
On the Round Complexity of Fully Secure
Solitary MPC with Honest Majority

Saikrishna Badrinarayanan1(B), Peihan Miao2, Pratyay Mukherjee3,
and Divya Ravi4

1 LinkedIn, Mountain View, USA
bsaikrishna7393@gmail.com

2 Brown University, Providence, USA
3 Supra Research, Kolkata, India

4 Aarhus University, Aarhus, Denmark

Abstract. We study the problem of secure multiparty computation for
functionalities where only one party receives the output, to which we
refer as solitary MPC. Recently, Halevi et al. (TCC 2019) studied fully
secure (i.e., with guaranteed output delivery) solitary MPC and showed
impossibility of such protocols for certain functionalities when there is
no honest majority among the parties.

In this work, we study the round complexity of fully secure solitary
MPC in the honest majority setting and with computational security.
We note that a broadcast channel or public key infrastructure (PKI)
setup is necessary for an n-party protocol against malicious adversaries
corrupting up to t parties where n/3 ≤ t < n/2. Therefore, we study the
following settings and ask the question: Can fully secure solitary MPC
be achieved in fewer rounds than fully secure standard MPC in which
all parties receive the output?

– When there is a broadcast channel and no PKI:
• We start with a negative answer to the above question. In par-

ticular, we show that the exact round complexity of fully secure
solitary MPC is 3, which is the same as fully secure standard
MPC.

• We then study the minimal number of broadcast rounds needed
to design round-optimal fully secure solitary MPC. We show that
both the first and second rounds of broadcast are necessary when
2�n/5� ≤ t < n/2, whereas pairwise-private channels suffice in
the last round. Notably, this result also applies to fully secure
standard MPC in which all parties receive the output.

– When there is a PKI and no broadcast channel, nevertheless, we
show more positive results:

• We show an upper bound of 5 rounds for any honest major-
ity. This is superior to the super-constant lower bound for fully
secure standard MPC in the exact same setting.

• We complement this by showing a lower bound of 4 rounds when
3�n/7� ≤ t < n/2.

• For the special case of t = 1, n = 3, when the output receiving
party does not have an input to the function, we show an upper
bound of 2 rounds, which is optimal. When the output receiving

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14370, pp. 124–155, 2023.
https://doi.org/10.1007/978-3-031-48618-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48618-0_5&domain=pdf
http://orcid.org/0000-0001-6423-8331
https://doi.org/10.1007/978-3-031-48618-0_5


On the Round Complexity of Fully Secure Solitary 125

party has an input to the function, we show a lower bound of 3,
which matches an upper bound from prior work.

• For the special case of t = 2, n = 5, we show a lower bound of 3
rounds (an upper bound of 4 follows from prior work).

All our results also assume the existence of a common reference string
(CRS) and pairwise-private channels. Our upper bounds use a decentral-
ized threshold fully homomorphic encryption (dTFHE) scheme (which
can be built from the learning with errors (LWE) assumption) as the
main building block.

1 Introduction

Secure multiparty computation (MPC) [25,39] allows a set of mutually distrust-
ing parties to jointly compute any function on their private data in a way that
the participants do not learn anything about the inputs except the output of the
function. The strongest possible security notion for MPC is guaranteed output
delivery (god for short), which states that all honest parties are guaranteed to
receive their outputs no matter how the corrupt parties behave. An MPC pro-
tocol achieving god is often called a fully secure protocol. A seminal work of
Cleve [13] showed that there exist functionalities for which it is impossible to
construct an MPC protocol with god unless a majority of the parties are honest.

Solitary MPC. Recently, Halevi et al. [29] initiated the study of MPC proto-
cols with god for a special class of functionalities, called solitary functionalities,
which deliver the output to exactly one party. Such functionalities capture many
real world applications of MPC in which parties play different roles and only
one specific party wishes to learn the output. For example, consider a privacy-
preserving machine learning task [35] where several entities provide training data
while only one entity wishes to learn a model based on this private aggregated
data. As another example, a service provider may want to learn aggregated infor-
mation about its users while keeping the users’ data private [8,9]. In the rest of
the paper we refer to such MPC protocols as solitary MPC. For clarity of expo-
sition, we refer to protocols where all parties obtain output as standard MPC.
While the argument of Cleve [13] does not rule out solitary MPC with god in
the presence of a dishonest majority,1 Halevi et al. [29] showed that there exist
functionalities for which solitary MPC with god is also impossible with dishonest
majority. Hence, the results of [13] and [29] rule out the existence of a generic
MPC protocol that can compute any standard and solitary functionality respec-
tively with god in dishonest majority (protocols can exist for specific classes of
functionalities as shown in [4,27,29]). Both impossibility results hold even when

1 Cleve’s argument shows that with dishonest majority, it is impossible for an MPC
protocol to achieve fairness, which guarantees that malicious parties cannot learn the
output while preventing honest parties from learning the output. Since god implies
fairness, this impossibility also holds for standard MPC with god. However, it doesn’t
hold for solitary MPC as fairness is clearly not an issue in the solitary MPC setting.



126 S. Badrinarayanan et al.

parties have access to a common reference string (CRS). In this paper, we focus
on solitary MPC with god in the honest majority setting.

Round Complexity. An important efficiency metric of an MPC protocol is
its round complexity, which quantifies the number of communication rounds
required to perform the protocol. The round complexity of standard MPC has
been extensively studied over the last four decades (see the full version [7] for
a detailed literature survey). In the honest majority setting, three rounds are
known to be necessary [24,28,36] for standard MPC with god, even in the pres-
ence of a common reference string (CRS) and a broadcast channel (without a
PKI setup). Matching upper bounds appear in [3,6,28]. The protocol of Gordon
et al. [28] requires a CRS2, while the other two [3,6] are in the plain model. In
this work we focus on the round complexity aspects of solitary MPC protocols.

Necessity of Broadcast or PKI. A closer look at the above protocols reveals
that all of them assume the existence of a broadcast channel. For solitary MPC
with god, the works of [2,21] show that either a broadcast channel or a public
key infrastructure (PKI) setup is indeed necessary assuming an honest majority
(in particular, when n/3 ≤ t < n/2 for an n-party protocol against adversaries
corrupting up to t parties) even with a CRS.3 Note that although PKI setup and
broadcast channels are equivalent according to [17] from a feasibility perspective,
realizing broadcast under PKI setup with guaranteed termination requires super-
constant rounds, which we will discuss shortly. In light of this, we study the round
complexity of solitary MPC with god when n/3 ≤ t < n/2 in two settings: (a)
there is a broadcast channel and no PKI setup; (b) there is PKI setup and no
broadcast channel. When both broadcast channels and PKI are available, we
know from prior works [28,30] that the exact round complexity is two.

With Broadcast, No PKI. In this setting we investigate whether we can do
better for solitary MPC than standard MPC in terms of round complexity even
in the presence of CRS. In particular,

Assuming a broadcast channel and CRS, can we build a solitary MPC protocol
with god in fewer than three rounds?

2 This protocol uses a decentralized threshold fully homomorphic encryption (dTFHE)
scheme. The public parameter of this dTFHE is assumed to be shared among the
parties and viewed as a common reference string (refer to [28] for further details).

3 Fitzi et al. [21] show that converge-cast cannot be achieved when n/3 ≤ t < n/2 in
the information theoretic setting. Alon et al. [2] show a specific solitary functionality
that cannot be computed by a 3-party MPC protocol with a single corruption with
god in the plain model (with no broadcast channel and no PKI), which also extends
to n/3 ≤ t < n/2. Both arguments also work even in the presence of a CRS. We
present the proof in the full version [7] for completeness.



On the Round Complexity of Fully Secure Solitary 127

Unfortunately, the answer is no! We show that in the presence of a broadcast
channel and CRS, the exact round complexity for solitary MPC with god is also
three, same as standard MPC.

However, broadcast channels are expensive to realize in practice – the sem-
inal works of Dolev and Strong [17] and Fischer and Lynch [19] showed that
realizing a single round of deterministic broadcast requires at least t + 1 rounds
of communication over pairwise-private channels, where t is the number of cor-
rupt parties, even with a public key infrastructure (PKI) setup.4 This can be
overcome by considering randomized broadcast protocols in the honest majority
setting [1,18,20,32] requiring expected constant rounds. In particular, the most
round-efficient protocol to our knowledge is proposed by Abraham et al. [1],
which solves Byzantine agreement for t < n/2 in expected 10 rounds. Neverthe-
less, these protocols do not guarantee termination in constant rounds, which is
the setting we are interested in.5 In fact, it is shown that termination cannot be
guaranteed in constant rounds [12,31].

Recent works [14–16,22] try to minimize the usage of expensive broadcast
channels in the context of round-optimal standard MPC. In particular, they
study whether each round of a round-optimal MPC protocol necessarily requires
a broadcast channel or pairwise-private channels suffice in some of them. In the
context of round-optimal solitary MPC with god, we ask an analogous question:

Is a broadcast channel necessary in every round of a three-round solitary MPC
protocol with god?

We show that a broadcast channel is necessary in both the first and second
rounds in a three-round solitary MPC protocol with god while pairwise-private
channels suffice in the third round.

With PKI, No Broadcast. In this setting a natural question arises: in the
absence of a broadcast channel, if we assume a PKI setup, what is the opti-
mal round complexity for solitary MPC with god? In standard MPC, note that
since standard MPC with god implies broadcast with guaranteed termination,
any protocol without a broadcast channel (only using pairwise-private channels
with PKI setup) should necessarily require super-constant rounds. In contrast,
observe that solitary MPC with god does not imply broadcast with guaranteed
termination, so the same lower bound does not hold. This motivates us to ask
the following question:

4 Note that PKI setup is in fact necessary for realizing a broadcast channel when
t ≥ n/3 (where n is the total number of parties) [33,37].

5 In these randomized broadcast protocols, the number of rounds depends on the
randomness involved in the protocol. For example, the protocol by Abraham
et al. [1] terminates in constant rounds except with constant probability and requires
at least super-polylogarithmic rounds (in the security parameter) to terminate with
all but negligible probability.



128 S. Badrinarayanan et al.

With a PKI setup and no broadcast channel, can we overcome the above
standard MPC lower bound? Specifically, can we build a constant-round solitary

MPC protocol with god in the honest majority setting?

We answer this question in the affirmative by constructing a five-round soli-
tary MPC protocol that achieves god in the above setting.

1.1 Our Results

1.1.1 With Broadcast, No PKI

When there is a broadcast channel but no PKI setup, we show a lower bound of
three rounds for achieving solitary MPC with god in the honest majority setting,
which is the same as the lower bound for standard MPC.

Informal Theorem 1. Assume parties have access to CRS, pairwise-private
channels and a broadcast channel. Then, there exists a solitary functionality f
such that no two-round MPC protocol can compute f with god in the honest
majority setting (in particular, when n/3 ≤ t < n/2) even against a non-rushing
adversary.

This lower bound is tight because we know from prior works [3,6,28] that there
are three-round solitary MPC protocols with god in the honest majority setting.

We then study the minimal number of broadcast rounds needed in a round-
optimal (three-round) solitary MPC protocol with god. We show that a broadcast
channel is necessary in both the first and second rounds.

Informal Theorem 2. Assume parties have access to CRS and pairwise-
private channels. No three-round solitary MPC protocol can compute any soli-
tary functionality f with god in the honest majority setting (in particular, when
2 �n/5� ≤ t < n/2) even against a non-rushing adversary, unless there are broad-
cast channels in both Rounds 1 and 2.

We note that the necessity of a broadcast channel in Round 1 holds for any
n/3 ≤ t < n/2 while the necessity of a broadcast channel in Round 2 only
holds for 2 �n/5� ≤ t < n/2 requiring at least two parties be corrupted. In other
words, for t = 1 and n = 3 only the first round broadcast is necessary. This
is consistent with and proven tight by the upper bound in the work of Patra
and Ravi [36], which constructed a three-round three-party protocol with god
tolerating a single corruption, using broadcast only in Round 1.

For the general case when t ≥ 2, we observe that in the three-round protocols
from prior work [3,6,28], only the first two rounds require a broadcast channel
while the third-round messages can be sent over pairwise-private channels to the
output-receiving party. Thus, our lower bounds are also tight in the general case.

Implications for Standard MPC. The work of Cohen et al. [14] identifies
which rounds of broadcast are necessary for achieving round-optimal (two-round)



On the Round Complexity of Fully Secure Solitary 129

standard MPC with dishonest majority. The recent work of [15] studies this ques-
tion for two-round standard MPC in the honest majority setting, assuming the
presence of a correlated randomness setup (or PKI). However, the same question
for round-optimal (three-round) standard MPC with god in honest majority set-
ting and without correlated randomness (or PKI) is not known; which we address
in this work. Since standard MPC with god implies solitary MPC with god, our
negative results for solitary MPC also apply to standard MPC, namely both the
first and second rounds of broadcast are necessary for a three-round standard
MPC with god. On the other hand, we observe that the existing three-round
protocols [6,28] still work if the third-round messages are sent over pairwise-
private channels (we defer the discussion to the full version [7]), thus we fully
resolve this problem for standard MPC with god in honest majority setting and
without correlated randomness setup (i.e., in the plain and CRS models).

1.1.2 With PKI, No Broadcast

When there is a PKI setup and no broadcast channel, we show that the super-
constant lower bound for standard MPC does not hold for solitary MPC any
more. In particular, we construct a five-round protocol that works for any num-
ber of parties and achieves god in the honest majority setting. Our protocol
builds on the standard MPC protocol with god of Gordon et al. [28] and uses a
decentralized threshold fully homomorphic encryption (dTFHE) scheme (defined
in [10]) as the main building block, which can be based on the learning with errors
(LWE) assumption. Our PKI setup includes a setup for digital signatures as well
as one for dTFHE (similarly as in [28])6.

Informal Theorem 3. Assuming LWE, there exists a five-round solitary MPC
protocol with god in the presence of PKI and pairwise-private channels. The pro-
tocol works for any number of parties n, any solitary functionality and is secure
against a malicious rushing adversary that can corrupt any t < n/2 parties.

We complement this upper bound by providing a lower bound of four rounds in
the same setting even in the presence of a non-rushing adversary.

Informal Theorem 4. Assume a PKI setup and pairwise-private channels.
There exists a solitary functionality f such that no three-round MPC can com-
pute f with god in the honest majority setting (in particular, when 3 �n/7� ≤
t < n/2) even against a non-rushing adversary.

The above lower bound requires t ≥ 3, namely at least 3 parties are corrupted.
Separately we also study the round complexity for scenarios when t < 3.

Special Case: t = 1. When there is only 1 corrupted party, the only relevant
setting is when n = 3. We consider two cases: (a) when the function f involves
an input from the output-receiving party Q, and (b) when f does not involve
6 We leave it as an interesting open problem to achieve the upper bound using weaker

forms of PKI setup and studying the minimal assumption required.



130 S. Badrinarayanan et al.

an input from Q. In the first case, we show a lower bound of three rounds for
achieving solitary MPC with god. That is, there exists a solitary functionality f
(involving an input from Q) such that a minimum of three rounds are required
to achieve solitary MPC with god. Notably, this lower bound also extends to any
n ≥ 3 and n/3 ≤ t < n/2. A three-round upper bound for t = 1 can be achieved
by combining [28] and [17].

In the second case where f does not involve an input from Q, it turns out we
can do better than three rounds. In particular, we show a two-round protocol to
achieve solitary MPC with god. Once again, the main technical tool is decentral-
ized threshold FHE and the protocol can be based on LWE. This upper bound
is also tight as we know from prior work [30] that two rounds are necessary.

Special Case: t = 2. When the number of corrupted parties is 2, we only
consider the case of n = 5 and show a lower bound of three rounds to compute
any function f (with or without input from Q). This lower bound also extends
to any n ≥ 5 and 2 �n/5� ≤ t < n/2. An upper bound of four rounds for t = 2
can also be achieved by combining [28] and [17].

We remark that all our lower bounds above hold not only for PKI, but
naturally extend to arbitrary correlated randomness setup model. We summarize
all our results along with the known related results for the round complexity of
solitary MPC with god in Tables 1 and 2. Note that for certain ranges of (n, t)
such as 3 �n/7� ≤ t < n/2, it is not meaningful for every n (e.g., when n = 8,
there is no appropriate t in the range). This is an artifact of the partitioning
technique used in the proof. Nevertheless, the range is relevant for sufficiently
large values of n. All our results also assume the existence of a common reference
string (CRS) and pairwise-private channels. Our results are highlighted in red.

Table 1. Round complexity of solitary MPC with god. “—” means it doesn’t matter
what value to take. Our results are highlighted in red.

broadcast PKI (n, t) Q has input lower bound upper bound

yes yes t < n/2 — 2 [30] 2 [28]

yes no n/3 ≤ t < n/2 — 3 (Theorem 1) 3 [3,6,28]

no yes n = 3, t = 1 no 2 [30] 2 (full version [7])

no yes n = 3, t = 1 yes 3 (full version [7]) 3 [28] + [17]

no yes n = 5, t = 2 — 3 (full version [7]) 4 [28] + [17]

no yes 3 �n/7� ≤ t < n/2 — 4 (Theorem 4) 5 (Theorem 5)



On the Round Complexity of Fully Secure Solitary 131

Table 2. For the setting with broadcast channels and no PKI setup, we study the
possibility of achieving a three-round solitary MPC with god with fewer broadcast
rounds. “bc in R1” means the parties have access to the broadcast channel in Round
1. All parties have access to pairwise-private channels in all rounds. For all the results,
it doesn’t matter whether Q has input or not. Our results are highlighted in red.

bc in R1 bc in R2 bc in R3 (n, t) Possible?

no yes yes n/3 ≤ t < n/2 No (Theorem 2)

yes no yes 2 �n/5� ≤ t < n/2 No (Theorem 3)

yes yes no t < n/2 Yes [3,6,28]

yes no no n = 3, t = 1 Yes [36]

1.2 Roadmap

We provide a technical overview in Sect. 2 and preliminaries in Sect. 3. In Sect. 4
we present our lower bound results assuming a broadcast channel but no PKI
setup. In Sect. 5 we provide our lower bounds for PKI without broadcast as well
as our main five-round protocol as an upper bound. We defer the results for the
special cases of t = 1 and t = 2 to the full version [7].

2 Technical Overview

2.1 Overview of Upper Bounds

In this section, we give a technical overview of the upper bounds. We will mainly
focus on the general five-round protocol in the setting with PKI and no broad-
cast, and briefly discuss other special cases at the end.

Our starting point is the two-round protocol of Gordon
et al. [28] which achieves guaranteed output delivery (god) in the presence of
an honest majority and delivers output to all parties, assuming the existence of
a broadcast channel and PKI setup. The protocol uses a (t + 1)-out-of-n decen-
tralized threshold fully homomorphic encryption (dTFHE) scheme, where an
FHE public key pk is generated in the setup and the secret key is secret shared
among the parties. The encryptions can be homomorphically evaluated and can
only be jointly decrypted by at least (t+1) parties. Their two-round protocol in
the broadcast model roughly works as follows. First, the PKI setup generates the
dTFHE public key pk and individual secret keys ski for each party Pi. In Round
1, each party Pi computes an encryption of its input xi and broadcasts [[xi]].7

Then each party can homomorphically evaluate the function f on [[x1]], . . . , [[xn]]
to obtain an encryption of the output [[y]]. In Round 2, each party broadcasts a
partial decryption of [[y]]. At the end of this, every party can individually combine
the partial decryptions to learn the output y.

7 We use [[x]] to denote a dTFHE encryption of x.



132 S. Badrinarayanan et al.

One immediate observation is that since we only care about one party
Pn(= Q) receiving the output, the second round also works without a broadcast
channel by requiring every party to only send partial decryptions directly to Q.
The main challenge now is to emulate the first round with pairwise-private chan-
nels instead of broadcast channels. A näıve approach is to employ a (t+1)-round
protocol to realize the broadcast functionality over pairwise-private channels [17],
but this would result in a (t + 2)-round protocol.

Even worse, there seems to be a fundamental barrier in this approach to
design a constant round protocol. At a high level, to achieve guaranteed out-
put delivery, we want all the honest parties to agree on a set of ciphertexts
[[x1]], . . . , [[xn]] so that they can homomorphically evaluate on the same set of
ciphertexts and compute partial decryptions on the same [[y]]. This already
implies Byzantine agreement, which requires at least (t + 1) rounds [17].

Circumventing the Lower Bound. A crucial observation here, which also
separates solitary MPC from standard MPC, is that we do not need all the
honest parties to always agree. Instead, we need them to agree only when Q is
honest. In other words, if the honest parties detect any dishonest behavior of Q,
they can simply abort. This does not imply Byzantine agreement now. Hence
there is a hope to circumvent the super-constant lower bound.

Relying on Honest Q. First, consider a simple case where honest parties only
need to agree on [[xn]] when Q is honest. This can be done in two rounds (by
augmenting the two-round broadcast with abort protocol of [26] with digital
signatures). In Round 1, Q sends [[xn]] to each party (along with its signature).
To ensure Q sends the same ciphertext to everyone, in Round 2, parties exchange
their received messages in Round 1. If there is any inconsistency, then they detect
dishonest behavior of Q, so they can abort; otherwise, all the honest parties will
agree on the same [[xn]] at the end of Round 2 if Q is honest. Unfortunately this
simple approach does not work for parties other than Q. If honest parties want
to agree on [[xi]] for i �= n, they cannot simply abort when detecting inconsistent
messages from Pi (because they are only allowed to abort when Q is dishonest).

Our next attempt is to crucially rely on Q to send out all the ciphertexts. In
Round 1, each party Pi first sends an encryption [[xi]] to Q. Then in Round 2, Q
sends [[x1]], . . . , [[xn]] to each party. In Round 3, parties exchange their messages
received from Q. If the honest parties notice any inconsistency in Q’s Round-2
messages, they can simply abort. Note that every message is sent along with
the sender’s signature, so a malicious Q cannot forge an honest Pi’s ciphertext
[[xi]]; similarly, a malicious Pi cannot forge an honest Q’s Round-2 message.
Therefore, all the honest parties will agree on the same set of ciphertexts at the
end of Round 3 if Q is honest.

Nevertheless, a malicious Q has complete freedom to discard any honest
party’s input in Round 2 (pretending that these parties did not communicate
to him in Round 1) and learn a function excluding these honest parties’ inputs,
which should not be permitted. The crux of the issue is: Even when Q is mali-
cious, the output of f learned by Q must be either ⊥ or include every honest



On the Round Complexity of Fully Secure Solitary 133

party’s input. This is implied by the security guarantees of the MPC protocol.
In particular, in the real/ideal paradigm, a malicious Q in the ideal world can
only obtain an output from the ideal functionality that computes f involving
all the honest parties’ inputs. Therefore, we need a mechanism to ensure that
all the honest parties’ ciphertexts are picked by Q. However, the parties do not
know the identities of the honest parties. How can they ensure this?

Innocent Until Proven Guilty. Our solution to this problem is for every
party Pi to treat other parties with more leniency. That is, unless Pi knows with
absolute certainty that another party Pk is malicious, Pi would demand that the
ciphertexts picked by Q must also include a ciphertext from Pk. To implement
this mechanism, we add another round at the beginning, where each party Pi

sends [[xi]] to every other party. Then in Round 2, each party Pi, besides sending
[[xi]] to Q, also sends all the ciphertexts he has received to Q. In Round 3, Q
picks a set of ciphertexts [[x1]], . . . , [[xn]] and sends to each party. In particular, for
each party Pk, as long as Q received any valid ciphertext for Pk (either directly
from Pk or from other parties), Q must include a ciphertext for Pk. Parties
exchange messages in Round 4 to check Q’s consistency as before. Finally, we
maintain the following invariant for every honest party Pi before sending the
partial decryption in Round 5: if Pi received a ciphertext [[xk]] from party Pk in
Round 1, then the ciphertexts picked by Q must also include a ciphertext from
Pk. Crucially, this invariant allows Q to pick a different ciphertext [[x′

k]] (with a
valid signature) if e.g. that was received by Q from Pk. On the other hand, this
prevents the attacks discussed earlier as a malicious Q can no longer discard an
honest Pk’s ciphertext [[xk]], although Pi is yet to identify the honest parties.

Achieving Fully Malicious Security. To achieve fully malicious security,
we still need to ensure that the adversary’s messages are correctly generated.
The approach taken by [28] is to apply a generic round-preserving compiler [5]
that transforms a semi-malicious protocol (where, the semi-malicious adversary
needs to follow the protocol specification, but has the liberty to decide the input
and random coins in each round) to a malicious protocol using non-interactive
zero-knowledge (NIZK) proofs in the CRS model with broadcast channels. In
particular, in each round, the adversary must prove (in zero-knowledge) that it
is following the protocol consistently with some setting of random coins. How-
ever, we cannot directly apply this round-preserving compiler since we do not
have broadcast channels. This limitation introduces additional complications in
our protocol design to preserve the round complexity while achieving malicious
security. We refer the reader to Sect. 5.2 for more details of the protocol and
other subtle issues we faced in our protocol design.

Special Cases. As we mentioned above, the two-round protocol of Gordon et
al. [28] with broadcast and PKI can be transformed into a (t+2)-round protocol
if the broadcast in the first round is instantiated by a (t + 1)-round protocol



134 S. Badrinarayanan et al.

over pairwise-private channels [17] and parties only send their messages to Q in
the second round. For t = 1 and 2, we can achieve better than five rounds. For
t = 1, when Q does not have input, we can design a two-round protocol which
crucially relies on the fact that at most one party is corrupted. The details are
deferred to the full version [7].

2.2 Overview of Lower Bounds

For each of our lower bound proofs, we design a special solitary function f that
cannot be computed with god. At a high level, we assume towards a contradiction
that there exists an MPC protocol Π that can compute f with god. Next, we
analyze a sequence of scenarios which lead us to the final contradiction regarding
the properties that Π must satisfy. Here, we exploit the guarantees of correctness,
privacy and full-security (guaranteed output delivery). We carefully design the
function f and scenarios for each lower bound proof. For certain proofs, we
leverage a delicate probabilistic argument technique, which we elaborate below.

With Broadcast and no PKI. For our three-round lower bound with a broad-
cast channel and no PKI setup, we design a solitary function f(x1, x2, x3) among
parties P1, P2, and Q (output receiving party) that has an oblivious transfer fla-
vor. The function is defined as f(x1 = (m0,m1), x2 = b, x3 = ⊥) := mb, where
x3 = ⊥ denotes that Q has no input; (m0,m1) ∈ {0, 1}λ denote a pair of strings
and b ∈ {0, 1} denotes a single bit. We assume there exists a two-round protocol
Π that computes f with god and consider three scenarios. The first scenario
involves a malicious P2 who drops his private message towards Q in Round 1
and aborts in Round 2. The second scenario involves a passive Q who behaves
honestly but recomputes the output by locally emulating Scenario 1 in her head.
The security guarantee of god provided by Π allow us to argue that even if P2

does not communicate privately to Q in Round 1 and aborts in Round 2, Q must
still be able to compute the output on x2 i.e. the input with respect to which it
interacted with P1 in Round 1. Intuitively, this implies that Q relies on the fol-
lowing messages to carry information about x2 required for output computation
(i) P1’s broadcast message in Round 2 and (ii) P2’s broadcast message in Round
1. However, we note that, both of these are also available to P1 at the end of
Round 1 itself. This leads us to a final scenario, in that a passive P1 can compute
the residual function f(x̃1, x2, x̃3) for more than one choices of (x̃1, x̃3), while
the input of honest P2 remains fixed – which is the final contradiction. Notably,
our specially designed function f allows P1 to derive P2’s input. We present the
full proof in Sect. 4.1.

Necessity of Broadcast in Round 1. To show the necessity of broadcast in
Round 1 in a three-round solitary MPC protocol with god (with broadcast and
no PKI), we use the same function f as above and assume there exists a three-
round protocol Π that computes f with god and uses the broadcast channel only
in Round 2 and Round 3 (and uses pairwise-private channels in all rounds). We



On the Round Complexity of Fully Secure Solitary 135

first consider a scenario with a malicious P2, who only behaves honestly to P1

and pretends to have received a maliciously computed message from Q in Round
1. In addition, P2 aborts in Round 3. We show that an honest Q in this scenario
must obtain f(x1, x2, x3) as the output, where x1, x2, x3 are the parties’ honest
inputs. First of all, Q must learn an output computed on the honest parties’
inputs x1 and x3 by the god property of Π. The output is also w.r.t. P2’s honest
input x2 because Q’s view in this scenario is subsumed by another scenario
with a malicious Q, where Q only behaves honestly to P1 and pretends to have
received a maliciously computed message from P2 in Round 1. Since the first-
round messages are only sent via pairwise-private channels, P1 cannot distinguish
whether P2 is malicious (first scenario) or Q is malicious (second scenario), and
P1’s view is identically distributed in both scenarios. Comparing the messages
received by Q in the two scenarios, we can conclude Q’s view in the first scenario
is subsumed by its view in the second scenario. Notice that a malicious Q in the
second scenario can only learn an output on the honest parties’ input x1 and x2,
hence Q must learn f(x1, x2, x3) in both scenarios. The key takeaway is that P2’s
input can be considered as “committed” in its private message to P1 in Round
1 and broadcast message in Round 2. This allows a semi-honest P1 to emulate
Q’s view in the first scenario and locally compute f(x1, x2,⊥). Our specially
designed f allows P1 to derive honest P2’s input, violating the security of Π. A
more detailed proof is presented in Sect. 4.2.

Necessity of Broadcast in Round 2. For our result showing necessity of
broadcast in Round 2, we design a more sophisticated function f (see Sect. 4.3
for the construction) and leverage a more involved probabilistic argument in our
proof. We assume there exists a three-round 5-party solitary MPC Π that com-
putes f with god against 2 corruptions which uses broadcast in only Round 1
and Round 3 (and uses pairwise-private channels in all rounds). The argument
involves two crucial observations (1) Π is such that if corrupt P1 participates
honestly using input x1 only in the broadcast communication and private com-
munication towards {P2, P5 = Q} in Round 1 (and sends no other messages
during Π), then there exists some x∗

1 such that the output obtained by Q is not
computed with respect to x∗

1 with a sufficiently large (constant) probability. Intu-
itively, if this does not hold and for all x1 the output is computed with respect to
x1, then it would mean that Π is such that {P2, Q} obtain sufficient information
to compute on x1 at the end of Round 1 itself. This would make Π susceptible to
residual function attack by {P2, Q} which violates security. (2) Π is such that if
corrupt {P3, P4} pretend in Round 2 as if they have not received private commu-
nication from P1 in Round 1, still, the output obtained by Q must be computed
on honest P1’s input x1. This follows from correctness of Π. Next, we design a
final scenario building on (1) and (2) where an adversary corrupting {P1, Q}
obtains multiple outputs, with respect to both input x′

1 �= x∗
1 and x∗

1; which
gives the final contradiction. Crucially, due to absence of broadcast in Round 2,
the adversary is able to keep the honest parties {P2, P3, P4} on different pages
with respect to whether P1 has aborted after Round 1 or not. Specifically, the



136 S. Badrinarayanan et al.

adversarial strategy in the final scenario exploits the absence of broadcast in
Round 2 to ensure the following - (a) view of honest {P3, P4} is similar to the
scenario in (1), where they do not receive any communication from P1 except
its broadcast communication in Round 1 and (b) view of honest P2 is similar to
the scenario in (2). Here, P2 receives communication from P1 in both Round 1
and Round 2; but receives communication from {P3, P4} in Round 2 conveying
that they did not receive P1’s private communication in Round 1 (the Round 2
messages from {P3, P4} could potentially convey this information, depending on
protocol design). This inconsistency in the views of honest parties enables the
adversary to obtain multiple outputs.

With PKI and no Broadcast. The lower-bound arguments in the setting
with a PKI setup and no broadcast tend to be more involved as PKI can be
used to allow output obtaining party Q to have some secret useful for output
computation (as elaborated in the overview of 3-round lower bound above).
For our four-round general lower bound that holds for 3 �n/7� ≤ t < n/2 and
t ≥ 3, we assume there exists a three-round protocol Π with god computing a
specially designed 7-party solitary function f (see Sect. 5.1 for the construction
of f). We analyze four main scenarios as follows. In Scenarios 1 and 2, {P1, P6}
are corrupt and P1 does not communicate directly to anyone throughout. The
crucial difference between them is in the communication of P6 in Round 2 to
{P2, P3, P4, P5}: in Scenario 1, P6 acts as if he did not receive any communication
from P1 in Round 1; in Scenario 2, P6 pretends to have received communication
from P1 in Round 1. We first show that in Scenario 1, there must exist some
x∗
1 such that the output obtained by Q is not computed with respect to x∗

1

with a sufficiently large (constant) probability. Intuitively, this holds because the
communication in Scenario 1 is independent of P1’s input. Next, we prove via a
sequence of hybrids that in Scenario 2, there also exists x∗

1 such that the output
is not computed on x∗

1 with a sufficiently large probability. This lets us infer a
critical property satisfied by Π - if {P3, P4, P5} do not receive any communication
directly from P1 throughout Π and only potentially receive information regarding
P1 indirectly via P6 (say P6 claims to have received authenticated information
from P1 which can be verified by {P3, P4, P5} due to availability of PKI), then
Q obtains an output on some x′

1(�= x∗
1) with a sufficiently large probability.

Next, we consider an orthogonal scenario (Scenario 3) where {P3, P4, P5} are
corrupt and pretend as if they received no information from P1 directly. Correct-
ness of Π ensures that Q must obtain output on honest input of P1 using the
messages from {P1, P2, P6}. Roughly speaking, the above observations enable us
to partition the parties {P1, . . . , P6} into two sets {P1, P2, P6} and {P3, P4, P5}.
Combining the above inferences, we design the final scenario where adversary
corrupts {P1, P2, Q} and participates with x∗

1. Here, P1 behaves honestly only to
P6 (among the honest parties). The communication of corrupt parties is carefully
defined so that the following holds: (a) the views of {P3, P4, P5} are identically
distributed to their views in Scenario 2, and (b) the views of {P1, P2, P6} are
identically distributed to their views in Scenario 3. We then demonstrate that



On the Round Complexity of Fully Secure Solitary 137

Q can obtain an output computed on x∗
1 as well as another output computed on

some x′
1 �= x∗

1 by using the communication from {P1, P2, P6} and {P3, P4, P5}
selectively, violating the security of Π.

Finally, we observe that the above approach inherently demands the presence
of 3 or more corruptions. The main bottleneck in extending it to t = 2 arises from
the sequence of hybrids between Scenario 1 and 2, which requires the presence
of an additional corruption besides {P1, P6}. This shows hope for better upper
bounds (less than four rounds) for lower corruption thresholds. In this direction,
we investigated the cases of t = 1 and t = 2 separately. We showed the necessity
of three rounds for t = 1 when Q has input and for t = 2 (irrespective of whether
Q has input). These lower bounds also employ the common approach outlined
above but differ significantly in terms of the associated scenarios. We refer to the
full version [7] for details. Notably, all the lower bounds also extend to arbitrary
correlated randomness setup.

3 Preliminaries

3.1 Notation and Setting

We use λ to denote the security parameter. By poly(λ) we denote a polynomial
function in λ. By negl(λ) we denote a negligible function, that is, a function f
such that f(λ) < 1/p(λ) holds for any polynomial p(·) and sufficiently large λ.
We use [[x]] to denote an encryption of x.

We consider a set of parties {P1 . . . , Pn}. Each party is modelled as a prob-
abilistic polynomial-time (PPT) Turing machine. We assume that there exists a
PPT adversary who can corrupt up to t parties where n/3 ≤ t < n/2. We assume
throughout that the parties are connected by pairwise-secure and authentic chan-
nels and have access to a common reference string (CRS). Additional setup or
network assumption is explicitly mentioned in the respective sections.

The security definition of solitary MPC with guaranteed output delivery is
deferred to the full version.

3.2 Cryptographic Primitives

In our constructions, we need to use digital signatures, simulation-extractible
non-interactive zero-knowledge (NIZK) arguments, and decentralized threshold
fully homomorphic encryption (dTFHE). In this section, we only define the
syntax of dTFHE and the NIZK languages used in our constructions, and defer
their security definitions to the full version.

Syntax of dTFHE. We define a t-out-of-n decentralized threshold fully homo-
morphic encryption scheme with the following syntax as in [10].

Definition 1 (Decentralized Threshold Fully Homomorphic Encryp-
tion (dTFHE)). Let P = {P1, . . . , Pn} be a set of parties. A dTFHE
scheme is a tuple of PPT algorithms dTFHE = (dTFHE.DistGen, dTFHE.Enc,
dTFHE.PartialDec, dTFHE.Eval, dTFHE.Combine) with the following syntax:



138 S. Badrinarayanan et al.

– (pki, ski) ← dTFHE.DistGen(1λ, 1d, i; ri): On input the security parameter λ, a
depth bound d, party index i and randomness ri, the distributed setup outputs
a public-secret key pair (pki, ski) for party Pi. We denote the public key of the
scheme as pk = (pk1‖ . . . ‖pkn).

– [[m]] ← dTFHE.Enc(pk,m): On input a public key pk, and a plaintext m in
the message space M, it outputs a ciphertext [[m]].

– [[y]] ← dTFHE.Eval(pk,C, [[m1]], . . . , [[mk]]): On input a public key pk, a circuit
C of depth at most d that takes k inputs each from the message space and out-
puts one value in the message space, and a set of ciphertexts [[m1]], . . . , [[mk]]
where k = poly(λ), the evaluation algorithm outputs a ciphertext [[y]].

– [[m : ski]] ← dTFHE.PartialDec(ski, [[m]]): On input a secret key share ski and
a ciphertext [[m]], it outputs a partial decryption [[m : ski]].

– m/⊥ ← dTFHE.Combine(pk, {[[m : ski]]}i∈S): On input a public key pk and
a set of partial decryptions {[[m : ski]]}i∈S where S ⊆ [n], the combination
algorithm either outputs a plaintext m or the symbol ⊥.

NIZK Languages Used. In our solitary MPC protocols, we will consider two
NP languages L1, L2 for the NIZK described below.

– NP Language L1:
Statement st = ([[x]], pk) Witness wit = (x, ρ)
R1(st,wit) = 1 iff [[x]] = dTFHE.Enc(pk, x; ρ).

– NP Language L2:
Statement st = ([[x : sk]], [[x]], pk, i) Witness wit = (sk, r)
R2(st,wit) = 1 iff [[x : sk]] = dTFHE.PartialDec(sk, [[x]]) and
(pk, sk) = dTFHE.DistGen(1λ, 1d, i; r).

4 With Broadcast and No PKI

In this section, we assume a network setting where the parties have access to a
broadcast channel in addition to pairwise-private channels. In terms of setup, we
assume that all parties have access to a common reference string (CRS). First,
we present a new lower bound of three rounds for solitary MPC with god in
Sect. 4.1. Then we study whether it is possible to use fewer rounds of broadcast
and show in Sect. 4.2 and Sect. 4.3 that broadcast is necessary in both the first
and second rounds. The above negative results are tight given the existing results
of [3,6,28,36], which we discuss in the full version [7].

4.1 Necessity of Three Rounds

We show that it is impossible to design a two-round solitary MPC with god in the
honest majority setting (in particular, n/3 ≤ t < n/2), assuming the presence
of pairwise-private channels and a broadcast channel. Our result holds in the
presence of any common public setup such as CRS, even against non-rushing
adversaries and irrespective of whether the output-obtaining party Q provides



On the Round Complexity of Fully Secure Solitary 139

an input or not. We discuss in the full version why the existing proofs of lower
bounds (three rounds) for standard MPC with god in the presence of an honest
majority [24,28,36] do not hold for solitary functionalities.

Theorem 1. Assume parties have access to CRS, pairwise-private channels and
a broadcast channel. Let n and t be positive integers such that n ≥ 3 and n/3 ≤
t < n/2. Then, there exists a solitary functionality f such that no two-round n-
party MPC protocol tolerating t corruptions can compute f with god, even when
the adversary is assumed to be non-rushing.

Proof. For simplicity, we present the argument for the setting n = 3 and t = 1
below and elaborate on how to extend the proof to n/3 ≤ t < n/2 later. Consider
a solitary function f(x1, x2, x3) among {P1, P2, P3} where Q = P3 denotes the
output receiving party. We define f as f(x1 = (m0,m1), x2 = b, x3 = ⊥) := mb,
where x3 = ⊥ denotes that Q has no input; (m0,m1) ∈ {0, 1}λ denote a pair
of strings and b ∈ {0, 1} denotes a single bit. For the sake of contradiction,
suppose there exists a two-round 3-party solitary MPC with god, say Π which
can compute f . Note that at most the adversary corrupts at most one party.

We consider three different scenarios of the execution of Π. For simplicity,
we assume the following about the structure of Π: (a) Round 2 involves only
broadcast messages while Round 1 involves messages sent via both pairwise-
private and broadcast channels. This holds without loss of generality since the
parties can perform pairwise-private communication by exchanging random pads
in the first round and then using these random pads to unmask later broadcasts
[23]. (b) In Round 1, each pair of parties communicate via their pairwise-private
channels (any protocol where a pair of parties does not communicate privately
in Round 1 can be transformed to one where dummy messages are exchanged
between them). (c) Round 2 does not involve any outgoing communication from
Q (as Q is the only party to receive the output at the end of Round 2).

Next, we define some useful notation: Let pci→j denote the pairwise-private
communication from Pi to Pj in Round 1 and br

i→ denote the message broadcast
by Pi in round r, where r ∈ [2], {i, j} ∈ [3]. These messages may be a function
of the crs as per protocol specifications. Let Viewi denotes the view of party Pi

which consists of crs, its input xi, randomness ri and all incoming messages.
Following is a description of the scenarios. In each of these scenarios, we

assume that the adversary uses the honest input on behalf of the corrupt parties
and its malicious behaviour is limited to dropping some of the messages supposed
to be sent by the corrupt party. The views of the parties for all the scenarios are
shown in Table 3.

Scenario 1: The adversary actively corrupts P2 who behaves honestly in Round
1 towards P1 but doesn’t communicate privately to Q in Round 1. In more
detail, P2 sends messages pc2→1, b

1
2→ according to the protocol specification

but drops the message pc2→3. In Round 2, P2 aborts.
Scenario 2: The adversary passively corrupts Q who behaves honestly through-

out and learns output f(x1, x2, x3). Additionally, Q locally re-computes the



140 S. Badrinarayanan et al.

output by emulating Scenario 1, namely when P2 does not communicate pri-
vately to Q in Round 1 and aborts in Round 2. Specifically, Q can locally
emulate this by discarding pc2→3 (private communication from P2 to Q in
Round 1) and b22→ (broadcast communication from P2 in Round 2).

Scenario 3: The adversary corrupts P1 passively who behaves honestly through-
out. P1 also does the following local computation: Locally emulate the view
of Q as per Scenario 1 (from which the output can be derived) for various
choices of inputs of {P1, P3} while the input of P2 i.e. x2 remains fixed. In
more detail, P1 does the following - Let (pc2→1, b

1
2→) be fixed to what was

received by P1 in the execution. Choose various combinations of inputs and
randomness on behalf of P1 and P3. Consider a particular combination, say
{(x̃1, r̃1), (x̃3, r̃3)}. Use it to locally compute ˜b11→, ˜b13→, p̃c1→3, p̃c3→1. Next,

locally compute ˜b21→ using the Round 1 emulated messages which results
in the complete view ˜View3 of Q analogous to Scenario 1, where ˜View3 =
{crs, x̃3, r̃3,

˜b11→, b12→, p̃c1→3,
˜b21→} corresponds to the inputs (x̃1, x2, x̃3).

Table 3. Views of P1, P2, P3 in Scenarios 1 – 3.

Scenario 1 Scenario 2 & 3

View1 View2 View3 View1 View2 View3

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x1, r1, crs) (x2, r2, crs) (x3, r3, crs)

Round 1 pc2→1, pc3→1 pc1→2, pc3→2, pc1→3, –, pc2→1, pc3→1, pc1→2, pc3→2, pc1→3, pc2→3,

b12→, b13→ b11→, b13→ b11→, b12→ b12→, b13→ b11→, b13→ b11→, b12→
Round 2 – b21→ b21→ b22→ b21→ b21→, b22→

The proof skeleton is as follows. First, we claim that if Scenario 1 occurs,
then Q must obtain f(x1, x2, x3) with overwhelming probability. If not, then Π
is vulnerable to a potential attack by semi-honest Q (that is captured in Scenario
2) which enables Q to learn information that he is not supposed to learn; which
violates security. Intuitively, this inference captures Q’s reliance on P1’s messages
in Round 2 and P2’s broadcast in Round 1 to carry information about x2 required
for output computation. Note that this information is available to P1 at the end
of Round 1 itself. Building on this intuition, we show that Π is such that an
adversary corrupting P1 passively (as in Scenario 3) can compute f(x̃1, x2, x̃3)
for any choice of (x̃1, x̃3), which is the final contradiction. We present the formal
proof and show how the proof can be extended for n ≥ 3 and n/3 ≤ t < n/2
(using player partitioning technique [34]) in the full version [7].

4.2 Necessity of Broadcast in Round 1

Now we show that any three-round n-party solitary MPC with god against t
corruptions must use broadcast channel in Round 1, where n/3 ≤ t < n/2.



On the Round Complexity of Fully Secure Solitary 141

Theorem 2. Assume parties have access to CRS and pairwise-private channels.
Let n and t be positive integers such that n ≥ 3 and n/3 ≤ t < n/2. There exists a
solitary functionality f such that no three-round n-party solitary MPC protocol
securely computes f with god against t corruptions, while making use of the
broadcast channel only in Round 2 and Round 3 (pairwise-private channels can
be used in all the rounds).

Proof. For simplicity, we present the argument for the setting n = 3 and t = 1
below. The proof can be extended for n/3 ≤ t < n/2 using player partitioning
technique. Consider the function f(x1, x2, x3) defined as in the proof of Theo-
rem 1, i.e. f(x1 = (m0,m1), x2 = b, x3 = ⊥) := mb. Suppose for the sake of
contradiction that there exists a three-round solitary MPC protocol with god,
say Π that computes f and utilizes broadcast channel only in Rounds 2 and 3
(i.e., Π uses only pairwise-private channels in Round 1, and uses both broadcast
and pairwise-private channels in Rounds 2 and 3).

Without loss of generality, we can assume that Π has the following structure:
(a) No broadcast messages are sent during Round 3, and Round 3 only involves
private messages sent to Q. This is without loss of generality as any solitary MPC
that uses broadcast in the last round can be transformed into one where the
messages sent via broadcast are sent privately only to Q (as Q is the only party
supposed to receive output at the end of Round 3). (b) Round 2 only involves
broadcast messages. This is also without loss of generality since the parties can
perform pairwise-private communication by exchanging random pads in the first
round and then using these random pads to unmask later broadcasts [23].

We analyze three different scenarios of the execution of Π. Before describing
the scenarios, we define some useful notation. We assume (r1, r2, r3) are the
randomness used by the three parties if they behave honestly during the protocol
execution. Let pci→j where i, j ∈ [3] denote the pairwise-private communication
from Pi to Pj in Round 1 if Pi behaves honestly using input xi and randomness ri.
Similarly, let p̃ci→j denote the pairwise-private communication from Pi to Pj in
Round 1 if Pi follows the protocol but uses some other input x̃i and randomness
r̃i. Let b

x,r,pci−1,pci+1
i where i ∈ [3] denote the broadcast communication by

Pi in Round 2 if Pi behaves honestly using input x and randomness r, and
received pci−1 from Pi−1 and pci+1 from Pi+1 in Round 1 (let P0 := P3 and
P4 := P1). Lastly, let pc�

i→3 where i ∈ [2], � ∈ [3] denote the pairwise-private
communication from Pi to Q in Round 3 in Scenario �. A party’s view consists
of crs, its input, randomness and incoming messages. Following is a description
of the three scenarios. The views of the parties are described in Tables 4 – 5.

Scenario 1: Adversary corrupts P2. In Round 1, P2 behaves honestly to P1 using
input x2 and randomness r2 while behaving dishonestly to Q using (x̃2, r̃2).
In other words, P2 sends pc2→1 to P1 and p̃c2→3 to Q.
In Round 2, P2 broadcasts a message as if he behaved honestly in Round 1 to
both parties (using (x2, r2)) and received a message from Q computed using
(x̃3 = ⊥, r̃3) in Round 1. Formally, P2 broadcasts b

x2,r2,pc1→2,p̃c3→2
2 .

In Round 3, P2 aborts.



142 S. Badrinarayanan et al.

Scenario 2: Adversary corrupts Q. In Round 1, Q behaves towards P1 using
(x3 = ⊥, r3) while behaving towards P2 using (x̃3 = ⊥, r̃3). In other words,
Q sends pc3→1 to P1 and p̃c3→2 to P2.
In Round 2, Q broadcasts a message as if he behaved honestly in Round 1 to
both parties (using (x3 = ⊥, r3)) and received a message from P2 in Round
1 using (x̃2, r̃2). Formally, Q broadcasts b

x3,r3,pc1→3,p̃c2→3
3 .

Scenario 3: Adversary passively corrupts P1 behaving honestly using (x1, r1) in
all rounds.

Table 4. Views of {P1, P2, Q} in Scenarios 1 and 2.

Scenario 1 Scenario 2

View1 View2 View3 View1 View2 View3

Initial Input (x1, r1, crs) (x2, r2, crs) (x3 = ⊥, r3, crs) (x1, r1, crs) (x2, r2, crs) (x3 = ⊥, r3, crs)

Round 1 pc2→1, pc3→1 pc1→2, pc3→2 pc1→3, p̃c2→3 pc2→1, pc3→1 pc1→2, p̃c3→2 pc1→3, pc2→3

Round 2 b
x2,r2,pc1→2,p̃c3→2
2 b

x1,r1,pc2→1,pc3→1
1 b

x1,r1,pc2→1,pc3→1
1 b

x2,r2,pc1→2,p̃c3→2
2 b

x1,r1,pc2→1,pc3→1
1 b

x1,r1,pc2→1,pc3→1
1

b
x3,r3,pc1→3,p̃c2→3
3 b

x3,r3,pc1→3,p̃c2→3
3 b

x2,r2,pc1→2,p̃c3→2
2 b

x3,r3,pc1→3,p̃c2→3
3 b

x3,r3,pc1→3,p̃c2→3
3 b

x2,r2,pc1→2,p̃c3→2
2

Round 3 – – pc11→3 – – pc21→3, pc
2
2→3

Table 5. Views of {P1, P2, Q} in Scenario 3.

View1 View2 View3

Initial Input (x1, r1, crs) (x2, r2, crs) (x3 = ⊥, r3, crs)

Round 1 pc2→1, pc3→1 pc1→2, pc3→2 pc1→3, pc2→3

Round 2 b
x2,r2,pc1→2,pc3→2
2 b

x1,r1,pc2→1,pc3→1
1 b

x1,r1,pc2→1,pc3→1
1

b
x3,r3,pc1→3,pc2→3
3 b

x3,r3,pc1→3,pc2→3
3 b

x2,r2,pc1→2,pc3→2
2

Round 3 – – pc31→3, pc
3
2→3

The proof skeleton is as follows. First, we claim if Scenario 1 occurs, then Q
must obtain f(x1, x2,⊥) with overwhelming probability. Due to the god property
of Π, the honest Q in Scenario 1 must learn an output on the honest P1’s input,
namely x1. The output should also be computed on P2’s honest input x2 because
Q’s view is Scenario 1 is subsumed by its view in Scenario 2, where the malicious
Q can only learn an output computed on the honest P2’s input. Intuitively,
P2’s input is “committed” in its private communication to P1 in Round 1 and
broadcast message in Round 2. This allows a semi-honest P1 in Scenario 3 to
emulate Q’s view in Scenario 1 and learn f(x1, x2,⊥), which compromises the
security of Π. We defer the formal proof to the full version [7].



On the Round Complexity of Fully Secure Solitary 143

4.3 Necessity of Broadcast in Round 2

In this section, we show that any three-round n-party solitary MPC with god
against t corruptions must use broadcast channel in Round 2 when 2 �n/5� ≤
t < n/2 (note that t ≥ 2). Interestingly, the use of broadcast in Round 2 is not
necessary for the special case of single corruption (refer full version [7]).

Theorem 3. Assume parties have access to CRS. Let n and t be positive inte-
gers such that n ≥ 5 and 2 �n/5� ≤ t < n/2. Then, there exists a solitary
functionality f such that no three-round n-party solitary MPC protocol tolerat-
ing t corruptions securely computes f with god, while making use of the broadcast
channel only in Round 1 and Round 3 (pairwise-private channels can be used in
all the rounds).

Proof. We present the argument for the setting of n = 5 and t = 2 below, and
elaborate later on how to extend to 2 �n/5� ≤ t < n/2. Consider the solitary
function f(x1, . . . , x5) among {P1, . . . , P5} where Q = P5 denotes the output
receiving party. We clarify that our argument holds irrespective of whether f
involves an input from Q or not. First, set k = 10 (looking ahead, we set k to
be sufficiently large for the probability arguments to go through). Let f(x1 =
(xc, xr), x2 = (x0

2, x
1
2), x3 = (x0

3, x
1
3), x4 = ⊥, x5 = ⊥) be defined as follows,

where xc ∈ {0, 1}, xr, x
0
2, x

1
2, x

0
3, x

1
3 ∈ {0, 1}k and x0

2 �= x1
2, x

0
3 �= x1

3:

f(x1, . . . , x5) =
{

(xr ⊕ x0
2, x0

3) if xc = 0
(xr ⊕ x1

2, x1
3) if xc = 1 .

Suppose for the sake of contradiction that there exists a three-round 5-party
solitary MPC protocol with god against two corruptions, say Π that computes
f and utilizes broadcast channel only in Round 1 and Round 3 (i.e. Π uses
broadcast and pairwise-private channels in Round 1 and Round 3; and only
pairwise-private channels in Round 2).

Without loss of generality, we assume for simplicity the following structure for
Π: (a) Round 3 involves only private messages sent to Q - no broadcast messages.
This is w.l.o.g as any solitary MPC that uses broadcast in last round can be
transformed to one where the messages sent via broadcast are sent privately
only to Q (as Q is the only party supposed to receive output). (b) Round 2 does
not involve messages from Pi (i ∈ [4]) to Q (such a message is meaningful only
if Q communicates to Pi in Round 3, which is not the case as per (a)).

We consider an execution of Π with inputs (x1, . . . , x5) where xi denotes the
input of Pi. In the above definition of f , x4 = x5 = ⊥ indicates that P4 and P5

do not have any inputs. Next, we analyze four different scenarios. Before describ-
ing the scenarios, we define some useful notation. Let b1i denote the broadcast
communication by Pi in Round 1 when Pi behaves honestly. In Rounds 1 and
2, let pcr

i→j where r ∈ [2], i, j ∈ [5] denote the pairwise-private communication
from Pi to Pj in Round r, as per an execution where everyone behaves honestly.

Next, we use ˜pc2i→j to denote the messages that Pi (i ∈ [5]) is supposed to send
in Round 2 to Pj (j ∈ [4] \ i) incase Pi did not receive Round 1 message from



144 S. Badrinarayanan et al.

P1. Note that this communication could be potentially different from what Pi

would send in an honest execution. Lastly, since Round 3 messages to Q could
potentially be different for each of the four scenarios, we index them addition-
ally with � indicating the scenario i.e. pc3,�

j→5 denotes Pj ’s Round 3 message to
Q in Scenario � (j ∈ [4], � ∈ [4]). These messages may be a function of the com-
mon reference string (denoted by crs). A party’s view comprises of crs, its input,
randomness and incoming messages.

Following is a description of the scenarios. In each of these scenarios, we
assume that the adversary uses the honest input on behalf of the corrupt parties
and its malicious behaviour is limited to dropping some of the messages that
were received or supposed to be sent by the actively corrupt parties. The views
of the parties are described in Tables 6, 7, 8 and 9.

[Scenario 1: Adversary corrupts P1. In Round 1, P1 behaves honestly w.r.t his
broadcast communication and private message towards P2 and Q, but drops
his private message towards P3 and P4. Further, P1 remains silent after Round
1 (i.e. does not communicate at all in Round 2 and Round 3). In other words,
in Scenario 1, P1 computes and sends only the following messages honestly :
b11, pc

1
1→2 and pc11→5.

Scenario 2: Adversary corrupts {P1, P2}. P1 behaves identical to Scenario 1. P2

behaves honestly except that he drops his Round 3 message towards Q.
Scenario 3: Adversary corrupts {P3, P4}. In Round 1, {P3, P4} behave honestly

as per protocol steps. In Round 2, {P3, P4} only communicate to P2, towards
whom they pretend that they did not receive Round 1 message from P1 (i.e.

Pi sends ˜pc2i→2 to P2 where i ∈ {3, 4}). Lastly, {P3, P4} remain silent in
Round 3 i.e. do not communicate towards Q.

Scenario 4: Adversary corrupts {P1, Q}. Q behaves honestly throughout the
protocol. P1 behaves as follows: In Round 1, P1 behaves identical to Scenario 1
(i.e. behaves honestly w.r.t its broadcast communication and private message
to P2 and Q; but drops his private message to P3 and P4). In Round 2, P1

behaves honestly only to P2 (but does not communicate to others). Lastly,
P1 sends its Round 3 message to Q as per Scenario 3 (i.e. as per protocol
specifications when P1 does not receive Round 2 message from P3 and P4).
The communication in Round 3 among the corrupt parties is mentioned only
for clarity.

Table 6. Views of {P1, . . . , P5} in Scenario 1.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1 {b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},

{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{1,3} {pc1j→4}j∈[5]\{1,4} {pc1j→5}j∈[5]\{5}
Round 2 {pc2j→1}j∈{2,5} {pc2j→2}j∈{5} {pc2j→3}j∈{2,5} {pc2j→4}j∈{2,5} –

{ ˜pc2j→1}j∈{3,4} { ˜pc2j→2}j∈{3,4} { ˜pc2j→3}j∈{4} { ˜pc2j→4}j∈{3} –

Round 3 – – – – {pc3,1j→5}j∈{2,3,4}



On the Round Complexity of Fully Secure Solitary 145

Table 7. Views of {P1, . . . , P5} in Scenario 2.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1 {b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},

{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{1,3} {pc1j→4}j∈[5]\{1,4} {pc1j→5}j∈[5]\{5}
Round 2 {pc2j→1}j∈{2,5} {pc2j→2}j∈{5} {pc2j→3}j∈{2,5} {pc2j→4}j∈{2,5} –

{ ˜pc2j→1}j∈{3,4} { ˜pc2j→2}j∈{3,4} { ˜pc2j→3}j∈{4} { ˜pc2j→4}j∈{3} –

Round 3 – – – – {pc3,2j→5}j∈{3,4}

Table 8. Views of {P1, . . . , P5} in Scenario 3.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1 {b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},

{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{3} {pc1j→4}j∈[5]\{4} {pc1j→5}j∈[5]\{5}

Round 2 {pc2j→1}j∈{2,5} {pc2j→2}j∈{1,5}, { ˜pc2j→2}j∈{3,4} {pc2j→3}j∈{1,2,5} {pc2j→4}j∈{1,2,5} –

Round 3 – – – – {pc3,3j→5}j∈{1,2}

Table 9. Views of {P1, . . . , P5} in Scenario 4.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1 {b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},

{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{1,3} {pc1j→4}j∈[5]\{1,4} {pc1j→5}j∈[5]\{5}
Round 2 {pc2j→1}j∈{2,5} {pc2j→2}j∈{1,5} {pc2j→3}j∈{2,5} {pc2j→4}j∈{2,5} –

{ ˜pc2j→1}j∈{3,4} { ˜pc2j→2}j∈{3,4} { ˜pc2j→3}j∈{4} { ˜pc2j→4}j∈{3} –

Round 3 – – – – {pc3,4j→5}j∈{1,2} = {pc3,3j→5}j∈{1,2}
– – – – {pc3,4j→5}j∈{3,4} = {pc3,2j→5}j∈{3,4}

The proof skeleton is as follows. First, we claim that there exists an x∗
c ∈

{0, 1} and x∗
r ∈ {0, 1}k such that if Scenario 1 occurs with respect to x1 =

(x∗
c , x

∗
r) and uniformly randomly sampled x2 and x3, then the output obtained

by Q must be computed with respect to ¬x∗
c with a sufficiently large (constant)

probability. Intuitively, if for all xc and xr, the output of Scenario 1 was computed
on xc, then it would mean that {P2, Q} have sufficient information about xc at
the end of Round 1 itself. This would make Π vulnerable to a residual function
attack by {P2, Q}. Next, we claim the same statement also holds for Scenario
2 (with a different probability). Regarding Scenario 3, correctness of Π lets us
infer that Q must compute output on the input x1 = (xr, xc) of honest P1.
Lastly, we argue that Q’s view in Scenario 4 subsumes its views in Scenario 2
and Scenario 3. This would allow corrupt {P1, Q} (who participate with xc = x∗

c)
in Scenario 4 to obtain multiple outputs i.e. output with respect to both ¬x∗

c (as
in Scenario 2) and x∗

c (as in Scenario 3), which contradicts security of Π. This
completes the proof sketch. We present the formal proof and show its extension
to 2 �n/5� ≤ t < n/2 in the full version [7]. Note that for certain cases, such as



146 S. Badrinarayanan et al.

n = 6, this range of values of (n, t) is not meaningful. However, this is relevant
for sufficiently large values of n.

5 With PKI and No Broadcast

In this section, we consider the setting where the parties only have access to
pairwise-private channels. In terms of setup, we assume that all parties have
access to a pubic-key infrastructure (PKI) and a common reference string (CRS).
We first present a lower bound of four rounds for solitary MPC with god. Then
we present a five-round construction that works for any n and t < n/2. Next,
we elaborate on a non-constant round protocol (i.e. (t + 2) rounds) that can be
derived from the protocol of [28]. While the former upper bound significantly
improves over the latter for most values of (n, t), the latter achieves better round
complexity for special cases of t ≤ 2.

5.1 Necessity of Four Rounds

In this section, we assume a network setting where the parties have access to
pairwise-private channels and PKI. We show that when 3 �n/7� ≤ t < n/2, four
rounds are necessary for n-party solitary MPC with god against t corruptions.
This holds irrespective of whether Q has input or not and even if the adversary
is non-rushing. However, the argument crucially relies on the fact that t ≥ 3
(details appear at the end of this section) which leads us to conjecture that
there is a potential separation between the cases of t ≤ 2 and t ≥ 3 for solitary
MPC. We investigate the special cases of t ≤ 2 in the full version [7]. The
impossibility for the general case is formally stated below.

Theorem 4. Assume parties have access to CRS, PKI and pairwise-private
channels. Let n, t be positive integers such that n ≥ 7 and 3 �n/7� ≤ t < n/2.
Then, there exists a solitary functionality f such that no three-round n-party
MPC protocol tolerating t corruptions can compute f with god, even if the adver-
sary is assumed to be non-rushing.

Proof. For simplicity, we consider the setting of n = 7 and t = 3 (extension
to any 3 �n/7� ≤ t < n/2 appears in the full version). Consider the solitary
function f(x1, , . . . , x7) among {P1, . . . , P7} where Q = P7 denotes the output
receiving party. We clarify that our lower bound argument holds irrespective
of whether f involves an input from Q. First, set k = 10 (looking ahead, we
set k to be sufficiently large for the probability arguments to go through). Let
f(x1, x2 = ⊥, x3 = (x0

3, x
1
3), x4 = (x0

4, x
1
4), x5 = ⊥, x6 = (x0

6, x
1
6), x7 = ⊥) be

defined as follows, where x1 ∈ {0, 1}, x0
3, x

1
3, x

0
4, x

1
4, x

0
6, x

1
6 ∈ {0, 1}k and x0

3 �=
x1
3, x

0
4 �= x1

4, x
0
6 �= x1

6:

f(x1, . . . , x7) =

{

(x0
3, x

0
4, x

0
6) if x1 = 0

(x1
3, x

1
4, x

1
6) if x1 = 1

.



On the Round Complexity of Fully Secure Solitary 147

In the definition, x2 = x5 = x7 = ⊥ indicates that P2, P5, P7 do not have
any inputs. Suppose for the sake of contradiction that there exists a three-round
solitary MPC protocol with god, say Π that computes f .

Without loss of generality, we assume that Π has the following structure: (a)
Round 3 involves only messages sent to Q; (b) Round 2 does not involve messages
from Pi (i ∈ [6]) to Q (such a message is meaningful only if Q communicates to
Pi in Round 3, which is not the case as per (a)).

We consider an execution of Π with inputs (x1, . . . , x7) where xi denotes
the input of Pi and analyze four different scenarios. Before describing the sce-
narios, we define some useful notation. In Rounds 1 and 2, let pcr

i→j where
r ∈ [2], {i, j} ∈ [7] denote the pairwise-private communication from Pi to Pj in
Round r, as per an execution where everyone behaves honestly. Next, we use
˜pc2i→j to denote the messages that Pi (i ∈ [7]) is supposed to send in Round 2
to Pj (j ∈ [6] \ i) incase Pi did not receive Round 1 message from P1. Note that
this communication could be potentially different from what Pi would send in
an honest execution. Lastly, since Round 3 messages to Q could potentially be
different for each of the four scenarios, we index them additionally with � indi-
cating the scenario i.e. pc3,�

j→7 denotes Pj ’s Round 3 message to Q in Scenario
� (j ∈ [6], � ∈ [4]). These messages may be a function of the common reference
string (denoted by crs) and the PKI setup. Let αi denote the output of the
PKI setup (or more generally, the output of an arbitrary correlated randomness
setup) to party Pi. A party’s view comprises of crs, αi, its input, randomness
and incoming messages.

Due to the involved nature of the scenarios, we begin with an intuitive
description. Broadly speaking, this argument involves partitioning the parties
{P1, . . . , P6} into two sets {P1, P2, P6} and {P3, P4, P5}. Looking ahead, the final
scenario is designed in a manner that allows a corrupt Q to obtain: (i) output
with respect to some input of P1 using the communication from {P1, P2, P6}
and (ii) output with respect to a different input of P1 using the communication
from {P3, P4, P5}. Tracing back, we carefully design the other scenarios such
that Scenarios 1 and 2 let us conclude that if P1 behaves honestly only in its
messages to P6, then there must exist some x∗

1 ∈ {0, 1} such that the communi-
cation from {P3, P4, P5} to Q enables Q to obtain output with respect ¬x∗

1 with
a sufficiently large probability. On the other hand, Scenario 3 involves corrupt
{P3, P4, P5} who pretend to have received no message from P1, which lets us
conclude that the messages from {P1, P2, P6} in such a case must enable Q to
obtain output with respect to honest input x1 of P1. Combining the above two
inferences in the final scenario lets us reach the final contradiction.
Following is a description of the scenarios. In each scenario, on behalf of the cor-
rupt parties, we assume that the adversary uses the honest input and its mali-
cious behaviour is limited to dropping some of the messages that were received
or supposed to be sent. The views of the parties across various scenarios are
described in Tables 10, 11, 12 and 13.



148 S. Badrinarayanan et al.

Scenario 1: Adversary corrupts {P1, P6}. P1 does not communicate throughout
the protocol. P6 behaves honestly in Round 1 and Round 2 (thereby would

send ˜pc26→j for j ∈ [5]) and aborts (does not communicate) in Round 3.
Scenario 2: Adversary corrupts {P1, P6}. P1 does not communicate throughout

the protocol. P6 behaves honestly in Round 1 and Round 2, except that P6

pretends to have received Round 1 message from P1 (thereby would send
pc26→j for j ∈ [5]). Note that it is possible for P6 to pretend in such a manner
as adversary corrupts both P1, P6. Lastly, P6 aborts in Round 3.

Scenario 3: Adversary corrupts {P3, P4, P5}. All corrupt parties behave honestly
in Round 1. In Round 2, {P3, P4, P5} only communicate towards P6, towards
whom they pretend that they did not receive Round 1 message from P1 (i.e.

Pi sends ˜pc2i→6 to P6 for i ∈ {3, 4, 5}). Lastly, {P3, P4, P5} abort in Round 3.
Scenario 4: Adversary corrupts {P1, P2, Q} who do the following:8

Round 1: P1 behaves honestly only to {P2, P6, Q} (only P6 among the honest
parties). P2 and Q behave honestly.

Round 2: P1 behaves honestly only to {P2, P6, Q}. P2 and Q pretend towards
{P3, P4, P5} as if they did not receive Round 1 message from P1 (i.e. send
˜pc2i→j to Pj for i ∈ {2, 7}, j ∈ {3, 4, 5}). Towards {P1, P2, P6} (only P6

among honest parties), P2 and Q act as if Round 1 message had been
received from P1 (i.e. send pc2i→j to Pj for i ∈ {2, 7}, j ∈ {1, 2, 6} \ i).

Round 3: P1 and P2 drop the Round 2 messages obtained from {P3, P4, P5}
(to emulate Scenario 3) and communicate to Q accordingly.

Table 10. Views of {P1 . . . P7} in Scenario 1.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{1,2} {pc1j→3}j∈[7]\{1,3} {pc1j→4}j∈[7]\{1,4} {pc1j→5}j∈[7]\{1,5} {pc1j→6}j∈[7]\{1,6} {pc1j→7}j∈[7]\{1,7}

Round 2 { ˜pc2j→1}j∈[7]\{1} { ˜pc2j→2}j∈[7]\{1,2} { ˜pc2j→3}j∈[7]\{1,3} { ˜pc2j→4}j∈[7]\{1,4} { ˜pc2j→5}j∈[7]\{1,5} { ˜pc2j→6}j∈[7]\{1,6} –

Round 3 – – – – – – {pc3,1j→7}j∈{2,3,4,5}

Table 11. Views of {P1 . . . P7} in Scenario 2.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{1,2} {pc1j→3}j∈[7]\{1,3} {pc1j→4}j∈[7]\{1,4} {pc1j→5}j∈[7]\{1,5} {pc1j→6}j∈[7]\{1,6} {pc1j→7}j∈[7]\{1,7}

Round 2 { ˜pc2j→1}j∈{2,3,4,5,7} { ˜pc2j→2}j∈{3,4,5,7} { ˜pc2j→3}j∈{2,4,5,7} { ˜pc2j→4}j∈{2,3,5,7} { ˜pc2j→5}j∈{2,3,4,7} { ˜pc2j→6}j∈{2,3,4,5,7} –

pc26→1 pc26→2 pc26→3 pc26→4 pc26→5

Round 3 – – – – – – {pc3,2j→7}j∈{2,3,4,5}

8 Generally, communication between corrupt parties need not be specified but we
include it here for easier understanding of Table 13.



On the Round Complexity of Fully Secure Solitary 149

Table 12. Views of {P1 . . . P7} in Scenario 3.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{2} {pc1j→3}j∈[7]\{3} {pc1j→4}j∈[7]\{4} {pc1j→5}j∈[7]\{5} {pc1j→6}j∈[7]\{6} {pc1j→7}j∈[7]\{7}
Round 2 {pc2j→1}j∈{2,6,7} {pc2j→2}j∈{1,6,7} {pc2j→3}j∈{1,2,6,7} {pc2j→4}j∈{1,2,6.7} {pc2j→5}j∈{1,2,6.7} {pc2j→6}j∈{1,2,7} –

˜{pc2j→6}j∈{3,4,5}
Round 3 – – – – – – {pc3,3j→7}j∈{1,2,6}

Table 13. Views of {P1 . . . P7} in Scenario 4.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{2} {pc1j→3}j∈[7]\{1,3} {pc1j→4}j∈[7]\{1,4} {pc1j→5}j∈[7]\{1,5} {pc1j→6}j∈[7]\{6} {pc1j→7}j∈[7]\{7}

Round 2 { ˜pc2j→1}j∈{3,4,5} { ˜pc2j→2}j∈{3,4,5} { ˜pc2j→3}j∈{2,4,5,7} { ˜pc2j→4}j∈{2,3,5,7} { ˜pc2j→5}{2,3,4,7} { ˜pc2j→6}j∈{3,4,5} –

{pc2j→1}j∈{2,6,7} {pc2j→2}j∈{1,6,7} pc26→3 pc26→4 pc26→5 {pc2j→6}j∈{1,2,7}
Round 3 – – – – – – {pc3,4j→7 ≡ pc3,3j→7}j∈{1,2,6}

{pc3,4j→7 ≡ pc3,2j→6}j∈{3,4,5}

The proof outline is as follows. First, we show that there exits x∗
1 ∈ {0, 1}

such that if Scenario 1 occurs with respect to x∗
1 and uniformly randomly sam-

pled x3, x4, x6, then the output obtained by Q is computed on ¬x∗
1 with a

sufficiently large (constant) probability. Next, we show this is also the case
for Scenario 2 (with a different probability). Since this inference may appear
counter-intuitive, we elaborate the argument in some detail below. Note that
the difference between Scenario 1 and 2 lies in the communication from P6 to
honest parties {P2, P3, P4, P5} in Round 2. While in the former, P6 acts as if he
did not receive Round 1 message from P1; in the latter he pretends as if he did
receive Round 1 message from P1. We define a sequence of hybrids hyb0, . . . , hyb4.
Specifically, hyb0 and hyb4 refer to Scenario 1 and 2 respectively and hybi is same
as hybi−1 (i ∈ {1, . . . , 4}) except that P6 acts towards Pi+1 that he did receive
Round 1 message from P1. We show that in each hybrid, the output obtained by
Q is w.r.t. ¬x∗

1 with a sufficiently large (but slightly different) probability. Next,
if Scenario 3 occurs, then the output obtained by Q must be computed on x1

(honest input of P1) due to correctness of Π. Lastly, we show that such a proto-
col Π is susceptible to an attack by {P1, P2, Q} which allows Q to obtain both
the above evaluations of f (i.e., on both x∗

1 and ¬x∗
1), which is a contradiction

to security of Π. We defer the formal proof to the full version [7].

5.2 General Five-Round Protocol

In this section, we present a five-round solitary output MPC protocol with
guaranteed output delivery that works for any n in the presence of an hon-
est majority - that is, any t < n/2 where n is the number of parties and t
is the number of corrupt parties. Our protocol uses the following primitives: a
(n
2 +1)-out-of-n decentralized threshold FHE scheme dTFHE = (dTFHE.DistGen,

dTFHE.Enc, dTFHE.PartialDec, dTFHE.Eval, dTFHE.Combine), a digital signa-
ture scheme (Gen,Sign,Verify), and a simulation-extractible NIZK argument



150 S. Badrinarayanan et al.

(NIZK.Setup,NIZK.Prove,NIZK.Verify). We use the NIZK argument for two
NP languages L1, L2 defined in Sect. 3.2. All of them can be built assuming
LWE [10,11,38]. Formally, we show the following theorem:

Theorem 5. Assuming LWE, protocol Π5−round described below is a five-round
secure solitary output MPC protocol with god with a PKI setup and pairwise-
private channels. The protocol works for any n, any function and is secure
against a malicious rushing adversary that can corrupt any t < n/2 parties.

Overview. Consider n parties P1, . . . , Pn who wish to evaluate function f :
({0, 1}λ)n−1 → {0, 1}λ. We also denote Pn as the output receiving party Q.
In some places, we use the notation msgi→j to indicate that the message was
sent by party Pi to Pj . At a high level, our protocol works as follows. In Round
1, each party Pi sends to every other party a dTFHE encryption [[xi]] along
with a NIZK argument πi proving that the encryption is well formed. On top of
that, Pi also attaches its signature σi ← Sign(skeyi, ([[xi]], πi)). In Round 2, each
party sends all the messages it received in Round 1 to Q. In Round 3, Q first
initializes a string msg = ⊥ and does the following for each i ∈ [n]: if it received
a valid message from Pi in Round 1, (where valid means the signature σi and
the NIZK πi verify successfully) it includes the message in msg and sets a value
cti = [[xi]]. Else, in Round 2, if a different party Pi1 , forwards a valid message
([[xi]]i1→n, πi1→n, σi1→n) received from Pi in Round 1, include that in msg and
set cti to be [[xi]]i1→n. If no such i1 exists, set cti = ⊥ and append ⊥ to msg.
Then, Q sends msg and a signature on it σmsg to all parties. In Round 4, each
party sends the tuple received from Q in Round 3 to every other party. Finally,
in Round 5, each party Pi sends its partial decryption (along with a NIZK) on
the homomorphically evaluated ciphertext [[y]] = dTFHE.Eval(f, ct1, . . . , ctn) if:
(i) in Round 3, Q sent (msg, σmsg) such that σmsg verifies, (ii) it did not receive
a different tuple (msg′, σmsg′) from another party in Round 4 such that σmsg′

verifies, (iii) in the string msg, every tuple of the form ([[xj ]], πj , σj) is valid, (iv)
for every party Pk, if Pi received a valid message from Pk in Round 1, then
in Q’s Round 3 message msg, there must exist some valid tuple of the form
([[x′

k]], π′
k, σ′

k) on behalf of Pk (not necessarily the one Pi received in Round 1).
After Round 5, Q combines all the partial decryptions (if the NIZK verifies)
to recover the output. Our protocol is formally described below. We defer the
security proof to the full version [7].

CRS: Send crs ← NIZK.Setup(1λ) to every party.

PKI Setup:

– For each i ∈ [n]: sample (pki, ski) ← dTFHE.DistGen(1λ, 1d, i; ri) and (vkeyi,
skeyi) ← Gen(1λ).

– Public key: pk = pk1‖ . . . ‖pkn and {vkeyi}i∈[n].
– Secret keys: (ski, ri, skeyi) to party Pi for each i ∈ [n].

Inputs: For each i ∈ [n], party Pi has an input xi ∈ {0, 1}λ.



On the Round Complexity of Fully Secure Solitary 151

Protocol:

1. Round 1: For each i ∈ [n]:
– Pi computes [[xi]] ← dTFHE.Enc(pk, xi; ρi) using randomness ρi, πi ←

NIZK.Prove(crs, sti,witi) for sti ∈ L1 where sti = ([[xi]], pk) and witi =
(xi, ρi).

– Then, compute σi ← Sign(skeyi, ([[xi]], πi)) and send ([[xi]], πi, σi) to every
party.

2. Round 2: For each i ∈ [n], Pi sends all the messages it received in Round 1
to party Pn(= Q).

3. Round 3: Party Pn(= Q) does the following:
– Define strings msg, ct1, . . . , ctn as ⊥.
– For each i ∈ [n], let {([[xj ]]i→n, πi→n

j , σi→n
j )}j∈[n]\{i} denote the message

received from Pi in Round 2 and ([[xi]]i→n, πi→n
i , σi→n

i ) denote the mes-
sage received from Pi in Round 1.

– For each j ∈ [n], do the following:
• Let {([[xj ]]1→n, π1→n

j , σ1→n
j ), . . . , ([[xj ]]n→n, πn→n

j , σn→n
j )} be the

messages received across both rounds on behalf of party Pj .
• Pick the lowest i1 such that Verify(vkeyj , ([[xj ]]i1→n, πi1→n

j ), σi1→n
j ) =

1 and NIZK.Verify(crs, πi1→n
j , stj) = 1 for stj ∈ L1 where stj =

([[xj ]]i1→n, pk). Set ctj := [[xj ]]i1→n and msg := msg‖“Party j ”‖
([[xj ]]i1→n, πi1→n

j , σi1→n
j ).

• If no such i1 exists, set msg = msg‖“Party j ”‖⊥.
– Compute σmsg ← Sign(skeyn,msg). Send (msg, σmsg) to all parties.
– Set [[y]] = dTFHE.Eval(pk, f, ct1, . . . , ctn).9

4. Round 4: For each i ∈ [n − 1], Pi sends the message received from Q in
Round 3 to every party.

5. Round 5: For each i ∈ [n − 1], Pi does the following:
– Let {(msgj→i, σj→i

msg )}j∈[n−1]\{i} be the messages received in Round 4 and
(msgn→i, σn→i

msg ) be the message from Q in Round 3.
– If Verify(vkeyn,msgn→i, σn→i

msg ) �= 1 (OR) msgn→i is not of the form
(“Party 1 ”‖m1‖ . . . ‖“Party n ”‖mn), send ⊥ to Q and end the round.

– Output ⊥ to Q and end the round if there exists j �= n such that:
• msgj→i �= msgn→i (AND)
• Verify(vkeyn,msgj→i, σj→i

msg ) = 1 (AND)
• msgj→i is of the form (“Party 1 ”‖m1, . . . , ‖“Party n ”‖mn). This

third check is to ensure that a corrupt Pj doesn’t re-use a valid sig-
nature sent by Q in the first round as its message in Round 4.

– Define strings ct1, . . . , ctn.
– Parse msgn→i as (“Party 1 ”‖m1, . . . , ‖“Party n ”‖mn).
– For each j ∈ [n], do the following:

9 Let S = {i|cti = ⊥}. Here, we actually homomorphically evaluate the residual
function fS(·) that only takes as input {xj}j /∈S and uses the default values for all
indices in the set S. For ease of exposition, we skip this notation in the rest of the
protocol and proof.



152 S. Badrinarayanan et al.

• If in Round 1, Pi received ([[xj ]], πj , σj) from Pj such that Verify(vkeyj ,
([[xj ]], πj), σj) = 1 and NIZK.Verify(πj , stj) = 1 for stj ∈ L1 where
stj = ([[xj ]], pk), set bitj = 1. Else, set bitj = 0.

• If mj = ⊥:
* If bitj = 1, send ⊥ to Q and end the round.
* Else, set ctj = ⊥.

• If mj = ([[xj ]]i1→n, πi1→n
j , σi1→n

j ):
* If Verify(vkeyj , ([[xj ]]i1→n, πi1→n

j ), σi1→n
j ) = 1 and NIZK.Verify(crs,

πi1→n
j , stj) = 1 for stj ∈ L1 where stj = ([[xj ]]i1→n, pk), set ctj =

[[xj ]]i1→n.
* Else, send ⊥ to Q and end the round.

– Compute [[y]] ← dTFHE.Eval(pk, f, ct1, . . . , ctn).
– Compute [[y : ski]] ← dTFHE.PartialDec(ski, [[y]])

and πdec
i ← NIZK.Prove(crs, stdeci ,witdeci ) for stdeci ∈ L2 where stdeci =

([[y : ski]], [[y]], pki, i) and witdeci = (ski, ri).
– Send ([[y : ski]], πdec

i ) to Q.
6. Output Computation: Q does the following:

– Recall the value [[y]] computed in Round 3.
– For each i ∈ [n], if NIZK.Verify(crs, πdec

i , stdeci ) �= 1 for stdeci ∈ L2 where
stdeci = ([[y : ski]], [[y]], pki, i), discard [[y : ski]].

– Output y ← dTFHE.Combine(pk, {[[y : ski]]}i∈S) where S contains the set
of non-discarded values from the previous step.

5.3 (t + 2) Round Protocol

We now describe how to transform the two-round protocol (say Π) of [28] into
a (t + 2)-round protocol Π ′ for solitary MPC with god. Recall that protocol
Π (that assumes a PKI setup) achieves god for standard MPC and involves
communication only via broadcast channels in both rounds. We propose the
following changes to Π. First, we employ a (t+1)-round protocol over pairwise-
private channels that realizes the broadcast functionality [17] to execute Round
1 of Π. Next, the messages communicated via broadcast in Round 2 of Π are
instead sent privately only to Q (as only Q is supposed to obtain output) in
Round (t + 2) of Π ′. This completes the high-level description of Π ′ whose
security follows directly from security of Π. This approach achieves better round
complexity than our general five-round construction (Sect. 5.2) when t ≤ 2.

Acknowledgments. We would like to thank the anonymous reviewers for their helpful
and constructive comments on the manuscript. P. Miao is supported in part by the NSF
CNS Award 2247352, a DPI Science Team Seed Grant, a Meta Award, and a DSI Seed
Grant. All the authors did part of the work while at Visa Research.



On the Round Complexity of Fully Secure Solitary 153

References

1. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous byzantine
agreement with expected O(1) rounds, expected o(n2) communication, and optimal
resilience. In: FC (2019)

2. Alon, B., Cohen, R., Omri, E., Suad, T.: On the power of an honest majority in
three-party computation without broadcast. In: TCC (2020)

3. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 14

4. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization
of fairness in secure two-party computation of Boolean functions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 199–228. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6 10

5. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

6. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Threshold multi-key FHE
and applications to round-optimal MPC. In: ASIACRYPT (2020)

7. Badrinarayanan, S., Miao, P., Mukherjee, P., Ravi, D.: On the round complexity of
fully secure solitary mpc with honest majority. Cryptology ePrint Archive, Paper
2021/241 (2021). https://eprint.iacr.org/2021/241

8. Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-
server aggregation with (poly)logarithmic overhead. In: CCS, pp. 1253–1269. ACM
(2020)

9. Bonawitz, K., et al. Practical secure aggregation for privacy-preserving machine
learning. In: CCS (2017)

10. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R.,
Sahai, A.: Threshold cryptosystems from threshold fully homomorphic encryption.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 565–
596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 19

11. Canetti, R., et al.: Fiat-shamir: from practice to theory. In: STOC (2019)
12. Chor, B., Merritt, M., Shmoys, D.B.: Simple constant-time consensus protocols in

realistic failure models. J. ACM (JACM) 36(3), 591–614 (1989)
13. Cleve, R.: Limits on the security of coin flips when half the processors are faulty

(extended abstract). In: STOC (1986)
14. Cohen, R., Garay, J., Zikas, V.: Broadcast-optimal two-round MPC. In: Canteaut,

A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 828–858. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 28

15. Damg̊ard, I., Magri, B., Ravi, D., Siniscalchi, L., Yakoubov, S.: Broadcast-optimal
two round MPC with an honest majority. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 155–184. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84245-1 6

16. Damg̊ard, I., Ravi, D., Siniscalchi, L., Yakoubov, S.: Minimizing setup in broadcast-
optimal two round MPC. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023.
LNCS, vol. 14005, pp. 129–158. Springer, Heidelberg (2023). https://doi.org/10.
1007/978-3-031-30617-4 5

https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://eprint.iacr.org/2021/241
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-030-45724-2_28
https://doi.org/10.1007/978-3-030-84245-1_6
https://doi.org/10.1007/978-3-030-84245-1_6
https://doi.org/10.1007/978-3-031-30617-4_5
https://doi.org/10.1007/978-3-031-30617-4_5


154 S. Badrinarayanan et al.

17. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

18. Feldman, P., Micali, S.: An optimal probabilistic algorithm for synchronous Byzan-
tine agreement. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.)
ICALP 1989. LNCS, vol. 372, pp. 341–378. Springer, Heidelberg (1989). https://
doi.org/10.1007/BFb0035770

19. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. 14(4), 183–186 (1982)

20. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential
consensus. In: Borowsky, E., Rajsbaum, S. (eds.) 22nd ACM PODC, pp. 211–220.
ACM (2003)

21. Fitzi, M., Garay, J.A., Maurer, U., Ostrovsky, R.: Minimal complete primitives
for secure multi-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 80–100. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44647-8 5

22. Garg, S., Goel, A., Jain, A.: The broadcast message complexity of secure multiparty
computation. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol.
11921, pp. 426–455. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5 16

23. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifi-
able secret sharing and secure multicast. In: STOC (2001)

24. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 12

25. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC (1987)

26. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptol. 18, 247–287 (2005)

27. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM 58(6), 24:1–24:37 (2011)

28. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

29. Halevi, S., Ishai, Y., Kushilevitz, E., Makriyannis, N., Rabin, T.: On fully secure
MPC with solitary output. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11891, pp. 312–340. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-36030-6 13

30. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

31. Karlin, A., Yao, A.: Probabilistic lower bounds for byzantine agreement. Unpub-
lished document (1986)

32. Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agree-
ment. J. Comput. Syst. Sci. 75(2), 91–112 (2009)

33. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. (1982)

34. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
35. Mohassel, A., Zhang, Y.: Secureml: a system for scalable privacy-preserving

machine learning. In: IEEE S & P (2017)

https://doi.org/10.1007/BFb0035770
https://doi.org/10.1007/BFb0035770
https://doi.org/10.1007/3-540-44647-8_5
https://doi.org/10.1007/3-540-44647-8_5
https://doi.org/10.1007/978-3-030-34578-5_16
https://doi.org/10.1007/978-3-030-34578-5_16
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-030-36030-6_13
https://doi.org/10.1007/978-3-030-36030-6_13
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8


On the Round Complexity of Fully Secure Solitary 155

36. Patra, A., Ravi, D.: On the exact round complexity of secure three-party computa-
tion. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
425–458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 15

37. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

38. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

39. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

https://doi.org/10.1007/978-3-319-96881-0_15
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4

	On the Round Complexity of Fully Secure Solitary MPC with Honest Majority
	1 Introduction
	1.1 Our Results
	1.2 Roadmap

	2 Technical Overview
	2.1 Overview of Upper Bounds
	2.2 Overview of Lower Bounds

	3 Preliminaries
	3.1 Notation and Setting
	3.2 Cryptographic Primitives

	4 With Broadcast and No PKI
	4.1 Necessity of Three Rounds
	4.2 Necessity of Broadcast in Round 1
	4.3 Necessity of Broadcast in Round 2

	5 With PKI and No Broadcast
	5.1 Necessity of Four Rounds
	5.2 General Five-Round Protocol
	5.3 (t + 2) Round Protocol

	References


