Guy Rothblum
Hoeteck Wee (Eds.)

Theory
of Cryptography

21st International Conference, TCC 2023
Taipei, Taiwan, November 29 - December 2, 2023
Proceedings, Part Il

LNCS 14370

@ Springer

Lecture Notes in Computer Science 14370

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, Purdue University, West Lafayette, IN, USA

Wen Gao, Peking University, Beijing, China

Bernhard Steffen@®, TU Dortmund University, Dortmund, Germany
Moti Yung®, Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series counts many renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
and workshop proceedings and postproceedings. LNCS commenced publication in 1973.

Guy Rothblum - Hoeteck Wee
Editors

Theory
of Cryptography

21st International Conference, TCC 2023
Taipei, Taiwan, November 29 — December 2, 2023
Proceedings, Part II

@ Springer

Editors

Guy Rothblum Hoeteck Wee

Apple NTT Research
Cupertino, CA, USA Sunnyvale, CA, USA
ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-031-48617-3 ISBN 978-3-031-48618-0 (eBook)

https://doi.org/10.1007/978-3-031-48618-0
© International Association for Cryptologic Research 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-5273-6472
https://doi.org/10.1007/978-3-031-48618-0

Preface

The 21st Theory of Cryptography Conference (TCC 2023) was held during November
29 — December 2, 2023, at Academia Sinica in Taipei, Taiwan. It was sponsored by the
International Association for Cryptologic Research (IACR). The general chairs of the
conference were Kai-Min Chung and Bo-Yin Yang.

The conference received 168 submissions, of which the Program Committee (PC)
selected 68 for presentation giving an acceptance rate of 40%. Each submission was
reviewed by at least three PC members in a single-blind process. The 39 PC members
(including PC chairs), all top researchers in our field, were helped by 195 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised versions of the 68 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

We are extremely grateful to Kevin McCurley for providing fast and reliable technical
support for the HotCRP review software. We also thank Kay McKelly for her help with
the conference website.

This was the ninth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year, the Test of Time Award Committee
selected the following paper, published at TCC 2007: “Multi-authority Attribute Based
Encryption” by Melissa Chase. The award committee recognized this paper for “the first
attribute-based encryption scheme in which no small subset of authorities can compro-
mise user privacy, inspiring further work in decentralized functional encryption.” The
author was invited to deliver a talk at TCC 2023.

This year, TCC awarded a Best Young Researcher Award for the best paper authored
solely by young researchers. The award was given to the paper “Memory Checking for
Parallel RAMs” by Surya Mathialagan.

We are greatly indebted to the many people who were involved in making TCC 2023
a success. First of all, a big thanks to the most important contributors: all the authors
who submitted fantastic papers to the conference. Next, we would like to thank the PC
members for their hard work, dedication, and diligence in reviewing and selecting the
papers. We are also thankful to the external reviewers for their volunteered hard work
and investment in reviewing papers and answering questions. For running the conference
itself, we are very grateful to the general chairs, Kai-Min Chung and Bo-Yin Yang, as well
as the staff at Academia Sinica (Institute of Information Science and Research Center of
Information Technology Innovation). For help with these proceedings, we thank the team
at Springer. We appreciate the sponsorship from IACR, Hackers in Taiwan, Quantum
Safe Migration Center (QSMC), NTT Research and BTQ. Finally, we are thankful to

vi Preface

Tal Malkin and the TCC Steering Committee as well as the entire thriving and vibrant
TCC community.

October 2023 Guy Rothblum
Hoeteck Wee

General Chairs

Kai-Min Chung
Bo-Yin Yang

Program Committee Chairs

Guy N. Rothblum
Hoeteck Wee

Steering Committee

Jesper Buus Nielsen
Krzysztof Pietrzak
Huijia (Rachel) Lin
Yuval Ishai

Tal Malkin

Manoj M. Prabhakaran
Salil Vadhan

Program Committee

Prabhanjan Ananth
Christian Badertscher
Chris Brzuska

Ran Canetti

Nico Déttling
Rosario Gennaro
Aarushi Goel

Siyao Guo

Shai Halevi

Pavel Hubacek

Yuval Ishai

Organization

Academia Sinica, Taiwan
Academia Sinica, Taiwan

Apple, USA and Weizmann Institute, Israel

NTT Research, USA and ENS, France

Aarhus University, Denmark

Institute of Science and Technology, Austria

University of Washington, USA
Technion, Israel

Columbia University, USA

IIT Bombay, India

Harvard University, USA

UCSB, USA

Input Output, Switzerland

Aalto University, Finland

Boston University, USA

CISPA, Germany

CUNY and Protocol Labs, USA

NTT Research, USA

NYU Shanghai, China

AWS, USA

Czech Academy of Sciences and Charles
University, Czech Republic

Technion, Israel

viii Organization

Aayush Jain
Zhengzhong Jin

Yael Kalai

Chethan Kamath
Bhavana Kanukurthi
Jiahui Liu

Mohammad Mahmoody
Giulio Malavolta

Peihan Miao
Eran Omri
Claudio Orlandi
Jodo Ribeiro

Doreen Riepel
Carla Rafols

Luisa Siniscalchi
Naomi Sirkin
Nicholas Spooner
Akshayaram Srinivasan
Stefano Tessaro
Eliad Tsfadia
Mingyuan Wang
Shota Yamada
Takashi Yamakawa
Kevin Yeo

Eylon Yogev

Mark Zhandry

Additional Reviewers

Damiano Abram
Hamza Abusalah
Abtin Afshar
Siddharth Agarwal
Divesh Aggarwal
Shweta Agrawal
Martin Albrecht
Nicolas Alhaddad
Bar Alon

Benny Applebaum
Gal Arnon

CMU, USA

MIT, USA

Microsoft Research and MIT, USA

Tel Aviv University, Israel

IISc, India

MIT, USA

University of Virginia, USA

Bocconi University, Italy and Max Planck
Institute for Security and Privacy, Germany

Brown University, USA

Ariel University, Israel

Aarhus, Denmark

NOVA LINCS and NOVA University Lisbon,
Portugal

UC San Diego, USA

Universitat Pompeu Fabra, Spain

Technical University of Denmark, Denmark

Drexel University, USA

University of Warwick, USA

University of Toronto, Canada

University of Washington, USA

Georgetown University, USA

UC Berkeley, USA

AIST, Japan

NTT Social Informatics Laboratories, Japan

Google and Columbia University, USA

Bar-Ilan University, Israel

NTT Research, USA

Benedikt Auerbach
Renas Bacho
Saikrishna Badrinarayanan
Chen Bai

Laasya Bangalore
Khashayar Barooti
James Bartusek
Balthazar Bauer
Shany Ben-David
Fabrice Benhamouda
Jean-Francois Biasse

Alexander Bienstock
Olivier Blazy
Jeremiah Blocki
Andrej Bogdanov
Madalina Bolboceanu
Jonathan Bootle
Pedro Branco
Jesper Buus Nielsen
Alper Cakan
Matteo Campanelli
Shujiao Cao

Jeffrey Champion
Megan Chen

Arka Rai Choudhuri
Valerio Cini

Henry Corrigan-Gibbs
Geoffroy Couteau
Elizabeth Crites
Hongrui Cui
Marcel Dall’ Agnol
Quang Dao

Pratish Datta

Koen de Boer

Leo Decastro
Giovanni Deligios
Lalita Devadas

Jack Doerner

Jelle Don

Leo Ducas

Jesko Dujmovic
Julien Duman
Antonio Faonio
Oriol Farras

Danilo Francati
Cody Freitag
Phillip Gajland
Chaya Ganesh
Rachit Garg
Gayathri Garimella
Romain Gay

Peter Gazi

Ashrujit Ghoshal
Emanuele Giunta
Rishab Goyal

Yangi Gu

Organization

Ziyi Guan

Jiaxin Guan

Aditya Gulati
Iftach Haitner
Mohammad Hajiabadi
Mathias Hall-Andersen
Shuai Han
Dominik Hartmann
Aditya Hegde
Alexandra Henzinger
Shuichi Hirahara
Taiga Hiroka
Charlotte Hoffmann
Alex Hoover
Yao-Ching Hsieh
Zihan Hu

James Hulett
Joseph Jaeger

Fatih Kaleoglu

Ari Karchmer
Shuichi Katsumata
Jonathan Katz
Fuyuki Kitagawa
Ohad Klein

Karen Klein
Michael Kloof
Dimitris Kolonelos
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Alexis Korb
Sabrina Kunzweiler
Thijs Laarhoven
Jonas Lehmann
Baiyu Li

Xiao Liang
Yao-Ting Lin
Wei-Kai Lin

Yanyi Liu

Qipeng Liu

Tianren Liu

Zeyu Liu

Chen-Da Liu Zhang
Julian Loss

Paul Lou

ix

X Organization

Steve Lu

Ji Luo

Fermi Ma

Nir Magrafta

Monosij Maitra
Christian Majenz
Alexander May

Noam Mazor

Bart Mennink

Hart Montgomery
Tamer Mour

Alice Murphy

Anne Miiller

Mikito Nanashima
Varun Narayanan

Hai Nguyen

Olga Nissenbaum

Sai Lakshmi Bhavana Obbattu
Maciej Obremski
Kazuma Ohara

Aurel Page

Mahak Pancholi
Guillermo Pascual Perez
Anat Paskin-Cherniavsky
Shravani Patil

Sikhar Patranabis
Chris Peikert

Zach Pepin

Krzysztof Pietrzak
Guru Vamsi Policharla
Alexander Poremba
Alex Poremba

Ludo Pulles

Wei Qi

Luowen Qian

Willy Quach

Divya Ravi

Nicolas Resch

Leah Namisa Rosenbloom
Lior Rotem

Ron Rothblum

Lance Roy

Yusuke Sakai
Pratik Sarkar
Sruthi Sekar

Joon Young Seo
Akash Shah
Devika Sharma
Laura Shea

Sina Shiehian
Kazumasa Shinagawa
Omri Shmueli

Jad Silbak

Pratik Soni

Sriram Sridhar
Akira Takahashi
Ben Terner

Junichi Tomida
Max Tromanhauser
Rotem Tsabary
Yiannis Tselekounis
Nikhil Vanjani
Prashant Vasudevan
Marloes Venema
Muthuramakrishnan Venkitasubramaniam
Hendrik Waldner
Michael Walter
Zhedong Wang
Gaven Watson
Weigiang Wen
Daniel Wichs
David Wu

Ke Wu

Zhiye Xie
Tiancheng Xie
Anshu Yadav
Michelle Yeo
Runzhi Zeng
Jiaheng Zhang
Rachel Zhang
Cong Zhang
Chenzhi Zhu
Jincheng Zhuang
Vassilis Zikas

Contents — Part I1

Multi-party Computation II

Broadcast-Optimal Four-Round MPC in the Plain Model 3
Michele Ciampi, Ivan Damgdrd, Divya Ravi, Luisa Siniscalchi, Yu Xia,
and Sophia Yakoubov

Taming Adaptivity in YOSO Protocols: The Modular Way 33
Ran Canetti, Sebastian Kolby, Divya Ravi, Eduardo Soria-Vazquez,
and Sophia Yakoubov

Network Agnostic MPC with Statistical Securityt 63
Ananya Appan and Ashish Choudhury

On Secure Computation of Solitary Output Functionalities
with and Without Broadecast i i i 94

Bar Alon and Eran Omri

On the Round Complexity of Fully Secure Solitary MPC with Honest

MAJOTIEY .ottt et e e e e e e e e e 124
Saikrishna Badrinarayanan, Peihan Miao, Pratyay Mukherjee,
and Divya Ravi

Three Party Secure Computation with Friends and Foes 156

Bar Alon, Amos Beimel, and Eran Omyri

Encryption

CASE: A New Frontier in Public-Key Authenticated Encryption 189
Shashank Agrawal, Shweta Agrawal, Manoj Prabhakaran,
Rajeev Raghunath, and Jayesh Singla

Revisiting Updatable Encryption: Controlled Forward Security,
Constructions and a Puncturable Perspective 220
Daniel Slamanig and Christoph Striecks

Combinatorially Homomorphic Encryption 251
Yuval Ishai, Eyal Kushnir, and Ron D. Rothblum

Security with Functional Re-encryption from CPA 279
Yevgeniy Dodis, Shai Halevi, and Daniel Wichs

xii Contents — Part II
Lower Bounds on Assumptions Behind Registration-Based Encryption 306

Mohammad Hajiabadi, Mohammad Mahmoody, Wei Qi,
and Sara Sarfaraz

Secret Sharing, PIR and Memory Checking

Proactive Secret Sharing with Constant Communication 337
Brett Hemenway Falk, Daniel Noble, and Tal Rabin

Improved Polynomial Secret-Sharing Schemes 374
Amos Beimel, Oriol Farras, and Or Lasri

Near-Optimal Private Information Retrieval with Preprocessing 406
Arthur Lazzaretti and Charalampos Papamanthou

Memory Checking for Parallel RAMS 436
Surya Mathialagan

Author Index 465

Multi-party Computation 11

®

Check for
updates

Broadcast-Optimal Four-Round MPC
in the Plain Model

Michele Ciampi®®, Ivan Damgard'®, Divya Ravi'®, Luisa Siniscalchi®@®,
Yu Xia?®)®, and Sophia Yakoubov'

1 Aarhus University, Aarhus, Denmark
{ivan,divya,sophia.yakoubov}@cs.au.dk
2 Technical University of Denmark, Kongens Lyngby, Denmark
luisi@dtu.dk
3 The University of Edinburgh, Edinburgh, UK
{michele.ciampi,yu.xia}@ed.ac.uk

Abstract. The prior works of Cohen, Garay and Zikas (Eurocrypt
2020), Damgard, Magri, Ravi, Siniscalchi and Yakoubov (Crypto 2021)
and Damgard, Ravi, Siniscalchi and Yakoubov (Eurocrypt 2023) study 2-
round Multi-Party Computation (where some form of set-up is required).
Motivated by the fact that broadcast is an expensive resource, they focus
on so-called broadcast optimal MPC, i.e., they give tight characteriza-
tions of which security guarantees are achievable, if broadcast is available
in the first round, the second round, both rounds, or not at all.

This work considers the natural question of characterizing broadcast
optimal MPC in the plain model where no set-up is assumed. We focus
on 4-round protocols, since 4 is known to be the minimal number of
rounds required to securely realize any functionality with black-box simu-
lation. We give a complete characterization of which security guarantees,
(namely selective abort, selective identifiable abort, unanimous abort and
identifiable abort) are feasible or not, depending on the exact selection
of rounds in which broadcast is available.

1 Introduction

Secure Multi-party Computation (MPC) [7,22,28] allows a set of mutually dis-
trusting parties to compute a joint function on their private inputs, with the
guarantee that no adversary corrupting a subset of parties can learn more infor-
mation than the output of the joint computation. The study of round complexity
of MPC protocols in various settings constitutes a phenomenal body of work in
the MPC literature [1,3,5,9,19,24,26,27]. However, most of the known round-
optimal protocols crucially rely on the availability of a broadcast channel. Infor-
mally, a broadcast channel guarantees that when a message is sent, this reaches
all the parties, without ambiguity.

M. Ciampi—Supported by the Sunday Group.

I. Damgard—Supported by the Villum foundation.

D. Ravi—Funded by the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No
803096 (SPEC).

© International Association for Cryptologic Research 2023

G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14370, pp. 3-32, 2023.
https://doi.org/10.1007/978-3-031-48618-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48618-0_1&domain=pdf
http://orcid.org/0000-0001-5062-0388
http://orcid.org/0009-0003-6164-0896
http://orcid.org/0000-0001-6423-8331
http://orcid.org/0000-0003-1813-1132
http://orcid.org/0009-0009-3130-5046
http://orcid.org/0000-0001-7958-8537
https://doi.org/10.1007/978-3-031-48618-0_1

4 M. Ciampi et al.

In practice, a broadcast channel can be realized using ¢ 4+ 1 rounds of point-
to-point communication, where ¢ denotes the corruption threshold (maximal
number of parties the adversary can corrupt). In fact, t + 1 rounds are necessary
for any deterministic protocol that realizes broadcast [16,17]. An alternate way
of realizing broadcast would be by means of a physical or external infrastructure,
e.g. a public ledger such as blockchain. Both these approaches to realize broad-
cast are quite demanding and expensive; therefore it is important to minimize
its use.

Driven by this motivation, a very recent line of work [13-15] studies if it is
plausible to minimize the use of broadcast while maintaining an optimal round
complexity, at the cost of possibly settling for a weaker security guarantee. More
specifically, these works investigate the best achievable guarantees when some
or all of the broadcast rounds are replaced with rounds that use only point-to-
point communication. All the above works focused on two-round MPC protocols
where some form of setup assumption (such as a common reference string (CRS)
or public-key infrastructure (PKI)) is required.

We make a study analogous to these works but in the plain model, where
no prior setup is assumed!. Further, we focus on the dishonest majority setting
where the adversary can corrupt all but one party. In this setting, four rounds
of communication is known to be necessary [18] and sufficient [2,3,6,9-11,24]
for secure computation with black-box security?. Notably, all the round-optimal
(four-round) protocols in this setting use broadcast in every round. This leads
us to the following natural question:

What is the trade-off between security and the use of broadcast for 4-round
MPC protocols in the plain model in the dishonest majority setting?

As a first step, let us recall what kinds of security guarantees are achievable
in the dishonest majority setting. The classic impossibility result of [12] showed
that it is in general impossible to achieve the notions of fairness (where either
all or none of the parties receive the output) and guaranteed output delivery
(where all the parties receive the output of the computation no matter what). In
light of this, the protocols in the dishonest majority setting allow the adversary
to abort prematurely and still, receive the output (while the honest parties do
not). Below are the various relevant flavors of abort security studied in the MPC
literature.

Selective Abort (SA): A secure computation protocol achieves selective abort
if every honest party either obtains the correct output or aborts.

Selective Identifiable Abort (SIA): a secure computation protocol achieves
selective identifiable abort if every honest party either obtains the correct output
or aborts, identifying one corrupt party (where the corrupt party identified by
different honest parties may potentially be different).

! The only assumption is that communication channels are available between the par-
ties; it is still required that parties have access to authenticated channels.

2 By black-box security we mean that the simulator has only black-box access to the
adversary. As in prior works, all our results are concerning black-box security.

Broadcast-Optimal Four-Round MPC in the Plain Model 5

Unanimous Abort (UA): A secure computation protocol achieves unanimous
abort if either all honest parties obtain the correct output, or they all (unani-
mously) abort.

Identifiable Abort (IA): A secure computation protocol achieves identifiable
abort if either all honest parties obtain the correct output, or they all (unani-
mously) abort, identifying one corrupt party.

Of these notions, SA is the weakest, IA the strongest, while SIA (recently
introduced in [15]) and UA are “in between”, and incomparable.

1.1 Owur Contributions

We settle the above question by giving a complete characterization of which
of the above four security guarantees is feasible or not w.r.t. all the possible
broadcast communication patterns that one can have in 4-rounds, namely, if no
broadcast is available, if broadcast is available in just one (two or three) rounds,
and in which one(s).

We give a concise overview of our results below, which are described in more
detail in Sect.1.2. We recall that our impossibility results hold w.r.t. black-box
simulation, which is also the case for [18].

No Broadcast: We show that if broadcast is not used in any of the four rounds,
then selective abort is the best notion that can be achieved.

Broadcast in One Round: We show that if broadcast is used in exactly one
round, then wunanimous abort can be achieved if it is used in the last round;
otherwise selective abort continues to remain the best achievable guarantee.
Broadcast in Two Rounds: We show that if broadcast is used in exactly two
rounds, the feasibility landscape remains the same as the above.

Broadcast in Three Rounds: We show that if broadcast is used in exactly
three rounds, then selective identifiable abort can be achieved if it is used in the
first three rounds; otherwise it continues to remain impossible. The feasibility
of other notions does not change in this setting.

Broadcast in Four Rounds: If broadcast is used in all four rounds, the
strongest notion of identifiable abort becomes possible [11].

In Table 1 we summarize our findings.

1.2 Technical Overview

We start by presenting the technical overview of our positive results, and in the
next section, we will provide a high-level idea about how our impossibility proof
works.

6 M. Ciampi et al.

Table 1. Complete characterization of feasibility and impossibility for 4-round dis-
honest majority MPC with different communication patterns in the plain model. We
denote the acronym P2P (resp. BC) to indicate the peer-to-peer (resp. broadcast)
channel. We use the notation P2P® (resp. BC”) to indicate x consecutive rounds of
peer-to-peer (resp. broadcast) communications.

Broadcast | Possible? Theorem Broadcast | Possible? Theorem
Pattern reference Pattern reference
Selective Abort (SA) Unanimous Abort (UA)
‘ p2p* ‘ v ‘ Theorem 1 ‘ BC3-P2P X Theorem 4
Identifiable Abort (IA) P2P3.BC v Theorem 2
BC* v [11] Selective Identifiable Abort (SIA)

BC3-p2pP X Theorem 4 BC3-P2P v Theorem 3

Any other X Follows from the set Any other X See Table 2 for the

4-round on impossibilities 4-round corresponding
pattern for SIA, see Table 2 pattern theorems.
for the
corresponding
theorems.

Table 2. Impossibility results for 4-round MPC with SIA security against dishonest
majority in the plain model. The third column “Implied Patterns” means that the
patterns in this column are implied by the pattern in the first column “Broadcast
Patterns”. An impossibility in a stronger broadcast pattern setting implies the impos-
sibility in a weaker broadcast pattern setting, where a broadcast pattern BP1 is weaker
than a pattern BP2 if BP1 replaces at least one of the broadcast rounds in BP2 with
a P2P round (without introducing any additional BC rounds over BP2).

Broadcast Pattern Implied Patterns

BC?-P2P-BC X(Theorem 6) | BO-P2P%-BC, BC-P2P3, P2P-BC-P2P-BC, P2P-BC-P2P?
BC?-P2P? X(Theorem 5)
BC-P2P-BC? X(Theorem 8) | BC-P2P-BC-P2P

P2P-BC? X(Theorem 7) P2P2-BC?, P2P?-BC-P2P, P2P-BC?-P2P, P2P3-BC, P2P*

P2P* SA Protocol. In our first upper bound, we show that security with selective
abort can be achieved when all the rounds are over P2P channels. In particular,
we show how to turn any protocol that is proven secure assuming that all the
messages are sent over a broadcast channel, into a protocol that is secure even if
all the broadcast rounds are replaced with P2P rounds. As a starting point, note
that if a round where a secure protocol uses broadcast (say round r) is simply
replaced with peer-to-peer channels, the main problem is that the adversary can
send different messages (over peer-to-peer channels) to a pair of honest parties
in round r and obtain the honest parties’ responses in round (r + 1), computed
with respect to different round r messages. This potentially violates security as
such a scenario would never happen in the original protocol with broadcast in
round r (as the honest parties would have a consistent view of the messages sent
in round r) (Table 2).

Broadcast-Optimal Four-Round MPC in the Plain Model 7

To ensure that honest parties’ responses are obtained only if they have a
consistent view of the corrupt parties’ messages, the two-round construction of
Cohen et al. [13] adopts the following trick: In addition to sending the round
r message® over a peer-to-peer channel (as described above), the parties send
a garbled circuit which computes their next-round message (by taking as input
round 7 messages, and using the hard-coded values of input and randomness
of this party) and additively share labels of this garbled circuit. In the subse-
quent round, parties send the relevant shares based on the round r messages
they received. The main idea is that the labels corresponding to honest parties’
garbled circuits can be reconstructed to obtain their round (r+ 1) messages only
if the adversary sends the same round r message to every honest party.

While [13] use the above idea to transform a BC-BC protocol into a P2P-
P2P protocol, we extend it to transform a BC* protocol to P2P* protocol.
Applying the above trick of sending the next-message garbled circuits and addi-
tive shares in Round 1 and 3 will ensure that if honest parties manage to evaluate
the garbled circuits in Round 2 and 4 respectively, it must be the case that the
honest parties have a consistent view of the Round 1 and Round 3 messages of
corrupt parties. However, there is a slight caveat: The corrupt party could still
send different garbled circuits to different honest parties, say in Round 1. This
will make the view of honest parties inconsistent with respect to Round 2 of the
corrupt party. Note that this was not a concern in [13] as Round 2 corresponds
to the last round of the protocol, unlike our case?.

To address this, we use ‘broadcast with abort’ [23] to realize a ‘weak’ broad-
cast of garbled circuits over two peer-to-peer rounds — In the first round, as
before, each party sends its garbled circuit to others. In the second round, par-
ties additionally echo the garbled circuits they received in Round 1. A party
‘accepts’ a garbled circuit only if it has been echoed by all other parties, or else
she aborts. This ensures that if a pair of honest parties does not abort, they
must have received the same garbled circuit and therefore would have a consis-
tent view of Round 2 of corrupt parties as well. This approach has still one issue,
as it allows the adversary to send different fourth-round messages to different
honest parties. We can argue that this is not a problem if the input protocol
of our compiler admits a simulator that can extract the inputs of the corrupted
parties in the first three rounds. This helps because if the inputs of the corrupted
parties are fixed in the third round, so is the output. Intuitively, this means that
no matter what fourth round the adversary sends, an honest party receiving this
fourth round will either abort or compute the correct output (and all the parties
will get an output generated accordingly to the same corrupted and honest par-
ties’ inputs). Finally, we note that the protocols proposed in [3,9,24] all satisfy
this property, hence, they can be used as input of our compiler.

3 The round r corresponds to the first round in the construction of [13].

4 The consistency of views with respect to the last round follows from input-
independence property of the underlying protocol (elaborated in the relevant tech-
nical section).

8 M. Ciampi et al.

P2P3-BC UA Protocol. This upper bound is based on the observation that when
the broadcast channel is available in the last round, it is possible to upgrade the
security of the above SA protocol (the one enhanced with the garbled circuit
that we have described in the previous paragraph) to UA with the following
simple modification: If an honest party is unable to continue computation during
Rounds 1-3, she simply broadcasts the signal ‘abort’ in the last round, which
would lead to all honest parties aborting unanimously. (Note that a corrupt
party can also choose to broadcast ‘abort’, this does not violate unanimity as all
honest parties would abort in such a case.). This takes care of any inconsistency
prior to Round 4. Lastly, an adversary cannot cause inconsistency during Round
4, as we make the parties send all their messages via broadcast in Round 4.

BC3-P2P SIA Protocol. To prove this upper bound, we show that a big class
of protocols (i.e., those that admit a simulator that can extract the inputs of
the corrupted parties in the first three rounds) that are secure with identifiable
aborts (which use broadcast in all rounds) can be proven to be secure with
selective identifiable abort even if the last round is replaced by peer-to-peer
channels. Intuitively, if this is not the case, it means that the adversary can
make honest parties obtain inconsistent outputs by sending different versions
of the last round message. However, this cannot occur since the output of the
protocol must have been fixed before the last round (due to our assumption
that the simulator extracts the input in the first three rounds), and since that,
if there exists a fourth round that forces honest parties to compute the wrong
output, this message could be used and sent in the last broadcast round of the
original protocol to force honest parties to output an incorrect value. Finally,
we note that the protocol proposed in [11] admits this special simulator. This
observation yields a protocol that realizes any function with selective identifiable
abort when the communication resources are BC3-P2P.

Impossibility Results. We propose two main categories of impossibility results.
In the first category, we show that UA security is impossible to achieve when
the communication in the last round is performed over P2P. This shows the
tightness of our P2P3-BC UA upper bound, completing the picture for UA
security. The second category comprises a set of four impossibility results that
show that any broadcast pattern that does not use a broadcast channel in each
of the first three rounds cannot achieve SIA. This result implies that any SIA
secure protocol must rely on the pattern BC3-P2P, hence our protocol is tight.
This completes the picture for SIA security. Since TA is stronger than both UA
and SIA, both the categories of impossibilities are applicable to TA as well. In
particular, by putting everything together we prove that the pattern BC* is
indeed minimal for realizing security with TA.

BC3-P2P UA Security. The main idea of this impossibility is to show that any
protocol that enjoys security with UA in this setting in the plain model can
be turned into a 3-round oblivious transfer (OT) protocol in the plain model.
Since the latter is known to be impossible [25], such a BC3-P2P UA protocol
cannot exist. The transformation occurs in two-steps: First, we show that the

Broadcast-Optimal Four-Round MPC in the Plain Model 9

BC3-P2P UA protocol must be such that it is possible for a set of n/2 among
the n parties to obtain the output by combining their views at the end of Round
3. Intuitively, this is because it may happen that the only communication an
honest party, say P, receives in the last round may be from other honest parties.
She may still have to compute the output to maintain unanimity — This is
because the last round is over peer-to-peer channels and the adversary may have
behaved honestly throughout all the rounds towards her fellow-honest party P’
(while behaving honestly only in the first three rounds to P). P’ will compute
the output due to correctness (from the perspective of P/, this was an execution
where everyone behaved honestly). This lets us infer that the set of honest parties
together had enough information about the output at the end of Round 3 itself,
as this information sufficed to let P get the output at the end of Round 4.
Assuming that there are n/2 honest parties, this completes the first step. Next,
we show that one can construct a three-round OT protocol, where the receiver
Pg emulates the role of the above set of n/2 parties and the sender Ps emulates
the role of the remaining set of n/2 parties. For this, we define the function
computed by the n-party BC3-P2P UA protocol accordingly; and invoke the
above claim (of the first step) and security of this n-party protocol to argue
correctness and security of the OT protocol respectively.

SIA Security. Here, we give a high-level overview of how we prove that SIA
is impossible to achieve when the communication pattern is of the form BC-
BC-P2P-P2P. The impossibility of the other communication patterns follows
by similar arguments. Assume by contradiction that there exists a three-party
protocol IT that can securely compute any efficiently computable function f with
SIA security when the broadcast channel is available only in the first two rounds.
We denote the parties running this protocol with P;, P», and Py, and assume
that f provides the output only to the party Pou. We consider now the following
two scenarios.

Scenario 1. P} is corrupted (we denote the i-th corrupted party with P}), and
the other parties are honest. P;* behaves like P; would, with the difference that
it does not send any message to P, in the third and the fourth round. Further,
P} pretends that it did not receive the third and the fourth round (over the
point-to-point channel) messages from Ps.

Scenario 2. This time P5 is corrupted, and the other parties are honest. Py
behaves exactly like P», but it does not send any message to P; in the third and
the fourth round. Further, PJ pretends that it did not receive the third and the
fourth round (over the point-to-point channel) messages from P;.

We note that the two scenarios look identical in the eyes of P,y. This is
because P, cannot access the P2P channel connecting P; and P, hence, he
cannot detect which of the two parties did not send a message. In particular, P,
will not be able to detect who is the corrupted party. By the definition of STA,
if P,y cannot identify the corrupted party, then it must be able to output the
evaluation of the function f. Equipped with this observation, our proof proceeds
in two steps.

10 M. Ciampi et al.

1. First, we construct a new three-party protocol II’. We denote the parties
running this protocol with Pj, Py, and P,,. The party P; behaves exactly
like Py described in Scenario 1, and similarly P and P),, behave respectively
like Pj and PJ,, in Scenario 1. We argue that II’ is secure with SA security.

In fact, it suffices for our argument to show that I’ is secure for the following

two corruption patterns: (a) when P and P, are corrupt and when (b) Pj

and P, are corrupt. We refer to the simulators proving security in these
cases as Si'?ut and st]ﬁut respectively.

2. Next, we show an attack that allows an adversary ASA corrupting Py’ and
Pyl in II' to learn the input of honest P]. This step would complete the
proof as it contradicts the security of IT” for this corruption setting (which
was argued to be secure in the first step). Broadly speaking, we show that this
adversary A is able to get access to all the information that the simulator
Slsjcf‘ut has (which must exist, as argued in the first step). Intuitively, since the
information that Si'éut has must suffice to ‘extract’ the input of corrupt Py
(in order for the simulation to be successful®), this allows us to argue that

ASA can use this information to learn the input of honest P;.

Before elaborating on each of the above steps, we make the following useful
observation: since P, is the only party getting the output and the security goal
of IT" is SA security, we can assume without loss of generality that in IT’ (a)
P!, does not send any message to the other parties in the last round and (b)
there is no communication between P; and Py in the last round.

SA Security of II'. In the first step, one can easily observe that the correctness of
IT’ holds as an honest execution of IT’ would result in P, having a view that is
identically distributed to the view of Py at the end of Scenario 1 (which sufficed
to compute the correct output). Intuitively, privacy holds as there is less room
for attack in I’ as compared to II, as it involves fewer messages. To formally
argue SA security of II’ for the case when Py’ and P}, are corrupt, we construct
a simulator stéut for IT'. In particular, we need to argue that the messages of P|
can still be simulated, despite the fact that it does not send messages to P}’ in
the third and the fourth round. Our simulation strategy works as follows. The
simulator ng;ut for II’ internally runs the SIA simulator Si’?ut of II for the case
where P; is honest (recall that this exists by definition). ng(\,ut acts as a proxy
between SQSféut and the corrupted parties for the first and the second round,
but upon receiving the third round from S3',, directed to Py, S;’gut blocks this
message. At this point, a corrupted Pg’ may or may not send a reply, but what
is important to observe is that whatever behavior Py’ has, Py could have had
the same behavior while running II. Intuitively, P53’ is always weaker than Pj.
Hence, the security of IT can be used to argue that the input of P; remains

protected.

5 Note that Sf!oAut works against an adversary corrupting P; and P, and must there-
fore be able to extract the input of P;.

Broadcast-Optimal Four-Round MPC in the Plain Model 11

We deal with the case where P and P, are corrupted in II’ in a similar
way. We refer to the technical part of the paper for a more detailed discussion.

Attack by ASM. In the second step, our goal is to show an adversary A5 that
corrupts Py’ and P2/, and runs the simulator Siﬁut to extract the input of the
honest P{% (proofs with a similar spirit have been considered in [21,26]). To make
the proof go through, we need to argue that an adversary that runs Slsgut is a
legit adversary. In particular, this adversary must not rewind the honest P;. Note
that in the plain model and dishonest majority setting, the only additional power
the black-box simulator has compared to an adversary is to perform rewinds.
We show that no matter what rewinds Siﬁut performs, these rewinds do not
affect the honest party Pj. At a very high level, A5 is able to obtain the same
information as Si’gut would collect over the rewinds because (a) the rewinds
that allow Sls,/:\)ut to obtain new messages from PJ, can be locally computed by
ASA (as ASA also controls P,) (b) essentially, no rewinds help to obtain new
messages from P}’ because P}’ does not send any messages to Pj (on whose

behalf Sff;ut acts) in the last two rounds. In more detail,

Rewinding the Second Round: P4, — P’. Changing the second message may
influence the third round that will be computed by P;. However, note that
P| does not send any message in the third round to Pj. Hence, we just need
to forward to P| only one of the potential multiple second-round messages the
simulator generates. The messages we choose to forward need to be picked with
some care. We refer the reader to the technical section for more detail.

Rewinding the Second Round: Py — P%l.. Changing the second round messages
may affect the third round that goes from P, to P;’, and as such, it may affect
the fourth round that goes back from P| to Pyj,. However, the simulator SP4,
acting on behalf of Pj will not see the effect of this rewind, given that in II’; P
does not receive any message in the fourth round. We also note that this rewind
would additionally allow Slsf;ut to obtain new third round messages from P}/
based on different second round messages of Py. However, this can be locally
computed by AS? in its head, as it controls both P/, and Py’

The above arguments can be easily extended to infer that any rewind per-
formed in the third round does not affect P{. There is one pattern left, which is

the one where the simulator rewinds the first round.

Rewinding the First Round: P4, — P}. The high-level intuition to argue that
the simulator has no advantage in using these rewinds is that ngut must be

5 There are functionalities for which the simulator may not need to extract any input
from the adversary. In our impossibility, we will consider a three-party oblivious
transfer functionality (where one party does not have the input), where the simulator
must be able to extract the input of the corrupted parties.

12 M. Ciampi et al.

able to work even against the following adversary. Consider a corrupted Py’
who is rushing in the first round and computes fresh input (and randomness) by
evaluating a pseudo-random function (PRF) on the incoming first-round message
from Pj. Subsequently, the corrupted P}’ uses this input honestly throughout
the protocol. It is clear that against such an adversary, a simulator that rewinds
the first round has no advantage. This is because changing the first round would
change the input the adversary uses on behalf of P}’. Therefore, the information
collected across the rewinding sessions cannot help to extract the input used
by the adversary in the simulated thread (which refers to the transcript that is
included in the adversary’s view output by the simulator).

Formalizing the above intuition requires some care, and here we provide a
slightly more detailed overview of how we do that. Our adversary A" will receive
messages of P]. Slséut (which we recall is run internally by A%*) may rewind the
first round multiple times, and each time AS must reply with a valid first and
second round of P{. We could simply reply to Slsf,ut every time using the first
round message we received from the honest P;. We then forward the first round
received from P.,, and Pj to P/. P] now will send the second round, which we
can forward to Slséut. Now, Sls’ﬁut may decide to rewind Py, by sending a new
first round. At this point, we would need to forward this message to P, as this is
the only way to compute a valid second round of P;. Clearly, P is not supposed
to reply to such queries, and as such, our adversary AS? is stuck. To avoid this
problem, we adopt the following strategy. Let us assume that we know in advance
that the simulator Slsf)ut runs for at most steps”. This means that the simulator
can open a new session (i.e., rewind the first round) up to & times. Our adversary
samples a random value ¢ € [x], and for all the sessions j # ¢, the adversary will
compute the messages on behalf of P{ using input and randomness computed by
evaluating the PRF on input the messages received from Pj. Only for the i-th
session, the adversary will act as a proxy between the messages of P| and the
simulator Sff;ut. If the Siﬁut returns a simulated transcript consistent with the
i-th session, then we also know that the simulator must have queried the ideal
functionality with a value that corresponds to the input of P/. Given that we
can guess the index ¢ with some non-negligible probability, and given that the
simulator will succeed with non-negligible probability as well, our attack would
be successful. There is still subtlety though. In the session with indices j # i,
ASA internally runs the algorithm of P{ using an input z; that is computed by
evaluating a PRF on input the messages generated from Pj. The input used
by the honest P| may have a different distribution, and as such, the simulator
may decide to never complete the simulation of the i-th session. We first note
that, formally, the goal of our adversary A" is not really to extract the input
of the honest P;. But it is about distinguishing whether the messages that it
will receive on behalf of P| are generated using the honest procedure of Pj, or
using the simulated procedure. Note that in such an MPC security game, the

" If the simulator has expected polynomial time r, for some polynomial «, then our
adversary will run the simulator up to « steps. This will guarantee that the simulator
will terminate successfully with some non-negligible probability.

Broadcast-Optimal Four-Round MPC in the Plain Model 13

adversary knows, and can actually decide® what are the inputs of the honest
parties (i.e., what inputs the challenger of the security game will use to compute
the messages of PJ). A% then can internally run Slsﬁut, and when the ¢-th session
comes generate an input x; by evaluating the PRF on the messages received on
the behalf of Pj. Now that the input of the honest Pj is defined, we start the
indistinguishability game with a challenger that takes as input x; (and some
default input for the corrupted parties). In this way, we have the guarantee that
when the challenger is not generating simulated messages, all the sessions look
identical in the eyes of the simulator Si@ut. Hence, we can correctly state that
with some non-negligible probability, it will return a simulated transcript for the
i-th session. Note that Siﬁut will return #; when querying the ideal functionality
in the i-th session, and we will have that £; = x; iff the challenger is computing
the messages using the honest procedure of Pj. If instead, the challenger was
generating simulated messages on behalf of P/, then the probability that ; = z1
is small®. Hence, this will give a non-negligible advantage to A" in distinguishing
what the MPC challenger is doing. We refer to the technical sections of the paper
for a more formal treatment of this proof.

Rewinding the First Round: P, — P}l To argue this case, we note that if Sp4,
acts against the rushing adversary defined in the above case (where P}’ changes
its input based on the output of PRF applied on the first round message from
P}), then the first and second round messages of P;’ obtained during the rewinds
can be locally emulated by AS (as he controls both Py’ and P/,).

In summary, we have argued that A5 can internally run the simulator Slsf,ut
which enables the adversary to be able to extract the input of Pj.'° We refer
to the technical section of the paper for a much more formal proof, and for the
proof of impossibility results related to the other communication patterns.

1.3 Related Work

The work of [13] initiated the study of broadcast-optimal MPC. They investi-
gated the question of the best security guarantees that can be achieved by all
possible broadcast patterns in two-round secure computation protocols, namely
no broadcast, broadcast (only) in the first round, broadcast (only) in the second
round, and broadcast in both rounds. Their results focused on the dishonest
majority setting and assumed a setup (such as PKI or CRS)!. The works of
[14,15] investigate the same question for two-round MPC with setup (such as
PKI or CRS), but in the honest-majority setting. We refer the reader to [13-15]
for a detailed overview of the state of the art on 2-round MPC and their use of

8 The security of MPC states that security holds for any honest parties’ inputs (decided
before the experiment starts), and these inputs may be known to the adversary.

9 This will depend on the domain size of P; input and on the type of function we are
computing.

10 The simulator may be expected polynomial time, hence we need to cut the running
time of the simulator to make sure that A% remains PPT.

11 Tt is necessary to assume setup for two-round protocols in dishonest majority setting.

14 M. Ciampi et al.

broadcast. The work of [20] studies the best achievable security for two-round
MPC in the plain model for different communication models such as only broad-
cast channels, only peer-to-peer channels, or both. Unlike the previously men-
tioned line of work, this work does not consider communication patterns where
broadcast is limited to one of the two rounds. Going beyond two rounds, the
work of [4] studies broadcast-optimal three-round MPC with guaranteed output
delivery given an honest majority and CRS, and shows that the use of broad-
cast in the first two rounds is necessary. None of the above works consider the
dishonest majority setting without setup (i.e. the plain model). In this setting,
there are several existing round-optimal (four round) constructions, namely pro-
tocols with unanimous abort in [2,3,6,9,24] and with identifiable abort in [11].
However, these works do not restrict the use of broadcast in any round. To the
best of our knowledge, we are the first to investigate the question of optimizing
broadcast for round optimal (four-round) protocols in the dishonest majority
setting without setup (i.e. in the plain model).

2 Preliminaries and Notations

Due to lack of space, we assume familiarity with the standard definition of secure
Multi-party Computation (MPC), the garbling schemes, additive secret sharing,
and also the notion of pseudo-random functions. We refer to the full version for
the formal definitions.

In this paper, we mainly focus on four-round secure computation proto-
cols. Rather than viewing a protocol II as an n-tuple of interactive Tur-
ing machines, it is convenient to view each Turing machine as a sequence of
multiple algorithms: frst-msg;, to compute P;’s first messages to its peers;
nxt-msg’, to compute P;’s (k + 1)-th round messages for (1 < k < 3);
and output;, to compute P;’s output. Thus, a protocol II can be defined as
{(frst-msg;, nxt-msg}, output,) bicn) ke{1,2,3}-

The syntax of the algorithms is as follows:

frst-msg,(x;;r;) — (msgl.,...,msgl) produces the first-round messages of
party P; to all parties. Note that a party’s message to itself can be considered
to be its state.

k
nxt-msgl (s, {msg) ;b iemiiefi2, . kyiri) — (msgity,... msgitl) produces
the (k + 1)-th round messages of party P; to all parties.
output,(z;,msgi_,;,...,msgl ,msg] ..,...,msg’ .;r;) — y; produces

the output returned to party P;.

When the first round is over broadcast channels, we consider frst-msg, to
return only one message—msg;. Similarly, when the (k + 1)-th round is over
broadcast channels, we consider nxt—msgf to return only msgf'H. We also note
that, unless needed, to not overburden the notation, we do not pass the random
coin r as an explicit input of the cryptographic algorithms. We denote “<”
as the assigning operator (e.g. to assign to a the value of b we write a + b).
We denote the acronym BC' to indicate a round where broadcast is available

Broadcast-Optimal Four-Round MPC in the Plain Model 15

and the acronym P2P to indicate a round where only peer-to-peer channels are
available. We use the notation P2P* (BC?®) to indicate x rounds of peer-to-
peer (broadcast) communications. To strengthen our results, our lower bounds
assume that the BC rounds allow peer-to-peer communication as well; our upper
bounds assume that the BC' rounds involve only broadcast messages (and no
peer-to-peer messages).

3 Positive Results

P2P*, SA, Plain Model, n > t. In this section, we want to demonstrate that it
is feasible to construct a 4-round protocol with SA security, in order to do so
we show a compiler that on input a 4-round protocol IT,. with unanimous abort
which makes use of the broadcast channel in the dishonest majority setting gives
us a 4-round protocol HS2A4 with the same threshold corruption for selective
abort, but relying only on P2P communication. Further, we assume that the
exists a simulator for ITy. which extracts the inputs of the adversary from the
first three rounds. For instance, one can instantiate ITy. using the protocol of
[9]12'

At a very high level, our compiler follows the approach of Cohen et al. [13].
The approach of Cohen et al. focuses on the 2-round setting (using some form of
setup) and compiles a 2-round protocol Iy, which uses broadcast in both rounds
into one that works over peer-to-peer channels. This core idea of the compiler is
to guarantee that honest parties have the same view of the first-round message
when they need to compute their second-round message. To achieve this goal
the parties, in the first round, generate a garbled circuit which computes their
second-round message of IT,. and they secret share their labels using additive
secret sharing. The parties send the first-round message of ITy.. In the second
round, each party sends her garbled circuit and for each received first-round
message of IT,. she sends her appropriate share corresponding to the label in
everyone else’s garbled circuit. The important observation is that the labels are
reconstructed only when parties send the same first-round message to every other
party. In this work, we extend the following approach for four rounds executing
the above idea for Rounds 1-2 and subsequently for Rounds 3—4. If at any round
a party detects any inconsistency (e.g., the garbled circuit outputs L, or she
did not receive a message from another party) she simply aborts. Moreover, the
protocol requires some changes w.r.t. the original approach since a corrupted
party can send (in the second round) different garbled circuits to the honest
party obtaining different 2nd rounds of IT,.. We need to ensure that honest
parties abort if the adversary does so, to guarantee that the adversary does not
obtain honest parties’ responses computed with respect to different versions, in

12 To the best of our knowledge, simulators of all existing 4-round construction in the
plain model (e.g., [3,9,24]) have this property of input extraction before the last
round. In particular, see page 42 of [8] for details regarding input extraction by the
simulator of the UA protocol in [9].

16 M. Ciampi et al.

the subsequent rounds. Therefore, the garbled circuits are sent in the round that
they are generated in and echoed in the next round.

In more detail, the security follows from the security of IT,. because of the
following: the only advantage the adversary has in comparison to ITy. is that
she can send inconsistent first (resp., third-round messages) over P2P channels.
However, additive sharing of the labels of the honest party’s garbled circuit
ensures that the adversary can obtain second round (resp., fourth-round) of
an honest party only if she sent identical first-round (resp., third-round) to all
honest parties. Therefore, if the honest parties do not abort, it must be the
case that they have a consistent view with respect to the first and third-round
messages of the adversary. Further, since the honest parties also echo the garbled
circuits sent by the adversary (computing the corrupt parties’ second-round
messages), if they proceed to evaluate those, it would mean that the honest
parties are agreeing with respect to the second-round messages of the adversary.
Note that this does not constitute an issue in the 4th round. If the adversary
manages to send garbled circuits resulting in honest parties obtaining different
valid fourth rounds of ITy. that result in different outputs, this would violate
the security of .. This follows from our assumption that the simulator of ITy.
extracts the input of the adversary in the first three rounds, which guarantees
that the adversarial inputs of IT,,. are fixed before the last round. Intuitively, in
the last round of Iy, the adversary can only decide if the honest parties obtain
the output or not. Finally, it is important to observe that the compiler avoids
using zero-knowledge proofs (as any misbehavior that the adversary does such as
garbling an incorrect function can be translated to the adversary broadcasting
the corresponding second and fourth-round message in the underlying protocol
IT,.) and uses only tools that can be instantiated from one-way functions. In
Fig. 3.1 we formally describe our protocol IT §2A;) , and refer the reader to the full
version for the formal proof.

Figure 3.1: HS?M

Primitives: A four-broadcast-round protocol Il that securely com-
putes f with unanimous abort security against ¢ < n corruptions, and a
garbling scheme (garble, eval, simGC). For simplicity assume that each
round message has the same length and it is ¢ bits long, so each circuit
has L = n - £ input bits.

Notation: Let Ciw(msg]17 ...,msgl) denote the boolean circuit with
hard-wired values z that takes as input the j-th round messages
msg7, ..., msgl and computes nxt-msg]. We assume that when a party
aborts she also signals the abort to all other parties.

Private input: Every party P; has a private input z; € {0,1}*.

First round (P2P): Every party P; does the following:

1. Let msg} <+ frst-msg,;(x;) be P;’s first round message in ITy..

Broadcast-Optimal Four-Round MPC in the Plain Model

2. Compute (GC;, K;) +— garble(l’\C%’mi)7 where K; =
{K? Yaciyvefo1}-

3. For every a € [L] and b € {0,1}, sample n uniform random strings
{Kli)—ﬂc,a}ke[n]? such that K?,a = @ke[n] K?—ﬂc,a'

4. Send to every party P; the message (msg},GC;, {K?Hj,a}ae[L],be{o,l})
Second round (P2P): Every party P; does the following:

1. If P; does not receive a message from some other party (or an abort
message), she aborts;

2. Otherwise, let (msg}_,;,GC;, {K%_,; ,}aellybefo,13) be the first round
message received from P;.

3. Concatenate all received messages {msgj_,;}jein] a8 (i 155 1) <
(msgl_,;,...,msg;_,;) € {0,1}

4. Let GC; be the set of garbled circuits received from the other parties
in the first round.

1
Hi o

5. Send to all parties the message (GC;, {K 55 o tiemlac)-
Third round (P2P): Every party P; does the following:

1. If P, does not receive a message from some other party
(or receives an abort message), she aborts; Otherwise, let
({GChiem) {Kisjatael)s - - - 1Knsjataeq)) be the second round
message received from party P;, and let GC; be the garbled circuit
received from P; in the first round.

2. Check if the set of garbled circuits {GC;};¢},) echoed in Round 2 are
consistent with the garbled circuits received in Round 1. If this is not
the case, abort.

3. For every j € [n] and « € [L], reconstruct each garbled label by com-
puting Kj,a — @ke[n] Kj—>k,oz-

4. For every j € |[n], evaluate the garble circuit as msg? —
eval(GCj, {K;a}acy)- If any evaluation fails, aborts. Let msg? <
nxt-msg (x;, {msg] ,;}jem), {Msg?}jem)) be the Py’s third round mes-
sage in Ilyc. _ _

5. Compute (GC;, K;) +— garble(l’\,Cg’ygEi)7 where K; =
{K? Yaciyveqo1}-

6. For every a € [L] and b € {0,1}, sample n uniform random strings
{K?,; o}iem), such that K? | = @y, KV

i—k,a"

7. Send to every party P; the message (msg?, {Kg%j7a}ae[|_]7b€{071})
Fourth round (P2P): Every party P; does the following:

1. If P; does not receive a message from some other party (or receives an
abort message), she aborts;

2. Otherwise, let (msg?_,;, {K?%i,a}aE[LLbE{O,l}) be the third round mes-
sage received from P;.

17

18 M. Ciampi et al.

3. Concatenate all received messages {msg? ,;}jcin) as (471,547) <
(mSg:fazﬁ ce mSg%ai) € {0’ 1}L

V2
4. Send to all parties the message (GC;, {K'/"

IS0 i€l aell)
Output Computation: Every party P; does the following:

1. If P; does not receive a message from some other party
(or receives an abort message), she aborts; Otherwise, let
(GC;, {Kisjataen) > {Knojataen)) be the fourth round message
received from party P;.

2. For every j € [n] and « € [L], reconstruct each garbled label by com-
puting K, o < @ke[n] K ko

3. For every j € [n], evaluate the garbled circuits as msg? —
eval(GC;, {f{j’a}aem). If any evaluation fails, aborts.

4. Compute and output y < outputi(xi,{msg}_n}je[n],{msg?}jem,

{msg?—)z}je[n] ; {mSg?}Je[n])

Theorem 1 (P2P-P2P-P2P-P2P, SA, Plain Model, n > t). Let f be an
efficiently computable n-party function, where n > t. Let Iy, be a BC-BC-BC-
BC protocol that securely computes f with unanimous abort security against t <
n corruptions with the additional constraint that a simulator can extract inputs
before the last round. Then, assuming secure garbling schemes, the protocol from
Fig. 3.1 can compute f with selective-abort security that uses only P2P channels
against t < n corruptions.

P2P3-BC, UA, Plain Model, n > t. The protocol described in Fig. 3.1 achieves
unanimous abort security (against the same corruption threshold) when the last
round is executed over the broadcast channel.

The security follows intuitively from the fact that in this case, the honest
parties rely on the last round (over broadcast) to recover the output unanimously.
In more detail, if any inconsistency is detected in any round before the last round,
the honest party aborts signaling to abort to everybody else. Instead, if the last
round is executed then the additive shares corresponding to the fourth-round
next-message garbled circuits are being broadcast (instead of being sent over
peer-to-peer channels), and the adversary can no longer enable only a strict
subset of honest parties to evaluate the garbled circuits successfully and obtain
the output. Lastly, we point that unlike the case of P2P*, SA protocol in Fig. 3.1,
we need not assume that ITy, is such that its simulator can extract inputs before
the last round. This is because in this case, the last round of the UA protocol is
over broadcast. Therefore any attack in the last round of this protocol directly
translates to an attack in the last round of Il,.. More formally, we have the
following theorem (we refer the reader to the full version for its formal proof).

Broadcast-Optimal Four-Round MPC in the Plain Model 19

Theorem 2 (P2P-P2P-P2P-BC, UA, Plain Model, n > t). Let f be an
efficiently computable n-party function, where n > t. Let II. be a BC-BC-BC-
BC' protocol that securely computes f with unanimous abort security against
t < mn corruptions. Then, assuming secure garbling schemes, the protocol from
Fig. 3.1 can compute f with unanimous-abort security by a four-round protocol,
where the broadcast channel is used only in the last round (while the first three
rounds use peer-to-peer channels).

BC3-P2P, SIA, Plain Model, n > t. Let us consider a protocol IT,. which is
a 4-round (where the broadcast channel is available in each round) IA MPC
protocol secure against a dishonest majority. Moreover, let us assume that there
exists a simulator for ITy. which extracts the inputs of the adversary from the
first three rounds. For instance, one can instantiate ITy. using the protocol of
[11]'3.

Starting from I, we can construct a SIA protocol IT in the same setting,
where IT is defined exactly as Iy, but where the last round is executed over the
peer-to-peer channel. Intuitively, IT achieves STA security since by our assump-
tions on [T the simulator extracts the inputs of the adversary in the first three
rounds, and therefore the adversarial inputs are fixed before the last round.
Indeed, in the last round, the adversary can only decide if an honest party gets
the output or learns the identity of cheaters (depending on the version of the last
round message the adversary sends privately), but two honest parties can not
obtain a different output (which is non-_1). It can happen that different honest
parties identify different cheaters and others recover (the same) outputs, but this
is sufficient for STA security. Finally, we note that a similar result was shown by
[15], but only for the two rounds setting. We prove the following theorem, and
refer the reader to the full version for its proof.

Theorem 3 (BC-BC-BC-P2P, SIA, Plain Model, n > t). Let f be an
efficiently computable n-party function, where n > t. Let II,. be a BC-BC-BC-
BC protocol that securely computes f with identifiable abort security against
t < m corruptions with the additional constraint that a simulator can extract
inputs before the last round. Then, f can be computed with selective identifiable-
abort security by a four-round protocol, where the first three-rounds use broadcast
channels and the last round uses peer-to-peer channels.

13 The protocol of [11] lifts an UA protocol to achieve IA security (where the simulator
of the TA protocol uses the simulator of the UA protocol). If we consider, for instance,
the simulator of the UA protocol constructed in [9], this simulator extracts the inputs
of the adversary from the first 3 rounds (see page 42 of [8]). Therefore, for instance,
by instantiating [11] with [9] we obtain IT,. with the desired property.

20 M. Ciampi et al.

4 Negative Results

BC3-P2P, UA, Plain Model, n > t. At a high-level, we show that any BC3-P2P
protocol achieving UA against dishonest majority implies a three-round oblivious
transfer (OT) protocol in the plain model, which is known to be impossible [25].
We prove the following theorem and refer the reader to the full version for the
formal proof.

Theorem 4 (BC-BC-BC-P2P, UA, n > t). There exists function f such
that no n-party four-round protocol can compute f with unanimous-abort security
against t < n corruptions, such that the first three rounds use broadcast and
point-to-point channels and the last round uses only point-to-point channels.

4.1 SIA Impossibility Results

Theorem 5 (BC-BC-P2P-P2P, SIA, Plain Model, n > t). Assume the
existence of pseudorandom functions. There exists function f such that no
n-party four-round protocol (in the plain model) can compute with selective
identifiable-abort security, against t < m corruptions, while in the protocol, the
first two rounds use broadcast channels and the last two rounds use peer-to-peer
channels.

Proof. We start the proof assuming that the four-round protocol IT is run by
three parties only, and we extend the proof to the m-party case in the end.
By contradiction, assume that there exists a three-party protocol II that can
compute any function f with selective identifiable-abort security where just one
party Py gets the output'® and the broadcast channel is accessible only in the
first two rounds. Let us denote the three parties running the protocol II with
Py, Py, and Py.

Consider the following adversarial strategy of Fig. 4.1. In summary, in this
scenario, corrupted P; behaves like an honest party, with the difference that it
does not send the third and the fourth message to P», and it pretends that it
does not receive the third message and the fourth message from Ps.

Figure 4.1: Scenario 1

Setting: P; is corrupted party P> and P, are honest parties.
Private input: Every party P; has a private input xz; € {0,1}*.

First round (BC):

Every party P; samples the randomness r; from uniform distribution D,
computes msg! < frst-msg;(z;;7;), and sends the message over the
broadcast channel.

14 We are assuming implicitly this requirement on f thought the rest of the proof.

Broadcast-Optimal Four-Round MPC in the Plain Model 21

Second round (BC):

Every party P; computes msg; < nxt-msg; (i, {msg} } c(1,2,0ut}; i), and
sends it over the broadcast channel.

Third round (P2P):

1. Every party P computes ({msg?,; }ieq1.2.0ut) —

2 k .
nxt-msg; (x4, {mng }je{1,2,out},k€{1,2}7 Ti).
2. P; sends msgi_, ., t0 Poy. Poy sends msgd, ., to Pp, and sends
msg> .o to Pa. P sends msgi_; to Pp, and sends msg3_, , t0 Poyt.

Fourth round (P2P):

1. Py sets msg3,, = L and computes ({msg]_;}jci12.0u}) ¢
nxt-msg; (1, {msgh} e (12,00t ke{1,2} {MSE 1 Fje(1,2,0ut)5 71)-

2. Pyt computes ({msgéﬁj}je{m’out}) —
nxt—msgi’ut(xout, {msg?}je{l,Z,out},ke{l,Z}v {msg?ﬁout}je{l,lout}; Tout)-

3. P, computes ({msg5 ., }jeq1,2.0ut}) —

3 k 3)
nxt-msgy (72, {mng }je{l,Z,out},ke{l,Z}a {msgj~>2}j€{2,out}7 2).

4. Py sends msgi o, t0 Pour. Poy sends msgl. .| to Pp, and sends
msga,. .o to Po. Py sends msgs_, .. t0 Pour and msgs_.; to P;.

Given the above adversarial strategy, we proceed now in a series of steps in
order to reach a contradiction.
Step 1: F,,; Can not abort identifying the corrupted party. We prove
that, if Py, aborts, it can not identify that P; aborted. We prove this by contra-
diction. Consider the scenario of Fig. 4.2. In this, the corrupted P, behaves like
an honest party, and he does not send the third and the fourth round message
to P;. At the same time, it pretends that it does not receive the third round and
fourth message from P;. P; behaves honestly, sending all the messages that the
protocol IT prescribes. In summary, P, behaves like P; behaves in Scenario 1.

Figure 4.2: Scenario 2

Setting: P, is corrupted party. P; and P, are honest parties.
Private input: Every party P; has a private input z; € {0,1}*.

First round (BC):

Every P; samples the randomness r; from uniform distribution D, com-
putes msg! <+ frst-msg,(z;;7;), and sends the message over the broad-
cast channel.

Second round (BC):

Every party P; computes msg; <— nxt-msg; (i, {msg} } e(1,2,0ut}; i), and
sends it over the broadcast channel.

Third round (P2P):

22 M. Ciampi et al.

1. Every party P computes ({msg?ﬂj bieq1,2,0ut}) —

2 k .
nxt-msg; (i, {Msgj }je(1,2,0ut) ke (1,2}3 7i)-

2. Py sends msg3_, ., t0 Poy. Poy sends msgd, ., to P, and sends
msg> .o to Pa. Py sends msgi_, . t0 Poyt, and sends msg$_,, to Ps.

Fourth round (P2P):

1. P, computes ({msgl_,;}ie(1.2.0ut}) —
I I 3 _)
nxt-msgy (1, {MSg; }jec(1.2,0ut),ke{1,2}> {MSE; 1 }jc {10t} 71)-
2. Pout computes ({msgﬁut_)j}je{l,gyout}) —
nxt—msgiut(:vout, {mSgé?}j€{1,2,out},k€{1,2}> {msg?ﬁout}je{lj,out}; Tout)-
3. Py sets msg‘(f_>2 = 1 and computes ({msggﬂj}je{m,out}) —

3 k 3 .
nxt-msg, (w2, {msgj }j€{1,2,out},k€{1,2}a {msngQ}j€{1,2,0ut}7 r2).
4. Py sends msgs ., t0 Pou. Pour sends msgi ., to P;, and sends
msga,. .o to Po. Py sends msgi_, .. to Pour and msgi_ 5 to Ps.

Intutively, in Scenario 1 (in Fig. 4.1), P, can potentially report P;’s misbe-
haviour to Pyt earliest in round 4 (since P; behaved honestly in round 1 and
round 2). This means that Py, cannot identify the corrupted party (and abort)
until all the four rounds are received. However, a corrupted P; is pretending
that P, did not send the third round message. Hence, none of the messages that
Pyt receives in the fourth round would help him. In particular, P, sees P; and
P, blaming each other. In addition, P, can not see what happened on P2P
channel between P; and Ps, therefore, P,,; can not identify the corrupted party
correctly.

Formally, if in Scenario 1 P, aborts, then based on the definition of selective

identifiable-abort, Py identifies P, as the corrupted party. However, the view of
P,y in the Scenario 1 is identical to the view of Py, in Scenario 2 (in Fig. 4.2).
Because the view of P, is identical in the two scenarios, then Py, has the same
behavior in both scenarios. Hence, P, identifies P; as the corrupted party.
However, in Scenario 2, P; is honest, and this contradicts the SIA security of I1.
From the above, we can conclude that P, does not abort in Scenario 1, hence,
it must be able to compute the output.
Step 2: Constructing an SA secure protocol (only for two corruption
patterns). We now consider a new protocol, that we denote with II’ (and
denote the parties running the protocol with P, Py and P),). This protocol
works exactly like I7, with the following differences: 1) The honest P does not
send the third message to Ps. 2) No fourth messages between P; and Pj. 3) Py
does not send any fourth round to P; and Pj.

We prove that this protocol is secure with selective aborts. Informally, this
is possible because the honest parties send fewer messages compared to I, and
the party P, will still be able to compute the output due to the argument given
above. Moreover, given that we just want to obtain SA security, we can remove
the messages that Py sends in the last round. Formally, we prove that if IT is STA

Broadcast-Optimal Four-Round MPC in the Plain Model

secure, then IT" (that we propose in Fig. 4.3) is secure with selective abort (SA)
for two corruption patterns. Namely, we prove that the protocol is secure when
either P{ and P, , are corrupted or when P!, and P} are corrupted. Looking
ahead, we focus only on these corruption patterns, because proving the security
of IT" only in these cases would be enough to reach our final contradiction. Below,

we provide a more formal argument.

Figure 4.3: The new protocol IT’

Primitives: A three-party four-round protocol I =
{(frst-msg;,, {nxt—msgf}ke{l_g’g}, output;)}icq1,2,00} that securely
computes any f with selective identifiable-abort security against ¢ < n
corruptions, where the first two rounds use the broadcast channels to
exchange messages, and last two rounds use P2P channels.

Private input: Every party P/ has a private input z; € {0,1}*.

First round (BC):

Every party P/ samples the randomness r; from uniform distribution
D, computes msg) < frst-msg,(z;;7;), and sends the message over the
broadcast channel.

Second round (BC):

Every party P/ computes msg? < nxt-msg; (z;, {msg} }ieq1,2,0uty3 74), and
sends it over the broadcast channel.

Third round (P2P):

1. Every party P! computes ({msg?_ﬁ }ieq1,2,0ut}) —

nXt—mSg?(fUn {mSg?}j€{1,2,out},k€{1,2}; Ti)-

/ 3 / / 3 /
2. P| sends msgj_, . to P... P.. sends msg,, ,; to P, and sends

msg2 ..o to Py. Py sends msgi_,; to P/, and sends msg3_, . to P.,..

Fourth round (P2P):

1. P/ sets msg3_,;, = L and computes ({msg%aj}je{lﬁ,out}) —
nXt-msg:{(xla {mSgé?}j€{1,2,out},k€{1,2}v {msg?el}je{lﬂ,out}; r1).

2. Péut computes ({msggutﬁj}je{l,lout}) <
nXt-mSgg’ut (xouta {msg§}je{1,2,out},ke{1,2}7 {msg?%out}jE{l,Z,out}; Tout)'

3. P computes ({msgézl_m‘}je{lj,out}) —

nxt-msg3 (2, {Msg} }je 1 2,00t} he (1,2} {MSET 0} je (2,000)372)-

/ 4 / / 4 /
4. Pj sends msgi_, .+ to Po. P sends msgs_, . to P ;.

Output Computation:

1. Pl iompute and output y <—koutputout(:vout,
{mSg]‘ }je{l,z,out},ke{1,2}> {mng_wut}je{1,2,out},ke{3,4}; rout)

24 M. Ciampi et al.

The security of the STA protocol IT ensures us that there exist corresponding
simulators for (all) the corruption patterns, we will exploit those simulators to
construct the simulators for proving the security of IT’. Let S1s,lé\ut and SQS]C’?M be
the simulators of IT for, respectively, corrupted P; and Py, and for corrupted P
and Poy:. We construct two new simulators Slsf‘)ut and SQSéut which, respectively,
make use of Slsjéut and S5 and use them to prove the security of I1’ in the
above-mentioned corruptidn patterns. To formally do that, we need to transform
an adversary A>* attacking I’ into an admissible adversary Min of IT (we need
to do that since the simulators Sf)'oAut and 325,'(’?[,,E only work against adversaries
attacking the protocol IT). Miys runs internally AS* and acts as a proxy for
the messages between the simulator Sls"fut (resp. S%"ﬁut) and ASA, withholding
the messages that honest party P/ is not supposed to send in IT’. The Fig. 4.4
formally describes Mins. In this, we denote as the left interface, the interface

where the adversary sends and receives the protocol messages.

Figure 4.4: The adversary Mins

Notation: Let H be the set of indices of the honest parties and Z be
the indices of the corrupted parties. Miys internally runs the adversary
ASA | and is equipped with a left interface, where it receives the messages
computed on behalf of the honest parties and sends the messages
computed on the behalf of the corrupted parties.

First round (BC):

1. Upon receiving msg}, on the left interface with h € H, M forwards
the message to A in IT'.

2. Upon receiving the messages sent by A%, M forwards them to the
left interface, where it is acting as a corrupted party for I1.

Second round (BC):

1. Upon receiving msg,% on the left interface, where h € H, M.t forwards
the message to A5,

2. Upon receiving the messages sent by A in IT’, My forwards them,
acting as the corrupted parties in I7.

Third round (P2P):

1. Upon receiving msgz_)j in the left interface, where h € H and j € Z,

M forwards the message msg? . (and the message msgj_,; in the
case where 2 € H) to A%

2. Upon receiving the messages sent by A%, M. forwards them to the
left interface acting as the corrupted parties in I7.

Fourth round (P2P):

Broadcast-Optimal Four-Round MPC in the Plain Model 25

1. Upon receiving msgiﬁj on the left interface, where h € H and j € Z,
Mints forwards the message msg;‘l out O ASA (if any).

2. Upon receiving the messages sent by A, M.+ forwards them to its
left interface.

We are now ready to show how the simulator Sls”zut of IT" for the case where
P| and P), are corrupted. The simulator Si’éut is formally described in Fig. 4.5.

Figure 4.5: 515,/Z\>ut

Si’gut performs the following steps:

— Invoke Si'ﬁut for the adversary Minf, querying and receiving responses
to and from its left interface.

— Work as a proxy between the ideal functionality and SP'A

1,out*

SIA

In the end, Sls)f;ut output whatever S7¢,

outputs, and halt.

For the case where Py and P, are corrupted, we can define the simulator
S35t similarly to Si'?ut, but using Si'c"fut. If an adversary ASA attacking I’ is able
to distinguish between when it is receiving messages produced by Slséut (resp.
SQSéut) from the case when the messages are generated from an honest party
running II’, then we can show an adversary that contradicts the SIA security of
I7. In the reduction A" simply runs internally Miuf, which in turn it will run
ASA
Step 3: Modifying adversary A%*. As a stepping stone toward proving the
final result, we consider first another adversary A7, which corrupts P and Py,
and acts as follows. The corrupted parties P{ and PJ, act like the honest parties
running 7’ would, except that they are rushing in the first round (i.e., they
wait to receive the honest party’s message before sending their first round), and
compute their input and randomness by evaluating a PRF on input the message
received from the honest party. More formally, AT samples two different keys
(k1, ko) for a PRF F. Upon receiving the first round msgs from the honest Py, the
adversary computes 1 < Fy, (msg3), r1 ¢ Fi,(msg}). Then AT use (z1,71)
and original input and randomness of P, to finish all four round interactions
with the honest party Pj. We define A5, similarly.

We need to prove even against such an adversary there exists a simulator, that
can successfully extract the input from a corrupted Pj. A simulator for ASFE
trivially exists due to the SA security of I, hence, we need to argue that such
a simulator does query the ideal functionality, hence, it extracts the input of the
corrupted parties (this will be crucial for the last step of our impossibility proof).
To prove that this is indeed the case, we start by observing that, trivially, when
all the parties are honest then [T’ terminates and P, computes the output, with

no party triggering an abort. Consider now an adversary Af ., that corrupts

26 M. Ciampi et al.

the parties with index 1 and out, and instructs these parties to be rushing in the
first round, and non-rushing in the remaining rounds, without change behaviors
of corrupted parties.

Also in this case, it is easy to see that the honest party will not abort and
that P, will compute the output. What remains to prove is that the view of
the honest party stays the same when interacting with A% instead of Al .
To do that, we prove the following lemma, which holds due to the security of
the PRF.

Lemma 1. Let A{%,(aux) and A}, be the adversaries described above.

Assume that PRFs exist, then, for every auxiliary input aux, for all x €
({0,1}*)3, for all X € N, it holds that the probability that the honest party
aborts in REAL[1 outy, AP (aux) (7 1) is negligible-close to the probability that

1,out

the honest party aborts in REALy (1 out}, Ay, (aux) (z,1%) -

1,0u

We also prove that the same lemma holds for the case where the indices of
the corrupted parties are {2, out}. We refer the reader to the full version for the
formal proof. We then prove the following lemma (we refer the reader to the full
version for the formal proof), which in summary states that IT remains secure
even against such PRF adversaries.

Lemma 2. Let f be an efficiently computable three-party function. Assume that
there exists a three-party protocol II that securely computes f with selective-
abort security when parties Py and Py are corrupted, for every PPT real-world
adversary A?ﬁ,ut with auziliary input aux. Then for the same corruption pattern
T, for the same auxiliary input aux, for all x € ({0,1}*)3, for all A € N, it holds

that {REAL; 7 s (aux)(%,17)} = {IDEAL}?EVLM(%X) (z,1%)}. We also prove that

1,out

it works for the corruption pattern {2,out}

Step 4: Constructing an adversary that breaks the SA security of II'.
We prove that there exists an adversary Ag, that can use the simulator Slsf(\,ut
to extract the input from an honest P;. This would contradict the SA security
of II'. This adversary Ag, (formally described in Fig. 4.6) controls the parties
Pj and PJ,, and runs internally the simulator Slsf)utls. Note that Si’gut expects
to interact with an adversary which corrupts P; and P, in an execution of II’,
hence Ag, needs to make sure that Slséut can be executed correctly, despite the
party P; being honest. In particular, we need to argue that the simulator can
work properly (i.e., the simulator extracts the input P;) while PJ is not rewound.

Figure 4.6: The adversary Ag,

— Define and initialize j <— —1 and sample ki, ks < {0,1}*. Run 8P4,

which denotes the simulator of II’ for the case where P| and P, are

15 Note that the simulator is expected polynomial time, hence we need to cut its running
time to make sure that Ag, remains PPT.

Broadcast-Optimal Four-Round MPC in the Plain Model 27

corrupted. Slsﬁut is run until it performs up to « steps (recall that SPA .
needs £ = poly(\) expected number steps). l

— Sample i < [1]. Any time that S7%,, opens a new session by sending
a new first-round m (m here denotes all the messages received over
broadcast in the first round) to the honest P; then set j < j + 1 and
do the following.

e If j =i compute z} < Fy, (m), where z¢ will denote the input of
the honest party P; used in the MPC indistinguishability game®.

e If j = i then reply to all the queries of Sls,f\)ut, acting as the honest
P/ would act using the input #J and the randomness 7/, where
2]« F, (m) and rJ « Fy,(m).

— In the i-th session act as a proxy between the MPC challenger and
Siﬁut with respect to all the messages related to P;. Note that the
messages from the challenger will either be simulated or generated by
running the honest party P| with the input z?.

— For every message that Slsﬁut sends to P in the session j # i, reply as

the honest party P; would using the input :1:]1 and the randomness 7‘{.

— Act as an honest P/, would act with the only difference that P, sends
the third round to Py in the session 4 only after that Slséut has stopped
and it has returned a transcript consistent with the i-th session.

— Whenever Slsﬁ.\,ut tries to send a second round in the i-th session, forward
this message only to PJ,. When Slsf)ut stops and returns its transcript,
forward to Pj the second round message that appears in the transcript.

— When SPA,, attempts to query the ideal functionality with a value
71 = (7°,21), AL, records this value, and sends back to the simulator
2 (here the adversary acts as the ideal functionality would for the
simulator S74,,). When Siﬁut stops, and returns its output, check if
the output transcript is consistent with the messages generated in the
i-th session. If this is the case then do the following

e If 71 = 2% then return 1 (this is to denote that the challenger
generated a transcript using the honest procedure for Py).
o If 7; # x! then return 0 (this is to denote that the messages
computed by the challenger on behalf of P] were simulated)
If instead the output transcript of Si’gut is not consistent with the i-th
session, then return a random bit.

% Note that in the security experiment of MPC protocol must hold for any x1.
In particular, this means that the security must hold for a value z; chosen
by the adversary prior to the beginning of the experiment.

In other words, we need to prove that any rewind made by the simulator Sféut
can be emulated by Ag, without rewinding the honest P{. Finally note that P,
is corrupted, hence Ag, can emulate any interaction between 8P4, and PJ,,. This
means that we can rewind P/, but at the same time need to make sure that
any rewind performed on P) ., does not implicitly rewind also P;. To make sure

28 M. Ciampi et al.

this does not happen, we instruct Ag, to be rushing in the first round and non-
rushing in other rounds. We examine now all the possible rewinding patterns, to
show that our adversary does not need to rewind P;. We do so using different
figures (for each pattern), where we use a straight line to denote messages on
the P2P channel, a dashed line to denote messages on the broadcast channel
and a dotted line to denote rewind messages and corresponding new messages.
We also use the number to indicate which round mebsage it is.

We start by considering the scenario where SPA 'out 1S attempting to rewind
(what he sees as a malicious) Py in the first BC round. Because we cut the run-
ning time of 81 A ¢, We can assume that SPA "out Will rewind the first BC round for
at most x times, for some polynomial . To deal with this situation, our adver-
sary samples a random index i < [k], and forwards to the external challenger
only the message generated by Slséut related to the i-th session. To define the
input z; that will be used in the indistinguishability experiment, we evaluate
a PRF on input the first round messages received from SPA "out- Note that the
security of I’ must hold for any choice of x1, even for an adversarially chosen
one.

For all the other sessions, our adversary will answer the messages generated
by Slsﬁut acting as the honest P; would, using as input and randomness the
output of a PRF evaluated on the messages received from Slséut. By applying
Lemma 2, we can argue that Slséut is secure against A", which means even
when the input and randomness are computed by using the PRF, the simulator
is still able to extract the input from the corrupted party, with non-negligible
probability.

We mentioned that in the i-th session, Ag, acts as a proxy between the
external challenger and S 'out for all the messages related to P;. Note that SA out
can also rewind the second, third, and fourth rounds in the i-th session. Consider
the case where Slﬁut rewinds the second round that goes from Pj to P.,.. This
action, in turn, causes P, to send multiple third rounds to P;. We observe that
there is no need to forward all these multiple third rounds to Pj, as we can
just block all of them except the message that will appear in the final simulated
session. Note that the simulator must work well even with this modification
since the simulator does not see the effect of the rewinds implicitly performed
to P due to the fact that the simulator has no access to the fourth P2P round
messages that P may compute as a consequence of these rewinds (recall that
P! is non-rushing and that it does not send any message to Pj). We refer to
Fig. 4.7.a for a pictorial description.

Figure 4.7.b reflects the scenario where S‘féut is attempting to rewind (what
he sees as a malicious) P] in the third P2P round. By the definition of IT’, P|
does not react on the third round that comes from P], hence, we can just forward
to P{ only one message, which corresponds to the message the simulator returns
in its final simulated transcrlpt Figure 4.7.c reflects the scenario where SP4 “out 1S
attempting a rewind to P, in the third P2P round. By construction of IT : , Pl
does not send any fourth message Hence, we can simply allow this rewmd as
the adversary AL, controls P.,. Figure 4.7.d reflects the scenario where SP4 "out 18

Broadcast-Optimal Four-Round MPC in the Plain Model 29

e+ pF
B 3 . Poat P .

SA
1,out

(a) Pattern 2: SP4. (c) Pattern 4: S, (d) Pattern 5: SPhut
. Lou . V . , :

rewinds the second rewinds the thl/rd rewinds the third rewinds the fourth

BC round P2P round for Pi p2p round for P, P2P round for Py,

Figure 4.7. Rewinding patterns

attempting a rewind P, in the fourth P2P round. Also in this case, it is easy
to see that this action does not implicitly rewind P;.

We have argued our adversary can run Siﬁut, without perturbing its behavior,
while at the same time making sure that P| is not rewound. This means that the
Slséut will, with non-negligible probability, return some value that corresponds to
the input of P (when the messages of P; are computed accordingly to IT’, and
are not simulated by the external challenger). Note that ngut may complete
a session, where Pj is fully under the control of the adversary. This happens
when the simulated transcript corresponds to some session i’ # i. However, we
can argue that with non-negligible probability, the simulated transcript returned
by Slséut does correspond to the i-th session. Once we have argued that, we can
claim that Slsﬁ,ut will return the input of P;, when the MPC challenger computes
the messages on behalf of P| using the input z¢. To reach a contradiction, we
need to consider a function that does not implicitly leak the input of P] to the
adversary. For this, we consider the oblivious transfer functionality, where P;’s
input is x; = (2% € {0,1}*, 2! € {0,1}*) and Py’s input is x5 € {0, 1}, while
P! . does not have any input.: f(x1,z9, 1) = 2”2,

Finally, given that the probability that A5, guess the session i correctly is
non-negligible, and given that the simulator run internally by At, will succeed
with non-negligible probability, we can claim that our adversary Ag, breaks the
SA security IT' with non-negligible advantage.

Our theorem can be extended to n-party cases. Assuming there exists a n-
party four-round protocol that can compute f with selective identifiable-abort
security, against ¢t < n corruptions. We denote the n parties running the protocol
with (Py,...,P,), then we let P; take the input 1, P> take the input zo, and
other parties take no input. If such a protocol would be secure, then we can
easily construct a 3-party protocol (where all the parties that have no input
are emulated by a single entity) to compute f with selective identifiable-abort
security, which would contradict our claim.

We prove the following theorems with similar proofs and refer the reader to
the full version for the formal proofs.

30 M. Ciampi et al.

Theorem 6 (BC-BC-P2P-BC, SIA, Plain Model, n > t). Assume the
existence of pseudorandom functions. There exists function f such that no n-
party four-round protocol (in the plain model) can compute f with selective
identifiable-abort security, against t < n corruptions, while in the protocol, the
first two rounds use broadcast channels and the third one uses peer-to-peer chan-
nels and the last round uses broadcast channels.

Theorem 7 (P2P-BC-BC-BC, SIA, Plain Model, n > t). Assume the
existence of pseudorandom functions. There exists function f such that no n-
party four-round protocol (in the plain model) can compute f with selective
identifiable-abort security, against t < m corruptions, while in the protocol, the
first round uses the peer-to-peer channels and the remaining three rounds use
broadcast channels.

Theorem 8 (BC-P2P-BC-BC, SIA, Plain Model, n > t). Assume the
existence of pseudorandom functions. There exists function f such that no n-
party four-round protocol (in the plain model) can compute f with selective
identifiable-abort security, against t < m corruptions, while in the protocol, the
first round uses broadcast channels and the second one uses peer-to-peer channels
and the last two rounds use broadcast channels.

References

1. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part II. LNCS, vol. 10992, pp. 395-424. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96881-0_14

2. Ananth, P.; Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 468-499. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_16

3. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal MPC. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 459-487.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_16

4. Badrinarayanan, S., Miao, P., Mukherjee, P., Ravi, D.: On the round complexity
of fully secure solitary MPC with honest majority. IACR Cryptol. ePrint Arch., p.
241 (2021)

5. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part II. LNCS, vol. 10821, pp. 500-532. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8_17

6. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp.
645—677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_22

7. Chaum, D., Damgard, 1.B., van de Graaf, J.: Multiparty computations ensuring
privacy of each party’s input and correctness of the result. In: Pomerance, C. (ed.)
CRYPTO 1987. LNCS, vol. 293, pp. 87-119. Springer, Heidelberg (1988). https://
doi.org/10.1007/3-540-48184-2_7

https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/3-540-48184-2_7
https://doi.org/10.1007/3-540-48184-2_7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Broadcast-Optimal Four-Round MPC in the Plain Model 31

Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round opti-
mal secure multiparty computation from minimal assumptions. Cryptology ePrint
Archive, Paper 2019/216 (2019). https://eprint.iacr.org/2019/216

Rai Choudhuri, A., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal
secure multiparty computation from minimal assumptions. In: Pass, R., Pietrzak,
K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 291-319. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64378-2_11

Ciampi, M., Ostrovsky, R., Waldner, H., Zikas, V.. Round-optimal and
communication-efficient multiparty computation. In: Dunkelman, O., Dziem-
bowski, S. (eds.) EUROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 65-95.
Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-06944-4_3
Ciampi, M., Ravi, D., Siniscalchi, L., Waldner, H.: Round-optimal multi-party
computation with identifiable abort. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 335-364. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-06944-4_12

Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th Annual ACM Symposium on Theory of Computing,
pp. 364-369. ACM Press (1986). https://doi.org/10.1145/12130.12168

Cohen, R., Garay, J., Zikas, V.: Broadcast-optimal two-round MPC. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 828-858.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_28

Damgard, 1., Magri, B., Ravi, D., Siniscalchi, L., Yakoubov, S.: Broadcast-optimal
two round MPC with an honest majority. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 155-184. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1_6

Damgard, I., Ravi, D., Siniscalchi, L., Yakoubov, S.: Minimizing setup in broadcast-
optimal two round MPC. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part
II. LNCS, vol. 14005, pp. 129-158. Springer, Heidelberg (2023). https://doi.org/
10.1007/978-3-031-30617-4_5

Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. STAM
J. Comput. 12(4), 656-666 (1983)

Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. 14(4), 183-186 (1982)

Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 448-476. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5_16

Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468-499. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8_16

Goel, A., Jain, A., Prabhakaran, M., Raghunath, R.: On communication models
and best-achievable security in two-round MPC. In: Nissim, K., Waters, B. (eds.)
TCC 2021, Part II. LNCS, vol. 13043, pp. 97-128. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-90453-1_4

Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof
systems. SIAM J. Comput. 25(1), 169-192 (1996). https://doi.org/10.1137/
S0097539791220688

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th

https://eprint.iacr.org/2019/216
https://doi.org/10.1007/978-3-030-64378-2_11
https://doi.org/10.1007/978-3-031-06944-4_3
https://doi.org/10.1007/978-3-031-06944-4_12
https://doi.org/10.1145/12130.12168
https://doi.org/10.1007/978-3-030-45724-2_28
https://doi.org/10.1007/978-3-030-84245-1_6
https://doi.org/10.1007/978-3-031-30617-4_5
https://doi.org/10.1007/978-3-031-30617-4_5
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-030-90453-1_4
https://doi.org/10.1007/978-3-030-90453-1_4
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688

32

23.

24.

25.

26.

27.

28.

M. Ciampi et al.

Annual ACM Symposium on Theory of Computing, New York City, NY, USA,
25-27 May 1987, pp. 218-229. ACM Press (1987). https://doi.org/10.1145/28395.
28420

Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptol. 18(3), 247-287 (2005). https://doi.org/10.1007/s00145-005-0319-z
Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 488-520. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0_17

Hazay, C., Venkitasubramaniam, M.: What security can we achieve within 4
rounds? In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 486-505.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_26

Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335-354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8_21

Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 735-763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5_26

Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In:
27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario,
Canada, 27-29 October 1986, pp. 162-167. IEEE Computer Society Press (1986).
https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/s00145-005-0319-z
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-319-44618-9_26
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1109/SFCS.1986.25

®

Check for
updates

Taming Adaptivity in YOSO Protocols:
The Modular Way

Ran Canetti!®) Sebastian Kolby?, Divya Ravi, Eduardo Soria-Vazquez®,
and Sophia Yakoubov?

! Boston University, Boston, USA
canetti@bu.edu
2 Aarhus University, Aarhus, Denmark
{sk,divya,sophia.yakoubov}@cs.au.dk
3 Technology Innovation Institute, Abu Dhabi, UAE
eduardo.soria-vazquez@tii.ae

Abstract. YOSO-style MPC protocols (Gentry et al., Crypto’21), are
a promising framework where the overall computation is partitioned into
small, short-lived pieces, delegated to subsets of one-time stateless par-
ties. Such protocols enable gaining from the security benefits provided
by using a large community of participants where “mass corruption”
of a large fraction of participants is considered unlikely, while keeping
the computational and communication costs manageable. However, fully
realizing and analyzing YOSO-style protocols has proven to be challeng-
ing: While different components have been defined and realized in various
works, there is a dearth of protocols that have reasonable efficiency and
enjoy full end to end security against adaptive adversaries.

The YOSO model separates the protocol design, specifying the short-
lived responsibilities, from the mechanisms assigning these responsibili-
ties to machines participating in the computation. These protocol designs
must then be translated to run directly on the machines, while preserv-
ing security guarantees. We provide a versatile and modular framework
for analyzing the security of YOSO-style protocols, and show how to use
it to compile any protocol design that is secure against static corruptions
of t out of ¢ parties, into protocols that withstand adaptive corruption
of T out of N machines (where T'/N is closely related to t/c, specifically
when t/c < 0.5, we tolerate T//N < 0.29) at overall communication cost
that is comparable to that of the traditional protocol even when ¢ << N.

Furthermore, we demonstrate how to minimize the use of costly non-
committing encryption, thereby keeping the computational and commu-
nication overhead manageable even in practical terms, while still provid-
ing end to end security analysis. Combined with existing approaches for
transforming stateful protocols into stateless ones while preserving static
security (e.g. Gentry et al. 21, Kolby et al. 22), we obtain end to end
security.

© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14370, pp. 33-62, 2023.
https://doi.org/10.1007/978-3-031-48618-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48618-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-48618-0_2

34 R. Canetti et al.

1 Introduction

Secure multiparty computation (MPC) allows data owners to outsource the pro-
cessing of their sensitive data to a set of machines, with the guarantee that as
long as fewer than a threshold ¢ of those machines are corrupt, no-one will learn
more about the data than revealed by the computation output. YOSO MPC
[GHK+21] is an emerging new style of MPC where participating machines have
very short term roles: they receive messages, performing an internal computa-
tion, and send messages in a single communication round to the next set of
participating machines. Before sending those messages, the machine erases all
other state relevant to the protocol execution.

The advantage of YOSO MPC is that the communication complexity of the
protocol can be sublinear in N (the number of available machines), even if the
corruption threshold 7' is linear in N. This might appear impossible, since if
the communication complexity is sublinear in N, the set of all machines ever
to send a message fits within the adversary’s corruption budget; however, the
crucial insight is that as long as an adversary cannot predict which machines
will “speak”, she is unable to target them. One of the challenges of YOSO MPC
is choosing participating machines in an unpredictable way, making it harder to
locate and adaptively attack those machines while they are active and relevant
to the protocol.

YOSO MPC protocols naturally decompose into two tasks. The first of these
is role assignment, which entails determining which machines will have a role to
play and handing them the secret keys they will need in order to do so, while
keeping their identities hidden from the adversary. The second task is actually
running the MPC by having the chosen machines play their assigned roles.

One can view YOSO MPC protocols through two lenses: In the natural world,
a protocol must specify instructions for physical machines, including instructions
for role assignment; i.e., how the machines should go about determining whether
they have a role to play, and if so, which one. In the abstract world, a YOSO
MPC protocol can be described in terms of the roles alone, without consideration
for the machines running them.

Some previous YOSO protocols (e.g. the protocol of Benhamouda et al.
[BGG+20]) are described in the natural world, running both role assignment
and computation in an entwined way. Others (e.g. the protocols of Gentry et al.
[GHK+21] and Acharya et al. [AHKP22]) are described in the abstract world,
relying on behind-the-scenes machinery to take care of role assignment.

The second is a more modular approach, resulting in simpler protocol descrip-
tions. However, these descriptions do not suffice for use in the real, natural world.
We need a compiler to translate them into something machines can run; such a
compiler might access an ideal role assignment functionality.

One such role assignment functionality and compiler were introduced by Gen-
try et al. [GHK+21]. However, the role assignment functionality presented by
Gentry et al. was perhaps too strong, in that it did not allow the adversary to
influence the role assignment, instead choosing all machines in an ideal, ran-
dom way. This makes it impossible for the most efficient known role assignment

Taming Adaptivity in YOSO Protocols: The Modular Way 35

mechanism (that of Benhamouda et al. [BGG+20]) to realize this functionality.
Furthermore, the compiler of Gentry et al. [GHK+21] has two drawbacks: (a) it
is inefficient, and (b) it is incompatible with some abstract protocols (e.g. the
protocol of Braun et al. [BDO22] and Kolby et al. [KRY22]).

1.1 Owur Contributions

In this paper, we fill the above gaps: we introduce a more realistic role assignment
ideal functionality Fra, give a realization of Fra, and present a more efficient,
more general compiler that relies on this new functionality. In particular, we
use non-committing encryption only for implementing Fra. All the messages of
the underlying (statically secure) protocol are encrypted using standard (CCA
secure) encryption.

1.1.1 Ideal Role Assignment Functionality In Sect.3, we introduce our
role assignment ideal functionality Fga. Our goal is to capture a more general
and broad class of potential and existing role assignment protocols. Towards
this, we give a comprehensive design of Fgra that supports modeling various
assignment approaches.

At a very high-level Fra supports two kinds of elections: assignment of a role
to a random honest machine, and assignment influenced by the adversary, to a
chosen, possibly corrupt machine. The machines are allowed to probe the Fra to
read the public keys of the roles assigned so far, deduce if they themselves have
been assigned a role, and retrieve the secret keys in such a case. Furthermore,
our design of Fra supports modeling various scenarios that can occur during its
execution, such as (a) when the adaptive adversary manages to corrupt a role
that was assigned when it was uncorrupted (before the election of the committee
was completed), (b) when a machine wishes to delete its state before it speaks
on behalf of a role, and (¢) when a machine is unavailable for nomination while
it refreshes its secret state.! The formal details appear in Sect. 3.

1.1.2 Compiling Abstract Protocols In Sect. 4, we describe how to lever-
age Fra to compile an MPC protocol in the abstract world into one that can
be run in the natural world. Unlike the compiler of Gentry et al. [GHK+21],
we only use non-committing encryption within the realization of Fra (and not
within the compiler itself). This has a two-fold advantage: (a) it yields a sig-
nificant efficiency gain, and (b) it gives compatibility with a broader class of
abstract YOSO protocols (e.g. the protocol of Braun et al. [BDO22] and Kolby
et al. [KRY22)).

At a high-level, in our compiled protocol in the natural world, each machine
deduces if it has been selected for a role by invoking the Fgra. If this is the case, it

! In our particular use-case, machines are unable to be nominated between deleting
their previous secret key and broadcasting a fresh public key. This allows one machine
to hold multiple roles, but prevents nominations which overlap with the machine
speaking for a role.

36 R. Canetti et al.

reads the bulletin board (in the natural world) to obtain ciphertexts encrypted
using that role’s public key. It can decrypt these ciphertexts using the secret
keys provided by Fra and proceed to compute the outgoing messages of the role
to other roles. These outgoing messages can be encrypted using the other roles’
public keys (provided by Fra) and posted on the bulletin board. Just before a
machine speaks on behalf of a role, it instructs the Fra to delete its state. After
speaking, it instructs Fgra that it is ready for new nominations.

The main challenge is proving adaptive security of the compiled protocol,
assuming that the underlying abstract protocol is only statically secure. The
crux of our proof is that the set of corrupt roles can be chosen statically, and
then the Fra may be suitably re-programmed so that adaptive corruption of
machines are appropriately matched to the already chosen static corrupt roles.
We refer to Sect. 5 for details on the technicalities in our proof.

Compiling Abstract Protocols that Require Message Verification. The above com-
piler supports abstract protocols that use only ideally private point-to-point and
broadcast channels. This does not cover a large class of abstract YOSO protocols
where parties are expected to accompany their messages with zero-knowledge
proofs that relate their outgoing messages to their secret state and previously
received messages. Indeed, in order to compile such protocols to natural ones,
such proofs would need to involve both secret state from the abstract protocol
and secret keys from the compiler itself. In Sect. 6, we show how our compiler
can be extended to abstract protocols that contain such constructs. More specif-
ically, we modify the above compiler to accommodate abstract protocols that
leverage the functionality Fyespa [KRY22], which is used to enable parties to
prove to others that the broadcast and peer-to-peer messages they send within
a protocol were derived honestly.

In order to extend our compiler to abstract protocols using Fyespa, we need
to be able to emulate the verifiability of messages in the natural world. For this,
we simply rely on augmenting the messages posted on the bulletin board in
the compiled protocol with corresponding non-interactive zero-knowledge proofs
proving that these messages were computed correctly.

1.1.3 Realizing the Role Assignment Functionality In Sect.7, we mod-
ify the role assignment protocol of Benhamouda et al. [BGG+20] to realize Fga.
As shown in [HLH+22], their protocol had problems in addressing the adaptivity
of the adversary when it came to realizing the necessary anonymity property.
As in [BGG+20], our modified protocol ITgra uses a cryptographic sortition algo-
rithm in order to ensure that an adversary is not able to increase the likelihood
of corrupting a role of his choice. Furthermore, IIga uses Key and Message Non-
Commiting Encryption (KM-NCE). This enables the simulator to deal with
the different problematic scenarios described above. That is, by creating “fake”
ciphertexts, the simulator can deal with the case of honest parties sending mes-
sages to recipients who were a priori expected to be honest, but then became
corrupted by the adversary.

Taming Adaptivity in YOSO Protocols: The Modular Way 37

Crucially, our protocol instructs nominated machines to erase their private
decryption key before making themselves known. As soon as the machine com-
pletes its role as a committee member, it chooses a new key pair and registers
the new public encryption key with the PKI server. The machine will keep a
(truly) long-term signature key in order to authenticate itself to the PKI server.

The much less efficient role assignment protocol of Gentry et al. [GHM+-21]
(which uses any MPC protocol to run random-index PIR) may be modified to
trivially realize Fra, by a similar application of KM-NCE.

2 Preliminaries

2.1 Key and Message Non-commiting Encryption

We recall the notion of a Key and Message Non-Commiting Encryption (KM-
NCE) from [HLH+22], which is an extension of receiver non-commiting encryp-
tion. Informally, a KM-NCE is a public-key encryption scheme that allows to
generate fake ciphertexts without any public key in such a way that those fake
ciphertexts can later be decrypted to any plaintext for any public key, by gen-
erating an appropriate secret key on the fly. We briefly recall the syntax of a
KM-NCE scheme, referring the reader to [HLH+22] for a more detailed motiva-
tion.

Setup(1®) — pp: Given security parameter 17, the setup algorithm generates
public parameters pp.

Gen(pp) — (pk, sk, tk): Given public parameters pp, the key generation algorithm
produces a public key pk and secret key sk, as well as a trapdoor key tk. The
trapdoor key is not used for encryption or decryption, but instead provides
additional information for the purposes of opening simulated ciphertexts.

Enc(pp, pk, m) — ¢t Given public parameters pp, public key pk and a message
m, the encryption algorithm produces a ciphertext c.

Dec(pp, sk, c) — m: Given public parameters pp, public key pk and a ciphertext
¢, the decryption algorithm outputs a plaintext m.

Fake(pp) — (¢, 7): Given only the public parameters pp, the fake algorithm pro-
duces a fake ciphertext ¢ and additional trapdoor information 7.

Openy (pp, tk, pk, sk, (c%, 75, m>) e[k)) — sk’:] Given public parameters pp, keys
tk,pk, sk, and k tuples, each containing a ciphertext c,, its trapdoor infor-
mation 7, and a desired plaintext m, the open algorithm produces a fresh
secret key sk’ corresponding to pk, such that each ciphertext appropriately
decrypts to the desired plaintext.

In the security experiments for KM-NCE the adversary is never given trapdoor
keys, implicitly requiring secure erasure of these keys if we wish to achieve adap-
tive security.

Definition 1 (Security). A KM-NCE scheme KM-NCE = (Setup, Gen, Enc,
Dec, Fake, Open,,) in the k-challenge setting is CCA-secure if for any PPT adver-
sary A = (A1, Aa, A3), the advantage AdvﬁMNEchﬁ(,\) =

-NCE-CCA- -NCE-CCA-i
| Pr{Expiganee s (V) = 1] — PrBxpiunce a " (A) = 1]]

38 R. Canetti et al.

KM-NCE-CCA-real KM-NCE-CCA-ideal

is negligible, where EXPKymNCE. Ak and EXPgyNCE Ak are defined in
Fig. 1.

BpHIEE S0 ExpEAEE S0

pp «$ Setup(1?) pp +$ Setup(1?)

(pk, sk,tk) <$ Gen(pp) (pk, sk, tk) <$ Gen(pp)

((m2)e(n), stater) <8 A?Dec(pp,pk) ((m2)4e(x), stater) <$ A?D“(pp,pk)

(¢4 <% Enc(pp, pk, m3))e) ((c5,7]) <=3 Fake(pp)) e(u

states +$ Ag“’“((cj)we[k],statel) statey «$ Agf’“((c;)ye[k],statel)

b +$ As(sk, states) sk’ <=8 Open,.(pp, tk, pk, sk, (c3,

Return b T3)velk])

b <8 As(sk’, states)
Obec(c): Return b

If ce{c; : v € [k]}: Return L
m = Dec(pp, sk, ¢)
Return m

Fig. 1. The experiments for KM — NCE-CCA security of a KM-NCE scheme.

Note, KMNCy-CCA security implies conventional adaptive CCA security, as
the fake algorithm does not take a message as input. By a hybrid argument, the
encryption of any message mg must be indistinguishable from a faked ciphertext,
which in turn is itself indistinguishable from the encryption of any other message
mi.

KM-NCE schemes can be constructed from hash proof systems, as shown in
[HLH+22].

2.1.1 KM-NCE with a Unique Recipient We need to define an additional
property for KM-NCE, which ensures that the adversary cannot produce (some-
thing that looks like) a ciphertext which decrypts under two different honest
secret keys.

Definition 2 (Unique recipient). A KM-NCFE scheme KM-NCE = (Setup,
Gen, Enc, Dec, Fake, Open,) is unique recipients if for any PPT adversary A,
Pr[Expﬁm:NEEﬂR()\) = 1] is negligible, where Expﬁm:NgE:iR is defined in Fig. 2.

2.1.2 A Unique Recipient KM-NCE Construction We show how to
build a unique recipient KM-NCE encryption scheme in the programmable ran-
dom oracle model. Since this implies the notion of receiver non-committing
encryption, we know that random oracles are necessary in order to avoid secret
keys that are as long as the messages to be encrypted [Nie02].

Our construction is based on a simple variant of ElGamal, which makes
it more efficient than the KM-NCE construction based on hash proof systems

Taming Adaptivity in YOSO Protocols: The Modular Way 39

EXpiince.A () Opec(©):

pp <$ Setup(1*) If c € {c} : v € [k]}: Return L
((pki, Sk‘i, tkl) <*$ Gen(pp))ie[h] Tn/L — Dec(pp7 Skv C)

¢ <% A%< (pp, {pk;tiern) Return m/ L

If Fiq,i5 € [h} T 75 io N\

Dec(pp, ski,,c) # L A RO(s):

Dec(pp, ski,,c) # L, return 1. S returns a uniformly random ¢.

Otherwise, return 0.

Fig. 2. The unique recipient experiment.

(HPS) from [HLH+22, Section 5.3], which relies on a matrix variant of DDH
[EHK+13]. Furthermore, that construction does not have the unique recipient
property that we need. The reason behind this is that, since the projected and
unprojected hash need to coincide for elements x of the language, the adversary
can use the unprojected hash (in their specific notation, 15?1’/13) together with the
public keys of honest parties in order to try and find a suitable witness that
leads to a collision (in their notation, the same 7) with several secret keys. Once
he has that, it is easy for him to come up with the rest of the elements of the
ciphertext (given z, any d can be fixed by varying the message m. Hence, a
whole range of values 7 = H(z,d) can be explored by the adversary). It is very
easy for the adversary to come up with elements of the language = and their
witnesses w, since this is a necessary feature for the practical efficiency of the
encryption algorithm. Thus, we cannot rule out maliciously created ciphertexts
that decrypt to several recipients. In more detail, for the HPSs from [HLH+22,
Section 6], each public key defines a hyperplane, and collisions happen at the
intersection of any two such hyperplanes. This gives plenty of candidates for
collisions.

Whereas the prior attack to the unique recipient property is specific to
the instantiation of construction of [HLH+22, Section 5.3] with the HPSs from
[HLH+22, Section 6], it is likely that similar attacks could be mounted for other
natural constructions based on HPSs. The necessary relation between the pub-
lic and private hash functions, together with any nice algebraic description of
the public hashing algorithm (e.g. defining hyperplanes as in the attack above)
would potentially lead to the same problem.

We define below our candidate construction based on a modification of ElGa-
mal. The algorithms of our scheme are oracle algorithms with query access to
the oracle RO : {0,1}* — {0,1}2%, we let this be implicit in our notation.

— pp «<$ Setup(1%): Pick a cyclic group G of order ¢, where ¢ is a k-bit prime,
and let g be a generator of G. Let the message space of the encryption scheme
be {0, 1}*. Set public parameters pp = (G, g, q).

40 R. Canetti et al.

~ (pk, sk,0) <—$ Gen(pp): Sample a «$ Z, let sk = a. Compute the public key
pk — g% and output (pk, sk,).

— ¢ 8% Enc(pp, pk, m): Sample r <8 Z, and compute 8 < g". Query the oracle
for a mask k < RO(pk") and a MAC d < RO(r,m). Let e «— k & (r,m), and
output ¢ = (0, e,d).

— m <« Dec(pp, sk,c): Parse ¢ = (3,e,d). Query the oracle k' « RO(3*%),
compute (1',m’) «— e @ k’. Check if ¢" = 8 and d = RO(r',m’), output m/ if
both conditions are satisfied, otherwise output L.

— (¢,7) <8 Fake(pp): Sample r «$ Z, and compute 5 « ¢". Let 7 = r.
Sample uniformly random strings e, d € {0,1}?" and let the fake ciphertext
be ¢ = (83, e,d). Output (c, 7).

— sk’ < Openy(pp, pk, sk, (c}, 75, m%) e)): To open a fake ciphertext ¢! =
(8,€e,d) as an encryption a message m, to a chosen pk. Let r = 7.J, program
the random oracle such that RO(r, m?) = d and RO(pk") = e® (r, m?). Output
sk’ = sk.

Intuitively it is possible to replace ciphertexts by fakes as long as the adver-
sary is unable to query either pk” or (r,m) to the random oracle. We observe that
an adversary querying these values it may be used to solve the computational
Diffie-Hellman problem. Including d = RO(r, m) allows the decryption oracle to
extract the plaintext and verify the integrity of the ciphertext without use of the
secret key. We now formally prove the security of our KM-NCE scheme.

Theorem 1. The construction above is KM-NCE,-CCA and unique recipient
secure, in the pROM under the CDH assumption in group G.

Proof. First, we consider unique recipient security. Assume for contradiction
there have been no collisions in random oracle, for a sufficiently large range
and bounded adversary this holds with overwhelming probability. A winning
adversary outputs a ciphertext ¢ = (f,e,d) such that for some sk;, sk;:
Dec(pp, ski,c) # L and Dec(pp,skj,c) # L. We subscript intermediate val-
ues in each decryption with the index of the secret key. For honestly generated
keys sk; # sk; with overwhelming probability, implying 3% # 3%%i. As a result,
k; # k', if there have been no collisions in the random oracle. This in turn implies
that (r,n;) # (r},n’;). For both outputs to be different from L, it must be the
case that d = RO(r, n}) = RO(r},n}) raising a contradiction.

Now consider KM-NCE-CCA security. Through a series of hybrids we will
replace ¢ = (83, e, d) with a fake ciphertext for each v € [k]. Faking a ciphertext
is only different in how ¢ and d are chosen. These two cases are only different in
the oracle output on inputs pk” and (r,m) prior to A3 receiving the secret key
sk.

In the real and ideal worlds the adversary receives the same secret key sk and
has access to an identically distributed random oracle. The only input which may
differ is states, produced by As. The views of Adversaries A; and Ay only differ
between the real and ideal game when querying pk” or (r,m) to the random
oracle. Thus, if A3 distinguishes the real and ideal worlds with non-negligible

Taming Adaptivity in YOSO Protocols: The Modular Way 41

advantage then one of A;, A2 must query pk” or (r,m) with probability greater
than or equal to the advantage. We will argue that such a pair (A;,.43) may be
reduced to an adversary solving the computational Diffie-Hellman problem.

Consider an adversary which queries either pk™ or (r,m) with probability
€, while making at most ¢ random oracle queries. Given a computational Diffie-
Hellman instance (g, x = g%,y = g"), we set pk = x and § = y. Note, the solution
to this instance is pk™ = ($¢. We will address how to provide a decryption oracle
without knowing the secret key a later. The reduction chooses a query index
i «$ [t]. When the adversary makes the ith query, if the input is of the form
(r,m), the reduction outputs pk", if the input only consists of a single element
z the reduction outputs this directly. The reduction aborts before providing As
the secret key. Note, the reduction needs 7 = r, which it does not have, to open
the ciphertexts to Ajs, preventing the use of Aj in the reduction. The reduction
yields an adversary solving the Diffie-Hellman problem with probability e/t.

We now return to the issue of providing a suitable decryption oracle during
our hybrids. Consider a ciphertext ¢* = (4*,e*,d*) queried to the decryption
oracle, which is not equal to any of the challenge ciphertexts. If d* is not a
random oracle output on an input of the form (r,m) output L, this includes any
d for faked ciphertexts. A ciphertext using d from a challenge with §* # g or
e* # e, real decryption would result in | with overwhelming probability.

For a given ciphertext, e and k' = RO(3**) uniquely determine (r,m); if this
has not yet been queried the probability RO(r, m) = d is 272%, and we may safely
return L. If d is an output of the random oracle the reduction may retrieve
the corresponding input (r,m). We check if 8 = ¢", returning L if this is not
the case. Given r the oracle then computes k' < RO(pk"); (r',m') «— e ® k'. If
(r',m') = (r,m) output m, otherwise output L.

2.2 Cryptographic Sortition

A cryptographic sortition protocol [CM19] allows to provably select a random
subset of parties according to some timely and truthful randomness through the
use of a Verifiable Random Function (VRF) [MRV99]. Importantly, a party can
find out whether it was selected through local computation, given the output
from the VRF.

Usual VRF definitions guarantee output unpredictability for adversarially
chosen inputs, provided that the keys were honestly generated. In our setting
this is insufficient, as it does not preclude an adversary choosing malformed keys
which bias its output distribution, causing it to be selected more frequently. To
ensure security against rogue key attacks of this form we will use the functionality
Fvre from [DGKR18], which explicitly allows malicious key generation and VRF
evaluation. The key property on which we will rely is “unpredictability under
malicious key generation”. This property is captured by the functionality always
sampling the VRF output regardless of whether the specified key was maliciously
generated. For a complete description of Fyrr with a corresponding realisation
we refer the reader to [DGKR18].

42 R. Canetti et al.

2.3 The You-Only-Speak-Once Model

The YOSO model introduced by Gentry et al. [GHK+21] formalised a variant
of the UC framework enabling the design of protocols focusing only on role
execution, and not the mechanisms for role assignment or receiver anonymous
communication. We will refer to protocols in this model as abstract YOSO pro-
tocols. The YOSO model builds on top of the plain UC model. In particular, it
uses the following constructs:

— Parties in the UC framework represent roles, namely abstract responsibilities.
In an actual execution of a YOSO protocol, the roles will would be carried out
by machine to which they are assigned to on the fly. The design of a YOSO
protocol is indifferent to which actual machines would be executing the role.

— Idealised communication functionalities are provided to the roles executing a
protocol, allowing point-to-point messages between roles. This corresponds to
the availability of receiver anonymous communication channels, but ignores
their realisation.

— Security is proven for “yosoified” versions of the protocol, where all roles are
placed within a YOSO wrapper. This wrapper enforces that roles only speak
once by killing them once they use a communication functionality. This is
modelled by a SPOKE token which the ideal communication functionalities
return upon the sending of messages. When receiving SPOKE the wrapper
additionally forwards this to any sub-routines and its environment. Killing
a role represents the machine running a role erasing any associated state,
preventing the adversary from later corrupting the role.

— While we want natural YOSO protocols to be secure against an adaptive
adversary, allowing the adversary this power in the abstract world would make
protocol design significantly more difficult. Gentry et al. [GHK+21] make the
observation that an adversary does not know which roles are assigned to a
machine before it is corrupted. As a result the adversary may be restricted in
the abstract world, while still being able to achieve adaptive security when
translated to the natural world. This is enforced through a new “corruption
controller” entity which dictates the types of corruptions the environment is
allowed to make.

As in [GHK+21], (and following [KMTZ13]) we use a bounded-delay broad-
cast functionality, along with a global clock, to capture synchronous communi-
cation. We recall the ideal functionality allowing point-to-point and broadcast
communication as in [GHK+21].

Functionality Fgcgspp [GHK+21]

This ideal functionality has the following behaviour:

— Initially create point-to-point and broadcast maps:
y : N x Role x Role — Msg, where y(r,R,R") = L for all r,R,R’
m : N X Role — Msg | where m(r,R) = L for all r,R.

Taming Adaptivity in YOSO Protocols: The Modular Way 43

— On input (SEND, S, ((R1,21),. .., (Rk,zx)),x) in round r proceed as fol-
lows:

e For i € [n] update y(r,S,R;) = x;. Store point to point messages
from the role.

e Update m(r,S) = x. Store the broadcast message from the role.

e Output (S, ((Ry,|z1]),- .-, (Rg, |zk|)),) to the simulator S.

e For corrupt roles R; output x; to the simulator S. Leak messages
lengths and the broadcast message to the simulator in a rushing fash-
1on.

e If S is honest give SPOKE to S.

— On input (READ,R,S,7’) in round r where ' < r for z = y(r’,S,R)
output = to R.

— On input (READ, S, r’) in round r where v’ < r output z = m(r’,S) to
R.

The central paradigm of synchronous abstract YOSO protocols is that execu-
tions proceeds by a sequence of committees, each permitting a certain corruption
threshold. These committees may potentially receive messages concurrently, or
even speak in the same round.

2.4 Compiling Abstract YOSO Protocols

By their nature, protocols designed in the abstract YOSO model cannot be run
directly on machines, they first have to undergo translation, or compilation, to
the natural world.

This compilation reraises the issues of role assignment and receiver anony-
mous communication. Any compiler must provide equivalent guarantees of secure
communication between roles in the protocol.

In their presentation of the YOSO model Gentry et al. [GHK+21] provide an
example of compilation from the abstract to natural world. Their approach used
a simplified toy timed ledger with role assignment functionality as a building
block. This functionality provided the necessary keys for roles, which were then
used to wrap messages in the underlying protocol in encryption. The compiler
allowed the compilation of an abstract protocol secure against random adaptive
point corruptions (i.e. an adversary only allowed to corrupt random roles), to a
natural protocol secure against chosen adaptive point corruptions.

The focus of the compiler of Gentry et al. [GHK+21] was demonstrating the
feasibility of compilation. As a result the compiler has a number of limitations,
such as the role assignment functionality not being realised. Additionally, to
achieve adaptive security the compiler uses non-committing encryption for all
messages in the underlying protocol, incurring a significant overhead.

44 R. Canetti et al.

3 Role Assignment

In this section we present the ideal functionality Fra?, which assigns machines
to computation roles while keeping this assignment hidden. (Note that which
machines provide input to the computation—and receive output from the
computation—could be determined in some fixed, external way, depending on
the application; therefore we consider only the assignment of machines to com-
putation roles, and not input and output roles.)

At a high-level, let us consider committee C' consisting of ¢ roles. There
are two possible ways in which our Fra chooses a machine for a role in C":
(a) choosing a machine at random from among the set of honest machines (i.e.
among the machines not corrupted so far), or (b) allowing the adversary to
choose the machine, as long as the number of machines chosen by the adversary
in C so far is within the allowed corruption bound (which is determined as a
function 7 on the fraction of corrupt machines). In the former case, Fra samples
fresh keys, gives the (public) encryption and verification keys to everyone, and
gives the corresponding (secret) decryption and signing keys only to the chosen
machine. In the latter case, all keys are chosen by the adversary. The commands
NoM-HONEST and NOM-CORRUPT capture the above kinds of nominations.

We need to ensure that the fraction of corruptions in a committee remains
within the allowed bound until the nomination is completed. Looking ahead, to
capture adaptive corruptions after the adversary has seen public keys generated
via NOM-HONEST but before FINISH (which finalises the keys for a commit-
tee), we introduce an additional command CORRUPT-NOMINEE. This command
allows accounting for the corruptions performed during the nomination process
as needed, rather than always having to generate corrupt keys in proportional
to the worst case threshold.

Once a set of ¢ machines are chosen for the committee C, Fra picks a random
permutation on [c] to determine which machine plays which role in C. Allowing
Fra to map nominated machines to roles, instead of having machines assigned
to specific roles in C' a priori, prevents the adversary from targeting a specific
role for corruption.

Further, there is a provision for each machine M to:

1. ‘Read’: this allows it to retrieve public keys corresponding to the roles that
have been assigned, as well as to obtain secret keys if it has been assigned a
role.

2. ‘Delete’: this command revokes M’s ability to perform future reads until the
point where it inputs ‘Ready’. (This revocation will also enable the imple-
mentation protocol to erase any secret keys that allow M to read information
related to already assigned roles.)

3. ‘Ready’: this allows it to signal that it is available to be assigned a new role.
We maintain both a global set of ready machines (“ready set”), and a
committee-specific ready set. The latter keeps track of machines that have
been ready throughout the nomination process for that committee.

2 Note this is not the same role assignment functionality as presented in [GHK+21].

Taming Adaptivity in YOSO Protocols: The Modular Way 45

If a machine that has been assigned a role gets corrupted after it has retrieved
its secret keys (which it learns when it inputs ‘read’) but before it inputs ‘delete’,
its secret keys are leaked to the adversary. However, if it gets corrupted after it
inputs ‘delete’, its secret keys remain hidden. As we will see later, this is crucial
for adaptive security, as it allows us to argue that an adversary gets no advantage
in corrupting a role after its execution.

The formal description of this ideal functionality Fra appears below. We
assume Fra to be synchronous, with round switches occurring at the same time
as the protocols using it. We present Fra as a functionality which is reused
for multiple committees rather than the perhaps simpler approach of a one time
functionality for each committee. We justify this choice by considering how exist-
ing constructions update their PKI. Specifically, whenever a machine has held
a role and subsequently revealed itself, said machine must refresh its long term
keys. This renders the machine unable to decrypt earlier messages pertaining to
the revealed role. These key erasures and updates to the PKI impede treating
it as a global setup (see [CDPWO7]), which would allow consolidating these to
just a single PKI. Using a single Fra for multiple committees thus forces any
realisation to deal with this challenge of updates directly.

We divide our role assignment functionality into two parts. The first describes
the general setup and commands provided by parties for establishing new com-
mittees and reading generated keys. The second describes the powers allowed
to the simulator, when populating committees under nomination with keys and
the leakage in the case of corruption.

— Functionality Fra(P,c,7,D,delay):

This functionality is synchronous, namely it has access to global clock func-
tionality as in the model of Katz et al. [KMTZ13]. It has the following
parameters:

— P: the set of machines.

— c¢: the size of a committee.

— 7: the function determining the number of allowed corruptions in a
committee (based on the current fraction of corrupt machines).

— D denoting a sampling algorithm, and

— delay denoting the upper bound on the number of rounds required to
complete nomination.

Init: The functionality is notified by the adversary whenever a party is
corrupted/ restored, and maintains the current partition of P into the sets
‘H and Z of all honest and corrupt party identifiers, respectively. It also
maintains a global set Ready initially equal to P.

New committee: After receiving (NEW, cid, C') from all honest parties up
until the round r specified by the cid ¢, store (cid, C, PKeys = (), SKeys =
(), cor = 0,nom = 0, fin = L). Ignore the command if any value is already
stored for cid.

46 R. Canetti et al.

— The lists PKeys and SKeys are initially empty. The list PKeys would be
updated with tuples (ek,vk,R) where (ek,vk) refer to the public keys
established for a role R. The list SKeys would be updated with tuples
(pid, dk, sk, R) where (dk, sk) refer to the secret keys corresponding to
the role R, which has been assigned to machine with identifier pid.

— The corruption and nomination counters, cor and nom, start at zero.

— A committee-specific ready set Ready.q is initialized the same as the
global ready set: Ready 4 = Ready.

— Finally, the flag signaling whether nomination is completed or not is
initially false: fin = L.

Each time an honest party inputs (NEw, cid, C'), forward this to the simu-

lator S.

@ For simplicity of exposition, we consider the case where all honest parties
are expected to take part in each assignment of a role. A natural relaxation
would only require some minimal quorum of parties to participate.

The simulator must perform nominations for each committee, but is restricted
by the number of nominations it may bias relative to the current fraction of
corrupt machines.

— Functionality Fra (continued):

Nominate honest: On input (NOM-HONEST,cid) from the simulator
S, retrieve the value (cid, C, PKeys, SKeys, cor,nom, fin). If no such value
exists do nothing. If nom < ¢, do the following:

— Update nom < nom + 1.

— Generate fresh encryption and signing keys for the chosen machine:
(ek, dk) < PKE.Gen(), (vk, sk) « SIG.Gen().

— Append (ek, vk, L) to PKeys.

— Add (L, dk, sk, L) to SKeys.

— If nom = ¢, go to procedure Finish(cid).

— Output (NoM-HONEST, cid, ek, vk) to the simulator S.

Nominate corrupt: On input (NOM-CORRUPT, cid, pid, (ek, vk), (dk, sk))

from the simulator S, retrieve the value (cid, C, PKeys, SKeys, cor, nom, fin).

If no such value exists, do nothing. If nom < ¢ and cor + 1 < 7(|Z|/|P)),

do the following:

— Update the nominated and corrupt counters nom «— nom + 1,cor «—
cor + 1.

— Append (ek, vk, L) to PKeys and (pid, dk, sk, L) to SKeys.

— If nom = ¢, go to procedure Finish(cid).

Taming Adaptivity in YOSO Protocols: The Modular Way

Corrupt nominee: On input (CORRUPT-NOMINEE, cid, pid) from the

simulator S, retrieve the value (cid’, C, PKeys, SKeys, cor, nom, fin) where

cid = cid’. If no such value exists, do nothing. If cor + 1 < 7(|Z|/|P|) and

cor < nom, do the following:

— cor «—cor+1

— Choose an element (pid’, dk, sk, L) uniformly at random between the
values of SKeys where pid’ = L.

— Update this value to be (pid, dk, sk, L)

— Output (CORRUPT-NOMINEE, cid, pid, dk, sk) to the simulator S.

Finish (cid): When the procedure Finish(cid) is called, retrieve the value
(cid’, C, PKeys, SKeys, cor, nom, fin) where cid’ = cid and do the following:
— Sample a random permutation ¢ on [c].
— For the ith element of PKeys update (ek, vk, L) to (ek, vk, Cy()).
— For the ith element of SKeys update (pid, dk, sk, L) as follows:
e If pid = L, choose an honest machine uniformly at random as
pid’ —$ D(H,P). If pid’ € Ready,4, update to (pid’, dk, sk, Cy;)).
e Else, update to (pid, dk, sk, Cy(;))-
— Let 7’ the current round number (read from the global clock). Set fin =
T for cid if 7/ < r + delay (where r denotes the round number specified
by the cid).

Output (FINISH, cid, ¢, PKeys) to the simulator S when finished.

Read: On input (READ, cid) from M with identifier pid, retrieve the value

(cid*, C, PKeys, SKeys, cor,nom, fin) where cid = cid® and fin = T. If no

such value exists, or M has read the output of committee cid before, do

nothing.

— Collect all values (pid*, dk, sk,R) in SKeys where pid* = pid into a list
SKeys'.

— Output (PKeys, SKeys') to M.

Delete: On input (DELETE) from M with identifier pid, do the following;:

— Overwrite all elements of SKeys of the form (pid*, dk, sk, R), where pid* =
pid, with (pid*, L, 1, R). Disallow any future signing queries by M for
role R.

— Set Ready < Ready \ {pid}.

— Set Ready,y <« Ready 4 \ {pid} for cid with fin = L.

— Output (DELETE, pid) to S.

Ready: On input (READY) from M with identifier pid, update the global
ready set Ready < Ready U {pid} in the beginning of the subsequent round.
Output (READY, pid) to the simulator S.

Corrupt: Upon receiving (CORRUPT, pid) from &, output all elements
(pid*, dk, sk, R) of any stored SKeys, where pid* = pid to S.

47

48 R. Canetti et al.

4 Compiling Abstract to Natural YOSO

Consider an abstract YOSO-protocol in the Fgcgspp-hybrid model which is mali-
ciously secure against a static adversary. This protocol is run by a set of com-
mittees, where each committee is associated with a set of roles. We may assume
the execution of any honest role is completed by inputting at most one SEND
command to an instance of Fgcgspp, this is enforced by the SPOKE token which
kills the role.

The goal of our compiler is to transform such a statically-secure YOSO
abstract protocol in the Fgcgspp-hybrid model into an adaptively-secure natural-
world protocol in the Fra-hybrid model, where Fra denotes the ideal function-
ality for role assignment defined in Sect.3. We also assume that the natural
protocol has access to a bulletin board (formalized as an ideal functionality
below) which can be used by anyone to broadcast a message.

— Functionality Fgpg

— Initially create broadcast maps:
m : N x Machine — Msg, where m(r, M) = L for all r, M.
— On input (SEND, sid, msg) from machine M in round r:
e Update m(r, M) = msg. Store the broadcast message from the role.
e Output (SEND, sid, msg) to the simulator S.
— On input (READ, sid, ') from machine M in round r where ' < r output
a set of all elements (M’,r’, msg) where msg = m(r’, M') # L to M.

Overview of the Compiler. Suppose we wish to compile an abstract protocol
II. At a high-level, the compiled protocol in the natural world involves the
following stages: First, the machines initiate role assignment for committees
that need to be nominated, which is determined based on the current round and
the public state. Once the nomination process is completed, the machines can
retrieve public keys corresponding to all roles in these committees and secret
keys for the roles they were chosen for (if any). This can be done by machines
inputting READ to FRa.

Consider a machine M who has been assigned a role for some round of the
abstract protocol. Recall that in this case, Fra provides M with a decryption
key and a signing key. M obtains from Fgra the signature verification keys of all
the roles that are supposed to send messages to the role that’s assigned to M, as
well as the public encryption keys of the roles that its assigned role is supposed
to send messages to. (Note that the latter key may not be available yet.) In this
case M keeps asking Fgra for these keys in each round. As soon as Fra provides
these keys, the M is ready to execute the role R based on the specifications of
the abstract protocol II. Suppose this role R invokes Fgcgspp in II with a set
of point-to-point and broadcast messages, then the machine does the following
to emulate this step on behalf of the role:

Taming Adaptivity in YOSO Protocols: The Modular Way 49

Read the bulletin board to retrieve messages posted by machines emulating
sender roles. This includes broadcast messages and ciphertexts encrypting
point-to-point messages intended for R as a receiver, accompanied by signa-
tures. Accept the messages only if the signatures are valid (note that the
verification key of all roles are made public by Fgra).

To retrieve the point-to-point message, uses the decryption key to decrypt
the relevant ciphertexts.

Proceed to compute the outgoing broadcast and point-to-point messages on
behalf of the role R (Note that at this point, the machine has all the infor-
mation a role holds in IT). Prepare a one-shot message comprising of the
following (a) Broadcast messages (b) Ciphertexts encrypting the point-to-
point messages using the encryption key of the relevant receiver roles in future
committees (made public by Fra) (c) Signature on these messages, computed
using the signing key of R received from Fra.

Once the above one-shot message is computed, invoke Fra with input DELETE
and delete its own entire state, except the one-shot message to be posted. In
particular, delete the secret keys, received messages and randomness used on
behalf of the role R.

Post this message to the bulletin board (as an atomic action).

Once the machine M has finished executing the role R, it notifies Fra that it is
READY i.e. available to be assigned a new role.

We point out that in the above informal description, we focused on machines

that were assigned computation roles. The compiler easily accommodates actions

by

input and output roles in IT as well — the only difference is that these roles

are carried out by fixed machines and their identity is not secret. Therefore, the
public keys of these roles can be established via a PKI and need not be handled by
Fra. Further, the messages posted on the bulletin board by machines executing
these roles need not be signed.

Protocol Compile(IT)

Notation: The algorithm Nominate(r, {Broadcastsq }sidesip) denotes a pub-
licly computable function which when given a round number and public
state outputs the set of committees {cid;, Ci};c[x] to be nominated in that
particular round. We assume that all the cid;’s contains the round number
Po

Init: Initialise sets of messages and keys for each role:
— For each R € Role and sid € SID define a set R.Recgy < @) of ciphertexts

— If R € Role™ URole®"", set R.ek and R.vk to relevant public keys estab-

— For each sid € SID: Broadcastgy = 0.

sent to the role. R.ek «— 1, Rwk «— 1, R.dk «— 1 and R.sk «— L.

lished by PKI.

50 R. Canetti et al.

Nominate: In the beginning of round r (i.e. as per the reading of the
global clock), compute the (computation) committees to be nominated,
{cid;, Ci}iepr) < Nominate(r, {Broadcastsiq }sidesip)-
For each committee input (NEW, cid;, C;) to Fga.

Role Keys: Once the machine finishes nominating committees in a round

r, it proceeds to read the keys for the committees nominated in the previous

round. For each committee, the machine inputs (READ, cid) to Fra receiving

lists PKeys and SKeys.

— For each element (ek,vk,R’) in PKeys the machine stores the role keys
as R'.ek «— ek and R .vk «— vk.

— For each element (pid, dk, sk,R) in SKeys (where pid corresponds to the
machine’s identifier) store the keys R.dk «— dk,R.sk — sk. We now
consider the machine to have been assigned role R.

Read: After storing new role keys each machine reads the bulletin board to

process the next round of messages in the protocol. In round r the machine

inputs (READ,sid,r — 1) to Fgg, for each output element (M’ ', msg’) it

receives the machine does the following:

— Parse msg’ as ((S,sid, (R1,Z1), ..., (Rk,Tk),x),0)

— Verifies the signature b «— SIG.Verify(S.vk, (S,sid, (R1,Z1), ..., (Rk, T),
x), o), ignoring the message if verification does not succeed °.

— Add (S,) to Broadcastgg.

— For i € [k?] add (S,fi) to R;.Recgq.

If any role has more than one message with a valid signature, both should

be ignored.

Role Execution: When a machine has been assigned a role R, it should

run the role in its head and emulate the interaction between the role and

its ideal functionality Fgcgspp- In a given round a machine should activate
each role it has been assigned, until the role signals that it has completed
the round.

— If R € Role'™, then this machine (belongs to Machine™) must have
received command (INPUT, z) which it passes on to R.

— If R inputs (READ, R, S, 7’) to F3d: spp, the machine should retrieve the
tuple of the form (S,T) in R.Recgyq, if no such tuple exists L should be
output directly to the role. The ciphertext should then be decrypted to
obtain z < PKE.Dec®®) (R.dk, Z) which may be returned to R.

— If R inputs (READ,S,7’) to F5§d¢ <pp, the machine should retrieve the
tuple of the form (R,z) in Broadcastgq, and return x to R, returning L
if no such value exists.

— If R € Role®"" outputs (OUTPUT,), output the same.

Send Fgcespp: When the role R € Role™ URole“M" assigned to M outputs
(SEND, R, ((R1,21), ..., (Rg,zk)),x) to Facgspp with session identifier sid
do the following:

Taming Adaptivity in YOSO Protocols: The Modular Way 51

. For j € [k]: T; « PKE.Enc®*®(R; ek, z;; p;).
. Let msg = (R, r,sid, (Ry,Z1), ..., (Rk, Tk), x).
. Compute o « SIG.Sign(R.sk, msg) and set msg’ = (msg, o) °.

ComP
’ IffRI%pRuqcle(DELETE) to FRra.

— Erase all private local state associated with the role R, excluding
(R, msg, o). In particular this includes R.dk, R.sk and the entire state
of the copy of R the machine has been running in its head.
5. Post msg’ to the bulletin board.
6. Input (READY) to Fra if R € Role“".
If a machine has been assigned multiple roles it should activate them until
they have all sent a message or completed the round, collecting all their
messages at Step 6.2 and posting them together.

=W N =

@ this verification is not needed if S € Role™ U Role®""
b Here, signatures can be avoided if R € Role™™.

5 Security of the Compiler

In this section, we prove the security of the compiler presented in Sect.4 which
transforms a static, abstract YOSO protocol to an adaptively-secure natural
protocol. The security of our compiled natural protocol fundamentally relies on
the security of the original abstract protocol. The primary challenge arises due
to the difference in the adversary’s corruption powers between the abstract and
natural world. In order to rely on the static security of our abstract protocol,
we must be able to translate the adaptive adversary in the natural world to an
appropriate static adversary in the abstract world (against which a simulator
must exist, due to security of the abstract protocol).

To rely on the static simulator of our abstract protocol it is essential that
the natural world adversary cannot influence which roles are revealed through
its chosen corruptions of machines. As a starting point, let us consider what
goes wrong if a natural simulator is forced to commit to a mapping from roles
to machines. An adaptive adversary might then subsequently choose which
machines to corrupt based on this commitment. The simulator is essentially
forced to guess which machines the adversary will corrupt making it overwhelm-
ingly likely to fail.

To circumvent this issue we may instead consider the possible simulation
strategy if our simulator were not committed to this role to machine mapping.
Our static abstract simulator must always fix a choice of corrupt roles. The state
of these corrupt roles may be simulated, making it acceptable to assign them to
corrupt machines. Conversely, we have no way to simulate the state of honest
roles, so these must never be revealed to the adversary. During simulation, the
simulator presents a role assignment functionality to the natural world adversary.

52 R. Canetti et al.

The natural world adversary expects the roles to be assigned to the machines
it has corrupted in proportion to its expended corruptions. This may easily be
accounted for by sampling a mapping where an appropriate number of statically
corrupt roles are assigned to these machines. Things get more challenging when
we start to consider adaptive corruptions, in the real world the adversary will
sometimes get lucky and corrupt a machine which has been assigned a role. If
we simply fix the mapping from roles to machines at the time of nomination
this could cause simulation to fail if the newly corrupted machine had been
assigned an honest role. However, if our role assignment functionality does not
leak anything to the adversary about the mapping of honest roles we may simply
change the assignment of this honest role to a machine which remains honest.
This will of course affect the number of roles revealed to the adversary, to account
for this we must additionally maintain some budget of statically corrupt roles,
which we reveal in place of the honest roles.

As the simulator now controls which roles are revealed to the adversary it
may be sure that it never has to open a ciphertext sent between the holders
of two honest roles. As a result these ciphertexts need not be non-committing,
allowing the use of the much more efficient CCA secure encryption.

We define the class of protocols which are compatible with our compiler.

Definition 3 (Compiler compatible protocol). We call a protocol II a
compiler compatible secure implementation of F with threshold c/w, if the fol-
lowing conditions are satisfied:S

— Let ¢ = 2(k) denote the committee size. Then, IT must YOSO securely imple-
ment the ideal functionality F in the presence of ¢/w static corruptions in
the computation committees and an arbitrary number of static corruptions in
the input and output roles.

— All honest roles in the same committee speak in the same round.

— There exists a positive constant delay, such that it is publicly computable
which committees need to be nominated at least delay round(s) in advance.

— There exists a constant Ryq. > K, denoting the upper bound on the concur-
rently active roles at any point (which refers to roles that are able to receive
messages, or currently being nominated).

Theorem 2. Consider an abstract protocol II in the Fgcgspp-hybrid model,
which is a compiler compatible secure implementation of F with threshold c/w
(Definition 8). Let Fra be shorthand for Fra(P,c, T, U,2) where U samples the
uniform distribution and a function T (f). Further, assume the schemes PKE
and SIG used by Fra are adaptive IND-CCA and EUF-CMA secure respectively.

Then, assuming a PKI setup, the protocol Compile(II) UC implements the
ideal functionality F in the (Fgg, Fra, Fvre)-hybrid model, under the presence
of T < N fy adaptive corruptions of the computation machines and any number
of static corruptions in the input and output roles, where N = (Rpaz)*t0 for a

5 Note that all existing abstract YOSO protocols (such as the protocols in [GHK+21,
KRY?22]) satisfy these properties.

Taming Adaptivity in YOSO Protocols: The Modular Way 53

constant 1 < § and f; is fived such that there exists a constant € > 0 where for
all 0 < f < fy it holds that T(f)+ (14 €)(ft — f)e < ¢/w.

If we apply Theorem 2 to the threshold function achieved by our role assignment
protocol in Sect. 7 we obtain the following corollary.

Corollary 1. For T(f)=c(1—(1—€)(1— f)?) a protocol tolerating c/w cor-
ruptions may be compiled to a protocol tolerating T < N f; adaptive corruptions,
where f; satisfies 0 <1 —2wf; +wf2.”

We refer the reader to the full version of this paper for a proof of Theorem 2.

6 Compiling Abstract Protocols Requiring Verification

Our compiler in Sect. 4 supports the class of YOSO protocols in the Fgcespp-
hybrid model, such as the information-theoretic protocol of [GHK+21]. However,
this notably excludes protocols which assume explicit access to keys for the roles
to allow zero-knowledge proofs or any other types of public verifiability for point-
to-point messages. A large part of the existing YOSO protocol literature falls
under this umbrella, including the protocols presented in [BDO22, KRY?22] and
the computationally secure protocol of [GHK+21].

Kolby et al. [KRY22] introduced the verifiable state propagation (VeSPa)
functionality Fyvespa to capture verifiability of point-to-point messages and
designed protocols in the (Fyespa, Fecgspp)-hybrid model instead. We show how
our compiler may be extended to accommodate the compilation of protocols in
the (Fvespa, Fcespp)-hybrid model.

Before showing how our compiler may be extended to protocols in the
(Fvespa, Fecgspp)-hybrid model we will first reflect on the broader role of mes-
sage verifiability within YOSO protocols. When using Fgcgspp all point-to-point
messaging is ideal, making it impossible to directly provide verifiability guar-
antees for any single message in a single round. Works studying information
theoretic YOSO MPC [GHK+21,DKI+23] achieve verifiability by constructing
verifiable secret sharing (VSS) protocols in the abstract world. They then make
use of VSS to construct their desired MPC protocols. These protocols explicitly
handle their need for verifiable message passing in the abstract world, and thus
inherit these same guarantees when compiled to the natural world. There are
drawbacks to this approach of explicit abstract world verifiability, as existing
VSS constructions all introduce an overhead in both rounds and a number of
intermediate roles.

An alternative approach follows from the ideas within computationally secure
protocols, where verifiability may come from non-interactive zero-knowledge

" This holds when f; < 1 — 7“”5;“’ For w = 2, namely when the abstract protocol
withstands honest minority, this allows f; ~ 0.29. For w = 1.1, namely when the
abstract protocol withstands corruption of roughly 90% of the parties, this allows
ft =~ 0.7.

54 R. Canetti et al.

proofs, rather than additional interaction. In the context of YOSO the restric-
tion to Fpcgspp means that we only consider black box communication, and thus
cannot directly prove statements about point-to-point messages. To resolve the
limitation Kolby et al. [KRY22] introduced a new wverifiable state propagation
functionality which enabled enforcing statements for point-to-point messages,
giving verifiability. A natural question to consider is whether it is possible to
realise Fyespa in the abstract world given Fgcgspp. However, if we recall the
cost of achieving VSS in the Fgcgspp-hybrid model, our hopes of verifying more
complex relations, without a significant round and communication complexity
overhead are quickly dampened. Conversely, if we do not realise Fyespa Wwe are
left with a protocol which remains incompatible with compilation. This leaves
us with a choice of either realising Fyespa in the abstract world, or adapting our
compiler to produce protocols which enforce the guarantees of Fyespa, essentially
making verifiability explicit during the translation to the natural world.

We observe that our compiler is actually well suited to the addition of message
verifiability, making this a desirable choice. Recall, our modifications have elim-
inated the need for non-committing encryption for protocol messages, instead
simply requiring CCA security. If we extend the few requirements we make of
our encryption scheme to additionally permitting efficient proofs of knowledge of
plaintext, we may use non-interactive zero-knowledge to prove that the encrypted
messages between roles satisfy whatever relations we require.

6.1 Verifiable State Propagation

In this section, we recall the verifiable state propagation (VeSPa) functionality
Fyespa introduced in Kolby et al. [KRY22]. Informally, this functionality enables
both point-to-point and broadcast communication, while allowing the sender
to prove that she correctly computed these messages (based on messages she
received and possibly other additional inputs).

In more detail, a sender role S in the abstract protocol invokes Fyespa With
the following information: (a) the point-to-point messages S intends to send
to a set of recipient roles (b) the messages S intends to broadcast (c) witness
(comprising of the internal state of S such as its private randomness used to
compute its outgoing messages).

Consider the statement comprising of these outgoing point-to-point (say,
®send) and broadcast messages (say, @proadeast), the incoming messages that were
received by S (say, dreceive) and the public state (containing all the messages
broadcast so far, denoted by ¢pusiic). The role S is associated with a relation
R(S) which basically specifies the correct behaviour of S as per the abstract
protocol specifications. The functionality Fyespa verifies this relation i.e. checks
if the outgoing point-to-point and broadcast messages sent by S are computed
correctly based on the incoming messages it received previously, the current
public state and its private randomness (given as part of the witness). The mes-
sages that are verified are subsequently communicated. The formal description
of Fyvespa appears below.

Taming Adaptivity in YOSO Protocols: The Modular Way 55

— Functionality Fyespa [KRY22)

This ideal functionality has the following behaviour:

— Define a map R : Role — Rel . Specify the relations the messages of
each role must satisfy.
— Initially create point-to-point and broadcast maps:
y : N x Role x Role — Msg, where y(r,R,R’) = L for all ,R,R’
m : N x Role — Msg, where m(r,R) = L for all r,R.
— On input (SEND,S, ((R1,21), ..., (Rg,2%)), 2, w) in round r proceed as
follows:
o Let ¢psena = ((Rl,LEl),) (lexk)) and Pvroadcast = T-
o Let ¢pupiic be the current public state, represented by a vector of all
elements (r, R, msg), where m(r,R) = msg # L.
e Collect all y # L for v’ < r,R" € Role where y(r',R’,S) = y; to
produce a vector @receive = (R1,41)s -+, (RL,,Um))-

o If ((gbsend”d)receive‘|¢broadcast|‘prublic)a IU) ¢ R(S) ignore the input.
e Else:

* For i € [n] update y(r,S,R;) = x;. Store point to point messages
from the role.
* Update m(r,S) = x. Store the broadcast message from the role.
* Output (S, ((Rq, |z1]),--., (Rk,|zk|)), z) to the simulator S. For
corrupt roles R; output x; to the simulator S. Leak messages
lengths and the broadcast message to the simulator in a rushing
fashion.
If S is honest give SPOKE to S.
— On input (READ,R,S,7’) in round r where v’ < r for z = y(r',S,R)
output = to R.
— On input (READ,S,7’) in round r where ’ < r output x = m(r/,S) to
R.

6.2 Extending to Verifiable State Propagation

In our extension of the compiler we use the NIZK functionality Fyjzk introduced
by [GOS12]. Looking ahead, the ability to extract witnesses through Fyespa
means that we no longer require CCA security for our encryption scheme and
may relax this to CPA security.

At a high-level, in order to emulate the invocation of Fyespa by a role R in
the abstract protocol, the machine assigned to execute role R does the following
(1) first reads the bulletin board to obtain the broadcast messages and incom-
ing point-to-point messages sent to R (by decrypting the relevant ciphertexts).
(2) Then, according to the specifications of the underlying abstract protocol
(i.e. as per the relation R(R) required by Fyesp, in the underlying protocol),
it computes its outgoing point-to-point and broadcast messages based on the

56 R. Canetti et al.

incoming messages and internal state. (3) prepares encryptions of these outgo-
ing point-to-point messages using the encryption keys of the recipient roles. (4)
Finally, the machine then invokes the Fyjzk functionality with respect to a rela-
tion Ryvespa (described below) which essentially checks that the machine did the
above actions (1), (2) and (3) correctly.

Accordingly, we define the relation Ryespa which describes what we require
of the messages sent by our machines. The requirements may be divided into
two categories:

— Encryption and decryption is performed correctly.
— The incoming and outgoing plaintexts, and the public state satisfy the relation
R(R) required by Fyespa in the underlying protocol.

For a message msg = (R,sid,(R1,Z1),...,(Rg,Zk), x), incoming message set
R.Recsd, with elements of the form (S,Z;), and past broadcast messages
Broadcastgg, with elements of the form (R,), we define our relation,®

R,sid, R.ek, T = KeyMatch(R.dk, R.ek)
Rsid(R), For j € [k] :
R.Recqiq, For (S,7;) € R.Recig
R _ msg, y; = PKE.Dec(R.dk,7;)
VeSPa = Broadcastsiq / |fsena = ((Rj,25)) ek
(brec = ((Rjayj))(s,ﬂj)ER.Recsid
R.dk, Gpe =T
w=| (2j,pj)jelr]> | |ppur = Broadcastgq
w' (((bsenda ¢TEC7 ¢bc; ¢pub)a w/) € Rsid (R)

The only changes we need to allow for this functionality are when dealing
with messages sent via Fyespa, the role assignment process remains unchanged.

— Protocol Extended Compile(IT)

Read: After storing new role keys each machine reads the bulletin board to

process the next round of messages in the protocol. In round 7 the machine

inputs (READ,sid,r — 1) to Fgg, for each output element (M’ 7', msg’') it
receives the machine does the following:

— Parse msg’ as ((S,sid’, (Ry,Z1),-- -, (Rk, k), z,7),0)

— Ifsid is the session identifier for an instance of Fyespa proceed with these
steps, otherwise handle the message as done for Fgcgspp in the original
compiler.

— Verifies the signature b <« SIG.Verify(S.vk, (S, (S,sid’, (Ry,Z1), .- .,
(Rg,Tk),),), o), ignoring the message if verification does not succeed.

8 The predicate KeyMatch is true iff there exists randomness p such that (dk, ek) —
KGen(p).

Taming Adaptivity in YOSO Protocols: The Modular Way 57

— Defines the statement ¢ < (R,sid’, R.ek, Rga' (R), (Rj.€k) jcix)s R-Recgiar,
msg, Broadcastgq/).
— Inputs (VERIFY, ¢, 7) to Fnizk with respect to the relation Ryespa. and
waits for a response (VERIFICATION, , b). If b = 0 the message is ignored.
— After checks have been made for all the provided messages:
e Add (S, z) to Broadcastgy .
e For i € [k] add (S,%;) to R;.Recgqr.
If any role has more than one message with a valid signature, both should
be ignored.

Execute Role: A machine M nominated for a role R should activate it for

each round of the protocol until it speaks.

— If the role inputs (READ, R, S,7’) to Fy&p, the machine should retrieve
the tuple of the form (S,Z;) in R.Recgq, if no such tuple exists L should
be output directly to the role. The ciphertext should then be decrypted
to obtain x; < PKE.Dec(R.dk,Z;) which may be returned to R.

— If the role inputs (READ, S, 1) to Fi%p, the machine should retrieve the
tuple of the form (R,) in Broadcastgq, and return x to R,

Send Fyespa: When the role R assigned to M outputs
(SEND, R, ((R1,21), .-, (Rg,xk)), z,w’) to Fvespa with session identi-
fier sid’ do the following:

— For j € [k]: T; «— PKE.Enc(Rj.ek, z;; p;).

— Defines the statement ¢ « (R,sid’, R.ek, Rea (R), (Rj.€k)jeix)> R-Recgiar,
msg, Broadcastgg) and witness w — (R.dk, (2}, p;)jef, w’)

— Inputs (PROVE, ¢, w) to Fnizk with respect to the relation Ryespa. and
waits for a response (PROOF,).

— Let msg = (R,sid’, (Ry,Z1), ..., (Rg, Tx), T,).

— o < SIG.Sign(R.sk, (R, msg, 7)).

— Input (DELETE) to Fra.

— Erase all private local state associated with the role R, excluding
(msg, o). In particular this includes R.dk,R.sk and the entire state of
the copy of R the machine has been running in its head.

— Post (msg, o) to the bulletin board.

— Input (READY) to Fra.

6.3 Security of the Extended Compiler

We prove the security of our extended compiler, stated in the formal theorem
below.

Theorem 3. Consider an abstract protocol II in the (Fyespa, Fec&spp)-hybrid
model, which is a compiler compatible secure implementation of F with threshold
c/w (Definition 3). Let Fra be shorthand for Fra(P, ¢, T ,U,2) where U samples

58 R. Canetti et al.

the uniform distribution and T (f) = c (1 — (1 —€)(1 — f)?), for € > 0. Further,
assume the schemes PKE and SIG used by Fra are IND-CPA and EUF-CMA
secure respectively.

Then, assuming a PKI setup, the protocol Compile(II) UC implements the
ideal functionality F in the (Fnizk, Fas, Fra)-hybrid model, under the presence
of T < N f; adaptive corruptions of the computation machines and any number
of static corruptions in the input and output roles, where N = (Rpaz)*t0 for a
constant § > 1 and 0 < 1 — 2wf, +wf?.”

The proof of Theorem 3 appears in the full version of this paper.

7 Realising Role Assignment

In compilation, we crucially relied on the ability to program the nominations of
our role assignment functionality on the fly to mitigate the adaptive corruption
powers of the adversary. We will now show how to realise Fra by modifying the
committee selection protocol of Benhamouda et al. [BGG+20] to allow equivo-
cation of the mapping betweeen roles and machines.

We begin by recalling the high level approach of their construction. The
task of choosing committee members is delegated to a nomination committee;
nominators in this committee do not need to receive any private input and
may therefore be self-selecting through cryptographic sortition. For a sufficiently
large nomination committee the fraction of corrupt nominators will be close to
the fraction of corruptions in the entire system. When a machine is chosen as
a nominator it samples fresh ephemeral keys for the role it is nominating, the
public key may be broadcast along with an encryption of the secret key under
a special form of anonymous PKE. As we consider an adaptive adversary with
the capacity to corrupt all members of the nomination committee, were they
identified, each nominator must make sure to delete its secret state prior to
sending their message. All machines may then observe the broadcast channel,
and attempt to decrypt each nomination ciphertext, if the decryption succeeds
the machine has been nominated and can decrypt ciphertexts messages sent to
the role.

To satisfy our role-assignment functionality we must make some modifica-
tions. Recall, in our simulation we want to choose the static corruptions in each
committee ahead of time, only ever revealing those chosen corrupt roles. If the
role assignment mechanism commits to a mapping between roles and machines
a simulator may be forced to corrupt machines which have been assigned honest
roles, for which it cannot equivocate. However, if the role assignment mecha-
nism does not commit to the mapping between roles and machines this could
conceivably be chosen on the fly to avoid revealing any statically honest roles.

9 This holds when f; < 1 — 7“”5;“’ For w = 2, namely when the abstract protocol
withstands honest minority, this allows f; ~ 0.29. For w = 1.1, namely when the
abstract protocol withstands corruption of roughly 90% of the parties, this allows
ft =~ 0.7.

Taming Adaptivity in YOSO Protocols: The Modular Way 59

To make the approach compatible with the approach of Benhamouda et al.
[BGG+20] we replace the encryption scheme used for nomination ciphertexts
with key and message non-committing encryption (KM-NCE) [HLH+22]. We
additionally introduce the use of a randomness beacon, which provides fresh
uniform randomness each round, which we use to ensure the mapping from roles
to nominations is uniformly random and not biased by the adversary.

Note, while KM-NCE allows equivocating for both key and message, we will
only ever change the key under which ciphertexts decrypt. The committee size
must not exceed some fixed size ¢, to ensure this we must fix the winning prob-
ability p such that the expected committee size is smaller than ¢ allowing the
application of a tail bound. To this end we let p = ¢/((1+€¢')N) for some €’ > 0.

— Protocol IIga

Each machine M has access to a PKI containing KM-NCEpublic keys and
VRF verification keys for each computation machine. VRF keys are gen-
erated by all machines invoking (malicious) key generation on Fyrr. Each
machine additionally stores its current long-term KM-NCEsecret key as
M.sk. Let ¢ be the predefined size of a committee.

New Committee: After receiving input (NEW, cid, C') in round r, machine

M with identifier pid performs the following procedure:

— If there already exists stored value with cid® = cid ignore this com-
mand. Otherwise, store the value (7, cid, C, PKeys, SKeys), where PKeys
and SKeys are empty lists.

— Input (READ,) to the randomness beacon, to receive randomness p.

— Input (EVALPROVE, (p,cid)) to Fyrr and wait for output
(EVALUTATED, draw, 7).

— If draw is a winning draw (i.e. draw/2/¢ < p), proceed to nominate a
party, otherwise skip the remaining steps.

— Sample a uniformly random machine index pid’ —$ P.

— Generate fresh ephemeral encryption and signing keys for the nominated
role, (ek,dk) «— PKE.Gen() (vk, sk) < SIG.Gen().

— Encrypt the decryption and signing key to the chosen machine ctxt «—
KM — NCE.Enc(M,y .pk, (pid’, dk, sk)).

— Erase the keys dk, sk and all randomness used for sampling the keys and
pid’, as well as any encryption randomness.

— Post (cid, ek, vk, ctxt, draw, 7) to the bulletin board.

Read: On input (READ,cid) in round ' where r + 2 < ¢/

1. Retrieve the value (r,cid,C,PKeys, SKeys), stopping if no such value
exists.

2. Observe the bulletin board and collect a list of mes-
sages for committee identifier «cid posted in round 7,
(cid, eky, vky, ctxty, drawy, 71), . . ., (cid, eky, vk, ctxty, drawy, 7).

60 R. Canetti et al.

3. Remove any elements (cid, ek;, vk;, ctxt;, draw;, 7;) posted by machine
M from the list where draw; is not a winning draw. This may be verified
by inputting (VERIFY, (p, cid), draw;, 7;, Myiq.0kVRF) to Fyre where pid
is the identifier of the machine which has posted the message to the
bulletin board and p is the randomness the beacon has provided for
committee cid. Remove the element if Fyrr returns 0, or draw, / 2bvrr > p.

4. Sort the list lexicographically by encryption key, keeping only the c first
elements. If the list does not have exactly ¢ elements pad it with values
(cid, L, L, 1).

5. Input (READ,” + 1) to the randomness beacon, to receive randomness
p-

6. Let o a uniformly random permutation on [c] defined by the randomness
p and apply o to the list.

7. Loop over the list, for the jth element (cid, ek;, vk;, ctxt;):

— Append (ek;,vk;, C;) to PKeys.
— Attempt to decrypt (pid, dk, sk) «— KM — NCE.Dec(M,.sk, ctxt;).
If (pid, dk, sk) # L and pid matches the machine which posted the
element to the bulletin board, append (pid, dk, sk, C;).
8. Output PKeys and SKeys to M.

Delete: When given input DELETE, for each stored value
(r,cid, C, PKeys, SKeys) delete SKeys overwriting it with the empty
list. Finally, delete the long term secret key M.sk.

Ready: When given input READY, generate a new key pair (pk, sk, tk) «—
KM — NCE.Gen(), setting M.sk = sk and deleting tk immediately.
Finally, post (pid, pk) to the bulletin board.

We now prove the security of our role assignment mechanism. The protocol
ensures at most 7 (f) = ¢ (1 — (1 —€)(1 — f)?) of the ¢ roles in a committee are
assigned to corrupt machines when the committee is finished being nominated.
Here f is the fraction of corruptions at the point where the committee finishes
being nominated. Intuitively this corresponds to guaranteeing that the remaining
(1 — f)N honest machines have nominated other machines which have remained
honest at least a fraction (1 — f) of the time. The proof of Theorem 4 appears
in the full version of this paper.

Theorem 4. For threshold function T (f) = c (1 — (1 —€)(1 — f)?) and the uni-
form distribution U. If the KM-NCE scheme used has KMNC,-CCA (for k =
poly(k)1?) and KM-NCE-UR security and the sortition has winning probabil-
ity ¢/((1 + €)N) for € > 0. Then, assuming a bare PKI setup, the protocol

19 To weaken this to k = O(1) would require a bound on the number of honest nomi-
nations a machine could receive before refreshing its key.

Taming Adaptivity in YOSO Protocols: The Modular Way 61

IIga UC realises the functionality Fra(P,c, T ,U,2) in the presence of T < N
adaptive corruptions in the (Fgeacon, FBB, FVRF)-hybrid model.

8 The Versatility of Our Compiler

The compiler we present allows the compilation of YOSO protocols using both
Facgspp and Fyespa- Of the existing literature only Kolby et al. present computa-
tionally secure protocols in the Fyespa-hybrid model [KRY22], having introduced
the functionality. However, existing works which make non-black-box use of the
communication between roles may be recast into the Fyespa-hybrid model allow-
ing for their efficient compilation. We provide one such example. Braun et al.
construct a YOSO MPC protocol from class groups, following the circuit based
CDN paradigm of [CDNO1]. Their protocol proceeds by first performing a dis-
tributed key generation to obtain a key for a threshold linearly homomorphic
encryption scheme, which is then used for the circuit evaluation.

In the construction of their protocol they assume access to explicit pub-
lic keys allowing them to prove statements about the ciphertexts and public
messages with NIZK. The NIZK proofs are used in three of their functionali-
ties, CreateVSS, CreateTriple and YOSO — ABB. Proving the exact same relations
about the messages sent through Fyespa would clearly preserve security, giving
the simulator access to the same witnesses it could extract from explicit proofs.

Braun et al. [BDO22] specifically tailor their statements to have efficient
proofs for the class group encryption scheme they use [CCL+19]. As our extended
compiler is secure for any PKE scheme with CPA security, it could in particular
be instantiated with the same class group scheme preserving their efficiency.

Acknowledgements. Funded by the European Research Council (ERC) under the
European Unions’s Horizon 2020 research and innovation programme under grant
agreement No 803096 (SPEC), the Danish Independent Research Council under Grant-
ID DFF-2064-00016B (YOSO), and the Digital Research Centre Denmark (DIREC).

References

[AHKP22] Acharya, A., Hazay, C., Kolesnikov, V., Prabhakaran, M.: SCALES - MPC
with small clients and larger ephemeral servers. In: Kiltz, E., Vaikun-
tanathan, V. (eds.) TCC 2022. Part II, volume 13748 of LNCS, pp.
502-531. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-
22365-5_18

[BDO22] Braun, L., Damgard, I., Orlandi, C.: Secure multiparty computation from
threshold encryption based on class groups. Cryptology ePrint Archive,
Report 2022/1437 (2022). https://eprint.iacr.org/2022/1437

[BGG+20] Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260—290. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_10

https://doi.org/10.1007/978-3-031-22365-5_18
https://doi.org/10.1007/978-3-031-22365-5_18
https://eprint.iacr.org/2022/1437
https://doi.org/10.1007/978-3-030-64375-1_10

62 R. Canetti et al.

[CCL+19]

[CDNO1]

Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-
party ECDSA from hash proof systems and efficient instantiations. Cryptol-
ogy ePrint Archive, Report 2019/503 (2019). https://eprint.iacr.org/2019/
503

Cramer, R., Damgard, 1., Nielsen, J.B.: Multiparty computation from
threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 280-300. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44987-6_18

[CDPWO07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-

[CM19]

[DGKR18]

[DKI+23]

[EHK+13]

[GHK+21]

rity with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 61-85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
70936-7-4

Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger.
Theoret. Comput. Sci. 777, 155-183 (2019)

David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros Praos: an
adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66-98.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3
David, B., Konring, A., Ishai, Y., Kushilevitz, E., Narayanan, V.: Perfect
MPC over layered graphs. Cryptology ePrint Archive, Report 2023/330
(2023). https://eprint.iacr.org/2023/330

Escala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J.: An algebraic frame-
work for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 129-147. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1_8

Gentry, C., et al.: YOSO: you only speak once. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 64-93. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84245-1_3

[GHM+21] Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-

[GOS12]

[HLH+-22]

[KMTZ13]

[KRY22]

[MRV99)]

[Nie02]

index PIR and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021.
LNCS, vol. 13044, pp. 32-61. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90456-2_2

Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM (JACM) 59(3), 1-35 (2012)

Huang, Z., Lai, J., Han, S., Lyu, L., Weng, J.: Anonymous public key
encryption under corruptions. In: Agrawal, S., Lin, D. (eds.) ASTACRYPT
2022. Part III, volume 13793 of LNCS, pp. 423-453. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-22969-5_15

Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable
synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 477-498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36594-2_27

Kolby, S., Ravi, D., Yakoubov, S.: Constant-round YOSO MPC without
setup. Cryptology ePrint Archive, Paper 2022/187 (2022). https://eprint.
iacr.org/2022/187

Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th
FOCS, pp. 120-130. IEEE Computer Society Press, October 1999
Nielsen, J.B.: Separating random oracle proofs from complexity theoretic
proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 111-126. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9_8

https://eprint.iacr.org/2019/503
https://eprint.iacr.org/2019/503
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-319-78375-8_3
https://eprint.iacr.org/2023/330
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-031-22969-5_15
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://eprint.iacr.org/2022/187
https://eprint.iacr.org/2022/187
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8

®

Check for
updates

Network Agnostic MPC with Statistical
Security

Ananya Appan'®)® and Ashish Choudhury?

! University of Illinois Urbana Champaign, Champaign, USA
aappan2@illinois.edu
2 International Institute of Information Technology Bangalore, Bengaluru, India
ashish.choudhury@iiitb.ac.in

Abstract. In this work, we initiate the study of network agnostic MPC
protocols with statistical security. Network agnostic MPC protocols give
the best possible security guarantees, irrespective of the behaviour of the
underlying network. While network agnostic MPC protocols have been
designed earlier with perfect and computational security, nothing is known
in the literature regarding their possibility with statistical security. We
consider the general-adversary model, where the adversary is character-
ized by an adversary structure which enumerates all possible candidate
subsets of corrupt parties. Known statistically-secure synchronous MPC
(SMPC) and asynchronous MPC (AMPC) protocols are secure against
adversary structures satisfying the Q@ and Q® conditions respectively,
meaning that the union of no two and three subsets from the adversary
structure cover the entire set of parties.

Fix adversary structures Z5 and Z,, satisfying the Q@ and Q® con-
ditions respectively, where Z, C Z,. Then given an unconditionally-
secure PKI, we ask whether it is possible to design a statistically-secure
MPC protocol, which is resilient against Z5 and Z, in a synchronous and
an asynchronous network respectively, even if the parties are unaware of
the network type. We show that this is possible iff Z, and Z, satisfy
the Q®" condition, meaning that the union of any two subsets from Z,
and any one subset from Z, is a proper subset of the set of parties. The
complexity of our protocol is polynomial in | Z].

Keywords: MPC - Network Agnostic - Statistical Security - VSS

1 Introduction

A secure multiparty computation (MPC) protocol [9,26,36,37] allows a set of n
mutually distrusting parties P = {P,..., P,} with private inputs to securely

A. Appan—Work done as a student at ITIT Bangalore.

A. Choudhury—This research is an outcome of the R&D work undertaken in the project
under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Tech-
nology, Government of India, being implemented by Digital India Corporation.

© International Association for Cryptologic Research 2023

G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14370, pp. 63-93, 2023.
https://doi.org/10.1007/978-3-031-48618-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48618-0_3&domain=pdf
http://orcid.org/0000-0002-2408-1082
http://orcid.org/0000-0002-2428-9537
https://doi.org/10.1007/978-3-031-48618-0_3

64 A. Appan and A. Choudhury

compute any known function f of their inputs. This is achieved even if a sub-
set of the parties are under the control of a centralized adversary and behave
maliciously in a Byzantine fashion during the protocol execution. In any MPC
protocol, the parties need to interact over the underlying communication net-
work. Two types of networks have been predominantly considered. The more
popular synchronous MPC (SMPC) protocols operate over a synchronous net-
work, where every message sent is assumed to be delivered within a known A
time. The synchronous model does not capture real-world networks like the Inter-
net appropriately, where messages can be arbitrarily delayed. Such networks are
better modelled by the asynchronous communication model [14]. In any asyn-
chronous MPC (AMPC) protocol [8,10], there are no timing assumptions on
message delays and messages can be arbitrarily, yet finitely delayed. The only
guarantee is that every message sent will be eventually delivered. The major
challenge here is that no participant will know how long it has to wait for an
expected message and cannot distinguish a “slow” party from a corrupt party.
Consequently, in any AMPC protocol, a party cannot afford to receive messages
from all the parties, to avoid an endless wait. Hence, as soon as a party receives
messages from a “subset” of parties, it has to process them as per the protocol,
thus ignoring messages from a subset of potentially non-faulty parties.

There is a third category of protocols called network agnostic MPC protocols,
where the parties will not be knowing the network type and the protocol should
provide the best possible security guarantees depending upon the network type.
Such protocols are practically motivated, since the parties need not have to worry
about the behaviour of the underlying network.

1.1 Owur Motivation and Results

One of the earliest demarcations made in the literature is to categorize MPC
protocols based on the computing power of the underlying adversary. The two
main categories are unconditionally-secure protocols, which remain secure even
against computationally-unbounded adversaries, and conditionally-secure MPC
protocols (also called cryptographically-secure), which remain secure only against
computationally-bounded adversaries [26,37]. Unconditionally-secure protocols
can be further categorized as perfectly-secure [8,9] or statistically-secure [10,36],
depending upon whether the security guarantees are error-free or achieved except
with a negligible probability. The above demarcation carries over even for net-
work agnostic MPC protocols. While perfectly-secure and cryptographically-
secure network agnostic MPC protocols have been investigated earlier, nothing is
known regarding network agnostic statistically-secure MPC protocols. We derive
necessary and sufficient conditions for such protocols for the first time.

Existing Results for Statistically-Secure MPC. Consider the threshold
setting, where the maximum number of corrupt parties under the adversary’s
control is upper bounded by a given threshold. In this model, it is known that
statistically-secure SMPC tolerating up to ¢, faulty parties is possible iff t; < n/2
[36], provided the parties are given access to an ideal broadcast channel, which

Network Agnostic MPC with Statistical Security 65

can be further instantiated using an unconditionally-secure PKI (a.k.a pseudo-
signature) setup [22,35]. On the other hand, statistically-secure AMPC tolerating
up to t, faulty parties is possible iff ¢, < n/3 [1,10].

A more generalized form of corruption is the general adversary model (also
called non-threshold model) [27]. Here, the adversary is specified through a pub-
licly known adversary structure Z C 27, which is the set of all subsets of poten-
tially corruptible parties during the protocol execution. The adversary is allowed
to choose any one subset from Z for corruption. There are several “merits” of
studying the general adversary model, especially if the number of parties is small.
The downside is that the complexity of the protocols is polynomial in | Z|, which
could be O(2™) in the worst case. In fact, as noted in [27,28], this is unavoidable.

Following [27], given a subset of parties P’ C P and Z, we say that Z
satisfies the Q¥) (P’ Z) condition, if for any subsets Z;,, ..., Z;, € Z, the con-
dition (Z;; U...U Z;,) C P’ holds. In the non-threshold model, statistically-
secure SMPC is possible if the underlying adversary structure Z; satisfies the
Q(Q)(P,ZS) condition, provided the parties have access to an ideal broadcast
channel (which can be instantiated using an unconditionally-secure PKI setup)
[29], while statistically-secure AMPC requires the underlying adversary structure
Z, to satisfy the Q) (P, 2Z,) condition [4,29].

Our Results for Network Agnostic Statistically-Secure MPC. We con-
sider the most generic form of corruption and ask the following question:

Given an unconditionally-secure PKI, a synchronous adversary structure
Zs and an asynchronous adversary structure Z, satisfying the Q(Q)(P, Zs)
and Q®) (P, Z,) conditions respectively, where Z, C Z,, does there exist a
statistically-secure MPC protocol, which remains secure against Z; and Z, in a
synchronous and an asynchronous network respectively?

We answer the above question affirmatively, iff Z; and Z, satisfy the
QRV(P, Z,, Z,) condition, where by Q(k’k,)(P, Zs, Z,) condition, we mean that
for any Z;,,...,Z;, € Z5 and Z;,,...,Z;,, € Z,, the following holds:

(ZilU...UZikUZjIU...UZj;C)C'P.

Our results when applied against threshold adversaries imply that given an
unconditionally-secure PKI, and thresholds 0 < t, < % < ts < %, network
agnostic statistically-secure MPC tolerating ts and ¢, corruptions in the syn-
chronous and asynchronous network is possible, iff 2t5 + t, < n holds. Our

results in the context of relevant literature are summarized in Table 1.

1.2 Detailed Technical Overview

We perform shared circuit-evaluation [9,36], where f is abstracted as an arith-
metic circuit ckt over a finite field F and the goal is to securely evaluate each gate
in ckt in a secret-shared fashion. For every value during the circuit-evaluation,
each party holds a share, such that the shares of the corrupt parties do not reveal
any additional information. Once the function output is secret-shared, it is pub-
licly reconstructed. We deploy a linear secret-sharing scheme, which enables the

66 A. Appan and A. Choudhury

Table 1. Various conditions for MPC in different settings

Network Type Corruption Scenario Security Condition Reference
Synchronous Threshold () Perfect t<n/3 [9]
Synchronous Non-threshold (Z) Perfect Q¥ (P, 2) [27]
Synchronous Threshold (t) Statistical t<mn/2 [36]
Synchronous Non-threshold (Z) Statistical Q¥ (P, 2) [29]
Asynchronous Threshold (t) Perfect t<n/4 8]
Asynchronous Non-threshold (Z) Perfect QW (P, 2) [31]
Asynchronous Threshold (t) Statistical t<n/3 [1,10]
Asynchronous Non-threshold (Z) Statistical Q¥ (P, 2) [4]
Network Agnostic | Threshold (t,ta) Perfect 0 <ty <n/4<ts<n/3and 3ts + | [2]
ta <mn
Network Agnostic | Non-threshold (25, Za) | Perfect Z. C Z,Q¥(P,2,),QW(P, 2,) | [3]
and Q) (P, Z,, Z,)
Network Agnostic | Threshold (ts,tq) Computational |0 < t, < n/3 <ts <n/2 and 2t + | [13,18]
ta <mn
Network Agnostic | Non-threshold (Z, Z,) | Statistical Z, C Z,Q(P,2,),Q® (P, Z,)| This work
and Q> (P, Z,, Z,)
Network Agnostic | Threshold (ts,tq) Statistical 0<te<n/3<ts<n/2and 2t; + | This work
ta <n

parties to evaluate linear gates in ckt in a non-interactive fashion. Non-linear
gates are evaluated using Beaver’s method [7] by deploying secret-shared ran-
dom multiplication-triples which are generated beforehand.

To instantiate the above approach with statistical security, we need the fol-
lowing ingredients: a Byzantine agreement (BA) protocol [34], an information
checking protocol (ICP) [36], a verifiable secret sharing (VSS) protocol [15], a
reconstruction protocol and finally, a secure multiplication protocol. However, in
a network agnostic setting, we face several challenges to instantiate the above
building blocks. We now take the reader through a detailed tour of the technical
challenges and how we deal with them.

1.2.1 Network Agnostic BA with QY (P, Z,, Z,) Condition

A BA protocol [34] allows the parties in P with private input bits to agree on
a common output bit (consistency), which is the input of the non-faulty par-
ties, if they have the same input bit (validity). Given an unconditionally-secure
PKI, synchronous BA (SBA) is possible iff the underlying adversary structure
Z, satisfies the Q) (P, Z,) condition [22,23,35], while asynchronous BA (ABA)
requires the underlying adversary structure 2, to satisfy the Q®) (P, Z,) condi-
tion [16]. Existing SBA protocols become completely insecure in an asynchronous
network. On the other hand, any ABA protocol becomes insecure when executed
in a synchronous network, since Z, need not satisfy the Q) (P, Z5) condition.
Hence, we design a network agnostic BA protocol with Q1 (P, Z,, Z,) condi-
tion. The protocol is obtained by generalizing the existing blueprint for network
agnostic BA against threshold adversaries [2,11].

Network Agnostic MPC with Statistical Security 67

1.2.2 Network Agnostic ICP with QY (P, Z,, Z,) Condition

An ICP [17,36] is used for authenticating data in the presence of a
computationally-unbounded adversary. In an ICP, there are four entities, a signer
S € P, an intermediary | € P, a receiver R € P and all the parties in P acting as
verifiers (note that S, | and R also act as verifiers). An ICP has two sub-protocols,
one for the authentication phase and one for the revelation phase.

In the authentication phase, S has an input s € F, which it distributes to
| along with some authentication information. Each verifier is provided with
some verification information, followed by the parties verifying whether S has
distributed “consistent” information. If the verification is “successful”, then the
data held by | is called S’s IC-Signature on s for intermediary | and receiver
R, denoted by ICSig(S,I,R,s). Later, during the revelation phase, | reveals
ICSig(S, I, R, s) to R, who “verifies” it with respect to the verification information
provided by the verifiers and either accepts or rejects s. We require the same
security guarantees from IC-signatures as expected from cryptographic signa-
tures, namely correctness, unforgeability and non-repudiation. Additionally, we
need privacy, meaning if S, and R are all honest, then Adv does not learn s.

The only known instantiation of ICP in the synchronous network [29] is secure
against Q(?) adversary structures and becomes insecure in the asynchronous set-
ting. On the other hand, the only known instantiation of ICP in the asynchronous
setting [4] can tolerate only Q) adversary structures. Our network agnostic ICP
is a careful adaptation of the asynchronous ICP of [4]. We first try to naively
adapt the ICP to deal with the network agnostic setting, followed by the tech-
nical problems in the naive adaptation and the modifications needed.

During authentication phase, S embeds s in a random t¢-degree polynomial
F(z) at * = 0, where t is the cardinality of the maximum-sized subset in Zj,
and gives F(z) to |. In addition, each verifier P; is given a random verification-
point (a;,v;) on F(x). To let the parties securely verify that it has distributed
consistent information, S additionally distributes a random ¢-degree polynomial
M (z) to |, while each verifier P; is given a point on M (x) at «;. Each verifier,
upon receiving its verification-points, publicly confirms the same. Upon receiving
these confirmations, | identifies a subset of supporting verifiers SV which have
confirmed the receipt of their verification-points. To avoid an endless wait, |
waits until P\ SV € Z,. After this, the parties publicly check the consistency of
the F(x), M(x) polynomials and the points distributed to SV, with respect to
a random linear combination of these polynomials and points, where the linear
combiner is selected by |. This ensures that S has no knowledge beforehand about
the random combiner and hence, any “inconsistency” will be detected with a high
probability. If no inconsistency is detected, the parties proceed to the revelation
phase, where | reveals F'(z) to R, while each verifier in SV reveals its verification-
point to R, who accepts F'(z) (and hence F'(0)) if it sure that the verification
point of at least one non-faulty verifier in SV is “consistent” with the revealed
F(z). This would ensure that the revealed F'(x) is indeed correct with a high
probability, since a corrupt | will have no information about the verification-point
of any non-faulty verifier in SV, provided S is non-faulty. To avoid an endless

68 A. Appan and A. Choudhury

wait, once R finds a subset of verifiers SV’ C SV, where SV \ SV’ € Z,, whose
verification-points are found to be “consistent” with F(z), it outputs F(0).

A Technical Problem and Way-Out. The above protocol will achieve all
the properties in an asynchronous network, due to the Q(?’)(P,Za) condition.
However, it fails to satisfy the unforgeability property in a synchronous network.
Namely, a corrupt | may not include all the non-faulty verifiers in SV and may
purposely exclude a subset of non-faulty verifiers belonging to Z. To deal with
this, we let S identify and announce SV. This ensures that all honest verifiers
are present in SV, if S is honest and the network is synchronous.

Linearity of ICP. Our ICP satisfies the linearity property (which will be useful
later in our VSS), provided “special care” is taken while generating the IC-
signatures. Consider a fized S, and R and let s, and s; be two values, such that
| holds ICSig(S, 1, R, s,) and ICSig(S,1, R, sp), where all the following conditions
are satisfied during the underlying instances of the authentication phase.

— The set of supporting verifiers SV are the same during both the instances.

— For i =1,...,n, corresponding to the verifier P;, signer S uses the same «;,
to compute the verification-points, during both the instances.

— | uses the same linear combiner to verify the consistency of the distributed
data in both the instances.

Let s def €1 Sq+C2-Sp, Where c1, co are publicly known constants from F. It then
follows that if all the above conditions are satisfied, then | can locally compute
ICSig(S, I, R, s) from ICSig(S, I, R, s,) and ICSig(S, I, R, sp), while each verifier in
SV can locally compute their corresponding verification-point.

1.2.3 Network Agnostic VSS and Reconstruction

In the network agnostic setting, to ensure privacy, all the values during the
circuit evaluation need to be secret-shared “with respect” to Z, irrespective of
the network type. We follow the notion of additive secret-sharing [30], also used
in the earlier MPC protocols [4,29,32]. Given Z, = {Z1,...,Z|z,}, we consider
the sharing specification Sz, = {S1,...,S|z,|}, where each S, = P\ Z;. Hence
there exists at least one subset S; € S|z, which does not contain any faulty party,
irrespective of the network type (since Z, C Z). A value s € F is said to be
secret-shared, if there exist shares s1,. .., sz | which sum up to s, such that all
(non-faulty) parties in S, have the share s,. We denote a secret-sharing of s by [s],
with [s], denoting the share corresponding to Sg. If [s]1, .. ., [s]z,| are randomly
chosen, then the probability distribution of the shares learnt by the adversary will
be independent of s. We also note that the above secret-sharing is linear since,
given secret-sharings [a] and [b] and publicly known constants c¢1,¢o € F, the
condition ¢; - [a] + c2 - [b] = [¢1 - a + ¢ - b] holds. Unfortunately, the above secret-
sharing does not allow for the robust reconstruction of a secret-shared value.
This is because the corrupt parties may produce incorrect shares at the time of
reconstruction. To deal with this, we “augment” the above secret-sharing. As
part of secret-sharing of s, we also have publicly known core-sets Wiy, ..., Wz,

Network Agnostic MPC with Statistical Security 69

where each W, C S, such that Z satisfies the Q) (W,, Z;) condition (ensuring
W, has at least one non-faulty party). Moreover, each (non-faulty) P; € W, will
have the IC-signature |CSig(P;, P;, Py, [s]q) of every P; € W, for every Py, & S,
such that the underlying IC-signatures satisfy the linearity property.

We call this augmented secret sharing as linear secret-sharing with IC-
signatures, which is still denoted as [s]. Now to robustly reconstruct a secret-
shared s, we ask the parties in W, to make public the share [s],, along with
the IC-signatures of all the parties in W, on [s],. Any party P can then verify
whether [s], revealed by P; is correct by verifying the IC-signatures.

We design a network agnostic VSS protocol I1yss, which allows a designated
dealer D € P with input s € F to verifiably generate [s], where s remains private
for a non-faulty s. If D is faulty then either no non-faulty party obtains any
output (if D does not invoke the protocol) or there exists some s* € F such
that the parties output [s*]. To design ITyss, we use certain ideas from the
statistically-secure synchronous VSS (SVSS) and asynchronous VSS (AVSS) of
[4,29] respectively, along with some new counter-intuitive ideas. In the sequel,
we first give a brief outline of the SVSS and AVSS of [4,29], followed by the
technical challenges arising in the network agnostic setting and how we deal
with them.

Statistically-Secure SVSS of [29] with Q) (P, Z,) Condition. The SVSS of
[29] proceeds as a sequence of synchronized phases. During the first phase, D picks
random shares s1,...,s/z,| for s and sends s, to the parties in S;. During the
second phase, every pair of parties P;, P; € S, exchange the supposedly common
shares received from D, along with their respective IC-signatures. Then during
the third phase, the parties in S; publicly complain about any “inconsistency”,
in response to which D makes public the share s, corresponding to S, during
the fourth phase. Hence, by the end of fourth phase it is ensured that, for every
Sy, either the share s, is publicly known (if any complaint was reported for S;)
or all (non-faulty) parties in S, have the same share (along with the respective
IC-signatures of each other on it). The privacy of s is maintained for a non-faulty
D, since the share s, corresponding to the set S, consisting of only non-faulty
parties is never made public.

Statistically-Secure AVSS of [4] with Q®)(P, 2Z,) Condition. Let Z, =
{Z1,...,Z)z,} and Sz, = {S1,...,5|z,|} be the corresponding sharing specifi-
cation, where each S; = P\ Z,. The AVSS protocol of [4] also follows an idea
similar to the SVSS of [29]. However, now the parties cannot afford to wait for
all the parties in S, to report the statuses of pairwise consistency tests, as the
corrupt parties in S, may never turn up. Hence instead of looking for inconsis-
tencies in Sg, the parties rather check how many parties in S, are reporting the
pairwise consistency of their supposedly common share. The idea is that if D
has not cheated, then a subset of parties W, where S, \ W, € Z, should eventu-
ally confirm the receipt of a common share from D. Hence, the parties check for
core-sets Wi, ..., W,z,|, where each S, \ W, € Z,, such that the parties in W,
have confirmed the receipt of a common share from D. Note that irrespective of

70 A. Appan and A. Choudhury

D, each W, is bound to have at least one non-faulty party, since Z, will satisfy
the QU (W,, Z,) condition.

The existence of Wi, ..., W,z,| does not imply that all non-faulty parties in
Sy have received a common share, even if D is non-faulty, since there might
be non-faulty parties outside W,. Hence, after the confirmation of the sets
Wi,...,W)z,|, the goal is to ensure that every (non-faulty) party in S, \ W,
also gets the common share held by the (non-faulty) parties in W,. For this,
the parties in W, reveal their shares to these “outsider” parties, along with
the required IC-signatures. The outsider parties then “filter” out the correctly
revealed shares. The existence of at least one non-faulty party in each W, guar-
antees that the shares filtered by the outsider parties are indeed correct.

Technical Challenges for Network Agnostic VSS and Way Out. Our
approach will be to follow the AVSS of [4], where we look for pairwise consistency
of supposedly common share in each group. Namely, D picks random shares
s1,-..,8|z,| for its input s and distributes s, to each S; € S|z_|. The parties in S,
then exchange IC-signed versions of their supposedly common share. To avoid an
endless wait, the parties can only afford to wait till a subset of parties W, C S,
have confirmed the receipt of a common share from D, where S, \ W, € Z;
holds. Unfortunately, S, \ W, € Z; need not guarantee that W, has at least one
non-faulty party, since Z5 need not satisfy the Q(l)(Wq, Z,) condition, which is
desired as per our semantics of linear secret-sharing with IC-signatures.

To deal with the above problem, we note that if D has distributed the shares
consistently, then the subset of parties S € Sz, which consists of only non-
faulty parties will publicly report the pairwise consistency of their supposedly
common share. Hence, we now let D search for a candidate set S, of parties from
Sz, which have publicly confirmed the pairwise consistency of their supposedly
common share. Once D finds such a candidate .S, it computes and make public
the core-sets W, as per the following rules, for ¢ =1, ...,|Z,|.

— If all the parties in S, have confirmed the pairwise consistency of their sup-

posedly common share, then set W, = S,,. (A)
— Else if Z, satisfies the Q) (S,NS,, Z,) condition and the parties in (S,N S,)

have confirmed the consistency of their supposedly common share, then set

Wy = (Sp N S,)- (B)
— Else set W, = S, and make public the share s,. (©)
The parties wait till they see D making public some set S, € Sz, along with
sets Wi, ..., W, z,|. Upon receiving, the parties verify and “approve” these sets

as valid, provided all parties in S, have confirmed the pairwise consistency of
their supposedly common share and if each W, is computed as per the rule
(A), (B) or (C). If Wy,..., W,z are approved, then they indeed satisfy the
requirements of core-sets as per our semantics of linear secret-sharing with I1C-
signatures. While this is trivially true if any W, is computed either using rule
(A) or rule (B), the same holds even if W, is computed using rule (C). This is
because, in this case, the parties publicly set [s], = s,. Moreover, the parties take
a “default” (linear) IC-signature of s, on the behalf of S,, where the IC-signature
as well as verification points are all set to s,.

Network Agnostic MPC with Statistical Security 71

If D is non-faulty, then irrespective of the network type, it will always find
a candidate S, and hence, compute and make public Wy, ..., Wz | as per the
above rules. This is because the set S always constitutes a candidate S,. Sur-
prisingly we can show that even if the core-sets are computed with respect to
some different candidate S, # S, a non-faulty D will never make public the share
corresponding to S, since the rule (C) will not be applicable over S, implying
the privacy of s. If the network is synchronous, then the parties in S, as well as
S would report the pairwise consistency of their respective supposedly common
share at the same time. This is ensured by maintaining sufficient “timeouts” in
the protocol to report pairwise consistency of supposedly common shares. Con-
sequently, rule (A) will be applied on S. For an asynchronous network, rule (B)
will be applicable for S, as Z, will satisfy the Q1) (S, NS, Z,) condition, due to
the Q1 (P, Z,, 2,) condition and the fact that S = P\ Z for some Z € Z, in
the asynchronous network.

1.2.4 Network Agnostic VSS for Multiple Dealers with Linearity
Technical Challenge in Ilyss for Multiple Dealers and Way Out. If
different dealers invoke instances of Ilyss to secret-share their inputs, then the
linearity property of []-sharing need not hold, since the underlying core-sets
might be different. This implies failure of shared circuit-evaluation of ckt, where
the inputs for ckt are shared by different parties.

To deal with the above problem, we ensure that the core-sets are com-
mon for all the secret-shared values during the circuit-evaluation. Namely, there
exist global core-sets GW1,...,GW),z |, which constitute the core-sets for all
the secret-shared values during the circuit-evaluation, where for each GW,, Z;
satisfies the Q1Y) (GW,, Z;) condition. Maintaining common core-sets is challeng-
ing, especially in an asynchronous network and Ilyss alone is not sufficient to
achieve this goal. Rather we use a different approach. We generate a “bunch” of
linearly secret-shared random values with IC-signatures and common core-sets
aWq,... ,QW|ZS| in advance through another protocol called ITgang (discussed
in the next section). Later, if any party P; needs to secret-share some x, then
one of these random values is reconstructed only towards P;, which uses it as a
one-time pad (OTP) and makes public an OTP-encryption of x. The parties can
then take the “default” secret-sharing of the OTP-encryption with IC-signatures
and GWh, ..., QW‘ z,| as the core-sets and then non-interactively “remove” the
pad from the OTP-encryption. This results in [z], with GW1,...,GW,z | as core-
sets. To ensure privacy, we need to generate L random values through ITrang, if
L is the maximum number of values which need to be secret-shared by different
parties during the circuit-evaluation. We show that L < n3.-cp+4n2-cpr +n2+n
where cj; is the number of multiplication gates in ckt.

1.2.5 Secret-Shared Random Values with Global Core Sets
Protocol Ilgang generates linearly secret-shared random values with IC-
signatures and common core-sets. We explain the idea behind the protocol for

72 A. Appan and A. Choudhury

generating one random value. The “standard” way will be to let each P; pick
a random value 7(Y) and generate [r(Y)] by invoking an instance of ITyss. To
avoid an endless wait, the parties only wait for the completion of ITyss instances
invoked by a set of dealers P \ Z for some Z € Z,. To identify the common
subset of dealers for which the corresponding Ilyss instances have completed,
the parties run an instance of agreement on a common subset (ACS) primitive
[10,14]. This involves invoking n instances of our network agnostic BA. Let C be
the set of common dealers identified through ACS, where P\ C € Z,. The set
C has at least one non-faulty party who has shared a random value. Hence, the
sum of the values shared by the dealers in C will be random for the adversary.

Technical Challenges. The above approach fails in our context due to the fol-
lowing two “problems” in the protocol Ilyss, when executed by different dealers.

Problem I: The first challenge is to maintain the linearity of underlying IC-
signatures. To understand the issue, consider a triplet of parties F;, P;, Py, acting
as S, and R respectively in various instances of Ilyss invoked by different deal-
ers. Recall that, to maintain the linearity of IC-signatures, it is necessary that P,
selects the same set of supporting-verifiers SV in all the instances of authentica-
tion phase involving P; and Pj. This is possible only if P; knows all the values
on which it wants to generate the IC-signature for P; and P} and starts invok-
ing all the instances of authentication phase. Instead, if P; invokes instances of
authentication phase as and when it has some data to be authenticated for P;
and Py, then it may not be possible to have the same SV in all the instances of
authentication phase, involving P;, P; and P in the above roles, especially in an
asynchronous network. Since, in ITyss, IC-signatures are generated on the sup-
posedly common shares (after receiving them from the underlying dealer) and
multiple instances of ITyss are invoked (by different dealers), this means that P
should first have the data from all the dealers for the various instances of Ilyss
and before invoking instances of authentication phase to generate IC-signatures
on these values for P;. This may not be possible, since P; need not know before-
hand which dealers it will be receiving shares from as part of ITyss.

Way Out. To deal with the above issue, we now let the dealers publicly commit
their shares for the Ilyss instances through secure verifiable multicast (SVM).
The primitive allows a designated sender Sen € P with input v to “verifiably”
send v to a designated set of receivers R C P, without leaking any additional
information. The verifiability guarantees that even if Sen is corrupt, if the non-
faulty parties in R get any value from Sen, then it will be common and all
the (non-faulty) parties in P will “know” that Sen has sent some value to R.
Our instantiation of SVM is very simple: Sen acts as a dealer and generates
[v] through ITyss. Once [v] is generated, the parties know that Sen has “com-
mitted” to some unknown value. The next step is to let only the parties in R
reconstruct v.

Using SVM, we now let the various dealers distribute the shares during the
underlying instances of Ilyss (for ITrand) as follows. Consider the dealer P, who
has invoked an instance of ITyss with input 7). For this, it picks random shares

Network Agnostic MPC with Statistical Security 73

rgé), .. .,rl(f%)s‘ which sum up to 7). Now instead of directly sending send r,(f)
to the parties in Sy, it invokes |Z| instances of SVM with input rgé), . ,r‘(? |
and S1,...,95)z,| as the designated set of receivers respectively. This serves two

purposes. All the parties in P will now know that P, has distributed shares to
each set from Sz_. The parties then run an instance of ACS to identify a common
subset of committed dealers CD C P, where P\ CD € Z,, which have invoked
the desired instances of SVM and delivered the required shares to each group
Sy € Sjz,|- The way timeouts are maintained as part of the ACS, it will be
ensured that in a synchronous network, all non-faulty dealers are present in CD.
Once the set CD is identified, it is guaranteed that every non-faulty party P; will
have the shares from all the dealers in CD. And once it has the shares from all
the dealers in CD, it starts generating the IC-signatures on these shares for the
designated parties as part of the Ilyss instances corresponding to the dealers in
CD and ensures that all the pre-requisites are satisfied to guarantee the linearity
of the underlying IC-signatures. Now instead of selecting the set of dealers C (for
IIgang) from P, the parties run an instance of ACS over the set of committed
dealers CD to select C where CD \ C € Z; holds. We stress that irrespective of
the network type, the set C is still guaranteed to have at least one non-faulty
party. While this is trivially true in an asynchronous network where Z, satisfies
the QW (C, 2,) condition, the same is true in the synchronous network because
CD will have all non-faulty dealers.

Problem II: The second problem (in the proposed ITrang) is that the underlying
core-sets might be different for the values shared by the dealers in CD (and hence
C). Instead, we require every dealer in CD to secret-share random values with
common underlying core-sets. Only then will it be ensured that the random
values generated through ITra.g are secret-shared with common core-sets.

Way Out. Getting rid of the above problem is not possible if we let every dealer
in CD compute individual core-sets during their respective instances of Ilyss, as
per the steps of Ilyss. Recall that in Ilyss, the dealer D computes the underlying
core-sets with respect to the “first” set of parties S, from S|z | which confirm
the pairwise consistency of their supposedly common share after exchanging IC-
signatures on these values. As a result, different dealers (in ITrand) may end up
computing different core-sets in their instances of Ilyss with respect to different
candidate S, sets. To deal with this issue, we instead let each dealer in CD
continue computing and publishing different “legitimate” core-sets with respect
to various “eligible” candidate S, sets from Sz . The parties run an instance of
ACS to identify a common subset of dealers C € CD where CD\C € Z,, such that
all the dealers have computed and published “valid” core-sets, computed with
the respect to the same S, € Sz_. The idea here is that there always exists a set
S € Sz, consisting of only non-faulty parties. So if the set of non-faulty dealers
‘H in CD keep computing and publishing all possible candidate core-sets in their
Ilyss instances, then they will publish core-sets with respect to S. Hence, H and
S always constitute the candidate CD and the common S, set.

74 A. Appan and A. Choudhury

Note that identifying C out of CD through ACS satisfying the above require-
ments is non-trivial and requires carefully executing the underlying instances of
BA in “two-dimensions”. We first run | Z| instances of ITga, one on the behalf of
each set in Sz_, where the ¢*" instance is executed to decide whether a subset of
dealers in CD\ Z for some Z € Z, have published valid core-sets with respect to
the set S; € Sz,. This enables the parties to identify a common set S,_. € Sz,,
such that it is guaranteed that a subset of dealers in CD \ Z for some Z € Z,
have indeed published valid core-sets with respect to the set Sy, .. Once the set
St 18 identified, the parties then run |CD| instances of BA to decide which

Qcore

dealers in CD have published core-sets with respect to .S,

Geore *

1.2.6 Network Agnostic Secure Multiplication

To generate secret-shared random multiplication-triples we need a network
agnostic secure multiplication protocol which securely generates a secret-sharing
of the product of two secret-shared values. The key subprotocol behind our multi-
plication protocol is a non-robust multiplication protocol Igasicmure (standing for
basic multiplication), which takes inputs [a] and [b] and an existing set of globally
discarded parties GD, which contains only corrupt parties. The protocol securely
generates [c] without revealing any additional information about a,b (and ¢). If
no party in P\ GD cheats, then ¢ = a - b holds. The idea behind the protocol
is to let each summand [a], - [b], be secret-shared by a summand-sharing party.
Then [a-b] can be computed from the secret-sharing of each summand, owing to
the linearity property. Existing multiplication protocols in the synchronous and
asynchronous setting [4,29] also use an instantiation of ITgagicmuit, based on the
above idea. In the sequel, we recall them, followed by the technical challenges
faced in the network agnostic setting and how we deal with them.

Mgasicmule in the Synchronous Setting with Q(?)(P, Z,) Condition [29]. In
[29], each summand [a], - [b], is statically assigned to a designated summand-
sharing party through some deterministic assignment, which is possible since
[a], and [b], are held by the parties in (S, N Sy). This is non-empty, since the
Q@ (P, Z,) condition holds. Since the parties in GD are already known to be cor-
rupted, all the shares [a],, [b], held by the parties in GD are publicly reconstructed
and instead of letting the parties in GD secret-share their assigned summands,
the parties take the “default” secret-sharing of these summands.

Igasiemur in the Asynchronous Setting with Q) (P, Z,) Condition [4].
The idea of statically designating each summand [a], - [b], to a unique party in
P\ GD need not work in the asynchronous setting, since the designated party
may be corrupt and need not secret-share any summand, thus resulting in an
endless wait. To deal with this challenge, [4] dynamically selects the summand-
sharing parties for each summand. In more detail, let Z, = {Z1,...,Zz,} and
Sz, = {S1,...,5|z,|}, where each S, = P\ Z,. Since the Q¥ (P, Z,) condition is
satisfied and GD € Z,, it follows that (S,NS,)\GD # 0 and there exists at least
one non-faulty party in (S, N'S,), who can secret-share the summand [a], - [b]4.
Hence, every party in P \ GD is allowed to secret-share all the summands it is

Network Agnostic MPC with Statistical Security 75

“capable” of, with special care taken to ensure that each summand [a], - [b], is
considered exactly once. For this, the protocol now proceeds in “hops”, where
in each hop all the parties in P \ GD secret-share all the summands they are
capable of, but a single summand sharing party is finally selected for the hop
through ACS. Then, all the summands which have been shared by the elected
summand-sharing party are “marked” as shared and not considered for sharing
in the future hops. Moreover, a party who has already served as a summand-
sharing party is not selected in the future hops.

Technical Challenges in the Network Agnostic Setting. The asyn-
chronous Ilgasiemurr based on dynamically selecting summand-sharing parties will
failin the synchronous network, since the Q) condition need not be satisfied. On
the other hand, synchronous Ilgasicmur based on statically selecting summand-
sharing parties will fail if a designated summand-sharing party does not secret-
share the required summands, resulting in an endless wait. The way out is to
select summand-sharing parties in three phases. We first select summand-sharing
parties dynamically in hops, following the approach of [4], till we find a subset
of parties from Sz, which have shared all the summands they are capable of.
Then in the second phase, the remaining summands which are not yet secret-
shared are statically assigned and shared by the respective designated summand-
sharing parties. To avoid an endless wait in this phase, the parties wait only for a
“fixed” time required for the parties to secret-share the assigned summands (cor-
responding to the time taken in a synchronous network) and run instances of BA
to identify which of the designated summand-sharing parties have shared their
summands up during the second phase. During the third phase, any “leftover”
summand which is not yet shared is publicly reconstructed by reconstructing the
corresponding shares and a default sharing is taken for such summands.

The idea here is the following: all non-faulty parties will share the sum-
mands which are assigned to them, either statically or dynamically, irrespective
of the network type. Consequently, the first phase will be always over, since
the set consisting of only non-faulty parties always constitutes a candidate set
of summand-sharing parties which the parties look for to complete of the first
phase. Once the first phase is over, the second phase is bound to be over since
the parties wait only for a fixed time. The third phase is always bound to be
over, once the first two phases are over, since it involves publicly reconstructing
the leftover summands. The way summands are assigned across the three phases,
it will be always guaranteed that every summand is considered for sharing once
in exactly one of the three phases and no summand will be left out. The cru-
cial point here is that the shares held only by the non-faulty parties never get
publicly reconstructed, thus guaranteeing that the adversary does not learn any
additional information about a and b. This is obviously true in a synchronous
network because we always have the second phase where every non-faulty party
who is not selected as a summand-sharing party during the first phase will get
the opportunity to secret-share its assigned summands. On the other hand, in
an asynchronous network, it can be shown that all the summands which involve
any share held by the non-faulty parties would have been secret-shared during

76 A. Appan and A. Choudhury

the first phase itself. In more detail, let Z* € Z, be the set of corrupt parties and
let H = P\ Z* be the set of honest parties. Moreover, let S, € Sz_ be the group
consisting of only non-faulty parties which hold the shares [a];, and [b],. Con-
sider an arbitrary summand [a]p, - [b]4. Suppose the first phase gets over because
every party in Sy € Sz, has been selected as a summand-sharing party during
the first phase. Then consider the set (S¢ NH N .S;), which is not empty due to
the QY (P, 2, Z,) condition. Hence, there exists some P; € (H NS, N S,),
who would have already shared [a]y, - [b], during some hop in the first phase.

1.3 Other Related Works

Almost all the existing works on network agnostic protocols have consid-
ered threshold adversaries. The work of [12] presents a network agnostic
cryptographically-secure atomic broadcast protocol. The work of [33] studies state
machine replication protocols for multiple thresholds, including ¢, and ¢,. The
work of [24,25] present network agnostic protocols for the task of approximate
agreement using the condition 2t4 4+ ¢, < n. The same condition has been used
to design a network agnostic distributed key-generation (DKG) protocol in [6].
A recent work [19] has studied the problem of network agnostic perfectly-secure
message transmission (PSMT) [20] over incomplete graphs.

1.4 Open Problems

It is not known whether the condition 3t, +t, < n (resp. QB (P, 2, Z,)) is
necessary for the network agnostic MPC with perfect security against thresh-
old (resp. non-threshold) adversary. The works of [2,3] and this work just focus
on the possibility of unconditionally-secure network agnostic MPC. Upgrading
the efficiency of these protocols to those of state-of-the-art SMPC and AMPC
protocols seems to require a significant research effort. Our MPC protocol when
instantiated for threshold adversaries may require an exponential amount of com-
putation and communication (|Z,| will have all subsets of P of size up to ty).
Hence, designing a network agnostic MPC protocol against threshold adversaries
with statistical security and polynomial complexity is left as a challenging open
problem. It is also interesting to see whether one can design network-agnostic
MPC protocols against general adversaries whose complexity is polynomial in n
(and not | Z4|), for specific types of adversary structures.

1.5 Paper Organization

Due to space constraints, we do not provide the details of our network agnostic
BA protocol (which is based on existing ideas) and circuit evaluation protocol
(which is standard). Also, we skip proofs for the protocols and the impossibility
proof. The details of the missing protocols and formal proofs are available in the
full version of the article [5].

Network Agnostic MPC with Statistical Security 77

2 Preliminaries and Definitions

We assume the pair-wise secure channel model, where the parties in P are
assumed to be connected by pair-wise secure channels. The underlying com-
munication network can be either synchronous or asynchronous, with parties
being unaware about the exact network behaviour. If the network behaves syn-
chronously, then every message sent is delivered within a known time A. On the
other hand, if the network behaves asynchronously, then messages can be delayed
arbitrarily, but finitely, with every message sent being delivered eventually. The
distrust among P is modelled by a malicious (Byzantine) adversary Adv, who can
corrupt a subset of the parties in P and force them to behave in any arbitrary
fashion during the execution of a protocol. The parties not under the control
of Adv are called honest. We assume the adversary to be static, who decides
the set of corrupt parties at the beginning of the protocol execution. Adver-
sary Adv can corrupt any one subset of parties from Z; and Z, in synchronous
and asynchronous network respectively. The adversary structures are monotone,
implying that if Z € Z, (Z € Z, resp.), then every subset of Z also belongs to
Z, (resp. Z,). We assume that Z, and Z, satisfy the conditions Q®) (P, Z,) and
Q®)(P, Z,) respectively, which are necessary for statistically-secure MPC in the
synchronous and asynchronous network respectively. Additionally, we assume
that Z, C Z,. Moreover, Z; and Z, satisfy the Q(Q’l)(P, Z,, Z,) condition.

In our protocols, all computations are done over a finite field IF, where |F| >
n®-25%¢ and ssec is the underlying statistical security parameter. This will ensure
that the error probability in our MPC protocol is upper bounded by 27%¢.
Without loss of generality, we assume that each P; has an input z; € F, and
the parties want to securely compute a function f : F™ — F, represented by an
arithmetic circuit ckt over F, consisting of linear and non-linear (multiplication)
gates, where ckt has cjp; multiplication gates and a multiplicative depth of Dy,.

We assume the existence of an unconditionally-secure public-key infrastruc-
ture (PKI), for an unconditionally-secure signature scheme, also called pseudo-
signature [22,35]. We refer to [22] for complete formal details of such a PKI.
We use |o| to denote the size of a pseudo-signature in bits. As done in [2,4],
for simplicity, we will not be specifying any termination criteria for our sub-
protocols. The parties will keep on participating in these sub-protocol instances
even after computing their outputs. The termination criteria of our MPC proto-
col will ensure the termination of all underlying sub-protocol instances. We will
be using an existing randomized ABA protocol [16] which ensures that the honest
parties (eventually) obtain their respective output almost-surely with probabil-
ity 1. The property of almost-surely obtaining the output carries over to the
“higher” level protocols, where ABA is used as a building block.

3 Network Agnostic Byzantine Agreement

We follow the blueprint of [2,11] to design a network agnostic BA protocol
IIga, which satisfies the requirements of BA, both in a synchronous as well as

78 A. Appan and A. Choudhury

asynchronous network. If the network behaves asynchronously, then the (honest)
parties obtain output within time Tga = (¢t 4+ 33) A, where ¢ is the cardinality of
the maximum-sized subset from the adversary structure Z;. On the other hand,
if the network behaves asynchronously, then almost surely, the (honest) parties
eventually get their output.

In the process of designing the protocol ITga, we design a special BA protocol
ITpw, by generalizing the classic Dolev-Strong (DS) BA protocol [21] against non-
threshold adversaries, based on the pseudo-signature setup [35]. We also design
a network agnostic reliable broadcast protocol Ilgc, which allows a designated
sender party Sen to reliably send its message m € {0,1}* to all the parties. In
the protocol, there exists a designated (local) time Tgc = (¢ + 4)A at which all
(honest) parties have an output, such that depending upon the network type
and corruption status of Sen, the output satisfies the following conditions:

— Synchronous Network and Honest Sen: the output is m for all honest parties.

— Synchronous Network and Corrupt Sen: the output is a common m* €
{0,1}* U {1} for all honest parties.

— Asynchronous Network and Honest Sen: the output is either m or L for each
honest party.

— Asynchronous Network and Corrupt Sen: the output is either a common m* €
{0,1}¢ or L for each honest party.

Protocol Ilgc also gives the parties who output L at (local) time Tgc an
option to switch their output to some ¢-bit string if the parties keep running
the protocol beyond time Tgc and if certain “conditions” are satisfied for those
parties. We stress that this switching provision is only for those who output L
at time Tgc. While this provision is not “useful” and not used while designing
IIga, it comes in handy when Ilgc is used to broadcast values in our VSS pro-
tocol. Notice that the output-switching provision will not lead to a violation of
consistency and hence honest parties will not end up with different ¢-bit out-
puts. Following the terminology of [2], we call the process of computing output
at time Tgc and beyond time Tgc as the reqular mode and fallback mode of Ilgc
respectively.

In the rest of the paper, we say that P; broadcasts m to mean that P; invokes
an instance of IIgc as Sen with input m, and the parties participate in this
instance. Similarly, we say that P; receives m from the broadcast of P; through
regular-mode (resp. fallback-mode), to mean that P; has the output m at (local)
time Tgc (resp. after time Tgc) during the instance of ITgc.

For the details of the BA protocol ITga and associated sub-protocols, see [5].

4 Network Agnostic Information Checking Protocol

In this section, we present our network agnostic ICP (Fig. 1). The protocol con-
sists of two subprotocols ITautn and I1Reyeal, implementing the authentication and
revelation phases respectively. The proof of Theorem 1 is available in [5].

Network Agnostic MPC with Statistical Security 79

—[Protocol I1icp(P, Zs, 24, S, 1, R)J

Protocol ITauwn (P, Zs, Z4,S,1,R,s): ¢ def max{|Z|: Z € Z}

— Distributing Data: S executes the following steps.

e Randomly select t-degree signing-polynomial F(x) and t-degree masking-
polynomial M (x), where F(0) = s. For ¢ = 1,...,n, randomly select
a; € F\ {0}, and compute v; = F(a;) and m; = M (o).

e Send (F(z), M(x)) tol. For i =1,...,n, send (o, v;, m;) to party P;.

— Confirming Receipt of Verification Points: Each party P; (including S, |
and R), upon receiving (a;, vi, m;) from S, broadcasts (Received, 7).

— Announcing Set of Supporting Verifiers: only S does the following.

e Initialize the set of supporting verifiers SV to (), and wait till the local time
is A+ Tgc. Upon receiving (Received, 7) from the broadcast of P;, add P; to
SV. Once P\ SV € Z;, broadcast the set SV.

— Announcing Masked Polynomial: only | does the following.

e Wait till the local time is A+ 27gc. Upon receiving SV from the broadcast of
S such that P\SV € Z;, wait till (Received, 7) is received from the broadcast
of every P; € SV. Then randomly pick d € F\ {0} and broadcast (d, B(z)),
where B(x) =4 dF(x) + M(z).

— Announcing Validity of Masked Polynomial: only S does the following.

e Wait till the local time is A + 37gc. Upon receiving (d, B(z)) from the
broadcast of |, broadcast OK, if B(x) is a t-degree polynomial and if
dv; + mj = B(a;) holds for every P; € SV.

— Deciding Whether Authentication is Successful: each P; € P (including
S,land R) waits till the local time is A+47gc. Upon receiving SV and (d, B(x))
from the broadcast of S and | respectively, where P\ SV € Z,, it set the
variable authCompleted (s, gy to 1 if OK is received from the broadcast of S.
Upon setting authCompleted s g) to 1, | sets ICSig(S, I, R, s) = F(z).

Protocol reveal (P, Zs, Za,S,1, R, s)

— Revealing Signing Polynomial and Verification Points: Each party P;
(including S, and R) does the following, if authCompleted s ¢, is set to 1.
e If P; = then send F(x) to R, if ICSig(S, I, R, s) is set to F(x) during ITauth.
e If P, € SV, then send («;,vi,m;) to R.

— Accepting the IC-Signature: The following steps are executed only by R, if
authCompIeted(silyR) is set to 1 during the protocol Ilauth.
— Wait till the local time becomes a multiple of A. Upon receiving F'(x) from I,

where F(z) is a t-degree polynomial, proceed as follows.

1. If (au,vi,m;) is received from P; € SV, then accept (o, vi,m;) if either
v; = F(a;) or B(a;) # dvi + m;, where B(z) is received from the
broadcast of | during ITaun. Otherwise, reject (o, vi, m;).

2. Wait till a subset of parties SV’ C SV is found, such that SV\ SV’ € Z,,
and for every P; € SV’, the corresponding revealed point (i, vi,my) is
accepted. Then, output s = F(0).

Fig. 1. The network-agnostic ICP

80 A. Appan and A. Choudhury

Theorem 1. Protocols (Ilauth, ITreveal) Satisfy the following properties, except

with probability at most €cp =4 Wl‘jll%l’ where t = max{|Z| : Z € Z}.

- IfS,1 and R are honest, then the following hold.
- Zs-Correctness: In a synchronous network, each honest party sets
authCompIeted(sJ’R) to 1 during Haun at time Tagn = A+4Tgc. Moreover
R outputs s during IlReveal which takes Treveas = A time.
- Z4-Correctness: In an asynchronous network, each honest party eventu-
ally sets authCompIeted(SJR) to 1 during Iaun and R eventually outputs
s during Ilreveal -
— Privacy: The view of Adv is independent of s, irrespective of the network.
- Unforgeability: IfS,R are honest, | is corrupt and if R outputs s’ € F during
IIReveal, then s’ = s holds, irrespective of the network type.
— If S is corrupt, 1,R are honest and if | sets 1CSig(S,I,R,s) = F(x) during
I auth, then the following holds.
- Z,-Non-Repudiation: In a synchronous network, R outputs s = F(0)
during IReveal, which takes Trevea = A time.
- Z,-Non-Repudiation: In an asynchronous network, R eventually out-
puts s = F(0) during ITreveal-
~ Communication Complexity: Ty, incurs a communication of O(n’ -
log |F| - |o|) bits, while Ireyeal incurs a communication of O(n -log|F|) bits.

We use the following notations while invoking instances of ICP.

Notation 2. (for ICP) While using (IIauth, [Reveal), we say that:

“P; gives |CSig(P;, P;, Py,s) to P;” to mean that P; acts as S and invokes
an instance of Iaun with input s, where P; and Py play the role of | and R
respectively.

— “P; receives |CSig(P;, Pj, Py,s) from P;” to mean that Pj, as |, has set
authCompleted p, p. p,) to 1 and ICSig(P;, Pj, Py, s) to some t-degree poly-
nomial with s as the constant term during the instance of Iauwn, where P;
and Py play the role of S and R respectively.

— “P; reveals |ICSig(P;, P;, Py, s) to P,” to mean P;, as |, invokes an instance
of HReveal, with P; and Py playing the role of S and R respectively.

~ “Py accepts |CSig(P;, Pj, P, s)” to mean that Py, as R, outputs s during the

instance of IReveal, tnvoked by P; as |, with P; playing the role of S.

Linearity of IC Signature and Default IC Signature. We require the lin-
earity property from ICP when used in our VSS protocols, where there will
be multiple instances of ITauh, running, involving the same (S,I,R) triplet.
To achieve this, we ensure that in all the ITa,, instances involving the same
triplet (S,I,R), the signer uses the same non-zero evaluation point asr; for

Network Agnostic MPC with Statistical Security 81

the verifier P;, while distributing verification information to P;, as part of the
respective ITpayn instances. Similarly, S should find and make public a common
set of supporting verifiers SV, on behalf of all the instances of IIay,. Finally, |
should use the same non-zero random linear combiner d, to compute the masked
polynomials for all the instances of ITan and once computed, it should together
make public d and the masked polynomials for all the instances of ITan. We
use the term “parties follow linearity principle while generating 1C-signatures”,
to mean that the underlying instances of ITauh are invoked as above.

We will also encounter situations where some publicly known value s and
a triplet (S,I,R) exist. Then | can locally compute ICSig(S,I,R,s) by setting
ICSig(S, I, R, s) to the constant polynomial F(x) = s. Fach verifier P; € P locally
sets (o, Rr.i, Vi, M) as its verification information, where v; = m; = s. Moreover,
the set of supporting verifiers SV is set as P. We use the term “parties set
ICSig(S, IR, s) to the default value”, to mean the above.

5 Network Agnostic Verifiable Secret Sharing (VSS)

This section presents our network-agnostic VSS protocol Ilyss, which allows a
designated dealer to generate a linear secret-sharing with IC-signatures (see the
following definition) for its input. For the proof of Theorem 3, see [5].

Definition 1 (Linear Secret Sharing with IC-Signatures). A values € F
is said to be linearly secret-shared with IC-signatures, if there exist shares
51,...,8z, € F where s = s1 + ...+ sz,|. Moreover, for q =1,...,|2|, there
exists some publicly-known core-set Wy, C Sy, such that all the following holds.

(a). 2, satisfies the QW (W,, Z,) condition and all (honest) parties in the
set Sy have the share sq. (b). Every honest P, € Wy has the IC-signature
ICSig(Pj, P;, Py, sq) of every P; € Wy for every P, & Sq. Moreover, if any cor-
rupt P; € W, has |CSig(P;, P;, Py, s;) of any honest P; € Wy for any Py, & Sg,
then s, = s, holds. Furthermore, all the underlying IC-signatures satisfy the
linearity property.

The vector of information corresponding to a linear secret-sharing with 1C-
signature of s is denoted by [s].

Theorem 3. Protocol Ilyss achieves the following, except with a probability of
O(|Sz.| - n? - eicp), where D has input s € F for Ilyss and where Tyss = A +
TAuth + 2T'BC + TReveaI-

— If D is honest, then the following hold.

— Zs-correctness: In a synchronous network, the honest parties output [s]
at time Tyss. Z,-correctness: In an asynchronous network, the honest
parties eventually output [s]. Privacy: Adversary’s view remains inde-
pendent of s in any network.

82

A. Appan and A. Choudhury

—[Protocol Ilvss(D, Zs, Z4, s,Sz,)}

— Distribution of Shares: D, on having input s, randomly chooses s1, ..., s|z,| €
F, such that s = s14---+sz,|. It then sends s, to all P; € Sy, forqg=1,...,|Z|.

— Exchanging IC-Signed Values: Each P; € P (including D), waits till the local
time becomes A. Then, for each S, € Sz, such that P; € S, upon receiving sy
from D, give ICSig(P;, Pj, Py, 5qi) to every P; € Sy, for every Pp € P such that
the parties follow the linearity principle while generating IC-signatures.

— Announcing Results of Pairwise Consistency Tests: Each P; € P (includ-
ing D) waits till the local time becomes A 4 Taun and then does the following.
— Upon receiving |CSig(P;, Pi, Pr, sq;) from P; for each S, € S such that P;, P; €

Sq, corresponding to every Py € P, broadcast OK(i, j), if sqi = s4; holds.

— Corresponding to every P; € P, participate in any instance of IIgc initiated
by P; as a sender, to broadcast any OK(Pj,*) message.

— Constructing Consistency Graph: Each P; € P (including D) waits till the
local time becomes A+Tpuh+7Tgc and then constructs an undirected consistency
graph G with P as the vertex set, where the edge (P;, Py) is added to G,
provided OK(j, k) and OK(k,j) is received from the broadcast of P; and Py
respectively (through any mode).

— Identification of Core Sets and Public Announcement by the Dealer:
D waits till its local time is A + Taun + The, and then executes the following
steps to compute core sets.

— Once any S, € Sz, forms a clique in the graph G® | then for ¢ = 1,...,|Z,]|,
compute core-set W, and broadcast-set BS with respect to S, as follows,
followed by broadcasting (CanCS, D, Sp, {Wy}q=1...., 2., BS, {54 }qeBs)."

— If S, constitutes a clique in the graph G®, then set W, = S,.

— Else if (S,NS,) constitutes a clique in G® and Z, satisfies the Q) (S, N
Sq, Zs) condition, then set W, = (S, N Sy).

Else set W, = S, and include ¢ to BS.

— Identifying Valid Core Sets: Each P; € P waits till its local time is A +
Tauth + 27c and then initializes a set C; = 0. For p = 1,...,|Z|, party P
includes (D, Sp) to C; (initialized to @), provided all the following hold.

— (CanCS, D, Sp, {Wytg=1...., 2., BS, {sq}qens) is received from the broadcast
of D, such that for ¢ = 1,...,|Z|, the following hold.

— If ¢ € BS, then the set W, = S,.

— If (¢ € BS), then W, is either S, or (S, NSq), such that:

— If W, = 8, then S, constitutes a clique in G*).
— Else if W, = (S,NS,), then (S,NS,) constitutes a clique in G and
Z, satisfies the Q1 (S, N Sy, Z,) condition.

— Computing Output: Each P; € P does the following, once C; # (.

— For every S, € Sz, such that P; € W,, corresponding to every P; € W,,
reveal ICSig(P;}, P;, Pk, [s]q) to every Pr € Sq \ W, upon computing [s], and
ICSig(P;j, P;, P, [s]q) as follows.

If g € BS, then set [s], = s4, where s, is received from the broadcast of
D, as part of the message (CanCS, D, Sy, {Wq}g=1,...,|z.|, BS, {34 }qeBs)-
Moreover, for every P; € Sq and every Py € P, set ICSig(P;, P;, Pi, [s]q)
to the default value.

— Else, set [s]q to sqi, where sq was received from D. Morecover, for
every P; € W, and every P, € P, set ICSig(P;,P;, Px,[s]q) to
ICSig(P;j, P;, Px, Sq;), received from P;.

— For every Sq € Sz, such that P; € S; \ Wy, compute [s], as follows.

— Check if there exists any P; € W, and a value sg;, such that P; has
accepted 1CSig(Pyx, Pj, Pi, sq;), corresponding to every P, € W,. Upon
finding such a P, set [s]y = sqj.

— Wait till the local time becomes A + Tauth + 2T8c + TReveal. Upon set-
ting {[s]¢}p,es, to some value, output Wi,..., Wz, {[slq}r,es, and
ICSig(P;, P, P [8)a) .0 e 25, -

@ If there are multiple S, from Sz, which constitute a clique in G®) | then consider
the one with the smallest index.

Fig. 2. The network agnostic VSS protocol

Network Agnostic MPC with Statistical Security 83

— If D is corrupt, then the following hold.

- Zg,-commitment: In a synchronous network, either no honest party com-
putes any output or there exists some s* € F, such that the honest parties
output [s*]. Moreover, if any honest party computes its output at time T,
then all honest parties compute their required output by time T + A.

- Z,~-commitment: In an asynchronous network, either no honest party
computes any output or there exists some s* € F, such that the honest
parties eventually output [s*].

- Communication Complexity: O(|Z;|-n®log |F|-|o|) bits are communicated
by the honest parties.

5.1 Reconstruction and Secure Multicast Protocol

Let s be a value which is linearly secret-shared with IC-signatures and let S; €
Sz,. Moreover, let R C P be a designated set. Then protocol Irecshare([s], S¢, R)
allows all the (honest) parties in R to reconstruct the share [s],. For this, every
P, € W, reveals [s], to all the parties outside W,, who are in R (the parties in
W, who are in R already have [s],). To ensure that P; does not cheat, P; actually
reveals the IC-signature of every party in W, on the revealed [s],. The idea here
is that since W, has at least one honest party (irrespective of the network type),
a potentially corrupt P; will fail to reveal the signature of an honest party from
W, on an incorrect [s]q. On the other hand, an honest P; will be able to reveal
the signature of all the parties in W, on [s],.

Based on ITrecshare, We design another protocol ITrec([s], R), which allows all
the (honest) parties in R to reconstruct s. The idea is to run an instance of
ITRrecshare for every Sy € Sz,. We refer to [5] for formal details.

Based on protocols Ilyss and Ilrec, we design a secure verifiable multicast
protocol ITsyym, which allows a designed sender Sen € P to verifiably and securely
send its input v € F to a designated set of receivers R. The idea behind ITsym
is very simple. The parties participate in an instance of ITyss, where Sen plays
the role of the dealer with input v. Once any (honest) party computes an output
during Ilyss (implying that Sen is committed to some value v* which is the same
as v for an honest Sen), then it turns flag®>*™™ to 1. Once flag>"™ is turned to
1, the parties invoke an instance of ITrec to let only the parties in R reconstruct
the committed value. We refer to [5] for the details.

6 Network Agnostic Protocol for Generating Linearly
Secret-Shared Random Values with IC-Signatures

In this section, we present a network agnostic protocol ITrang, which allows
the parties to jointly generate linear secret-sharing of random values with IC-
signatures. To design the protocol ITrang, we first design a subprotocol ITypyss.

84 A. Appan and A. Choudhury

6.1 Network Agnostic VSS for Multiple Dealers

Protocol ITwpvss (Fig.3) is a multi-dealer VSS. In the protocol, each party
P, € P participates as a dealer with some input s(©). Then, irrespective of the
network type, the protocol outputs a common subset of dealers CORE C P, which
is guaranteed to have at least one honest dealer. Moreover, corresponding to every
dealer P, € CORE, there will be some value, say s*(e), which will be the same
as s9 for an honest P,, such that the values {s*(z)}pgecORE are linearly secret-
shared with IC-signatures. While in a synchronous network, {[s*“]} p,ccore is
generated after a “fixed” time, in an asynchronous network, { [s*(z)}} P,ECORE
is generated eventually. The high level overview of IIypyss has been already
discussed in detail in Sect.1.2.5.! The proof of Theorem 4 is available in [5].

Theorem 4. Protocol Il\ypyss achieves the following where each Py participates
with input s and where Twvpvss = Tsym + Tauth + 21sc + 61BA.

- Zs-Correctness & Commitment: If the network is synchronous, then
except with probability (’)(n3 -€eicp), at time Tvpvss, all honest parties output
a common set CORE C P such that at least one honest party will be present
in CORE. Moreover, corresponding to every P, € CORE, there exists some
s*(e), where s*) = &) for an honest Py, such that the values {5*(6)}p[6CORE
are linearly secret-shared with IC-signatures.

- Z,-Correctness & Commitment: If the network is asynchronous, then
except with probability O(n® - eicp), almost-surely all honest parties output a
common set CORE C P eventually such that at least one honest party will
be present in CORE. Moreover, corresponding to every P, € CORE, there
exists some s*(e), where s*© = &) for an honest Py, such that the values
{S*(Z)}PZGCORE are eventually linearly secret-shared with 1C-signatures.

— Privacy: Irrespective of the network type, the view of the adversary remains
independent of s©), corresponding to every honest P, € CORE.

~ Communication Complexity: O(|Z,]?-n? -log |F|-|o|) bits are communi-
cated by the honest parties and O(|Z4| +n) instances of Ilga are invoked.

6.2 Protocol for Generating Secret-Shared Random Values

Protocol ITrang is presented in Fig. 4. We will refer to the core sets Wy, ..., Wiz,
obtained during IIrang as global core-sets and denote them by GWy, ..., GW,z,.
From now onwards, all the secret-shared values will be generated with respect
to these global core-sets. For the proof of Theorem 5, see [5].

1 Actually, the overview was for ITrand, but the same idea is also used in Tvpvss.

Network Agnostic MPC with Statistical Security 85

—[Protocol [Tvpvss(P, Zs, Za, (s, ..., ™), st)}

— Committing Shares: Each P; € P executes the following steps.

— On having input s®, randomly choose s(f) 5‘(2) B such that
sO = s(li) + -+ s‘(iz)sl. Act as Sen and invoke instances

Hsvm(P;, S(f), S1), ... swm (P, 8‘(12)3‘,5\250 of Isym.

— Corresponding to every dealer P, € P, participate in the instances of ITsym,
invoked by P; as a Sen and wait till the local time becomes Tsyw. For ¢ =
1,...,]2s], let flag("24) be the Boolean flag, corresponding to the instance
Hsywm(Pr, s, 8,), invoked by Py

— Identifying the Set of Committed Dealers Through ACS: Each P; € P
does the following.

— For £ =1,...,n, participate in an instance Héﬁ) of ITga with input 1, provided
P; has set flag(Te%0) =1, for ¢ =1,...,|Zs|.

— Once there exists a subset of dealers CD; where P\ CD; € Z,, such that
corresponding to every dealer P, € CD;, the instance Héﬁ) has produced
output 1, then participate with input 0 in all the BA instances Hé;), for
which no input is provided %ret

— Once all the n instances of ITg
the set of dealers P, such that 11, éA) has produced output 1.

— Exchanging IC-Signed Values: Each P; € P waits till the local time becomes
Tsym + 2Tsa. Then corresponding to each dealer Py € CD, does the following.

— For each S; € Sz, such that P; € S, upon computing an output s(g) during
HSVM(Pz,sff),S) give ICS|g(PZ,P],Pk,) to every P; € Sq, for every
P, € P, where the parties follow the hneauty principle while generating
IC-signatures.

— Announcing Results of Pairwise Consistency Tests: Each P; € P waits
till the local time becomes Tsym + 27ga + Tawh and then does the following,
corresponding to each dealer Py, € CD
— Upon receiving ICSig(P;, P“Pk7 Sqj) from P; for each S, € S such that

P;,P; € S,, corresponding to every P, € P, broadcast OK® (4,7), if

s = sf]? holds.

qi

have produced a binary output, set CD to be

— Corresponding to every P; € P, participate in any instance of ITgc initiated
by P; as a sender, to broadcast any OK(‘)‘)(PJ'7 *) message.

Constructing Consistency Graphs: Each P; € P waits till the local time

becomes Tsym + 278 + Tauh + Tec and then does the following, corresponding

to each dealer P, € CD.

— Construct an undirected consistency graph G with P as the vertex
set, where the edge (Pj, Py) is added to G*?, provided OK® (4, k) and
OK“)(IC7 j) is received from the broadcast of P; and Py respectively.

— Public Announcement of Core Sets by the Committed Dealers: Each
dealer P, € CD waits till its local time is Tsym + 278a + Tauh + Tic, and then
executes the following steps to compute core sets.

- VS, € Sz, once S, forms a clique in G®Y then forq=1,..., |Z5|, compute
core-set w,ﬁ?; and broadcast-set BS,(f) with respect to S, as follows, followed

by broadcasting (CanCS, Pg,Sp,{Wf,Q}qﬂ ,‘25‘788207{852)} 658(2)).
) _

If S, constitutes a clique in the graph G(“9 | then set Wy g = S;.
— Else if (S,NS,) constitutes a clique in G*9 and Z, satisfies the Q(1>(
Sq, Zs) condition, then set WI(”)I = (Sp N Sy).
— Else set W,SQ = S, and include ¢ to BSy).

Fig. 3. The statistically-secure VSS protocol for multiple dealers to generate linearly
secret-shared values with IC-signatures

86

A. Appan and A. Choudhury

Identifying Valid Core Sets: Each P; € P waits for time Tsym + 278a +
Tauth + 2Tsc and then initializes a set C; = (). Corresponding to P, € CD and

p=1,...,|2|, party P; includes (Py, Sp) to Ci, provided all the following hold.
— (CanCS, P, Sy, {WZ(,Q},Z:LM)‘ZShBSy), {sgé) quS(z)) is received from the
P

broadcast of P, such that for ¢ =1,...,|Z], the following hold.
- Ifqge BS;,Z) then the set Wz(,f“),)l =5,
If (¢ & BSY), then WS is either S, or (S, N S,), such that:
- If W,E?; = S,, then S, constitutes a clique in G*9.
~ Else if W) = (Sp N Sy), then (S, N S,) constitutes a clique in G*?
and Z; satisfies the Q1Y (S, N S, Z) condition.

Selecting the Common Committed Dealers and Core Sets through

ACS: Each party P; € P does the following.

— For p = 1,...,|Zs|, participate in an instance Hékp) of IIgan with input 1,
provided there exists a set of dealers A, ; C CD where CD \ A,; € Z, and
where (P, Sp) € C; for every Pr € Ap;.

— Once any instance of H() has produced an output 1, participate with input
0 in all the BA instances [T, élA’*), for which no input is provided yet.

— Once all the | Z,| instances of II, éi\’*) have produced a binary output, set gcore

to be the least index among {1,...,|Z|}, such that Héi\’q“”e) has produced
output 1.
— Once geore is computed, then corresponding to each P; € CD, participate in

an instance II{27) of ITga with input 1, provided (P}, S,...) € C;.

— Once there ex1sts a set of parties B; C CD, such that CD\ B; € Z; and H(z’]
has produced output 1, corresponding to each P; € B;, participate w1th
input 0 in all the instances of I7, éQA’*)7 for which no input is provided yet.

— Once all the [CD| instances of HézA"*) have produced a binary output, include
all the parties P; from CD in CORE (initialized to @), such that IT{>?) has
produced output 1.

Computing Output: Each P; € P does the following, after computing CORE

and geore-

~ I (CanCS, Pr, Sue {WicderaYami otz BStes {55} s)
ceived from the broadcast of P for for any P, € CORE, tﬁgn wait to receive
it from the broadcast of P, through fallback-mode.

— Once (CanCS, Py, Sqcores {Wéfo),e,q}q:l _____ |ZS|,Bngg,E, {sl(f)}qegs(j)) is available
for every P, € CORE, compute W, for ¢ =1,...,|Z,| as folfg’\';s.

- If cho,e,q = 8, for every P, € CORE, then set W, = 5.
Else set Wy = (Sgeore N Sq)-

— Corresponding to every P, € CORE and every S, € Sz, such that P; € S,
compute the output as follows.

-If ¢ € Bchom then set [s], = sff% where 5<) was re-
ceived from the broadcast of Py, as part of (CanCS, P, S

is not yet re-

Gcore 7

{Wéfn),e,q}q:l ,‘Zs‘,BSqme,{s(Z)} qeBs§)). Moreover, for every P; €

W, and every Py, € P, set I1CSig(P;, Pi, Py, [s$9],) to the default value.
— Else, set [S(Z)] to s(z)7 where s,/ was computed as output during
Hsvm(Pg,Sgé),Sq). Moreover, if P; € W,, then for every P; € W, and
every Py € P, set ICSig(P;, Pi, Pr, [s”],) to ICSig(P;, P, Pr,s.7), re-
ceived from P;.
Output CORE, the core sets Wi, ..., W,z,|, shares {[s'”]¢}p,ecore n pies,
and the IC-signatures |CSig(P;, P;, Pk, [s“)}q)pZECORE A Pj,Pi€Wq, PLEP-

Fig. 3. (continued)

Network Agnostic MPC with Statistical Security 87

—[Protocol IIrand(P, Zs, Z4,Sz,, L)]

— Secret-Sharing Random Values: Each P, € P picks L random values m =

(r(“), e r(e’L)) and participates in an instance of ITupyss with input IW; and
waits for time Tvpvss.

— Computing Output: Let (CORE, W1, ..., Wz, (M, [r*([’L)})}pZGCORE
be the output from the instance of IImpyss. For [=1,..., L, the parties locally
compute [r(V] = Z [r*“] from {[r*“"]} p,ccore. The parties then output

P,ECORE

(GWr, .., GW 2, {[r'V1} i1, 1), where GW, = W, for g =1,...,|Z,]|.

Fig. 4. Protocol for generating linearly secret-shared random values with IC-signatures

Theorem 5. Protocol IIrang achieves the following where Trandg = Tmpvss =
Tsym + Tauth + 21sc + 61ga and L > 1.

— Zs-correctness: If the network is synchronous, then except with prob-
ability O(n® - ecp), at the time Trand, there emist values r(), ... r(E)
which are linearly secret-shared with IC-signatures, where the core-sets are
GW1,...,GW|z,.

- Z,-correctness: If the network is asynchronous, then except with probability
O(n® - eicp), there ewist values r e which are almost-surely linearly
secret-shared with 1C-signatures, where the core-sets are GWy,...,GW)z,|.

- Privacy: Irrespective of the network type, the view of the adversary remains
independent of r ... rL).

— Communication Complexity: The protocol incurs a communication of
O(|Z5]? - L -n? -1og |F| - |o]) bits, apart from O(|Z4| + n) instances of Ign.

7 Network Agnostic Protocol for Triple Generation

In this section, we present our network-agnostic triple-generation protocol, which
generates random and private multiplication-triples which are linearly secret-
shared with IC-signatures. The protocol is based on several sub-protocols which
we present next. Throughout this section, we will assume the existence of global
core-sets GW1,...,GW,z |, where Z satisfies the QW(GW,, Z,) condition for
g=1,...,|2s|- Looking ahead, these core-sets will be generated by first running
the protocol IIrang, using an appropriate value of L, which is determined across
all the sub-protocols which we will be discussing next. All the secret-shared
values in the various sub-protocols have GW1,...,GW),z | as core-sets.

88 A. Appan and A. Choudhury

7.1 Generating Linear Secret Sharing of a Value with IC-Signatures

In protocol Il sy, there exists a designated dealer D € P with private input s. In
addition, there is a random value r € F, which is linearly secret-shared with IC-
signatures, such that the underlying core-sets are GW1,...,GW),z | (the value r
will not be known to D at the beginning of the protocol). The protocol allows the
parties to let D verifiably generate a linear secret-sharing of s with IC-signatures,
such that the underlying core-sets are GW1, ..., GW,z,|, where s remains private
for an honest D. The protocol idea is very simple. We first let D reconstruct the
value r, which is then used as a one-time pad (OTP) by D to make public an
OTP-encryption of s. Then, using the linearity property of secret-sharing, the
parties locally remove the OTP from the OTP-encryption; see [5] for the details.

We will say that “P; invokes an instance of I1| sy, with input s” to mean that P;
acts as D and invokes an instance IIish(D, s, Zs, 24,5z, [r], GW1,...,GW)z)
of Il sh. Here, 7 will be the corresponding random “pad” for this instance
of Il sp, which will already be linearly secret-shared with IC-signatures, with
GWi,...,GW,z_| being the underlying core-sets.

7.2 Non-robust Multiplication Protocol

Protocol Hgasiemuie (Fig. 5) takes input @ and b, which are linearly secret-shared
with IC-signatures, with GWi,...,GW),z | being the underlying core-sets and a
publicly known subset GD C P, consisting of only corrupt parties. The parties
output a linear secret-sharing of ¢ with 1C-signatures, with GWi,...,GW, z
being the underlying core-sets. If all the parties in P\ GD behave honestly, then
c=a-b,else c=a-b+ §, where § # 0. Moreover, the adversary does not learn
anything additional about a and b in the protocol. The protocol also takes input
an iteration number iter and all the sets computed in the protocol are tagged
with iter. Looking ahead, our robust triple-generation protocol will be executed
iteratively, with each iteration invoking instances of ITgasicmult-
The properties of the protocol ITgasicmuir are formally proved in [5].

Network Agnostic MPC with Statistical Security 89

_[Protocol e (Zs, Za,Sz., [a], [, GW1, . .., GW) =, GD, iter)]i

— Initialization: The parties in P do the following.
e Initialize the summand-indez-set of indices of all summands:

Slsiter = {(p7 Q)}quzl [SEAE

e Initialize the summand-indez-set corresponding to each P; € P\ GD:

SISY) = {(p, @)} pyes,ns,-

e Initialize the summand-index-set corresponding to each S; € Sz,:

s)
Slsi(terq) = UPj ESqS|Si(t]e)r'
e Initialize the set of summands-sharing parties:

Selectediter = 0.

e Initialize the hop number:
hop = 1.

Phase I: Sharing Summands Through Dynamic Assignment

— While there exists no S, € Sz, , where SISi(tff) = (), the parties do the following:

e Sharing Sum of Eligible Summands: Every P; ¢ (SelectedierUGD) invokes

an instance Hlfg:l’ho')’i) of sy with input ci(ti;, where ci(t?r = Z [a]p[b]q-

(p,q)esis)

iter
Corresponding to every P; ¢ (Selectedier UGD), the parties in P participate
in the instance Hég:l‘ho"’j), if invoked by P;.
e Selecting Summand-Sharing Party for the Hop Through ACS: The
parties in P wait for time 7isy and then do the following.
— For j =1,...,n, participate in an instance II$%"""7) of ITga correspond-
ing to P; € P with input 1 if all the following holds:
— Pj ¢ (Selectediter U GD);
(4)

— An output [¢)] is computed during the instance IT(5f"""7).

— Upon computing an output 1 during the instance Hé’;hl‘h"p’j) corresponding
to some P; € P, participate with input O in the instances Hé‘,’\h"h(’p‘k)
corresponding to parties Py, ¢ (Selectedier UGD), for which no input has
been provided yet.

— Upon computing outputs during the instances Hé’;hl’h‘)p’i) corresponding
to each P; ¢ (Selectediter U GD), let P; be the least-indexed party, such
that the output 1 is computed during the instance I7$""*7). Then
update the following.

— Selectediter = Selectediter U { P; }.

~ SISiter = SISiter \ SIS

iter* .
~ VP, € P\ {GD U Selectedite }: SIS = SIS\ SIS,

~ For each S, € Sz, SIS{Z?) = SI5{%) \ 515(0).
— Set hop = hop + 1.

Fig. 5. Network-agnostic non-robust multiplication protocol

90 A. Appan and A. Choudhury

Phase II: Sharing Remaining Summands Through Static Assignment
¢ Re-assigning the Summand-Index-Set of Each Party: Corresponding to
each P; € P\ Selecteditr, the parties in P set SISi(tJeZ as

Slsftjez = SlSiter N {(p3 q)}Pj:min(SI,ﬁSq)a

where min(S, N S,) denotes the minimum indexed party in (S, N Sy).
e Sharing Sum of Assigned Summands: Every party P; ¢ (Selectedite UGD) in-
(i) (i) _

vokes an instance I8 of IT s, with input ¢\, where ¢{) = Z [a]p[blq.

(p,a)€SIS,)
Corresponding to every P; € P\ (Selectediter UGD), the parties in P participate
in the instance HES:“’”, if invoked by P;.

e Agreeing on the Summand-Sharing parties of the Second Phase: The
parties in P wait for Tisp time after the beginning of the second phase. Then for
each P; € P, participate in an instance Hé&h”’j) of Ilga with input 1, if all the
following hold, otherwise participate with input 0.

— Pj ¢ (Selectediter U GD);

— An output [¢)] is computed during the instance II{2M"7).

e Updating the Sets for the Second Phase: Corresponding to each P; ¢
(Selectediter UGD), such that 1 is computed as the output during Hé’;h”’j), update

~ SISiter = SISiter \ SISY);

iter?

— Selectediter = Selectedier U {P; }.

Phase ITI: Reconstructing the Remaining Summands

e Reconstructing the Remaining Summands and Taking the Default
Sharing: The parties in P do the following.
— Corresponding to each [a], such that (p,x) € SlSitr, participate in the instance
Irecshare([a], Sp, P) of Ilrecshare to publicly reconstruct [a],
— Corresponding to each [b]q such that (%, q) € SISier, participate in the instance
IRecshare ([b], Sq, P) of Ilrecshare to publicly reconstruct [b]4.
— Corresponding to every P; € P \ Selectediwer, take the default linear

secret-sharing of the public input cft?r with IC-signatures and core-sets

GWi,...,GW)z,|, where c,(tjez = Z [a]p[b]q-

(p.a)esisyy)
e Output Computation: The parties output (GW1,...,GW,z,|, [C.(tﬁ], o [ci<t:r)}7
de n
[cier]), Where cirer 2) ().

Fig. 5. (continued)

7.3 Random Triple Generation with Cheater Identification

The network-agnostic protocol ITrandmuicci takes an iteration number iter and a
publicly known subset of parties GD, who are guaranteed to be corrupt. If all the
parties in P \ GD behave honestly, then the protocol outputs a random linearly
secret-shared multiplication-triple with IC-signatures, with GWy,...,GW, z

Network Agnostic MPC with Statistical Security 91

being the underlying core sets. Otherwise, with a high probability, the honest
parties identify a new corrupt party, which is added to GD.

Protocol Igandmulect is based on [29] and consists of two stages: during the first
stage, the parties jointly generate a pair of random values, which are linearly
secret-shared with IC-signatures, with GW1i,...,GW,z | being the underlying
core sets. During the second stage, the parties run an instance of IlgasicMult
to compute the product of the pair of secret-shared random values from the
first stage. To check whether any cheating has occurred during the instance
of IIgasicmult, the parties then run a probabilistic test, namely the “sacrificing
trick”, for which the parties need additional secret-shared random values, which
are generated during the first stage itself. We refer to [5] for the details.

7.4 The Multiplication-Triple Generation Protocol

The triple generation protocol Iltipcen i based on [29]. The parties iteratively
run instances of ITrandmuizcl, till they hit upon an instance when no cheating is
detected. Corresponding to each “failed” instance of ITrandmultci, the parties keep
updating the set GD. Since after each failed instance the set GD is updated with
one new corrupt party, there will be at most (¢ + 1) iterations, where ¢ is the
cardinality of the largest-sized subset in Z,. We refer to [5] for the details.

References

1. Abraham, I., Dolev, D., Stern, G.: Revisiting asynchronous fault tolerant compu-
tation with optimal resilience. In: PODC, pp. 139-148. ACM (2020)

2. Appan, A., Chandramouli, A., Choudhury, A.: Perfectly-secure synchronous MPC
with asynchronous fallback guarantees. In: PODC, pp. 92-102. ACM (2022)

3. Appan, A., Chandramouli, A., Choudhury, A.: Perfectly secure synchronous MPC
with asynchronous fallback guarantees against general adversaries. IACR Cryptol-
ogy ePrint Archive, p. 1047 (2022)

4. Appan, A., Chandramouli, A., Choudhury, A.: Revisiting the efficiency of asyn-
chronous MPC with optimal resilience against general adversaries. J. Cryptol.
36(3), 16 (2023)

5. Appan, A., Choudhury, A.: Network agnostic MPC with statistical security. IACR
Cryptology ePrint Archive, p. 820 (2023). https://eprint.iacr.org/2023/820

6. Bacho, R., Collins, D., Liu-Zhang, C., Loss, J.: Network-agnostic security comes
for free in DKG and MPC. Cryptology ePrint Archive, Paper 2022/1369 (2022)

7. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420-432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_34

8. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
STOC, pp. 52-61. ACM (1993)

9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1-10. ACM (1988)

10. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: PODC, pp. 183-192. ACM (1994)

https://eprint.iacr.org/2023/820
https://doi.org/10.1007/3-540-46766-1_34

92

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A. Appan and A. Choudhury

Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous

fallback guarantees. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol.
11891, pp. 131-150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36030-6_6

Blum, E., Katz, J., Loss, J.: TARDIGRADE: an atomic broadcast protocol for arbi-

trary network conditions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021.

LNCS, vol. 13091, pp. 547-572. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92075-3_19

Blum, E., Liu-Zhang, C.-D., Loss, J.: Always have a backup plan: fully secure

synchronous MPC with asynchronous fallback. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 707-731. Springer, Cham (2020).

https://doi.org/10.1007/978-3-030-56880-1_25

Canetti, R.: Studies in secure multiparty computation and applications. Ph.D.

thesis, Weizmann Institute, Israel (1995)

Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: FOCS, pp.
383-395. IEEE (1985)

Choudhury, A.: Almost-surely terminating asynchronous Byzantine agreement
against general adversaries with optimal resilience. In: ICDCN, pp. 167-176. ACM
2023

éramlm R., Damgard, 1., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-

party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 311-326. Springer, Heidelberg (1999). https://

doi.org/10.1007/3-540-48910-X_22

Deligios, G., Hirt, M., Liu-Zhang, C.-D.: Round-efficient Byzantine agreement and

multi-party computation with asynchronous fallback. In: Nissim, K., Waters, B.
(eds.) TCC 2021. LNCS, vol. 13042, pp. 623-653. Springer, Cham (2021). https://

doi.org/10.1007/978-3-030-90459-3_21

Deligios, G., Liu-Zhang, C.: Synchronous perfectly secure message transmission

with optimal asynchronous fallback guarantees. IACR Cryptology ePrint Archive,

p. 1397 (2022)

Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
J. ACM 40(1), 17-47 (1993)

Dolev, D., Strong, H.R..: Authenticated algorithms for Byzantine agreement. STAM
J. Comput. 12(4), 656-666 (1983)

Fitzi, M.: Generalized communication and security models in Byzantine agreement.

Ph.D. thesis, ETH Zurich, Ziirich, Switzerland (2003)

Fitzi, M., Maurer, U.: Efficient Byzantine agreement secure against general adver-

saries. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 134-148. Springer,

Heidelberg (1998). https://doi.org/10.1007/BFb0056479

Ghinea, D., Liu-Zhang, C., Wattenhofer, R.: Optimal synchronous approximate
agreement with asynchronous fallback. In: PODC, pp. 70-80. ACM (2022)
Ghinea, D., Liu-Zhang, C., Wattenhofer, R.: Multidimensional approximate agree-

ment with asynchronous fallback. In: SPAA, pp. 141-151. ACM (2023)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-

pleteness theorem for protocols with honest majority. In: STOC, pp. 218-229. ACM
1987

élirt, %\/I.7 Maurer, U.: Complete characterization of adversaries tolerable in secure

multi-party computation. In: PODC, pp. 25-34. ACM (1997)

Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect

multiparty computation. J. Cryptol. 13(1), 31-60 (2000)

https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-92075-3_19
https://doi.org/10.1007/978-3-030-92075-3_19
https://doi.org/10.1007/978-3-030-56880-1_25
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/978-3-030-90459-3_21
https://doi.org/10.1007/978-3-030-90459-3_21
https://doi.org/10.1007/BFb0056479

29.

30.

31.

32.

33.

34.

35.

36.

37.

Network Agnostic MPC with Statistical Security 93

Hirt, M., Tschudi, D.: Efficient general-adversary multi-party computation. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 181-200.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0-10

Tto, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structures. In: Globecom, pp. 99-102. IEEE Computer Society (1987)

Kumar, M.V.N.A., Srinathan, K., Rangan, C.P.: Asynchronous perfectly secure
computation tolerating generalized adversaries. In: Batten, L., Seberry, J. (eds.)
ACISP 2002. LNCS, vol. 2384, pp. 497-511. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45450-0_37

Maurer, U.: Secure multi-party computation made simple. In: Cimato, S., Persiano,
G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14-28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36413-7_2

Momose, A., Ren, L.: Multi-threshold Byzantine fault tolerance. In: CCS, pp. 1686—
1699. ACM (2021)

Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM (JACM) 27(2), 228-234 (1980)

Pfitzmann, B., Waidner, M.: Information-theoretic Pseudosignatures and Byzan-
tine agreement for ¢ > n/3. Technical report RZ 2882 (#90830), IBM Research
(1996)

Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73-85. ACM (1989)

Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp.
160-164. IEEE Computer Society (1982)

https://doi.org/10.1007/978-3-642-42045-0_10
https://doi.org/10.1007/3-540-45450-0_37
https://doi.org/10.1007/3-540-45450-0_37
https://doi.org/10.1007/3-540-36413-7_2

l‘)

Check for
updates

On Secure Computation of Solitary
Output Functionalities with and Without
Broadcast

Bar Alon'2®)@® and Eran Omri?

! Department of Computer Science, Ben Gurion University, Beersheba, Israel
alonbar08@gmail.com
2 Department of Computer Science, Ariel University, Ariel Cyber Innovation Center
(ACIC), Ariel, Israel

omrier@ariel.ac.il

Abstract. Solitary output secure computation models scenarios, where
a single entity wishes to compute a function over an input that is dis-
tributed among several mutually distrusting parties. The computation
should guarantee some security properties, such as correctness, privacy,
and guaranteed output delivery. Full security captures all these proper-
ties together. This setting is becoming very important, as it is relevant
to many real-world scenarios, such as service providers wishing to learn
some statistics on the private data of their users.

In this paper, we study full security for solitary output three-party
functionalities in the point-to-point model (without broadcast) assum-
ing at most a single party is corrupted. We give a characterization of
the set of three-party Boolean functionalities and functionalities with up
to three possible outputs (over a polynomial-size domain) that are com-
putable with full security in the point-to-point model against a single
corrupted party. We also characterize the set of three-party functional-
ities (over a polynomial-size domain) where the output receiving party
has no input. Using this characterization, we identify the set of param-
eters that allow certain functionalities related to private set intersection
to be securely computable in this model. Our characterization in partic-
ular implies that, even in the solitary output setting, without broadcast
not many “interesting” three-party functionalities can be computed with
full security.

Our main technical contribution is a reinterpretation of the hexagon
argument due to Fischer et al. [Distributed Computing ’86]. While the
original argument relies on the agreement property (i.e., all parties out-
put the same value) to construct an attack, we extend the argument to
the solitary output setting, where there is no agreement. Furthermore,
using our techniques, we were also able to advance our understanding
of the set of solitary output three-party functionalities that can be com-
puted with full security, assuming broadcast but where two parties may
be corrupted. Specifically, we extend the set of such functionalities that
were known to be computable, due to Halevi et al. [TCC ’19].

© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14370, pp. 94-123, 2023.
https://doi.org/10.1007/978-3-031-48618-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48618-0_4&domain=pdf
http://orcid.org/0000-0002-8392-0245
http://orcid.org/0000-0001-8928-0587
https://doi.org/10.1007/978-3-031-48618-0_4

On Secure Computation of Solitary Output Functionalities 95

Keywords: broadcast - point-to-point communication - secure
multiparty computation - solitary output - impossibility result

1 Introduction

Solitary output secure computation [24] allows a single entity to compute a func-
tion over an input that is distributed among several parties, while guaranteeing
security. The two most basic security properties are correctness and privacy.
However, in many scenarios, participating parties may also desire the output
receiving party to always receive an output (also known as guaranteed output
delivery or full security).* Examples include service providers that want to per-
form some analysis over their client’s data, federal regulatory agencies wishing
to detect fraudulent users/transactions among banks, researchers looking to col-
lect statistics from users, or a government security agency wishing to detect
widespread intrusions on different high-value state agencies. In cryptography,
solitary output functionalities have been considered in privacy-preserving feder-
ated learning [9,11,12], and in designing minimal communication protocols via
Private Simultaneous Messages Protocols [18] and its robust variant [1,8].

Understanding solitary output computations is also of great theoretical value,
as it serves as an important and non-trivial special case of secure multiparty
computation (MPC). Indeed, [24] initiated the investigation of solitary output
computations as a step towards better understanding full security in the general
MPC setting. In the late 1980’s, it was shown that every function (even non-
solitary output) can be computed with full security in the presence of malicious
adversaries assuming that a strict minority of the parties are corrupted, and
assuming the existence of a broadcast communication channel (such a channel
allows any party to reliably send the same message to all other parties) and pair-
wise private channels (which can be established over broadcast using standard
cryptographic techniques) [10,21,28].

Conversely, it has been shown that if either a broadcast channel or an honest
majority is not assumed, then fully-secure MPC is not possible in general. In the
no honest majority setting, most impossibility results, starting with the seminal
work of Cleve [13], rely on the impossibility of achieving fairness (requiring that
either all parties receive the output or none do) [5,26]. In the no-broadcast set-
ting, most impossibility results rely on the impossibility of achieving agreement
(requiring that all parties agree on the same output) [19].

Interestingly, both fairness and agreement are not required in solitary output
computations, and thus, cannot be used for proving impossibility results for this
setting. Nevertheless, using techniques from the fairness literature (although not
using fairness per se) Halevi et al. [24] presented a class of solitary output func-
tionalities that cannot be computed with full security assuming the majority
of the parties are corrupted (even assuming a broadcast channel). On the other

! Formally, full security is defined via the real vs. ideal paradigm, where a (real-world)
protocol is required to emulate an ideal setting, in which the adversary is limited to
selecting inputs for the corrupted parties and receiving their outputs.

96 B. Alon and E. Omri

hand, [3,20] presented several examples of three-party solitary output functional-
ities that cannot be securely computed without a broadcast channel, even when
only a single party may be corrupted. Interestingly, the impossibility results
of [3] were based on techniques that originally relied on agreement, again, with-
out assuming agreement. However, beside these handful of examples, no general
class of solitary output functions was identified to be impossible for fully secure
computation without broadcast. This raises the question of identifying the set of
functions that can be computed with full security assuming either the availability
of a broadcast channel but no honest majority, or vice versa.

In this paper, we investigate the above question for the important, yet already
challenging, three-party case. Thus, we aim to study the following question:

Characterize the set of solitary output three-party functionalities that can
be computed with full security, assuming either a broadcast channel and two
corrupted parties, or assuming no broadcast channel and a single corrupted

party.

1.1 Owur Contributions

Our main technical contribution is a reinterpretation of the hexagon argument
due to Fischer et al. [19]. This argument (and its generalization, known as the
ring argument [15]) uses the agreement property (i.e., that all parties obtain
the same output) in order to derive an attack on a given three-party protocol,
assuming there is no broadcast channel available. As mentioned above, since we
consider solitary output functionalities, where only one party receives the output,
we cannot rely on agreement. Thus, we cannot use this technique in a straight-
forward manner. Instead, we derive an attack by leveraging the correlation in
the views between the parties.

A Characterization of Interesting Families of Function. Given this new interpre-
tation, we are able to identify a large class of three-party solitary output func-
tionalities that cannot be computed without a broadcast channel. Furthermore,
we complement this negative result by showing a non-trivial class of solitary out-
put functionalities that can be computed in this setting. Interestingly, for several
important classes of functionalities, our results provide a complete characteri-
zation of which solitary output three-party functionality can be computed with
full security. Examples include Boolean and even ternary-output functionalities
over a domain of polynomial size.

We next describe our positive and negative results, starting with the model
where a broadcast channel is not available and only a single party may be cor-
rupted. We consider three-party solitary output functionalities f : X x Y x Z —
W, where the first party A holds an input x € X, the second party B holds an
input y € Y, and the third party C holds an input z € Z. We let the output
receiving party be A. To simplify the presentation, we will limit the follow-
ing discussion to two families of functionalities, for which our results admit a
characterization (a formal statement of the results for a more general class of

On Secure Computation of Solitary Output Functionalities 97

functionalities appears in Sect.3). Though this discussion is limited compared
to the rest of the paper, all of our techniques and ideas are already present.

The first family we characterize is that of no-input output-receiving party
(NIORP) functionalities, where the output-receiving party A has no input. We
further showcase the usefulness of the result by characterizing which parame-
ters allow for secure computation of various functionalities related to private
set intersection. The second family we characterize is the set of ternary-output
functionalities, where the output of A is one of three values (with A possibly
holding an input). In particular, this yields a characterization of Boolean func-
tionalities. Below are the informal statements of the characterizations for deter-
manistic functionalities. We handle randomized functionalities by a reduction to
the deterministic case (see Proposition 1 below).

Functionalities with No Input for the Output-receiving Party (NIORP). Before
stating the theorem, we define a special partitioning of the inputs of B and C.
The partition is derived from an equivalence relation, which we call common
output relation (CORE), hence, we call the partition the CORE partition. To
obtain some intuition for the definition, consider the matrix M associated with
a NIORP functionality f, defined as M (y,z) = f(y,2) forally € Y and 2z € Z.2
Before defining the equivalence relation, consider the following relation ~.
We say that two inputs y,y’ € Y satisfy y ~ ¢’ if the rows M (y,-) and M(y', ")
contain a common output. Note that this relation is not transitive. The equiva-
lence relation we define is the transitive closure of ~, i.e., y and 3’ are equivalent
if there exists a sequence of inputs starting at y and ending at y’ such that every
consecutive pair satisfy ~. Formally, we define the relation as follows.

Definition 1 (CORE partition). Let f : {\} x Y x Z — W be a deterministic
solitary output three-party NIORP functionality. For inputs y,y' €), we say
that y ~ y' if and only if there exist (possibly equal) z, 2" € Z such that f(y,z) =
f,2"). We define the equivalence relation =, to be the transitive closure of ~.
That is, y = Y if and only if either y ~ y' or there exist a sequence of inputs
Y1,-..,Yx € Y such that

yNle...Nyk’\’y/.

We partition the set of inputs) according to the equivalence classes of =, and
we write the partition as Y = {Y; : i € [n]}. We partition Z into disjoint sets
Z ={Z; :j € [m]} similarly. We also abuse notation and use the relations ~
and =, over Z as well. We refer to these partitions as the CORE partitions
of Y and Z, respectively, with respect to f. When Y, Z, and f are clear from
context, we will simply refer to the partitions as CORE partitions.

Observe that given a function f, finding its CORE partition can be done in
time that is polynomial in the domain size. As an example, consider the follow-
ing NIORP solitary output three-party functionality whose associated matrix is

2 We abuse notations and write f(y, z) instead of f(\,y, z) where X is the empty string
(which is the input of A).

98 B. Alon and E. Omri

given by (z % é) Here, the CORE partitions of both the rows and the columns

result in the trivial partition, i.e., all rows are equivalent and all columns are
equivalent. To see this, note that both the first and second rows contain the
output 1. Therefore they satisfy the relation ~. Similarly, the second and last
row satisfy ~ since 3 (and 4) are a common output. Thus, the first and last
rows are equivalent (though they do not satisfy the relation ~). Using a similar
reasoning, one can verify that all columns are also equivalent.

We are now ready to state our characterization for NIORP functionalities.

Theorem 1 (Characterization of NIORP functionalities, informal).
Let f: {\} x Y X Z = W be a deterministic solitary output three-party NIORP
functionality, and let Y = {Y; : 1 € [n]} and Z ={Z; : j € [m]} be the CORE
partitions of Y and Z, respectively. Then, f can be securely computed against
a single corruption in the point-to-point model, if and only if there exist two
families of distributions {Q;}icm) and {R;} e[m), such that the following holds.
Foralli € n], j € [m], y € Vi, and z € Z;, it holds that f(y*, z) where y* < Q;,
and that f(y,z*) where z* <— R;, are computationally indistinguishable.

Stated differently, consider the partition of J x Z into combinatorial rectan-
gles® defined by R = {); x Z; :i € [n],j € [m]}, i.e., it is given by all Cartesian
products of CORE partitions. Then f can be securely computed if and only if
both B and C can each associate a distribution to each set in the partition of
their respective set of inputs, such that the output distribution in each combina-
torial rectangle in R looks fixed for any bounded algorithm. That is, if B samples
an input y < Q; for some i € [n], then the only way for C to affect the output
of f is by choosing its own equivalence class Z € Z, however, choosing a specific
input within that class will not change the output distribution.

We briefly describe a few classes of functions that are captured by Theorem
1. Observe that any functionality, where there exists a value w € W such that
any single party (among B and C) can fix the output of A to be w, regardless of
the other party’s input, can be securely computed by the above theorem. This
includes functionalities such as OR of y and z.* In fact, even if there exists a
distribution D over W, such that any single party among B and C can fix the
output of A to be distributed according to D, can be securely computed. For
example, this means that XOR and equality can be securely computed. Theorem
1 essentially refines the latter family of functionalities, by requiring the parties
to be able to fix the distributions with respect to the combinatorial rectangles
given by the CORE partitions.

In Tablel, we illustrate the usefulness of Theorem 1 by considering vari-
ous functionalities (which were also considered by [24]) related to private set
intersection (PSI), and mark whether each variant can be computed with full

3 A combinatorial rectangle is subset R C) x Z that can be written as R =S x T
where SC Y and T C Z.

4 A similar condition was given by [15] for the symmetric case, where all parties output
the same value. There, every party must be able to fix the output to be w.

On Secure Computation of Solitary Output Functionalities 99

security. Define the NIORP functionality PSIill’f;fz’m to output to A the inter-
section of S and Sa, held by B and C, respectively. Here, S; C {1,...,m} and
k; <|S;| < ¥; for every i € {1,2}. The variants we consider are those that apply
some function g over the output of A, i.e., the functionality the parties compute
is g(PSIill’%,m (81, 82)). The proofs for which parameters allow each function to
be computed are given in the full version of the paper [2]. It is important to
note that the domains of the functionalities are constant as otherwise some of
the claims are provably false (e.g., [3] implicitly showed that PSIH,K, where £ is

the security parameter, can be securely computed).

Table 1. Summary of our results stated for various versions of the PSI functionality.
Each row in the table above corresponds to a different choice of parameters. Each
column corresponds to a different function g applied to the output of A. B holds set
&1 and C hold set S1. We let S = &1 N Sa. The parameters k1, ka2, £1, 2 correspond to
bounds on the sizes of S1 and Sz, and m is the size of the universe from which S; and
Ss are taken.

1 ifS=0

Input restriction\Function g 9(8) =S8 g(S) =8| ¢(S) = {O thermwi
otherwise

k‘1:k}2:0,0r
{1 =0, 0r 2 =0, or
ki =m,or ka =m

k1 =41 ¢ {0,m} and X
ko = la ¢ {0,m}
0< k1 </, X X

0 < ka2 < {42, and
b+ ko, ki +42>m

Any other choice X X X

Ternary-output Functionalities. We next give our characterization for ternary-
output functionalities. In this setting, party A also has an input, and its output
is a value in {0,1,2}. We stress that this case is far more involved than the
NIORP case, in both the analysis and in the description of the characterization.
Nevertheless, we later demonstrate the usefulness of this characterization.

Similarly to the NIORP case, we consider partitions over the inputs of B
and C. Here, however, each input z € X is associated with a different CORE
partition. For the characterization, we are interested in the meet of all such
partitions. Intuitively, the meet of partitions of a is the partition given by using
all partitions together. Formally, for partitions Py,...,P, over a set S, their
meet is defined as the collection of all non-empty intersections, i.e.,

/\ Pi = {TCS:T;AQ),HTleTl,...,ﬁeTn s.t.Tzﬂﬁ}.
=1

=1

Before stating the theorem, we formalize the meet of the CORE partitions,
which we call COREx-partition, for a given solitary output functionality.

100 B. Alon and E. Omri

Definition 2 (CORE,-partition). Let f: X x Y x Z — {0,1,2} be a deter-
manistic solitary output three-party ternary-output functionality. For every x €
X, we can view f(x,-,-) as a NIORP functionality, and consider the same CORE
partition as in Definition 1. We denote these partitions by Y, = {V¥ : i € [n(x)]}
and 2, = {27 : j € [m(x)]}. We define the CORE-partitions of f as the meet
of its CORE partitions, that is, we let Y = N,cx Yo and Zn = N, cr Ze-
We denote their sizes as ny = |Ya| and ma = |ZA|, and we write them as
A=AV i€ nal} and Zp = {2} : j € [m,]}.

As an example, consider the deterministic variant of the convergecast func-
tionality [20], CC: ({0,1})3 — {0,1} defined as®

y ifxz=0
(1)

CCl@,y:2) = {z otherwise
Equivalently, CC can be defined by the two matrices My = (¢ 9) and My = (§1).
Here, A chooses a matrix, B chooses a row, and C chooses a column. The output
of A is the value written in the chosen entry. Observe that in M, the rows
are not equivalent while the columns are. In M, however, the converse holds,
namely, the rows are equivalent while the columns are not. Thus, in the CORE -
partitions of CC any two inputs are in different sets.

We are now ready to state our characterization for ternary-output functions.

Theorem 2 (Characterization of ternary-output functionalities, infor-
mal). Let f : X x Y x Z — {0,1,2} be a deterministic solitary output
three-party ternary-output functionality, and let Yo = {V : i € [nA]} and
Zn = {2} : j € [mn]} be its CORE-partitions. Then f can be securely com-
puted against a single corruption in the point-to-point model, if and only if the
following hold.

1. Either Y, = {Y} for allx € X, or 2, = {Z} for all x € X. In other words,
either all y € Y are equivalent for every x € X, or all z € Z are equivalent
for every x € X.

2. There exists an algorithm S, and there exist three families of distributions
{PeYocx, {Qi}icina, and {R;}cim, . such that the following holds. For all

i€nnl, jemal,ye), z€ 27, and x € X, it holds that

S(x,x*,f(x*,y,z)), that f(xvy*vz)} and that f(I7y7Z*)7

are computationally indistinguishable from each other, where x* < P,, where
y* < Qi, and where z* < R;.

In fact, the positive direction holds even for functionalities that are not ternary-
output.

5 Fitzi et al. [20] defined the convergecast functionality as the NIORP randomized
solitary output functionality, where A outputs y with probability 1/2, and outputs
z with probability 1/2.

On Secure Computation of Solitary Output Functionalities 101

At first sight, it might seem that the characterization is hard to use since it
requires the existence of an algorithm S, which in spirit seems like a simulator for
a corrupt A. However, note that we only require S to output what would become
the output of (an honest) A, and not the entire view of an arbitrary adversary.
Arguably, determining whether such an algorithm exists is much simpler than
determining whether there exists a simulator for some adversary interacting in
some protocol.

We next give two examples for using Theorem 2. As a first example, con-
sider the deterministic convergecast functionality CC. Observe that it does not
satisfy Ttem 1 since Yo # {V} and 21 # {Z}. Therefore it cannot be securely
computed. To exemplify Item 2 of Theorem 2, consider the maximum function

Max : {0,1,2}%® — {0,1,2}. Similarly to CC, it can be defined by the three

. 012 112 222
matrices My = (%%%), M, = (%%%), and My = (%%%)7 where A chooses a

matrix, B chooses a row, and C chooses a column. The output of A is the value
written in the chosen entry. Clearly, any two y’s are equivalent, and any two z’s
are equivalent as well, for all x € {0,1,2}. Therefore, Item 1 holds. As for Item
2, we let @1 and R; output 2 with probability 1 (recall that nn = ma = 1).
Additionally, we let S ignore its inputs and output 2 with probability 1. It follows
that Item 2 holds. Thus, Max can be securely computed. In fact, as the posi-
tive direction of Theorem 2 holds for functions that are not ternary-output, the
same argument can be made when Max has a domain that is arbitrarily large,
i.e., Max:{1,...,m}3 = {1,...,m} for some natural m.

Randomized Functionalities. So far, we have only dealt with deterministic func-
tionalities. To handle the randomized case, we show how to reduce it to the
deterministic case. That is, for any randomized solitary output three-party func-
tionality f, we define a deterministic solitary output three-party functionality f’,
such that f can be securely computed if and only if f/ can be securely computed.

Proposition 1 (Reducing randomized functionalities to deterministic
functionalities, informal). Let f : X x Y x Z — W be a (randomized)
solitary output three-party functionality, and let R denote the domain of its
randomness. Define the deterministic solitary output three-party functionality
oA XR)X(YXR)X(ZXxR)—=W as

f’((l‘,Tj), (y77°2)7 (2,7‘3)) = f(x,y,z;rl + 72+ TS)7

where addition is done over R when viewed as an additive group. That is, the
parties receive a share of the randomness in a 3-out-of-3 secret sharing scheme.
Then f can be securely computed if and only if f' can be securely computed.

A New Possibility Result for the With-broadcast Model. Somewhat surprisingly,
we are able to show that all functionalities captured by our positive results, can
also be securely computed in the face of a dishonest majority (where two parties
may be corrupted), assuming a broadcast channel is available. In particular,
any solitary output three-party ternary-output functionality and any NIORP

102 B. Alon and E. Omri

functionality that can be securely computed without broadcast against a single
corruption, can be securely computed with broadcast against two corruptions
(in fact, our constructions capture a slightly larger class of functionalities).

We do not know if this is a part of a more general phenomenon (i.e., if
the ability to compute a functionality without a broadcast channel against a
single corruption implies the ability to compute it with a broadcast channel
against two corruptions) and we leave it as an interesting open question. Still,
our results do slightly improve the positive results of [24] (see [24, Theorem
4.4]). Indeed, consider the NIORP functionality fspecial : {\} % ({0,1,2,3})? —
{0,...,7} defined by the matrix

0123
1032
4567 (2)
5476

However, we show that the converse is false, i.e., there exists a solitary output
NIORP Boolean three-party functionality that can be securely computed with
broadcast against two corruptions, yet it cannot be securely computed without
broadcast against a single corruption. As an example, consider the following
solitary output three-party variant of the GHKL functionality,® denoted soGHKL,
defined by the matrix

01
10 (3)
11

where B chooses a row, C chooses a column, and the output of A is the value
written in the chosen entry. Observe that soGHKL is a NIORP functionality that
does not satisfy the necessary conditions given by Theorem 1. Thus, it cannot
be securely computed in the point-to-point model. On the other hand, Halevi
et al. [24] showed that soGHKL can be computed assuming a broadcast channel.”
The constructions we use to prove our results use standard techniques. Due to
space limitations, we provide them in the full version of the paper.

In Table 2 below, we present several examples of three-party functionalities
and compare their status assuming no broadcast channel and one corruption, to
the case where such a channel is available with two possible corruptions.

1.2 Our Techniques

We now turn to describe our techniques. In Sect. 1.2.1 we handle NIORP func-
tionalities. Then, in Sect. 1.2.2 we handle ternary-output functionalities. To sim-
plify the proofs in this introduction, we only consider perfect security and func-
tionalities with finite domain and range.

6 Gordon et al. [23] showed that the symmetric two-party variant of this functionality
can be computed with full security.
7 In fact, [24] gave three different protocols for computing soGHKL securely.

On Secure Computation of Solitary Output Functionalities 103

Table 2. Comparing the landscape of functionalities that can be computed without
broadcast but with an honest majority, to functionalities that can be computed with
broadcast but no honest majority. All functions above have a constant domain. It is
important that the domain of EQ does not include 0.

Function\Model Without broadcast (honest majority) ‘ With broadcast (no honest majority)
CC(z,y, 2) (see Eq.1) X Theorem 2 [24]
soGHKL(y, z) (see Eq. 3) X Theorem 2 [24]
Max(z, y, z) Theorem 2 [24]
EQ(y, 2) = {y ity = Z X Theorem 2 X [24]
0 otherwise

Sopecial (see Eq. 2) Theorem 2 Theorem 2

1.2.1 Characterizing NIORP Functionalities

We start with the negative direction of Theorem 1. Our argument is split into
two parts. In the first part, we adapt the hexagon argument, due to Fischer
et al. [19], to the MPC setting. Roughly, for every secure three-party protocol
we attribute six distributions, all of which are identically distributed by the
perfect security of the protocol. The second part of the proof is dedicated to the
analysis of these six distributions, resulting in necessary conditions for perfect
security.

The Hexagon Argument for NIORP Functionalities. In the following, let f be
a solitary output three-party NIORP functionality (no input for the output
receiving party), and let m be a three-party protocol computing f securely over
point-to-point channels, tolerating a single corrupted party. At a high level, the
hexagon argument is as follows.

1. First, we construct a new six-party protocol «’. This is the same hexagon
protocol from [19] (see below for a formal definition).

2. Then, we consider six different semi-honest adversaries for 7’ corrupting four
parties, and observe that each of them can be emulated by a malicious adver-
sary in the original three-party protocol . In more detail, for each of the
semi-honest adversaries we consider for 7/, we show there exists a malicious
adversary corrupting a single party in m satisfying the following: The tran-
script between the two honest parties and the transcript between each honest
party and the adversary, are identically distributed in both protocols. We
stress that 7’ is not secure, but rather any attacker for it can be emulated by
an attacker for the three-party protocol .

3. Observe that as the adversaries for 7’ are semi-honest, the view of each party
(both corrupted and honest) is identically distributed across all six scenarios.

4. We then translate the above observation to 7 using the fact that each of the
semi-honest adversaries for 7’ can be emulated in 7. Thus, we obtain a certain
correlation between the six malicious adversaries for 7.

5. By the assumed security of 7, each of the malicious adversaries can be simu-
lated in the ideal world of f. Therefore, we can translate the correlation from

104 B. Alon and E. Omri

the previous step to the ideal world, and obtain a necessary property f has to
satisfy. This results in six distributions with differing definitions, all of which
are identically distributed. Looking ahead, the second part of our argument
is dedicated to analyzing these distributions.

We next provide a more formal argument. Consider the following six-party
protocol 7’. For each party P € {A,B,C} in m we have two copies P and P’ in
7', both use the same code as an honest P does in 7. Furthermore, the parties
are connected via the following undirected cycle graph: (1) A is connected to B
and C, (2) A’ is connected to B’ and C’, (3) B is also connected to C’, and (4) C
is also connected to B’. See Fig. 1 below for a pictorial definition (alongside the
definition of adversarial scenarios). Finally, we let B, B’, C, and C’ hold inputs
¥, vy, z, and 2/, respectively.

Now, consider the following 6 attack-scenarios for the six-party protocol,
where in each scenario a semi-honest adversary corrupts four adjacent parties,
as depicted in Fig. 1. Observe that each attacker can be emulated in the original
three-party protocol w, by a malicious adversary emulating the corresponding
four parties in its head. For example, in Scenario la, an adversary in w can
emulate the attack by corrupting C, and emulating in its head two virtual copies
of C, a copy of A, and a copy B.

We now focus on party A in the six-party protocol. First, note that in Sce-
narios la and 1b, where A is honest, its output is identically distributed® since
the adversaries are semi-honest. Second, in the other four scenarios, where A is
corrupted, the adversary’s view contains the same view that an honest A has in
an honest execution of /. Therefore, it can compute an output with an identical
distribution to the output distribution an honest A has in Scenarios la and 1b.

Next, we use the fact that the six semi-honest adversaries in 7’ can be emu-
lated by malicious adversaries in m. We obtain that there exists a distribution
D (that depends on all inputs y, 3/, z, and 2’ in the six-party protocol) over the
set of possible outputs of A, such that the following hold.

Scenarios 1 and 2: There exist two malicious adversaries for 7, one corrupt-
ing C and holding (v, z,2'), and one corrupting B and
holding (y,y’, 2’), such that the output of A in both sce-
narios is distributed according to D.

8 Note that even though f is assumed to be deterministic, it is not guaranteed that
the output of an honest A is a fixed value even when interacting with a semi-honest
adversary. This is due to the fact that the semi-honest adversaries are emulated in
the three-party protocol using malicious adversaries.

On Secure Computation of Solitary Output Functionalities 105

o2y o

) Scenario 1

5% o

) Scenario 4

) Scenario 2 (c) Scenario 3

) Scenario 5 (f) Scenario 6

Fig. 1. The six adversaries in the hexagon argument. The shaded yellow areas in each
scenario correspond to the (virtual) parties the adversary controls. (Color figure online)

Scenarios 4 and 5:

Scenarios 3 and 6:

There exist two malicious adversaries for m, one corrupt-
ing C and holding (y, z,2’), and one corrupting B and
holding (y,y’, z), both of which can generate a sample
from D at the end of the execution.

There exist two malicious adversaries for m, both cor-
rupting A, where one is holding (y, z’) and the other is
holding (y’, z), such that both can generate a sample
from D at the end of the execution.

By the assumed security of 7, each of the adversaries can be simulated in the
corresponding ideal world of the three-party functionality f. Thus, we obtain six
different expressions for the distribution D, representing the output of A. The
six expressions are described as follows.

Scenarios 1 and 2:

There exist two malicious simulators in the ideal world of
f, one corrupting C and holding (y’, 2, 2’), and one cor-
rupting B and holding (y, ', '), such that the output of
A in both ideal world executions is distributed according
to D. Recall that the only way for the simulators to affect
the output of A is by choosing the input they send to the
trusted party. It follows the first simulator corrupting C,
defines a distribution R, . .- that depends only on ¥/,
z, and 2/, such that f(y,z*) = D, where z* <= Ry , ..

106 B. Alon and E. Omri

Similarly, the second simulator corrupting B, defines a
distributed distribution @, . .- that depends only on ¢/,
z, and 2/, such that f(y*, z) = D, where y* < Qy .o

Scenarios 4 and 5: There exist two malicious simulators, one corrupting C
and holding (y, 2, 2’), and one corrupting B and hold-
ing (y,9',2), both of which can generate a view that is
identical to their corresponding real world adversary. In
particular, since both adversaries can generate a sample
from D, it follows that both simulators must be able to
do the same at the end of their respective ideal world
execution. Since the simulators do not receive any out-
put from the trusted party, it follows there exist two
algorithms Sg and Sc, such that both Sc(y, z,2’) and
Se(y,y’, z) output a sample from D.

Scenarios 3 and 6: There exist two malicious simulators, both corrupting
A, where one is holding (y, 2’) and the other is holding
(y',2), such that both can generate a sample from D
at the end of the execution. Unlike the previous case,
this time the two simulators do receive an output from
the trusted party. This implies there exist two algo-
rithms S3 and Sg, such that both S3(y, 2/, f(y/,2)) and
Se(y', 2, f(y, ') output a sample from D.

We conclude that for all y,y € Y and 2,2’ € Z, there exist two efficiently
samplable distributions @y .- and R, . .- over Y and Z, respectively, and four
algorithms Sg, Sc, Ss, and Sg, such that

f (y*VZ) = f (y,Z*) =Sp (yaylvz) = SC (y,Z,Z’) (4)
=S, 2, f(¥,2) =S6 (¢, 2, f (v, 2),

* *
where y* <= @Qy,y/,»» and where 2 < Ry , ..

Analyzing the Six Distributions QOver the Output of A. We now turn to the anal-
ysis of Eq. (4), which results in the necessary conditions stated in Theorem 1.
Recall that our goal is to show that for all y € Y and 2z € Z, it holds that

fly,2") = f(y", 2),

where y* and z* are sampled according to specific distributions that depend on
the equivalence classes containing y and z, respectively.

First, observe that as Sg is independent of 2/, it follows that all other distri-
butions are also independent of it. For example, for any z” # 2’ it holds that

S3 (yv Zlv f (y/7 Z)) = SB (yaylaz) = S3 (ya Zl/v f (y/7 Z)) .

Similarly, since Sc is independent of 3’ it follows that all other distributions
are also independent of it as well. From this, we conclude the following: Let yq

On Secure Computation of Solitary Output Functionalities 107

and zg be the lexicographically smallest elements of) and Z, respectively, and
define the distributions Q) := Qy 4.2, and R, := Ry, .,.” Then, the above
observation implies that

f (y*vz) = f (y72*) = S3 (yvzla f (y/’z)) = Sﬁ (ylvzaf (yazl))7 (5)

for all y’ € ¥ and 2’ € Z, where y* +- Q) and 2* + R..

Let us focus on S3, and fix Z € Z such that z ~ Z. Recall that the relation ~
is defined as z ~ Z if and only if there exist §, 5" €) such that f(g,2) = (¥, 2).
Since S3 is independent of ¥/, it follows that

Ss (2, f (¥, 2) =Ss (.2, [(§,2)) =S3 (9,2, f (7, 2)) = S5 (v, 2, f (v, 2))

where the first and last transition follows from the previously made observation
that the output distribution of Ss is independent of the value of 3, and the
second transition follows from the fact that f(g,2) = f(¢', 2), hence S3 receives
the same inputs in both cases. Therefore, changing z to Z where z ~ Z does not
change the output distribution of S3. Note that the argument can be repeated
to show that replacing z with any other z’, where z ~ z’, does not change the
distribution. It follows that changing z to any z’ satisfying z =, z’ does not
change the output distribution of Sz. Thus, all distributions in Eq. (5) are not
affected by such change.

Plugging this back to Eq. (5), results in the following. For every j € [m], every
y €), and every equivalent z, 2’ € Z; (recall that Z; is the 7t equivalence class
with respect to the relation =), it holds that

fy,z) = fy",2) = f(y", 7)) = f(y, 77),

where y* < @), where z* < R, and where z* <+ R.. In particular, the dis-
tributions depend only on the index j, and not on the specific choice of input
from the equivalence class Z;. Thus, if for any j € [m] we define the distribu-
tion R} := R’ , where z; is the lexicographically smallest element in Zj, it then

follows that for every j € [m], every y €), and every z € Zj, that

fly,2") = f(y", 2),

where y* «+ Q) and z* < R’.

Finally, an analogous argument starting by focusing on Sg, implies that the
distributions depend only on the equivalence class containing y, rather than
depending on y directly. Therefore, for any ¢ € [n] we can define the distribution
Q] = Q,,, where y; is the lexicographically smallest element in };. It then
follows that for every i € [n], j € [m], y € Vi, and z € Z; it holds that

fy*2) = fy,27),
where y* < Q and z* < R}, as claimed.

9 Note that the choice of taking the lexicographically smallest elements of J and Z is
arbitrary, and any other element would work.

108 B. Alon and E. Omri

The Positive Direction for NIORP Functionalities. We now present a protocol for
any solitary output three-party NIORP functionality f, satisfying the conditions
stated in Theorem 1. Our starting point is the same as that of [3,15], namely,
computing f fairly (i.e., either all parties obtain the output or none do). This
follows from the fact that, by the honest-majority assumption, the protocol of
Rabin and Ben-Or [28] computes f assuming a broadcast channel; hence by [14]
it follows that f can be computed with fairness over a point-to-point network.

We now describe the protocol. The parties start by computing f with fair-
ness. If they receive outputs, then they can terminate, and output what they
received.'® If the protocol aborts, then B finds the unique i € [n] such that
y € Y; and sends ¢ to A. Similarly, C finds the unique j € [m] such that z € Z;
and sends j to A. Observe that this can be done efficiently since the domain of f
is of constant size. Party A then samples y* < @Q; and outputs f(y*, z;), where
z; is the lexicographically smallest element in Z;.

Observe that correctness holds since when all parties are honest, the fair
protocol will never abort (note that without the fair computation of f the above
protocol is not correct since A would always output f(y*,z;) instead of f(y, 2)).
Now, consider a corrupt B (the case of a corrupt C is similar). First, note that
the adversary does not obtain any information from the fair computation of f.
Next, if the adversary sends some ¢’ to A, then the simulator sends y* < Q; to
the trusted party. Then the output of A in the ideal world is f(y*,z). By our
assumption on f, this is identical to f(y*, z;) — the output of A in the real world.

Next, consider a corrupt A. Since it does not obtain any information from the
(failed) fair computation of f, it suffices to show how a simulator that is given
f(y,z) can compute the corresponding ¢ and j. Observe that by our definition
for the partition of the inputs, any two distinct combinatorial rectangles V; x Z;
and Vi x Zj/, where (4,7) # (i, '), have no common output. Indeed, if f(y,z) =
fy',2"), where (y,2) € V; x Z; and (v, 2') € Vir X Zjr, then y ~ ¢ and z ~ 2/,
hence they belong to the same sets. Therefore, the simulator for the corrupt A
can compute the corresponding ¢ and j given the output by simply looking them
up (which can be done efficiently since the domain is of constant size).

1.2.2 Characterizing Ternary-Output Functionalities

We now explain our techniques for proving Theorem 2. The positive direction
uses the same techniques as in [3] (see the full version for more details), hence
we will only show the negative direction. Similarly to the proof of Theorem 1
presented earlier, the argument is comprised of the hexagon argument and the
analysis of the six distributions that are obtained. However, since A now has an
input, the argument is much more involved.

A Generalized Hexagon Argument. Unlike in the previous proof, here the
hexagon argument (as used there) does not suffice. To show where the argu-

10 Although B and C are supposed to receive no output from f, in a fair computation
they either receive the empty string indicating that A received its output, or a special
symbol L indicating abort.

On Secure Computation of Solitary Output Functionalities 109

ment falls short, let us first describe the six distributions obtained from the
hexagon argument. In this setting, where A now has an input, the six-party pro-
tocol described earlier will now have A and A’ hold inputs z and ', respectively.
The two inputs are then given to the correct adversaries from the six scenarios.
Furthermore, observe that the algorithms S3 and Sg, which came from the two
simulators for a corrupt A in the ideal world, can also send to the trusted party
an input that is not necessarily the same input that the simulators hold. Let z3
and z{ denote the inputs used by S3 and Sg, respectively, each sampled accord-
ing to a distribution that depends on the simulator’s inputs. Thus, to adjust the
hexagon argument to this case, Eq. (4) should now be replaced with

ey, 2) = f(2,y,27) =S (2,9,y,2) =Sc (2,9,2,2) (6)
= 53 (I7 lj? Y, Zlv LE;, f (I;, y/a Z)) = 56 (Qj’ xlv y/7 Z, I;7 f ($Z7 Y, Z/)))
where y* < Qg y,y,2, Where z* <= Ry v . ./, where x5 < Pg’w,’y}zl, and where
Ty — Pf’m“ylﬁz.

We now show where the argument falls short using an example: recall that
we defined the deterministic variant of the convergecast functionality [20], CC :
({0,1})3 — {0,1} as CC(x,y,2) = y if z = 0, and CC(z,y,2) = z otherwise.
We claim that there exist distributions and algorithms satisfying Eq. (6), hence
the argument is insufficient to show the impossibility of securely computing CC.
Indeed, take Q4 4. . to always output y* = y, take R,/ . . .- to always output
z* = z, define Pj7x/7y7z/ to always output =% = 1 (causing Ss to obtain z), define
Pfﬁx,,y“z to always output z§ = 0 (causing Sg to obtain y), and define Sg and Sc,
both of which hold z, y, and z, to compute CC(x, y, z). Then all six distributions
always output CC(z,y, 2).

However, as we next explain, the functionality CC cannot be computed
securely in our setting. Intuitively, this is because the adversary corrupting A
as in Scenario 1lc using inputs z = 1 and 2’ = 0, learns both 3’ and z. Indeed,
in Scenario 1b (where B is corrupted) the output of an honest A is z, and in
Scenario 1d (where C is corrupted) the output of an honest A’ is y’. Since the
adversaries are semi-honest, the adversary corrupting A as in Scenario lc can
compute both z and ¢’ by computing the output of the honest A and A’, respec-
tively. However, in the ideal world, a simulator (for the malicious adversary
emulating Scenario 1c) can only learn one of the inputs.

To generalize this intuition, we consider the joint distribution of the outputs
of A and A’ in the six-party protocol, rather than only the distribution of the
output of A. Doing a similar analysis to the NIORP case results in the existence of
six distributions P2 ., P 0 Quyyrzr Qs oy yr ooy Ry ez and R,
and the existence of six algorithms Ss, Sg, Sg, Sg, Sc, and Si, where Sg and Sg
output two values (corresponding to the outputs of A and A’), such that the
following six distributions are identically distributed:

1. Ss(z,2',y, 2’ 23, f(23,9, 2)), where 2} < P2
2. Se(z, 2y, 2,23, f(z§,y, 7)), where xj «+ PS

’ ’ .
z,T,Y" 52

’ /-
yLHY,2

110 B. Alon and E. Omri

3. (SB(£7 Y, y/7 2, yf)v f(xly Z/? Z/))a where yf — Qm,y,y/,z-
4- (f(xa y;7 Z)a 5;3 («I/,y, y/a Z/7y§))a Where y; — Q/q;',y7y/7z/'
5. (Sc(z,y, 2,2, 27), f(&', 9, 7)), where 2§ <= Ry y - .
60 (/1/./7y/7z7z/~

f(x,y,z%‘),SE (x/,y’,z7z’,z’2“)), where Z; — R

We stress that both Sz and Sg output two values from the set of outputs {0, 1, 2},
while Sg, Sg, Sc, and S¢, each output a single value from {0, 1,2}.

Observe that for the function CC, the above distributions and algorithms do
not exist for all possible choices of inputs. Indeed, for x = 1 and 2’ = 0, it holds
that CC(x,y3,2) = 2z (from the fourth distribution) and that CC(z', 3/, 27) = ¢/
(from the fifth distribution). Therefore, the marginal distribution of the first
value must be z, and the marginal distribution of the second value must be 3/,
both with probability 1. However, note that Sz is given only one of 3’ or z,
depending on the value of z3, hence it cannot output both of them correctly.

Analyzing the Sixz Joint Distributions Over the Outputs of A and A’. We now
analyze the new six distributions described earlier. First, similarly to the case of
NIORP functionalities, we make the observation that the marginal distribution
of the first entry is independent of z’, ¥/, and 2’, and the marginal distribution
of the second entry is independent of x, y, and z. Let us focus on Sz and the
distribution P}, ..

Our next goal is to analyze the support of Pg,w,’y7z,, namely, analyze which
inputs zj can be used by Ss. This results in a necessary condition for f to
be securely computable, since if the input x3 must satisfy some condition, in
particular, this implies an input satisfying such condition must exist. We do this
analysis by comparing the first (i.e., left) output of Sz to the distribution in Item
4 above, where the first value is f(x, 3, 2), and by comparing the second (i.e.,
right) output of S3 to the distribution in Item 5 above, where the second value
is f(«',y', 27). In fact, rather than directly comparing the outputs, we compare
the information on the equivalence class of z and y’ with respect to the CORE
partitions that can be inferred from the outputs. We next focus on comparing
to f(x,y5,2) (comparing to f(a',y’, 2]) is analogous).

Let us first recall the definition of the CORE partitions. Recall that for every
x we can view f(z,-,-) as a NIORP function. Thus, we can partition) and Z
according to the CORE partition for the given z. Since we focus on Sj it suffices,
for now, to only consider the partition of Z. Let M, € {0, 1,2}|y|x|2| be the
matrix associated with f(z,-,), defined as M, (y,2) = f(x,y,2) for all y € Y
and z € Z. Recall that we denote the partition as Z, = {Z¥ : j € [m(z)]},
and we let z and Z be in the same equivalence class if and only if there exist
21,...,2k € Z such that the columns M,(-,z) and M,(-,z1) have a common
output, for all ¢ € [k — 1] the columns M, (-, z;) and M,(-, z;+1) have a common
output, and the columns M, (-, z) and M, (-, Z) have a common output. Observe
that for any x € A and every y €) it holds that if z € Z and Z € Z are in
different classes, then f(z,y,z2) # f(z,y, 2).

On Secure Computation of Solitary Output Functionalities 111

Now, consider the distribution in Item 4 above, where the first value is
f(x,y5, 2). It follows that S3 must be able to output f(z,v3, z).!! Next, observe
that from f(z,y3,z) it is possible to infer the (unique) j € [m(x)] satisfying
z € Z7. This is because, as noted earlier, for z and Z in different classes, the
output of f on each of them (with the same x and y) is always different. Thus,
for any fixed value for y3, from the output f(x,ys, z) we can compute the equiv-
alence class of z.

However, the only information that Sg can obtain on the class j € [m(z)] can
come from the output f(z3,y’,2) (which corresponds to the output it receives
from the trusted party). That is, the only information that Ss can have is the
equivalence class of z with respect to the partition of 23 rather than the partition
with respect to x. Since the first entry in the output of S3 must be identically
distributed to f(z,y3,z), the value z3 it uses must be such that f(z3,y,2)
reveals at least the same information on j as f(x,y3, z) does. This implies that

x% must be such that if z € ZE’ then z € Z7, with probability 1. Furthermore,

this must hold for all z € Z and the distribution P:?,.’r/,y,z/’ from which x3 is
drawn from, is independent of z, it follows that the partition Z,: must be a
refinement of Z,. That is, any Z € Z,: must be a subset of some Z' e Z,.
Similarly, since Sz must also output f(z',y’,2]) from the fifth distribution in
Item 5, it follows that Y, is a refinement of Y,/. As a result, we conclude that
for any z, 2’ € X there exists 2§ € X such that Yoz is a refinement of Y, and
such that ng is a refinement of Z,. We stress that so far, we have not used
the fact that f is ternary-output, thus the existence of such x5 holds for any
function that can be securely computed.

We now have all the necessary tools to prove Items 1 and 2 of Theorem 2.
Let us start with the former. Recall that we need to show that either Y, = {V}
for all z, or Z, = {Z} for all x. First, since f is ternary-output, for every z it
holds that either Y, = {¥} or Z, = {Z}. Note that this is weaker than what
we wish to show since for one z it might be the case that Y, = {V}, while for
another x it might be the case that Z, = {Z}. Let us assume that Item 1 of
Theorem 2 does not hold. Then there exist x and z’ such that Y, # {¥} and
Zz # {Z}. Then, as argued above, there exists z* such that Y.« refines Y, and
Z,+ refines Z,,. However, this implies that Y,- # {¥} and Z,~ # {Z£}, which is
impossible for ternary-output functions.

We now prove Item 2 of Theorem 2. From here on, we will only focus on the
first (i.e., left) entry in each of the above 6 distributions (there is no need to
consider the second entry anymore). The proof follows similar ideas to that of
the NIORP case. In more detail, we consider the CORE-partition of the inputs
Ya and Z,, and we show that changing, say, z to any Z that belongs to the
same equivalence class ZJ/-\ € Zx, does not change the distribution. Let us first
recall the definition of CORE ,-partition. We define Z, to be the meet of the

11 Formally, the marginal distribution of the first value in the output of Ss is identically
distributed to f(z,ys3,z).

112 B. Alon and E. Omri
partitions {Z;}.cx, defined as

ZA::{ZACZ:ZA;&@, and Vr € X 3Z, € Z, s.t. 2" = ﬂzz}.
reX

For the sake of brevity, we will abuse notations and let S3 only output the first
entry rather than two values.

First observe that if z,Z € Z* for some j € [m,], then for any x there exists
jz € [m(z)] such that 2,z € Z7 . Then, a similar analysis to the NIORP case
shows that for any fired x5 € X satisfying Z,: refines Z,, it holds that

53(30’30/7:% Z/, x;, f(l‘;vylv Z)) = Sg(l‘,l‘/, Y, Zlvxga f(x§7 y/7 2))

As the support of Pfj}z,’y’z, is contains only those z3 where 2, refines Z,, it
follows that

53(1"37/7?/’ Z/, x§7 f(],‘;y/, Z)) = 53(1‘,]}/, Y, Zl7x§’ f($§7 y/a 2))’

where x5 < P:J?,z’,y,z" Therefore, the same must hold for all of the six distribu-
tions, i.e., they depend on the equivalence classes of y and z with respect to the
CORE-partition, rather than depending on the actual values themselves.

In the following we let xzq, yo, and zy be the lexicographically smallest ele-
ments of X, Y, and Z, respectively. For i € [na] let Q7 = Quy.y:.40,20, Where
y; is the lexicographically smallest elements of Y. Similarly, for j € [ma] we
let R} := R} . . ., where z; is the lexicographically smallest element of Z7.

Then, similarly to the NIORP case, it follows that for all i € [nA], all j € [m,],
allz € X, ally € Y/, and all z € Z”, it holds that

flx,y*,2) = fz,y,27), (7)

where y* < @} and z* < R. Note that the proof of Eq. (7) did not use the
fact that f is ternary-output (see the full version for a formal treatment of the
general case).

It is left to show the existence of an algorithm S that given x, x* sampled from
an appropriate distribution P, and f(x,y, 2) can generate the distribution in
Eq. (7). Here we use the fact that we showed that for ternary-output functions,
either Y, = {Y} for all z € X, or Z, = {Z} for all x € X. Assume first
the former. In this case we let S(z,a*,w) = Ss(z, zg, Yo, 20, 2™, w). Then, for
P, :=P3 it holds that

Z,20,Y0,20
S (xax*vf(x*vz%z)) = SS (%CE()»yoazo,ﬂf*»f(x*vyaz)) = f(l.vy*az) = f(x7ya2*)7

where x* < P, y* + QY (recall we assume that Y, = {J} for all z which implies
that n, = 1), and 2* < RY, as claimed. Now, if we assume that 2, = {Z} for
all x € X, we will define S(z, z*, w) using Sg rather than S. In more details, we
let S(z, z*,w) = S¢(x, zo, Yo, 20,2, w). Then, for P, := Pf@.o,yng it holds that

S (.’L’,Q}‘*,f(ﬂT*,y,Z)) = SG (557950,3/0,Zo;l‘*,f(f*vyaz)) = f(x,y*,z) = f(xayaz*)a

where z* < P, y* + Q/, and z* < R (recall we assume that Z, = {Z} for
all which implies that m, = 1), as claimed.

On Secure Computation of Solitary Output Functionalities 113

1.3 Related Work

For non-solitary output functionalities, Cleve [13] showed that without an honest
majority, full security cannot be achieved even for the simple task of fair coin-
tossing (even with a broadcast channel). On the other hand, even if two-thirds
of the parties are honest, there is no fully secure protocol for computing the
broadcast functionality in the plain model (i.e., without setup/proof-of-work
assumptions) [19,25,27].12

For the two-party setting a characterization was given for the set of two-party,
Boolean, symmetric (i.e., where all parties receive the same output) functions
over a constant size domain [4,6,23,26]. The cases of asymmetric functions and
of multiparty functions assuming broadcast but no honest majority, were also
investigated [6,16,17,22,24], but both characterizations are open.

The hexagon argument has been first used in the context of Byzantine agree-
ment to rule out three-party protocols tolerating one corruption [19]. Cohen
et al. [15] considered symmetric (possibly randomized) functionalities in the
point-to-point model, and showed that a symmetric n-party functionality f can
be computed against ¢t corruptions, if and only if f is (n — 2t)-dominated, i.e.,
there exists y* such that any n — 2¢ of the inputs can fix the output of f to be
y*. They generalized the hexagon argument to the ring argument to obtain their
results.

Recently, Recently, Alon et al. [3] extended the discussion to consider asym-
metric functionalities in the point-to-point model. They provided various neces-
sary and sufficient conditions for a functionality to be securely computable. They
considered some interesting examples for the special case of solitary-output func-
tionalities, however, provided no characterization for any class of functions.

The investigation of the set of solitary output functionalities that can be
securely computed assuming a broadcast channel but no honest majority was
initiated in the work of Halevi et al. [24]. They provided various negative and pos-
itive results, and further investigated the round complexity required to securely
compute solitary output functionalities. Badrinarayanan et al. [7] investigated
the round complexity required to compute solitary output functionalities, assum-
ing the availability of a broadcast channel and no PKI, and vice versa.

1.4 Organization

The preliminaries and definition of the model of computation appear in Sect. 2.
In Sect. 3 we state our results in the point-to-point model. Due to space consid-
erations, the proofs of our results are deferred to the full version.

12 Note that if strictly more than two-thirds of the parties are honest any functionality
can be computed with full security [10].

114 B. Alon and E. Omri

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and
distributions, lowercase for values, and we use bold characters to denote vectors.
For n € N, let [n] = {1,2...n}. For a set S we write s + S to indicate that s is
selected uniformly at random from S. Given a random variable (or a distribution)
X, we write z < X to indicate that z is selected according to X. A PPT algorithm
is probabilistic polynomial time, and a PPTM is a polynomial time (interactive)
Turing machine.

A function p: N — [0,1] is called negligible, if for every positive polynomial
p() and all sufficiently large m, it holds that pu(n) < 1/p(n). We write neg
for an unspecified negligible function and write poly for an unspecified positive
polynomial. For a randomized function (or an algorithm) f we write f(z) to
denote the random variable induced by the function on input x, and write f(z;7)
to denote the value when the randomness of f is fixed to r.

A distribution ensemble X = {Xg4 n}aep, nen is an infinite sequence of ran-
dom variables indexed by a € D,, and n € N, where D,, is a domain that might
depend on n. When the domains are clear, we will sometimes write {X, 1, }q.n in
order to alleviate notations.

The statistical distance between two finite distributions is defined as follows.

Definition 3. The statistical distance between two finite random variables X
andY is
SD(X,Y) = rnélx{Pr X eS]—-Pr[Y e€S]}.

For a function € : N — [0,1], the two ensembles X = {X4n}aeD, nen and
Y = {Yuntaep, nen are said to be e-close, if for all sufficiently large n and
a € Dy, it holds that
SD (Xa,n7 Ya,n) S 5(”)7

and are said to be e-far otherwise. X and Y are said to be statistically close,

s
denoted X =Y, if they are e-close for some negligible function €. If X and Y
are 0-close then they are said to be equivalent, denoted X =Y.
Computational indistinguishability is defined as follows.
Definition 4. Let X = {Xgntaen, neny and Y = {Yun}aep, nen be two
ensembles. We say that X and Y are computationally indistinguishable, denoted

c
X =Y, if for every non-uniform PPT distinguisher D, there exists a negligible
function u(-), such that for alln and a € D, it holds that

[Pr[D(Xan) = 1] = PrD(Yan) = 1| < p(n).

On Secure Computation of Solitary Output Functionalities 115

Definition 5 (Minimal and minimum elements). Let S be a set and let
=< be a partial order over S. An element s € S is called minimal, if no other
element is smaller than s, that is, for any s’ € S, if s’ < s then s’ = s.

An element s € S is called minimum if it is smaller than any other element,
that is, for any s’ € S it holds that s < s’.

We next define a refinement of a partition of some set.

Definition 6 (Refinement of partitions). Let Py and Py be two partitions of
some set S. We say that Py refines Ps, if for every S, € Py there exists So € Po
such that S; C Ss.

The meet of two partitions is the partition formed by taking all non-empty
intersections. Formally, it is defined as follows.

Definition 7 (Meet of partitions). Let P; and Py be two partitions of some
set S. The meet of P1 and P2, denoted Py N\ Po, is defined as

PL APy = {Sl NSy |VZ€{1,2}SZ € P; and S; 0827&0}

Observe that N is associative, thus we can naturally extend the definition for
several partitions.

Definition 8 (Equivalence class and quotient sets). For an equivalence
relation = over some set S, and an element s € S we denote by [s]= the equiv-
alence class of s, [s]=z :={s' € S:s=s5"}. We let §/= denote the quotient set
with respect to = defined as the set of all equivalence classes. Stated differently,
it is the partition of S induced by the equivalence relation =.

The Model of Computation. In this paper we consider solitary output three-
party functionalities. A functionality is a sequence of function f = {fy}xen,
where f.: X X Ve X 2. — W, for every x € N.!3 The functionality is called
solitary output if only one party obtains an output. We denote the parties by A,
B and C, holding inputs z, y, and z, respectively, and let A receive the output,
denoted w. To alleviate notations, we will remove x from f and its domain and
range, and simply write it as f: X x Y x Z - W.

We consider the standard ideal vs. real paradigm for defining security. We
mostly consider an ideal computation with guaranteed output delivery (also
referred to as full security), where a trusted party performs the computation
on behalf of the parties, and the ideal-model adversary cannot abort the compu-
tation. We say a protocol admits 1-security if it is fully secure against any single
corrupted party.

13 The typical convention in secure computation is to let f : ({0,1}*)* — {0,1}*. How-
ever, we will mostly be dealing with functionalities whose domain is of polynomial
size in k, which is why we introduce this notation.

116 B. Alon and E. Omri

3 Our Main Results in the Point-to-Point Model

In this section, we present the statement of our main results in the point-to-
point model. We present a necessary condition and two sufficient conditions for
solitary output three-party functionalities with polynomial-sized domains, that
can be computed with 1-security without broadcast. In Sect.3.2.1, we present
several corollaries of our results. In particular, we show that various interesting
families of functionalities, such as deterministic NIORP and (possibly random-
ized) ternary-output functionalities, our necessary and sufficient conditions are
equivalent, thus we obtain a characterization.

3.1 Useful Definitions

Before stating the result, we first present several important definitions. Through-
out the entire subsection, we let f : X x Y x Z — W be a deterministic solitary
output three-party functionality.

The first definition introduces an equivalence relation over the domains) and
Z with respect to any fixed input € X'. We call this relation the common output
relation (CORE). Note that the relation depends on the security parameter s
as well. We will not write k as part of the notations in order to alleviate them.

Definition 9 (CORE and CORE partition). For an input x € X we define
the relation ~, over Y as follows.

Y~y Y if there exist z,2" € Z such that f(z,y,2) = f(z,y,2').

We define relation =,, called CORE, to be the transitive closure of ~,., i.e.,
y =,y if either y ~, y' or if there exist y1,...,yx € YV such that

Y~z Y Nz~~~"’myk"’my/~

Observe that =, is an equivalence relation. We let Y, denote the set of equiva-
lence classes of Y formed by =,. We also abuse notations, and define the relations
z ~g 2 and z =, 2’ over Z similarly, and let Z, denote the set of equivalence
classes over Z formed by =,.

Additionally, we denote n(x) = |Y.|, m(xz) = |Zz|, and we write

Yo ={V7 i€ n(x)]} and Z,= {Z]”” 1§ € [m(x)]}.
Finally, we let
Re ={VF x 27 i€ [n(x)],j € [m(a)]}
be the partition of Y x Z into the combinatorial rectangles formed by Y, and Z,,.
We call Y,., Z,, and R, the CORE partitions of f with respect to x.

We next introduce equivalence relations over X that correspond to the CORE
partitions formed by the inputs. In addition, we define partial orders over the
quotient sets associated with these equivalence relations. Roughly, both the
equivalence relations and the partial orders are defined by comparing the cor-
responding CORE partitions. Similarly to Definition 9, the following definition
also depends x, which is omitted from the notations to alleviate them.

On Secure Computation of Solitary Output Functionalities 117

Definition 10 (Equivalence relations and partial orders over X). We
define three equivalence relations =g, =c, and =, over X as follows. We say that
=g 2’ ifYp = Yur, we say that v =c ' if Z, = Zy, and we say that v = x’ if
Ry = Ry Equivalently, x = 2’ if v =g 2’ and v =¢ 2.

We define partial orders =g, ¢, and =< over the quotient sets X /=g, X /=c,
and X /=, respectively, as follows. We say that [x]=y =g [2']=y if Yo refines Yo,
we say that [x]=. =c [2']=c if Z, refines Ly, and we say that [v]= = [2']= if Ry
refines Ry Equivalently, [x]= = [2']= if [x]=5 Ze [2']z5 and [v]=. Zc [2]=..

For brevity, we write the partial orders as if they are over X, e.g., we write
z =g 2’ instead of [x]=y =g [2']=5.'* Finally, x € X is called B-minimal if [x]=4
is minimal with respect to =g, x is called C-minimal if [x]=. is minimal with
respect to <c, and x is called R-minimal if [x]= is minimal with respect to <.

As mentioned in Sect. 1, we are interested in the meet of all CORE partitions.
We call this new partition the COREA-partition of f. Similarly to previous
notations, CORE ,-partition also depends on x, and we will omit it for brevity.

Definition 11 (CORE ,-partition). We denote

Y= AYa= A Yy and Zi= AN2= A 2z,

reX XEX: reX XEX:
X ts R-minimal X ts R-minimal

and call these two partitions the CORE-partitions of f. We let nn = |Ya| and
ma = |Zn|, and we write the partitions as

Y, = {yq{\ (1€ [nal} and Za = {ZJA 2 J € [mal}.
Finally, we let

Ry ={V]* x 2} i € [n,],j € [ma]},

be the partition of Y x Z into the combinatorial rectangles formed by Yn and Zx.

The partitions Yn and Zn are naturally associated with an equivalence rela-
tion =, over YV and over Z, respectively: We say that y =x ' if there exists
YN e Ya such thaty,y' € Y. Equivalently, y =5 vy if y =, y' for all R-minimal
x € X. Similarly, z =5 2’ if there exists Z € Z such that z,2' € Z".

We next define an important special property of a functionality f, which
we call CORE-forced. This property plays a central role in both our positive
and negative results, and generalizes the forced property defined in [24], which
states that any party can fix the distribution of the output, using an appropriate
distribution over its input.

Roughly, f is called COREx-forced if both B and C can each associate a
distribution to each set in the CORE-partition of their respective set of inputs,

14 Note that if we had defined <g, =<c, and < directly over X, then they would not
correspond to partial orders. Indeed, for the relations to be partial orders, it required
that they are antisymmetric, i.e., if + < 2’ and 2’ < = then z = 2’. Observe that
this is not generally the case, as the only guarantee we have is that x = z'.

118 B. Alon and E. Omri

such that the output distribution of A in each combinatorial rectangle in R, is
fixed for every input z € X.

Definition 12 (CORE,-forced). The function f is said to be CORE,-
forced if there exist two ensembles of efficiently samplable distributions Q =
{Qm}neNie[nA} and R = {Rwj},.cn jeima] OVET Y and Z, respectively, such
that the following holds.

[l

x *
x, y 25 } { z, s % }
{f(v 2i) NGN,CEEX.iE[n/\]yje[nl/\],'y‘fyi/\xZEZJ/.\ flz,y"s2) neN,mex,ie[nA]~je[wm],yey§,zerA

lllw

{f(mvyrZ*)}

NEN,weX‘iE[nA],jE[MA],yE)ii/\‘zEZ]/.\

[l

{f(x’yi’z)}neN,zex,z‘e[nA],je[mA],yeyiA,zezJA
where y* < Qui, 2° + R, ;, and where y; and z; are the lexicographically
smallest elements in Y and Z7, respectively.

3.2 Our Main Results

We are now ready to state our results, providing both sufficient and necessary
conditions for a deterministic solitary output three-party functionalities with
polynomial-sized domain, to be computable with 1-security over point-to-point
channels. The result for randomized functionalities, where the domain of the
randomness is polynomial as well, is handled below in Proposition 2 by reducing
it to the deterministic case. We start by stating our negative results.

Theorem 3. Let f: X x Y x Z = W be a deterministic solitary output three-
party functionality. Assume that |X|,|Y|,|Z] = poly(k). If f can be computed
with 1-security, then the following hold.

1. For all sufficiently large k € N, all B-minimal xg and all C-minimal xc, there

exists an R-minimal x € X such that xg =g X =c Xc-
2. f is COREA-forced.

Moreover, suppose that f has the property that for all sufficiently large K, it holds
that either y =, y' for allx € X and y,y € Y, or z =, 2’ for all x € X and
z,2" € Z. Then there exists an ensemble of efficiently samplable distributions
P ={Ps s }reNaex and there exists a PPT algorithm S such that

{S (1K7 x, l’*, f(!E*7 Y, z))}/{EN,IEXJE[n/\],je[m,\],yey.A,ZEZJ/,\

i

II1wn

{f(xa y*7 Z)}K,EN,rE)\’,iE[nA],je[mA],ye;))i/\,zeZjA)

where x* < P, , and y* <+ @, where Q; is the distribution given the
CORE-forced property.

Due to space limitations, the proof is given in the full version of the paper
[2]. We now state our two positive results. The first positive result considers
functionalities that satisfy the property given in the “moreover” part of Theorem
3. Interestingly, the protocol used in the proof of the theorem below is a slight
generalization of the protocol suggested by [3].

On Secure Computation of Solitary Output Functionalities 119

Theorem 4. Let f: X x Y x Z2 — W be a deterministic solitary output three-
party functionality. Assume that oblivious transfer exists, that |X|,|YV|,|Z| =
poly(k), and that the following hold.

1. For dll sufficiently large k, either y =, y' for allz € X and y,y' €), or
2=, 2 forallz € X and 2,2' € Z.

2. f is COREA-forced.

3. There exists an ensemble of efficiently samplable distributions P =
{Ps 2z} renzex and a PPT algorithm S such that

{S (1N1 &€, (E*, f(x*v Y, Z))}HEN,meX,iE[n/\],je[mA],yeyiA,ZGZJ.A

Illwn

{f(z,y", Z)}KEN,xeX,ie[nA],je[mA],yeyiA,zerA7

where * < P ; and y* < Q,;, where Q. ; is the distribution given by the
CORE-forced property.

Then f can be computed with 1-security.

Due to space limitations, the proof is given in the full version of the paper
[2]. The next result gives another sufficient condition. In fact, it characterizes a
special class of functionalities, which includes (deterministic) NIORP function-
alities, where the output-receiving party A has no input (see Corollary 4 below).
Here, instead of assuming the functionality satisfies the property stated in the
“moreover” part of Theorem 3, we assume that A has a minimum input, i.e.,
smaller than all other inputs with respect to <.

Theorem 5. Let f: X x Y x Z = W be a deterministic solitary output three-
party functionality. Assume that |X|,|Y|,|Z| = poly(k), and that for all suffi-
ciently large k, there exists x € X such that for all x € X it holds that x < .
Then f can be computed with 1-security if and only if it is COREx-forced. More-
over, the protocol in the positive direction admits statistical 1-security.

Due to space limitations, the proof is given in the full version of the paper [2].
The next proposition reduces the randomized case to the deterministic case. We
stress that the reduction holds for general domain sizes, and functionalities where
every party obtains an output (in fact, the reduction can be easily generalized
to the multiparty setting assuming an honest majority).

Proposition 2 (Reducing randomized functionalities to deterministic
functionalities). Let f : ({0,1}*)3 — {0,1}* be a (randomized) three-party
functionality. Define the deterministic functionality f': ({0,1}*)% x ({0,1}*)% x
({0,1}%)2 — {0,1}* as follows.

f/(((E,T'l), (vaZ)v (2,7‘3)) = f(x,y, z;r1 ©re® TS)~

Then f can be computed with 1-security if and only if f' can be computed with
1-security.

Due to space limitations, the proof is deferred to the full version [2].

15 Note that there may be several minimum inputs, however, the assumption implies
that they are all equivalent.

120 B. Alon and E. Omri

3.2.1 Interesting Corollaries
Although our necessary and sufficient conditions do not coincide in general, for
various interesting families of functionalities the results do form a characteriza-
tion. In the following section, we consider several such interesting families and
present a characterization for them, as can be derived from Theorems 3 to 5.
We first state the characterization for functionalities with at most three pos-
sible outputs. For this class of functionalities, we make the observation that for
every x € X, either y =, ¢/ for all y,y' € Y, or z =, 2/ for all 2,2’ € Z.

Corollary 1 (Characterization of ternary-output functionalities). Let
f:XxYxZ—={0,1,2} be a deterministic solitary output three-party func-
tionality. Assume that oblivious transfer exists and that |X|,|Y],|Z| = poly(k).
Then f can be computed with 1-security if and only if the following hold.

1. For all sufficiently large k € N, all B-minimal xg and all C-minimal xc, there
ezists an R-minimal x € X such that xg =g X =c Xc-

2. f is COREA-forced.

8. There exists an ensemble of efficiently samplable distributions P =
{Ps,z}renzex and a PPT algorithm S such that

i

{SQA%, z, 2", f(z*,y, Z))}neN,xﬁeX,ie[nA],je[mA],yeyﬁ,zer

115>

{f(z,y", Z)}KEN,J‘NeX,iE[nA],je[m/\LyeyiA,zEZJf\a

where ¥ < P, and y* < Qq, where Q,; is the distribution given the
CORE-forced property.

Proof. Tt suffices to show that Item 1 from the above statement implies Item
1 from Theorem 4. That is, we show that for all sufficiently large k, either
y=, vy forallz € X and y,3y € Y, or 2 =, 2’ for all z € X and 2,2’ € Z.
Assume towards contradiction that for infinitely many x’s, there exist z,z’ € X,
v,y € Y, and z,2’ € Z such that y #, 3’ and z #,, 2z’. Now, observe that as
f is a ternary-output functionality, it holds that x and 2’ are B-minimal and
C-minimal, respectively. Moreover, it holds that z =, 2’ and that y =, 3. By
(the assumed) Item 1 there exists an R-minimal y € X satisfying © =g x =¢ 2.
However, such x cannot exists since it satisfies y =, ¢’ and z =, 2’. O

We now state a characterization for functionalities that are symmetric with
respect to the inputs of B and C, i.e., where f(z,y, 2) = f(z, z,y) for all z, y, and
z. Here, the characterization follows from the observation all y’s are equivalent
and z’s are equivalent with respect to all z’s. In particular, the COREx-forced
property implies the simpler forced property (i.e., both B and C can fix the
distribution of the output).

Corollary 2 (Characterization of (B, C)-symmetric functionalities). Let
f:AXDxD — W be a deterministic solitary output three-party functional-
ity. Assume that oblivious transfer exists, that |X|,|D| = poly(k), and that for
all sufficiently large k € N, for all x € X and for all y,z € D it holds that
f(z,y,2) = f(x,2,y). Then f can be computed with 1-security if and only if it
is forced.

On Secure Computation of Solitary Output Functionalities 121

We next state a characterization for the case where the input of party A is
a single bit. The proof follows from the observation that for such functionalities
there exists a minimum Y, hence we can apply Theorem 5.

Corollary 3. Let f: {0,1} x Y x Z — W be a deterministic solitary output
three-party functionality. Assume that |Y|,|Z| = poly(k). Then [can be com-
puted with 1-security if and only if the following hold.

1. For all sufficiently large k € N, either 0 <1 or 1 < 0.
2. f is COREx-forced.

Moreover, the protocol in the positive direction admits statistical 1-security.

Proof. First observe that if 0 < 1 or 1 <X 0 for all sufficiently large x € N,
then f can be computed due to Theorem 5. For the other direction, we consider
two cases. First, if f is not COREx-forced then by Theorem 3 it cannot be
computed with 1-security. Otherwise, if 0 £ 1 and 1 £ 0 infinitely often, then
both are R-minimal inputs infinitely often. However, there is no R-minimal y
such that 0 =g x =¢ 1. Therefore, f cannot be computed due to Theorem 3. O

If A has no input, then the first property of Corollary 3 holds vacuously. Thus
we have the following.

Corollary 4 (Characterization of NIORP functionalities). Let f : {\} x
YV xZ =W be a deterministic solitary output three-party functionality. Assume
that |Y|,|Z| = poly(k). Then f can be computed with 1-security if and only
if it is COREA-forced. Moreover, the protocol in the positive direction admits
statistical 1-security.

Acknowledgments. Research supported in part by grants from the Israel Science
Foundation (no.152/17), and by the Ariel Cyber Innovation Center in conjunction
with the Israel National Cyber directorate in the Prime Minister’s Office. The first
author is also supported by Israel Science Foundation grant 391/21.

References

1. Agarwal, N., Anand, S., Prabhakaran, M.: Uncovering algebraic structures in the
MPC landscape. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11477, pp. 381-406. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3__14

2. Alon, B., Omri, E.: On secure computation of solitary output functionalities
with and without broadcast. Cryptology ePrint Archive, Paper 2022/934 (2022).
https://eprint.iacr.org/2022/934

3. Alon, B., Cohen, R., Omri, E., Suad, T.: On the power of an honest majority in
three-party computation without broadcast. In: Pass, R., Pietrzak, K. (eds.) TCC
2020. LNCS, vol. 12551, pp. 621-651. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64378-2_ 22

4. Asharov, G.: Towards characterizing complete fairness in secure two-party compu-
tation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291-316. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 13

https://doi.org/10.1007/978-3-030-17656-3_14
https://doi.org/10.1007/978-3-030-17656-3_14
https://eprint.iacr.org/2022/934
https://doi.org/10.1007/978-3-030-64378-2_22
https://doi.org/10.1007/978-3-030-64378-2_22
https://doi.org/10.1007/978-3-642-54242-8_13

122

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

B. Alon and E. Omri

Asharov, G., Lindell, Y., Rabin, T.: A full characterization of functions that imply
fair coin tossing and ramifications to fairness. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 243-262. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36594-2_ 14

Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization
of fairness in secure two-party computation of Boolean functions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 199-228. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6_ 10

Badrinarayanan, S., Miao, P., Mukherjee, P., Ravi, D.: On the round complexity of
fully secure solitary MPC with honest majority. Cryptology ePrint Archive (2021)
Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387-404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-1_ 22

Bell, J.H., Bonawitz, K.A., Gascén, A., Lepoint, T., Raykova, M.: Secure single-
server aggregation with (poly) logarithmic overhead. In: ACM CCS (2020)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryp-
tographic fault-tolerant distributed computations. In: STOC (1988)

Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1175-1191 (2017)

Burkhalter, L., Lycklama, H., Viand, A., Kuchler, N., Hithnawi, A.: Rofl: attestable
robustness for secure federated learning (2021). arXiv preprint arXiv:2107.03311
Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC (1986)

Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure mul-
tiparty computation. J. Cryptol. 30(4), 1157-1186 (2017)

Cohen, R., Haitner, I., Omri, E., Rotem, L.: Characterization of secure multiparty
computation without broadcast. J. Cryptol. 31(2), 587-609 (2018)
Dachman-Soled, D.: Revisiting fairness in MPC: polynomial number of parties and
general adversarial structures. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12551, pp. 595-620. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64378-2_ 21

Daza, V., Makriyannis, N.: Designing fully secure protocols for secure two-party
computation of constant-domain functions. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10677, pp. 581-611. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70500-2_ 20

Feige, U., Killian, J., Naor, M.: A minimal model for secure computation. In: Pro-
ceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
pp. 554-563 (1994)

Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distrib. Comput. 1(1), 26-39 (1986)

Fitzi, M., Garay, J.A., Maurer, U.M., Ostrovsky, R.: Minimal complete primitives
for secure multi-party computation. J. Cryptol. 18(1), 37-61 (2005)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC (1987)

Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without an
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19-35.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5__2
Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: STOC (2008)

https://doi.org/10.1007/978-3-642-36594-2_14
https://doi.org/10.1007/978-3-642-36594-2_14
https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-662-44381-1_22
http://arxiv.org/abs/2107.03311
https://doi.org/10.1007/978-3-030-64378-2_21
https://doi.org/10.1007/978-3-030-64378-2_21
https://doi.org/10.1007/978-3-319-70500-2_20
https://doi.org/10.1007/978-3-319-70500-2_20
https://doi.org/10.1007/978-3-642-00457-5_2

24.

25.

26.

27.

28.

On Secure Computation of Solitary Output Functionalities 123

Halevi, S., Ishai, Y., Kushilevitz, E., Makriyannis, N., Rabin, T.: On fully secure
MPC with solitary output. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11891, pp. 312-340. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-36030-6__13

Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382401 (1982)

Makriyannis, N.: On the classification of finite Boolean functions up to fairness.
In: Proceedings of the 9th Conference on Security and Cryptography for Networks
(SCN), pp. 135-154 (2014)

Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228-234 (1980)

Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: FOCS, pp. 73-85 (1989)

https://doi.org/10.1007/978-3-030-36030-6_13
https://doi.org/10.1007/978-3-030-36030-6_13

l‘)

Check for
updates

On the Round Complexity of Fully Secure
Solitary MPC with Honest Majority

Saikrishna Badrinarayanan'®), Peihan Miao?, Pratyay Mukherjee?,
and Divya Ravi*

! LinkedIn, Mountain View, USA
bsaikrishna7393@gmail.com
2 Brown University, Providence, USA
3 Supra Research, Kolkata, India
4 Aarhus University, Aarhus, Denmark

Abstract. We study the problem of secure multiparty computation for
functionalities where only one party receives the output, to which we
refer as solitary MPC. Recently, Halevi et al. (TCC 2019) studied fully
secure (i.e., with guaranteed output delivery) solitary MPC and showed
impossibility of such protocols for certain functionalities when there is
no honest majority among the parties.

In this work, we study the round complexity of fully secure solitary
MPC in the honest majority setting and with computational security.
We note that a broadcast channel or public key infrastructure (PKI)
setup is necessary for an n-party protocol against malicious adversaries
corrupting up to t parties where n/3 < ¢t < n/2. Therefore, we study the
following settings and ask the question: Can fully secure solitary MPC
be achieved in fewer rounds than fully secure standard MPC in which
all parties receive the output?

— When there is a broadcast channel and no PKI:

o We start with a negative answer to the above question. In par-
ticular, we show that the exact round complexity of fully secure
solitary MPC is 3, which is the same as fully secure standard
MPC.

e We then study the minimal number of broadcast rounds needed
to design round-optimal fully secure solitary MPC. We show that
both the first and second rounds of broadcast are necessary when
2[n/5] <t < n/2, whereas pairwise-private channels suffice in
the last round. Notably, this result also applies to fully secure
standard MPC in which all parties receive the output.

— When there is a PKI and no broadcast channel, nevertheless, we
show more positive results:

e We show an upper bound of 5 rounds for any honest major-
ity. This is superior to the super-constant lower bound for fully
secure standard MPC in the exact same setting.

e We complement this by showing a lower bound of 4 rounds when
3[n/7] <t<n/2.

e For the special case of t = 1,n = 3, when the output receiving
party does not have an input to the function, we show an upper
bound of 2 rounds, which is optimal. When the output receiving

© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14370, pp. 124-155, 2023.
https://doi.org/10.1007/978-3-031-48618-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48618-0_5&domain=pdf
http://orcid.org/0000-0001-6423-8331
https://doi.org/10.1007/978-3-031-48618-0_5

On the Round Complexity of Fully Secure Solitary 125

party has an input to the function, we show a lower bound of 3,
which matches an upper bound from prior work.
e For the special case of t = 2,n = 5, we show a lower bound of 3

rounds (an upper bound of 4 follows from prior work).
All our results also assume the existence of a common reference string
(CRS) and pairwise-private channels. Our upper bounds use a decentral-
ized threshold fully homomorphic encryption (ATFHE) scheme (which
can be built from the learning with errors (LWE) assumption) as the
main building block.

1 Introduction

Secure multiparty computation (MPC) [25,39] allows a set of mutually distrust-
ing parties to jointly compute any function on their private data in a way that
the participants do not learn anything about the inputs except the output of the
function. The strongest possible security notion for MPC is guaranteed output
delivery (god for short), which states that all honest parties are guaranteed to
receive their outputs no matter how the corrupt parties behave. An MPC pro-
tocol achieving god is often called a fully secure protocol. A seminal work of
Cleve [13] showed that there exist functionalities for which it is impossible to
construct an MPC protocol with god unless a majority of the parties are honest.

Solitary MPC. Recently, Halevi et al. [29] initiated the study of MPC proto-
cols with god for a special class of functionalities, called solitary functionalities,
which deliver the output to exactly one party. Such functionalities capture many
real world applications of MPC in which parties play different roles and only
one specific party wishes to learn the output. For example, consider a privacy-
preserving machine learning task [35] where several entities provide training data
while only one entity wishes to learn a model based on this private aggregated
data. As another example, a service provider may want to learn aggregated infor-
mation about its users while keeping the users’ data private [8,9]. In the rest of
the paper we refer to such MPC protocols as solitary MPC. For clarity of expo-
sition, we refer to protocols where all parties obtain output as standard MPC.
While the argument of Cleve [13] does not rule out solitary MPC with god in
the presence of a dishonest majority,! Halevi et al. [29] showed that there exist
functionalities for which solitary MPC with god is also impossible with dishonest
majority. Hence, the results of [13] and [29] rule out the existence of a generic
MPC protocol that can compute any standard and solitary functionality respec-
tively with god in dishonest majority (protocols can exist for specific classes of
functionalities as shown in [4,27,29]). Both impossibility results hold even when

! Cleve’s argument shows that with dishonest majority, it is impossible for an MPC
protocol to achieve fairness, which guarantees that malicious parties cannot learn the
output while preventing honest parties from learning the output. Since god implies
fairness, this impossibility also holds for standard MPC with god. However, it doesn’t
hold for solitary MPC as fairness is clearly not an issue in the solitary MPC setting.

126 S. Badrinarayanan et al.

parties have access to a common reference string (CRS). In this paper, we focus
on solitary MPC with god in the honest majority setting.

Round Complexity. An important efficiency metric of an MPC protocol is
its round complexity, which quantifies the number of communication rounds
required to perform the protocol. The round complexity of standard MPC has
been extensively studied over the last four decades (see the full version [7] for
a detailed literature survey). In the honest majority setting, three rounds are
known to be necessary [24,28,36] for standard MPC with god, even in the pres-
ence of a common reference string (CRS) and a broadcast channel (without a
PKI setup). Matching upper bounds appear in [3,6,28]. The protocol of Gordon
et al. [28] requires a CRS?, while the other two [3,6] are in the plain model. In
this work we focus on the round complexity aspects of solitary MPC protocols.

Necessity of Broadcast or PKI. A closer look at the above protocols reveals
that all of them assume the existence of a broadcast channel. For solitary MPC
with god, the works of [2,21] show that either a broadcast channel or a public
key infrastructure (PKI) setup is indeed necessary assuming an honest majority
(in particular, when n/3 <t < n/2 for an n-party protocol against adversaries
corrupting up to ¢ parties) even with a CRS.? Note that although PKI setup and
broadcast channels are equivalent according to [17] from a feasibility perspective,
realizing broadcast under PKI setup with guaranteed termination requires super-
constant rounds, which we will discuss shortly. In light of this, we study the round
complexity of solitary MPC with god when n/3 < ¢ < n/2 in two settings: (a)
there is a broadcast channel and no PKI setup; (b) there is PKI setup and no
broadcast channel. When both broadcast channels and PKI are available, we
know from prior works [28,30] that the exact round complexity is two.

With Broadcast, No PKI. In this setting we investigate whether we can do
better for solitary MPC than standard MPC in terms of round complexity even
in the presence of CRS. In particular,

Assuming a broadcast channel and CRS, can we build a solitary MPC' protocol
with god in fewer than three rounds?

2 This protocol uses a decentralized threshold fully homomorphic encryption (dTFHE)
scheme. The public parameter of this dTFHE is assumed to be shared among the
parties and viewed as a common reference string (refer to [28] for further details).

3 Fitzi et al. [21] show that converge-cast cannot be achieved when n/3 <t < n/2 in
the information theoretic setting. Alon et al. [2] show a specific solitary functionality
that cannot be computed by a 3-party MPC protocol with a single corruption with
god in the plain model (with no broadcast channel and no PKI), which also extends
to n/3 <t < n/2. Both arguments also work even in the presence of a CRS. We
present the proof in the full version [7] for completeness.

On the Round Complexity of Fully Secure Solitary 127

Unfortunately, the answer is no! We show that in the presence of a broadcast
channel and CRS, the exact round complexity for solitary MPC with god is also
three, same as standard MPC.

However, broadcast channels are expensive to realize in practice — the sem-
inal works of Dolev and Strong [17] and Fischer and Lynch [19] showed that
realizing a single round of deterministic broadcast requires at least ¢ + 1 rounds
of communication over pairwise-private channels, where ¢ is the number of cor-
rupt parties, even with a public key infrastructure (PKI) setup.* This can be
overcome by considering randomized broadcast protocols in the honest majority
setting [1,18,20,32] requiring expected constant rounds. In particular, the most
round-efficient protocol to our knowledge is proposed by Abraham et al. [1],
which solves Byzantine agreement for ¢ < n/2 in expected 10 rounds. Neverthe-
less, these protocols do not guarantee termination in constant rounds, which is
the setting we are interested in.” In fact, it is shown that termination cannot be
guaranteed in constant rounds [12,31].

Recent works [14-16,22] try to minimize the usage of expensive broadcast
channels in the context of round-optimal standard MPC. In particular, they
study whether each round of a round-optimal MPC protocol necessarily requires
a broadcast channel or pairwise-private channels suffice in some of them. In the
context of round-optimal solitary MPC with god, we ask an analogous question:

Is a broadcast channel necessary in every round of a three-round solitary MPC
protocol with god?

We show that a broadcast channel is necessary in both the first and second
rounds in a three-round solitary MPC protocol with god while pairwise-private
channels suffice in the third round.

With PKI, No Broadcast. In this setting a natural question arises: in the
absence of a broadcast channel, if we assume a PKI setup, what is the opti-
mal round complexity for solitary MPC with god? In standard MPC, note that
since standard MPC with god implies broadcast with guaranteed termination,
any protocol without a broadcast channel (only using pairwise-private channels
with PKI setup) should necessarily require super-constant rounds. In contrast,
observe that solitary MPC with god does not imply broadcast with guaranteed
termination, so the same lower bound does not hold. This motivates us to ask
the following question:

4 Note that PKI setup is in fact necessary for realizing a broadcast channel when
t > n/3 (where n is the total number of parties) [33,37].

5 In these randomized broadcast protocols, the number of rounds depends on the
randomness involved in the protocol. For example, the protocol by Abraham
et al. [1] terminates in constant rounds except with constant probability and requires
at least super-polylogarithmic rounds (in the security parameter) to terminate with
all but negligible probability.

128 S. Badrinarayanan et al.

With a PKI setup and mo broadcast channel, can we overcome the above
standard MPC' lower bound? Specifically, can we build a constant-round solitary
MPC protocol with god in the honest majority setting?

We answer this question in the affirmative by constructing a five-round soli-
tary MPC protocol that achieves god in the above setting.

1.1 Owur Results

1.1.1 With Broadcast, No PKI

When there is a broadcast channel but no PKI setup, we show a lower bound of
three rounds for achieving solitary MPC with god in the honest majority setting,
which is the same as the lower bound for standard MPC.

Informal Theorem 1. Assume parties have access to CRS, pairwise-private
channels and a broadcast channel. Then, there exists a solitary functionality f
such that no two-round MPC protocol can compute f with god in the honest
magority setting (in particular, when n/3 <t < n/2) even against a non-rushing
adversary.

This lower bound is tight because we know from prior works [3,6,28] that there
are three-round solitary MPC protocols with god in the honest majority setting.

We then study the minimal number of broadcast rounds needed in a round-
optimal (three-round) solitary MPC protocol with god. We show that a broadcast
channel is necessary in both the first and second rounds.

Informal Theorem 2. Assume parties have access to CRS and pairwise-
private channels. No three-round solitary MPC protocol can compute any soli-
tary functionality f with god in the honest majority setting (in particular, when
2[n/5] <t < n/2) even against a non-rushing adversary, unless there are broad-
cast channels in both Rounds 1 and 2.

We note that the necessity of a broadcast channel in Round 1 holds for any
n/3 < t < n/2 while the necessity of a broadcast channel in Round 2 only
holds for 2 [n/5] <t < n/2 requiring at least two parties be corrupted. In other
words, for ¢t = 1 and n = 3 only the first round broadcast is necessary. This
is consistent with and proven tight by the upper bound in the work of Patra
and Ravi [36], which constructed a three-round three-party protocol with god
tolerating a single corruption, using broadcast only in Round 1.

For the general case when t > 2, we observe that in the three-round protocols
from prior work [3,6,28], only the first two rounds require a broadcast channel
while the third-round messages can be sent over pairwise-private channels to the
output-receiving party. Thus, our lower bounds are also tight in the general case.

Implications for Standard MPC. The work of Cohen et al. [14] identifies
which rounds of broadcast are necessary for achieving round-optimal (two-round)

On the Round Complexity of Fully Secure Solitary 129

standard MPC with dishonest magjority. The recent work of [15] studies this ques-
tion for two-round standard MPC in the honest majority setting, assuming the
presence of a correlated randomness setup (or PKI). However, the same question
for round-optimal (three-round) standard MPC with god in honest majority set-
ting and without correlated randomness (or PKI) is not known; which we address
in this work. Since standard MPC with god implies solitary MPC with god, our
negative results for solitary MPC also apply to standard MPC, namely both the
first and second rounds of broadcast are necessary for a three-round standard
MPC with god. On the other hand, we observe that the existing three-round
protocols [6,28] still work if the third-round messages are sent over pairwise-
private channels (we defer the discussion to the full version [7]), thus we fully
resolve this problem for standard MPC with god in honest majority setting and
without correlated randomness setup (i.e., in the plain and CRS models).

1.1.2 With PKI, No Broadcast

When there is a PKI setup and no broadcast channel, we show that the super-
constant lower bound for standard MPC does not hold for solitary MPC any
more. In particular, we construct a five-round protocol that works for any num-
ber of parties and achieves god in the honest majority setting. Our protocol
builds on the standard MPC protocol with god of Gordon et al. [28] and uses a
decentralized threshold fully homomorphic encryption ({TFHE) scheme (defined
in [10]) as the main building block, which can be based on the learning with errors
(LWE) assumption. Our PKI setup includes a setup for digital signatures as well
as one for dTFHE (similarly as in [28])°.

Informal Theorem 3. Assuming LWE, there exists a five-round solitary MPC
protocol with god in the presence of PKI and pairwise-private channels. The pro-
tocol works for any number of parties n, any solitary functionality and is secure
against a malicious rushing adversary that can corrupt any t < n/2 parties.

We complement this upper bound by providing a lower bound of four rounds in
the same setting even in the presence of a non-rushing adversary.

Informal Theorem 4. Assume a PKI setup and pairwise-private channels.
There exists a solitary functionality f such that no three-round MPC can com-
pute f with god in the honest majority setting (in particular, when 3 [n/7] <
t <n/2) even against a non-rushing adversary.

The above lower bound requires ¢ > 3, namely at least 3 parties are corrupted.
Separately we also study the round complexity for scenarios when ¢ < 3.

Special Case: t = 1. When there is only 1 corrupted party, the only relevant
setting is when n = 3. We consider two cases: (a) when the function f involves
an input from the output-receiving party @, and (b) when f does not involve

5 We leave it as an interesting open problem to achieve the upper bound using weaker
forms of PKI setup and studying the minimal assumption required.

130 S. Badrinarayanan et al.

an input from @. In the first case, we show a lower bound of three rounds for
achieving solitary MPC with god. That is, there exists a solitary functionality f
(involving an input from @) such that a minimum of three rounds are required
to achieve solitary MPC with god. Notably, this lower bound also extends to any
n >3 and n/3 <t < n/2. A three-round upper bound for ¢ = 1 can be achieved
by combining [28] and [17].

In the second case where f does not involve an input from @, it turns out we
can do better than three rounds. In particular, we show a two-round protocol to
achieve solitary MPC with god. Once again, the main technical tool is decentral-
ized threshold FHE and the protocol can be based on LWE. This upper bound
is also tight as we know from prior work [30] that two rounds are necessary.

Special Case: t = 2. When the number of corrupted parties is 2, we only
consider the case of n = 5 and show a lower bound of three rounds to compute
any function f (with or without input from @). This lower bound also extends
to any n > 5 and 2 [n/5] <t < n/2. An upper bound of four rounds for ¢t = 2
can also be achieved by combining [28] and [17].

We remark that all our lower bounds above hold not only for PKI, but
naturally extend to arbitrary correlated randomness setup model. We summarize
all our results along with the known related results for the round complexity of
solitary MPC with god in Tables 1 and 2. Note that for certain ranges of (n,t)
such as 3[n/7] <t < n/2, it is not meaningful for every n (e.g., when n = 8,
there is no appropriate ¢ in the range). This is an artifact of the partitioning
technique used in the proof. Nevertheless, the range is relevant for sufficiently
large values of n. All our results also assume the existence of a common reference
string (CRS) and pairwise-private channels. Our results are highlighted in red.

Table 1. Round complexity of solitary MPC with god. “—” means it doesn’t matter
what value to take. Our results are highlighted in red.

broadcast | PKI | (n,t) @ has input | lower bound upper bound

yes ves |t <mn/2 — 2 [30] 2 28]

yes no |[n/3<t<n/2 — 3 (Theorem 1) 3 [3,6,28]

no yes |[n=3,t=1 no 2 [30] 2 (full version [7])
no yves |[n=3,t=1 yes 3 (full version [7]) |3 [28] + [17]

no yes |n=05,t=2 — 3 (full version [7]) |4 [28] + [17]

no yes [3[n/7] <t<n/2 — 4 (Theorem 4) 5 (Theorem 5)

On the Round Complexity of Fully Secure Solitary 131

Table 2. For the setting with broadcast channels and no PKI setup, we study the
possibility of achieving a three-round solitary MPC with god with fewer broadcast
rounds. “bc in R1” means the parties have access to the broadcast channel in Round
1. All parties have access to pairwise-private channels in all rounds. For all the results,
it doesn’t matter whether @ has input or not. Our results are highlighted in red.

bc in R1 | be in R2 | be in R3 | (n,t) Possible?

no yes yes n/3 <t <n/2 No (Theorem 2)
yes no yes 2[n/5] <t <mn/2|No (Theorem 3)
yes yes no t<n/2 Yes [3,6,28]

yes no no n=3,t=1 Yes [36]

1.2 Roadmap

We provide a technical overview in Sect. 2 and preliminaries in Sect. 3. In Sect. 4
we present our lower bound results assuming a broadcast channel but no PKI
setup. In Sect. 5 we provide our lower bounds for PKI without broadcast as well
as our main five-round protocol as an upper bound. We defer the results for the
special cases of t = 1 and ¢ = 2 to the full version [7].

2 Technical Overview

2.1 Overview of Upper Bounds

In this section, we give a technical overview of the upper bounds. We will mainly
focus on the general five-round protocol in the setting with PKI and no broad-
cast, and briefly discuss other special cases at the end.

Our starting point is the two-round protocol of Gordon
et al. [28] which achieves guaranteed output delivery (god) in the presence of
an honest majority and delivers output to all parties, assuming the existence of
a broadcast channel and PKI setup. The protocol uses a (¢ 4 1)-out-of-n decen-
tralized threshold fully homomorphic encryption (dATFHE) scheme, where an
FHE public key pk is generated in the setup and the secret key is secret shared
among the parties. The encryptions can be homomorphically evaluated and can
only be jointly decrypted by at least (¢+ 1) parties. Their two-round protocol in
the broadcast model roughly works as follows. First, the PKI setup generates the
dTFHE public key pk and individual secret keys sk; for each party P;. In Round
1, each party P; computes an encryption of its input z; and broadcasts [z;].”
Then each party can homomorphically evaluate the function f on [z1],...,[z,]
to obtain an encryption of the output [y]. In Round 2, each party broadcasts a
partial decryption of [y]. At the end of this, every party can individually combine
the partial decryptions to learn the output y.

" We use [z] to denote a dTFHE encryption of .

132 S. Badrinarayanan et al.

One immediate observation is that since we only care about one party
P, (= Q) receiving the output, the second round also works without a broadcast
channel by requiring every party to only send partial decryptions directly to Q.
The main challenge now is to emulate the first round with pairwise-private chan-
nels instead of broadcast channels. A naive approach is to employ a (t+1)-round
protocol to realize the broadcast functionality over pairwise-private channels [17],
but this would result in a (¢ 4+ 2)-round protocol.

Even worse, there seems to be a fundamental barrier in this approach to
design a constant round protocol. At a high level, to achieve guaranteed out-
put delivery, we want all the honest parties to agree on a set of ciphertexts
[z1],- .., [xn] so that they can homomorphically evaluate on the same set of
ciphertexts and compute partial decryptions on the same [y]. This already
implies Byzantine agreement, which requires at least (¢ + 1) rounds [17].

Circumventing the Lower Bound. A crucial observation here, which also
separates solitary MPC from standard MPC, is that we do not need all the
honest parties to always agree. Instead, we need them to agree only when @ is
honest. In other words, if the honest parties detect any dishonest behavior of @,
they can simply abort. This does not imply Byzantine agreement now. Hence
there is a hope to circumvent the super-constant lower bound.

Relying on Honest (). First, consider a simple case where honest parties only
need to agree on [x,] when @ is honest. This can be done in two rounds (by
augmenting the two-round broadcast with abort protocol of [26] with digital
signatures). In Round 1, @ sends [x,] to each party (along with its signature).
To ensure () sends the same ciphertext to everyone, in Round 2, parties exchange
their received messages in Round 1. If there is any inconsistency, then they detect
dishonest behavior of @), so they can abort; otherwise, all the honest parties will
agree on the same [z,] at the end of Round 2 if @ is honest. Unfortunately this
simple approach does not work for parties other than @. If honest parties want
to agree on [xz;] for ¢ # n, they cannot simply abort when detecting inconsistent
messages from P; (because they are only allowed to abort when @ is dishonest).

Our next attempt is to crucially rely on @ to send out all the ciphertexts. In
Round 1, each party P; first sends an encryption [z;] to Q. Then in Round 2, Q
sends [z1],. .., [zx] to each party. In Round 3, parties exchange their messages
received from Q. If the honest parties notice any inconsistency in ’s Round-2
messages, they can simply abort. Note that every message is sent along with
the sender’s signature, so a malicious) cannot forge an honest P;’s ciphertext
[x;]; similarly, a malicious P; cannot forge an honest @’s Round-2 message.
Therefore, all the honest parties will agree on the same set of ciphertexts at the
end of Round 3 if @ is honest.

Nevertheless, a malicious @ has complete freedom to discard any honest
party’s input in Round 2 (pretending that these parties did not communicate
to him in Round 1) and learn a function excluding these honest parties’ inputs,
which should not be permitted. The crux of the issue is: Even when @ is mali-
cious, the output of f learned by @ must be either L or include every honest

On the Round Complexity of Fully Secure Solitary 133

party’s input. This is implied by the security guarantees of the MPC protocol.
In particular, in the real/ideal paradigm, a malicious @ in the ideal world can
only obtain an output from the ideal functionality that computes f involving
all the honest parties’ inputs. Therefore, we need a mechanism to ensure that
all the honest parties’ ciphertexts are picked by (. However, the parties do not
know the identities of the honest parties. How can they ensure this?

Innocent Until Proven Guilty. Our solution to this problem is for every
party P; to treat other parties with more leniency. That is, unless P; knows with
absolute certainty that another party Py is malicious, P; would demand that the
ciphertexts picked by @ must also include a ciphertext from Pg. To implement
this mechanism, we add another round at the beginning, where each party P;
sends [z;] to every other party. Then in Round 2, each party P;, besides sending
[x;] to @, also sends all the ciphertexts he has received to @. In Round 3, @
picks a set of ciphertexts [z1], ..., [z,] and sends to each party. In particular, for
each party Py, as long as @ received any valid ciphertext for Py (either directly
from Py or from other parties), @ must include a ciphertext for Pj. Parties
exchange messages in Round 4 to check @’s consistency as before. Finally, we
maintain the following invariant for every honest party P; before sending the
partial decryption in Round 5: if P; received a ciphertext [zx] from party Py in
Round 1, then the ciphertexts picked by () must also include a ciphertext from
Py,. Crucially, this invariant allows @ to pick a different ciphertext [z}] (with a
valid signature) if e.g. that was received by @ from Pj. On the other hand, this
prevents the attacks discussed earlier as a malicious () can no longer discard an
honest Py’s ciphertext [x], although P; is yet to identify the honest parties.

Achieving Fully Malicious Security. To achieve fully malicious security,
we still need to ensure that the adversary’s messages are correctly generated.
The approach taken by [28] is to apply a generic round-preserving compiler [5]
that transforms a semi-malicious protocol (where, the semi-malicious adversary
needs to follow the protocol specification, but has the liberty to decide the input
and random coins in each round) to a malicious protocol using non-interactive
zero-knowledge (NIZK) proofs in the CRS model with broadcast channels. In
particular, in each round, the adversary must prove (in zero-knowledge) that it
is following the protocol consistently with some setting of random coins. How-
ever, we cannot directly apply this round-preserving compiler since we do not
have broadcast channels. This limitation introduces additional complications in
our protocol design to preserve the round complexity while achieving malicious
security. We refer the reader to Sect. 5.2 for more details of the protocol and
other subtle issues we faced in our protocol design.

Special Cases. As we mentioned above, the two-round protocol of Gordon et
al. [28] with broadcast and PKI can be transformed into a (¢ +2)-round protocol
if the broadcast in the first round is instantiated by a (¢ + 1)-round protocol

134 S. Badrinarayanan et al.

over pairwise-private channels [17] and parties only send their messages to @ in
the second round. For ¢t = 1 and 2, we can achieve better than five rounds. For
t = 1, when) does not have input, we can design a two-round protocol which
crucially relies on the fact that at most one party is corrupted. The details are
deferred to the full version [7].

2.2 Overview of Lower Bounds

For each of our lower bound proofs, we design a special solitary function f that
cannot be computed with god. At a high level, we assume towards a contradiction
that there exists an MPC protocol II that can compute f with god. Next, we
analyze a sequence of scenarios which lead us to the final contradiction regarding
the properties that IT must satisfy. Here, we exploit the guarantees of correctness,
privacy and full-security (guaranteed output delivery). We carefully design the
function f and scenarios for each lower bound proof. For certain proofs, we
leverage a delicate probabilistic argument technique, which we elaborate below.

With Broadcast and no PKI. For our three-round lower bound with a broad-
cast channel and no PKI setup, we design a solitary function f(z1, 22, z3) among
parties Py, Py, and @ (output receiving party) that has an oblivious transfer fla-
vor. The function is defined as f(z1 = (mg,m1), 22 = b,x35 = L) := my, where
r3 = L denotes that Q has no input; (mg, m1) € {0,1}* denote a pair of strings
and b € {0, 1} denotes a single bit. We assume there exists a two-round protocol
II that computes f with god and consider three scenarios. The first scenario
involves a malicious P, who drops his private message towards) in Round 1
and aborts in Round 2. The second scenario involves a passive () who behaves
honestly but recomputes the output by locally emulating Scenario 1 in her head.
The security guarantee of god provided by IT allow us to argue that even if P,
does not communicate privately to @ in Round 1 and aborts in Round 2, @ must
still be able to compute the output on x5 i.e. the input with respect to which it
interacted with P; in Round 1. Intuitively, this implies that @ relies on the fol-
lowing messages to carry information about zo required for output computation
(i) P’s broadcast message in Round 2 and (ii) P»’s broadcast message in Round
1. However, we note that, both of these are also available to P; at the end of
Round 1 itself. This leads us to a final scenario, in that a passive P; can compute
the residual function f(z7,x2,73) for more than one choices of (z7,73), while
the input of honest P, remains fixed — which is the final contradiction. Notably,
our specially designed function f allows P; to derive Py’s input. We present the
full proof in Sect. 4.1.

Necessity of Broadcast in Round 1. To show the necessity of broadcast in
Round 1 in a three-round solitary MPC protocol with god (with broadcast and
no PKI), we use the same function f as above and assume there exists a three-
round protocol IT that computes f with god and uses the broadcast channel only
in Round 2 and Round 3 (and uses pairwise-private channels in all rounds). We

On the Round Complexity of Fully Secure Solitary 135

first consider a scenario with a malicious P», who only behaves honestly to P;
and pretends to have received a maliciously computed message from () in Round
1. In addition, P, aborts in Round 3. We show that an honest () in this scenario
must obtain f(z1,z2,x3) as the output, where x1, o9, x5 are the parties’ honest
inputs. First of all, @ must learn an output computed on the honest parties’
inputs 1 and x3 by the god property of II. The output is also w.r.t. P5’s honest
input xo because @’s view in this scenario is subsumed by another scenario
with a malicious (), where @) only behaves honestly to P; and pretends to have
received a maliciously computed message from P, in Round 1. Since the first-
round messages are only sent via pairwise-private channels, P; cannot distinguish
whether P, is malicious (first scenario) or @ is malicious (second scenario), and
Py’s view is identically distributed in both scenarios. Comparing the messages
received by () in the two scenarios, we can conclude)’s view in the first scenario
is subsumed by its view in the second scenario. Notice that a malicious @ in the
second scenario can only learn an output on the honest parties’ input z; and xo,
hence @ must learn f(x1,z2, 23) in both scenarios. The key takeaway is that Py’s
input can be considered as “committed” in its private message to P; in Round
1 and broadcast message in Round 2. This allows a semi-honest P; to emulate
Q@’s view in the first scenario and locally compute f(x1,z2, L). Our specially
designed f allows P; to derive honest Py’s input, violating the security of IT. A
more detailed proof is presented in Sect. 4.2.

Necessity of Broadcast in Round 2. For our result showing necessity of
broadcast in Round 2, we design a more sophisticated function f (see Sect.4.3
for the construction) and leverage a more involved probabilistic argument in our
proof. We assume there exists a three-round 5-party solitary MPC IT that com-
putes f with god against 2 corruptions which uses broadcast in only Round 1
and Round 3 (and uses pairwise-private channels in all rounds). The argument
involves two crucial observations (1) IT is such that if corrupt P; participates
honestly using input x; only in the broadcast communication and private com-
munication towards {Ps, Ps = @} in Round 1 (and sends no other messages
during IT), then there exists some x} such that the output obtained by Q is not
computed with respect to x7 with a sufficiently large (constant) probability. Intu-
itively, if this does not hold and for all z; the output is computed with respect to
z1, then it would mean that IT is such that {Ps, @} obtain sufficient information
to compute on x; at the end of Round 1 itself. This would make IT susceptible to
residual function attack by { P2, @} which violates security. (2) IT is such that if
corrupt { Ps, P, } pretend in Round 2 as if they have not received private commu-
nication from Pj; in Round 1, still, the output obtained by ¢ must be computed
on honest P;’s input x1. This follows from correctness of II. Next, we design a
final scenario building on (1) and (2) where an adversary corrupting {P;, Q}
obtains multiple outputs, with respect to both input z} # x} and z}; which
gives the final contradiction. Crucially, due to absence of broadcast in Round 2,
the adversary is able to keep the honest parties { Py, Ps, Py} on different pages
with respect to whether P; has aborted after Round 1 or not. Specifically, the

136 S. Badrinarayanan et al.

adversarial strategy in the final scenario exploits the absence of broadcast in
Round 2 to ensure the following - (a) view of honest {Ps, P;} is similar to the
scenario in (1), where they do not receive any communication from P; except
its broadcast communication in Round 1 and (b) view of honest P; is similar to
the scenario in (2). Here, P, receives communication from P; in both Round 1
and Round 2; but receives communication from {Ps, P4} in Round 2 conveying
that they did not receive P;’s private communication in Round 1 (the Round 2
messages from {Ps, P4} could potentially convey this information, depending on
protocol design). This inconsistency in the views of honest parties enables the
adversary to obtain multiple outputs.

With PKI and no Broadcast. The lower-bound arguments in the setting
with a PKI setup and no broadcast tend to be more involved as PKI can be
used to allow output obtaining party @ to have some secret useful for output
computation (as elaborated in the overview of 3-round lower bound above).
For our four-round general lower bound that holds for 3 [n/7] <t < n/2 and
t > 3, we assume there exists a three-round protocol II with god computing a
specially designed 7-party solitary function f (see Sect. 5.1 for the construction
of f). We analyze four main scenarios as follows. In Scenarios 1 and 2, {P;, Ps}
are corrupt and P; does not communicate directly to anyone throughout. The
crucial difference between them is in the communication of Ps in Round 2 to
{Pa, Ps, Py, Ps}: in Scenario 1, Pg acts as if he did not receive any communication
from P; in Round 1; in Scenario 2, Py pretends to have received communication
from P; in Round 1. We first show that in Scenario 1, there must exist some
x7 such that the output obtained by @ is not computed with respect to zj
with a sufficiently large (constant) probability. Intuitively, this holds because the
communication in Scenario 1 is independent of P;’s input. Next, we prove via a
sequence of hybrids that in Scenario 2, there also exists z] such that the output
is not computed on x] with a sufficiently large probability. This lets us infer a
critical property satisfied by II - if { Ps, Py, P5} do not receive any communication
directly from P; throughout IT and only potentially receive information regarding
Py indirectly via Pg (say Ps claims to have received authenticated information
from P; which can be verified by {Ps, Py, Ps} due to availability of PKI), then
@ obtains an output on some x| (# x7) with a sufficiently large probability.
Next, we consider an orthogonal scenario (Scenario 3) where {Ps, Py, Ps} are
corrupt and pretend as if they received no information from P; directly. Correct-
ness of IT ensures that () must obtain output on honest input of P, using the
messages from { Py, P2, Ps}. Roughly speaking, the above observations enable us
to partition the parties {Py, ..., Ps} into two sets {P;, Pa, Ps} and {Ps, Py, P5}.
Combining the above inferences, we design the final scenario where adversary
corrupts {P;, P>, @} and participates with z7. Here, P; behaves honestly only to
Ps (among the honest parties). The communication of corrupt parties is carefully
defined so that the following holds: (a) the views of {P3, Py, Ps} are identically
distributed to their views in Scenario 2, and (b) the views of {Py, Py, Ps} are
identically distributed to their views in Scenario 3. We then demonstrate that

On the Round Complexity of Fully Secure Solitary 137

(2 can obtain an output computed on x} as well as another output computed on
some zj # x7 by using the communication from {P;, Ps, Ps} and {Ps, Py, Ps}
selectively, violating the security of I1.

Finally, we observe that the above approach inherently demands the presence
of 3 or more corruptions. The main bottleneck in extending it to ¢ = 2 arises from
the sequence of hybrids between Scenario 1 and 2, which requires the presence
of an additional corruption besides {P;, Ps}. This shows hope for better upper
bounds (less than four rounds) for lower corruption thresholds. In this direction,
we investigated the cases of t = 1 and ¢t = 2 separately. We showed the necessity
of three rounds for ¢ = 1 when @ has input and for ¢ = 2 (irrespective of whether
Q@ has input). These lower bounds also employ the common approach outlined
above but differ significantly in terms of the associated scenarios. We refer to the
full version [7] for details. Notably, all the lower bounds also extend to arbitrary
correlated randomness setup.

3 Preliminaries

3.1 Notation and Setting

We use A to denote the security parameter. By poly(A\) we denote a polynomial
function in A. By negl()\) we denote a negligible function, that is, a function f
such that f(A) < 1/p(\) holds for any polynomial p(-) and sufficiently large A.
We use [z] to denote an encryption of z.

We consider a set of parties {P; ..., P,}. Each party is modelled as a prob-
abilistic polynomial-time (PPT) Turing machine. We assume that there exists a
PPT adversary who can corrupt up to ¢ parties where n/3 < t < n/2. We assume
throughout that the parties are connected by pairwise-secure and authentic chan-
nels and have access to a common reference string (CRS). Additional setup or
network assumption is explicitly mentioned in the respective sections.

The security definition of solitary MPC with guaranteed output delivery is
deferred to the full version.

3.2 Cryptographic Primitives

In our constructions, we need to use digital signatures, simulation-extractible
non-interactive zero-knowledge (NIZK) arguments, and decentralized threshold
fully homomorphic encryption (dTFHE). In this section, we only define the
syntax of dTFHE and the NIZK languages used in our constructions, and defer
their security definitions to the full version.

Syntax of dTFHE. We define a t-out-of-n decentralized threshold fully homo-
morphic encryption scheme with the following syntax as in [10].

Definition 1 (Decentralized Threshold Fully Homomorphic Encryp-
tion (dTFHE)). Let P = {P1,...,P,} be a set of parties. A dTFHE
scheme is a tuple of PPT algorithms dTFHE = (dTFHE.DistGen,dTFHE.Enc,
dTFHE.PartialDec, dTFHE.Eval, dTFHE.Combine) with the following syntax:

138 S. Badrinarayanan et al.

~ (pk;, sk;) « dTFHE.DistGen(1*,1% 4;7;): On input the security parameter A, a
depth bound d, party index i and randomness r;, the distributed setup outputs
a public-secret key pair (pk;,sk;) for party P;. We denote the public key of the
scheme as pk = (pkq|| - . - ||pk,,)-

— [m] < dTFHE.Enc(pk,m): On input a public key pk, and a plaintext m in
the message space M, it outputs a ciphertext [m].

- [y] < dTFHE.Eval(pk, C, [m1], ..., [m«]): On input a public key pk, a circuit
C of depth at most d that takes k inputs each from the message space and out-
puts one value in the message space, and a set of ciphertexts [m4], ..., [mx]
where k = poly(X), the evaluation algorithm outputs a ciphertext [y].

— [m : sk;] <« dTFHE.PartialDec(sk;, [m]): On input a secret key share sk; and
a ciphertext [m], it outputs a partial decryption [m : sk;].

- m/L «— dTFHE.Combine(pk, {[m : sk;] }ics): On input a public key pk and
a set of partial decryptions {[m : sk;]}ics where S C [n], the combination
algorithm either outputs a plaintext m or the symbol L.

NIZK Languages Used. In our solitary MPC protocols, we will consider two
NP languages L, Ly for the NIZK described below.

— NP Language L;:
Statement st = ([z], pk) Witness wit = (z, p)
Ry (st,wit) = 1 iff [x] = dTFHE.Enc(pk, z; p).

— NP Language Ls:
Statement st = ([« : sk], [z], pk, %) Witness wit = (sk, r)
Ra(st,wit) = 1 iff [« : sk] = dTFHE.PartialDec(sk, [2]) and
(pk, sk) = dTFHE.DistGen(1*, 1%, 4; 7).

4 With Broadcast and No PKI

In this section, we assume a network setting where the parties have access to a
broadcast channel in addition to pairwise-private channels. In terms of setup, we
assume that all parties have access to a common reference string (CRS). First,
we present a new lower bound of three rounds for solitary MPC with god in
Sect.4.1. Then we study whether it is possible to use fewer rounds of broadcast
and show in Sect.4.2 and Sect. 4.3 that broadcast is necessary in both the first
and second rounds. The above negative results are tight given the existing results
of [3,6,28,36], which we discuss in the full version [7].

4.1 Necessity of Three Rounds

We show that it is impossible to design a two-round solitary MPC with god in the
honest majority setting (in particular, n/3 < ¢t < n/2), assuming the presence
of pairwise-private channels and a broadcast channel. Our result holds in the
presence of any common public setup such as CRS, even against non-rushing
adversaries and irrespective of whether the output-obtaining party @ provides

On the Round Complexity of Fully Secure Solitary 139

an input or not. We discuss in the full version why the existing proofs of lower
bounds (three rounds) for standard MPC with god in the presence of an honest
majority [24,28,36] do not hold for solitary functionalities.

Theorem 1. Assume parties have access to CRS, pairwise-private channels and
a broadcast channel. Let n and t be positive integers such that n > 3 and n/3 <
t < n/2. Then, there exists a solitary functionality f such that no two-round n-
party MPC protocol tolerating t corruptions can compute f with god, even when
the adversary is assumed to be non-rushing.

Proof. For simplicity, we present the argument for the setting n =3 and ¢t = 1
below and elaborate on how to extend the proof to n/3 <t < n/2 later. Consider
a solitary function f(x1,x2,x3) among {P;, Ps, P3} where Q = P3 denotes the
output receiving party. We define f as f(x1 = (mg, m1), 22 = b,x3 = 1) := my,
where x3 = L denotes that @ has no input; (mg,m;) € {0,1}* denote a pair
of strings and b € {0,1} denotes a single bit. For the sake of contradiction,
suppose there exists a two-round 3-party solitary MPC with god, say II which
can compute f. Note that at most the adversary corrupts at most one party.

We consider three different scenarios of the execution of I1. For simplicity,
we assume the following about the structure of II: (a) Round 2 involves only
broadcast messages while Round 1 involves messages sent via both pairwise-
private and broadcast channels. This holds without loss of generality since the
parties can perform pairwise-private communication by exchanging random pads
in the first round and then using these random pads to unmask later broadcasts
[23]. (b) In Round 1, each pair of parties communicate via their pairwise-private
channels (any protocol where a pair of parties does not communicate privately
in Round 1 can be transformed to one where dummy messages are exchanged
between them). (¢) Round 2 does not involve any outgoing communication from
Q@ (as @ is the only party to receive the output at the end of Round 2).

Next, we define some useful notation: Let pc,_,; denote the pairwise-private
communication from P; to P; in Round 1 and b;_, denote the message broadcast
by P; in round r, where r € [2],{4,j} € [3]. These messages may be a function
of the crs as per protocol specifications. Let View; denotes the view of party P;
which consists of crs, its input x;, randomness r; and all incoming messages.

Following is a description of the scenarios. In each of these scenarios, we
assume that the adversary uses the honest input on behalf of the corrupt parties
and its malicious behaviour is limited to dropping some of the messages supposed
to be sent by the corrupt party. The views of the parties for all the scenarios are
shown in Table 3.

Scenario 1: The adversary actively corrupts P, who behaves honestly in Round
1 towards P; but doesn’t communicate privately to ¢ in Round 1. In more
detail, P, sends messages pcy_,q, b%_, according to the protocol specification
but drops the message pc,_,5. In Round 2, P» aborts.

Scenario 2: The adversary passively corrupts Q who behaves honestly through-
out and learns output f(z1,x9,x3). Additionally, @ locally re-computes the

140 S. Badrinarayanan et al.

output by emulating Scenario 1, namely when P, does not communicate pri-
vately to (@ in Round 1 and aborts in Round 2. Specifically, @) can locally
emulate this by discarding pc,_,5 (private communication from P, to @ in
Round 1) and b3_, (broadcast communication from P, in Round 2).
Scenario 3: The adversary corrupts P; passively who behaves honestly through-
out. P, also does the following local computation: Locally emulate the view
of @ as per Scenario 1 (from which the output can be derived) for various
choices of inputs of {P;, Ps} while the input of P i.e. x5 remains fixed. In
more detail, P; does the following - Let (pc, .;,b3) be fixed to what was
received by P; in the execution. Choose various combinations of inputs and
randomness on behalf of P; and P3. Consider a particular combination, say

{(@1,71), (@3,73)}. Use it to locally compute b}_,b}_, pc; 5, pcs ;. Next,

locally compute b?_, using the Round 1 emulated messages which results

in the complete view Views of) analogous to Scenario 1, where Views =

{crs, x3,73,b]__, béﬂ, PCi_3, bfﬂ} corresponds to the inputs (z7, z2, T3).

Table 3. Views of Pi, P2, Ps in Scenarios 1 — 3.

Scenario 1 Scenario 2 & 3

View Views Views View Views Views
Initial Input | (z1,71,crs) (22,72, crs) (z3,73,¢r8) | (z1,71,Cr8) (22,72, crs) (23,73, Crs)
Round 1 PCo15 PC31 | PC1—2s PC3—2s | PC1gs = | PC2—1s PC31s | PC1—2s PC3—2s | PC1 3y PCas,

b3, b3, bi_, b3, bi_,bs., |bi.,bi., bi_,bi_, bi_., b3
Round 2 - b?_, b?_, b2, b?_, b?ﬂ, b2,

The proof skeleton is as follows. First, we claim that if Scenario 1 occurs,
then @ must obtain f(x1,zq, 23) with overwhelming probability. If not, then IT
is vulnerable to a potential attack by semi-honest @ (that is captured in Scenario
2) which enables @ to learn information that he is not supposed to learn; which
violates security. Intuitively, this inference captures ’s reliance on P;’s messages
in Round 2 and P,’s broadcast in Round 1 to carry information about x5 required
for output computation. Note that this information is available to P; at the end
of Round 1 itself. Building on this intuition, we show that IT is such that an
adversary corrupting P; passively (as in Scenario 3) can compute f(r7,z2,23)
for any choice of (z7,x3), which is the final contradiction. We present the formal
proof and show how the proof can be extended for n > 3 and n/3 <t < n/2
(using player partitioning technique [34]) in the full version [7].

4.2 Necessity of Broadcast in Round 1

Now we show that any three-round n-party solitary MPC with god against ¢
corruptions must use broadcast channel in Round 1, where n/3 <t < n/2.

On the Round Complexity of Fully Secure Solitary 141

Theorem 2. Assume parties have access to CRS and pairwise-private channels.
Letn and t be positive integers such thatn > 3 andn/3 <t < n/2. There exists a
solitary functionality f such that no three-round n-party solitary MPC' protocol
securely computes [with god against t corruptions, while making use of the
broadcast channel only in Round 2 and Round 3 (pairwise-private channels can
be used in all the rounds).

Proof. For simplicity, we present the argument for the setting n =3 and ¢t = 1
below. The proof can be extended for n/3 < t < n/2 using player partitioning
technique. Consider the function f(x1, 2, 23) defined as in the proof of Theo-
rem 1, i.e. f(x; = (mo,m1),22 = b,xg = L) := my. Suppose for the sake of
contradiction that there exists a three-round solitary MPC protocol with god,
say II that computes f and utilizes broadcast channel only in Rounds 2 and 3
(i.e., IT uses only pairwise-private channels in Round 1, and uses both broadcast
and pairwise-private channels in Rounds 2 and 3).

Without loss of generality, we can assume that I has the following structure:
(a) No broadcast messages are sent during Round 3, and Round 3 only involves
private messages sent to Q. This is without loss of generality as any solitary MPC
that uses broadcast in the last round can be transformed into one where the
messages sent via broadcast are sent privately only to @ (as @ is the only party
supposed to receive output at the end of Round 3). (b) Round 2 only involves
broadcast messages. This is also without loss of generality since the parties can
perform pairwise-private communication by exchanging random pads in the first
round and then using these random pads to unmask later broadcasts [23].

We analyze three different scenarios of the execution of I1. Before describing
the scenarios, we define some useful notation. We assume (rq,r2,73) are the
randomness used by the three parties if they behave honestly during the protocol
execution. Let pc,;_,; where i, j € [3] denote the pairwise-private communication
from P; to P; in Round 1 if P; behaves honestly using input «; and randomness r;.

—_~—

Similarly, let pc;_,; denote the pairwise-private communication from P; to P; in
Round 1 if P; follows the protocol but uses some other input z; and randomness
7. Let b, PSP+ where i € [3] denote the broadcast communication by
P; in Round 2 if P; behaves honestly using input z and randomness r, and
received pc;_; from P;_; and pc;,; from P ; in Round 1 (let Py := P3 and
Py := Py). Lastly, let pc{_ 5 where i € [2],¢ € [3] denote the pairwise-private
communication from P; to @ in Round 3 in Scenario . A party’s view consists
of crs, its input, randomness and incoming messages. Following is a description
of the three scenarios. The views of the parties are described in Tables4 — 5.

Scenario 1: Adversary corrupts Ps. In Round 1, P» behaves honestly to P; using
input x5 and randomness ry while behaving dishonestly to @ using (z3,73).
In other words, P» sends pcy_,; to P, and p/(g;:g to Q.
In Round 2, P, broadcasts a message as if he behaved honestly in Round 1 to
both parties (using (z2,72)) and received a message from @ computed using

x2,72,PC1_,2,PC3_,2

(x3 = L,73) in Round 1. Formally, P, broadcasts b,
In Round 3, P, aborts.

142 S. Badrinarayanan et al.

Scenario 2: Adversary corrupts @. In Round 1, @ behaves towards P; using
(x3 = L,rs) while behaving towards P, using (z3 = L,73). In other words,
@ sends pcy_,; to Py and FE;:Q to Ps.
In Round 2, @ broadcasts a message as if he behaved honestly in Round 1 to
both parties (using (x3 = L,r3)) and received a message from P, in Round
1 using (¥2,73). Formally, @ broadcasts by P1—s:P%2=3,

Scenario 3: Adversary passively corrupts P; behaving honestly using (x1,71) in

all rounds.
Table 4. Views of {P1, P>, Q} in Scenarios 1 and 2.

Scenario 1 Scenario 2

View; Views Views View; Views Views
Initial Input | (z1,71,crs) (2,72, crs) (x3 = L,r3,crs) | (z1,71,¢rs) (2,72, crs) (z3 = L,7r3,crs)
Round 1 PCo15PC31 PCi_2, PC3_2 PCi_3, Pfc;/s PCy.1,PC31 PCi_2, Pfcs\jz PCi_3,PC3
Round 2 b2 T3P 2 P | TP 1Pt | pTTLPea 1 P | TRT2 P2 P2 | TP 1P | LT LPe 1P

bgs«fa,pqﬂs-l’waa bﬂ;s,mmqag«wzﬂg b;w‘z,pt;ﬂzymgﬂz b§3,T3-PC|H3~PCZa3 b;s-m«vqﬂgymﬂs b;z«m,pqﬂz-PCsaa
Round 3 - - PC}a:x - Pcfﬁzsv PCga:s

Table 5. Views of {P1, P>, @} in Scenario 3.

View1 Views Views

Initial Input | (z1,71,crs) (z2, 12, cCrs) (z3 = L,rs,crs)

Round 1 PCy_1,PC31 PCi_.2,PC3_2 PC1_3,PCo.3
Round 2 b;21T27pC1~>2vpc3~>2 biltlw”'laPCQ*q,Pngq bﬂflyrlypczﬂlypcaﬂl
b§31’“3’PC1—>37P°2—>3 b§377‘37PC1_;3aPC2_.3 b§2ﬂ“2,PC1_>27P53_>2
Round 3 - It o3
PCy_.3,PCo .3

The proof skeleton is as follows. First, we claim if Scenario 1 occurs, then Q)
must obtain f(x1, z3, 1) with overwhelming probability. Due to the god property
of IT, the honest @) in Scenario 1 must learn an output on the honest P;’s input,
namely z;. The output should also be computed on P,’s honest input x5 because
@’s view is Scenario 1 is subsumed by its view in Scenario 2, where the malicious
(Q can only learn an output computed on the honest P,’s input. Intuitively,
Py’s input is “committed” in its private communication to P; in Round 1 and
broadcast message in Round 2. This allows a semi-honest P; in Scenario 3 to
emulate @’s view in Scenario 1 and learn f(z1, 22, L), which compromises the
security of IT. We defer the formal proof to the full version [7].

On the Round Complexity of Fully Secure Solitary 143

4.3 Necessity of Broadcast in Round 2

In this section, we show that any three-round n-party solitary MPC with god
against t corruptions must use broadcast channel in Round 2 when 2 [n/5] <
t < n/2 (note that ¢ > 2). Interestingly, the use of broadcast in Round 2 is not
necessary for the special case of single corruption (refer full version [7]).

Theorem 3. Assume parties have access to CRS. Let n and t be positive inte-
gers such that n > 5 and 2[n/5] < t < n/2. Then, there exists a solitary
functionality f such that no three-round n-party solitary MPC protocol tolerat-
ing t corruptions securely computes f with god, while making use of the broadcast
channel only in Round 1 and Round 3 (pairwise-private channels can be used in
all the rounds).

Proof. We present the argument for the setting of n = 5 and ¢t = 2 below, and
elaborate later on how to extend to 2[n/5] < ¢t < n/2. Consider the solitary
function f(z1,...,25) among {P,..., Ps} where Q = P5 denotes the output
receiving party. We clarify that our argument holds irrespective of whether f
involves an input from @ or not. First, set k¥ = 10 (looking ahead, we set k to
be sufficiently large for the probability arguments to go through). Let f(z; =
(ey)y w2 = (29, 23), 23 = (28,28),24 = L,z5 = 1) be defined as follows,
where x, € {0,1}, z,, 3, 23,29, 23 € {0, 1}F and 29 # 2}, 29 # xi:

(@l 23)ifz.=0
f(fl,...,fES)* {(Z‘T@l‘%, le))) ifl‘C:1 .

Suppose for the sake of contradiction that there exists a three-round 5-party
solitary MPC protocol with god against two corruptions, say II that computes
f and utilizes broadcast channel only in Round 1 and Round 3 (i.e. IT uses
broadcast and pairwise-private channels in Round 1 and Round 3; and only
pairwise-private channels in Round 2).

Without loss of generality, we assume for simplicity the following structure for
IT: (a) Round 3 involves only private messages sent to) - no broadcast messages.
This is w.l.o.g as any solitary MPC that uses broadcast in last round can be
transformed to one where the messages sent via broadcast are sent privately
only to @ (as @ is the only party supposed to receive output). (b) Round 2 does
not involve messages from P; (i € [4]) to @ (such a message is meaningful only
if @ communicates to P; in Round 3, which is not the case as per (a)).

We consider an execution of IT with inputs (x1,...,x5) where z; denotes the
input of P;. In the above definition of f, x4 = x5 = L indicates that P, and P;
do not have any inputs. Next, we analyze four different scenarios. Before describ-
ing the scenarios, we define some useful notation. Let b} denote the broadcast
communication by P; in Round 1 when P; behaves honestly. In Rounds 1 and
2, let pcj_,; where r € [2],i,j € [5] denote the pairwise-private communication
from P; to P; in Round r, as per an execution where everyone behaves honestly.

Next, we use pc? ; to denote the messages that P; (i € [5]) is supposed to send

in Round 2 to P; (j € [4] \ ¢) incase P; did not receive Round 1 message from

144 S. Badrinarayanan et al.

P;. Note that this communication could be potentially different from what P;
would send in an honest execution. Lastly, since Round 3 messages to @ could
potentially be different for each of the four scenarios, we index them addition-
ally with ¢ indicating the scenario i.e. pc?£5 denotes P;’s Round 3 message to
Q in Scenario ¢ (j € [4],¢ € [4]). These messages may be a function of the com-
mon reference string (denoted by crs). A party’s view comprises of crs, its input,
randomness and incoming messages.

Following is a description of the scenarios. In each of these scenarios, we
assume that the adversary uses the honest input on behalf of the corrupt parties
and its malicious behaviour is limited to dropping some of the messages that
were received or supposed to be sent by the actively corrupt parties. The views
of the parties are described in Tables6, 7, 8 and 9.

[Scenario 1: Adversary corrupts P;. In Round 1, P; behaves honestly w.r.t his
broadcast communication and private message towards P, and), but drops
his private message towards P3 and P,. Further, P; remains silent after Round
1 (i.e. does not communicate at all in Round 2 and Round 3). In other words,
in Scenario 1, P; computes and sends only the following messages honestly :
by, pei_, and pej_s.

Scenario 2: Adversary corrupts { Py, P»}. P; behaves identical to Scenario 1. P,
behaves honestly except that he drops his Round 3 message towards Q.

Scenario 3: Adversary corrupts { Ps, P4}. In Round 1, {P3, P,} behave honestly
as per protocol steps. In Round 2, {P;, P4} only communicate to Ps, towards
whom they pretend that they did not receive Round 1 message from P; (i.e.

P; sends pc? , to P» where i € {3,4}). Lastly, {Ps, P4} remain silent in
Round 3 i.e. do not communicate towards Q.

Scenario 4: Adversary corrupts {P;,Q}. @ behaves honestly throughout the
protocol. P; behaves as follows: In Round 1, P; behaves identical to Scenario 1
(i.e. behaves honestly w.r.t its broadcast communication and private message
to Py and Q; but drops his private message to P3 and P;). In Round 2, P,
behaves honestly only to P, (but does not communicate to others). Lastly,
Py sends its Round 3 message to @ as per Scenario 3 (i.e. as per protocol
specifications when P; does not receive Round 2 message from Ps and Py).
The communication in Round 3 among the corrupt parties is mentioned only
for clarity.

Table 6. Views of {Pi,..., Ps} in Scenario 1.

View; Views Views View, Views
Initial Input | (21,71, crs) (2,72, crs) (z3,73,Crs) (z4,74,crs) (5,75, Crs)
Round 1 [{bj}jepngys | {bjliesiners | {bjliesney {bj }semniars {bj}iein s}
{pcj_itiesniy | {Pci_atieisnizy | {PCsticninay | {Pej_atiesniay | {PC_s}icinis)
Round 2 {Fﬁfc/l}]e{z,s} {lf?c/z}m{s} {%}16{2,5} {lffc/z;}]e(z,m -
{pci_itiersay [{P stiery [{PS_s}jeray {pci_a}ie -
Round 3 - - - - {Pciis}]e{z.s.z;}

Table 7. Views of {Pi, ..

On the Round Complexity of Fully Secure Solitary

., Ps} in Scenario 2.

145

View; Views Views Viewy Views
Initial Input | (z1,71,crs) (z2,72,crs) (23,73, Crs) (z4,74,cCrs) (5,75, Crs)
Round 1 [{bj};epninys | {b5}iemineys | {biliemniss {bj}semnays {bj}semnisy
{pci_1}semnay | {Pejoadsengz | {Pei_sliciniay | {PCj_sbseishiiay | {PSstiem s
Round 2 {pci_ibjezsy {Pciokiesy {P_shiczay [{Pi_abicrzny -
{pei_itiesar [{pciabieray [{P slicy {pci_atiern -
Round 3 |- - - - {pci 25} e a0y

Table 8. Views of {Pi,..., Ps} in Scenario 3.

View; Views Views Viewy Views
Initial Input | (1, r1,crs) (22,72, crs) (23,73, crs) (4,74, crs) (25, 75,crs)
Round 1 | {bj}jesnays | {bjliemina b | {biesnis | {bjhennsy
{pc) 1 bieiniy | {Pejaticisnizy {pej _s}icians | {pC)_abicmnisr | {PSs}iens
Round 2 {pcfﬂl}]g(z,s} {chgz}je{l,fm}: {PCfﬂg}je{x,‘;} {pcfa;j}je{l.lﬁ} {Pch4}je{1.2.5} -
Round 3 - - - - {chﬁs}ge{lﬂ}

Table 9. Views of {Py,...,Ps} in Scenario 4.

View; Views Views Viewy Views
Initial Input | (z1,71,crs) (z2,72,crs) (z3,7s,crs) (z4,74,cCrs) (5,75, Crs)
Round 1 b hesniy: {bihienney | {bjYicEnes {bj e a3 {bJ}sen o)
{pcj_itienmngy | {PCj_atiennz | {PCi_stienna | {PCj_absemnaiay | {PCj_s}icnn sy
Round 2 {If?\j}je{zi} {lfzzz}]e(l.s} {lf?\;s}jg{z“s) {lﬁj}jg{z,s} -
{pei i tieay [PSS atieay | {PS stieqs {pc?_u}jersy
Round 3 - - - - {Pcifvs}Je{lﬁl} = {pc?ﬁs}]e{l,‘z}
- - - - {pc?fvﬁ}]e{:iv/l} = {pciﬁs}Je{&ﬂ

The proof skeleton is as follows. First, we claim that there exists an 2} €
{0,1} and 2% € {0,1}* such that if Scenario 1 occurs with respect to x; =
(%, x¥) and uniformly randomly sampled zo and x3, then the output obtained
by @ must be computed with respect to =z with a sufficiently large (constant)
probability. Intuitively, if for all . and «,., the output of Scenario 1 was computed
on x., then it would mean that {P,, @} have sufficient information about x. at
the end of Round 1 itself. This would make IT vulnerable to a residual function
attack by {P2,@Q}. Next, we claim the same statement also holds for Scenario
2 (with a different probability). Regarding Scenario 3, correctness of IT lets us
infer that must compute output on the input x; = (x,,x.) of honest P;.
Lastly, we argue that @’s view in Scenario 4 subsumes its views in Scenario 2
and Scenario 3. This would allow corrupt { Py, @} (who participate with z, = =)
in Scenario 4 to obtain multiple outputs i.e. output with respect to both =z (as
in Scenario 2) and x} (as in Scenario 3), which contradicts security of IT. This
completes the proof sketch. We present the formal proof and show its extension
to 2[n/5] <t < n/2 in the full version [7]. Note that for certain cases, such as

146 S. Badrinarayanan et al.

n = 6, this range of values of (n,t) is not meaningful. However, this is relevant
for sufficiently large values of n.

5 With PKI and No Broadcast

In this section, we consider the setting where the parties only have access to
pairwise-private channels. In terms of setup, we assume that all parties have
access to a pubic-key infrastructure (PKI) and a common reference string (CRS).
We first present a lower bound of four rounds for solitary MPC with god. Then
we present a five-round construction that works for any n and ¢ < n/2. Next,
we elaborate on a non-constant round protocol (i.e. (¢ 4+ 2) rounds) that can be
derived from the protocol of [28]. While the former upper bound significantly
improves over the latter for most values of (n,t), the latter achieves better round
complexity for special cases of ¢ < 2.

5.1 Necessity of Four Rounds

In this section, we assume a network setting where the parties have access to
pairwise-private channels and PKI. We show that when 3 [n/7] <t < n/2, four
rounds are necessary for n-party solitary MPC with god against ¢ corruptions.
This holds irrespective of whether) has input or not and even if the adversary
is non-rushing. However, the argument crucially relies on the fact that ¢ > 3
(details appear at the end of this section) which leads us to conjecture that
there is a potential separation between the cases of ¢t < 2 and ¢t > 3 for solitary
MPC. We investigate the special cases of ¢ < 2 in the full version [7]. The
impossibility for the general case is formally stated below.

Theorem 4. Assume parties have access to CRS, PKI and pairwise-private
channels. Let n,t be positive integers such that n > 7 and 3[n/7] <t < n/2.
Then, there exists a solitary functionality f such that no three-round n-party
MPC protocol tolerating t corruptions can compute f with god, even if the adver-
sary is assumed to be non-rushing.

Proof. For simplicity, we consider the setting of n = 7 and ¢ = 3 (extension
to any 3[n/7] <t < n/2 appears in the full version). Consider the solitary
function f(z1,,...,27) among {P,..., P;} where Q = P; denotes the output
receiving party. We clarify that our lower bound argument holds irrespective
of whether f involves an input from Q. First, set k& = 10 (looking ahead, we
set k to be sufficiently large for the probability arguments to go through). Let
fley,m = Lizz = (2%, 28), 24 = (2%, 2)),25 = L, 26 = (20, 2%),27 = L) be
defined as follows, where 1 € {0,1}, 29, 23,29, 2}, 23,28 € {0,1}*F and 29 #
3, T4 # T4, TG # TG

(29,29,23) ifz; =0

flz1,... z7) :{

(3, zh,28) ifz =1

On the Round Complexity of Fully Secure Solitary 147

In the definition, zo = x5 = x7y = L indicates that P, Ps, Py do not have
any inputs. Suppose for the sake of contradiction that there exists a three-round
solitary MPC protocol with god, say Il that computes f.

Without loss of generality, we assume that IT has the following structure: (a)
Round 3 involves only messages sent to @; (b) Round 2 does not involve messages
from P; (i € [6]) to @ (such a message is meaningful only if @ communicates to
P; in Round 3, which is not the case as per (a)).

We counsider an execution of IT with inputs (z1,...,27) where x; denotes
the input of P; and analyze four different scenarios. Before describing the sce-
narios, we define some useful notation. In Rounds 1 and 2, let pcj_,; where
r € [2],{i,j} € [7] denote the pairwise-private communication from P; to P; in
Round r, as per an execution where everyone behaves honestly. Next, we use

—_—~—

pc? . to denote the messages that P; (i € [7]) is supposed to send in Round 2
to P; (j € [6]\ ¢) incase P; did not receive Round 1 message from P;. Note that
this communication could be potentially different from what P; would send in
an honest execution. Lastly, since Round 3 messages to @ could potentially be
different for each of the four scenarios, we index them additionally with ¢ indi-
cating the scenario i.e. pc?£7 denotes P;’s Round 3 message to @ in Scenario
£ (j € [6],€ € [4]). These messages may be a function of the common reference
string (denoted by crs) and the PKI setup. Let «; denote the output of the
PKI setup (or more generally, the output of an arbitrary correlated randomness
setup) to party P;. A party’s view comprises of crs, «;, its input, randomness
and incoming messages.

Due to the involved nature of the scenarios, we begin with an intuitive
description. Broadly speaking, this argument involves partitioning the parties
{P,..., Ps} into two sets { Py, P, Ps} and {Ps, P4, P5}. Looking ahead, the final
scenario is designed in a manner that allows a corrupt @ to obtain: (i) output
with respect to some input of P; using the communication from {P;, Ps, Ps}
and (ii) output with respect to a different input of P; using the communication
from {Ps, Py, Ps}. Tracing back, we carefully design the other scenarios such
that Scenarios 1 and 2 let us conclude that if P; behaves honestly only in its
messages to Pg, then there must exist some z} € {0,1} such that the communi-
cation from {Ps, Py, P5} to @ enables @) to obtain output with respect —z7 with
a sufficiently large probability. On the other hand, Scenario 3 involves corrupt
{Ps, Py, Ps} who pretend to have received no message from P, which lets us
conclude that the messages from {P;, Ps, Ps} in such a case must enable @ to
obtain output with respect to honest input x; of P,. Combining the above two
inferences in the final scenario lets us reach the final contradiction.

Following is a description of the scenarios. In each scenario, on behalf of the cor-
rupt parties, we assume that the adversary uses the honest input and its mali-
cious behaviour is limited to dropping some of the messages that were received
or supposed to be sent. The views of the parties across various scenarios are
described in Tables 10, 11, 12 and 13.

148 S. Badrinarayanan et al.

Scenario 1: Adversary corrupts {P1, Ps}. P; does not communicate throughout
the protocol. Ps behaves honestly in Round 1 and Round 2 (thereby would

send pcg_; for j € [5]) and aborts (does not communicate) in Round 3.

Scenario 2: Adversary corrupts {P1, Ps}. P does not communicate throughout
the protocol. Ps behaves honestly in Round 1 and Round 2, except that Py
pretends to have received Round 1 message from P; (thereby would send
pcZ . ; for j € [5]). Note that it is possible for FPs to pretend in such a manner
as adversary corrupts both P, Ps. Lastly, P aborts in Round 3.

Scenario 3: Adversary corrupts {Ps, Py, Ps}. All corrupt parties behave honestly
in Round 1. In Round 2, {Ps, Py, Ps} only communicate towards Pg, towards
whom they pretend that they did not receive Round 1 message from P; (i.e.

—_~—

P; sends pc?_4 to Ps for i € {3,4,5}). Lastly, {Ps, Py, Ps} abort in Round 3.
Scenario 4: Adversary corrupts {P;, P, @} who do the following:®

Round 1: P; behaves honestly only to { P2, Ps, @} (only Ps among the honest
parties). P» and @ behave honestly.

Round 2: P; behaves honestly only to {Ps, Ps, Q}. P> and @ pretend towards
{Ps, Py, Ps} as if they did not receive Round 1 message from P; (i.e. send
pc;; to Pj for i € {2,7}, j € {3,4,5}). Towards {Py, Py, Ps} (only Ps
among honest parties), P» and @ act as if Round 1 message had been
received from Py (i.e. send pci_; to P; for i € {2,7}, j € {1,2,6} \ i).

Round 3: P; and P, drop the Round 2 messages obtained from {Ps, Py, Ps}
(to emulate Scenario 3) and communicate to @ accordingly.

Table 10. Views of {P; ... P;} in Scenario 1.

View; Views Views Views Views Views Views

Initial Input | (z1,71,crs, 1) | (22,72, crs, a2) (23,73, crs, a3) (24,74, Crs, 004) (25,75, crs, as) (26,76, Crs, avg) (z7,77, 18, €O

Round 1 | {pc; i }iermny | {Pej_atiemiay | {Pej_stiermnia | (P _abiemniiay | {pe) s}iermasy | {Pej_stiemirer | {Pej_r}iem i

Round 2 | {pci 1 }jemvan | {PeSaticmaey | {peiaticmnam | (P aticrmnoa | (PSS s}iemsy | {PSS }iemiiey |~

Round 3 {pe) s} 23,05
Table 11. Views of {P; ... P;} in Scenario 2.

View; Views Views Viewy Views Viewg Viewr
Initial Input | (z1,71,crs, 1) (22,72, crs, a) (23,73, Crs, o) (4,74, crs,) (x5, 75, crs, as) (6,76, crs, ag) (27,77, 15, 7))
Round 1 | {pc i biernan | {pejaliermey | {pejsliemum | {pej aliemua | {pejsliemps | {pej sliempe | {pg rhiemn
Round 2 {pci i tietzaasn [P _abicaasn [{PS_stierzasm [{PC_i}ier2am) | {PC_sticrzaam [{PC) _slict2a.a5.m |~

PCh—1 PCh—2 PCi—s PCi—a PCi_s
Round 3 - - - - - - {PC‘;i':}Je(z,:u.n}

8 Generally, communication between corrupt parties need not be specified but we
include it here for easier understanding of Table 13.

On the Round Complexity of Fully Secure Solitary 149

Table 12. Views of {Pi ... Pr} in Scenario 3.

View; Views Views Views Views Viewg Viewr
Initial Input | (z1,71,¢rs,a1) | (22,72, crs, az) (23,73, crs, a3) (24,74, Crs, cug) (25,75, cr5,05) (z6,76,crs,a6) | (z7,77, 15,007
Round 1 | {pcj_}eimniny | {PCj_atietmnizy | {PCj_shiemnisy | {pCi_alicrniar | {Pcj_stiemnisy | (P a}iermner | {PCr}iermnim
Round 2 {pci i }ierzem | {P)aticnien | {P_s}ici267) | {PC—a}ieti20m | {PSslicq126m {EE;;(}}VE(I,QJ)
{Pcfae}vs(a,aks}
Round 3 - - - - - - {pcl:fﬂ}]C{LZ,G}

Table 13. Views of {Pi ... Pr} in Scenario 4.

View; Views Views Viewy Views Views Viewr
Initial Input | (z1,71,crs,a1) | (w2, r2,crs,a2) | (23,73, crs, az) (4,74, Crs, 1) (25,75, cr5, Q5) (z6,76,Crs,a6) | (w7,77,Cr5, 007)
Round 1 {pcj_ilierniy | {pejalieimnizy | {P)sticmninsy | {Pej—atieimniiay | {Pej_s}icrnisy | {Pi—sticmisy | {PC)—r}iemniny
Round 2 {p i heas [{PC_aticasy | (PG stierzanny | {PSubierzasmn {PS shzaan |[{PC_cliczasy
{DCJQA'I}]E(QYGJ} {chzaﬁ;e('vﬁ,'r} Pcéas PC§H4 Pcéas {pCJZaGLE(I.ZJ)
Round 3 - - - - - - {PC?ly = Pcfﬁv}.ze(l.z.c)
{pei s =pe) o liersas)

The proof outline is as follows. First, we show that there exits x} € {0,1}
such that if Scenario 1 occurs with respect to 7 and uniformly randomly sam-
pled z3,x4,x6, then the output obtained by @ is computed on —z] with a
sufficiently large (constant) probability. Next, we show this is also the case
for Scenario 2 (with a different probability). Since this inference may appear
counter-intuitive, we elaborate the argument in some detail below. Note that
the difference between Scenario 1 and 2 lies in the communication from Py to
honest parties { P, Ps, Py, Ps} in Round 2. While in the former, P acts as if he
did not receive Round 1 message from Pi; in the latter he pretends as if he did
receive Round 1 message from P;. We define a sequence of hybrids hyb,, ..., hyb,.
Specifically, hyb, and hyb, refer to Scenario 1 and 2 respectively and hyb, is same
as hyb, ; (i € {1,...,4}) except that Ps acts towards P,y that he did receive
Round 1 message from P;. We show that in each hybrid, the output obtained by
Q is w.r.t. ~z} with a sufficiently large (but slightly different) probability. Next,
if Scenario 3 occurs, then the output obtained by () must be computed on x
(honest input of P;) due to correctness of IT. Lastly, we show that such a proto-
col IT is susceptible to an attack by {P;, P», @} which allows @ to obtain both
the above evaluations of f (i.e., on both a7 and —x7), which is a contradiction
to security of II. We defer the formal proof to the full version [7].

5.2 General Five-Round Protocol

In this section, we present a five-round solitary output MPC protocol with
guaranteed output delivery that works for any n in the presence of an hon-
est majority - that is, any ¢ < n/2 where n is the number of parties and ¢
is the number of corrupt parties. Our protocol uses the following primitives: a
(& +1)-out-of-n decentralized threshold FHE scheme dTFHE = (dTFHE.DistGen,
dTFHE.Enc,dTFHE.PartialDec,dTFHE.Eval, dTFHE.Combine), a digital signa-
ture scheme (Gen, Sign, Verify), and a simulation-extractible NIZK argument

150 S. Badrinarayanan et al.

(NIZK.Setup, NIZK.Prove, NIZK.Verify). We use the NIZK argument for two
NP languages Li,Ls defined in Sect.3.2. All of them can be built assuming
LWE [10,11,38]. Formally, we show the following theorem:

Theorem 5. Assuming LWE, protocol Ils_ ound described below is a five-round
secure solitary output MPC' protocol with god with a PKI setup and pairwise-
private channels. The protocol works for any n, any function and is secure
against a malicious rushing adversary that can corrupt any t < n/2 parties.

Overview. Consider n parties Pi,..., P, who wish to evaluate function f :
({0,13M)""1 — {0,1}*. We also denote P, as the output receiving party Q.
In some places, we use the notation msg™/ to indicate that the message was
sent by party P; to P;. At a high level, our protocol works as follows. In Round
1, each party P; sends to every other party a dTFHE encryption [z;] along
with a NIZK argument 7; proving that the encryption is well formed. On top of
that, P; also attaches its signature o; < Sign(skey;, ([#:],7;)). In Round 2, each
party sends all the messages it received in Round 1 to @. In Round 3, @ first
initializes a string msg = L and does the following for each i € [n]: if it received
a valid message from P; in Round 1, (where valid means the signature o; and
the NIZK m; verify successfully) it includes the message in msg and sets a value
ct; = [a;]. Else, in Round 2, if a different party P;,, forwards a valid message
([z;]r =", 7a=n, gh1=") received from P; in Round 1, include that in msg and
set ct; to be [z;]" ™. If no such i; exists, set ct; = L and append L to msg.
Then, @ sends msg and a signature on it omsg to all parties. In Round 4, each
party sends the tuple received from @ in Round 3 to every other party. Finally,
in Round 5, each party P; sends its partial decryption (along with a NIZK) on
the homomorphically evaluated ciphertext [y] = dTFHE.Eval(f,cty,...,ct,) if:
(i) in Round 3, @ sent (msg, 0msg) such that omsg verifies, (ii) it did not receive
a different tuple (msg’, omser) from another party in Round 4 such that omsg
verifies, (iii) in the string msg, every tuple of the form ([z;],7;,0;) is valid, (iv)
for every party Pg, if P; received a wvalid message from P, in Round 1, then
in @’s Round 3 message msg, there must exist some wvalid tuple of the form
([=3], 7., o) on behalf of Py (not necessarily the one P; received in Round 1).
After Round 5, @ combines all the partial decryptions (if the NIZK verifies)
to recover the output. Our protocol is formally described below. We defer the
security proof to the full version [7].

CRS: Send crs « NIZK.Setup(1?) to every party.
PKI Setup:

— For each i € [n]: sample (pk;,sk;) «— dTFHE.DistGen(1*,14,4;7;) and (vkey,,
skey;) < Gen(1?).

— Public key: pk = pky || ... [[pk,, and {vkey; }ic[n]-

— Secret keys: (sk;, r;, skey;) to party P; for each i € [n].

Inputs: For each i € [n], party P; has an input z; € {0, 1}*.

On the Round Complexity of Fully Secure Solitary 151

Protocol:

1. Round 1: For each i € [n]:
— P; computes [z;] <« dTFHE.Enc(pk, z;; p;) using randomness p;, m; «—
NIZK.Prove(crs, st;, wit;) for st; € Ly where st; = ([x;], pk) and wit; =
(i, pi)-
— Then, compute o; < Sign(skey,, ([z;], 7)) and send ([z;], 7;, 0;) to every
party.
2. Round 2: For each i € [n], P; sends all the messages it received in Round 1
to party P,(= Q).
3. Round 3: Party P,(= @) does the following:

— Define strings msg, cty,...,ct, as L.

— For each i € [n], let {([z;]"~"™, 75", 057™)}jem\ i} denote the message
received from P; in Round 2 and ([z;]'~", 7i~" 0¢=") denote the mes-
sage received from P; in Round 1.

— For each j € [n], do the following:

o Let {([z;]'~" w7 07", o, ([ay]" ", a0 7™)} be the

messages received across both rounds on behalf of party P;.

e Pick the lowest i1 such that Verify(vkey,, ([2;]" ", W;lﬁn), 0;-1%”) =

1 and NIZK Verify(crs, 7r“H” ,stj) = 1 for st; € L; where st; =

(%xj%flﬁn,plz). nSeti ctjn):: [z;]*~" and msg := msg|“Party j 7|
:L'j zlﬁnvﬁjlﬁ , jl—’

e If no such i; exists, set msg = msg||“Party j ”|| L.
— Compute omsg < Sign(skey,,, msg). Send (msg, omsg) to all parties.
— Set [y] = dTFHE.Eval(pk, f,cty,...,ct,)."
4. Round 4: For each i € [n — 1], P; sends the message received from @ in
Round 3 to every party.
5. Round 5: For each i € [n — 1], P; does the following:
— Let {(m;gj_‘i, thsg)}je[n 1)\{s} be the messages received in Round 4 and
(msg" ™", on2’) be the message from @ in Round 3.
— If Verify(vkey,,, msg" ", on2?) # 1 (OR) msg"~" is not of the form
(“Party 17 ||m1|| ... |[“Party n ”||m,,), send L to @ and end the round.
— Output L to @ and end the round if there exists j # n such that:
o msgi ™% £ msgn? (AND)
o Verify(vkey,,, msg’ ™", 075") = 1 (AND)
e msg/ % is of the form (“Party 1 7|my,...,||“Party n”|m,). This
third check is to ensure that a corrupt P; doesn’t re-use a valid sig-
nature sent by @ in the first round as its message in Round 4.
— Define strings ctq,...,cty.
— Parse msg" % as (“Party 1 7||my, ..., | “Party n ”||m,).
— For each j € [n], do the following:
9 Let S = {ilct; = L}. Here, we actually homomorphically evaluate the residual
function fs(-) that only takes as input {z;};¢s and uses the default values for all
indices in the set S. For ease of exposition, we skip this notation in the rest of the
protocol and proof.

152 S. Badrinarayanan et al.

e Ifin Round 1, P; received ([z;], 7;,0;) from P; such that Verify(vkey,
([zj],7j),0;) = 1 and NIZK.Verify(m;,st;) = 1 for st; € Ly where
st; = ([z;], pk), set bit; = 1. Else, set bit; = 0.

o If my =1:

*If bit; = 1, send L to @ and end the round.
* Else, set ct; = L. ‘
o If m; = ([z;]*—~", 727" o™ "):

i 0%
* If Verify(vkey, ([[a:j]]“—’",w;lﬂn) “H”) = 1 and NIZK Verify(crs,
W;If",stj) =1 for st; € Ly where st; = ([z;]"~", pk), set ct; =
£

* Else, send L to Q and end the round.

— Compute [y] < dTFHE.Eval(pk, f,cty,...,cty,).

— Compute [y : ski] — dTFHE.PartialDec(sk;, [y])
and 7d «— NIZK.Prove(crs, stdec, wit?*) for std*c € L, where stdec =
([: ski], [v], pk;, %) and wit{®® = (sk;, ;).

— Send ([y : ski], 7¢°) to Q.

6. Output Computation:) does the following:

— Recall the value [y] computed in Round 3.

— For each i € [n], if NIZK.Verify(crs, 7dc, stdec) £ 1 for stfec € Ly where
stdec = ([y : ski], [y], pk;, i), discard [y : sk;].

— Output y < dTFHE.Combine(pk, {[y : sk;]}ics) where S contains the set
of non-discarded values from the previous step.

5.3 (t+ 2) Round Protocol

We now describe how to transform the two-round protocol (say II) of [28] into
a (t 4+ 2)-round protocol IT" for solitary MPC with god. Recall that protocol
IT (that assumes a PKI setup) achieves god for standard MPC and involves
communication only via broadcast channels in both rounds. We propose the
following changes to I1. First, we employ a (¢t + 1)-round protocol over pairwise-
private channels that realizes the broadcast functionality [17] to execute Round
1 of II. Next, the messages communicated via broadcast in Round 2 of II are
instead sent privately only to @ (as only @ is supposed to obtain output) in
Round (¢ 4+ 2) of II'. This completes the high-level description of IT’ whose
security follows directly from security of I1. This approach achieves better round
complexity than our general five-round construction (Sect.5.2) when ¢ < 2.

Acknowledgments. We would like to thank the anonymous reviewers for their helpful
and constructive comments on the manuscript. P. Miao is supported in part by the NSF
CNS Award 2247352, a DPI Science Team Seed Grant, a Meta Award, and a DSI Seed
Grant. All the authors did part of the work while at Visa Research.

On the Round Complexity of Fully Secure Solitary 153

References

10.

11.
12.

13.

14.

15.

16.

Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous byzantine
agreement with expected O(1) rounds, expected o(n?) communication, and optimal
resilience. In: FC (2019)

Alon, B., Cohen, R., Omri, E., Suad, T.: On the power of an honest majority in
three-party computation without broadcast. In: TCC (2020)

Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 395-424. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0_14

Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization
of fairness in secure two-party computation of Boolean functions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 199-228. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6_10

Asharov, G., Jain, A., Lépez-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483-501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_29

Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Threshold multi-key FHE
and applications to round-optimal MPC. In: ASTACRYPT (2020)
Badrinarayanan, S., Miao, P., Mukherjee, P., Ravi, D.: On the round complexity of
fully secure solitary mpc with honest majority. Cryptology ePrint Archive, Paper
2021/241 (2021). https://eprint.iacr.org/2021/241

Bell, J.H., Bonawitz, K.A., Gascén, A., Lepoint, T., Raykova, M.: Secure single-
server aggregation with (poly)logarithmic overhead. In: CCS, pp. 1253-1269. ACM
(2020)

Bonawitz, K., et al. Practical secure aggregation for privacy-preserving machine
learning. In: CCS (2017)

Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R.,
Sahai, A.: Threshold cryptosystems from threshold fully homomorphic encryption.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 565—
596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_19
Canetti, R., et al.: Fiat-shamir: from practice to theory. In: STOC (2019)

Chor, B., Merritt, M., Shmoys, D.B.: Simple constant-time consensus protocols in
realistic failure models. J. ACM (JACM) 36(3), 591-614 (1989)

Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC (1986)

Cohen, R., Garay, J., Zikas, V.: Broadcast-optimal two-round MPC. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 828-858. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_28

Damgard, I., Magri, B., Ravi, D., Siniscalchi, L., Yakoubov, S.: Broadcast-optimal
two round MPC with an honest majority. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 155-184. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84245-1_6

Damgard, I., Ravi, D., Siniscalchi, L., Yakoubov, S.: Minimizing setup in broadcast-
optimal two round MPC. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023.
LNCS, vol. 14005, pp. 129-158. Springer, Heidelberg (2023). https://doi.org/10.
1007/978-3-031-30617-4_5

https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://eprint.iacr.org/2021/241
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-030-45724-2_28
https://doi.org/10.1007/978-3-030-84245-1_6
https://doi.org/10.1007/978-3-030-84245-1_6
https://doi.org/10.1007/978-3-031-30617-4_5
https://doi.org/10.1007/978-3-031-30617-4_5

154

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

S. Badrinarayanan et al.

Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656-666 (1983)

Feldman, P., Micali, S.: An optimal probabilistic algorithm for synchronous Byzan-
tine agreement. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.)
ICALP 1989. LNCS, vol. 372, pp. 341-378. Springer, Heidelberg (1989). https://
doi.org/10.1007/BFb0035770

Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. 14(4), 183-186 (1982)

Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential
consensus. In: Borowsky, E., Rajsbaum, S. (eds.) 22nd ACM PODC, pp. 211-220.
ACM (2003)

Fitzi, M., Garay, J.A., Maurer, U., Ostrovsky, R.: Minimal complete primitives
for secure multi-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 80-100. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44647-8_5

Garg, S., Goel, A., Jain, A.: The broadcast message complexity of secure multiparty
computation. In: Galbraith, S.D., Moriai, S. (eds.) ASTACRYPT 2019. LNCS, vol.
11921, pp. 426-455. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5_16

Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifi-
able secret sharing and secure multicast. In: STOC (2001)

Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178-193.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_12
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC (1987)
Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptol. 18, 247-287 (2005)

Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM 58(6), 24:1-24:37 (2011)

Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63-82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7_4

Halevi, S., Ishai, Y., Kushilevitz, E., Makriyannis, N., Rabin, T.: On fully secure
MPC with solitary output. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11891, pp. 312-340. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-36030-6-13

Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132-150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9_8

Karlin, A., Yao, A.: Probabilistic lower bounds for byzantine agreement. Unpub-
lished document (1986)

Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agree-
ment. J. Comput. Syst. Sci. 75(2), 91-112 (2009)

Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. (1982)

Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
Mohassel, A., Zhang, Y.: Secureml: a system for scalable privacy-preserving
machine learning. In: IEEE S & P (2017)

https://doi.org/10.1007/BFb0035770
https://doi.org/10.1007/BFb0035770
https://doi.org/10.1007/3-540-44647-8_5
https://doi.org/10.1007/3-540-44647-8_5
https://doi.org/10.1007/978-3-030-34578-5_16
https://doi.org/10.1007/978-3-030-34578-5_16
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-030-36030-6_13
https://doi.org/10.1007/978-3-030-36030-6_13
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8

36.

37.

38.

39.

On the Round Complexity of Fully Secure Solitary 155

Patra, A., Ravi, D.: On the exact round complexity of secure three-party computa-
tion. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
425-458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0-15
Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228-234 (1980)

Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89-114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7_4

Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

https://doi.org/10.1007/978-3-319-96881-0_15
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4

q

Check for
updates

Three Party Secure Computation with
Friends and Foes

Bar Alon’2®) @, Amos Beimel'®, and Eran Omri?

! Department of Computer Science, Ben Gurion University, Beer Sheva, Israel
alonbar080gmail.com
2 Department of Computer Science, Ariel University, Ariel Cyber Innovation Center
(ACIC), Ariel, Israel

omrier@ariel.ac.il

Abstract. In secure multiparty computation (MPC), the goal is to allow
a set of mutually distrustful parties to compute some function of their
private inputs in a way that preserves security properties, even in the
face of adversarial behavior by some of the parties. However, classical
security definitions do not pose any privacy restrictions on the view of
honest parties. Thus, if an attacker adversarially leaks private informa-
tion to honest parties, it does not count as a violation of privacy. This
is arguably undesirable, and in real-life scenarios, it is hard to imag-
ine that possible users would agree to have their private information
revealed, even if only to other honest parties.

To address this issue, Alon et al. [CRYPTO 20] introduced the notion
of security with friends and foes (FaF security). In essence, (t,h)-FaF
security requires that a malicious adversary corrupting up to t parties
cannot help a coalition of h semi-honest parties to learn anything beyond
what they can learn from their inputs and outputs (combined with the
input and outputs of the malicious parties). They further showed that
(t, h)-FaF security with n parties is achievable for any functionality if
2t + h < n, and for some functionality, (¢, h)-FaF security is impossible
assuming 2t + h > n. A remaining important open problem is to char-
acterize the set of m-party functionalities that can be computed with
(t, h)-FaF security assuming 2¢ + h > n.

In this paper, we focus on the special, yet already challenging, case
of (1,1)-FaF security for three-party, 2-ary (two inputs), symmetric (all
parties output the same value) functionalities. We provide several posi-
tive results, a lower bound on the round complexity, and an impossibility
result. In particular, we prove the following. (1) we identify a large class
of three-party Boolean symmetric 2-ary functionalities that can be com-
puted with (1,1)-FaF full security, and (2) We identify a large class of
three-party (possibly non-Boolean) symmetric 2-ary functionalities, for
which no O(log k)-round protocol computes them with (1,1)-FaF full
security. This matches the round complexity of our positive results for
various interesting functionalities, such as equality of strings.

Keywords: MPC with friends and foes - full security - lower bounds -
protocols
© International Association for Cryptologic Research 2023

G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14370, pp. 156-185, 2023.
https://doi.org/10.1007,/978-3-031-48618-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48618-0_6&domain=pdf
http://orcid.org/0000-0002-8392-0245
http://orcid.org/0000-0002-6572-4195
http://orcid.org/0000-0001-8928-0587
https://doi.org/10.1007/978-3-031-48618-0_6

Three Party Secure Computation with Friends and Foes 157

1 Introduction

In secure multiparty computation (MPC), the goal is to allow a set of mutually
distrustful parties to compute some function of their private inputs in a way
that preserves security properties, even despite adversarial behavior by some
of the parties. Some of the most basic security properties that may be desired
are correctness, privacy, independence of inputs, fairness, and guaranteed output
delivery. The notion of full security captures all of the above security properties.!
Classical security definitions (cf., [12]) assume the existence of a single adver-
sarial entity controlling the set of corrupted parties. A malicious adversary may
deviate from the protocol in any way. In particular, it may send non-prescribed
messages to honest parties. Such messages could potentially leak private infor-
mation to honest parties, e.g., the secret input of some other honest party. Since
the classical definitions pose no restrictions on the view of honest parties in
the protocol, they do not count this as a violation of privacy. Moreover, even
the protocol itself may instruct all parties to send their inputs to other honest
parties, if say, all possible corrupted parties have been previously revealed (e.g.,
in the protocol of [19]). Again, this would still not count as a violation of pri-
vacy according to the classical security definition. This is arguably undesirable
in many situations that fall into the MPC framework. Furthermore, when con-
sidering MPC solutions for real-life scenarios, it is hard to imagine that possible
users would agree to have their private inputs revealed to honest parties (albeit
not to malicious ones).

To address this issue, Alon et al. [1] introduced a new security definition
called security with friends and foes (FaF security) that, in addition to standard
security requirement, poses a privacy requirement on the view of subsets of
honest parties. In essence, (¢, h)-FaF security requires that for every malicious
adversary A corrupting ¢ parties, and for any disjoint subset of h parties, both
the view of the adversary and the joint view of the additional h parties can be
simulated (separately) in the ideal model. The security of the protocol should
hold even if the malicious adversary sends to some h (semi-)honest parties non-
prescribed messages. In fact, the adversary is allowed to send messages after the
protocol is terminated.

Alon et al. [1] accompanied the new security notion with several feasibility
and impossibility results. They showed that achieving (¢, h)-FaF security with n
parties against computational adversaries is achievable for any functionality if
and only if 2t + h < n. That is, if 2t + h < n then for any n-party functionality
there exists a (¢, h)-FaF secure protocol computing it, and conversely, if 2¢+h >
n, then there exists a functionality that cannot be computed with (¢, h)-FaF
security. Note that this does not rule out the existence of n-party functionalities
that can still be computed with (¢, h)-FaF security, even when 2¢+h > n. Indeed,
Alon et al. [1] also presented interesting examples of such functionalities. This

! Formally, security is defined via the real vs. ideal paradigm, where a (real-world)
protocol is required to emulate an ideal setting, in which the adversary is limited to
selecting inputs for the corrupted parties and receiving their outputs.

158 B. Alon et al.

includes n-party coin tossing with (¢, h)-FaF security assuming ¢ < n/2 and
h < n —t, and three-party XOR with (1,1)-FaF security, both of which are
known to be impossible to securely compute without an honest majority (with
standard security requirements) [9]. This raises the following natural question:

Which n-party functionalities can be computed with
(t,h)-FaF security assuming 2t + h > n?

1.1 Owur Results

In this paper, we are interested in the special, yet already challenging, three-party
setting where all parties output the same value and are interested in achieving
(1,1)-FaF security?. We show several positive results, a lower bound on the round
complexity required for achieving FaF security, and an impossibility result. We
next review our results, starting with describing the positive results. Before doing
so, we introduce a dealer model, which simplifies the proofs and descriptions of
our protocols.

The Dealer Model. The following dealer model serves as a middle ground between
the ideal world for FaF security and real-world protocols. It is useful for con-
structing protocols as it abstracts away technical implementation issues. In par-
ticular, this allows our protocols to admit information-theoretic security in the
dealer model. Furthermore, in the dealer model we define, the adversary receives
no messages, and the only attacks it can perform are to change its input and
abort prematurely. This makes the security analysis of such protocols much sim-
pler. Importantly, we show a general compilation from protocols in the dealer
model to protocols in the real world and vice versa. The second direction, where
we compile a real-world FaF secure protocol into a FaF secure protocol in the
dealer model, helps us describe impossibility results in a clear way. It addition-
ally gives more intuition into the impossibility result of Alon et al. [1], where the
attacker aborts by selecting a round independently from its view in the protocol.
The above compilation shows that indeed an attack cannot rely on the view of
the adversary, apart from the round number.

In this dealer model, parties interact in rounds via a trusted dealer, and
the malicious adversary is only allowed to abort in each round. In more detail,
the interaction proceeds as follows. First, the parties send their inputs to the
dealer. The dealer then computes backup values for each pair of parties for each
round. These values will later be used as the output of two parties in case the
remaining third party aborts. Then, in each round, the dealer approaches the
parties in a certain order, without revealing any information to the approached
party, besides the round number. The party being approached responds with
either continue or abort. If it sends abort, then the dealer sends to the remaining
pair of parties a backup value (that depends on the round number). The two
parties output this value and halt. Additionally, the dealer also sends to each

2 The security notion was called FaF full security in [1].

Three Party Secure Computation with Friends and Foes 159

honest party the appropriate backup values corresponding to the honest party
and the aborting party (this models FaF security where the malicious adversary
may send its real world view to the other parties). If no abort occurred then the
dealer sends the output of the function to all parties.

Theorem 1.1 (Informal). Assume that secure protocols for oblivious transfer
evist. Let f : X x Y x Z2 — W be a three-party functionality. Then f can be
computed with (1,1)-FaF security if and only if it can be computed with (1,1)-
FaF security in the dealer model.

Possibility Results for (1,1)-FaF Security. We focus on (1,1)-FaF security in
the three-party setting, assuming that only two parties hold inputs, and that
all parties receive the same output (i.e., symmetric functionalities). We provide
several positive results in this setting.

In our first result, we show that if a 2-ary function (two inputs) f has a two-
party protocol that computes it with both (standard) malicious security and with
(standard) semi-honest security, then f can be computed as a three-party func-
tionality with (1,1)-FaF security, with all three parties obtaining the output. It
is instructive to note that even if a two-party protocol is secure against malicious
adversaries, it may still not be secure against semi-honest adversaries [5].

Theorem 1.2 (Informal). Assume that secure protocols for oblivious transfer
exist. Let f : X x Y — W be a 2-ary function. Assume that there ezists a
protocol 7 for computing f as a symmetric two-party functionality, providing
both (standard) malicious and semi-honest security. Then f can be computed as
a symmetric three-party functionality with (1,1)-FaF security.

Note that simply letting the two parties holding inputs run the secure proto-
col between themselves, and then having them send the output to the remaining
third party does not work. This is due to the fact that a corrupt party can lie
about the outcome, and then the third party has no way of detecting who is
lying.

As an application, consider Boolean functionalities, namely, the output of the
parties is a single bit. Asharov et al. [3] characterized all two-party symmetric
Boolean functionalities that can be securely computed. We observe that the
protocol they constructed also admits semi-honest security. Thus, we may apply
Theorem 1.2 to the class of functionalities captured by the (positive) result of [3],
and obtain the following result for three-party FaF-secure computation. First, for
a deterministic function f: X x Y x {A} — {0, 1} we associate with it a matrix
My € {0,1}1¥IXIVI defined as My (x,y) = f(z,y) for all z € X and y € V. Then
we have the following.

Corollary 1.3. Assume that secure protocols for oblivious transfer exist. Let f :
X x Y x{A} = {0,1} be a three-party Boolean symmetric functionality. Assume
that either the all-one vector or the all-zero vector is an affine combination® of
either the rows or the columns of My. Then f can be computed with (1,1)-FaF
security.

3 A affine combination is a linear combination where the sum of the coefficients is 1.

160 B. Alon et al.

We now turn to our second positive result, providing several sufficient con-
ditions for the existence of (1,1)-FaF secure 3-party protocols for Boolean func-
tionalities. For a Boolean function f we let Mf be the negated matrix, defined
as My(z,y) =1— f(z,y) forall z € X and y € V.

Theorem 1.4 (Informal). Assume that secure protocols for oblivious trans-
fer exist. Let f : X x Y x {A\} — {0,1} be a three-party Boolean symmetric
functionality. Assume that at least one of the following holds.

1. Both My and My have a trivial kernel, or both M]T and M? have a trivial
kernel, i.e., the kernel contains only the all-zero vector.

2. The all-one vector is a linear combination of either the rows or columns of
My, where all coefficients are strictly positive.

Then f can be computed with (1,1)-FaF security.

The round complexity of the protocol we construct is w(log k), where k is the
security parameter. Below we present a lower bound on the round complexity
that matches the upper bound for several functionalities.

Observe that the class of functionalities captured by Theorem 1.4 is different
from the class of functionalities captured by Corollary 1.3. Indeed, for an integer
m > 2, consider the equality function EQ : [m]? x {A\} — {0,1}, defined as
EQ(z,y) = 1if z = y, and EQ(z,y) = 0 if = # y. Then the associated matrix
Meq is the m x m identity matrix, which clearly satisfies Item 1, hence it can
be computed with (1, 1)-FaF security. However, it cannot be computed as a two-
party functionality as it implies coin tossing. We provide a more general theorem
alongside its proof in Sect. 4.2.

Negative Results. We now turn to our negative results. Our first result is a
lower bound on the number of rounds required for FaF security. We identify a
class of functionalities such that, in order to compute any of them with (1, 1)-FaF
security, would require many rounds of interactions. To simplify the presentation
in this introduction, we limit the statement to Boolean functions (see Theorem
5.2 for the generalization to non-Boolean functions).

Theorem 1.5 (Informal). Let f: X x Y x {A\} — {0,1} be a deterministic
three-party Boolean functionality. Assuming that the matriz My has no constant
rows, no constant columns, and that no row or column has its negation appearing
in My. Then there is no O(log k)-round protocol computing f with (1,1)-FaF
security.

Observe that the equality function EQ : [m]? x {\} — {0,1}, where m >
3, satisfies the conditions in Theorem 1.5. Note that this matches the round
complexity of the protocol from Theorem 1.4.

Our final result states there exists a three-party non-Boolean functionality
that depends on two inputs, which cannot be computed with FaF security.

Three Party Secure Computation with Friends and Foes 161

Theorem 1.6 (Informal). Assume the existence of one-way permutations.
Then there exists a three-party 2-ary symmetric functionality that cannot be
computed with (1,1)-FaF security.

We do not know if such impossibility results hold for a Boolean functionality,
and we leave it as an interesting open question.

1.2 Our Techniques

In this section, we provide an overview of our techniques. Let us first recall the
definition of (1, 1)-FaF security. We say that a protocol computes a functionality
f with (1,1)-FaF security, if for any adversary A (statically) corrupting a party
P the following holds: (i) there exists a simulator Sim that can simulate (in the
ideal-world*) A’s view in the real-world (so far, this is standard security), and
(ii) for any uncorrupted party Q # P, there exists a “semi-honest” simulator
Simgq, such that, given the parties’ inputs and Sim’s ideal-world view (i.e., its
randomness, inputs, auxiliary input, and output received from the trusted party),
can generate a view that is indistinguishable form the real-world view of Q, i.e.,
(viewg®, out™!) is indistinguishable from (ViEwgea, ouride?!).

We now proceed to describe our techniques. Throughout the rest of the
section, we denote the parties by A, B, and C, holding inputs x, y, and z, respec-
tively.

Proof of Theorem 1.1. We show that a functionality can be computed with (1,1)-
FaF security if and only if it can be computed with in an appropriate dealer
model. Let us begin with a more detailed description of a dealer-model protocol.
An r-round protocol in the dealer model for (1,1)-FaF security is described
as follows. First, the parties send their inputs to the dealer. The dealer then
computes backup value abg, ..., ab,, acg,...,ac,, and bcg, ..., bc.. Then, for i =
1 to 7, the dealer does the following.

1. If no abort was ever sent, approach party A, which responds with either
continue or abort.

2. If A responds with abort, then send x and bc;_; to B and C, sends
abg,...,ab;_1 to B and acq,...,ac;_1 to C, and halts. Parties B and C then
output bc;_1.

3. If A responds with continue, approach party B, which responds with either
continue or abort.

4. If B responds with abort, then sends y and ac;_; to A and C, sends
abg,...,ab;_1 to A and bcg,...,bc; to C, and halts. Parties A and C then
output ac;_1.

5. If B responds with continue, approach party C, which responds with either
continue or abort.

4 All the adversary can do in the ideal-world is to select its input for the computation
and receive the output. Specifically, it cannot prevent the output from other parties
or learn anything other than the output.

162 B. Alon et al.

6. If C responds with abort, then sends z and ab;_; to A and B, sends acg, . .., ac;
to A and bcg, ..., bc; to B, and halts. Parties A and B then output ab;_;.

If no abort was ever sent, then the dealer sends the last backup values (which
must equal to f(z,y,z) with high probability to ensure correctness), and the
parties output the value they received. Showing that the protocol in the dealer
model can be emulated by a real world protocol (without the dealer) is done using
standard techniques. Specifically, the parties compute a 3-out-of-3 secret sharing
of the backup values, each signed using a signature scheme. This computation is
done using a FaF secure-with-identifiable-abort protocol. That is, the malicious
and semi-honest adversaries may learn the output first, and may prevent the
honest party from receiving the output at the cost of revealing the identity
of the malicious party. Then, in every round, the parties send their shares for
the backup value of the other two parties. If a party changes its share (which is
captured with overwhelming probability using the signature scheme) or does not
send any message at all, then the remaining two parties reconstruct and output
the last backup value that they can reconstruct. See Sect.3 for more details.

As for the other direction, we compile a real-world FaF secure protocol into a
FaF secure protocol in the dealer model. Here, the dealer samples randomness for
the parties and executes the protocol in its head. For each round i, it computes
the value that a pair of parties output in case the remaining third party aborts
after sending ¢ messages (honestly). It then uses these values to define the backup
values that it gives to the parties in the protocol.

Proof of Theorem 1.2. Recall that we are given a function f, for which there is
a two-party protocol w9 that computes f with both malicious security and with
semi-honest security. We show that f can be computed with (1, 1)-FaF security
in the three-party setting when all parties receive the output. Let r denote the
number of rounds in 5. We assume without loss of generality that the interaction
in 7 is as follows. Each round 7 € [r] is composed of two messages, the first sent
by A and the second sent by B.?> A malicious party may send any message that
it wants, or send no message at all. In the latter case, the honest party must
output some value from the range of the function (recall that = is fully secure).
These values are called backup values. We denote by ag, ..., a, and by, ..., b, the
backup values of the parties A and B, respectively. Specifically, we let a; be the
output of A assuming that B sent the messages of the first ¢ rounds honestly but
did not send the (i + 1) message, and we let b; be the output of B assuming
that A sent the messages of the first ¢ rounds honestly but did not send the
(i + 1)™ message.

We next construct a FaF secure three-party protocol m3. By Theorem 1.1, it
suffices to do so in the dealer model, i.e., it suffices to describe how the dealer
computes the backup values. For every ¢ € [r], the dealer sets ab, = f(z,y),
ac; = a;, and bc; = b;. Intuitively, a corrupt C cannot affect the output of A and
B. Moreover, as my admits semi-honest security, the backup values they receive

5 Note that transforming a protocol into one with this structure might double the
number of rounds.

Three Party Secure Computation with Friends and Foes 163

reveal no information to them.% As for a malicious A (a malicious B is completely
symmetric), note that A has no view. Therefore, to simulate an adversary As
corrupting A, we only need to define an appropriate distribution over the inputs
(sent by the simulator to the trusted party), so that the output in both the
real and ideal world are indistinguishable. To do this, we emulate A3 using an
adversary A for the two-party protocol mo. The adversary As behaves honestly
until the round where A3z aborts, and aborts at the same round. By the assumed
security of mo, this attack can be simulated in the two-party ideal world. This
defines a distribution over the inputs of A. Using the same distribution in the
three-party ideal world results in the same distribution for the output. Now,
consider a semi-honest party Q in the three-party protocol; the challenge in
the FaF model is to construct a view consistent with the input chosen by the
malicious adversary controlling A, and the messages B gets from the dealer. Let ¢
denote the round where A aborts. If Q = B, then the only information it receives
in the real world is abg,...,ab;—; and the output bc;_; = b;_;. Since ab; =
f(z,y) for all j, this can be simulated in the ideal world, since the simulator for
the semi-honest B receives the input of the malicious party A. On the other hand,
if Q = C, then in the real world it receives acy = ag,...,ac;_1 = a;_1. These
values are generated by the simulator for As in the two-party setting. Moreover,
they are generated consistently with the output bc;_; = b;_;. Therefore, this
simulator can be used to simulate the view of C.

Proof of Theorem 1.4. We now turn to our second positive result. Here we are
given a three-party Boolean symmetric functionality f: X x Y x {A\} — {0,1}
satisfying one of two conditions. We show that it can be computed with (1, 1)-
FaF security. Similarly to the previous result, we may describe only the backup
values for the protocol in the dealer model. We construct a protocol inspired by
the protocols of [3,13], which follow the special round paradigm, however, the
proof of security follows a new construction for the simulator.

Roughly, a special round i* (whose value is unknown to all parties) is sam-
pled at random according to a geometric distribution with a sufficiently small
parameter a > 0. Before round #* is reached, the backup values ac; of A and
C, and bc; of B and C, are random and independent. After ¢* the backup val-
ues are equal to f(x,y). In more detail, for every i < i* we let ac; = f(x,9;),
where y; «) is sampled uniformly at random, and for every i < i* + 1 we let
bc; = f(&i,y), where Z; is chosen according to some distribution that depends
on the function. All other backup values are equal to f(z,y). Finally, the backup
values for A and B are all equal to f(x,y).”

First, observe that a corrupt C cannot attack the protocol, since it cannot
prevent A and B from outputting f(z,y), nor can it provide them with any

6 Note that here are using the fact that 7 is secure against semi-honest adversaries.
Indeed, since A and B are semi-honest, to properly simulate them in the ideal world
we need to use a simulator that does not change its input.

" The choice of setting bc; to equal f(z,y) only from round i* + 1 is so that A and C
learn the output before B and C. Another approach could be to modify the dealer
model so that the dealer approaches B before A.

164 B. Alon et al.

new information. Next, similarly to [3,13], a corrupt B cannot attack since C
learns the backup value ac; before it learns bc;. Thus, if B aborts at round i* or
afterwards, then A and C output f(z,y). Otherwise, if B aborts before i*, then A
and C output an independent random value. Additionally, B cannot help either
of the other parties to obtain any additional information. We are left with the
case where A is malicious, which can generate an advantage for C by guessing
i* 41 and aborting in this round. This causes B and C to output bc;x = f(Z;+,y),
which is a random value. However, C receives ac;+ = f(x,y) from the dealer.

We show that a simulator exists; we do so by constructing a different simula-
tor than the one constructed by [3,13]. There, the malicious simulator generates
the view exactly the same as in the real world, and the advantage of the adver-
sary is simulated by sending to the trusted party an input sampled according to
a carefully chosen distribution. For our protocol, we let the malicious simulator
send an input according to the “expected” distribution, i.e., the one used in the
real world, which is either a random input before i* + 1 or the real input from
i* 4+ 1 onward.

We are now left with simulating the advantage that a semi-honest C has
over the honest party B. We define its simulator by sampling the backup values
differently from the real world. In more detail, let ¢ denote the round where the
malicious adversary aborted (set to r + 1 if no such round exists). For every
round j < 4 the simulator generates a backup value ac; according to the same
distribution used in the real world, that is, ac; is a random value if j < ¢*, and
ac; = f(z,y) if j > ¢* (note that since ¢ > j it follows that ¢ > ¢* + 1 in this
case, hence the simulator received f(x,y) from the trusted party). At round i,
if © > i* we let the simulator set ac;, = f(z,y). Otherwise, if i < ¢* then the
simulator samples the backup value according to a carefully chosen distribution.
We show that under our assumptions on f, there exists a distribution such that
the joint distribution of the view generated by the simulator and the output of
honest parties is indistinguishable from the real world. We refer the reader to
Sect. 4.2 for more details.

Proof of Theorem 1.5. We now sketch the proof of our lower bound on the round
complexity required for FaF secure computation. Recall that we fix a three-
party functionality f : X' x Y x {A} — {0,1}, for which the matrix M, has no
constant rows, no constant columns, and that no row or column has its negation
appearing in My. We show there is no O(log k)-round protocol computing f
with (1,1)-FaF security. We assume that f is such that My has no duplicated
rows and columns. This is without loss of generality since duplicating rows and
columns, and removing duplications, does not compromise the FaF security of
the protocol.

Assume towards contradiction there exists an r = O(log x)-round protocol
computing f with (1, 1)-FaF security. We assume without loss of generality that
the protocol is in the dealer model (note that the transformation from a real
world FaF secure protocol to a FaF secure protocol in the dealer model preserves
the number of rounds). To gain some intuition, let us first consider a malicious
adversary B corrupting B that sends continue to the dealer until round r. The

Three Party Secure Computation with Friends and Foes 165

adversary then aborts, causing A and C to output ac,_1, and causing the dealer
to send be, = f(z,y) to C.

First, we claim that in order to simulate the attack, the malicious simula-
tor Simg must send y to the trusted party, except with negligible probability.
Intuitively, this follows from the following observation. Since M(-,y) is not con-
stant, does not appear as duplication, and since the negation of M/(-,y) does
not appear anywhere else in My, for any y’ # y there exists x1,z2 € X such
that My(z1,y) # My(z2,y) and My(z1,y") = My(x2,y’). Pictorially, the 2 x 2

matrix
i

yy
z1fa b

where a # b € {0,1}, is embedded in M/ restricted to y and 3’ (in particular
M contains an embedded OR). Now, suppose that the malicious simulator Simpg
sends ¢’ to the trusted party. Consider the semi-honest simulator Simp ¢ for a
semi-honest C. Note that it will not be able to distinguish between the case
where A has input x; from the case it has input 5. However, in the real world
C is able to distinguish between them since it receives the output f(z,y).

Next, given that Simg does send y to the trusted party, this implies that in
the ideal world the output of the honest party A is f(x,y). Therefore, the same
must hold in the real world, except with negligible probability. Recall that the
malicious B aborted after receiving r messages from A, thus the output of A is
ac,_1. This implies that ac,_; = f(x,y) except with negligible probability.

We can now continue with the same argument as before, this time applied to
a malicious adversary corrupting A and aborting after receiving » — 1 messages
from B. We then apply this argument inductively for all r» rounds, each time
accumulating another error (from when comparing the real and ideal world).
Similarly to the lower bound due to [13], we note that when formalizing this
argument, the error that is being accumulated each round is multiplicative, with
the error each time being O(|X|-|)|). Therefore, after applying the argument r =
O(log‘ﬁ%) times, we conclude that with constant probability the parties
can compute f without any interaction at all, which is a clear contradiction.
We stress that our overall strategy is substantially different from [13] in that we
analyze what the simulator can send to the trusted party. We refer the reader
to Sect. 5 for a formal analysis.

Proof of Theorem 1.6. We now show there exists a three-party functionality that
depends on two inputs and cannot be computed with (1,1)-FaF security. The
functionality we consider and the proof of impossibility are nearly identical to
that of [1]. Let f be a one-way permutation. We consider the following function-
ality. Party A holds two strings a and yg, and party B holds two string b and
ya. Party C holds no input. The output of all parties is (a,b) if f(a) = ya and
f(b) = yg, and L otherwise.

Assume towards contradiction there exists a (1, 1)-FaF secure protocol com-
puting the function. We may assume the protocol to be in the dealer model.

166 B. Alon et al.

Consider an execution where the strings a and b are sampled uniformly and
independently, and that ya = f(a),ys = f(b). An averaging argument yields
that there must exist a round 4, where two parties, say A together with C, can
recover (a,b) with significantly higher probability than B together with C. Our
attacker corrupts A, sends its original inputs a and yg to the dealer, and sends
continue until round ¢ + 1. At round 7 + 1 it sends abort.

Intuitively, in order to have the output of the honest party B in the ideal
world distributed as in the real world (where it is | with noticeable probability),
the malicious simulator has to change its input (sent to the trusted party) with
high enough probability. However, in this case, the semi-honest simulator for C,
receives | from the trusted party. Since the only information it has on b is f(b),
by the assumed security of f, the simulator for B will not be able to recover b
with non-negligible probability. Hence, B’s simulator will fail to generate a valid
view for B. The detailed proof appears in Sect. 6.

1.3 Related Work

Understanding which functionalities can be computed with full security is the
subject of many papers in the standard setting. This started with the seminal
result of Cleve [9], who showed that fair two-party coin tossing is impossible.
Surprisingly, Gordon et al. [13] showed that many two-party functionalities can
be computed with full security. In particular, they showed a functionality con-
taining an embedded XOR that can be computed with full security. This led to
a series of works trying to characterize which two-party functionalities can be
computed with full security [2,3,11,21,22]. In particular, [3] characterized the
set of symmetric Boolean functionalities that are computable with full security.

In the multiparty setting much less is known. In the honest majority setting,
if the parties are given secure point-to-point channels and a broadcast channel,
then any functionality can be computed with full security without any crypto-
graphic assumptions [23]. The dishonest majority setting was first considered
by [14]. They showed that the three-party majority functionality, and n-party
OR can be computed securely, for any number of corruptions. The case where
exactly half of the parties can be corrupted was considered by Asharov et al. [3].
The setting of a non-constant number of parties was considered in Dachman-
Soled [10]. The “Best-of-both-worlds security” definition [17,18,20] requires full
security to hold in case of an honest majority, however, if at least half of the par-
ties are corrupted, then the same protocol should be secure-with-abort. Finally,
Halevi et al. [15] were the first to consider the solitary output setting, where
only one party obtains the output.

1.4 Organization

We present the preliminaries in Sect. 2. We describe the dealer model in Sect. 3.
Then, in Sect.4 we present our positive results. In Sect.5 we show our lower
bound on the round complexity of (1,1)-FaF secure protocols. Finally, in Sect. 6
we show an impossibility for a 2-ary three-party functionality.

Three Party Secure Computation with Friends and Foes 167

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and
distributions, lowercase for values, and we use bold characters to denote vectors.
For n € N, let [n] = {1,2...n}. For a set S we write s — S to indicate that s is
selected uniformly at random from S. Given a random variable (or a distribution)
X, we write z « X to indicate that x is selected according to X. We let A be
the empty string. For a randomized function (or an algorithm) f we write f(x)
to denote the random variable induced by the function on input z, and write
f(x;rnd) to denote its value when the randomness of f is fixed to rnd.

To define security of protocols, we need to define computational indistin-
guishability between two distribution ensembles (i.e., the distributions of the
real and ideal world). A distribution ensemble X = (X4 n)aep, nen is an infinite
sequence of random variables indexed by a € D,, and n € N, where D, is a
domain that might depend on n. A PPT algorithm is probabilistic polynomial
time, and a PPTM is a polynomial time (interactive) Turing machine. A PPT
algorithm is non-uniform if it receives an advice as an additional input. A func-
tion p: N — [0, 1] is called negligible, if for every positive polynomial p(-) and
all sufficiently large n, it holds that u(n) < 1/p(n). We let neg(n) denote an
unspecified negligible function. Computational indistinguishability is defined as
follows.

Definition 2.1. Let X = (X4 pn)aep, neny and Y = (Yyn)aep, nen be two
ensembles, and let ¢ = £(+). We say that X and Y are e-computationally indis-

tinguishable, denoted X %E Y, if for every non-uniform PPT distinguisher D
such that for all sufficiently large n and for all a € D, it holds that

|[Pr[D(Xen) =1] —Pr[D(Yan) = 1] < e(n).

lla

We say that X and Y are computationally indistinguishable, denoted X
if they are n™°-computationally indistinguishable for all ¢ € N.

Secret Sharing Schemes. A (threshold) secret-sharing scheme [7,25] is a method
in which a dealer distributes shares of some secret to m parties such that ¢
colluding parties do not learn anything about the secret, and any subset of ¢+ 1
parties can fully reconstruct the secret. We let P = {Py,...,P,} denote the set
of participating parties. As a convention, for a secret s and a party P; € P, we let
s[i] be the share received by P;. For a subset S C P we denote s[S] = (s[i]):cs-

Definition 2.2 (Secret sharing). A (¢ + 1)-out-of-n secret-sharing scheme
over a message space M consists of a pair of algorithms (Share, Recon) satisfying
the following properties:

1. (t+1)-reconstructability: For every secret s € M and every subset Z C [n]
of size |Z| >t+1, if (s[1],...,s[n]) « Share(s) then s = Recon(s[Z]).

168 B. Alon et al.

2. t-privacy: For every two secrets s1, 2 € M, and every subset T C [n] of size
|Z| <'t, the distribution of the shares $1]Z] of s1 is identical to that of s2[Z]
of sa, where (s1[1],...,s1[n]) < Share(s1) and (sz2[1],...,sz2[n]) < Share(sz).

In this work, we only consider 3-out-of-3 additive secret sharing schemes.
Here, the message space M is an additive group G, and Share(s) samples
s[1],s[2] « G independently, and sets s[3] = s — s[1] — s[2]. The reconstruc-
tion algorithm simply adds all shares.

2.2 The Model of Computation

We follow the standard ideal vs. real paradigm for defining security [8,12]. Intu-
itively, security is defined by describing an ideal functionality, in which both the
corrupted and non-corrupted parties interact with a trusted entity. A real-world
protocol is secure if an adversary in the real world cannot cause more harm than
an adversary in the ideal world. In the classical definition, this is captured by
showing that an ideal-world adversary (simulator) can simulate the full view of
the real world malicious adversary. For FaF security, we further require that the
view of a subset of the uncorrupted parties can be simulated in the ideal world
(including the interaction with the adversary). We next give a more detailed
definition, tailored to the three-party setting.

The FaF Real Model

A three-party protocol 7 is defined by a set of three PPT interactive Turing
machines {A, B, C}. Each Turing machine (party) holds at the beginning of the
execution the common security parameter 17, a private input, and random coins.

Throughout the entire work, we will assume the parties execute the protocol
over a synchronous network. That is, the execution proceeds in rounds: each
round counsists of a send phase (where parties send their messages for this round)
followed by a receive phase (where they receive messages from other parties). We
consider a fully connected point-to-point network, where every pair of parties is
connected by a communication line. We will consider the secure-channels model,
where the communication lines are assumed to be ideally private (and thus the
adversary cannot read or modify messages sent between two honest parties).
Additionally, we assume the parties have access to a broadcast channel, allowing
each party to faithfully send the same message to all other parties.

An adversary is a non-uniform PPT interactive Turing machine. It starts the
execution with an input that contains the identity of the corrupted party, its
input, and an additional auxiliary input aux € {0,1}*. We will only consider
static adversaries that can choose the subset of parties to corrupt prior to the
execution of the protocol. At the end of the protocol’s execution, the adversary
outputs some function of its view (which consists of its random coins, its aux-
iliary input, the input of the corrupted party, and the messages it sees during
the execution of the protocol, and specifically, including possibly non-prescribed
messages sent to it by a malicious adversary).

Three Party Secure Computation with Friends and Foes 169

We consider two adversaries. The first adversary we consider is a malicious
adversary A that controls a single party P € {A B, C}. We will refer to P as
the malicious party. The adversary has access to the full view of the corrupted
party. Additionally, the adversary may instruct the corrupted party to deviate
from the protocol in any way it chooses. The adversary can send messages (even
if not prescribed by the protocol) to any uncorrupted party — in every round
of the protocol, and can do so after all messages for this round were sent. The
adversary can also send messages to the uncorrupted parties after the protocol
is terminated. The adversary is also given an auxiliary input aux4.

The second adversary is a semi-honest adversary Aq that controls a party
Q € {A,B,C}\ {P} of the remaining parties (for the sake of clarity, we will only
refer to P as corrupted). Similarly to A, this adversary also has access to the
full view of its party. However, Aq cannot instruct the party to deviate from
the prescribed protocol in any way, but may try to infer information about the
remaining non-corrupted party, given its view in the protocol (which includes
the joint view of P and Q). This adversary is given an auxiliary input auxq. We
will refer to Q as the semi-honest party.

We next define the real-world global view for security parameter £ € N,
an input tuple (z,y, z), and auxiliary inputs auxy4,auxq € {0,1}* with respect
to adversaries A and Aq controlling the parties P and Q respectively. Let
ouTiE) (k, (2,9, 2)) denote the outputs of the uncorrupted parties (i.e., those
in {A,B,C} \ {P}) in a random execution of 7, with A corrupting the party
P. Further let VIEW,r,fill (K, (z,y,2)) be the output of the malicious adversary
A during an execution of 7. In addition, we let VIEWSﬁa}LAQ (k, (z,y,2)) be the
output of Aq during an execution of 7 when running alongside A.

We let

REALx A(aux4), ("{a ((E, Y, Z)) = (VIEW;reil\ (/iv (:L', Y, Z))) OUT;re,a./lL\ (Hv (:L', Y, Z))) ;
denote the view of the malicious adversary and the output of the uncorrupted
parties, and we let

REALx A(aux4),Aq(auxq) (”f’ (.13, Y, Z))

= (VIEW;S,E:ILX,AQ (57 ('737 Y, z))) OUT;f,aJILX (H7 ('75’ Y, z))))

denote the view of the semi-honest adversary and the output of the uncorrupted
parties.

The FaF Ideal Model

We next describe the interaction in the FaF security ideal model, which specifies
the requirements for fully secure FaF computation of the function f with security
parameter k. Let A be an adversary in the ideal world, which is given an auxiliary
input aux4 and corrupts a party P called corrupted. Further let Aq be a semi-
honest adversary, which controls a party Q € {A,B,C} \ {P} and is given an

170 B. Alon et al.

auxiliary input auxq. We stress that the classical formulation of the ideal model
does not contain the second adversary.

The ideal model roughly follows the standard ideal model, where the parties
send their inputs to a trusted party that does the computation and sends them
the output. Additionally, we give the semi-honest adversary Aq the ideal-world
view of A (i.e., its input, randomness, auxiliary input, and output received from
the trusted party). This is done due to the fact that in the real world, we cannot
prevent the adversary from sending its entire view to the uncorrupted parties.
Formally, the ideal world is described as follows.

The FaF Ideal Model — Full Security.

Inputs: Party A holds 1% and = € {0,1}*, party B holds 1% and y € {0, 1}*,
and party C holds 1 and z € {0,1}*. The adversaries A and Aq are given
each an auxiliary input auxy4,auxq € {0,1}* respectively, and the inputs of
the party controlled by them. The trusted party T holds 1*.

Parties send inputs: Each uncorrupted party (including the semi-honest party)
sends its input to T. The malicious adversary A sends a value v’ as the input
for corrupted party P. If the adversary does not send any input, the trusted
party replaces its input with a default value. Write (z', 3/, 2’) for the tuple of
inputs received by the trusted party.

The trusted party performs computation: The trusted party T selects a
random string rnd and computes (wa,ws,wc) = f (2’,y’,2’;rnd), and sends
wa to A, sends wg to B, and sends w¢ to C.

The malicious adversary sends its (ideal-world) view: A sends to Aq its
randomness, inputs, auxiliary input, and the output received from T.

Outputs: Each uncorrupted party (i.e., not P) outputs whatever output it
received from T, party P output nothing. A and Aq output some function of
their respective views.

We next define the ideal-world global view for security parameter x € N,
an input tuple (x,y, z), and auxiliary inputs aux 4, auxq € {0,1}* with respect
to adversaries A and Aq controlling the parties P and Q respectively. Let
OUTiﬁ‘jfl' (k, (z,y,2)) denote the output of the uncorrupted parties (those in
{A,B,C} \ {P}) in a random execution of the above ideal-world process, with
A corrupting P. Further let VIEWiﬁ‘j' (K, (z,y,2)) be the output of A in such a
process (this output should simulate the real world view of P). In addition, we
let VIEWS' , (k, (2,9,2)) be the view description being the output of Aq in
such a process, when running alongside A. We let

ideal

IDEALf A(aux4) (Ha (1'7 Y, Z)) = (VIEWf,A (K/v (l‘, Y, Z)) ’ OUTifd,ejl (Ka (1'7 Y, Z))) y

and we let

IDEALf,A(auxA),AQ(aUXQ) (Kﬂ (l‘, Y, Z)v -AQ)

= (VIEW?ﬁZ[AQ (K, (z,9,2)), OUTi;cszI (k, (z,y, z))))

Three Party Secure Computation with Friends and Foes 171

Having defined the real and ideal models, we can now define FaF full security
of protocols according to the real/ideal paradigm. For brevity, we will refer to
it simply as FaF security. We define a more general security notion, where the
distinguishing advantage between the real and ideal worlds, is required to be
bounded by a function e(x) (we use this in Sect. 5 to state a more general lower
bound on the round complexity required for FaF secure computations).

Definition 2.3 (FaF security). Let m be a protocol for computing f, and let
e = e(-) be a function of the security parameter. We say that m computes f
with (1,1)-FaF e-security, if the following holds. For every non-uniform PPT
adversary A, controlling at most one party P € {A,B, C} in the real world, there
exists a non-uniform PPT adversary Sim 4 controlling the same party (if there is
any) in the ideal model and for every non-uniform semi-honest PPT adversary
Aq controlling at most one party Q € {A,B,C} \ {P} among the remaining
parties, there exists a non-uniform PPT adversary Sim4,q, controlling the same
party (if there is any) in the ideal-world, such that

{IDEALfaSIm(auxA) ('K”'7 (x’ Y Z))}KJEN,Z,y7Z€{O71}*,3UX_AE{O,l}*
e]
=e {REALW,A(auxA) (’iv (JC, Y, Z))}HGN,m,y,ZG{O,l}*,auxAG{O,l}* .
and

{IDEALf,SimA(auxA),Sim_A,Q(auxQ) (’fv (z,y,2), S'mA,Q) }neN 9,2€{0,1}* aux 4 ,auxq € {0,1} *

<

= {REALW,A(auxA),AQ (auxq) (f‘iv (177 Y, 2)7 AQ)}NGN,I»y,ZG{O,I}*,auxA,auXQe{O,l}* .
We say that © computed f with (1,1)-FaF security if for all ¢ € N, w computes

f with (1,1)-FaF k™ ¢-security.

Observe that the correctness of the computation (in an honest execution)
is implicitly required by the above definition. Indeed, as we allow the adver-
sary to corrupt at most one party, by considering adversaries that corrupt no
party, the definition requires the output of all parties in the real world to be
indistinguishable from f(z,y, z).

We next define the notion of backup values, which are the values that honest
parties output in case the third party aborts (after sending messages honestly).
Note that the notions of backup values are well-defined for any (1, 1)-FaF secure
protocol.

Definition 2.4 (Backup values). Let f : X X Y x Z — W be a three-party
functionality, and let m be an r-round protocol computing f with (1,1)-FaF secu-
rity. Let i € {0,...,r}, sample the randomness of the parties, and consider an
honest execution of m with the sampled randomness until all parties sent i mes-
sages. For two distinct parties P,Q € {A,B,C}, the i*" backup value of the pair
{P,Q} is the value that an honest P and Q output if the third party aborts after
sending © messages honestly.

172 B. Alon et al.

2.3 FaF Security-With-Identifiable-Abort

Although the focus of this work is on full security, in some of our constructions
we use protocols admitting security-with-identifiable-abort. In terms of the def-
inition, the only requirement that is changed is that the ideal-world simulator
operates in a different ideal model. We next describe the interaction in the FaF-
secure-with-identifiable-abort ideal model for the computation of the function f
with security parameter k.

Unlike the full security ideal model, here the malicious adversary can instruct
the trusted party not to send the output to the honest parties, however, in this
case, the adversary must publish the identity of a corrupted party. In addition,
since there is no guarantee that in the real world the semi-honest parties will
not learn the output, we always let the them receive their output in the ideal
execution. This allows us to simulate unfair protocols, where in addition to the
malicious adversary learning the output, it can decide whether the semi-honest
parties can learn the output as well.

Let A be a malicious adversary in the ideal world, which is given an auxiliary
input aux4 and corrupts a party P € {A, B, C}. Furthermore, let Aq be a semi-
honest adversary, which controls a party Q # P and is given an auxiliary input
auxqQ.

The FaF Ideal Model — Security-with-Identifiable- Abort.

Inputs: Party A holds 1% and = € {0,1}*, party B holds 1% and y € {0, 1}*,
and party C holds 1% and z € {0,1}*. The adversaries A and Aq are given
each an auxiliary input auxy4,auxq € {0,1}* respectively, and the inputs of
the party controlled by them. The trusted party T holds 1*.

Parties send inputs: Each uncorrupted party sends its input to T. The mali-
cious adversary A sends a value v’ as the input for corrupted party P. If the
adversary does not send any input, the trusted party replaces its input with a
default value. Write (2/,y’, z’) for the tuple of inputs received by the trusted
party.

The trusted party performs computation: The trusted party T selects a
random string rnd and computes (wa,ws,wc) = f (2’,y’, 2’;rnd), and sends
wp to A and sends wq to Aq.

The malicious adversary sends its (ideal-world) view: A sends to Aq its
randomness, inputs, auxiliary input, and the output received from T.

Malicious adversary instructs trusted party to continue or halt: The
adversary A sends either continue or (abort, P) to T. If it sent continue, then
for every uncorrupted party P’ # P the trusted party sends it wp,. Otherwise,
if A sent (abort, P), then T sends (abort, P) to the all honest parties.

Outputs: Each uncorrupted party (i.e., not P) outputs whatever output it
received from T, party P output nothing. A4 and Aq output some function of
their respective views.

Three Party Secure Computation with Friends and Foes 173

2.4 The Two-Party Model

In one of our results, we will be interested in the two-party setting with (stan-
dard) security against both a malicious adversary and a semi-honest adversary,
corrupting one party. In terms of definition, both the real and ideal world in the
two-party setting are defined analogously to the three-party setting. That is, in
the real world, two parties A and B interact, and each holds a private input,
the security parameter, and random coins. In the ideal world, the computation
is done via a trusted party in a similar way to the three-party definition. In
this paper, we consider both security against a malicious adversary, and security
against a semi-honest adversary. We say that a two-party protocol is fully secure
if it is secure against any malicious adversary, and we say that the protocol if it
has semi-honest security if it is secure against any semi-honest adversary.

3 The Dealer Model

In the description of our positive results, it will be convenient to consider a model
with a dealer. Here, the real world is augmented with a trusted dealer, which
is a PPTM that can interact with the parties in a limited way. Furthermore,
the adversary is also limited when compared to a real world adversary: the
adversary is assumed to be fail-stop, namely, it acts honestly, however, it may
decide to abort prematurely. Additionally, it may change the input it sends to the
dealer. This model, which we show below to be equivalent to (1, 1)-FaF security,
offers a much simpler way to analyze the security of protocols. Moreover, our
constructions will achieve information-theoretic security in the dealer model.
A similar model was already considered for standard security with a dishonest
majority [2—4,6].

We next describe a blueprint for an r-round protocol in the dealer model
for the (1,1)-FaF security model. That is, the blueprint instructs the dealer to
compute 3r+3 backup values and does not specify how to compute these backup
values. A protocol in the dealer model is obtained from the blueprint by defining
3r + 3 functions computing these backup values. We will show that such (1, 1)-
FaF secure protocols exist if and only if a (1,1)-FaF secure protocol exists in
the real world (assuming secure protocols for OT). For simplicity, we assume the
function to be symmetric, i.e., all parties obtain the same output.

Protocol 3.1.
Inputs: Parties A, B, and C hold inputs x, y, and z, respectively.
Common input: All parties hold the security parameter 17.

1. The honest parties send their inputs to the dealer. The malicious adversary
sends a value as the input for the corrupted party. If the adversary does not
send any input, the dealer replaces it with a default value.

2. The dealer computes backup values abg,...,ab,,
acy,...,ac,, and bcy,...,bc.. It is required that abg, acg, and bcg, do not
depend on the inputs of C, B, and A, respectively.

174 B. Alon et al.

3. Fori=1tor:
(a) The dealer approaches party A, which responds with either continue or

abort.
(b) If A responds with abort, then the dealer sends x and bc;—1 to B and C,
sends abg,...,ab;_1 to B and acq,...,ac;_1 to C, and halts. Parties B

and C then output bc;_1.

(c) The dealer approaches party B, which responds with either continue or
abort.

(d) If B responds with abort, then the dealer sends y and ac;—1 to A and C,
sends abg,...,ab;_1 to A and bcy,...,bc; to C, and halts. Parties A and
C then output ac;_1.

(e) The dealer approaches party C, which responds with either continue or

abort.
(f) If C responds with abort, then the dealer sends z and ab;_1 to A and B,
sends acy, ...,ac; to A and bcg,...,bc; to B, and halts. Parties A and B

then output ab;_.
4. If no party aborted, the dealer sends ab, to A, sends bc, to B, and sends ac,
to C.
5. Party A output ab,., party B output bc,., and party C output ac,..

We stress that the dealer is always honest in the above execution. The security
of the protocol is defined by comparing the above execution to the ideal world
defined previously. However, unlike the real world, here the malicious adversary
is only fail-stop. Thus, we say the protocol in the dealer model is (1,1)-FaF
security if it is (1, 1)-FaF secure against fail-stop adversaries. Furthermore, note
that if the protocol is correct, then it is secure against semi-honest adversaries.
This is because the only information the adversary receives is the last backup
value, which equals to the output. Therefore, when proving security, it suffices to
always consider the case where there is a malicious adversary corrupting a party.
Removing the dealer (i.e., constructing a (1,1)-FaF secure protocol without the
dealer) can be done using standard techniques. We next provide an intuitive
description of the real-world protocol without the dealer. The formal protocol
appears below.

At the beginning of the interaction, the parties compute a secret sharing of
all the backup values computed by the dealer, using a 3-out-of-3 secret sharing
scheme, and all shares are signed.® This computation is done using a (1, 1)-FaF
secure-with-identifiable-abort protocol. Then, in each round 4, party C broad-
casts its share of ab;, then B broadcasts its share of ac;, and finally, party A
broadcasts its share of bc;. If a party does not send its share or it sends a dif-
ferent share (which is caught using the signature scheme, except with negligible
probability), then the remaining two parties reconstruct the last backup value
for which they hold the aborting party’s share.

Observe that the view of a corrupted party consists of only random indepen-
dent shares. Thus, it aborts (or sends an incorrect share) in the real world if

8 The signature key can be replaced with a one-time MAC for every share.

Three Party Secure Computation with Friends and Foes 175

and only if it aborts in the dealer model. Additionally, the view of a semi-honest
party consists of random shares, the backup value it computes with the remain-
ing honest party, and the shares it can reconstruct if given the malicious party’s
view. Thus, any attack in the real world can be emulated in the dealer model.

Additionally, the converse is also true. That is, if there is a (1, 1)-FaF secure
protocol computing f in the real world, there is a (1,1)-FaF secure protocol
computing f in the dealer model. Indeed, the dealer simply computes the backup
values of every pair of parties and interacts with the parties as described in
the above model. Thus, as the real world and the ideal model are essentially
equivalent, we will sometimes refer to the dealer model as the real world. We
next formalize the statement and its proof.

Theorem 3.2. Let f : X X Y x Z — W be a three-party functionality. Then,
assuming secure protocols for OT exist, f can be computed with (1,1)-FaF secu-
rity in the real world if and only if it can be computed with (1,1)-FaF security
in the dealer model.

We next prove that any FaF-secure protocol in the dealer model can be
transformed into a FaF-secure protocol in the real world. The other direction is
given in the full version.

Lemma 3.3. Let f : X x Y x Z — W be a three-party functionality. Then,
if secure protocols for OT exist and f can be computed with (1,1)-FaF security
in the dealer model, then f can be computed with (1,1)-FaF security in the real
world.

Proof. Assume there is a protocol 7° computing f in the dealer model that
is (1,1)-FaF secure against fail-stop adversaries. We construct a protocol 7R
computing f with (1,1)-FaF security in the real world.

Fix a signature scheme Sig = (Gen, Sign, Ver) (since OT implies one-way
functions [16] and one-way functions imply signature scheme [24], the assumption
of the lemma implies signature schemes). Let ShrGen denote the three-party
functionality that, given the parties’ inputs, outputs a 3-out-of-3 secret sharing
for each of the backup values computed by the dealer, each signed using the
signature scheme. Formally, we define ShrGen as follows.

Algorithm 3.4 (ShrGen).
Inputs: Parties A, B, and C hold inputs x, y, and z, respectively.
Common input: The parties hold the security parameter 17.

1. Sample a signature scheme keys (pk,sk) < Gen(1%).
2. For every i € {0,...,r} do the following:
(a) Compute the backup values ab,, ac;, and bc;, as the dealer computes them.
(b) If i = 0, then share each backup value in a 2-out-of-2 additive shar-
ing scheme. Otherwise, share each backup value in a 3-out-of-3 additive
secret-sharing scheme.
(¢) If i > 1, then for each backup value of two parties, sign the share of the
third party. That is, for every i € [r] compute the following values:

176 B. Alon et al.

3.

/.

- oi,c < Signg(ab;[C]).

~ 016 — Signg,(aci[B)).

— 0i,a < Signg(bc;[A]).
Compute the following signatures:

— Oaba < Signg (ab,[A]) and gaca < Signg (ac,[A]).

— Oab,B < Signg (ab,[B]) and opc g < Signg (bc, [B]).

— Oac,c < Signg (ac,[C]) and ope,c + Signg(bc,[C]).

The parties obtain the following output.

— A receives the public key pk, the shares of the backup wvalue
(ab;[A], ac;[A])I_y and (be;[A])i_,, and the signatures (o A)i_1, Oab,a, and
Oac,A-

- B receives the public key pk, the shares of the backup wvalue
(ab;[B], be; [B])i_ and (ac;[B])i_;, and the signatures (o;B)i—1, Tab,B, and
Obc,B-

— C receives the public key pk, the shares of the backup wvalue
(ac;[C], be; [C))i_y and (ab;[C])i_,, and the signatures (0;,c)i_y, Tac,c, and
Obe,C-

Additionally, for each party P, we let f_p denote the two-party functionality

between the other two parties, obtained from f by fixing the input of P to a
default value (zg if P = A, yo if P = B, and z if P = C). We consider the following
three-party protocol 7R for computing f, described in the {ShrGen, f-a, f-g, f-c }-
hybrid model. By [1, Theorem 4.2] there exists a protocol computing ShrGen with
(1,1)-FaF security-with-identifiable-abort. Moreover, each f-p can be computed
with semi-honest security [26]. Thus, by the composition theorem, this implies
the existence of a (1,1)-FaF secure protocol for computing f in the real world.”

Protocol 3.5.
Inputs: Parties A, B, and C hold inputs x, y, and z, respectively.
Common input: The parties hold the security parameter 17.

1.

2.

9 Technically, the composition theorem in [1] doesn’t handle a subprotocol with semi-

The parties call ShrGen with (1,1)-FaF security-with-identifiable-abort, with

their inputs.

If P aborts the execution, then the remaining two parties call f-p with their

inputs and output the result.

Otherwise, the parties do the following. For i =1 to r:

(a) Party A broadcasts (bc;[A],0;.n).

(b) If A did not send any message or Verp(bc;[A], 0y o) = Fail, then B and C
reconstruct and output bc;_1.

(¢) Otherwise, party B broadcasts (ac;[B],0:8)-

honest security after an abort occurred. However, we note that since the aborting
party receives no messages at all after it aborts, the proof of the composition theorem
can be easily extended to our setting.

Three Party Secure Computation with Friends and Foes 177

(d) If B did not send any message or Verp(ac;[B],0;8) = Fail, then A and C
reconstruct and output ac;_1.

(e) Otherwise, party C broadcasts (ab;[C],0;.c).

(f) If C did not send any message or Verp(ab;[C],0;.c) = Fail, then A and B
reconstruct and output ab;_1.

4. If no abort occurred, then

— A broadcasts (ab,, 0ap.a) and (ac,, aca).
- B broadcasts (ab,,oap8) and (bc,, ope).
- C broadcasts (ac,, 0ac,c) and (bcy, ope).

5. Since there is at most a single malicious party, each uncorrupted party received
3 shares for at least one of the backup values (one from round r, one from
the other honest party, and one that they hold). Fach party outputs the lexi-
cographically first one.

Note that correctness is immediately implied from the correctness of the
protocol in the dealer model, stating that ab,, = bc,, = ac,.. The proof of security
is deferred to the full version due to space limitations. a

4 Feasibility Results for Three-Party FaF Security

In this section, we present our positive results. In Sect.4.1, we show that if a
function can be computed by a secure two-party protocol, then it can be com-
puted by a three-party (1,1)-FaF secure protocol. Then, in Sect.4.2 we provide
feasibility results for symmetric Boolean functions, where all parties output the
same bit as output.

4.1 A Compiler from 2-Party Standard Security to 3-Party
FaF-Security

The next theorem states that if a function can be computed as a two-party sym-
metric functionality (i.e., both parties receive the same output) with security
against a single malicious adversary and with security against a single semi-
honest adversary (and might be also (1, 1)-FaF secure), then it can be computed
with (1, 1)-FaF security as a three-party symmetric functionality. Note that sim-
ply letting the two parties A and B run the secure protocol between themselves,
and then having them send the output to C does not work (since the original
protocol might not be (1, 1)-FaF secure). Furthermore, even if the original two-
party protocol is (1,1)-FaF secure, a corrupt party can lie about the outcome,
and then C has no way of detecting whether A is lying or B is.

Theorem 4.1. Let g : X x Y — W be a symmetric 2-party functionality, and
let f: X xYx{A} = W be the 3-party functionality symmetric variant of g,
i.e., it is defined as f(x,y,\) = g(z,y) for allz € X and y € Y. Suppose that
there exists a two-party protocol computing g that is both fully secure and has
semi-honest security. Then, assuming secure protocols for OT exist, f can be
computed with (1,1)-FaF security.

178 B. Alon et al.

Proof. Let ma be the secure protocol for computing g that is assumed to exist,
and let r denote its number of rounds. We construct a three-party protocol 73
in the dealer model, computing f with (1,1)-FaF security. By Theorem 3.2 this
implies the existence of a (1,1)-FaF secure protocol in the real world (assuming
secure protocols for OT). Further let ag, ..., a, and by, ..., b, denote the backup
values of A and B, respectively (obtained by sampling randomness for A and B
and simulating them in m5). We assume without loss of generality that in each
round, B is the first to send a message. Thus, A obtains a; before B obtains
b;. We next construct the three-party protocol m3. Recall that a protocol in the
dealer model is given by 3r + 3 functions for computing the backup values for
each pair of parties in each round. We define these backup values as follows.
Given inputs = and y of A and B, respectively, for every i € {0,1,...,r} let
ab; = f(x,y,\), let ac; = a;, and let bc; = b;. Recall, ag is the output of A in 7y
if B sent no message, and thus is independent of y. Similarly, by is independent
of z. Thus, the 0" backup value does not depend on the third party’s input.
Correctness of 73 follows from the correctness of 7o, which implies that a, =
b, = g(x,y) = f(x,y,), except with negligible probability. The proof of security
of 73 is deferred to the full version. a

4.2 FaF Secure Protocols for Boolean Functionalities

In this section, we consider a Boolean three-party functionality that depends only
on two inputs. We provide three classes of such functions that can be computed
with FaF security. Before stating the theorem, we first introduce some notations.

Notations. For a 2-ary three-party functionality f : X x Y x {A\} — {0,1}, we
will write f(z,y) instead of f(z,y,)\) for brevity. Additionally, we associate a
matrix My € {0, 1}‘)(IXIY whose rows are indexed by elements z € X, whose
columns are indexed by elements y € Y, and is defined as M(z,y) = f(z,y).
We further define the negated matrix M as Ms(z,y) = 1 — My(z,y) for all
r€ X andy €).

Definition 4.2. The affine span of a collection of vectors over R is the set of
all their linear combinations where the sum of coefficients is exactly 1.

As a corollary of Theorem 4.1, we apply the characterization from [3] of
the 2-party symmetric Boolean functionalities that can be computed with full
security. We obtain the following result.

Corollary 4.3. Let f : X x Y x{\} — {0,1} be a Boolean 3-party functionality.
Suppose that the all-one vector or the all-zero vector is in the affine span of either
the rows or the columns of M. Then, assuming secure protocols for OT exist,
f can be computed with (1,1)-FaF security in the dealer model.

We next state the main result of this section. We consider a collection of
systems of linear equations (that depend on the function f). The theorem roughly
states that if any single one of them has a solution, then there exists a FaF secure
protocol computing f.

Three Party Secure Computation with Friends and Foes 179

Theorem 4.4. Let f : X x Y x{A} — {0,1} be a Boolean 3-party functionality.
Suppose there exists a probability vector p € RIX! with no 0 entries, i.e., p =
(Pz)zex satisfies py > 0 for allx € X and) . px = 1, such that for allx € X
it holds that Im(MJT) contains the vector

Vo = (My(@.y) - (P - My (1)) ey

and such that Im(M?) contains the vector

Then, assuming secure protocols for OT exist, f can be computed with (1,1)-FaF
security in the dealer model.

Proof. We present a protocol that (1,1)-FaF securely computes f in the dealer
model. By Theorem 3.2 this implies the existence of a (1,1)-FaF secure protocol
in the real world (assuming secure protocols for OT). The protocol follows the
special round paradigm of Gordon et al. [13], where until a special (random and
unknown) round #* the parties’ backup values are independent, and from ¢* the
backup values equal to the output of f. We next present the protocol. Recall
that in the dealer model, we may only describe the distribution of the backup
values computed by the dealer.

First, we denote the geometric distribution with parameter o > 0 as Geom(«),
and it is defined as Pr;_geom(a)[i = 1] = (1 —a)" 1. q, for all integers n > 1. We
further fix 7(k) = r = w(log) to be the number of rounds. We are now ready to
describe the distribution of the backup values, given inputs x and y of A and B,
respectively. The dealer samples i* « Geom(«), where o > 0 is sufficiently small
that will be chosen below. Then, for every ¢ € {0,...,r}, the dealer computes
backup values as follows. For every i € {0,...,i*} sample #; — p and for every
i € {0,...," + 1} sample g; < Y (i.e., g; is uniformly distributed over),
independently. Then for every i € {0,...,r} the dealer sets ab; = f(z,y) and
sets

ac, — flo,gs) ifd<id® be, — fl@,y) ifi<i*+1
"\ f(z,y) otherwise’ f(z,y) otherwise

The choice of setting bc; to equal f(z,y) only from round ¢* + 1 is so that
A and C learn the output before B and C. Since r = w(logk) it follows that
i*+1 < r except with negligible probability. Therefore ab, = bc, = ac, = f(x,y)
except with negligible probability, and thus the protocol is correct. Due to space
considerations, the proof of security is deferred in the full version. O

Theorem 4.4 identifies a set of functionalities that can be computed with
(1,1)-FaF security. We do not know if there are functionalities that are not
captured by Theorem 4.4, and we leave their existence as an open question.
Corollary 4.6 below provides two simple classes of functionalities captured by

180 B. Alon et al.

Theorem 4.4 (though Corollary 4.6 is less general than Theorem 4.4, see the full
version for more details).

The following lemma, states that for certain families of functionalities, there
exists a solution to one of the system of equations considered in Theorem 4.4.

Lemma 4.5. Let f : X x Y x {A\} — {0,1} be a three-party 2-ary Boolean
functionality. Suppose that one of the following holds.

1. Both My and M have a trivial kernel.
2. The all-one vector is a linear combination of the rows of My, where all coef-
ficients are strictly positive.

Then there exists a probability vector p € RI*! with no 0 entries, such that
for all x € X it holds that Im(M?) contains the vector

va = (Ms(@.y) - (B My (1)) ey

and Im(ﬁ?) contains the vector

Vo= (My(x.y) - (07 M(9))), ey

Proof. Let us first assume that both M; and M have a trivial kernel. Here,
any choice of p with no zero entries works (e.g., the uniform probability vector).
Indeed, v, € Im(Mf) if and only if it is orthogonal to the kernel of M. By
assumption, ker(My) = {0} hence any vector is orthogonal to it. Similarly,
v, € Im(My).

We now assume there exists a vector u € RI¥! with strictly positive entries,

such that u” - My = 17, Here we take p = u/|[ul|1, where |[ully = >, ug is
the ¢4 norm of u. Let 4 > 0 be such that
pl - M;=5-1". (1)

Then
Vg = (Mf('ray) : (pT : Mf('vy)))yey = (Mf(z,y) : 5)y€y = (6 ’ ex) - My,

where e, is the 2" standard basis vector. Thus, v, € Im(Mf). It is left to show

that v, € Im(M?). We assume that My is not the all-one matrix, as otherwise,
the claim is trivial since v, = 0 and Mf is the all-zero matrix. Let J denote
the |X| x |Y| all-one matrix. Observe that by Equation (1) and since p is a
probability vector

p’-My=p" - (J-My)=p"-J=6-1 = (" Lz —0) -1} = (1-4) 1.

Since My is Boolean and p is a probability vector, for every y € Y it follows
that
§=p"-M(,y)<p"-1=1,

Three Party Secure Computation with Friends and Foes 181

with equality if and only if for every z € & such that p, > 0 it holds that
M(z,y) = 1. Since p has no zero entries and M is not the all-one matrix, we
conclude that the inequality is strict; i.e., d < 1. Therefore, a similar analysis to
the previous case shows that

V= ((1-0)-e,) - ;.
O

Note that if MfT satisfies the conditions in Lemma 4.5, then a secure protocol
can be obtained by switching the roles of A and B. Thus, we obtain the following
corollary. Although less general than Theorem 4.4 (see the full version for a
functionality that is captured by Theorem 4.4 but not by Corollary 4.6), it is
conceptually simpler.

Corollary 4.6. Let f : X x Y x {A\} — {0,1} be a three-party 2-ary Boolean
Sfunctionality. Suppose that one of the following holds.

1. Both My and My have a trivial kernel, or both MfT and M? have a trivial
kernel, i.e., it contains only the all-zero vector.

2. The all-one vector is a linear combination of either the rows or columns of
My, where all coefficients are strictly positive.

Then, assuming secure protocols for OT ezist, f can be computed with (1,1)-
FaF security in the dealer model.

As an example of Corollary 4.6, consider the equality function EQ,, : [m]? x

{A\} — {0,1}, where m > 1 is an integer. It is defined as EQ,,(z,y) = 1 if
z =y and EQ,,(x,y) = 0 otherwise. Then, Mgq,, is the m x m identity matrix.
Therefore, it satisfies Item 1 of Corollary 4.6, hence it can be computed with
(1,1)-FaF security. To exemplify Item 2, consider the functionality f given by
the following matrix

0101

1010

0110

1001

My =

Observe that the kernel of both My and M? contain (1,1,—1,—1)7, hence Item
1 does not hold for f. However, note that

My (1/4,1/4,1/4,1/4)7 = (1/2,1/2,1/2,1/2)".
Therefore f satisfies Item 2, hence it can be computed with (1,1)-FaF security.

Remark 4.7. Although only proved for deterministic functionalities, Corollary
4.6 (and the more general Theorem 4.4) can be easily generalized to randomized
functionalities by defining M;(x,y) =Pr[f(z,y) =1] forall z € X and y € V.

182 B. Alon et al.

5 Lower Bound on the Round Complexity of FaF Secure
Protocols

In this section, we present a lower bound on the round complexity required for
certain FaF secure computations. Specifically, we focus on deterministic three-
party functionalities that depend on two inputs. Before stating the result, we first
define the notion of mazimally informative input. Roughly, an input z € X for
party A is said to be maximally informative if for any other input 2’ the input-
output pair (2/, f(2',y)) does not give to A more information about the input y
of B than the input-output pair (x, f(z,y)). We formalize this by requiring that
for any 2’ there exists yg,y1 €) such that the input z can distinguish gy from
y1, while 2’ cannot distinguish them. Formally we define it as follows.

Definition 5.1 (Maximally informative input). Let f : X x Y x {A\} = W
be a deterministic three-party functionality. We say that an input © € X is
maximally informative if for every 2’ € X \ {x} there exists yo,y1 € YV such that
f(zyyo) # fzoy1) and f(2',y0) = f(a',y1). A mazimally informative input
y € Y is defined analogously.

We are now ready to state our theorem. Roughly, it states that for any
deterministic 2-ary functionalities, if all inputs do not fix the output and are
maximally informative, then for any e, the function cannot be computed with

loge ™!
an O(log\f'\«’l-lrlogly\)

Theorem 5.2. Let f: X xYx{A} — W be a deterministic three-party function-
ality. For every x € X let p, := maxyew Pr[f(z,y) = w] where y — Y, and let
P1 = MaXgecx Pz Similarly, for every y € Y let py := maxyew Pr[f(z,y) = w]
where © — X, and let py = maxycy py. Finally, denote p = max{p,p2}.
Assume that there is no input that fizes the output of f and that oll x € X
and y € YV are maximally informative (observe that this implies that p < 1).
Then for any € = (k) and any r-round protocol © computing f with (1,1)-FaF
e-security, it holds that

-round FaF secure protocol.

log (£) — log (ﬁ)
log(9 - |X| - [V])

Due to space limitations, the proof of Theorem 5.2 is deferred to the full
version. As a corollary, we get that for any f satisfying the conditions in Theorem
5.2 there is no O(log k)-round protocol computing f with (1, 1)-FaF security.

Corollary 5.3. Let f: X x Y x {\} = W be a deterministic three-party func-
tionality. Assume that there is no input that fizes the output of f and that all
z € X and y € Y are mazimally informative. Then there is no O(log k)-round
protocol computing f with (1,1)-FaF security.

Three Party Secure Computation with Friends and Foes 183

Proof. Fix a constant ¢ € N and let £(k) = k¢, where ¢ = 2¢-log(9- |X]-|V]).
Since p, |X], and |Y| are constant, it holds that

c-logk -log(9-1X]|-|Y]) + log (ﬁ)
log (%) ’

for all sufficiently large k. By Theorem 5.2 it follows that » > ¢ - log k. O

d >

Below we show an example of a Boolean functionality that can be computed
with (1, 1)-FaF security and satisfies the conditions of Theorem 5.2.

For Boolean functions, the result can be stated in simpler terms using the
associated matrix M of the function. Observe that an input € X is maximally
informative if and only if the row M/(x,-) is either constant or the negation
of the row, namely M ¢(x,-), does not appear in M. Additionally, note that
duplicating rows and columns, and removing duplications does not compromise
the FaF security of the protocol. Thus, we have the following corollary.

Corollary 5.4. Let f : X x Y x {A\} — {0,1} be a deterministic three-party
Boolean functionality. Assuming that the matriz My has no constant rows, no
constant columns, and that no row or column has its negation appearing in M.
Then there is no O(log k)-round protocol computing f with (1,1)-FaF security.

As an example, for an integer m > 3, consider the equality function EQ,, :
[m]? x {A\} — {0,1} defined as EQ,,(z,y) = 1 if x = y, and EQ,,(z,y) = 0
otherwise. Then Meq, is the m x m identity matrix. It has no constant rows
and columns, and since m > 3 no row or column has its negation appearing in
Meq,, . Therefore, by Corollary 5.4 any protocol computing it must have round
complexity of w(logk). Note that this matches the round complexity of the
protocol given by Corollary 4.6.

6 Impossibility for a Two-Input Three-Party
Functionality

In this section, we show that there is a function with inputs from two parties that
gives the same output to 3 parties and cannot be computed with a (1,1)-FaF
secure protocol. We prove the following.

Theorem 6.1. Assume the existence of one-way permutations. Then there
exists a three-party symmetric 2-ary functionality for which there is no protocol
computing it with (1,1)-FaF security.

The functionality we consider and the proof that no protocol computes it with
FaF security is nearly identical to that of [1]. Let f = {f : {0, 1}" +— {0,1}"},
be a one-way permutation. Define the symmetric 3-party functionality Swap =
{Swap,, : {0,1}** x {0,1}?* x {A} — {0, 1}2n}neN as follows. Parties A and B

each hold two strings (a,ys), (b,ya) € {0, 1}?* respectively, and party C holds

184 B. Alon et al.

no input. The output is defined as: if fi(a) = ya and f.(b) = ys, then
Swap,. ((a,y8), (b,ya),) = (a,b), otherwise Swap,, ((a,yg), (b,ya),A) = L.

Due to space limitations, the proof that Swap cannot be computed with
(1,1)-FaF security is deferred to the full version.

Acknowledgments. The first and third author are partially supported by Israel Sci-
ence Foundation grant 152/17 and by a grant from the Ariel Cyber Innovation Center
in conjunction with the Israel National Cyber directorate in the Prime Minister’s Office.
The first author is also supported by Israel Science Foundation grant 391/21. The third
author is also supported by the Robert L. McDevitt, K.S.G., K.C.H.S. and Catherine
H. McDevitt L.C.H.S. endowment at Georgetown University. Part of this work was
done when he was hosted by Georgetown University. The second author is supported
by Israel Science Foundation grant 391/21 and by ERC grant 742754 (project NTSC).

References

1. Alon, B., Omri, E., Paskin-Cherniavsky, A.: MPC with friends and foes. In: Mic-
ciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 677-706.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 24

2. Asharov, G.: Towards characterizing complete fairness in secure two-party compu-
tation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291-316. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 13

3. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization
of fairness in secure two-party computation of Boolean functions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 199-228. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6 10

4. Beimel, A., Lindell, Y., Omri, E., Orlov, L.: 1/p-secure multiparty computation
without an honest majority and the best of both worlds. J. Cryptol. 33(4), 1659—
1731 (2020)

5. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure
computation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80-97.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 6

6. Beimel, A., Omri, E., Orlov, I.: Protocols for multiparty coin toss with a dishonest
majority. J. Cryptol. 28(3), 551-600 (2015)

7. Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on
Managing Requirements Knowledge, p. 313. IEEE Computer Society (1979)

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143-202 (2000)

9. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: Proceedings of the 18th Annual ACM Symposium on
Theory of Computing (STOC), pp. 364-369 (1986)

10. Dachman-Soled, D.: Revisiting fairness in MPC: polynomial number of parties and
general adversarial structures. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12551, pp. 595-620. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64378-2 21

11. Daza, V., Makriyannis, N.: Designing fully secure protocols for secure two-party
computation of constant-domain functions. In: Proceedings of the 15th Theory of
Cryptography Conference (TCC), part I, pp. 581-611 (2017)

https://doi.org/10.1007/978-3-030-56880-1_24
https://doi.org/10.1007/978-3-642-54242-8_13
https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/3-540-48405-1_6
https://doi.org/10.1007/978-3-030-64378-2_21
https://doi.org/10.1007/978-3-030-64378-2_21

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Three Party Secure Computation with Friends and Foes 185

Goldreich, O.: Foundations of Cryptography - Volume 2: basic applications. Cam-
bridge University Press (2004)

Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: Proceedings of the 40th Annual ACM Symposium on The-
ory of Computing (STOC), pp. 413422 (2008)

Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without an
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19-35.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 2
Halevi, S., Ishai, Y., Kushilevitz, E., Makriyannis, N., Rabin, T.: On fully secure
MPC with solitary output. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11891, pp. 312-340. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-36030-6_ 13

Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography. In: 30th Annual Symposium on Foundations of Computer Science,
pp. 230-235. IEEE Computer Society (1989)

Ishai, Y., Katz, J., Kushilevitz, E., Lindell, Y., Petrank, E.: On achieving the
“best of both worlds” in secure multiparty computation. SIAM J. Comput. 40(1),
122-141 (2011)

Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with
guaranteed output delivery in secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483-500. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 29

Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577-594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31
Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
San Diego, California, USA, 11-13 June 2007, pp. 11-20. ACM (2007)
Makriyannis, N.: On the classification of finite Boolean functions up to fairness.
In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 135-154.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 9
Makriyannis, N.: Fairness in two-party computation: characterizing fair functions,
Ph. D. thesis, Universitat Pompeu Fabra (2016)

Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proceedings of the 30th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 7385 (1989)

Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
13-17 May 1990, Baltimore, Maryland, USA, pp. 387-394. ACM (1990)

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)

Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (FOCS), pp. 160-164 (1982)

https://doi.org/10.1007/978-3-642-00457-5_2
https://doi.org/10.1007/978-3-030-36030-6_13
https://doi.org/10.1007/978-3-030-36030-6_13
https://doi.org/10.1007/11818175_29
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-319-10879-7_9

Encryption

®

Check for
updates

CASE: A New Frontier in Public-Key
Authenticated Encryption

Shashank Agrawal'®®, Shweta Agrawal?, Manoj Prabhakaran®, Rajeev Raghunath?,
and Jayesh Singla3

' Coinbase, San Francisco, USA
sagrawal@protonmail.ch
2 IIT Madras, Chennai, India
3 IIT Bombay, Mumbai, India
{mp,mrrajeev, jayeshs}@cse.iitb.ac.in

Abstract. We introduce a new cryptographic primitive, called Completely
Anonymous Signed Encryption (CASE). CASE is a public-key authenticated
encryption primitive, that offers anonymity for senders as well as receivers. A
“case-packet” should appear, without a (decryption) key for opening it, to be a
blackbox that reveals no information at all about its contents. To decase a case-
packet fully—so that the message is retrieved and authenticated—a verification key
is also required.

Defining security for this primitive is subtle. We present a relatively simple
Chosen Objects Attack (COA) security definition. Validating this definition, we
show that it implies a comprehensive indistinguishability-preservation definition
in the real-ideal paradigm. To obtain the latter definition, we extend the Crypto-
graphic Agents framework of [2,3] to allow maliciously created objects.

We also provide a novel and practical construction for COA-secure CASE
under standard assumptions in public-key cryptography, and in the standard
model.

We believe CASE can be a staple in future cryptographic libraries, thanks to its
robust security guarantees and efficient instantiations based on standard assump-
tions.

1 Introduction

In this work, we introduce a new cryptographic primitive, called Completely Anony-
mous Signed Encryption (CASE). CASE is a public-key authenticated encryption prim-
itive, that offers anonymity for senders as well as receivers. CASE captures the intuition
that once a message is “encased”’-resulting in a case-packet—it should appear, to some-
one without a (decryption) key for opening the case-packet, to be a blackbox that reveals
no information at all about its contents.! To decase a case-packet fully—so that the mes-
sage is retrieved and authenticated—a verification key is also required.

! For simplicity, we consider a finite message space. If messages of arbitrary length are to be
allowed, we will let a case-packet reveal the length of the message (possibly after padding).
All our definitions and results can be readily generalized to this setting.

© International Association for Cryptologic Research 2023

G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14370, pp. 189-219, 2023.
https://doi.org/10.1007/978-3-031-48618-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48618-0_7&domain=pdf
https://doi.org/10.1007/978-3-031-48618-0_7

190 S. Agrawal et al.

The significance of such a primitive stems from its fundamental nature as well as its
potential as a practical tool. For instance, in blockchain-like systems where data packets
can be publicly posted, for privacy, not only the contents of the packet should be hidden,
but also the originator and the intended recipient of the data should remain anonymous.
Further, we may require that even the recipient of a packet should not learn about its
sender unless they have acquired a verification key that allows them to authenticate
packets from the sender (this is what we call complete anonymity).

CASE, while fundamental in nature, is still a fairly complex primitive, and for-
mally defining security for it is a non-trivial task. It involves two pairs of keys (public
and secret keys, for encryption and signature), used in different combinations (e.g., a
decryption key is enough to open the case-packet for reading a message, but a verifica-
tion key is also needed for authentication), and multiple security requirements based on
which keys are available to the adversary and which are not.

Public-key authenticated encryption has been well-explored in the literature (see
Sect. 1.1) and has also been making its way into standards (e.g., [4, 11]). However, these
notions do not incorporate anonymity as we do here. Further, we seek and achieve
significantly more comprehensive security guarantees and strong key-hiding properties.
In particular, we seek security against active adversaries who can access oracles that
combine honest objects with adversarial objects, where “objects” refer to both keys as
well as case-packets. For instance, the adversary can query a decasing oracle with its
own decryption key and case-packet, but requesting to use one of two verification keys
picked by the experiment. We term such attacks Chosen Objects Attack (COA), as a
generalization of Chosen Ciphertext Attack. We present a relatively simple definition
of COA-secure CASE consisting of three elegant experiments (Total-Hiding, Sender-
Anonymity, Unforgeability),” correctness conditions, an unpredictability condition, and
a set of natural —but new—existential consistency requirements.

Is COA Security Comprehensive? (Yes!) At first glance, our COA security definition
for CASE may appear as an incomplete list of desirable properties. Indeed, given the
subtleties of defining security for a complex primitive, it is not possible to appeal to
intuition to argue that all vulnerabilities have been covered by this definition. Instead,
one should use a comprehensive definition in the real-ideal paradigm, where the ideal
model is intuitively convincing. This approach has formed the foundation for general
frameworks like Universally Composable security [15] and Constructive Cryptogra-
phy [29]. However, using a simulation based security definition for modeling objects
that can be passed around (rather than functionalities implemented using protocols
wherein parties never transfer their secret keys) quickly leads to impossibility results
in the standard model without random oracles (see the full version). To avoid such out-
right impossibility results, we consider a definition in the real-ideal paradigm that uses
indistinguishability-preservation [2,3] as the security notion, rather than simulation.
In the process, we extend the Cryptographic Agents framework of [2,3] to allow mali-
ciously created objects, which is an important additional contribution of this work.

2 These distinct experiments can be combined to give an equivalent unified experiment in which
the adversary is allowed to adaptively attack any of the above security properties over a collec-
tion of keys and case-packets. Such a definition is presented as an intermediate step to showing
the comprehensiveness of this definition (see below).

CASE: A New Frontier in Public-Key Authenticated Encryption 191

Once the definitions are in place, our main results are a novel construction of a
COA-secure CASE from standard assumptions in public-key cryptography, and also
showing that COA-secure CASE meets the real-ideal security definition for CASE.

Our Contributions. We summarize our contributions here.

We introduce CASE as a practical and powerful cryptographic primitive.

— We present a strong security definition for CASE, called COA security (Sect. 3).

— We give a construction for COA-secure CASE under standard assumptions in the
standard model (Sect.4). We also show how to leverage the efficiency of any
symmetric-key encryption scheme to get a correspondingly efficient COA-secure
CASE (Sect. 4.4).

— We present the Active Agents Framework as an extension of the Cryptographic
Agents model, to capture comprehensive security guarantees for complex primitives
like CASE under the real-ideal paradigm (Sect. 5).

— We show that COA secure CASE yields a secure implementation of CASE in the

active agents framework (Sect. 6).

While we present the COA security definition upfront, it is important to point out
that this definition was arrived at starting from the security definition in the active agents
framework, and working through the demands of satisfying that definition.

1.1 Related Work

Public-key authenticated encryption has been extensively studied since signcryption
was introduced by Zheng [41]. Despite being a fundamental primitive studied for over
two decades, it has proved challenging to find the right definitions of security for this
notion. Indeed, the original scheme by Zheng was proven secure several years after
its introduction [8]. A sequence of works [5,6,8,34,40] formalized security in the so
called “outsider security model” and “insider security model” where the former is used
to model network attacks while the latter is used to model (a priori) legitimate users
whose keys have been compromised. Even as these basic security definitions remained
ad hoc, a significant number of works have constructed concrete schemes based on
different assumptions [25,26,38,41,42], and gone on to realize advanced properties
[9,13,14,17-19,22,25,27,28,36,37,39].

An early attempt by Gjgsteen and Krakmo [23] modelled unforgeability and confi-
dentiality in the outsider security model by using an ideal functionality. More recently,
[7] provided a constructive cryptography perspective of the basic security notions of
signcryption. This work modelled the goal of authenticated public-key encryption as a
secure communication network, with static corruption of nodes. As it used a simulation-
based definition for the communication functionality, it does not account (and could not
have accounted) for secret key transfers, or more generally, the use of the scheme’s
objects in non-standard ways outside of the prescribed communication protocols (e.g.,
posting ciphertexts on a bulletin board or forwarding them, using signatures to prove
the possession of a signing key, etc.).

Recently, Bellare and Stepanovs studied signcryption from a quantitative perspec-
tive due to its use in various practical systems and standards [11]. More recently, Alwen

192 S. Agrawal et al.

et al. [4] conducted a thorough study of the “authenticated mode” of the Hybrid Pub-
lic Key Encryption (HPKE) standard, which combines a Key Encapsulation Mechanism
and an Authenticated Encryption. They abstract this notion using a new primitive which
they call Authenticated Public Key Encryption. However, their study is tailored to the
HPKE standard, and primarily studies weaker variants of security. Another recent work
by Maurer et al. [30] studied the related notion of “Multi-Designated Receiver Signed
Public Key Encryption” which allows a sender to select a set of designated receivers
and both encrypt and sign a message that only these receivers will be able to read and
authenticate.

While the aforementioned works make important progress towards the goal of find-
ing the right formalization for public-key authenticated encryption, none of them con-
sider anonymity of the sender and intended receiver. They also work with relatively
weak or ad hoc security definitions and do not comprehensively model an adversary
that can combine honest and adversarial objects via oracles.

2 Technical Overview

We proceed to provide a technical overview of our definitions, constructions and proofs
of security.

2.1 Defining COA-Secure CASE

CASE is a fairly complex primitive. For instance, in contrast to symmetric-key authen-
ticated encryption, encasing and decasing a message involves four keys. Further, in
comparison to signcryption, which itself has been the subject of an extensive body of
work, CASE requires strong key-hiding properties. We also require that even if one of
the two keys used to create a case-packet, or used to decase a possibly malicious case-
packet, is maliciously crafted, the residual hiding assurances for the honestly created
key should hold.

We start off by presenting a fairly intuitive set of security games and correctness
properties. We term our definition security against Chosen Objects Attack, or COA-
security (Sect. 3), since the adversary needs to be provided with oracles which take not
only malicious “ciphertexts” (or case-packets), but also malicious keys; both encasing
and decasing oracles need to be provided to the adversary. There are standard correct-
ness requirements and three security games—total hiding and sender anonymity games
with a flavor of CCA security, and an unforgeability game paralleling a standard signa-
ture unforgeability requirement. In addition, there is an unpredictability requirement
and a set of existential consistency requirements, which are crucial for security against
malicious keys. The former requires that encasing a message with any encryption key
and signing key results in a case-packet with high min-entropy (or results in an error);
while this is implied by the above security experiments for honestly generated keys,
the additional requirement is that it holds for all keys in the key-space. The existential
consistency conditions require that a case-packet should have at most one set of keys
and message that can be associated with it, and similarly a verification key should have
at most one signing key, and an encryption key should have at most one decryption key.

CASE: A New Frontier in Public-Key Authenticated Encryption 193

Like the unpredictability requirement, the consistency requirements are also remark-
ably unremarkable in nature—indeed, one may feel that they are to be expected in any
reasonable scheme-but, they are non-trivial to enforce.

2.2 Constructing a COA-Secure CASE

We start with a sign-then-encrypt strategy. Indeed, in the setting of (non-anonymous)
signcryption, sign-then-encrypt is a generic composition that is known to yield a secure
signcryption [5], but only with the weakened form of “replayable CCA” security (intro-
duced in [5] as generalized CCA or gCCA). The main drawback of this construction is
replayability: suppose Eve receives a case-packet C'P signed by Alice and encrypted
using Eve’s encryption key; then, Eve can decrypt it and reencrypt using any encryp-
tion key of its choice (without needing to modify the underlying signature of Alice).
This is clearly problematic because, if Bob receives a case-packet that he can decase
and authenticate to be from Alice, he still cannot be sure if Alice had actually sent it
to him, or to someone like Eve (who then carried out the above attack). An immediate
solution to this is to include in the signed message the encryption key to be used as well;
this would prevent Eve from passing off the signed message with her encryption key in
it as a message intended for Bob. However, this still leaves some non-ideal behavior:
On receiving one case-packet from Alice, Eve can construct many distinct case-packets
by decrypting and reencrypting it with its encryption key many times. Each of these
case-packets would verify as coming from Alice by someone with Eve’s decryption
key. Whether this translates to concrete harm or not is application dependent—but this a
behavior that is not possible in the ideal setting.

We thus want to authenticate the entire case-packet (rather than just the message
and the encryption key) in the signature. However, this leads to a circularity as the
case-packet is determined only after the signature is computed. It turns out that one can
circumvent this circularity by exposing a little more structure from the underlying PKE
scheme. The idea is as follows, instead of signing the case-packet itself, it is enough
to sign everything that goes into the case-packet other than the signature itself—i.e.,
the message, the encryption key, and the randomness that will be used to create the
encryption. This idea should be implemented with some care, so that the security of the
encryption scheme (which is not designed to support message-dependent-randomness)
remains un-affected.

We call an encryption scheme quasi-deterministic if any ciphertext generated by it
includes a part 7 that is independent of the message, but is a perfectly binding encoding
of all the randomness r used in the encryption. As a simple example, El Gamal encryp-
tion is quasi-deterministic, since Encgicamal((g, h), m;7) = (¢",m - h") where (g, h)
is the public-key, m the message and r the randomness, and g” is a binding encoding of
r. The same is true for Cramer-Shoup encryption [16].

This gives us the structure of our final scheme: we need a signature scheme
(with sufficiently short signatures) and a quasi-deterministic PKE scheme (with suf-
ficiently long messages). To encase m, we first pick the randomness r for the PKE
scheme and compute the first component 7 of the ciphertext (without needing the
message). Then, we set the case-packet to be pkeEnc(EK,m||o;r) where 0 =

194 S. Agrawal et al.

sigSign(SK, m||EK||7). Note that, the ciphertext produced by pkeEnc using random-
ness 7 will contain 7 as a part, and during decasing, the signature o can be verified.

To make this construction work, we need the right kind of PKE and signature
schemes, with their own anonymity and existential consistency in addition to the stan-
dard security guarantees (CCA and strong unforgeability, resp.). We capture these secu-
rity requirements as COA-secure Quasi-Deterministic PKE (COA-QD-PKE) and Exis-
tentially Consistent Anonymous Signatures (ECAS).

COA Secure Quasi-Deterministic PKE. The definition of COA security of PKE
consists of a single indistinguishability requirement—Anonymous-CCA-QD security
(adapted from Anonymous-CCA security [1,12])—plus a set of existential consistency
requirements.

To be able to exploit the quasi-determinism (described above), we need to mod-
ify the CCA security game slightly into a CCA-QD game as follows. The adversary
receives the first part 7 of the challenge ciphertext (which does not depend on the mes-
sage) upfront along with the public-key; it receives the rest of the ciphertext after it
submits a pair of challenge messages.

To construct a COA-QD-PKE scheme, we start from an Anonymous-CCA-QD
secure scheme. As it turns out, we already have a construction in the literature that is
Anonymous-CCA-QD secure: [1] showed that with a slight modification, the Cramer-
Shoup encryption scheme [16] becomes Anonymous-CCA secure; we reanalyze this
scheme to show that it is Anonymous-CCA-QD secure as well.?

We also require existential consistency s.t. if a ciphertext decrypts successfully, it
can only decrypt to at most a single message with at most a single decryption key. We
now show how a given Anonymous-CCA-QD-PKE with perfect correctness (such as
the modified Cramer-Shoup scheme [1]) can be modified to be existentially consistent
while retaining its original security. Note that, perfect correctness only refers to honestly
generated keys and ciphertexts, and does not entail existential consistency.

A helpful first step in preventing invalid secret-keys is to redefine it to be the ran-
domness used to generate the original secret-key. Further towards enforcing existential
consistency, we augment the public-key to include a perfectly binding commitment to
the secret-key, and the ciphertext is augmented to include one to the public-key. That is,
the ciphertext has the form («, 3), where « is a commitment to the public-key and /3 is a
ciphertext in the original scheme. To preserve anonymous-CCA security, we need to tie
a and (3 together: it turns out to be enough to let 3 be the encryption of m/||d where d is
the canonical decommitment information for o (from which « also can be computed).

Here we point out one subtlety in the above construction. Note that the public-key
is required to include a binding commitment of the secret-key. But we in fact require
that the public-key can be deterministically computed from the secret-key (since this
property will be required of our CASE scheme). Hence the randomness needed to

3 We note that, CCA-QD security is not implied by CCA security and the QD structure alone.
E.g., one can modify a CCA-QD secure PKE scheme such that, if the encoding of the ran-
domness (the pre-computed component of the ciphertext) happens to equal the message, it
simply sets the second component to L, thereby revealing the message; while this remains
CCA secure, an adversary in the CCA-QD game can set one of the challenge messages to be
equal to the encoding of the randomness and break CCA-QD security.

CASE: A New Frontier in Public-Key Authenticated Encryption 195

compute this commitment must already be part of the secret-key, leading to a circu-
larity. This circularity can be avoided by using a commitment scheme that is “fully
binding”—i.e., the output of the commitment is perfectly binding not only for the mes-
sage, but also for the randomness used. An example of such a scheme, under the
DDH assumption, is obtained from the El Gamal encryption scheme mentioned above:
Com(m; g, h,r) = (g, h, g", mh").

Existentially Consistent Anonymous Signature. We require ECAS to be a (strongly
unforgeable) signature scheme with an anonymity guarantee: without knowing a verifi-
cation key, one cannot tell if two signatures are signed using the same key or not. We
shall also require existential consistency guarantees of ECAS.

To construct an ECAS scheme, we start with a plain (strongly unforgeable) signa-
ture scheme, which w.l.o.g., has uniformly random signing keys from which verification
keys are deterministically derived (by considering the randomness of the key-generation
process as the signing key). We first augment this scheme to support anonymity by
adding a layer of encryption, and include the decryption key in the signing and verifica-
tion keys of the ECAS scheme. To obtain existential consistency, we make the following
modifications:

— The signing key SK includes the underlying scheme’s signing key, the decryption
key for the encryption layer, and additional randomness for making the commitment
below.

— The verification key V K includes the underlying verification key, the decryption
key for the encryption layer and a commitment to the underlying signing key (using
a fully binding commitment scheme as above).

— The signature includes a commitment to V' K (but to the encryption key in it) using
fresh randomness #, and a quasi-deterministic encryption of (||c) where o is a
signature on m||#||7 using the underlying signature scheme, where 7 is the first
component of the quasi-deterministic ciphertext.

— Verification corresponds to decrypting the ciphertext, verifying the signature accord-
ing to the underlying signature scheme and then verifying the consistency of the
commitment.

For existential consistency, as well as (strong) unforgeability, we will rely on the
encryption scheme to be a COA-QD-PKE. Note that we have rely on the quasi-
deterministic nature of the encryption scheme to prevent forgeries which simply refresh
the encryption layer (decrypt and re-encrypt).

We point out one subtlety in the above construction. We have defined the signature
above to include a commitment to (SK*,c, EK*) rather than the actual verification
key VK = (SK*, ¢, DK™). This is to avoid the following circularity: the commitment
would have the decryption key in it while the encryption would have the randomness
used for this commitment. This would prevent us from arguing the properties of ECAS.

Please refer to the full version for the full details. Note that this construction shares
several similarities with our CASE construction. If one unrolls our CASE construction,
there are two layers of COA-QD-PKE, but using two different keys.

Improving the Efficiency. As described in Sect.4.4, CASE admits an analogue of
“hybrid encryption,” whereby long messages can be encased at the cost of applying

196 S. Agrawal et al.

symmetric-key encryption (SKE) and collision-resistant hashing to the original mes-
sage, plus the cost of encasing a fixed size message (consisting of the keys for SKE
and hashing, and the hash of the message). This makes our CASE construction quite
practical.

2.3 A Real-Ideal Definition

A major concern with game-based security definitions is that they may leave out sev-
eral subtler aspects of security. For instance, even for the simpler (and heavily studied)
setting of public-key encryption, the security definition has been strengthened incre-
mentally through a sequence of notions that emerged over the decades: Semantic secu-
rity or IND-CPA [24], IND-CCA (1 and 2) [20,32,35], anonymity [12] and robustness
[1,21,31]. With CASE, this is clearly an even more pressing concern, given its complex-
ity. In particular, our definition of COA-secure CASE has several games and conditions
as part of it, and one may suspect that more such components could be added in the
future.

To address this concern, we seek a definition following the real-ideal paradigm,
where by inspecting the ideal world, one can be easily convinced about the meaning-
fulness of the definition. However, a simulation-based definition quickly leads us to
impossibility results. Even for PKE with adaptive security (when decryption keys may
be revealed adaptively—a situation we do intend to cover), as observed by Nielsen [33],
a simulation based definition is impossible to achieve in the standard model.

In this work, we develop a new definition in the real-ideal paradigm that avoids
simulation, but is nevertheless powerful enough to subsume game-based definitions like
IND-CCA security. Our definition is based on the indistinguishability-preserving secu-
rity notion of the Cryptographic Agents framework [2,3]. The original framework of
[2,3] did not allow an adversary to send (possibly maliciously created) objects to an
honest party, and as such was not powerful to capture even IND-CCA security. We
remove this restriction from the framework and extend it with other useful features.
Then, we model CASE in this framework using a natural idealized version, and seek an
indistinguishability-preserving implementation for it.

Our main result in this model, informally, is that a COA-secure CASE scheme is in
fact, an indistinguishability-preserving implementation of ideal CASE. This validates
our COA security definition for CASE.

Active Agents Framework. We briefly discuss the active agents framework (with more
technical details in Sect.5). The framework is minimalistic and conceptually simple,
and consists of the following:

— Two arbitrary entities. Test models the honest party, and User models the adversary.

— The ideal model has a trusted party B which hands out handles to Test and User for
manipulating data stored with it via an idealized interface called “schema”(akin to a
functionality in the UC security model).

— The real model has Test and User interact with each other using cryptographic
objects, in place of ideal handles.

CASE: A New Frontier in Public-Key Authenticated Encryption 197

* Indistinguishability Preservation: The security requirement in this model is as follows.
For any predicate on Test’s inputs that is hidden from User in the ideal world, it
should be hidden in the real world as well.

An ideal world schema will have an interface corresponding to each algorithm of an
application (such as key generation, encasing and decasing for CASE) and an agent cor-
responding to each cryptographic object (such as keys and ciphertexts). Both Test and
User only get handle numbers to agents. Constructing objects via algorithms is mod-
elled as invoking the corresponding schema command and getting a handle for a new
agent. Sending cryptographic objects is modelled via a special command called Trans-
fer. Test (respectively User) can transfer its agents (via handles) to User (respectively
Test), which gets a new handle number to the transferred agent.

A-s-IND-PRE Security. To obtain our full definition, we need to further qualify
indistinguishability-preservation by specifying the class of Tests and Users in the ideal
model. We denote s-IND-PRE as the class of all PPT Test that are hiding against even
unbounded Users in the ideal world (as in [3]).*

The strongest possible s-IND-PRE definition one can ask for in the active agents
framework is for the test-family of all PPT programs, which results in a definition that
is impossible to realize (even for symmetric key encryption and even in the original
framework of [2]-see the full version). However, a more restricted test-family called A
suffices to subsume all possible IND-style (a.k.a. “real-or-random”) definitions. Infor-
mally, a Test € A reveals everything about the handles for agents it uses in its interac-
tion with User except for a test-bit b corresponding to some arbitrary predicate. When
transferring an agent to User, Test chooses two handles hq, h; and communicates these
to the user but transfers only agent for hy,. Thus, User knows that Test has transferred
one of two known agents to her, but does not know which. User may proceed to perform
any idealized operation with this newly transferred agent.

In intuitive terms, A-s-IND-PRE formalizes the following guarantee: as long as
Test does not reveal a secret in the ideal world, the real world will also keep it hidden.
It subsumes essentially all meaningful IND security definitions for a given interface of
the primitive: for any such IND security game, there is Test € A which carries out
this game, such that it statistically hides the test-bit when an ideal encryption scheme
is used (e.g., in the case of IND-CCA security this formulation corresponds to a game
that never decrypts a ciphertext that is identical to the ciphertext that was earlier given
as the challenge, called IND-CCA-SE in [10]), and A-s-IND-PRE security applied to
this Test translates to the security guarantee in the IND security game.

In particular, A-s-IND-PRE security directly addresses the chosen object attacks of
interest, as they can all be captured using specific tests.

Beyond CASE. We point out that the active agents framework developed here is quite
general and can be used to model security for other schemas in the presence of adver-
sarially created objects. The original frameworks of [2,3] modeled security notions for
more advanced primitives like indistinguishability obfuscation, differing-inputs obfus-

* So that, it is statistical indistinguishability in the ideal model that is required to be preserved
as computational indistinguishability in the real model.

198 S. Agrawal et al.

cation and VGB obfuscation by using different test families. Transferring these defini-
tions to our new model would yield stronger notions with additional non-malleability
guarantees; the resulting primitives remain to be explored. Indeed, as the basic security
definitions for obfuscation and functional encryption are increasingly considered to be
realizable, the achievability of stronger definitions emerges as an important question.

Limits of A-s-IND-PRE. Even though A-s-IND-PRE security is based on an ideal
world model, and subsumes all possible IND definitions, we advise caution against
interpreting A-s-IND-PRE security on par with a simulation-based security definition
(which is indeed unrealizable). For instance, A-s-IND-PRE does not require preserving
non-negligible advantages: e.g., a distinguishing advantage of 0.1 in the ideal world
could translate to an advantage of 0.2 in the real world. Note that this is usually not a
concern, since it corresponds to an ideal world that is already “insecure”.

Another issue is that, while an ideal encryption scheme could be used as a non-
malleable commitment scheme, A-s-IND-PRE security makes no such assurances. This
is because, in the ideal world, if a commitment is to be opened such that indistinguisha-
bility ceases, then IND-PRE security makes no more guarantees. We leave it as an
intriguing question whether A-s-IND-PRE secure encryption could be leveraged in an
indirect way to obtain a non-malleable commitment scheme.

A-s-IND-PRE definition also does not cover side-channel attacks. One can extend
the definition to allow the interface of an implementation to have more commands (cor-
responding to leakage) than in the ideal interface of the schema. We defer this to future
work.

Finally, the idealized model in the Agents framework excludes certain kinds of
usages that a simulation-based idealization would permit. Specifically, since the ideal
interface provides honest users only with handles (serial numbers) for the cryptographic
objects they create or receive, they cannot use a cryptographic object as input to another
algorithm, or even to an algorithm in the same scheme (e.g., a key cannot be used as a
message that is encased). We remark that this restriction is, in fact, a desirable feature
in a programming interface for a cryptographic library; violating this interface should
not be up to the programmer, but should be carefully designed, analyzed and exposed
as a new schema by the creators of the cryptographic library.

2.4 Proving COA Security = A-s-IND-PRE Secure CASE

Implementing the schema X.,.. is a challenging task because it is highly idealized
and implies numerous security guarantees that may not be immediately apparent. (For
instance, in the ideal world, to produce a case-packet, not only is the signing key needed,
but so is the encryption key; hence an adversary with the signing key who gets oracle
access to encasing and decasing, should not be able to create a new valid case-packet.)
These guarantees are not explicit in the definition of COA security. Nevertheless, we
show the following:

Theorem 1. A A-s-IND-PRE secure implementation of Y.,z exists if a COA secure
CASE scheme exists.

The construction itself is direct, syntactically translating the elements of a CASE
scheme into those of an implementation of Y ... However, the proof of security is quite

CASE: A New Frontier in Public-Key Authenticated Encryption 199

non-trivial. This should not be surprising given the simplicity of the COA security def-
inition vis-a-vis the generality of A-s-IND-PRE security. We use a careful sequence of
hybrids to argue indistinguishability preservation, where some of the hybrids involve the
use of an “extended schema” (which is partly ideal and partly real). To switch between
these hybrids, we use both PPT simulators (which rely on the indistinguishability and
unforgeability guarantees in the COA security) and computationally unbounded simula-
tors (which rely on existential consistency). As we shall see, the simulators heavily rely
on the fact that Test € A, and hence the only uncertainty regarding agents transferred
by Test is the choice between one of two known agents, determined by the test-bit b
given as input to Test. The essential ingredients of these simulators are summarized
below.?

o First, we move from the real execution to a hybrid execution in which objects orig-
inating from Test are replaced with ideal agents, while the objects originating from
the adversary are replaced-by an efficient simulator SZ (which knows the test bit
b)—-with ideal agents only when their structure can be deduced efficiently based on
the objects already in the transcript; otherwise S;r prepares non-ideal agents which
internally contain cryptographic objects and transfers them.

In this hybrid, an “extended” schema which allows both ideal and non-ideal agents is
used. The extended schema is carefully designed to allow sessions to run correctly,
even when non-ideal agents (prepared by Sg) and ideal agents interact with each
other.

A detailed analysis, using a graph (GZ which encodes the combined view of Test
and A, is used to argue that the modifications in this hybrid will cause the execution
to deviate only if certain “bad events” occur (see the full version). The bad events
mainly correspond to the violation of conditions explicitly included in the COA
security definition (like correctness, unforgeability and unpredictability) or other
consequences of the definition (like encasing resistance, in Sect.3.1). Since these
bad events can all shown to have negligible probability, making this modification
keeps the experiment’s outcome indistinguishable.®

e The next step is to show that there is a simulator S* which does not need to know
the bit b to carry out the above simulation. This is perhaps the most delicate part of
the proof. The high-level idea is to argue that the executions for b = 0 and b = 1
should proceed identically from the point of view of the adversary (as Test hides the
bit b in the ideal world), and hence a joint simulation should be possible. S* will
abort when it cannot assign a single simulated object for the two possible choices
of a transferred agent, corresponding to b = 0 and b = 1. Intuitively, this event
corresponds to revealing the test-bit b in the ideal execution. This argument crucially
relies on the hiding properties that are part of COA security. These hiding properties
are used to first show indistinguishability in an augmented security game (Sect. 3.2)
which resembles the over all system conditioned on Test keeping the bit b hidden
statistically in the ideeal execution. Then it is argued that if Test hides the test bit in

3 To facilitate keeping track of the arguments being made, we describe the corresponding hybrids
from Sect. 6. The goal is to show Hyg ~ H~, for hybrids corresponding to real executions with
b =0and b = 1 respectively.

® This corresponds to Hp = H; (with b = 0) and H¢ = H7 (with b = 1).

200 S. Agrawal et al.

this execution, then the simulation is good, unless the augmented security guarantee
can be broken.

The execution of S* involves assigning “tentative” objects to handles when they
are needed to compute objects that are being transferred to the adversary, but they
are finalized only they themselves are transferred. The conditions corresponding to
the simulator S* failing are carefully restricted to only those cases which reveal the
test-bit. For example, suppose Test transfers a case-packet agent such that it has
different messages in the two executions corresponding to b = 0 and b = 1. Then
there is no consistent assignment of that agent to an object that works for both b = 0
and b = 1. Nevertheless this may still keep b hidden, as long as the corresponding
decryption keys are not transferred. So S* can assign a random case-packet to this
agent, provided that a decryption key which can decase the case-packet will be never
transferred.

Here, b not being hidden does not yield a contradiction yet.’

e The next simulator S* is computationally unbounded, and helps us move from the
ideal world with the extended schema to the ideal world involving only the schema
Xcase- The key to this step is existential consistency: S* will use unbounded com-
putational power to break open objects sent by the adversary and map them to ideal
agents. It replaces the non-ideal agents from before with ideal agents. S* can be
thought of as simulating the interface of the extended schema to S*, while itself
interacting with the ideal schema. Existential consistency guarantees help ensure
that the view of Test and A remains the same.®

e To prove A-s-IND-PRE security we need only consider Test € A such that the bit
b remains hidden against a computationally unbounded adversary. For such a Test,
the above two hybrids are indistinguishable from each other.’

Together these steps establish that if b is statistically hidden in the ideal execution,
then that it is (computationally) hidden in the real execution. Section 6 and the full
version together present the complete argument.

3 COA Security for CASE

A CASE scheme involves four keys: a signing key (denoted as SK, typically), a ver-
ification key (V K), a decryption key (DK) and an encryption key (EK). Two key
generation processes sample the signing and decryption keys, and each of them can
be deterministically transformed into corresponding verification and encryption keys.
Analogous to encryption and decryption, the two operations in CASE are termed encas-
ing and decasing. We refer to the output of encasing as a case-packet (denoted as C'P).
Below we present the syntax and the COA security definition of a CASE scheme.

Definition 1 (COA-secure CASE). A COA-secure CASE scheme with efficiently rec-
ognizable key-spaces (SK, VIC, DK, £K) and message space M consists of the follow-
ing efficient (polynomial in x) algorithms.

7 This corresponds to showing that if Ho & Hs, then Hi ~ Hy and Hs ~ Hg.
8 This shows Hy ~ Hsz and Hy ~ Hs.
? That is, Hz ~ Ha.

CASE: A New Frontier in Public-Key Authenticated Encryption 201

— skGen: takes security parameter as input, outputs a signing key SK € SK.

— dkGen: takes security parameter as input, outputs a decryption key DK € DK.

— vkGen: converts SK € SK to a verification key VK € VK U {L}.

— ekGen: converts DK € DK to an encryption key EK € EKL U {L}.

— encase: takes (SK, EK,m) € SK x DK x M, outputs CP € CP U {L}.

— decase: takes (VK,DK,CP) € VK x DK x CP and outputs (m, b) where m €
MU{Ll}andb e {0,1}.

— acc: takes any string obj € {0, 1}1’01?4("‘) as input and outputs a token ¢t €
{SK, VK, DK, EK, CP, L }.

Of these, vkGen, ekGen, decase and acc are deterministic algorithms. Below we refer
to algorithms decase-msg and decase-verify derived from decase as follows:

— decase-msg(DK, C'P) = m where (m, b) = decase(L, DK, CP)

— decase-verify(VK, DK,CP) = m if decase(VK, DK,CP) = (m,1), and L oth-
erwise.
We require the algorithms of a CASE scheme to satisfy the following:

1. Correctness (of Accept and Accepted Objects): VSK € SK, VDK € DK,
acc(SK) = SK = acc(vkGen(SK)) = VK and acc(DK) = DK =
acc(ekGen(DK)) = EK. Further, there exists a negligible function negl s.t. V&,

VSK € SK, DK € DK, EK € EK, m € M, the following probabilities are at
most negl(k):
Pr [acc(skcen(ﬁ)) # SK] Pr [acc(dkcen(ﬁ)) # DK]
Pr [acc(SK) = SK A ace(EK) = EK A acc(encase(SK, EK, m)) # cp]
Pr [acc(sx) =SK A acc(DK) = DK
A decase-msg(DK, encase(SK, ekGen(DK),m)) # m]
Pr [acc(SK) =K A acc(DK) = DK

A decase-verify (vaen(SK), DK, encase(SK, ekGen(DK), m)) # 7n]

2. Total Hiding: For any PPT adversary A = (Ap, A1), there exists a
negligible function negl such that, for distinguish-sans-DK as in Fig.1,

1
Pr |distinguish-sans-DK(A, k) = 1} < 3 + negl(k).

3. Sender Anonymity: For any PPT adversary A = (Ay, A1), there exists a negligible
function negl such that, for distinguish-sans-VK as in Fig. 1:

1
Pr [distinguish—sans—VK(.A7 K) = 1} < 5t negl(k).

4. Strong-Unforgeability: For any PPT adversary A, there exists a negligible function
negl such that, for forge as in Fig. 1, Pr [forge(.A7 K) = 1} < negl(k).

5. Unpredictability: For all SK € SK,FK € EK,CP € CP (CP # 1)and m €
M, there exists a negligible function negl such that Pr [encase(SK ,EK,m) =

C’P] < negl(k).

202 S. Agrawal et al.

6. Existential Consistency: There exist functions (not required to be computationally
efficient) skld : VI — SKU{_L},vkld : CP — VKU{L},dkld : EK — DKU{L},
ekld : CP — ELU{L}, msgld : CP — M U {L} such that,

vkGen(SK) = VK = skld(VK) = SK VVK,SK

ekGen(DK) = EK = dkld(EK) = DK VEK, DK
decase-msg(DK,CP) =m # 1L = dkld(CP) = DK,

msgld(CP) = m VDK,CP

decase-verify(VK, DK,CP) =m # 1L = vkld(CP) = VK,
dkld(ekld(CP)) = DK,
msgld(CP) = m VVK,DK,CP

Total Hiding Experiment distinguish-sans-DK (A,) where A = (Ag, A1) is a
2-stage adversary

For each b € {0, 1}, sample DK, < dkGen(1%) and let EK}, < ekGen(DK})

> Let D be s.t. D(b, VK,CP) = decase(VK, DK;,, CP).

(StAO, SKo, SK1,mg, ml) — AOD(EKQ, EKl)

b* < {0,1}, CP* «+ encase(SKp+, EKpr,mp+)

> Let D' bes.t. D'(b,VK,CP) = Lif CP = CP*, and D(b, VK, CP) otherwise.
W« AP (sty,, CP*)

Output 1 iff b* =¥/

Sender Anonymity Experiment distinguish-sans-VK(A, k) where A = (A4g, A1) is a
2-stage adversary

— Foreach b € {0, 1}, sample SK), < skGen(1*) and let V K}, < vkGen(SK})

> Let £ be s.t. £(b, EK, m) returns encase(SKy, EK, m)

> Let D be s.t. D(b, DK, CP) = decase(V Ky, DK,CP)

- (stay, EK,m) « A5 (sta,)

- b* + {0,1}, CP* + encase(SKy+, EK,m)

> Let D’ be s.t. D'(b, DK,CP) = L if CP = CP*, and D(b, DK, C'P) otherwise.
— W« AP (sty,, CPY)

Output 1 iff b* = b’

Strong-Unforgeability Experiment forge(.A, x)

Sample SK < skGen(1%), VK < vkGen(SK)

> Let & be such that £(m, EK) returns encase(SK, EK,m)

(DK,CP) + A*(VK)

Output 1 iff decase-verify(V K, DK,CP) # 1 and CP was not response of any
query to €.

Fig. 1. Experiments for defining COA security of CASE

CASE: A New Frontier in Public-Key Authenticated Encryption 203

Remark 1. Minor variations of the above definition are also acceptable. For example,
one may allow decase and acc to be randomized and all our results can be extended
to this definition too. However, for the sake of convenience, and since our construc-
tion allows it, we have required them to be deterministic. Also, one may include an
additional perfect correctness condition, which our construction meets; but since our
results do not rely on this, we leave this out of the definition.

3.1 Encasing Resistance

We point out an implication of COA security—called “encasing resistance”—that will be
useful later. Encasing resistance requires that any PPT adversary who is given access
to an honestly generated encryption/decryption key-pair only via oracles for encasing
(w.r.t. any signing key) and decasing using those keys, has negligible probability of
generating a “new” valid case-packet for these keys (i.e., a case-packet that is different
from the ones returned by the encasing oracle queries, and which on feeding to the
decasing oracle returns a non-_L output).

Experiment encase-sans-EK(A,)

DK + dkGen(1%), EK «+ ekGen(DK)

> Let &€, D be oracles, where £(SK, m) returns encase(SK, EK, m) and D(V K, C'P) returns
decase(VK,DK,CP)

- CP« A5P

Output 1 iff decase-msg(D K, C'P) # L and C'P was not previously returned by £

Fig. 2. Encasing-Resistance Experiment for CASE

Definition 2 (Encasing-Resistance). A CASE scheme satisfies encasing-resistance if,
for all PPT adversaries .4, there exists a negligible function negl s.t. for encase-sans-EK
as in Fig. 2:

Pr {encase-sans-EK(A, K) = 1} < negl(k) <

Lemma 1. Any COA-secure CASE scheme satisfies encasing-resistance.

Proof sketch 1: The idea behind the proof is that in the encasing-resistance experiment,
the adversary has access to the pair (DK, EK) only through an oracle, and thanks to
the total hiding property, it cannot distinguish if the keys used in the oracle are replaced
with an independent pair (but the experiment’s output is still defined w.r.t. original key
pair). Now, in this modified experiment, the adversary’s goal is to produce a case-packet
that can be decased with a freshly sampled decryption key. This in turn is not feasible,

204 S. Agrawal et al.

because by existential consistency, a case-packet can be decased by at most one decryp-
tion key, and the probability that a freshly sampled decryption key equals the one asso-
ciated with the the case-packet is negligible. The formal argument is given in the full
version. O

We point out that the proof crucially relies on existential consistency as well as the hid-
ing guarantees. Indeed, a CASE scheme modified to include a “dummy” case-packet for
which decase-msg yields a non-_L message for every decryption key continues to sat-
isfy all the other properties; and this dummy case-packet can be used to violate encasing
resistance of the modified scheme.

3.2 Augmented Security

It would be convenient for us to capture the consequences of the total hiding and sender
anonymity conditions in COA security in an “augmented” hiding experiment. This
experiment allows an adversary A to adaptively choose the kind of hiding property
it wants to attack. The experiment maintains n decryption/encryption key pairs and n
signing/verification key pairs (where n is specified by A), and also allows A to send
more objects to the experiment. Throughout the experiment, the adversary can retrieve
the keys, or access the encase or decase oracles using any combination of these objects.
In the challenge phase, it can specify two such sets of inputs to an oracle, and one of the
two will be randomly used by the experiment. The adversary’s goal is to guess which
set of inputs was chosen in the challenge phase. The experiment aborts if at any point
responding to the adversary will trivially reveal this choice. (E.g., if the two sets of
inputs were to encase two different messages, and later on the decryption key for one
of the two is requested.)

We leave the formal definition of augmented security to the full version, where we
also show that any COA-secure CASE scheme satisfies this definition.

4 Constructing a COA-Secure CASE scheme

In this section, we instantiate a COA-secure CASE scheme. We first describe the build-
ing blocks that will be needed.

4.1 Building Block: COA-Secure QD-PKE

Definition 3: (COA-secure Quasi-Deterministic PKE). A PKE scheme (pkeSKGen,
pkePKGen, pkeEnc, pkeDec) is quasi-deterministic and COA-secure if it has the fol-
lowing additional algorithm

— pkeAcc: takes any string obj € {0,1}P°(%) and outputs a token t €
{EK, DK, CT, L}.

Where, pkeAcc is a deterministic algorithm. We require the algorithms to satisfy the
following:

CASE: A New Frontier in Public-Key Authenticated Encryption 205

1. Correctness: Vm € M,VSK € SK,VEK € PK, the following probabilities are
negligible in x

Pr {pkeAcc(pkeSKGen(l“)) # DK}
Pr {pkeAcc(EK) = EK A pkeAcc(pkeEnc(EK,m)) # CT]
Pr [pkeAcc(DK) =DK A pkeAcc(pkePKGen(DK)) # EK]

Pr [pkeAcc(DK) = DK A pkeDec (DK, pkeEnc(pkePKGen(DK),m)) #+ m}

2. Quasi-Deterministic: There exists an efficient randomized algorithm pkeEnc; and
an inefficient deterministic algorithm pkeEnc, such that Vk, Vo € M VEK € PK,
vr € {0, 1}P°(%) it holds that:

pkeEnc(EK, x;r) = (pkeEncl(EK;r), pkeEan(EK7 pkeEncl(EK;r),x))
3. Quasi-Deterministic Anonymous IND-CCA security: For any PPT adversary

A = (Ap, A1, As), there exists a negligible function negl(.) such that for
pkeQDAnonCCAExp as in Fig. 3:

Pr | pkeQDAnonCCAExp(A) = 1| < - + negl(k)

DN | =

QD Anon-CCA Experiment pkeQDAnonCCAExp

Parameters: A = (Ao, A1) is a 2-stage adversary and & is the security parameter.

for each b € {0, 1}, sample (DK, EK}) < pkeGen(1%).

- 0"+ {0,1}, r < {0,1}", 7 < pkeEnc, (EKp+;) using randomness 7.
> Let D be s.t. D(b, CP) = pkeDec(DKy, CP)

(sto, mo, m1) « AZ(EKo, EK1,7)

CP* + pkeEnc(E Ky, my+; 1) using randomness 7.

> Let D’ be s.t. D' (b, CP) = L if CP = CP* else pkeDec(DK;, CP)

Y « AP (sto, CP¥)

Output 1 if b* = ¥’, else output 0.

Fig. 3. Experiment for COA-secure QD-PKE.

4. Existential Consistency: There exist computationally inefficient deterministic
extractor algorithms pkeSKId : PKX — SK U { L}, pkePKld : CP — PK U {1},

206 S. Agrawal et al.

pkeMsgld : CP — M U {1} such that, Vm € M, VEK € PK,VCP € CP,
VDK € SK:

pkePKGen(DK) = EK = pkeSKId(EK) = DK
pkeEnc(EK,m) = CP = pkePKId(CP) = BEK
pkeDec(DK,CP) =m # L = pkeSKld(pkePKId(CP)) = DK
pkeDec(DK,CP) =m # L = pkeMsgld(CP) =m N

O

Following the description in Sect.2.2, we obtain the following construction of a
COA-secure QD-PKE (proven in the full version).

Lemma 2. Assuming the Decisional Diffie-Hellman assumption (DDH), there exists a
COA-secure Quasi-Deterministic PKE scheme.

4.2 Building Block: Existentially Consistent Anonymous Signature

Definition 4 (Existentially Consistent Anonymous Signature). A signature scheme
(sigSKGen, sigVKGen, sigSign, sigVerify) is Existentially Consistent Anonymous Sig-
nature if it has the following additional algorithm

— sigAcc: takes any string obj € {0,1}P°¥(®) and outputs a token t €
{SK, VK, SIG, L }.

Where, sigAcc is a deterministic algorithm. We require the algorithms to satisfy the
following:

1. Correctness: Vk, there exists a negligible function negl(.) such that, VSK € SK,
Vm € M, the following probabilities are negligible in x

Pr _sigAcc(sigSKGen(l"”’)) #+ SK}
Pr _sigAcc(SK) =SK A sigAcc(sigVKGen(SK)) # VK}

Pr -sigAcc(SK) =SK A sigAcc(sigSign(SK, m)) # SIG}

Pr [sighcc(SK) = sk A sigVerify(sigVKGen(SK),m,sigSign(SK, m)) ” 1}

2. Strong-Unforgeability: For any PPT adversary .4, there exists a negligible function
negl(.) such that for SigForgeExp in Fig. 4:

Pr {SigForgeExp(A) = 1] < negl(k)

3. (Signer) Anonymity: For any PPT adversary A = (Ag, A1), there exists a negligi-
ble function negl(.) such that tfor SigAnonExp as in Fig. 4:

Pr [Sig/—\nonExp(.A) = 1} < % + negl(x)

CASE: A New Frontier in Public-Key Authenticated Encryption 207

4. Existential Consistency: There exist computationally inefficient deterministic
extractor algorithms sigVKId : ¥ — VK U {1}, sigSKId : VK — SK U {Ll}
st. VSK € SK,VVK € VK, Vo € X, the following probabilities are negligible in
K

sigVKGen(SK) =VK = sigSKId(VK) = SK

sigSign(SK,z) =0 = sigSKld(sigVKId(o) = SK
sigVerify(VK,z,0) =1 =sigVKld(c)) = VK q

Experiment SigAnonExp
Parameter: A = (Ao, A1) is a 2-stage adversary and « is the security parameter.

foreach b € {0, 1}, sample (SK,, VK,) < sigGen(17).
> Let S be s.t. S(b',m') = sigSign(S Ky, m')

(stag,m) ¢ AF(1%)

b* +{0,1}, o + sigSign(S K+, m),

b* <+ AT (sta,,0)

Output 1 iff b = b*.

Fig. 4. Experiment for Existentially Consistent Anonymous Signature.

Following the description in Sect. 2.2, we obtain the following result (proven in the
full version).

Lemma 3. If there exists a signature scheme, a COA-secure QD-PKE scheme and
a perfectly binding commitment scheme; then there exists a Existentially Consistent
Anonymous Signature scheme.

Compactness. Without loss of generality, we assume that our signature schemes have
fixed length signatures independent of the size of the message (beyond the security
parameter). To achieve compactness, we can start with any plain signature scheme and
define a new scheme where the signature is actually on a hash of the message computed
using a full-domain collision-resistant hash function.

4.3 Main Construction: COA-Secure CASE
We now describe the main construction.

Lemma 4. [f there exists a COA-secure QD-PKE scheme and an Existentially Consis-
tent Anonymous Signature scheme, then there exists a COA-secure CASE scheme.

208 S. Agrawal et al.

Parameter: Let « be the security parameter.
Let S = (sigGen, sigSign, sigVerify, sigAcc, sigSKId, sigVKId) be a Existentially Consistent
Anonymous Signature scheme.
Let E = (pkeGen, pkeEnc,, pkeEnc, pkeDec, pkeAcc, pkeSKIld, pkePKld, pkeMsgld) be a
COA-secure QD-PKE scheme.
COA-secure CASE Scheme SE: ~ dkGen(1"):
— skGen(1"): output DK < pkeSKGen(1%)
output SK + sigSKGen(1%)
- vkGen(SK): - ekGen(DK):
output VK <« sigVKGen(SK) output EK < pkePKGen(DK)
— encase(SK, EK,m): - decase-msg(DK,CP):
T 4+ pkeEnc, (EK; r) if pkeDec(DK,CP) = L, output L
o < sigSign(SK, m||EK||T) m||o + pkeDec(DK, C'P)
CP < pkeEnc(EK,m||o; r) output m
output C'P - decase(VK,DK,CP):
— acc(obj): if pkeDec(DK,CP) = L, output L
if obj € SK U VK, output m||o < pkeDec(DK, CP)
sigAcc(oby) EK < pkePKGen(DK)
else if obj € DKUEK UCP, output parse CP as (7, c)
pkeAcc(obj) output (m, sigVerify(VK, o, m||EK||T))
else output L
Existential Consistency: ~ msgld(CP):
m||o + pkeMsgld(CP)
output m
- skld(VK): - dkld(EK):
output sigSKId(V K) output pkeSKId(EK)
- vkld(C'P): - ekld(CP):
m||o + pkeMsgld(CP) output pkePKId(C'P)
output sigVKId(o)

Fig. 5. COA secure CASE

Proof: Let EF be a COA-secure QD-PKE scheme (Definition 3) and S be a ECAS
scheme (Definition 4). We prove that the scheme in Fig.5 is a COA-secure CASE
scheme (Definition 1).

— Total Hiding: we prove this via a reduction to the quasi-deterministic anon IND-
CCA security of the underlying PKE scheme. Let A be an adversary with advan-
tage « in the distinguish-sans-DK experiment. We build an adversary 4* for the
pkeQDAnonCCAExp experiment as follows. It accepts (E Ko, FK;,7) from the

CASE: A New Frontier in Public-Key Authenticated Encryption 209

experiment and forwards (E Ky, EK;) to A. For any polynomial oracle query of
the form (VK', b/, CP’) from A, it queries the experiment on (b’, CP’), receives
the decryption m/'||o’, checks if the signature is valid w.r.t. VK’ and returns m’ to
A. Tt receives the challenge messages (S Ky, SK1,mg, m1) from A, constructs each
mj as my = my||oy, where o, = sigSign(SK,, m||PKy||T). It sends (mg, m7) to
the experiment, receives the challenge ciphertext and forwards it to .A. Finally, it
outputs A’s output. Thus, A* has advantage «, which from our assumption that
is a secure quasi-deterministic anon-PKE scheme, must be negligible.

Sender Anonymity: we prove this via a reduction to the anonymity of
the underlying signature scheme. Let A be an adversary with advantage «
in the distinguish-sans-VK experiment. We build an adversary A* for the
SigAnonExp experiment as follows. For any polynomial oracle query of the form
(t/, EK’',m’) that it receives from .4, it samples randomness 7', constructs 7/ «—
pkeEnc, (EK’; 1), queries the oracle on (b', m’||EK’||T"), gets back ¢’ and sends
CP' =pkeEnc(EK’',m/||o’; r') to A. When A outputs the challenge (EK,m), it
samples randomness r, constructs 7 < pkeEnc, (EK;), sends m||EK||r as the
challenge message to the experiment, receives ¢ as the challenge signature, sends
CP = pkeEnc(EK,m||o; r) as the challenge ciphertext to .4 and outputs .A’s out-
put. Thus, A* has advantage «, which from our assumption that S is a COA-secure
signature scheme, must be negligible.

Strong-Unforgeability: we prove this via a reduction to the unforgeability of the
underlying signature scheme. Let A be an adversary with advantage « in the forge
experiment. We build an adversary .A* for the SigForgeExp experiment as follows. It
receives V K from the experiment and forwards it to A. For any polynomial oracle
query of the form (m/, EK') that it receives from .4, it samples randomness 77,
constructs 7' «— pkeEnc, (EK'; r'), queries the oracle on m/||EK’||T’, gets back
o’ and sends C'P’ = pkeEnc(EK’,m/||c’; r') to A. When A outputs the forgery
(DK,CP), it gets EK «— ekGen(DK), parses CP as (7, c), decrypts C'P to get
m||o « decase-verify(VK, DK,CP) and outputs (m||EK]||r,0) as its forgery.
Thus, A* has advantage «, which from our assumption that S is a COA-secure
signature scheme, must be negligible.

Unpredictability: this follows trivially from the Quasi-Deterministic property of the
PKE scheme. The PKE ciphertext is of the form (7, CP’), but 7 must have enough
entropy so t