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Abstract. Homomorphic encryption enables public computation over
encrypted data. In the past few decades, homomorphic encryption has
become a staple of both the theory and practice of cryptography. Never-
theless, while there is a general loose understanding of what it means for
a scheme to be homomorphic, to date there is no single unifying minimal
definition that captures all schemes. In this work, we propose a new def-
inition, which we refer to as combinatorially homomorphic encryption,
which attempts to give a broad base that captures the intuitive meaning
of homomorphic encryption.

Our notion relates the ability to accomplish some task when given
a ciphertext, to accomplishing the same task without the ciphertext, in
the context of communication complexity. Thus, we say that a scheme is
combinatorially homomorphic if there exists a communication complex-
ity problem f(x, y) (where x is Alice’s input and y is Bob’s input) which
requires communication c, but can be solved with communication less
than c when Alice is given in addition also an encryption Ek(y) of Bob’s
input (using Bob’s key k).

We show that this definition indeed captures pre-existing notions of
homomorphic encryption and (suitable variants are) sufficiently strong
to derive prior known implications of homomorphic encryption in a
conceptually appealing way. These include constructions of (lossy)
public-key encryption from homomorphic private-key encryption, as well
as collision-resistant hash functions and private information retrieval
schemes.

1 Introduction

Homomorphic encryption, originally proposed by Rivest, Adleman, and Der-
touzos [39], is one of the cornerstones of modern cryptography. Roughly speaking,
an encryption scheme is homomorphic wrt to a function f if given an encryption
of a message m, it is possible to generate an encryption of f(m), without know-
ing the secret key. Homomorphic encryption is used extensively in cryptography,
whether explicitly, or implicitly via homomorphisms offered by concrete schemes
(e.g., based on factoring, discrete log, or lattices). Until 2009, the default inter-
pretation of homomorphic encryption was for f to be a linear function; this is
still a commonly used special case today both in theory and in practice. How-
ever, since then, we have seen the development of fully homomorphic encryption
schemes [11,18], which are homomorphic wrt to all functions f .
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There are many different candidates for homomorphic encryption from
the literature (Goldwasser-Micali [22], Benaloh [6], ElGamal [17], Paillier [34],
Damgård-Jurik [15], Regev [38] and more) and many different interpretations
and precise definitions for what exact form of homomorphism they achieve. How-
ever, all definitions that we are aware of (and are discussed in detail next) are
either too strict, in the sense that they only capture a few of the candidates, or
are too broad, in the sense that they do not draw a clear line between “trivial”
and “nontrivial” homomorphism.

Thus, despite being a central notion in cryptography, there is no canonical
definition of what it means for an encryption scheme to be homomorphic. The
main goal of this work is to introduce such a broad notion (or rather several vari-
ants following one theme) that captures and abstracts the intuition underlying
the concept of homomorphic encryption and may serve as a default “minimal”
interpretation of what homomorphic encryption means.

Let (Gen,Enc,Dec) be a (private-key or public-key) encryption scheme. We
proceed to discuss several takes on the notion of homomorphic encryption, and
what we find lacking in each.

Ideal Homomorphism: A very simple and strong definition of homomorphic
encryption may require that a homomorphically evaluated ciphertext, gen-
erated by an evaluation of the function f on the ciphertext Epk(m), is dis-
tributed similarly1 to Epk

(
f(m)

)
.

This notion is extremely strong (and useful) and is satisfied by a few num-
ber theoretic based schemes such as Goldwasser-Micali [22] and Benaloh [6]
(ElGamal [17] and Paillier/Damgård-Jurik [15,34] also offer some form of
ideal homomorphism but suffer from caveats that are discussed below). Unfor-
tunately, many other schemes, especially lattice-based ones, do not satisfy it.
Moreover, this strong notion is an overkill for many applications.

Algebraic Homomorphism: (a.k.a. Linear Homomorphism or Additive
Homomorphism) An algebraic perspective taken earlier on (and inspired by
the number-theory based schemes available at the time), is to view the plain-
text and ciphertexts spaces as groups, so that the encryption function is a
homomorphism from the former to the latter.2 Thus, running the group oper-
ation on the ciphertexts has the effect of implementing the corresponding
group operation on the plaintexts.
Unfortunately, this definition is quite restrictive. In particular, it does not
capture homomorphisms that are non-linear such as [9,20,28] let alone fully-
homomorphic schemes (e.g., [11,18,21]). ElGamal with plaintexts imple-
mented as group elements is only homomorphic wrt the underlying cryp-
tographic group, whereas ElGamal with plaintexts in the exponent only sup-
ports decryption of small plaintext values. Lattice-based encryption schemes

1 Several variants of the definition are possible depending on whether the similarity
should be perfect, statistical or computational, and also whether it should hold even
given additional information such as Epk(m), or even given the corresponding secret-
key. We ignore these subtleties here.

2 Indeed, this is the source of the term homomorphic encryption.



Combinatorially Homomorphic Encryption 253

such as Regev [38] only support a bounded number of operations that depend
on the modulus-to-noise ratio.

Functional Homomorphism: A typical modern definition of (public-key)
homomorphic encryption states that an encryption scheme (Gen,Enc,Dec)
is homomorphic wrt to a function f , or (more generally) a class
F of functions, if there exists a poly-time Eval algorithm such that
Decsk

(
Evalpk

(
Encpk(m), f

))
= f(m) for all messages m, key-pairs (pk, sk),

and f ∈ F . To avoid trivial solutions, the homomorphic evaluation algo-
rithm is further assumed to be “compact.” This is typically defined to mean
that the size of the generated ciphertext or the decryption circuit is smaller
than the circuit size of f .3 The precise notion of compactness varies both
quantitatively (Should the size of the evaluated ciphertext be independent
of the circuit? Is a poly-logarithmic or even sub-linear dependence allowed?)
and qualitatively (Why circuits? How exactly is circuit complexity measured?
What about redundancies in the representation?). In particular, it is unclear
what a minimal notion of compactness that suffices for applications should
be. Beyond the difficulty with formalizing the common notion of compact-
ness, we point out several additional difficulties with existing definitions of
functional homomorphism:
1. Usually, lattice-based schemes only satisfy an approximate notion of this

definition as there is a noise associated with each ciphertext, and this
noise grows as the homomorphic evaluation is performed, until a point in
which the ciphertext is undecryptable.
This can sometimes be avoided by using a large modulus-to-noise ratio,
but that is merely hiding the problem under the rug—we do think of the
schemes as homomorphic even when the modulus-to-noise ratio is small,
but the definition is not flexible enough to capture this.

2. Discrete-log based schemes such as ElGamal, over a cyclic plaintext group
of order q, are often thought of as linearly homomorphic with addition in
the group Zq. As briefly mentioned above though, one can only decrypt
ciphertexts whose messages are polynomially small as decryption involves
a discrete-log operation.
Despite this well-known fact, ElGamal is considered to be additively
homomorphic but capturing it within the existing framework is quite
messy.

3. Lastly, if one wishes to define homomorphic encryption in general, that is,
not specifically wrt some function f , this approach becomes problematic.
For example, simply assuming the existence of some function f such that

3 If compactness is not required, then the homomorphic evaluation can be trivially
delegated to the decryptor (e.g., by appending the description of the circuit the
ciphertext). Nevertheless, some homomorphic schemes such as [41] or constructions
based on garbled circuits [12,19,25,27] are not compact but are circuit private,
meaning that the ciphertext does not reveal the evaluated circuit. In this work, we
focus on compact homomorphic encryption, which is meaningful even without circuit
privacy.
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the scheme is functionally homomorphic wrt f is not very meaningful if
f is the identity function or a constant function. More generally, it is not
entirely clear what non-triviality constraints f needs to satisfy for this
notion to be meaningful or useful.

1.1 Combinatorially Homomorphic Encryption

Our main contribution is proposing a new definition for homomorphic encryp-
tion. Our goal in this definition is threefold: (1) we wish to find a notion that is
consistent and truly formalizes the intuitive meaning of homomorphic encryp-
tion, drawing precise lines between “trivial” and ”nontrivial” homomorphism; (2)
for the definition to be sufficiently broad to capture all schemes that are currently
thought of as homomorphic (including both number-theory and lattice-based
schemes) and (3) for the definition to be sufficiently strong to preserve the known
implications of existing notions of homomorphic encryption such as public-key
encryption (PKE), collision-resistant hashing (CRH) and private information
retrieval (PIR). We believe that positioning homomorphic encryption as a true
cryptographic primitive, similarly to “one-way function” or “public-key encryp-
tion”, will facilitate a systematic study of its relation with other cryptographic
primitives.

We call this new framework combinatorially homomorphic encryption, of
which we describe several variants. The first variant refers to communication
complexity [43], which we briefly review. Recall that in distributional commu-
nication complexity there are two parties, Alice and Bob, who respectively get
inputs x and y, drawn from some joint distribution. Their goal is to compute
some function f(x, y) while minimizing the number of bits exchanged between
them to the extent possible. In our most basic definition (which is sufficient for
most of the goals listed above), we focus specifically on one-way communication
complexity—that is when communication is only allowed from Alice to Bob (and
not in the other direction). In other words, the minimal number of bits that Alice
needs to send to Bob so that he can compute f(x, y). See [29,36] for a detailed
introduction to communication complexity.

The first instantiation of our framework for homomorphic encryption takes
the following operational perspective. We say that a scheme is communication-
complexity (CC) homomorphic if there exists some one-way communication com-
plexity problem f , which requires communication c, such that if Alice is given,
in addition to x, a ciphertext Enck(y) of Bob’s input using Bob’s key k, then the
communication problem can be solved using less than c bits (and where Alice
and Bob both run in polynomial-time). Note that while it is possible to talk
about CC-homomorphic encryption with respect to a specific communication
complexity problem, our main definition refers to the existence of a communica-
tion complexity problem for which the notion is non-trivial.

Definition 1 (Informally Stated, see Sect. 3). We say that an encryption
scheme (Gen,Enc,Dec) is CC homomorphic if there exists a communication com-
plexity problem f which requires communication c, but there exists a polynomial-
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time one-way protocol for solving the problem f ′((x,Enck(y)), (y, k)
)
, defined as

f ′((x,Enck(y)), (y, k)
)
= f(x, y), with communication less than c.

The definition can be adapted to the public-key setting in the natural way (i.e.,
y is encrypted under the public key and Bob gets the corresponding private key).

CC homomorphic encryption captures the basic intuitive understanding that
homomorphic encryption should enable useful computation on encrypted data.
Here, Alice can perform such a computation in a way that helps Bob derive the
output more efficiently than if Alice had not been given the ciphertext.

We also consider generalizations of this notion in two ways. First, we consider
an interactive variant (presented in the full version), in which the homomorphic
communication game is allowed to be interactive and the communication com-
plexity lower bound holds in the interactive setting (which is the standard model
for communication complexity). Motivated by applications described below, we
also consider comparing the “homomorphic communication complexity” to other
combinatorial measures of the function f such as its VC dimension.4 Lastly,
while our basic definition considers distributional communication complexity
over efficiently sampleable product distributions, it suffices for our results that
the conditional marginal distributions are efficiently sampleable.

Existing Schemes in the Lens of Combinatorially Homomorphic Encryption. To
see that CC homomorphic encryption indeed captures existing schemes, consider
an encryption scheme that is linearly homomorphic mod 2, in the standard
functional sense. To see that such a scheme is combinatorially homomorphic,
consider the inner product communication complexity game in which Alice and
Bob get as input random vectors x, y ∈ {0, 1}n and Bob’s goal is to compute
their inner product 〈x, y〉 = ⊕

i∈[n] xiyi. It is well-known that this task requires
communication complexity Ω(n) (in fact, in the one-way version, this follows
directly from the leftover hash lemma). However, if Alice is given in addition to
x, also a bit-by-bit encryption Enck(y1), . . . ,Enck(yn) of Bob’s input, then using
the linear homomorphism she can compute an encryption of 〈x, y〉 and send it
to Bob, who can decrypt and retrieve the result. The compactness property of
functional homomorphic encryption guarantees that the communication in this
new protocol is smaller than the Ω(n) lower bound that holds when Alice is not
given the encryption of Bob’s input.

The above idea can be generalized to linear homomorphisms over any group,
as stated in the following theorem. A simple unifying explanation is that tra-
ditional homomorphic schemes from the literature imply PIR, which can be
thought of as being CC-homomorphic with respect to the “index” function. In
particular, it shows that Goldwasser-Micali [22], Benaloh [6] and Regev [38] fall
within our framework.

Theorem 1 (Informally Stated, see the full version). Any linearly homo-
morphic private-key encryption scheme is combinatorially homomorphic.
4 More precisely, we consider the VC dimension of the function family

{
fx : {0, 1}n →

{0, 1}}
x
, where fx(y) = f(x, y).
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To illustrate a concrete instantiation, we show a simple private-key scheme
based on Learning with Errors (LWE) that satisfies our definition. The secret key
is a random vector s ← Z

λ
q . To encrypt a bit b ∈ {0, 1}, sample a random a ← Z

λ
q

and output (a, 〈a, s〉+ e+ �q/2� · b) as the ciphertext, where e ∈ Zq comes from
a B-bounded noise distribution. The security of this private-key scheme follows
almost tautologically from decisional LWE.

Now consider the communication complexity game in which Alice and Bob
get as their respective inputs x, y ∈ {0, 1}n and their goal is to compute the
inner product. As mentioned above, it is well known that this problem requires
communication complexity Ω(n). Suppose however that Alice is given a bit-
by-bit encryption of Bob’s input. Namely, ciphertexts c1, . . . , cn such that ci =(
ai, 〈ai, s〉 + ei + �q/2� · yi

)
. Alice can now compute a new ciphertext (a′, σ′),

where a′ =
∑

i xi ·ai and σ′ =
∑

i xi ·
(〈ai, s〉+ei+�q/2�·yi

)
= 〈a′, s〉+∑

i xiei+
�q/2�·〈x, y〉 (and all arithmetic is mod q). Alice sends this ciphertext to Bob who
computes σ′ − 〈a′, s〉 = ∑

i xiei + �q/2� · 〈x, y〉. As long as
∑

i xiei < q/4 (which
holds if B · n < q/4), then Bob can now correctly round and obtain 〈x, y〉.
If the communication in this game (which is (λ + 1) · log(q)) is smaller than
the communication complexity lower bound of Ω(n), then this basic private-key
scheme is CC homomorphic.5

Jumping ahead, one of our main applications is a construction of public-key
encryption from any CC homomorphic private-key encryption (which extends
the [40] construction of public-key encryption from linearly homomorphic
encryption). Thus, the above construction yields a public-key encryption scheme
from LWE which, we believe, cleanly abstracts Regev’s [38] celebrated public-key
scheme. Furthermore, our work is the first one to offer a qualitative notion of
homomorphism, where each choice of parameters (including secret distribution
and noise distribution) can be classified as either being combinatorially homo-
morphic or not.

Note that the definition of CC homomorphic encryption is sufficiently flex-
ible to allow for variations of linear homomorphisms, and even for non-linear
homomorphisms, that may be difficult to capture otherwise. All one needs to do
is to adapt the communication complexity game to capture the specific function-
ality that is offered by the scheme and show the corresponding communication
complexity lower bound (which is usually not difficult).

Consider, for example, the ElGamal cryptosystem [17] with plaintexts in the
exponent, which is widely considered to be homomorphic, yet is not captured
by the standard linearly homomorphic encryption definition (since decryption
involves a discrete-log operation). The scheme works over a cyclic group G of
order q with generator g. The secret key is a random s ← Zq. To encrypt a
bit b ∈ {0, 1}, sample a random r ← Zq and output (gr, gs·r+b). To decrypt a
ciphertext (c0, c1), compute z = c1 · c−s

0 and output 0 if z = 1 and 1 otherwise.

5 The homomorphic private-key to public-key transformation of Rothblum [40] can
also be viewed as morally giving an abstraction of Regev’s scheme, but the actual
formal definition of homomorphic encryption used in [40] is not technically achieved
by the above private-key scheme.
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The security of this private-key scheme follows from the decisional Diffie-Hellman
assumption.

To show that the above encryption scheme is CC-homomorphic we will use
the well-known Disjointness communication complexity problem, where Alice
and Bob are given sets x, y ⊆ [n] respectively, and need to determine whether
their sets are disjoint. Babai et al. [4] showed that the disjointness problem
has communication complexity Ω(

√
n) (on a specific product distribution6).

Suppose however that Alice is given bit-by-bit encryptions c1, ..., cn of Bob’s
input (the input sets x and y can be represented as indicator vectors so that
ci = (gri , gri·s+yi). Alice can then compute

(∏
i∈I(x) gri ,

∏
i∈I(x) gri·s+yi

)
=

(gr′
, gr′·s+∑

i∈I(x) yi), where I(x) = {i : xi = 1}. Alice can send this ciphertext
to Bob who can compute z = gr′·s+∑

i∈I(x) yi · (gr′
)−s = g

∑
i∈I(x) yi . It holds

that z = 1 if and only if the sets are disjoint. Therefore, if the communication
complexity of this protocol (which is 2 log(q)) is smaller than the communi-
cation complexity lower bound (which is

√
n), then the private-key scheme is

CC-homomorphic.
The above idea can be generalized to capture any encryption scheme that

is homomorphic with respect to the OR operation, as stated in the following
theorem.

Theorem 2 (Informally Stated, see the full version). Any OR-homomor-
phic private-key encryption scheme is combinatorially homomorphic.

We also show a specific instantiation of our scheme using low-noise LPN (i.e.,
when the absolute noise is roughly log2(λ)). Using our framework in combination
with the applications listed below, we can re-derive recent results on LPN (due
to [7,10]) in a way that we find to be conceptually simpler.

Applications. As our main technical results, we show that suitable variations
of our basic notion of combinatorially homomorphic encryption suffice to derive
some of the key applications that are known from (say) standard linearly homo-
morphic encryption.

Our first main result shows how to transform any combinatorially homo-
morphic private-key encryption into a public-key one. This generalizes the work
of Rothblum [40], who gave such a transformation for linearly homomorphic
private-key encryption. As a matter of fact, we obtain the stronger notion of lossy
public-key encryption [5,35] (which is equivalent to semi-honest two-message sta-
tistical oblivious transfer [23]).

Theorem 3 (Informally Stated, see Theorem 8). If there exists a combi-
natorially homomorphic private-key encryption scheme then there exists a lossy
public-key encryption scheme.
6 In fact, Razborov [37] showed an input distribution on which the communication

complexity of disjointness is Ω(n). However, since this input distribution is not a
product distribution, using involves slightly more involved techniques (see further
discussion in Sect. 3.1).
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We remark that the security property required from the private-key scheme
is very mild (and in particular is weaker than CPA security). Specifically, we
merely need a weak notion of “entropic security” (see Definition 7) which, loosely
speaking, requires that the distributions

(
y,Enck(y)

)
and

(
y,Enck(y′)

)
are com-

putationally indistinguishable, where y, y′ are independent samples drawn from
Bob’s input distribution in the communication game.

As it is instructive to understanding the power of CC homomorphic encryp-
tion, we briefly sketch a simplified proof of Theorem 3 next. The public key of the
scheme is

(
y,Enck(y)

)
, where y is a random input for Bob in the communication

game, and k is the private key of the private-key scheme. To encrypt a bit b, a
random input x for Alice is sampled, and the ciphertext is Alice’s message in
the “homomorphic” protocol mA, as well as f(x, y)⊕ b. To decrypt, we run Bob
on input

(
(y, k),mA

)
to compute f(x, y), and then we can retrieve the message

bit b. Correctness follows from the correctness of the homomorphic protocol.
As for security, using the entropic security of the private-key scheme, we can
switch the public key

(
y,Enck(y)

)
to the lossy public key

(
y,Enck(y′)

)
. Thus,

the adversary’s goal now is essentially to compute f(x, y) given
(
y,Enck(y′)

)
and

mA.
Assume that this is possible. Then we can derive a more efficient communica-

tion complexity protocol for computing f in the standard setting, in which Alice
gets only x and Bob gets only y. Alice and Bob sample a key k and a ciphertext
Enck(y′) using shared randomness.7 Then, Alice generates a message mA from
the homomorphic protocol and sends it to Bob, who can then run the adversary
on input ((y, c),mA) to compute f(x, y). Since we required that Alice’s message
in the homomorphic protocol is shorter than the communication complexity of
f , we derive a contradiction. Note that this argument immediately gives the
stronger notion of lossy encryption.

This basic result can be generalized to interactive combinatorially homomor-
phic encryption in which case we derive a key agreement protocol (which can be
thought of as an interactive analog of public-key encryption).

Theorem 4 (Informally Stated, see the full version). If there exists an
interactive combinatorially homomorphic encryption scheme then there exists a
key agreement protocol.

Ishai, Kushilevitz and Ostrovsky [26] showed how to construct a collision-
resistant hash function (CRH) from any linearly homomorphic encryption
scheme. Recall that a CRH is a collection of shrinking hash functions so that no
polynomial-time adversary can find a collision, given the description of a random
function from the collection. We generalize the [26] result and construct CRH
from any CC homomorphic encryption.

Theorem 5 (Informally Stated, see Theorem 9). If there exists a com-
binatorially homomorphic encryption scheme (satisfying a mild non-triviality
constraint) then there exists a collision-resistant hash function.
7 As usual in distributional communication complexity, this shared randomness can

be eliminated by non-uniformly fixing the best choice.



Combinatorially Homomorphic Encryption 259

(The mild non-triviality constraint that we require is that the communication
complexity problem is defined wrt a function f such that the function family{
fy : {0, 1}n → {0, 1}}

y
, where fy(x) = f(x, y), is a universal hash function

family).
As in [26], for this application, we do not need the decryption algorithm to

be efficient, and a more general notion of “CC homomorphic commitment” (in
which Bob can be inefficient in the communication game) suffices.

Next, we revisit the Kushilevitz-Ostrovsky [30] construction of private infor-
mation retrieval (PIR) scheme from a linearly homomorphic encryption scheme.8
Recall that a PIR scheme is a two-party protocol between a server, which is given
a database x ∈ {0, 1}n, and a client who is given as input an index i ∈ [n]. The
goal is for the client to reconstruct xi whereas the index i is computationally
hidden from the server (both parties are assumed to be polynomial-time). We
say that the PIR scheme is non-trivial if the communication complexity is less
than n.9

We generalize the [30] construction and derive PIR from combinatorially
homomorphic encryption. For this result, we need the communication in the
homomorphic variant of the communication game to be shorter than before.
Specifically, rather than beating the communication complexity lower bound for
the game, it should beat its VC dimension. We refer to schemes satisfying this
(intuitively stronger) notion as VC homomorphic.

Theorem 6 (Informally Stated, see the full version). Assume that there
exists a VC homomorphic encryption scheme then there exists a non-trivial PIR
scheme.

Applications from Learning Parity with Noise. As noted above, we can capture
a low noise variant of LPN (specifically with an absolute noise level of roughly
log2(n)) in our framework, via a simple construction. Using Theorem 5, we can
use LPN with this noise level to obtain CRH, thereby giving a conceptually
simple derivation of recent results [10,44]. Similarly, using Theorem3 we get a
simple construction of semi-honest 2-message statistical OT from LPN. This can
be viewed as an abstraction of a recent result of Bitansky and Freizeit [7]. We
emphasize though that [7] use the semi-honest construction only as a stepping
stone towards a construction that achieves security against malicious receivers
(but additionally requires a Nisan-Wigderson style derandomization assump-
tion).

8 The [30] construction is based on the Quadratic Residuosity assumption, but is easy
to generalize to compact linearly homomorphic encryption (for a suitable notion of
compactness), see [31,42].

9 While a PIR scheme with communication, say, n − 1 does not seem directly useful,
it is sufficient for deriving some important consequences of PIR such as CRH [26],
oblivious transfer [14], lossy encryption [23] and SZK hardness [32].
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1.2 Related Work

As previously mentioned, Rothblum [40] showed that any linearly homomorphic
encryption that satisfies a mild compactness property can be used to construct
a public-key encryption scheme. His proof relies on the Leftover Hash Lemma
and can be streamlined using our framework (see discussion in Sect. 1.1).

Alamati et al. [1,2] study the possibility of constructing Cryptomania primi-
tives (such as CRH and PKE) based on Minicrypt primitives that are equipped
with certain algebraic structures. Their work is limited to primitives with group
homomorphism over the input or output spaces. In particular, like [40], their
work does not consider non-linear homomorphisms.

Bogdanov and Lee [8] study the limits of security for homomorphic encryp-
tion. Along the way, they introduce a notion of sensitivity for homomorphically
evaluated functions. While this notion suffices for their applications, it does not
seem to be a minimal notion of non-triviality for functional homomorphisms.

Cohen and Naor [13] study a different connection between communication
complexity and cryptography, and in particular, show that the existence of non-
trivial communication complexity protocols in which the inputs are drawn from
efficiently sampleable distributions imply cryptographic primitives (such as dis-
tribution collision-resistant hash functions).

2 Preliminaries

For a distribution D, we denote by x ← D the process of sampling from
D. For any joint distribution (X,Y ) we will denote by x ← Proj1(X,Y ) or
y ← Proj2(X,Y ) sampling from (X,Y ) and keeping only the first or the second
element of the pair, respectively. A function μ : N → [0, 1] is negligible if for every
polynomial p and sufficiently large λ it holds that μ(λ) ≤ 1/p(λ). All logarithms
considered in this paper are in base 2.

Definition 2 (Statistical Distance). Let X and Y be two distributions over a
finite domain U . The statistical distance between X and Y is defined as follows.

SD(X,Y ) = max
f :U→{0,1}

∣
∣
∣Pr

[
f(X) = 1

] − Pr
[
f(Y ) = 1

]∣∣
∣.

If SD(X,Y ) ≤ ε we say that X is ε-close to Y .

Next, we define computational indistinguishability, which can be thought of
as a computational analog of the statistical distance.

Definition 3 (Computational Indistinguishability). We say that two dis-
tribution ensembles X = (Xλ)λ∈N

and Y = (Yλ)λ∈N
are computationally indis-

tinguishable, and denote it by X ≈c Y , if for every probabilistic polynomial-size
distinguisher D there exists a negligible function μ such that for every λ ∈ N,

∣
∣Pr

[D(Xλ) = 1
] − Pr

[D(Yλ) = 1
]∣∣ ≤ μ(λ).
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2.1 Communication Complexity

Communication complexity (CC), introduced by Yao [43], provides a mathe-
matical model for the study of communication between two or more parties. It
has proven to be a powerful tool in a surprising variety of fields such as cir-
cuit complexity, streaming, and quantum computing. We refer to the books by
Kushilevitz and Nisan [29] and by Rao and Yehudayoff [36] for a comprehensive
introduction. We now turn to recall several CC-related definitions that will be
used in this paper.

Let f be a 2-argument function. Consider the setting of two communicating
parties, Alice and Bob, who are given inputs x and y respectively, and wish to
cooperatively compute the value of f(x, y) (without loss of generality we will
require that only Bob outputs this value). The communication between them is
conducted according to some fixed deterministic protocol π. The output of the
protocol (i.e., Bob’s output) on inputs x and y is denoted by π(x, y).

Distributional Communication Complexity. We allow the protocol to err with a
small probability on some input distribution. Namely,

Definition 4 (Protocol Correctness). Given a function f : X × Y → {0, 1}
and a joint input distribution (X,Y ), we say that a deterministic protocol π
computes f with error ε on (X,Y ) if

Pr
[
π(x, y) �= f(x, y) : (x, y) ← (X,Y )

]
≤ ε.

Interchangeably, we can say that the protocol π computes f with correctness 1−ε
on (X,Y ).

The communication complexity of a protocol π on inputs x and y is defined
to be the number of bits exchanged by the parties while running the protocol on
these inputs. The length of a protocol π on input distribution (X,Y ), denoted
by CC[π, (X,Y )], is defined to be the maximal communication complexity of the
protocol on any input in the support of the distribution (notice that this measure
is well-defined since these sets are finite).

The ε-error distributional communication complexity of f on (X,Y ) is the
minimal length of any deterministic protocol computing f with error ε with
respect to (X,Y ). That is,

Definition 5 (Distributional Communication Complexity). Given a
function f and a joint input distribution (X,Y ) we define the ε-error (X,Y )-
distributional communication complexity of f as follows.

DA↔B
(
f, (X,Y ), ε

)
:= min

π computes f
with error ε
on (X,Y )

CC[π, (X,Y )].

The one-way ε-error (X,Y )-distributional communication complexity of f ,
denoted by DA→B

(
f, (X,Y ), ε

)
, is defined similarly but limited to one-round

protocols that consist of only one message - from Alice to Bob.
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Discrepancy. The discrepancy method is a common technique for proving lower
bounds on distributional communication complexity. We now define the discrep-
ancy of a function with respect to an input distribution.

Definition 6 (Discrepancy). Given a function f : X × Y → {0, 1} and a
joint input distribution (X,Y ) we define the discrepancy of f on a rectangle
R = S × T ⊆ (X,Y ), denoted here by Disc

(
f, (X,Y );R

)
, as follows.

Disc
(
f, (X,Y );R

)
:=

∣
∣
∣
∣
∣
Pr

[
(x, y) ∈ R∧f(x, y) = 1

]
−Pr

[
(x, y) ∈ R∧f(x, y) = 0

]
∣
∣
∣
∣
∣
,

where (x, y) ← (X,Y ). The discrepancy of f on (X,Y ) is defined as

Disc
(
f, (X,Y )

)
:= max

R
Disc

(
f, (X,Y );R

)
.

A well-known theorem (see, e.g., [36, Theorem 5.2]) shows that the discrep-
ancy can be used to lower bound distributional communication complexity.

Theorem 7. For any function f : X × Y → {0, 1}, a joint input distribution
(X,Y ) and an error rate ε ∈ (0, 1

2 ) we have that

DA→B
(
f, (X,Y ), ε

) ≥ log
(

1 − 2ε
Disc

(
f, (X,Y )

)
)

2.2 Encryption

In this subsection, we describe the various notions of encryption that will be
used throughout this work.

Definition 7 (M-Entropic Secure Private-Key Encryption). Let M =
(Mλ)λ∈N

be a message space. An M-entropic secure private-key encryption
scheme E = (Gen,Enc,Dec), with correctness error ε = ε(λ), is a triplet of
probabilistic polynomial-time algorithms with the following syntax.

– Key generation. Given a security parameter 1λ, the algorithm Gen outputs
a key k.

– Encryption. Given a message m ∈ Mλ and a key k, the algorithm Enc
outputs a ciphertext c.

– Decryption. Given a ciphertext c and a key k, the algorithm Dec outputs a
message m.

We require E to satisfy the following properties.

– Correctness. For any λ ∈ N and message m ∈ Mλ it holds that
Pr

[
Deck(c) = m

] ≥ 1 − ε(λ), where k ← Gen(1λ) and c ← Enck(m).
– M-entropic security.

(
m,Enck(m)

)
λ∈N

≈c

(
m,Enck(m′)

)
λ∈N

, where m

and m′ are two independent messages sampled from M.
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We remark that the notion of entropic security defined above is morally
weaker than notions such as CPA security since (1) the adversary is not given
access to an encryption oracle and (2) security needs to hold only wrt messages
arising from the given distribution (rather than “worst-case” messages).

Definition 8 (CPA-Secure Private-Key Encryption). A chosen-plaintext
attack (CPA) secure private-key encryption scheme E = (Gen,Enc,Dec) with
message length � = �(λ) and correctness error ε = ε(λ), is defined similarly to
Definition 7 but the entropic security requirement is replaced with the following:

– CPA Security. Consider the following security game.
1. The challenger samples a key k ← Gen(1λ).
2. The adversary chooses a message m of length �(λ) and receives Enck(m)

from the challenger. This step is repeated for a polynomial number of
times.

3. The adversary chooses two challenge message m0,m1 of length �(λ) and
receives from the challenger Enck(mb).

4. The adversary outputs a bit b′ ∈ {0, 1}.
For any probabilistic polynomial-size adversary A, we denote by CPAb

A(1λ) the
output of A in the game above, and we require that there exists a negligible
function μ such that for any λ ∈ N,

∣
∣Pr

[
CPA0

A(1λ) = 1
] − Pr

[
CPA1

A(1λ) = 1
]∣∣ ≤ μ(λ).

We will next define a variant of lossy encryption [5,35], which is equivalent
to a 2-message (semi-honest) statistical OT [35].

Definition 9 (Lossy Encryption). Let ν = ν(λ) and ε = ε(λ). A ν-lossy bit-
encryption scheme E = (Gen,Enc,Dec, LossyGen) with correctness error ε, is a
quadruple of polynomial-time algorithms with the following syntax,

– Key generation. Given a security parameter 1λ, the algorithm Gen outputs
a secret key sk and a public key pk.

– Encryption. Given a bit b and a public key pk, the algorithm Enc outputs a
ciphertext c.

– Decryption. Given a ciphertext c and a secret key sk, the algorithm Dec
outputs a bit b.

– Lossy key generation. Given a security parameter 1λ, the algorithm
LossyGen outputs a lossy key lk.

We require E to satisfy the following properties.

– Correctness. For any λ ∈ N and bit b it holds that Pr
[
Decsk(c) = b

] ≥
1 − ε(λ), where (sk, pk) ← Gen(1λ) and c ← Encpk(b).

– Key indistinguishability.
(
Proj2

(
Gen(1λ)

))
λ∈N

≈c

(
LossyGen(1λ)

)
λ∈N

.
– Lossiness of lossy keys. For any λ ∈ N, we have that

(
lk,Enclk(0)

)
is

ν(λ)-close in statistical distance to
(
lk,Enclk(1)

)
, where lk ← LossyGen(1λ).
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If not otherwise specified, by default, we take the parameters ν and ε to
be negligible in parameter λ. One can also consider relaxed notions of lossy
encryption, where either the correctness error is high—namely, ε(λ) = 1

2 − 1
p(λ) ,

for some polynomial p—or the statistical distance between encryptions under
a lossy key is large—namely, ν(λ) = 1 − 1

p(λ) , for some polynomial p. Next,
we will show that both variants are equivalent to the standard definition. We
note however that if both the correctness and lossiness are close to 1/2, then
amplification is not known (see [16,24] for further discussion and relation to the
circuit polarization problem).

Claim (Weak-Correctness Lossy Encryption implies Lossy Encryption). Assume
there exists a lossy encryption scheme with correctness error 1

2 − 1
p(λ) , for some

polynomial p, then there exists a lossy encryption scheme (Definition 9).

Claim (Weak-Lossiness Lossy Encryption implies Lossy Encryption). Assume
there exists a (1 − 1

p(λ) )-lossy encryption scheme, for some polynomial p, then
there exists a lossy encryption scheme (Definition 9).

The proofs of Sect. 2.2 and Sect. 2.2 are given in the full version.

2.3 Collision Resistant Hash Function

Definition 10 (Collision Resistant Hash Function). A collision resistant
function with input length �(n) and output length �′(n) < �(n) is defined by a
pair of algorithms (Gen,Eval) with the following syntax,

– Key generation. Given 1λ the probabilistic polynomial-time algorithm Gen
outputs an index s.

– Evaluation. Given index s and input x of length �(λ), the polynomial-time
algorithm Eval outputs y ∈ {0, 1}�′(λ).

For any λ ∈ N, s ← Gen(1λ) and x ∈ {0, 1}�(λ) we define hs(x) := Eval(s, x).
We require the scheme to satisfy the following collision resistance property.

– Collision resistance. for every probabilistic polynomial-size adversary A
there exists a negligible function μ such that for any λ ∈ N,

Pr

[

x �= x′ ∧ hs(x) = hs(x′) : s ← Gen(1λ),
(x, x′) ← A(s)

]

≤ μ(λ).

3 Combinatorially Homomorphic Encryption

First, we define an extension of a function ensemble and an input distribution
ensemble with respect to a private key encryption scheme. These will be used
throughout the following sections.

Let f be an ensemble of 2-argument functions. Let (X,Y ) be an ensem-
ble of input distributions, where X = (Xλ)λ∈N

and Y = (Yλ)λ∈N
. Let E =
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(Gen,Enc,Dec) be a private-key encryption scheme (see Definition 7). We extend
f and (X,Y ) by defining for every λ ∈ N,

ExtE(Xλ, Yλ) :=

⎧
⎨

⎩
(
(x, c), (y, k)

)
:
(x, y) ← (Xλ, Yλ)

k ← Gen(1λ)
c ← Enck(y)

⎫
⎬

⎭
,

ExtE(fλ) :
(
(x, c), (y, k)

) �→ fλ(x, y).

We denote ExtE(X,Y ) :=
(
ExtE(Xλ, Yλ)

)
λ∈N

and ExtE(f) :=
(
ExtE(fλ)

)
λ∈N

.

3.1 CC-Homomorphic Encryption

We now introduce our new homomorphic encryption definition. Informally,
an encryption scheme E is combinatorially homomorphic if there exists a
polynomial-time communication protocol for ExtE(f) that utilizes the homo-
morphic properties of E to achieve communication cost that is lower than the
standard communication complexity of f , on a specific input distribution.

We put forward two variants of the definition. Namely, CC-homomorphism
in the perfect correctness regime, where we require the “homomorphic protocol”
for ExtE(f) to have perfect correctness, and CC-homomorphism in the balanced
regime, where we allow imperfect correctness, but require that the function f be
balanced, that is, that Pr [f(x, y) = 0 : (x, y) ← (X,Y )] = 1

2 . In addition to these
two variants, we present an even more general setting in the full version, based
on an average-case adaptation of the distributional communication complexity
definition.

Our definitions will require the input distribution to be efficiently sampleable,
defined as follows.

Definition 11 (Efficiently Sampleable Distribution). We say that a dis-
tribution ensemble (X,Y ) is efficiently sampleable if there exists a probabilistic
polynomial-time sampling algorithm that given 1λ outputs a random element
from (Xλ, Yλ).

Definition 12 (Communication Complexity Homomorphic Encryp-
tion in the Perfect Correctness Regime). A private-key encryption
scheme E (Definition 7) is communication-complexity homomorphic (or CC-
homomorphic) in the perfect correctness regime, if there exists a function ensem-
ble f , an efficiently sampleable product distribution ensemble (X,Y ) and a func-
tion c = c(λ) such that,

– There exists a polynomial-time one-way protocol that computes ExtE(f) with
perfect correctness on input distribution ExtE(X,Y ), using c(λ) bits of com-
munication,

– Any unbounded one-way protocol that computes f on (X,Y ), using c(λ) bits
of communication has correctness at most 1 − 1

p(λ) , for some polynomial p.
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Remark 1. A natural relaxation of the definition allows a negligible failure prob-
ability in the homomorphic communication protocol. However, jumping ahead,
having perfect correctness here will be useful as it will also lead to perfect cor-
rectness in some of our applications (e.g., lossy encryption, see Theorem 8).

Remark 2. Instead of requiring that (X,Y ) is an ensemble of product distribu-
tions, it is sufficient to require it to be an ensemble of joint distributions such
that the conditional distributions X|Y are efficiently sampleable.

Definition 13 (Communication Complexity Homomorphic Encryption
in the Balanced Regime). A private-key encryption scheme E (Definition 7)
is communication-complexity homomorphic (or CC-homomorphic) in the bal-
anced regime, if there exists a function ensemble f , an efficiently sampleable
product distribution ensemble (X,Y ) and a function c = c(λ) such that,

– Pr [f(x, y) = 0 : (x, y) ← (X,Y )] = 1
2 ,

– There exists a polynomial-time one-way protocol that computes ExtE(f) with
correctness at least 1

2 + 1
p(λ) , for some polynomial p, on ExtE(X,Y ) using c

bits of communication,
– There exists a negligible function μ such that any unbounded one-way protocol

that computes f on input distribution (X,Y ) using c bits of communication
has correctness at most 1

2 + μ(λ), for any sufficiently large λ.

4 Applications

In this section, we demonstrate applications of our new notions of homomorphic
encryption. In Sect. 4.1 we construct Lossy Encryption. In Sect. 4.2 we construct
a Collision Resistant Hash function.

4.1 Lossy Encryption

In this section, we show how to use CC-homomorphic encryption to construct
lossy public-key encryption.

Theorem 8 (CC-homomorphic Encryption Implies Lossy Encryp-
tion). Assume there exists a CC-homomorphic encryption scheme in either the
perfect correctness regime (see Definition 12) or the balanced regime (see Defini-
tion 13), then there exists a lossy encryption scheme.

We will prove Theorem8 in the balanced regime (Definition 13). The proof in the
perfect correctness regime (Definition 12) is similar, but produces a (1 − 1

p(λ) )-
lossy encryption, for some polynomial p, with perfect correctness that can be
amplified to full-fledged lossy encryption scheme using Sect. 2.2.

Proof (Proof of Theorem 8.) Let E = (Gen,Enc,Dec) be a Y -entropic secure CC-
homomorphic encryption scheme with respect to function ensemble f and input
product distribution ensemble (X,Y ) such that Pr [f(x, y) = 0 : (x, y) ← (X,Y )]
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= 1
2 . Let π be a polynomial-time one-way protocol computing the extended func-

tion ensemble ExtE(f) with error less than 1
2 − 1

τ(λ) on ExtE(X,Y ), for some poly-
nomial τ , with communication cost c = c(λ), such that any unbounded protocol
for f with error 1

2 − 1
p(λ) on (X,Y ), for some polynomial p, requires strictly more

than c bits of communication.

For the following, given input
(
(x, c), (y, k)

)
from ExtE(X,Y ), we denote

by Alice(x, c) the message Alice generates in the protocol and we denote by
Bob(y, k,mA) the output of Bob after receiving a message mA from Alice. Con-
sider the following scheme (Gen∗,Enc∗,Dec∗, LossyGen∗).

– Key generation. Given a security parameter 1λ the probabilistic
polynomial-time algorithm Gen∗ samples a key k ← Gen(1λ) and an ele-
ment y ← Y , and outputs the public key pk =

(
y,Enck(y)

)
and the secret

key sk = (y, k).
– Encryption. Given the public key pk = (y, c) and a bit b, the probabilistic

polynomial-time algorithm Enc∗ samples x ← X that satisfies f(x, y) = b (by
rejection sampling) and outputs mA = Alice(x, c).

– Decryption. Given the secret key sk = (y, k) and a ciphertext mA, the
deterministic polynomial-time algorithm Dec∗ outputs Bob(y, k,mA).

– Lossy Key generation. Given a security parameter 1λ the probabilistic
polynomial-time algorithm LossyGen∗ samples a key k ← Gen(1λ) and ele-
ments y, y′ ← Y , and outputs the lossy key lk =

(
y,Enck(y′)

)
.

Claim. The scheme satisfies correctness (see Definition 9).

Proof. For any λ ∈ N,

Pr
[
Dec∗

sk

(
Enc∗

pk(b)
) �= b

]
=
(1)

Pr

[
Bob

(
y, k,Alice(x, c)

) �= f(x, y) :
(x, y) ← (X, Y )
s.t. f(x, y) = b

]

=
(2)

Pr
[
Bob

(
y, k,Alice(x, c)

) �= f(x, y) : (x, y) ← (X, Y )
]

≤
(3)

1

2
− 1

τ(λ)
,

where b ← {0, 1}, (sk, pk) ← Gen∗(1λ), k ← Gen(1λ) and c ←
Enck(y), and where (1) is by the definition of the scheme, (2) is since
Pr [f(x, y) = 0 : (x, y) ← (X,Y )] = 1

2 , and therefore sampling b ← {0, 1} and
then sampling from (X,Y ) conditioned on f(x, y) = b is the same as sam-
pling directly from (X,Y ), and (3) is since the protocol π computes ExtE(f) on
ExtE(X,Y ) with error less than B − 1

τ(λ) , and since
(
(x, c), (y, k)

)
is sampled

similarly to a random sample from ExtE(X,Y ).

Claim. The scheme satisfies key indistinguishability (see Definition 9).

Proof. We have that for any fixed y and y′ sampled from Y ,
(
Proj2

(
Gen∗(1λ)

))

λ∈N

=
(
y, c

)
λ∈N

≈c

(
y, c′)

λ∈N
=

(
LossyGen∗(1λ)

)
λ∈N

,
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where k ← Gen(1λ), c ← Enck(y) and c′ ← Enck(y′), and where the equalities
are by the definition of the scheme and the computational indistinguishability is
by the Y -entropic security of E .

Claim. The scheme satisfies lossiness of lossy keys (see Definition 9).

Proof. We will show that given an unbounded distinguisher for encryptions
under a lossy key, with non-negligible distinguishing advantage, one can con-
struct a one-way protocol in the standard distributional communication com-
plexity model (Sect. 2.1) that computes f with correctness 1

2+
1

p(λ) on (X,Y ), for
some polynomial p, with communication cost c. Such a protocol cannot exist by
our assumption that E is CC-homomorphic in the balanced regime with respect
to f and (X,Y ) (see Definition 13).

Assume towards a contradiction that there exists a (computationally
unbounded) distinguisher D and a polynomial p such that for infinitely many
λ ∈ N,

Pr
[
D(

lk,Enc∗
lk(b)

)
= b : b ← {0, 1}, lk ← LossyGen∗(1λ)

]
≥ 1

2
+

1
p(λ)

.

By the definitions of LossyGen∗ and Enc∗ we have that for infinitely many λ ∈ N,

Pr
[
D(

y, c,Alice(x, c)
)
= f(x, y)

]
≥ 1

2
+

1
p(λ)

,

where x ← X, y, y′ ← Y , k ← Gen(1λ) and c ← Enck(y′).
We start by constructing a protocol in the standard distributional communi-

cation complexity model (Sect. 2.1) that uses shared randomness which we will
eliminate later. Consider the following unbounded one-way protocol π∗ between
parties Alice∗ and Bob∗ who are given inputs x and y sampled from (X,Y ) and
have access to shared random coins.

1. Alice∗ and Bob∗ sample a key k ← Gen(1λ), an element y′ ← Y and an
encryption c ← Enck(y′) using the shared random coins.

2. Alice∗ sends mA = Alice(x, c) to Bob∗.
3. Bob∗ runs D on (y, c,mA) and outputs its answer.

We denote by π∗(x, y; r) the output of the protocol on inputs (x, y) and random
coins r. infinitely many λ ∈ N,

Pr

[
π∗(x, y; r) = f(x, y) :

(x, y) ← (X, Y )
r ← {0, 1}∗

]
= Pr

[
D(

y, c,Alice(x, c)
)
= f(x, y)

]
≥ 1

2
+

1

p(λ)
,

where x ← X, y, y′ ← Y , k ← Gen(1λ) and c ← Enck(y′).
The above statement holds over a random choice of r. However, by an aver-

aging argument, for infinitely many λ ∈ N there exists a fixed randomness r∗

such that

Pr
[
π∗(x, y; r∗) = f(x, y) : (x, y) ← (X,Y )

]
≥ 1

2
+

1
p(λ)

.
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To conclude, we have that π∗ with fixed random coins r∗ is an unbounded one-
way protocol that computes f with error less than 1

2 − 1
p(λ) on (X,Y ) with

communication cost |Alice(x, c)| = c, which is a contradiction to the assumption
that such a protocol cannot exist.

4.2 Collision Resistant Hash Function

Next, we use a variant of CC-homomorphic encryption to construct a collision
resistant hash function. First, we define an efficient encoding algorithm for a set
X.

Definition 14 (Efficient Encoding). Let X = (Xλ)λ∈N
be an ensemble of

finite sets. We say that X supports an efficient encoding with input length � =
�(λ) if there exists an efficiently computable (polynomial-time) injective function
Encode : {0, 1}� → Xλ.

Our CRH construction will require a function f and input distribution (X,Y )
such that the ensemble fY = (fλ)λ∈N

, where fλ :=
{
f(·, y) : y ∈ Yλ

}
, is a

universal hash function family. We put forward the definition.

Definition 15 (Universal Hash Function Family). A set H of functions
from X to {0, 1} is a universal hash function family if for every distinct x1, x2 ∈
X the hash function family H satisfies the following constraint.

Pr
[
h(x1) = h(x2) : h ← H

]
≤ 1

2
.

Theorem 9 (CC-Homomorphic Encryption Implies CRH). Assume
there exists a CC-homomorphic encryption scheme (Definitions 12 and 13) with
respect to function f , input distribution (X,Y ) and parameter c that satisfies the
following conditions.

– The function ensemble
({

f(·, y) : y ∈ Yλ

})

λ∈N

is a universal hash function
family.

– The polynomial-time protocol for ExtE(f) is correct on any input from
ExtE(X,Y ) w.p. 1

2 + 1
p(λ) , for some polynomial p,

– The ensemble X supports an efficient encoding with input length �(λ) ≥ c(λ)
for any sufficiently large λ.

Then, there exists a collision resistant hash function (Definition 10).

Remark 3. As a matter of fact, similarly to [26], a relaxed notion of encryption
with an inefficient decryption algorithm (in other words, a commitment scheme)
is sufficient.

We will prove Theorem9 in the balanced regime (Definition 13), but it can
also be adapted to the perfect correctness regime (Definition 12).
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Proof (Proof of Theorem 9). Let f be a function ensemble and (X,Y ) be an
input distribution ensemble such that

({
f(·, y) : y ∈ Yλ

})

λ∈N

is a universal hash
function family and such that X supports an efficient encoding with input length
� = �(λ). Let E = (Gen,Enc,Dec) be a Y -entropic secure encryption scheme.
Let π be a polynomial-time one-way protocol computing the extended function
ensemble ExtE(f) with correctness 1

2 + 1
p(λ) on any input from ExtE(X,Y ), for

some polynomial p, with communication cost �′(λ) < �(λ).
Consider the following scheme (Gen∗,Eval∗).

– Key generation. Given security parameter 1λ, the probabilistic polynomial-
time algorithm Gen∗ samples y ← Y , k ← Gen(1λ) and s ← Enck(y) and
outputs s.

– Evaluation. Given index s and input m ∈ {0, 1}�(λ), the polynomial-time
algorithm Eval∗ outputs Alice

(
Encode(m), s

)
.

We first show that the scheme indeed compresses. Indeed, for any λ ∈ N,
s ← Gen∗(1λ) and m ∈ {0, 1}�(λ),

∣
∣hs(m)

∣
∣ =

∣
∣
∣Alice

(
Encode(m), s

)∣∣
∣ ≤ �′(λ) < �(λ).

Assume towards a contradiction that the scheme is not collision resistant.
Therefore, there exists a probabilistic polynomial-size adversary A and a poly-
nomial q such that for infinitely many λ ∈ N,

Pr

[

m �= m′ ∧ hs(m) = hs(m′) : s ← Gen∗(1λ),
(m,m′) ← A(s)

]

=
1

q(λ)
.

Consider the distinguisher D for the Y -entropic security of E . Given
(
y0, c

)
,

where k ← Gen(1λ), y0, y1 ← Y , b ← {0, 1} and c ← Enck(yb), the distinguisher
D computes (m,m′) ← A(cb). It then checks that m �= m′, that hc(m) = hc(m′)
and that f

(
Encode(m), y0

)
= f

(
Encode(m′), y0

)
. If all checks pass, it outputs 1.

Otherwise, it outputs a random bit. For the following, we denote x := Encode(m),
x′ := Encode(m′).

We first consider the case where b = 0. Given k ← Gen(1λ), y0 ← Y , c ←
Enck(y0) and (m,m′) ← A(c), we define the following events,

1. The event E1 where f(x, y0) = f(x′, y0).
2. The event E2 where m �= m′ and hc(m) = hc(m′).
3. The event E3 where π

(
(x, c), (y0, k)

)
= π

(
(x′, c), (y0, k)

)
.

4. The event E4 where the protocol π is correct on both
(
(x, c), (y0, k)

)
and(

(x′, c), (y0, k)
)
, or is wrong on both of them.

First, since π is correct on any input w.p. at least 1
2 + 1

p(λ) , there exists a
function τ : N → N such that π is correct on any input w.p. exactly 1

2 + 1
τ(λ) ,

and τ(λ) ≤ p(λ) for any λ ∈ N. Therefore,

Pr [E4] =
(
1
2
+

1
τ(λ)

)2

+
(
1
2

− 1
τ(λ)

)2

=
1
2
+

2
τ2(λ)

≥ 1
2
+

2
p2(λ)

. (1)
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Furthermore, we have that,

Pr [E1|E2] =
(1)

Pr [E1|E2 ∧ E3]

≥ Pr [E1 ∧ E4|E2 ∧ E3]
=
(2)

Pr [E1|E2 ∧ E3 ∧ E4] · Pr [E4]

=
(3)

Pr [E4] ,

(2)

where (1) is since assuming E2 happened, we have that Alice(x, c) = hc(m) =
hc(m′) = Alice(x′, c), and therefore, since π is a deterministic one-way protocol,
we have that π

(
(x, c), (y0, k)

)
= π

(
(x′, c), (y0, k)

)
, (2) is by conditional probabil-

ity, and (3) is since if the protocol outputs the same output on both inputs and
is correct on both of them or wrong on both of them, then f(x, y0) = f(x′, y0).

Finally, for infinitely many λ ∈ N we have that,

Pr
[D(y0, c) = 1

]
=
(1)

Pr [E1 ∧ E2] +
1
2

· (
1 − Pr [E1 ∧ E2]

)

=
1
2
+

1
2

· Pr [E1 ∧ E2]

=
1
2
+

1
2
Pr [E1|E2] · Pr [E2]

=
(2)

1
2
+

1
2q(λ)

Pr [E1|E2]

≥
(3)

1
2
+

1
2q(λ)

·
(
1
2
+

2
p2(λ)

)
,

where k ← Gen(1λ), y0 ← Y , c ← Enck(y0) and (m,m′) ← A(c), and where (1)
is by the definition of D, (2) is since D simulates for the adversary A a proper
collision resistant game, and event E2 is the event where A wins in this game,
which happens w.p. 1/q(λ), and (3) is by Eqs. (1) and (2).

On the other hand, for the case where b = 1, we have that for any λ ∈ N,

Pr
[D(y0, c) = 1

]
=
(1)

1

2
+

1

2q(λ)
Pr

[
f(x, y0) = f(x′, y0)|m �= m′ ∧ hs(m) = hs(m

′)
]

≤ 1

2
+

1

2q(λ)
Pr

[
f(x, y0) = f(x′, y0)

]

=
(2)

1

2
+

1

2q(λ)
· 1
2

,

where k ← Gen(1λ), y0, y1 ← Y , c ← Enck(y1) and (m,m′) ← A(c), and where
(1) follows by similar reasoning as in the case where b = 0 and (2) is since x and
x′ are independent of y0 and since fY is a universal hash family, and therefore
the probability that f(x, y0) = f(x′, y0) is 1/2.

Therefore, for infinitely many λ ∈ N,
∣
∣
∣Pr

[D(y0, c0) = 1
] − Pr

[D(y0, c1) = 1
]∣∣
∣ ≥

(
1

2
+

1

2q(λ)
·
(

1

2
+

2

p2(λ)

))

−
(

1

2
+

1

2q(λ)
· 1

2

)

=
2

2q(λ) · p2(λ)
,
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where k ← Gen(1λ), y0, y1 ← Y and cb ← Enck(yb) for b ∈ {0, 1}, in contradic-
tion to the assumption that E is Y -entropic secure.

5 Instantiations

5.1 Low Noise LPN

In this section we will construct a CC-homomorphic encryption scheme from
low noise LPN, thereby giving a conceptually simple derivation of recent results
[7,10,44]. We first present the learning parity with noise assumption. For μ ∈
[0, 1] we denote by Berμ the Bernoulli distribution with mean μ.

Definition 16 (Learning Parity with Noise Assumption). For noise rate
μ = μ(λ) ∈ (0, 1

2 ), the LPNμ assumption is that for any m(λ) = λO(1),

(A,As + e)λ∈N
≈c (A, u)λ∈N

,

where A ← F
m×λ
2 , s ← F

λ
2 , e ← Bermμ and u ← F

m
2 .

Theorem 10 (CC-homomorphic Encryption from Low Noise LPN).
Assuming LPN log2 λ

λ

(Definition 16) there exists a CC-homomorphic encryption
scheme in the balanced regime (Definition 13).

In fact, we will construct a CC-homomorphic encryption scheme that satisfies
the conditions of Theorem 9, thus deriving the following two theorems.

Theorem 11 (Lossy Encryption from Low Noise LPN). Assuming
LPN log2 λ

λ

(Definition 16) there exists a lossy encryption scheme (Definition 9).

Theorem 12 (CRH from Low Noise LPN). Assuming LPN log2 λ
λ

(Defini-
tion 16) there exists a collision resistant hash function (Definition 10).

Theorems 11 and 12 follows directly from Theorems 8 to 10. We note however
that we do not know how to use LPN to derive a similar result to Alekhnovich’s
scheme [3] via our framework. Indeed, the stronger conclusions implied by our
framework (lossy encryption, CRH) are not known from the flavor of LPN used
by Alekhnovich.

We now describe a private-key encryption scheme E = (Gen,Enc,Dec) based
on low noise LPN.

– Key generation. Given a security parameter 1λ, the probabilistic algorithm
Gen outputs a private key s ← F

λ
2 .

– Encryption. Given a message y ∈ F
λ2

2 and a private key s, the probabilistic
algorithm Enc samples a random matrix A ← F

λ2×λ
2 and a random noise

e ← Berλ
2

log2 λ
λ

, and outputs a ciphertext (A,A · s + e + y).

– Decryption. Given a ciphertext (A, b), the deterministic algorithm Dec out-
puts b − A · s.
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We define the following homomorphic operation that supports ciphertext-
plaintext multiplication.

– Ciphertext-plaintext multiplication. Given a plaintext x ∈ F
λ2

2 and a
ciphertext (A, b), where A ∈ F

λ2×λ
2 and b ∈ F

λ2

2 , the deterministic algorithm
PlainMult outputs (x	 · A, x	 · b).

We will show that E is CC-homomorphic with respect to the inner prod-
uct functionality f =

(
fλ(x, y) = x	y

)
λ∈N

over the uniform input distribution
(X,Y ) where X and Y contain vectors in F

λ2

2 , while Xλ is restricted to vectors
with Hamming weight 2λ

log λ . Looking ahead, we will construct a polynomial-time
protocol for ExtE(f) with correctness 1

2 + 1
p(λ) on ExtE(X,Y ), for some poly-

nomial p, that uses c = c(λ) = λ + 1 bits of communication. Furthermore, we
will show that there exists a negligible function μ such that any unbounded
one-way protocol that computes f on (X,Y ) using c bits of communication has
correctness at most 1

2 + μ(λ), for any sufficiently large λ.
Notice that

Pr [f(x, y) = 0 : (x, y) ← (X,Y )] =
1
2
,

and that
({

f(·, y) : y ∈ Yλ

})

λ∈N

is a universal hash function family. Further-
more, the ensemble X supports an efficient encoding with input length 2λ ≥ c,
for any sufficiently large λ. Namely, given a vector m ∈ F

2λ
2 we map every log λ

bits of m to a unit vector in F
λ
2 . Then, we concatenate these unit vectors to a

vector in F
λ2

2 with Hamming weight 2λ
log λ .

First, we will show that the private-key encryption scheme E is Y -entropic
secure (Definition 7).

Claim (Y -Entropic Security of E). Assuming LPN log2 λ
λ

(Definition 16), for every

λ ∈ N and y, y′ ← F
λ2

2 we have that,
(
y,Encs(y)

)
λ∈N

≈c

(
y,Encs(y′)

)
λ∈N

,

where s ← Gen(1λ).

Proof. For any fixed y, y′ ∈ F
λ2

2 ,
(
y,Encs(y

′)
)
λ∈N

=
(
y, (A, A · s + e + y′)

)
λ∈N

≈c
(∗)

(
y, (A, u + y′)

)
λ∈N

=
(
y, (A, u)

)
λ∈N

where u ← F
λ2

2 , s ← F
λ
2 , A ← F

λ2×λ
2 and e ← Berλ

2

log2 λ
λ

, and where (*) holds by
the LPN log2 λ

λ

assumption.

Now, consider the following polynomial-time one-way protocol for the
extended function ensemble ExtE(f). Given inputs x and c = Enck(y), Alice
computes mA = PlainMult(x, c) and sends it to Bob, who outputs Deck(mA).

The communication cost of this protocol is c(λ) = |mA| = λ + 1. We show
the correctness probability of the protocol using the Piling-Up Lemma.
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Lemma 1 (The Piling-Up Lemma [33]). Let e1, ..., ek ∈ F2 be i.i.d. random
variables such that Pr [ei = 1] = ε, then

Pr

[
k⊕

i=1

ei = 0

]

=
1
2
+

1
2
(1 − 2ε)k.

Claim (Protocol Correctness). For every λ ∈ N, x ∈ X and y ∈ Y we have that

Pr
[
Decs

(
PlainMult

(
x,Encs(y)

))
= x	 · y : s ← Gen(1λ)

]
>

1
2
+

1
2λ8

.

Proof. By the definition of E it’s enough to show that Pr
[
x	 · e = 0

]
> 1

2 +
1

2λ8 .
By Lemma 1 we have that

Pr
[
x� · e = 0

]
= Pr

[ 2λ
log λ⊕
i=1

ei = 0
]

≥ 1

2
+
1

2
(1−2

log2 λ

λ
)

2λ
log λ ≥ 1

2
+
1

2
·2−4 log2 λ

λ
2λ

log λ =
1

2
+

1

2λ8
,

where the second inequality holds since 1 − x ≥ 2−2x for x ≤ 1
2 .

Finally, we will show that for the negligible function μ = 2−λ we have that
any unbounded one-way protocol that computes f on input distribution (X,Y )
using c(λ) = λ + 1 bits of communication has correctness at most 1

2 + μ(λ), for
any sufficiently large λ.

Claim (Distributional Communication Complexity Lower Bound for f). For any
λ ∈ N,

DA→B
(
f, (X,Y ),

1
2

− 2−λ
)
= 2λ

Proof. Take λ ∈ N. Let H be a matrix such that H(x, y) = (−1)<x,y>. It is
easy to check that the matrix H satisfies HH	 = H	H = 2λ2

I. Therefore,
‖H‖ =

√
2λ2 . Let R = S × T be a rectangle on (Xλ, Yλ). We have that

Disc
(
fλ;S × T

)
=
(1)

∣
∣
∣
∣
∣
∣

∑

(x,y)∈S×T

Pr [x, y ∈ (X,Y )] (−1)<x,y>

∣
∣
∣
∣
∣
∣

≤
(2)

∣
∣
∣
∣
∣
∣

∑

(x,y)∈S×T

1
(

λ2
2λ

log λ

)
1
2λ2 H(x, y)

∣
∣
∣
∣
∣
∣

=
1

(
λ2
2λ

log λ

)
1
2λ2 |1S · H · 1T |

≤
(3)

1
(

λ2
2λ

log λ

)
1
2λ2 ‖1S‖ · ‖H‖ · ‖1T ‖

≤
(4)

1
(

λ2
2λ

log λ

)
1
2λ2

√(
λ2

2λ
log λ

)
· 2λ2

2 · 2λ2
2

=
1

√(
λ2
2λ

log λ

) ,
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where (1) is by definition, (2) is since Xλ and Yλ are independent and dis-
tributed uniformly over vectors with Hamming weight 2λ

log λ in F
λ2

2 and over F
λ2

2

respectively, (3) is by Cauchy-Schwarz and (4) is since ‖H‖ =
√
2λ2 and since S

and T can contain at most
(

λ2

2λ
log λ

)
and 2λ2

elements respectively. Therefore, by

Theorem 7 we have for error-rate ε(λ) = 1
2 − 2−λ the following,

DA→B
(
f
) ≥ log

(
1 − 2ε(λ)

Disc
(
f, (X,Y )

)
)

≥ 1
2
log

(
λ2

2λ
log λ

)
− λ

=
(∗)

λ

log λ
· log

(
1
2
λ log λ

)
− λ

≥ 2λ

where (*) is since
(
n
k

) ≥ (n
k )

k for any n and k.
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