®

Check for
updates

Taming Adaptivity in YOSO Protocols:
The Modular Way

Ran Canetti!®) Sebastian Kolby?, Divya Ravi, Eduardo Soria-Vazquez®,
and Sophia Yakoubov?

! Boston University, Boston, USA
canetti@bu.edu
2 Aarhus University, Aarhus, Denmark
{sk,divya,sophia.yakoubov}@cs.au.dk
3 Technology Innovation Institute, Abu Dhabi, UAE
eduardo.soria-vazquez@tii.ae

Abstract. YOSO-style MPC protocols (Gentry et al., Crypto’21), are
a promising framework where the overall computation is partitioned into
small, short-lived pieces, delegated to subsets of one-time stateless par-
ties. Such protocols enable gaining from the security benefits provided
by using a large community of participants where “mass corruption”
of a large fraction of participants is considered unlikely, while keeping
the computational and communication costs manageable. However, fully
realizing and analyzing YOSO-style protocols has proven to be challeng-
ing: While different components have been defined and realized in various
works, there is a dearth of protocols that have reasonable efficiency and
enjoy full end to end security against adaptive adversaries.

The YOSO model separates the protocol design, specifying the short-
lived responsibilities, from the mechanisms assigning these responsibili-
ties to machines participating in the computation. These protocol designs
must then be translated to run directly on the machines, while preserv-
ing security guarantees. We provide a versatile and modular framework
for analyzing the security of YOSO-style protocols, and show how to use
it to compile any protocol design that is secure against static corruptions
of t out of ¢ parties, into protocols that withstand adaptive corruption
of T out of N machines (where T'/N is closely related to t/c, specifically
when t/c < 0.5, we tolerate T//N < 0.29) at overall communication cost
that is comparable to that of the traditional protocol even when ¢ << N.

Furthermore, we demonstrate how to minimize the use of costly non-
committing encryption, thereby keeping the computational and commu-
nication overhead manageable even in practical terms, while still provid-
ing end to end security analysis. Combined with existing approaches for
transforming stateful protocols into stateless ones while preserving static
security (e.g. Gentry et al. 21, Kolby et al. 22), we obtain end to end
security.

© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14370, pp. 33-62, 2023.
https://doi.org/10.1007/978-3-031-48618-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48618-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-48618-0_2

34 R. Canetti et al.

1 Introduction

Secure multiparty computation (MPC) allows data owners to outsource the pro-
cessing of their sensitive data to a set of machines, with the guarantee that as
long as fewer than a threshold ¢ of those machines are corrupt, no-one will learn
more about the data than revealed by the computation output. YOSO MPC
[GHK+21] is an emerging new style of MPC where participating machines have
very short term roles: they receive messages, performing an internal computa-
tion, and send messages in a single communication round to the next set of
participating machines. Before sending those messages, the machine erases all
other state relevant to the protocol execution.

The advantage of YOSO MPC is that the communication complexity of the
protocol can be sublinear in N (the number of available machines), even if the
corruption threshold 7' is linear in N. This might appear impossible, since if
the communication complexity is sublinear in N, the set of all machines ever
to send a message fits within the adversary’s corruption budget; however, the
crucial insight is that as long as an adversary cannot predict which machines
will “speak”, she is unable to target them. One of the challenges of YOSO MPC
is choosing participating machines in an unpredictable way, making it harder to
locate and adaptively attack those machines while they are active and relevant
to the protocol.

YOSO MPC protocols naturally decompose into two tasks. The first of these
is role assignment, which entails determining which machines will have a role to
play and handing them the secret keys they will need in order to do so, while
keeping their identities hidden from the adversary. The second task is actually
running the MPC by having the chosen machines play their assigned roles.

One can view YOSO MPC protocols through two lenses: In the natural world,
a protocol must specify instructions for physical machines, including instructions
for role assignment; i.e., how the machines should go about determining whether
they have a role to play, and if so, which one. In the abstract world, a YOSO
MPC protocol can be described in terms of the roles alone, without consideration
for the machines running them.

Some previous YOSO protocols (e.g. the protocol of Benhamouda et al.
[BGG+20]) are described in the natural world, running both role assignment
and computation in an entwined way. Others (e.g. the protocols of Gentry et al.
[GHK+21] and Acharya et al. [AHKP22]) are described in the abstract world,
relying on behind-the-scenes machinery to take care of role assignment.

The second is a more modular approach, resulting in simpler protocol descrip-
tions. However, these descriptions do not suffice for use in the real, natural world.
We need a compiler to translate them into something machines can run; such a
compiler might access an ideal role assignment functionality.

One such role assignment functionality and compiler were introduced by Gen-
try et al. [GHK+21]. However, the role assignment functionality presented by
Gentry et al. was perhaps too strong, in that it did not allow the adversary to
influence the role assignment, instead choosing all machines in an ideal, ran-
dom way. This makes it impossible for the most efficient known role assignment

Taming Adaptivity in YOSO Protocols: The Modular Way 35

mechanism (that of Benhamouda et al. [BGG+20]) to realize this functionality.
Furthermore, the compiler of Gentry et al. [GHK+21] has two drawbacks: (a) it
is inefficient, and (b) it is incompatible with some abstract protocols (e.g. the
protocol of Braun et al. [BDO22] and Kolby et al. [KRY22]).

1.1 Owur Contributions

In this paper, we fill the above gaps: we introduce a more realistic role assignment
ideal functionality Fra, give a realization of Fra, and present a more efficient,
more general compiler that relies on this new functionality. In particular, we
use non-committing encryption only for implementing Fra. All the messages of
the underlying (statically secure) protocol are encrypted using standard (CCA
secure) encryption.

1.1.1 Ideal Role Assignment Functionality In Sect.3, we introduce our
role assignment ideal functionality Fga. Our goal is to capture a more general
and broad class of potential and existing role assignment protocols. Towards
this, we give a comprehensive design of Fgra that supports modeling various
assignment approaches.

At a very high-level Fra supports two kinds of elections: assignment of a role
to a random honest machine, and assignment influenced by the adversary, to a
chosen, possibly corrupt machine. The machines are allowed to probe the Fra to
read the public keys of the roles assigned so far, deduce if they themselves have
been assigned a role, and retrieve the secret keys in such a case. Furthermore,
our design of Fra supports modeling various scenarios that can occur during its
execution, such as (a) when the adaptive adversary manages to corrupt a role
that was assigned when it was uncorrupted (before the election of the committee
was completed), (b) when a machine wishes to delete its state before it speaks
on behalf of a role, and (¢) when a machine is unavailable for nomination while
it refreshes its secret state.! The formal details appear in Sect. 3.

1.1.2 Compiling Abstract Protocols In Sect. 4, we describe how to lever-
age Fra to compile an MPC protocol in the abstract world into one that can
be run in the natural world. Unlike the compiler of Gentry et al. [GHK+21],
we only use non-committing encryption within the realization of Fra (and not
within the compiler itself). This has a two-fold advantage: (a) it yields a sig-
nificant efficiency gain, and (b) it gives compatibility with a broader class of
abstract YOSO protocols (e.g. the protocol of Braun et al. [BDO22] and Kolby
et al. [KRY22)).

At a high-level, in our compiled protocol in the natural world, each machine
deduces if it has been selected for a role by invoking the Fgra. If this is the case, it

! In our particular use-case, machines are unable to be nominated between deleting
their previous secret key and broadcasting a fresh public key. This allows one machine
to hold multiple roles, but prevents nominations which overlap with the machine
speaking for a role.

36 R. Canetti et al.

reads the bulletin board (in the natural world) to obtain ciphertexts encrypted
using that role’s public key. It can decrypt these ciphertexts using the secret
keys provided by Fra and proceed to compute the outgoing messages of the role
to other roles. These outgoing messages can be encrypted using the other roles’
public keys (provided by Fra) and posted on the bulletin board. Just before a
machine speaks on behalf of a role, it instructs the Fra to delete its state. After
speaking, it instructs Fgra that it is ready for new nominations.

The main challenge is proving adaptive security of the compiled protocol,
assuming that the underlying abstract protocol is only statically secure. The
crux of our proof is that the set of corrupt roles can be chosen statically, and
then the Fra may be suitably re-programmed so that adaptive corruption of
machines are appropriately matched to the already chosen static corrupt roles.
We refer to Sect. 5 for details on the technicalities in our proof.

Compiling Abstract Protocols that Require Message Verification. The above com-
piler supports abstract protocols that use only ideally private point-to-point and
broadcast channels. This does not cover a large class of abstract YOSO protocols
where parties are expected to accompany their messages with zero-knowledge
proofs that relate their outgoing messages to their secret state and previously
received messages. Indeed, in order to compile such protocols to natural ones,
such proofs would need to involve both secret state from the abstract protocol
and secret keys from the compiler itself. In Sect. 6, we show how our compiler
can be extended to abstract protocols that contain such constructs. More specif-
ically, we modify the above compiler to accommodate abstract protocols that
leverage the functionality Fyespa [KRY22], which is used to enable parties to
prove to others that the broadcast and peer-to-peer messages they send within
a protocol were derived honestly.

In order to extend our compiler to abstract protocols using Fyespa, we need
to be able to emulate the verifiability of messages in the natural world. For this,
we simply rely on augmenting the messages posted on the bulletin board in
the compiled protocol with corresponding non-interactive zero-knowledge proofs
proving that these messages were computed correctly.

1.1.3 Realizing the Role Assignment Functionality In Sect.7, we mod-
ify the role assignment protocol of Benhamouda et al. [BGG+20] to realize Fga.
As shown in [HLH+22], their protocol had problems in addressing the adaptivity
of the adversary when it came to realizing the necessary anonymity property.
As in [BGG+20], our modified protocol ITgra uses a cryptographic sortition algo-
rithm in order to ensure that an adversary is not able to increase the likelihood
of corrupting a role of his choice. Furthermore, IIga uses Key and Message Non-
Commiting Encryption (KM-NCE). This enables the simulator to deal with
the different problematic scenarios described above. That is, by creating “fake”
ciphertexts, the simulator can deal with the case of honest parties sending mes-
sages to recipients who were a priori expected to be honest, but then became
corrupted by the adversary.

Taming Adaptivity in YOSO Protocols: The Modular Way 37

Crucially, our protocol instructs nominated machines to erase their private
decryption key before making themselves known. As soon as the machine com-
pletes its role as a committee member, it chooses a new key pair and registers
the new public encryption key with the PKI server. The machine will keep a
(truly) long-term signature key in order to authenticate itself to the PKI server.

The much less efficient role assignment protocol of Gentry et al. [GHM+-21]
(which uses any MPC protocol to run random-index PIR) may be modified to
trivially realize Fra, by a similar application of KM-NCE.

2 Preliminaries

2.1 Key and Message Non-commiting Encryption

We recall the notion of a Key and Message Non-Commiting Encryption (KM-
NCE) from [HLH+22], which is an extension of receiver non-commiting encryp-
tion. Informally, a KM-NCE is a public-key encryption scheme that allows to
generate fake ciphertexts without any public key in such a way that those fake
ciphertexts can later be decrypted to any plaintext for any public key, by gen-
erating an appropriate secret key on the fly. We briefly recall the syntax of a
KM-NCE scheme, referring the reader to [HLH+22] for a more detailed motiva-
tion.

Setup(1®) — pp: Given security parameter 17, the setup algorithm generates
public parameters pp.

Gen(pp) — (pk, sk, tk): Given public parameters pp, the key generation algorithm
produces a public key pk and secret key sk, as well as a trapdoor key tk. The
trapdoor key is not used for encryption or decryption, but instead provides
additional information for the purposes of opening simulated ciphertexts.

Enc(pp, pk, m) — ¢t Given public parameters pp, public key pk and a message
m, the encryption algorithm produces a ciphertext c.

Dec(pp, sk, c) — m: Given public parameters pp, public key pk and a ciphertext
¢, the decryption algorithm outputs a plaintext m.

Fake(pp) — (¢, 7): Given only the public parameters pp, the fake algorithm pro-
duces a fake ciphertext ¢ and additional trapdoor information 7.

Openy (pp, tk, pk, sk, (c%, 75, m>) e[k)) — sk’:] Given public parameters pp, keys
tk,pk, sk, and k tuples, each containing a ciphertext c,, its trapdoor infor-
mation 7, and a desired plaintext m, the open algorithm produces a fresh
secret key sk’ corresponding to pk, such that each ciphertext appropriately
decrypts to the desired plaintext.

In the security experiments for KM-NCE the adversary is never given trapdoor
keys, implicitly requiring secure erasure of these keys if we wish to achieve adap-
tive security.

Definition 1 (Security). A KM-NCE scheme KM-NCE = (Setup, Gen, Enc,
Dec, Fake, Open,,) in the k-challenge setting is CCA-secure if for any PPT adver-
sary A = (A1, Aa, A3), the advantage AdvﬁMNEchﬁ(,\) =

-NCE-CCA- -NCE-CCA-i
| Pr{Expiganee s (V) = 1] — PrBxpiunce a " (A) = 1]]

38 R. Canetti et al.

KM-NCE-CCA-real KM-NCE-CCA-ideal

is negligible, where EXPKymNCE. Ak and EXPgyNCE Ak are defined in
Fig. 1.

BpHIEE S0 ExpEAEE S0

pp «$ Setup(1?) pp +$ Setup(1?)

(pk, sk,tk) <$ Gen(pp) (pk, sk, tk) <$ Gen(pp)

((m2)e(n), stater) <8 A?Dec(pp,pk) ((m2)4e(x), stater) <$ A?D“(pp,pk)

(¢4 <% Enc(pp, pk, m3))e) ((c5,7]) <=3 Fake(pp)) e(u

states +$ Ag“’“((cj)we[k],statel) statey «$ Agf’“((c;)ye[k],statel)

b +$ As(sk, states) sk’ <=8 Open,.(pp, tk, pk, sk, (c3,

Return b T3)velk])

b <8 As(sk’, states)
Obec(c): Return b

If ce{c; : v € [k]}: Return L
m = Dec(pp, sk, ¢)
Return m

Fig. 1. The experiments for KM — NCE-CCA security of a KM-NCE scheme.

Note, KMNCy-CCA security implies conventional adaptive CCA security, as
the fake algorithm does not take a message as input. By a hybrid argument, the
encryption of any message mg must be indistinguishable from a faked ciphertext,
which in turn is itself indistinguishable from the encryption of any other message
mi.

KM-NCE schemes can be constructed from hash proof systems, as shown in
[HLH+22].

2.1.1 KM-NCE with a Unique Recipient We need to define an additional
property for KM-NCE, which ensures that the adversary cannot produce (some-
thing that looks like) a ciphertext which decrypts under two different honest
secret keys.

Definition 2 (Unique recipient). A KM-NCFE scheme KM-NCE = (Setup,
Gen, Enc, Dec, Fake, Open,) is unique recipients if for any PPT adversary A,
Pr[Expﬁm:NEEﬂR()\) = 1] is negligible, where Expﬁm:NgE:iR is defined in Fig. 2.

2.1.2 A Unique Recipient KM-NCE Construction We show how to
build a unique recipient KM-NCE encryption scheme in the programmable ran-
dom oracle model. Since this implies the notion of receiver non-committing
encryption, we know that random oracles are necessary in order to avoid secret
keys that are as long as the messages to be encrypted [Nie02].

Our construction is based on a simple variant of ElGamal, which makes
it more efficient than the KM-NCE construction based on hash proof systems

Taming Adaptivity in YOSO Protocols: The Modular Way 39

EXpiince.A () Opec(©):

pp <$ Setup(1*) If c € {c} : v € [k]}: Return L
((pki, Sk‘i, tkl) <*$ Gen(pp))ie[h] Tn/L — Dec(pp7 Skv C)

¢ <% A%< (pp, {pk;tiern) Return m/ L

If Fiq,i5 € [h} T 75 io N\

Dec(pp, ski,,c) # L A RO(s):

Dec(pp, ski,,c) # L, return 1. S returns a uniformly random ¢.

Otherwise, return 0.

Fig. 2. The unique recipient experiment.

(HPS) from [HLH+22, Section 5.3], which relies on a matrix variant of DDH
[EHK+13]. Furthermore, that construction does not have the unique recipient
property that we need. The reason behind this is that, since the projected and
unprojected hash need to coincide for elements x of the language, the adversary
can use the unprojected hash (in their specific notation, 15?1’/13) together with the
public keys of honest parties in order to try and find a suitable witness that
leads to a collision (in their notation, the same 7) with several secret keys. Once
he has that, it is easy for him to come up with the rest of the elements of the
ciphertext (given z, any d can be fixed by varying the message m. Hence, a
whole range of values 7 = H(z,d) can be explored by the adversary). It is very
easy for the adversary to come up with elements of the language = and their
witnesses w, since this is a necessary feature for the practical efficiency of the
encryption algorithm. Thus, we cannot rule out maliciously created ciphertexts
that decrypt to several recipients. In more detail, for the HPSs from [HLH+22,
Section 6], each public key defines a hyperplane, and collisions happen at the
intersection of any two such hyperplanes. This gives plenty of candidates for
collisions.

Whereas the prior attack to the unique recipient property is specific to
the instantiation of construction of [HLH+22, Section 5.3] with the HPSs from
[HLH+22, Section 6], it is likely that similar attacks could be mounted for other
natural constructions based on HPSs. The necessary relation between the pub-
lic and private hash functions, together with any nice algebraic description of
the public hashing algorithm (e.g. defining hyperplanes as in the attack above)
would potentially lead to the same problem.

We define below our candidate construction based on a modification of ElGa-
mal. The algorithms of our scheme are oracle algorithms with query access to
the oracle RO : {0,1}* — {0,1}2%, we let this be implicit in our notation.

— pp «<$ Setup(1%): Pick a cyclic group G of order ¢, where ¢ is a k-bit prime,
and let g be a generator of G. Let the message space of the encryption scheme
be {0, 1}*. Set public parameters pp = (G, g, q).

40 R. Canetti et al.

~ (pk, sk,0) <—$ Gen(pp): Sample a «$ Z, let sk = a. Compute the public key
pk — g% and output (pk, sk,).

— ¢ 8% Enc(pp, pk, m): Sample r <8 Z, and compute 8 < g". Query the oracle
for a mask k < RO(pk") and a MAC d < RO(r,m). Let e «— k & (r,m), and
output ¢ = (0, e,d).

— m <« Dec(pp, sk,c): Parse ¢ = (3,e,d). Query the oracle k' « RO(3*%),
compute (1',m’) «— e @ k’. Check if ¢" = 8 and d = RO(r',m’), output m/ if
both conditions are satisfied, otherwise output L.

— (¢,7) <8 Fake(pp): Sample r «$ Z, and compute 5 « ¢". Let 7 = r.
Sample uniformly random strings e, d € {0,1}?" and let the fake ciphertext
be ¢ = (83, e,d). Output (c, 7).

— sk’ < Openy(pp, pk, sk, (c}, 75, m%) e)): To open a fake ciphertext ¢! =
(8,€e,d) as an encryption a message m, to a chosen pk. Let r = 7.J, program
the random oracle such that RO(r, m?) = d and RO(pk") = e® (r, m?). Output
sk’ = sk.

Intuitively it is possible to replace ciphertexts by fakes as long as the adver-
sary is unable to query either pk” or (r,m) to the random oracle. We observe that
an adversary querying these values it may be used to solve the computational
Diffie-Hellman problem. Including d = RO(r, m) allows the decryption oracle to
extract the plaintext and verify the integrity of the ciphertext without use of the
secret key. We now formally prove the security of our KM-NCE scheme.

Theorem 1. The construction above is KM-NCE,-CCA and unique recipient
secure, in the pROM under the CDH assumption in group G.

Proof. First, we consider unique recipient security. Assume for contradiction
there have been no collisions in random oracle, for a sufficiently large range
and bounded adversary this holds with overwhelming probability. A winning
adversary outputs a ciphertext ¢ = (f,e,d) such that for some sk;, sk;:
Dec(pp, ski,c) # L and Dec(pp,skj,c) # L. We subscript intermediate val-
ues in each decryption with the index of the secret key. For honestly generated
keys sk; # sk; with overwhelming probability, implying 3% # 3%%i. As a result,
k; # k', if there have been no collisions in the random oracle. This in turn implies
that (r,n;) # (r},n’;). For both outputs to be different from L, it must be the
case that d = RO(r, n}) = RO(r},n}) raising a contradiction.

Now consider KM-NCE-CCA security. Through a series of hybrids we will
replace ¢ = (83, e, d) with a fake ciphertext for each v € [k]. Faking a ciphertext
is only different in how ¢ and d are chosen. These two cases are only different in
the oracle output on inputs pk” and (r,m) prior to A3 receiving the secret key
sk.

In the real and ideal worlds the adversary receives the same secret key sk and
has access to an identically distributed random oracle. The only input which may
differ is states, produced by As. The views of Adversaries A; and Ay only differ
between the real and ideal game when querying pk” or (r,m) to the random
oracle. Thus, if A3 distinguishes the real and ideal worlds with non-negligible

Taming Adaptivity in YOSO Protocols: The Modular Way 41

advantage then one of A;, A2 must query pk” or (r,m) with probability greater
than or equal to the advantage. We will argue that such a pair (A;,.43) may be
reduced to an adversary solving the computational Diffie-Hellman problem.

Consider an adversary which queries either pk™ or (r,m) with probability
€, while making at most ¢ random oracle queries. Given a computational Diffie-
Hellman instance (g, x = g%,y = g"), we set pk = x and § = y. Note, the solution
to this instance is pk™ = ($¢. We will address how to provide a decryption oracle
without knowing the secret key a later. The reduction chooses a query index
i «$ [t]. When the adversary makes the ith query, if the input is of the form
(r,m), the reduction outputs pk", if the input only consists of a single element
z the reduction outputs this directly. The reduction aborts before providing As
the secret key. Note, the reduction needs 7 = r, which it does not have, to open
the ciphertexts to Ajs, preventing the use of Aj in the reduction. The reduction
yields an adversary solving the Diffie-Hellman problem with probability e/t.

We now return to the issue of providing a suitable decryption oracle during
our hybrids. Consider a ciphertext ¢* = (4*,e*,d*) queried to the decryption
oracle, which is not equal to any of the challenge ciphertexts. If d* is not a
random oracle output on an input of the form (r,m) output L, this includes any
d for faked ciphertexts. A ciphertext using d from a challenge with §* # g or
e* # e, real decryption would result in | with overwhelming probability.

For a given ciphertext, e and k' = RO(3**) uniquely determine (r,m); if this
has not yet been queried the probability RO(r, m) = d is 272%, and we may safely
return L. If d is an output of the random oracle the reduction may retrieve
the corresponding input (r,m). We check if 8 = ¢", returning L if this is not
the case. Given r the oracle then computes k' < RO(pk"); (r',m') «— e ® k'. If
(r',m') = (r,m) output m, otherwise output L.

2.2 Cryptographic Sortition

A cryptographic sortition protocol [CM19] allows to provably select a random
subset of parties according to some timely and truthful randomness through the
use of a Verifiable Random Function (VRF) [MRV99]. Importantly, a party can
find out whether it was selected through local computation, given the output
from the VRF.

Usual VRF definitions guarantee output unpredictability for adversarially
chosen inputs, provided that the keys were honestly generated. In our setting
this is insufficient, as it does not preclude an adversary choosing malformed keys
which bias its output distribution, causing it to be selected more frequently. To
ensure security against rogue key attacks of this form we will use the functionality
Fvre from [DGKR18], which explicitly allows malicious key generation and VRF
evaluation. The key property on which we will rely is “unpredictability under
malicious key generation”. This property is captured by the functionality always
sampling the VRF output regardless of whether the specified key was maliciously
generated. For a complete description of Fyrr with a corresponding realisation
we refer the reader to [DGKR18].

42 R. Canetti et al.

2.3 The You-Only-Speak-Once Model

The YOSO model introduced by Gentry et al. [GHK+21] formalised a variant
of the UC framework enabling the design of protocols focusing only on role
execution, and not the mechanisms for role assignment or receiver anonymous
communication. We will refer to protocols in this model as abstract YOSO pro-
tocols. The YOSO model builds on top of the plain UC model. In particular, it
uses the following constructs:

— Parties in the UC framework represent roles, namely abstract responsibilities.
In an actual execution of a YOSO protocol, the roles will would be carried out
by machine to which they are assigned to on the fly. The design of a YOSO
protocol is indifferent to which actual machines would be executing the role.

— Idealised communication functionalities are provided to the roles executing a
protocol, allowing point-to-point messages between roles. This corresponds to
the availability of receiver anonymous communication channels, but ignores
their realisation.

— Security is proven for “yosoified” versions of the protocol, where all roles are
placed within a YOSO wrapper. This wrapper enforces that roles only speak
once by killing them once they use a communication functionality. This is
modelled by a SPOKE token which the ideal communication functionalities
return upon the sending of messages. When receiving SPOKE the wrapper
additionally forwards this to any sub-routines and its environment. Killing
a role represents the machine running a role erasing any associated state,
preventing the adversary from later corrupting the role.

— While we want natural YOSO protocols to be secure against an adaptive
adversary, allowing the adversary this power in the abstract world would make
protocol design significantly more difficult. Gentry et al. [GHK+21] make the
observation that an adversary does not know which roles are assigned to a
machine before it is corrupted. As a result the adversary may be restricted in
the abstract world, while still being able to achieve adaptive security when
translated to the natural world. This is enforced through a new “corruption
controller” entity which dictates the types of corruptions the environment is
allowed to make.

As in [GHK+21], (and following [KMTZ13]) we use a bounded-delay broad-
cast functionality, along with a global clock, to capture synchronous communi-
cation. We recall the ideal functionality allowing point-to-point and broadcast
communication as in [GHK+21].

Functionality Fgcgspp [GHK+21]

This ideal functionality has the following behaviour:

— Initially create point-to-point and broadcast maps:
y : N x Role x Role — Msg, where y(r,R,R") = L for all r,R,R’
m : N X Role — Msg | where m(r,R) = L for all r,R.

Taming Adaptivity in YOSO Protocols: The Modular Way 43

— On input (SEND, S, ((R1,21),. .., (Rk,zx)),x) in round r proceed as fol-
lows:

e For i € [n] update y(r,S,R;) = x;. Store point to point messages
from the role.

e Update m(r,S) = x. Store the broadcast message from the role.

e Output (S, ((Ry,|z1]),- .-, (Rg, |zk|)),) to the simulator S.

e For corrupt roles R; output x; to the simulator S. Leak messages
lengths and the broadcast message to the simulator in a rushing fash-
1on.

e If S is honest give SPOKE to S.

— On input (READ,R,S,7’) in round r where ' < r for z = y(r’,S,R)
output = to R.

— On input (READ, S, r’) in round r where v’ < r output z = m(r’,S) to
R.

The central paradigm of synchronous abstract YOSO protocols is that execu-
tions proceeds by a sequence of committees, each permitting a certain corruption
threshold. These committees may potentially receive messages concurrently, or
even speak in the same round.

2.4 Compiling Abstract YOSO Protocols

By their nature, protocols designed in the abstract YOSO model cannot be run
directly on machines, they first have to undergo translation, or compilation, to
the natural world.

This compilation reraises the issues of role assignment and receiver anony-
mous communication. Any compiler must provide equivalent guarantees of secure
communication between roles in the protocol.

In their presentation of the YOSO model Gentry et al. [GHK+21] provide an
example of compilation from the abstract to natural world. Their approach used
a simplified toy timed ledger with role assignment functionality as a building
block. This functionality provided the necessary keys for roles, which were then
used to wrap messages in the underlying protocol in encryption. The compiler
allowed the compilation of an abstract protocol secure against random adaptive
point corruptions (i.e. an adversary only allowed to corrupt random roles), to a
natural protocol secure against chosen adaptive point corruptions.

The focus of the compiler of Gentry et al. [GHK+21] was demonstrating the
feasibility of compilation. As a result the compiler has a number of limitations,
such as the role assignment functionality not being realised. Additionally, to
achieve adaptive security the compiler uses non-committing encryption for all
messages in the underlying protocol, incurring a significant overhead.

44 R. Canetti et al.

3 Role Assignment

In this section we present the ideal functionality Fra?, which assigns machines
to computation roles while keeping this assignment hidden. (Note that which
machines provide input to the computation—and receive output from the
computation—could be determined in some fixed, external way, depending on
the application; therefore we consider only the assignment of machines to com-
putation roles, and not input and output roles.)

At a high-level, let us consider committee C' consisting of ¢ roles. There
are two possible ways in which our Fra chooses a machine for a role in C":
(a) choosing a machine at random from among the set of honest machines (i.e.
among the machines not corrupted so far), or (b) allowing the adversary to
choose the machine, as long as the number of machines chosen by the adversary
in C so far is within the allowed corruption bound (which is determined as a
function 7 on the fraction of corrupt machines). In the former case, Fra samples
fresh keys, gives the (public) encryption and verification keys to everyone, and
gives the corresponding (secret) decryption and signing keys only to the chosen
machine. In the latter case, all keys are chosen by the adversary. The commands
NoM-HONEST and NOM-CORRUPT capture the above kinds of nominations.

We need to ensure that the fraction of corruptions in a committee remains
within the allowed bound until the nomination is completed. Looking ahead, to
capture adaptive corruptions after the adversary has seen public keys generated
via NOM-HONEST but before FINISH (which finalises the keys for a commit-
tee), we introduce an additional command CORRUPT-NOMINEE. This command
allows accounting for the corruptions performed during the nomination process
as needed, rather than always having to generate corrupt keys in proportional
to the worst case threshold.

Once a set of ¢ machines are chosen for the committee C, Fra picks a random
permutation on [c] to determine which machine plays which role in C. Allowing
Fra to map nominated machines to roles, instead of having machines assigned
to specific roles in C' a priori, prevents the adversary from targeting a specific
role for corruption.

Further, there is a provision for each machine M to:

1. ‘Read’: this allows it to retrieve public keys corresponding to the roles that
have been assigned, as well as to obtain secret keys if it has been assigned a
role.

2. ‘Delete’: this command revokes M’s ability to perform future reads until the
point where it inputs ‘Ready’. (This revocation will also enable the imple-
mentation protocol to erase any secret keys that allow M to read information
related to already assigned roles.)

3. ‘Ready’: this allows it to signal that it is available to be assigned a new role.
We maintain both a global set of ready machines (“ready set”), and a
committee-specific ready set. The latter keeps track of machines that have
been ready throughout the nomination process for that committee.

2 Note this is not the same role assignment functionality as presented in [GHK+21].

Taming Adaptivity in YOSO Protocols: The Modular Way 45

If a machine that has been assigned a role gets corrupted after it has retrieved
its secret keys (which it learns when it inputs ‘read’) but before it inputs ‘delete’,
its secret keys are leaked to the adversary. However, if it gets corrupted after it
inputs ‘delete’, its secret keys remain hidden. As we will see later, this is crucial
for adaptive security, as it allows us to argue that an adversary gets no advantage
in corrupting a role after its execution.

The formal description of this ideal functionality Fra appears below. We
assume Fra to be synchronous, with round switches occurring at the same time
as the protocols using it. We present Fra as a functionality which is reused
for multiple committees rather than the perhaps simpler approach of a one time
functionality for each committee. We justify this choice by considering how exist-
ing constructions update their PKI. Specifically, whenever a machine has held
a role and subsequently revealed itself, said machine must refresh its long term
keys. This renders the machine unable to decrypt earlier messages pertaining to
the revealed role. These key erasures and updates to the PKI impede treating
it as a global setup (see [CDPWO7]), which would allow consolidating these to
just a single PKI. Using a single Fra for multiple committees thus forces any
realisation to deal with this challenge of updates directly.

We divide our role assignment functionality into two parts. The first describes
the general setup and commands provided by parties for establishing new com-
mittees and reading generated keys. The second describes the powers allowed
to the simulator, when populating committees under nomination with keys and
the leakage in the case of corruption.

— Functionality Fra(P,c,7,D,delay):

This functionality is synchronous, namely it has access to global clock func-
tionality as in the model of Katz et al. [KMTZ13]. It has the following
parameters:

— P: the set of machines.

— c¢: the size of a committee.

— 7: the function determining the number of allowed corruptions in a
committee (based on the current fraction of corrupt machines).

— D denoting a sampling algorithm, and

— delay denoting the upper bound on the number of rounds required to
complete nomination.

Init: The functionality is notified by the adversary whenever a party is
corrupted/ restored, and maintains the current partition of P into the sets
‘H and Z of all honest and corrupt party identifiers, respectively. It also
maintains a global set Ready initially equal to P.

New committee: After receiving (NEW, cid, C') from all honest parties up
until the round r specified by the cid ¢, store (cid, C, PKeys = (), SKeys =
(), cor = 0,nom = 0, fin = L). Ignore the command if any value is already
stored for cid.

46 R. Canetti et al.

— The lists PKeys and SKeys are initially empty. The list PKeys would be
updated with tuples (ek,vk,R) where (ek,vk) refer to the public keys
established for a role R. The list SKeys would be updated with tuples
(pid, dk, sk, R) where (dk, sk) refer to the secret keys corresponding to
the role R, which has been assigned to machine with identifier pid.

— The corruption and nomination counters, cor and nom, start at zero.

— A committee-specific ready set Ready.q is initialized the same as the
global ready set: Ready 4 = Ready.

— Finally, the flag signaling whether nomination is completed or not is
initially false: fin = L.

Each time an honest party inputs (NEw, cid, C'), forward this to the simu-

lator S.

@ For simplicity of exposition, we consider the case where all honest parties
are expected to take part in each assignment of a role. A natural relaxation
would only require some minimal quorum of parties to participate.

The simulator must perform nominations for each committee, but is restricted
by the number of nominations it may bias relative to the current fraction of
corrupt machines.

— Functionality Fra (continued):

Nominate honest: On input (NOM-HONEST,cid) from the simulator
S, retrieve the value (cid, C, PKeys, SKeys, cor,nom, fin). If no such value
exists do nothing. If nom < ¢, do the following:

— Update nom < nom + 1.

— Generate fresh encryption and signing keys for the chosen machine:
(ek, dk) < PKE.Gen(), (vk, sk) « SIG.Gen().

— Append (ek, vk, L) to PKeys.

— Add (L, dk, sk, L) to SKeys.

— If nom = ¢, go to procedure Finish(cid).

— Output (NoM-HONEST, cid, ek, vk) to the simulator S.

Nominate corrupt: On input (NOM-CORRUPT, cid, pid, (ek, vk), (dk, sk))

from the simulator S, retrieve the value (cid, C, PKeys, SKeys, cor, nom, fin).

If no such value exists, do nothing. If nom < ¢ and cor + 1 < 7(|Z|/|P)),

do the following:

— Update the nominated and corrupt counters nom «— nom + 1,cor «—
cor + 1.

— Append (ek, vk, L) to PKeys and (pid, dk, sk, L) to SKeys.

— If nom = ¢, go to procedure Finish(cid).

Taming Adaptivity in YOSO Protocols: The Modular Way

Corrupt nominee: On input (CORRUPT-NOMINEE, cid, pid) from the

simulator S, retrieve the value (cid’, C, PKeys, SKeys, cor, nom, fin) where

cid = cid’. If no such value exists, do nothing. If cor + 1 < 7(|Z|/|P|) and

cor < nom, do the following:

— cor «—cor+1

— Choose an element (pid’, dk, sk, L) uniformly at random between the
values of SKeys where pid’ = L.

— Update this value to be (pid, dk, sk, L)

— Output (CORRUPT-NOMINEE, cid, pid, dk, sk) to the simulator S.

Finish (cid): When the procedure Finish(cid) is called, retrieve the value
(cid’, C, PKeys, SKeys, cor, nom, fin) where cid’ = cid and do the following:
— Sample a random permutation ¢ on [c].
— For the ith element of PKeys update (ek, vk, L) to (ek, vk, Cy()).
— For the ith element of SKeys update (pid, dk, sk, L) as follows:
e If pid = L, choose an honest machine uniformly at random as
pid’ —$ D(H,P). If pid’ € Ready,4, update to (pid’, dk, sk, Cy;)).
e Else, update to (pid, dk, sk, Cy(;))-
— Let 7’ the current round number (read from the global clock). Set fin =
T for cid if 7/ < r + delay (where r denotes the round number specified
by the cid).

Output (FINISH, cid, ¢, PKeys) to the simulator S when finished.

Read: On input (READ, cid) from M with identifier pid, retrieve the value

(cid*, C, PKeys, SKeys, cor,nom, fin) where cid = cid® and fin = T. If no

such value exists, or M has read the output of committee cid before, do

nothing.

— Collect all values (pid*, dk, sk,R) in SKeys where pid* = pid into a list
SKeys'.

— Output (PKeys, SKeys') to M.

Delete: On input (DELETE) from M with identifier pid, do the following;:

— Overwrite all elements of SKeys of the form (pid*, dk, sk, R), where pid* =
pid, with (pid*, L, 1, R). Disallow any future signing queries by M for
role R.

— Set Ready < Ready \ {pid}.

— Set Ready,y <« Ready 4 \ {pid} for cid with fin = L.

— Output (DELETE, pid) to S.

Ready: On input (READY) from M with identifier pid, update the global
ready set Ready < Ready U {pid} in the beginning of the subsequent round.
Output (READY, pid) to the simulator S.

Corrupt: Upon receiving (CORRUPT, pid) from &, output all elements
(pid*, dk, sk, R) of any stored SKeys, where pid* = pid to S.

47

48 R. Canetti et al.

4 Compiling Abstract to Natural YOSO

Consider an abstract YOSO-protocol in the Fgcgspp-hybrid model which is mali-
ciously secure against a static adversary. This protocol is run by a set of com-
mittees, where each committee is associated with a set of roles. We may assume
the execution of any honest role is completed by inputting at most one SEND
command to an instance of Fgcgspp, this is enforced by the SPOKE token which
kills the role.

The goal of our compiler is to transform such a statically-secure YOSO
abstract protocol in the Fgcgspp-hybrid model into an adaptively-secure natural-
world protocol in the Fra-hybrid model, where Fra denotes the ideal function-
ality for role assignment defined in Sect.3. We also assume that the natural
protocol has access to a bulletin board (formalized as an ideal functionality
below) which can be used by anyone to broadcast a message.

— Functionality Fgpg

— Initially create broadcast maps:
m : N x Machine — Msg, where m(r, M) = L for all r, M.
— On input (SEND, sid, msg) from machine M in round r:
e Update m(r, M) = msg. Store the broadcast message from the role.
e Output (SEND, sid, msg) to the simulator S.
— On input (READ, sid, ') from machine M in round r where ' < r output
a set of all elements (M’,r’, msg) where msg = m(r’, M') # L to M.

Overview of the Compiler. Suppose we wish to compile an abstract protocol
II. At a high-level, the compiled protocol in the natural world involves the
following stages: First, the machines initiate role assignment for committees
that need to be nominated, which is determined based on the current round and
the public state. Once the nomination process is completed, the machines can
retrieve public keys corresponding to all roles in these committees and secret
keys for the roles they were chosen for (if any). This can be done by machines
inputting READ to FRa.

Consider a machine M who has been assigned a role for some round of the
abstract protocol. Recall that in this case, Fra provides M with a decryption
key and a signing key. M obtains from Fgra the signature verification keys of all
the roles that are supposed to send messages to the role that’s assigned to M, as
well as the public encryption keys of the roles that its assigned role is supposed
to send messages to. (Note that the latter key may not be available yet.) In this
case M keeps asking Fgra for these keys in each round. As soon as Fra provides
these keys, the M is ready to execute the role R based on the specifications of
the abstract protocol II. Suppose this role R invokes Fgcgspp in II with a set
of point-to-point and broadcast messages, then the machine does the following
to emulate this step on behalf of the role:

Taming Adaptivity in YOSO Protocols: The Modular Way 49

Read the bulletin board to retrieve messages posted by machines emulating
sender roles. This includes broadcast messages and ciphertexts encrypting
point-to-point messages intended for R as a receiver, accompanied by signa-
tures. Accept the messages only if the signatures are valid (note that the
verification key of all roles are made public by Fgra).

To retrieve the point-to-point message, uses the decryption key to decrypt
the relevant ciphertexts.

Proceed to compute the outgoing broadcast and point-to-point messages on
behalf of the role R (Note that at this point, the machine has all the infor-
mation a role holds in IT). Prepare a one-shot message comprising of the
following (a) Broadcast messages (b) Ciphertexts encrypting the point-to-
point messages using the encryption key of the relevant receiver roles in future
committees (made public by Fra) (c) Signature on these messages, computed
using the signing key of R received from Fra.

Once the above one-shot message is computed, invoke Fra with input DELETE
and delete its own entire state, except the one-shot message to be posted. In
particular, delete the secret keys, received messages and randomness used on
behalf of the role R.

Post this message to the bulletin board (as an atomic action).

Once the machine M has finished executing the role R, it notifies Fra that it is
READY i.e. available to be assigned a new role.

We point out that in the above informal description, we focused on machines

that were assigned computation roles. The compiler easily accommodates actions

by

input and output roles in IT as well — the only difference is that these roles

are carried out by fixed machines and their identity is not secret. Therefore, the
public keys of these roles can be established via a PKI and need not be handled by
Fra. Further, the messages posted on the bulletin board by machines executing
these roles need not be signed.

Protocol Compile(IT)

Notation: The algorithm Nominate(r, {Broadcastsq }sidesip) denotes a pub-
licly computable function which when given a round number and public
state outputs the set of committees {cid;, Ci};c[x] to be nominated in that
particular round. We assume that all the cid;’s contains the round number
Po

Init: Initialise sets of messages and keys for each role:
— For each R € Role and sid € SID define a set R.Recgy < @) of ciphertexts

— If R € Role™ URole®"", set R.ek and R.vk to relevant public keys estab-

— For each sid € SID: Broadcastgy = 0.

sent to the role. R.ek «— 1, Rwk «— 1, R.dk «— 1 and R.sk «— L.

lished by PKI.

50 R. Canetti et al.

Nominate: In the beginning of round r (i.e. as per the reading of the
global clock), compute the (computation) committees to be nominated,
{cid;, Ci}iepr) < Nominate(r, {Broadcastsiq }sidesip)-
For each committee input (NEW, cid;, C;) to Fga.

Role Keys: Once the machine finishes nominating committees in a round

r, it proceeds to read the keys for the committees nominated in the previous

round. For each committee, the machine inputs (READ, cid) to Fra receiving

lists PKeys and SKeys.

— For each element (ek,vk,R’) in PKeys the machine stores the role keys
as R'.ek «— ek and R .vk «— vk.

— For each element (pid, dk, sk,R) in SKeys (where pid corresponds to the
machine’s identifier) store the keys R.dk «— dk,R.sk — sk. We now
consider the machine to have been assigned role R.

Read: After storing new role keys each machine reads the bulletin board to

process the next round of messages in the protocol. In round r the machine

inputs (READ,sid,r — 1) to Fgg, for each output element (M’ ', msg’) it

receives the machine does the following:

— Parse msg’ as ((S,sid, (R1,Z1), ..., (Rk,Tk),x),0)

— Verifies the signature b «— SIG.Verify(S.vk, (S,sid, (R1,Z1), ..., (Rk, T),
x), o), ignoring the message if verification does not succeed °.

— Add (S,) to Broadcastgg.

— For i € [k?] add (S,fi) to R;.Recgq.

If any role has more than one message with a valid signature, both should

be ignored.

Role Execution: When a machine has been assigned a role R, it should

run the role in its head and emulate the interaction between the role and

its ideal functionality Fgcgspp- In a given round a machine should activate
each role it has been assigned, until the role signals that it has completed
the round.

— If R € Role'™, then this machine (belongs to Machine™) must have
received command (INPUT, z) which it passes on to R.

— If R inputs (READ, R, S, 7’) to F3d: spp, the machine should retrieve the
tuple of the form (S,T) in R.Recgyq, if no such tuple exists L should be
output directly to the role. The ciphertext should then be decrypted to
obtain z < PKE.Dec®®) (R.dk, Z) which may be returned to R.

— If R inputs (READ,S,7’) to F5§d¢ <pp, the machine should retrieve the
tuple of the form (R,z) in Broadcastgq, and return x to R, returning L
if no such value exists.

— If R € Role®"" outputs (OUTPUT,), output the same.

Send Fgcespp: When the role R € Role™ URole“M" assigned to M outputs
(SEND, R, ((R1,21), ..., (Rg,zk)),x) to Facgspp with session identifier sid
do the following:

Taming Adaptivity in YOSO Protocols: The Modular Way 51

. For j € [k]: T; « PKE.Enc®*®(R; ek, z;; p;).
. Let msg = (R, r,sid, (Ry,Z1), ..., (Rk, Tk), x).
. Compute o « SIG.Sign(R.sk, msg) and set msg’ = (msg, o) °.

ComP
’ IffRI%pRuqcle(DELETE) to FRra.

— Erase all private local state associated with the role R, excluding
(R, msg, o). In particular this includes R.dk, R.sk and the entire state
of the copy of R the machine has been running in its head.
5. Post msg’ to the bulletin board.
6. Input (READY) to Fra if R € Role“".
If a machine has been assigned multiple roles it should activate them until
they have all sent a message or completed the round, collecting all their
messages at Step 6.2 and posting them together.

=W N =

@ this verification is not needed if S € Role™ U Role®""
b Here, signatures can be avoided if R € Role™™.

5 Security of the Compiler

In this section, we prove the security of the compiler presented in Sect.4 which
transforms a static, abstract YOSO protocol to an adaptively-secure natural
protocol. The security of our compiled natural protocol fundamentally relies on
the security of the original abstract protocol. The primary challenge arises due
to the difference in the adversary’s corruption powers between the abstract and
natural world. In order to rely on the static security of our abstract protocol,
we must be able to translate the adaptive adversary in the natural world to an
appropriate static adversary in the abstract world (against which a simulator
must exist, due to security of the abstract protocol).

To rely on the static simulator of our abstract protocol it is essential that
the natural world adversary cannot influence which roles are revealed through
its chosen corruptions of machines. As a starting point, let us consider what
goes wrong if a natural simulator is forced to commit to a mapping from roles
to machines. An adaptive adversary might then subsequently choose which
machines to corrupt based on this commitment. The simulator is essentially
forced to guess which machines the adversary will corrupt making it overwhelm-
ingly likely to fail.

To circumvent this issue we may instead consider the possible simulation
strategy if our simulator were not committed to this role to machine mapping.
Our static abstract simulator must always fix a choice of corrupt roles. The state
of these corrupt roles may be simulated, making it acceptable to assign them to
corrupt machines. Conversely, we have no way to simulate the state of honest
roles, so these must never be revealed to the adversary. During simulation, the
simulator presents a role assignment functionality to the natural world adversary.

52 R. Canetti et al.

The natural world adversary expects the roles to be assigned to the machines
it has corrupted in proportion to its expended corruptions. This may easily be
accounted for by sampling a mapping where an appropriate number of statically
corrupt roles are assigned to these machines. Things get more challenging when
we start to consider adaptive corruptions, in the real world the adversary will
sometimes get lucky and corrupt a machine which has been assigned a role. If
we simply fix the mapping from roles to machines at the time of nomination
this could cause simulation to fail if the newly corrupted machine had been
assigned an honest role. However, if our role assignment functionality does not
leak anything to the adversary about the mapping of honest roles we may simply
change the assignment of this honest role to a machine which remains honest.
This will of course affect the number of roles revealed to the adversary, to account
for this we must additionally maintain some budget of statically corrupt roles,
which we reveal in place of the honest roles.

As the simulator now controls which roles are revealed to the adversary it
may be sure that it never has to open a ciphertext sent between the holders
of two honest roles. As a result these ciphertexts need not be non-committing,
allowing the use of the much more efficient CCA secure encryption.

We define the class of protocols which are compatible with our compiler.

Definition 3 (Compiler compatible protocol). We call a protocol II a
compiler compatible secure implementation of F with threshold c/w, if the fol-
lowing conditions are satisfied:S

— Let ¢ = 2(k) denote the committee size. Then, IT must YOSO securely imple-
ment the ideal functionality F in the presence of ¢/w static corruptions in
the computation committees and an arbitrary number of static corruptions in
the input and output roles.

— All honest roles in the same committee speak in the same round.

— There exists a positive constant delay, such that it is publicly computable
which committees need to be nominated at least delay round(s) in advance.

— There exists a constant Ryq. > K, denoting the upper bound on the concur-
rently active roles at any point (which refers to roles that are able to receive
messages, or currently being nominated).

Theorem 2. Consider an abstract protocol II in the Fgcgspp-hybrid model,
which is a compiler compatible secure implementation of F with threshold c/w
(Definition 8). Let Fra be shorthand for Fra(P,c, T, U,2) where U samples the
uniform distribution and a function T (f). Further, assume the schemes PKE
and SIG used by Fra are adaptive IND-CCA and EUF-CMA secure respectively.

Then, assuming a PKI setup, the protocol Compile(II) UC implements the
ideal functionality F in the (Fgg, Fra, Fvre)-hybrid model, under the presence
of T < N fy adaptive corruptions of the computation machines and any number
of static corruptions in the input and output roles, where N = (Rpaz)*t0 for a

5 Note that all existing abstract YOSO protocols (such as the protocols in [GHK+21,
KRY?22]) satisfy these properties.

Taming Adaptivity in YOSO Protocols: The Modular Way 53

constant 1 < § and f; is fived such that there exists a constant € > 0 where for
all 0 < f < fy it holds that T(f)+ (14 €)(ft — f)e < ¢/w.

If we apply Theorem 2 to the threshold function achieved by our role assignment
protocol in Sect. 7 we obtain the following corollary.

Corollary 1. For T(f)=c(1—(1—€)(1— f)?) a protocol tolerating c/w cor-
ruptions may be compiled to a protocol tolerating T < N f; adaptive corruptions,
where f; satisfies 0 <1 —2wf; +wf2.”

We refer the reader to the full version of this paper for a proof of Theorem 2.

6 Compiling Abstract Protocols Requiring Verification

Our compiler in Sect. 4 supports the class of YOSO protocols in the Fgcespp-
hybrid model, such as the information-theoretic protocol of [GHK+21]. However,
this notably excludes protocols which assume explicit access to keys for the roles
to allow zero-knowledge proofs or any other types of public verifiability for point-
to-point messages. A large part of the existing YOSO protocol literature falls
under this umbrella, including the protocols presented in [BDO22, KRY?22] and
the computationally secure protocol of [GHK+21].

Kolby et al. [KRY22] introduced the verifiable state propagation (VeSPa)
functionality Fyvespa to capture verifiability of point-to-point messages and
designed protocols in the (Fyespa, Fecgspp)-hybrid model instead. We show how
our compiler may be extended to accommodate the compilation of protocols in
the (Fvespa, Fcespp)-hybrid model.

Before showing how our compiler may be extended to protocols in the
(Fvespa, Fecgspp)-hybrid model we will first reflect on the broader role of mes-
sage verifiability within YOSO protocols. When using Fgcgspp all point-to-point
messaging is ideal, making it impossible to directly provide verifiability guar-
antees for any single message in a single round. Works studying information
theoretic YOSO MPC [GHK+21,DKI+23] achieve verifiability by constructing
verifiable secret sharing (VSS) protocols in the abstract world. They then make
use of VSS to construct their desired MPC protocols. These protocols explicitly
handle their need for verifiable message passing in the abstract world, and thus
inherit these same guarantees when compiled to the natural world. There are
drawbacks to this approach of explicit abstract world verifiability, as existing
VSS constructions all introduce an overhead in both rounds and a number of
intermediate roles.

An alternative approach follows from the ideas within computationally secure
protocols, where verifiability may come from non-interactive zero-knowledge

" This holds when f; < 1 — 7“”5;“’ For w = 2, namely when the abstract protocol
withstands honest minority, this allows f; ~ 0.29. For w = 1.1, namely when the
abstract protocol withstands corruption of roughly 90% of the parties, this allows
ft =~ 0.7.

54 R. Canetti et al.

proofs, rather than additional interaction. In the context of YOSO the restric-
tion to Fpcgspp means that we only consider black box communication, and thus
cannot directly prove statements about point-to-point messages. To resolve the
limitation Kolby et al. [KRY22] introduced a new wverifiable state propagation
functionality which enabled enforcing statements for point-to-point messages,
giving verifiability. A natural question to consider is whether it is possible to
realise Fyespa in the abstract world given Fgcgspp. However, if we recall the
cost of achieving VSS in the Fgcgspp-hybrid model, our hopes of verifying more
complex relations, without a significant round and communication complexity
overhead are quickly dampened. Conversely, if we do not realise Fyespa Wwe are
left with a protocol which remains incompatible with compilation. This leaves
us with a choice of either realising Fyespa in the abstract world, or adapting our
compiler to produce protocols which enforce the guarantees of Fyespa, essentially
making verifiability explicit during the translation to the natural world.

We observe that our compiler is actually well suited to the addition of message
verifiability, making this a desirable choice. Recall, our modifications have elim-
inated the need for non-committing encryption for protocol messages, instead
simply requiring CCA security. If we extend the few requirements we make of
our encryption scheme to additionally permitting efficient proofs of knowledge of
plaintext, we may use non-interactive zero-knowledge to prove that the encrypted
messages between roles satisfy whatever relations we require.

6.1 Verifiable State Propagation

In this section, we recall the verifiable state propagation (VeSPa) functionality
Fyespa introduced in Kolby et al. [KRY22]. Informally, this functionality enables
both point-to-point and broadcast communication, while allowing the sender
to prove that she correctly computed these messages (based on messages she
received and possibly other additional inputs).

In more detail, a sender role S in the abstract protocol invokes Fyespa With
the following information: (a) the point-to-point messages S intends to send
to a set of recipient roles (b) the messages S intends to broadcast (c) witness
(comprising of the internal state of S such as its private randomness used to
compute its outgoing messages).

Consider the statement comprising of these outgoing point-to-point (say,
®send) and broadcast messages (say, @proadeast), the incoming messages that were
received by S (say, dreceive) and the public state (containing all the messages
broadcast so far, denoted by ¢pusiic). The role S is associated with a relation
R(S) which basically specifies the correct behaviour of S as per the abstract
protocol specifications. The functionality Fyespa verifies this relation i.e. checks
if the outgoing point-to-point and broadcast messages sent by S are computed
correctly based on the incoming messages it received previously, the current
public state and its private randomness (given as part of the witness). The mes-
sages that are verified are subsequently communicated. The formal description
of Fyvespa appears below.

Taming Adaptivity in YOSO Protocols: The Modular Way 55

— Functionality Fyespa [KRY22)

This ideal functionality has the following behaviour:

— Define a map R : Role — Rel . Specify the relations the messages of
each role must satisfy.
— Initially create point-to-point and broadcast maps:
y : N x Role x Role — Msg, where y(r,R,R’) = L for all ,R,R’
m : N x Role — Msg, where m(r,R) = L for all r,R.
— On input (SEND,S, ((R1,21), ..., (Rg,2%)), 2, w) in round r proceed as
follows:
o Let ¢psena = ((Rl,LEl),) (lexk)) and Pvroadcast = T-
o Let ¢pupiic be the current public state, represented by a vector of all
elements (r, R, msg), where m(r,R) = msg # L.
e Collect all y # L for v’ < r,R" € Role where y(r',R’,S) = y; to
produce a vector @receive = (R1,41)s -+, (RL,,Um))-

o If ((gbsend”d)receive‘|¢broadcast|‘prublic)a IU) ¢ R(S) ignore the input.
e Else:

* For i € [n] update y(r,S,R;) = x;. Store point to point messages
from the role.
* Update m(r,S) = x. Store the broadcast message from the role.
* Output (S, ((Rq, |z1]),--., (Rk,|zk|)), z) to the simulator S. For
corrupt roles R; output x; to the simulator S. Leak messages
lengths and the broadcast message to the simulator in a rushing
fashion.
If S is honest give SPOKE to S.
— On input (READ,R,S,7’) in round r where v’ < r for z = y(r',S,R)
output = to R.
— On input (READ,S,7’) in round r where ’ < r output x = m(r/,S) to
R.

6.2 Extending to Verifiable State Propagation

In our extension of the compiler we use the NIZK functionality Fyjzk introduced
by [GOS12]. Looking ahead, the ability to extract witnesses through Fyespa
means that we no longer require CCA security for our encryption scheme and
may relax this to CPA security.

At a high-level, in order to emulate the invocation of Fyespa by a role R in
the abstract protocol, the machine assigned to execute role R does the following
(1) first reads the bulletin board to obtain the broadcast messages and incom-
ing point-to-point messages sent to R (by decrypting the relevant ciphertexts).
(2) Then, according to the specifications of the underlying abstract protocol
(i.e. as per the relation R(R) required by Fyesp, in the underlying protocol),
it computes its outgoing point-to-point and broadcast messages based on the

56 R. Canetti et al.

incoming messages and internal state. (3) prepares encryptions of these outgo-
ing point-to-point messages using the encryption keys of the recipient roles. (4)
Finally, the machine then invokes the Fyjzk functionality with respect to a rela-
tion Ryvespa (described below) which essentially checks that the machine did the
above actions (1), (2) and (3) correctly.

Accordingly, we define the relation Ryespa which describes what we require
of the messages sent by our machines. The requirements may be divided into
two categories:

— Encryption and decryption is performed correctly.
— The incoming and outgoing plaintexts, and the public state satisfy the relation
R(R) required by Fyespa in the underlying protocol.

For a message msg = (R,sid,(R1,Z1),...,(Rg,Zk), x), incoming message set
R.Recsd, with elements of the form (S,Z;), and past broadcast messages
Broadcastgg, with elements of the form (R,), we define our relation,®

R,sid, R.ek, T = KeyMatch(R.dk, R.ek)
Rsid(R), For j € [k] :
R.Recqiq, For (S,7;) € R.Recig
R _ msg, y; = PKE.Dec(R.dk,7;)
VeSPa = Broadcastsiq / |fsena = ((Rj,25)) ek
(brec = ((Rjayj))(s,ﬂj)ER.Recsid
R.dk, Gpe =T
w=| (2j,pj)jelr]> | |ppur = Broadcastgq
w' (((bsenda ¢TEC7 ¢bc; ¢pub)a w/) € Rsid (R)

The only changes we need to allow for this functionality are when dealing
with messages sent via Fyespa, the role assignment process remains unchanged.

— Protocol Extended Compile(IT)

Read: After storing new role keys each machine reads the bulletin board to

process the next round of messages in the protocol. In round 7 the machine

inputs (READ,sid,r — 1) to Fgg, for each output element (M’ 7', msg’') it
receives the machine does the following:

— Parse msg’ as ((S,sid’, (Ry,Z1),-- -, (Rk, k), z,7),0)

— Ifsid is the session identifier for an instance of Fyespa proceed with these
steps, otherwise handle the message as done for Fgcgspp in the original
compiler.

— Verifies the signature b <« SIG.Verify(S.vk, (S, (S,sid’, (Ry,Z1), .- .,
(Rg,Tk),),), o), ignoring the message if verification does not succeed.

8 The predicate KeyMatch is true iff there exists randomness p such that (dk, ek) —
KGen(p).

Taming Adaptivity in YOSO Protocols: The Modular Way 57

— Defines the statement ¢ < (R,sid’, R.ek, Rga' (R), (Rj.€k) jcix)s R-Recgiar,
msg, Broadcastgq/).
— Inputs (VERIFY, ¢, 7) to Fnizk with respect to the relation Ryespa. and
waits for a response (VERIFICATION, , b). If b = 0 the message is ignored.
— After checks have been made for all the provided messages:
e Add (S, z) to Broadcastgy .
e For i € [k] add (S,%;) to R;.Recgqr.
If any role has more than one message with a valid signature, both should
be ignored.

Execute Role: A machine M nominated for a role R should activate it for

each round of the protocol until it speaks.

— If the role inputs (READ, R, S,7’) to Fy&p, the machine should retrieve
the tuple of the form (S,Z;) in R.Recgq, if no such tuple exists L should
be output directly to the role. The ciphertext should then be decrypted
to obtain x; < PKE.Dec(R.dk,Z;) which may be returned to R.

— If the role inputs (READ, S, 1) to Fi%p, the machine should retrieve the
tuple of the form (R,) in Broadcastgq, and return x to R,

Send Fyespa: When the role R assigned to M outputs
(SEND, R, ((R1,21), .-, (Rg,xk)), z,w’) to Fvespa with session identi-
fier sid’ do the following:

— For j € [k]: T; «— PKE.Enc(Rj.ek, z;; p;).

— Defines the statement ¢ « (R,sid’, R.ek, Rea (R), (Rj.€k)jeix)> R-Recgiar,
msg, Broadcastgg) and witness w — (R.dk, (2}, p;)jef, w’)

— Inputs (PROVE, ¢, w) to Fnizk with respect to the relation Ryespa. and
waits for a response (PROOF,).

— Let msg = (R,sid’, (Ry,Z1), ..., (Rg, Tx), T,).

— o < SIG.Sign(R.sk, (R, msg, 7)).

— Input (DELETE) to Fra.

— Erase all private local state associated with the role R, excluding
(msg, o). In particular this includes R.dk,R.sk and the entire state of
the copy of R the machine has been running in its head.

— Post (msg, o) to the bulletin board.

— Input (READY) to Fra.

6.3 Security of the Extended Compiler

We prove the security of our extended compiler, stated in the formal theorem
below.

Theorem 3. Consider an abstract protocol II in the (Fyespa, Fec&spp)-hybrid
model, which is a compiler compatible secure implementation of F with threshold
c/w (Definition 3). Let Fra be shorthand for Fra(P, ¢, T ,U,2) where U samples

58 R. Canetti et al.

the uniform distribution and T (f) = c (1 — (1 —€)(1 — f)?), for € > 0. Further,
assume the schemes PKE and SIG used by Fra are IND-CPA and EUF-CMA
secure respectively.

Then, assuming a PKI setup, the protocol Compile(II) UC implements the
ideal functionality F in the (Fnizk, Fas, Fra)-hybrid model, under the presence
of T < N f; adaptive corruptions of the computation machines and any number
of static corruptions in the input and output roles, where N = (Rpaz)*t0 for a
constant § > 1 and 0 < 1 — 2wf, +wf?.”

The proof of Theorem 3 appears in the full version of this paper.

7 Realising Role Assignment

In compilation, we crucially relied on the ability to program the nominations of
our role assignment functionality on the fly to mitigate the adaptive corruption
powers of the adversary. We will now show how to realise Fra by modifying the
committee selection protocol of Benhamouda et al. [BGG+20] to allow equivo-
cation of the mapping betweeen roles and machines.

We begin by recalling the high level approach of their construction. The
task of choosing committee members is delegated to a nomination committee;
nominators in this committee do not need to receive any private input and
may therefore be self-selecting through cryptographic sortition. For a sufficiently
large nomination committee the fraction of corrupt nominators will be close to
the fraction of corruptions in the entire system. When a machine is chosen as
a nominator it samples fresh ephemeral keys for the role it is nominating, the
public key may be broadcast along with an encryption of the secret key under
a special form of anonymous PKE. As we consider an adaptive adversary with
the capacity to corrupt all members of the nomination committee, were they
identified, each nominator must make sure to delete its secret state prior to
sending their message. All machines may then observe the broadcast channel,
and attempt to decrypt each nomination ciphertext, if the decryption succeeds
the machine has been nominated and can decrypt ciphertexts messages sent to
the role.

To satisfy our role-assignment functionality we must make some modifica-
tions. Recall, in our simulation we want to choose the static corruptions in each
committee ahead of time, only ever revealing those chosen corrupt roles. If the
role assignment mechanism commits to a mapping between roles and machines
a simulator may be forced to corrupt machines which have been assigned honest
roles, for which it cannot equivocate. However, if the role assignment mecha-
nism does not commit to the mapping between roles and machines this could
conceivably be chosen on the fly to avoid revealing any statically honest roles.

9 This holds when f; < 1 — 7“”5;“’ For w = 2, namely when the abstract protocol
withstands honest minority, this allows f; ~ 0.29. For w = 1.1, namely when the
abstract protocol withstands corruption of roughly 90% of the parties, this allows
ft =~ 0.7.

Taming Adaptivity in YOSO Protocols: The Modular Way 59

To make the approach compatible with the approach of Benhamouda et al.
[BGG+20] we replace the encryption scheme used for nomination ciphertexts
with key and message non-committing encryption (KM-NCE) [HLH+22]. We
additionally introduce the use of a randomness beacon, which provides fresh
uniform randomness each round, which we use to ensure the mapping from roles
to nominations is uniformly random and not biased by the adversary.

Note, while KM-NCE allows equivocating for both key and message, we will
only ever change the key under which ciphertexts decrypt. The committee size
must not exceed some fixed size ¢, to ensure this we must fix the winning prob-
ability p such that the expected committee size is smaller than ¢ allowing the
application of a tail bound. To this end we let p = ¢/((1+€¢')N) for some €’ > 0.

— Protocol IIga

Each machine M has access to a PKI containing KM-NCEpublic keys and
VRF verification keys for each computation machine. VRF keys are gen-
erated by all machines invoking (malicious) key generation on Fyrr. Each
machine additionally stores its current long-term KM-NCEsecret key as
M.sk. Let ¢ be the predefined size of a committee.

New Committee: After receiving input (NEW, cid, C') in round r, machine

M with identifier pid performs the following procedure:

— If there already exists stored value with cid® = cid ignore this com-
mand. Otherwise, store the value (7, cid, C, PKeys, SKeys), where PKeys
and SKeys are empty lists.

— Input (READ,) to the randomness beacon, to receive randomness p.

— Input (EVALPROVE, (p,cid)) to Fyrr and wait for output
(EVALUTATED, draw, 7).

— If draw is a winning draw (i.e. draw/2/¢ < p), proceed to nominate a
party, otherwise skip the remaining steps.

— Sample a uniformly random machine index pid’ —$ P.

— Generate fresh ephemeral encryption and signing keys for the nominated
role, (ek,dk) «— PKE.Gen() (vk, sk) < SIG.Gen().

— Encrypt the decryption and signing key to the chosen machine ctxt «—
KM — NCE.Enc(M,y .pk, (pid’, dk, sk)).

— Erase the keys dk, sk and all randomness used for sampling the keys and
pid’, as well as any encryption randomness.

— Post (cid, ek, vk, ctxt, draw, 7) to the bulletin board.

Read: On input (READ,cid) in round ' where r + 2 < ¢/

1. Retrieve the value (r,cid,C,PKeys, SKeys), stopping if no such value
exists.

2. Observe the bulletin board and collect a list of mes-
sages for committee identifier «cid posted in round 7,
(cid, eky, vky, ctxty, drawy, 71), . . ., (cid, eky, vk, ctxty, drawy, 7).

60 R. Canetti et al.

3. Remove any elements (cid, ek;, vk;, ctxt;, draw;, 7;) posted by machine
M from the list where draw; is not a winning draw. This may be verified
by inputting (VERIFY, (p, cid), draw;, 7;, Myiq.0kVRF) to Fyre where pid
is the identifier of the machine which has posted the message to the
bulletin board and p is the randomness the beacon has provided for
committee cid. Remove the element if Fyrr returns 0, or draw, / 2bvrr > p.

4. Sort the list lexicographically by encryption key, keeping only the c first
elements. If the list does not have exactly ¢ elements pad it with values
(cid, L, L, 1).

5. Input (READ,” + 1) to the randomness beacon, to receive randomness
p-

6. Let o a uniformly random permutation on [c] defined by the randomness
p and apply o to the list.

7. Loop over the list, for the jth element (cid, ek;, vk;, ctxt;):

— Append (ek;,vk;, C;) to PKeys.
— Attempt to decrypt (pid, dk, sk) «— KM — NCE.Dec(M,.sk, ctxt;).
If (pid, dk, sk) # L and pid matches the machine which posted the
element to the bulletin board, append (pid, dk, sk, C;).
8. Output PKeys and SKeys to M.

Delete: When given input DELETE, for each stored value
(r,cid, C, PKeys, SKeys) delete SKeys overwriting it with the empty
list. Finally, delete the long term secret key M.sk.

Ready: When given input READY, generate a new key pair (pk, sk, tk) «—
KM — NCE.Gen(), setting M.sk = sk and deleting tk immediately.
Finally, post (pid, pk) to the bulletin board.

We now prove the security of our role assignment mechanism. The protocol
ensures at most 7 (f) = ¢ (1 — (1 —€)(1 — f)?) of the ¢ roles in a committee are
assigned to corrupt machines when the committee is finished being nominated.
Here f is the fraction of corruptions at the point where the committee finishes
being nominated. Intuitively this corresponds to guaranteeing that the remaining
(1 — f)N honest machines have nominated other machines which have remained
honest at least a fraction (1 — f) of the time. The proof of Theorem 4 appears
in the full version of this paper.

Theorem 4. For threshold function T (f) = c (1 — (1 —€)(1 — f)?) and the uni-
form distribution U. If the KM-NCE scheme used has KMNC,-CCA (for k =
poly(k)1?) and KM-NCE-UR security and the sortition has winning probabil-
ity ¢/((1 + €)N) for € > 0. Then, assuming a bare PKI setup, the protocol

19 To weaken this to k = O(1) would require a bound on the number of honest nomi-
nations a machine could receive before refreshing its key.

Taming Adaptivity in YOSO Protocols: The Modular Way 61

IIga UC realises the functionality Fra(P,c, T ,U,2) in the presence of T < N
adaptive corruptions in the (Fgeacon, FBB, FVRF)-hybrid model.

8 The Versatility of Our Compiler

The compiler we present allows the compilation of YOSO protocols using both
Facgspp and Fyespa- Of the existing literature only Kolby et al. present computa-
tionally secure protocols in the Fyespa-hybrid model [KRY22], having introduced
the functionality. However, existing works which make non-black-box use of the
communication between roles may be recast into the Fyespa-hybrid model allow-
ing for their efficient compilation. We provide one such example. Braun et al.
construct a YOSO MPC protocol from class groups, following the circuit based
CDN paradigm of [CDNO1]. Their protocol proceeds by first performing a dis-
tributed key generation to obtain a key for a threshold linearly homomorphic
encryption scheme, which is then used for the circuit evaluation.

In the construction of their protocol they assume access to explicit pub-
lic keys allowing them to prove statements about the ciphertexts and public
messages with NIZK. The NIZK proofs are used in three of their functionali-
ties, CreateVSS, CreateTriple and YOSO — ABB. Proving the exact same relations
about the messages sent through Fyespa would clearly preserve security, giving
the simulator access to the same witnesses it could extract from explicit proofs.

Braun et al. [BDO22] specifically tailor their statements to have efficient
proofs for the class group encryption scheme they use [CCL+19]. As our extended
compiler is secure for any PKE scheme with CPA security, it could in particular
be instantiated with the same class group scheme preserving their efficiency.

Acknowledgements. Funded by the European Research Council (ERC) under the
European Unions’s Horizon 2020 research and innovation programme under grant
agreement No 803096 (SPEC), the Danish Independent Research Council under Grant-
ID DFF-2064-00016B (YOSO), and the Digital Research Centre Denmark (DIREC).

References

[AHKP22] Acharya, A., Hazay, C., Kolesnikov, V., Prabhakaran, M.: SCALES - MPC
with small clients and larger ephemeral servers. In: Kiltz, E., Vaikun-
tanathan, V. (eds.) TCC 2022. Part II, volume 13748 of LNCS, pp.
502-531. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-
22365-5_18

[BDO22] Braun, L., Damgard, I., Orlandi, C.: Secure multiparty computation from
threshold encryption based on class groups. Cryptology ePrint Archive,
Report 2022/1437 (2022). https://eprint.iacr.org/2022/1437

[BGG+20] Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260—290. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_10

https://doi.org/10.1007/978-3-031-22365-5_18
https://doi.org/10.1007/978-3-031-22365-5_18
https://eprint.iacr.org/2022/1437
https://doi.org/10.1007/978-3-030-64375-1_10

62 R. Canetti et al.

[CCL+19]

[CDNO1]

Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-
party ECDSA from hash proof systems and efficient instantiations. Cryptol-
ogy ePrint Archive, Report 2019/503 (2019). https://eprint.iacr.org/2019/
503

Cramer, R., Damgard, 1., Nielsen, J.B.: Multiparty computation from
threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 280-300. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44987-6_18

[CDPWO07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-

[CM19]

[DGKR18]

[DKI+23]

[EHK+13]

[GHK+21]

rity with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 61-85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
70936-7-4

Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger.
Theoret. Comput. Sci. 777, 155-183 (2019)

David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros Praos: an
adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66-98.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3
David, B., Konring, A., Ishai, Y., Kushilevitz, E., Narayanan, V.: Perfect
MPC over layered graphs. Cryptology ePrint Archive, Report 2023/330
(2023). https://eprint.iacr.org/2023/330

Escala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J.: An algebraic frame-
work for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 129-147. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1_8

Gentry, C., et al.: YOSO: you only speak once. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 64-93. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84245-1_3

[GHM+21] Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-

[GOS12]

[HLH+-22]

[KMTZ13]

[KRY22]

[MRV99)]

[Nie02]

index PIR and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021.
LNCS, vol. 13044, pp. 32-61. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90456-2_2

Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM (JACM) 59(3), 1-35 (2012)

Huang, Z., Lai, J., Han, S., Lyu, L., Weng, J.: Anonymous public key
encryption under corruptions. In: Agrawal, S., Lin, D. (eds.) ASTACRYPT
2022. Part III, volume 13793 of LNCS, pp. 423-453. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-22969-5_15

Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable
synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 477-498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36594-2_27

Kolby, S., Ravi, D., Yakoubov, S.: Constant-round YOSO MPC without
setup. Cryptology ePrint Archive, Paper 2022/187 (2022). https://eprint.
iacr.org/2022/187

Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th
FOCS, pp. 120-130. IEEE Computer Society Press, October 1999
Nielsen, J.B.: Separating random oracle proofs from complexity theoretic
proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 111-126. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9_8

https://eprint.iacr.org/2019/503
https://eprint.iacr.org/2019/503
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-319-78375-8_3
https://eprint.iacr.org/2023/330
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-031-22969-5_15
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://eprint.iacr.org/2022/187
https://eprint.iacr.org/2022/187
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8

	Taming Adaptivity in YOSO Protocols: The Modular Way
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Key and Message Non-commiting Encryption
	2.2 Cryptographic Sortition
	2.3 The You-Only-Speak-Once Model
	2.4 Compiling Abstract YOSO Protocols

	3 Role Assignment
	4 Compiling Abstract to Natural YOSO
	5 Security of the Compiler
	6 Compiling Abstract Protocols Requiring Verification
	6.1 Verifiable State Propagation
	6.2 Extending to Verifiable State Propagation
	6.3 Security of the Extended Compiler

	7 Realising Role Assignment
	8 The Versatility of Our Compiler
	References

