynomials polyT , polyn1

, polyn2
are all replaced with γ.

3.5 SNARGs for Batch-NP (a.k.a Non-Interactive BARGs)

We recall the definition of SNARGs for Batch-NP, a.k.a. publicly verifiable non-
interactive batch arguments (BARGs). The following definitions are adapted
from those given in [10, Section 4.1]. For the differences from the original defini-
tions, see the full version of this paper.

Definition 9. Let RCSAT be the relation defined as RCSAT := {((C, x), w) |
C is a Boolean circuit s.t.C(x,w) = 1}. Then, CSAT is the language defined
as CSAT := {(C, x) | ∃w s.t. ((C, x), w) ∈ RCSAT}.
8 For convenience, we use a slightly weaker bound than prior works [25], where the

bound is O(Lπ) + n · poly(λ).
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Definition 10. For any k ∈ N, let

R⊗k
CSAT :=

{

((C,x),w)
∣

∣

∣

∣

x = (x1, . . . , xk) and w = (w1, . . . , wk) satisfy
((C, xi), wi) ∈ RCSAT for ∀i ∈ [k]

}

.

Then, for any k ∈ N, CSAT⊗k is the language defined as CSAT⊗k := {(C,x) |
∃w s.t. ((C,x),w) ∈ R⊗k

CSAT}.
Definition 11. A triple of algorithms (Gen,P,V) is called a (non-adaptive)
publicly verifiable non-interactive batch argument for CSAT if it satis-
fies the following.

– Syntax. Gen is probabilistic and the others are deterministic.
– Completeness. For every λ, k, n ∈ N and ((C,x),w) ∈ R⊗k

CSAT such that
x ∈ ({0, 1}n)k,

Pr
[

V(crs, C,x, π) = 1
∣

∣ crs ← Gen(1λ, 1n, 1|C|, k); π := P(crs, C,x,w)
]

= 1 .

– (Non-adaptive) Soundness. For every PPT algorithm P∗ and pair of poly-
nomials polyk, polyC , there exists a negligible function negl such that for every
λ ∈ N, k ≤ polyk(λ), MC ≤ polyC(λ), n ≤ MC , (C,x) �∈ CSAT⊗k, and
z ∈ {0, 1}∗ such that |C| ≤ MC and x ∈ ({0, 1}n)k,

Pr
[

V(crs, C,x, π) = 1
∣

∣

∣

∣

crs ← Gen(1λ, 1n, 1MC , k)
π ← P∗(crs, C,x, z)

]

≤ negl(λ) .

– Efficiency. In the above completeness experiment, the following hold.
• The setup algorithm Gen runs in time poly(λ, |C|, log k).
• The prover P runs in time poly(λ, |C|, k) and outputs a proof π of length
poly(λ, |C|, log k).

• The verifier V runs in time poly(λ, n, k) + poly(λ,MC , log k).

A publicly verifiable non-interactive batch argument is called public-coin if the
setup algorithm Gen is public-coin, i.e., it just outputs a string that is sampled
uniformly randomly (possibly along with various parameters that are determined
deterministically based on the input of Gen).

Definition 12. A publicly verifiable non-interactive batch argument (Gen,P,V)
for CSAT is called semi-adaptive somewhere sound if there exists a PPT
algorithm TGen that satisfies the following.

– CRS indistinguishability. For every PPT algorithms (A1,A2) and pair of
polynomials polyk, polyC , there exists a negligible function negl such that for
every λ ∈ N, k ≤ polyk(λ), MC ≤ polyC(λ), n ≤ MC , and z ∈ {0, 1}∗,

∣

∣

∣

∣

∣

∣

∣

∣

Pr
[

A2(st, crs) = 1
∣

∣

∣

∣

(st, i∗) ← A1(1λ, 1n, 1MC , k, z)
crs ← Gen(1λ, 1n, 1MC , k)

]

−Pr
[

A2(st, crs) = 1
∣

∣

∣

∣

(st, i∗) ← A1(1λ, 1n, 1MC , k, z)
(crs, td) ← TGen(1λ, 1n, 1MC , k, i∗)

]

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(λ) .
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– Semi-adaptive somewhere soundness. For every PPT algorithm P∗ and
pair of polynomials polyk, polyC , there exists a negligible function negl such
that for every λ ∈ N, k ≤ polyk(λ), MC ≤ polyC(λ), n ≤ MC , and z ∈
{0, 1}∗,

Pr

⎡

⎢

⎢

⎣

V(crs, C,x, π) = 1
∧ i∗ ∈ [k]
∧ (C, xi∗) �∈ CSAT

∣

∣

∣

∣

∣

∣

∣

∣

(st, i∗) ← P∗
1(1

λ, 1n, 1MC , k, z)
crs ← TGen(1λ, 1n, 1MC , k, i∗)
(C,x, π) ← P∗

2(st, crs),
where x = (x1, . . . , xk) ∈ ({0, 1}n)k

⎤

⎥

⎥

⎦

≤ negl(λ) .

Weakly Semi-adaptive Somewhere Soundness. We define a new soundness
notion that lies between non-adaptive soundness and semi-adaptive somewhere
soundness. The difference from semi-adaptive somewhere soundness is that the
instances x are fixed non-adaptively (the circuit C is still chosen adaptively).

Definition 13. A publicly verifiable non-interactive batch argument (Gen,P,V)
for CSAT is called weakly semi-adaptive somewhere sound if there exists
a PPT algorithm TGen that satisfies the following.

– CRS indistinguishability. Identical with the one in Definition 12.
– Weakly semi-adaptive somewhere soundness. For every PPT algorithm

P∗ and pair of polynomials polyk, polyC , there exists a negligible function negl
such that for every λ ∈ N, k ≤ polyk(λ), MC ≤ polyC(λ), n ≤ MC , and
z ∈ {0, 1}∗,

Pr

⎡

⎢

⎢

⎣

V(crs, C,x, π) = 1
∧ i∗ ∈ [k]
∧ (C, xi∗) �∈ CSAT

∣

∣

∣

∣

∣

∣

∣

∣

(st, i∗,x) ← P∗
1(1

λ, 1n, 1MC , k, z),
where x = (x1, . . . , xk) ∈ ({0, 1}n)k

crs ← TGen(1λ, 1n, 1MC , k, i∗)
(C, π) ← P∗

2(st, crs)

⎤

⎥

⎥

⎦

≤ negl(λ) .

Non-interactive BARGs for the Index Language. We recall the definition
and a known result of publicly verifiable non-interactive BARGs for the index
language [11].

Definition 14. Publicly verifiable non-interactive batch arguments for
the indexed language are a special case of publicly verifiable non-interactive
batch arguments for CSAT (Definition 11), with the following differences.

– Syntax. The instances x = (x1, . . . , xk) are fixed to be the indices x =
(1, . . . , k), and they are not given to the prover P and the verifier V. Also, the
instance length n is not given to the setup algorithm Gen. (It is assumed that
P and V can learn k from the common reference string crs.)

– Efficiency. The requirement about the running time of the verifier V is
strengthened to poly(λ,MC , log k).

Theorem 3 ([11]). Under the LWE assumption, there exists a public-coin non-
interactive batch argument for the index language. Furthermore, it satisfies semi-
adaptive somewhere soundness.
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3.6 Holographic SNARGs for P and Batch-NP

We define holographic SNARGs for P and Batch-NP by naturally combining the
definitions of non-interactive Turing-machine delegations and BARGs with the
definitions of holographic interactive proofs/arguments [5,15].

Definition 15. Let M be a two-input Turing machine. A publicly verifiable non-
interactive delegation scheme (Gen,P,V) for M is called holographic if there
exists a deterministic polynomial-time algorithm Encode such that the execution
of the verifier on input (crs, (χ1, χ2), π) can be written as Vχ̂1(crs, (|χ1|, χ2), π)
for χ̂1 := Encode(λ, χ1), where the verifier works in two steps as follows.

1. Without making queries to χ̂1, the verifier either immediately outputs 0 (i.e.,
rejects the proof) or computes a set I ⊆ [n̂] of queries along with a set Z ⊆ Σn̂

of expected responses. (Σ is the alphabet of χ̂1 and n̂ is the block length.) This
step takes time at most O(Lπ) + poly(λ, log|χ1|, |χ2|), where Lπ is the length
of the proof π.

2. The verifier makes the queries to χ̂1, and it outputs 1 iff χ̂1|I = Z.

Definition 16. A publicly verifiable non-interactive batch argument (Gen,P,V)
is called holographic if there exists a deterministic polynomial-time algorithm
Encode such that the execution of the verifier on input (crs, C,x, π) can be written
as Vx̂(crs, C, k, π) for x̂ := Encode(λ,x), where the verifier proceeds in two steps
as follows.

1. Without making queries to x̂, the verifier either immediately outputs 0 (i.e.,
rejects the proof) or computes a set I ⊆ [n̂] of queries along with a set Z ⊆ Σn̂

of expected responses. (Σ is the alphabet of x̂ and n̂ is the block length.) This
step takes time at most poly(λ, |C|, log k).

2. The verifier makes the queries to x̂, and it outputs 1 iff x̂|I = Z.

The following is a special case of the above definitions.

Definition 17. A publicly verifiable non-interactive delegation scheme (resp., a
publicly verifiable non-interactive batch argument) is called LDE-holographic
if it is holographic w.r.t. the encoding algorithm Encode that outputs the low-
degree extension LDEF,H,m(χ) of the input χ for the parameter (F, H,m) that is
determined based on (λ, |χ|) (resp., the low-degree extension LDEF,H,m(x) of the
instances x = (x1, . . . , xk) for the parameter (F, H,m) that is determined based
on (λ, |x1| + · · · + |xk|), where x is viewed as a binary string x1 ‖· · ·‖xk).

4 Somewhere-Sound Holographic SNARG for SE Hash

In this section, we construct a specific type of holographic SNARGs that we
use as a tool in the subsequent sections. The target of this section is defined as
follows based on the definition of holographic publicly verifiable non-interactive
Turing-machine delegations schemes (Definition 7, Definition 15).
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Definition 18. Let SEH=(SEH.Gen,SEH.TGen,SEH.Hash,SEH.Open,SEH.Ver,
SEH.Ext) be a somewhere extractable hash function family. A partially adap-
tive somewhere-sound holographic non-interactive delegation scheme
for SEH consists of four algorithms (Gen,P,V,Encode) satisfying the following.

– Holographic completeness. For every λ ∈ N, N ∈ [2λ], x ∈ {0, 1}N , and
MI ∈ [N ],

Pr

⎡

⎢

⎢

⎢

⎢

⎣

Vx̂(crs, (h, rt), π) = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

crs ← Gen(1λ, N, 1MI )
h ← SEH.Gen(1λ, N, 1MI )
rt := SEH.Hash(h, x)
π := P(crs, (x, (h, rt)))
x̂ := Encode(λ, x)

⎤

⎥

⎥

⎥

⎥

⎦

= 1 .

Furthermore, the execution of Vx̂(crs, (h, rt), π) proceeds in two steps as spec-
ified in the definition of holographic delegations (Definition 15).

– Partially adaptive somewhere soundness. For every PPT algorithm P∗

and pair of polynomials polyN , polyI , there exists a negligible function negl
such that for every λ ∈ N, N ∈ [2λ], x = (x1, . . . , xN ) ∈ {0, 1}N , I ⊆ [N ],
and z ∈ {0, 1}∗ such that N ≤ polyN (λ) and |I| ≤ polyI(λ),

Pr

⎡

⎢

⎢

⎢

⎢

⎣

Vx̂(crs, (h, rt), π) = 1
∧ ∃i ∈ I s.t. xi �= x̃i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

crs ← Gen(1λ, N, 1|I|)
(h, td) ← SEH.TGen(1λ, N, I)
(rt, π) ← P∗(crs, (x, h), z)
x̂ := Encode(λ, x)
{x̃i}i∈I := SEH.Ext(td, rt)

⎤

⎥

⎥

⎥

⎥

⎦

≤ negl(λ) .

– Efficiency. In the above completeness experiment, the following hold.
• The setup algorithm Gen runs in time poly(λ, log N,MI).
• The prover P runs in time poly(λ,N) and outputs a proof π of length

poly(λ, log N,MI).
• The verifier V runs in time poly(λ, log N,MI).

A holographic delegation scheme for SEH is called public-coin if the setup algo-
rithm Gen is public-coin, i.e., it just outputs a string that is sampled uniformly
randomly (possibly along with various parameters that are determined determin-
istically based on the input of Gen). A holographic delegation scheme for SEH
is called LDE-holographic if the encoding algorithm Encode outputs the low-
degree extension LDEF,H,m(x) of the input x for the parameter (F, H,m) that is
determined based on (λ, |x|).

The goal of this section is to prove the following lemma.

Lemma 1. Under the LWE assumption, there exists a partially adaptive
somewhere-sound holographic non-interactive delegation scheme for any some-
where extractable hash function family. The scheme is public-coin and LDE-
holographic, where for the security parameter λ and an input x of length N ,
the encoding algorithm Encode outputs the LDE of x w.r.t. an arbitrary LDE
parameter (F, H,m) such that |F| ≤ poly(|H|) ≤ poly(log N), |H|m ≤ poly(N),
and m|H|/|F| ≤ O(1).
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Proof. Fix any somewhere extractable hash function family SEH =
(SEH.Gen,SEH.TGen,SEH.Hash,SEH.Open,SEH.Ver,SEH.Ext). Our goal is to
give a partially adaptive somewhere-sound holographic non-interactive delega-
tion scheme for SEH. For simplicity, we assume SEH is public-coin.9

First, we introduce notations. Let paramLDE be any efficiently computable
mapping that maps each (λ,N) ∈ N × N to an LDE parameter (F, H,m) such
that |F| ≤ poly(|H|) ≤ poly(log N), |H|m ≤ poly(N), and m|H|/|F| ≤ O(1).10 For
a security parameter λ ∈ N and an LDE parameter (F, H,m) := paramLDE(λ,N),
define mλ as mλ := 
log|H| λ� so that λ ≤ |H|mλ < λ|H|. We identify H

m with
{1, . . . , |H|m} by the lexicographical order.

Next, we introduce the building blocks that we use in our scheme.

– Let BARGidx = (BARG.Genidx,BARG.Pidx,BARG.Vidx) be a semi-adaptive
somewhere-sound public-coin non-interactive BARG for the index language.

– For each (arbitrarily small) constant δ > 0 and α := λδ�, let CIHα be a
public-coin correlation-intractable hash function family that satisfies the fol-
lowing. For sufficiently large polynomials polyX , polyY , polyT and a constant
ρ ∈ [0, 1],11 (i) the domain-codomain ensemble of CIHα is {(Xλ, Y α

λ )}λ∈N

for Xλ := {0, 1}polyX(λ) and Yλ := {1, . . . , polyY (λ)}, (ii) the correlation
intractability of CIHα holds for any product relation ensemble that is polyT -
time product verifiable with product sparsity ρ, and (iii) CIHα can be evalu-
ated in time poly(log|Xλ|, |Yλ|, α, polyT (λ)) = poly(λ, α).

Both of the above exist under the LWE assumption (cf. Theorem 3 and Sect. 3.2).
Now, we describe our scheme SEH-Del = (Gen,P,V,Encode) using a sub-

routine scheme SEH-Delsub = (Gensub,Psub,Vsub). Intuitively, SEH-Delsub is a
holographic SNARG for SEH w.r.t. strings over finite fields (rather than binary
strings), and SEH-Del is a wrapper scheme that enables us to use SEH-Delsub
w.r.t. strings over binary strings. That is, given a binary string x and its SE
hash value rt, SEH-Del converts x into an equivalent string x′ over a finite field,
computes the SE hash value rt′ of x′, and invokes SEH-Delsub for x′ and rt′ while
using BARGidx to prove the consistency between rt and rt′. The formal descrip-
tion of SEH-Del is given in Fig. 3. The subroutine scheme SEH-Delsub is defined
recursively in Fig. 4 (a high-level idea is explained in Sect. 2.1).12 13

Since the correctness and efficiency can be verified by inspection, we focus
on the proof of soundness below. (See the full version of this paper about the
correctness and efficiency.) We prove the partially adaptive somewhere soundness
of SEH-Del by proving a related soundness notion for SEH-Delsub. Concretely,
we consider the following two claims about SEH-Delsub.
9 If not, it suffices to additionally use any LWE-based somewhere extractable hash

function family (cf. Theorem 2) as a building block in our scheme.
10 E.g, |H| = �log N	, |F| = poly(|H|), and m = �log|H| N	.
11 The concrete requirements about polyX , polyY , polyT , and ρ are determined based

on SEH and paramLDE (cf. the proof of Claim 2).
12 In SEH-Del and SEH-Delsub, SEH is used for strings over a finite field (cf. Sect. 3.3).
13 The recursive structure of SEH-Delsub is the reason why we define it w.r.t. strings

over finite fields.
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Claim 1 (Base case). For every PPT algorithm P∗ and polynomial polyN ,
there exists a negligible function negl such that for every λ ∈ N, N ≤ polyN (λ),
(F, H,mN ) := paramLDE(λ,N), m := mN − mN/mλ� · mλ, x : H

m → F,
i∗ ∈ [|H|m], α := λ1/(�mN /mλ�+1)�, and z ∈ {0, 1}∗,

Pr

⎡

⎢

⎢

⎢

⎢

⎣

Vx̂
sub(crs, (h, rt), π) = 1

∧ x(i∗) �= x̃i∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

crs ← Gensub(1λ, (F, H,m), α)
(h, td) ← SEH.TGen(1λ, |H|m, {i∗})
(rt, π) ← P∗(crs, (x, h), z)
x̂ := LDEF,H,m(x)
x̃i∗ := SEH.Ext(td, rt)

⎤

⎥

⎥

⎥

⎥

⎦

≤ negl(λ) .

(1)

crs ← Gen(1λ, N, 1MI ):

1. Let (F, H, mN ) := paramLDE(λ, N).

2. Sample h′ ← SEH.Gen(1λ, |H|mN , 1M′
I ), where M ′

I := 1.
3. Sample crsidx ← BARG.Genidx(1

λ, 1MC , N), where MC = poly(λ, log N, MI)
is the size of the circuit C that is defined in the prover P below.

4. Sample crs′ ← Gensub(1
λ, (F, H, mN ), α), where α := �λ1/(�mN /mλ�+1)�.

5. Output crs ← (1λ, N, h′, crsidx, crs′).

π := P(crs, (x, (h, rt))):

1. Parse crs as (1λ, N, h′, crsidx, crs′). Let (F, H, mN ) := paramLDE(λ, N).
2. Let x′ : H

mN → F be the function that is obtained from x = (x1, . . . , xN ) ∈
{0, 1}N by letting x′(i) := xi for 1 ≤ i ≤ N and x′(i) := 0 for N < i ≤ |H|mN ,
where H

mN is identified with {1, . . . , |H|mN } by the lexicographical order.
3. Compute rt′ := SEH.Hash(h′, x′). Also, compute certi := SEH.Open(h, x, i)

and cert′i := SEH.Open(h′, x′, i) for ∀i ∈ [N ].
4. Compute πidx := BARG.Pidx(crs

idx, C,w), where w := {wi}i∈[N ], wi :=
(xi, certi, cert

′
i), and C is the following circuit.

– C has (h, rt, h′, rt′) as hardwired inputs, takes an index i ∈ [N ]
and a witness wi = (xi, certi, cert

′
i) as inputs, and outputs 1 iff

SEH.Ver(h, rt, xi, i, certi) = 1 and SEH.Ver(h′, rt′, xi, i, cert
′
i) = 1.

5. Compute π′ ← Psub(crs
′, (x′, (h′, rt′))).

6. Output π := (rt′, πidx, π′).

b := Vx̂(crs, (h, rt), π):

1. Parse crs as (1λ, N, h′, crsidx, crs′) and π as (rt′, πidx, π′).
2. Output 1 iff BARG.Vidx(crs

idx, C, πidx) = 1 and Vx̂
sub(crs

′, (h′, rt′), π′) = 1.

x̂ := Encode(λ, x):

1. Output x̂ := LDEF,H,mN (x), where (F, H, mN ) := paramLDE(λ, N) , N := |x|.

Fig. 3. SEH-Del = (Gen,P,V,Encode).
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crs ← Gensub(1
λ, (F, H, m), α):

1. If m < mλ, output crs := (1λ, (F, H, m), ⊥, ⊥, ⊥, ⊥). If m ≥ mλ, do the
following.

2. Sample h+ ← SEH.Gen(1λ, |H|m−mλ , 1MI ), where MI := 1.
3. Sample crsidx ← BARG.Genidx(1

λ, 1MC , |H|m−mλ), where MC :=
max(|Cu|, |C|) for the circuits Cu, C that are defined in the prover Psub.

4. Sample hCIH ← CIH.Genα(1λ).
5. Sample crs+ ← Gensub(1

λ, (F, H, m − mλ), α).
6. Output crs := (1λ, (F, H, m), α, h+, crsidx, hCIH, crs+).

π ← Psub(crs, (x, (h, rt))):

1. Parse crs as (1λ, (F, H, m), α, h+, crsidx, hCIH, crs+), where (F, H, m) is
expected to be an LDE parameter such that x : H

m → F. If m < mλ,
output π := x. If m ≥ mλ, compute x̂ := LDEF,H,m(x) and do the following.

2. Compute rt+u := SEH.Hash(h+, x(u,∗)) for ∀u ∈ F
mλ , where x(u,∗) :

H
m−mλ → F is defined as x(u,∗) : v �→ x̂(u,v). Also, compute cert(u,v) :=

SEH.Open(h, x, (u,v)) for ∀(u,v) ∈ H
mλ × H

m−mλ and cert+(u,v)
:=

SEH.Open(h+, x(u,∗),v) for ∀(u,v) ∈ F
mλ × H

m−mλ .
3. Compute πidx

u := BARG.Pidx(crs
idx, Cu,w) for ∀u ∈ H

mλ , where w :=
{wv}v∈H

m−mλ , wv := (x(u,v), cert(u,v), cert
+
(u,v)), and Cu is as follows.

– Cu has (h, rt, h+, rt+u ) as hardwired inputs, takes an index v
and a witness w = (y, cert, cert+) as inputs, and outputs 1 iff
SEH.Ver(h, rt, y, (u,v), cert) = 1 and SEH.Ver(h+, rt+u , y,v, cert′) = 1.

4. Compute πidx := BARG.Pidx(crs
idx, C,w), where w := {wv}v∈H

m−mλ , wv =
{x̂(u,v), cert+(u,v)}u∈F

mλ , and C is the following circuit.

– C has (h+, {rt+u }u∈F
mλ ) as hardwired inputs, takes an index v ∈ H

m−mλ

and a witness w = {y(u,v), cert(u,v)}u∈F
mλ as inputs, and outputs 1 iff

(i) SEH.Ver(h+, rt+u , y(u,v),v, cert(u,v)) = 1 for ∀u ∈ F
mλ and (ii) the

function ŷ(∗,v) : F
mλ → F defined as ŷ(∗,v) : u �→ y(u,v) is the LDE of

y(∗,v) := ŷ(∗,v)|Hmλ w.r.t. (F, H, mλ).
5. Compute (c1, . . . , cα) := CIH.Hashα(hCIH, {rt+u }u∈H

mλ ), where each ci is
viewed as an element of F

mλ . Let Sc := {c1, . . . , cα}.
6. Compute π+

ci
← Psub(crs

+, (x(ci,∗), (h
+, rt+ci

))) for ∀ci ∈ Sc.
7. Output π := ({rt+u }u∈F

mλ , {πidx
u }u∈H

mλ , πidx, {π+
ci

}ci∈Sc).

b := Vx̂
sub(crs, (h, rt), π):

1. Parse crs as (1λ, (F, H, m), α, h+, crsidx, hCIH, crs+). If m < mλ, output 1 iff
SEH.Hash(h, π) = rt and π = x̂|Hm . If m ≥ mλ, do the following.

2. Parse π as ({rt+u }u∈F
mλ , {πidx

u }u∈H
mλ , πidx, {π+

ci
}ci∈Sc).

3. Compute (c1, . . . , cα) := CIH.Hashα(hCIH, {rt+u }u∈H
mλ ), where each ci is

viewed as an element in F
mλ . Let Sc := {c1, . . . , cα}.

4. Output 1 iff (i) BARG.Vidx(crs
idx, Cu, πidx

u ) = 1 for ∀u ∈ H
mλ , (ii)

BARG.Vidx(crs
idx, C, πidx) = 1, and (iii) V

x̂(ci,·)
sub (crs+, (h+, rt+ci

), π+
ci

) = 1 for
∀ci ∈ Sc.

Fig. 4. SEH-Delsub = (Gensub,Psub,Vsub).
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Claim 2 (Inductive step). For every PPT algorithm P∗ and polynomial
polyN , there exists a PPT algorithm P+ and a negligible function negl such
that the following holds. Assume there exists a polynomial polyP∗ such that for
infinitely many λ ∈ N, there exist N ≤ polyN (λ), (F, H,mN ) := paramLDE(λ,N),
m ∈ {mN ,mN − mλ, . . . ,mN − (mN/mλ� − 1) · mλ}, x : H

m → F, i∗ ∈ [|H|m],
α := λ1/(�mN /mλ�+1)�, and z ∈ {0, 1}∗ such that

Pr

⎡

⎢

⎢

⎢

⎢

⎣

Vx̂
sub(crs, (h, rt), π) = 1

∧ x(i∗) �= x̃i∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

crs ← Gensub(1λ, (F, H,m), α)
(h, td) ← SEH.TGen(1λ, |H|m, {i∗})
(rt, π) ← P∗(crs, (x, h), z)
x̂ := LDEF,H,m(x)
x̃i∗ := SEH.Ext(td, rt)

⎤

⎥

⎥

⎥

⎥

⎦

≥ 1
polyP∗(λ)

.

(2)

Then, for such a polynomial polyP∗ and for infinitely many such λ, N ,
(F, H,mN ), m, and α, there exist x+ : H

m−mλ → F, i+ ∈ [|H|m−mλ ], and
z+ ∈ {0, 1}∗ such that

Pr

⎡

⎢

⎢

⎢

⎢

⎣

Vx̂+

sub(crs, (h, rt), π) = 1
∧ x+(i∗) �= x̃i+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

crs ← Gensub(1λ, (F, H,m − mλ), α)
(h, td) ← SEH.TGen(1λ, |H|m−mλ , {i+})
(rt, π) ← P+(crs, (x+, h), z+)
x̂+ := LDEF,H,m(x+)
x̃i+ := SEH.Ext(td, rt)

⎤

⎥

⎥

⎥

⎥

⎦

≥ 1
|F|mλ

(

1
polyP∗(λ)

− negl(λ)
)

. (3)

Furthermore, the running time of P+ is upper bounded by TP∗(λ)+poly(λ), where
TP∗ is the running time of P∗ and poly is independent of TP∗ .

First, we observe that the soundness of SEH-Del follows from Claim 1 and
Claim 2. Assume for contradiction that SEH-Del is not partially adaptive some-
where sound, i.e., a cheating prover P∗ provides an accepting proof π and a hash
value rt from which the extractor fails to extract the correct values. Then, the
semi-adaptive somewhere soundness of BARGidx (together with the key indis-
tinguishability of SEH and the CRS indistinguishability of BARGidx) guarantees
that the extractor fails to extract the correct values even from the hash value
rt′ that is included in π as the statement of the subroutine scheme. Thus, we
can use P∗ to obtain a successful cheating prover against the subroutine scheme,
and after repeated applications of Claim 2, we can derive a contradiction using
Claim 1. (For details, see the full version of this paper.)

It remains to prove Claim 1 and Claim 2. Claim 1 holds trivially since m =
mN − mN/mλ� · mλ < mλ. Regarding Claim 2, we prove it following the idea
given in the technical overview (Sect. 2.1). That is, using the security of SEH
and BARGidx as above and also relying on the correlation intractability of CIHα,
we show that any successful cheating prover P∗ against SEH-Delsub can be used
to obtain a successful cheating prover P+ against one of the recursive proofs. A
subtlety is that the correlation intractability of CIHα is non-adaptive in the sense
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that the relation ensemble in the security experiment needs to be fixed in advance
(cf. Definition 1). Since P∗ chooses the indices {ci}i∈[α] ∈ F

mλ of the recursive
proofs adaptively, we can rely on the correlation intractability of CIHα only when
we correctly guess the index on which the prover cheats. Consequently, we can
only show that P+ succeeds with probability that decreases by a multiplicative
factor 1/|F|mλ . For the formal proofs, see the full version of this paper. ��

5 Holographic SNARG for Tree-Hash

In this section, we construct a holographic SNARG for the correctness of Merkle
tree-hash computations. The target of this section is defined as follows.

Definition 19. Publicly verifiable non-interactive delegation schemes
for tree-hash computations (or publicly verifiable non-interactive tree-hash
delegation schemes in short) are a special case of publicly verifiable non-
interactive delegation schemes for Turing machines (Definition 7), where the
following restrictions are imposed.

– The instance χ is restricted to the form χ = (x, (h, rt)), where x ∈ {0, 1}2�λ

(� ∈ N) is a binary string, h : {0, 1}2λ → {0, 1}λ is a hash function (repre-
sented as a circuit), and rt ∈ {0, 1}λ is a binary string.

– The Turing machine M is fixed to be the two-input Turing machine
Mtree-hash that takes an input of the form χ = (x, (h, rt)) and outputs 1 iff
TreeHashh(x) = rt. Also, the time bound T (given to Gen along with the input
length bounds n1, n2) is fixed to be Ttree-hash(n1, n2), where Ttree-hash is a
polynomial upper bound of the running time of Mtree-hash.

The goal of this section is to prove the following lemma.

Lemma 2. Assume the existence of (i) a somewhere extractable hash func-
tion family SEH, (ii) a semi-adaptive somewhere-sound publicly verifiable
non-interactive BARG for the index language, and (iii) a partially adaptive
somewhere-sound holographic delegation scheme SEH-Del for SEH. Then, there
exists a partially adaptive publicly verifiable non-interactive tree-hash delegation
scheme that satisfies the following.

– The scheme is holographic w.r.t. the same encoding algorithm as SEH-Del.
– The setup time TGen(λ, T, n1, n2) and the proof length Lπ(λ, T, n1, n2) are both

at most poly(λ, log n1, n2).
– The scheme is public-coin if the above-listed primitives are public-coin.

Since the primitives listed in Lemma 2 exist under the LWE assumption
(Theorem 2, Theorem 3, Lemma 1), we can obtain the following corollary.

Corollary 1. Under the LWE assumption, there exists a partially adaptive
public-coin non-interactive tree-hash delegation scheme.



Holographic SNARGs for P and Batch-NP from (Polynomially Hard) LWE 357

– The scheme is LDE-holographic, where for the security parameter λ and an
input x of length N , the encoding algorithm Encode outputs the LDE of x
w.r.t. an arbitrary LDE parameter (F, H,m) such that |F| ≤ poly(|H|) ≤
poly(log N), |H|m ≤ poly(N), and m|H|/|F| ≤ O(1).

– The setup time TGen(λ, T, n1, n2) and the proof length Lπ(λ, T, n1, n2) are both
at most poly(λ, log n1, n2).

Proof (of Lemma 2). Let SEH = (SEH.Gen,SEH.TGen,SEH.Hash,SEH.Open,
SEH.Ver,SEH.Ext) be a somewhere extractable hash function family, BARGidx =
(BARG.Genidx,BARG.Pidx,BARG.Vidx) be a semi-adaptive somewhere-sound
publicly verifiable non-interactive BARG for the index language, and SEH-Del =
(SEH-Del.Gen,SEH-Del.P,SEH-Del.V,SEH-Del.Encode) be a partially adaptive
somewhere-sound holographic delegation scheme for SEH. For simplicity, we
adjust the definition of somewhere extractable hash functions (Definition 5) so
that the set of the indices is {0, . . . , N − 1} rather than {1, . . . , N}. The same
adjustment is also made to the definition of BARGs (Definition 11).

Our scheme TH-Del = (Gen,P,V) is given in Fig. 5. We prove the security
of TH-Del following the idea given in the technical overview (Sect. 2.1). For the
formal proof, see the full version of this paper.

��

6 Holographic SNARG for Batch-NP

In this section, we construct a holographic SNARG for batch NP.

Theorem 4. Assume the existence of a somewhere extractable hash function
family SEH, a semi-adaptive somewhere-sound publicly verifiable non-interactive
BARG for the index language, and a partially adaptive somewhere-sound holo-
graphic delegation scheme SEH-Del for SEH. Then, there exists a publicly veri-
fiable non-interactive BARG for CSAT that is (i) weakly semi-adaptive some-
where sound and (ii) holographic w.r.t. the same encoding algorithm as SEH-Del.
The scheme is public-coin if the above-listed primitives are public-coin.

Since all the primitives listed in Theorem 4 exist under the LWE assumption
(Theorem 2, Theorem 3, Lemma 1), we obtain the following corollary.

Corollary 2. Under the LWE assumption, there exists a public-coin non-
interactive BARG for CSAT that is (i) weakly semi-adaptive somewhere sound
and (ii) LDE-holographic, where for the security parameter λ and an input x
of length N , the encoding algorithm Encode outputs the LDE of x w.r.t. an
arbitrary LDE parameter (F, H,m) such that |F| ≤ poly(|H|) ≤ poly(log N),
|H|m ≤ poly(N), and m|H|/|F| ≤ O(1).

As sketched in Sect. 2.2, we prove Theorem 4 by considering a scheme that
works roughly as follows. For instances x = (x1, . . . , xk) and a circuit C, the
prover first computes a hash value of x using a somewhere extractable hash
function. Next, the prover uses SEH-Del to compute a holographic proof about
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crs ← Gen(1λ, T, n1, n2):

1. Let � := log(n1/λ).
2. Sample hSEH

0 ← SEH.Gen(1λ, λ, 1λ) and hSEH
i ← SEH.Gen(1λ, 2iλ, 12λ) for

∀i ∈ {1, . . . , �}.
3. Sample crsidxi ← BARG.Genidx(1

λ, 1|Ci|, 2i) for ∀i ∈ {0, . . . , �−1}, where the
circuit Ci is defined in the prover P below.

4. Sample crsSEH-Del ← SEH-Del.Gen(1λ, 2�λ, 12λ).
5. Output crs := (1λ, {hSEH

i }i∈{0,...,�}, {crsidxi }i∈{0,...,�−1}, crsSEH-Del).

π := P(crs, (x, (h, rt))):

1. Parse crs as (1λ, {hSEH
i }i∈{0,...,�}, {crsidxi }i∈{0,...,�−1}, crsSEH-Del).

2. Compute TreeHashh(x) along with its nodes {nodei,σ}i∈{0,...,�},σ∈{0,...,2i−1}
(cf. Sect. 3.1).

3. Compute rti := SEH.Hash(hSEH
i , xi) for each i ∈ {0, . . . , �}, where xi :=

nodei,0 ‖ · · · ‖ nodei,2i−1 ∈ {0, 1}2iλ. For each i ∈ {0, . . . , � − 1}
and σ ∈ {0, . . . , 2i − 1}, let certi,σ be the certificates that open the
appropriate positions of the pre-image of rti to nodei,σ; i.e., certi,σ :=
(certi,σ,0, . . . , certi,σ,λ−1) and certi,σ,j := SEH.Open(hSEH

i , bi,σ,j , λσ + j) for
∀j ∈ {0, . . . , λ − 1}, where bi,σ,j is the j-th bit of nodei,σ ∈ {0, 1}λ.

4. For each i ∈ {0, . . . , � − 1}, compute πi := BARG.Pidx(crs
idx, Ci,wi), where

wi := {wi,σ}σ∈{0,...,2i−1}, wi,σ := (nodei,σ, certi,σ, nodei+1,2σ, certi+1,2σ,
nodei+1,2σ+1, certi+1,2σ+1), and Ci is the following circuit.
– Ci has (h, hSEH

i , rti, h
SEH
i+1, rti+1) as hardwired inputs, and takes an

index σ ∈ {0, . . . , 2i − 1} and a witness w = (node(0,0), cert(0,0),
node(1,0), cert(1,0), node(1,1), cert(1,1)) as inputs. First, Ci parses

node(u,v) as (b
(u,v)
0 , . . . , b

(u,v)
λ−1 ) and cert(u,v) as (cert

(u,v)
0 , . . . , cert

(u,v)
λ−1 )

for each (u, v) ∈ {(0, 0), (1, 0), (1, 1)}. Then, Ci outputs 1

iff (i) SEH.Ver(hSEH
i+u, rti+u, b

(u,v)
j , λ(2uσ + v) + j, cert

(u,v)
j ) = 1

for ∀(u, v) ∈ {(0, 0), (1, 0), (1, 1)}, j ∈ {0, . . . λ − 1} and (ii)
h(node(1,0) ‖node(1,1)) = node(0,0).

5. Compute π� := SEH-Del.P(crsSEH-Del, (x�, (h
SEH
� , rt�))).

6. Output π := {rti, πi}i∈{0,...,�}.

b := V(crs, (x, (h, rt)), π):

1. Parse crs as (1λ, {hSEH
i }i∈{0,...,�}, {crsidxi }i∈{0,...,�−1}, crsSEH-Del) and π as

{rti, πi}i∈{0,...,�}. Abort unless |rt| = λ and h : {0, 1}2λ → {0, 1}λ.
2. Output 1 iff all of the following hold.

– SEH.Hash(hSEH
0 , rt) = rt0.

– BARG.Vidx(crs
idx
i , Ci, πi) = 1 for ∀i ∈ {0, . . . , � − 1}.

– SEH-Del.Vx̂(crsSEH-Del, (hSEH
� , rt�), π�) = 1, where x̂ :=

SEH-Del.Encode(λ, x).

Fig. 5. A publicly verifiable non-interactive tree-hash delegation scheme TH-Del =
(Gen,P,V).
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the consistency between rt and x. Finally, the prover uses BARGidx to prove
that for each i ∈ [k], there exists an instance x̃i such that (i) the i-th instance
in the pre-image of rt can be opened to x̃i and (ii) (C, x̃i) ∈ CSAT. Intuitively
speaking, the somewhere soundness follows from that of BARGidx since for each
i ∈ [k], the i-th instance in the pre-image of rt can be statistically fixed to xi

by the somewhere soundness of SEH-Del. The holographic property follows from
that of SEH-Del. The formal proof is given in the full version of this paper.

7 Holographic SNARG for P

In this section, we observe that we can obtain a holographic SNARG for P by
combining a holographic tree-hash SNARG with a known transformation.

Theorem 5. Assume the hardness of the LWE assumption. Then, for every
Turing machine, there exists a partially adaptive public-coin non-interactive del-
egation scheme that satisfies the following properties.

– The scheme is LDE-holographic, where for the security parameter λ and an
input x of length N , the encoding algorithm Encode outputs the LDE of x
w.r.t. an arbitrary LDE parameter (F, H,m) such that |F| ≤ poly(|H|) ≤
poly(log N), |H|m ≤ poly(N), and m|H|/|F| ≤ O(1).

– The setup time TGen(λ, T, n1, n2) and the proof length Lπ(λ, T, n1, n2) are both
at most poly(λ, log T, log n1, n2).

As mentioned in Sect. 2.1, the above theorem is obtained by combining our
LWE-based holographic tree-hash SNARG (Corollary 1) with a known transfor-
mation [30], which uses the LWE-based RAM delegation scheme of Choudhuri,
Jain, and Jin [11]. At a high level, the RAM delegation scheme of Choudhuri et
al. is a public-coin non-interactive delegation scheme where (i) the prover can
prove the correctness of an arbitrary polynomial-time computation and (ii) the
verifier only needs to have the Merkle tree-hash of the computation input rather
than the input itself. Naturally, their RAM delegation scheme can be converted
to a holographic SNARG for P by augmenting it with a holographic tree-hash
SNARG, i.e., by requiring the prover to send the tree-hash of the computation
input along with a holographic proof about the correctness of the tree-hash.
Thus, by using our LWE-based holographic tree-hash SNARG (Corollary 1), we
can obtain a holographic SNARG for P as desired.

8 Application: Public-Coin Three-Round Zero-Knowledge

As an application of our holographic SNARGs, we give a public-coin 3-round
zero-knowledge argument based on the slightly super-polynomial hardness of
the LWE assumption and keyless multi-collision-resistant hash functions. (For
the definition of keyless multi-collision-resistant hash functions, see, e.g., [3].)
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Theorem 6. For arbitrary super-polynomial functions γLWE, γmCRH and an arbi-
trary polynomial K, assume the γLWE-hardness of the LWE assumption and the
existence of a keyless weakly (K, γmCRH)-collision-resistant hash function. Then,
there exists a public-coin 3-round zero-knowledge argument for NP.

Proof. We use the transformation shown in [30], summarized as follows.

Lemma 3. Assume the γLWE-hardness of the LWE assumption and the existence
of a keyless weakly (K, γmCRH)-collision-resistant hash function as in Theorem 6.
Also, assume the existence of a public-coin non-interactive tree-hash delegation
scheme that satisfies the following properties.

– The scheme satisfies partial adaptive soundness and is γDel-secure for a super-
polynomial function γDel.

– The scheme is LDE-holographic w.r.t. the encoding algorithm Encode such
that, for the security parameter λ and an input x of length N = 2�λ (� ≤
log2 λ�), it outputs the LDE of x w.r.t. an LDE parameter (F, H,m) such
that 2m|H| < |F| = poly(log λ) and N ≤ |H|m ≤ |F|m ≤ poly(N).

– The setup time TGen(λ, T, n1, n2) and the proof length Lπ(λ, T, n1, n2) are both
at most poly(λ, log n1, n2).

Then, there exists a public-coin 3-round zero-knowledge argument for NP.

(For details about how we obtain Lemma 3 from [30], see the full version
of this paper.) Given Lemma 3, we can prove Theorem 6 by observing that the
desired tree-hash delegation scheme can be obtained by straightforwardly adjust-
ing the proofs of Lemma 1 and Lemma 2 (namely, by using the super-polynomial
hardness of the LWE assumption rather than the standard polynomial hardness).
��
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Abstract. A functional commitment (FC) scheme allows one to commit
to a vector x and later produce a short opening proof of (f, f(x)) for
any admissible function f . Since their inception, FC schemes supporting
ever more expressive classes of functions have been proposed.

In this work, we introduce a novel primitive that we call chainable
functional commitment (CFC), which extends the functionality of FCs
by allowing one to 1) open to functions of multiple inputs f(x1, . . . , xm)
that are committed independently, 2) while preserving the output also
in committed form. We show that CFCs for quadratic polynomial maps
generically imply FCs for circuits. Then, we efficiently realize CFCs for
quadratic polynomials over pairing groups and lattices, resulting in the
first FC schemes for circuits of unbounded depth based on either pairing-
based or lattice-based falsifiable assumptions. Our FCs require fixing
a-priori only the maximal width of the circuit to be evaluated, and have
opening proof size depending only on the circuit depth. Additionally, our
FCs feature other nice properties such as being additively homomorphic
and supporting sublinear-time verification after offline preprocessing.

Using a recent transformation that constructs homomorphic signa-
tures (HS) from FCs, we obtain the first pairing- and lattice-based real-
isations of HS for bounded-width, but unbounded-depth, circuits. Prior
to this work, the only HS for general circuits is lattice-based and requires
bounding the circuit depth at setup time.

1 Introduction

Commitment schemes allow a sender to commit to a message x in such a way
that the message remains secret until the moment she decides to open the com-
mitment and reveal it (hiding), and they allow the receiver to get convinced that
the opened message is the same x originally used at commitment time (binding).
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Today, commitments are a ubiquitous building block in cryptographic proto-
cols, including digital signatures, zero-knowledge proofs and multiparty compu-
tation, to name a few. As applications become more and more sophisticated, the
basic commitment functionality may fall short. One particular limitation is that
the opening mechanism is all-or-nothing: either the sender opens in full the com-
mitment and the receiver learns the whole message, or the receiver gets nothing.
A more flexible and useful functionality would be to open the commitment to a
function of the committed message, that is to reveal f(x) for some function f .

This advanced commitment notion has been formalized by Libert, Ramanna
and Yung who called this primitive Functional Commitments (FC) [24]. The
property that makes functional commitments unique (and nontrivial to realize)
is succinctness: assuming that the message is a large vector x, then both the
commitment and the openings should be short, e.g., polylogarithmic or constant
in the size of x. The main security requirement of functional commitments is
evaluation binding: no polynomially bounded adversary should be able to, validly,
open the commitment to two different values y �= y′ for the same f . Additionally,
FCs can also be hiding and zero-knowledge (a commitment and possibly several
openings should not reveal additional information about x).

Functional commitments are essentially a class of (commit-and-prove) suc-
cinct non-interactive arguments (SNARGs) with a weaker security property, that
is evaluation binding instead of soundness. The notion of evaluation binding is
not necessarily a weakness but can also be a feature: it is a falsifiable secu-
rity notion that makes FCs potentially realizable from falsifiable assumptions
in the standard model (i.e., without random oracles), without contradicting the
celebrated result of Gentry and Wichs about impossibility of SNARGs from
falsifiable assumptions [14]. For this reason, functional commitments can be
an attractive alternative to SNARGs for implementing succinct arguments in
cryptographic protocols where evaluation binding is sufficient (notably, without
carrying the need of non-falsifiable assumptions). Examples of this case include
homomorphic signatures and verifiable databases as shown in [8], as well as the
numerous applications that employ vector commitments [6,7,25] or polynomial
commitments [21] (two primitives that are a special case of the FC notion). An
additional motivation for studying evaluation binding FCs is that they can pro-
vide a different approach to construct SNARKs since any evaluation binding FC
can be compiled into a SNARK by adding a simpler SNARK proof of “I know
x that opens the commitment”.

The state-of-the-art on realizations of FCs encompasses a limited set of func-
tionalities that (besides the special cases of vector and polynomial commitments)
include linear maps [23,24], semi-sparse polynomials [26] and constant-degree
polynomials [1,8] (see Sect. 1.2 for a discussion on related and concurrent work).

We note that the full version of our work containing all results and proofs is
available as [3].
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1.1 Our Contribution

In this paper, we propose the first constructions of Functional Commitments that
support the evaluation of arbitrary arithmetic circuits of unbounded depth1 and
are based on falsifiable assumptions. Our FC schemes are also chainable, mean-
ing that it is possible to open to functions of multiple committed inputs while
preserving the output to be in committed form. To capture such functionality,
we introduce a novel primitive called Chainable Functional Commitment (CFC).

In our FC schemes only the maximal width of the circuits has to be fixed at
setup time. The size of the commitments is succinct in the input size; the size of
opening proofs grows with the multiplicative depth dC of the evaluated circuit
C, but is otherwise independent of the circuit’s size or the input length. Notably,
our FCs provide an exponential improvement compared to previous ones that
could only support polynomials of degree δ = O(1) with an efficiency (prover
time and parameter size) degrading exponentially in δ (as O(nδ))2 [1,8].

We design our FCs for circuits in two steps: (1) a generic construction of an
FC for unbounded-depth circuits based on CFCs for quadratic functions, and
(2) two realizations of CFCs, one based on bilinear pairings and one based on
lattices. The pairing-based CFC relies on a new falsifiable assumption that we
justify in the bilinear generic group model, while the lattice-based CFC relies on
a slight extension of the k-R-ISIS assumption recently introduced in [1]. Using
either one of these two CFC constructions (and considering a few tradeoffs of
our generic construction), we obtain a variety of FC schemes; we summarize in
Table 1 the most representative ones.

Our FC schemes enjoy useful additional properties.

1. They are additively homomorphic, which as shown in [8] makes the FC updat-
able and allows for building homomorphic signatures (HS). Notably, our new
FC for circuits yields new HS realizations that advance the state of the art
(see slightly below for details).

2. They enjoy amortized efficient verification, which means that the verifier can
precompute a verification key vkC associated to a circuit C and use this key (an
unbounded number of times) to verify openings for C in time (asymptotically)
faster than evaluating C.

3. Our FC schemes can be trivially modified to have perfectly hiding commit-
ments and efficiently compiled into FCs with zero-knowledge openings.

Both efficient verification and zero-knowledge openings are relevant in the
construction of HS from FCs since, as showed in [8], they imply the analogous
properties of efficient verification [9,18] and context hiding [4] in the resulting
HS schemes.

1 Looking ahead, our pairing-based instantiation supports arithmetic circuits over Zq,
while our lattice-based instantiation supports arithmetic circuits over cyclotomic
rings Z[ζ] where wires carry values of bounded norm.

2 Note, when used for a circuit of depth d these solutions may have efficiency doubly
exponential in d since in general δ ≈ 2d.
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Table 1. Comparison of FCs for functions with n inputs and � outputs. Constants are
omitted, e.g., λn means O(λn) and p(·) represents some arbitrary polynomial function.
For semi-sparse polynomials μ ≥ n is a sparsity-dependent parameter (cf. [26]). For
constant-degree polynomials δf is the degree of the polynomial f used in opening while
δ is the maximum degree fixed at setup. AC means arithmetic circuits, dC the depth
of the circuit C used in opening, and note that w ≥ n, �. AH means ‘additively homo-
morphic’; schemes meeting this property can be turned into homomorphic signatures.

FC scheme Functions |pp| |com| |π| AH
[24] (pair.) linear maps λn λ λ� �
[23] (pair.) linear maps λ�n λ λ �
[26] (pair.) semi-sparse poly λμ λ� λ –
[1] (latt.) const. deg. poly p(λ)(n2δ+�) p(λ) log n p(λ) log2 �n �
[8] (pair.) const. deg. poly λ�n2δ λδf λδf �

This work:
Corol. 1.1 (pair.) AC of width ≤ w λw5 λ λd2

C �
Corol. 1.3 (pair.) AC of size ≤ S λS5 λ λdC �
Corol. 2.2 (latt.) AC of width ≤ w p(λ)w5 p(λ) log w p(λ)dC log2 w �

Application to Homomorphic Signatures. Homomorphic signatures (HS)
[4,20] allow a signer to sign a large dataset x in such a way that anyone, holding a
signature on x, can perform a computation f on this data and derive a signature
σf,y on the output y = f(x). This signature vouches for the correctness of y as
output of f on some legitimately signed data and is publicly verifiable given a
verification key, a description of f , and the result y. The most expressive HS in
the state of the art is the scheme of Gorbunov, Vaikuntanathan and Wichs [18]
that is based on lattices and supports circuits with bounded number of inputs
n and bounded (polynomial) depth d. In their scheme, the signature size grows
polynomially with the depth of the evaluated circuit (precisely, as d3 · poly(λ)).

By applying a recently proposed transformation [8], our new FCs for cir-
cuits yield new HS that support the same class of functions and succinctness as
supported by the FC, advancing the state of the art. Notably, we obtain:

– The first HS for circuits based on pairings. Previously existing HS based on
pairings can capture at most circuits in NC1 [8,22] and need a bound on the
circuit size. In contrast, our HS can evaluate circuits of any polynomial depth,
achieving virtually the same capability of the lattice-based HS of [18] and with
better succinctness. We believe this result is interesting as it shows for the
first time that we can build HS for circuits without the need of algebraic
structures, such as lattices, that are notoriously powerful.

– The first HS that do not require an a-priori bound on the depth. The work of
Gorbunov, Vaikuntanathan and Wichs [18] left open the problem of construct-
ing fully-homomorphic signatures, i.e., HS that can evaluate any computation
in the class P without having to fix any bound at key generation time. In our
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new HS we do not need to fix a bound on the depth but we rather need
a bound on the width of the circuits at key generation time. Although this
result does not fully solve the open problem of realizing fully-homomorphic
signatures, we believe that our schemes make one step ahead in this direction.
Our observation is that dealing with a bound on the circuit’s depth is more
difficult than dealing with a bound on the width. As evidence for this, we
show a variant of our FC scheme (in the full version) for which one can fix a
bound n and support circuits of larger width O(n) with an O(1) increase in
proof size. Therefore, while our solution needs a bound on the width, this is
not strict, as opposed to the depth bound in the HS of [18].

Like the scheme of [18], our HS constructions have efficient (offline/online)
verification and are context-hiding. As a drawback, our HS allow only a lim-
ited form of multi-hop evaluation, that is the ability of computing on already
evaluated signatures. In our case, we can compose computations sequentially
(i.e., given a signature σf,y for y = f(x) we can generate one for z = g(y) =
g(f(x))), while [18] supports arbitrary compositions (e.g., given signatures for
{yi = fi(x)}i, one can generate one for z = g(f1(x), . . . , fn(x))). On the other
hand, for circuits with multiple outputs, the size of our signatures is independent
of the output size, whereas in [18] signatures grow linearly with the number of
outputs.
Our Novel Tool: Chainable Functional Commitments. The key novelty
that allows us to overcome the barrier in the state of the art and build the
first FCs for circuits is the introduction and realization of chainable functional
commitments (CFC) – a new primitive of potentially independent interest.

In brief, a CFC is a functional commitment where one can “open” to com-
mitted outputs. More concretely, while a (basic) FC allows proving statements
of the form “f(x) = y” for committed x and publicly known y, a CFC allows
generating a proof πf that comy is a commitment to y = f(x1, . . . xm) for vec-
tors x1, . . . xm, each independently committed in com1, . . . , comm. In terms of
security, CFCs must satisfy the analogue of evaluation binding, that is one can-
not open the same input commitments (com1, . . . , comm) to two distinct output
commitments comy �= com′

y for the same f .
Keeping outputs committed is what makes CFCs “chainable”, in the sense

that committed outputs can serve as (committed) inputs for other openings. For
instance, using the syntax above, one can compute an opening πg proving that
comz is a commitment to z = g(y). This way, the concatenation of comy, πf , πg

yields a proof that z = g(f(x1, . . . xm)).
The introduction and realization of CFCs are in our opinion the main con-

ceptual and technical contributions of this paper. From a conceptual point of
view, the chaining functionality turns out to be a fundamental feature to tackle
the challenge of supporting a computation as expressive as an arithmetic circuit.
Indeed, we show that from a CFC for quadratic polynomial maps it is possible
to construct a (C)FC for arithmetic circuits. From the technical point of view,
we propose new techniques that depart from the ones of existing FCs for poly-
nomials [1,8] in that the latter only work when the output vector is known to
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the verifier and there is a single input commitment. We refer to Sect. 2 for an
informal explanation of our techniques.

1.2 Related and Concurrent Work
As noticed in previous work, it is possible to construct an FC for arbitrary com-
putations from a universal SNARK and a succinct commitment scheme by gen-
erating a succinct commitment to the input x and a SNARK proof for the state-
ment “f(x) = y and x opens the commitment correctly”. The drawback of this
solution is that, by reducing to the knowledge-soundness of the SNARK, it would
require non-falsifiable assumptions [14]. Alternatively, one could also reduce the
security of this construction to the tautological (but falsifiable) assumption that
the very same construction is secure. While such an argument is logically correct,
it yields a non-standard assumption against the spirit of modern complexity-
based cryptography. Hence, one of the goals in the FC literature is to construct
schemes based on simple assumptions, which is the direction taken in this work.

The idea of a commitment scheme where one can open to functions of the
committed data was implicitly suggested by Gorbunov, Vaikuntanathan and
Wichs [18], though their construction is not succinct as the commitment size
is linear in the length of the vector. Libert, Ramanna and Yung [24] were the
first to formalize succinct functional commitments. They proposed a succinct
FC for linear forms and showed applications of this primitive to polynomial
commitments [21] and accumulators. Recent works have extended FCs to support
more expressive functions, including linear maps [23], semi-sparse polynomials
[26], and constant-degree polynomials [1,8]. Table 1 presents a comparison of
these works with our results. Catalano, Fiore and Tucker [8] also proposed an FC
for monotone span programs, which only achieves a weaker notion of evaluation
binding where the adversary must reveal the committed vector. A weaker security
model is also considered in [29], who introduced a lattice-based FC scheme where
a trusted authority is assumed to generate, using a secret key, an opening key
for each function for which the prover wants to release an opening.

Compared to these prior works, ours addresses the main question left open
in the state of the art, which is to construct FCs for arbitrary computation from
falsifiable assumptions.
Verifiable Computation. The functionality of functional commitments has
similarities with verifiable computation (VC) schemes (also known as SNARGs
for P). The main difference between VC and FC schemes is that in the latter, the
input is committed as opposed to publicly known. Looking ahead, our generic
construction of FC from CFCs presents a similar high-level approach as the
SNARGs for P in [16,17]. In particular, both constructions proceed level-by-
level in the circuit (an idea that dates back to the GKR protocol [15]). Then,
the prover 1) computes a set of commitments to the wires at each level, and
2) proves that the committed vectors are consistent with respect to the circuit
evaluation.

Beyond this similarity, our construction and [16,17] differ in techniques and
the level of security that we achieve. Notably, even though the verifier in [16,17]
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may not need to see the opening of the commitment at each level, soundness
only holds with respect to adversaries that reveal such opening. This translates
into requiring the verifier to know the input (which is sufficient for VC but not
for FC). Besides, [16,17] have a function-specific setup, as opposed to FCs in
which public parameters should be universal and functions are to be chosen at
opening time.

Concurrent Work. Concurrently to our work, de Castro and Peikert [5], and
Wee and Wu [30], also propose lattice-based constructions of functional com-
mitments for circuits (as well as polynomial and vector commitments). Their
approaches differ significantly from ours, as they both rely on homomorphic
evaluation techniques [13].

The work of [5] constructs a “dual” FC (where one commits to the function
f and proves that f(x) = y for a given x)3 for bounded-depth boolean circuits.
Their construction is selectively secure under the standard SIS assumption and
admits a transparent setup (i.e., the public parameters are a uniformly random
string). Their FC does not have succinct openings though, as the opening size is
linear in either the input size or the size of f (in our setting where one commits
to f and opens to x).

The FC in [30] supports circuits of bounded depth, needs a structured setup,
and is secure under a new structured-BASIS assumption introduced in the same
work. Their FC has succinct openings that are polylogarithmic in the input size
and polynomial in the circuit depth.

In comparison to [5,30], our FC schemes support circuits of bounded width
but unbounded depth, with succinct openings that grow only with the depth of
the circuit but are independent of the input size. As [30], we require a trusted
setup and achieve adaptive security based on new falsifiable assumptions on
either pairings or lattices. For the lattice-based FC we rely on the Twin-k-R-ISIS
assumption which is weaker than the BASIS assumption of [30] (see Sect. 7 for a
comparison). Our FC schemes are the only ones that (i) have openings succinct
also in the output size,4 and (ii) achieve fast verification with pre-processing
(i.e., after an input-independent preprocessing verification time is sub-linear in
the size of |f | and |x|).

2 A Technical Overview of Our Work

We construct our FCs for circuits in two main steps: (1) a generic construction
of (C)FC for circuits from CFCs for quadratic polynomial maps (Sect. 5), and
(2) the realization of these CFCs based on either pairings (Sect. 6) or lattices
(Sect. 7). Below we give an informal overview of these constructions.

3 One can recover the standard notion of committing to x and opening to f via
universal evaluators.

4 This means that our FCs satisfy compactness as defined in [23] for subvector and
linear map commitments.
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2.1 (C)FC for Circuits from CFCs for Quadratic Functions

Our first result is a transformation from CFCs for quadratic polynomials to FCs
for circuits that is summarized in the following theorem.

Theorem 2 (Informal).Let CFC be a Chainable functional commitment for
quadratic polynomial maps f(x1, . . . , xm) = y for any number of inputs m, such
that each committed input vector xi and the committed output y have length n.
Then, there exist a functional commitment FC for arithmetic circuits of bounded
width n and unbounded depth d, such that:

– FC’s commitment size is the same as that of CFC;
– if CFC has opening proofs of size s(n, m), then FC has openings of size at

most d·s(n, d). Moreover, if CFC is additively homomorphic and/or efficiently
verifiable, so is FC.

Our transform starts from the observation that the gates of an arithmetic
circuit5 can be partitioned into “levels” according to their multiplicative depth,
i.e., level h contains all the gates of multiplicative depth h and level 0 contains the
inputs. All the outputs of level h, denoted by x(h), are computed by a quadratic
polynomial map taking inputs from previous levels < h, and thus the evaluation
of a circuit C of width ≤ n and depth d can be described as the sequential
evaluation of quadratic polynomial maps f (h) : X nh → X n for h = 1 to d.

The basic idea of our generic FC is that, starting with a commitment com0 to
the inputs x(0), we can open it to y = C(x(0)) in two steps. First, we commit to
the outputs of every level. Second, we use the CFC opening functionality to prove
that these values are computed correctly from values committed in previous
levels. Slightly more in detail, at level h we create a commitment comh to the
outputs x(h) = f (h)(x(0), . . . , x(h−1)) and generate a CFC opening proof πh to
show consistency w.r.t. commitments com0, . . . , comh. Eventually, this strategy
reaches the commitment comd of the last level that includes the outputs, which
can be opened to y (or kept committed if one wants to build a CFC for circuits).
The final proof π consists of all intermediate proofs and commitments, π :=
(π1, . . . , πd, com1, . . . , comd−1). Security reduces to the security of the CFC for
quadratic functions.

2.2 A Framework for CFCs for Quadratic Functions

We next overview our general strategy of construction CFCs for quadratic func-
tions, which admits pairing- and lattice-based instantiations. Our constructions
rely on new cryptographic assumptions that we describe in later sections. For
our pairing-based construction, we introduce the HiKer assumption, which can
be seen as a “hinted” version of the KerMDH assumptions of [28]. For our lattice-
based construction, we define the Twin-k-R-ISIS assumption which extends the
k-R-ISIS assumption from [1].
5 In our model we assume wlog arithmetic circuits where every gate is a quadratic

polynomial of unbounded fan-in.
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Theorems 4 and 5 (Informal). Assuming the n-HiKerassumption (resp. the
Twin-k-R-ISIS assumption), our pairing-based (resp. lattice-based) CFC con-
struction is a succinct CFC scheme for quadratic functions over any m vec-
tors of length ≤ n that admits efficient verification, is additively homomor-
phic, and whose openings can be made zero-knowledge. For arbitrary quadratic
functions, the opening proofs have size s(n, m) = O(m2) (resp. s(n, m) =
O(m · polylog(m · n)))6.

To build our CFCs we devise new commitment and opening techniques that
capture a quadratic polynomial map y = f(x1, . . . , xm) where each input is com-
mitted in comi, and the output is committed too in comy. Our two constructions
(pairing-based and lattice-based) of CFCs for quadratic functions have a similar
high-level design that we introduce below.

For the pairing setting we adopt the implicit notation for bilinear groups
G1,G2,GT of prime order q by which [x]s denotes the vector of group elements
(gx1

s , . . . , gxn
s ) ∈ G

n
s for a fixed generator gs. For the lattice setting, we let R be

a cyclotomic ring and q be a large enough rational prime. In this overview, we
adopt the bracket notation [x] to express the representation of a given group or
ring element without further distinction.

Abstract Functionality. To start, we define three (vectors of) commitment
keys [α], [β], and [γ], that live either in G

n
1 in the pairing setting, or in Rn

q in
the lattice setting. A commitment of type α to a vector x ∈ Z

n
q is computed à

la Pedersen, i.e., via an inner product, as X(α) = [〈x, α〉]. Commitments of type
β and γ are defined analogously.

In our CFCs the commitments generated by the commit algorithm Com and
used by the opening algorithm Open are only those of type α, whereas commit-
ments of type β and γ are used as auxiliary values in the opening proofs. In
order to create a CFC opening to a quadratic polynomial, our main tool is a
technique realizing the following functionality:

– [(α, β) → γ]-Quadratic opening: given m commitments for each of the keys
{X

(α)
i = [〈xi, α〉], X

(β)
i = [〈xi, β〉]}i=1...m and a commitment Y (γ) = [〈y, γ〉]

generate a succinct opening proof π
(γ)
f that y = f(x1, . . . , xm).

Before seeing how we generate this opening, we observe that π
(γ)
f does not yet

achieve our goal since it assumes the availability of both type-α and type-β com-
mitments on the inputs, and it only allows us to “move” to a type-γ commitment
of the output, preventing us from achieving chainability.

We solve both issues by designing two special cases of the functionality above:

– [α → β]-Identity opening: given a type-α commitment X(α) = [〈x, α〉] show
that a type-β commitment X(β) commits to the same x, i.e., X(β) = [〈x, β〉];

6 Following Theorem 2, this gives a proof size of O(d3) for our pairing-based FC and
O(d2 · polylog(d · w)) for our lattice-based FC for circuits of depth d and width w.
Nevertheless, the proof size can be reduced by a factor of d in both cases, as we show
in Table 1. We refer to Sects. 6 and 7 for details.
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– [γ → α]-Identity opening: given a type-γ commitment Y (γ) = [〈y, γ〉] show
that a type-α commitment Y (α) commits to the same y, i.e., Y (α) = [〈y, α〉].

We use the identity opening mechanisms to “close the circle” in such a way to
obtain a quadratic opening mechanism where all inputs and outputs are only
type-α commitments. To summarize, our CFC Open algorithm consists of the
following steps:

(i) compute a type-β commitment X
(β)
i to each input along with an [α → β]-

Identity opening proof that X
(β)
i commits to the same xi in X

(α)
i ;

(ii) compute a type-γ commitment Y (γ) to the result y = f(x1, . . . , xm) and a
[(α, β) → γ]-Quadratic opening proof attesting the validity of y w.r.t. the
input commitment pairs (X(α)

i , X
(β)
i );

(iii) finally, use the [γ → α]-identity opening to ensure that Y (α) is a commitment
to the same y in the Y (γ) computed in (ii).

In the full version, we provide an overview of each of the opening methods in
greater detail, as well as for each of our pairing- and lattice-based constructions.

3 Preliminaries

Notation. We denote by N the set of natural numbers > 0. We denote the
security parameter by λ ∈ N. We call a function ε negligible, denoted ε(λ) =
negl(λ), if ε(λ) = O(λ−c) for every constant c > 0, and call a function p(λ)
polynomial, denoted p(λ) = poly, if p(λ) = O(λc) for some constant c > 0.
We say that an algorithm is probabilistic polynomial time (PPT) if it consumes
randomness and its running time is bounded by some p(λ) = poly(λ). For a finite
set S, x ←$ S denotes sampling x uniformly at random in S. For an algorithm
A, we write y ← A(x) for the output of A on input x. For a positive n ∈ N,
[n] is the set {1, . . . , n}. We denote vectors x and matrices M using bold fonts.
For a ring R, given two vectors x, y ∈ Rn, z := (x ⊗ y) ∈ Rn2 denotes their
Kronecker product (that is a vectorization of the outer product), i.e., ∀i, j ∈ [n] :
zi+(j−1)n = xiyj .

3.1 Functional Commitments

In this section we give the definition of functional commitments (FC) for generic
classes of functions, by generalizing the one given in [24] for linear functions. For
notational simplicity and without loss of generality, we give our definitions for
functions that have n inputs and n outputs.

Definition 1 (Functional Commitments). Let X be some domain and let
F ⊆ {f : X n → X n} be a family of functions over X , with n inputs and n
outputs. A functional commitment scheme for F is a tuple of algorithms FC =
(Setup, Com, Open, Ver) that work as follows and that satisfy correctness and
succinctness defined below.
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Setup(1λ, 1n) → ck on input the security parameter λ and the functions parame-
ters n, outputs a commitment key ck.

Com(ck, x; r) → (com, aux) on input a vector x ∈ X n and (possibly) randomness
r, outputs a commitment com and related auxiliary information aux.7

Open(ck, aux, f) → π on input an auxiliary information aux and a function f ∈
F , outputs an opening proof π.

Ver(ck, com, f, y, π) → b ∈ {0, 1} on input a commitment com, an opening proof
π, a function f ∈ F and a value y ∈ X n, accepts (b = 1) or rejects (b = 0).

Correctness. FC is correct if for any n ∈ N, all ck ←$ Setup(1λ, 1n), any f :
X n → X n in the class F , and any x ∈ X n, if (com, aux) ← Com(ck, x), then

Pr[Ver(ck, com, f, f(x), Open(ck, aux, f)) = 1] = 1.

Succinctness. Let us assume that the admissible functions can be partitioned
as F = {Fκ}κ∈K for some set K, and let s : N × K → N be a function. A
functional commitment FC for F is said to be s(n, κ)-succinct if there exists a
polynomial p(λ) = poly(λ) such that for any κ ∈ K, function f : X n → X n s.t.
f ∈ Fκ, honestly generated commitment key ck ← Setup(1λ, 1n), vector x ∈ X n,
commitment (com, aux) ← Com(ck, x) and opening π ← Open(ck, aux, f), it
holds that |com| ≤ p(λ) and |π| ≤ p(λ) · s(n, κ).

In order to model and compare different constructions, the notion of suc-
cinctness that we introduce is parametric with respect to a function s(n, κ) that
depends on the input-output length n and some parameter κ of the evaluated
function. In some cases we will express the function s using asymptotic notation.
To give some examples, κ could be an integer expressing the depth/size of a cir-
cuit (and thus Fκ are all circuits of depth/size κ), the degree of a polynomial,
or the running time of a Turing machine. Accordingly, K is a set that partitions
the class of admissible functions, e.g., K = [D] if the admissible functions are all
circuits of depth ≤ D, or K = N if one wants to capture circuits of any depth.
The security definition of FCs proposed in [24] is called evaluation binding and
says that a PPT adversary cannot open a commitment to two distinct outputs
for the same function.

Definition 2 (Evaluation Binding). For any PPT adversary A, the following
probability is negl(λ):

AdvEvBind
A,FC (λ) = Pr

⎡
⎢⎣

Ver(ck, com, f, y, π) = 1
∧ y �= y′ ∧

Ver(ck, com, f, y′, π′) = 1
:

ck ← Setup(1λ, 1n)
(com, f, y, π, y′, π′) ← A(ck)

⎤
⎥⎦

7 In our constructions, we often omit r from the inputs; in such a case we assume either
that r is randomly sampled or that the commitment algorithm is deterministic.
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For simplicity of presentation, in all our security definitions, we omit checking
the domains of the elements returned by the adversary, e.g., that f ∈ F and
y ∈ X n etc. In the full version we show that evaluation binding also implies the
classical binding notion. There we also recall a stronger security definition called
strong evaluation binding, introduced in [23], and a definition of extractability.

3.2 Additional Properties of FCs

We informally present three additional properties of functional commitments
satisfied by our constructions (see the full version for the formal definitions).

Additive-Homomorphic FCs. These are functional commitments where,
given two commitments com1 and com2 to vectors x1 and x2 respectively, one
can compute a commitment to x1 + x2.

Efficient Amortized Verification. An FC with this property enables the veri-
fier to precompute a verification key vkf associated to the function f , with which
they can check any opening for f in time asymptotically faster than running f .

Definition 3 (Amortized Efficient Verification). A functional commitment
scheme FC for F has amortized efficient verification if there exist two addi-
tional algorithms vkf ← VerPrep(ck, f) and b ← EffVer(vkf , com, y, π) such
that for any n = poly(λ), function f : X n → X n s.t. f ∈ F , any hon-
estly generated commitment key ck ← Setup(1λ, 1n), vector x ∈ X n, commit-
ment (com, aux) ← Com(ck, x) and opening π ← Open(ck, aux, f), it holds: (a)
EffVer(VerPrep(ck, f), com, y, π) = Ver(ck, com, f, y, π), and (b) the running time
of EffVer is o(T ) where T = T (λ) is the running time of Ver(ck, com, f, y, π).

Hiding and Zero Knowledge. Intuitively, an FC is hiding if the commitments
produced through Com are hiding, in the classical sense. For zero-knowledge, the
goal is that the openings produced by Open should not reveal more information
about the committed vector beyond what can be deduced from the output, i.e.,
that x is such that y = f(x).

We state a simple result showing that an FC with hiding commitments (but
not necessarily zero-knowledge openings) can be converted, via the use of a
NIZK scheme, into one that also achieves zero-knowledge openings. The proof is
straightforward and appears in the full version.

Theorem 1. Let FC be an FC scheme that satisfies com-hiding and let Π be a
knowledge-sound NIZK for the NP relation RFC = {((ck, com, f, y); π) : Ver(ck,
com, f, y, π) = 1}. Then there exists an FC scheme FC∗ for the same class of
functions supported by FC that has com-hiding and zero-knowledge openings.
Furthermore, if FC is additive-homomorphic, so is FC∗; if FC has efficient ver-
ification and Π supports R′

FC = {(vkf , com, y; π) : EffVer(vkf , com, y, π) = 1},
then FC∗ has also efficient verification.
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4 Chainable Functional Commitments

As described in the introduction, we introduce the notion of Chainable Func-
tional Commitments (CFC), which is an extension of the FC primitive that
allows one to “chain” multiple openings to different functions.

Definition 4 (Chainable Functional Commitments). Let X be some
domain, n = poly(λ) and let F ⊆ {f : X nm → X n} be a family of functions over
X for any integer m = poly(λ). A chainable functional commitment scheme for
F is a tuple of algorithms CFC = (Setup, Com, Open, Ver) that works as follows
and that satisfies correctness and succinctness.

Setup(1λ, 1n) → ck on input the security parameter λ and the vector length n,
outputs a commitment key ck.

Com(ck, x; r) → (com, aux) on input a vector x ∈ X n and (possibly) randomness
r, outputs a commitment com and related auxiliary information aux.

Open(ck, (auxi)i∈[m], f) → π given auxiliary informations (auxi)i∈[m], one for
every committed input, and a function f ∈ F , returns an opening proof π.

Ver(ck, (comi)i∈[m], comy, f, π) → b ∈ {0, 1} on input commitments (comi)i∈[m]
to the m inputs and comy to the output, an opening proof π, and a function
f ∈ F , accepts (b = 1) or rejects (b = 0).

Correctness. CFC is correct if for any n, m ∈ N, all ck ←$ Setup(1λ, 1n), any
f : X nm → X n in the class F , and any set of vectors {xi}i∈[m] such that
xi ∈ X n, if (comi, auxi) ← Com(ck, xi) for every i ∈ [m] and (comy, auxy) ←
Com(ck, f(x1, . . . , xm)),

Pr
[
Ver(ck, (comi)i∈[m], comy, f, Open(ck, (auxi)i∈[m], f)) = 1

]
= 1.

Succinctness. Let F = {Fκ}κ∈K for some set K and let s : N × N × K be a
function. A chainable functional commitment CFC is s(n, m, κ)-succinct if there
exists a polynomial p(λ) = poly(λ) such that for any n, m and κ ∈ K, function
f : X mn → X n, f ∈ Fκ, honestly generated commitment key ck ← Setup(1λ, 1n),
vectors xi ∈ X n and commitments (comi, auxi) ← Com(ck, xi) for i ∈ [m],
(comy, auxy) ← Com(ck, f(x1, . . . , xm)), and opening π ← Open(ck, (auxi)i∈[m],
f), it holds that |comi|, |comy| ≤ p(λ) for every i ∈ [m] and |π| ≤ p(λ)·s(n, m, κ).

As in the case of FCs (Definition 1) we define succinctness in a parametric
way, and we are interested in CFC constructions supporting non-trivial functions
s(n, m, κ) that are sublinear or constant in n, m.

Additive Homomorphism and Efficient Verification. As for functional
commitments, a CFC can also be additively homomorphic and have amortized
efficient verification. These properties are analogous to these of FCs.

Definition 5 (Evaluation Binding). For any PPT adversary A, the following
probability is negl(λ):
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Pr

⎡
⎣

Ver(ck, (comi)i∈[m], comy , f, π) = 1

∧ comy �= com′
y ∧

Ver(ck, (comi)i∈[m], com′
y , f, π′) = 1

:
ck ← Setup(1λ, 1n)(

(comi)i∈[m], f,
comy , π,
com′

y , π′

)
← A(ck)

⎤
⎦

As one can notice, the above notion of evaluation binding can only hold in
the case when the output commitments comy are generated deterministically.
This is still enough for using CFCs to construct FCs with hiding commitments
to inputs and zero-knowledge openings (thanks to Theorem 1). We leave the
definition of CFCs with hiding output commitments for future work.

5 FC for Circuits from CFC for Quadratic Polynomials

In this section we introduce a generic construction of a Functional Commit-
ment scheme for arithmetic circuits of bounded width n, from any Chainable
Functional Commitment for quadratic functions over inputs of length n.

Circuit Model and Notation. Let R be a commutative ring. We consider
arithmetic circuits C : Rn → Rn where every gate is a quadratic polynomial
with bounded coefficients. It is not hard to see that such a model captures
the more common model of arithmetic circuits consisting of fan-in-2 gates that
compute either addition or multiplication.

More in detail, we model C as a directed acyclic graph (DAG) where every
node is either an input, an output or a gate, and input (resp. output) nodes have
in-degree (resp. out-degree) 0. We partition the nodes in the DAG defined by C
in levels as follows. Level 0 contains all the input nodes. Let the depth of a gate
g be the length of the longest path from any input to g, in the DAG defined by
the circuit. Then, for h ≥ 1, we define level h as the subset of gates of depth
h. Note that any gate in level h has at least one input coming from a gate at
level h − 1 (while other inputs may come from gates at any other previous level
0, . . . , h−2). The depth of the circuit C, denoted dC (or simply d when clear from
the context), is the number of levels of C. Finally, we assume that the last level
dC also contains output nodes.8

In this model, we define the width of C, denoted by n, as the maximum
number of nodes in any level h = 0 to dC . Note that the width upper bounds the
input length. For simplicity, we assume without loss of generality circuits with
maximal n inputs and n gates in every level.

When we evaluate C on an input x, we denote the input values by x(0),
and the outputs of the gates in level h by the vector x(h). We note that, for
every k ∈ [n], the output of the k-th gate in level h can be defined as x

(h)
k =

f
(h)
k (x(0), . . . , x(h−1)) where f

(h)
k : Rnh → R is a quadratic polynomial. We

8 This can be assumed without loss of generality. If we have an output x
(h)
i at level

h < d, we can introduce a linear gate at level d that takes x
(h)
i and some arbitrary

x
(d−1)
j as input, and outputs x

(d)
k = x

(h)
i + 0 · x

(d−1)
j .
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group all these n polynomials f
(h)
1 , . . . , f

(h)
n into the quadratic polynomial map

f (h) : Rnh → Rn such that x(h) = f (h)(x(0), . . . , x(h−1)). We denote the opera-
tion that extracts these functions {f (h)} from C by (f (1), . . . , f (d)) ← Parse(C).

Quadratic Functions. As we mentioned above, a gate in our circuit model
computes a quadratic polynomial. Thus all the gates at a given level form a
vector of n quadratic polynomials that take up to m = poly(λ) vectors and
output a single vector. We define this class of functions as

Fquad = {f : Rnm → Rn : f = (fk)k∈[n] ∧ ∀k ∈ [n] fk ∈ R[X(1)
1 , . . . , X(m)

n ]≤2}.

A quadratic polynomial map f ∈ Fquad, f : Rmn → Rn, such as those repre-
senting the computation done at a given level of a circuit, can be expressed in a
compact form. For f(x(1), . . . , x(m)) = y, we can define d matrices F(h) ∈ Rn×n,
d(d + 1)/2 matrices G(h,h′) ∈ Rn×n2 , and a vector e ∈ F

n such that

f(x(1), . . . , x(m)) = e+
∑

h∈S1(f)

F(h) ·x(h)+
∑

(h,h′)∈S⊗
2 (f)

G(h,h′) ·(x(h)⊗x(h′)). (1)

The sets S1(f) and S⊗
2 (f) are the linear support and the quadratic support of

f that we define below; for now S1 = [m], S⊗
2 = {(h, h′) ∈ [m] × [m] : h ≤ h′}.9

We note that, in an arbitrary circuit, the function f (h) at each level may
depend on values from any previous level, but not necessarily from all of them.
To capture such connectivity precisely, we define the linear support of f ∈ Fquad,
denoted S1(f) ⊆ [m], as the set of indices h where the linear part of f is nonzero
with respect to any term X

(h)
i . Formally, S1(f) := {h ∈ [m] : F(h) �= 0}.

Analogously, we define the quadratic support of f , denoted S2(f) ⊆ [m],
as S2(f) := {h ∈ [m] : ∃h′ ∈ [m]G(h,h′) �= 0}. We also express the quadratic
support using pairs of indices, S⊗

2 (f) := {(h, h′) ∈ [m]×[m] : h ≤ h′∧G(h,h) �= 0}.
Finally, we define the support of f as the union of its linear and quadratic

supports, namely S(f) = S1(f) ∪ S2(f).
Consider a circuit C and let (f (1), . . . , f (d)) ← Parse(C). Then every function

f (h) can be expressed and computed using only the inputs in S(f (h)), namely
f (h)((x(h′))h′∈S(f(h))) = f (h)(x(0), . . . , x(h−1)).

We call the number of inputs in the support of f (h), namely |S(f (h))|,
the in-degree of level h. We say that a circuit C has in-degree tC if tC =
maxh∈[dC ] |S(f (h))|. We call C a layered circuit if it has in-degree 1. Notice that
for a layered circuit it holds that x(d) = C(x(0)) where x(h) = f (h)(x(h−1)) for
all h = 1 to d.

Classes of Circuits. To properly define the succinctness and the functions
supported by our FC construction, we parametrize the circuits according to
three parameters, the depth, the in-degree, and the width. Let F(d,t,w) = {C :

9 This representation is not unique as x(h) ⊗ x(h′) contains repeated entries, but this
can be solved by agreeing on appropriately placing zero coefficients.
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FC.Setup(1λ, 1n)

1 : return CFC.Setup(1λ, 1n)

FC.Com(ck,x)

1 : return CFC.Com(ck,x)

FC.Open(ck, aux, )

1 : (f (1), . . . , f (d)) Parse( )

2 : x(0) Parse(aux)

3 : for h [d] :

// Evaluate and commit to each level

4 : x(h) f (h)(x(0),x(1), . . . ,x(h 1))

5 : (comh, auxh) CFC.Com(ck,x(h))

// Compute the opening for the level

6 : πh CFC.Open(ck,

(auxh )h h
, f (h))

7 : return (π1, . . . , πd, com1, . . . , comd 1)

FC.Ver(ck, com, ,y, π)

1 : (f (1), . . . , f (d)) Parse( )

2 : com0 com

3 : (π1, . . . , πd,

com1, . . . , comd 1) π

// Recompute commitment to output

4 : comd CFC.Com(ck,y)

5 : for h [d] :

// Verify all proofs

6 : bh CFC.Ver(ck,

(comh )h h
, comh, f (h), πh)

7 : return b1 bd

Fig. 1. Construction of our FC for circuits from a CFC for the class Fquad. For nota-
tional succinctness, we let Sh := S(f (h)).

Rn → Rn : dC = d, tC = t, wC = w}, where dC ∈ N, tC ≤ d, wC ≤ w are the
depth, in-degree, and width of C, respectively. Then our FC scheme supports any
arithmetic circuit of width at most n, in the model described above. We denote
this class by Fn := {F(d,t,w)}d∈N,t≤d,w≤n.
Construction. In Fig. 1 we present our FC construction for Fn. We assume,
without loss of generality, that the auxiliary input aux generated by CFC.Com
contains the committed input x. In the protocol, we retrieve x from aux via a
Parse function. Note that the same construction becomes a CFC for Fn if the
verifier takes comd as input and skips line 4 of Fig. 1.

Our goal in this section is to prove the following theorem.

Theorem 2. Let CFC = (Setup, Com, Open, Ver) be a chainable functional com-
mitment scheme for the class of functions Fquad. Then, the scheme FC in Fig. 1
is an FC for the class Fn of arithmetic circuits C : Rn → Rn of width ≤ n.

Let K be a partitioning of Fquad such that CFC is s(n, m, κ)-succinct for
Fquad = {Fquad,κ}. Then FC is d · (smax(n, t) + 1)-succinct for the class Fn =
{F(d,t,w)}d∈N,t≤d,w≤n, where smax(n, t) := maxκ∈K s(n, t, κ). Moreover, given an
additively homomorphic and/or efficiently verifiable CFC, so is FC.

Proof. Correctness and additive homomorphism of FC follow immediately from
the respective properties of CFC.
Succinctness. If CFC is s(n, m, κ)-succinct for the class of quadratic polyno-
mials in Fquad = {Fquad,κ}, then FC is s′(n, (d, t))-succinct for Fn = {F(d,t,n)}
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where s′(n, (d, t)) = d · (smax(n, t) + 1). Indeed, FC.Open produces d − 1 com-
mitments comh for h ∈ [d − 1], each of them having size bounded by a fixed
polynomial p(λ) = poly(λ). Besides, it generates d CFC evaluation proofs πh,
each of them involving |S(f (h))| ≤ t input commitments, and thus having size
≤ p(λ) · s(n, |S(f (h))|, κ) ≤ p(λ) · smax(n, t). Hence, we can bound the size of an
FC.Open proof by |π| ≤ p(λ) · d · (smax(n, t) + 1). A particularly relevant case is
that for layered circuits we obtain |π| ≤ p(λ) · d · (smax(n, 1) + 1).

We obtain better succinctness by using a slightly different, yet general, circuit
model. To keep the presentation of the main scheme simpler, we present this
optimization in the full version only. The proof size reduction is specific to our
CFC construction from pairings (see Sect. 6.3 for the resulting efficiency).

Efficient Verification. If CFC has amortized efficient verification (Definition
3), we can set FC.VerPrep(ck, f) to obtain vkh ← CFC.VerPrep(ck, f (h)) for h ∈
[d] and output vkf := (vk1, . . . , vkd). Then, FC.EffVer simply recomputes the
commitment to the output comd and runs CFC.EffVer for each circuit level. It is
not hard to see that FC has amortized efficient verification unless d = O(|C|), a
case in which the proof size also becomes very large. We remark that for both our
pairing-based and lattice-based CFC instances, the running time of FC.EffVer is
actually bounded by p(λ)(|y|+ |π|) where p(λ) = poly(λ), which is optimal since
the verifier at least needs to parse the proof and the output.

Security. In the full version, we prove that if CFC is evaluation binding, then
so is FC. We also show an analogous result for knowledge extractability. ��

Various optimization strategies and efficiency trade-offs are described in the
full version. These allow for reducing the proof size in many cases, and also for
supporting circuits of larger width than initially specified at setup time.

6 Paring-Based CFC for Quadratic Functions

We present our construction of a chainable functional commitment for quadratic
functions based on pairings. With our CFC, one can commit to a set of vectors
x1, . . . xm of length n and then open the commitment to a quadratic function f :
F

mn → F
n, for any m = poly(λ). The opening proofs of our scheme are quadratic

in the number m of input vectors, but constant in the (possibly padded) length n
of each input vector and of the output. Security is proven in the standard model
based on a new falsifiable assumption that we justify in the generic bilinear group
model. In Sect. 6.3 we discuss the FCs for circuits that we obtain by applying
the generic transform of Sect. 5 to this pairing-based CFC.

We present our CFC with deterministic commitments and openings. We
detail how to make our commitments perfectly com-hiding in the full version. We
note that the FCs for circuits obtained from the com-hiding CFC are also com-
hiding, and their openings can be made zero-knowledge by applying Theorem 1,
which we can efficiently instantiate using, e.g., the Groth-Sahai [19] NIZK.
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6.1 Preliminaries on Bilinear Groups and Assumption

A bilinear group generator BG(1λ) is an algorithm that returns bgp := (q,G1,
G2,GT , e, g1, g2), where G1, G2, GT are groups of prime order q, g1 ∈ G1 and
g2 ∈ G2 are fixed generators, and e : G1 ×G2 → GT is an efficiently computable,
non-degenerate, bilinear map. We use Type-3 groups where it is assumed that
there is no efficiently computable isomorphism between G1 and G2. As in Sect. 2,
we use the bracket notation of [10] for group elements: [x]s denotes gx

s ∈ Gs.
We prove that our construction satisfies evaluation binding under a new

falsifiable assumption, called HintedKernel (HiKer), that we justify in the generic
group model (see full version). The name of the assumption comes from its
similarity with the KerMDH assumption of [28] which for matrices [A]2 from
certain (random) distributions asks the adversary to find a nonzero vector [z]1
such that Az = 0. In our case the adversary is challenged to find a nonzero
[u, v]1 such that uη + v = 0, when given [1, η]2 but also other group elements,
the “hints”, that depend on η and other random variables.

Definition 6 (n-HiKer Assumption). Let bgp = (q,G1,G2,GT , e, g1, g2) be
a bilinear group setting, let n ∈ N and let G1(S, T , H), G2(S, T , H) be the fol-
lowing two sets of Laurent monomials in Zq[S1, T1, . . . , Sn, Tn, H]:

G1 := {Si, Ti}i∈[n] ∪ {Si · Tj}i,j∈[n] ∪
{

Si′

Si
· Ti · H

}
i,i′∈[n]

i�=i′
∪
{

Si′ · Tj′

Si · Tj
· H

}
i,j,i′,j′∈[n]
(i,j) �=(i′,j′)

G2 := {H} ∪ {Si}i∈[n] ∪
{ 1

Si
· Ti · H,

1
Si

· H

}
i∈[n]

∪
{

1
Si

· 1
Tj

· H

}

i,j∈[n]

The n-HintedKernel (n-HiKer) assumption holds if for every n = poly(λ) and
any PPT A, the following advantage is negligible

Advn-HiKer
A (λ) = Pr

[
(U, V ) �= (1, 1)G1 ∧

e(U, [η]2) = e(V, [1]2)

∣∣∣∣ (U, V ) ← A
(
bgp,

[G1(σ, τ , η)]1,

[G2(σ, τ , η)]2

)]

where the probability is over the random choices of σ, τ , η and A’s random
coins.

6.2 Our CFC Construction

As defined in the previous section we express f ∈ Fquad through a set of matrices
F(h) ∈ F

n×n and G(h,h′) ∈ F
n×n2 , and a vector e ∈ F

n such that

f(x(1), . . . , x(m)) = e+
∑

h∈S1(f)

F(h) ·x(h)+
∑

(h,h′)∈S⊗
2 (f)

G(h,h′) ·(x(h)⊗x(h′)) (2)

For the sake of defining the succinctness of our CFC we parametrize the
class Fquad by the size of the quadratic support of f . Formally, let K =
{0, 1, . . . , m(m + 1)/2}. Then we partition Fquad as {Fquad,κ}κ∈K where each
Fquad,κ = {f ∈ Fquad : S⊗

2 (f) = κ}.
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Setup(1λ, 1n) Let n ≥ 1 be an integer representing the width of each of the inputs
of the functions to be computed at opening time. Generate a bilinear group
description bgp := (q,G1,G2,GT , e, g1, g2) ← BG(1λ), and let F := Zq.
Next, sample random α, β, γ ←$F

n, ηα, ηβ , ηγ ←$F, and output

ck :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[α]1 , [α]2 , [β]1 , [γ]1 , [α ⊗ β]1 , [ηα]2 , [ηβ ]2 , [ηγ ]2
{[

αi
γi′
γi

ηα

]
1

,
[

αi′
αi

βiηβ

]
1

}
i,i′∈[n]

i�=i′

{[
αi′ βj′
αiβj

γkηγ

]
1

}
i,j,i′,j′,k∈[n]
(i,j) �=(i′,j′){[

αiηα

γi

]
2

,
[

βiηβ

αi

]
2

}
i∈[n]

,
{[

γkηγ

αi

]
2

}
i,k∈[n]

{
,
[

γkηγ

αiβj

]
2

}
i,j,k∈[n]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Com(ck, x)] output com := [〈x, α〉]1 and aux = x.
Open(ck, (auxi)i∈[m], f) → π Let F(h) ∈ F

n×n for h ∈ S1(f), G(h,h′) ∈ F
n×n2

for (h, h′) ∈ S⊗
2 (f), and e ∈ F

n be the matrices and vectors associ-
ated to f : F

mn → F
n. The opening algorithm computes the output

y = f(x(1), . . . , x(m)) and proceeds as follows.
– For every h ∈ S2(f): compute X

(2)
h := [〈x(h), α〉]2, X

(β)
h := [〈x(h), β〉]1,

which are commitments to x(h) under α in G2 and under β in G1, resp.
– For every h ∈ S2(f): compute a linear map opening proof for the identity

function, to show that Xh and X
(β)
h open to the same value:

π
(β)
h :=

∑
i,i′∈[n]

i�=i′

x
(h)
i′ ·

[
αi′

αi
βiηβ

]

1

– For every pair of inputs x(h), x(h′) such that (h, h′) ∈ S⊗
2 (f), compute a

commitment to their tensor products as follows:

Zh,h′ :=
∑

i,j∈[n]

x
(h)
i x

(h′)
j · [αiβj ]1 = [〈x(h) ⊗ x(h′), α ⊗ β〉]1.

– Compute a linear map opening proof to show that the vector y satisfies
Eq. (2), with respect to all the inputs x(h) committed in Xh and the
inputs x(h) ⊗ x(h′) committed in Zh,h′ :

π(γ) :=
∑

h∈S1(f)

∑
i,i′,k∈[n]

i�=i′

F
(h)
k,i · x

(h)
i′ ·

[
αi′

αi
γkηγ

]

1

+
∑

(h,h′)∈S⊗
2 (f)

∑
i,j,i′,j′,k∈[n]
(i,j) �=(i′,j′)

G
(h,h′)
k,(i,j) · x

(h)
i′ x

(h′)
j′ ·

[
αi′βj′

αiβj
γkηγ

]

1

Note that π(γ) is in fact a proof for the vector e − t; the linear shift will
be addressed by the verifier in Eq. (8).
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– Commit to the output y under γ by computing Y (γ) := [〈y, γ〉]1. Then,
compute a linear map opening proof for the identity function, to show
that Y (γ) and the commitment to the output comy ← Com(ck, y) (which
is under α) open to the same value:

π(α) :=
∑

i,i′∈[n]
i�=i′

yi′ ·
[
αi

γi′

γi
ηα

]

1

– Return π :=
(

{X
(2)
h , X

(β)
h , π

(β)
h }h∈S2(f), {Zh,h′}(h,h′)∈S⊗

2 (f),

Y (γ), π(α), π(γ)).
Ver(ck, (comi)i∈[m], comy, f, π) → b ∈ {0, 1}] Parse the proof π as above and set

Xh := comh. Output 1 if all the following checks pass and 0 otherwise:
– Verify the consistency of all the commitments. Namely, verify that each

Xh and X
(2)
h are commitments to the same value in G1 and G2:

∀h ∈ S2(f) : e (Xh, [1]2) ?= e
(

[1]1, X
(2)
h

)
(3)

– Verify the linear map commitment proofs π
(β)
h that both X

(β)
h , Xh commit

to the same value in different sets of parameters:

∀h ∈ S2(f) : e

⎛
⎝Xh,

∑
i∈[n]

[
βiηβ

αi

]

2

⎞
⎠ ?= e

(
π
(β)
h , [1]2

)
e
(

X
(β)
h , [ηβ ]2

)
(4)

– Verify the consistency of the commitments to the tensor products, i.e.,
verify that Zh,h′ is a commitment to x(h) ⊗ x(h′):

∀(h, h′) ∈ S⊗
2 (f) : e (Zh,h′ , [1]2) ?= e

(
X

(β)
h′ , X

(2)
h

)
(5)

– Verify the linear map commitment proof π(α) that both comy, Y (γ) com-
mit to the same value in different sets of parameters:

e

⎛
⎝Y (γ),

∑
i∈[n]

[
αiηα

γi

]

2

⎞
⎠ ?= e

(
π(α), [1]2

)
e (comy, [ηα]2) (6)

– Verify the linear map commitment proof to check that, intuitively, Y (γ)

is a commitment under γ to the output of f , computed from the inputs
committed in Xh and Zh,h′ . To this end, compute the encoding of the
matrices F(h) for h ∈ S1(f), G(h,h′) for (h, h′) ∈ S⊗

2 (f) and the vector e
as follows. Let Θ = [〈e, γ〉]1 and

Φh :=
∑

i,k∈[n]

F
(h)
k,i ·

[
γkηγ

αi

]

2
, Γh,h′ :=

∑
i,j,k∈[n]

G
(h,h′)
k,(i,j) ·

[
γkηγ

αiβj

]

2
(7)
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and then verify that

∏
h∈S1(f)

e (Xh, Φh) ·
∏

(h,h′)∈S⊗
2 (f)

e
(

Zh,h′ , Γh,h′
) ?= e

(
π(γ), [1]2

)
e
(

Y (γ) · Θ−1, [ηγ ]2
)

.

(8)

Theorem 3. Assume that the n-HiKer assumption holds for a bilinear group
setting generated by BG. Then the construction CFC described above is an eval-
uation binding CFC scheme for the class Fquad of quadratic functions over any
m = poly(λ) vectors of length ≤ n, that has efficient verification and is additively
homomorphic. Considering the partitioning of Fquad = {Fquad,κ}m(m+1)/2

κ=0 , CFC
is s(n, m, κ)-succinct for s(n, m, κ) = (κ + 3m + 3). Furthermore, when executed
on a more adequately chosen circuit parametrization (see the full version for
details) then CFC is (4κ + 3)-succinct.

Due to space constraints, we only include a sketch of the security proof. The
full proof of the theorem is available in the full version.

6.3 Resulting Instantiations of FC for Circuits

We summarize the FC schemes that result from instantiating our generic con-
struction of Sect. 5 with our pairing-based CFC. The results follow by combining
Theorems 2 and 3 and from the circuit optimizations that we describe in our
full version.

Corollary 1. Assume that the n-HiKer assumption holds for BG. Then the fol-
lowing statements hold:

1. There exists an FC scheme for the class Fn = {F(d,t,w)} of arithmetic circuits
of width w ≤ n that is O(d · t)-succinct. In particular, the FC is O(d2)-
succinct for an arbitrary arithmetic circuit of multiplicative depth d, and is
O(d)-succinct for a layered arithmetic circuit of multiplicative depth d.

2. There exists an FC scheme for the class Fn = {F(d,t,w)} of arithmetic circuits
of width w ≤ n that is O(d2 · w · n−1)-succinct.

3. There exists an FC scheme for the class of arithmetic circuits of size ≤ S,
that is O(d)-succinct where d is the multiplicative depth of the circuit.

4. For any w0 ≥ 2, there exists an FC scheme for the class F = {F(d,t,w)} of
circuits of arbitrary width w > w0 that is O(d · t · (w/w0)2)-succinct.

6.4 Proof of Security

In this section, we present a detailed sketch of the proof that our CFC satisfies
evaluation binding. The full proof can be found in the full version, where we also
show knowledge extractability by relying on a non-falsifiable assumption.
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Consider an adversary A who returns a tuple ((comh)h∈[m], comy, f, π,
˜comy, π̃) that breaks evaluation binding, set Xh := comh, and parse the proofs

as follows

π :=
(

{X
(2)
h , X

(β)
h , π

(β)
h }h∈S2(f), {Zh,h′}(h,h′)∈S⊗

2 (f), Y (γ), π(α), π(γ)
)

π̃ :=
(

{X̃
(2)
h , X̃

(2)
h , π̃

(β)
h }h∈S2(f), {Z̃h,h′}(h,h′)∈S⊗

2 (f), Ỹ (γ), π̃(α), π̃(γ)
)

By evaluation binding, both proofs must verify for the same function f , the same
input commitments {Xh}h∈[m], and different output comy �= ˜comy commitments.

We show how to turn A into an adversary B against the assumption. A can
cheat in three possible ways, for which we define events E1, E2, E3 as:

– E1 is the event that Y (γ) = Ỹ (γ). As comy �= ˜comy, this implies an evaluation
binding break in the linear map opening proof in Eq. (6).

– E2 is the event that E1 does not happen (i.e., Y (γ) �= Ỹ (γ)) and that X
(β)
h∗ �=

X̃
(β)
h∗ for some h∗ ∈ S2(f). This means that the proofs π

(β)
h∗ , π̃

(β)
h∗ open the

commitment comh∗ to two different output commitments for the identity
function, which breaks evaluation binding in Eq. (4).

– E3 is the event that neither E1 nor E2 occur. In this case, we will show that
evaluation binding breaks in Eq. (8).

For any of these events, we will use A’s output to break the n-HiKer assump-
tion if this is embedded into ck. For this embedding, B makes a secret guess
ŝ ∈ {0, 1} such that ŝ = 0 corresponds to a guess that event E1 occurs while
ŝ = 1 corresponds to E2 or E3.

Commitment Key Generation. We sketch how B can generate ck and embed
into it the input of the n-HiKer assumption. For ŝ = 0, B samples α, β ←$F

n,
ηβ , ηγ ←$F and implicitly sets γ := σ and ηα := η from the input of the assump-
tion. It is easy to see that this implicit setting allows B to compute all the
elements in the first row of ck, namely [α, β, γ, α ⊗ β]1 , [α, ηα, ηβ , ηγ ]2. Then,
B can simulate the remaining elements analogously. For instance, for the first
element in the second row, B sets

[
αi

γi′
γi

ηα

]
1

:= αi

[
ησi′
σi

]
1

for all i, i′ ∈ [n], i �= i′.
For ŝ = 1, B samples ηα, rβ , rγ ←$F, γ ←$F

n and implicitly sets α := σ, β :=
τ , ηβ := rβ · η, ηγ := rγ · η. Then, she proceeds as before. It is not hard to show
that ck is perfectly distributed and that ŝ is perfectly hidden to A.

Execution of A. Having generated ck, B runs A(ck), and parses the output as
before. Then, B proceeds differently according to the events E1, E2, E3 above.

If E1 occurs, B first checks that ŝ = 1 (and aborts otherwise). If B pro-
ceeds, we have that as Y (γ) = Ỹ (γ), then π(α), π̃(α) open to different comy, ˜comy.
Therefore, by Eq. (6), we have

e
(

π(α), [1]2
)

e (comy, [ηα]2) = e
(

π̃(α), [1]2
)

e ( ˜comy, [ηα]2)
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Then, B returns (U, V ) such that U := ˜comy/comy, V := π(α), /π̃(α). If B
did not abort, then ŝ = 0 and we have that ηα = η and e (U, [η]2) = e (V, [1]2),
which breaks the HiKer assumption.

We use a similar argument for events E2 and E3, for which B aborts if ŝ = 0.
Since ŝ is perfectly hidden B aborts with probability 1/2. Hence, if A is successful
with probability ε, then B breaks the assumption with probability ε/2.

7 Lattice-Based CFC for Quadratic Functions

In this section, we present a lattice-based construction of a CFC for quadratic
functions, that can be seen as a lattice analogue of our pairing-based CFC
obtained via a slight generalisation of the translation technique in [1].

7.1 Lattice Preliminaries

Let R = Z[ζ], where ζ is a fixed primitive m-th root of unity, be the ring of
integers of the m-th cyclotomic field of degree d = ϕ(m), where elements are
represented by their coefficient embedding x =

∑d−1
i=0 xi ·ζi. If m is a prime-power

(resp. power of 2), we call R a prime-power (resp. power-of-two) cyclotomic ring.
For the rest of this section we will assume that m = poly(λ).

For x ∈ R, write ‖x‖ := maxd−1
i=0 |xi| for the infinity norm induced on R

by Z. The norm generalises naturally to vectors u = (u1, . . . , un) ∈ Rn, with
‖u‖ := maxn

i=1‖ui‖. For q ∈ N, write Rq := R/qR. We always assume that q is a
(rational) prime. By a slight abuse of notation, we identity Rq with its balanced
representation, i.e. if x =

∑d−1
i=0 xi · ζi ∈ Rq then |xi| ≤ q/2 for all i. The set of

units, i.e., invertible elements, in Rq is denoted by R×
q .

The ring expansion factor γR of R is defined as γR := maxa,b∈R
‖a·b‖

‖a‖·‖b‖ . It
is known [2] that if R is a prime-power cyclotomic ring then γR ≤ 2 · d, and if
R is a power-of-two cyclotomic ring then γR ≤ d.

Lattice Trapdoors. We recall the following standard algorithms (e.g., [11,
12,27]) associated to lattice trapdoors and their properties for sufficiently large
“leftover hash lemma parameter” lhl(R, η, q, β) = O(η logβ q):

– (A, tdA) ← TrapGen(R, 1η, 1
, q, β): The trapdoor generation algorithm gen-
erates a matrix A ∈ Rη×


q along with a trapdoor tdA. It is assumed that
(η, �, q, β) are implicitly specified by tdA. When � ≥ lhl(R, η, q, β), the distri-
bution of A is within negl(λ) statistical distance of U(Rη×


q ).
– u ← SampD(R, 1η, 1
, q, β′): The domain sampling algorithm samples a vec-

tor u ∈ R
 with norm ‖u‖ ≤ β′. When β′ ≥ β and � ≥ lhl(R, η, q, β), then
the distribution of (A, A · u mod q) for a uniformly random A ←$ Rη×


q is
within negl(λ) statistical distance of U(Rη×


q × Rη
q ).
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– u ← SampPre(tdA, v, β′): The preimage sampling algorithm inputs a vector
v ∈ Rn

q and outputs a vector u ∈ R
. If the parameters (η, �, q, β) of tdA
satisfy β′ ≥ β and � ≥ lhl(R, η, q, β), then u and v satisfy A · u = v mod q
and ‖u‖ ≤ β′. Furthermore, u is within negl(λ) statistical distance to u ←
SampD(R, 1n, 1
, q, β′) conditioned on A · u = v mod q.

7.2 Hardness Assumptions

The k-R-ISIS assumption family10 was recently introduced in [1] as a natural
extention of the standard short integer solution (SIS) assumption and a natural
lattice-analogue of a certain class of pairing-based assumptions. The k-R-ISIS
family was accompanied by a translation technique outlined in [1] for translating
pairing-based schemes and assumptions to their lattice-analogues.

For instance, a certain k-R-ISIS assumption could be parametrised by a set
G of monomials. It states that even when given short preimages ug satisfying
A · ug = t · g(v) mod q for all g ∈ G, it is hard to find a short non-zero preimage
u∗ satisfying A · u∗ = 0 mod q.

Applying the translation technique in [1] to the pairing-based assumption
(Definition 6) which underlies the security of the pairing-based CFC construc-
tion, we encounter an obstacle that there is no translation for the term [η]2 in
the challenge relation e(U, [η]2) = e(V, [1]2).

To overcome the above obstacle, in the following, we introduce (a special case
of) a generalisation of the k-R-ISIS assumption which we call the Twin-k-R-ISIS
assumption. In a nutshell, instead of a single set G of monomials, we now have
two (or in general more) sets GA and GB of non-overlapping monomials. The
Twin-k-R-ISIS assumption states that even when given short preimages ug sat-
isfying A · ug = t · g(v) mod q for all g ∈ GA and short preimages wg satisfying
B ·ug = t ·g(v) mod q for all g ∈ GB , it is hard to find a short non-zero preimage
(u∗, w∗) satisfying A·u∗ +B·w∗ = 0 mod q. We stress that the non-overlapping
requirement of GA and GB is crucial, for otherwise (ug, −wg) would be a trivial
solution for any g ∈ GA ∩ GB . Other than this trivial attack (which is ruled out),
it could be verified that the (failed) attack strategies discussed in [1] against the
k-R-ISIS assumption also fail against the Twin-k-R-ISIS assumption. 11

10 We use k-R-ISIS to refer to both the ring and module version. In [1], the module
version is given the name k-M -ISIS.

11 We refer to the attack strategies discussed in [1, Section 4.1]. There, the authors
discussed two (they gave three, but the third generalises the second) attacks: 1)
Direct SIS attack: Finding a short vector in the kernel of (A| − t · g∗(v)). 2) Find a
(not necessarily short) linear combination (z1, . . . , zk) so that s∗ ·g∗(v) =

∑
i
zi ·gi(v)

and ug∗ =
∑

i
zi · ugi is short. There seems to be no obvious way that either attack

can take advantage of the two-slotted structure in the twin-kMISIS assumption.
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Definition 7 (Twin-k-R-ISIS Assumption). Let �, η ∈ N, q be a rational
prime, β, β∗ ∈ R

+,

GA :=
{

Xi′

Xi
· X̄k,

Xi′

Xi
· X̌k,

X̄i′

X̄i

· Xk

}

i,i′,k∈[n],i �=i′
∪
{

Xi′ · X̌j′

Xi · X̌j

· X̄k

}

i,i′,j,j′,k∈[n]
i�=i′,j �=j′

,

GB :=
{

Xk, X̄k, X̌k

}
k∈[n]

, and G := GA ∪ GB. Let D be a distribution over R
.

Write pp := (Rq, η, �, n, β, β∗, GA, GB , D). The k-R-ISISpp assumption states that
for any PPT adversary A we have Advk-r-isispp,A (λ) ≤ negl(λ), where Advk-r-isispp,A (λ)
is given by

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

Au∗ + Bw∗ ≡ 0 mod q

∧ 0 < ‖(u∗, w∗)‖ ≤ β∗

∣∣∣∣∣∣∣∣∣∣∣∣

A ←$ Rη×

q mod q; B ←$ Rη×


q mod q

t ←$ (R×
q )η; v, v̄, v̌ ←$ (R×)n

ug ←$ D : Aug ≡ tg(v, v̄, v̌) mod q, ∀g ∈ GA

wg ←$ D : Bwg ≡ tg(v, v̄, v̌) mod q, ∀g ∈ GB

(u∗, v∗) ← A (A, B, t, v, v̄, v̌, {uGA
, wGB

})

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In the full version, we discuss the relation between Twin-k-R-ISIS, the original
k-R-ISIS [1], and the recent BASIS assumption [30].

7.3 Construction

In the following, we construct a lattice-based chainable functional commitment
scheme. Our construction is parametrised by a ring R, dimensions η, �, modulus
q, norm bound β, an input length n, and the number of inputs m. Before describ-
ing the construction, we first introduce the following shorthands and notation.

For a quadratic polynomial map f : Rmn → Rn, we express f(x1, . . . , xm)

f(x1, . . . , xm) = e +
∑

h∈S1(f)

Fh · xh +
∑

(h,h′)∈S⊗
2 (f)

Gh,h′ · (xh ⊗ xh′)

for some Gh,h′ ∈ Rn×n2 , Fh ∈ Rn×n, and e ∈ Rn, similarly to previous sections.
Our lattice-based construction is additionally parametrised by a norm bound
α ∈ R

+. We assume that messages x and each coefficient of any quadratic
polynomial map f to be opened have norm at most α, and f is such that for
any x1, . . . , xm of norm at most α, it holds that ‖f(x1, . . . , xm)‖ ≤ α.

For a vector v ∈ (R×
q )n, denote its component-wise inverse by v† := (v−1

i )n
i=1.

Define Zv := v† · vT − I = (zi,j)i,j where zi,j = 0 if i = j, and zi,j = v−1
i · vj if

i �= j. We are now ready to describe the construction as follows.

Setup(1λ, 1n)
– Sample trapdoored matrices (A, tdA), (B, tdB) ← TrapGen(R, 1η, 1
, q,

β).
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– Sample submodule generator t ←$ (R×
q )η.

– Sample commitment key vectors v, v̄, v̌ ←$ Rn
q .

– Sample a short preimage ug ← SampPre(tdA, t ·g(v, v̄, v̌) mod q) for each
g ∈ GA, where

GA :=
{

Xi′

Xi
· X̄k,

Xi′

Xi
· X̌k,

X̄i′

X̄i

· Xk

}

i,i′,k∈[n],i�=i′
∪
{

Xi′ · X̌j′

Xi · X̌j

· X̄k

}
i,i′,j,j′,k∈[n]

i�=i′,j �=j′

– Sample a short preimage wg ← SampPre(tdB, t·g(v, v̄, v̌) mod q) for each
g ∈ GB , where

GB :=
{

Xk, X̄k, X̌k

}
k∈[n]

.

– Output ck := (A, B, t, v, v̄, v̌, (ug)g∈GA
, (wg)g∈GB

) .
Com(ck, x) Compute c := 〈v, x〉 mod q and output , := c, aux := x.
Open(ck, (auxh)h∈[m], f)

– Parse auxh as xh for all h ∈ [m] and let y := f(x1, . . . , xm).
– Compute v1 := vec(Zv) ⊗ v̄ and v2 := vec((I + Zv) ⊗ (I + Zv̌) − I) ⊗ v̄.
– Pack the preimages vectors given in the public parameters as columns of

the following matrices:
• Ui such that A · Ui = t · vT

i mod q for i ∈ [2].
For example, for i = 1, the first few columns of the R.H.S. of the
equation are of the form

t · vT
1 = t · (0 v1

v2
· v̄1

v1
v3

· v̄1 . . .
)

.

Notice that each column is either 0 ∈ Rη
q , for which 0 ∈ R
 is a trivial

preimage, or of the form t · vi′
vi

· v̄k for some i, i′, k ∈ [n] with i �= i′,
for which a preimage is given in ck.

• Ū such that A · Ū = t · vT · Zv̄ mod q.
• Ǔ such that A · Ǔ = t · v̌T · Zv mod q.
• W such that B · W = t · vT mod q.
• W̄ such that B · W̄ = t · v̄T mod q.
• W̌ such that B · W̌ = t · v̌T mod q.

– Compute u :=
∑

h∈S1(f) U1 · vec(xT
h ⊗ Fh) +

∑
(h,h′)∈S⊗

2 (f) U2 · vec((xT
h ⊗

xT
h′) ⊗ Gh,h′).

– Compute w0 := W · y.
– Compute ū0 := Ū · y and w̄0 := W̄ · y.
– Compute ǔh := Ǔ · xh and w̌h := W̌ · xh for h ∈ S2(f).
– Output (u, w0, ū0, w̄0, (ǔh, w̌h)h∈S2(f)).

Ver(ck, (comh)h∈[m], com0, f, π)
– Define f̂(C1, . . . , Cm, Č1, . . . , Čm)

:= v̄T·
⎛
⎝ ∑

(h,h′)∈S2(f)

Gh,h′ · (v† ⊗ v̌†) · Ch · Čh′ +
∑

h∈S1(f)

Fh · v† · Ch + eT

⎞
⎠ .
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– Check if ‖w0‖ ≤ β∗ and ‖w̄0‖ ≤ β∗.
– For h ∈ [m] \ S2(f), set čh = 0 and check if ‖w̌h‖ ≤ β∗.
– Check if B · w0 = t · c0 mod q.
– Check if there exists (unique) c̄0 such that B · w̄0 = t · c̄0 mod q.
– Check if there exists (unique) čh such that B · w̌h = t · čh mod q for

h ∈ S2(f).
– Check if A · u = t · (f̂(c1, . . . , cm, č1, . . . , čm) − c̄0) mod q and ‖u‖ ≤ β∗.
– Check if A · ū0 = t · (vT · v̄† · c̄0 − c0) mod q and ‖ū0‖ ≤ β∗.
– Check if A · ǔh = t · (v̌T ·v† · ch − čh) mod q and ‖ǔh‖ ≤ β∗ for h ∈ S2(f).
– Accept, i.e. output 1, if all checks pass. Otherwise, output 0.

Theorem 4. Let � ≥ lhl(R, η, q, β), β∗ ≥ 2 · n4 · m̂2 · α3 · β · γ3
R, and D =

SampD(R, 1η, 1
, q, β), and assume that the twin-k-R-ISISRq,η,
,n,β,β∗,GA,GB ,D
assumption holds. Then, the construction CFC described above is an evaluation
binding CFC for the class Fquad of quadratic functions over any m ≤ m̂ vectors
of length ≤ n, has efficient verification, and is (almost) additively homomorphic.
For a function f ∈ Fquad, the proof size of CFC is |π| = |S2(f)|·log2(m·n)·poly(λ),
and for the class Flevel = {Flevel,κ}, our CFC is s(n, m, κ)-succinct where
s(n, m, κ) = κ · log2(m · n). Furthermore, by setting m̂ = λω(1) the CFC supports
quadratic functions over any m = poly(λ) vectors and is κ · log2(n)-succinct.

Due to space constraints, we only provide the proof of security. The remaining
proofs are available in the full version.

7.4 Resulting Instantiations of FC for Circuits

As in the previous section, we summarize the FC schemes that result from instan-
tiating our generic construction of Sect. 5 with our lattice-based CFC.

Corollary 2. Assume that all the conditions of Theorem 4 are satisfied. Then
the following statements hold:

1. There exists an FC scheme for the class Fn = {F(d,t,w)} of arithmetic circuits
of width w bounded by ≤ n and in-degree bounded by ≤ tmax that is O(d ·
log2(tmax · n))-succinct.

2. Using adequate parameters, there exists an FC scheme for Fn = {F(d,t,w)} of
width w ≤ n that is O(d)-succinct.

3. For any w0 ≥ 2, there exists an FC scheme for the class F = {F(d,t,w)} of
circuits of arbitrary width w > w0 that is O(d · (w/w0)2)-succinct.

We provide the proof in the full version. As opposed to our pairing-based
construction, the linear dependency on the depth does not follow from a black-
box application of our FC from CFC construction. In fact, Theorem 2 gives a
proof size of O(d · t · log2(tmax · n)). We can supress the t factor by noticing that,
for each circuit layer h, the same vectors (ǔh, w̌h) are included in the openings
at every layer h′ such that h ∈ S2(f (h′)).
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7.5 Proof of Security

Suppose there exists a PPT adversary A against evaluation binding of the CFC
construction, we construct a PPT algorithm B for the Twin-k-R-ISIS prob-
lem as follows. Given a Twin-k-R-ISIS instance ck, B passes ck to A. The
adversary A returns input commitments (ch)h∈[m], a quadratic function f ,
two output commitments c0 and c′

0, and two opening proofs π and π′, where
π = (u, w0, ū0, w̄0, (ǔh, w̌h)h∈S(f)) and π′ = (u′, w′

0, ū′
0, w̄′

0, (ǔ′
h, w̌′

h)h∈S2(f)).
By our assumption on A, with non-negligible probability, π (and analogously π′)
satisfies

A · u = t · (f̂(c1, . . . , cm, č1, . . . , čm) − c̄0) mod q,

A · ū0 = t · (vT · v̄† · c̄0 − c0) mod q, and
A · ǔh = t · (v̌T · v† · ch − čh) mod q for all h ∈ S2(f),

where B · w̄0 = t · c̄0 mod q and B · w̌h = t · čh mod q.
For any h ∈ S2(f), suppose w̌h �= w̌′

h, then from the third equation (ǔh −
ǔ′

h, w̌h−w̌′
h) would be a non-zero vector of norm at most 2β∗ satisfying A·(ǔh−

ǔ′
h) + B · (w̌h − w̌′

h) = 0 mod q, contradicting the twin-k-R-ISIS assumption.
We therefore have w̌h = w̌′

h and hence čh = č′
h for all h ∈ S2(f).

Next, suppose w̄0 �= w̄′
0, then from the first equation (u−u′, w̄0−w̄′

0) would
be a non-zero vector of norm at most 2β∗ satisfying A · (u − u′) + B · (w̄0 −
w̄′

0) = 0 mod q, contradicting the twin-k-R-ISIS assumption. We therefore have
w̄0 = w̄′

0 and hence c̄0 = c̄′
0.

Finally, suppose w0 �= w′
0, then from the second equation (ū0− ū′

0, w0−w′
0)

would be a non-zero vector of norm at most 2β∗ satisfying A·(ū0−ū′
0)+B·(w0−

w′
0) = 0 mod q, contradicting the twin-k-R-ISIS assumption. We therefore have

w0 = w′
0 and hence c0 = c′

0, meaning that A cannot be a successful adversary
against evaluation binding.
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17. González, A., Zacharakis, A.: Fully-succinct publicly verifiable delegation from
constant-size assumptions. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part I.
LNCS, vol. 13042, pp. 529–557. Springer, Heidelberg (Nov 2021). https://doi.org/
10.1007/978-3-030-90459-3 18

18. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC, pp. 469–477. ACM Press (Jun 2015). https://doi.org/10.1145/2746539.
2746576

19. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-540-78967-3 24

20. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (Feb 2002). https://doi.org/10.1007/3-540-45760-7 17

21. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (Dec 2010). https://doi.org/10.1007/978-3-642-
17373-8 11

22. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated veri-
fier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 622–651.
Springer, Heidelberg (May 2019). https://doi.org/10.1007/978-3-030-17656-3 22

23. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS,
vol. 11692, pp. 530–560. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/
978-3-030-26948-7 19

24. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP
2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (Jul 2016). https://doi.
org/10.4230/LIPIcs.ICALP.2016.30

25. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 499–517. Springer, Heidelberg (Feb 2010). https://doi.org/10.1007/978-
3-642-11799-2 30

26. Lipmaa, H., Pavlyk, K.: Succinct functional commitment for a large class of arith-
metic circuits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS,
vol. 12493, pp. 686–716. Springer, Heidelberg (Dec 2020). https://doi.org/10.1007/
978-3-030-64840-4 23

27. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-
29011-4 41
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Abstract. We show that for x
$← [0, 2λ)μ and any integer N the prob-

ability that f(x) ≡ 0 mod N for any non-zero multilinear polynomial
f ∈ Z[X1, . . . , Xμ], co-prime to N is inversely proportional to N . As a
corollary we show that if log2 N ≥ log2(2μ)λ + 8μ2 then the probability
is bounded by μ+1

2λ . We also give tighter numerically derived bounds,
showing that if log2 N ≥ 418, and μ ≤ 20 the probability is bounded by
μ
2λ + 2−120.

We then apply this Multilinear Composite Schwartz-Zippel Lemma
(LCSZ) to resolve an open problem in the literature on succinct argu-
ments: that the Bulletproofs protocol for linear relations over classi-
cal Pedersen commitments in prime-order groups remains knowledge
sound when generalized to commitment schemes that are binding only
over short integer vectors. In particular, this means that the Bullet-
proofs protocol can be instantiated with plausibly post-quantum com-
mitments from lattice hardness assumptions (SIS/R-SIS/M-SIS). It can
also be instantiated with commitments based on groups of unknown order
(GUOs), in which case the verification time becomes logarithmic instead
of linear time.1

Prior work on lattice-based Bulletproofs (Crypto 2020) and its exten-
sions required modifying the protocol to sample challenges from special
sets of polynomial size. This results in a non-negligible knowledge error,
necessitating parallel repetition to amplify soundness, which impacts
efficiency and poses issues for the Fiat-Shamir transform. Our anal-
ysis shows knowledge soundness for the original Bulletproofs protocol
with the exponential-size integer challenge set [0, 2λ] and thus achieves
a negligible soundness error without repetition, circumventing a previ-
ous impossibility result (Crypto 2021). Our analysis also closes a critical
gap in the original security proof of DARK, a GUO-based polynomial
commitment scheme (Eurocrypt 2020). Along the way to achieving our
result we also define Almost Special Soundness (AMSS), a generalization
of Special-Soundness. Our main result is divided into two parts: (1) that
the Bulletproofs protocol over generalized commitments is AMSS, and
(2) that AMSS implies knowledge soundness. This framework serves to
simplify the application of our analytical techniques to protocols beyond
Bulletproofs in the future(1This paper incorporates content published
in the updated EPRINT of DARK [18]. The full version of this paper
containing proofs is available online [17].).
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1 Introduction

The famous DeMillo-Lipton-Schwartz-Zippel (DLSZ) lemma [22,35,39] states
that for any field F, non-empty finite subset S ⊆ F, and non-zero μ-variate
polynomial f over F of total degree d, the number of zeros of f contained in Sμ

is bounded by d · |S|μ−1 (or equivalently, the probability that f(x) = 0 for x
sampled uniformly from Sμ is bounded by d

|S| ). For μ = 1 this simply follows
from the Fundamental Theorem of Algebra, but for multivariate polynomials, the
number of zeros over the whole field could be unbounded. The computational
significance of this lemma is that sampling an element from S only takes n ·
log2(|S|) random bits but the probability of randomly sampling a zero of f from
Sμ is inversely proportional to |S|, which is exponential in the number of random
bits. One of its original motivations was an efficient randomized algorithm for
polynomial identity testing, but it has since found widespread application in
computer science [27].

The classical lemma applies more broadly to integral domains, but not to
more general commutative rings such as the ring ZN . As a simple counterexam-
ple, over the ring of integers modulo N = 2p the polynomial f(X) = pX mod N
vanishes on half of the points in [0, N). This counterexample exploits the fact
that f is of the form f(X) = u · g(X) where u is a zero-divisor. There are also
simple counterexamples for f co-prime to N : setting N = 2λ the polynomial
f(X) = Xλ mod N vanishes on half of the points in [0, N). However, there are
no such counterexamples when f is both multilinear and co-prime to N . In fact,
we will show in this work the probability a random vector from Sμ = [0,m)μ

is a zero of a μ-linear polynomial (multilinear with μ variables) co-prime to N
is negligible in the minimum of log m and log N . As we will show in our main
result, this special case of f and N still has a surprisingly powerful application to
cryptography that resolves multiple recent open questions in the area of succinct
arguments.

The DLSZ lemma has previously been extended to commutative rings by
restricting the set S to special subsets in which the difference of any two elements
is not a zero divisor [8]. For example, in the case of ZN this would require the
difference of any two elements in S to be co-prime to N . All examples of such
sets have O(log N) size. Our present work explores the setting where S is the
contiguous interval [0,m) and thus does not have this restriction.

As a warmup, it is easy to see that any univariate linear polynomial f(X) =
c · X + b co-prime to N has at most one root modulo N . If there were two such
roots x1 �≡ x2 mod N then c(x1 − x2) ≡ 0 mod N implies c is a zero divisor
(i.e., gcd(c,N) �= 1). Furthermore, c · x1 ≡ −b mod N implies −b = c · x1 + q · N
for some q ∈ Z, and thus, gcd(c,N) also divides b. This would contradict the co-
primality of f and N . So for x uniformly distributed in S = [0,m) the probability
of f(x) ≡ 0 mod N in this case is indeed at most 1

|S| . Unfortunately, this does
not generalize nicely to polynomials of arbitrary degree as illustrated by the
counterexample above. On the other hand, we are able to generalize the lemma
in a meaningful way to multivariate linear polynomials (i.e., at most degree 1 in
each variable). We bound the probability of sampling a zero from Sμ = [0,m)μ
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of a μ-linear polynomial co-prime to N by ε+ μ
|S| , where ε is tightly bounded by

a product of regularized beta functions.
We also formulate an inverse lemma showing that for all sufficiently large

N , ε is negligibly small. In particular, for log N ≥ 8μ2 + (1 + log μ)λ, ε is at
most 2−λ, showing that the probability decays exponentially. Our technique for
deriving this threshold lower bound t(λ, μ) on N for a target λ formulates t(λ, μ)
as the objective function of a knapsack problem. We derive an analytical solution
by deriving bounds on the regularized beta function. We also apply a knapsack
approximation algorithm to find tighter values of t(λ, μ) for specific values of μ
and λ. We call our new lemma the multilinear composite Schwartz-Zippel (LCSZ)
lemma.

1.1 Bulletproofs for Short Pre-images

Using the multi-linear composite Schwartz-Zippel lemma (LCSZ), we can prove
that a generalization of the Bulletproofs Polynomial Commitment [11,16,36] is
secure even with large challenge sets. The generalization allows for commitments
to “short” (i.e., bounded norm) integer vectors. This includes groups of unknown
order, such as the RSA group or class groups, as well as lattice-based commit-
ments (i.e. Ajtai commitments based on the Integer SIS or Ring-SIS assump-
tions). The instantiation using commitments based on groups of unknown order
is essentially a variation of DARK [19], and our analysis closes a vital gap in
the security proof that was first discovered by [9].1 Unlike the fix proposed by
[9], our analysis covers the original DARK protocol and enables the use of a
large challenge space instead of relying on binary challenges. Our analysis is also
the first to show that lattice-based Bulletproofs [13] (i.e., Bulletproofs instanti-
ated with Ajtai commitments) with a challenge space of exponential size (e.g.,
[0, 2λ)) has a negligible knowledge error (without parallel repetition). All previ-
ous attempts [1,4,13] had analyzed small, specially constructed challenge sets,
which result in a knowledge error o( 1

poly(λ) ), and thus these protocols used parallel
repetition to amplify soundness. In fact, [1] give an impossibility result, show-
ing that the approach of specially constructing such sets is limited and unlikely
to result in a negligible soundness error. Furthermore, parallel-repetition is not
always compatible with the Fiat-Shamir transform [5,38].

In a bit more detail, lattice-based Bulletproofs use commitments to an integer
vector x ∈ Z

n of the form C = Ax mod q where A is a matrix over a Z-
module R and q is a prime number. When R = Z, the commitment is binding
to integer vectors of bounded L2 norm B under the short-integer solution (SIS)
assumption for a matrix of appropriate dimensions and q sufficiently larger than
B. A more general assumption called module SIS (M-SIS) allows for R to be an
m-th cyclotomic ring R = Z[X]/Φm(X). The goal of the protocol is to argue,
for a public input z ∈ Z

n and prime p, that 〈z,x〉 = y mod p. The protocol is
knowledge sound if there is a knowledge extractor that can obtain an integer

1 The analysis we provide in this paper also applies to DARK in its original form. We
include this in an updated appendix of the original DARK paper.
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vector x̃ ∈ Z
n of sufficiently small norm and a sufficiently small positive integer

s such that Ax̃ = s·C and 〈z, x̃〉 = s·y mod p. The protocol has knowledge error
δ if for any adversary succeeding with probability ε the extractor runs in time
poly(n)/ε and succeeds with probability at least 1 − δ/ε. The pair (x̃, s) is also
known as a “relaxed” opening of the commitment C, which can be interpreted as
an opening to the rational x̃/s. This is binding under M-SIS if s · ||x̃||2 ≤ B. The
recent work by Albrecht and Lai [1] called s the slack and the norm increase
factor t = ||x̃||2/||x||2 the stretch. It is important to keep s · t · ||x||2 ≤ B
for the protocol to be meaningfully sound as otherwise the commitment is no
longer binding. While the size of q could always be increased to accommodate
a larger B, this increases the communication complexity of the protocol. Thus,
for the protocol to remain succinct it is important that s · t ∈ 2O(polylog(n)). The
impossibility result of [1] suggested that prior approaches to analyzing lattice-
based Bulletproofs would not be able to demonstrate knowledge soundness with
small slack using challenge sets of size greater than poly(λ), and thus would have
knowledge soundness error o(1/poly(λ)) without parallel repetition. Our work
gets around this barrier with new analysis techniques, achieving exponentially
small knowledge error 2−λ with s · t ∈ 2O(polylog(n)).

Prior analysis of DARK and lattice Bulletproofs considered the special-
soundness of the protocol. Informally, a public-coin interactive argument for a
given relation is special-sound if an extractor can obtain a witness from any
tree of accepting transcripts with distinct challenges at any branch. By the
“forking lemma”, which shows how to generate such trees, special-soundness
implies knowledge soundness. DARK and lattice Bulletproofs both have a similar
structure, the main difference being the instantiation of the vector commitment,
although in both cases the vector commitment is only binding to short vectors
in Z

n of norm at most B ∈ 2O(polylog(n)). This restriction on the size of B is for
succinctness in the case of lattice Bulletproofs and for quasilinear prover com-
plexity in the case of DARK (the time complexity of creating a DARK commit-
ment is Ω(n log B) group operations). Special-soundness of these protocol thus
requires that the extractor can obtain from any such transcript tree a relaxed
opening to the integer vector commitment with slack s and stretch t such that
s · t ∈ 2O(polylog(n)). In a special-soundness analysis, the differences of challenges
in a transcript tree are arbitrary. The strech and slack of the extracted open-
ing grow multiplicatively with those differences, which makes it difficult to bind
them tightly. In fact, with challenges chosen from the set [0, 2λ), the extractor
might obtain an opening with slack 2o(λn), which is far too large for either DARK
or lattice Bulletproofs. However, using the LCSZ, we are able to show that Bul-
letproofs with vector commitments binding to short vectors (which generalize
both DARK and lattice Bulletproofs) satisfies a less stringent requirement we
call almost-special soundness (AMSS), which we show also implies knowledge
soundness.

Almost Special Soundness. We introduce almost-special soundness (AMSS)
as a generalization of special-soundness. AMSS protocols are multi-round pro-
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tocols where every round is associated with a commitment that is binding over
openings to messages in a set W. This does not have to be an explicit message
sent to the verifier but roughly represents the prover’s state at a round of the pro-
tocol. At a very high level, protocols are AMSS if there exists an algorithm that
extracts from any forking transcript tree an opening to these commitments, and
if the opening is not inside a subset W ′ ⊂ W then re-running (or completing) the
protocol starting from this extracted state on fresh challenges would fail (with
overwhelmingly high probability) to result in a transcript accepted by the veri-
fier. One additional key requirement, stated informally here, is that re-running
the protocol on the same challenges would either result in the same transcript
or a break of the commitment scheme. We leverage these combined properties
to show that AMSS protocols are knowledge-sound. We then show that Bullet-
proofs with commitments to short pre-images are almost-special sound, which
relies on the inverse LCSZ.

As a brief overview, we begin by viewing the relaxed openings of the com-
mitment scheme as rational openings. For any commitment C the opening (f , N)
such that com(f) = N ·C is interpreted as an opening of C to the rational vector
f/N . In the terminology of [1], the slack is thus the size of the absolute value of
the denominator |N | and the stretch is the L2 norm of the numerator ||f ||2. The
Bulletproofs verifier accepts the protocol transcript only if the final message is
a “small” integer (of bounded absolute value). This suggests that if the prover
were to run the honest protocol starting with f/N as its private state, then its
success would imply f(r) ≡ 0 mod N where f is a multilinear polynomial with
the coefficients defined by f and r are the verifier challenges. We can use the
inverse LCSZ to show that if N is too “large” and r is sampled randomly then
this probability is negligible. Making this analysis formal is non-trivial, and we
present a summary of the ideas in the technical overview below.

Along the way to showing that AMSS implies knowledge soundness we also
introduce a variant of the standard forking lemma, which we call the path pred-
icate forking lemma. This lemma shows the existence of a PPT algorithm to
generate a transcript tree satisfying additional properties for AMSS protocols
that enable the efficient extraction of a witness.

Fiat-Shamir Transform. The Fiat-Shamir transform is a method for trans-
forming an interactive protocol with a public coin verifier into a non-interactive
publicly verifiable protocol by replacing the verifier public-coin challenges with
hashes of the prover’s messages. Recent work [3,38] has shown that the Fiat-
Shamir transform is secure for multi-round special-sound protocols. However, the
security proof does not translate immediately to almost special-sound (AMSS)
protocols. We prove security of the Fiat-Shamir transform for AMSS protocols
with computationally unique commitments, where it is infeasible to open two dis-
tinct commitments to the same message. The deterministic variants of DARK
and Ajtai commitments have this property.
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1.2 Related Work

Lattice-Based Bulletproofs. Most practical lattice-based succinct proof sys-
tems have focused on single-round protocols. These protocols [6,23,30,32] have
o(

√
(m)) communication complexity. Bulletproofs [11,16] is a multiround argu-

ment of knowledge for the opening of Pedersen vector commitments, which are
binding based on the discrete-logarithm assumption. The Bulletproofs proto-
col has a recursive structure involving logn rounds for commitments to vectors
of length n, and is public-coin, where the verifier’s challenges are integers uni-
formly sampled from [0, 2λ). The overall communication is only 2 log2(n) λ-bit
sized messages. Bootle et al. [13] adapted the protocol to the lattice setting by
replacing the Pedersen commitments with vector commitments based on Ring
SIS or Module SIS over a cyclotomic ring R. They also replace the challenge set
[0, 2λ) with a smaller subset of R. The challenges are monomials with binary
coefficients such that the differences of any two challenges divide 2 in the ring.
This allows them to demonstrate special-soundness, i.e. an extractor that can
obtain an opening to the lattice-based vector commitment from any ternary tree
of valid transcripts with distinct challenges on each edge. However, the smaller
challenge set results in a larger soundness error and thus necessitates parallel
repetition. This combined with the slack of the extractor leads to total communi-
cation O(λ2 log2(n)), compared with the O(λ log(n)) complexity of the original
Bulletproofs protocol for Pedersen commitments.

Bulletproofs with Subtractive Sets. [4] generalize the techniques of [13] to
allow for commitments based on Module SIS (M-SIS) and also more general chal-
lenge sets: special sets where differences in challenges are invertible. [1] further
generalize the protocol, allowing for more general challenge sets they call (k, 3)-
subtractive over R. A set S is (k, 3)-subtractive if for any triple of challenges
{c1, c2, c3} ⊆ S and i ∈ {1, 2, 3} the product

∏
j �=i(ci − cj) divides s. They show

that the Bulletproofs protocol using M-SIS commitments and (k, 3)-subtractive
challenge sets achieves slack klog n and knowledge error log n/|S|. They construct
a (2, 3)-subtractive set of size O(m) for an order m power-of-two cyclotomic ring
R and show that it is nearly optimal: there is no (2, 3)-subtractive set in such
a ring of size greater than m + 1. This means that the size of the challenge set
is at most linear in the bit-length of the commitments (i.e., polynomial rather
than exponential in the security parameter λ), necessitating O(λ/ log m) parallel
repetitions of the protocol to amplify soundness. Beyond increasing the commu-
nication complexity this also poses difficulties for the security of the Fiat-Shamir
transform [5,38].

Their upper bounds on the size of (k, r)-subtractive sets relative to k extends
to prime-power cyclotomic rings and even larger values of k, suggesting that
using small challenge sets (and boosting soundness through parallel repetition)
was fundamentally required for achieving a sufficiently small extraction slack, at
least based on the prior analysis techniques. [1] state that “unless fundamentally
new techniques are discovered” their impossibility result “represents a barrier to
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practically efficient lattice-based succinct arguments in the Bulletproof frame-
work”.

Comparison to Our Work. Our work overcomes this barrier, showing that
lattice-based Bulletproofs can indeed be instantiated with the exponential-sized
challenge set [0, 2λ) and still achieve sufficiently small slack and stretch. The
analysis is based on our variant of the DLSZ lemma for multilinear polynomials
mod composite N (i.e., our LCSZ lemma). This also demonstrates compatibility
of lattice-based Bulletproofs with the Fiat-Shamir transform. Specifically, our
analysis is able to achieve both slack and stretch of 2O(λ log n) and knowledge
error λn · 2−Ω(λ). Prior analysis of lattice-Bulletproofs [1,4,13] instantiated with
smaller challenges sets required O(λ/ log(m)) parallel repetitions where m is the
degree of the cyclotomic polynomial of the ring used for M-SIS commitments. On
the other hand, they achieved a smaller slack of 2O(log m log n), thus allowing for a
smaller modulus q than what our analysis of lattice-based Bulletproofs over the
challenge set [0, 2λ) requires. Specifically, with vectors of length n over Zp, the
modulus q is O(log m log n+log p) bits in their case and O(λ log n+log p) bits in
ours. Overall, for a commitment matrix in Rκ×n, according to prior analysis the
prover needs to send O(κm(λ log2 n+log p log n·λ/ log m)) bits whereas according
to our analysis the prover needs to send O(κm(λ log2 n + log p log n) bits. The
reduction in overall complexity is most significant when log p � log m log n.
In other words, this is practically relevant for succinct-arguments applied to
statements with a large field size relative to arithmetic complexity (e.g., log p =
256, log m = 10, and log n = 15). An interesting direction for future work is to
look at ways to pack the coefficients of vectors over a smaller modulus p′ � p into
vectors over the larger modulus and still make use of the linear form opening.
Another direction is to use an exponential-size challenge set of smaller norm
elements (i.e., over the polynomial ring rather than integers), but this would
require further generalizations of the LCSZ lemma.

Comparison of Our Work to LaBRADOR [7]. Recently, LaBRADOR [7] pre-
sented a new argument system for dot product constraints that circumvented the
prior limitations of slack and knowledge error in lattice-based arguments that
have a recursive structure like Bulletproofs. In contrast to our work, which pro-
vides a tighter analysis of the original simple Bulletproofs protocol in the lattice
setting without modification, LaBRADOR changes the way the protocol works,
allowing the verifier to request additional random linear projections of the com-
mitted vectors at each level of recursion, which are folded into prover’s original
claim. The projection is a map Π : Zn → Z

256 with entries sampled randomly
and independently from a distribution over {−1, 0, 1} with probability 1/4, 1/2,
and 1/4 respectively. If the prover is committed to x then the verifier learns
y = Πx mod q and checks that its L2 norm is appropriately bounded. Since Π
is independent of the challenges used for extraction, the knowledge extractor is
able to obtain x̃, independent of Π, such that Πx̃ mod q has bounded norm.
Based on the modular Johnson-Lindenstrauss Lemma [24], for sufficiently large
q this implies on bound on the L2 norm of the extracted vector. This allows for
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tightly bounding the slack at each level of extraction even when using challenges
sampled from an exponential size set over R.

This is closely related to how we are able to a tighter slack/stretch of the
original Bulletproofs protocol without modification, leveraging the fact that final
message sent in the protocol is a certain random linear projection of the original
vector x: it is an evaluation of a multilinear polynomial fx with log n variables
and coefficients x on the random challenges c1, ..., clog n sampled by the verifier
from [0, 2λ) in each round. Unlike the analysis of LaBRADOR, our extractor does
not operate modulo q. Instead, we allow for slack in the opening of a commitment
C, extracting x̃ ∈ Rn and s ∈ Z such that Ax̃ = s ·C mod q and the multilinear
polynomial h with rational coefficient vector 1

s · x̃ satisfies h(c1, ..., clog n) ∈ Z.
Our analysis applies our new composite Schwartz-Zippel lemma in a similar way
to how the modular Johnson-Lindenstrauss lemma functions in the analysis of
LaBRADOR. It implies for large s and c = (c1, ..., clog n) uniformly distributed
independent of h that h(c) �∈ Z with overwhelming probability, thus bounding
the size of the slack s for the extracted opening. However, unlike LaBRADOR,
the coefficients of g are derived by the extractor using the verifier’s challenges
and are thus not independent. This complicates the analysis. We get around this
by using 4-ary transcript trees, where h can be extracted from a 3-ary subtree
and the challenges c1, ..., clog n come from an independent path. We provide a
more detailed overview in the next section.

DARK and Groups of Unknown Order. The DARK Polynomial Commit-
ment [19] is a polynomial commitment with succinct verification using groups
of unknown order. If instantiated with class groups (see [15]) the protocol does
not require a trusted setup. The scheme is particularly interesting because of the
short proof sizes. Unfortunately, the original scheme had a gap in the security
proof that was first discovered by [9]. This paper provides a fix to this secu-
rity proof and shows that a slight modification to the original protocol is secure.
Our protocol is a generalization that applies to general linear-homomorphisms of
which polynomial evaluations are a special case. It also uses a Bulletproofs-style
folding which makes it easier to generalize. Concretely, however, the group-of-
unknown order instantiation of our protocol has the same concrete efficiencies as
the original DARK protocol when used as a polynomial commitment. We also
applied the techniques (The CSZ and AMSS) developed in this paper to the orig-
inal DARK protocol and added that to the appendix of the eprint [18]. [9] had
originally provided a fix to DARK using binary challenges. This blows up the
communication complexity. Concretely each round requires sending λ commit-
ments, whereas we prove that a slight modification of the original DARK protocol
is correct, which only requires sending 2 commitments per round. Both [9] and
our scheme are secure under the hidden order assumption (Assumption 1). How-
ever, interestingly, when applying the Fiat-Shamir heuristic to AMSS protocols
(see full version), we require that the commitment be computationally unique.
For the DARK-style commitment in groups of unknown order, this requires the
stronger subgroup hidden-order assumption.
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2 Technical Overview

The regular DeMillo-Lipton-Schwartz-Zippel lemma is relatively simple to prove.
Consider the special case of a multilinear polynomial over a field. As a base
case, a univariate linear polynomial has at most one root over the field. For
the induction step, express f(X1, ...,Xμ+1) = g(X1, ...,Xμ)+Xμ+1h(X1, ...,Xμ)
for random variables X1, . . . , Xμ+1. The probability that h(x1, ..., xn) = 0 over
random xi sampled from S is at most μ/|S| by the inductive hypothesis, and if
h(x1, ..., xμ) = w �= 0 and g(x1, . . . , xμ) = u, then u + Xμ+1w has at most one
root (base case). By the union bound, the overall probability is at most μ/|S| +
1/|S| = (μ+1)/|S|. This simple proof does not work for multilinear polynomials
modulo a composite integer. The base case is the same for f coprime to N,
which has at most one root. However, in the induction step, it isn’t enough that
h(x1, ..., xμ) �= 0 as it still may be a zero divisor, in which case the polynomial
u + Xμ+1w is not necessarily coprime to N and the base case no longer applies.
The number of roots depends on gcd(u+Xμ+1w,N) and our new analysis takes
into account its distribution. For each prime divisor pi of N , the highest power
of pi that divides u + Xμ+1w follows a geometric distribution. Using a modified
inductive argument, we are able to show that the probability f(x1, . . . , xμ) ≡
0 mod pr is bounded by the probability that

∑n
i=1 Zi ≥ r for i.i.d. geometric

variables with success parameter 1 − 1
p . This probability is equal to a I 1

p
(r, μ)

where I is the regularized beta function. Furthermore, by CRT this probability
is independent for each prime factor of N , and thus, the overall probability can
be bounded by a product of regularized beta functions.

“Inverse” Multilinear Composite Schwartz-Zippel (LCSZ) Lemma.
While our main theorem gives a tight bound on the probability for particu-
lar values of N,μ, and m, cryptographic applications require finding concrete
parameters such that the probability is exponentially small in a security param-
eter λ. Concretely, we want to find a value N∗ such that for all N ≥ N∗ the
probability that f(X1, . . . , Xμ) ≡ 0 mod N is bounded by 2−λ. To do this, we
first derive simple and useful bounds for the regularized beta function:

– I 1
p
(r, μ) ≤

(
n
p

)r

for p ≥ 2μ

– I 1
p
(r, μ) ≤ rn

pr for r ≥ 2μ

– log(I1/p(r − 1, μ)) − log(I1/p(r, μ)) is non-increasing in r for any p > μ and
for r = 1 in p.

We then formulate finding N∗ as an optimization problem. N∗ is the max-
imum value of N such that the probability of f(x) ≡ 0 mod N is greater
than 2−λ. For any N let S(N) denote the set of pairs (p, r) where p is a
prime divisor of N with multiplicity r. Taking the logarithm of both the objec-
tive and the constraint yields a knapsack-like constraint maximization problem
where the objective is log(N∗) =

∑
(pi,ri)∈S(N∗) ri · log(pi) and the constraint is∑

(pi,ri)∈S(N∗) − log(I 1
pi

(r, μ)) ≤ λ. Using the bounds on I 1
pi

and several trans-
formations of the problem we show that any optimal solution to this problem
must be bounded by t = 8μ2 + log2(2μ)λ, which in turn implies that N∗ ≤ 2t.
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Tighter Computational Solution. We further show that a simple greedy
knapsack algorithm computes an upper bound to the knapsack problem. The
algorithm uses the fact that log(p)

log(I1/p(r−1,μ))−log(I1/p(r,μ)) the so-called marginal
density of each item is non increasing over certain regions. Adding the densest
items to the knapsack computes an upper bound to the objective. We run the
algorithm on a large number of values for μ and λ and report the result.

2.1 Bulletproofs for Short Pre-Images and Almost Special
Soundness

In the Bulletproofs Inner Product Argument a prover convinces a verifier that
it knows the opening f ∈ F

n
p to a homomorphic commitment C = com(f) ∈ G

where G is a prime-order group. At a very high level, it does this by itera-
tively computing f ′ = fL + x · fR ∈ F

n/2, where fL, fR are the left and right
half of f respectively and x ∈ F is a verifier generated challenge, and sending
a commitment to the new f ′ to the verifier. After log2(n) rounds, the prover
sends a single field element as the final message. This naturally generalizes to
homomorphic commitments that map vectors in Z

n to a group G. The Bul-
letproofs protocol operates in exactly the same way over integer vectors but
using more general instantiations of the commitment scheme. In particular, we
consider schemes that may only be binding to short vectors in Z

n, such as the
DARK commitment using groups of unknown order or lattice-based (Ajtai) com-
mitments. Additionally, the verifier checks that the final message is a “small”
integer. Furthermore, we consider commitments that are binding under what we
call short rational openings that open C to h = f/s by showing s · C = com(f),
where the numerator and denominator of h have bounded norms in reduced form.
We consider such rational openings due to “slack” in the knowledge extractor
for Bulletproofs over rings like Z instead of fields, where the extractor obtains
f and s satisfying s · C = com(f), but cannot invert s to obtain a direct pre-
image of C. In the soundness analysis, we leverage the fact that the final integer
is small in order to bound the numerator/denominator (i.e., stretch and slack)
of the extracted opening. This is where we invoke the new LCSZ lemma for
multilinear polynomials. To gain some intuition in how we apply LCSZ, if the
prover’s private state at the start of protocol were a rational vector f/s such
that com(f) = s · C, then running protocol would result in an integer y that is
the evaluation of a multilinear polynomial h with rational coefficients f/s at the
log2(n) challenges c = (c1, ..., clog n) sampled by the verifier, i.e. y = h(c). Equiv-
alently, f(c) ≡ 0 mod s. If c were sampled uniformly and independent from f ,
then the LCSZ lemma states that as s grows too large this probability becomes
vanishingly small.

For commitments binding over Zp, Bulletproofs satisfies special-soundness:
there exists an efficient extractor that can extract a witness (i.e., an opening to
the input commitment) from any forking tree of transcripts. Special-soundness
implies knowledge-soundness by the classic forking lemma, which shows how to
generate a transcript tree in polynomial time. Unfortunately, Bulletproofs with
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commitments that are only binding over small norm (rational) openings fails to
satisfy special-soundness because the opening extracted from a forking tree of
transcripts may have a very large norm (i.e., large slack or stretch). On the other
hand, it turns out that we can leverage the intuition above in order to bound
the size (slack and stretch) of extracted openings. Along the way, we introduce
a new notion called almost-special soundness.

Almost Special Soundness. A k-ary transcript tree for a μ-round public-
coin interactive proof labels each node of a k-ary μ-depth tree with a prover
message and each edge with a verifier public-coin challenge so that the labels
along any root-to-leaf path in the tree form a valid transcript between the prover
and verifier that would cause the verifier to accept. An interactive proof for a
relation R is k(μ)-special-sound if there exists an extractor that can efficiently
extract a witness w from any k-ary tree of protocol transcripts for input x so
that (x,w) ∈ R. Bulletproofs for standard Pedersen vector commitments has
this property for 3-ary trees, but not for vector commitments with bounded-
norm openings because the extractor may obtain an opening that has a too
large norm. On the other hand, if a prover running the protocol honestly were
to start in its head with an opening of the commitment that has a too large norm
there is a negligible probability over the random challenges that it would result
in a valid transcript, whose last message is an integer of bounded norm. This
applies to rational openings as well with a large norm numerator or denominator.
This probability analysis relies on LCSZ, as explained in the paragraph above.
We will say that rational openings have “large. norm” if they have either a large
numerator (stretch), large denominator (slack), or both.

This observation suggests the following strawman extraction analysis: show
that one of the valid transcripts in the tree corresponds to running the honest
prover on the extracted opening, and conclude that if the extracted rational
opening had large norm then it would have a negligible probability of resulting
in a valid transcript. A fallacy in this argument is that the extracted witness is
computed from the transcripts, and is thus dependent on the challenges appear-
ing in the transcripts, whereas running the prover on a large norm opening only
results in an invalid transcript with high probability over challenges sampled
independently from this opening. To address this we could attempt the follow-
ing: generate a 4-ary tree T via rejection sampling from polynomially many
random simulations, extract an opening w∗ from its 3-ary left subtree TL, show
that some transcript tr in T \ TL is the result of running the prover on w∗. The
extracted witness is now independent of the challenges appearing in tr and was
well-defined during the generation of T , after TL was created and before tr was
added. Given that T was generated via polynomially many random simulations
we can argue this event had a negligible probability of occurring.

The remaining challenge, however, is to show that some transcript tr in T \TL

is consistent with running the honest prover on the extracted opening w∗. It
turns out that for protocols like Bulletproofs this is only true when the extracted
opening of the input commitment is within the space over which the scheme is
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binding, which seems to bring us back to square one. For example, the transcript
for a single round Bulletproofs protocol over an input commitment C to a vector
in Z

2 and commitment basis g = (gL, gR) ∈ G
2 consists of (C,CL, CR, r, f ′) ∈

G
3×Z such that f ′ ·(gR+rgL) = CR+r2CL+rC. Given an opening f = (fL, fR)

such that com(f) = 〈f ,g〉 = C and 〈(0, fL),g〉 = CL and 〈(fR, 0),g〉 = CR then
“re-running” the protocol on the openings with challenge r gives f∗ = fL +r ·fR

such that f∗ · (gR + rgL) = CR + r2CL + rC = C∗. If f∗ is sufficiently small then
this implies f∗ = f ′, otherwise it is a break of the commitment scheme as it
provides conflicting openings to C∗. However, f∗ is only guaranteed to be small
if the extracted opening f has low norm.

To get around this issue, we can increase the parameters of the commitment
scheme so that it is binding over slightly larger openings, and we will argue level
by level that the extracted openings remain small (using the independent path
and the fact that re-generation of transcripts either returns the same commit-
ments/messages or a break of the commitment scheme). In other words, while
we want to show that every extracted value remains below some norm bound
A, each extraction step produces a value that might be as large as some bound
B > A, but for which the scheme is still binding, and thus re-running the protocol
on this value will conflict with some path in the transcript tree with overwhelm-
ingly high probability if too much larger than A. This is precisely where we
apply our new LCSZ lemma. If the extracted opening with numerator f and
denominator s has too large norm then re-running the protocol with this opening
as the prover’s private state and using the challenges c1, ..., cμ from the indepen-
dent path would conflict with the transcript along the independent path (the
final message will not be a small integer) except with negligible probability over
the random challenges. The final message is equal to the evaluation h(c1, ..., cμ)
where h is a multilinear polynomial with coefficient vector f/s. This allows us to
bound the norm growth at each level by some sufficiently small value C ∈ (A,B).
Crucially, while the growth from A to B is at least quadratic in A, the growth
from A to C will be constant.

We generalize this to the notion of Almost Special Sound(AMSS) protocols
and replace the bounds A and B with arbitrary predicates φa and φb. We prove
that all protocols with this structure are knowledge sound, just like special-
sound protocols, where the knowledge error is dependent on the probability that
a random completion of a transcript starting from a message that fails predicate
φa results in a valid transcript. Intuitively, this captures the fact that once the
adversary has a private state that fails the desired extraction predicate, it will
fail with overwhelming probability over fresh challenges to complete the proof
transcript successfully.

Our proof that AMSS implies knowledge-soundness relies on a lemma that
we call the path predicate forking lemma. The usual forking lemma shows how to
generate forking transcript tree, which in special-sound protocols can be passed
directly to the extractor. In our case, we need to generate transcript tree that
satisfies additional predicates on each node. In the standard forking lemma [11],
the predicate would simply be that challenges on each child of a node in the
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transcript tree are distinct from previous challenges. Our new lemma considers
more general predicates, which may depend on partial transcripts that have
already been generated in the course of the transcript generation algorithm.
The analysis is similar and uses a union bound over all polynomial steps of the
transcript tree generation process.

Fiat-Shamir Transform. The analysis showing that AMSS protocols are
knowledge-sound critically relies on the fact that in the transcript tree genera-
tion process for an interactive protocol, the challenges on any given branch are
sampled uniformly and independently. This is used to show that the transcript
tree generated satisfies a certain property with overwhelming probability. The
Fiat-Shamir transform converts an interactive public-coin protocol into a non-
interactive protocol by replacing the verifier’s messages with a transcript hash.
The problem with applying the Fiat-Shamir transform to an AMSS protocol is
that the adversary can now grind the challenges in each round when generating
a transcript, breaking uniformity and independence of challenges. Using a union
bound, we could still bound the probability that the transcript tree does not have
the desired property, but this would result in a factor Qμ loss where Q is the
number of queries an adversary performs, and μ is the number of rounds in the
protocol. However, we can instead focus on protocols where grinding challenges
is impossible for the adversary. To do this, we introduce the notion of computa-
tionally unique commitments. In a computationally unique commitment scheme,
it is infeasible to open two distinct commitments to the same message. We prove
that this property is held by a large class of deterministic homomorphic commit-
ment schemes, which include those from groups of unknown order and lattice
assumptions. We prove security of the Fiat-Shamir transform for AMSS pro-
tocols in the random oracle model with computationally unique commitments.
This analysis is in the full version.

3 Main Theorem Statement (LCSZ)

Theorem 1 (Multilinear Composite Schwartz-Zippel (LCSZ)). Let N =∏�
i=1 pri

i for distinct primes p1, ..., p�. Let f be any μ-linear integer polynomial
co-prime to N . For any integer m > 1 and x sampled uniformly from [0,m)μ,
then

Px←[0,m)μ [f(x) ≡ 0 mod N ] ≤ μ

m
+

�∏

i=1

I 1
pi

(ri, μ),

where I 1
p
(r, μ) = (1 − 1

p )μ
∑∞

j=r

(
μ+r−1

r

) (
1
p

)j

is the regularized beta function.

Remark 1. The regularized beta function characterizes the tail distribution of
the sum of independent geometric random variables. If Y =

∑μ
i=1 Zi where

each Zi is an independent geometric random variable with parameter ε then
P [Y ≥ r] = I1−ε(r, μ). Y is a negative binomial variable with parameters ε, μ.
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Remark 2. A close reading of the proof reveals that if m = N , then the theorem
statement simplifies to Px←[0,N)μ [f(x) ≡ 0 mod N ] ≤ ∏�

i=1 I 1
pi

(ri, μ). This is
because x is uniform mod N and thus uniform mod any N∗|N .

Remark 3. The theorem is nearly tight for all N . Setting f(x) =
∏μ

i=1 xi and
m = N gives Px←[0,m)μ [f(x) ≡ 0 mod N ] = Px←[0,N)μ [f(x) ≡ 0 mod N ] =
∏�

i=1 I 1
pi

(ri, μ).

Remark 4. 1 − e−μ/pi ≤ I 1
pi

(1, μ) = 1 − (1 − 1
pi

)μ ≤ μ
pi

. Hence, for square-free

N the probability in Theorem 1 is upper bounded by μ
m + μ�

N , but for 	 > 1 this
is a loose upper bound unless μ � pi for all pi|N . For 	 = 1 (i.e., prime N),
Theorem 1 coincides with the Schwartz-Zippel lemma.

Remark 5. I 1
pi

(ri, 1) =
(

1
pi

)ri

. Hence, for μ = 1, the bound in Theorem 1 is
1
N + 1

m .

We defer all proofs including the proof of Theorem 1 to the full version.

4 Inverse LCSZ

Theorem 1 (LCSZ) bounds the probability Px←[0,m)μ [f(x ≡ 0 mod N ] for given
values of μ,N, and m, which has the form μ

m +δN,μ. In the case that N is prime,
δN,μ = μ

N , which agrees with the standard Schwartz-Zippel lemma applied to
μ-linear polynomials. The term δN,μ for composite N , which is dependent on
both μ and the factorization of N , has a complicated closed form expression in
terms of a product of regularized beta functions.

This section analyzes the inverse: for a given μ, λ ∈ N what size threshold
t(λ, μ) ∈ N is sufficient such that δN,μ ≤ 2−λ for all N ≥ t(λ, μ)? In other words:

t(λ, μ) := sup{N ∈ N :
∏

(p,r)∈S(N)

I 1
p
(r, μ) ≥ 2−λ}. (t(λ, μ) def)

For μ = 1, since I1/p(r, 1) = 1
pr and

∏
(p,r)∈S(N) I 1

p
(r, μ) = 1

N , it is easy to

see that t(λ, μ) = 2λ. For μ ≥ 2, the value of t(λ, μ) (or even an upper bound)
is not nearly as easy to derive. For the rest of this section we will focus on this
μ ≥ 2 case. We will analytically derive an upper bound to t(λ, μ), showing that
log t(λ, μ) ∈ O(μ2+ε + λ

ε ) for any ε ≥ logμ(2).

Theorem 2 (Inverse LCSZ). For all μ ≥ 2, ε ≥ logμ(2), and all N such that

log N ≥ 4μ2+ε + (1 +
1
ε
) · λ.

we have that for any μ-linear polynomial f that is coprime with N

Px←[0,m)μ [f(x) ≡ 0 mod N ] ≤ 2−λ +
μ

m
.
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By setting ε = logμ(2) we get:

Corollary 1. For all N such that

log N ≥ 8μ2 + log2(2μ) · λ.

we have that for any n-linear polynomial f that is coprime with N

Px←[0,m)μ [f(x) ≡ 0 mod N ] ≤ 2−λ +
μ

m
.

5 Definitions and Notations

5.1 Integer Polynomials

If f is a multivariate polynomial, then ||f ||∞ denotes the maximum over the
absolute values of all coefficients of f .

Lemma 1 (Evaluation Bound). For any μ-linear integer polynomial f and
m ≥ 2:

Px←[0,m)μ [|f(x)| ≤ 1
mμ

· ||f ||∞] ≤ 3μ

m

Fact 1 Let q ∈ Z be any positive integer. For any integer E ∈ Z such that
|E| ≤ qd+2−q

2(q−1) there exists a unique degree d integer polynomial f ∈ Z[X] with
||f ||∞ ≤ q/2 such that f(q) = E.

Lemma 2 (Rational Encoding of multi-linear polynomials). Let q ∈ Z

be any positive integer. Let q = [q2i−1
]μi=1 ∈ Z

μ. Consider any βd, βn ∈ N such
that βd · βn ≤ q

2 . Let Z = {z ∈ Z : |z| ≤ βd}, let F = {f ∈ Z[X1, . . . , Xμ] :
||f ||∞ ≤ βn} be a μ-linear polynomial, and let H = {f/z ∈ Q[X1, . . . Xμ] : f ∈
F ∧ z ∈ Z}. Then for any h1, h2 ∈ H, if h1(q) = h2(q) then h1 = h2.

5.2 Groups of Unknown Order

A group of unknown order is a group where the order is computationally hard to
compute. It is defined by an algorithm GGen that on input security parameter,
samples a group G, along with size bounds on the group that depend on the
security parameter (we omit the size bounds for simplicity). We define three
assumptions in these groups. The hidden order assumption which is the most
basic, minimal assumption, saying that it is hard to compute the order of random
group elements. The stronger sub-group hidden order assumption states that it
is hard to compute any information about the order of a sampled subgroup,
e.g., a subgroup generated by a commitment key. And finally, the famous RSA
assumption which states that it is hard to compute roots of random elements in
the group and implies the hidden order assumption.
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Assumption 1 (Hidden Order Assumption). The hidden order assump-
tion holds for a group sampling algorithm GGen if for any probabilistic polyno-
mial time adversary A:

Pr

⎡

⎣a · G = 0 :
G ← GGen(1λ)

G
$← G

a ∈ Z ← A(G,G)

⎤

⎦ ≤ negl(λ) .

Assumption 2 (Subgroup Hidden Order Assumption). The subgroup
hidden order assumption is a generalization of the hidden order assumption.
It says that it is difficult to compute a multiple of the order of any element
in a subgroup sampled according to some distribution. It holds for a group
sampling algorithm GGen and subgroup sampling2 algorithm SGGen if for any
probabilistic polynomial time adversary A:

Pr

⎡

⎣gcd(a, |H|) �= 1 :
G ← GGen(1λ)
H ← SGGen(G)
a ∈ Z ← A(G,H)

⎤

⎦ ≤ negl(λ) .

Assumption 3 (RSA assumption, [21,34]). The RSA assumption holds for
GGen if for any probabilistic polynomial time adversary A:

Pr

⎡

⎣ 	 · U = G :
G, N ← GGen(1λ)

G
$← G, 	

$← [N ]
U ∈ G ← A(G,G)

⎤

⎦ ≤ negl(λ) .

The RSA Assumption implies Assumption 1 [18].

5.3 Knowledge Soundness

An NP relation R is a subset of strings x,w ∈ {0, 1}∗ such that there is a decision
algorithm to decide (x,w) ∈ R that runs in time polynomial in |x| and |w|. The
language of R, denoted LR, is the set {x ∈ {0, 1}∗ : ∃w ∈ {0, 1}∗ s.t. (x,w) ∈ R}.
The string w is called the witness and x the instance. An interactive proof
of knowledge for an NP relation R is a special kind of two-party interactive
protocol between a prover denoted P and a verifier denoted V, where P has
a private input w and both parties have a common public input x such that
(x,w) ∈ R. Informally, the protocol is complete if P(x,w) always causes V(x) to
output 1 for any (x,w) ∈ R. The protocol is knowledge sound if there exists an
extraction algorithm E called the extractor such that for every x and adversarial
prover A that causes V(x) to output 1 with non-negligible probability, E outputs
w such that (x,w) ∈ R with overwhelming probability given access3 to A.
2 The subgroup sampling algorithm takes G as input, which is interpreted as a succinct

description of G, such as a list of generators, not necessarily the list of all elements
in G.

3 The extractor can run A for any specified number of steps, inspect the internal state
of A, and even rewind A to a previous state.
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Definition 1 (Interactive Proof of Knowledge).
An interactive protocol Π = (P,V) between a prover P and verifier V is a

proof of knowledge for a relation R with knowledge error δ : N → [0, 1] if the
following properties hold, where on common input x and prover witness w the
output of the verifier is denoted by the random variable 〈P(x,w),V(x)〉:
– Perfect Completeness: for all (x,w) ∈ R

Pr [ 〈P(x, w), V(x)〉 = 1] = 1

– δ − KnowledgeSoundness : There exists a polynomial poly(·) and a proba-
bilistic oracle machine E called the extractor such that given oracle access
to any adversarial interactive prover algorithm A and any input x ∈ LR the
following holds: if

P [〈A(x),V(x)〉 = 1] = ε(x)

then EA(x) with oracle access to A runs in time poly(|x|)
ε(x) and outputs w such

that (x,w) ∈ R with probability at least 1 − δ(|x|)
ε(x) .

An interactive proof is “knowledge sound”, or simply a “proof of knowledge”, if
has negligible knowledge error δ.

6 Almost-Special-Soundness

We first define deterministic (non-hiding) commitment scheme over a message
space M and opening space W ⊇ M. When M = W it is identical to collision-
resistant hash functions. More generally, the commitment function is a collision-
resistant hash function H : M → {0, 1}λ, but the algorithm that verifies an
opening of C to m is not restricted to checking H(m) = C (e.g., this may not
be possible when m �∈ M).

These schemes do not provide a way to commit to x ∈ W \ M, but is
nonetheless useful to define in the context of arguments of knowledge. Suppose
a party commits to a message m ∈ M as C = H(m) and is asked to prove
knowledge of an opening of C using an argument system for which the knowledge
extractor is only guaranteed to extract an opening to a message in the superset
W. There are applications where it doesn’t matter whether the prover knows an
actual input m ∈ M to H such that H(m) = C as long as it is committed in a
binding way to some message in W that it knows. In fact, commitment schemes
where M = Z

n and W ⊆ Q
n together with arguments of knowledge that extract

openings to W suffice to construct linear-map vector commitments over prime
fields Fp, with polynomial commitment schemes as a special case. These have
very powerful applications including the construction of generic succinct non-
interactive argument (SNARK) systems for all of NP .

Definition 2 (Deterministic Commitment Scheme). A deterministic
commitment scheme Γ is a tuple Γ = (Setup,G,Commit,Open) where:
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– Setup(1λ) → pp is a PPT algorithm that generates public parameters pp,
which define a finite set of indices I, a message space M, and an opening
space W ⊇ M;

– G(pp, ι) → pp∗ is a PPT algorithm that generates parameters for the index
ι ∈ I;

– Commit(pp∗,m) → C is a polynomial time computable function that takes a
secret message m and returns a public commitment C.

– Open(pp∗, C, w, σ) → b ∈ {0, 1} is a PPT algorithm that verifies the opening
of commitment C to the message w ∈ W provided with an opening hint σ ∈
{0, 1}∗.

A commitment scheme Γ is binding if for all PPT adversaries A:

Pr

⎡
⎢⎢⎢⎢⎣

b0 = b1 = 1 ∧ m0 
= m1 :

pp ← Setup(1λ)
(ι, C, m0, m1, σ0, σ1) ← A(pp)
pp∗ ← G(pp, ι)
b0 ← Open(pp∗, C, m0, σ0)
b1 ← Open(pp∗, C, m1, σ1)

⎤
⎥⎥⎥⎥⎦

≤ negl(λ).

We say that a tuple (C, (m0, σ0), (m1, σ1)) is a break of the commitment
scheme, if Open(pp∗, C, x1, σ1) = Open(pp∗, C,m1, σ1) = 1 and m0 �= m1.

Remark on I: The standard definition of commitment schemes does not have
an indexing set I, or equivalently has |I| = 1. The more general definition we
presented is important for our applications, and it is important for the scheme to
be binding even for an adversarially sampled index. As a simple example, Setup
might determine a prime-order group G in which the discrete logarithm is hard
and I ⊂ G is the set of p − 1 generators. The commitment function at index
g ∈ I computes x �→ gx for x ∈ Fp.

Definition 3 (Almost-Special-Soundness (new)).
Let χ denote any set of size 2λ. Let Γ = (Setup,G,Commit,Open) denote

a deterministic commitment scheme with message space M, opening space W,
and indexing set I. Let Π be μ-round public-coin interactive proof with challenge
space χ for a relation Rpp, such that the commitment parameters pp ← Setup(1λ)
are generated as part of the setup of Π and where the relation is possibly depen-
dent on pp. Π is (k(μ), δ(·), Γ, φ)-almost-special-sound if there exists

1. A pair of predicates φ = (φa, φb) where φa, φb : [μ] × M → {0, 1} and
φa(i,mi) = 1 =⇒ φb(i,mi) = 1.

2. A negligible function δ : N → R

3. There is a localized transcript tree labeling F that assigns to each node ν of a
valid transcript tree for Π a commitment label C(ν) for the scheme Γ at an
index ιν ∈ I.4 Additionally, any leaf node ν of the transcript tree is labelled

4 Crucially, the definition does not require the ith position of all transcripts to use the
same commitment index. The commitment index μi used in a particular transcript
for the ith commitment C(i) might be a function of the transcript prefix preceding
C(i).
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with C(ν) for some index ιν ∈ I together with an opening (mν , oν) such that
Open(ppιν

, C(ν),mν , oν) = 1 and φa(μ,mμ) = 1.

Extract Witness: ExtractWitness(x, F, tree, treeOpenings) → w takes as input
an instance x, the tree labeling function F , a k-ary transcript tree tree and
purported openings treeOpenings = [(m1, σ1), . . . , (mN , σN )], to the commitments
of each node in the tree, that are defined by F . If tree, treeOpenings, satisfy the
following properties then (x,w) ∈ Rpp

1. The challenge labels for the children of each node are distinct.
2. For each ν ∈ tree, Open(ppν , Cν ,mν , σν) = 1
3. For each ν ∈ tree, φa(σν) = 1.

.

Extract Internal: ExtractInternal(F, ν, subtree = [(ι1,m1, σ1), . . . , (ιt,mt, σt)])
→ (m,σ) takes as input a node ν such that Cν = F (ν) is the commitment
assigned to ν by F , as well as the transcript subtree of size t, spanned at ν,
defined by the indices ι of the subtree along with purported openings to each
commitment F (ι) = Cι in the subtree.

Given that each nodes children in the subtree have distinct challenge labels,
the algorithm either outputs a break of Γ (Definition 2) or satisfies the following
property:

∀i ∈ [t]φa(level(ιi),mi) = 1 ∧ Open(ppιi
, C(ιi),mi, σi) = 1

⇓
Open(ppν , Cν ,m, σ) = 1 ∧ φb(level(ν),m) = 1

Here level : [kμ] → [μ] maps from a node to its level in the tree. Extend
algorithm Extend(ι, tr) → ((m′

�ι=level(ι)+1, σ
′
�ι

), . . . , (m′
μ, σμ)), such that tr =

[C, (C1, α1), . . . , (Cμ, αμ)] is an accepting transcript that includes the node ι, i.e.
C�ι

= C(ι). For any openings to Ci, . . . , Cμ, (mi, σi), . . . , (mμ, σμ), one of the
following cases holds:

1. ∃j ∈ [i, μ] such that (Cj , (mj , σj), (m′
j , σ

′
j)) is a break of Γ

2.

Pαi,...,αμ←χ

⎡

⎣φa(level(ι),m) = 0

∣∣
∣∣∣∣

mi = m′
i∀i ∈ [	ι + 1, μ]

φa(m′
i) = 1∀i ∈ [	ι + 1, μ]

φb(m�ι
) = 1

⎤

⎦ ≤ δ(λ)

Short-hand notation: An interactive proof is (k(μ), δ)-almost-special-sound
if it is (k(μ), δ, com, φ)-almost-special-sound for some commitment scheme com
and some predicate pair φ. We may omit δ and simply write k(μ)-almost-special-
soundness if this holds for some negligible function δ : N → R.
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Remark 6. Any special sound protocol satisfies almost-special-soundness as 3)
essentially captures the special soundness definition. More precisely a k(μ)-special
sound satisfies k(μ)-almost-special-soundness by setting the commitment scheme
to be trivial (i.e., identity function) and the ith round commitment C(i) to the
prover’s ith round message and setting the predicates φa = 1, φb = 0 to be
trivial as well (i.e., always return 1 and 0 respectively). The algorithm Extend
can output an arbitrary set of messages because the condition on the algorithm
is vacuously true as φa(i,m) �= 0 for any (i,m). The algorithm Extract(ν, C(ν), ∗)
is trivial because C(ν) is the message itself. The algorithm Break is also trivial as
φb is always 0. The algorithm Extract(x, openTree) → w exists by the definition
of k(μ)-special soundness.

Theorem 3 (AMSS implies Knowledge Soundness). If a μ-round inter-
active proof for a relation R with λ-bit challenges, μ ∈ O(log(λ + |x|)), and
verifier decision algorithm runtime tV ∈ poly(|pp|, |x|, λ) on input x ∈ LR
and parameters pp ← Γ.Setup(1λ) is (k(μ), δ, Γ, φ)-almost-special-sound then for
δ′(λ) = 2λ(k +1)μ(μ+ tV ) ·max(δ(λ), k ·2−λ)+2−λ it is δ′-knowledge sound for
the modified relation:

R′(pp) = {(x,w) : R(x,w) = 1 ∨ w ∈ Lbreak(pp)}
where

Lbreak(pp) = {(C, σ1, σ2, ι) : ι ∈ I ∧ σ1 �= σ2 ∧ Open(ppι, C, σ1) = Open(ppι, C, σ2) = 1}

Remark 7. δ′(λ) is a negligible function if δ(λ) is negligible, assuming k ∈ O(1),
μ ∈ O(log(λ + |x|)), tV ∈ poly(|x|, λ), and |x| ∈ poly(λ).

This theorem has the following corollary:

Corollary 2. An interactive proof with λ-bit challenges that is k(μ)-almost-
special-sound for a relation R and has at most μ ∈ O(log(λ + |x|)) rounds on
any instance x ∈ LR has witness-extended emulation for R.

7 Argument of Knowledge of “short” Rational Opening

For any deterministic homomorphic commitment to vectors in Z
n
p , where the

commitment function is a homomorphism com : Zn
p → G, there is a generic suc-

cinct argument of knowledge of a commitment opening (i.e., a homomorphism
preimage) with O(log n) communication complexity [2,10,12]. This same proto-
col can also be used to argue knowledge of any linear form of the committed
vector. This is also known as a linear-map vector commitment (LMVC) [20,28],
and captures polynomial commitments as a special case.

We generalize this result to work with deterministic homomorphic integer
vector commitments that are only binding over short vectors in Z

n, which
includes vector commitment schemes based on lattices and groups of unknown
order. Furthermore, the protocol can still be used to argue knowledge of any lin-
ear form h : Zn → G of the committed vector, where G is a prime order group.
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The protocol is essentially the same as the succinct homomorphism preimage pro-
tocol [2,10], but where the verifier additionally checks a bound on the prover’s
final message. This can also be viewed as a special case of the sumcheck argu-
ment with a bound check, as described in [12], but we provide a much tighter
soundness analysis.

A bit more precisely, the protocol is not an argument of knowledge of a
short integer vector pre-image per se, but rather a short rational opening of the
commitment C = com(x), which is some x′ ∈ Z

n and z ∈ Z such that com(x′) =
z · C and x′/z ∈ M ⊆ Q

n where M = {x/z ∈ Q
n : z ∈ Z, gcd(x, z) = 1, ||x|| ≤

βn, |z| ≤ βd} is a subset of rational vectors with bounded norm denominators
and numerators in reduced form. We call this an opening of the commitment C
to the rational vector x′/z ∈ M. If the commitment scheme is binding over such
rational openings to vectors in M and [0, p)n ⊆ M, then it also functions as a
binding commitment scheme for vectors in Z

n
p where an opening to m ∈ M is also

an opening to m mod p ∈ Z
n
p and the protocol is thus an argument of knowledge

of an opening to a unique vector in Z
n
p . Finally, for any linear form h : Zn

p → G

the modified commitment com∗(x) = (com(x), h(x)) preserves binding over M
and running the same protocol for com∗ becomes an argument of knowledge for
an opening of the commitment (C, y) to a unique x∗ ∈ Z

n
p such that h(x∗) = y.

Remark on Zero-Knowledge. Deterministic commitment schemes are non-
hiding and our construction is focussed on producing a succinct argument of
knowledge without concern for zero-knowledge. To obtain a zero-knowledge argu-
ment, the succinct argument can be composed with (i.e., applied as the pivot
to) a sigma protocol for pre-images of φ. See [4] for further details.

Definition 4 (Z-linear commitment scheme). Let Γ = (Setup,G,
Commit,Open) be a deterministic commitment scheme such that for any pp =
(I,M,W) ← Setup(1λ) where M ⊆ W ⊆ Z

n and ι ∈ I the commitment func-
tion Commit(ppι, ·) : M → G is the restriction h|M of a group homomorphism
h : Zn → G. We say that Γ is a Z-linear deterministic commitment scheme.

Definition 5 (Rational openings). Let Γ = (Setup,G,Commit,Open) be
Z-linear deterministic commitment scheme where commitments are contained
within a finite group G. Let W∗ ⊆ Q

n and let Setup∗(1λ) denote a
new setup algorithm that runs Setup(1λ) but replaces W with W∗. Let
Open∗(pp, C,x/z, (z,x, σ)) denote a new opening verification algorithm which
on inputs z ∈ Z, x ∈ Z

n such that x/z ∈ W∗ and C ∈ G returns 1 if and
only if z �= 0 mod |G|, and Open(pp, z · C,x, σ) = 1.5 We call the opening hint

5 In a group of unknown order it may be difficult to check that z 
= 0 mod |G|. If g
is a generator (e.g., the generator of a subgroup of unknown order) then it suffices
to check z · g = 0. In any case, GUOs are typically used for commitments under the
hardness assumption that it is difficult to compute any multiple of the order of G,
in which case checking z 
= 0 mod |G| can be dropped from verification.
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(z,x, σ) a rational opening of C to x/z ∈ W∗. We say Γ is binding over ratio-
nal openings to W∗ ⊆ Q

n if Γ ∗ = (Setup∗,G,Commit,Open∗) satisfies the usual
definition of commitment binding (See Definition 2).

Lemma 3 (trivial). If (Setup,G,Commit,Open) is a Z-linear deterministic
commitment scheme binding over W ⊆ Q

n where Commit(ppι, ·) : Z
n →

Gcom and h : Z
n → G is any homomorphism, then the modified scheme

(Setup,G,Commit,Open∗) where:

– Setup(1λ) → pp and G(ι, pp) → ppι

– Commit∗(ppι,x ∈ Z
n) → (Commit(ppι,x), h(x)) ∈ Gcom × G

– Open∗(ppι, (C, y) ∈ Gcom × G,x ∈ Z
n, s) → Open(ppι,x, s, C)

is also a Z-linear deterministic commitment scheme binding over W.

Proof. Any break of the modified scheme includes a break of the original scheme,
i.e. tuples (x, ι, s, (C, y)) and (x′, ι, s′, (C, y)) such that x �= x′ ∈ W and
Open(ppι, C,x, s) = 1 and Open(ppι, C,x′, s′) = 1.

Commitment Schemes Binding Over Bounded Rationals. Let β = βn ·βd

for some βn, βd > 0. Let W(βn, βd) := {x/z ∈ Q
n : z ∈ Z, ||x|| ≤ βn, |z| ≤ βd}.

The following lemmas establish several families of integer vector commitment
schemes that are binding over W(βn, βd).

Lemma 4. Let Γ = (Setup,G,Commit,Open) denote any Z-linear determin-
istic commitment scheme that maps Z

n → G
k where for any ι ∈ I and

ppι = G(pp, ι) the algorithm Open(ppι, C,x) receives no hint and simply checks
C = Commit(ppι,x) = 〈x,gppι

〉 where gppι
∈ G

n×k is a basis for the homo-
morphism. Let A(pp) denote a polynomial time algorithm that on input pp ←
Setup(1λ) returns ι ∈ I, (z,x), (z′,x′) ∈ Z × Z

n and Y ∈ G such that with
probability non-negligible in λ:

(a) z′x �= zx′

(b) x
z , x′

z′ ∈ W(βn, βd)
(c) z · Y = Commit(ppι,x) and z′ · Y = Commit(ppι,x

′)
(d) z, z′ �= 0 mod |G| and either x

z �= 0 mod |G| or x′
z′ �= 0 mod |G|

If |G| is prime then A breaks the binding of Γ over Wβ = {x ∈ Z
n : ||x|| ≤ β}.

Otherwise, A either breaks the binding property over Wβ or outputs an element
u in the span of gppι

and an integer multiple of its order.

Corollary 3 (Homomorphic prime-order commitments). Let Γ =
(Setup,G,Commit,Open) denote any Z-linear deterministic commitment scheme
where the commitments are contained within a k-dimensional Z-module G

k and
G is a group of prime-order q. Suppose that for non-zero C the algorithm
Open(ppι, C,x) checks Commit(ppι,x) = C and the element 0G ∈ G

k is the
unique valid commitment to 0 ∈ Z

n. If Γ is binding over Wβ = {x ∈ Z
n : ||x|| ≤

β} then Γ is also binding over rational openings to W(βn, βd).
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Homomorphic Prime-Order Examples. Examples of commitments to inte-
ger vectors that satisfy the conditions in Corollary 3 trivially include Ped-
ersen commitments but also Ajtai commitments based on Integer-SIS/Ring-
SIS/Module-SIS. Let q be a prime, let n, κ ∈ N denote security parameters,
Let Φm(x) be the m-th cyclotomic polynomial6 (i.e., its roots are the primitive
m-th roots of unity). Let R = Z[x]/Φm and Rq = Zq[x]/Φm, and let n = n(m)
and B = B(m) be functions.

– Integer-SIS. The problem SISn,q,m,B is: given A $← Z
m×n
q , find z ∈ Z

n such
that A · z = 0m mod q and 0 < ‖z‖ ≤ B.

– Ring-SIS. The problem R-SISn,q,m,B is: given a $← Rn
q , find z ∈ Rn such

that a · z = 0 mod q and 0 < ‖z‖ ≤ B.

– Module-SIS. For some κ > 0, the problem M-SISκ,n,q,m,B is: given A $←
Rκ×n

q , find z ∈ Rn such that A · z = 0κ mod q and 0 < ‖z‖ ≤ B.

Note that SIS and R-SIS are both special cases of M-SIS, with appropriate
setting of the parameters. For example, Ring-SIS is the same as Module-SIS when
κ = 1. All three problems are related to certain worst case lattice problems, and
are believed to be hard for appropriate settings of the parameters n, q,m,B, and
κ. In particular, these problems are believed to be post-quantum secure when
the following conditions holds:

– Integer-SIS [25,31] m sufficiently large and n, log(q) ≤ poly(m) and q ≥
B

√
m · ω(

√
log m).

– Module-SIS [29, Th. 3.6]: mκ sufficiently large and q > B ·
(mκ)1/2ω(

√
log mκ), and both n and log q are less than poly(mκ).

Corollary 4 (Homomorphic GUO commitments). Let Γ = (Setup,G,
Commit,Open) denote any Z-linear deterministic commitment scheme where for
any pp, ι, and ppι = G(pp, ι) the function Commit(ppι) : Zn → G is a homomor-
phism with basis gppι

. Suppose that the subgroup hidden order assumption for
G holds7 with respect to the distribution over subgroups 〈gppι

〉 ⊆ G induced by
sampling pp ← Setup(1λ) and any adversarially sampled ι ∈ I. If Γ is binding
over Wβ = {x ∈ Z

n : ||x|| ≤ β} then Γ is also binding over rational openings to
W(βn, βd).
6 When m is a power of two we have that Φm(x) = xm/2 + 1.
7 If the generators gppι

are uniformly distributed for any ι and G is cyclic (or more
generally a random element in the span of gppι

is statistically close to uniform over
G) then this is equivalent to the assumption that it is hard to compute a multiple
of the order of a random element, which is implied by the difficulty of taking square
roots of random elements (the RSA assumption) for G. In certain groups where
it is difficult to compute any integer that shares a common factor with |G| then
the assumption holds regardless of how gppι

is sampled. One such group is the
multiplicative subgroup H = {x4 : x ∈ Z

×
N} for N = p · q, where p and q are

unknown safe primes and thus |H| = (p − 1)(q − 1)/4 = p′ · q′ for unknown primes
p′, q′.
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Corollary 5 (DARK commitments). The integer vector commitment
scheme known as DARK [19] uses a group of unknown order G and for x ∈ Z

n

computes the homomorphism x �→ gfx(q), where fx(q) =
∑n

i=1 xiq
i−1, given

setup parameters q ∈ N and g ∈ G sampled uniformly at random. Setting
q = �2√

nβ�, DARK is binding over rational openings to W(βn, βd) based on
the hidden order assumption in G.

Proof. For x ∈ Z
n let fx denote the univariate polynomial with coefficient vector

x. By Fact 1, fx(q) �= fx′(q) for all x �= x′ of L∞ norm at most q/2 which is
guaranteed if the L2 norm is at most q/(2

√
n). By the hidden order assumption

(Assumption 1) no polynomial-time adversary can compute integers x �= y such

that gx = gy for g
$← G. DARK is therefore binding over Wβ = {x ∈ Z

n : ||x|| ≤
β} for q ≥ 2

√
nβ by the hidden order assumption, and as a corollary to Lemma 4

it is also binding over W(βn, βd) under the hidden order assumption.

Definition 6. We define a integer matrix norm family F as an infinite collec-
tion F = {Nm,n} of matrix norms Nm,n : Zm×n → R. We say that the F is
α(m,n, k)-submultiplicative if for all m,n, k ∈ N, M ∈ Z

m×n, and X ∈ Z
n×k:

Nm,k(M · X) ≤ α(m,n, k) · Nm,n(M) · Nn,k(X)

Lemma 5. Let (Setup,G,Commit,Open) be any Z-linear deterministic commit-
ment scheme that is binding over Wβ = {x ∈ Z

n : ||x|| ≤ β}, where the norm
|| · || belongs to an α-submultiplicative norm family. Let U : Zm → Z

n denote any
injective linear map, i.e. U ∈ Z

m×n is a full row rank matrix. Then the modified
scheme (Setup,G,Commit∗,Open∗) over Z

m where:

– Commit∗(pp,x ∈ Z
m) → Commit(pp,x · U)

– Open∗(pp, C,x ∈ Z
m, s) → Open(pp, C,x · U, s)

is binding over W∗ = {x ∈ Z
m : ||x|| ≤ β

α·||U ||}.

Proof. Suppose (C,x ∈ Z
m, s) and (C,x′ ∈ Z

m, s′) are both accepted by Open∗

for distinct x,x′ ∈ W∗, then both (C,x · U, s) and (x′ · U, s′, C) are accepted
by Open. Since U is injective, x · U �= x′ · U . Furthermore, since the norm is
α-submultiplicative, ||x · U || ≤ α · ||x|| · ||U || ≤ β. Similarly, ||x′ · U || ≤ β. This
contradicts the binding of (Setup,G,Commit,Open).

Lemma 6. Let (Setup,G,Commit,Open) be any Z-linear deterministic commit-
ment scheme that is binding over rational openings to W(βn, βd), where the norm
|| · || belongs to an α-submultiplicative norm family. Let U : Zm → Z

n denote any
injective linear map, i.e. U ∈ Z

m×n is a full row rank matrix. Then the modified
scheme (Setup,G,Commit∗,Open∗) over Z

m where:

– Commit∗(pp,x ∈ Z
m) → Commit(pp,x · U)

– Open∗(pp, C,x ∈ Z
m, s) → Open(pp, C,x · U, s)

is binding over W( βn

α||U || , βd).
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Proof. Let β∗
n = βn

α||U || . Suppose (C,x ∈ Z
m, z ∈ Z, s) and (C,x′ ∈ Z

m, z′ ∈ Z, s′)
are both accepted by Open∗ for distinct x/z,x′/z ∈ W(β∗

n , βd), then both
(C,x · U, z, s) and (x′ · U, z′, s′, C) are accepted by Open. Let x/z = x1/z1 in
reduced form so that ||x1|| ≤ β∗

n and |z1| ≤ βd. Similarly, let x′/z′ = x′
1/z′

1

in reduced form so that ||x′
1|| ≤ β∗

n and |z′
1| ≤ βd. Since the norm is α-

submultiplicative, ||x1 · U || ≤ α · ||x1|| · ||U || ≤ βn. Similarly, ||x′
1 · U || ≤ βn.

This shows that x · U/z ∈ W(βn, βd) and x′ · U/z′ ∈ W(βn, βd). Furthermore,
since z′x �= zx′ and U is injective, z′x ·U �= zx′ ·U . This contradicts the binding
of (Setup,G,Commit,Open).

7.1 Interactive Protocol for Short Rational Openings

The public input of the protocol is a homomorphism com : Zn → G, a target
value C ∈ G, and a bound β ∈ R. The honest prover has a witness x of L2
norm at most β such that com(x) = C. The prover’s claim is that it knows
some witness (z,x) such that com(x) = z · C and ||x|| ≤ 2λ log n

√
ξ · β and

|z| ≤ √
ξ/2λ log n for a soundness slack parameter ξ. In other words, setting

βn = 2λ log n
√

ξ · β and βd =
√

ξ/2λ log n so that βn · βd = ξ · β, the knowledge
extractor for this protocol opens a valid rational opening for C as long as the
commitment scheme is binding over W(βn, βd) := {x/z ∈ Q

n : z ∈ Z, ||x||2 ≤
βn, |z| ≤ βd}. We prove that it suffices to set ξ = 2(16+2μ)λ+6CSZμ,λ+2μ+6, where
CSZlog n,λ ∈ O(log2 n + λ log log n) is derived from the Multilinear Composite
Schwartz Zippel (Theorem 2). Hence ξ ∈ 2O(λ log n+log2 n).

Let g = (g1, ...,gn) denote a basis of com such that com(x) = 〈x,g〉.
The interactive protocol is essentially the succinct argument for homomorphism
preimages from [2,10], but where the verifier additionally checks a bound on the
prover’s final message. This is also a special case of a sumcheck argument with a
bound check, as described in [12]. The prover’s final message is an integer x∗ ∈ Z

and the verifier immediately rejects the proof unless |x|∗ ≤ β ·2λ log n. We include
the full protocol in the figure below for completeness.

An important observation, as first noted in [16] and leveraged in Halo [14],
is that the verifier does not use its input g unless n = 1. Thus, the verifier
does not need to compute g ∈ G

2i

at each round of recursion. Instead, it only
needs to compute the final g′ ∈ G at the final round, which can be computed
as g′ =

∑n
i=1 uigi where ui is the ith coefficient of the polynomial u(X) =

∏log n
j=1 (rj + X2j−1

) where rj is the verifier’s challenge at the jth round.

Application: Polynomial Commitment Scheme. Given any prime p
of size |p| ≥ β and any deterministic homomorphic commitment scheme
(Setup, com,Vf) that is binding over D = {x ∈ Z

n : ||x|| ≤ ξ · β}, where
com : Z

n → Gcom is a homomorphism and ξ is the slack parameter of the
homomorphism-preimage (HPI) protocol, we can commit to the coefficient vec-
tor x ∈ [0, p)n of a degree-n polynomial fx(Z) =

∑
i xiZ

i as C = com(x) and
open evaluations of the committed polynomial at any point z ∈ Zp to t = fx(z)
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PSRO(n,x ∈ Z
n, C ∈ G,g ∈ G

n) VSRO(n, C ∈ G,g ∈ G
n)

If n = 1 send x−−−−−−−−−−−−−−→ x · g ?= C ∧ |x| ≤ β · 2λ log n

If yes accept, else reject

Else n′ ← �n
2 �

x = (xL,xR);g = (gL,gR)
CL ← 〈xL,gR〉, CR ← 〈xR,gL〉

CL, CR−−−−−−−−−−−−−−→
r←−−−−−−−−−−−−−−

r ← [0, 2λ−1)

x′ ← xL + rxR

C′ ← 〈x′,gR + rgL〉
C′ ← CL + r2CR + rC
g′ ← gR + rgL

PSRO(n′,x′, C′,g′) recurse←−−−−−−−−−−−−−−−−−−→ VSRO(n′, C′,g′)

Fig. 1. A succinct interactive protocol for short rational openings. The honest prover’s
input must have norm at most β. For simplicity n is a power of 2.

by running the HPI protocol for the homomorphism x �→ (com(x), fx(z)). Set-
ting β1 = 2λ log n

√
ξ ·β and β2 =

√
ξ/2λ log n, this protocol proves knowledge of a

pair (a,x∗) such that com(x∗) = a · C and fx∗(z) = a · t mod p where ||x|| ≤ β1

and |a| ≤ β2. This is a valid rational opening of C to x∗/a, and by Corollary 3
the commitment is binding for rational openings in W(β1, β2). This proves for
the polynomial f(X) =

∑
i fx∗,i/aXi ∈ Zp, f(z) = t. The protocol has loga-

rithmic communication complexity but requires a linear verifier to compute the
final g′ value.

Special Case: DARK Rational Openings with Log Verifier In the special
case that G is a group of unknown order and com(x) = gfx(q) for q ∈ N and g
a random element in G, where fx(q) =

∑n
i=1 xiq

i−1, the verifier complexity can
be made logarithmic by adding a proof-of-exponentiation (PoE) [37] step. By
Corollary 5, for q = �√n2ξβ� this commitment scheme is binding over vectors
in {x ∈ Z

n : ||x||2 ≤ ξβ} and for any βn, βd > 0 such that βn ·βd = ξβ, is binding
under rational openings to W(βn, βd) := {x/z ∈ Q

n : z ∈ Z, ||x||2 ≤ βn, |z| ≤
βd}.

When using this as a linear-map vector commitment scheme over Fp, where
the honest prover may commit to any x ∈ [0, p)n which has L2 norm at most
β =

√
n · p, we would set q = �n2ξp�. The resulting interactive argument in this

case is a slight variation of the DARK evaluation protocol.
The verifier complexity is made logarithmic using a PoE as follows. Recall

that the verifier only needs to compute the final round g′ =
∏

gui
i where ui are

the coefficients of u(X) =
∏log n

j=1 (rj + X2j−1
). In this case, gi = g(qi), and thus
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g′ = g(
∑

i uiq
i) = gu(q). The Wesolowski PoE [37] enables a Prover to convince

a Verifier that Y = Xa ∈ G for X,Y ∈ G and a ∈ Z. In the protocol, the ver-
ifier sends a random 2λ-bit prime 	, and the prover computes Q ← g(	 a

� 
) and
sends it to the verifier. The verifier then computes r ← a mod 	 and checks that
Y = Xr + Q�. The protocol is secure under the adaptive root assumption in G.
Note that the verifier just has to compute a mod 	 and do two O(λ)-bit scalar
multiplications. The prover runs the PoE protocol on input (g, g′, u(q)) in order
to show that g′ was constructed correctly. Note that the verifier can evaluate
u(q) mod 	 in O(log(n)) field multiplications in F�. To do this the prover com-
putes q(2j) mod 	 for j ∈ [0, log2(n) − 1] using log2(n) multiplications. And then
evaluates u(q) mod 	 =

∏log n
j=1 (rj +X2j−1

) mod 	 using another log2(n) multipli-
cations. Alternatively, one can use Pietrzak’s proof of exponentiation [33]. The

protocol only works for powers of 2. The prover would send the gi ← gq2i

for all
i ∈ [0, log2(n)). The verifier can efficiently compute gu(q) given the gi values. The
proof size would be O(log2(n)), but importantly, it can be instantiated without
any assumptions in all groups [26]. Using preprocessing of q, it also has prover
O(

√
(n)), independent of |q|.

7.2 Almost Special Soundness Analysis

Theorem 4 (Bulletproofs for short openings is AMSS). Let n = 2μ

for μ ≥ 1. Let CSZμ,λ = 8μ2 + log2(2μ)λ. Let Γ = (Setup,G,Commit,Open)
denote any Z-linear deterministic commitment scheme satisfying the following
conditions:

– For βn = 2λμ
√

ξ · β and βd =
√

ξ/2λμ where log ξ = (14 + 2μ)λ + 6CSZμ,λ +
2(μ+4) it is binding to W(βn, βd) := {x/z ∈ Q

n : z ∈ Z, ||x||2 ≤ βn, |z| ≤ βd}
under rational openings.

– Open(ppι, C,x) receives no hint, i.e. checks Commit(ppι,x) = C.
– The group G defined for any pp ← Setup(1λ) is a GUO (i.e., the hidden

order assumption holds in G) or a Zq-module for prime q (i.e., G = G
k
1 and

|G1| = q).

Let Π denote the interactive protocol which runs the protocol in Fig. 1 for
parameters β and g ∈ G

n defined by pp ← Setup(1λ), an index ι ∈ I, ppι =
G(pp, ι), and Commit(ppι,x) = 〈x,g〉 for x ∈ Z

n. There exists a predicate pair
φ = (φa, φb) and commitment scheme Γ ∗ such that Π is an (4(μ), 3μ

2λ , Γ ∗, φ)-
almost-special-sound interactive argument for the relation:

SROβ,ppι
= {(C,w = (z,x)) : 〈x,g〉 = z · C and x/z ∈ W(βn, βd)}

Remark 8. Note that ξ ∈ 2O(λ log n+log2 n). CSZμ,λ is derived from the Multilinear
Composite Schwartz Zippel Theorem (Theorem 2).

The proof of Theorem 4 is in the full version.
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20. Campanelli, M., Nitulescu, A., Ràfols, C., Zacharakis, A., Zapico, A.: Linear-map
vector commitments and their practical applications. Cryptology ePrint Archive,
Report 2022/705 (2022). https://eprint.iacr.org/2022/705

21. Couteau, G., Peters, T., Pointcheval, D.: Removing the strong RSA assumption
from arguments over the integers. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 321–350. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56614-6 11

22. DeMillo, R.A., Lipton, R.J.: A Probabilistic Remark on Algebraic Program Test-
ing. Technical report, Georgia Inst of Tech Atlanta School of Information and
Computer Science (1977)

23. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new
techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64834-3 9

24. Gentry, C., Halevi, S., Lyubashevsky, V.: Practical non-interactive publicly veri-
fiable secret sharing with thousands of parties. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part I. LNCS, pp. 458–487. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-06944-4 16

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (2008). https://doi.org/10.1145/1374376.1374407
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Abstract. A classic result in the theory of interactive proofs shows that
a special-sound Σ-protocol is automatically a proof of knowledge. This
result is very useful to have, since the latter property is typically tricky
to prove from scratch, while the former is often easy to argue— if it is
satisfied. While classic Σ-protocols often are special-sound, this is unfor-
tunately not the case for many recently proposed, highly efficient inter-
active proofs, at least not in this strict sense. Motivated by this, the
original result was recently generalized to k-special-sound Σ-protocols
(for arbitrary, polynomially bounded k), and to multi-round versions
thereof. This generalization is sufficient to analyze (e.g.) Bulletproofs-
like protocols, but is still insufficient for many other examples.

In this work, we push the relaxation of the special soundness prop-
erty to the extreme, by allowing an arbitrary access structure Γ to specify
for which subsets of challenges it is possible to compute a witness, when
given correct answers to these challenges (for a fixed first message). Con-
cretely, for any access structure Γ , we identify parameters tΓ and κΓ ,
and we show that any Γ -special-sound Σ-protocol is a proof of knowl-
edge with knowledge error κΓ if tΓ is polynomially bounded. Similarly
for multi-round protocols.

We apply our general result to a couple of simple but important exam-
ple protocols, where we obtain a tight knowledge error as an immediate
corollary. Beyond these simple examples, we analyze the FRI protocol.
Here, showing the general special soundness notion is non-trivial, but
can be done (for a certain range of parameters) by recycling some of
the techniques used to argue ordinary soundness of the protocol (as an
IOP). Again as a corollary, we then derive that the FRI protocol, as an
interactive proof by using a Merkle-tree commitment, has a knowledge
extractor with almost optimal knowledge error, with the caveat that the
extractor requires (expected) quasi-polynomial time.

Finally, building up on the technique for the parallel repetition of k-
special-sound Σ-protocols, we show the same strong parallel repetition
result for Γ -special-sound Σ-protocol and its multi-round variant.
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1 Introduction

Background. A key feature of an interactive proof is soundness, which requires
that the verifier will not accept a false statement, i.e., an instance x that is not
in the considered language, except with bounded probability. In many situa-
tions however, a stronger notion of soundness is needed: knowledge soundness.
Informally, knowledge soundness requires the prover to know a witness w that
certifies that x is a true statement, in order for the verifier to accept (except
with bounded probability). More formally, this is captured by the existence of
an efficient extractor, which has (rewindable) oracle access to any, possibly dis-
honest, prover, and which outputs a witness w for the considered statement x
with a probability that is tightly related to the probability of the prover making
the verifier accept.

Since their introduction, interactive proofs that satisfy knowledge soundness,
typically referred to proofs of knowledge then, have found a myriad of applica-
tions. However, showing that an interactive proof satisfies knowledge soundness
is typically non-trivial — often significantly more involved than showing ordi-
nary soundness. By default, it involves designing the extractor, and proving that
it “does the job.” We got spoiled in the past, where most of the considered
interactive proofs were Σ-protocols, i.e., public-coin 3-round interactive proofs,
and had the additional property of being special-sound. Indeed, this made life
rather easy since special-soundness is a property that is usually quite easy to
prove, and that implies ordinary and knowledge soundness via a general clas-
sical result. Thus, knowledge soundness was often obtained (almost) for free.
However, this has changed in recent years, where the focus has shifted towards
finding highly efficient interactive proofs (where efficiency is typically measured
via the communication complexity, verification time, etc.); many of these highly
efficient solutions are not special-sound, and thus require a knowledge-soundness
proof from scratch.

Given this situation, it would be desirable to have stronger versions of the
generic “special-soundness ⇒ knowledge soundness” result that applies to a
weaker notion of special-soundness, which then hopefully is satisfied by these
new cutting-edge interactive proofs. One step in this direction was recently made
in [2,3], where the above implication was extended to k-special-sound interac-
tive proofs, and, even more generally, to (k1, . . . , kμ)-special-sound multi-round
public-coin interactive proofs, for arbitrary positive integer parameters, subject
to being suitably bounded from above (e.g., k ≤ poly(|x|)). Rather naturally,
k-special-soundness means that from accepting responses to k pairwise distinct
challenges for one fixed message, a witness can be efficiently computed (so that
2-special-soundness coincides with the classical special-soundness property); for
the multi-round version, a suitable tree of transcripts is needed for computing a
witness. This weaker notion of special-soundness is in particular sufficient to ana-
lyze Bulletproofs-like protocols, and so we directly obtain knowledge soundness
for these protocols.

However, this weaker notion still falls short of capturing many of the recent
highly-efficient interactive proofs. For instance, a commonly used amortization
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technique, where the prover proves a random linear combination of n statements
(instead of proving all the statements individually), requires correct responses for
n linearly independent challenge vectors in order to compute a witness. Another
example comes from the design principle to first construct a highly efficient
probabilistically checkable proof (PCP) or interactive oracle proof (IOP), and
then to compile it into a standard (public-coin) interactive proof in the natural
way by means of a Merkle-tree commitment [11–13]. Also here, one does not
obtain a special-sound protocol in the above generalized sense (or then only for
a too large parameter); instead, one requires challenges that correspond to sets
whose union covers all (or sufficiently many of) the leaves of the Merkle tree, in
order to obtain a witness.

Our Technical Results. In this paper, we push the weakening of the
special-soundness property to the extreme. For Σ-protocols, in the spirit of ordi-
nary or k-special-soundness, the notion of special-soundness that we consider
in this work requires that a witness can be efficiently computed from accepting
responses to sufficiently many pairwise distinct challenges, but now “sufficiently
many” is captured by an arbitrary monotone (access) structure Γ , i.e., an arbi-
trary monotone set of subsets of the challenge set. This gives rise to the notion
of Γ -special-soundness, which coincides with k-special-soundness in the special
case where Γ is the threshold access structure with threshold k. This naturally
extends to multi-round public-coin interactive proofs, leading to the notion of
(Γ1, . . . , Γμ)-special-soundness. Similar notions were considered in [9,10] in the
setting of commit-and-open Σ-protocols, and in some more constrained form,
where the monotone structures are replaced by matroids, in [14,15].

We cannot expect for every Γ that a Γ -special-sound protocol is a proof of
knowledge. Instead, we identify parameters tΓ and κΓ , determined by the struc-
ture Γ , and for any Γ -special-sound Σ-protocol we prove existence of an extrac-
tor that has an knowledge error κΓ and an expected running time that scales
with tΓ . Thus, as long as tΓ ≤ poly(|x|), Γ -special-soundness implies knowledge
soundness. Similarly for (Γ1, . . . , Γμ)-special-sound multi-round protocols.

The construction of our extractor for Γ -special-sound protocols (and its
multi-round generalization) is inspired by the extractor construction from [3]. As
a nice consequence, we can recycle the line of reasoning from [3] to prove strong
parallel repetition and extend it to our general notion of special-soundness, show-
ing that also here the knowledge error of a parallel repetition decreases expo-
nentially with the number of repetitions. For this result, we refer to the full
version [1].

Applications. Our general technique gives immediate, tight results for
simple but important example protocols. For example, applied to the above
mentioned amortization technique of proving a random linear combination, we
directly obtain knowledge extraction with a knowledge error that matches the
trivial cheating probability. Similarly, applied to the natural interactive proof for
a Merkle commitment, where the prover is challenged to open a random subset
(of a certain size), we obtain a knowledge error that matches the probability of
one faulty node not being opened.
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In order to demonstrate the usefulness of our result beyond the above simple
examples, we analyze the (interactive) FRI protocol [5].1 We prove that for a
certain range of parameters, when instantiated with a Merkle tree commitment
using a collision resistant hash function (or with any non-interactive, computa-
tionally binding vector commitment scheme with local openings), the protocol
admits a knowledge extractor with knowledge error essentially matching the triv-
ial cheating probability with the following caveat: the knowledge extractor runs
only in (expected) quasi-polynomial time. (At least, this is true if the protocol is
run for logarithmically many rounds, as is typically done. For a natural constant-
round variant, which requires more total communication, we can obtain nearly
optimal knowledge soundness, i.e., here the knowledge extractor runs in expected
polynomial time.) In more detail, for any proximity parameter δ up to δ < 1−ρ

4 ,
where ρ is the relative rate of the considered code, we establish the existence
a knowledge extractor running in expected time NO(log N) which, when given
oracle access to a (potentially dishonest) prover P∗, succeeds with probability
at least ε(P∗)− ((1− δ)t +O(N/|F|)), where N is the length of the code, t is the
number of repetitions of a certain verification step, and ε(P∗) is the probability
P∗ convinces the verifier to accept.2 For context, the trivial cheating proba-
bility for the protocol is max{(1 − δ)t, 1/|F|}. In contrast to the above simple
examples, arguing that the FRI protocol is (Γ1, . . . , Γμ)-special-soundness is not
trivial; however, technical results from [5] can be recycled in order to show this,
and then the existence of the knowledge extractor follows immediately from our
generic result. While proving the existence of a quasi-polynomial time extractor
does not suffice for establishing the standard notion of knowledge soundness, we
believe that it still offers a nontrivial guarantee with the potential for practical
relevance.

A final example, which we would like to briefly discuss, is parallel repetition.
This example shows that our generic technique does not always work. For sim-
plicity, consider a k-special-sound Σ-protocol with k > 2 (but the discussion also
applies to multi-round protocols, and to our generalized notion of special sound-
ness). Then, its t-fold parallel repetition is not k-special-sound anymore (unless
k = 2). One can argue that it is

(
(k−1)t+1

)
-special-sound — but this parameter

is exponential in t, and thus one cannot directly conclude knowledge soundness.
On the other hand, equipped with our generalized notion, one can observe that
the parallel repetition is Γ -special-sound for Γ being the structure that accepts
a list of challenge vectors, each vector of length t, if there is one position where
the challenge vectors feature at least k different values. Unfortunately, also here,

1 We point out that, when considering the FRI protocol for an actual hash function
(rather than the random oracle), ordinary soundness is meaningless: the existence of
an opening of a Merkle commitment with a certain (not too obscure) property holds
trivially. Thus, it is crucial to argue knowledge soundness in this case.

2 For the constant-round variant, we obtain genuine knowledge-soundness (1 − δ)t +
O(N/|F|), that is here the knowledge extractor’s expected running time is NO(1).
We also point out that a simple argument can be used to show knowledge soundness
(1− 2μδ)t + O(N/|F|), where μ is the number of rounds; however, this result is only
meaningful for fairly extreme parameters.
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the crucial parameter tΓ turns out to be exponential for this structure Γ , and
so our generic result does not imply knowledge soundness. Fortunately, for this
particular and important example, the parallel repetition result from [3] applies
in case of k-special-sound protocols (and its multi-round generalization), and
our extension (see the full version [1]) of the parallel repetition applies in case of
arbitrary (Γ1, . . . , Γμ)-special-sound protocols. Thus, after all, we can still argue
(optimal) knowledge soundness in this case.

In conclusion, we expect that with our generic result for (Γ1, . . . , Γμ)-special-
sound protocols (which requires control over certain parameters to be applica-
ble), and with our general parallel repetition result, our work offers powerful tools
for proving knowledge soundness of many sophisticated proofs of knowledge.

2 Preliminaries

We write N0 = N∪{0} for the set of nonnegative integers. Further, for any q ∈ Z,
Zq = Z/qZ denotes the ring of integers modulo q.

2.1 Interactive Proofs

Let us now introduce some standard terminology and definitions with respect to
interactive proofs. We follow standard conventions as presented in [4].

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation, containing statement-witness
pairs (x;w). We assume all relations to be NP-relations, i.e., verifying that
(x;w) ∈ R takes time polynomial in |x|. An interactive proof for a relation
R aims to allow a prover P to convince a verifier V that a public statement x
admits a (secret) witness w, i.e., (x;w) ∈ R, or even that the knows a witness w
for x.

An interactive proof with three communication rounds, where we may assume
the prover to send the first and final message, is called a Σ-protocol. Further, an
interactive proof is said to be public-coin if the verifier publishes all its random
coins. In this case, we may assume all the verifier’s messages to be sampled
uniformly at random from finite (challenge) sets.

An interactive proof is said to be complete if for any statement witness pair
(x;w) an honest execution results in an accepting transcript (with high proba-
bility). It is sound if a dishonest prover cannot convince an honest verifier on
public inputs x that do not admit a witness w, i.e., on false statements x. More
precisely, (P,V) is sound if V rejects false statements x with high probability.
The stronger notion of knowledge soundness requires that (potentially dishon-
est) provers that succeed in convincing the verifier with large enough probability
must actually “know” a witness w. We will mainly be interested in analyzing the
knowledge soundness of interactive proofs. For this reason, we formally define
this property below.

Definition 1 (Knowledge Soundness). An interactive proof (P,V) for rela-
tion R is knowledge sound with knowledge error κ : N → [0, 1] if there exists a
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positive polynomial q and an algorithm E, called a knowledge extractor, with the
following properties. Given input x and black-box oracle access to a (potentially
dishonest) prover P∗, the extractor E runs in an expected number of steps that is
polynomial in |x| (counting queries to P∗ as a single step) and outputs a witness
w ∈ R(x) with probability

Pr
(
(x; EP∗

(x)) ∈ R
)

≥ ε(P∗, x) − κ(|x|)
q(|x|) ,

where ε(P∗, x) := Pr
(
(P∗,V)(x) = accept

)
is the success probability of P∗ on

public input x.

Remark 1 (Interactive Arguments). In some cases, soundness and knowledge
soundness only hold with respect to computationally bounded provers, i.e.,
unbounded provers can falsely convince a verifier. Computationally (knowledge)
sound protocols are referred to as interactive arguments. Proving soundness of
interactive arguments can be significantly more complicated than proving sound-
ness of interactive proofs. However, in the context of knowledge soundness, an
interactive argument for relation R can oftentimes be cast as an interactive proof
for a modified relation

R′ = {(x;w) : (x;w) ∈ R or w solves some computational problem} .

Hence, in this case the knowledge extractor will either output a witness w with
respect to the original relation w, or it will output the solution to some compu-
tational problem, e.g., a discrete logarithm relation. In fact, our analysis of the
FRI protocol in Sect. 7 exemplifies this general principle. For this reason, knowl-
edge soundness of interactive arguments can typically be analyzed via knowledge
extractors that are originally defined for interactive proofs. Therefore, we will
focus on the analyzes of interactive proofs.

Proving knowledge soundness of Σ-protocols directly is a nontrivial task, as it
requires the construction of an efficient knowledge extractor. It is typically much
easier to prove a related threshold special-soundness property, which states that
a witness can be extracted from a sufficiently large set of colliding and accepting
transcripts.

Definition 2 (k-out-of-N Special-Soundness). Let k,N ∈ N. A 3-round
public-coin interactive proof Π = (P,V) for relation R, with challenge set of
cardinality N ≥ k, is k-out-of-N special-sound if there exists an algorithm that,
on input a statement x and k accepting transcripts (a, c1, z1), . . . (a, ck, zk) with
common first message a and pairwise distinct challenges c1, . . . , ck, runs in poly-
nomial time and outputs a witness w such that (x;w) ∈ R. We also say Π is
k-special-sound and, if k = 2, it is simply said to be special-sound.

It is known that k-out-of-N special-soundness implies knowledge sound-
ness with knowledge error (k − 1)/N . Recently, the multi-round generalization
(k1, . . . , kμ)-out-of-(N1, . . . , Nμ) special-soundness has become relevant. It is now
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known that also this generalization tightly implies knowledge soundness [2]. For
a formal definition, we refer either to [2] or to Sect. 6 where we generalize this
(multi-round) notion beyond the threshold setting.

2.2 Geometric Distribution

This work adapts the extractor of [3]. For this reason, we also need the following
preliminaries on the geometric distribution from their work.

A random variable B with two possible outcomes, denoted 0 (failure) and
1 (success), is said to follow a Bernoulli distribution with parameter p if p =
Pr(B = 1). Sampling from a Bernoulli distribution is also referred to as running
a Bernoulli trial. The probability distribution of the number X of independent
and identical Bernoulli trials needed to obtain a success is called the geometric
distribution with parameter p = Pr(X = 1). In this case Pr(X = k) = (1 −
p)k−1p for all k ∈ N and we write X ∼ Geo(p). For two independent geometric
distributions we have the following lemma.

Lemma 1. Let X ∼ Geo(p) and Y ∼ Geo(q) be independently distributed.
Then,

Pr(X ≤ Y ) =
p

p + q − pq
≥ p

p + q
.

3 A Generalized Notion of Special-Soundness
for Σ-Protocols

In this section, we define a generalized notion of special-soundness. To this end,
we first recall the definition of monotone structures.

Definition 3 (Monotone Structure). Let C be a nonempty finite set and let
Γ ⊆ 2C be a family of subsets of C. Then, Γ or (Γ, C) is said to be a monotone
structure if it is closed under taking supersets, i.e., S ∈ Γ and S ⊆ T ⊆ C
implies T ∈ Γ .

In some textbooks monotone structures Γ do not contain the empty set ∅ by
definition, which is equivalent to Γ �= 2C , and they are required to be nonempty,
which is equivalent to C ∈ Γ . For convenience, we also consider Γ = ∅ and
Γ = 2C to be monotone structures. Then, for any D ⊆ C, the restriction

Γ |D = {S ⊆ D : S ∈ Γ} ⊆ 2D

defines a monotone structure (Γ |D,D).

Definition 4 (Minimal Set). Let (Γ, C) be a monotone structure. A set S ∈ Γ
is minimal if none of its proper subsets are in Γ , i.e., for all T � S it holds that
T /∈ Γ . Further, M(Γ ) ⊆ Γ denotes the set of minimal elements of Γ .
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Definition 5 (Distance to a Monotone Structure). For a nonempty mon-
otone structure (Γ, C), we define the following distance function:

dΓ : 2C → N0 , S �→ min
T∈Γ

|T \ S| .

Equivalently,
dΓ : 2C → N0 , S �→ min

T⊆C
{|T | : S ∪ T ∈ Γ} .

If Γ = ∅, we define dΓ to be identically equal to ∞.

The value dΓ (S) ∈ N0 equals the minimum number of elements that have to
be added to the set S to obtain an element of Γ . In particular, dΓ (S) = 0 if and
only if S ∈ Γ . Hence, it shows how close S is to the monotone structure Γ .

The key observation is now that typical knowledge extractors for interactive
proofs proceed by extracting some set of accepting transcripts from a dishonest
prover attacking the interactive proof. Subsequently, the knowledge extractor
computes a witness from this set of accepting transcripts. Clearly, the set of
sets of accepting transcripts from which a witness can be computed is closed
under taking supersets, i.e., it is a monotone structure. Therefore, the following
special-soundness notion for 3-round Σ-protocols follows naturally.

Definition 6 (Γ -out-of-C Special-Soundness). Let (Γ, C) be a monotone
structure. A 3-round public-coin interactive proof (P,V) for relation R, with
challenge set C, is Γ -out-of-C special-sound if there exists an algorithm that, on
input a statement x and a set of accepting transcripts (a, c1, z1), . . . , (a, ck, zk)
with common first message a and such that {c1, . . . , ck} ∈ Γ , runs in polynomial
time and outputs a witness w ∈ R(x). We also say (P,V) is Γ -special-sound.

The above definition is a generalization of k-out-of-N special-soundness,
where the extractability is guaranteed when given k colliding accepting tran-
scripts with common first message a and pairwise distinct challenges ci that are
elements of a challenge set with cardinality N . Hence, when Γ contains all sets
of cardinality at least k, i.e., it is a threshold monotone structure, Γ -out-of-C
special-soundness reduces to k-out-of-N special-soundness, where N = |C|.

Remark 2. Formally, the monotone structure (Γ, C) of Definition 6 may depend
on the size |x| of the public input x, i.e., it should actually be replaced by an
ensemble (Γλ, Cλ) of monotone structures indexed by the size λ ∈ N of the
public input of (P,V). For simplicity, we will abuse notation by ignoring this
dependency and simply writing (Γ, C).

4 Knowledge Extraction for Γ -out-of-C Special-Sound
Σ-Protocols

Our goal is to prove that, for certain monotone structures (Γ, C), Γ -out-of-C
special-soundness (tightly) implies knowledge soundness, and to determine the
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corresponding knowledge error. In order to prove this, we construct a knowledge
extractor that, by querying a prover P∗ attacking the interactive proof, obtains
a set of accepting transcripts with common first message and for which the
challenges form a set in Γ . Without loss of generality we may assume P∗ to be
deterministic,3 i.e., P∗ always outputs the same first message a. Hence, P∗ can
be viewed as a (deterministic) function

P∗ : C → {0, 1}∗ c �→ y = (a, c, z) ,

that on input a challenge c ∈ C outputs a protocol transcript y = (a, c, z).
Let A ⊆ C be the set of challenges for which P∗ succeeds, i.e., A = {c ∈ C :

V (P∗(c)) = 1}. Then the goal of the extractor is to find a set B ∈ Γ |A. The
difficulty is that the extractor is only given oracle access to P∗ and therefore does
not know the set A. For this reason, extractors typically proceed recursively as
follows: if at some point the extractor has found some S ⊆ A with S /∈ Γ , it will
try new challenges c ∈ C until P∗ succeeds. The hope is then that S ∪ {c} ⊆ A
is “closer” to Γ |A than S. More precisely, the extractor tries to find a c ∈ A ⊆ C
such that dΓ |A(S ∪ {c}) < dΓ |A(S). Note that not all challenges c shorten the
distance to Γ |A, e.g., dΓ |A(S ∪ {c}) = dΓ |A(S) for all c ∈ S. Since the extractor
does not know the set A, it cannot evaluate this distance function.

However, for any S, the challenge set C can be partitioned into a partition
of “useless” challenges and a partition of “potentially useful” challenges. The
useless challenges are the c ∈ C such that dΓ |A(S ∪ {c}) = dΓ |A(S) for all A ⊆ C
containing S, i.e., for all A useless challenges will not shorten the distance to
Γ |A. For instance, all c ∈ S are useless challenges for any S and any Γ . However,
in some settings the set of useless challenges is larger than S, and in general this
observation is crucial for the extractor to be efficient. In fact, this is the case
for all interactive proofs that warrant a generalization of the existing threshold
special-soundness notion. All challenges c ∈ C that are not useless are potentially
useful, i.e., for these challenges there exist an A ⊆ C containing S such that
dΓ |A(S ∪ {c}) < dΓ |A(S). The set of useful challenges is denoted UΓ (S), where
the function UΓ is formally defined below.

Definition 7 (Useful Elements). For a monotone structure (Γ, C), we define
the following function:

UΓ : 2C → 2C , S �→
{
c ∈ C \ S : ∃A ∈ Γ s.t. S ⊂ A ∧ A \ {c} /∈ Γ

}
.

Note that Γ = ∅ implies UΓ (S) = ∅ for all S ⊆ C. Moreover, if Γ is nonempty,
UΓ (S) = ∅ if and only if S ∈ Γ .

The following lemma shows that for any c ∈ UΓ (S), there exists an A ∈ Γ
containing S ∪ {c} such that

dΓ |A(S ∪ {c}) < dΓ |A(S) ,

i.e., the challenges c ∈ UΓ (S) are indeed potentially useful to the extractor. Even
more so, it is essential that the extractor considers all challenges c ∈ UΓ (S). For
3 See [3] for a proof of this claim.
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every c ∈ UΓ (S), it might namely be the case that the A ∈ Γ that “certifies” c,
i.e., the A such that S ⊂ A and A \ {c} /∈ Γ , corresponds to the challenges for
which the prover P∗ succeeds. Since A \ {c} /∈ Γ , the extractor can only succeed
if it considers the challenge c ∈ UΓ (S) at some point.

The same lemma shows that challenges c /∈ UΓ (S) will never decrease the
distance, i.e., they are indeed useless to the extractor. More precisely, if c /∈
UΓ (S), for every A ∈ Γ containing S ∪ {c} it holds that

dΓ |A(S ∪ {c}) = dΓ |A(S) .

Lemma 2. Let (Γ, C) be a monotone structure and S ⊂ C. Then c ∈ UΓ (S) if
and only if there exists an A ∈ Γ containing S ∪ {c} such that

dΓ |A(S ∪ {c}) < dΓ |A(S) .

For the proof of Lemma 2, we refer the to the full version [1].
We also derive the following lemma, which shows that even if all useless

challenges c ∈ C \ UΓ (S) are added to the set S ∈ 2C \ Γ , the resulting subset is
still not in Γ .

Lemma 3. Let (Γ, C) be a monotone structure and S ∈ 2C \ Γ . Then,
(C \ UΓ (S)) ∪ S /∈ Γ .

For the proof of Lemma 3, we refer the to the full version [1].
The knowledge extractor will be restricted to sampling challenges that are

potentially useful. The value tΓ defines the maximum number of accepting tran-
scripts that the extractor has to find, before it succeeds and obtains the accepting
transcripts for a set S ∈ Γ . The efficiency of our knowledge extractor will depend
on tΓ . A formal definition is given below. Further, in Sect. 5, we describe the
monotone structure and corresponding k-values for three (classes of) interactive
proofs and explain their relevance.

Definition 8 (t-value). Let (Γ, C) be a monotone structure and S ⊆ C. Then

tΓ (S) := max

{

t ∈ N0 :
∃c1, . . . , ct ∈ C s.t.

ci ∈ UΓ

(
S ∪ {c1, . . . , ci−1}

)
∀i

}

.

Further,
tΓ := tΓ (∅) .

It is easily seen that tΓ (S) = 0 if and only if S ∈ Γ or Γ = ∅. Further, the
following lemma shows that adding an element c ∈ UΓ (S) to S decreases the
corresponding k-value. This lemma plays a pivotal role in our recursive extraction
algorithm.

Lemma 4. Let (Γ, C) be a nonempty monotone structure and let S ⊆ C such
that S /∈ Γ . Then, for all c ∈ UΓ (S),

tΓ (S ∪ {c}) < tΓ (S) .
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For the proof of Lemma 4, we refer the to the full version [1].
As in [3], we describe our technical results in a more abstract language.

This will later allow us to easily derive composition results and handle more
complicated scenarios, such as multi-round interactive proofs and parallel com-
positions. To this end, let us consider a finite set C, a probabilistic algorithm
A : C → {0, 1}∗ and a verification function V : C × {0, 1}∗ → {0, 1}. An output
y ← A(c) of the algorithm A on input c ∈ C is said to be accepting or correct if
V (c, y) = 1. The success probability of A is denoted as

ε(A) := Pr
(
V

(
C,A(C)

)
= 1

)
,

where C is uniformly random in C. The obvious instantiation of A is given by a
deterministic dishonest prover P∗ attacking an interactive proof Π on input x.
Note that even though it is sufficient to consider deterministic provers P∗, we
allow the algorithm A to be probabilistic. This generalization is essential when
considering multiround interactive proofs and parallel repetitions [3].

Now let Γ ⊆ 2C be a nonempty monotone structure. Then, for any S ⊂ C
with UΓ (S) �= ∅, we define

εΓ (A, S) := Pr
(
V (C,A(C)) = 1 | C ∈ UΓ (S)

)
.

Typically, UΓ (∅) = C and thus ε(A) = εΓ (A, ∅), i.e., all challenges c ∈ C are
potentially useful. However, this is not necessarily the case.

Given oracle access to A, the goal of the extractor is to find correct outputs
y1, . . . , yk for challenges c1, . . . , ck ∈ C such that {c1, . . . , ck} ∈ Γ , i.e., such that
V (ci, yi) = 1 for all i. If A corresponds to a dishonest prover attacking a Γ -out-
of-C special-sound interactive proof on some input x, a witness w for statement x
can be efficiently computed from the outputs y1, . . . , yk.

Let us further define the following quality measure for the algorithm A:

δΓ (A) := min
S /∈Γ

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
. (1)

The value δΓ (A) defines a “punctured” success probability of A, i.e., it equals the
success probability of A when the challenge c is sampled uniformly at random
from some set C \ S ⊇ UΓ (S) such that S is not in the monotone structure.
We will show that the value δΓ (A) measures how well we can extract from the
algorithm A. The value δΓ (A) is a generalization of the measure

δk(A) := min
S⊆C:|S|=k−1

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
,

defined in [3].4 However, when restricting to threshold monotone structures,
there is a syntactic difference between the definitions of δk(A) and δΓ (A). To
see this, let Tk denote the monotone structure containing all subsets of C with
cardinality at least k. Then, in the definition of δk(A) the minimum is over all

4 In the original version of [3], the restriction was |S| < k. Here, when considering
3-round protocols, this makes no difference, but it does for the multi-round case.
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sets of cardinality exactly k−1, whereas the corresponding δTk
(A) is a minimum

over all sets of size at most k − 1. In the threshold case this makes no difference:
it is easily seen that there always exists a (maximal) set of size k − 1 that
minimizes δTk

(A) and so indeed δTk
(A) = δk(A). A similar result does not hold

for arbitrary access structures, i.e., in general the minimum may not be attained
by a maximal set S /∈ Γ . This issue will reoccur in a more substantial way when
addressing multi-round protocols.

For any set T ∈ 2C \ Γ , we also define

δΓ (A, T ) := min
S:S∪T /∈Γ

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
.

Since S ∪ T /∈ Γ implies S ∪ T ′ /∈ Γ for all T ′ ⊆ T , it follows that

δΓ (A, T ′) ≤ δΓ (A, T ), ∀T ′ ⊆ T . (2)

Further, by Lemma 3, it follows that
(
C \ UΓ (T )

)
∪ T /∈ Γ for all T /∈ Γ .

Hence,
δΓ (A, T ) = min

S:S∪T /∈Γ
Pr

(
V (C,A(C)) = 1 | C /∈ S

)

≤ Pr
(
V (C,A(C)) = 1 | C /∈ C \ UΓ (T )

)

= Pr
(
V (C,A(C)) = 1 | C ∈ UΓ (T )

)

= εΓ (A, T ) .

(3)

We are now ready to define and analyze our extraction algorithm for Γ -out-
of-C special-sound interactive Σ-protocols. The extractor is defined in Fig. 1 and
its properties are summarized in the following lemma.

Lemma 5 (Extraction Algorithm - Σ-protocols). Let (Γ, C) be a
nonempty monotone structure and let V : C ×{0, 1}∗ → {0, 1}. Then there exists
an oracle algorithm EΓ with the following properties: The algorithm EA

Γ , given
oracle access to a (probabilistic) algorithm A : C → {0, 1}∗, requires an expected
number of at most 2tΓ − 1 queries to A and, with probability at least δΓ (A)/tΓ ,
it outputs pairs (c1, y1), (c2, y2), . . . , (ck, yk) ∈ C × {0, 1}∗ with V (ci, yi) = 1 for
all i and {c1, . . . , ck} ∈ Γ .

Proof. The extractor EA
Γ (S) is formally defined in Fig. 1. It takes as input a

subset S ∈ 2C \ Γ . The input S represents the set of accepting challenges that
the extractor has already found, i.e., the goal of EA

Γ (S) is to find pairs (ci, yi)
such that V (ci, yi) = 1 and {c1, . . . , ck} ∪ S ∈ Γ . Further, we define

EA
Γ := EA

Γ (∅) .

First note that, since Γ �= ∅ and thus UΓ (S) �= ∅ for all S /∈ Γ , the extractor
is well-defined. Let us now analyze the success probability and the expected
number of A-queries of the extractor.
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Parameters: a nonempty monotone structure (Γ, and an S 2 Γ .
Oracle access to: Algorithm : 0, 1 and verification function
V : 0, 1 0, 1 .

– Sample c1 UΓ (S) uniformly at random and evaluate y1 (c1).
– If V (c1, y1) = 0, abort and output .
– If V (c1, y1) = 1 and c1 S Γ , output (c1, y1) 0, 1 .
– Else, set coin = 0 and repeat

run Γ (S c1 );
set coin V d, (d) for d UΓ (S) sampled uniformly at random;

until either Γ (S c1 ) outputs pairs (c2, y2), . . . , (ck, yk) (for some k) with
V (ci, yi) = 1 for all i and S c1, c2, . . . , ck Γ or until coin = 1.

Output: In the former case, output pairs (c1, y1), . . . , (ck, yk) 0, 1 with
V (ci, yi) = 1 for all i and c1, . . . , ck S Γ . In the latter case, output .

Fig. 1. Recursive Expected Polynomial Time Extractor EA
Γ (S).

Success Probability. By induction over tΓ (S), we will prove that EA
Γ (S)

succeeds with probability at least

δΓ (A, S)
tΓ (S)

.

We first consider the base case. To this end, let S ⊆ C with tΓ (S) = 1. Then,
by Lemma 4, for all c1 ∈ UΓ (S), it holds that tΓ (S ∪ {c1}) = 0 and thus
S ∪ {c1} ∈ Γ . Therefore, the extractor succeeds if and only if V

(
c1,A(c1)

)
= 1

for the c1 sampled from UΓ (S). Hence, the success probability of the extractor
equals

εΓ (A, S) ≥ δΓ (A, S) ,

where the inequality follows from Eq. 3. This proves the bound on the success
probability for the base case tΓ (S) = 1.

Let us now consider an arbitrary subset S ⊆ C with tΓ (S) > 1 and assume
that the claimed bound holds for all subsets T ⊆ C with tΓ (T ) < tΓ (S).

In the first step, the extractor succeeds with probability εΓ (A, S) in finding
a c1 ∈ UΓ (S) and y1 ← A(c1) with V (c1, y1) = 1. If {c1} ∪ S ∈ Γ , the extrac-
tor has successfully completed its task. If not, the extractor starts running two
geometric experiments until one of them finishes. In the first geometric exper-
iment the extractor repeatedly runs EA

Γ (S ∪ {c1}). By Lemma 4, it holds that
tΓ (S ∪ {c1}) < tΓ (S). Hence, by the induction hypothesis, EA

Γ (S∪{c1}) succeeds
with probability

p ≥ δΓ (A, S ∪ {c1})
tΓ (S ∪ {c1})

≥ δΓ (A, S)
tΓ (S) − 1

,

where the second inequality follows from Eq. 2 and Lemma 4. In the second geo-
metric experiment, the extractor tosses a coin that returns heads with probability
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q := εΓ (A, S) .

The second step of the extractor succeeds if the second geometric experiment
does not finish before the first, and so by Lemma 1 this probability is lower
bounded as follows

Pr
(
Geo(p) ≤ Geo(q)

)
≥ p

p + q
≥

δΓ (A,S)
tΓ (S)−1

δΓ (A,S)
tΓ (S)−1 + εΓ (A, S)

≥
δΓ (A,S)
tΓ (S)−1

εΓ (A,S)
tΓ (S)−1 + εΓ (A, S)

=
δΓ (A, S)

tΓ (S) · εΓ (A, S)
,

where the second inequality follows from the monotonicity of the function x �→
x

x+q and the third inequality follows from the fact that δΓ (A, S) ≤ εΓ (A, S)
(Eq. 3).

Since the first step of the extractor succeeds with probability εΓ (A, S), it
follows that EA

Γ (S) succeeds with probability at least δΓ (A, S)/tΓ (S) for all
S ∈ 2C \ Γ , which proves the claimed bound. In particular, EA

Γ succeeds with
probability at least δΓ (A)/tΓ .

Expected Number of A-Queries. By induction over tΓ (S), we will prove
that the expected number of A-queries QΓ (S) made by EA

Γ (S) is upper bounded
as follows:

QΓ (S) ≤ 2tΓ (S) − 1 .

We first consider the base case. To this end, let S ⊆ C with tΓ (S) = 1. In this
case, {c1}∪S ∈ Γ for all c1 ∈ UΓ (S). Hence, EA

Γ (S) either succeeds or fails after
making exactly one A-query, i.e., QΓ (S) = 1 = 2tΓ (S) − 1, which proves the
base case.

Let us now consider an arbitrary subset S ⊆ C with tΓ (S) > 1 and assume
that QΓ (T ) ≤ 2tΓ (T ) − 1 for all subsets T ⊆ C with tΓ (T ) < tΓ (S).

The extractor EA
Γ (S) first samples c1 ←R UΓ (S) uniformly at random and

evaluates y1 ← A(c1). This requires exactly one A-query. After this step the
extractor aborts with probability 1 − εΓ (A, S). Otherwise, and if {c1} ∪ S /∈ Γ ,
it continues running the two geometric experiments until either one of them
finishes. The second geometric experiment finishes in an expected number of
1/εΓ (A, S) trials and requires exactly one A-query per trial. Hence, the total
expected number of trials for both experiments is at most 1/εΓ (A, S). Further,
since tΓ (S ∪ {c1}) < tΓ (S) (Lemma 4) and by the induction hypotheses, the
expected number of A-queries of the first geometric experiment is at most

QΓ (S ∪ {c1}) ≤ 2tΓ (S ∪ {c1}) − 1 ≤ 2tΓ (S) − 3 ,

per iteration, where the second inequality follows again from Lemma 4. Hence,
every iteration of the repeat loop requires an expected number of at most
2tΓ (S) − 2 A-queries.



438 T. Attema et al.

From this it follows that

QΓ (S) ≤ 1 + εΓ (A, S)
2tΓ (S) − 2
εΓ (A, S)

= 2tΓ (S) − 1 ,

for all S ∈ 2C \ Γ . In particular, EA
Γ requires an expected number of at most

2tΓ − 1 A-queries, which completes the proof of the lemma.
��

By basic probability theory, for any S /∈ Γ ,

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
=

Pr
(
V (C,A(C)) = 1 ∧ C /∈ S

)

Pr
(
C /∈ S

)

≥
Pr

(
V (C,A(C)) = 1) − Pr

(
C ∈ S

)

Pr
(
C /∈ S

)

=
ε(A) − Pr

(
C ∈ S

)

1 − Pr
(
C ∈ S

)

=
ε(A) − |S| / |C|

1 − |S| / |C| .

Hence, taking the minimum over all S /∈ Γ shows that

δΓ (A) ≥ ε(A) − κΓ

1 − κΓ
, (4)

where κΓ = maxS /∈Γ |S| / |C|. In Γ -out-of-C special-sound interactive proofs, a
dishonest prover can potentially take any S /∈ Γ and choose the first message so
that it will succeed if the verifier chooses a challenge c ∈ S. Hence, κΓ equals
the trivial cheating strategy for Γ -out-of-C special-sound interactive proofs.

Since the extractor succeeds with probability at least δΓ (A)/tΓ , the following
theorem follows.

Theorem 1. Let (P,V) be a Γ -out-of-C special-sound Σ-protocol such that tΓ is
polynomial in the size |x| of the public input statement x of (P,V) and sampling
from UΓ (S) takes polynomial time (in |x|) for all S with |S| < tΓ . Then (P,V)
is knowledge sound with knowledge error κΓ = maxS /∈Γ |S| / |C|.

5 Examples

In this section, we describe three very simple interactive proofs and their special-
soundness properties. The first example shows that for the special case of k-out-
of-N special-soundness notion, we recover the known results. The second and
third example present techniques that have found numerous applications, but
cannot be analyzed via their threshold special-soundness properties, i.e., these
interactive proofs require an alternative analysis. Our knowledge extractor offers
the means to easily handle these interactive proof as well. Finally, the fourth
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example shows that our generic techniques do not always suffice. In Sect. 7, we
will consider a more complicated protocol and demonstrate how our techniques
enable a knowledge soundness analysis of the multi-round protocol FRI [5].

Example 1 (Threshold Access Structures). Let C be a finite set with cardinal-
ity N , and let Γ be the monotone structure that contains all subsets of C of
cardinality at least k ≤ N . Then a Γ -out-of-C special-sound interactive proof is
also k-out-of-N special-sound. Moreover, UΓ (A) = C \ A for all A /∈ Γ , tΓ = k,
and κΓ = (k − 1)/N . Hence, in the case of k-out-of-N special-soundness, we
recover the results from [3].

Example 2 (Standard Amortization Technique). Let F be a finite field and let Ψ
be an F-linear map. The following amortization technique, known from Σ-
protocol theory, allows a prover to prove knowledge of n Ψ -preimages x1, . . . , xn

of P1, . . . , Pn for essentially the cost of one. The amortization technique is a
2-round protocol that proceeds as follows. First, the verifier samples a challenge
vector c = (c1, . . . , cn) ∈ F

n uniformly at random. Second, upon receiving the
challenge vector c, the prover responds with the element z =

∑n
i=1 cixi. Finally,

the verifier checks that Ψ(z) =
∑n

i=1 ciPi. Hence, instead of sending n preimages
the prover only has to send one preimage.

The n preimages x1, . . . , xn of P1, . . . , Pn can be extracted from accepting
transcripts (c1, z1), . . . , (ck, zk) if the challenge vectors c1, . . . , ck span the vector
space F

n. Hence, the amortization protocol is Γ -out-of-Fn special-sound, where Γ
is the monotone structure that contains all subsets spanning F

n. Further, tΓ = n,
UΓ (A) = F

n \ span(A) for all A /∈ Γ ; and κΓ = 1/ |F|; thus, we obtain optimal
knowledge soundness.

At the same time, the amortization protocol is (|F|n−1+1)-out-of-|F|n special-
sound, i.e., the threshold special-soundness parameter of this protocol is |F|n−1+
1, which is much larger than tΓ = n. In fact, the parameter |F|n−1 + 1 is typically
not polynomially bounded, in which case knowledge soundness can not be derived
from this threshold special-soundness property.

Example 3 (Merkle Tree Commitments). Let us now consider an interactive
proof for proving knowledge of the opening of a Merkle tree commitment P ,
i.e., P is the root of a Merkle tree and the prover claims to know all n leafs. To
verify this claim, the verifier selects a subset S of k (distinct) indices between 1
and n uniformly at random. The prover sends the corresponding leafs together
with their validation paths, which are checked by the verifier.

An opening of the commitment P can be extracted from accepting transcripts
(S1, z1), . . . , (S�, z�) if the subsets Si cover {1, . . . , n}. Hence, this interactive
proof is Γ -out-of-C, where

C = {S ⊆ {1, . . . , n} : |S| = k} and Γ =
{
D ⊆ C :

⋃

S∈D
S = {1, . . . , n}

}
.

Further, tΓ = n − k + 1, UΓ (D) = {A ∈ C : A �⊆
⋃

S∈D S} for all D /∈ Γ , and
κΓ = (n − k)/n; thus, we obtain optimal knowledge soundness.
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The threshold special-soundness parameter of this protocol is
(
n−1

k

)
+ 1 which

is typically much larger than tΓ = n − k + 1. Hence, also in this case our
generalization provides a much more efficient knowledge extractor.

This simple interactive proof is an essential component in many more compli-
cated protocols based on probabilistically checkable proofs (PCPs), interactive
oracle proofs (IOPs) or MPC-in-the-head.

Example 4 (Parallel Repetition). Finally, we consider an example where our
generic technique does not work. To this end, let Πt be the t-fold parallel
composition of a k-out-of-N special-sound interactive proof Π with challenge
set C, i.e., Πt has challenge set Ct. Then, as discussed in the introduction, Πt

is
(
(k − 1)t + 1

)
-out-of-N t special-sound, i.e., its threshold special-soundness

parameter (k − 1)t + 1 grows exponentially in t (if k > 2).
The parallel repetition Πt is also Γ -out-of-Ct special-sound, where Γ contains

all subsets of challenge vectors c ∈ Ct such that there is one position 1 ≤ i ≤ t
where the challenge vectors feature at least k different values. Then, κΓ = (k −
1)t/N t. However, tΓ = (k−1)t+1, i.e., tΓ equals the threshold special-soundness
parameter and grows exponentially in t. Hence, in this particular example, the
correct access structure does not yield an efficient extractor. Fortunately, here
we can apply the parallel repetition result of [3].

6 Knowledge Extraction for Multi-round Interactive
Proofs

Let us now move to the analysis of multi-round interactive proofs (P,V). To this
end, we first generalize the notion of Γ -out-of-C special-soundness to multi-round
interactive proofs. A 2μ+1-round interactive proof is said to be (Γ1, . . . , Γμ)-out-
of-(C1, . . . , Cμ) if there exists an efficient algorithm that can extract a witness
from appropriate trees of transcripts. Before we formally define trees of tran-
scripts, we first define the related trees of challenges.

Definition 9 (Tree of Challenges). Let (Γi, Ci) be monotone structures for
1 ≤ i ≤ μ. A set containing a single challenge vector (c1, . . . , cμ) ∈ C1 ×
· · · × Cμ is also referred to as a (1, . . . , 1)-tree of challenges. Further, for
1 ≤ t ≤ μ, a (1, . . . , 1, Γt, . . . , Γμ)-tree Tt of challenges is the union of several
(1, . . . , 1, Γt+1, . . . , Γμ)-trees, such that

– The first t − 1 coordinates of all c ∈ Tt ⊆ C1 × · · · × Cμ are equal;
– The t-th coordinates of the tree elements form an element in Γt, i.e.,

{c ∈ Ct : ∃(c1, . . . , ct−1, c, ct+1, . . . , cμ) ∈ Tt} ∈ Γt .

Trivially, the verifier’s messages in a transcript of a 2μ + 1-round interactive
proof with challenge sets C1, . . . , Cμ form a (1, . . . , 1)-tree of challenges. Hence,
by adding the prover’s messages we obtain a (1, . . . , 1)-tree of transcripts, and
thus, in the obvious way, we obtain the notion of a tree of transcripts. The
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only additional requirement is that the prover’s messages collide, i.e., they are
uniquely determined by the challenges received before sending the message. In
particular, the first message of every transcript is the same. Note that if the
transcripts are generated by a deterministic prover, this property is guaranteed
to hold.

Definition 10 (Tree of Transcripts). Let (Γi, Ci) be monotone structures for
1 ≤ i ≤ μ. Let (P,V) be a 2μ + 1-round public-coin interactive proof with chal-
lenge sets C1, . . . , Cμ. A (Γ1, . . . , Γμ)-tree of transcripts is a set of protocol tran-
scripts, such that

– The corresponding set of challenge vectors, obtained by ignoring the prover’s
messages, is a (Γ1, . . . , Γμ)-tree of challenges;

– The prover’s messages collide, i.e., if two transcripts (a0, c1, a1, . . . , cμ, aμ)
and (a′

0, c
′
1, a

′
1, . . . , c

′
μ, a′

μ) are both in the tree, and ci = c′
i for all i ≤ j, then

also ai = a′
i for all i ≤ j.

Prior works (e.g., [2,7,8]) considered (k1, . . . , kμ)-trees, where ki ∈ N for all i.
These are special cases of the above defined trees. More precisely, if Γi = {S ⊆
Ci : |S| ≥ ki}, a (k1, . . . , kμ)-tree is the same as a (Γ1, . . . , Γt)-tree.

We are now ready to define a generalized multi-round special-soundness
notion.

Definition 11 ((Γ1, . . . , Γμ)-out-of-(C1, . . . , Cμ) Special-Soundness). Let
(Γi, Ci) be monotone structures for 1 ≤ i ≤ μ. A 2μ + 1-round public-coin inter-
active proof (P,V) for relation R, with challenge sets C1, . . . , Cμ, is (Γ1, . . . , Γμ)-
out-of-(C1, . . . , Cμ) special-sound if there exists a polynomial time algorithm that,
on input a statement x and a (Γ1, . . . , Γμ)-tree of accepting transcripts, outputs
a witness w ∈ R(x). We also say that (P,V) is (Γ1, . . . , Γμ)-special-sound.

Remark 3. The monotone access structure
(
ΓTree(Γ), C1 × · · · × Cμ

)
, where Γ =

(Γ1, . . . , Γμ) and

ΓTree(Γ1, . . . , Γμ) := {S ⊆ C1 × · · · × Cμ : S contains a (Γ1, . . . , Γμ)-tree} ,

allows one to cast a multi-round (Γ1, . . . , Γμ)-out-of-(C1, . . . , Cμ) special-sound
interactive proof as a Γ -out-of-C special-sound interactive proof. Therefore, in
principle, one could immediately apply the results from Sect. 4. However, typi-
cally, this results in an inefficient knowledge extractor. More precisely, the value
tΓTree(Γ), and thus the expected running time of the extractor, grows linearly
in the product of the sizes of the challenge sets C1, . . . , Cμ−1. For this reason,
our multi-round knowledge extractor will proceed recursively over the different
rounds.

Our goal is now to prove that, for appropriate monotone structures,
(Γ1, . . . , Γμ)-out-of-(C1, . . . , Cμ) special-soundness (tightly) implies knowledge
soundness. As before, again borrowing the notation from [3], we present our
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results in a more abstract language. To this end, let A : C1 × · · · × Cμ → {0, 1}∗

be a probabilistic algorithm and

V : C1 × · · · × Cμ × {0, 1}∗ → {0, 1}

a verification function. The success probability of A is denoted as

ε(A) := Pr
(
V

(
C,A(C)

)
= 1

)
,

where C is distributed uniformly at random over C1 × · · · × Cμ. The obvious
instantiation of A is again a deterministic prover P∗ attacking a (Γ1, . . . , Γμ)-
out-of-(C1, . . . , Cμ) special-sound interactive proof.

It turns out that defining the multi-round version of δΓ is somewhat subtle.
In the case of a k-special sound protocol, it is defined in [3] as

δV
k (A) :=

min
S1···Sμ

Pr
(
V (C,A(C)) = 1

∣
∣ C1 �∈ S1, C2 �∈ S2(C1), C3 �∈ S2(C1, C2), . . .

)

where the minimum is over all sets S1 ⊂ 2C1 with |S1| = k1 − 1, all functions
S2 : C1 → 2C2 with |S2(c1)| = k2 − 1 for all c1 ∈ C1, etc.5 Thus, the natural
extension to (Γ1, . . . , Γμ)-special-sound protocols would be to use the very same
expression but minimize over all (maximal) sets S1 ⊂ 2C1 with S1 /∈ Γ1, all
functions S2 : C1 → 2C2 with S2(c1) (maximal and) not in Γ2 for all c1 ∈ C1, etc.

However, writing Γ = (Γ1, Γ2, . . . , Γμ), it turns out that defining δV
Γ in this

way will not lead to the desired results. In essence, the problem lies in the
fact that the condition C2 �∈ S2(C1) may bias the distribution of C1, namely
when S2(c1) has different cardinality for different choices of c1. This issue is
avoided in the threshold case by requiring the Si’s to be maximal sets; here
in the general case, this does not work, since different maximal sets may have
different cardinality.

Because of this reason, we define δV
Γ by the following, harder to comprehend,

expression:

δV
Γ (A) := min

S1···Sμ

∑

c

Pr
(
V

(
C,A(C)

)
= 1 ∧ C = c | C1 /∈ S1,

C2 /∈ S2(c1), . . . , Cμ /∈ Sμ(c1, . . . , cμ)
)
,

(5)

where, as in the above approach, the minimum is over all sets S1 ⊂ 2C1 with
S1 /∈ Γ1, all functions S2 : C1 → 2C2 with S2(c1) /∈ Γ2 for all c1 ∈ C1, etc.

5 In the original version of [3], the restriction was |Si| < ki, i.e., the sets were not
required to be maximal (this makes no difference for μ = 1, but it does for the multi-
round case, where the min is not necessarily attained by maximal sets). However, in
an updated version, this was changed to the above (in essence because of a similar
issue as discussed below).
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Remark 4. Note that, in the special case of 3-round interactive proofs, i.e., if
μ = 1, it holds that

δV
Γ (A) = min

S /∈Γ

∑

c

Pr
(
V

(
C,A(C)

)
= 1 ∧ C = c | C /∈ S

)

= min
S /∈Γ

Pr
(
V

(
C,A(C)

)
= 1 | C /∈ S

)
.

Hence, the multi-round version of δ defined in Eq. 5, is indeed a generalization
of the 3-round version defined in Eq. 1.

Remark 5. Let us consider the multi-round threshold case, i.e., let Tk =
(Tk1 , . . . , Tkμ

) with Tki
the monotone structure containing all subsets of Ci with

cardinality at least ki for all i. Then, although not immediately obvious, it turns
out that δTk

(A) = δk(A) for all A.

By observing that for the non-vanishing terms in the sum, exploiting the
independence of V

(
c,A(c)

)
and C for a fixed c,

Pr
(
V

(
C,A(C)

)
= 1 | C = c, C1 /∈ S1, C2 /∈ S2(c1), · · ·

)

= Pr
(
V

(
c,A(c)

)
= 1 | C = c, C1 /∈ S1, C2 /∈ S2(c1), · · ·

)

= Pr
(
V

(
c,A(c)

)
= 1

)
,

we can re-write the definition as

δV
Γ (A) = min

S1···Sμ

∑

c

Pr
(
V

(
c,A(c)

)
= 1

)
Pr

(
C = c | C1 /∈ S1, C2 /∈ S2(c1), · · ·

)

= min
S1···Sμ

∑

c

Pr
(
V

(
c,A(c)

)
= 1

)
Pr

(
C1 = c1 | C1 /∈ S1

)
· · ·

· · · Pr
(
Cμ = cμ | Cμ /∈ Sμ(c1, . . . , cμ−1)

)
.

This shows that the definition captures the success probability of A when the
challenges are samples as follows (for given sets/functions S1, S2, . . ., over which
the minimum is then taken): c1 is sampled uniformly at random subject to being
outside of S1. Then, c2 is sampled uniformly at random subject to being outside
of S2(c1). And so forth. We repeat, in general this is not the same as sampling
c1, . . . , cμ uniformly at random subject to c1 /∈ S2, c2 /∈ S2(c1), etc., which biases
the choice of c1 towards those for which S2(c1) is small(er), while with the above
sampling there is no bias on c1 (beyond the exclusion from S1). Defining δV

Γ in
this way is crucial to our work. Oftentimes, the verification function V is clear
from context, in which case we simply write δΓ(A) instead of δV

Γ (A).
Any choice of sets/functions S1, . . . , Sμ considered in the minimization in

Eq. 5 defines a subset

X = {(c1, . . . , cμ) ∈ C1 × · · · × Cμ | c1 ∈ S1 ∨ · · · ∨ cμ ∈ Sμ(c1, . . . , cμ−1)}

that does not contain a Γ-tree. Hence, again the success probability is punc-
tured by removing some set X from which we cannot extract and thus, for
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which a dishonest prover may (potentially) be successful. Moreover, every sub-
set of C1 × · · · × Cμ that does not contain a Γ-tree is contained in a set X of
this form. Hence, if a prover has positive success probability outside all such
subsets X, i.e., if δV

Γ (A) > 0, then extraction of a Γ-tree of accepting transcripts
is in principle possible. However, it is far less obvious that extraction can also
be done efficiently. The following lemma shows that, for appropriate monotone
structures (Γi, Ci), an efficient extraction algorithm indeed exists. This is a gen-
eralization of [3, Lemma 4]. Using the notation we introduced here, their proof
almost immediately carries over to this more generic setting. For completeness,
we present the proof below.

Lemma 6 (Multi-round Extraction Algorithm). Let Γ = (Γ1, . . . , Γμ)
and C = C1 × · · · × Cμ be such that (Γi, Ci) are nonempty monotone structures
for all i. Further, let T :=

∏μ
i=1 tΓi

and V : C × {0, 1}∗ → {0, 1}. Then, there
exists an algorithm EA so that, given oracle access to any (probabilistic) algo-
rithm A : C → {0, 1}∗, EA requires an expected number of at most 2μ · T queries
to A and, with probability at least δΓ(A)/T , outputs pairs (ci, yi) ∈ C × {0, 1}∗

such that {ci}i is a Γ-tree with V (ci, yi) = 1 for all i.

For the proof of Lemma 6, we refer to the full version [1].
Let us now derive a lower bound on the value δV

Γ (A). To this end, for
c = (c1, . . . , cμ) ∈ C1 × · · · × Cμ, we write V (c) as a shorthand for V (c,A(c)).
Furthermore, for any fixed choices of S1, S2, . . . , Sμ, as in the definition of δΓ(A)
(Eq. 5), we introduce the event

Ω(c) :=
[
C1 /∈ S1 ∧ C2 /∈ S2(c1) ∧ · · · ∧ Cμ /∈ Sμ(c1, . . . , cμ−1)

]
.

Then,
∑

c

Pr
(
V (c) = 1 ∧ C = c | Ω(c)

)
≥

∑

c

Pr
(
V (c) = 1 ∧ Ω(c) ∧ C = c

)

=
∑

c

Pr
(
V (C) = 1 ∧ Ω(C) ∧ C = c

)

= Pr
(
V (C) = 1 ∧ Ω(C)

)

≥ Pr
(
V (C) = 1

)
− Pr

(
¬Ω(C)

)
.

Now note that

Pr
(
¬Ω(C)

)
= 1 − Pr

(
Ω(C)

)

= 1 − Pr
(
C1 /∈ S1

)
Pr

(
C2 /∈ S2(C1) | C1 /∈ S1

)
· · ·

≤ 1 −
(

1 − max
S1 /∈Γ1

|S1|
|C1|

)(
1 − max

S2 /∈Γ1

|S2|
|C2|

)
· · ·

= κΓ ,

(6)

where

κΓ := max
S /∈ΓTree(Γ)

|S|
|C| = 1 −

μ∏

i=1

(
1 − max

Si /∈Γi

|Si|
|Ci|

)
= 1 −

μ∏

i=1

(1 − κΓi
) .
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We thus obtain that
δΓ(A) ≥ ε(A) − κΓ . (7)

These observations complete the proof of the following theorem.

Theorem 2. Let (P,V) be a (Γ1, . . . , Γμ)-out-of-(C1, . . . , Cμ) special-sound
interactive proof such that TΓ =

∏μ
i=1 tΓi

is polynomial in the size |x| of the
public input statement x of (P,V) and sampling from UΓi

(Si) takes polynomial
time (in |x|) for all 1 ≤ i ≤ μ and Si ⊂ Ci with |Si| < tΓi

. Then (P,V) is
knowledge sound with knowledge error

κΓ = 1 −
μ∏

i=1

(
1 − max

Si /∈Γi

|Si|
|Ci|

)
.

7 Analysis of the FRI-Protocol

In this section we show how to use our generalized notion of special-soundness to
demonstrate the existence of a quasi-polynomial time knowledge extractor with
essentially optimal success probability for the Fast Reed-Solomon Interactive
Oracle Proof of Proximity due to Ben-Sasson et al. [5], assuming it has been
compiled into an interactive proof the natural way (i.e., the oracles are replaced
by compact commitments to the vectors with a local opening functionality).
We first provide the necessary background on the protocol before providing our
analysis. We remark that we use ideas that were implicit in prior works; our
main aim in this section is to demonstrate the utility of our generalized special-
soundness notion and the accompanying knowledge extractor.

7.1 Preliminaries on Reed-Solomon Codes

Let F be a finite field of cardinality q and S ⊆ F. Given a polynomial f(X) ∈ F[X]
we let f(S) = (f(s))s∈S denote the vector of evaluations of f over the domain S
(given in some arbitrary, but fixed, order). For an integer � we write S·� for the
set of �-powers of elements in S, i.e. {s� : s ∈ S}.6

For any 0 ≤ ρ ≤ 1, the Reed-Solomon code RS[F, S, ρ] ⊆ F
|S| consists of

all evaluations over the domain S of polynomials F (X) ∈ F[X] of degree less
than ρ|S|. In notation,

RS[F, S, ρ] := {F (S) : F (X) ∈ F[X] ∧ deg(F ) < ρ|S|} .

In the sequel we will assume S is a multiplicative subgroup of F
∗ of order a

power of 2, with the understanding that our analysis should generalize readily
to other “smooth” evaluation domains for FRI protocols. We further set ρ = 2−r

6 We use this somewhat cumbersome notation as we will later need to denote j-fold
Cartesian products of sets, and for this operation we will use the standard notation
Sj .
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for an integer r < log2(|S|), which implies ρ|S| ∈ N and that the dimension of
RS[F, S, ρ] is precisely ρ|S|.

Letting N = |S|, we therefore have S = 〈ω〉 = {1, ω, ω2, . . . , ωN−1},
where ω is a primitive N -th root of unity. Note then that S·2 = 〈ω2〉 =
{1, ω2, ω4, . . . , ωN−2} is a multiplicative subgroup of F

∗ of order N/2. More
generally, for any j = 1, 2, . . . , log2(N), S·2j

= 〈ω2j 〉 is multiplicative subgroup
of F

∗ of order N/2j .
Given two polynomials f(X), g(X) ∈ F[X] we let dS(f, g) := |{s ∈ S :

f(s) �= g(s)}| denote the number of points s ∈ S on which f and g differ. Equiv-
alently, it denotes the (unnormalized) Hamming distance between the vectors
f(S) and g(S).

Given a polynomial f ∈ F[X], we let

δS(f) :=
minF {dS(f, F ) : F ∈ F[X], deg(F ) < ρ|S|}

|S| .

In other words, δS(f) denotes the relative Hamming distance of f(S) to a closest
codeword in RS[F, S, ρ].

7.2 FRI-Protocol

Let Of be an oracle implementing some function f : S → F, which of course
uniquely corresponds to a polynomial of degree less than N = |S|. We are
interested in the situation where a prover claims that f(X) is in fact a polynomial
of degree < ρN , i.e., that f(S) ∈ RS[F, S, ρ]. In order to verify this, the verifier
may make queries to Of , but it is easy to see that in order to catch a lying
prover the verifier must query each s ∈ S (or at least Ω(|S|) such points in order
to catch the prover with good probability).

Thus, for soundness, we will be satisfied with rejecting oracles implementing
functions that are far from low degree, i.e., such that δS(f) ≥ δ. However,
here as well we cannot hope to catch cheating verifiers without making at least
ρN + 1 queries (as ρN evaluations are always consistent with some polynomial
of degree < ρN). It turns out to be possible to make significantly less (i.e., just
logarithmically many) oracle queries if we allow the verifier to interact with the
prover.

The resulting protocols are referred to as interactive oracle proofs of proximity
(IOPPs). In order to demonstrate the utility of our general special soundness
notion, we will show how to analyze the Fast Reed-Solomon Interactive Oracle
Proof of Proximity (FRI-protocol) [5].

In order to implement the oracle Of cryptographically, one makes use of a
compact commitment scheme, typically via a Merkle tree [6]. In the following we
denote the commitment to the vector F (S) = (F (s))s∈S with public parameters
pp by P ← Compp(F (S)) and the local opening information for s ∈ S as γs.
For example, in the case of a Merkle tree the public parameters pp would be a
description of the hash function used, while γs would give hash values for the co-
path of the leaf corresponding to s. We also assume access to a procedure Locpp
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which takes as input a commitment P , a domain element s, a value ys ∈ F and
the opening information γs and outputs 1 if and only if γs indeed certifies that
P opens to ys on the element s.

We can therefore view the (cryptographically compiled version of the) FRI-
protocol as an interactive proof for the pair of relations (R0,Rδ ∪ Rcoll), where
for a parameter β ∈ [0, 1) we define

Rβ :=
{
(P, pp;F,B, (γs)s∈B) : deg(F ) < ρN ∧ |B| ≥ (1 − β)N

∧ ∀s ∈ B, Locpp(P, s, F (s), γs) = 1
}

,

while

Rcoll :=
{
(pp; s, y, y′, γ, γ′) : y �= y′ ∧ Locpp(P, s, y, γ) = 1

∧ Locpp(P, s, y′, γ′) = 1
}

.

This means that completeness holds with respect to relation R0 and sound-
ness holds with respect to Rδ ∪Rcoll, where the latter refers to the “or-relation”
which accepts a witness for one or the other instance. On the one hand, this says
that a prover that committed to a low-degree polynomial will indeed convince
the verifier of this fact. On the other hand, if a prover has a good probability of
convincing the verifier then we can either extract a commitment to many coor-
dinates that agree with a low-degree polynomial, or we can extract two distinct
local openings from the same commitment (invalidating the binding property of
the commitment).7

Folding. An important ingredient in the FRI-protocol is a folding operation. For
our specific choice of S, it is defined as follows: for f(X) ∈ F[X] and c ∈ F, we
define

Fold
(
f(X), c

)
= g(X) ∈ F[X]

such that

g(X2) =
f(X) + f(−X)

2
+ c

f(X) − f(−X)
2X

.

Intuitively, this folding operation considers the even-power monomials of f(X)
and the odd-power monomials separately, obtains from these terms two poly-
nomials of degree deg(f)/2, and takes a random linear combination of these
polynomials. Importantly, the polynomial g(X) can then naturally be viewed
as having degree roughly deg(f)/2 (i.e., the degree is halved) and its domain
is naturally viewed as S·2 = 〈ω2〉, which has order N/2. That is, the folded
polynomial has its degree and domain halved.

A one round version of the FRI-protocol thus proceeds as follows. First, the
prover commits to F (S), where it promises that F (S) ∈ RS[F, S, ρ]. The verifier

7 Observe that this is a concrete instantiation of the idea alluded to in Remark 1: we
can either extract a witness to the desired relation, or a solution to a computationally
hard problem.
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picks a random challenge c ∈ F, sends it to the prover, and the prover responds
with the folding G of F around c. The verifier first checks that deg(G) < ρN/2.
If yes, the verifier then chooses t points s1, . . . , st ∈ S (each uniformly at random
and thus possibly colliding), and asks for the evaluations of F on all points ±si.
It then checks that these evaluations are consistent with G, i.e., that G(s2i ) =
f(si)+f(−si)

2 + c f(si)−f(−si)
2si

for all 1 ≤ i ≤ t, and of course that these are indeed
the values the prover committed to initially.

7.3 Analyzing the FRI-Protocol

In order to analyze the FRI-protocol, we must create an extractor that takes as
input folding challenges and then openings for various points s ∈ S that are
consistent with the folded polynomials (which are assumed to be low-degree).
From two distinct folding challenges c, c′ ∈ F, if G(X) and G′(X) are the foldings
around c and c′ respectively of the function the prover committed to, then we
can create the following polynomial:

F (X) = X
G(X2) − G′(X2)

c − c′ +
cG′(X2) − c′G(X2)

c − c′ .

Note that if G and G′ have degree less than ρN/2, then indeed F would have
degree less than ρN .

The extractor may also rewind the second phase of the protocol to obtain
sets A and A′ covering at least (1 − δ) fraction of S. We can then conclude that
we have consistent openings on their intersection A ∩ A′ (assuming that we do
not violate the binding property of the commitment, i.e., that we do not extract
a witness for the relation Rcoll). The intersection A∩A′ covers a (1−2δ) fraction
of S, so we have found a low-degree polynomial agreeing with the commitment
on a (1 − 2δ) fraction of the points of S.

At this point, we could iterate this argument. However, iterating this argu-
ment over μ folding rounds would cause us to only prove that the prover commit-
ted to a function that agrees with a low-degree polynomial on a (1−2μδ)-fraction
of the coordinates (assuming that we did not extract a collision in the commit-
ment). This is quite unsatisfactory, as we would like to have μ logarithmic in N
and δ ∈ (0, 1) a constant. Fortunately, by relying on ideas from prior works
(specifically, [5]) we can show that we can indeed extract a low-degree polyno-
mial agreeing with the commitment on a (1 − δ) fraction of coordinates (or, of
course, a violation to the binding property of the commitment).

In order to analyze the soundness of the FRI-protocol more effectively, we
will need the following coset-distance from f to RS[F, S, ρ]:

ΔS(f) := min
F∈F[X], deg(F )<ρN

|{s ∈ S : f(s) �= F (s) ∨ f(−s) �= F (−s)}|
N

.

This distance notion has been used in prior works [5]. Observe that ΔS(f) ≥
δS(f). Intuitively, this measure is useful because it allows for a more careful
accounting of how the Hamming metric behaves under the folding operation than
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the above näıve analysis. For this reason, our extractor will succeed assuming a
bound on ΔS(f) rather than just δS(f).

The following lemma quantifies this intuition, by characterizing the set of
challenges c that could cause the Hamming metric to decrease when a function
f is folded around c. These ideas are implicit in [5, Lemma 4.4]; we restate them
in a language that is convenient for us. The full version of this work [1] includes
a proof of the following lemma.

Lemma 7. Let f(X) ∈ F[X] be such that ΔS(f) < (1 − ρ)/2. The number of
choices for c ∈ F such that δS·2

(
Fold(f, c)

)
< ΔS(f) is at most N .

In particular, if there exist pairwise distinct c0, . . . , cN ∈ F such that
δS·2

(
Fold(f, c)

)
≤ δ for all i ∈ {0, 1, . . . , N}, then ΔS(f) ≤ δ.

We now precisely define the notion of special-soundness that we will prove
the FRI-protocol with one folding iteration satisfies. Informally, for the folding
round the previous lemma tells us we need N + 1 challenges to extract, while for
the second round we need enough local openings of the commitment to reveal a
(1 − δ)-fraction of the values that the prover committed to. We now make this
formal.

Let
C := St =

{
(s1, s2, . . . , st) : si ∈ S ∀i} .

For a challenge c = (s1, . . . , st) ∈ C we denote by

B(c) = {s1,−s1, s2,−s2, . . . , st,−st}

the set8 of elements of S that appear in the challenge tuple c, along with their
negations. That is, it is the set of points that will be queried by the verifier
if it samples (s1, s2, . . . , st) in the final verification step. Let (ΓN+1, F) be the
monotone structure that contains all subsets of F of cardinality at least N + 1,
and let (Γ, C) be the monotone structure that contains all subsets of C that cover
at least a (1 − δ)-fraction of S, i.e.,

A ∈ Γ ⊂ 2C ⇐⇒
∣
∣
∣
∣
∣

⋃

c∈A

B(c)

∣
∣
∣
∣
∣
≥ (1 − δ)N .

Theorem 3 (FRI-protocol (one folding iteration)). Let ρ = 2−r for some
r ∈ {0, 1, . . . ,m} and let δ ∈ (0, 1) be such that δ < 1−ρ

4 . The FRI-Protocol is
perfectly complete with respect to relation R0 and (ΓN+1, Γ )-out-of-(F, C) special-
sound with respect to relation Rδ ∪ Rcoll.

Proof. Completeness: This is immediate from prior work (e.g., [5]). To make
our proof self-contained, we note that this follows immediately from the following
facts concerning a polynomial F (X) ∈ F[X]:

– if F has degree < ρN then Fold(F, c) has degree < ρN/2 for any c ∈ F; and

8 That is, we explicitly remove repetitions, so B(c) is not interpreted as a multi-set.
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– for any s ∈ S and c ∈ F, Fold(F, c)(s2) = F (s)+F (−s)
2 + cF (s)−F (−s)

2s .

Soundness: We must extract a witness for either the relation Rδ or the relation
Rcoll given a (ΓN+1, Γ )-tree of accepting transcripts. Such a tree of transcripts
consists of the following:

– folding challenges c0, . . . , cN ∈ F,
– polynomials G0, . . . , GN ∈ F[X] of degree less than ρN

2 ,

– subsets A0, . . . , AN ⊆ C, each satisfying
∣
∣
∣
⋃

c∈Aj
B(c)

∣
∣
∣ ≥ (1 − δ)N , and

– for each 0 ≤ j ≤ N , for each s ∈
⋃

c∈Aj
B(c), opening information γsj for the

element s. Let ysj ∈ F be the element for which Locpp(P, s, ysj , γsj) = 1.

Let Bj :=
⋃

c∈Aj
B(c) for 0 ≤ j ≤ N , and observe that these sets are closed

under negation (i.e., s ∈ Bj ⇐⇒ −s ∈ Bj).
Suppose there exists j �= j′ such that, for some s ∈ Bj ∩Bj′ , ysj �= ysj′ . Then,

we may output the following witness for the relation Rcoll: (s, ysj , ysj′ , γsj , γ
′
sj).

We may now assume that the above does not occur. In other words, for each
s ∈ B̄ := B0 ∪ . . . ∪ BN the set {ysj : s ∈ Bj} is in fact a singleton set; denote
its unique element by ys. We also let γs := γsj where j is the smallest element
in {0, 1, . . . , N} such that s ∈ Bj (this is just an arbitrary tie-breaking rule).

For each j ∈ {0, 1, . . . , N}, the polynomial Gj and the elements ys for s ∈ Bj

satisfy the following relation:

Gj(s2) =
ys + y−s

2
+ cj

ys − y−s

2 s
.

Let f(X) ∈ F[X] be a polynomial consistent with the ys’s, i.e., for all s ∈ B̄ we
have f(s) = ys. Furthermore, for reasons to be clear later, we let f be different
to the polynomial F0 defined below outside of B̄, i.e., f(s) �= F0(s) for all s �∈ B̄.
Then, for each j ∈ {0, 1, . . . , N} and all s2 such that {±s} ⊆ Bj , we have

Gj(s2) = Fold
(
f, cj

)
(s2) .

We conclude that Fold
(
f, cj

)
and Gj agree on at least (1− δ)N

2 elements of S·2.
As deg(Gj) < ρN

2 it follows that

δS·2
(
Fold

(
f, cj

))
≤ δ .

By Lemma 7, if we establish that ΔS(f) < 1−ρ
2 , it in fact then follows that

ΔS(f) ≤ δ, which in turn implies δS(f) ≤ δ. As 2δ < 1−ρ
2 by assumption, it

suffices for us to show ΔS(f) ≤ 2δ. We focus on proving this now.
Consider the polynomial

F0(X) := X
G0(X2) − G1(X2)

c0 − c1
+

c0G1(X2) − c1G0(X2)
c0 − c1

.
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Since the degrees of G0 and G1 are smaller than ρN
2 , it follows that deg(F0) <

ρN . Furthermore, we note that for all s ∈ B0∩B1 we have f(s) = F0(s). Indeed,

F0(s) = s · G0(s2) − G1(s2)
c0 − c1

+
c0G1(s2) − c1G0(s2)

c0 − c1

=
s

c0 − c1

[
f(s) + f(−s)

2
+ c0

f(s) − f(−s)
2 s

−
(

f(s) + f(−s)
2

+ c1
f(s) − f(−s)

2 s

)]

+
1

c0 − c1

[
c0 ·

(
f(s) − f(−s)

2
+ c1

f(s) − f(−s)
2 s

)

−c1 ·
(

f(s) + f(−s)
2

+ c0
f(s) − f(−s)

2 s

)]

=
s

c0 − c1
· (c0 − c1)

f(s) − f(−s)
2 s

+
1

c0 − c1
· (c0 − c1)

f(s) + f(−s)
2

=
f(s) − f(−s)

2
+

f(s) + f(−s)
2

= f(s) .

From this, we can conclude that f and F0 agree on at least (1 − 2δ)N/2 pairs
{±s}: here, we use the fact that as B0 and B1 are closed under negation, so is
B0 ∩ B1. Thus, the number of s ∈ S for which f(s) �= F0(s) or f(−s) �= F0(−s)
is at most 2δN . Recalling deg(F0) < ρN , we conclude ΔS(f) ≤ 2δ, as desired.

Thus, we have found that ΔS(f) ≤ δ, which in particular means δS(f) ≤ δ,
as desired. Let F (X) denote the (necessarily unique) polynomial of degree < ρN
such that dS(F (S), f(S)) ≤ δN . As dS(F0(S), f(S)) ≤ 2δN it also follows that
dS(F0(S), F (S)) ≤ 3δN < 1 − ρ. As F0(S), F (S) ∈ RS[F, S, ρ] and this code has
minimum distance 1 − ρ, it must be that F0(S) = F (S), which further implies
F0(X) = F (X) (as polynomials).

We can therefore extract a polynomial of degree < ρN that agrees with
the function f(X) on a (1 − δ) fraction of coordinates: namely, the polynomial
F0(X). Furthermore, since f differs from F0 outside of B̄ = B0 ∪ . . . ∪ BN (by
the choice of f), we can find a subset B ⊆ B̄ of size at least (1 − δ)N for which
f(s) = F0(s) for all s ∈ B. We may therefore output the following witness for
Rδ: (F0(X), B, (γs)s∈B). ��

We are now in position to apply the machinery developed in Sect. 6 to con-
clude the following bound on the knowledge error.

Corollary 1 (Knowledge Error of FRI-protocol (one folding itera-
tion)). Let ρ = 2−r for some r ∈ {0, 1, . . . ,m} and let δ ∈ (0, 1) be such that
δ < 1−ρ

4 . The FRI-Protocol is knowledge sound with respect to relation Rδ ∪Rcoll

with knowledge error

κ := 1 −
(

1 − N

|F|

)(

1 − (�(1 − δ)N� − 1)t

N t

)

≤ N

|F| + (1 − δ)t .
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Proof. Theorem 3 shows that the FRI-Protocol is (ΓN+1, Γ )-out-of-(F, C) special-
sound. To apply Theorem 2, we must first establish that tΓ ·tΓN+1 ≤ NO(1). And
this is indeed the case, as

tΓ ≤ �(1 − δ)N� and tΓN+1 ≤ N + 1 .

We now establish the knowledge error. For this, it suffices to note that
maxS /∈ΓN+1

|S|
|F| = N

|F| while

max
A/∈Γ

|A|
|C| =

(�(1 − δ)N� − 1)t

N t
≤ (1 − δ)t .

To see the first equality, first note that if A /∈ Γ then
⋃

c∈A B(c) has cardinality
less than (1 − δ)N , so A the number of s ∈ S which can appear in a challenge
c ∈ A is at most (1 − δ)N ; as this is an integer, it is at most �(1 − δ)N� − 1.
That is, for some subset T ⊆ S with |T | ≤ �(1 − δ)N� − 1, A ⊆ T t, and
|T t| ≤ ((1 − δ)N/2)t. The equality holds as we can certainly choose A = T t

for some T ⊆ S of size �(1 − δ)N� − 1. For the denominator, as C = St it has
cardinality |S|t = N t. ��

7.4 Additional Folding Iterations

The above analysis can naturally be extended to handle more folding iterations.
Let F0 := F be the low degree polynomial the prover commits to in the first
round. We have folding rounds i = 1, . . . , μ, and in round i the verifier sends
a challenge ci−1 ∈ F and the prover provides a commitment to Fi(S·2i

) where
Fi(X) = Fold(Fi−1, ci−1)(X). After these folding iterations, the verifier picks t
points s1, . . . , st ∈ S independently and uniformly at random and then checks
that for all i = 1, . . . , μ and j = 1, . . . , t, we have

Fi

(
s2

i

j

)
=

Fi−1

(
s2

i−1

j

)
+ Fi−1

(
− s2

i−1

j

)

2
+ ci−1

Fi−1

(
s2

i−1

j

)
− Fi−1

(
− s2

i−1

j

)

2sj
.

The recursive structure of the extractor implies that after μ folding iterations
we obtain a protocol with the following generalized special-soundness guarantee.

Theorem 4 (FRI-protocol (μ folding iterations).). Let ρ = 2−r for some
r ∈ {0, 1, . . . ,m} and let δ ∈ (0, 1) be such that δ < 1−ρ

4 . Let μ ∈ N be such
that μ ≤ log2 N , and for i = 1, 2, . . . , μ let Ni := N/2i−1. The FRI-protocol
with μ folding iterations is perfectly complete with respect to relation R0 and
(ΓN1+1, ΓN2+1, . . . , ΓNμ+1, Γ )-out-of-(F, F, . . . , F, C) special-sound with respect to
relation Rδ ∪ Rcoll.

This yields the following corollary regarding the knowledge error. However,
we note that for μ = Ω(log N) the knowledge extractor only runs in expected
quasi-polynomial time, preventing us from being able to claim the standard
notion of knowledge soundness. Nonetheless we believe that the guarantee is
meaningful. For the proof, we refer to the full version [1].
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Corollary 2 (Knowledge Error of FRI-protocol (μ folding iterations)).
Let N = 2n for some n ∈ N, let ρ = 2−r for some r ∈ {0, 1, . . . ,m} and let
δ ∈ (0, 1) be such that δ < 1−ρ

4 . Let μ ∈ N be such that μ ≤ log2 N , and for
i = 1, 2, . . . , μ let Ni := N/2i−1. There exists a function q(N,μ) = NO(μ) such
that the following holds.

There exists an extraction algorithm that, when given oracle access to a
(potentially dishonest prover) P∗ and input x of size N for the FRI-protocol,
runs in time ≤ q(N,μ) and outputs a witness in the relation Rδ ∪ Rcoll with
probability at least

ε(P∗, x) − κ(N,μ)
q(N,μ)

where

κ(N,μ) := 1 −
(

μ∏

i=1

(
1 − Ni

|F|

))

·
(

1 − (�(1 − δ)N� − 1)t

N t

)

≤
μ∑

i=1

Ni

|F| + (1 − δ)t ≤ 2N

|F| + (1 − δ)t .
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Abstract. We study sufficient conditions to compile simulation-extract-
able zkSNARKs from information-theoretic interactive oracle proofs
(IOP) using a simulation-extractable commit-and-prove system for its
oracles. Specifically, we define simulation extractability for opening and
evaluation proofs of polynomial commitment schemes, which we then
employ to prove the security of zkSNARKS obtained from polyno-
mial IOP proof systems. To instantiate our methodology, we addition-
ally prove that KZG commitments satisfy our simulation extractability
requirement, despite being naturally malleable. To this end, we design a
relaxed notion of simulation extractability that matches how KZG com-
mitments are used and optimized in real-world proof systems. The proof
that KZG satisfies this relaxed simulation extractability property relies
on the algebraic group model and random oracle model.

1 Introduction

Non-interactive succinct zero-knowledge arguments of knowledge (zkSNARKs)
[45] are the new Swiss army knife of blockchain scalability and privacy. They
effectively deliver the twin dream of probabilistically checkable proofs (PCP) [3]
and zero-knowledge proofs (ZKP) [34] while also being non-interactive, short,
and efficiently verifiable. These features make zkSNARKs of high practical and
theoretical relevance. They are an active area of research that has seen rapid
progress in multiple aspects, such as efficiency [7,33,35,36], security and versa-
tility of their setups [6,37], and proof composition [13,15].

Simulation-extractable zkSNARKs. Knowledge-soundness is the basic secu-
rity notion of zkSNARKs: informally speaking, it guarantees that, in isola-
tion, a prover producing a valid proof must know the corresponding witness.
In contrast, there exist real-world deployments and cryptographic applications
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of zkSNARKs that require a stronger property called simulation extractability
(SE, for brevity) [38,47]. Intuitively, this notion considers attackers that can see
proofs for some statements and may use this information in order to produce
a proof for some other statement without knowing the witness. Interestingly,
simulation extractability implies that proofs are non-malleable [23], a relevant
property in practical applications. Most zkSNARKs in the literature are only
proven to be knowledge-sound. In some cases, this is due to the fact that their
proofs may indeed be malleable, e.g., as in [36] (see also [4]). In other cases,
the lack of SE security proof is because it is challenging and may require more
investigation.

From Polynomial Commitments to SNARKs. The design of modern
zkSNARKs follows the common cryptographic approach of starting with pro-
tocols that achieve information-theoretic security in idealized models and then
compiling them into efficient protocols by employing a smaller computation-
ally secure primitive. In the world of SNARKs, the corresponding concepts are
(polynomial) interactive oracle proofs F -IOP [16,17,20,28,48] and (polynomial)
functional commitments F -COM [12,40,41]. An F -IOP employs two (idealized)
oracles that share their state: the prover calls the first oracle to commit to func-
tions f ∈ F and the verifier calls the second to query the committed functions.
Concretely, the F -IOP to SNARK compiler uses F -COM to replace oracles with
commitments, opening proofs, and query proofs. As this only removes reliance on
idealized function oracles but not interaction, the compiler additionally employs
the usual Fiat-Shamir transformation for public-coin protocols to obtain the final
zkSNARK. The benefits of this compilation paradigm are modularity and sep-
aration of concerns: once the compiler is proven, a line of research can address
the problem of improving F -IOPs while another research line can tackle the
problem of realizing F -COM schemes (e.g., with better efficiency, from different
assumptions, etc.): this approach has been successfully adopted to construct sev-
eral recent zkSNARKs. All this recent work, though, only shows that schemes
obtained via this paradigm are knowledge-sound.

1.1 Our Work

We study the simulation extractability of a broad class of zkSNARKs built
through this “natural” compilation approach. In particular, our primary goal
includes showing that not only existing zkSNARKs but also any future
zkSNARKs following this, by now standard, construction framework, provide
simulation extractability. This goal has a twofold motivation. On the theoret-
ical side, we are interested in understanding sufficient conditions on F -COM
to compile an F -IOP into a simulation-extractable zkSNARK. On the practical
side, by capturing existing compilers we can show that existing schemes that are
under deployment, e.g., Plonk [28], have already this strong security property.1

1 In fact as Mahak Pancholi and Akira Takahashi recently informed us of a flaw in
the trapdoor-less zero-knowledge simulation of [29] this is arguably the first proof of
simulation extractability of Plonk with deterministic KZG commitments.
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For this reason, in our work, we focus on the popular case of the compiler where
the F -IOP is a polynomial IOP (i.e., the oracle functions F are low-degree poly-
nomials), and F -COM is a polynomial commitment. Furthermore, in terms of
instantiations we are interested in covering the celebrated KZG polynomial com-
mitment scheme [40] and on a polynomial IOP framework that is flexible enough
to include recent constructions, e.g., [17,20,28,43,46]. The main contributions
of our work are: (i) to introduce a relaxed notion of simulation extractability
for polynomial commitments; (ii) to prove that the KZG scheme satisfies our
relaxed SE notion in the algebraic group model (AGM) and random oracle model
(ROM); and (iii) to prove that our notion is sufficient to compile a polynomial
IOP into a simulation-extractable zkSNARK, using the usual compilation app-
roach. By combining these results we obtain a simulation extractability proof
for Plonk [28], Basilisk [46], and a slight variation of Marlin [20] and Lunar [17].

1.2 Our Techniques

Background. For our work, we chose the class of Polynomial (Holographic)
IOPs (PIOP) as defined by [17] as a generalization of [16].2 The oracle of the
prover commits to low-degree polynomials over a finite field while the queries of
the verifier check polynomial equations over these polynomials. These polynomial
equations can depend on additional field elements sent by the prover and/or the
verifier during the execution of the protocol. Slightly more in detail, the verifier
can query an oracle polynomial p(X) (or multiple polynomials simultaneously)
by specifying polynomials G and v to test equations of the form G(X, p(v(X))) ≡
0. Therefore, to be compiled, PIOPs need a commit-and-prove SNARK (CP-
SNARK) for proving the validity of such equations concerning the committed
polynomials. Notably, one can easily build this CP-SNARK from a CP-SNARK
for polynomial evaluations (e.g., KZG) by testing the equations on a random
point chosen by the random oracle.

Simulation Extractability Challenges. Intuitively, the use of a simulation-
extractable CP-SNARK in the above compiler should result in a simulation-
extractable zkSNARK: the zero-knowledge simulator samples random commit-
ments (relying either on hiding property of commitments, or the randomness in
the committed functions p). It then simulates evaluations of p that satisfy the
verification equation of the PIOP. The reduction to PIOP soundness extracts all
committed polynomials from their opening proofs and the final polynomial eval-
uations from the evaluation proofs. However, this approach presents two major
challenges:

– The PIOP could be arbitrary. For example, consider a PIOP obtained by the
sequential composition of two PIOP protocols for two independent statements.
Very likely, the set of queries to the polynomials made by the two sub-protocols

2 PIOPs can flexibly capture under the same hat all the most recent protocols based
on the notions of [16], AHP [20], and ILDP [28].
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are independent and (unless the PIOP specifies it explicitly) the evaluation
queries of the first sub-protocol may be chosen based on the verifier’s random
challenges sent before the second sub-protocol even starts. The simulation
extractability of the zkSNARK compiled from this protocol might be affected
because one could strip off the second set of evaluation proofs and replace
them with those for another statement3.

– One needs to prove that existing, efficient, and practically deployable instan-
tiations of polynomial commitment schemes are simulation-extractable.

Our Solutions. To solve the first challenge, motivated by our goal to show
that existing zkSNARKs are simulation-extractable and that future zkSNARKs
can seamlessly achieve simulation extractability, we define a (rather minimal)
constraint on the PIOP. Namely, we require that at least one of the polynomial
equations involves all the oracle polynomials and that the polynomial v chosen
by the verifier (see above) is not constant.4 Fortunately, this constraint is natural
and easy to meet in practice: Plonk naturally meets our constraint meanwhile
all the other proof systems based on Aurora’s univariate sumcheck [8] can be
easily (and at negligible cost) adapted by instantiating the proof of polynomial
degree through an evaluation query on all the polynomials.

For the second challenge, unfortunately, the issue is that the most obvi-
ous candidate, the efficient and widely deployed KZG polynomial commitment
scheme [40], is not simulation-extractable. Using bracket notation, KZG commit-
ments are of the form [p(s)]1 for a trapdoor secret s encoded in the parameters
([si]1)i∈[0..d], [1, s]2, while evaluation proofs for an input x and output y are of
the form [p(s)−y

s−x ]1. KZG is malleable: for example, given a commitment to p,
anyone can compute [p(s) + Δ]1 and open it using the same proof to (x, y + Δ).

Our starting point is the observation that KZG retains a form of simula-
tion extractability for evaluations at points that are randomly chosen after the
commitment. Fortunately, this is the situation we encounter in the Fiat-Shamir
part of the PIOP-to-SNARK compiler. The commitment forms part of the first
commit-and-prove part of the statement which is hashed to determine the x of
the second part of the statement. Thus, the evaluation point depends on the
commitment and can be considered random in the RO model.

To formalize this important relaxation, we introduce the notion of policy-
based simulation extractability (Φ-SE, w.r.t. a policy parameter Φ). In the stan-
dard simulation extractability experiment, the adversary can ask the simulator
to generate proofs for statements of its choice and, eventually, must produce
a new valid proof without knowing the witness. In Φ-SE, we consider a relax-
ation of the SE game in which all the simulation queries of the adversary must
3 In particular, the adversary could have a simulated proof π̃ = (π, π′) for (x,x′) and

then could choose x′′ for which it knows a valid witness, and finally forge for (x,x′′)
using (π, π′′), where π′′ is honestly generated. As the simulated proof π is reused,
extraction fails. Notice that this attack works even when the Fiat-Shamir challenges
for π′′ are derived by hashing a transcript that contains π.

4 This can be for example implemented via a common random point chosen at the
end of the protocol, on which all oracles are evaluated.
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satisfy a predicate specified in Φ; similarly, Φ can constrain the winning con-
dition of the adversary. For this reason, we refer to Φ as the policy. One can
see that Φ-SE is a generalization of existing SE notions such as true-simulation
extractability (where the adversary can only see simulated proofs on true state-
ments) [22], or weak simulation extractability (where the adversary only wins if
it provides a proof for a new statement and, contrary to (strong) SE, loses if it
provides a new proof for a statement previously asked to the simulation oracle).
Once having defined this framework, we analyze which policies Φ are strong
enough to achieve simulation extractability in the compiled zkSNARK, while
at the same time being weak enough for instantiation by KZG under plausible
assumptions (in the AGM [27] and RO). Specifically, we isolate the (simulation)
extractability properties needed for the compiler and verify it for KZG in the
AGM. This is the only part of our results where we need the AGM. Given the
broad applications of KZG in the field of practical zkSNARKs and beyond, the
characterization of its (non-)malleability is interesting in its own right. In fact,
our policy highlights some malleability attacks that we discovered and that we
needed to handle. Finally, for our Φ we prove that KZG is Φ-SE in the AGM
and ROM. This proof turned out to be highly non-trivial and is one of our main
technical contributions.

1.3 Related Work

It is hard to be exhaustive, or even representative, in discussing related work
on SNARKs. For the sake of our paper, we focus on related work on simula-
tion extractability notions. Groth and Maller [38] give a simulation-extractable
zkSNARK that consists of only 3 group elements. Their construction is neither
universal nor updatable. The recent work of Ganesh, Orlandi, Pancholi, Taka-
hashi and Tschudi [31] shows that Bulletproofs [14] are non-malleable in AGM.
More recently, Dao and Grubbs show that Spartan and Bulletproofs are non-
malleable even without AGM [21]. Both Ganesh et al. and Dao et al. work extend
the framework introduced by Faust, Kohlweiss, Marson and Venturi in [25] to
Fiat-Shamir applied to multi-round interactive arguments. On a similar path,
the work of Ganesh, Khoshakhlagh, Kohlweiss, Nitulescu and Zajac [29] shows
non-malleability for Plonk, Sonic and Marlin. Both [29,31] show that interac-
tive arguments can be simulation-extractable after applying the Fiat-Shamir
transform. In particular, their approach consists of defining new properties, like
trapdoor-less zero-knowledge5 and unique response6 that need to be proven on
a case-by-case basis. Namely, for each candidate SNARK (even if resulting from
a generic compiler) one needs additional effort to show that it is simulation
extractable. This is arguably more challenging and less generic than our app-
roach. Thanks to our result, once having a Φ-SE polynomial commitment, one
only needs to check a very simple property on the polynomial IOP.

5 That is zero-knowledge where the simulator does not rely on the SRS’s trapdoor but
on the programmability of the random oracle.

6 That is, at some point of the protocol, the prover becomes a deterministic algorithm.
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The work of Abdolmaleki, Ramacher and Slamanig [2] shows a generic com-
piler to simulation-extractable SNARKs which requires key-homomorphic signa-
tures. Their compiler produces universally-composable SNARKs (UC-SNARKs),
which they prove through a black-box straight-line extractor. To obtain a black-
box straight-line extractor, they append to the SNARK proof an encryption of
the witness, thus achieving a relaxed succinctness w.r.t. the size of the circuit
describing the relation. The recent work of Ganesh, Kondi, Orlandi, Pancholi
and Takahashi [30] shows how to regain full succinctness in UC-SNARKs in the
ROM through Fischlin’s transform [26].

1.4 Open Problems

Our framework is general enough to handle compilation from polynomial com-
mitment schemes different than KZG. Our contribution identifies a set of prop-
erties that a polynomial commitment scheme needs to have so that the resulting
SNARK is simulation-extractable. We believe that thanks to the non-malleability
of random oracles the FRI scheme [10] readily possesses the necessary properties,
which would imply the simulation extractability of STARKs [6].

Another advantage of our formalization of PIOP over previous proposals such
as [16] is that it naturally supports optimization tricks in the literature [17]. As
an intermediate step of our compiler, we define a CP-SNARK for polynomial
evaluations based on KZG. While we capture the important use case of batched
evaluations on a common point, for the sake of simplicity, we leave further exten-
sions and optimizations for future work. In particular, we do not capture the case
of proving evaluations on arbitrary linear combinations of committed polynomi-
als. We believe this extension could be handled at the PIOP level by extending
the notion to virtual oracle polynomials obtained through linear combinations
of other oracles (and thus using the homomorphic property of KZG). We leave
open the problem to extend our result to other polynomial IOP models.

Recent works extend the polynomial evaluation proofs of KZG to multiple
evaluation points [49,50]. Our simulation extractability strategy for KZG can be
applied partially to these schemes; however, our technique uses a clever argument
to separate the realm of commitments from the realm of proofs (in KZG proofs
and commitments are both of the form [p(s)]1 for some polynomial p) based
on their degree as polynomials. Unfortunately, the same technique does not
work when the degree of the polynomial in the proof depends on the number of
evaluation points in the proved statement.

2 Preliminaries

A function f is negligible in λ (we write f ∈ negl(λ)) if it approaches zero
faster than the reciprocal of any polynomial: i.e., for every c ∈ N there is an
integer λc such that f(λ) ≤ λ−c for all λ ≥ λc. For an integer n ≥ 1, we
use [n] to denote the set {1, 2, . . . , n}. Calligraphic letters denote sets, while
set sizes are written as |X |. Lists are represented as ordered tuples, e.g. L :=
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(Li)i∈[n] is a shortcut for the list of n elements (L1, . . . , Ln). To get a specific
value from a list, we also use the “dot” notation; e.g., we use L.b to access
the second element of the list L := (a, b, c). An asymmetric bilinear group G

is a tuple (q,G1,G2,GT , e, P1, P2), where G1,G2 and GT are groups of prime
order q, the elements P1, P2 are generators of G1,G2 respectively, e : G1 ×G2 →
GT is an efficiently-computable non-degenerate bilinear map, and there is no
efficiently computable isomorphism between G1 and G2. Let GroupGen be some
probabilistic polynomial-time (PPT) algorithm which on input 1λ, where λ is
the security parameter, returns a description of a bilinear group G. Elements in
Gi, i ∈ {1, 2, T} are denoted in implicit notation as [a]i := aPi, where PT :=
e(P1, P2). Every element in Gi can be written as [a]i for some a ∈ Zq, but
note that, given [a]i, it is in general hard to compute a (discrete logarithm
problem). Given a, b ∈ Zq we distinguish between [ab]i, namely the group element
whose discrete logarithm base Pi is ab, and [a]i · b, namely the execution of the
multiplication of [a]i and b, and [a]1 · [b]2 = [a · b]T , namely the execution of a
pairing between [a]1 and [b]2. We do not use the implicit notation for variables,
e.g. c = [a]1 indicates that c is a variable name for the group element whose
logarithm is a.

Definition 1 (Algebraic algorithm, [27]). An algorithm A is algebraic if
for all group elements z that A outputs (either as returned by A or by invoking an
oracle), it additionally provides the representation of z relative to all previously
received group elements. That is, if elems is the list of group elements that A has
received so far, then A must also provide a vector r such that z = 〈r, elems〉.
Definition 2 (Polynomial Commitment). A polynomial commitment is a
tuple of algorithms PC := (KGen,Com,VerCom) that works as follows:

KGen(ppG, d) → ck takes as input group parameters ppG ←$ GroupGen(1λ), and
a degree bound d, and outputs a commitment key ck.

Com(ck, f) → (c, o) takes as input the commitment key ck, and a low degree
polynomial f ∈ F≤d[X], and outputs a commitment c and an opening o.

VerCom(ck, c, f, o) → b takes as input ck, a commitment c, a polynomial f and
an opening o, and accepts (b = 1) or rejects (b = 0).

Definition 3 (Witness Sampleability, [39]). A distribution D is witness
samplable if there is a PPT algorithm D̃ s.t. for any ppG, the random variables
A ←$ D(ppG) and

[
Ã

]
1
, where Ã ←$ D̃(ppG), are equivalently distributed.

Definition 4 (D�,k-Aff-MDH assumption). Given a matrix distribution
D�,k, the Affine Diffie-Hellman Problem is: given A ∈ G

�×k
1 , with A ←$ D�,k,

find a nonzero vector x ∈ Z
�
q and a vector y ∈ Z

k
q such that

[
x�A

]
1

= [y]1.

Definition 5 ((d, d′)-Power Polynomial in the Exponent). The (d, d′)-
PEA Assumption holds for a bilinear group generator GroupGen if for every
PPT adversary A that receives as input (

[
1, . . . , sd

]
1
,
[
1, . . . , sd′

]
2
) and outputs

a polynomial p(X) of degree at most max{d, d′}, and a value y, the probability
that p(s) = y is negligible. When d = d′ we use the shortcut d-PEA.
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Definition 6 (d-Power Discrete Logarithm [42]). Given a degree bound
d ∈ N, the d-Power Discrete Logarithm (d-DL) assumption holds for a bilin-
ear group generator GroupGen if for every PPT adversary A that receives as
input (

[
1, . . . , sd

]
1
,
[
1, . . . , sd

]
2
), and outputs the value s′, the probability that

s = s′ is negligible. We also use DL as a shortcut for 1-DL.

Lemma 1 (d-DL ⇒ d-PEA). We can make a reduction to the assumption
that computes s. The reduction invokes the adversary, gets p(X) − y of degree
d, and computes s by factoring the polynomial p(s) − y. As p(s) − y = 0 we are
guaranteed that s is a root.

Lemma 2 (DL ⇒ U�,k-Aff-MDH). When considering the uniform random
distribution U�,k, we can make a reduction to the assumption that computes
s. The reduction samples at the exponent a uniformly random matrix A =
(ai,j)i,j ∈ Z

�×k
q and invokes the adversary on input [(ai,j)i,j ]1. Finally, let pi(s)

be the i-the row of x�A. The reduction computes s by factoring one of the k
polynomials pi(s) − yi.

3 Policy-Based Simulation-Extractable NIZKs

We start by defining the basic syntax and properties for a Non-Interactive Zero-
Knowledge Argument of Knowledge. Following Groth et al. [37], we define a
PT relation R verifying triple (pp,x,w). We say that w is a witness to the
instance x being in the relation defined by the parameters pp when (pp,x,w) ∈
R (equivalently, we sometimes write R(pp,x,w) = 1). For example, pp could
be the description of a bilinear group or additionally contain a commitment key
or a common reference string. A NIZK for a relation R (and group generator
GroupGen) is a tuple of algorithms Π = (KGen,Prove,Verify) where:

– KGen(ppG) → srs is a probabilistic algorithm that takes as input the param-
eters ppG ←$ GroupGen(1λ) and outputs srs := (ek, vk, pp), where ek is the
evaluation key, vk is the verification key, and pp are the parameters for R.

– Prove(ek,x,w) → π takes an evaluation key ek, a statement x, and a witness
w such that R(pp,x,w) holds, and returns a proof π.

– Verify(vk,x, π) → b takes a verification key, a statement x, and either accepts
(b = 1) or rejects (b = 0) the proof π.

Definition 7 (Succinctness). A NIZK Π is said succinct if the running time
of Verify is poly(λ + |x| + log |w|) and the proof size is poly(λ + log |w|).

CP-SNARKs. Commit-and-Prove succinct arguments of knowledge, or sim-
ply CP-SNARKs, are knowledge-sound and succinct NIZKs whose relations
verify predicates over commitments (see Campanelli, Fiore and Querol [18]).
We consider the following syntax. Briefly speaking, we refer to a CP-SNARK
for a relation R and a commitment scheme CS as a tuple of algorithms
CP = (KGen,Prove,Verify) where KGen(ck) → srs is an algorithm that takes
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as input a commitment key ck for CS and outputs srs := (ek, vk, pp); ek is the
evaluation key, vk is the verification key, and pp are the parameters for the
relation R (which include the commitment key ck). Moreover, if we consider
the key generation algorithm KGen′ that upon group parameters ppG first runs
ck ←$ CS.KGen(ppG), runs srs ←$ CP.KGen(ck) and outputs srs; then the tuple
(KGen′,Prove,Verify) defines a SNARK.

Zero-Knowledge in the SRS (and RO) Model. The zero-knowledge simu-
lator S of a NIZK is a stateful PPT algorithm that can operate in three modes:

– (srs, stS) ← S(0, ppG) takes care of generating the parameters and the simu-
lation trapdoor (if necessary)

– (π, stS) ← S(1, stS ,x) simulates the proof for a statement x
– (a, stS) ← S(2, stS , s) takes care of answering random oracle queries

The state stS is updated after each operation. Similarly to [25,31], we define the
following wrappers.

Definition 8 (Wrappers for NIZK Simulator). The following algorithms
are stateful and share their state st = (stS , coms,Qsim,QRO,Qaux) where stS is
initially set to be the empty string, and Qsim,QRO and Qaux are initially set to
be the empty sets.

– S1(x, aux) is an oracle that returns the first output of S(1, stS ,x, aux).7
– S ′

1(x,w) is an oracle that first checks (pp,x,w) ∈ R where pp is part of srs
and then runs (and returns the output of) S1(x).

– SF
1 (x,w) is an oracle parameterized by a function F ; first, it checks if

(pp,x,w) ∈ R, and then runs (and returns the output of) S1(x, F (x,w)).
As explained below, this is useful to model leaky-zero-knowledge.

– S2(s, aux) is an oracle that first checks if the query s is already present in
QRO and in case answers accordingly, otherwise it returns the first output a of
S(2, stS , s). Additionally, the oracle updates the set QRO by adding the tuple
(s, aux, a) to the set.

Almost all the oracles in our definitions can take auxiliary information as addi-
tional input. We use this auxiliary information in a rather liberal form. For
example, in the definition above, the auxiliary information for S1 refers to the
(optional) leakage required by the simulator to work in some cases (see more in
Definition 10), while the auxiliary information for S2 can contain, for example,
the algebraic representations of the group elements in s (when we restrict to
algebraic adversaries) or other information the security experiments might need.

Definition 9 (Zero-Knowledge). A NIZK NIZK is (perfect) zero-knowledge
if there exists a PPT simulator S such that for all adversaries A:

Pr

⎡
⎢⎢⎣

ppG ← GroupGen(1λ)

srs ← KGen(ppG)

AProve(ek,·,·)(srs) = 1

⎤
⎥⎥⎦ ≈ Pr

⎡
⎢⎢⎣

ppG ← GroupGen(1λ)

(srs, stS) ← S(0, ppG)

AS′
1(·,·)(srs) = 1

⎤
⎥⎥⎦

7 More often, simulators need only the first three inputs, see Definition 9; abusing
notation, we assume that such simulators simply ignore the auxiliary input aux.
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Zero-knowledge is a security property that is only guaranteed for valid statements
in the language, hence the above definition uses S ′

1 as a proof simulation oracle.
We also introduce a weaker notion of zero-knowledge. A NIZK is F -leaky

zero-knowledge if its proofs may leak some information, namely a proof leaks
F (x,w), where (x,w) ∈ R. We formalize this by giving the zero-knowledge sim-
ulator the value F (x,w), which should be interpreted as a hint for the simulation
of proofs. This notion could be seen as an extension of the bounded leaky zero-
knowledge property defined in [17] and tailored for CP-SNARKs. Our notion is
a special case of the leakage-resilient zero-knowledge framework of Garg, Jain
and Sahai [32] where the leakage of the simulator is known ahead of time.

Definition 10 (Leaky Zero-Knowledge). A NIZK NIZK is F -leaky zero-
knowledge if there exists a PPT simulator S such that for all adversaries A:

Pr

⎡
⎢⎣

ppG ← GroupGen(1λ)
srs ← KGen(ppG)

AProve(ek,·,·)(srs) = 1

⎤
⎥⎦ ≈ Pr

⎡
⎢⎣

ppG ← GroupGen(1λ)
(srs, stS) ← S(0, ppG)

ASF
1 (·,·)(srs) = 1

⎤
⎥⎦

3.1 Policy-Based Simulation Extractability

An extraction policy defines the constraints under which the extractor must
extract the witness. For example, we could consider the policy that checks that
the forged instance and proof were not queried/output by the zero-knowledge
simulator (thus modeling the classical simulation extractability notion), or we
could consider a policy that only checks that the forged instance was not
queried to the simulator, thus obtaining a weaker flavor of classical simulation
extractability. Clearly, the more permissive the policy the stronger the security
provided.

In our work, we also consider policies that constrain the behavior of the zero-
knowledge simulator. For example, we could consider the policy that checks that
the queried instances belong to the relation, thus obtaining a notion similar to
true-simulation extractability (see Dodis et al. [22]). Looking ahead, contrary to
the true-simulation extractability notion in [22], our policy-based version of the
true-simulation extractability rather than disallowing certain queries, punishes
the adversary at extraction time. It is not hard to see that the two definitional
flavors, namely disallowing illegal queries versus punishing an adversary that
made an illegal query are equivalent in the context of simulation extractability,
because the adversary’s goal is computational8.

Extraction Policies. We define an extraction policy as a tuple Φ = (Φ0, Φ1)
of PPT algorithms. This is used to define Φ-simulation extractability as follows.
The security experiment starts by running the extraction policy algorithm Φ0,
which generates public information ppΦ. The public information may contain,

8 Observe that for decisional tasks disallowing and punishing flavors can result in
different security notions, see Bellare, Hofheinz and Kiltz [5].
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for example, random values that define the constraints later checked by Φ1.
Therefore, we feed ppΦ to the adversary. In the case of commit-and-prove proof
systems, the public information may contain commitments for which the adver-
sary does not know openings (but on which it can still query simulated proofs).
After receiving a forgery from the adversary, the security experiment runs the
extraction policy Φ1. The policy Φ1 is a predicate that takes as input: (i) The
public parameter ppΦ; (ii) The forged instance and proof (x, π); (iii) The view
of the experiment, denoted view. Such a view contains the public parameters,
the set of simulated instances and proofs Qsim, and the set QRO of queries and
answers to the random oracle9; (iv) Auxiliary information auxΦ which might
come along with the forged instance. We use auxΦ to provide the adversary an
interface with the policy.

Definition 11 (Simulation extractability). A NIZK Π for a relation R
and simulator S is Φ-simulation-extractable if for every PPT adversary A there
is an efficient extractor E such that the following advantage is negligible in λ:

AdvΦ-se
Π,A,S,E(λ) := Pr

[
ExpΦ-se

Π,A,S,E(λ) = 1
]

Below, we give a definition that explicitly considers the sub-class of PPT alge-
braic adversaries. To fit algebraic adversaries into our definitional framework we
let the algebraic adversaries return the representation vectors (1) for any query
to the simulator S into the auxiliary information aux and (2) for the forgery into
the auxiliary information auxE .

Definition 12 (Simulation extractability in the AGM). Let Π be a NIZK
for a relation R with a simulator S. Π is Φ-simulation-extractable (or simply
Φ-SE) if there exists an efficient extractor E such that for every PPT algebraic
adversary A, the advantage AdvΦ-se

Π,A,S,E(λ) (cf. Definition 11) is negligible in λ.

4 Simulation Extractability of KZG in AGM

KZG [40] is a Polynomial Commitment scheme (see Definition 2) defined over
bilinear groups G = (G1,G2,GT , e), that consists of the following algorithms:

KGen(1λ, d) on input the security parameter 1λ, and a degree bound d ∈ N,
outputs ck := ((

[
sj

]
1
)j∈[0,d], [1, s]2), for secret s ←$ Fq.

Com(ck, f(X)) on input ck, a polynomial f(X), outputs c := [f(s)]1.
VerCom(ck, c, f(X)) outputs 1 if c = [f(s)]1.

The above scheme is (standard) binding under the d-DL assumption (see [35]),
in fact, given two polynomials f and f ′ that evaluate to the same value on the
secret point s, we can find s among the roots of the (non-zero) polynomial f −f ′.
9 Even if the given NIZK is not in the random oracle (namely neither the prover nor

the verifier algorithms make random oracle queries) it still makes sense to assume
the existence of the set QRO. This is useful to model security for NIZK protocols
that eventually are used as sub-protocols in ROM-based protocols.
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ExpΦ-se
, , (λ)

pp
G

$GroupGen(1λ)

(srs, st ) (0, pp
G
)

ppΦ $Φ0(ppG)

( , π, aux , auxΦ) 1, 2(srs, ppΦ)

(srs, , π, aux )

view (srs, ppΦ, sim, RO, aux)

if Φ1(( , π), view, auxΦ) Verify 2(srs, , π)

(pp, , ) / then return 1

else return 0

1( , aux) :

π, st (1, st , , aux)

sim sim ( , aux, π)

return π

2(s, aux) :

if aux, a : (s, aux, a) RO :

a, st (2, st , s, aux)

RO RO (s, aux, a)

return a

Fig. 1. The Φ-simulation extractability experiments in ROM. The extraction policy Φ
takes as input the public view of the adversary view (namely, all the inputs received
and all the queries and answers to its oracles). The set Qsim is the set of queries and
answers to the simulation oracle. The set QRO is the set of queries and answers to
the random oracle. The set Qaux is the set of all the auxiliary information sent by the
adversary (depending on the policy, this set might be empty or not). The wrappers S1

and S2 deal respectively with the simulation queries and the random oracle queries of
A in the experiment.

We consider a CP-SNARK CPevl for the relation Revl((x, y), f) := f(x) = y,
where f is committed as [f(s)]1. The scheme constructed in this section requires
one G1 element to commit to f(X), one G1 element for the evaluation proof,
and checking this proof of evaluation requires two pairings, and is knowledge
extractable in the AGM [20]. This is taken from [17] but adapted to AGM only.

KGenevl: parse ck as ((
[
sj

]
1
)j∈[0,d], [1, s]2) and define ek := ck and vk := [1, s]2,

and return srs := (ek, vk).
Proveevl(ek,x = (c, x, y),w = f): output π := [π(s)]1, where π(X) is the poly-

nomial such that π(X)(X − x) ≡ f(X) − y.
Verifyevl(vk,x = (c, x, y), π): output 1 iff e(c − [y]1 , [1]2) = e(π, [s − x]2).

The Extraction Policy for CPevl. We define Φs-adpt
evl = {ΦD}D as the family

(indexed by a sampler D) of semi-adaptive extraction policies for the KZG-
based CPevl CP-SNARK. Indeed, as we show below, the evaluation points xj

for the instances for which the adversary can see simulated proofs are selectively
chosen independently of the commitment key, while the evaluation values y can
be adaptively chosen by the adversary. Each policy ΦD is a tuple of the form
(ΦD

0 , Φ1), as defined in Sect. 3.1, where ΦD
0 outputs the parameters ppΦ while

Φ1 outputs a bit. In particular, ΦD
0 on input group parameters ppG outputs

ppΦ := (coms,Qx), where coms is a vector of commitments sampled from D, and
Qx is a set of evaluation points.

For sake of clarity, we define the policy Φ1 as the logical conjunction of a
“simulator” policy Φsim and an “extractor” policy Φext, i.e. Φ1 = Φsim ∧Φext. The
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first policy defines rules under which we can classify a simulation query legal,
while the second one defines rules under which the extractor must be able to
extract a meaningful witness.

Definition 13. Let Φsim be the policy that returns 1 if and only if:

1. Points check: let (xi, auxi, πi)i be all the entries of Qsim. Recall that an
instance x can be parsed as (c, x, y). Check that ∀i : xi.x ∈ Qx.

2. Commitment Check: For all i ∈ [Qsim], parse auxi as the representation
vectors for xi.c and πi such that ri = fi‖ci is the algebraic representation of
the commitment xi.c. For any i check that 〈fi, ek〉 + 〈ci, coms〉 = xi.c.

3. Algebraic Consistency: Let Ij := {i : xi.x = xj} and let Rj := (ci)i∈Ij
.

Check that ∀j: (i) the system of linear equations Rj · z = yj has at least a
solution, where z are the variables and yj = (xi.y − 〈fi, (1, xj , . . . , x

d
j )〉)i∈Ij

.

In more intuitive terms, for every simulation query (c, x, y) made by the adver-
sary: (1) ensures that x is in the set Qx chosen at the beginning of the experiment
(this is the semi-adaptive restriction); (2) ensures that c is computed as a linear
combination of the simulated commitments and the G1 elements of the SRS,
but not of simulated proofs; (3) ensures that overall the queried statements are
plausibly true (e.g., the adversary does not ask to open the same (c, x) at two
different y �= y′). We notice that the “Algebraic Consistency” check is necessary
since, if violated it would enable a class of generic attacks. We briefly mention
one attack in the proof intuition and we refer the reader to [24] for the details.

Next, we define the policy Φext as the logical disjunction of two policies, Φrnd
ext

and Φder
ext . To this end, we first define some notation: let gc : G1×{0, 1}∗ → {0, 1}

be a function that on inputs a group element c and a string s, that can be parsed
as a list of group elements ci followed by a second string s̃, outputs 1 iff ∃i : c = ci.

Definition 14. Let Φext, Φ
rnd
ext and Φder

ext be predicates that, parsing the forgery
instance x∗ = (c∗, x∗, y∗), are defined as follows:

– Φrnd
ext returns 1 if and only if there exist a query (s, aux, a) to the random ora-

cle and aux contains a non-constant polynomial h(X) such that the following
conditions are satisfied:
1. Hashing check: (s, aux, a) ∈ QRO, note that QRO is contained in view,
2. Decoding check: gc(c∗, s) = 1.
3. Polynomial check: gh(h, aux) = 1, where gh : F[X]×{0, 1}∗ → {0, 1} is

a function that on input a polynomial h(X) and a string aux outputs 1 iff
h(X) is encoded in aux.

4. Computation check: h(a) = x∗.
– Φder

ext returns 1 iff ∃(x, ·, π) ∈ Qsim s.t. x := (c∗, x∗, y′) and (y′, π) �= (y∗, π∗).
– Φext returns logical disjunction of Φrnd

ext and Φder
ext .

More intuitively, Φrnd
ext checks that the point x∗ is obtained from the random

oracle after querying it on the commitment c∗, whereas Φder
ext checks if x∗ is

a strong forgery, namely it is a new evaluation proof for a statement (c∗, x∗)
already queried to the simulation oracle.
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Theorem 1. For any witness samplable distribution D that is D-Aff-MDH-
secure (see Definition 4), any bilinear-group generator GroupGen that samples
the generator of the group G1 uniformly at random, ∀ΦD ∈ Φs-adpt

evl , KZG is ΦD-
simulation-extractable in the AGM. In particular, there exists E such that for
any algebraic adversary A:

AdvΦD-se
CPevl,A,S,E(λ) ≤ O(ε(Qx+d+1)-DL(λ)) + O(εAff-MDH(λ)) + poly(λ)εh

where Qx := |Qx|, d is the maximum degree supported by CPevl, ε(Qx+d+1)-DL(λ)
is the maximum advantage for any algebraic PT adversary against the (Qx +
d + 1)-strong Discrete-Log Assumption, εAff-MDH(λ) is the maximum advantage
for any algebraic PT adversary against the D-Aff-MDH Assumption, h is the
polynomial that satisfies the Polynomial check of ΦD, and εh = deg(h)

q .

We show in the full version [24] how to generalize the scheme to support hiding
commitments, and we extend our result to the hiding setting. Also, we consider
a scheme CPm-evl for batch evaluations which follows from [28,44].

Proof intuition of Theorem. 1 We consider an adversary whose forgery satis-
fies the predicate Φrnd

ext . We first show an alternative way to simulate KZG proofs.
This step allows one to move from a simulator whose trapdoor is a “secret expo-
nent” s to a simulator whose trapdoor is a ‘tower’ of G1-elements

[
si

]
1
. The

simulated SRS seen by the adversary includes only high-degree polynomials of
the form

[
p(s)si

]
1
, while the simulator keeps the low-degree monomials

[
si

]
1

for
simulation. Here, p is a polynomial that vanishes in all the points to be asked in
the simulation queries (this is reminiscent of the reduction technique for Boneh-
Boyen signatures [11]). Since we program the SRS based on the queries our
simulator is only semi-adaptive, namely it can simulate proofs for a (exponen-
tially large) subset of all the statements. This first change essentially simplifies
the objects involved in our analysis, from rational polynomials (with the formal
variable being the trapdoor) to standard polynomials.

Next, we need to show that the adversary cannot mix the simulated commit-
ments and the forgery material. In particular, we need to show that the forged
proof is not derived as a linear combination involving simulated commitments.
To show this, we use the fact that the degree of the proof must be smaller
than the degrees of simulated commitments, otherwise we could break the d-DL
assumption in the AGM. This intuitively comes from the fact that the verifi-
cation equation lifts the degree of the polynomial in the forged proof (as it is
multiplied by (X − x∗)). Similarly, we need to show that the forged instance
cannot use a linear combination that involves the simulated commitments. For
this, we use the Aff-MDH assumption to handle multiple evaluation proofs on
different simulated commitments on the same evaluation point. In particular, we
reduce the view of many simulated proofs over many commitments and many
evaluation points to a view that only contains

[
p(s)si

]
1

and (non-rational) poly-
nomials [p(s)/(s − xj)]1. At this point, the attacker could still perform an attack
if it could decide the evaluation point x∗ arbitrarily. The attack works as follows:
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(i) the adversary asks a simulation proof π for x = (c, x, y), and (ii) produces
the forgery x∗ = (c + απ, x − α, y), π, for any α ∈ Zq. It is easy to check that
the forgery satisfies the verification equation. However, for this attack to work
the attacker needs to set the commitment in the forged instance as a function
of x∗ = x − α. The last part of our analysis shows that, indeed, the algebraic
representation of the commitment in the forgery cannot depend on x∗ and that
this attack cannot be mounted when x∗ is chosen after the commitment with
sufficient randomness. For the second case, we can reduce a Φder

ext forgery to a
Φrnd
ext forgery. In fact, such a forgery together with the simulated proofs set an

algebraic inconsistency, a sub-case of the condition avoided by Item 3 of Defini-
tion 13, thus enabling an attack. In more detail, given a Φder

ext -forgery (c, x, y), π
and let ((c, x, y′), π′) ∈ Qsim we can define a new Φrnd

ext -forgery (c∗, x∗, y∗), π∗

where c∗ = (π′ − π), x∗ = RO(c∗) and π∗ = π−π′
x∗−x and y∗ = y−y′

x∗−x . We can prove
that the verification equation holds noticing that (π − π′)(s − x) = [y − y′]1 and
by simple algebraic manipulations.

Proof (of Theorem 1). We stress that A is algebraic (cf. Definition 1), there-
fore for each group element output it additionally attaches a representation r of
such a group element with respect to all the elements seen during the experiment
(included elements in coms). In particular, we assume that for each query (x, aux)
to the oracle S1 we can parse the value aux as (r, aux′) and r is a valid represen-
tation for x.c. Similarly, for the queries (s, aux) to S2, aux includes a valid repre-
sentation for all the group elements gi encoded in s, i.e. such that gc(gi, s) = 1.
Together with its forgery, the algebraic adversary encodes a polynomial h(X) in
auxφ, and stores in auxE two representation vectors rc∗ and rπ∗ for the two group
elements c∗ and π∗. We can parse the vectors rτ := fτ‖cτ‖oτ for τ ∈ {c∗, π∗}
where fτ is the vector of coefficients associated to group elements ek, cτ is the
vector of coefficients associated to group elements coms = ([ci]1)i∈[Qc], and oτ

is the vector of coefficients associated to the group elements of the simulated
proofs proofs. Namely, for τ ∈ {c∗, π∗} we have:

τ = 〈fτ , ek〉 + 〈cτ , coms〉 + 〈oτ , proofs〉.

We can assume w.l.g. that all the simulation queries and the forgery of the adver-
sary A agree with the policy ΦD, as otherwise the adversary would automatically
lose the experiment. We assume that fi,j = 0,∀i, j, i.e., the adversary asks sim-
ulation queries on commitments that are a linear combination of coms only: this
is also w.l.g. as we briefly show below. Given a commitement ci,j = xi,j .c, whose
representation is ri,j = fi,j‖ci,j , the adversary could compute a proof πi,j for
the point xj and the evaluation value y as follows:

1. let y′ = fi,j(xj), A computes the commitment c′ ← Com(ck, fi,j(X)), and
the “honest” proof π′ for (c′, xj , y

′)
2. asks the simulation oracle to provide a proof π̃ for the instance (c−c′, xj , y−y′)

with representation 0‖ci,j

3. recombines the proof πi,j = π′ + π̃
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We define our extractor to be the canonical extractor that returns the polyno-
mial f(X) ← 〈fc∗ , (1,X, . . . ,Xd)〉. We start by proving that for any algebraic
adversary A whose forgery satisfies the predicate Φder

ext , there exists an algebraic
adversary B whose forgery satisfies the predicate Φrnd

ext . Let {Φ′
D}D be the family

of policies defined exactly as Φs-adpt
evl with the difference that the extracion policy

Φext is equal to Φrnd
ext (i.e., there is no logical disjunction with Φder

ext ).

Lemma 3. For any algebraic adversary A there is an algebraic adversary B :

AdvΦD-se
CPevl,A,S,E(λ) = AdvΦ′

D-se
CPevl,B,S,E(λ)

Proof. First, we notice that once we fix a commitment c, a point x, and a value y,
there is a unique proof π that can satisfy the KZG verification equation. Thus,
the predicate Φder

ext can be simplified as requiring that an adversary outputs a
valid proof π∗ and a value y∗ such that ∃((c∗, x∗, y′), ·, π) ∈ Qsim and y∗ �= y′.

The reduction B internally runs A forwarding all the simulation queries,
up to the forgery (x∗, π∗), where x∗ = (c∗, x∗, y∗). If the simulation queries
and/or the forgery of the adversary A do not agree with the policy ΦD, i.e.
A automatically loses its game, B aborts. Otherwise, it must be true that the
forgery of A either (i) satisfies the extraction predicate Φrnd

ext or (ii) satisfies the
extraction predicate Φder

ext . Both cases can be efficiently checked by B. In case (i)
B would simply forward the forgery of A retaining the same advantage of A.
Otherwise, before submitting the forgery, B retrieves from Qsim the statement
x := (c∗, x∗, y′), where y′ �= y∗, and the corresponding proof π output by S1.
Then B produces the forgery:

ĉ ← π∗ − π, x̂ ← h(a), π̂ ← π − π∗

x̂ − x∗ , ŷ ← y′ − y∗

x̂ − x∗

which satisfies the verification equation (cf [24]), and the extraction predicate
Φrnd
ext when (ĉ, h, a) ∈ QRO. ��

Thanks to Lemma 3 we can assume that the forgery of A satisfies the extraction
predicate Φrnd

ext . We let H0 be the ExpΦD-se
A,S,E (λ) experiment, and we denote by εi

the advantage of A to win Hi, i.e. εi := Pr[Hi = 1].

Hybrid H1. Recall that D is witness samplable, thus according to Definition
3 there exists a PPT algorithm D̃ associated with the sampler D. The hybrid
experiment H1 is identical to the previous one, but the group elements in coms
are “sampled at exponent”, i.e. we use D̃ to generate the field elements γ, and
we let coms ← [γ]1; we also add γ to stS . By the witness sampleability of D, H0

and H1 are perfectly indistinguishable, thus ε1 = ε0.

Hybrid H2. In this hybrid, we change the way we generate the SRS srs and
the way in which S1 simulates the proofs. Let

(
(G1,G2,GT , e), [1]1 , [1]2

) ←$

GroupGen(1λ), sample s ←$ F and compute
[
s, . . . , sD+d

]
1
, [1, s]2, where D ←

Qx + 1. Let xr ←$ F, and let p(X) be the vanishing polynomial in Qx ∪ {xr},
namelyp(X) := (X − xr)

∏
x∈Qx

(X − x). Let also pj(X) := p(X)(X − xj)−1, for
j ∈ [Qx]. In H2 we have that:
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– ppG := ((G1,G2,GT , e), [p(s)]1 , [1]2),
– srs := (ek, vk), where ek←[

p(s), p(s)s, . . . , p(s)sd
]
1

and vk← [1, s]2,
– stS :=

[
1, s, . . . , sD+d

]
1
, [1, s]2, γ.

Upon a query of the form (x = (c, xj , yk), aux = (rc, aux′)) to S1, the latter
outputs the proof π ← [(〈rc,γ〉 − yk) · pj(s)]1, and updates Qsim accordingly.

We now show that H1 ≡ H2, i.e., the view offered to the adversary A is
identically distributed in the two experiments.

Lemma 4. ε2 = ε1.

Proof. Notice that in H2 we sample from GroupGen the description of the group,
and then we set the generator of G1 to [p(s)]1 which, thanks to the random root
xr, is distributed uniformly at random even given the value s. It is not hard to
verify that the simulated proofs generated by the hybrid H2 pass the verification
equations, in fact, we are assuming that queried commitment c are of the form
〈rc, coms〉. Additionally, since the proofs are uniquely determined given the SRS
and the statements, the simulated proofs created in H2 are distributed as the
simulated proofs generated by the simulator S1 in H1. Thus the advantage of A
is the same in the two experiments. ��
Given an algebraic adversary A we can define a new adversary, Ac, that we call
the core adversary. Whenever the adversary A outputs a group element g it
provides a representation vector rg := fg‖cg‖og for g such that:

g = 〈fg, ek〉 + 〈cg, coms〉 + 〈og, proofs〉.

Ac runs internally A and forwards all the queries and answers from A to its
simulation oracle. However, the way of simulating RO queries must ensure to
not alter the result of the extractor policy, i.e. the “hash-check” for x∗. This is
why we cannot simply forward the queries of A to the random oracle. Therefore,
we keep track of the queries made by A in the list QRO,A and the list of queries
made by the core adversary in QRO. More in detail, when A queries the RO with
(s, aux), the adversary Ac makes a “core” RO query (sc, auxc) such that:

1. Let s be parsed as (gi)i∈[k] (the group elements in s whose representations
rgi := fgi‖cgi‖ogi are in aux) and a string s̃. Notice, since the adversary is
algebraic we can un-ambiguously parse s as such.

2. For each i, Ac computes the group elements g′
i = gi − 〈fgi , ek〉. Ac encodes

into the string s′ the group elements (gi, g
′
i)i∈[k].

3. Ac queries the RO with (sc, auxc), where sc := s′‖s̃, and auxc contains the rep-
resentations of all the group elements in s′ and the same function h encoded
in aux. Finally, it forwards the output to A, i.e. it adds (s, aux, a) to QRO,A,
and adds (s, sc) to (the initially empty) Qs.
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Eventually, A outputs as forgery a string s and the tuple (c′, x′, y′, π′), together
with representation vectors rc′ and rπ′ . Let f(X) := 〈fc′ , (1,X, . . . ,Xd)〉, y :=
f(x′), and q(X) be such that q(X)(X − x′) = f(X) − y. Let fq be the vector of
the coefficients of q(X), namely q(X) := 〈fq, (1,X, . . . ,Xd)〉. The core adversary
Ac returns for its forgery the string sc such that (s, sc) ∈ Qs, and the tuple
(c∗, x′, y∗, π∗), where y∗ ← y′ − f(x′) and:

c∗ ← c′ − [f(s)p(s)]1︸ ︷︷ ︸
Com(ck,f(X))

, π∗ ← π′ − [q(s)p(s)]1︸ ︷︷ ︸
Com(ck,q(X))

inserting into auxΦ the (correct) algebraic representations (0‖cc′‖oc′) for c∗ and
((fπ′ − fq)‖cπ′‖oπ′) for π∗.

Hybrid H3. This hybrid is exactly the same of H2 but instead of running the
experiment with the adversary A we run it with the core adversary Ac.

Lemma 5. ε3 = ε2.

Proof. First, by construction, it is easy to verify that Ac is algebraic. Thus we
need to show that the forgery of A is valid if and only if the forgery of Ac is
valid. By the verification equation of the forgery of Ac, we have:

e(c∗ − [y∗]1 , [1]2) − e(π∗, [s − x∗]2) =
e(c′ − [f(s)p(s)]1 − [y′ − f(x′)]1 , [1]2) − e(π′ − [q(s)p(s)]1 , [s − x∗]2) =
e(c′ − [y′]1 , [1]2) − e(π′, [s − x′]2) − [f(s)p(s) − f(x′) − q(s)p(s)(s − x∗)]T =
e(c′ − [y′]1 , [1]2) − e(π′, [s − x′]2),

where the last equation holds since q(X)(X −x′) = (f(X)− f(x′)) and x∗ = x′.
Finally, notice that a forgery is valid for A if it provides a string s that satisfies
the “hash check” of Φext. We have that there exist s, aux, a, and h(X) such that:
(i) gc(c∗, s) = 1, (ii) gh(h, aux) = 1, (iii) (s, aux, a) ∈ QRO,A, and (iv) x∗ = h(a)
for the forgery of A. The way Ac simulates the RO queries ensures that for the
query s of A to the RO, the core adversary sent the “core” RO query sc that
encodes both c′ and c∗, thus we have that (i) gc(c∗, sc) = 1, (ii) gh(h, auxc) = 1,
(iii) (sc, auxc, a) ∈ QRO, and (iv) x∗ = h(a) for the forgery of Ac. ��

Notice that if we run the canonical extractor on the outputs of the core
adversary Ac, the extractor sets the extracted witness to be the zero polynomial.

Hybrid H4. The hybrid H4 additionally checks that fπ∗ �= 0 ∨ cπ∗ �= 0, and if
the condition holds the adversary Ac loses the game.

Lemma 6. ε3 ≤ ε4 + ε(Qx+d+1)-DL

Proof. Recall that from the definition of the experiment, upon a query (x, aux)
from Ac to the simulation oracle of the form x = (c, xj , yk) and aux = r where
c = 〈r, coms〉, the adversary receives the proof [πr ,j,k(s)]1 where:

πr ,j,k(X) := (〈r, (γi)i〉 − yk)pj(X).
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Consider the following polynomials:

c∗(X) :=
∑

i∈[Qc]

cc∗,i · γip(X) +
∑
r ,j,k

oc∗,r ,j,k · πr ,j,k(X)

π∗(X) :=
∑

i∈[Qc]

cπ∗,i · γip(X) +
∑
r ,j,k

oπ∗,r ,j,k · πr ,j,k(X) +
∑

i∈[d+1]

fπ∗,iX
i−1p(X)

v(X) := c∗(X) − y∗p(X) − (X − x∗)π∗(X)

By the guarantees of the AGM, we have c∗ = [c∗(s)]1 and π∗ = [π∗(s)]1, more-
over, if the verification equation is satisfied by the forgery of Ac, then v(s) = 0.

Next, we show that when the forgery of the adversary is valid the probability
of fπ∗ �= 0 or cπ∗ �= 0 is bounded by ε(Qx+d+1)-DL. First, notice that if the
verification equation for Ac holds then the polynomial v(X) must be equivalent
to the zero polynomial with overwhelming probability. In fact, v(s) = 0 when the
verification equation holds; if v(X) is not the zero polynomial then, by Lemma
1, we can reduce Ac to an adversary to the (Qx + d + 1)-DL assumption. Thus:

c∗(X) − y∗p(X) − (X − x∗)π∗(X) = v(X) = 0. (1)

By the guarantees of the AGM, the polynomial π∗(X) is a linear combination
of elements that depend on Xi−1p(X) for i ∈ [d + 1] and pj(X) for j ∈ [Qx].
However, when the verification equation holds, the degree of π∗(X) must be
strictly less than the degree of p(X), because, by Eq. 1, v(X) would contain a
non-zero coefficient of degree Qx+d+1 which in particular implies that v(X) �≡ 0.
Then it must be the case that the forged proof π∗(s) is a linear combination of
the simulated proofs only, thus both fπ∗ and cπ∗ are null. ��
The representation of c∗ and π∗ computed by the adversary (possibly) depends
on the elements πr ,j,k (i.e. the proof for the linear combination r of the elements
of coms with evaluation point xj and evaluation value yk) of proofs. However, it is
much more convenient to give a representation that depends on the polynomials
pj(X). This motivates the definition of our next hybrid.

Hybrid H5. The hybrid H5 finds coefficients o′′
τ , for τ ∈ {c∗, π∗} such that:

〈oτ , proofs〉 = 〈o′′
τ , ([pj(s)]1)j〉. (2)

Moreover, if oc∗ �= 0 but o′′
c∗ = 0 the adversary loses the game.

Lemma 7. ε4 ≤ ε5 + εAff-MDH

Proof. We begin by showing that the hybrid can compute such alternative rep-
resentations efficiently. We proceed in steps. Let us parse the simulated proofs
proofs := (πj,�)j,� such that πj,� is the �-th simulated proof obtained by S1 on a
query involving the j-th point xj , i.e., ((xj , ĉj,�, yj,�), auxj,�). Also, let cj,� be the
algebraic representation for the group element ĉj,� in auxj,�. For every j ∈ [Qx],
we define Rj as the Qc × Qc matrix whose �-th column is cj,�. By construction
of S1 in this hybrid we have that for every j ∈ [Qx] it holds

πj,� :=
[
(c�

j,� · γ − yj,�) pj(s)
]
1
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and thus πj :=
[
(R�

j γ − yj)pj(s)
]
1

with yj := (yj,�)�. Without loss of general-
ity, we assume that for each xj the adversary makes the maximum number of
simulation queries (i.e., � ∈ [Qc]); therefore Rj is a full rank matrix (this fol-
lows from the fact that the simulation queries of the adversary satisfy the policy
Φsim, and in particular the algebraic consistency of the policy, see Item 3). Given
any vector oτ with τ ∈ {c∗, π∗}, its m-th entry oτ,m corresponds to the m-th
simulated proof in proofs. Therefore, similarly to above, we denote by oτ,j,� the
entry corresponding to proof πj,� and we define oτ,j := (oτ,j,�)�. Then, for every
j ∈ [Qx] we define o′

τ,j ← Rj ·oτ,j and π′
j ← (R�

j )−1 ·πj , from which we derive:

∀τ
∑

j

〈o′
τ,j ,π

′
j〉 =

∑
j

〈Rj · oτ,j , (R�
j )−1 · πj〉 =

∑
j

〈oτ,j ,πj〉

which is equal to 〈oτ , proofs〉, up to a permutation of the indices j.
For all j ∈ [Qx] let zj := (R�

j )−1 · yj , and note that π′
j = [(γ − zj)pj(s)]1

namely π′
j,i is a valid proof for the instance (ci, xj , zj,i) w.r.t. the simulated SRS.

H5 computes o′′
τ,j ← 〈o′

τ,j , (γ −zj)〉, and o′′
τ ← (o′′

τ,j)j∈[Qx]. By construction:

∑
j∈[Qx]

〈o′
τ,j ,π

′
j〉 =

∑
j∈[Qx]

o′′
τ,j · [pj(s)]1 .

which proves the first part of the lemma, i.e., computing o′′
τ,j satisfying Eq. 2.

In what follows, we prove that if the event that H5 outputs 0 but H4 would
output 1, namely that all the conditions of H4 hold but oc∗ �= 0∧o′′

c∗ = 0, then we
can break the Aff-MDH assumption. First, notice that for any j oc∗,j �= 0 implies
that o′

c∗,j �= 0, because the linear transformation applied to compute o′
c∗,j is full

rank. Second, take an index j∗ such that oc∗,j∗ �= 0 and set A ← o′
c∗,j∗ and

ζ ← 〈zj∗ ,o′
c∗,j∗〉. By the above definition of the values o′′

c∗,j∗ and our assumption
that the “bad event” of this hybrid is o′′

c∗ = 0, we have that:

〈A, [γ]1〉 = [〈o′
c∗,j∗ , (γ − zj∗)〉︸ ︷︷ ︸

o′′
c∗,j∗=0

]1 + [〈o′
c∗,j∗ ,zj∗〉︸ ︷︷ ︸

ζ

]1 = [ζ]1 .

The reduction B to the D-Aff-MDH Assumption takes as input a distribution [γ]1
and runs the experiment as in H4 (it perfectly emulates H4, and in particular
the simulation oracle, because it knows the trapdoor s “at the exponent”). Then
B computes the coefficients (Ai)i∈[Qc] and the value ζ as described above, which
is a valid D-Aff-MDH solution. ��

Hybrid H6. The hybrid H6 additionally checks that rc∗ �= 0, and if the condi-
tion holds the adversary Ac loses the game.

Lemma 8. ε5 ≤ ε6 + εAff-MDH + 2ε(Qx+1+d)-DL + poly(λ) deg(h)q
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Proof. We bound the probability that the adversary loses in H6 but not in H5,
namely, the probability that r∗

c �= 0 but the conditions of H5 hold. We show
a reduction B to the Aff-MDH when this event happens. First of all, we can
assume that the core adversary outputs coefficients fc∗ = fπ∗ = cπ∗ = 0, i.e.
the adversary only makes use of previous commitments ci ∈ coms and simulated
proofs πr ,j,k ∈ proofs to represent c∗, and only uses the simulated proofs to
represent the proof π∗. The reduction B takes as input a distribution [γ]1 and
runs the experiment as in H5. B aborts if the forgery (c∗, x∗, y∗, π∗) returned by
the adversary is not valid (i.e. either the extraction predicate or the verification
equation is not satisfied) or rc∗ = 0. Otherwise, we have that:

e(c∗ − [p(s)y∗]1 , [1]2) = e(π∗, [s − x∗]2) and rc∗ �= 0

where rc∗ �= 0 if oc∗ �= 0 ∨ cc∗ �= 0. We can then rewrite the commitment and
the proof of forgery of the core adversary as a function of the coefficients o′′

c∗

and o′′
π∗ (as computed in the H5):

c∗ :=
∑

i∈[Qc]

cc∗,i [γip(s)]1 +
∑

j∈[Qx]

o′′
c∗,j [pj(s)]1 , π∗ :=

∑
j∈[Qx]

o′′
w∗,j [pj(s)]1

Since the verification equation is satisfied, and plugging in the AGM represen-
tations we have:∑

i∈[Qc]

cc∗,iγip(s) +
∑

j∈[Qx]

o′′
c∗,jpj(s) − p(s)y∗ =

∑
j∈[Qx]

o′′
π∗,jpj(s)(s − x∗) (3)

For all j ∈ [Qx], we define δj := xj − x∗. We can rewrite the r.h.s. of Eq. 3 as:
∑

j∈[Qx]

o′′
π∗,jpj(s)(s − x∗) =

∑
j∈[Qx]

o′′
π∗,j(p(s) + pj(s)δj).

In Eq. 3, we group all the terms that depend on p(s) on the left side, and we
move all the terms that depend on pj(s) to the right side, thus obtaining:

( ∑
i∈[Qc]

cc∗,iγi −
∑

j∈[Qx]

o′′
w∗,j − y∗

)

︸ ︷︷ ︸
A

p(s) =
∑

j∈[Qx]

(
o′′

w∗,jδj − o′′
c∗,j

)
︸ ︷︷ ︸

Bj

pj(s) (4)

Let f(X) := Ap(X) − ∑
j∈[Qx]

Bjpj(X). Notice that because of Eq. 4 we have
f(s) = 0, thus we can assume f(X) ≡ 0, as otherwise we can reduce, by
Lemma 1, to the (Qx + d + 1)-DL assumption. It must be the case that both∑

j∈[Qx]
Bjpj(s) = 0 and A = 0 because the degree of p(X) and of pj(X) for

any j are different. Moreover, the polynomials pj(X) are linearly independent,
namely the only linear combination

∑
j ajpj(X) = 0 is the trivial one where the

coefficients aj = 010, thus Bj = 0 for all j. We have that o′′
w∗,jδj − o′′

c∗,j = 0,∀j.

10 To see this, ∀xj ∈ Qx we have that
∑

j′ aj′pj′(xj) = ajpj(xj) since pj(xj) �= 0 and

pj′(xj) = 0 for j �= j′, and ajpj(xj) = 0 iff aj = 0.
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Thus we can rewrite the coefficients o′′
π∗,j =

o′′
c∗,j

δj
, ∀j. Since A must be 0:

∑
i∈[Qc]

cc∗,iγi −
∑

j∈[Qx]

o′′
c∗,j

δj
− y∗ = 0. (5)

B can plug the definition of the coefficients o′′
c∗,j in Eq. 5 and derive:

0 =
∑

i∈[Qc]

cc∗,iγi −
∑
i,j

o′
c∗,i,j(γi−zji

)

δj
− y∗

=
∑

i∈[Qc]

(cc∗,i −
∑

j

o′
c∗,i,j

δj
)γi +

∑
i,j

o′
c∗,i,jzji

δj
− y∗.

Above, in the last step we have grouped the terms depending on γi. In particular,
the last equation shows that B can make a forgery in the Aff-MDH game since it
knows z := y∗ − ∑

i,j

o′
c∗,i,jzji

δj
and coefficients Ai := cc∗,i − ∑

j

o′
c∗,i,j

δj
such that:∑

i∈[Qc]
Ai [γi]1 = [z]1. For this to be a valid solution in the Aff-MDH game, we

need the existence of at least an index i such that Ai �= 0. We show that this
occurs with all but negligible probability, i.e., Pr[∃i ∈ [Qc] : Ai �= 0] ≥ 1−negl(λ).

To this end, consider an arbitrary μ ∈ [Qc], then we have Pr[∀i ∈ [Qc] : Ai =
0] ≤ Pr[Aμ = 0]. Thus, for any μ, we have:

Pr[∃i ∈ [Qc] : Ai �= 0] = 1 − Pr[∀i ∈ [Qc] : Ai = 0] ≥ 1 − Pr[Aμ = 0].

Below, we argue that Pr[Aμ = 0] is negligible based on the randomness of x∗

which is chosen by the random oracle after defining Aμ, and we make use of

the assumption that rc∗ �= 0. We claim that the value Aμ = cc∗
, μ − ∑

j

o′
c∗, j,µ

(x∗−xj)

can be fixed before the random oracle query x∗ is made. To this end, we start
by showing that o′

c∗,j does not depend on x∗. Let B(j) ⊆ [Qc] be the subset
of indices of the simulation queries that involve xj and that occurred before
the random oracle query that returned x∗. We observe that for every η ∈ B(j)
it must be oc∗,j,η = 0 since the simulated proof πj,η is not in the view of the
adversary. Therefore:

o′
c∗,j,i =

∑
η∈[Qc]

Rj,η,i · oc∗,j,η =
∑

η∈B(j)

Rj,η,i · oc∗,j,η

and observe that all the rows of Rj belonging to B(j) can all be defined before
x∗ is sampled. Hence, we have that Aμ depends on the values cc∗ , x∗, {xj}j , and
oc∗,j which can all be defined before the random oracle query x∗ is made.

Now, we bound Pr[Aμ = 0]. Recall that, since the extractor policy Φext holds
true, we have that x∗ = h(a) and (s, aux, a) ∈ QRO where gc(c∗, s) = 1 and the
function h is the polynomial encoded in auxφ: the adversary may want to encode
up to n ∈ poly(λ) different polynomials hi into auxφ to maximize its advantage,
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and the extractor policy does not impose any restriction on this. Moreover, by the
AGM, since Ac sends a query s (where c∗ is encoded in s) to the random oracle
it also defines coefficients for c∗ before the value a, and therefore x∗ = h(a), is
defined. Also, it is not hard to see that the representation vector of c∗ defined
by Ac when querying the random oracle must be the same representation vector
used for the forgery. As otherwise we would break the (Qx+d+1)-DL assumption.
Thus the coefficients cc∗ and o′

c∗,j are defined by the adversary before seeing the
random value x∗. Notice that, once the coefficients cc∗ and o′

c∗,j are fixed, the
coefficient Aμ can be seen as function of x∗ ∈ Zq, i.e. Aμ = Aμ(x∗), where:

Aμ(X) = cc∗,μ +
∑

j

o′
c∗,j,µ

X−xj
=

cc∗,μ

∏
j(X − xj) +

∑
j(o

′
c∗,j,μ

∏
j′ �=j(xj′ − X))∏

j X − xj
.

Notice that Aμ(X)(
∏

j(X−xj)) vanishes in at most Qx points in F\Qx and van-
ishes in the set of points Qx. Let R be the set of the roots of such a polynomial,
since ∀i ∈ [n], hi is defined before x∗ is computed, and by union bound:

Pr[∃i : hi(RO(s)) ∈ R] ≤
∑
r∈R

Pr[∃i : hi(RO(s)) = r] ≤ nQx
maxi deg(hi)

q

for each string s that encodes c∗, To conclude, we notice that A can submit
at most QRO queries to the RO with strings encoding c∗, say s1, . . . sQRO

. Thus
the probability that there exist i ∈ [n], j ∈ [QRO] such that hi(RO(sj)) ∈ R is
bounded by nQROQx

maxi deg(hi)
q . ��

Hybrid H7. The hybrid H7 additionally checks that y∗ �= 0, and if the condition
holds the adversary Ac loses the game. For space reasons, we give in [24] the
proof of the following lemma.

Lemma 9. ε6 ≤ ε7 + ε(Qx+1+d)-DL + poly(λ) deg(h)q

Finally, we have that the probability that the adversary wins in H7 is null,
namely ε7 = 0. Indeed, the canonical extractor E outputs the 0 polynomial,
moreover because of the condition introduced in H6, we have c∗ = [0]1, and
because of the condition introduced in H7 we have y∗ = 0, thus the witness
extracted is valid for the instance x∗ = (c∗ = [0]1 , x∗, y∗ = 0). ��

5 Simulation-Extractable Universal zkSNARKs

We provide a technical overview of our compiler for universal SNARKs based on
polynomial IOPs. Rather than delving into extensive formal definitions and anal-
ysis, we aim to present this section in a more informal (and also more compact)
manner and refer the reader to [24] for all the details.

We define an indexed relation R verifying tuple (pp, i,x,w). We say that w
is a witness to the instance x being in the relation defined by the pp and index
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i when (pp, i,x,w) ∈ R. Briefly, we say that a NIZK NIZK is universal if there
exists a deterministic algorithm Derive that takes as input a (universal) srs and
an index i, and outputs a specialized verification key for such an index. We say
NIZK is a SNARK if the verification keys and the proofs are succinct. We say
that a SNARK is universal if there exists a deterministic algorithm Derive that
takes as input a (universal) srs and an index i, and outputs a specialized and
succinct verification key for such an index.

Polynomial Interactive Oracle Proofs. A Polynomial (Holographic) IOP
[17] consists of an r-rounds interaction between a prover P, sending oracle poly-
nomials pi (and additional messages πi), and a verifier V, who sends uniformly
random messages ρi; finally, V outputs a set of polynomial identities to be
checked on the prover’s polynomials of the form (G(k), v

(k)
1 , . . . , v

(k)
n ), that is

satisfied if and only if F (k)(X) ≡ 0 where:

F (k)(X) := G(k)(X, {pi(v
(k)
i (X))}i, {πi}i). (6)

In our work, we use PIOPs with two slight refinements.11 The first one, called
(non-adaptive) algebraic verifiers, says that the above polynomials v

(k)
j do not

depend on the instance and can be expressed as polynomial functions of V’s
random coins, i.e., v

(k)
j (X) = ṽ

(k)
j (X,ρ) for some instance-independent ṽ

(k)
j . The

second one is a more restrictive12 concept of soundness called state-restoration
straight-line knowledge soundness. This notion combines the notion of state-
restoration soundness from [9] with the concept of straight-line extractability
from [17]. For further clarification, the malicious prover engages in a game with
the honest verifier and has the additional ability to roll back the interaction
with the verifier to a previous state. At some point, the interaction may reach
a final state. The prover is considered successful if it produces an accepting
transcript, while the extractor, given such a transcript that includes all the
oracle polynomials, fails to produce a valid witness. Similarly to previous work,
we use the notion of bounded zero-knowledge of [17,20].

Compilation-safe PIOP. We must incorporate an additional element into the
classical recipe. As stated in the introduction, mix-and-match attacks on com-
piled protocols, involving two or more independent sub-protocols, are unavoid-
able. Therefore, we identify a structural restriction on the PIOP that prevents
such problematic scenarios. The restriction is easy to state and easy to meet:

Definition 15 (Compiler-safe PIOP). A PIOP PIOP is compiler-safe if
for any i,x and ρ := ρ1, . . . , ρr−1 and any tuple (G(k), v

(k)
1 , . . . , v

(k)
n )j∈[ne] ←

V(F, i,x,ρ) there exists an index k such that for all j the polynomials v
(k)
j are

of degree at least one.

11 All the PIOPs that we are aware of satisfy both these properties.
12 The (classical) notion of knowledge extractability implies state-restoration soundness

through complexity leveraging [9].
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The Compilation-Ready CP-SNARK. Instead of compiling directly a PIOP
through a polynomial commitment in its simplest form (i.e., an evaluation proof
for each polynomial queried in the PIOP), we take an alternative road similar
to [17]. Namely, we assume the existence of a CP-SNARK that, w.r.t. a tuple
of commitments (cj)j∈[n], is capable of proving either knowledge of polynomi-
als (pj)j∈[n] opening these commitments or that the committed polynomials
satisfy a statement like the one in Eq. 6 (i.e., that the oracles committed in
(cj)j∈[n] would make the PIOP verifier accept)13. We call this building block
a compilation-ready CP-SNARK (CP, shortly), and informally we refer to the
former type of statements as “proof of knowledge” and to the latter as “PIOP
verifier”. While our compilation strategy follows previous work, our novel con-
tribution is to properly define the properties that this CP-SNARK must satisfy
in order to argue that the result of the compiler is simulation-extractable, and
not only knowledge-sound. These properties are mainly three. The first one is
that the CP prover can “append” arbitrary messages to the proven instances.
Looking ahead to our compiler, this feature is used so that the prover and the
verifier can append the (hash of the) protocol’s transcript to the proven instance,
in such a way that a CP proof acts as a signature of knowledge for the transcript
[19]. Note that this hashing of the transcript already happens in the standard
PIOP compiler due to the application of the Fiat-Shamir transform; here, we
highlight it explicitly as it plays an important role in the proof of simulation
extractability. The second property, referred to as the commitment simulator for
PIOP, intuitively requires the existence of a strategy to simulate commitments
such that: adding them to the view preserves zero-knowledge, and the simula-
tion respects the “commitment check” constraint in Item 2 of Definition 13. This
is a very mild property that is trivially satisfied when employing hiding com-
mitments, and is met by existing simulation strategies based on deterministic
commitments to randomized polynomials [17,28]. The third property of CP is
that it must be simulation-extractable w.r.t. a policy Φ̂ such that:

– The adversary can ask simulated proofs for “PIOP verifier” statements where
all the v

(k)
j of Eq. 6 are fixed at the beginning of the experiment.

– If the forgery of the adversary is a “proof of knowledge” for commitments c∗,
then the adversary must return as auxiliary output yet another forgery for a
“PIOP verifier” statement such that: (1) All the commitments c∗ appear in
the second forgery, (2) the second forgery is valid according to the extractor
policy described next.

– If the forgery of the adversary is for the “PIOP verifier” statement, then the
statement-proof pair returned by the adversary must not be in the list of
simulated statements-proofs, and (similarly to Definition 15) there exists a k

such that for all j the polynomial v
(k)
j has degree at least 1.

Theorem 2 (Informal). Let PIOP be a PIOP for an indexed relation R
that is state-restoration straight-line extractable, bounded zero-knowledge, and
13 The reason to assume a single CP-SNARK for both kinds of statements has to do

with the security guarantees when we compose protocols in the AGM [1].
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compiler-safe (cf. Definition 15). Let CP be a compilation-ready CP-SNARK for
PIOP. There exists a compiler that produces a simulation-extractable Universal
zkSNARK for R.

We follow the classical compilation strategy where: for each of the r rounds, the
zkSNARK prover sends commitments of the PIOP oracle polynomials (along
with a proof of knowledge) and then computes the PIOP verifier’s challenges
using Fiat-Shamir; in the last round, the prover sends a CP proof that the
PIOP verifier accepts, i.e., Eq. (6) holds w.r.t. all the commitments sent earlier.
Notably, this CP proof is produced using the statement and the hash of the
transcript as “message” for the signature of knowledge.

We briefly discuss how the properties of PIOP and CP play a role in the secu-
rity of the compiled zkSNARK Π. We recall that in the simulation-extractability
experiment, we have an adversary A who makes simulation queries for statements
of its choice and eventually comes up with a forgery, which is a statement-proof
that is new and valid. The goal is to show that for such an adversary there is an
extractor that outputs a valid witness with overwhelming probability. Roughly
speaking, we build this extractor by first extracting the committed oracle poly-
nomials from the CP “proof of knowledge” in the random oracle query of A in
each round,14 and then by running the PIOP extractor to obtain the witness.

For this extraction strategy to work, we need two conditions: (A) The “proof
of knowledge” extraction must be valid. (B) The zkSNARK extractor feeds the
PIOP extractor with polynomials that pass the PIOP verification equations. A
technicality about relying on CP extraction for (A) and (B) is that we actually
have to make a reduction to its policy-based simulation-extractability. In particu-
lar, this means that we have to turn A into CP adversaries that comply with the
policy Φ̂. To obtain (A), we use the second property of Φ̂ mentioned above, which
ensures a valid extraction if the adversary later provides a valid proof of polyno-
mial evaluation. This is however the case for us since a successful adversary must
provide such proof. For (B), we rely on the following observations. If A produces
a forgery for a new statement of Π then the CP proof (aka signature of knowl-
edge) must use a new message, and thus we can build a CP adversary returning
a new statement-proof pair. If A produces a forgery for a statement queried to
the simulation oracle, then by strong simulation extractability the proof must be
new, which means that: either the commitments in the transcript are different,
or the commitments are all the same but the “PIOP verifier” proof is different.
In the former case, we get a different transcript, which yields a CP forgery with
a new message, as in the previous case. In the latter case, the transcript is the
same and we get a CP forgery with the same message but fresh proof. Notably,
in all the cases, the CP forgeries respect the degree-1 condition thanks to the
compiler-safe property of the PIOP. Finally, the reduction CP adversaries that
we build satisfy the first property of Φ̂ thanks to the algebraic verifier property
of PIOP, which allows us to precompute the instance-independent polynomials

14 Note, this avoids rewinding, since extraction is performed in the same moment when
the adversary sends the proof of knowledge through a RO call.
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ṽ
(k)
j , and to the programmability of the random oracle that allows us to presam-

ple the verifier’s challenges ρ, define v
(k)
j (X) = ṽ

(k)
j (X,ρ), and later program

the random oracle to use these coins ρ.

Compilation-ready CP-SNARK from KZG. To connect together Sect. 4
and the results of this section, we show a simple compilation-ready CP-SNARK
in the ROM based on batched KZG evaluation proofs. For a “PIOP verifier”
statement, the prover RO-hashes the instance and obtains a random point ξ, eval-
uates the polynomials v

(k)
j (ξ) for any j and outputs the evaluations pj(v

(k)
j (ξ))

together with a batch evaluation proof for all of them. For a “proof of knowl-
edge” statement, the prover does not output an explicit proof element (we call
this a vacuous proof ), and we rely on the AGM to argue its extractability. The
idea is that, for an algebraic adversary that produces an alleged commitment
c and its algebraic representation, we can find a way to open c, under some
circumstances. For example, consider the adversary that, during the simulation-
extractability experiment, hashes (i.e., makes a random oracle query) the com-
mitment c, and later includes c in a “PIOP verifier” instance. Then the algebraic
representation of c returned at hashing time must coincide with the same poly-
nomial extracted at forgery time, otherwise one can break the standard binding
of the commitment. Crucially, this scenario fits exactly the second part of the
policy Φ̂. As for the third part of the policy, we notice that an attack similar
to the mix-and-match malleability attack mentioned in the introduction applies
to our compilation-ready CP-SNARK. For example, the adversary could ask a
simulation for an instance that tests two (fake) commitments on constant values
defined by the v

(k)
j , and then it can produce a forgery that includes one of the

commitments by copying part of the simulated proof. Intuitively, this is why we
require that the v

(k)
j have a degree at least 1: when evaluated on a fresh random

point ξ, a valid proof for pj(v
(k)
j (ξ)) ensures that the prover knows pj .
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Abstract. Most succinct arguments (SNARKs) are initially only proven
knowledge sound (KS). We show that the commonly employed compila-
tion strategy from polynomial interactive oracle proofs (PIOP) via poly-
nomial commitments to knowledge sound SNARKS actually also achieves
other desirable properties: weak unique response (WUR) and trapdoor-
less zero-knowledge (TLZK); and that together they imply simulation
extractability (SIM-EXT).

The factoring of SIM-EXT into KS + WUR + TLZK is becoming
a cornerstone of the analysis of non-malleable SNARK systems. We
show how to prove WUR and TLZK for PIOP compiled SNARKs under
mild falsifiable assumptions on the polynomial commitment scheme. This
means that the analysis of knowledge soundness from PIOP properties
that inherently relies on non-falsifiable or idealized assumption such as
the algebraic group model (AGM) or generic group model (GGM) need
not be repeated.

While the proof of WUR requires only mild assumptions on the PIOP,
TLZK is a different matter. As perfectly hiding polynomial commitments
sometimes come at a substantial performance premium, SNARK design-
ers prefer to employ deterministic commitments with some leakage. This
results in the need for a stronger zero-knowledge property for the PIOP.

The modularity of our approach implies that any analysis improve-
ments, e.g. in terms of tightness, credibility of the knowledge assumption
and model of the KS analysis, or the precision of capturing real-world
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1 Introduction

Succinct arguments and zero-knowledge proofs are being implemented and
deployed. This is both due to their improved practicality and the popularity
of use-cases that require efficient and private verification of statements. As it
becomes harder to discern real information from automatically generated fakes,
we have to increasingly rely on cryptographic chains of evidence [23,40]. Efficient
zero-knowledge proofs help institutions become more transparent [10], help scale
blockchains [7,11,43], and make applications more private [8,12,30,36].

As SNARKs become more prevalent, we must demand them to have opti-
mal security and not just optimal speed. Recently, a number of new SNARK
constructions have been proposed in the literature. They are typically proved
to satisfy stand-alone security properties in isolation, namely zero-knowledge
and (knowledge) soundness. These basic properties are often unsatisfactory
both in theory and practice, due to the fact that NIZK proofs are inher-
ently transferable, i.e., whoever observed an existing valid proof can prove
a statement by reusing/modifying the proof, even without the knowledge of
the corresponding witness. To prevent such malleability attacks, the seminal
work of Sahai [42] introduced a stronger notion called simulation-soundness,
which was later extended to simulation-extractability (SIM-EXT) [19]. Essen-
tially, these notions state that no cheating prover can break (knowledge)
soundness even after asking a ZK simulator to produce proofs on adap-
tively chosen statements. There is a long line of research that strengthens
NIZK in a generic manner such that the proof system achieves simulation-
soundness/extractability [2,3,6,16,19,21,29,32,35,37,38,41]. These generic lift-
ing techniques often apply additional cryptographic primitives, such as (one-
time) signature [19,29] and pseudo-random function [35], and then produce an
extended proof for OR-statement derived from the target statement to be proven,
without looking into inner workings of the base NIZK construction. In contrast,
several recent works analyze particular exiting SNARK constructions without
modification and successfully prove that some of the already deployed schemes
satisfy simulation-extractability [5,18,25,27,28,31]. The downside of this app-
roach is that analysis must be carried out in an ad-hoc way and tailored to each
specific scheme.

Given this state of affairs, our question is whether it’s possible to prove
simulation-extractability for a large class of exiting SNARKs in an abstract
manner. To this end, we turn to the popular paradigms of constructing highly
efficient SNARKs from Polynomial Interactive Oracle Proofs (PIOP) [9,13,14,
17]. This paradigm allows for a modular design of zkSNARK, starting from an
information theoretic object, compiling it into an interactive argument system
via cryptographic polynomial commitments. It is then made non-interactive in
the random oracle model via Fiat-Shamir transform [22].



488 M. Kohlweiss et al.

1.1 Our Contribution

Framework for Proving SIM-EXT for PIOP-Based SNARKs. In this
work, we provide a modular framework to prove SIM-EXT for a class of NIZK
arguments constructed from PIOP in the random oracle model. We isolate suffi-
cient and minimal properties required from the PIOP and the polynomial com-
mitment schemes (PCOM) to conclude simulation-extractability (SIM-EXT) for
the compiled zkSNARK, while relying on the existing knowledge soundness anal-
ysis in a black-box manner. An additional goal here is to minimize modifications
to the exiting knowledge sound SNARK constructed via the compiler of [13,17].

Along the way, we generalize a theorem by [28] for proving SIM-EXT of Fiat-
Shamir arguments in a modular fashion by adapting the notion of canonical
simulator. Our canonical simulators supports access to a SRS and an internal
PIOP simulator. Finally, we generalize the theorem of [28] to hold for both
straight-line and rewinding-based extractors (assuming knowledge soundness,
trapdoor-less zero knowledge (TLZK), and weak unique response (WUR) hold).
Our analysis can now focus on proving TLZK and WUR and these properties
do not even involve any extractor in the definition; our result holds for any
extractor.

Generic Strategy for Proving Weak Unique Response. Since the
SNARKs we study are obtained by applying Fiat-Shamir to multi-round interac-
tive arguments, it is often required to show the so-called (weak) unique response
(WUR) property to conclude SIM-EXT [28]. As indicated in the very recent
works [18,28], proofs of unique response can be quite involved especially if the
underlying interactive protocols have many rounds. We show that only a few
mild properties of PCOM are sufficient to show that the PIOP-compiler generi-
cally outputs a NIZK argument satisfying WUR. Interestingly, this implies that
exiting polynomial commitments already have a built-in mechanism to retain
SIM-EXT .

Generic Strategy for Trapdoor-Less Zero-Knowledge Simulation.
Another technical hurdle in proving SIM-EXT in a modular way is that, the
zero knowledge simulation must be done in a trapdoor-less manner, i.e., the
only additional power available to the zero-knowledge simulation is program-
ming the random oracle. While this was trivial in previous work [18,27,28] that
focus only on NIZK in the random oracle model, PIOP-based zkSNARKs often
involve both a RO and structured reference string (SRS) generated by trusted
setup. Consequently, the majority of existing ZK simulators for such systems take
advantage of the SRS’s trapdoor. In this work, we provide generic strategies for
achieving trapdoorless simulation for all PIOP schemes satisfying the standard
property of honest verifier zero-knowledge (HVZK). Additionally, we introduce
a stronger version of HVZK and refine our simulation strategy for PIOP schemes
that satisfy this stronger notion.

Case Studies for Concrete Schemes. To show applicability of our frame-
work, we study a few concrete schemes. For PCOM schemes, we study KZG
commitments, which is one of the most common commitment scheme used for
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compiling PIOPs. We also briefly sketch a simple PCOM scheme built using com-
pressed sigma protocols of [4]. For PIOP schemes, we study trapdoorless zero-
knowledge for Marlin, Lunar, and Plonk. As a consequence of our framework,
we conclude that a slight modification of Marlin and Lunar when compiled with
the deterministic KZG commitment scheme are SIM-EXT. On the other hand,
we show that Plonk needs a hiding version of KZG to be SIM-EXT.

1.2 Technical Overview

We provide a high-level overview of our modular approach towards simulation-
extractability.

PIOP and zkSNARK Compiler. Let us recap one of the popular paradigms
of constructing efficient zkSNARKs [13,14,17]. The compiler we study in this
paper mostly follows the formalization of Marlin [17]. Our starting point is a
polynomial interactive oracle proof (PIOP) system. This is a public-coin inter-
active protocol between prover P(x,w) and verifier V(x), where x is a statement
and w is a witness, respectively. For each round i = 1, . . . , r, P sends a polynomial
oracle pi ∈ F[X] and the verifier V responds with uniformly sampled challenge
ρi.1 The challenge strings ρ1, . . . , ρr are then used by V to derive evaluation
points z1, . . . , zr, which are queried to the polynomial oracles. Upon receiving
yi = pi(zi) for i = 1, . . . , r from the oracles, V outputs a decision bit to accept
or reject.

It is well known that the above information-theoretic object can be compiled
into a non-interactive argument in the random oracle model, using a crypto-
graphic primitive called polynomial commitment (PCOM). The compilation is
two fold. First, one constructs an interactive argument, where for each round i,
prover P internally runs a PIOP prover P to obtain a polynomial pi, generates a
commitment ci to pi, and sends ci to V, and V responds with ρi generated by the
PIOP verifier V. At the end of interaction, P outputs yi with evaluation proofs
πi guaranteeing that pi(zi) = yi w.r.t. committed polynomials pi. V accepts
if and only if V accepts and all evaluation proofs are valid. Notice that this
protocol follows the typical format of public-coin interactive argument. There-
fore, assuming access to random oracle H, one can construct a corresponding
non-interactive argument Π by applying a Fiat-Shamir transform.

From Knowledge Soundness to Simulation-Extractability in the PIOP
Paradigm. Plain knowledge soundness of compiled protocol Π is already
analyzed in the literature under various assumptions on PCOM and PIOP
[13,14,17,24,39]. To benefit from existing knowledge soundness analyses in

1 To sketch the core ideas, we provide a simplified version of PIOP where each round
involves a single polynomial. Here, we also ignore the role of preprocessing for now.
In the detailed proof, we deal with a more general case with multiple polynomials in
every round, and the preprocessing phase, and multiple evaluation points for each
polynomial.
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a black-box manner, our goal is to lift knowledge soundness to simulation-
extractability (SIM-EXT) while being agnostic of concrete behaviors of knowl-
edge extractor. Fortunately, Ganesh et al. [28] recently proved that a property
called weak unique response (WUR) is sufficient for Fiat-Shamir non-interactive
arguments to have SIM-EXT in the ROM. Essentially, the WUR property of
[28] requires the following: given a transcript π = (a1, ρ1, . . . , ar, ρr, ar+1) out-
put by simulator S for Fiat-Shamir non-interactive argument (constructed from
(2r+ 1)-move multi-round public-coin interactive argument), for any i ≥ 2, it is
computationally hard to come up with another transcript π′ with shared prefix,
i.e., π′ = (a1, ρ1, . . . , a

′
i, ρ

′
i, . . . , a

′
r, ρ

′
r, a

′
r+1) such that a′

i �= ai.
However, their general theorem only covers a transparent case, while many

recent PIOP-based zk-SNARKs require trusted generation of SRS in addition
to the random oracle (e.g., if PCOM is instantiated with the well-known KZG
scheme). It turns out that dependency on both SRS and RO introduces addi-
tional challenges in proving SIM-EXT in a modular fashion. In more detail,
to invoke the general theorem similar to [28], one must show the existence of
trapdoor-less ZK (TLZK) simulator, which only makes use of programmability
of RO but without the knowledge of simulation trapdoor for SRS. We formalize
this observation in Lemma 2.13. As the existing compiler theorems (such as Mar-
lin and Lunar) do show zero-knowledge with trapdoor, we need an alternative
way to prove zero-knowledge. In this work, we show two strategies of TLZK sim-
ulation, depending on the power of underlying PIOP simulator. The first path
is straightforward: it requires honest verifier zero-knowledge (HVZK) of PIOP
and hiding of PCOM similar to the Marlin compiler. As an alternative approach,
if PIOP tolerates Ψ additional evaluations on polynomials which are not asked
by honest PIOP verifier (Ψ -HVZK), then we show only a weak variant of hiding
from PCOM is sufficient for Π to be TLZK. This is an observation implicit in
several practical constructions, but to the best of our knowledge, no previous
compiler theorem explicitly formalized it.

Proving Weak Unique Response for the Compiled Protocol. Given a
TLZK simulator, our goal is to identify a set of properties allowing us to prove
WUR. Recall that a transcript of Π is comprised of

(c1, ρ1, . . . , cr, ρr, (y1, . . . , yr), (π1, . . . , πr))

where ρi = H(srs, i, x, c1, ρ1, . . . , ci). Focusing on the last round response, one
can immediately see the need for unique proofs (i.e., for a fixed (ci, zi, yi), there
exists a unique proof πi that verifies) and evaluation binding (i.e., for a fixed
(ci, zi), there exists unique evaluation outcome yi that verifies); otherwise, a
cheating prover can maul either πi or yi of an existing transcript to create a valid
transcript without knowing witness for x. We show that these mild properties
are already satisfied by KZG which is the most common commitment scheme
used for compilation. The hardest part is to prove that an adversary cannot
maul a response in the middle of the transcript. Our crucial observation is that
the compiler has a built-in mechanism similar to one-time signature, making it
difficult for the prover to forge any part of the transcript. In more detail, if any
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prefix of the transcript is modified, then it inevitably triggers re-sampling of the
final Fiat-Shamir challenge, leading to ρ′

r �= ρr with overwhelming probability.
Since ρ′

r is used as a random coin to derive evaluation points z′
1, . . . , z

′
r, without

loss of generality, a cheating prover is forced to create a valid evaluation proof
for c1 w.r.t. an evaluation point z′

1 �= z1.2 However, if p1 is randomized enough
and the commitment c1 together with an evaluation proof πi leaks no more
information than p1(z1), then it must be hard for an adversary to extrapolate
valid evaluation proof for p1(z′

1) w.r.t. c1. We formalize this intuition assuming
the same evaluation binding and weak hiding assumptions.

1.3 Related Work

Broadly, there are currently three approaches to obtain simulation extractable
SNARK:

Generic Lifting Techniques for SIM-EXT NIZK. Classically, it is well-
known that any sound NIZK proof can be lifted to SIM-EXT NIZK in a general
manner. For example, De Santis et al. [19] combine NIZK for a language L with
one-time signature and PRF to realize SIM-EXT by having prover generate a
proof for an extended OR-language L′ related to the original language L. More
recent lifting compilers [2,3,35] optimize the approach along these lines and
further add black-box and straight-line knowledge extraction in order to achieve
universally composable [15] zkSNARKs, but still introduce performance over-
head in the size of SRS, proof size, and proving/verification time. Somewhat
related, [26] introduced a straight-line extraction compiler to lift zkSNARKs
which already satisfies SIM-EXT to UC-secure zkSNARKs in the random oracle
model, while preserving the asymptotic succinctness of the output proof size.

Scheme Specific Techniques. The second is to prove directly that an exist-
ing SNARK scheme is simulation extractable [5,18,25,28,31]. This approach is
taken by [25] for Plonk, Marlin, and Sonic, by [27,28] for Bulletproofs, and by
[18] for Bulletproofs and Spartan, respectively. As these two works share close
resemblance with ours, we investigate their strategy for proving specific schemes
in some more detail.

All of [18,25,28] provide very similar frameworks for showing SIM-EXT for
zkSNARKs obtained as Fiat-Shamir compiled multi-round protocols (in the
updatable SRS setting for [25] and in the transparent setting for [18,28]). They
observe that it suffices to prove that the schemes in question satisfy additional
properties that together with existing properties, typically knowledge sound-
ness, imply SIM-EXT. These properties are TLZK, and their specific variants

2 As we elaborate in the full version, some PIOP protocols do not use the last round
challenge ρr to derive z1. However, one can cheaply patch them by introducing a
random dummy polynomial p′ in the first round and having the verifier query p′

with a fresh evaluation point derived from ρr. Note that this can also be seen as a
generic method to add weak unique response to any Fiat-Shamir NIZKAoK in the
ROM.
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of unique responses (UR). However, each of these properties is directly tied to
the compiled zkSNARKs, and as such they have to be analyzed for each scheme
separately, e.g., they provide three TLZK simulator and prove that they achieve
zero-knowledge for Plonk, Marlin, and Sonic (in [25]), and prove the unique
response property for each scheme (in all works). Moreover, [25] only consid-
ers zkSNARKs whose knowledge soundness proof is based on rewinding in the
random oracle.

Our framework simplifies and generalizes the SIM-EXT analysis. We show
that the PIOP to zkSNARK compiler [17] already achieves the additional TLZK
and WUR under milder assumptions on the polynomial commitment. TLZK and
WUR together with knowledge soundness then imply simulation-extractability.

Another difference from the work of [25] is in the simulation strategies for
TLZK . We observe that the simulation for Plonk as presented in [25] is flawed
as it only works for perfectly hiding commitments, and we explain more in the
full version [34].

SE-SNARKS from PIOP and Polynomial Commitments. Our result
thus falls into a third category which proves SIM-EXT for a PIOP to zkSNARK
compiler rather than for individual schemes. As does the following concurrent
work.

Concurrent Work. Faonio et al. [20] study simulation-extractability (SE)
of zkSNARKs constructed from polynomial IOP and polynomial commitment.
Their main goal is to identify properties of polynomial commitment such that
a compiled zkSNARK satisfies simulation-extractability. Along the way, they
define SE tailored to a polynomial commitment parameterized by a policy pred-
icate Φ. The policy specifies additional conditions, on top of requiring a valid
non-extractable proof, to determine the success of the adversary and is based on
the following properties and variables in the SE game: (1) public parameters and
honestly sampled commitments, (2) an adversarially created forgery (x, π), (3)
the adversary’s view, including the set of statement-proof pairs recorded by the
simulation oracle, and the set of query-response pairs recorded by the random
oracle, (4) auxiliary information which comes along with the forged instance. As
a concrete example, they prove the KZG commitment is SE in the AGM w.r.t.
a specific class of Φ and this implies SE of several existing zkSNARKs including
Plonk and Marlin. In contrast, our approach to SE analysis of zkSNARKs only
requires simpler, easy-to-state properties of polynomial commitment, namely,
evaluation binding, unique proof and hiding. We expect that such properties
are satisfied by other polynomial commitment than KZG such as inner-product
based (IPA) polynomial commitments. Our analysis is also agnostic of the type
of extractor for polynomial commitment thanks to the modularity of the generic
result proved in [28].

Intuition from Proofs. We note that these two works take different routes to
the same destination.3 It is natural, that complex theorems can have multiple,
3 As fellow travelers we have open lines of communications which even resulted in an

author overlap.
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conceptually very different proofs that yield different insights. Our intuition for
where the proofs depart—early on, is that their work strengthens the extraction
property of the polynomial commitment scheme to also work in the presence
of a simulator using the secret trapdoor. In contrast, our work strengthens the
zero-knowledge property and requires a simulator that does not have access to
the trapdoor. Note that both works resort to random oracle programming for
simulation.

More superficially, their polynomial IOP model stems from Lunar’s PHP
model [14] from where they also take the inspiration of treating polynomial
commitments as commit-and-prove SNARKs, while our PIOP are inspired by
Marlin’s AHP model [17].

2 Preliminaries

We assume [�] to denote integers {1, . . . , �} and [k, �] to denote {k, . . . , �} for
k < �. The security parameter is denoted by λ. A function f(λ) is negligible in
λ if for any polynomial poly(λ), f(λ) ≤ 1/poly(λ) for sufficiently large λ. We
denote f(λ) ≤ negl(λ) to indicate f is negligible. By y

ρ←− A(x), we mean that a
randomized algorithm A outputs y on input x using a random coin ρ sampled
uniformly from a randomness space. For a finite field F, F

d[X] denotes a set of
polynomials over F of degree at most d.

2.1 Relations

An indexed relation R̂ is a set of triples (i, x,w) where i is the index, x is the
instance, and w is the witness. We assume R̂ can be partitioned using the security
parameter λ ∈ N (e.g., by including the description of field F such that |F| is
determined by a function of λ). Given a security parameter λ ∈ N, we denote by
R̂λ the restriction of R̂ to triples (i, x,w) ∈ R̂ with appropriate length in λ. Given
a fixed index i, we denote by R̂i the restriction of R̂ to

{
(x,w) : (i, x,w) ∈ R̂}

.
Given an indexed relation R̂, the corresponding binary relation can be defined
as R =

{
((i, x),w) : (i, x,w) ∈ R̂}

.
Typically, i describes an arithmetic circuit over a finite field, x denotes public

inputs, and w denotes private inputs, respectively. In the rest of this paper, we
assume i and x to include the description of finite field F for the sake of simplicity,
but our result holds even if the circuit is over a ring or module.

2.2 Polynomial Interactive Oracle Proofs

We define polynomial interactive oracle proofs (PIOP) with preprocessing. The
formulation below is highly inspired by algebraic holographic proofs (AHP) [17].
We apply the following minor modifications: (1) Interaction starts with prover’s
message, instead of verifier’s public coin. (2) We introduce an additional param-
eter t to allow multiple queries to a single polynomial. (3) We assume a single
maximum degree bound d rather than a distinct bound for each polynomial



494 M. Kohlweiss et al.

oracle (following the PIOP formulation of [13]), since the degree bound check
can be incorporated into PIOP by having prover output an oracle with shifted
polynomial.

Definition 2.1 (Polynomial IOP). A polynomial interactive oracle proof
(PIOP) for an indexed relation R̂ is specified by a tuple PIOP = (r, s, t, d, I,P,V),
where r, s, t, d : {0, 1}∗ → N are polynomial-time computable functions and
I,P,V are three algorithms known as the indexer, prover, and verifier. The
parameter r specifies the number of interaction rounds, s specifies the num-
ber of polynomials in each round, t specifies the number of queries made to
each polynomial, and d specifies a maximum degree bound on these polynomi-
als. An execution of PIOP (i, x,w) ∈ R̂ involves interaction between P and V,
where b ← 〈P(i, x,w) , VI(i)(x)〉 denotes the output decision bit, and (view;p) ←
�P(i, x,w) , VI(i)(x)� denotes the view (view) of V generated during the inter-
action and the responses of I(i), and the polynomial oracles (p) output by P.
The view consists of challenges ρ1, . . . , ρr that V sends to P and vector y of
oracle responses defined below. The vector p consists of the polynomial oracles
generated by P during the interaction. An execution of PIOP proceeds as follows:

– Offline phase. The indexer I receives as input index i for R̂, and outputs
s(0) polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most d(|i|). Note that
the offline phase does not depend on any particular instance or witness, and
merely considers the task of encoding the given index i.

– Online phase. Given an instance x and witness w such that (i, x,w) ∈ R̂,
the prover P receives (i, x,w) and the verifier V receives x and oracle access
to the polynomials output by I(i). The prover P and the verifier V interact
over (2r + 1) rounds where r = r(|i|). For i ∈ [r], in the i-th round of inter-
action, first the prover P sends s(i) oracle polynomials pi,1, . . . , pi,s(i) ∈ F[X]
to the verifier V; and V replies with a challenge ρi ∈ Ch, where Ch is the
challenge space determined by i. The last round challenge ρr ∈ Ch serves
as auxiliary input to V in subsequent phases. We assume the protocol to be
public-coin, meaning that ρi’s are public and uniformly sampled from Ch.
Moreover, observe that P can be interpreted as a series of next message
functions such that polynomial oracles for round i are obtained by running
(stP , pi,1, . . . , pi,s(i)) ← P(st′P , ρi−1), where st′P is the internal state of P after
sending polynomials for round i − 1 and before receiving challenge ρi−1, and
stP is the updated state. Here, ρ0 is assumed to be ⊥.

– Query phase. Let p = (pi,j)i∈[0,r],j∈[s(i)] be a vector consisting of all polyno-
mials sent by the prover P. The verifier may query any of the polynomials it
has received any number of times. Concretely, V executes a subroutine QV

that receives (x; ρ1, . . . , ρr) and outputs a query vector z = (zi,j)i∈[0,r],j∈[s(i)],
where each zi,j is to be interpreted as a vector (zi,j,k)k∈[t(i,j)] ∈ D

t(i,j) and
D ⊆ F is an evaluation domain determined by i. We write “yi,j = pi,j(zi,j)”
to define an evaluation vector yi,j = (yi,j,k)k∈[t(i,j)] where yi,j,k = pi,j(zi,j,k).
Likewise, we write “y = p(z)” to define y = (yi,j)i∈[0,r],j∈[s(i)] where yi,j =
pi,j(zi,j).
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– Decision phase. The verifier outputs “accept” or “reject” based on the
answers to the queries (and the verifier’s randomness). Concretely, V exe-
cutes a subroutine DV that receives (x,p(z); ρ1, . . . , ρr) as input, and outputs
the decision bit b.
The function d determines which provers to consider for the completeness
and soundness properties of the proof system. In more detail, we say that a
(possibly malicious) prover P̃ is admissible for PIOP if, on every interaction
with the verifier V, it holds that for every round i ∈ [r] and oracle index
j ∈ [s(i)] we have deg(pi,j) ≤ d(|i|). The honest prover P is required to be
admissible under this definition.

Typically PIOP should satisfy completeness, (knowledge) soundness and zero-
knowledge as defined below.

Definition 2.2 (Completeness). A PIOP is complete if for any (i, x,w) ∈ R̂,

Pr
[
b ← 〈P(i, x,w) , VI(i)(x)〉 : b = 1

]
= 1

Now we define a stronger notion of honest verifier zero knowledge (HVZK)
for PIOP . First, a straightforward HVZK asks for simulatability of the view of
honest verifier V which comprises of all public coins ρ1, . . . , ρr and the outcome
of evaluations y. It turns out that, if compiled with a non-hiding commitment
scheme, the committing function leaks additional evaluations of polynomials
which are not queried by an honest PIOP verifier V (modeled as p(χ) below).
In order to tolerate such additional leakages, we consider the existence of a more
powerful simulator that, along with the proof string, is also able to output some
polynomials, such that even after providing additional evaluations w.r.t. these
polynomials, the view remains indistinguishable from the real execution.

Note that Lunar [14] also models a similar notion where zero-knowledge
should hold even when the proof might leak some additional evaluation points.
However, since their simulation strategy crucially uses the trapdoor information
in order to satisfy this notion, our definition is stronger and harder to achieve.
One interesting motivation that suggests that we need our stronger formulation
is that Plonk [24] (as presented in [25]) happens to satisfy Lunar’s definition but
not ours. However, the trapdoorless simulation based on deterministic commit-
ments, as suggested in [25], is flawed (as we expand more in the full version).
This suggests that Lunar’s formulation of leakage is not enough in the context
of trapdoorless zero-knowledge; we require something stronger.

We also require the PIOP to satisfy a second condition called non-
extrapolatable first polynomial. Roughly, it says that there is enough randomness
in the first online polynomial p so that, given a certain number of evaluations, the
next evaluation remains unpredictable. In this intuition, we implicitly assume
that the first online polynomial of the PIOP encodes the witness somehow. Note
that this requirement is very easily satisfied by most PIOPs already, since they
do encode the witness in the first round polynomials with enough randomness
used in the encoding to achieve zero-knowledge.
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Game 1: HVZK for Polynomial IOP

HVZK-0A(1λ, χ)

1: b ← AO0(1λ)
2: return b

NEXP-1A(1λ, χ)

1: (i, x) ← A1(1λ)
2: (view,p(χ),p(z)) ← O′

1(i, x)
3: (z∗, y∗) ← A2(view,p(χ),p(z))
4: b := (z∗ /∈ (z, χ)) ∧ (y∗ = p(z∗))
5: return b

O0(i, x,w)

1: if (i, x,w) /∈ R̂ then return ⊥
2: (view;p) ← �P(i, x,w) , VI(i)(x)�
3: (ρ1, . . . , ρr,y) := view
4: z ← QV(x; ρ1, . . . , ρr)
5: return (view,p(χ),p(z))

HVZK-1A(1λ, χ)

1: b ← AO1(1λ)
2: return b

O1(i, x,w)

1: if (i, x,w) /∈ R̂ then return ⊥
2: (view;p) ← S(i, x)
3: (ρ1, . . . , ρr,y) := view
4: z ← QV(x; ρ1, . . . , ρr)
5: if ∃pi,j ∈ p,deg(pi,j) > d(|i|)

then return ⊥
6: return (view,p(χ),p(z))

O′
1(i, x)
1: (view;p) ← S(i, x)
2: (ρ1, . . . , ρr,y) := view
3: z ← QV(x; ρ1, . . . , ρr)
4: if ∃pi,j ∈ p,deg(pi,j) > d(|i|)

then return ⊥
5: return (view,p(χ),p(z))

Definition 2.3 (Ψ-Honest Verifier Zero Knowledge (HVZK)). Let PIOP
be a polynomial IOP for relation R̂. Let D denote the domain of honest poly-
nomial oracle queries. Let χ = (χi,j)i∈[r],j∈[s(i)] denote an auxiliary query vector
which is said to be valid if for each i ∈ [r], j ∈ [s(i)], |χi,j | ≤ Ψ and each query in
χi,j comes from D. PIOP is statistical Ψ -honest verifier zero knowledge, if there
exists a PPT simulator S such that for any distinguisher A, and for all valid
auxiliary query vectors χ, it holds that

AdvΨ -HVZK
A (λ, χ) :=

∣
∣Pr

[

HVZK-0A(1λ, χ) = 0
] − Pr

[

HVZK-1A(1λ, χ) = 0
]∣
∣ ≤ negl(λ)

where HVZK-0 and HVZK-1 are defined in Game 1 . If the operations highlighted
in orange are not executed, then we simply say PIOP satisfies HVZK.

Definition 2.4 (Ψ-Non-Extrapolation for the First Polynomial). Let
PIOP, D , and χ be as defined in Definition 2.3. Let S be the statistical Ψ -honest
verifier zero knowledge simulator for the PIOP , and t be the number of distinct
evaluations revealed for each polynomial in a PIOP proof. Let p be the vector of
polynomials output by S, and p denotes the first polynomial for the online phase
in p. p is said to be Ψ -Non-Extrapolatable if for any adversary A := (A1,A2)
(where A1,A2 share internal state), and for all valid auxiliary query vectors χ
(as defined in Definition 2.3), it holds that,

AdvΨ -NEXP
A (λ, χ) := Pr

[
NEXP-1A(1λ, χ) = 1

] ≤ negl(λ)
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where NEXP-1 is define in Game 1.

Min-entropy of QV. Recall, the sub-routine QV takes input (x; ρ1, . . . , ρr) and
outputs a query vector z = (zi,j)i∈[0,r,j∈[s(i)] where each zi,j can be parsed as a
vector (zi,j,k)k∈[t(i,j)]. We isolate one evaluation point z1,1,1 for p1,1 and require
that z1,1,1 is equal to some fixed value only with negligible probability. This is
captured by assessing min-entropy of the QV algorithm.

Definition 2.5 (Min-entropy of QV). Let PIOP = (r, s, t, d, I,P,V) be a
PIOP for indexed relation R̂. (QV,DV) denote the subroutines run by V. Let
Ch be the challenge space from which V samples ρi. For any fixed λ ∈ N and
for any (i, x,w) ∈ R̂λ, consider the maximum probability that z1,1,1 is equal to a
particular value:

μ(λ, x) = max
ρ1,...,ρr−1∈Ch,a∈F

Pr
[
ρr

$←− Ch; z ← QV(x; ρ1, . . . , ρr) : z1,1,1 = a
]
.

The min-entropy α of sub-routine QV is

α(λ) = min
(i,x,w)∈R̂λ

(− log2(μ(λ, x))).

We say the min-entropy of QV is high if α ∈ ω(log(λ)).

Remark 2.6. If the PIOP of interest does not have high min-entropy of QV

and/or Ψ -non-extrapolatable first polynomial, one can easily patch in the fol-
lowing manner: a modified prover P additionally sends a dummy random poly-
nomial p∗ ∈ F

Ψ+1[X] in the first round and the verifier V queries p∗ with a fresh
evaluation point z∗ ∈ D derived from ρr.

2.3 Non-interactive Argument and Simulation-Extractability
in ROM

Below we write AH to denote that an algorithm A has black-box access to the ran-
dom oracle H : {0, 1}∗ → {0, 1}l. To explicitly model preprocessed SRS in later
sections, we also introduce indexed NARG (henceforth iNARG) Π̂ for indexed
relation R̂.

Definition 2.7 (Indexed Non-Interactive Argument (iNARG)). An
Indexed Non-Interactive Argument with Universal SRS in the random oracle
model for indexed relation R̂ is a tuple Π̂H = (G, I, P̂ , V̂) of three algorithms:
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– srs ← G(1λ) works as G of NARG.
– (ipk, ivk) ← I(i, srs) is a deterministic indexer4 that takes index i and srs as

input, and produces a proving index key (ipk) and a verifier index key (ivk),
used respectively by P̂ and V̂.

– π ← P̂H(ipk, x,w) is a prover that outputs a proof π asserting (i, x,w) ∈ R̂.
– b ← V̂H(ivk, x, π) is a verifier that outputs a decision bit b.

It is easy to convert Π̂ for R̂ into the corresponding Π for binary relation
R =

{
((i, x),w) : (i, x,w) ∈ R̂}

by defining PH(srs, (i, x),w) to be an algorithm
outputting π after running (ipk, ivk) ← I(srs, i) and π ← P̂H(ipk, x,w), and
VH(srs, (i, x), π) to be an algorithm outputting b after running (ipk, ivk) ← I(srs, i)
and b ← V̂H(ivk, x, π), respectively. Therefore, we only state security properties
for NARG without loss of generality.

Definition 2.8 (Completeness). A NARG ΠH = (G,P,V) for relation R sat-
isfies perfect completeness if for all λ, all N ∈ N, and for all PPT adversaries
A it holds that

Pr

[
srs ← G(1λ); (x,w) ← AH(srs);

π ← PH(srs, x,w)
: VH(srs, x, π) = 1 ∧ (x,w) ∈ R

]

= 1.

We define zero-knowledge for NARGs relying on both SRS and programmable
RO. Note that in the general definition below, a simulator may take advantage of
both the trapdoor of srs and programmability of the random oracle. Concretely,
a simulated SRS generator S0 may potentially output a simulation trapdoor td.
The zero-knowledge simulator S is defined as a stateful algorithm that operates
in two modes. In the first mode, (h, st′) ← S(1, st, t) responds to a random oracle
query on input t. In the second mode, (π, st′) ← S(2, st, (srs, x)) simulates a proof
string generated by an honest prover P.

Definition 2.9 (Non-Interactive Zero Knowledge in the SRS and Pro-
grammable Random Oracle Model). Let ΠH = (G,P,V) be a NARG for
relation R. ΠH is unbounded non-interactive zero knowledge (NIZK) in the pro-
grammable random oracle model, if there exist a tuple of PPT algorithms (S0,S)
such that for all PPT distinguisher A, it holds that

AdvNIZKA (λ) :=
∣
∣Pr

[
NIZK-0A(1λ) = 0

] − Pr
[
NIZK-1A(1λ) = 0

]∣∣ ≤ negl(λ)

where NIZK-0 and NIZK-1 are defined in Game 2. As a special case, if ΠH is
NIZK w.r.t. S0 = G (and therefore it outputs td = ⊥), then it is said to be
trapdoor-less NIZK (TLZK).

4 In the literature, indexer is also referred to as Derive algorithm.
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Game 2: NIZK

NIZK-0A(1λ)

1: srs ← G(1λ)
2: b ← AH,PH(srs,·,·)(srs)
3: return b

NIZK-1A(1λ)

1: (srs, td) ← S0(1λ)
2: st := td
3: b ← AS1,S2(srs)
4: return b

H(t)
1: if QH(t) = ⊥ then
2: QH(t)

$←− {0, 1}l

3: return QH(t)

S1(t)
1: (h, st) ← S(1, st, t)
2: return h

S2(x,w)
1: if (x,w) /∈ R then
2: return ⊥
3: (π, st) ← S(2, st, (srs, x))
4: return π

Now we define our final goal: an adaptive version of simulation-extractability
for NARG in the ROM. On a high-level, the simulation-extractability (SIM-EXT)
property ensures that extractability holds even if the cheating adversary is able
to observe simulated proofs. Without the texts highlighted in orange (i.e., with-
out access to the simulation oracle S ′

2), the property degrades to the standard
extraction property (EXT). This is also known as knowledge soundness.

Definition 2.10 (Simulation-Extractability (SIM-EXT )). Consider a
NARG ΠH = (G,P,V) for relation R with a NIZK simulator (S0,S). ΠH is
simulation-extractable (SIM-EXT) with respect to (S0,S), if for any PPT adver-
sary A, there exists a PPT extractor EA such that, it holds that

AdvSIM-EXT
A (λ) := Pr

[
SIM-EXTA(1λ) = 1

] ≤ negl(λ)

where SIM-EXT is defined in Game 3.

Depending on whether EA(srs, ρ,Q1,Q2) depends on A and uses ρ, or there
exists an E that is independent of A and uses only Q1 we get either white-box
extraction, or “Fischlin’s” straightline extraction, respectively.5

5 Dependence or independence from A can be formalized by requiring that there exists
a function f such that for any PPT adversary A, there exists a PPT extractor
EA = f(A). If f is a constant function we have independence otherwise dependence.
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Game 3: SIM-EXT and WUR

WURA(1λ)
1: Q1 := ∅; Q2 := ∅;QH := ∅

2: (srs, td) ← S0(1λ)
3: st := (QH, td)
4: (x, stA) ← AS1

1 (srs)
5: π̃ ← S ′

2(x)
6: π ← AS1

2 (stA, π̃)
7: b ← VS1(srs, x, π)
8: b′ :=

(∃i ∈ [1, r] : π|i = π̃|i ∧ ai+1 �= ãi+1)
9: return b ∧ b′

S1(t)
1: (h, st) ← S(1, st, t)
2: Q1(t) := h
3: return h

S(1, st, t)
1: Retrieve QH from st
2: if QH(t) = ⊥ then
3: QH(t)

$←− {0, 1}l

4: st := QH

5: return (QH(t), st)

SIM-EXTA(1λ)
1: Q1 := ∅; Q2 := ∅;QH := ∅

2: (srs, td) ← S0(1λ)
3: st := (QH, td)
4: (x∗, π∗)

ρ←− AS1,S′
2(srs)

5: b ← VS1(srs, x∗, π∗)
6: w∗ ← EA(srs, ρ,Q1,Q2)
7: return b = 1 ∧ (x∗,w∗) /∈

R∧(x∗, π∗) /∈ Q2

S ′
2(x)
1: (π, st) ← S(2, st, (srs, x))
2: Q2 := Q2 ∪ {(x, π)}
3: return π

S(2, st, (srs, x))
1: Retrieve QH from st
2: π = (a1, ρ1, . . . , ar+1) ← S̄(srs, x)
3: for i ∈ [1, r] do
4: if QH(srs, x, π|i) �= ⊥ then
5: return abort
6: else
7: QH(srs, x, π|i) := ρi

8: return (π,QH)

2.4 Simulation-Extractability of Fiat-Shamir Non-interactive
Arguments

In this paper, we consider a special class of NARG characterized as Fiat-Shamir
NARG (FS-NARG). ΠH = (G,P,V) is said to be FS-NARG, if P and V satisfy
the following conditions:

– PH(srs, x,w) outputs a proof string that can be parsed as π =
(a1, ρ1, . . . , ar, ρr, ar+1). We denote by π|i the i-th prefix (a1, ρ1, . . . , ai) of
π for i ∈ [r].

– There exists a PPT verdict algorithm Ver such that VH(srs, x, π) outputs 1 if
and only if (1) Ver(srs, x, π) = 1, and (2) ρi = H(srs, x, π|i) for i ∈ [r].

In [27,28], the authors define the weak unique response property tailored to
FS-NARGs but without SRS. In particular, this notion is useful for showing
SIM-EXT of FS-NARGs constructed from multi-round public-coin protocols.

Definition 2.11 (WUR). Consider a FS-NARG ΠH = (G,P,V) for R with a
NIZK simulator (S0,S). ΠH is said to have weak unique responses (WUR) with
respect to (S0,S), if given a proof string π̃ = (ã1, ρ̃1, . . . , ãr, ρ̃r, ãr+1) simulated
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by S, it is hard to find another accepting transcript π = (a1, ρ1, . . . , ar, ρr, ar+1)
that both have a common prefix up to the ith challenge for an instance x. That
is, for all PPT adversaries A = (A1,A2) (where A1 and A2 share the internal
states), it holds that

AdvWUR
A (λ) = Pr

[
WURA(1λ) = 1

] ≤ negl(λ)

where WUR is defined in Game 3.

To capture typical behaviors of TLZK simulator in an abstract manner, we
define the notion of canonical simulation.

Definition 2.12 (Canonical Simulator). Let ΠH be a FS-NARG with TLZK
simulator S. S is said to be canonical, if S in mode 1 answers random oracle
queries as defined in Game 3 , and S in mode 2 follows the procedures defined
in Game 3 by invoking some stateless algorithm S̄.

To enhance modularity of our security proof, we provide the follow-
ing lemma updating extractability to simulation-extractability assuming weak
unique response and a trapdoor-less canonical simulator. We note it can be
seen as adaptation of [28, Lemma 3.2] which only covers NARGs without srs.
In [18, Theorem 3.4], the authors prove a similar result in the transparent set-
ting, although it relies on different assumptions, i.e., k-unique response (k-UR)
and k-zero knowledge. In [25, Theorem 1], the authors deal with FS-NARG with
(updatable) srs also assuming k-UR, but their analysis only covers the case where
knowledge soundness is rewinding-based.

Lemma 2.13. Consider FS-NARG ΠH = (G,P,V) for relation R in the ROM.
If ΠH satisfies EXT and additionally satisfies WUR w.r.t. a canonical TLZK
simulator S, then ΠH satisfies SIM-EXT w.r.t. S.

Proof. The proof is almost identical to that of [28, Lemma 3.2], thereby we
often refer to their proof to avoid redundancy. Let Â be a SIM-EXT adversary.
Consider the following hybrids:

– Hyb0(1λ): Identical to SIM-EXT except that there is no extractor in the exper-
iment and it outputs 1 as long as b = 1 ∧ (x∗, π∗) /∈ Q2.

– Hyb1(1λ): Identical to the previous, except that it aborts if there exists
(x∗, π) ∈ Q2 such that ∃i ∈ [1, r] : π∗|i = π|i ∧ π∗ �= π. Assuming that
Â makes at most q2(λ) ∈ poly(λ) queries to S ′

2, the probability that Hyb1
aborts can be bounded by q2 ·AdvWUR

B (λ) for some reduction B [28, Lemma
3.2]. Therefore, the experiment only aborts with negligible probability.

Given Â causing Hyb1 to output 1, we construct a EXT adversary A that only has
access to the random oracle H. A proceeds as in [28, Alg.4]: (1) Upon receiving
srs (corresponding to pp in [28]), A internally runs Â. (2) Upon receiving a
simulation query from Â, A runs the algorithm of S in mode 2. (3) Upon receiving
a random oracle query from Â, A relays a query to H unless the input is already
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programmed by S. (4) Upon receiving (x∗, π∗) from Â, A outputs it unless the
aforementioned abort conditions are met. Thanks to the hash prefix (srs, x), if
x∗ �= x for every previously queried x, then the random oracle entry prefixed by
(srs, x∗) has never been programmed by the canonical simulator S. Moreover, if
x∗ = x for some previously queried (x, π) ∈ Q2, then the random oracle entry
prefixed by (srs, x, π∗|i) has never been programmed by the canonical simulator
S due to the abort condition of Hyb1. Therefore, (x∗, π∗) output by A always
gets accepted by VH.

Overall, if Â outputs a valid proof in Hyb0, then A also succeeds in outputting
a valid proof w.r.t. H except with negligible probability. Since ΠH satisfies EXT
, there exists a PPT extractor EA such that it can extract a valid witness from
successful A except with negligible probability. Therefore, one can construct a
SIM-EXT extractor ÊÂ that internally runs the procedures of A and extracts a
witness by invoking EA. Overall such Ê succeeds in extracting a valid witness
from successful Â except with negligible probability. ��
Remark 2.14. Note that trapdoor-less simulation is crucial for replicating the
modular argument of [28]. In the above proof, an outer prover A only receives srs
from an honest setup algorithm G while having to simulate the view of SIM-EXT
adversary Â. Therefore, A cannot use the trapdoor and must perform simulation
by programming the random oracle responses only.

2.5 Polynomial Commitment Scheme

We define a polynomial commitment scheme [33].

Definition 2.15 (Polynomial Commitment Scheme). A polynomial com-
mitment scheme denoted by PCOM is a tuple of algorithms (KGen,Com,
Eval,Check):

1. ck ← KGen(1λ,D): Takes as input the security parameter λ and the maximum
degree bound D and generates commitment key ck as output. We assume ck
to include description of the finite field F.

2. c
ρ←− Com(ck, f): Takes as input ck, the polynomial f ∈ F

D[X], and outputs a
commitment c. In case the commitment scheme is deterministic, ρ = ⊥. We
also denote c := Com(ck, f ; ρ) if the committing function deterministically
generates c from fixed randomness ρ. If the input is a vector of polynomials f
with dimension n, we assume Com to output a vector of commitments c with
dimension n by invoking Com n times.

3. π ← Eval(ck, c, z, f, ρ): Takes as input ck, the commitment c, evaluation point
z ∈ F, the polynomial f , and outputs a non-interactive proof of evaluation π.
The randomness ρ must equal the one previously used in Com. If the input
is vectors (c, z, f ,ρ) with dimension n, we assume Eval to output a vector of
proofs π with dimension n by invoking Eval n times.

4. b ← Check(ck, c, z, y, π): Takes as input statement (ck, c, z, y), where y ∈ F is
a claimed polynomial evaluation, and the proof of evaluation π and outputs a
bit b. If the input is vectors (c, z,y,π) with dimension n, we assume Check
to invoke Check n times and output 1 if and only if all of them output 1.
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We define security properties for PCOM. All of the experiments are described in
Game 4.

Definition 2.16 (Completeness). A PCOM is said to be complete, if for any
λ ∈ N, D ∈ N, polynomial f ∈ F

D[X], evaluation point z ∈ F

Pr

[
ck ← KGen(1λ,D); c ← Com(ck, f);

π ← Eval(ck, c, z, f, ρ)
: Check(ck, c, z, f(z), π) = 1

]

= 1.

The evaluation binding property essentially guarantees that, it is infeasible
to open the same commitment c to two distinct outcomes of evaluation y and y′

for the fixed evaluation point z.

Definition 2.17 ((Weak) Evaluation Binding). PCOM is said to be eval-
uation binding if, for any λ ∈ N, D ∈ N, for all PPT adversaries A,

AdvPC-EBINDA (λ) := Pr
[
PC-EBINDA(1λ) = 1

] ≤ negl(λ).

If instead

AdvPC-wEBINDA (λ) := Pr
[
PC-wEBINDA(1λ) = 1

] ≤ negl(λ)

then PCOM is weak evaluating binding.

The unique proof states that, it is infeasible to create two distinct valid proofs
π and π′ for fixed c, z, y.

Definition 2.18 ((Weak) Unique Proof). PCOM is said to be unique proof
if, for any λ ∈ N, D ∈ N, for all PPT adversaries A,

AdvPC-UNIQA (λ) := Pr
[
PC-UNIQA(1λ) = 1

] ≤ negl(λ).

If instead

AdvPC-wUNIQA (λ) := Pr
[
PC-wUNIQA(1λ) = 1

] ≤ negl(λ)

then PCOM is weak unique proof.

Unlike the usual hiding definition for a commitment scheme, Com inevitably
leaks evaluations of the committed polynomials. As we shall see later, some
schemes such as KZG further leak evaluation at an additional point χ ∈ F. To
capture this, we consider a weak variant of hiding.

Definition 2.19 ((Weak) Hiding). PCOM is said to be weak hiding if, for
any λ ∈ N, D ∈ N, there exists a PPT simulator (SKGen,SCom) such that for
all PPT adversaries A,

AdvPC-wHIDEA (λ) := |Pr [
PC-wHIDEA(1λ) = 1

] − 1/2| ≤ negl(λ).

As a special case, if SKGen outputs χ = ⊥ (and thus f(χ) = ⊥), then PCOM is
said to be hiding.
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For our results, we require the probability that a commitment is equal to a
fixed value is low. This requirement is captured by assessing min-entropy of the
PCOM commitment scheme.

Definition 2.20 (Min-entropy of commitments). Let PCOM be a polyno-
mial commitment scheme over F. For any fixed λ ∈ N, D ∈ N, ck ∈ KGen(1λ,D),
and f ∈ F

D[X], consider the maximum probability that a commitment to f is
equal to a particular value:

μ(λ, ck, f) = max
c

Pr
[
Com(ck, f) = c

]
.

The min-entropy α of scheme PCOM is

α(λ) = min
ck∈KGen(1λ,D) ∧ f∈FD[X]

(− log2(μ(λ, ck, f))).

We say that PCOM has high min-entropy if α ∈ ω(log(λ)).

3 Analysis of PIOP Compiled into Non-interactive
Argument

In this section, we analyze a standard compiler that outputs iNARG (Defini-
tion 2.7) in the random oracle model. The formal description of the compiler is
provided in the full version [34]. The compiler takes following building blocks as
input:

– Polynomial IOP PIOP = (r, s, t, d, I,P,V) (Definition 2.1) for an indexed
relation R̂.

– Polynomial commitment PCOM = (KGen,Com,Eval,Check) (Definition 2.15)

It then outputs iNARG Π̂H = (G, I, P̂ , V̂). On a high-level, the outer prover
P̂ internally runs a PIOP prover P in order to obtain polynomials and then
commit to them using the polynomial commitment scheme. Then by hashing
the transcript obtained until i-th round, P̂ obtains PIOP challenge ρi, which is
fed to P to advance to the next round. When the PIOP prover terminates, P̂
runs a PIOP query algorithm to sample query points z and evaluates polynomial
oracles on z. Finally, P̂ produces evaluation proofs to guarantee that polynomial
evaluations are done correctly with respect to commitments produced in earlier
rounds.

Remark 3.1. The iNARG Π̂H is almost identical to the compiled protocol in [17],
except that we are explicit about strings hashed to derive Fiat-Shamir challenge
(the Marlin compiler does not specify what needs to be hashed when applying
Fiat-Shamir). We stress it is crucial to hash index i (i.e., the circuit description)
on top of statement x and transcript; otherwise, the proof system is susceptible
to the following malleability attack. Suppose the adversary receives an honestly
generated proof π for (i, x). Then the adversary constructs a modified i∗ such
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that for any w, it holds that (i∗, x,w) ∈ R̂ iff (i, x,w) ∈ R̂, e.g. by introducing
redundancy in the circuit. In this way, π is a valid proof for (i∗, x) which allows
the adversary to trivially win the SIM-EXT game. Although syntactically ivk
now contains (srs, i), this does not penalize verification performance in practice
because hashing of the prefix srs, i can be preprocessed.

As mentioned in Sect. 2.3, iNARG can be converted into NARG ΠH =
(G,P,V) (Definition 2.7) for the corresponding binary relation R, which is
amenable to analysis of simulation-extractability. In the rest of the section we
will state the main results satisfying the following security properties under cer-
tain assumptions on PIOP and PCOM . The detailed analysis is deferred to the
full version.

– Sect. 3.1 Trapdoor-less zero knowledge (TLZK) with canonical simulation
(Definition 2.12),

– Sect. 3.2 Weak unique response (WUR) with respect to simulators provided
in Sect. 3.1.

Knowledge soundness of ΠH is already proved in the literature from knowledge
soundness of PIOP and extractability of PCOM under various assumptions [13,14,
17,24,39]. Put together with Lemma 2.13 we conclude SIM-EXT for the compiled
ΠH.

Corollary 3.2. Let ΠH be the FS-NARG protocol derived from Π̂H.

1. Suppose the PIOP satisfies Ψ -HVZK and Ψ -NEXP with Ψ = 1, and QV has
high min-entropy. PCOM satisfies PC-wHIDE , PC-wEBIND PC-wEBIND ,
PC-wUNIQ. If ΠH is non-trivial and knowledge sound, then it is SIM-EXT.

2. Suppose the PIOP satisfies HVZK, high min-entropy of QV, and t(1, 1) ≤
d(|i|). PCOM has high min-entropy (Definition 2.20), and satisfies PC-HIDE,
PC-wEBIND, PC-wUNIQ. If ΠH is knowledge sound, then it is SIM-EXT.

3.1 Trapdoor-Less Non-interactive Zero Knowledge of Compiled
NARG

Our analysis for showing TLZK will be split in two directions, which will exploit
the type of properties satisfied by the two core building blocks, PIOP and PCOM
schemes. First, we consider a class of PIOPs satisfying the stronger property of
Ψ -HVZK , which in turn, requires only a weaker hiding property from the PCOM
scheme. Namely, it suffices to use a deterministic PCOM scheme for the compila-
tion. This characterization allows us to reuse randomness already introduced by
the PIOP while committing to the polynomials. Note that the previous generic
PIOP -to-iNARG compilers do not give us a clear picture of scenarios when using
a deterministic commitment suffices for trapdoorless NIZK : Marlin [17, Thorem
8.4] and Dark [13, Theorem 4] require a hiding commitment scheme as well as
trapdoor to perform simulation; and Lunar [14, Theorem 5] requires a weaker
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“somewhat hiding” commitment scheme, which however, crucially relies on the
knowledge of commitment trapdoor.

In the second direction, we consider all other PIOP s that satisfy the weaker
property of HVZK , and require the PCOM scheme to be hiding. This is similar to
Marlin, however, unlike Marlin, we cannot use the trapdoor information in order
to simulate. Hence, we present a more direct trapdoorless simulation strategy
similar to Dark.6

Compilation with Weak Hiding Polynomial Commitments. We first
handle the case where PCOM only satisfies a weak variant of hiding, which means
that commitment and evaluation are potentially deterministic. In this case, the
committing function itself does not have high min-entropy as in Definition 2.20.
Combined with a “sufficiently randomized first polynomial” of PIOP , we can
still retain high min-entropy of the compiled protocol, which we formalize below.
Non-triviality is often required for Fiat-Shamir to retain zero knowledge (cf. [1]),
and existing PIOP-based zkSNARKs are already non-trivial.

Definition 3.3. (Min-entropy of the first commitment). Let CoinP (λ) be
the set of random coins used by the PIOP prover P on any input (i, x,w) ∈ R̂λ.
For any fixed λ ∈ N, ck ∈ KGen(1λ), and (i, x,w) ∈ R̂λ, consider the maximum
probability that a commitment to the first polynomial hits a particular value:

μ(ck, i, x,w) = max
c

Pr
[

r
$←− CoinP (λ); (p1,1, . . .) ← P((i, x,w); r) : Com(ck, p1,1) = c

]

The min-entropy αΠ̂ of protocol Π̂ is

αΠ̂(λ) := min
ck∈KGen(1λ)∧(i,x,w)∈R̂λ

(− log2 μ(ck, i, x,w))

We say that Π̂ is non-trivial if αΠ̂ ∈ ω(log(λ)).

Lemma 3.4. If PIOP is Ψ -HVZK with ψ = 1, PCOM is weak hiding ( PC-wHIDE
), and the corresponding iNARG Π̂H is non-trivial. Then FS-NARG protocol ΠH

derived from Π̂H is TLZK with canonical simulator.

Compilation with Hiding Polynomial Commitments. For completeness,
we provide an alternative simulation strategy in the full version for when the
compilation takes place using hiding polynomial commitments.

Lemma 3.5. If PIOP is HVZK and PCOM is hiding ( PC-HIDE ) and has high
min-entropy (Definition 2.20), then the FS-NARG protocol ΠH derived from Π̂H

is TLZK with canonical simulator.

6 They assume PIOP is HVZK, a committing function Com is hiding, and Eval satisfies
HVZK. The latter two roughly correspond to our combined notion of hiding for
PCOM .
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3.2 Weak Unique Response of Compiled NARG

For a PIOP satisfying stronger Ψ -HVZK along with Ψ -NEXP and high min-
entropy for the QV algorithm, we only need weaker hiding property for PCOM .
For a PIOP satisfying just HVZK along with high min-entropy for the QV algo-
rithm, and the constraint that t(1, 1) ≤ d(|i|), we require PCOM to be hiding
in a stronger sense. In both cases, we require the assumption that QV has high
min-entropy. This condition is met by PIOP s such as Plonk, but is not met by
other PIOP s such as Marlin and Lunar. The latter can be modified slightly to
meet the condition: add a dummy polynomial in the first round and evaluate
it on a random point chosen in the last round. In the first case, we require the
PIOP to also satisfy Ψ -NEXP , which as remarked in Sect. 2.2, just captures the
intuition that many PIOP s encode the witness in the first polynomial and thus
generate it with enough randomness in order to achieve zero-knowledge. Finally,
in the second case, we require that the PIOP does not reveal the entire first
polynomial as a part of the proof. When the first polynomial encodes the wit-
ness, this constraint again is easily satisfied by most PIOP s in order to achieve
zero-knowledge.

We state our main theorem now.

Theorem 3.6. Let S and S ′ be canonical TLZK simulators for FS-NARG ΠH

derived from Π̂H .

1. If PIOP satisfies Ψ -NEXP , high min-entropy of QV, and if PCOM is weak
evaluation binding (PC-wEBIND), weak unique proof (PC-wUNIQ), and weak
hiding (PC-wHIDE), then ΠH satisfies weak unique responses (WUR) with
respect to S. Concretely, for every PPT adversary A against WUR of ΠH that
makes q queries to S1, there exist adversaries B, C,D such that,

AdvWUR
A,S (λ) ≤AdvPC-wUNIQB (λ) + 2 · AdvPC-wEBINDC (λ)

+ 2 · AdvPC-wHIDED (λ) +
q�

2α
+ negl(λ)

where � :=
∑i=r

i=0

( ∑s(i)
j=1 t(i, j)

)
, and α is the min-entropy of QV (Definition

2.5).
2. If PIOP satisfies high min-entropy of QV, t(1, 1) ≤ d(|i|), and if PCOM is

hiding (PC-HIDE) and satisfies all the other properties above, then ΠH satisfies
weak unique responses (WUR) with respect to S ′. Concretely,

AdvWUR
A,S′ (λ) ≤AdvPC-wUNIQB (λ) + 2 · AdvPC-wEBINDC (λ)

+ 5 · AdvPC-HIDED (λ) +
q�

2α
+ negl(λ)
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Game 4: PCOM Security Games Version 1

PC-EBINDA(1λ),PC-wEBINDA(1λ)

1: ctr := 0;QCom-0 =
ε;QEval-0 := ε

2: QCom-1 = ε;QEval-1 := ε; Qz =
ε

3: ck ← KGen(1λ,D)
4: (i, b, c, z, y, y′, π, π′) ←

AOCom,OEval(ck)
5: if QEval-b(i) �= (∗, ∗, c, z, y, π)

then
6: return 0
7: b ← Check(ck, c, z, y, π)
8: b′ ← Check(ck, c, z, y′, π′)
9: return (y �= y′) ∧ b ∧ b′

PC-UNIQA(1λ),PC-wUNIQA(1λ)
1: ctr := 0;QEval := ε
2: ck ← KGen(1λ,D)
3: (i, c, z, y, π, π′) ←

AO
ComEval-0(ck)

4: if QEval(i) �= (∗, ∗, c, z, y, π)
then

5: return 0
6: b ← Check(ck, c, z, y, π)
7: b′ ← Check(ck, c, z, y, π′)
8: return (π �= π′) ∧ b ∧ b′

PC-wHIDEA(1λ)

1: b
$←− {0, 1}

2: if b = 0 then
3: ck ← KGen(1λ,D)
4: else
5: (ck, χ) ← SKGen(1λ,D)
6: b′ ← AO

ComEval-b
(1,∗,∗)(ck)

7: return (b = b′)

OCom(f, b)
1: if deg(f) > D then return ⊥
2: if b=0 then ρ := ⊥
3: c

ρ←− Com(ck, f)
4: ctr := ctr + 1
5: QCom-b(ctr) := {(f, ρ, c)}
6: return c

OEval(i, b, z)
1: if QCom-b(i) = ε then return ⊥
2: if z ∈ Qz then return ⊥
3: (f, ρ, c) := QCom-b(i)
4: π ← Eval(ck, c, z, f, ρ)
5: QEval-b(i) := (f, ρ, c, z, f(z), π)
6: Qz := Qz ∪ {z}.
7: return (y, π)

OComEval-0(b, f, (z1, . . . , zn))
1: if deg(f) > D then return ⊥
2: if ∃i, j : i �= j ∧ zi = zj then return

⊥
3: if b=0 then ρ := ⊥
4: c

ρ←− Com(ck, f)
5: for i = 1, . . . , n do
6: ctr := ctr + 1
7: πi ← Eval(ck, c, zi, f, ρ)
8: QEval(ctr) :=

{(f, ρ, c, zi, f(zi), πi)}
9: return (c, (π1, . . . , πn))

OComEval-1(b, f, (z1, . . . , zn))
1: if deg(f) > D then return ⊥
2: if ∃i, j : i �= j ∧ zi = zj then return

⊥
3: (c,π) ←

SCom(ck, χ, f(χ), z, f(z1), . . . , f(zn))
4: return (c,π)
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