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Preface

The 21st Theory of Cryptography Conference (TCC 2023) was held during November
29 – December 2, 2023, at Academia Sinica in Taipei, Taiwan. It was sponsored by the
International Association for Cryptologic Research (IACR). The general chairs of the
conference were Kai-Min Chung and Bo-Yin Yang.

The conference received 168 submissions, of which the Program Committee (PC)
selected 68 for presentation giving an acceptance rate of 40%. Each submission was
reviewed by at least three PC members in a single-blind process. The 39 PC members
(including PC chairs), all top researchers in our field, were helped by 195 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised versions of the 68 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

We are extremely grateful toKevinMcCurley for providing fast and reliable technical
support for the HotCRP review software. We also thank Kay McKelly for her help with
the conference website.

This was the ninth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year, the Test of Time Award Committee
selected the following paper, published at TCC 2007: “Multi-authority Attribute Based
Encryption” byMelissa Chase. The award committee recognized this paper for “the first
attribute-based encryption scheme in which no small subset of authorities can compro-
mise user privacy, inspiring further work in decentralized functional encryption.” The
author was invited to deliver a talk at TCC 2023.

This year, TCC awarded a Best Young Researcher Award for the best paper authored
solely by young researchers. The award was given to the paper “Memory Checking for
Parallel RAMs” by Surya Mathialagan.

We are greatly indebted to the many people who were involved in making TCC 2023
a success. First of all, a big thanks to the most important contributors: all the authors
who submitted fantastic papers to the conference. Next, we would like to thank the PC
members for their hard work, dedication, and diligence in reviewing and selecting the
papers. We are also thankful to the external reviewers for their volunteered hard work
and investment in reviewing papers and answering questions. For running the conference
itself,we are very grateful to the general chairs,Kai-MinChung andBo-YinYang, aswell
as the staff at Academia Sinica (Institute of Information Science and Research Center of
Information Technology Innovation). For helpwith these proceedings, we thank the team
at Springer. We appreciate the sponsorship from IACR, Hackers in Taiwan, Quantum
Safe Migration Center (QSMC), NTT Research and BTQ. Finally, we are thankful to
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Tal Malkin and the TCC Steering Committee as well as the entire thriving and vibrant
TCC community.

October 2023 Guy Rothblum
Hoeteck Wee
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Broadcast-Optimal Four-Round MPC
in the Plain Model

Michele Ciampi3 , Ivan Damg̊ard1 , Divya Ravi1 , Luisa Siniscalchi2 ,
Yu Xia3(B) , and Sophia Yakoubov1

1 Aarhus University, Aarhus, Denmark
{ivan,divya,sophia.yakoubov}@cs.au.dk

2 Technical University of Denmark, Kongens Lyngby, Denmark
luisi@dtu.dk

3 The University of Edinburgh, Edinburgh, UK
{michele.ciampi,yu.xia}@ed.ac.uk

Abstract. The prior works of Cohen, Garay and Zikas (Eurocrypt
2020), Damg̊ard, Magri, Ravi, Siniscalchi and Yakoubov (Crypto 2021)
and Damg̊ard, Ravi, Siniscalchi and Yakoubov (Eurocrypt 2023) study 2-
round Multi-Party Computation (where some form of set-up is required).
Motivated by the fact that broadcast is an expensive resource, they focus
on so-called broadcast optimal MPC, i.e., they give tight characteriza-
tions of which security guarantees are achievable, if broadcast is available
in the first round, the second round, both rounds, or not at all.

This work considers the natural question of characterizing broadcast
optimal MPC in the plain model where no set-up is assumed. We focus
on 4-round protocols, since 4 is known to be the minimal number of
rounds required to securely realize any functionality with black-box simu-
lation. We give a complete characterization of which security guarantees,
(namely selective abort, selective identifiable abort, unanimous abort and
identifiable abort) are feasible or not, depending on the exact selection
of rounds in which broadcast is available.

1 Introduction

Secure Multi-party Computation (MPC) [7,22,28] allows a set of mutually dis-
trusting parties to compute a joint function on their private inputs, with the
guarantee that no adversary corrupting a subset of parties can learn more infor-
mation than the output of the joint computation. The study of round complexity
of MPC protocols in various settings constitutes a phenomenal body of work in
the MPC literature [1,3,5,9,19,24,26,27]. However, most of the known round-
optimal protocols crucially rely on the availability of a broadcast channel. Infor-
mally, a broadcast channel guarantees that when a message is sent, this reaches
all the parties, without ambiguity.

M. Ciampi—Supported by the Sunday Group.
I. Damg̊ard—Supported by the Villum foundation.
D. Ravi—Funded by the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No
803096 (SPEC).
c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14370, pp. 3–32, 2023.
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In practice, a broadcast channel can be realized using t + 1 rounds of point-
to-point communication, where t denotes the corruption threshold (maximal
number of parties the adversary can corrupt). In fact, t + 1 rounds are necessary
for any deterministic protocol that realizes broadcast [16,17]. An alternate way
of realizing broadcast would be by means of a physical or external infrastructure,
e.g. a public ledger such as blockchain. Both these approaches to realize broad-
cast are quite demanding and expensive; therefore it is important to minimize
its use.

Driven by this motivation, a very recent line of work [13–15] studies if it is
plausible to minimize the use of broadcast while maintaining an optimal round
complexity, at the cost of possibly settling for a weaker security guarantee. More
specifically, these works investigate the best achievable guarantees when some
or all of the broadcast rounds are replaced with rounds that use only point-to-
point communication. All the above works focused on two-round MPC protocols
where some form of setup assumption (such as a common reference string (CRS)
or public-key infrastructure (PKI)) is required.

We make a study analogous to these works but in the plain model, where
no prior setup is assumed1. Further, we focus on the dishonest majority setting
where the adversary can corrupt all but one party. In this setting, four rounds
of communication is known to be necessary [18] and sufficient [2,3,6,9–11,24]
for secure computation with black-box security2. Notably, all the round-optimal
(four-round) protocols in this setting use broadcast in every round. This leads
us to the following natural question:

What is the trade-off between security and the use of broadcast for 4-round
MPC protocols in the plain model in the dishonest majority setting?

As a first step, let us recall what kinds of security guarantees are achievable
in the dishonest majority setting. The classic impossibility result of [12] showed
that it is in general impossible to achieve the notions of fairness (where either
all or none of the parties receive the output) and guaranteed output delivery
(where all the parties receive the output of the computation no matter what). In
light of this, the protocols in the dishonest majority setting allow the adversary
to abort prematurely and still, receive the output (while the honest parties do
not). Below are the various relevant flavors of abort security studied in the MPC
literature.

Selective Abort (SA): A secure computation protocol achieves selective abort
if every honest party either obtains the correct output or aborts.
Selective Identifiable Abort (SIA): a secure computation protocol achieves
selective identifiable abort if every honest party either obtains the correct output
or aborts, identifying one corrupt party (where the corrupt party identified by
different honest parties may potentially be different).

1 The only assumption is that communication channels are available between the par-
ties; it is still required that parties have access to authenticated channels.

2 By black-box security we mean that the simulator has only black-box access to the
adversary. As in prior works, all our results are concerning black-box security.
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Unanimous Abort (UA): A secure computation protocol achieves unanimous
abort if either all honest parties obtain the correct output, or they all (unani-
mously) abort.
Identifiable Abort (IA): A secure computation protocol achieves identifiable
abort if either all honest parties obtain the correct output, or they all (unani-
mously) abort, identifying one corrupt party.

Of these notions, SA is the weakest, IA the strongest, while SIA (recently
introduced in [15]) and UA are “in between”, and incomparable.

1.1 Our Contributions

We settle the above question by giving a complete characterization of which
of the above four security guarantees is feasible or not w.r.t. all the possible
broadcast communication patterns that one can have in 4-rounds, namely, if no
broadcast is available, if broadcast is available in just one (two or three) rounds,
and in which one(s).

We give a concise overview of our results below, which are described in more
detail in Sect. 1.2. We recall that our impossibility results hold w.r.t. black-box
simulation, which is also the case for [18].

No Broadcast: We show that if broadcast is not used in any of the four rounds,
then selective abort is the best notion that can be achieved.
Broadcast in One Round: We show that if broadcast is used in exactly one
round, then unanimous abort can be achieved if it is used in the last round;
otherwise selective abort continues to remain the best achievable guarantee.
Broadcast in Two Rounds: We show that if broadcast is used in exactly two
rounds, the feasibility landscape remains the same as the above.
Broadcast in Three Rounds: We show that if broadcast is used in exactly
three rounds, then selective identifiable abort can be achieved if it is used in the
first three rounds; otherwise it continues to remain impossible. The feasibility
of other notions does not change in this setting.
Broadcast in Four Rounds: If broadcast is used in all four rounds, the
strongest notion of identifiable abort becomes possible [11].

In Table 1 we summarize our findings.

1.2 Technical Overview

We start by presenting the technical overview of our positive results, and in the
next section, we will provide a high-level idea about how our impossibility proof
works.
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Table 1. Complete characterization of feasibility and impossibility for 4-round dis-
honest majority MPC with different communication patterns in the plain model. We
denote the acronym P 2P (resp. BC) to indicate the peer-to-peer (resp. broadcast)
channel. We use the notation P 2P x (resp. BCx) to indicate x consecutive rounds of
peer-to-peer (resp. broadcast) communications.

Broadcast
Pattern

Possible? Theorem
reference

Selective Abort (SA)
P2P 4 ✓ Theorem 1

Identifiable Abort (IA)
BC4 ✓ [11]

BC3-P2P ✗ Theorem 4
Any other
4-round
pattern

✗ Follows from the set
on impossibilities

for SIA, see Table 2
for the

corresponding
theorems.

Broadcast
Pattern

Possible? Theorem
reference

Unanimous Abort (UA)
BC3-P2P ✗ Theorem 4
P2P 3-BC ✓ Theorem 2

Selective Identifiable Abort (SIA)
BC3-P2P ✓ Theorem 3
Any other
4-round
pattern

✗ See Table 2 for the
corresponding

theorems.

Table 2. Impossibility results for 4-round MPC with SIA security against dishonest
majority in the plain model. The third column “Implied Patterns” means that the
patterns in this column are implied by the pattern in the first column “Broadcast
Patterns”. An impossibility in a stronger broadcast pattern setting implies the impos-
sibility in a weaker broadcast pattern setting, where a broadcast pattern BP1 is weaker
than a pattern BP2 if BP1 replaces at least one of the broadcast rounds in BP2 with
a P 2P round (without introducing any additional BC rounds over BP2).

Broadcast Pattern Implied Patterns
BC2-P2P -BC ✗(Theorem 6) BC-P2P 2-BC, BC-P2P 3, P2P -BC-P2P -BC, P2P -BC-P2P 2

BC2-P2P 2 ✗(Theorem 5)
BC-P2P -BC2 ✗(Theorem 8) BC-P2P -BC-P2P

P2P -BC3 ✗(Theorem 7) P2P 2-BC2, P2P 2-BC-P2P , P2P -BC2-P2P , P2P 3-BC, P2P 4

P2P4 SA Protocol. In our first upper bound, we show that security with selective
abort can be achieved when all the rounds are over P2P channels. In particular,
we show how to turn any protocol that is proven secure assuming that all the
messages are sent over a broadcast channel, into a protocol that is secure even if
all the broadcast rounds are replaced with P2P rounds. As a starting point, note
that if a round where a secure protocol uses broadcast (say round r) is simply
replaced with peer-to-peer channels, the main problem is that the adversary can
send different messages (over peer-to-peer channels) to a pair of honest parties
in round r and obtain the honest parties’ responses in round (r + 1), computed
with respect to different round r messages. This potentially violates security as
such a scenario would never happen in the original protocol with broadcast in
round r (as the honest parties would have a consistent view of the messages sent
in round r) (Table 2).
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To ensure that honest parties’ responses are obtained only if they have a
consistent view of the corrupt parties’ messages, the two-round construction of
Cohen et al. [13] adopts the following trick: In addition to sending the round
r message3 over a peer-to-peer channel (as described above), the parties send
a garbled circuit which computes their next-round message (by taking as input
round r messages, and using the hard-coded values of input and randomness
of this party) and additively share labels of this garbled circuit. In the subse-
quent round, parties send the relevant shares based on the round r messages
they received. The main idea is that the labels corresponding to honest parties’
garbled circuits can be reconstructed to obtain their round (r +1) messages only
if the adversary sends the same round r message to every honest party.

While [13] use the above idea to transform a BC-BC protocol into a P2P -
P2P protocol, we extend it to transform a BC4 protocol to P2P 4 protocol.
Applying the above trick of sending the next-message garbled circuits and addi-
tive shares in Round 1 and 3 will ensure that if honest parties manage to evaluate
the garbled circuits in Round 2 and 4 respectively, it must be the case that the
honest parties have a consistent view of the Round 1 and Round 3 messages of
corrupt parties. However, there is a slight caveat: The corrupt party could still
send different garbled circuits to different honest parties, say in Round 1. This
will make the view of honest parties inconsistent with respect to Round 2 of the
corrupt party. Note that this was not a concern in [13] as Round 2 corresponds
to the last round of the protocol, unlike our case4.

To address this, we use ‘broadcast with abort’ [23] to realize a ‘weak’ broad-
cast of garbled circuits over two peer-to-peer rounds – In the first round, as
before, each party sends its garbled circuit to others. In the second round, par-
ties additionally echo the garbled circuits they received in Round 1. A party
‘accepts’ a garbled circuit only if it has been echoed by all other parties, or else
she aborts. This ensures that if a pair of honest parties does not abort, they
must have received the same garbled circuit and therefore would have a consis-
tent view of Round 2 of corrupt parties as well. This approach has still one issue,
as it allows the adversary to send different fourth-round messages to different
honest parties. We can argue that this is not a problem if the input protocol
of our compiler admits a simulator that can extract the inputs of the corrupted
parties in the first three rounds. This helps because if the inputs of the corrupted
parties are fixed in the third round, so is the output. Intuitively, this means that
no matter what fourth round the adversary sends, an honest party receiving this
fourth round will either abort or compute the correct output (and all the parties
will get an output generated accordingly to the same corrupted and honest par-
ties’ inputs). Finally, we note that the protocols proposed in [3,9,24] all satisfy
this property, hence, they can be used as input of our compiler.

3 The round r corresponds to the first round in the construction of [13].
4 The consistency of views with respect to the last round follows from input-

independence property of the underlying protocol (elaborated in the relevant tech-
nical section).



8 M. Ciampi et al.

P2P3-BC UA Protocol. This upper bound is based on the observation that when
the broadcast channel is available in the last round, it is possible to upgrade the
security of the above SA protocol (the one enhanced with the garbled circuit
that we have described in the previous paragraph) to UA with the following
simple modification: If an honest party is unable to continue computation during
Rounds 1–3, she simply broadcasts the signal ‘abort’ in the last round, which
would lead to all honest parties aborting unanimously. (Note that a corrupt
party can also choose to broadcast ‘abort’, this does not violate unanimity as all
honest parties would abort in such a case.). This takes care of any inconsistency
prior to Round 4. Lastly, an adversary cannot cause inconsistency during Round
4, as we make the parties send all their messages via broadcast in Round 4.

BC3-P2P SIA Protocol. To prove this upper bound, we show that a big class
of protocols (i.e., those that admit a simulator that can extract the inputs of
the corrupted parties in the first three rounds) that are secure with identifiable
aborts (which use broadcast in all rounds) can be proven to be secure with
selective identifiable abort even if the last round is replaced by peer-to-peer
channels. Intuitively, if this is not the case, it means that the adversary can
make honest parties obtain inconsistent outputs by sending different versions
of the last round message. However, this cannot occur since the output of the
protocol must have been fixed before the last round (due to our assumption
that the simulator extracts the input in the first three rounds), and since that,
if there exists a fourth round that forces honest parties to compute the wrong
output, this message could be used and sent in the last broadcast round of the
original protocol to force honest parties to output an incorrect value. Finally,
we note that the protocol proposed in [11] admits this special simulator. This
observation yields a protocol that realizes any function with selective identifiable
abort when the communication resources are BC3-P2P .

Impossibility Results. We propose two main categories of impossibility results.
In the first category, we show that UA security is impossible to achieve when
the communication in the last round is performed over P2P . This shows the
tightness of our P2P 3-BC UA upper bound, completing the picture for UA
security. The second category comprises a set of four impossibility results that
show that any broadcast pattern that does not use a broadcast channel in each
of the first three rounds cannot achieve SIA. This result implies that any SIA
secure protocol must rely on the pattern BC3-P2P , hence our protocol is tight.
This completes the picture for SIA security. Since IA is stronger than both UA
and SIA, both the categories of impossibilities are applicable to IA as well. In
particular, by putting everything together we prove that the pattern BC4 is
indeed minimal for realizing security with IA.

BC3-P2P UA Security. The main idea of this impossibility is to show that any
protocol that enjoys security with UA in this setting in the plain model can
be turned into a 3-round oblivious transfer (OT) protocol in the plain model.
Since the latter is known to be impossible [25], such a BC3-P2P UA protocol
cannot exist. The transformation occurs in two-steps: First, we show that the
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BC3-P2P UA protocol must be such that it is possible for a set of n/2 among
the n parties to obtain the output by combining their views at the end of Round
3. Intuitively, this is because it may happen that the only communication an
honest party, say P , receives in the last round may be from other honest parties.
She may still have to compute the output to maintain unanimity – This is
because the last round is over peer-to-peer channels and the adversary may have
behaved honestly throughout all the rounds towards her fellow-honest party P ′

(while behaving honestly only in the first three rounds to P ). P ′ will compute
the output due to correctness (from the perspective of P ′, this was an execution
where everyone behaved honestly). This lets us infer that the set of honest parties
together had enough information about the output at the end of Round 3 itself,
as this information sufficed to let P get the output at the end of Round 4.
Assuming that there are n/2 honest parties, this completes the first step. Next,
we show that one can construct a three-round OT protocol, where the receiver
PR emulates the role of the above set of n/2 parties and the sender PS emulates
the role of the remaining set of n/2 parties. For this, we define the function
computed by the n-party BC3-P2P UA protocol accordingly; and invoke the
above claim (of the first step) and security of this n-party protocol to argue
correctness and security of the OT protocol respectively.

SIA Security. Here, we give a high-level overview of how we prove that SIA
is impossible to achieve when the communication pattern is of the form BC-
BC-P2P -P2P . The impossibility of the other communication patterns follows
by similar arguments. Assume by contradiction that there exists a three-party
protocol Π that can securely compute any efficiently computable function f with
SIA security when the broadcast channel is available only in the first two rounds.
We denote the parties running this protocol with P1, P2, and Pout, and assume
that f provides the output only to the party Pout. We consider now the following
two scenarios.

Scenario 1. P �
1 is corrupted (we denote the i-th corrupted party with P �

i ), and
the other parties are honest. P �

1 behaves like P1 would, with the difference that
it does not send any message to P2 in the third and the fourth round. Further,
P �
1 pretends that it did not receive the third and the fourth round (over the

point-to-point channel) messages from P2.
Scenario 2. This time P �

2 is corrupted, and the other parties are honest. P �
2

behaves exactly like P2, but it does not send any message to P1 in the third and
the fourth round. Further, P �

2 pretends that it did not receive the third and the
fourth round (over the point-to-point channel) messages from P1.

We note that the two scenarios look identical in the eyes of Pout. This is
because Pout cannot access the P2P channel connecting P1 and P2, hence, he
cannot detect which of the two parties did not send a message. In particular, Pout
will not be able to detect who is the corrupted party. By the definition of SIA,
if Pout cannot identify the corrupted party, then it must be able to output the
evaluation of the function f . Equipped with this observation, our proof proceeds
in two steps.
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1. First, we construct a new three-party protocol Π ′. We denote the parties
running this protocol with P ′

1, P ′
2, and P ′

out. The party P ′
1 behaves exactly

like P �
1 described in Scenario 1, and similarly P ′

2 and P ′
out behave respectively

like P ′
2 and P ′

out in Scenario 1. We argue that Π ′ is secure with SA security.
In fact, it suffices for our argument to show that Π ′ is secure for the following
two corruption patterns: (a) when P ′

1 and P ′
out are corrupt and when (b) P ′

2
and P ′

out are corrupt. We refer to the simulators proving security in these
cases as SSIA

1,out and SSIA
2,out respectively.

2. Next, we show an attack that allows an adversary ASA corrupting P �′
2 and

P �′
out in Π ′ to learn the input of honest P ′

1. This step would complete the
proof as it contradicts the security of Π ′ for this corruption setting (which
was argued to be secure in the first step). Broadly speaking, we show that this
adversary ASA is able to get access to all the information that the simulator
SSIA
1,out has (which must exist, as argued in the first step). Intuitively, since the

information that SSIA
1,out has must suffice to ‘extract’ the input of corrupt P ′

1
(in order for the simulation to be successful5), this allows us to argue that
ASA can use this information to learn the input of honest P ′

1.

Before elaborating on each of the above steps, we make the following useful
observation: since P ′

out is the only party getting the output and the security goal
of Π ′ is SA security, we can assume without loss of generality that in Π ′ (a)
P ′
out does not send any message to the other parties in the last round and (b)

there is no communication between P ′
1 and P ′

2 in the last round.

SA Security of Π′. In the first step, one can easily observe that the correctness of
Π ′ holds as an honest execution of Π ′ would result in P ′

out having a view that is
identically distributed to the view of Pout at the end of Scenario 1 (which sufficed
to compute the correct output). Intuitively, privacy holds as there is less room
for attack in Π ′ as compared to Π, as it involves fewer messages. To formally
argue SA security of Π ′ for the case when P �′

2 and P �′
out are corrupt, we construct

a simulator SSA
2,out for Π ′. In particular, we need to argue that the messages of P ′

1
can still be simulated, despite the fact that it does not send messages to P �′

2 in
the third and the fourth round. Our simulation strategy works as follows. The
simulator SSA

2,out for Π ′ internally runs the SIA simulator SSIA
2,out of Π for the case

where P1 is honest (recall that this exists by definition). SSA
2,out acts as a proxy

between SSIA
2,out and the corrupted parties for the first and the second round,

but upon receiving the third round from SSIA
2,out directed to P �

2 , SSA
2,out blocks this

message. At this point, a corrupted P �′
2 may or may not send a reply, but what

is important to observe is that whatever behavior P �′
2 has, P �

2 could have had
the same behavior while running Π. Intuitively, P �′

2 is always weaker than P �
2 .

Hence, the security of Π can be used to argue that the input of P ′
1 remains

protected.

5 Note that SSIA
1,out works against an adversary corrupting P ′

1 and P ′
out, and must there-

fore be able to extract the input of P ′
1.
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We deal with the case where P ′
2 and P ′

out are corrupted in Π ′ in a similar
way. We refer to the technical part of the paper for a more detailed discussion.

Attack by ASA. In the second step, our goal is to show an adversary ASA that
corrupts P �′

2 and P �′
out and runs the simulator SSA

1,out to extract the input of the
honest P ′

1
6 (proofs with a similar spirit have been considered in [21,26]). To make

the proof go through, we need to argue that an adversary that runs SSA
1,out is a

legit adversary. In particular, this adversary must not rewind the honest P ′
1. Note

that in the plain model and dishonest majority setting, the only additional power
the black-box simulator has compared to an adversary is to perform rewinds.
We show that no matter what rewinds SSA

1,out performs, these rewinds do not
affect the honest party P ′

1. At a very high level, ASA is able to obtain the same
information as SSA

1,out would collect over the rewinds because (a) the rewinds
that allow SSA

1,out to obtain new messages from P �′
out can be locally computed by

ASA (as ASA also controls P �′
out) (b) essentially, no rewinds help to obtain new

messages from P �′
1 because P �′

1 does not send any messages to P ′
2 (on whose

behalf SSA
1,out acts) in the last two rounds. In more detail,

Rewinding the Second Round: P′
2 → P′

1. Changing the second message may
influence the third round that will be computed by P ′

1. However, note that
P ′
1 does not send any message in the third round to P ′

2. Hence, we just need
to forward to P ′

1 only one of the potential multiple second-round messages the
simulator generates. The messages we choose to forward need to be picked with
some care. We refer the reader to the technical section for more detail.

Rewinding the Second Round: P′
2 → P�′

out. Changing the second round messages
may affect the third round that goes from P �′

out to P �′
1 , and as such, it may affect

the fourth round that goes back from P ′
1 to P �′

out. However, the simulator SSA
1,out

acting on behalf of P ′
2 will not see the effect of this rewind, given that in Π ′, P ′

2
does not receive any message in the fourth round. We also note that this rewind
would additionally allow SSA

1,out to obtain new third round messages from P �′
out

based on different second round messages of P ′
2. However, this can be locally

computed by ASA in its head, as it controls both P �′
out and P �′

2 .
The above arguments can be easily extended to infer that any rewind per-

formed in the third round does not affect P ′
1. There is one pattern left, which is

the one where the simulator rewinds the first round.

Rewinding the First Round: P′
2 → P′

1. The high-level intuition to argue that
the simulator has no advantage in using these rewinds is that SSA

1,out must be

6 There are functionalities for which the simulator may not need to extract any input
from the adversary. In our impossibility, we will consider a three-party oblivious
transfer functionality (where one party does not have the input), where the simulator
must be able to extract the input of the corrupted parties.
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able to work even against the following adversary. Consider a corrupted P �′
1

who is rushing in the first round and computes fresh input (and randomness) by
evaluating a pseudo-random function (PRF) on the incoming first-round message
from P ′

2. Subsequently, the corrupted P �′
1 uses this input honestly throughout

the protocol. It is clear that against such an adversary, a simulator that rewinds
the first round has no advantage. This is because changing the first round would
change the input the adversary uses on behalf of P �′

1 . Therefore, the information
collected across the rewinding sessions cannot help to extract the input used
by the adversary in the simulated thread (which refers to the transcript that is
included in the adversary’s view output by the simulator).

Formalizing the above intuition requires some care, and here we provide a
slightly more detailed overview of how we do that. Our adversary ASA will receive
messages of P ′

1. SSA
1,out (which we recall is run internally by ASA) may rewind the

first round multiple times, and each time ASA must reply with a valid first and
second round of P ′

1. We could simply reply to SSA
1,out every time using the first

round message we received from the honest P ′
1. We then forward the first round

received from P ′
out and P ′

2 to P ′
1. P ′

1 now will send the second round, which we
can forward to SSA

1,out. Now, SSA
1,out may decide to rewind P ′

1, by sending a new
first round. At this point, we would need to forward this message to P ′

1, as this is
the only way to compute a valid second round of P ′

1. Clearly, P ′
1 is not supposed

to reply to such queries, and as such, our adversary ASA is stuck. To avoid this
problem, we adopt the following strategy. Let us assume that we know in advance
that the simulator SSA

1,out runs for at most κ steps7. This means that the simulator
can open a new session (i.e., rewind the first round) up to κ times. Our adversary
samples a random value i ∈ [κ], and for all the sessions j �= i, the adversary will
compute the messages on behalf of P ′

1 using input and randomness computed by
evaluating the PRF on input the messages received from P ′

2. Only for the i-th
session, the adversary will act as a proxy between the messages of P ′

1 and the
simulator SSA

1,out. If the SSA
1,out returns a simulated transcript consistent with the

i-th session, then we also know that the simulator must have queried the ideal
functionality with a value that corresponds to the input of P ′

1. Given that we
can guess the index i with some non-negligible probability, and given that the
simulator will succeed with non-negligible probability as well, our attack would
be successful. There is still subtlety though. In the session with indices j �= i,
ASA internally runs the algorithm of P ′

1 using an input x1 that is computed by
evaluating a PRF on input the messages generated from P ′

2. The input used
by the honest P ′

1 may have a different distribution, and as such, the simulator
may decide to never complete the simulation of the i-th session. We first note
that, formally, the goal of our adversary ASA is not really to extract the input
of the honest P ′

1. But it is about distinguishing whether the messages that it
will receive on behalf of P ′

1 are generated using the honest procedure of P ′
1, or

using the simulated procedure. Note that in such an MPC security game, the

7 If the simulator has expected polynomial time κ, for some polynomial κ, then our
adversary will run the simulator up to κ steps. This will guarantee that the simulator
will terminate successfully with some non-negligible probability.
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adversary knows, and can actually decide8 what are the inputs of the honest
parties (i.e., what inputs the challenger of the security game will use to compute
the messages of P ′

1). ASA then can internally run SSA
1,out, and when the i-th session

comes generate an input x1 by evaluating the PRF on the messages received on
the behalf of P ′

2. Now that the input of the honest P ′
1 is defined, we start the

indistinguishability game with a challenger that takes as input x1 (and some
default input for the corrupted parties). In this way, we have the guarantee that
when the challenger is not generating simulated messages, all the sessions look
identical in the eyes of the simulator SSA

1,out. Hence, we can correctly state that
with some non-negligible probability, it will return a simulated transcript for the
i-th session. Note that SSA

1,out will return x̃1 when querying the ideal functionality
in the i-th session, and we will have that x̃1 = x1 iff the challenger is computing
the messages using the honest procedure of P ′

1. If instead, the challenger was
generating simulated messages on behalf of P ′

1, then the probability that x̃1 = x1
is small9. Hence, this will give a non-negligible advantage to ASA in distinguishing
what the MPC challenger is doing. We refer to the technical sections of the paper
for a more formal treatment of this proof.

Rewinding the First Round: P′
2 → P�′

out. To argue this case, we note that if SSA
1,out

acts against the rushing adversary defined in the above case (where P �′
1 changes

its input based on the output of PRF applied on the first round message from
P ′
2), then the first and second round messages of P �′

1 obtained during the rewinds
can be locally emulated by ASA (as he controls both P �′

2 and P �′
out).

In summary, we have argued that ASA can internally run the simulator SSA
1,out

which enables the adversary to be able to extract the input of P ′
1.10 We refer

to the technical section of the paper for a much more formal proof, and for the
proof of impossibility results related to the other communication patterns.

1.3 Related Work

The work of [13] initiated the study of broadcast-optimal MPC. They investi-
gated the question of the best security guarantees that can be achieved by all
possible broadcast patterns in two-round secure computation protocols, namely
no broadcast, broadcast (only) in the first round, broadcast (only) in the second
round, and broadcast in both rounds. Their results focused on the dishonest
majority setting and assumed a setup (such as PKI or CRS)11. The works of
[14,15] investigate the same question for two-round MPC with setup (such as
PKI or CRS), but in the honest-majority setting. We refer the reader to [13–15]
for a detailed overview of the state of the art on 2-round MPC and their use of

8 The security of MPC states that security holds for any honest parties’ inputs (decided
before the experiment starts), and these inputs may be known to the adversary.

9 This will depend on the domain size of P ′
1 input and on the type of function we are

computing.
10 The simulator may be expected polynomial time, hence we need to cut the running

time of the simulator to make sure that ASA remains PPT.
11 It is necessary to assume setup for two-round protocols in dishonest majority setting.
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broadcast. The work of [20] studies the best achievable security for two-round
MPC in the plain model for different communication models such as only broad-
cast channels, only peer-to-peer channels, or both. Unlike the previously men-
tioned line of work, this work does not consider communication patterns where
broadcast is limited to one of the two rounds. Going beyond two rounds, the
work of [4] studies broadcast-optimal three-round MPC with guaranteed output
delivery given an honest majority and CRS, and shows that the use of broad-
cast in the first two rounds is necessary. None of the above works consider the
dishonest majority setting without setup (i.e. the plain model). In this setting,
there are several existing round-optimal (four round) constructions, namely pro-
tocols with unanimous abort in [2,3,6,9,24] and with identifiable abort in [11].
However, these works do not restrict the use of broadcast in any round. To the
best of our knowledge, we are the first to investigate the question of optimizing
broadcast for round optimal (four-round) protocols in the dishonest majority
setting without setup (i.e. in the plain model).

2 Preliminaries and Notations

Due to lack of space, we assume familiarity with the standard definition of secure
Multi-party Computation (MPC), the garbling schemes, additive secret sharing,
and also the notion of pseudo-random functions. We refer to the full version for
the formal definitions.

In this paper, we mainly focus on four-round secure computation proto-
cols. Rather than viewing a protocol Π as an n-tuple of interactive Tur-
ing machines, it is convenient to view each Turing machine as a sequence of
multiple algorithms: frst-msgi, to compute Pi’s first messages to its peers;
nxt-msgk

i , to compute Pi’s (k + 1)-th round messages for (1 ≤ k ≤ 3);
and outputi, to compute Pi’s output. Thus, a protocol Π can be defined as
{(frst-msgi, nxt-msgk

i , outputi)}i∈[n],k∈{1,2,3}.
The syntax of the algorithms is as follows:

– frst-msgi(xi; ri) → (msg1i→1, . . . ,msg1i→n) produces the first-round messages of
party Pi to all parties. Note that a party’s message to itself can be considered
to be its state.

– nxt-msgk
i (xi, {msgl

j→i}j∈[n],l∈{1,2,...,k}; ri) → (msgk+1
i→1, . . . ,msgk+1

i→n) produces
the (k + 1)-th round messages of party Pi to all parties.

– outputi(xi,msg11→i, . . . ,msg1n→i, . . . ,msgj
1→i, . . . ,msgj

n→i; ri) → yi produces
the output returned to party Pi.

When the first round is over broadcast channels, we consider frst-msgi to
return only one message—msg1i . Similarly, when the (k + 1)-th round is over
broadcast channels, we consider nxt-msgk

i to return only msgk+1
i . We also note

that, unless needed, to not overburden the notation, we do not pass the random
coin r as an explicit input of the cryptographic algorithms. We denote “←”
as the assigning operator (e.g. to assign to a the value of b we write a ← b).
We denote the acronym BC to indicate a round where broadcast is available
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and the acronym P2P to indicate a round where only peer-to-peer channels are
available. We use the notation P2P x (BCx) to indicate x rounds of peer-to-
peer (broadcast) communications. To strengthen our results, our lower bounds
assume that the BC rounds allow peer-to-peer communication as well; our upper
bounds assume that the BC rounds involve only broadcast messages (and no
peer-to-peer messages).

3 Positive Results

P2P 4, SA, Plain Model, n > t. In this section, we want to demonstrate that it
is feasible to construct a 4-round protocol with SA security, in order to do so
we show a compiler that on input a 4-round protocol Πbc with unanimous abort
which makes use of the broadcast channel in the dishonest majority setting gives
us a 4-round protocol ΠSA

p2p4 with the same threshold corruption for selective
abort, but relying only on P2P communication. Further, we assume that the
exists a simulator for Πbc which extracts the inputs of the adversary from the
first three rounds. For instance, one can instantiate Πbc using the protocol of
[9]12.

At a very high level, our compiler follows the approach of Cohen et al. [13].
The approach of Cohen et al. focuses on the 2-round setting (using some form of
setup) and compiles a 2-round protocol Πbc which uses broadcast in both rounds
into one that works over peer-to-peer channels. This core idea of the compiler is
to guarantee that honest parties have the same view of the first-round message
when they need to compute their second-round message. To achieve this goal
the parties, in the first round, generate a garbled circuit which computes their
second-round message of Πbc and they secret share their labels using additive
secret sharing. The parties send the first-round message of Πbc. In the second
round, each party sends her garbled circuit and for each received first-round
message of Πbc she sends her appropriate share corresponding to the label in
everyone else’s garbled circuit. The important observation is that the labels are
reconstructed only when parties send the same first-round message to every other
party. In this work, we extend the following approach for four rounds executing
the above idea for Rounds 1–2 and subsequently for Rounds 3–4. If at any round
a party detects any inconsistency (e.g., the garbled circuit outputs ⊥, or she
did not receive a message from another party) she simply aborts. Moreover, the
protocol requires some changes w.r.t. the original approach since a corrupted
party can send (in the second round) different garbled circuits to the honest
party obtaining different 2nd rounds of Πbc. We need to ensure that honest
parties abort if the adversary does so, to guarantee that the adversary does not
obtain honest parties’ responses computed with respect to different versions, in

12 To the best of our knowledge, simulators of all existing 4-round construction in the
plain model (e.g., [3,9,24]) have this property of input extraction before the last
round. In particular, see page 42 of [8] for details regarding input extraction by the
simulator of the UA protocol in [9].
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the subsequent rounds. Therefore, the garbled circuits are sent in the round that
they are generated in and echoed in the next round.

In more detail, the security follows from the security of Πbc because of the
following: the only advantage the adversary has in comparison to Πbc is that
she can send inconsistent first (resp., third-round messages) over P2P channels.
However, additive sharing of the labels of the honest party’s garbled circuit
ensures that the adversary can obtain second round (resp., fourth-round) of
an honest party only if she sent identical first-round (resp., third-round) to all
honest parties. Therefore, if the honest parties do not abort, it must be the
case that they have a consistent view with respect to the first and third-round
messages of the adversary. Further, since the honest parties also echo the garbled
circuits sent by the adversary (computing the corrupt parties’ second-round
messages), if they proceed to evaluate those, it would mean that the honest
parties are agreeing with respect to the second-round messages of the adversary.
Note that this does not constitute an issue in the 4th round. If the adversary
manages to send garbled circuits resulting in honest parties obtaining different
valid fourth rounds of Πbc that result in different outputs, this would violate
the security of Πbc. This follows from our assumption that the simulator of Πbc
extracts the input of the adversary in the first three rounds, which guarantees
that the adversarial inputs of Πbc are fixed before the last round. Intuitively, in
the last round of Πbc, the adversary can only decide if the honest parties obtain
the output or not. Finally, it is important to observe that the compiler avoids
using zero-knowledge proofs (as any misbehavior that the adversary does such as
garbling an incorrect function can be translated to the adversary broadcasting
the corresponding second and fourth-round message in the underlying protocol
Πbc) and uses only tools that can be instantiated from one-way functions. In
Fig. 3.1 we formally describe our protocol ΠSA

p2p4 and refer the reader to the full
version for the formal proof.

Figure 3.1: ΠSA
p2p4

Primitives: A four-broadcast-round protocol Πbc that securely com-
putes f with unanimous abort security against t < n corruptions, and a
garbling scheme (garble, eval, simGC). For simplicity assume that each
round message has the same length and it is � bits long, so each circuit
has L = n · � input bits.
Notation: Let Cj

i,x(msgj
1, . . . ,msgj

n) denote the boolean circuit with
hard-wired values x that takes as input the j-th round messages
msgj

1, . . . ,msgj
n and computes nxt-msgj

i . We assume that when a party
aborts she also signals the abort to all other parties.
Private input: Every party Pi has a private input xi ∈ {0, 1}∗.

First round (P2P ): Every party Pi does the following:

1. Let msg1i ← frst-msgi(xi) be Pi’s first round message in Πbc.
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2. Compute (GCi, Ki) ← garble(1λ, C1i,xi
), where Ki =

{Kb
i,α}α∈[L],b∈{0,1}.

3. For every α ∈ [L] and b ∈ {0, 1}, sample n uniform random strings
{Kb

i→k,α}k∈[n], such that Kb
i,α =

⊕
k∈[n] Kb

i→k,α.
4. Send to every party Pj the message (msg1i , GCi, {Kb

i→j,α}α∈[L],b∈{0,1})

Second round (P2P ): Every party Pi does the following:

1. If Pi does not receive a message from some other party (or an abort
message), she aborts;

2. Otherwise, let (msg1j→i, GCi, {Kb
j→i,α}α∈[L],b∈{0,1}) be the first round

message received from Pj .
3. Concatenate all received messages {msg1j→i}j∈[n] as (μ1

i,1, . . . , μ1
i,L) ←

(msg11→i, . . . ,msg1n→i) ∈ {0, 1}L.
4. Let GCi be the set of garbled circuits received from the other parties

in the first round.
5. Send to all parties the message (GCi, {Kμ1

i,α

j→i,α}j∈[n],α∈[L]).

Third round (P2P ): Every party Pi does the following:

1. If Pi does not receive a message from some other party
(or receives an abort message), she aborts; Otherwise, let
({GCl}l∈[n], {K1→j,α}α∈[L], . . . , {Kn→j,α}α∈[L]) be the second round
message received from party Pj , and let GCj be the garbled circuit
received from Pj in the first round.

2. Check if the set of garbled circuits {GCl}l∈[n] echoed in Round 2 are
consistent with the garbled circuits received in Round 1. If this is not
the case, abort.

3. For every j ∈ [n] and α ∈ [L], reconstruct each garbled label by com-
puting Kj,α ← ⊕

k∈[n] Kj→k,α.
4. For every j ∈ [n], evaluate the garble circuit as msg2j ←

eval(GCj , {Kj,α}α∈[L]). If any evaluation fails, aborts. Let msg3i ←
nxt-msg2i (xi, {msg1j→i}j∈[n], {msg2j}j∈[n]) be the Pi’s third round mes-
sage in Πbc.

5. Compute (G̃Ci, K̃i) ← garble(1λ, C3i,xi
), where K̃i =

{K̃b
i,α}α∈[L],b∈{0,1}.

6. For every α ∈ [L] and b ∈ {0, 1}, sample n uniform random strings
{K̃b

i→j,α}j∈[n], such that K̃b
i,α =

⊕
k∈[n] K̃b

i→k,α.
7. Send to every party Pj the message (msg3i , {K̃b

i→j,α}α∈[L],b∈{0,1})

Fourth round (P2P ): Every party Pi does the following:

1. If Pi does not receive a message from some other party (or receives an
abort message), she aborts;

2. Otherwise, let (msg3j→i, {K̃b
j→i,α}α∈[L],b∈{0,1}) be the third round mes-

sage received from Pj .
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3. Concatenate all received messages {msg3j→i}j∈[n] as (μ2
i,1, . . . , μ2

i,L) ←
(msg31→i, . . . ,msg3n→i) ∈ {0, 1}L

4. Send to all parties the message (G̃Ci, {K̃μ2
i,α

j→i,α}j∈[n],α∈[L])

Output Computation: Every party Pi does the following:

1. If Pi does not receive a message from some other party
(or receives an abort message), she aborts; Otherwise, let
(G̃Cj , {K̃1→j,α}α∈[L], . . . , {K̃n→j,α}α∈[L]) be the fourth round message
received from party Pj .

2. For every j ∈ [n] and α ∈ [L], reconstruct each garbled label by com-
puting K̃j,α ← ⊕

k∈[n] K̃j→k,α

3. For every j ∈ [n], evaluate the garbled circuits as msg4j ←
eval(G̃Cj , {K̃j,α}α∈[L]). If any evaluation fails, aborts.

4. Compute and output y ← outputi(xi, {msg1j→i}j∈[n], {msg2j}j∈[n],

{msg3j→i}j∈[n], {msg4j}j∈[n])

Theorem 1 (P2P -P2P -P2P -P2P , SA, Plain Model, n > t). Let f be an
efficiently computable n-party function, where n > t. Let Πbc be a BC-BC-BC-
BC protocol that securely computes f with unanimous abort security against t <
n corruptions with the additional constraint that a simulator can extract inputs
before the last round. Then, assuming secure garbling schemes, the protocol from
Fig. 3.1 can compute f with selective-abort security that uses only P2P channels
against t < n corruptions.

P2P 3-BC, UA, Plain Model, n > t. The protocol described in Fig. 3.1 achieves
unanimous abort security (against the same corruption threshold) when the last
round is executed over the broadcast channel.

The security follows intuitively from the fact that in this case, the honest
parties rely on the last round (over broadcast) to recover the output unanimously.
In more detail, if any inconsistency is detected in any round before the last round,
the honest party aborts signaling to abort to everybody else. Instead, if the last
round is executed then the additive shares corresponding to the fourth-round
next-message garbled circuits are being broadcast (instead of being sent over
peer-to-peer channels), and the adversary can no longer enable only a strict
subset of honest parties to evaluate the garbled circuits successfully and obtain
the output. Lastly, we point that unlike the case of P2P 4, SA protocol in Fig. 3.1,
we need not assume that Πbc is such that its simulator can extract inputs before
the last round. This is because in this case, the last round of the UA protocol is
over broadcast. Therefore any attack in the last round of this protocol directly
translates to an attack in the last round of Πbc. More formally, we have the
following theorem (we refer the reader to the full version for its formal proof).
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Theorem 2 (P2P -P2P -P2P -BC, UA, Plain Model, n > t). Let f be an
efficiently computable n-party function, where n > t. Let Πbc be a BC-BC-BC-
BC protocol that securely computes f with unanimous abort security against
t < n corruptions. Then, assuming secure garbling schemes, the protocol from
Fig. 3.1 can compute f with unanimous-abort security by a four-round protocol,
where the broadcast channel is used only in the last round (while the first three
rounds use peer-to-peer channels).

BC3-P2P , SIA, Plain Model, n > t. Let us consider a protocol Πbc which is
a 4-round (where the broadcast channel is available in each round) IA MPC
protocol secure against a dishonest majority. Moreover, let us assume that there
exists a simulator for Πbc which extracts the inputs of the adversary from the
first three rounds. For instance, one can instantiate Πbc using the protocol of
[11]13.

Starting from Πbc we can construct a SIA protocol Π in the same setting,
where Π is defined exactly as Πbc but where the last round is executed over the
peer-to-peer channel. Intuitively, Π achieves SIA security since by our assump-
tions on Πbc the simulator extracts the inputs of the adversary in the first three
rounds, and therefore the adversarial inputs are fixed before the last round.
Indeed, in the last round, the adversary can only decide if an honest party gets
the output or learns the identity of cheaters (depending on the version of the last
round message the adversary sends privately), but two honest parties can not
obtain a different output (which is non-⊥). It can happen that different honest
parties identify different cheaters and others recover (the same) outputs, but this
is sufficient for SIA security. Finally, we note that a similar result was shown by
[15], but only for the two rounds setting. We prove the following theorem, and
refer the reader to the full version for its proof.

Theorem 3 (BC-BC-BC-P2P , SIA, Plain Model, n > t). Let f be an
efficiently computable n-party function, where n > t. Let Πbc be a BC-BC-BC-
BC protocol that securely computes f with identifiable abort security against
t < n corruptions with the additional constraint that a simulator can extract
inputs before the last round. Then, f can be computed with selective identifiable-
abort security by a four-round protocol, where the first three-rounds use broadcast
channels and the last round uses peer-to-peer channels.

13 The protocol of [11] lifts an UA protocol to achieve IA security (where the simulator
of the IA protocol uses the simulator of the UA protocol). If we consider, for instance,
the simulator of the UA protocol constructed in [9], this simulator extracts the inputs
of the adversary from the first 3 rounds (see page 42 of [8]). Therefore, for instance,
by instantiating [11] with [9] we obtain Πbc with the desired property.
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4 Negative Results

BC3-P2P , UA, Plain Model, n > t. At a high-level, we show that any BC3-P2P
protocol achieving UA against dishonest majority implies a three-round oblivious
transfer (OT) protocol in the plain model, which is known to be impossible [25].
We prove the following theorem and refer the reader to the full version for the
formal proof.

Theorem 4 (BC-BC-BC-P2P , UA, n > t). There exists function f such
that no n-party four-round protocol can compute f with unanimous-abort security
against t < n corruptions, such that the first three rounds use broadcast and
point-to-point channels and the last round uses only point-to-point channels.

4.1 SIA Impossibility Results

Theorem 5 (BC-BC-P2P -P2P , SIA, Plain Model, n > t). Assume the
existence of pseudorandom functions. There exists function f such that no
n-party four-round protocol (in the plain model) can compute with selective
identifiable-abort security, against t < n corruptions, while in the protocol, the
first two rounds use broadcast channels and the last two rounds use peer-to-peer
channels.

Proof. We start the proof assuming that the four-round protocol Π is run by
three parties only, and we extend the proof to the n-party case in the end.
By contradiction, assume that there exists a three-party protocol Π that can
compute any function f with selective identifiable-abort security where just one
party Pout gets the output14 and the broadcast channel is accessible only in the
first two rounds. Let us denote the three parties running the protocol Π with
P1, P2, and Pout.

Consider the following adversarial strategy of Fig. 4.1. In summary, in this
scenario, corrupted P1 behaves like an honest party, with the difference that it
does not send the third and the fourth message to P2, and it pretends that it
does not receive the third message and the fourth message from P2.

Figure 4.1: Scenario 1

Setting: P1 is corrupted party P2 and Pout are honest parties.
Private input: Every party Pi has a private input xi ∈ {0, 1}∗.

First round (BC):
Every party Pi samples the randomness ri from uniform distribution D,
computes msg1i ← frst-msgi(xi; ri), and sends the message over the
broadcast channel.

14 We are assuming implicitly this requirement on f thought the rest of the proof.
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Second round (BC):
Every party Pi computes msg2i ← nxt-msg1i (xi, {msg1j}j∈{1,2,out}; ri), and
sends it over the broadcast channel.
Third round (P2P ):

1. Every party Pi computes ({msg3i→j}j∈{1,2,out}) ←
nxt-msg2i (xi, {msgk

j }j∈{1,2,out},k∈{1,2}; ri).
2. P1 sends msg31→out to Pout. Pout sends msg3out→1 to P1, and sends

msg3out→2 to P2. P2 sends msg32→1 to P1, and sends msg32→out to Pout.

Fourth round (P2P ):

1. P1 sets msg32→1 = ⊥ and computes ({msg41→j}j∈{1,2,out}) ←
nxt-msg31(x1, {msgk

j }j∈{1,2,out},k∈{1,2}, {msg3j→1}j∈{1,2,out}; r1).
2. Pout computes ({msg42→j}j∈{1,2,out}) ←

nxt-msg3out(xout, {msgk
j }j∈{1,2,out},k∈{1,2}, {msg3j→out}j∈{1,2,out}; rout).

3. P2 computes ({msg42→j}j∈{1,2,out}) ←
nxt-msg32(x2, {msgk

j }j∈{1,2,out},k∈{1,2}, {msg3j→2}j∈{2,out}; r2).
4. P1 sends msg41→out to Pout. Pout sends msg4out→1 to P1, and sends

msg4out→2 to P2. P2 sends msg42→out to Pout and msg42→1 to P1.

Given the above adversarial strategy, we proceed now in a series of steps in
order to reach a contradiction.
Step 1: Pout Can not abort identifying the corrupted party. We prove
that, if Pout aborts, it can not identify that P1 aborted. We prove this by contra-
diction. Consider the scenario of Fig. 4.2. In this, the corrupted P2 behaves like
an honest party, and he does not send the third and the fourth round message
to P1. At the same time, it pretends that it does not receive the third round and
fourth message from P1. P1 behaves honestly, sending all the messages that the
protocol Π prescribes. In summary, P2 behaves like P1 behaves in Scenario 1.

Figure 4.2: Scenario 2

Setting: P2 is corrupted party. P1 and Pout are honest parties.
Private input: Every party Pi has a private input xi ∈ {0, 1}∗.

First round (BC):
Every Pi samples the randomness ri from uniform distribution D, com-
putes msg1i ← frst-msgi(xi; ri), and sends the message over the broad-
cast channel.
Second round (BC):
Every party Pi computes msg2i ← nxt-msg1i (xi, {msg1j}j∈{1,2,out}; ri), and
sends it over the broadcast channel.
Third round (P2P ):
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1. Every party Pi computes ({msg3i→j}j∈{1,2,out}) ←
nxt-msg2i (xi, {msgk

j }j∈{1,2,out},k∈{1,2}; ri).
2. P2 sends msg32→out to Pout. Pout sends msg3out→1 to P1, and sends

msg3out→2 to P2. P1 sends msg31→out to Pout, and sends msg31→2 to P2.

Fourth round (P2P ):

1. P1 computes ({msg41→j}j∈{1,2,out}) ←
nxt-msg31(x1, {msgk

j }j∈{1,2,out},k∈{1,2}, {msg3j→1}j∈{1,out}; r1).
2. Pout computes ({msg4out→j}j∈{1,2,out}) ←

nxt-msg3out(xout, {msgk
j }j∈{1,2,out},k∈{1,2}, {msg3j→out}j∈{1,2,out}; rout).

3. P2 sets msg31→2 = ⊥ and computes ({msg42→j}j∈{1,2,out}) ←
nxt-msg32(x2, {msgk

j }j∈{1,2,out},k∈{1,2}, {msg3j→2}j∈{1,2,out}; r2).
4. P2 sends msg42→out to Pout. Pout sends msg4out→1 to P1, and sends

msg4out→2 to P2. P1 sends msg41→out to Pout and msg41→2 to P2.

Intutively, in Scenario 1 (in Fig. 4.1), P2 can potentially report P1’s misbe-
haviour to Pout earliest in round 4 (since P1 behaved honestly in round 1 and
round 2). This means that Pout cannot identify the corrupted party (and abort)
until all the four rounds are received. However, a corrupted P1 is pretending
that P2 did not send the third round message. Hence, none of the messages that
Pout receives in the fourth round would help him. In particular, Pout sees P1 and
P2 blaming each other. In addition, Pout can not see what happened on P2P
channel between P1 and P2, therefore, Pout can not identify the corrupted party
correctly.

Formally, if in Scenario 1 Pout aborts, then based on the definition of selective
identifiable-abort, Pout identifies P1 as the corrupted party. However, the view of
Pout in the Scenario 1 is identical to the view of Pout in Scenario 2 (in Fig. 4.2).
Because the view of Pout is identical in the two scenarios, then Pout has the same
behavior in both scenarios. Hence, Pout identifies P1 as the corrupted party.
However, in Scenario 2, P1 is honest, and this contradicts the SIA security of Π.
From the above, we can conclude that Pout does not abort in Scenario 1, hence,
it must be able to compute the output.
Step 2: Constructing an SA secure protocol (only for two corruption
patterns). We now consider a new protocol, that we denote with Π ′ (and
denote the parties running the protocol with P ′

1, P ′
2 and P ′

out). This protocol
works exactly like Π, with the following differences: 1) The honest P ′

1 does not
send the third message to P ′

2. 2) No fourth messages between P ′
1 and P ′

2. 3) P ′
out

does not send any fourth round to P ′
1 and P ′

2.
We prove that this protocol is secure with selective aborts. Informally, this

is possible because the honest parties send fewer messages compared to Π, and
the party P ′

out will still be able to compute the output due to the argument given
above. Moreover, given that we just want to obtain SA security, we can remove
the messages that Pout sends in the last round. Formally, we prove that if Π is SIA
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secure, then Π ′ (that we propose in Fig. 4.3) is secure with selective abort (SA)
for two corruption patterns. Namely, we prove that the protocol is secure when
either P ′

1 and P ′
out are corrupted or when P ′

out and P ′
2 are corrupted. Looking

ahead, we focus only on these corruption patterns, because proving the security
of Π ′ only in these cases would be enough to reach our final contradiction. Below,
we provide a more formal argument.

Figure 4.3: The new protocol Π ′

Primitives: A three-party four-round protocol Π =
{(frst-msgi, {nxt-msgk

i }k∈{1,2,3}, outputi)}i∈{1,2,out} that securely
computes any f with selective identifiable-abort security against t < n
corruptions, where the first two rounds use the broadcast channels to
exchange messages, and last two rounds use P2P channels.
Private input: Every party P ′

i has a private input xi ∈ {0, 1}∗.

First round (BC):
Every party P ′

i samples the randomness ri from uniform distribution
D, computes msg1i ← frst-msgi(xi; ri), and sends the message over the
broadcast channel.
Second round (BC):
Every party P ′

i computes msg2i ← nxt-msg1i (xi, {msg1j}j∈{1,2,out}; ri), and
sends it over the broadcast channel.
Third round (P2P ):

1. Every party P ′
i computes ({msg3i→j}j∈{1,2,out}) ←

nxt-msg2i (xi, {msgk
j }j∈{1,2,out},k∈{1,2}; ri).

2. P ′
1 sends msg31→out to P ′

out. P ′
out sends msg3out→1 to P ′

1, and sends
msg3out→2 to P ′

2. P ′
2 sends msg32→1 to P ′

1, and sends msg32→out to P ′
out.

Fourth round (P2P ):

1. P ′
1 sets msg32→1 = ⊥ and computes ({msg41→j}j∈{1,2,out}) ←

nxt-msg31(x1, {msgk
j }j∈{1,2,out},k∈{1,2}, {msg3j→1}j∈{1,2,out}; r1).

2. P ′
out computes ({msg4out→j}j∈{1,2,out}) ←

nxt-msg3out(xout, {msgk
j }j∈{1,2,out},k∈{1,2}, {msg3j→out}j∈{1,2,out}; rout).

3. P ′
2 computes ({msg42→j}j∈{1,2,out}) ←

nxt-msg32(x2, {msgk
j }j∈{1,2,out},k∈{1,2}, {msg3j→2}j∈{2,out}; r2).

4. P ′
1 sends msg41→out to P ′

out. P ′
2 sends msg42→out to P ′

out.

Output Computation:

1. P ′
out compute and output y ← outputout(xout,

{msgk
j }j∈{1,2,out},k∈{1,2}, {msgk

j→out}j∈{1,2,out},k∈{3,4}; rout)
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The security of the SIA protocol Π ensures us that there exist corresponding
simulators for (all) the corruption patterns, we will exploit those simulators to
construct the simulators for proving the security of Π ′. Let SSIA

1,out and SSIA
2,out be

the simulators of Π for, respectively, corrupted P1 and Pout and for corrupted P2
and Pout. We construct two new simulators SSA

1,out and SSA
2,out which, respectively,

make use of SSIA
1,out and SSIA

2,out, and use them to prove the security of Π ′ in the
above-mentioned corruption patterns. To formally do that, we need to transform
an adversary ASA attacking Π ′ into an admissible adversary Mintf of Π (we need
to do that since the simulators SSIA

1,out and SSIA
2,out only work against adversaries

attacking the protocol Π). Mintf runs internally ASA and acts as a proxy for
the messages between the simulator SSIA

1,out (resp. SSIA
2,out) and ASA, withholding

the messages that honest party P ′
1 is not supposed to send in Π ′. The Fig. 4.4

formally describes Mintf . In this, we denote as the left interface, the interface
where the adversary sends and receives the protocol messages.

Figure 4.4: The adversary Mintf

Notation: Let H be the set of indices of the honest parties and I be
the indices of the corrupted parties. Mintf internally runs the adversary
ASA, and is equipped with a left interface, where it receives the messages
computed on behalf of the honest parties and sends the messages
computed on the behalf of the corrupted parties.

First round (BC):

1. Upon receiving msg1h on the left interface with h ∈ H, Mintf forwards
the message to ASA in Π ′.

2. Upon receiving the messages sent by ASA, Mintf forwards them to the
left interface, where it is acting as a corrupted party for Π.

Second round (BC):

1. Upon receiving msg2h on the left interface, where h ∈ H, Mintf forwards
the message to ASA.

2. Upon receiving the messages sent by ASA in Π ′, Mintf forwards them,
acting as the corrupted parties in Π.

Third round (P2P ):

1. Upon receiving msg3h→j in the left interface, where h ∈ H and j ∈ I,
Mintf forwards the message msg3h→out (and the message msg32→1 in the
case where 2 ∈ H) to ASA.

2. Upon receiving the messages sent by ASA, Mintf forwards them to the
left interface acting as the corrupted parties in Π.

Fourth round (P2P ):
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1. Upon receiving msg4h→j on the left interface, where h ∈ H and j ∈ I,
Mintf forwards the message msg4h→out to ASA (if any).

2. Upon receiving the messages sent by ASA, Mintf forwards them to its
left interface.

We are now ready to show how the simulator SSA
1,out of Π ′ for the case where

P ′
1 and P ′

out are corrupted. The simulator SSA
1,out is formally described in Fig. 4.5.

Figure 4.5: SSA
1,out

SSA
1,out performs the following steps:

– Invoke SSIA
1,out for the adversary Mintf , querying and receiving responses

to and from its left interface.
– Work as a proxy between the ideal functionality and SSIA

1,out.

In the end, SSA
1,out output whatever SSIA

1,out outputs, and halt.

For the case where P ′
2 and P ′

out are corrupted, we can define the simulator
SSA
2,out similarly to SSIA

1,out, but using SSIA
2,out. If an adversary ASA attacking Π ′ is able

to distinguish between when it is receiving messages produced by SSA
1,out (resp.

SSA
2,out) from the case when the messages are generated from an honest party

running Π ′, then we can show an adversary that contradicts the SIA security of
Π. In the reduction ASIA simply runs internally Mintf , which in turn it will run
ASA.
Step 3: Modifying adversary ASA. As a stepping stone toward proving the
final result, we consider first another adversary APRF

1,out, which corrupts P ′
1 and P ′

out
and acts as follows. The corrupted parties P ′

1 and P ′
out act like the honest parties

running Π ′ would, except that they are rushing in the first round (i.e., they
wait to receive the honest party’s message before sending their first round), and
compute their input and randomness by evaluating a PRF on input the message
received from the honest party. More formally, APRF

1,out samples two different keys
(k1, k2) for a PRF F. Upon receiving the first round msg12 from the honest P ′

2, the
adversary computes x1 ← Fk1(msg12), r1 ← Fk2(msg12). Then APRF

1,out use (x1, r1)
and original input and randomness of P ′

out to finish all four round interactions
with the honest party P ′

2. We define APRF
2,out similarly.

We need to prove even against such an adversary there exists a simulator, that
can successfully extract the input from a corrupted P ′

1. A simulator for APRF
1,out

trivially exists due to the SA security of Π ′, hence, we need to argue that such
a simulator does query the ideal functionality, hence, it extracts the input of the
corrupted parties (this will be crucial for the last step of our impossibility proof).
To prove that this is indeed the case, we start by observing that, trivially, when
all the parties are honest then Π ′ terminates and P ′

out computes the output, with
no party triggering an abort. Consider now an adversary Ar

1,out, that corrupts
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the parties with index 1 and out, and instructs these parties to be rushing in the
first round, and non-rushing in the remaining rounds, without change behaviors
of corrupted parties.

Also in this case, it is easy to see that the honest party will not abort and
that P ′

out will compute the output. What remains to prove is that the view of
the honest party stays the same when interacting with APRF

1,out instead of Ar
1,out.

To do that, we prove the following lemma, which holds due to the security of
the PRF.

Lemma 1. Let APRF
1,out(aux) and Ar

1,out be the adversaries described above.
Assume that PRFs exist, then, for every auxiliary input aux, for all x ∈
({0, 1}∗)3, for all λ ∈ N, it holds that the probability that the honest party
aborts in REALΠ,{1,out},APRF

1,out(aux)(x, 1λ) is negligible-close to the probability that
the honest party aborts in REALΠ,{1,out},Ar

1,out(aux)(x, 1λ) .

We also prove that the same lemma holds for the case where the indices of
the corrupted parties are {2, out}. We refer the reader to the full version for the
formal proof. We then prove the following lemma (we refer the reader to the full
version for the formal proof), which in summary states that Π remains secure
even against such PRF adversaries.

Lemma 2. Let f be an efficiently computable three-party function. Assume that
there exists a three-party protocol Π that securely computes f with selective-
abort security when parties P1 and Pout are corrupted, for every PPT real-world
adversary ASA

1,out with auxiliary input aux. Then for the same corruption pattern
I, for the same auxiliary input aux, for all x ∈ ({0, 1}∗)3, for all λ ∈ N, it holds
that {REALΠ,I,APRF

1,out(aux)(x, 1λ)} c≡ {IDEALsa-abortf,I,S1,out(aux)(x, 1λ)}. We also prove that
it works for the corruption pattern {2, out}
Step 4: Constructing an adversary that breaks the SA security of Π ′.
We prove that there exists an adversary A′

SA that can use the simulator SSA
1,out

to extract the input from an honest P ′
1. This would contradict the SA security

of Π ′. This adversary A′
SA (formally described in Fig. 4.6) controls the parties

P ′
2 and P ′

out and runs internally the simulator SSA
1,out

15. Note that SSA
1,out expects

to interact with an adversary which corrupts P ′
1 and P ′

out in an execution of Π ′,
hence A′

SA needs to make sure that SSA
1,out can be executed correctly, despite the

party P ′
1 being honest. In particular, we need to argue that the simulator can

work properly (i.e., the simulator extracts the input P ′
1) while P ′

1 is not rewound.

Figure 4.6: The adversary A′
SA

– Define and initialize j ← −1 and sample k1, k2 ← {0, 1}λ. Run SSA
1,out,

which denotes the simulator of Π ′ for the case where P ′
1 and P ′

out are

15 Note that the simulator is expected polynomial time, hence we need to cut its running
time to make sure that A′

SA remains PPT.
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corrupted. SSA
1,out is run until it performs up to κ steps (recall that SSA

1,out
needs κ = poly(λ) expected number steps).

– Sample i ← [κ]. Any time that SSA
1,out opens a new session by sending

a new first-round m (m here denotes all the messages received over
broadcast in the first round) to the honest P ′

1 then set j ← j + 1 and
do the following.

• If j = i compute xi
1 ← Fk1(m), where xi

1 will denote the input of
the honest party P ′

1 used in the MPC indistinguishability gamea.
• If j �= i then reply to all the queries of SSA

1,out, acting as the honest
P ′
1 would act using the input xj

1 and the randomness rj
1, where

xj
1 ← Fk1(m) and rj

1 ← Fk2(m).
– In the i-th session act as a proxy between the MPC challenger and

SSA
1,out with respect to all the messages related to P ′

1. Note that the
messages from the challenger will either be simulated or generated by
running the honest party P ′

1 with the input xi
1.

– For every message that SSA
1,out sends to P ′

1 in the session j �= i, reply as
the honest party P ′

1 would using the input xj
1 and the randomness rj

1.
– Act as an honest P ′

out would act with the only difference that P ′
out sends

the third round to P ′
1 in the session i only after that SSA

1,out has stopped
and it has returned a transcript consistent with the i-th session.

– Whenever SSA
1,out tries to send a second round in the i-th session, forward

this message only to P ′
out. When SSA

1,out stops and returns its transcript,
forward to P ′

1 the second round message that appears in the transcript.
– When SSA

1,out attempts to query the ideal functionality with a value
x̃1 = (x̃0, x̃1), A′

SA records this value, and sends back to the simulator
x̃x2 (here the adversary acts as the ideal functionality would for the
simulator SSA

1,out). When SSA
1,out stops, and returns its output, check if

the output transcript is consistent with the messages generated in the
i-th session. If this is the case then do the following

• If x̃1 = xi
1 then return 1 (this is to denote that the challenger

generated a transcript using the honest procedure for P ′
1).

• If x̃1 �= xi
1 then return 0 (this is to denote that the messages

computed by the challenger on behalf of P ′
1 were simulated)

If instead the output transcript of SSA
1,out is not consistent with the i-th

session, then return a random bit.
a Note that in the security experiment of MPC protocol must hold for any x1.

In particular, this means that the security must hold for a value x1 chosen
by the adversary prior to the beginning of the experiment.

In other words, we need to prove that any rewind made by the simulator SSA
1,out

can be emulated by A′
SA without rewinding the honest P ′

1. Finally note that P ′
out

is corrupted, hence A′
SA can emulate any interaction between SSA

1,out and P ′
out. This

means that we can rewind P ′
out, but at the same time need to make sure that

any rewind performed on P ′
out, does not implicitly rewind also P ′

1. To make sure
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this does not happen, we instruct A′
SA to be rushing in the first round and non-

rushing in other rounds. We examine now all the possible rewinding patterns, to
show that our adversary does not need to rewind P ′

1. We do so using different
figures (for each pattern), where we use a straight line to denote messages on
the P2P channel, a dashed line to denote messages on the broadcast channel
and a dotted line to denote rewind messages and corresponding new messages.
We also use the number to indicate which round message it is.

We start by considering the scenario where SSA
1,out is attempting to rewind

(what he sees as a malicious) P ′
1 in the first BC round. Because we cut the run-

ning time of SSA
1,out, we can assume that SSA

1,out will rewind the first BC round for
at most κ times, for some polynomial κ. To deal with this situation, our adver-
sary samples a random index i ← [κ], and forwards to the external challenger
only the message generated by SSA

1,out related to the i-th session. To define the
input x1 that will be used in the indistinguishability experiment, we evaluate
a PRF on input the first round messages received from SSA

1,out. Note that the
security of Π ′ must hold for any choice of x1, even for an adversarially chosen
one.

For all the other sessions, our adversary will answer the messages generated
by SSA

1,out acting as the honest P ′
1 would, using as input and randomness the

output of a PRF evaluated on the messages received from SSA
1,out. By applying

Lemma 2, we can argue that SSA
1,out is secure against APRF, which means even

when the input and randomness are computed by using the PRF, the simulator
is still able to extract the input from the corrupted party, with non-negligible
probability.

We mentioned that in the i-th session, A′
SA acts as a proxy between the

external challenger and SSA
1,out for all the messages related to P ′

1. Note that SSA
1,out

can also rewind the second, third, and fourth rounds in the i-th session. Consider
the case where SSA

1,out rewinds the second round that goes from P ′
2 to P ′

out. This
action, in turn, causes P ′

out to send multiple third rounds to P ′
1. We observe that

there is no need to forward all these multiple third rounds to P ′
1, as we can

just block all of them except the message that will appear in the final simulated
session. Note that the simulator must work well even with this modification
since the simulator does not see the effect of the rewinds implicitly performed
to P ′

1 due to the fact that the simulator has no access to the fourth P2P round
messages that P ′

1 may compute as a consequence of these rewinds (recall that
P ′
out is non-rushing and that it does not send any message to P ′

2). We refer to
Fig. 4.7.a for a pictorial description.

Figure 4.7.b reflects the scenario where SSA
1,out is attempting to rewind (what

he sees as a malicious) P ′
1 in the third P2P round. By the definition of Π ′, P ′

1
does not react on the third round that comes from P ′

1, hence, we can just forward
to P ′

1 only one message, which corresponds to the message the simulator returns
in its final simulated transcript. Figure 4.7.c reflects the scenario where SSA

1,out is
attempting a rewind to P ′

out in the third P2P round. By construction of Π ′, P ′
out

does not send any fourth message. Hence, we can simply allow this rewind as
the adversary A′

SA controls P ′
out. Figure 4.7.d reflects the scenario where SSA

1,out is
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Figure 4.7. Rewinding patterns

attempting a rewind P ′
out in the fourth P2P round. Also in this case, it is easy

to see that this action does not implicitly rewind P ′
1.

We have argued our adversary can run SSA
1,out, without perturbing its behavior,

while at the same time making sure that P ′
1 is not rewound. This means that the

SSA
1,out will, with non-negligible probability, return some value that corresponds to

the input of P ′
1 (when the messages of P ′

1 are computed accordingly to Π ′, and
are not simulated by the external challenger). Note that SSA

1,out may complete
a session, where P ′

1 is fully under the control of the adversary. This happens
when the simulated transcript corresponds to some session i′ �= i. However, we
can argue that with non-negligible probability, the simulated transcript returned
by SSA

1,out does correspond to the i-th session. Once we have argued that, we can
claim that SSA

1,out will return the input of P ′
1, when the MPC challenger computes

the messages on behalf of P ′
1 using the input xi

1. To reach a contradiction, we
need to consider a function that does not implicitly leak the input of P ′

1 to the
adversary. For this, we consider the oblivious transfer functionality, where P ′

1’s
input is x1 = (x0 ∈ {0, 1}λ, x1 ∈ {0, 1}λ) and P ′

2’s input is x2 ∈ {0, 1}, while
P ′
out does not have any input.: f(x1, x2, ⊥) = xx2 .

Finally, given that the probability that A′
SA guess the session i correctly is

non-negligible, and given that the simulator run internally by A′
SA will succeed

with non-negligible probability, we can claim that our adversary A′
SA breaks the

SA security Π ′ with non-negligible advantage.
Our theorem can be extended to n-party cases. Assuming there exists a n-

party four-round protocol that can compute f with selective identifiable-abort
security, against t < n corruptions. We denote the n parties running the protocol
with (P1, . . . , Pn), then we let P1 take the input x1, P2 take the input x2, and
other parties take no input. If such a protocol would be secure, then we can
easily construct a 3-party protocol (where all the parties that have no input
are emulated by a single entity) to compute f with selective identifiable-abort
security, which would contradict our claim.

We prove the following theorems with similar proofs and refer the reader to
the full version for the formal proofs.
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Theorem 6 (BC-BC-P2P -BC, SIA, Plain Model, n > t). Assume the
existence of pseudorandom functions. There exists function f such that no n-
party four-round protocol (in the plain model) can compute f with selective
identifiable-abort security, against t < n corruptions, while in the protocol, the
first two rounds use broadcast channels and the third one uses peer-to-peer chan-
nels and the last round uses broadcast channels.

Theorem 7 (P2P -BC-BC-BC, SIA, Plain Model, n > t). Assume the
existence of pseudorandom functions. There exists function f such that no n-
party four-round protocol (in the plain model) can compute f with selective
identifiable-abort security, against t < n corruptions, while in the protocol, the
first round uses the peer-to-peer channels and the remaining three rounds use
broadcast channels.

Theorem 8 (BC-P2P -BC-BC, SIA, Plain Model, n > t). Assume the
existence of pseudorandom functions. There exists function f such that no n-
party four-round protocol (in the plain model) can compute f with selective
identifiable-abort security, against t < n corruptions, while in the protocol, the
first round uses broadcast channels and the second one uses peer-to-peer channels
and the last two rounds use broadcast channels.
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Abstract. YOSO-style MPC protocols (Gentry et al., Crypto’21), are
a promising framework where the overall computation is partitioned into
small, short-lived pieces, delegated to subsets of one-time stateless par-
ties. Such protocols enable gaining from the security benefits provided
by using a large community of participants where “mass corruption”
of a large fraction of participants is considered unlikely, while keeping
the computational and communication costs manageable. However, fully
realizing and analyzing YOSO-style protocols has proven to be challeng-
ing: While different components have been defined and realized in various
works, there is a dearth of protocols that have reasonable efficiency and
enjoy full end to end security against adaptive adversaries.

The YOSO model separates the protocol design, specifying the short-
lived responsibilities, from the mechanisms assigning these responsibili-
ties to machines participating in the computation. These protocol designs
must then be translated to run directly on the machines, while preserv-
ing security guarantees. We provide a versatile and modular framework
for analyzing the security of YOSO-style protocols, and show how to use
it to compile any protocol design that is secure against static corruptions
of t out of c parties, into protocols that withstand adaptive corruption
of T out of N machines (where T/N is closely related to t/c, specifically
when t/c < 0.5, we tolerate T/N ≤ 0.29) at overall communication cost
that is comparable to that of the traditional protocol even when c << N .

Furthermore, we demonstrate how to minimize the use of costly non-
committing encryption, thereby keeping the computational and commu-
nication overhead manageable even in practical terms, while still provid-
ing end to end security analysis. Combined with existing approaches for
transforming stateful protocols into stateless ones while preserving static
security (e.g. Gentry et al. 21, Kolby et al. 22), we obtain end to end
security.
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1 Introduction

Secure multiparty computation (MPC) allows data owners to outsource the pro-
cessing of their sensitive data to a set of machines, with the guarantee that as
long as fewer than a threshold t of those machines are corrupt, no-one will learn
more about the data than revealed by the computation output. YOSO MPC
[GHK+21] is an emerging new style of MPC where participating machines have
very short term roles: they receive messages, performing an internal computa-
tion, and send messages in a single communication round to the next set of
participating machines. Before sending those messages, the machine erases all
other state relevant to the protocol execution.

The advantage of YOSO MPC is that the communication complexity of the
protocol can be sublinear in N (the number of available machines), even if the
corruption threshold T is linear in N . This might appear impossible, since if
the communication complexity is sublinear in N , the set of all machines ever
to send a message fits within the adversary’s corruption budget; however, the
crucial insight is that as long as an adversary cannot predict which machines
will “speak”, she is unable to target them. One of the challenges of YOSO MPC
is choosing participating machines in an unpredictable way, making it harder to
locate and adaptively attack those machines while they are active and relevant
to the protocol.

YOSO MPC protocols naturally decompose into two tasks. The first of these
is role assignment, which entails determining which machines will have a role to
play and handing them the secret keys they will need in order to do so, while
keeping their identities hidden from the adversary. The second task is actually
running the MPC by having the chosen machines play their assigned roles.

One can view YOSO MPC protocols through two lenses: In the natural world,
a protocol must specify instructions for physical machines, including instructions
for role assignment; i.e., how the machines should go about determining whether
they have a role to play, and if so, which one. In the abstract world, a YOSO
MPC protocol can be described in terms of the roles alone, without consideration
for the machines running them.

Some previous YOSO protocols (e.g. the protocol of Benhamouda et al.
[BGG+20]) are described in the natural world, running both role assignment
and computation in an entwined way. Others (e.g. the protocols of Gentry et al.
[GHK+21] and Acharya et al. [AHKP22]) are described in the abstract world,
relying on behind-the-scenes machinery to take care of role assignment.

The second is a more modular approach, resulting in simpler protocol descrip-
tions. However, these descriptions do not suffice for use in the real, natural world.
We need a compiler to translate them into something machines can run; such a
compiler might access an ideal role assignment functionality.

One such role assignment functionality and compiler were introduced by Gen-
try et al. [GHK+21]. However, the role assignment functionality presented by
Gentry et al. was perhaps too strong, in that it did not allow the adversary to
influence the role assignment, instead choosing all machines in an ideal, ran-
dom way. This makes it impossible for the most efficient known role assignment
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mechanism (that of Benhamouda et al. [BGG+20]) to realize this functionality.
Furthermore, the compiler of Gentry et al. [GHK+21] has two drawbacks: (a) it
is inefficient, and (b) it is incompatible with some abstract protocols (e.g. the
protocol of Braun et al. [BDO22] and Kolby et al. [KRY22]).

1.1 Our Contributions

In this paper, we fill the above gaps: we introduce a more realistic role assignment
ideal functionality FRA, give a realization of FRA, and present a more efficient,
more general compiler that relies on this new functionality. In particular, we
use non-committing encryption only for implementing FRA. All the messages of
the underlying (statically secure) protocol are encrypted using standard (CCA
secure) encryption.

1.1.1 Ideal Role Assignment Functionality In Sect. 3, we introduce our
role assignment ideal functionality FRA. Our goal is to capture a more general
and broad class of potential and existing role assignment protocols. Towards
this, we give a comprehensive design of FRA that supports modeling various
assignment approaches.

At a very high-level FRA supports two kinds of elections: assignment of a role
to a random honest machine, and assignment influenced by the adversary, to a
chosen, possibly corrupt machine. The machines are allowed to probe the FRA to
read the public keys of the roles assigned so far, deduce if they themselves have
been assigned a role, and retrieve the secret keys in such a case. Furthermore,
our design of FRA supports modeling various scenarios that can occur during its
execution, such as (a) when the adaptive adversary manages to corrupt a role
that was assigned when it was uncorrupted (before the election of the committee
was completed), (b) when a machine wishes to delete its state before it speaks
on behalf of a role, and (c) when a machine is unavailable for nomination while
it refreshes its secret state.1 The formal details appear in Sect. 3.

1.1.2 Compiling Abstract Protocols In Sect. 4, we describe how to lever-
age FRA to compile an MPC protocol in the abstract world into one that can
be run in the natural world. Unlike the compiler of Gentry et al. [GHK+21],
we only use non-committing encryption within the realization of FRA (and not
within the compiler itself). This has a two-fold advantage: (a) it yields a sig-
nificant efficiency gain, and (b) it gives compatibility with a broader class of
abstract YOSO protocols (e.g. the protocol of Braun et al. [BDO22] and Kolby
et al. [KRY22]).

At a high-level, in our compiled protocol in the natural world, each machine
deduces if it has been selected for a role by invoking the FRA. If this is the case, it

1 In our particular use-case, machines are unable to be nominated between deleting
their previous secret key and broadcasting a fresh public key. This allows one machine
to hold multiple roles, but prevents nominations which overlap with the machine
speaking for a role.
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reads the bulletin board (in the natural world) to obtain ciphertexts encrypted
using that role’s public key. It can decrypt these ciphertexts using the secret
keys provided by FRA and proceed to compute the outgoing messages of the role
to other roles. These outgoing messages can be encrypted using the other roles’
public keys (provided by FRA) and posted on the bulletin board. Just before a
machine speaks on behalf of a role, it instructs the FRA to delete its state. After
speaking, it instructs FRA that it is ready for new nominations.

The main challenge is proving adaptive security of the compiled protocol,
assuming that the underlying abstract protocol is only statically secure. The
crux of our proof is that the set of corrupt roles can be chosen statically, and
then the FRA may be suitably re-programmed so that adaptive corruption of
machines are appropriately matched to the already chosen static corrupt roles.
We refer to Sect. 5 for details on the technicalities in our proof.

Compiling Abstract Protocols that Require Message Verification. The above com-
piler supports abstract protocols that use only ideally private point-to-point and
broadcast channels. This does not cover a large class of abstract YOSO protocols
where parties are expected to accompany their messages with zero-knowledge
proofs that relate their outgoing messages to their secret state and previously
received messages. Indeed, in order to compile such protocols to natural ones,
such proofs would need to involve both secret state from the abstract protocol
and secret keys from the compiler itself. In Sect. 6, we show how our compiler
can be extended to abstract protocols that contain such constructs. More specif-
ically, we modify the above compiler to accommodate abstract protocols that
leverage the functionality FVeSPa [KRY22], which is used to enable parties to
prove to others that the broadcast and peer-to-peer messages they send within
a protocol were derived honestly.

In order to extend our compiler to abstract protocols using FVeSPa, we need
to be able to emulate the verifiability of messages in the natural world. For this,
we simply rely on augmenting the messages posted on the bulletin board in
the compiled protocol with corresponding non-interactive zero-knowledge proofs
proving that these messages were computed correctly.

1.1.3 Realizing the Role Assignment Functionality In Sect. 7, we mod-
ify the role assignment protocol of Benhamouda et al. [BGG+20] to realize FRA.
As shown in [HLH+22], their protocol had problems in addressing the adaptivity
of the adversary when it came to realizing the necessary anonymity property.
As in [BGG+20], our modified protocol ΠRA uses a cryptographic sortition algo-
rithm in order to ensure that an adversary is not able to increase the likelihood
of corrupting a role of his choice. Furthermore, ΠRA uses Key and Message Non-
Commiting Encryption (KM-NCE). This enables the simulator to deal with
the different problematic scenarios described above. That is, by creating “fake”
ciphertexts, the simulator can deal with the case of honest parties sending mes-
sages to recipients who were a priori expected to be honest, but then became
corrupted by the adversary.
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Crucially, our protocol instructs nominated machines to erase their private
decryption key before making themselves known. As soon as the machine com-
pletes its role as a committee member, it chooses a new key pair and registers
the new public encryption key with the PKI server. The machine will keep a
(truly) long-term signature key in order to authenticate itself to the PKI server.

The much less efficient role assignment protocol of Gentry et al. [GHM+21]
(which uses any MPC protocol to run random-index PIR) may be modified to
trivially realize FRA, by a similar application of KM-NCE.

2 Preliminaries

2.1 Key and Message Non-commiting Encryption

We recall the notion of a Key and Message Non-Commiting Encryption (KM-
NCE) from [HLH+22], which is an extension of receiver non-commiting encryp-
tion. Informally, a KM-NCE is a public-key encryption scheme that allows to
generate fake ciphertexts without any public key in such a way that those fake
ciphertexts can later be decrypted to any plaintext for any public key, by gen-
erating an appropriate secret key on the fly. We briefly recall the syntax of a
KM-NCE scheme, referring the reader to [HLH+22] for a more detailed motiva-
tion.

Setup(1κ) → pp: Given security parameter 1κ, the setup algorithm generates
public parameters pp.

Gen(pp) → (pk, sk, tk): Given public parameters pp, the key generation algorithm
produces a public key pk and secret key sk, as well as a trapdoor key tk. The
trapdoor key is not used for encryption or decryption, but instead provides
additional information for the purposes of opening simulated ciphertexts.

Enc(pp, pk,m) → c: Given public parameters pp, public key pk and a message
m, the encryption algorithm produces a ciphertext c.

Dec(pp, sk, c) → m: Given public parameters pp, public key pk and a ciphertext
c, the decryption algorithm outputs a plaintext m.

Fake(pp) → (c, τ): Given only the public parameters pp, the fake algorithm pro-
duces a fake ciphertext c and additional trapdoor information τ .

Openk(pp, tk, pk, sk, (c∗
γ , τ∗

γ ,m∗
γ)γ∈[k]) → sk′:] Given public parameters pp, keys

tk, pk, sk, and k tuples, each containing a ciphertext cγ , its trapdoor infor-
mation τγ and a desired plaintext mγ the open algorithm produces a fresh
secret key sk′ corresponding to pk, such that each ciphertext appropriately
decrypts to the desired plaintext.

In the security experiments for KM-NCE the adversary is never given trapdoor
keys, implicitly requiring secure erasure of these keys if we wish to achieve adap-
tive security.

Definition 1 (Security). A KM-NCE scheme KM-NCE = (Setup,Gen,Enc,
Dec,Fake,Openk) in the k-challenge setting is CCA-secure if for any PPT adver-
sary A = (A1,A2,A3), the advantage AdvKM-NCE-CCA

KM-NCE,A,k (λ) :=

|Pr[ExpKM-NCE-CCA-real
KM−NCE,A,k (λ) = 1] − Pr[ExpKM-NCE-CCA-ideal

KM-NCE,A,k (λ) = 1]|
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is negligible, where ExpKM-NCE-CCA-real
KM-NCE,A,k and ExpKM-NCE-CCA-ideal

KM-NCE,A,k are defined in
Fig. 1.

Fig. 1. The experiments for KM − NCE-CCA security of a KM-NCE scheme.

Note, KMNCk-CCA security implies conventional adaptive CCA security, as
the fake algorithm does not take a message as input. By a hybrid argument, the
encryption of any message m0 must be indistinguishable from a faked ciphertext,
which in turn is itself indistinguishable from the encryption of any other message
m1.

KM-NCE schemes can be constructed from hash proof systems, as shown in
[HLH+22].

2.1.1 KM-NCE with a Unique Recipient We need to define an additional
property for KM-NCE, which ensures that the adversary cannot produce (some-
thing that looks like) a ciphertext which decrypts under two different honest
secret keys.

Definition 2 (Unique recipient). A KM-NCE scheme KM-NCE = (Setup,
Gen,Enc,Dec,Fake,Openk) is unique recipients if for any PPT adversary A,
Pr[ExpKM-NCE-UR

KM-NCE,A (λ) = 1] is negligible, where ExpKM-NCE-UR
KM-NCE,A is defined in Fig. 2.

2.1.2 A Unique Recipient KM-NCE Construction We show how to
build a unique recipient KM-NCE encryption scheme in the programmable ran-
dom oracle model. Since this implies the notion of receiver non-committing
encryption, we know that random oracles are necessary in order to avoid secret
keys that are as long as the messages to be encrypted [Nie02].

Our construction is based on a simple variant of ElGamal, which makes
it more efficient than the KM-NCE construction based on hash proof systems
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Fig. 2. The unique recipient experiment.

(HPS) from [HLH+22, Section 5.3], which relies on a matrix variant of DDH
[EHK+13]. Furthermore, that construction does not have the unique recipient
property that we need. The reason behind this is that, since the projected and
unprojected hash need to coincide for elements x of the language, the adversary
can use the unprojected hash (in their specific notation, ˜Pub) together with the
public keys of honest parties in order to try and find a suitable witness that
leads to a collision (in their notation, the same π̃) with several secret keys. Once
he has that, it is easy for him to come up with the rest of the elements of the
ciphertext (given x, any d can be fixed by varying the message m. Hence, a
whole range of values τ = H(x, d) can be explored by the adversary). It is very
easy for the adversary to come up with elements of the language x and their
witnesses w, since this is a necessary feature for the practical efficiency of the
encryption algorithm. Thus, we cannot rule out maliciously created ciphertexts
that decrypt to several recipients. In more detail, for the HPSs from [HLH+22,
Section 6], each public key defines a hyperplane, and collisions happen at the
intersection of any two such hyperplanes. This gives plenty of candidates for
collisions.

Whereas the prior attack to the unique recipient property is specific to
the instantiation of construction of [HLH+22, Section 5.3] with the HPSs from
[HLH+22, Section 6], it is likely that similar attacks could be mounted for other
natural constructions based on HPSs. The necessary relation between the pub-
lic and private hash functions, together with any nice algebraic description of
the public hashing algorithm (e.g. defining hyperplanes as in the attack above)
would potentially lead to the same problem.

We define below our candidate construction based on a modification of ElGa-
mal. The algorithms of our scheme are oracle algorithms with query access to
the oracle RO : {0, 1}∗ → {0, 1}2κ, we let this be implicit in our notation.

– pp ←$ Setup(1κ): Pick a cyclic group G of order q, where q is a κ-bit prime,
and let g be a generator of G. Let the message space of the encryption scheme
be {0, 1}κ. Set public parameters pp = (G, g, q).
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– (pk, sk, ∅) ←$ Gen(pp): Sample a ←$ Zq, let sk = a. Compute the public key
pk ← ga and output (pk, sk, ∅).

– c ←$ Enc(pp, pk,m): Sample r ←$ Zq and compute β ← gr. Query the oracle
for a mask k ← RO(pkr) and a MAC d ← RO(r,m). Let e ← k ⊕ (r,m), and
output c = (β, e, d).

– m ← Dec(pp, sk, c): Parse c = (β, e, d). Query the oracle k′ ← RO(βsk),
compute (r′,m′) ← e ⊕ k′. Check if gr′

= β and d = RO(r′,m′), output m′ if
both conditions are satisfied, otherwise output ⊥.

– (c, τ) ←$ Fake(pp): Sample r ←$ Zq and compute β ← gr. Let τ = r.
Sample uniformly random strings e, d ∈ {0, 1}2κ and let the fake ciphertext
be c = (β, e, d). Output (c, τ).

– sk′ ← Openk(pp, pk, sk, (c∗
γ , τ∗

γ ,m∗
γ)γ∈[k]): To open a fake ciphertext c∗

γ =
(β, e, d) as an encryption a message m∗

γ to a chosen pk. Let r = τ∗
γ , program

the random oracle such that RO(r,m∗
γ) = d and RO(pkr) = e⊕(r,m∗

γ). Output
sk′ = sk.

Intuitively it is possible to replace ciphertexts by fakes as long as the adver-
sary is unable to query either pkr or (r,m) to the random oracle. We observe that
an adversary querying these values it may be used to solve the computational
Diffie-Hellman problem. Including d = RO(r,m) allows the decryption oracle to
extract the plaintext and verify the integrity of the ciphertext without use of the
secret key. We now formally prove the security of our KM-NCE scheme.

Theorem 1. The construction above is KM-NCEk-CCA and unique recipient
secure, in the pROM under the CDH assumption in group G.

Proof. First, we consider unique recipient security. Assume for contradiction
there have been no collisions in random oracle, for a sufficiently large range
and bounded adversary this holds with overwhelming probability. A winning
adversary outputs a ciphertext c = (β, e, d) such that for some ski, skj :
Dec(pp, ski, c) �= ⊥ and Dec(pp, skj , c) �= ⊥. We subscript intermediate val-
ues in each decryption with the index of the secret key. For honestly generated
keys ski �= skj with overwhelming probability, implying βski �= βskj . As a result,
k′

i �= k′
j if there have been no collisions in the random oracle. This in turn implies

that (r′
i, n

′
i) �= (r′

j , n
′
j). For both outputs to be different from ⊥, it must be the

case that d = RO(r′
i, n

′
i) = RO(r′

j , n
′
j) raising a contradiction.

Now consider KM-NCEk-CCA security. Through a series of hybrids we will
replace c∗

γ = (β, e, d) with a fake ciphertext for each γ ∈ [k]. Faking a ciphertext
is only different in how c and d are chosen. These two cases are only different in
the oracle output on inputs pkr and (r,m) prior to A3 receiving the secret key
sk.

In the real and ideal worlds the adversary receives the same secret key sk and
has access to an identically distributed random oracle. The only input which may
differ is state2, produced by A2. The views of Adversaries A1 and A2 only differ
between the real and ideal game when querying pkr or (r,m) to the random
oracle. Thus, if A3 distinguishes the real and ideal worlds with non-negligible
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advantage then one of A1,A2 must query pkr or (r,m) with probability greater
than or equal to the advantage. We will argue that such a pair (A1,A2) may be
reduced to an adversary solving the computational Diffie-Hellman problem.

Consider an adversary which queries either pkr or (r,m) with probability
ε, while making at most t random oracle queries. Given a computational Diffie-
Hellman instance (g, x = ga, y = gr), we set pk = x and β = y. Note, the solution
to this instance is pkr = βa. We will address how to provide a decryption oracle
without knowing the secret key a later. The reduction chooses a query index
i ←$ [t]. When the adversary makes the ith query, if the input is of the form
(r,m), the reduction outputs pkr, if the input only consists of a single element
z the reduction outputs this directly. The reduction aborts before providing A3

the secret key. Note, the reduction needs τ = r, which it does not have, to open
the ciphertexts to A3, preventing the use of A3 in the reduction. The reduction
yields an adversary solving the Diffie-Hellman problem with probability ε/t.

We now return to the issue of providing a suitable decryption oracle during
our hybrids. Consider a ciphertext c∗ = (β∗, e∗, d∗) queried to the decryption
oracle, which is not equal to any of the challenge ciphertexts. If d∗ is not a
random oracle output on an input of the form (r,m) output ⊥, this includes any
d for faked ciphertexts. A ciphertext using d from a challenge with β∗ �= β or
e∗ �= e, real decryption would result in ⊥ with overwhelming probability.

For a given ciphertext, e and k′ = RO(βsk) uniquely determine (r,m); if this
has not yet been queried the probability RO(r,m) = d is 2−2κ, and we may safely
return ⊥. If d is an output of the random oracle the reduction may retrieve
the corresponding input (r,m). We check if β = gr, returning ⊥ if this is not
the case. Given r the oracle then computes k′ ← RO(pkr); (r′,m′) ← e ⊕ k′. If
(r′,m′) = (r,m) output m, otherwise output ⊥.

2.2 Cryptographic Sortition

A cryptographic sortition protocol [CM19] allows to provably select a random
subset of parties according to some timely and truthful randomness through the
use of a Verifiable Random Function (VRF) [MRV99]. Importantly, a party can
find out whether it was selected through local computation, given the output
from the VRF.

Usual VRF definitions guarantee output unpredictability for adversarially
chosen inputs, provided that the keys were honestly generated. In our setting
this is insufficient, as it does not preclude an adversary choosing malformed keys
which bias its output distribution, causing it to be selected more frequently. To
ensure security against rogue key attacks of this form we will use the functionality
FVRF from [DGKR18], which explicitly allows malicious key generation and VRF
evaluation. The key property on which we will rely is “unpredictability under
malicious key generation”. This property is captured by the functionality always
sampling the VRF output regardless of whether the specified key was maliciously
generated. For a complete description of FVRF with a corresponding realisation
we refer the reader to [DGKR18].
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2.3 The You-Only-Speak-Once Model

The YOSO model introduced by Gentry et al. [GHK+21] formalised a variant
of the UC framework enabling the design of protocols focusing only on role
execution, and not the mechanisms for role assignment or receiver anonymous
communication. We will refer to protocols in this model as abstract YOSO pro-
tocols. The YOSO model builds on top of the plain UC model. In particular, it
uses the following constructs:

– Parties in the UC framework represent roles, namely abstract responsibilities.
In an actual execution of a YOSO protocol, the roles will would be carried out
by machine to which they are assigned to on the fly. The design of a YOSO
protocol is indifferent to which actual machines would be executing the role.

– Idealised communication functionalities are provided to the roles executing a
protocol, allowing point-to-point messages between roles. This corresponds to
the availability of receiver anonymous communication channels, but ignores
their realisation.

– Security is proven for “yosoified” versions of the protocol, where all roles are
placed within a YOSO wrapper. This wrapper enforces that roles only speak
once by killing them once they use a communication functionality. This is
modelled by a Spoke token which the ideal communication functionalities
return upon the sending of messages. When receiving Spoke the wrapper
additionally forwards this to any sub-routines and its environment. Killing
a role represents the machine running a role erasing any associated state,
preventing the adversary from later corrupting the role.

– While we want natural YOSO protocols to be secure against an adaptive
adversary, allowing the adversary this power in the abstract world would make
protocol design significantly more difficult. Gentry et al. [GHK+21] make the
observation that an adversary does not know which roles are assigned to a
machine before it is corrupted. As a result the adversary may be restricted in
the abstract world, while still being able to achieve adaptive security when
translated to the natural world. This is enforced through a new “corruption
controller” entity which dictates the types of corruptions the environment is
allowed to make.

As in [GHK+21], (and following [KMTZ13]) we use a bounded-delay broad-
cast functionality, along with a global clock, to capture synchronous communi-
cation. We recall the ideal functionality allowing point-to-point and broadcast
communication as in [GHK+21].

Functionality FBC&SPP [GHK+21]

This ideal functionality has the following behaviour:

– Initially create point-to-point and broadcast maps:
y : N × Role × Role → Msg⊥ where y(r,R,R′) = ⊥ for all r,R,R′

m : N × Role → Msg⊥ where m(r,R) = ⊥ for all r,R.
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– On input (Send,S, ((R1, x1), . . . , (Rk, xk)), x) in round r proceed as fol-
lows:

• For i ∈ [n] update y(r,S,Ri) = xi. Store point to point messages
from the role.

• Update m(r,S) = x. Store the broadcast message from the role.
• Output (S, ((R1, |x1|), . . . , (Rk, |xk|)), x) to the simulator S.
• For corrupt roles Ri output xi to the simulator S. Leak messages

lengths and the broadcast message to the simulator in a rushing fash-
ion.

• If S is honest give Spoke to S.
– On input (Read,R,S, r′) in round r where r′ < r for x = y(r′,S,R)

output x to R.
– On input (Read,S, r′) in round r where r′ < r output x = m(r′,S) to
R.

The central paradigm of synchronous abstract YOSO protocols is that execu-
tions proceeds by a sequence of committees, each permitting a certain corruption
threshold. These committees may potentially receive messages concurrently, or
even speak in the same round.

2.4 Compiling Abstract YOSO Protocols

By their nature, protocols designed in the abstract YOSO model cannot be run
directly on machines, they first have to undergo translation, or compilation, to
the natural world.

This compilation reraises the issues of role assignment and receiver anony-
mous communication. Any compiler must provide equivalent guarantees of secure
communication between roles in the protocol.

In their presentation of the YOSO model Gentry et al. [GHK+21] provide an
example of compilation from the abstract to natural world. Their approach used
a simplified toy timed ledger with role assignment functionality as a building
block. This functionality provided the necessary keys for roles, which were then
used to wrap messages in the underlying protocol in encryption. The compiler
allowed the compilation of an abstract protocol secure against random adaptive
point corruptions (i.e. an adversary only allowed to corrupt random roles), to a
natural protocol secure against chosen adaptive point corruptions.

The focus of the compiler of Gentry et al. [GHK+21] was demonstrating the
feasibility of compilation. As a result the compiler has a number of limitations,
such as the role assignment functionality not being realised. Additionally, to
achieve adaptive security the compiler uses non-committing encryption for all
messages in the underlying protocol, incurring a significant overhead.
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3 Role Assignment

In this section we present the ideal functionality FRA
2, which assigns machines

to computation roles while keeping this assignment hidden. (Note that which
machines provide input to the computation—and receive output from the
computation—could be determined in some fixed, external way, depending on
the application; therefore we consider only the assignment of machines to com-
putation roles, and not input and output roles.)

At a high-level, let us consider committee C consisting of c roles. There
are two possible ways in which our FRA chooses a machine for a role in C:
(a) choosing a machine at random from among the set of honest machines (i.e.
among the machines not corrupted so far), or (b) allowing the adversary to
choose the machine, as long as the number of machines chosen by the adversary
in C so far is within the allowed corruption bound (which is determined as a
function T on the fraction of corrupt machines). In the former case, FRA samples
fresh keys, gives the (public) encryption and verification keys to everyone, and
gives the corresponding (secret) decryption and signing keys only to the chosen
machine. In the latter case, all keys are chosen by the adversary. The commands
Nom-Honest and Nom-Corrupt capture the above kinds of nominations.

We need to ensure that the fraction of corruptions in a committee remains
within the allowed bound until the nomination is completed. Looking ahead, to
capture adaptive corruptions after the adversary has seen public keys generated
via Nom-Honest but before Finish (which finalises the keys for a commit-
tee), we introduce an additional command Corrupt-Nominee. This command
allows accounting for the corruptions performed during the nomination process
as needed, rather than always having to generate corrupt keys in proportional
to the worst case threshold.

Once a set of c machines are chosen for the committee C, FRA picks a random
permutation on [c] to determine which machine plays which role in C. Allowing
FRA to map nominated machines to roles, instead of having machines assigned
to specific roles in C a priori, prevents the adversary from targeting a specific
role for corruption.

Further, there is a provision for each machine M to:

1. ‘Read’ : this allows it to retrieve public keys corresponding to the roles that
have been assigned, as well as to obtain secret keys if it has been assigned a
role.

2. ‘Delete’ : this command revokes M ’s ability to perform future reads until the
point where it inputs ‘Ready’. (This revocation will also enable the imple-
mentation protocol to erase any secret keys that allow M to read information
related to already assigned roles.)

3. ‘Ready’ : this allows it to signal that it is available to be assigned a new role.
We maintain both a global set of ready machines (“ready set”), and a
committee-specific ready set. The latter keeps track of machines that have
been ready throughout the nomination process for that committee.

2 Note this is not the same role assignment functionality as presented in [GHK+21].
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If a machine that has been assigned a role gets corrupted after it has retrieved
its secret keys (which it learns when it inputs ‘read’) but before it inputs ‘delete’,
its secret keys are leaked to the adversary. However, if it gets corrupted after it
inputs ‘delete’, its secret keys remain hidden. As we will see later, this is crucial
for adaptive security, as it allows us to argue that an adversary gets no advantage
in corrupting a role after its execution.

The formal description of this ideal functionality FRA appears below. We
assume FRA to be synchronous, with round switches occurring at the same time
as the protocols using it. We present FRA as a functionality which is reused
for multiple committees rather than the perhaps simpler approach of a one time
functionality for each committee. We justify this choice by considering how exist-
ing constructions update their PKI. Specifically, whenever a machine has held
a role and subsequently revealed itself, said machine must refresh its long term
keys. This renders the machine unable to decrypt earlier messages pertaining to
the revealed role. These key erasures and updates to the PKI impede treating
it as a global setup (see [CDPW07]), which would allow consolidating these to
just a single PKI. Using a single FRA for multiple committees thus forces any
realisation to deal with this challenge of updates directly.

We divide our role assignment functionality into two parts. The first describes
the general setup and commands provided by parties for establishing new com-
mittees and reading generated keys. The second describes the powers allowed
to the simulator, when populating committees under nomination with keys and
the leakage in the case of corruption.

Functionality FRA(P, c, T ,D, delay):

This functionality is synchronous, namely it has access to global clock func-
tionality as in the model of Katz et al. [KMTZ13]. It has the following
parameters:

– P: the set of machines.
– c: the size of a committee.
– T : the function determining the number of allowed corruptions in a

committee (based on the current fraction of corrupt machines).
– D denoting a sampling algorithm, and
– delay denoting the upper bound on the number of rounds required to

complete nomination.

Init: The functionality is notified by the adversary whenever a party is
corrupted/ restored, and maintains the current partition of P into the sets
H and I of all honest and corrupt party identifiers, respectively. It also
maintains a global set Ready initially equal to P.

New committee: After receiving (New, cid, C) from all honest parties up
until the round r specified by the cid a , store (cid, C,PKeys = ∅,SKeys =
∅, cor = 0, nom = 0, fin = ⊥). Ignore the command if any value is already
stored for cid.
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– The lists PKeys and SKeys are initially empty. The list PKeys would be
updated with tuples (ek, vk,R) where (ek, vk) refer to the public keys
established for a role R. The list SKeys would be updated with tuples
(pid, dk, sk,R) where (dk, sk) refer to the secret keys corresponding to
the role R, which has been assigned to machine with identifier pid.

– The corruption and nomination counters, cor and nom, start at zero.
– A committee-specific ready set Readycid is initialized the same as the

global ready set: Readycid = Ready.
– Finally, the flag signaling whether nomination is completed or not is

initially false: fin = ⊥.
Each time an honest party inputs (New, cid, C), forward this to the simu-
lator S.

a For simplicity of exposition, we consider the case where all honest parties
are expected to take part in each assignment of a role. A natural relaxation
would only require some minimal quorum of parties to participate.

The simulator must perform nominations for each committee, but is restricted
by the number of nominations it may bias relative to the current fraction of
corrupt machines.

Functionality FRA (continued):

Nominate honest: On input (Nom-Honest, cid) from the simulator
S, retrieve the value (cid, C,PKeys,SKeys, cor, nom, fin). If no such value
exists do nothing. If nom < c, do the following:
– Update nom ← nom + 1.
– Generate fresh encryption and signing keys for the chosen machine:

(ek, dk) ← PKE.Gen(), (vk, sk) ← SIG.Gen().
– Append (ek, vk,⊥) to PKeys.
– Add (⊥, dk, sk,⊥) to SKeys.
– If nom = c, go to procedure Finish(cid).
– Output (Nom-Honest, cid, ek, vk) to the simulator S.

Nominate corrupt: On input (Nom-Corrupt, cid, pid, (ek, vk), (dk, sk))
from the simulator S, retrieve the value (cid, C,PKeys,SKeys, cor, nom, fin).
If no such value exists, do nothing. If nom < c and cor + 1 < T (|I|/|P|),
do the following:
– Update the nominated and corrupt counters nom ← nom + 1, cor ←
cor + 1.

– Append (ek, vk,⊥) to PKeys and (pid, dk, sk,⊥) to SKeys.
– If nom = c, go to procedure Finish(cid).
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Corrupt nominee: On input (Corrupt-Nominee, cid, pid) from the
simulator S, retrieve the value (cid′, C,PKeys,SKeys, cor, nom, fin) where
cid = cid′. If no such value exists, do nothing. If cor + 1 < T (|I|/|P|) and
cor < nom, do the following:
– cor ← cor + 1
– Choose an element (pid′, dk, sk,⊥) uniformly at random between the

values of SKeys where pid′ = ⊥.
– Update this value to be (pid, dk, sk,⊥)
– Output (Corrupt-Nominee, cid, pid, dk, sk) to the simulator S.

Finish (cid): When the procedure Finish(cid) is called, retrieve the value
(cid′, C,PKeys,SKeys, cor, nom, fin) where cid′ = cid and do the following:
– Sample a random permutation φ on [c].
– For the ith element of PKeys update (ek, vk,⊥) to (ek, vk, Cφ(i)).
– For the ith element of SKeys update (pid, dk, sk,⊥) as follows:

• If pid = ⊥, choose an honest machine uniformly at random as
pid′ ←$ D(H,P). If pid′ ∈ Readycid, update to (pid′, dk, sk, Cφ(i)).

• Else, update to (pid, dk, sk, Cφ(i)).
– Let r′ the current round number (read from the global clock). Set fin =

	 for cid if r′ ≤ r + delay (where r denotes the round number specified
by the cid).

Output (Finish, cid, φ,PKeys) to the simulator S when finished.

Read: On input (Read, cid) from M with identifier pid, retrieve the value
(cid∗, C,PKeys,SKeys, cor, nom, fin) where cid = cid∗ and fin = 	. If no
such value exists, or M has read the output of committee cid before, do
nothing.
– Collect all values (pid∗, dk, sk,R) in SKeys where pid∗ = pid into a list

SKeys′.
– Output (PKeys,SKeys′) to M .

Delete: On input (Delete) from M with identifier pid, do the following:

– Overwrite all elements of SKeys of the form (pid∗, dk, sk,R), where pid∗ =
pid, with (pid∗,⊥,⊥,R). Disallow any future signing queries by M for
role R.

– Set Ready ← Ready \ {pid}.
– Set Readycid ← Readycid \ {pid} for cid with fin = ⊥.
– Output (Delete, pid) to S.

Ready: On input (Ready) from M with identifier pid, update the global
ready set Ready ← Ready∪{pid} in the beginning of the subsequent round.
Output (Ready, pid) to the simulator S.

Corrupt: Upon receiving (Corrupt, pid) from E , output all elements
(pid∗, dk, sk,R) of any stored SKeys, where pid∗ = pid to S.
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4 Compiling Abstract to Natural YOSO

Consider an abstract YOSO-protocol in the FBC&SPP-hybrid model which is mali-
ciously secure against a static adversary. This protocol is run by a set of com-
mittees, where each committee is associated with a set of roles. We may assume
the execution of any honest role is completed by inputting at most one Send
command to an instance of FBC&SPP, this is enforced by the Spoke token which
kills the role.

The goal of our compiler is to transform such a statically-secure YOSO
abstract protocol in the FBC&SPP-hybrid model into an adaptively-secure natural-
world protocol in the FRA-hybrid model, where FRA denotes the ideal function-
ality for role assignment defined in Sect. 3. We also assume that the natural
protocol has access to a bulletin board (formalized as an ideal functionality
below) which can be used by anyone to broadcast a message.

Functionality FBB

– Initially create broadcast maps:
m : N × Machine → Msg⊥ where m(r,M) = ⊥ for all r,M .

– On input (Send, sid,msg) from machine M in round r:
• Update m(r,M) = msg. Store the broadcast message from the role.
• Output (Send, sid,msg) to the simulator S.

– On input (Read, sid, r′) from machine M in round r where r′ < r output
a set of all elements (M ′, r′,msg) where msg = m(r′,M ′) �= ⊥ to M .

Overview of the Compiler. Suppose we wish to compile an abstract protocol
Π. At a high-level, the compiled protocol in the natural world involves the
following stages: First, the machines initiate role assignment for committees
that need to be nominated, which is determined based on the current round and
the public state. Once the nomination process is completed, the machines can
retrieve public keys corresponding to all roles in these committees and secret
keys for the roles they were chosen for (if any). This can be done by machines
inputting read to FRA.

Consider a machine M who has been assigned a role for some round of the
abstract protocol. Recall that in this case, FRA provides M with a decryption
key and a signing key. M obtains from FRA the signature verification keys of all
the roles that are supposed to send messages to the role that’s assigned to M , as
well as the public encryption keys of the roles that its assigned role is supposed
to send messages to. (Note that the latter key may not be available yet.) In this
case M keeps asking FRA for these keys in each round. As soon as FRA provides
these keys, the M is ready to execute the role R based on the specifications of
the abstract protocol Π. Suppose this role R invokes FBC&SPP in Π with a set
of point-to-point and broadcast messages, then the machine does the following
to emulate this step on behalf of the role:
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– Read the bulletin board to retrieve messages posted by machines emulating
sender roles. This includes broadcast messages and ciphertexts encrypting
point-to-point messages intended for R as a receiver, accompanied by signa-
tures. Accept the messages only if the signatures are valid (note that the
verification key of all roles are made public by FRA).

– To retrieve the point-to-point message, uses the decryption key to decrypt
the relevant ciphertexts.

– Proceed to compute the outgoing broadcast and point-to-point messages on
behalf of the role R (Note that at this point, the machine has all the infor-
mation a role holds in Π). Prepare a one-shot message comprising of the
following (a) Broadcast messages (b) Ciphertexts encrypting the point-to-
point messages using the encryption key of the relevant receiver roles in future
committees (made public by FRA) (c) Signature on these messages, computed
using the signing key of R received from FRA.

– Once the above one-shot message is computed, invoke FRA with input delete
and delete its own entire state, except the one-shot message to be posted. In
particular, delete the secret keys, received messages and randomness used on
behalf of the role R.

– Post this message to the bulletin board (as an atomic action).

Once the machine M has finished executing the role R, it notifies FRA that it is
ready i.e. available to be assigned a new role.

We point out that in the above informal description, we focused on machines
that were assigned computation roles. The compiler easily accommodates actions
by input and output roles in Π as well – the only difference is that these roles
are carried out by fixed machines and their identity is not secret. Therefore, the
public keys of these roles can be established via a PKI and need not be handled by
FRA. Further, the messages posted on the bulletin board by machines executing
these roles need not be signed.

Protocol Compile(Π)

Notation: The algorithm Nominate(r, {Broadcastsid}sid∈SID) denotes a pub-
licly computable function which when given a round number and public
state outputs the set of committees {cidi, Ci}i∈[k] to be nominated in that
particular round. We assume that all the cidi’s contains the round number
r.

Init: Initialise sets of messages and keys for each role:
– For each R ∈ Role and sid ∈ SID define a set R.Recsid ← ∅ of ciphertexts

sent to the role. R.ek ← ⊥, R.vk ← ⊥, R.dk ← ⊥ and R.sk ← ⊥.
– If R ∈ RoleIn ∪RoleOut, set R.ek and R.vk to relevant public keys estab-

lished by PKI.
– For each sid ∈ SID: Broadcastsid = ∅.
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Nominate: In the beginning of round r (i.e. as per the reading of the
global clock), compute the (computation) committees to be nominated,
{cidi, Ci}i∈[k] ← Nominate(r, {Broadcastsid}sid∈SID).
For each committee input (New, cidi, Ci) to FRA.

Role Keys: Once the machine finishes nominating committees in a round
r, it proceeds to read the keys for the committees nominated in the previous
round. For each committee, the machine inputs (Read, cid) to FRA receiving
lists PKeys and SKeys.
– For each element (ek, vk,R′) in PKeys the machine stores the role keys

as R′.ek ← ek and R′.vk ← vk.
– For each element (pid, dk, sk,R) in SKeys (where pid corresponds to the

machine’s identifier) store the keys R.dk ← dk,R.sk ← sk. We now
consider the machine to have been assigned role R.

Read: After storing new role keys each machine reads the bulletin board to
process the next round of messages in the protocol. In round r the machine
inputs (Read, sid, r − 1) to FBB, for each output element (M ′, r′,msg′) it
receives the machine does the following:
– Parse msg′ as ((S, sid, (R1, x1), . . . , (Rk, xk), x), σ)
– Verifies the signature b ← SIG.Verify(S.vk, (S, sid, (R1, x1), . . . , (Rk, xk),

x), σ), ignoring the message if verification does not succeed a .
– Add (S, x) to Broadcastsid.
– For i ∈ [k] add (S, xi) to Ri.Recsid.
If any role has more than one message with a valid signature, both should
be ignored.

Role Execution: When a machine has been assigned a role R, it should
run the role in its head and emulate the interaction between the role and
its ideal functionality FBC&SPP. In a given round a machine should activate
each role it has been assigned, until the role signals that it has completed
the round.
– If R ∈ RoleIn, then this machine (belongs to MachineIn) must have

received command (Input, x) which it passes on to R.
– If R inputs (Read,R,S, r′) to F sid

BC&SPP, the machine should retrieve the
tuple of the form (S, x) in R.Recsid, if no such tuple exists ⊥ should be
output directly to the role. The ciphertext should then be decrypted to
obtain x ← PKE.Dec(sid,S)(R.dk, x) which may be returned to R.

– If R inputs (Read,S, r′) to F sid
BC&SPP, the machine should retrieve the

tuple of the form (R, x) in Broadcastsid, and return x to R, returning ⊥
if no such value exists.

– If R ∈ RoleOut outputs (Output, y), output the same.

Send FBC&SPP: When the role R ∈ RoleIn∪RoleComp assigned to M outputs
(Send,R, ((R1, x1), . . . , (Rk, xk)), x) to FBC&SPP with session identifier sid
do the following:
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1. For j ∈ [k]: xj ← PKE.Enc(sid,R)(Rj .ek, xj ; ρj).
2. Let msg = (R, r, sid, (R1, x1), . . . , (Rk, xk), x).
3. Compute σ ← SIG.Sign(R.sk,msg) and set msg′ = (msg, σ) b .
4. If R ∈ RoleComp

– Input (Delete) to FRA.
– Erase all private local state associated with the role R, excluding

(R,msg, σ). In particular this includes R.dk,R.sk and the entire state
of the copy of R the machine has been running in its head.

5. Post msg′ to the bulletin board.
6. Input (Ready) to FRA if R ∈ RoleComp.
If a machine has been assigned multiple roles it should activate them until
they have all sent a message or completed the round, collecting all their
messages at Step 6.2 and posting them together.

a this verification is not needed if S ∈ RoleIn ∪ RoleOut

b Here, signatures can be avoided if R ∈ RoleIn.

5 Security of the Compiler

In this section, we prove the security of the compiler presented in Sect. 4 which
transforms a static, abstract YOSO protocol to an adaptively-secure natural
protocol. The security of our compiled natural protocol fundamentally relies on
the security of the original abstract protocol. The primary challenge arises due
to the difference in the adversary’s corruption powers between the abstract and
natural world. In order to rely on the static security of our abstract protocol,
we must be able to translate the adaptive adversary in the natural world to an
appropriate static adversary in the abstract world (against which a simulator
must exist, due to security of the abstract protocol).

To rely on the static simulator of our abstract protocol it is essential that
the natural world adversary cannot influence which roles are revealed through
its chosen corruptions of machines. As a starting point, let us consider what
goes wrong if a natural simulator is forced to commit to a mapping from roles
to machines. An adaptive adversary might then subsequently choose which
machines to corrupt based on this commitment. The simulator is essentially
forced to guess which machines the adversary will corrupt making it overwhelm-
ingly likely to fail.

To circumvent this issue we may instead consider the possible simulation
strategy if our simulator were not committed to this role to machine mapping.
Our static abstract simulator must always fix a choice of corrupt roles. The state
of these corrupt roles may be simulated, making it acceptable to assign them to
corrupt machines. Conversely, we have no way to simulate the state of honest
roles, so these must never be revealed to the adversary. During simulation, the
simulator presents a role assignment functionality to the natural world adversary.
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The natural world adversary expects the roles to be assigned to the machines
it has corrupted in proportion to its expended corruptions. This may easily be
accounted for by sampling a mapping where an appropriate number of statically
corrupt roles are assigned to these machines. Things get more challenging when
we start to consider adaptive corruptions, in the real world the adversary will
sometimes get lucky and corrupt a machine which has been assigned a role. If
we simply fix the mapping from roles to machines at the time of nomination
this could cause simulation to fail if the newly corrupted machine had been
assigned an honest role. However, if our role assignment functionality does not
leak anything to the adversary about the mapping of honest roles we may simply
change the assignment of this honest role to a machine which remains honest.
This will of course affect the number of roles revealed to the adversary, to account
for this we must additionally maintain some budget of statically corrupt roles,
which we reveal in place of the honest roles.

As the simulator now controls which roles are revealed to the adversary it
may be sure that it never has to open a ciphertext sent between the holders
of two honest roles. As a result these ciphertexts need not be non-committing,
allowing the use of the much more efficient CCA secure encryption.

We define the class of protocols which are compatible with our compiler.

Definition 3 (Compiler compatible protocol). We call a protocol Π a
compiler compatible secure implementation of F with threshold c/w, if the fol-
lowing conditions are satisfied:6

– Let c = Ω(κ) denote the committee size. Then, Π must YOSO securely imple-
ment the ideal functionality F in the presence of c/w static corruptions in
the computation committees and an arbitrary number of static corruptions in
the input and output roles.

– All honest roles in the same committee speak in the same round.
– There exists a positive constant delay, such that it is publicly computable

which committees need to be nominated at least delay round(s) in advance.
– There exists a constant Rmax ≥ κ, denoting the upper bound on the concur-

rently active roles at any point (which refers to roles that are able to receive
messages, or currently being nominated).

Theorem 2. Consider an abstract protocol Π in the FBC&SPP-hybrid model,
which is a compiler compatible secure implementation of F with threshold c/w
(Definition 3). Let FRA be shorthand for FRA(P, c, T ,U , 2) where U samples the
uniform distribution and a function T (f). Further, assume the schemes PKE
and SIG used by FRA are adaptive IND-CCA and EUF-CMA secure respectively.

Then, assuming a PKI setup, the protocol Compile(Π) UC implements the
ideal functionality F in the (FBB,FRA,FVRF)-hybrid model, under the presence
of T < Nft adaptive corruptions of the computation machines and any number
of static corruptions in the input and output roles, where N = (Rmax)2+δ for a

6 Note that all existing abstract YOSO protocols (such as the protocols in [GHK+21,
KRY22]) satisfy these properties.
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constant 1 ≤ δ and ft is fixed such that there exists a constant ε > 0 where for
all 0 < f < ft it holds that T (f) + (1 + ε)(ft − f)c < c/w.

If we apply Theorem 2 to the threshold function achieved by our role assignment
protocol in Sect. 7 we obtain the following corollary.

Corollary 1. For T (f) = c
(

1 − (1 − ε)(1 − f)2
)

a protocol tolerating c/w cor-
ruptions may be compiled to a protocol tolerating T < Nft adaptive corruptions,
where ft satisfies 0 < 1 − 2wft + wf2

t .
7

We refer the reader to the full version of this paper for a proof of Theorem 2.

6 Compiling Abstract Protocols Requiring Verification

Our compiler in Sect. 4 supports the class of YOSO protocols in the FBC&SPP-
hybrid model, such as the information-theoretic protocol of [GHK+21]. However,
this notably excludes protocols which assume explicit access to keys for the roles
to allow zero-knowledge proofs or any other types of public verifiability for point-
to-point messages. A large part of the existing YOSO protocol literature falls
under this umbrella, including the protocols presented in [BDO22,KRY22] and
the computationally secure protocol of [GHK+21].

Kolby et al. [KRY22] introduced the verifiable state propagation (VeSPa)
functionality FVeSPa to capture verifiability of point-to-point messages and
designed protocols in the (FVeSPa,FBC&SPP)-hybrid model instead. We show how
our compiler may be extended to accommodate the compilation of protocols in
the (FVeSPa,FBC&SPP)-hybrid model.

Before showing how our compiler may be extended to protocols in the
(FVeSPa,FBC&SPP)-hybrid model we will first reflect on the broader role of mes-
sage verifiability within YOSO protocols. When using FBC&SPP all point-to-point
messaging is ideal, making it impossible to directly provide verifiability guar-
antees for any single message in a single round. Works studying information
theoretic YOSO MPC [GHK+21,DKI+23] achieve verifiability by constructing
verifiable secret sharing (VSS) protocols in the abstract world. They then make
use of VSS to construct their desired MPC protocols. These protocols explicitly
handle their need for verifiable message passing in the abstract world, and thus
inherit these same guarantees when compiled to the natural world. There are
drawbacks to this approach of explicit abstract world verifiability, as existing
VSS constructions all introduce an overhead in both rounds and a number of
intermediate roles.

An alternative approach follows from the ideas within computationally secure
protocols, where verifiability may come from non-interactive zero-knowledge

7 This holds when ft < 1 −
√

w2−w

w
. For w = 2, namely when the abstract protocol

withstands honest minority, this allows ft ≈ 0.29. For w = 1.1, namely when the
abstract protocol withstands corruption of roughly 90% of the parties, this allows
ft ≈ 0.7.
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proofs, rather than additional interaction. In the context of YOSO the restric-
tion to FBC&SPP means that we only consider black box communication, and thus
cannot directly prove statements about point-to-point messages. To resolve the
limitation Kolby et al. [KRY22] introduced a new verifiable state propagation
functionality which enabled enforcing statements for point-to-point messages,
giving verifiability. A natural question to consider is whether it is possible to
realise FVeSPa in the abstract world given FBC&SPP. However, if we recall the
cost of achieving VSS in the FBC&SPP-hybrid model, our hopes of verifying more
complex relations, without a significant round and communication complexity
overhead are quickly dampened. Conversely, if we do not realise FVeSPa we are
left with a protocol which remains incompatible with compilation. This leaves
us with a choice of either realising FVeSPa in the abstract world, or adapting our
compiler to produce protocols which enforce the guarantees of FVeSPa, essentially
making verifiability explicit during the translation to the natural world.

We observe that our compiler is actually well suited to the addition of message
verifiability, making this a desirable choice. Recall, our modifications have elim-
inated the need for non-committing encryption for protocol messages, instead
simply requiring CCA security. If we extend the few requirements we make of
our encryption scheme to additionally permitting efficient proofs of knowledge of
plaintext, we may use non-interactive zero-knowledge to prove that the encrypted
messages between roles satisfy whatever relations we require.

6.1 Verifiable State Propagation

In this section, we recall the verifiable state propagation (VeSPa) functionality
FVeSPa introduced in Kolby et al. [KRY22]. Informally, this functionality enables
both point-to-point and broadcast communication, while allowing the sender
to prove that she correctly computed these messages (based on messages she
received and possibly other additional inputs).

In more detail, a sender role S in the abstract protocol invokes FVeSPa with
the following information: (a) the point-to-point messages S intends to send
to a set of recipient roles (b) the messages S intends to broadcast (c) witness
(comprising of the internal state of S such as its private randomness used to
compute its outgoing messages).

Consider the statement comprising of these outgoing point-to-point (say,
φsend) and broadcast messages (say, φbroadcast), the incoming messages that were
received by S (say, φreceive) and the public state (containing all the messages
broadcast so far, denoted by φpublic). The role S is associated with a relation
R(S) which basically specifies the correct behaviour of S as per the abstract
protocol specifications. The functionality FVeSPa verifies this relation i.e. checks
if the outgoing point-to-point and broadcast messages sent by S are computed
correctly based on the incoming messages it received previously, the current
public state and its private randomness (given as part of the witness). The mes-
sages that are verified are subsequently communicated. The formal description
of FVeSPa appears below.
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Functionality FVeSPa [KRY22]

This ideal functionality has the following behaviour:

– Define a map R : Role → Rel⊥. Specify the relations the messages of
each role must satisfy.

– Initially create point-to-point and broadcast maps:
y : N × Role × Role → Msg⊥ where y(r,R,R′) = ⊥ for all r,R,R′

m : N × Role → Msg⊥ where m(r,R) = ⊥ for all r,R.
– On input (Send,S, ((R1, x1), . . . , (Rk, xk)), x, w) in round r proceed as

follows:
• Let φsend = ((R1, x1), . . . , (Rk, xk)) and φbroadcast = x.
• Let φpublic be the current public state, represented by a vector of all

elements (r,R,msg), where m(r,R) = msg �= ⊥.
• Collect all yk �= ⊥ for r′ < r,R′ ∈ Role where y(r′,R′,S) = yk to

produce a vector φreceive = ((R′
1, y1), . . . , (R

′
m, ym)).

• If ((φsend||φreceive||φbroadcast||φpublic), w) �∈ R(S) ignore the input.
• Else:

* For i ∈ [n] update y(r,S,Ri) = xi. Store point to point messages
from the role.

* Update m(r,S) = x. Store the broadcast message from the role.
* Output (S, ((R1, |x1|), . . . , (Rk, |xk|)), x) to the simulator S. For

corrupt roles Ri output xi to the simulator S. Leak messages
lengths and the broadcast message to the simulator in a rushing
fashion.

If S is honest give Spoke to S.
– On input (Read,R,S, r′) in round r where r′ < r for x = y(r′,S,R)

output x to R.
– On input (Read,S, r′) in round r where r′ < r output x = m(r′,S) to
R.

6.2 Extending to Verifiable State Propagation

In our extension of the compiler we use the NIZK functionality FNIZK introduced
by [GOS12]. Looking ahead, the ability to extract witnesses through FVeSPa

means that we no longer require CCA security for our encryption scheme and
may relax this to CPA security.

At a high-level, in order to emulate the invocation of FVeSPa by a role R in
the abstract protocol, the machine assigned to execute role R does the following
(1) first reads the bulletin board to obtain the broadcast messages and incom-
ing point-to-point messages sent to R (by decrypting the relevant ciphertexts).
(2) Then, according to the specifications of the underlying abstract protocol
(i.e. as per the relation R(R) required by FVeSPa in the underlying protocol),
it computes its outgoing point-to-point and broadcast messages based on the
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incoming messages and internal state. (3) prepares encryptions of these outgo-
ing point-to-point messages using the encryption keys of the recipient roles. (4)
Finally, the machine then invokes the FNIZK functionality with respect to a rela-
tion RVeSPa (described below) which essentially checks that the machine did the
above actions (1), (2) and (3) correctly.

Accordingly, we define the relation RVeSPa which describes what we require
of the messages sent by our machines. The requirements may be divided into
two categories:

– Encryption and decryption is performed correctly.
– The incoming and outgoing plaintexts, and the public state satisfy the relation

R(R) required by FVeSPa in the underlying protocol.

For a message msg = (R, sid, (R1, x1), . . . , (Rk, xk), x), incoming message set
R.Recsid, with elements of the form (S, xi), and past broadcast messages
Broadcastsid, with elements of the form (R, x), we define our relation,8

RVeSPa =

⎧
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⎪
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w′
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	 = KeyMatch(R.dk,R.ek)
For j ∈ [k] :

xj = PKE.Enc(Rj .ek, xj ; ρj)
For (S, yj) ∈ R.Recsid :

yj = PKE.Dec(R.dk, yj)
φsend = ((Rj , xj))j∈[k]

φrec = ((Rj , yj))(S,yj)∈R.Recsid

φbc = x
φpub = Broadcastsid
((φsend, φrec, φbc, φpub), w′) ∈ Rsid(R)
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.

The only changes we need to allow for this functionality are when dealing
with messages sent via FVeSPa, the role assignment process remains unchanged.

Protocol Extended Compile(Π)

Read: After storing new role keys each machine reads the bulletin board to
process the next round of messages in the protocol. In round r the machine
inputs (Read, sid, r − 1) to FBB, for each output element (M ′, r′,msg′) it
receives the machine does the following:
– Parse msg′ as ((S, sid′, (R1, x1), . . . , (Rk, xk), x, π), σ)
– If sid′ is the session identifier for an instance of FVeSPa proceed with these

steps, otherwise handle the message as done for FBC&SPP in the original
compiler.

– Verifies the signature b ← SIG.Verify(S.vk, (S, (S, sid′, (R1, x1), . . . ,
(Rk, xk), x), π), σ), ignoring the message if verification does not succeed.

8 The predicate KeyMatch is true iff there exists randomness ρ such that (dk, ek) ←
KGen(ρ).
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– Defines the statement φ ← (R, sid′,R.ek,Rsid′(R), (Rj .ek)j∈[k],R.Recsid′ ,
msg,Broadcastsid′).

– Inputs (Verify, φ, π) to FNIZK with respect to the relation RVeSPa. and
waits for a response (Verification, , b). If b = 0 the message is ignored.

– After checks have been made for all the provided messages:
• Add (S, x) to Broadcastsid′ .
• For i ∈ [k] add (S, xi) to Ri.Recsid′ .

If any role has more than one message with a valid signature, both should
be ignored.

Execute Role: A machine M nominated for a role R should activate it for
each round of the protocol until it speaks.
– If the role inputs (Read,R,S, r′) to F sid

VeSPa the machine should retrieve
the tuple of the form (S, xi) in R.Recsid, if no such tuple exists ⊥ should
be output directly to the role. The ciphertext should then be decrypted
to obtain xi ← PKE.Dec(R.dk, xi) which may be returned to R.

– If the role inputs (Read,S, r′) to F sid
VeSPa the machine should retrieve the

tuple of the form (R, x) in Broadcastsid, and return x to R,

Send FVeSPa: When the role R assigned to M outputs
(Send,R, ((R1, x1), . . . , (Rk, xk)), x, w′) to FVeSPa with session identi-
fier sid′ do the following:
– For j ∈ [k]: xj ← PKE.Enc(Rj .ek, xj ; ρj).
– Defines the statement φ ← (R, sid′,R.ek,Rsid′(R), (Rj .ek)j∈[k],R.Recsid′ ,

msg,Broadcastsid′) and witness w ← (R.dk, (xj , ρj)j∈[k], w
′)

– Inputs (Prove, φ, w) to FNIZK with respect to the relation RVeSPa. and
waits for a response (Proof, π).

– Let msg = (R, sid′, (R1, x1), . . . , (Rk, xk), x, π).
– σ ← SIG.Sign(R.sk, (R,msg, π)).
– Input (Delete) to FRA.
– Erase all private local state associated with the role R, excluding

(msg, σ). In particular this includes R.dk,R.sk and the entire state of
the copy of R the machine has been running in its head.

– Post (msg, σ) to the bulletin board.
– Input (Ready) to FRA.

6.3 Security of the Extended Compiler

We prove the security of our extended compiler, stated in the formal theorem
below.

Theorem 3. Consider an abstract protocol Π in the (FVeSPa,FBC&SPP)-hybrid
model, which is a compiler compatible secure implementation of F with threshold
c/w (Definition 3). Let FRA be shorthand for FRA(P, c, T ,U , 2) where U samples
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the uniform distribution and T (f) = c
(

1 − (1 − ε)(1 − f)2
)

, for ε > 0. Further,
assume the schemes PKE and SIG used by FRA are IND-CPA and EUF-CMA
secure respectively.

Then, assuming a PKI setup, the protocol Compile(Π) UC implements the
ideal functionality F in the (FNIZK,FBB,FRA)-hybrid model, under the presence
of T < Nft adaptive corruptions of the computation machines and any number
of static corruptions in the input and output roles, where N = (Rmax)2+δ for a
constant δ ≥ 1 and 0 < 1 − 2wft + wf2

t .
9

The proof of Theorem 3 appears in the full version of this paper.

7 Realising Role Assignment

In compilation, we crucially relied on the ability to program the nominations of
our role assignment functionality on the fly to mitigate the adaptive corruption
powers of the adversary. We will now show how to realise FRA by modifying the
committee selection protocol of Benhamouda et al. [BGG+20] to allow equivo-
cation of the mapping betweeen roles and machines.

We begin by recalling the high level approach of their construction. The
task of choosing committee members is delegated to a nomination committee;
nominators in this committee do not need to receive any private input and
may therefore be self-selecting through cryptographic sortition. For a sufficiently
large nomination committee the fraction of corrupt nominators will be close to
the fraction of corruptions in the entire system. When a machine is chosen as
a nominator it samples fresh ephemeral keys for the role it is nominating, the
public key may be broadcast along with an encryption of the secret key under
a special form of anonymous PKE. As we consider an adaptive adversary with
the capacity to corrupt all members of the nomination committee, were they
identified, each nominator must make sure to delete its secret state prior to
sending their message. All machines may then observe the broadcast channel,
and attempt to decrypt each nomination ciphertext, if the decryption succeeds
the machine has been nominated and can decrypt ciphertexts messages sent to
the role.

To satisfy our role-assignment functionality we must make some modifica-
tions. Recall, in our simulation we want to choose the static corruptions in each
committee ahead of time, only ever revealing those chosen corrupt roles. If the
role assignment mechanism commits to a mapping between roles and machines
a simulator may be forced to corrupt machines which have been assigned honest
roles, for which it cannot equivocate. However, if the role assignment mecha-
nism does not commit to the mapping between roles and machines this could
conceivably be chosen on the fly to avoid revealing any statically honest roles.

9 This holds when ft < 1 −
√

w2−w

w
. For w = 2, namely when the abstract protocol

withstands honest minority, this allows ft ≈ 0.29. For w = 1.1, namely when the
abstract protocol withstands corruption of roughly 90% of the parties, this allows
ft ≈ 0.7.
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To make the approach compatible with the approach of Benhamouda et al.
[BGG+20] we replace the encryption scheme used for nomination ciphertexts
with key and message non-committing encryption (KM-NCE) [HLH+22]. We
additionally introduce the use of a randomness beacon, which provides fresh
uniform randomness each round, which we use to ensure the mapping from roles
to nominations is uniformly random and not biased by the adversary.

Note, while KM-NCE allows equivocating for both key and message, we will
only ever change the key under which ciphertexts decrypt. The committee size
must not exceed some fixed size c, to ensure this we must fix the winning prob-
ability p such that the expected committee size is smaller than c allowing the
application of a tail bound. To this end we let p = c/((1+ ε′)N) for some ε′ > 0.

Protocol ΠRA

Each machine M has access to a PKI containing KM-NCEpublic keys and
VRF verification keys for each computation machine. VRF keys are gen-
erated by all machines invoking (malicious) key generation on FVRF. Each
machine additionally stores its current long-term KM-NCEsecret key as
M.sk. Let c be the predefined size of a committee.

New Committee: After receiving input (New, cid, C) in round r, machine
M with identifier pid performs the following procedure:
– If there already exists stored value with cid∗ = cid ignore this com-

mand. Otherwise, store the value (r, cid, C,PKeys,SKeys), where PKeys
and SKeys are empty lists.

– Input (Read, r) to the randomness beacon, to receive randomness ρ.
– Input (EvalProve, (ρ, cid)) to FVRF and wait for output

(Evalutated, draw, π).
– If draw is a winning draw (i.e. draw/2�VRF ≤ p), proceed to nominate a

party, otherwise skip the remaining steps.
– Sample a uniformly random machine index pid′ ←$ P.
– Generate fresh ephemeral encryption and signing keys for the nominated

role, (ek, dk) ← PKE.Gen() (vk, sk) ← SIG.Gen().
– Encrypt the decryption and signing key to the chosen machine ctxt ←

KM − NCE.Enc(Mpid′ .pk, (pid′, dk, sk)).
– Erase the keys dk, sk and all randomness used for sampling the keys and
pid′, as well as any encryption randomness.

– Post (cid, ek, vk, ctxt, draw, π) to the bulletin board.

Read: On input (Read, cid) in round r′ where r + 2 ≤ r′
1. Retrieve the value (r, cid, C,PKeys,SKeys), stopping if no such value

exists.
2. Observe the bulletin board and collect a list of mes-

sages for committee identifier cid posted in round r,
(cid, ek1, vk1, ctxt1, draw1, π1), . . . , (cid, ekk, vkk, ctxtk, drawk, πk).
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3. Remove any elements (cid, ekj , vkj , ctxtj , drawj , πj) posted by machine
M from the list where drawj is not a winning draw. This may be verified
by inputting (Verify, (ρ, cid), drawj , πj ,Mpid.vkVRF) to FVRF where pid
is the identifier of the machine which has posted the message to the
bulletin board and ρ is the randomness the beacon has provided for
committee cid. Remove the element if FVRF returns 0, or drawj/2�VRF > p.

4. Sort the list lexicographically by encryption key, keeping only the c first
elements. If the list does not have exactly c elements pad it with values
(cid,⊥,⊥,⊥).

5. Input (Read, r + 1) to the randomness beacon, to receive randomness
ρ.

6. Let σ a uniformly random permutation on [c] defined by the randomness
ρ and apply σ to the list.

7. Loop over the list, for the jth element (cid, ekj , vkj , ctxtj):
– Append (ekj , vkj , Cj) to PKeys.
– Attempt to decrypt (pid, dk, sk) ← KM − NCE.Dec(Mj .sk, ctxtj).

If (pid, dk, sk) �= ⊥ and pid matches the machine which posted the
element to the bulletin board, append (pid, dk, sk, Cj).

8. Output PKeys and SKeys to M .

Delete: When given input Delete, for each stored value
(r, cid, C,PKeys,SKeys) delete SKeys overwriting it with the empty
list. Finally, delete the long term secret key M.sk.

Ready: When given input Ready, generate a new key pair (pk, sk, tk) ←
KM − NCE.Gen(), setting M.sk = sk and deleting tk immediately.
Finally, post (pid, pk) to the bulletin board.

We now prove the security of our role assignment mechanism. The protocol
ensures at most T (f) = c

(

1 − (1 − ε)(1 − f)2
)

of the c roles in a committee are
assigned to corrupt machines when the committee is finished being nominated.
Here f is the fraction of corruptions at the point where the committee finishes
being nominated. Intuitively this corresponds to guaranteeing that the remaining
(1− f)N honest machines have nominated other machines which have remained
honest at least a fraction (1 − f) of the time. The proof of Theorem 4 appears
in the full version of this paper.

Theorem 4. For threshold function T (f) = c
(

1 − (1 − ε)(1 − f)2
)

and the uni-
form distribution U . If the KM-NCE scheme used has KMNCk-CCA (for k =
poly(κ)10 ) and KM-NCE-UR security and the sortition has winning probabil-
ity c/((1 + ε′)N) for ε′ > 0. Then, assuming a bare PKI setup, the protocol

10 To weaken this to k = O(1) would require a bound on the number of honest nomi-
nations a machine could receive before refreshing its key.
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ΠRA UC realises the functionality FRA(P, c, T ,U , 2) in the presence of T ≤ N
adaptive corruptions in the (FBeacon,FBB,FVRF)-hybrid model.

8 The Versatility of Our Compiler

The compiler we present allows the compilation of YOSO protocols using both
FBC&SPP and FVeSPa. Of the existing literature only Kolby et al. present computa-
tionally secure protocols in the FVeSPa-hybrid model [KRY22], having introduced
the functionality. However, existing works which make non-black-box use of the
communication between roles may be recast into the FVeSPa-hybrid model allow-
ing for their efficient compilation. We provide one such example. Braun et al.
construct a YOSO MPC protocol from class groups, following the circuit based
CDN paradigm of [CDN01]. Their protocol proceeds by first performing a dis-
tributed key generation to obtain a key for a threshold linearly homomorphic
encryption scheme, which is then used for the circuit evaluation.

In the construction of their protocol they assume access to explicit pub-
lic keys allowing them to prove statements about the ciphertexts and public
messages with NIZK. The NIZK proofs are used in three of their functionali-
ties, CreateVSS,CreateTriple and YOSO − ABB. Proving the exact same relations
about the messages sent through FVeSPa would clearly preserve security, giving
the simulator access to the same witnesses it could extract from explicit proofs.

Braun et al. [BDO22] specifically tailor their statements to have efficient
proofs for the class group encryption scheme they use [CCL+19]. As our extended
compiler is secure for any PKE scheme with CPA security, it could in particular
be instantiated with the same class group scheme preserving their efficiency.
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Abstract. In this work, we initiate the study of network agnostic MPC
protocols with statistical security. Network agnostic MPC protocols give
the best possible security guarantees, irrespective of the behaviour of the
underlying network. While network agnostic MPC protocols have been
designed earlier with perfect and computational security, nothing is known
in the literature regarding their possibility with statistical security. We
consider the general-adversary model, where the adversary is character-
ized by an adversary structure which enumerates all possible candidate
subsets of corrupt parties. Known statistically-secure synchronous MPC
(SMPC) and asynchronous MPC (AMPC) protocols are secure against
adversary structures satisfying the Q(2) and Q(3) conditions respectively,
meaning that the union of no two and three subsets from the adversary
structure cover the entire set of parties.

Fix adversary structures Zs and Za, satisfying the Q(2) and Q(3) con-
ditions respectively, where Za ⊂ Zs. Then given an unconditionally-
secure PKI, we ask whether it is possible to design a statistically-secure
MPC protocol, which is resilient against Zs and Za in a synchronous and
an asynchronous network respectively, even if the parties are unaware of
the network type. We show that this is possible iff Zs and Za satisfy
the Q(2,1) condition, meaning that the union of any two subsets from Zs

and any one subset from Za is a proper subset of the set of parties. The
complexity of our protocol is polynomial in |Zs|.

Keywords: MPC · Network Agnostic · Statistical Security · VSS

1 Introduction

A secure multiparty computation (MPC) protocol [9,26,36,37] allows a set of n
mutually distrusting parties P = {P1, . . . , Pn} with private inputs to securely
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compute any known function f of their inputs. This is achieved even if a sub-
set of the parties are under the control of a centralized adversary and behave
maliciously in a Byzantine fashion during the protocol execution. In any MPC
protocol, the parties need to interact over the underlying communication net-
work. Two types of networks have been predominantly considered. The more
popular synchronous MPC (SMPC) protocols operate over a synchronous net-
work, where every message sent is assumed to be delivered within a known Δ
time. The synchronous model does not capture real-world networks like the Inter-
net appropriately, where messages can be arbitrarily delayed. Such networks are
better modelled by the asynchronous communication model [14]. In any asyn-
chronous MPC (AMPC) protocol [8,10], there are no timing assumptions on
message delays and messages can be arbitrarily, yet finitely delayed. The only
guarantee is that every message sent will be eventually delivered. The major
challenge here is that no participant will know how long it has to wait for an
expected message and cannot distinguish a “slow” party from a corrupt party.
Consequently, in any AMPC protocol, a party cannot afford to receive messages
from all the parties, to avoid an endless wait. Hence, as soon as a party receives
messages from a “subset” of parties, it has to process them as per the protocol,
thus ignoring messages from a subset of potentially non-faulty parties.

There is a third category of protocols called network agnostic MPC protocols,
where the parties will not be knowing the network type and the protocol should
provide the best possible security guarantees depending upon the network type.
Such protocols are practically motivated, since the parties need not have to worry
about the behaviour of the underlying network.

1.1 Our Motivation and Results

One of the earliest demarcations made in the literature is to categorize MPC
protocols based on the computing power of the underlying adversary. The two
main categories are unconditionally-secure protocols, which remain secure even
against computationally-unbounded adversaries, and conditionally-secure MPC
protocols (also called cryptographically-secure), which remain secure only against
computationally-bounded adversaries [26,37]. Unconditionally-secure protocols
can be further categorized as perfectly-secure [8,9] or statistically-secure [10,36],
depending upon whether the security guarantees are error-free or achieved except
with a negligible probability. The above demarcation carries over even for net-
work agnostic MPC protocols. While perfectly-secure and cryptographically-
secure network agnostic MPC protocols have been investigated earlier, nothing is
known regarding network agnostic statistically-secure MPC protocols. We derive
necessary and sufficient conditions for such protocols for the first time.

Existing Results for Statistically-Secure MPC. Consider the threshold
setting, where the maximum number of corrupt parties under the adversary’s
control is upper bounded by a given threshold. In this model, it is known that
statistically-secure SMPC tolerating up to ts faulty parties is possible iff ts < n/2
[36], provided the parties are given access to an ideal broadcast channel, which
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can be further instantiated using an unconditionally-secure PKI (a.k.a pseudo-
signature) setup [22,35]. On the other hand, statistically-secure AMPC tolerating
up to ta faulty parties is possible iff ta < n/3 [1,10].

A more generalized form of corruption is the general adversary model (also
called non-threshold model) [27]. Here, the adversary is specified through a pub-
licly known adversary structure Z ⊂ 2P , which is the set of all subsets of poten-
tially corruptible parties during the protocol execution. The adversary is allowed
to choose any one subset from Z for corruption. There are several “merits” of
studying the general adversary model, especially if the number of parties is small.
The downside is that the complexity of the protocols is polynomial in |Z|, which
could be O(2n) in the worst case. In fact, as noted in [27,28], this is unavoidable.

Following [27], given a subset of parties P ′ ⊆ P and Z, we say that Z
satisfies the Q(k)(P ′,Z) condition, if for any subsets Zi1 , . . . , Zik

∈ Z, the con-
dition (Zi1 ∪ . . . ∪ Zik

) ⊂ P ′ holds. In the non-threshold model, statistically-
secure SMPC is possible if the underlying adversary structure Zs satisfies the
Q(2)(P,Zs) condition, provided the parties have access to an ideal broadcast
channel (which can be instantiated using an unconditionally-secure PKI setup)
[29], while statistically-secure AMPC requires the underlying adversary structure
Za to satisfy the Q(3)(P,Za) condition [4,29].

Our Results for Network Agnostic Statistically-Secure MPC. We con-
sider the most generic form of corruption and ask the following question:

Given an unconditionally-secure PKI, a synchronous adversary structure
Zs and an asynchronous adversary structure Za satisfying the Q(2)(P,Zs)
and Q(3)(P,Za) conditions respectively, where Za ⊂ Zs, does there exist a
statistically-secure MPC protocol, which remains secure against Zs and Za in a
synchronous and an asynchronous network respectively?

We answer the above question affirmatively, iff Zs and Za satisfy the
Q(2,1)(P,Zs,Za) condition, where by Q(k,k′)(P,Zs,Za) condition, we mean that
for any Zi1 , . . . , Zik

∈ Zs and Zj1 , . . . ,Zjk′ ∈ Za, the following holds:

(Zi1 ∪ . . . ∪ Zik
∪ Zj1 ∪ . . . ∪ Zj′

k
) ⊂ P.

Our results when applied against threshold adversaries imply that given an
unconditionally-secure PKI, and thresholds 0 < ta < n

3 < ts < n
2 , network

agnostic statistically-secure MPC tolerating ts and ta corruptions in the syn-
chronous and asynchronous network is possible, iff 2ts + ta < n holds. Our
results in the context of relevant literature are summarized in Table 1.

1.2 Detailed Technical Overview

We perform shared circuit-evaluation [9,36], where f is abstracted as an arith-
metic circuit ckt over a finite field F and the goal is to securely evaluate each gate
in ckt in a secret-shared fashion. For every value during the circuit-evaluation,
each party holds a share, such that the shares of the corrupt parties do not reveal
any additional information. Once the function output is secret-shared, it is pub-
licly reconstructed. We deploy a linear secret-sharing scheme, which enables the
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Table 1. Various conditions for MPC in different settings

Network Type Corruption Scenario Security Condition Reference

Synchronous Threshold (t) Perfect t < n/3 [9]

Synchronous Non-threshold (Z) Perfect Q(3)(P, Z) [27]

Synchronous Threshold (t) Statistical t < n/2 [36]

Synchronous Non-threshold (Z) Statistical Q(2)(P, Z) [29]

Asynchronous Threshold (t) Perfect t < n/4 [8]

Asynchronous Non-threshold (Z) Perfect Q(4)(P, Z) [31]

Asynchronous Threshold (t) Statistical t < n/3 [1,10]

Asynchronous Non-threshold (Z) Statistical Q(3)(P, Z) [4]

Network Agnostic Threshold (ts, ta) Perfect 0 < ta < n/4 < ts < n/3 and 3ts +
ta < n

[2]

Network Agnostic Non-threshold (Zs, Za) Perfect Za ⊂ Zs,Q
(3)(P, Zs),Q

(4)(P, Za)
and Q(3,1)(P, Zs, Za)

[3]

Network Agnostic Threshold (ts, ta) Computational 0 < ta < n/3 < ts < n/2 and 2ts +
ta < n

[13,18]

Network Agnostic Non-threshold (Zs, Za) Statistical Za ⊂ Zs,Q
(2)(P, Zs),Q

(3)(P, Za)
and Q(2,1)(P, Zs, Za)

This work

Network Agnostic Threshold (ts, ta) Statistical 0 < ta < n/3 < ts < n/2 and 2ts +
ta < n

This work

parties to evaluate linear gates in ckt in a non-interactive fashion. Non-linear
gates are evaluated using Beaver’s method [7] by deploying secret-shared ran-
dom multiplication-triples which are generated beforehand.

To instantiate the above approach with statistical security, we need the fol-
lowing ingredients: a Byzantine agreement (BA) protocol [34], an information
checking protocol (ICP) [36], a verifiable secret sharing (VSS) protocol [15], a
reconstruction protocol and finally, a secure multiplication protocol. However, in
a network agnostic setting, we face several challenges to instantiate the above
building blocks. We now take the reader through a detailed tour of the technical
challenges and how we deal with them.

1.2.1 Network Agnostic BA with Q(2,1)(P,Zs,Za) Condition
A BA protocol [34] allows the parties in P with private input bits to agree on
a common output bit (consistency), which is the input of the non-faulty par-
ties, if they have the same input bit (validity). Given an unconditionally-secure
PKI, synchronous BA (SBA) is possible iff the underlying adversary structure
Zs satisfies the Q(2)(P,Zs) condition [22,23,35], while asynchronous BA (ABA)
requires the underlying adversary structure Za to satisfy the Q(3)(P,Za) condi-
tion [16]. Existing SBA protocols become completely insecure in an asynchronous
network. On the other hand, any ABA protocol becomes insecure when executed
in a synchronous network, since Zs need not satisfy the Q(3)(P,Zs) condition.
Hence, we design a network agnostic BA protocol with Q(2,1)(P,Zs,Za) condi-
tion. The protocol is obtained by generalizing the existing blueprint for network
agnostic BA against threshold adversaries [2,11].
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1.2.2 Network Agnostic ICP with Q(2,1)(P,Zs,Za) Condition
An ICP [17,36] is used for authenticating data in the presence of a
computationally-unbounded adversary. In an ICP, there are four entities, a signer
S ∈ P, an intermediary I ∈ P, a receiver R ∈ P and all the parties in P acting as
verifiers (note that S, I and R also act as verifiers). An ICP has two sub-protocols,
one for the authentication phase and one for the revelation phase.

In the authentication phase, S has an input s ∈ F, which it distributes to
I along with some authentication information. Each verifier is provided with
some verification information, followed by the parties verifying whether S has
distributed “consistent” information. If the verification is “successful”, then the
data held by I is called S’s IC-Signature on s for intermediary I and receiver
R, denoted by ICSig(S, I,R, s). Later, during the revelation phase, I reveals
ICSig(S, I,R, s) to R, who “verifies” it with respect to the verification information
provided by the verifiers and either accepts or rejects s. We require the same
security guarantees from IC-signatures as expected from cryptographic signa-
tures, namely correctness, unforgeability and non-repudiation. Additionally, we
need privacy, meaning if S, I and R are all honest, then Adv does not learn s.

The only known instantiation of ICP in the synchronous network [29] is secure
against Q(2) adversary structures and becomes insecure in the asynchronous set-
ting. On the other hand, the only known instantiation of ICP in the asynchronous
setting [4] can tolerate only Q(3) adversary structures. Our network agnostic ICP
is a careful adaptation of the asynchronous ICP of [4]. We first try to naively
adapt the ICP to deal with the network agnostic setting, followed by the tech-
nical problems in the naive adaptation and the modifications needed.

During authentication phase, S embeds s in a random t-degree polynomial
F (x) at x = 0, where t is the cardinality of the maximum-sized subset in Zs,
and gives F (x) to I. In addition, each verifier Pi is given a random verification-
point (αi, vi) on F (x). To let the parties securely verify that it has distributed
consistent information, S additionally distributes a random t-degree polynomial
M(x) to I, while each verifier Pi is given a point on M(x) at αi. Each verifier,
upon receiving its verification-points, publicly confirms the same. Upon receiving
these confirmations, I identifies a subset of supporting verifiers SV which have
confirmed the receipt of their verification-points. To avoid an endless wait, I
waits until P \ SV ∈ Zs. After this, the parties publicly check the consistency of
the F (x),M(x) polynomials and the points distributed to SV, with respect to
a random linear combination of these polynomials and points, where the linear
combiner is selected by I. This ensures that S has no knowledge beforehand about
the random combiner and hence, any “inconsistency” will be detected with a high
probability. If no inconsistency is detected, the parties proceed to the revelation
phase, where I reveals F (x) to R, while each verifier in SV reveals its verification-
point to R, who accepts F (x) (and hence F (0)) if it sure that the verification
point of at least one non-faulty verifier in SV is “consistent” with the revealed
F (x). This would ensure that the revealed F (x) is indeed correct with a high
probability, since a corrupt I will have no information about the verification-point
of any non-faulty verifier in SV, provided S is non-faulty. To avoid an endless
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wait, once R finds a subset of verifiers SV ′ ⊆ SV, where SV \ SV ′ ∈ Zs, whose
verification-points are found to be “consistent” with F (x), it outputs F (0).

A Technical Problem and Way-Out. The above protocol will achieve all
the properties in an asynchronous network, due to the Q(3)(P,Za) condition.
However, it fails to satisfy the unforgeability property in a synchronous network.
Namely, a corrupt I may not include all the non-faulty verifiers in SV and may
purposely exclude a subset of non-faulty verifiers belonging to Zs. To deal with
this, we let S identify and announce SV. This ensures that all honest verifiers
are present in SV, if S is honest and the network is synchronous.

Linearity of ICP. Our ICP satisfies the linearity property (which will be useful
later in our VSS), provided “special care” is taken while generating the IC-
signatures. Consider a fixed S, I and R and let sa and sb be two values, such that
I holds ICSig(S, I,R, sa) and ICSig(S, I,R, sb), where all the following conditions
are satisfied during the underlying instances of the authentication phase.

– The set of supporting verifiers SV are the same during both the instances.
– For i = 1, . . . , n, corresponding to the verifier Pi, signer S uses the same αi,

to compute the verification-points, during both the instances.
– I uses the same linear combiner to verify the consistency of the distributed

data in both the instances.

Let s
def
= c1 ·sa +c2 ·sb, where c1, c2 are publicly known constants from F. It then

follows that if all the above conditions are satisfied, then I can locally compute
ICSig(S, I,R, s) from ICSig(S, I,R, sa) and ICSig(S, I,R, sb), while each verifier in
SV can locally compute their corresponding verification-point.

1.2.3 Network Agnostic VSS and Reconstruction
In the network agnostic setting, to ensure privacy, all the values during the
circuit evaluation need to be secret-shared “with respect” to Zs irrespective of
the network type. We follow the notion of additive secret-sharing [30], also used
in the earlier MPC protocols [4,29,32]. Given Zs = {Z1, . . . , Z|Zs|}, we consider
the sharing specification SZs

= {S1, . . . , S|Zs|}, where each Sq = P \ Zq. Hence
there exists at least one subset Sq ∈ S|Zs| which does not contain any faulty party,
irrespective of the network type (since Za ⊂ Zs). A value s ∈ F is said to be
secret-shared, if there exist shares s1, . . . , s|Zs| which sum up to s, such that all
(non-faulty) parties in Sq have the share sq. We denote a secret-sharing of s by [s],
with [s]q denoting the share corresponding to Sq. If [s]1, . . . , [s]|Zs| are randomly
chosen, then the probability distribution of the shares learnt by the adversary will
be independent of s. We also note that the above secret-sharing is linear since,
given secret-sharings [a] and [b] and publicly known constants c1, c2 ∈ F, the
condition c1 · [a] + c2 · [b] = [c1 · a + c2 · b] holds. Unfortunately, the above secret-
sharing does not allow for the robust reconstruction of a secret-shared value.
This is because the corrupt parties may produce incorrect shares at the time of
reconstruction. To deal with this, we “augment” the above secret-sharing. As
part of secret-sharing of s, we also have publicly known core-sets W1, . . . ,W|Zs|,
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where each Wq ⊆ Sq such that Zs satisfies the Q(1)(Wq,Zs) condition (ensuring
Wq has at least one non-faulty party). Moreover, each (non-faulty) Pi ∈ Wq will
have the IC-signature ICSig(Pj , Pi, Pk, [s]q) of every Pj ∈ Wq, for every Pk �∈ Sq,
such that the underlying IC-signatures satisfy the linearity property.

We call this augmented secret sharing as linear secret-sharing with IC-
signatures, which is still denoted as [s]. Now to robustly reconstruct a secret-
shared s, we ask the parties in Wq to make public the share [s]q, along with
the IC-signatures of all the parties in Wq on [s]q. Any party Pk can then verify
whether [s]q revealed by Pi is correct by verifying the IC-signatures.

We design a network agnostic VSS protocol ΠVSS, which allows a designated
dealer D ∈ P with input s ∈ F to verifiably generate [s], where s remains private
for a non-faulty s. If D is faulty then either no non-faulty party obtains any
output (if D does not invoke the protocol) or there exists some s� ∈ F such
that the parties output [s�]. To design ΠVSS, we use certain ideas from the
statistically-secure synchronous VSS (SVSS) and asynchronous VSS (AVSS) of
[4,29] respectively, along with some new counter-intuitive ideas. In the sequel,
we first give a brief outline of the SVSS and AVSS of [4,29], followed by the
technical challenges arising in the network agnostic setting and how we deal
with them.

Statistically-Secure SVSS of [29] with Q(2)(P,Zs) Condition. The SVSS of
[29] proceeds as a sequence of synchronized phases. During the first phase, D picks
random shares s1, . . . , s|Zs| for s and sends sq to the parties in Sq. During the
second phase, every pair of parties Pi, Pj ∈ Sq exchange the supposedly common
shares received from D, along with their respective IC-signatures. Then during
the third phase, the parties in Sq publicly complain about any “inconsistency”,
in response to which D makes public the share sq corresponding to Sq during
the fourth phase. Hence, by the end of fourth phase it is ensured that, for every
Sq, either the share sq is publicly known (if any complaint was reported for Sq)
or all (non-faulty) parties in Sq have the same share (along with the respective
IC-signatures of each other on it). The privacy of s is maintained for a non-faulty
D, since the share sq corresponding to the set Sq consisting of only non-faulty
parties is never made public.

Statistically-Secure AVSS of [4] with Q(3)(P,Za) Condition. Let Za =
{Z1, . . . ,Z|Za|} and SZa

= {S1, . . . ,S|Za|} be the corresponding sharing specifi-
cation, where each Sq = P \ Zq. The AVSS protocol of [4] also follows an idea
similar to the SVSS of [29]. However, now the parties cannot afford to wait for
all the parties in Sq to report the statuses of pairwise consistency tests, as the
corrupt parties in Sq may never turn up. Hence instead of looking for inconsis-
tencies in Sq, the parties rather check how many parties in Sq are reporting the
pairwise consistency of their supposedly common share. The idea is that if D
has not cheated, then a subset of parties Wq where Sq \Wq ∈ Za should eventu-
ally confirm the receipt of a common share from D. Hence, the parties check for
core-sets W1, . . . ,W|Za|, where each Sq \ Wq ∈ Za, such that the parties in Wq

have confirmed the receipt of a common share from D. Note that irrespective of
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D, each Wq is bound to have at least one non-faulty party, since Za will satisfy
the Q(1)(Wq,Za) condition.

The existence of W1, . . . ,W|Za| does not imply that all non-faulty parties in
Sq have received a common share, even if D is non-faulty, since there might
be non-faulty parties outside Wq. Hence, after the confirmation of the sets
W1, . . . ,W|Za|, the goal is to ensure that every (non-faulty) party in Sq \ Wq

also gets the common share held by the (non-faulty) parties in Wq. For this,
the parties in Wq reveal their shares to these “outsider” parties, along with
the required IC-signatures. The outsider parties then “filter” out the correctly
revealed shares. The existence of at least one non-faulty party in each Wq guar-
antees that the shares filtered by the outsider parties are indeed correct.

Technical Challenges for Network Agnostic VSS and Way Out. Our
approach will be to follow the AVSS of [4], where we look for pairwise consistency
of supposedly common share in each group. Namely, D picks random shares
s1, . . . , s|Zs| for its input s and distributes sq to each Sq ∈ S|Zs|. The parties in Sq

then exchange IC-signed versions of their supposedly common share. To avoid an
endless wait, the parties can only afford to wait till a subset of parties Wq ⊆ Sq

have confirmed the receipt of a common share from D, where Sq \ Wq ∈ Zs

holds. Unfortunately, Sq \ Wq ∈ Zs need not guarantee that Wq has at least one
non-faulty party, since Zs need not satisfy the Q(1)(Wq,Zs) condition, which is
desired as per our semantics of linear secret-sharing with IC-signatures.

To deal with the above problem, we note that if D has distributed the shares
consistently, then the subset of parties S ∈ SZs

which consists of only non-
faulty parties will publicly report the pairwise consistency of their supposedly
common share. Hence, we now let D search for a candidate set Sp of parties from
SZs

which have publicly confirmed the pairwise consistency of their supposedly
common share. Once D finds such a candidate Sp, it computes and make public
the core-sets Wq as per the following rules, for q = 1, . . . , |Zs|.
– If all the parties in Sq have confirmed the pairwise consistency of their sup-

posedly common share, then set Wq = Sq. (A)
– Else if Zs satisfies the Q(1)(Sp ∩Sq,Zs) condition and the parties in (Sp ∩Sq)

have confirmed the consistency of their supposedly common share, then set
Wq = (Sp ∩ Sq). (B)

– Else set Wq = Sq and make public the share sq. (C)

The parties wait till they see D making public some set Sp ∈ SZs
, along with

sets W1, . . . ,W|Zs|. Upon receiving, the parties verify and “approve” these sets
as valid, provided all parties in Sp have confirmed the pairwise consistency of
their supposedly common share and if each Wq is computed as per the rule
(A), (B) or (C). If W1, . . . ,W|Zs| are approved, then they indeed satisfy the
requirements of core-sets as per our semantics of linear secret-sharing with IC-
signatures. While this is trivially true if any Wq is computed either using rule
(A) or rule (B), the same holds even if Wq is computed using rule (C). This is
because, in this case, the parties publicly set [s]q = sq. Moreover, the parties take
a “default” (linear) IC-signature of sq on the behalf of Sq, where the IC-signature
as well as verification points are all set to sq.
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If D is non-faulty, then irrespective of the network type, it will always find
a candidate Sp and hence, compute and make public W1, . . . ,W|Zs| as per the
above rules. This is because the set S always constitutes a candidate Sp. Sur-
prisingly we can show that even if the core-sets are computed with respect to
some different candidate Sp �= S, a non-faulty D will never make public the share
corresponding to S, since the rule (C) will not be applicable over S, implying
the privacy of s. If the network is synchronous, then the parties in Sp as well as
S would report the pairwise consistency of their respective supposedly common
share at the same time. This is ensured by maintaining sufficient “timeouts” in
the protocol to report pairwise consistency of supposedly common shares. Con-
sequently, rule (A) will be applied on S. For an asynchronous network, rule (B)
will be applicable for S, as Zs will satisfy the Q(1)(Sp ∩ S,Zs) condition, due to
the Q(2,1)(P,Zs,Za) condition and the fact that S = P \ Z for some Z ∈ Za in
the asynchronous network.

1.2.4 Network Agnostic VSS for Multiple Dealers with Linearity
Technical Challenge in ΠVSS for Multiple Dealers and Way Out. If
different dealers invoke instances of ΠVSS to secret-share their inputs, then the
linearity property of [·]-sharing need not hold, since the underlying core-sets
might be different. This implies failure of shared circuit-evaluation of ckt, where
the inputs for ckt are shared by different parties.

To deal with the above problem, we ensure that the core-sets are com-
mon for all the secret-shared values during the circuit-evaluation. Namely, there
exist global core-sets GW1, . . . ,GW |Zs|, which constitute the core-sets for all
the secret-shared values during the circuit-evaluation, where for each GWq, Zs

satisfies the Q(1)(GWq,Zs) condition. Maintaining common core-sets is challeng-
ing, especially in an asynchronous network and ΠVSS alone is not sufficient to
achieve this goal. Rather we use a different approach. We generate a “bunch” of
linearly secret-shared random values with IC-signatures and common core-sets
GW1, . . . ,GW |Zs| in advance through another protocol called ΠRand (discussed
in the next section). Later, if any party Pi needs to secret-share some x, then
one of these random values is reconstructed only towards Pi, which uses it as a
one-time pad (OTP) and makes public an OTP-encryption of x. The parties can
then take the “default” secret-sharing of the OTP-encryption with IC-signatures
and GW1, . . . ,GW |Zs| as the core-sets and then non-interactively “remove” the
pad from the OTP-encryption. This results in [x], with GW1, . . . ,GW |Zs| as core-
sets. To ensure privacy, we need to generate L random values through ΠRand, if
L is the maximum number of values which need to be secret-shared by different
parties during the circuit-evaluation. We show that L ≤ n3 ·cM +4n2 ·cM +n2+n
where cM is the number of multiplication gates in ckt.

1.2.5 Secret-Shared Random Values with Global Core Sets
Protocol ΠRand generates linearly secret-shared random values with IC-
signatures and common core-sets. We explain the idea behind the protocol for
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generating one random value. The “standard” way will be to let each Pi pick
a random value r(i) and generate [r(i)] by invoking an instance of ΠVSS. To
avoid an endless wait, the parties only wait for the completion of ΠVSS instances
invoked by a set of dealers P \ Z for some Z ∈ Zs. To identify the common
subset of dealers for which the corresponding ΠVSS instances have completed,
the parties run an instance of agreement on a common subset (ACS) primitive
[10,14]. This involves invoking n instances of our network agnostic BA. Let C be
the set of common dealers identified through ACS, where P \ C ∈ Zs. The set
C has at least one non-faulty party who has shared a random value. Hence, the
sum of the values shared by the dealers in C will be random for the adversary.

Technical Challenges. The above approach fails in our context due to the fol-
lowing two “problems” in the protocol ΠVSS, when executed by different dealers.

Problem I: The first challenge is to maintain the linearity of underlying IC-
signatures. To understand the issue, consider a triplet of parties Pi, Pj , Pk, acting
as S, I and R respectively in various instances of ΠVSS invoked by different deal-
ers. Recall that, to maintain the linearity of IC-signatures, it is necessary that Pi

selects the same set of supporting-verifiers SV in all the instances of authentica-
tion phase involving Pj and Pk. This is possible only if Pi knows all the values
on which it wants to generate the IC-signature for Pj and Pk and starts invok-
ing all the instances of authentication phase. Instead, if Pi invokes instances of
authentication phase as and when it has some data to be authenticated for Pj

and Pk, then it may not be possible to have the same SV in all the instances of
authentication phase, involving Pi, Pj and Pk in the above roles, especially in an
asynchronous network. Since, in ΠVSS, IC-signatures are generated on the sup-
posedly common shares (after receiving them from the underlying dealer) and
multiple instances of ΠVSS are invoked (by different dealers), this means that Pi

should first have the data from all the dealers for the various instances of ΠVSS

and before invoking instances of authentication phase to generate IC-signatures
on these values for Pj . This may not be possible, since Pi need not know before-
hand which dealers it will be receiving shares from as part of ΠVSS.

Way Out. To deal with the above issue, we now let the dealers publicly commit
their shares for the ΠVSS instances through secure verifiable multicast (SVM).
The primitive allows a designated sender Sen ∈ P with input v to “verifiably”
send v to a designated set of receivers R ⊆ P, without leaking any additional
information. The verifiability guarantees that even if Sen is corrupt, if the non-
faulty parties in R get any value from Sen, then it will be common and all
the (non-faulty) parties in P will “know” that Sen has sent some value to R.
Our instantiation of SVM is very simple: Sen acts as a dealer and generates
[v] through ΠVSS. Once [v] is generated, the parties know that Sen has “com-
mitted” to some unknown value. The next step is to let only the parties in R
reconstruct v.

Using SVM, we now let the various dealers distribute the shares during the
underlying instances of ΠVSS (for ΠRand) as follows. Consider the dealer P� who
has invoked an instance of ΠVSS with input r(�). For this, it picks random shares
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r
(�)
1 , . . . , r

(�)
|Zs| which sum up to r(�). Now instead of directly sending send r

(�)
q

to the parties in Sq, it invokes |Zs| instances of SVM with input r
(�)
1 , . . . , r

(�)
|Zs|

and S1, . . . , S|Zs| as the designated set of receivers respectively. This serves two
purposes. All the parties in P will now know that P� has distributed shares to
each set from SZs

. The parties then run an instance of ACS to identify a common
subset of committed dealers CD ⊆ P, where P \ CD ∈ Zs, which have invoked
the desired instances of SVM and delivered the required shares to each group
Sq ∈ S|Zs|. The way timeouts are maintained as part of the ACS, it will be
ensured that in a synchronous network, all non-faulty dealers are present in CD.
Once the set CD is identified, it is guaranteed that every non-faulty party Pi will
have the shares from all the dealers in CD. And once it has the shares from all
the dealers in CD, it starts generating the IC-signatures on these shares for the
designated parties as part of the ΠVSS instances corresponding to the dealers in
CD and ensures that all the pre-requisites are satisfied to guarantee the linearity
of the underlying IC-signatures. Now instead of selecting the set of dealers C (for
ΠRand) from P, the parties run an instance of ACS over the set of committed
dealers CD to select C where CD \ C ∈ Zs holds. We stress that irrespective of
the network type, the set C is still guaranteed to have at least one non-faulty
party. While this is trivially true in an asynchronous network where Za satisfies
the Q(1)(C,Za) condition, the same is true in the synchronous network because
CD will have all non-faulty dealers.

Problem II: The second problem (in the proposed ΠRand) is that the underlying
core-sets might be different for the values shared by the dealers in CD (and hence
C). Instead, we require every dealer in CD to secret-share random values with
common underlying core-sets. Only then will it be ensured that the random
values generated through ΠRand are secret-shared with common core-sets.

Way Out. Getting rid of the above problem is not possible if we let every dealer
in CD compute individual core-sets during their respective instances of ΠVSS, as
per the steps of ΠVSS. Recall that in ΠVSS, the dealer D computes the underlying
core-sets with respect to the “first” set of parties Sp from S|Zs| which confirm
the pairwise consistency of their supposedly common share after exchanging IC-
signatures on these values. As a result, different dealers (in ΠRand) may end up
computing different core-sets in their instances of ΠVSS with respect to different
candidate Sp sets. To deal with this issue, we instead let each dealer in CD
continue computing and publishing different “legitimate” core-sets with respect
to various “eligible” candidate Sp sets from SZs

. The parties run an instance of
ACS to identify a common subset of dealers C ∈ CD where CD\C ∈ Zs, such that
all the dealers have computed and published “valid” core-sets, computed with
the respect to the same Sp ∈ SZs

. The idea here is that there always exists a set
S ∈ SZs

consisting of only non-faulty parties. So if the set of non-faulty dealers
H in CD keep computing and publishing all possible candidate core-sets in their
ΠVSS instances, then they will publish core-sets with respect to S. Hence, H and
S always constitute the candidate CD and the common Sp set.
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Note that identifying C out of CD through ACS satisfying the above require-
ments is non-trivial and requires carefully executing the underlying instances of
BA in “two-dimensions”. We first run |Zs| instances of ΠBA, one on the behalf of
each set in SZs

, where the qth instance is executed to decide whether a subset of
dealers in CD \Z for some Z ∈ Zs have published valid core-sets with respect to
the set Sq ∈ SZs

. This enables the parties to identify a common set Sqcore ∈ SZs
,

such that it is guaranteed that a subset of dealers in CD \ Z for some Z ∈ Zs

have indeed published valid core-sets with respect to the set Sqcore . Once the set
Sqcore is identified, the parties then run |CD| instances of BA to decide which
dealers in CD have published core-sets with respect to Sqcore .

1.2.6 Network Agnostic Secure Multiplication
To generate secret-shared random multiplication-triples we need a network
agnostic secure multiplication protocol which securely generates a secret-sharing
of the product of two secret-shared values. The key subprotocol behind our multi-
plication protocol is a non-robust multiplication protocol ΠBasicMult (standing for
basic multiplication), which takes inputs [a] and [b] and an existing set of globally
discarded parties GD, which contains only corrupt parties. The protocol securely
generates [c] without revealing any additional information about a, b (and c). If
no party in P \ GD cheats, then c = a · b holds. The idea behind the protocol
is to let each summand [a]p · [b]q be secret-shared by a summand-sharing party.
Then [a · b] can be computed from the secret-sharing of each summand, owing to
the linearity property. Existing multiplication protocols in the synchronous and
asynchronous setting [4,29] also use an instantiation of ΠBasicMult, based on the
above idea. In the sequel, we recall them, followed by the technical challenges
faced in the network agnostic setting and how we deal with them.

ΠBasicMult in the Synchronous Setting with Q(2)(P,Zs) Condition [29]. In
[29], each summand [a]p · [b]q is statically assigned to a designated summand-
sharing party through some deterministic assignment, which is possible since
[a]p and [b]q are held by the parties in (Sp ∩ Sq). This is non-empty, since the
Q(2)(P,Zs) condition holds. Since the parties in GD are already known to be cor-
rupted, all the shares [a]p, [b]p held by the parties in GD are publicly reconstructed
and instead of letting the parties in GD secret-share their assigned summands,
the parties take the “default” secret-sharing of these summands.

ΠBasicMult in the Asynchronous Setting with Q(3)(P,Za) Condition [4].
The idea of statically designating each summand [a]p · [b]q to a unique party in
P \ GD need not work in the asynchronous setting, since the designated party
may be corrupt and need not secret-share any summand, thus resulting in an
endless wait. To deal with this challenge, [4] dynamically selects the summand-
sharing parties for each summand. In more detail, let Za = {Z1, . . . ,Z|Za|} and
SZa

= {S1, . . . ,S|Za|}, where each Sr = P \Zr. Since the Q(3)(P,Za) condition is
satisfied and GD ∈ Za, it follows that (Sp ∩Sq)\GD �= ∅ and there exists at least
one non-faulty party in (Sp ∩ Sq), who can secret-share the summand [a]p · [b]q.
Hence, every party in P \ GD is allowed to secret-share all the summands it is
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“capable” of, with special care taken to ensure that each summand [a]p · [b]q is
considered exactly once. For this, the protocol now proceeds in “hops”, where
in each hop all the parties in P \ GD secret-share all the summands they are
capable of, but a single summand sharing party is finally selected for the hop
through ACS. Then, all the summands which have been shared by the elected
summand-sharing party are “marked” as shared and not considered for sharing
in the future hops. Moreover, a party who has already served as a summand-
sharing party is not selected in the future hops.

Technical Challenges in the Network Agnostic Setting. The asyn-
chronous ΠBasicMult based on dynamically selecting summand-sharing parties will
fail in the synchronous network, since the Q(3) condition need not be satisfied. On
the other hand, synchronous ΠBasicMult based on statically selecting summand-
sharing parties will fail if a designated summand-sharing party does not secret-
share the required summands, resulting in an endless wait. The way out is to
select summand-sharing parties in three phases. We first select summand-sharing
parties dynamically in hops, following the approach of [4], till we find a subset
of parties from SZs

which have shared all the summands they are capable of.
Then in the second phase, the remaining summands which are not yet secret-
shared are statically assigned and shared by the respective designated summand-
sharing parties. To avoid an endless wait in this phase, the parties wait only for a
“fixed” time required for the parties to secret-share the assigned summands (cor-
responding to the time taken in a synchronous network) and run instances of BA
to identify which of the designated summand-sharing parties have shared their
summands up during the second phase. During the third phase, any “leftover”
summand which is not yet shared is publicly reconstructed by reconstructing the
corresponding shares and a default sharing is taken for such summands.

The idea here is the following: all non-faulty parties will share the sum-
mands which are assigned to them, either statically or dynamically, irrespective
of the network type. Consequently, the first phase will be always over, since
the set consisting of only non-faulty parties always constitutes a candidate set
of summand-sharing parties which the parties look for to complete of the first
phase. Once the first phase is over, the second phase is bound to be over since
the parties wait only for a fixed time. The third phase is always bound to be
over, once the first two phases are over, since it involves publicly reconstructing
the leftover summands. The way summands are assigned across the three phases,
it will be always guaranteed that every summand is considered for sharing once
in exactly one of the three phases and no summand will be left out. The cru-
cial point here is that the shares held only by the non-faulty parties never get
publicly reconstructed, thus guaranteeing that the adversary does not learn any
additional information about a and b. This is obviously true in a synchronous
network because we always have the second phase where every non-faulty party
who is not selected as a summand-sharing party during the first phase will get
the opportunity to secret-share its assigned summands. On the other hand, in
an asynchronous network, it can be shown that all the summands which involve
any share held by the non-faulty parties would have been secret-shared during
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the first phase itself. In more detail, let Z� ∈ Za be the set of corrupt parties and
let H = P \Z� be the set of honest parties. Moreover, let Sh ∈ SZs

be the group
consisting of only non-faulty parties which hold the shares [a]h and [b]h. Con-
sider an arbitrary summand [a]h · [b]q. Suppose the first phase gets over because
every party in S� ∈ SZs

has been selected as a summand-sharing party during
the first phase. Then consider the set (S� ∩ H ∩ Sq), which is not empty due to
the Q(2,1)(P,Zs,Za) condition. Hence, there exists some Pj ∈ (H ∩ S� ∩ Sq),
who would have already shared [a]h · [b]q during some hop in the first phase.

1.3 Other Related Works

Almost all the existing works on network agnostic protocols have consid-
ered threshold adversaries. The work of [12] presents a network agnostic
cryptographically-secure atomic broadcast protocol. The work of [33] studies state
machine replication protocols for multiple thresholds, including ts and ta. The
work of [24,25] present network agnostic protocols for the task of approximate
agreement using the condition 2ts + ta < n. The same condition has been used
to design a network agnostic distributed key-generation (DKG) protocol in [6].
A recent work [19] has studied the problem of network agnostic perfectly-secure
message transmission (PSMT) [20] over incomplete graphs.

1.4 Open Problems

It is not known whether the condition 3ts + ta < n (resp. Q(3,1)(P,Zs,Za)) is
necessary for the network agnostic MPC with perfect security against thresh-
old (resp. non-threshold) adversary. The works of [2,3] and this work just focus
on the possibility of unconditionally-secure network agnostic MPC. Upgrading
the efficiency of these protocols to those of state-of-the-art SMPC and AMPC
protocols seems to require a significant research effort. Our MPC protocol when
instantiated for threshold adversaries may require an exponential amount of com-
putation and communication (|Zs| will have all subsets of P of size up to ts).
Hence, designing a network agnostic MPC protocol against threshold adversaries
with statistical security and polynomial complexity is left as a challenging open
problem. It is also interesting to see whether one can design network-agnostic
MPC protocols against general adversaries whose complexity is polynomial in n
(and not |Zs|), for specific types of adversary structures.

1.5 Paper Organization

Due to space constraints, we do not provide the details of our network agnostic
BA protocol (which is based on existing ideas) and circuit evaluation protocol
(which is standard). Also, we skip proofs for the protocols and the impossibility
proof. The details of the missing protocols and formal proofs are available in the
full version of the article [5].
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2 Preliminaries and Definitions

We assume the pair-wise secure channel model, where the parties in P are
assumed to be connected by pair-wise secure channels. The underlying com-
munication network can be either synchronous or asynchronous, with parties
being unaware about the exact network behaviour. If the network behaves syn-
chronously, then every message sent is delivered within a known time Δ. On the
other hand, if the network behaves asynchronously, then messages can be delayed
arbitrarily, but finitely, with every message sent being delivered eventually. The
distrust among P is modelled by a malicious (Byzantine) adversary Adv, who can
corrupt a subset of the parties in P and force them to behave in any arbitrary
fashion during the execution of a protocol. The parties not under the control
of Adv are called honest. We assume the adversary to be static, who decides
the set of corrupt parties at the beginning of the protocol execution. Adver-
sary Adv can corrupt any one subset of parties from Zs and Za in synchronous
and asynchronous network respectively. The adversary structures are monotone,
implying that if Z ∈ Zs (Z ∈ Za resp.), then every subset of Z also belongs to
Zs (resp. Za). We assume that Zs and Za satisfy the conditions Q(2)(P,Zs) and
Q(3)(P,Za) respectively, which are necessary for statistically-secure MPC in the
synchronous and asynchronous network respectively. Additionally, we assume
that Za ⊂ Zs. Moreover, Zs and Za satisfy the Q(2,1)(P,Zs,Za) condition.

In our protocols, all computations are done over a finite field F, where |F| >
n5 ·2ssec and ssec is the underlying statistical security parameter. This will ensure
that the error probability in our MPC protocol is upper bounded by 2−ssec.
Without loss of generality, we assume that each Pi has an input xi ∈ F, and
the parties want to securely compute a function f : Fn → F, represented by an
arithmetic circuit ckt over F, consisting of linear and non-linear (multiplication)
gates, where ckt has cM multiplication gates and a multiplicative depth of DM .

We assume the existence of an unconditionally-secure public-key infrastruc-
ture (PKI), for an unconditionally-secure signature scheme, also called pseudo-
signature [22,35]. We refer to [22] for complete formal details of such a PKI.
We use |σ| to denote the size of a pseudo-signature in bits. As done in [2,4],
for simplicity, we will not be specifying any termination criteria for our sub-
protocols. The parties will keep on participating in these sub-protocol instances
even after computing their outputs. The termination criteria of our MPC proto-
col will ensure the termination of all underlying sub-protocol instances. We will
be using an existing randomized ABA protocol [16] which ensures that the honest
parties (eventually) obtain their respective output almost-surely with probabil-
ity 1. The property of almost-surely obtaining the output carries over to the
“higher” level protocols, where ABA is used as a building block.

3 Network Agnostic Byzantine Agreement

We follow the blueprint of [2,11] to design a network agnostic BA protocol
ΠBA, which satisfies the requirements of BA, both in a synchronous as well as
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asynchronous network. If the network behaves asynchronously, then the (honest)
parties obtain output within time TBA = (t + 33)Δ, where t is the cardinality of
the maximum-sized subset from the adversary structure Zs. On the other hand,
if the network behaves asynchronously, then almost surely, the (honest) parties
eventually get their output.

In the process of designing the protocol ΠBA, we design a special BA protocol
ΠPW, by generalizing the classic Dolev-Strong (DS) BA protocol [21] against non-
threshold adversaries, based on the pseudo-signature setup [35]. We also design
a network agnostic reliable broadcast protocol ΠBC, which allows a designated
sender party Sen to reliably send its message m ∈ {0, 1}� to all the parties. In
the protocol, there exists a designated (local) time TBC = (t + 4)Δ at which all
(honest) parties have an output, such that depending upon the network type
and corruption status of Sen, the output satisfies the following conditions:

– Synchronous Network and Honest Sen: the output is m for all honest parties.
– Synchronous Network and Corrupt Sen: the output is a common m� ∈

{0, 1}� ∪ {⊥} for all honest parties.
– Asynchronous Network and Honest Sen: the output is either m or ⊥ for each

honest party.
– Asynchronous Network and Corrupt Sen: the output is either a common m� ∈

{0, 1}� or ⊥ for each honest party.

Protocol ΠBC also gives the parties who output ⊥ at (local) time TBC an
option to switch their output to some �-bit string if the parties keep running
the protocol beyond time TBC and if certain “conditions” are satisfied for those
parties. We stress that this switching provision is only for those who output ⊥
at time TBC. While this provision is not “useful” and not used while designing
ΠBA, it comes in handy when ΠBC is used to broadcast values in our VSS pro-
tocol. Notice that the output-switching provision will not lead to a violation of
consistency and hence honest parties will not end up with different �-bit out-
puts. Following the terminology of [2], we call the process of computing output
at time TBC and beyond time TBC as the regular mode and fallback mode of ΠBC

respectively.
In the rest of the paper, we say that Pi broadcasts m to mean that Pi invokes

an instance of ΠBC as Sen with input m, and the parties participate in this
instance. Similarly, we say that Pj receives m from the broadcast of Pi through
regular-mode (resp. fallback-mode), to mean that Pj has the output m at (local)
time TBC (resp. after time TBC) during the instance of ΠBC.

For the details of the BA protocol ΠBA and associated sub-protocols, see [5].

4 Network Agnostic Information Checking Protocol

In this section, we present our network agnostic ICP (Fig. 1). The protocol con-
sists of two subprotocols ΠAuth and ΠReveal, implementing the authentication and
revelation phases respectively. The proof of Theorem 1 is available in [5].
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Fig. 1. The network-agnostic ICP
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Theorem 1. Protocols (ΠAuth,ΠReveal) satisfy the following properties, except

with probability at most εICP
def
= nt

|F|−1 , where t = max{|Z| : Z ∈ Zs}.
– If S, I and R are honest, then the following hold.

– Zs-Correctness: In a synchronous network, each honest party sets
authCompleted(S,I,R) to 1 during ΠAuth at time TAuth = Δ+4TBC. Moreover
R outputs s during ΠReveal which takes TReveal = Δ time.

– Za-Correctness: In an asynchronous network, each honest party eventu-
ally sets authCompleted(S,I,R) to 1 during ΠAuth and R eventually outputs
s during ΠReveal.

– Privacy: The view of Adv is independent of s, irrespective of the network.
– Unforgeability: If S,R are honest, I is corrupt and if R outputs s′ ∈ F during

ΠReveal, then s′ = s holds, irrespective of the network type.
– If S is corrupt, I,R are honest and if I sets ICSig(S, I,R, s) = F (x) during

ΠAuth, then the following holds.
– Zs-Non-Repudiation: In a synchronous network, R outputs s = F (0)

during ΠReveal, which takes TReveal = Δ time.
– Za-Non-Repudiation: In an asynchronous network, R eventually out-

puts s = F (0) during ΠReveal.
– Communication Complexity: ΠAuth incurs a communication of O(n5 ·

log |F| · |σ|) bits, while ΠReveal incurs a communication of O(n · log |F|) bits.

We use the following notations while invoking instances of ICP.

Notation 2. (for ICP) While using (ΠAuth,ΠReveal), we say that:

– “Pi gives ICSig(Pi, Pj , Pk, s) to Pj” to mean that Pi acts as S and invokes
an instance of ΠAuth with input s, where Pj and Pk play the role of I and R
respectively.

– “Pj receives ICSig(Pi, Pj , Pk, s) from Pi” to mean that Pj, as I, has set
authCompleted(Pi,Pj ,Pk)

to 1 and ICSig(Pi, Pj , Pk, s) to some t-degree poly-
nomial with s as the constant term during the instance of ΠAuth, where Pi

and Pk play the role of S and R respectively.
– “Pj reveals ICSig(Pi, Pj , Pk, s) to Pk” to mean Pj, as I, invokes an instance

of ΠReveal, with Pi and Pk playing the role of S and R respectively.
– “Pk accepts ICSig(Pi, Pj , Pk, s)” to mean that Pk, as R, outputs s during the

instance of ΠReveal, invoked by Pj as I, with Pi playing the role of S.

Linearity of IC Signature and Default IC Signature. We require the lin-
earity property from ICP when used in our VSS protocols, where there will
be multiple instances of ΠAuth running, involving the same (S, I,R) triplet.
To achieve this, we ensure that in all the ΠAuth instances involving the same
triplet (S, I,R), the signer uses the same non-zero evaluation point αS,I,R,i for
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the verifier Pi, while distributing verification information to Pi, as part of the
respective ΠAuth instances. Similarly, S should find and make public a common
set of supporting verifiers SV, on behalf of all the instances of ΠAuth. Finally, I
should use the same non-zero random linear combiner d, to compute the masked
polynomials for all the instances of ΠAuth and once computed, it should together
make public d and the masked polynomials for all the instances of ΠAuth. We
use the term “parties follow linearity principle while generating IC-signatures”,
to mean that the underlying instances of ΠAuth are invoked as above.

We will also encounter situations where some publicly known value s and
a triplet (S, I,R) exist. Then I can locally compute ICSig(S, I,R, s) by setting
ICSig(S, I,R, s) to the constant polynomial F (x) = s. Each verifier Pi ∈ P locally
sets (αS,I,R,i, vi,mi) as its verification information, where vi = mi = s. Moreover,
the set of supporting verifiers SV is set as P. We use the term “parties set
ICSig(S, I,R, s) to the default value”, to mean the above.

5 Network Agnostic Verifiable Secret Sharing (VSS)

This section presents our network-agnostic VSS protocol ΠVSS, which allows a
designated dealer to generate a linear secret-sharing with IC-signatures (see the
following definition) for its input. For the proof of Theorem 3, see [5].

Definition 1 (Linear Secret Sharing with IC-Signatures). A value s ∈ F

is said to be linearly secret-shared with IC-signatures, if there exist shares
s1, . . . , s|Zs| ∈ F where s = s1 + . . . + s|Zs|. Moreover, for q = 1, . . . , |Zs|, there
exists some publicly-known core-set Wq ⊆ Sq, such that all the following holds.

(a). Zs satisfies the Q(1)(Wq,Zs) condition and all (honest) parties in the
set Sq have the share sq. (b). Every honest Pi ∈ Wq has the IC-signature
ICSig(Pj , Pi, Pk, sq) of every Pj ∈ Wq for every Pk �∈ Sq. Moreover, if any cor-
rupt Pj ∈ Wq has ICSig(Pj , Pi, Pk, s′

q) of any honest Pi ∈ Wq for any Pk �∈ Sq,
then s′

q = sq holds. Furthermore, all the underlying IC-signatures satisfy the
linearity property.

The vector of information corresponding to a linear secret-sharing with IC-
signature of s is denoted by [s].

Theorem 3. Protocol ΠVSS achieves the following, except with a probability of
O(|SZs

| · n2 · εICP), where D has input s ∈ F for ΠVSS and where TVSS = Δ +
TAuth + 2TBC + TReveal.

– If D is honest, then the following hold.
– Zs-correctness: In a synchronous network, the honest parties output [s]

at time TVSS. Za-correctness: In an asynchronous network, the honest
parties eventually output [s]. Privacy: Adversary’s view remains inde-
pendent of s in any network.
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Fig. 2. The network agnostic VSS protocol
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– If D is corrupt, then the following hold.
– Zs-commitment: In a synchronous network, either no honest party com-

putes any output or there exists some s� ∈ F, such that the honest parties
output [s�]. Moreover, if any honest party computes its output at time T ,
then all honest parties compute their required output by time T + Δ.

– Za-commitment: In an asynchronous network, either no honest party
computes any output or there exists some s� ∈ F, such that the honest
parties eventually output [s�].

– Communication Complexity: O(|Zs|·n8·log |F|·|σ|) bits are communicated
by the honest parties.

5.1 Reconstruction and Secure Multicast Protocol

Let s be a value which is linearly secret-shared with IC-signatures and let Sq ∈
SZs

. Moreover, let R ⊆ P be a designated set. Then protocol ΠRecShare([s], Sq,R)
allows all the (honest) parties in R to reconstruct the share [s]q. For this, every
Pi ∈ Wq reveals [s]q to all the parties outside Wq, who are in R (the parties in
Wq who are in R already have [s]q). To ensure that Pi does not cheat, Pi actually
reveals the IC-signature of every party in Wq on the revealed [s]q. The idea here
is that since Wq has at least one honest party (irrespective of the network type),
a potentially corrupt Pi will fail to reveal the signature of an honest party from
Wq on an incorrect [s]q. On the other hand, an honest Pi will be able to reveal
the signature of all the parties in Wq on [s]q.

Based on ΠRecShare, we design another protocol ΠRec([s],R), which allows all
the (honest) parties in R to reconstruct s. The idea is to run an instance of
ΠRecShare for every Sq ∈ SZs

. We refer to [5] for formal details.
Based on protocols ΠVSS and ΠRec, we design a secure verifiable multicast

protocol ΠSVM, which allows a designed sender Sen ∈ P to verifiably and securely
send its input v ∈ F to a designated set of receivers R. The idea behind ΠSVM

is very simple. The parties participate in an instance of ΠVSS, where Sen plays
the role of the dealer with input v. Once any (honest) party computes an output
during ΠVSS (implying that Sen is committed to some value v� which is the same
as v for an honest Sen), then it turns flag(Sen,R) to 1. Once flag(Sen,R) is turned to
1, the parties invoke an instance of ΠRec to let only the parties in R reconstruct
the committed value. We refer to [5] for the details.

6 Network Agnostic Protocol for Generating Linearly
Secret-Shared Random Values with IC-Signatures

In this section, we present a network agnostic protocol ΠRand, which allows
the parties to jointly generate linear secret-sharing of random values with IC-
signatures. To design the protocol ΠRand, we first design a subprotocol ΠMDVSS.
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6.1 Network Agnostic VSS for Multiple Dealers

Protocol ΠMDVSS (Fig. 3) is a multi-dealer VSS. In the protocol, each party
P� ∈ P participates as a dealer with some input s(�). Then, irrespective of the
network type, the protocol outputs a common subset of dealers CORE ⊆ P, which
is guaranteed to have at least one honest dealer. Moreover, corresponding to every
dealer P� ∈ CORE, there will be some value, say s�(�), which will be the same
as s(�) for an honest P�, such that the values {s�(�)}P�∈CORE are linearly secret-
shared with IC-signatures. While in a synchronous network, {[s�(�)]}P�∈CORE is
generated after a “fixed” time, in an asynchronous network, {[s�(�)]}P�∈CORE

is generated eventually. The high level overview of ΠMDVSS has been already
discussed in detail in Sect. 1.2.5.1 The proof of Theorem 4 is available in [5].

Theorem 4. Protocol ΠMDVSS achieves the following where each P� participates
with input s(�) and where TMDVSS = TSVM + TAuth + 2TBC + 6TBA.

– Zs-Correctness & Commitment: If the network is synchronous, then
except with probability O(n3 · εICP), at time TMDVSS, all honest parties output
a common set CORE ⊆ P such that at least one honest party will be present
in CORE. Moreover, corresponding to every P� ∈ CORE, there exists some
s�(�), where s�(�) = s(�) for an honest P�, such that the values {s�(�)}P�∈CORE

are linearly secret-shared with IC-signatures.
– Za-Correctness & Commitment: If the network is asynchronous, then

except with probability O(n3 · εICP), almost-surely all honest parties output a
common set CORE ⊆ P eventually such that at least one honest party will
be present in CORE. Moreover, corresponding to every P� ∈ CORE, there
exists some s�(�), where s�(�) = s(�) for an honest P�, such that the values
{s�(�)}P�∈CORE are eventually linearly secret-shared with IC-signatures.

– Privacy: Irrespective of the network type, the view of the adversary remains
independent of s(�), corresponding to every honest P� ∈ CORE.

– Communication Complexity: O(|Zs|2 · n9 · log |F| · |σ|) bits are communi-
cated by the honest parties and O(|Zs| + n) instances of ΠBA are invoked.

6.2 Protocol for Generating Secret-Shared Random Values

Protocol ΠRand is presented in Fig. 4. We will refer to the core sets W1, . . . ,W|Zs|
obtained during ΠRand as global core-sets and denote them by GW1, . . . ,GW |Zs|.
From now onwards, all the secret-shared values will be generated with respect
to these global core-sets. For the proof of Theorem 5, see [5].

1 Actually, the overview was for ΠRand, but the same idea is also used in ΠMDVSS.
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Fig. 3. The statistically-secure VSS protocol for multiple dealers to generate linearly
secret-shared values with IC-signatures
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Fig. 3. (continued)
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Fig. 4. Protocol for generating linearly secret-shared random values with IC-signatures

Theorem 5. Protocol ΠRand achieves the following where TRand = TMDVSS =
TSVM + TAuth + 2TBC + 6TBA and L ≥ 1.

– Zs-correctness: If the network is synchronous, then except with prob-
ability O(n3 · εICP), at the time TRand, there exist values r(1), . . . , r(L),
which are linearly secret-shared with IC-signatures, where the core-sets are
GW1, . . . ,GW |Zs|.

– Za-correctness: If the network is asynchronous, then except with probability
O(n3 · εICP), there exist values r(1), . . . , r(L), which are almost-surely linearly
secret-shared with IC-signatures, where the core-sets are GW1, . . . ,GW |Zs|.

– Privacy: Irrespective of the network type, the view of the adversary remains
independent of r(1), . . . , r(L).

– Communication Complexity: The protocol incurs a communication of
O(|Zs|2 · L · n9 · log |F| · |σ|) bits, apart from O(|Zs| + n) instances of ΠBA.

7 Network Agnostic Protocol for Triple Generation

In this section, we present our network-agnostic triple-generation protocol, which
generates random and private multiplication-triples which are linearly secret-
shared with IC-signatures. The protocol is based on several sub-protocols which
we present next. Throughout this section, we will assume the existence of global
core-sets GW1, . . . ,GW |Zs|, where Zs satisfies the Q(1)(GWq,Zs) condition for
q = 1, . . . , |Zs|. Looking ahead, these core-sets will be generated by first running
the protocol ΠRand, using an appropriate value of L, which is determined across
all the sub-protocols which we will be discussing next. All the secret-shared
values in the various sub-protocols have GW1, . . . ,GW |Zs| as core-sets.
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7.1 Generating Linear Secret Sharing of a Value with IC-Signatures

In protocol ΠLSh, there exists a designated dealer D ∈ P with private input s. In
addition, there is a random value r ∈ F, which is linearly secret-shared with IC-
signatures, such that the underlying core-sets are GW1, . . . ,GW |Zs| (the value r
will not be known to D at the beginning of the protocol). The protocol allows the
parties to let D verifiably generate a linear secret-sharing of s with IC-signatures,
such that the underlying core-sets are GW1, . . . ,GW |Zs|, where s remains private
for an honest D. The protocol idea is very simple. We first let D reconstruct the
value r, which is then used as a one-time pad (OTP) by D to make public an
OTP-encryption of s. Then, using the linearity property of secret-sharing, the
parties locally remove the OTP from the OTP-encryption; see [5] for the details.

We will say that “Pi invokes an instance of ΠLSh with input s” to mean that Pi

acts as D and invokes an instance ΠLSh(D, s,Zs,Za,SZs
, [r],GW1, . . . ,GW |Zs|)

of ΠLSh. Here, r will be the corresponding random “pad” for this instance
of ΠLSh, which will already be linearly secret-shared with IC-signatures, with
GW1, . . . ,GW |Zs| being the underlying core-sets.

7.2 Non-robust Multiplication Protocol

Protocol ΠBasicMult (Fig. 5) takes input a and b, which are linearly secret-shared
with IC-signatures, with GW1, . . . ,GW |Zs| being the underlying core-sets and a
publicly known subset GD ⊂ P, consisting of only corrupt parties. The parties
output a linear secret-sharing of c with IC-signatures, with GW1, . . . ,GW |Zs|
being the underlying core-sets. If all the parties in P \GD behave honestly, then
c = a · b, else c = a · b + δ, where δ �= 0. Moreover, the adversary does not learn
anything additional about a and b in the protocol. The protocol also takes input
an iteration number iter and all the sets computed in the protocol are tagged
with iter. Looking ahead, our robust triple-generation protocol will be executed
iteratively, with each iteration invoking instances of ΠBasicMult.

The properties of the protocol ΠBasicMult are formally proved in [5].
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Fig. 5. Network-agnostic non-robust multiplication protocol
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Fig. 5. (continued)

7.3 Random Triple Generation with Cheater Identification

The network-agnostic protocol ΠRandMultCI takes an iteration number iter and a
publicly known subset of parties GD, who are guaranteed to be corrupt. If all the
parties in P \ GD behave honestly, then the protocol outputs a random linearly
secret-shared multiplication-triple with IC-signatures, with GW1, . . . ,GW |Zs|
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being the underlying core sets. Otherwise, with a high probability, the honest
parties identify a new corrupt party, which is added to GD.

Protocol ΠRandMultCI is based on [29] and consists of two stages: during the first
stage, the parties jointly generate a pair of random values, which are linearly
secret-shared with IC-signatures, with GW1, . . . ,GW |Zs| being the underlying
core sets. During the second stage, the parties run an instance of ΠBasicMult

to compute the product of the pair of secret-shared random values from the
first stage. To check whether any cheating has occurred during the instance
of ΠBasicMult, the parties then run a probabilistic test, namely the “sacrificing
trick”, for which the parties need additional secret-shared random values, which
are generated during the first stage itself. We refer to [5] for the details.

7.4 The Multiplication-Triple Generation Protocol

The triple generation protocol ΠTripGen is based on [29]. The parties iteratively
run instances of ΠRandMultCI, till they hit upon an instance when no cheating is
detected. Corresponding to each “failed” instance of ΠRandMultCI, the parties keep
updating the set GD. Since after each failed instance the set GD is updated with
one new corrupt party, there will be at most (t + 1) iterations, where t is the
cardinality of the largest-sized subset in Zs. We refer to [5] for the details.
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Abstract. Solitary output secure computation models scenarios, where
a single entity wishes to compute a function over an input that is dis-
tributed among several mutually distrusting parties. The computation
should guarantee some security properties, such as correctness, privacy,
and guaranteed output delivery. Full security captures all these proper-
ties together. This setting is becoming very important, as it is relevant
to many real-world scenarios, such as service providers wishing to learn
some statistics on the private data of their users.

In this paper, we study full security for solitary output three-party
functionalities in the point-to-point model (without broadcast) assum-
ing at most a single party is corrupted. We give a characterization of
the set of three-party Boolean functionalities and functionalities with up
to three possible outputs (over a polynomial-size domain) that are com-
putable with full security in the point-to-point model against a single
corrupted party. We also characterize the set of three-party functional-
ities (over a polynomial-size domain) where the output receiving party
has no input. Using this characterization, we identify the set of param-
eters that allow certain functionalities related to private set intersection
to be securely computable in this model. Our characterization in partic-
ular implies that, even in the solitary output setting, without broadcast
not many “interesting” three-party functionalities can be computed with
full security.

Our main technical contribution is a reinterpretation of the hexagon
argument due to Fischer et al. [Distributed Computing ’86]. While the
original argument relies on the agreement property (i.e., all parties out-
put the same value) to construct an attack, we extend the argument to
the solitary output setting, where there is no agreement. Furthermore,
using our techniques, we were also able to advance our understanding
of the set of solitary output three-party functionalities that can be com-
puted with full security, assuming broadcast but where two parties may
be corrupted. Specifically, we extend the set of such functionalities that
were known to be computable, due to Halevi et al. [TCC ’19].
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1 Introduction

Solitary output secure computation [24] allows a single entity to compute a func-
tion over an input that is distributed among several parties, while guaranteeing
security. The two most basic security properties are correctness and privacy.
However, in many scenarios, participating parties may also desire the output
receiving party to always receive an output (also known as guaranteed output
delivery or full security).1 Examples include service providers that want to per-
form some analysis over their client’s data, federal regulatory agencies wishing
to detect fraudulent users/transactions among banks, researchers looking to col-
lect statistics from users, or a government security agency wishing to detect
widespread intrusions on different high-value state agencies. In cryptography,
solitary output functionalities have been considered in privacy-preserving feder-
ated learning [9,11,12], and in designing minimal communication protocols via
Private Simultaneous Messages Protocols [18] and its robust variant [1,8].

Understanding solitary output computations is also of great theoretical value,
as it serves as an important and non-trivial special case of secure multiparty
computation (MPC). Indeed, [24] initiated the investigation of solitary output
computations as a step towards better understanding full security in the general
MPC setting. In the late 1980’s, it was shown that every function (even non-
solitary output) can be computed with full security in the presence of malicious
adversaries assuming that a strict minority of the parties are corrupted, and
assuming the existence of a broadcast communication channel (such a channel
allows any party to reliably send the same message to all other parties) and pair-
wise private channels (which can be established over broadcast using standard
cryptographic techniques) [10,21,28].

Conversely, it has been shown that if either a broadcast channel or an honest
majority is not assumed, then fully-secure MPC is not possible in general. In the
no honest majority setting, most impossibility results, starting with the seminal
work of Cleve [13], rely on the impossibility of achieving fairness (requiring that
either all parties receive the output or none do) [5,26]. In the no-broadcast set-
ting, most impossibility results rely on the impossibility of achieving agreement
(requiring that all parties agree on the same output) [19].

Interestingly, both fairness and agreement are not required in solitary output
computations, and thus, cannot be used for proving impossibility results for this
setting. Nevertheless, using techniques from the fairness literature (although not
using fairness per se) Halevi et al. [24] presented a class of solitary output func-
tionalities that cannot be computed with full security assuming the majority
of the parties are corrupted (even assuming a broadcast channel). On the other
1 Formally, full security is defined via the real vs. ideal paradigm, where a (real-world)

protocol is required to emulate an ideal setting, in which the adversary is limited to
selecting inputs for the corrupted parties and receiving their outputs.
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hand, [3,20] presented several examples of three-party solitary output functional-
ities that cannot be securely computed without a broadcast channel, even when
only a single party may be corrupted. Interestingly, the impossibility results
of [3] were based on techniques that originally relied on agreement, again, with-
out assuming agreement. However, beside these handful of examples, no general
class of solitary output functions was identified to be impossible for fully secure
computation without broadcast. This raises the question of identifying the set of
functions that can be computed with full security assuming either the availability
of a broadcast channel but no honest majority, or vice versa.

In this paper, we investigate the above question for the important, yet already
challenging, three-party case. Thus, we aim to study the following question:

Characterize the set of solitary output three-party functionalities that can
be computed with full security, assuming either a broadcast channel and two
corrupted parties, or assuming no broadcast channel and a single corrupted
party.

1.1 Our Contributions

Our main technical contribution is a reinterpretation of the hexagon argument
due to Fischer et al. [19]. This argument (and its generalization, known as the
ring argument [15]) uses the agreement property (i.e., that all parties obtain
the same output) in order to derive an attack on a given three-party protocol,
assuming there is no broadcast channel available. As mentioned above, since we
consider solitary output functionalities, where only one party receives the output,
we cannot rely on agreement. Thus, we cannot use this technique in a straight-
forward manner. Instead, we derive an attack by leveraging the correlation in
the views between the parties.

A Characterization of Interesting Families of Function. Given this new interpre-
tation, we are able to identify a large class of three-party solitary output func-
tionalities that cannot be computed without a broadcast channel. Furthermore,
we complement this negative result by showing a non-trivial class of solitary out-
put functionalities that can be computed in this setting. Interestingly, for several
important classes of functionalities, our results provide a complete characteri-
zation of which solitary output three-party functionality can be computed with
full security. Examples include Boolean and even ternary-output functionalities
over a domain of polynomial size.

We next describe our positive and negative results, starting with the model
where a broadcast channel is not available and only a single party may be cor-
rupted. We consider three-party solitary output functionalities f : X × Y × Z →
W, where the first party A holds an input x ∈ X , the second party B holds an
input y ∈ Y, and the third party C holds an input z ∈ Z. We let the output
receiving party be A. To simplify the presentation, we will limit the follow-
ing discussion to two families of functionalities, for which our results admit a
characterization (a formal statement of the results for a more general class of
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functionalities appears in Sect. 3). Though this discussion is limited compared
to the rest of the paper, all of our techniques and ideas are already present.

The first family we characterize is that of no-input output-receiving party
(NIORP) functionalities, where the output-receiving party A has no input. We
further showcase the usefulness of the result by characterizing which parame-
ters allow for secure computation of various functionalities related to private
set intersection. The second family we characterize is the set of ternary-output
functionalities, where the output of A is one of three values (with A possibly
holding an input). In particular, this yields a characterization of Boolean func-
tionalities. Below are the informal statements of the characterizations for deter-
ministic functionalities. We handle randomized functionalities by a reduction to
the deterministic case (see Proposition 1 below).

Functionalities with No Input for the Output-receiving Party (NIORP). Before
stating the theorem, we define a special partitioning of the inputs of B and C.
The partition is derived from an equivalence relation, which we call common
output relation (CORE), hence, we call the partition the CORE partition. To
obtain some intuition for the definition, consider the matrix M associated with
a NIORP functionality f , defined as M(y, z) = f(y, z) for all y ∈ Y and z ∈ Z.2

Before defining the equivalence relation, consider the following relation ∼.
We say that two inputs y, y′ ∈ Y satisfy y ∼ y′ if the rows M(y, ·) and M(y′, ·)
contain a common output. Note that this relation is not transitive. The equiva-
lence relation we define is the transitive closure of ∼, i.e., y and y′ are equivalent
if there exists a sequence of inputs starting at y and ending at y′ such that every
consecutive pair satisfy ∼. Formally, we define the relation as follows.

Definition 1 (CORE partition). Let f : {λ}×Y ×Z → W be a deterministic
solitary output three-party NIORP functionality. For inputs y, y′ ∈ Y, we say
that y ∼ y′ if and only if there exist (possibly equal) z, z′ ∈ Z such that f(y, z) =
f(y′, z′). We define the equivalence relation ≡rel to be the transitive closure of ∼.
That is, y ≡rel y′ if and only if either y ∼ y′ or there exist a sequence of inputs
y1, . . . , yk ∈ Y such that

y ∼ y1 ∼ . . . ∼ yk ∼ y′.

We partition the set of inputs Y according to the equivalence classes of ≡rel, and
we write the partition as Y = {Yi : i ∈ [n]}. We partition Z into disjoint sets
Z = {Zj : j ∈ [m]} similarly. We also abuse notation and use the relations ∼
and ≡rel over Z as well. We refer to these partitions as the CORE partitions
of Y and Z, respectively, with respect to f . When Y, Z, and f are clear from
context, we will simply refer to the partitions as CORE partitions.

Observe that given a function f , finding its CORE partition can be done in
time that is polynomial in the domain size. As an example, consider the follow-
ing NIORP solitary output three-party functionality whose associated matrix is
2 We abuse notations and write f(y, z) instead of f(λ, y, z) where λ is the empty string

(which is the input of A).
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given by
(

0 1 2
1 3 4
3 4 5

)
. Here, the CORE partitions of both the rows and the columns

result in the trivial partition, i.e., all rows are equivalent and all columns are
equivalent. To see this, note that both the first and second rows contain the
output 1. Therefore they satisfy the relation ∼. Similarly, the second and last
row satisfy ∼ since 3 (and 4) are a common output. Thus, the first and last
rows are equivalent (though they do not satisfy the relation ∼). Using a similar
reasoning, one can verify that all columns are also equivalent.

We are now ready to state our characterization for NIORP functionalities.

Theorem 1 (Characterization of NIORP functionalities, informal).
Let f : {λ} × Y × Z → W be a deterministic solitary output three-party NIORP
functionality, and let Y = {Yi : i ∈ [n]} and Z = {Zj : j ∈ [m]} be the CORE
partitions of Y and Z, respectively. Then, f can be securely computed against
a single corruption in the point-to-point model, if and only if there exist two
families of distributions {Qi}i∈[n] and {Rj}j∈[m], such that the following holds.
For all i ∈ [n], j ∈ [m], y ∈ Yi, and z ∈ Zj, it holds that f(y∗, z) where y∗ ← Qi,
and that f(y, z∗) where z∗ ← Rj, are computationally indistinguishable.

Stated differently, consider the partition of Y × Z into combinatorial rectan-
gles3 defined by R = {Yi × Zj : i ∈ [n], j ∈ [m]}, i.e., it is given by all Cartesian
products of CORE partitions. Then f can be securely computed if and only if
both B and C can each associate a distribution to each set in the partition of
their respective set of inputs, such that the output distribution in each combina-
torial rectangle in R looks fixed for any bounded algorithm. That is, if B samples
an input y ← Qi for some i ∈ [n], then the only way for C to affect the output
of f is by choosing its own equivalence class Z ∈ Z, however, choosing a specific
input within that class will not change the output distribution.

We briefly describe a few classes of functions that are captured by Theorem
1. Observe that any functionality, where there exists a value w ∈ W such that
any single party (among B and C) can fix the output of A to be w, regardless of
the other party’s input, can be securely computed by the above theorem. This
includes functionalities such as OR of y and z.4 In fact, even if there exists a
distribution D over W, such that any single party among B and C can fix the
output of A to be distributed according to D, can be securely computed. For
example, this means that XOR and equality can be securely computed. Theorem
1 essentially refines the latter family of functionalities, by requiring the parties
to be able to fix the distributions with respect to the combinatorial rectangles
given by the CORE partitions.

In Table 1, we illustrate the usefulness of Theorem 1 by considering vari-
ous functionalities (which were also considered by [24]) related to private set
intersection (PSI), and mark whether each variant can be computed with full

3 A combinatorial rectangle is subset R ⊆ Y × Z that can be written as R = S × T
where S ⊆ Y and T ⊆ Z.

4 A similar condition was given by [15] for the symmetric case, where all parties output
the same value. There, every party must be able to fix the output to be w.
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security. Define the NIORP functionality PSI�1,�2
k1,k2,m to output to A the inter-

section of S1 and S2, held by B and C, respectively. Here, Si ⊆ {1, . . . , m} and
ki ≤ |Si| ≤ �i for every i ∈ {1, 2}. The variants we consider are those that apply
some function g over the output of A, i.e., the functionality the parties compute
is g(PSI�1,�2

k1,k2,m(S1, S2)). The proofs for which parameters allow each function to
be computed are given in the full version of the paper [2]. It is important to
note that the domains of the functionalities are constant as otherwise some of
the claims are provably false (e.g., [3] implicitly showed that PSI1,1

1,1,κ, where κ is
the security parameter, can be securely computed).

Table 1. Summary of our results stated for various versions of the PSI functionality.
Each row in the table above corresponds to a different choice of parameters. Each
column corresponds to a different function g applied to the output of A. B holds set
S1 and C hold set S1. We let S = S1 ∩ S2. The parameters k1, k2, �1, �2 correspond to
bounds on the sizes of S1 and S2, and m is the size of the universe from which S1 and
S2 are taken.

Input restriction\Function g g(S) = S g(S) = |S| g(S) =
{

1 if S = ∅
0 otherwise

k1 = k2 = 0, or
�1 = 0, or �2 = 0, or
k1 = m, or k2 = m

✓ ✓ ✓

k1 = �1 /∈ {0, m} and
k2 = �2 /∈ {0, m}

✗ ✓ ✓

0 < k1 < �1,
0 < k2 < �2, and
�1 + k2, k1 + �2 > m

✗ ✗ ✓

Any other choice ✗ ✗ ✗

Ternary-output Functionalities. We next give our characterization for ternary-
output functionalities. In this setting, party A also has an input, and its output
is a value in {0, 1, 2}. We stress that this case is far more involved than the
NIORP case, in both the analysis and in the description of the characterization.
Nevertheless, we later demonstrate the usefulness of this characterization.

Similarly to the NIORP case, we consider partitions over the inputs of B
and C. Here, however, each input x ∈ X is associated with a different CORE
partition. For the characterization, we are interested in the meet of all such
partitions. Intuitively, the meet of partitions of a is the partition given by using
all partitions together. Formally, for partitions P1, . . . ,Pn over a set S, their
meet is defined as the collection of all non-empty intersections, i.e.,

n∧
i=1

Pi :=
{

T ⊆ S : T 	= ∅, ∃T1 ∈ P1, . . . , Tn ∈ Pn s.t. T =
n⋂

i=1
Ti

}
.

Before stating the theorem, we formalize the meet of the CORE partitions,
which we call CORE∧-partition, for a given solitary output functionality.
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Definition 2 (CORE∧-partition). Let f : X × Y × Z → {0, 1, 2} be a deter-
ministic solitary output three-party ternary-output functionality. For every x ∈
X , we can view f(x, ·, ·) as a NIORP functionality, and consider the same CORE
partition as in Definition 1. We denote these partitions by Yx = {Yx

i : i ∈ [n(x)]}
and Zx = {Zx

j : j ∈ [m(x)]}. We define the CORE∧-partitions of f as the meet
of its CORE partitions, that is, we let Y∧ =

∧
x∈X Yx and Z∧ =

∧
x∈X Zx.

We denote their sizes as n∧ = |Y∧| and m∧ = |Z∧|, and we write them as
Y∧ = {Y∧

i : i ∈ [n∧]} and Z∧ = {Z∧
j : j ∈ [m∧]}.

As an example, consider the deterministic variant of the convergecast func-
tionality [20], CC : ({0, 1})3 → {0, 1} defined as5

CC(x, y, z) =
{

y if x = 0
z otherwise

(1)

Equivalently, CC can be defined by the two matrices M0 = ( 0 0
1 1 ) and M1 = ( 0 1

0 1 ).
Here, A chooses a matrix, B chooses a row, and C chooses a column. The output
of A is the value written in the chosen entry. Observe that in M0, the rows
are not equivalent while the columns are. In M1, however, the converse holds,
namely, the rows are equivalent while the columns are not. Thus, in the CORE∧-
partitions of CC any two inputs are in different sets.

We are now ready to state our characterization for ternary-output functions.

Theorem 2 (Characterization of ternary-output functionalities, infor-
mal). Let f : X × Y × Z → {0, 1, 2} be a deterministic solitary output
three-party ternary-output functionality, and let Y∧ = {Y∧

i : i ∈ [n∧]} and
Z∧ = {Z∧

j : j ∈ [m∧]} be its CORE∧-partitions. Then f can be securely com-
puted against a single corruption in the point-to-point model, if and only if the
following hold.

1. Either Yx = {Y} for all x ∈ X , or Zx = {Z} for all x ∈ X . In other words,
either all y ∈ Y are equivalent for every x ∈ X , or all z ∈ Z are equivalent
for every x ∈ X .

2. There exists an algorithm S, and there exist three families of distributions
{Px}x∈X , {Qi}i∈[n∧], and {Rj}j∈[m∧], such that the following holds. For all
i ∈ [n∧], j ∈ [m∧], y ∈ Y∧

i , z ∈ Z∧
j , and x ∈ X , it holds that

S(x, x∗, f(x∗, y, z)), that f(x, y∗, z), and that f(x, y, z∗),

are computationally indistinguishable from each other, where x∗ ← Px, where
y∗ ← Qi, and where z∗ ← Rj.

In fact, the positive direction holds even for functionalities that are not ternary-
output.
5 Fitzi et al. [20] defined the convergecast functionality as the NIORP randomized

solitary output functionality, where A outputs y with probability 1/2, and outputs
z with probability 1/2.
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At first sight, it might seem that the characterization is hard to use since it
requires the existence of an algorithm S, which in spirit seems like a simulator for
a corrupt A. However, note that we only require S to output what would become
the output of (an honest) A, and not the entire view of an arbitrary adversary.
Arguably, determining whether such an algorithm exists is much simpler than
determining whether there exists a simulator for some adversary interacting in
some protocol.

We next give two examples for using Theorem 2. As a first example, con-
sider the deterministic convergecast functionality CC. Observe that it does not
satisfy Item 1 since Y0 	= {Y} and Z1 	= {Z}. Therefore it cannot be securely
computed. To exemplify Item 2 of Theorem 2, consider the maximum function
Max : {0, 1, 2}3 → {0, 1, 2}. Similarly to CC, it can be defined by the three
matrices M0 =

(
0 1 2
1 1 2
2 2 2

)
, M1 =

(
1 1 2
1 1 2
2 2 2

)
, and M2 =

(
2 2 2
2 2 2
2 2 2

)
, where A chooses a

matrix, B chooses a row, and C chooses a column. The output of A is the value
written in the chosen entry. Clearly, any two y’s are equivalent, and any two z’s
are equivalent as well, for all x ∈ {0, 1, 2}. Therefore, Item 1 holds. As for Item
2, we let Q1 and R1 output 2 with probability 1 (recall that n∧ = m∧ = 1).
Additionally, we let S ignore its inputs and output 2 with probability 1. It follows
that Item 2 holds. Thus, Max can be securely computed. In fact, as the posi-
tive direction of Theorem 2 holds for functions that are not ternary-output, the
same argument can be made when Max has a domain that is arbitrarily large,
i.e., Max : {1, . . . , m}3 → {1, . . . , m} for some natural m.

Randomized Functionalities. So far, we have only dealt with deterministic func-
tionalities. To handle the randomized case, we show how to reduce it to the
deterministic case. That is, for any randomized solitary output three-party func-
tionality f , we define a deterministic solitary output three-party functionality f ′,
such that f can be securely computed if and only if f ′ can be securely computed.

Proposition 1 (Reducing randomized functionalities to deterministic
functionalities, informal). Let f : X × Y × Z → W be a (randomized)
solitary output three-party functionality, and let R denote the domain of its
randomness. Define the deterministic solitary output three-party functionality
f ′ : (X × R) × (Y × R) × (Z × R) → W as

f ′((x, r1), (y, r2), (z, r3)) = f(x, y, z; r1 + r2 + r3),

where addition is done over R when viewed as an additive group. That is, the
parties receive a share of the randomness in a 3-out-of-3 secret sharing scheme.
Then f can be securely computed if and only if f ′ can be securely computed.

A New Possibility Result for the With-broadcast Model. Somewhat surprisingly,
we are able to show that all functionalities captured by our positive results, can
also be securely computed in the face of a dishonest majority (where two parties
may be corrupted), assuming a broadcast channel is available. In particular,
any solitary output three-party ternary-output functionality and any NIORP
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functionality that can be securely computed without broadcast against a single
corruption, can be securely computed with broadcast against two corruptions
(in fact, our constructions capture a slightly larger class of functionalities).

We do not know if this is a part of a more general phenomenon (i.e., if
the ability to compute a functionality without a broadcast channel against a
single corruption implies the ability to compute it with a broadcast channel
against two corruptions) and we leave it as an interesting open question. Still,
our results do slightly improve the positive results of [24] (see [24, Theorem
4.4]). Indeed, consider the NIORP functionality fspecial : {λ} × ({0, 1, 2, 3})2 →
{0, . . . , 7} defined by the matrix

⎛
⎜⎜⎝

0 1 2 3
1 0 3 2
4 5 6 7
5 4 7 6

⎞
⎟⎟⎠ (2)

However, we show that the converse is false, i.e., there exists a solitary output
NIORP Boolean three-party functionality that can be securely computed with
broadcast against two corruptions, yet it cannot be securely computed without
broadcast against a single corruption. As an example, consider the following
solitary output three-party variant of the GHKL functionality,6 denoted soGHKL,
defined by the matrix

⎛
⎝

0 1
1 0
1 1

⎞
⎠ (3)

where B chooses a row, C chooses a column, and the output of A is the value
written in the chosen entry. Observe that soGHKL is a NIORP functionality that
does not satisfy the necessary conditions given by Theorem 1. Thus, it cannot
be securely computed in the point-to-point model. On the other hand, Halevi
et al. [24] showed that soGHKL can be computed assuming a broadcast channel.7
The constructions we use to prove our results use standard techniques. Due to
space limitations, we provide them in the full version of the paper.

In Table 2 below, we present several examples of three-party functionalities
and compare their status assuming no broadcast channel and one corruption, to
the case where such a channel is available with two possible corruptions.

1.2 Our Techniques

We now turn to describe our techniques. In Sect. 1.2.1 we handle NIORP func-
tionalities. Then, in Sect. 1.2.2 we handle ternary-output functionalities. To sim-
plify the proofs in this introduction, we only consider perfect security and func-
tionalities with finite domain and range.
6 Gordon et al. [23] showed that the symmetric two-party variant of this functionality

can be computed with full security.
7 In fact, [24] gave three different protocols for computing soGHKL securely.
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Table 2. Comparing the landscape of functionalities that can be computed without
broadcast but with an honest majority, to functionalities that can be computed with
broadcast but no honest majority. All functions above have a constant domain. It is
important that the domain of EQ does not include 0.

Function\Model Without broadcast (honest majority) With broadcast (no honest majority)
CC(x, y, z) (see Eq. 1) ✗ Theorem 2 ✓ [24]
soGHKL(y, z) (see Eq. 3) ✗ Theorem 2 ✓ [24]
Max(x, y, z) ✓ Theorem 2 ✓ [24]

EQ(y, z) =
{

y if y = z

0 otherwise
✗ Theorem 2 ✗ [24]

fspecial (see Eq. 2) ✓ Theorem 2 ✓ Theorem 2

1.2.1 Characterizing NIORP Functionalities
We start with the negative direction of Theorem 1. Our argument is split into
two parts. In the first part, we adapt the hexagon argument, due to Fischer
et al. [19], to the MPC setting. Roughly, for every secure three-party protocol
we attribute six distributions, all of which are identically distributed by the
perfect security of the protocol. The second part of the proof is dedicated to the
analysis of these six distributions, resulting in necessary conditions for perfect
security.

The Hexagon Argument for NIORP Functionalities. In the following, let f be
a solitary output three-party NIORP functionality (no input for the output
receiving party), and let π be a three-party protocol computing f securely over
point-to-point channels, tolerating a single corrupted party. At a high level, the
hexagon argument is as follows.

1. First, we construct a new six-party protocol π′. This is the same hexagon
protocol from [19] (see below for a formal definition).

2. Then, we consider six different semi-honest adversaries for π′ corrupting four
parties, and observe that each of them can be emulated by a malicious adver-
sary in the original three-party protocol π. In more detail, for each of the
semi-honest adversaries we consider for π′, we show there exists a malicious
adversary corrupting a single party in π satisfying the following: The tran-
script between the two honest parties and the transcript between each honest
party and the adversary, are identically distributed in both protocols. We
stress that π′ is not secure, but rather any attacker for it can be emulated by
an attacker for the three-party protocol π.

3. Observe that as the adversaries for π′ are semi-honest, the view of each party
(both corrupted and honest) is identically distributed across all six scenarios.

4. We then translate the above observation to π using the fact that each of the
semi-honest adversaries for π′ can be emulated in π. Thus, we obtain a certain
correlation between the six malicious adversaries for π.

5. By the assumed security of π, each of the malicious adversaries can be simu-
lated in the ideal world of f . Therefore, we can translate the correlation from
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the previous step to the ideal world, and obtain a necessary property f has to
satisfy. This results in six distributions with differing definitions, all of which
are identically distributed. Looking ahead, the second part of our argument
is dedicated to analyzing these distributions.

We next provide a more formal argument. Consider the following six-party
protocol π′. For each party P ∈ {A,B,C} in π we have two copies P and P′ in
π′, both use the same code as an honest P does in π. Furthermore, the parties
are connected via the following undirected cycle graph: (1) A is connected to B
and C, (2) A′ is connected to B′ and C′, (3) B is also connected to C′, and (4) C
is also connected to B′. See Fig. 1 below for a pictorial definition (alongside the
definition of adversarial scenarios). Finally, we let B, B′, C, and C′ hold inputs
y, y′, z, and z′, respectively.

Now, consider the following 6 attack-scenarios for the six-party protocol,
where in each scenario a semi-honest adversary corrupts four adjacent parties,
as depicted in Fig. 1. Observe that each attacker can be emulated in the original
three-party protocol π, by a malicious adversary emulating the corresponding
four parties in its head. For example, in Scenario 1a, an adversary in π can
emulate the attack by corrupting C, and emulating in its head two virtual copies
of C, a copy of A, and a copy B.

We now focus on party A in the six-party protocol. First, note that in Sce-
narios 1a and 1b, where A is honest, its output is identically distributed8 since
the adversaries are semi-honest. Second, in the other four scenarios, where A is
corrupted, the adversary’s view contains the same view that an honest A has in
an honest execution of π′. Therefore, it can compute an output with an identical
distribution to the output distribution an honest A has in Scenarios 1a and 1b.

Next, we use the fact that the six semi-honest adversaries in π′ can be emu-
lated by malicious adversaries in π. We obtain that there exists a distribution
D (that depends on all inputs y, y′, z, and z′ in the six-party protocol) over the
set of possible outputs of A, such that the following hold.

Scenarios 1 and 2: There exist two malicious adversaries for π, one corrupt-
ing C and holding (y′, z, z′), and one corrupting B and
holding (y, y′, z′), such that the output of A in both sce-
narios is distributed according to D.

8 Note that even though f is assumed to be deterministic, it is not guaranteed that
the output of an honest A is a fixed value even when interacting with a semi-honest
adversary. This is due to the fact that the semi-honest adversaries are emulated in
the three-party protocol using malicious adversaries.
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Fig. 1. The six adversaries in the hexagon argument. The shaded yellow areas in each
scenario correspond to the (virtual) parties the adversary controls. (Color figure online)

Scenarios 4 and 5: There exist two malicious adversaries for π, one corrupt-
ing C and holding (y, z, z′), and one corrupting B and
holding (y, y′, z), both of which can generate a sample
from D at the end of the execution.

Scenarios 3 and 6: There exist two malicious adversaries for π, both cor-
rupting A, where one is holding (y, z′) and the other is
holding (y′, z), such that both can generate a sample
from D at the end of the execution.

By the assumed security of π, each of the adversaries can be simulated in the
corresponding ideal world of the three-party functionality f . Thus, we obtain six
different expressions for the distribution D, representing the output of A. The
six expressions are described as follows.

Scenarios 1 and 2: There exist two malicious simulators in the ideal world of
f , one corrupting C and holding (y′, z, z′), and one cor-
rupting B and holding (y, y′, z′), such that the output of
A in both ideal world executions is distributed according
to D. Recall that the only way for the simulators to affect
the output of A is by choosing the input they send to the
trusted party. It follows the first simulator corrupting C,
defines a distribution Ry′,z,z′ that depends only on y′,
z, and z′, such that f(y, z∗) ≡ D, where z∗ ← Ry′,z,z′ .
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Similarly, the second simulator corrupting B, defines a
distributed distribution Qy,y′,z′ that depends only on y′,
z, and z′, such that f(y∗, z) ≡ D, where y∗ ← Qy,y′,z′ .

Scenarios 4 and 5: There exist two malicious simulators, one corrupting C
and holding (y, z, z′), and one corrupting B and hold-
ing (y, y′, z), both of which can generate a view that is
identical to their corresponding real world adversary. In
particular, since both adversaries can generate a sample
from D, it follows that both simulators must be able to
do the same at the end of their respective ideal world
execution. Since the simulators do not receive any out-
put from the trusted party, it follows there exist two
algorithms SB and SC, such that both SC(y, z, z′) and
SB(y, y′, z) output a sample from D.

Scenarios 3 and 6: There exist two malicious simulators, both corrupting
A, where one is holding (y, z′) and the other is holding
(y′, z), such that both can generate a sample from D
at the end of the execution. Unlike the previous case,
this time the two simulators do receive an output from
the trusted party. This implies there exist two algo-
rithms S3 and S6, such that both S3(y, z′, f(y′, z)) and
S6(y′, z, f(y, z′)) output a sample from D.

We conclude that for all y, y′ ∈ Y and z, z′ ∈ Z, there exist two efficiently
samplable distributions Qy,y′,z′ and Ry′,z,z′ over Y and Z, respectively, and four
algorithms SB, SC, S3, and S6, such that

f (y∗, z) ≡ f (y, z∗) ≡ SB (y, y′, z) ≡ SC (y, z, z′) (4)
≡ S3 (y, z′, f (y′, z)) ≡ S6 (y′, z, f (y, z′)) ,

where y∗ ← Qy,y′,z′ and where z∗ ← Ry′,z,z′ .

Analyzing the Six Distributions Over the Output of A. We now turn to the anal-
ysis of Eq. (4), which results in the necessary conditions stated in Theorem 1.
Recall that our goal is to show that for all y ∈ Y and z ∈ Z, it holds that

f(y, z∗) ≡ f(y∗, z),

where y∗ and z∗ are sampled according to specific distributions that depend on
the equivalence classes containing y and z, respectively.

First, observe that as SB is independent of z′, it follows that all other distri-
butions are also independent of it. For example, for any z′′ 	= z′ it holds that

S3 (y, z′, f (y′, z)) ≡ SB (y, y′, z) ≡ S3 (y, z′′, f (y′, z)) .

Similarly, since SC is independent of y′ it follows that all other distributions
are also independent of it as well. From this, we conclude the following: Let y0
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and z0 be the lexicographically smallest elements of Y and Z, respectively, and
define the distributions Q′

y := Qy,y0,z0 and R′
z := Ry0,z,z0 .9 Then, the above

observation implies that

f (y∗, z) ≡ f (y, z∗) ≡ S3 (y, z′, f (y′, z)) ≡ S6 (y′, z, f (y, z′)) , (5)

for all y′ ∈ Y and z′ ∈ Z, where y∗ ← Q′
y and z∗ ← R′

z.
Let us focus on S3, and fix z̃ ∈ Z such that z ∼ z̃. Recall that the relation ∼

is defined as z ∼ z̃ if and only if there exist ỹ, ỹ′ ∈ Y such that f(ỹ, z) = f(ỹ′, z̃).
Since S3 is independent of y′, it follows that

S3 (y, z′, f (y′, z)) ≡ S3 (y, z′, f (ỹ, z)) ≡ S3 (y, z′, f (ỹ′, z̃)) ≡ S3 (y, z′, f (y′, z̃)) ,

where the first and last transition follows from the previously made observation
that the output distribution of S3 is independent of the value of y′, and the
second transition follows from the fact that f(ỹ, z) = f(ỹ′, z̃), hence S3 receives
the same inputs in both cases. Therefore, changing z to z̃ where z ∼ z̃ does not
change the output distribution of S3. Note that the argument can be repeated
to show that replacing z̃ with any other z̃′, where z̃ ∼ z̃′, does not change the
distribution. It follows that changing z to any z̃′ satisfying z ≡rel z̃′ does not
change the output distribution of S3. Thus, all distributions in Eq. (5) are not
affected by such change.

Plugging this back to Eq. (5), results in the following. For every j ∈ [m], every
y ∈ Y, and every equivalent z, z̃′ ∈ Zj (recall that Zj is the jth equivalence class
with respect to the relation ≡rel), it holds that

f(y, z∗) ≡ f(y∗, z) ≡ f(y∗, z̃′) ≡ f(y, z̃∗),

where y∗ ← Q′
y, where z∗ ← R′

z, and where z̃∗ ← R′
z̃. In particular, the dis-

tributions depend only on the index j, and not on the specific choice of input
from the equivalence class Zj . Thus, if for any j ∈ [m] we define the distribu-
tion R′′

j := R′
zj

, where zj is the lexicographically smallest element in Zj , it then
follows that for every j ∈ [m], every y ∈ Y, and every z ∈ Zj , that

f(y, z∗) ≡ f(y∗, z),

where y∗ ← Q′
y and z∗ ← R′

j .
Finally, an analogous argument starting by focusing on S6, implies that the

distributions depend only on the equivalence class containing y, rather than
depending on y directly. Therefore, for any i ∈ [n] we can define the distribution
Q′′

i := Q′
yi

, where yi is the lexicographically smallest element in Yi. It then
follows that for every i ∈ [n], j ∈ [m], y ∈ Yi, and z ∈ Zj it holds that

f(y∗, z) ≡ f(y, z∗),

where y∗ ← Q′′
i and z∗ ← R′′

j , as claimed.
9 Note that the choice of taking the lexicographically smallest elements of Y and Z is

arbitrary, and any other element would work.
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The Positive Direction for NIORP Functionalities. We now present a protocol for
any solitary output three-party NIORP functionality f , satisfying the conditions
stated in Theorem 1. Our starting point is the same as that of [3,15], namely,
computing f fairly (i.e., either all parties obtain the output or none do). This
follows from the fact that, by the honest-majority assumption, the protocol of
Rabin and Ben-Or [28] computes f assuming a broadcast channel; hence by [14]
it follows that f can be computed with fairness over a point-to-point network.

We now describe the protocol. The parties start by computing f with fair-
ness. If they receive outputs, then they can terminate, and output what they
received.10 If the protocol aborts, then B finds the unique i ∈ [n] such that
y ∈ Yi and sends i to A. Similarly, C finds the unique j ∈ [m] such that z ∈ Zj

and sends j to A. Observe that this can be done efficiently since the domain of f
is of constant size. Party A then samples y∗ ← Qi and outputs f(y∗, zj), where
zj is the lexicographically smallest element in Zj .

Observe that correctness holds since when all parties are honest, the fair
protocol will never abort (note that without the fair computation of f the above
protocol is not correct since A would always output f(y∗, zj) instead of f(y, z)).
Now, consider a corrupt B (the case of a corrupt C is similar). First, note that
the adversary does not obtain any information from the fair computation of f .
Next, if the adversary sends some i′ to A, then the simulator sends y∗ ← Qi′ to
the trusted party. Then the output of A in the ideal world is f(y∗, z). By our
assumption on f , this is identical to f(y∗, zj) – the output of A in the real world.

Next, consider a corrupt A. Since it does not obtain any information from the
(failed) fair computation of f , it suffices to show how a simulator that is given
f(y, z) can compute the corresponding i and j. Observe that by our definition
for the partition of the inputs, any two distinct combinatorial rectangles Yi ×Zj

and Yi′ ×Zj′ , where (i, j) 	= (i′, j′), have no common output. Indeed, if f(y, z) =
f(y′, z′), where (y, z) ∈ Yi × Zj and (y′, z′) ∈ Yi′ × Zj′ , then y ∼ y′ and z ∼ z′,
hence they belong to the same sets. Therefore, the simulator for the corrupt A
can compute the corresponding i and j given the output by simply looking them
up (which can be done efficiently since the domain is of constant size).

1.2.2 Characterizing Ternary-Output Functionalities
We now explain our techniques for proving Theorem 2. The positive direction
uses the same techniques as in [3] (see the full version for more details), hence
we will only show the negative direction. Similarly to the proof of Theorem 1
presented earlier, the argument is comprised of the hexagon argument and the
analysis of the six distributions that are obtained. However, since A now has an
input, the argument is much more involved.

A Generalized Hexagon Argument. Unlike in the previous proof, here the
hexagon argument (as used there) does not suffice. To show where the argu-
10 Although B and C are supposed to receive no output from f , in a fair computation

they either receive the empty string indicating that A received its output, or a special
symbol ⊥ indicating abort.
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ment falls short, let us first describe the six distributions obtained from the
hexagon argument. In this setting, where A now has an input, the six-party pro-
tocol described earlier will now have A and A′ hold inputs x and x′, respectively.
The two inputs are then given to the correct adversaries from the six scenarios.
Furthermore, observe that the algorithms S3 and S6, which came from the two
simulators for a corrupt A in the ideal world, can also send to the trusted party
an input that is not necessarily the same input that the simulators hold. Let x∗

3
and x∗

6 denote the inputs used by S3 and S6, respectively, each sampled accord-
ing to a distribution that depends on the simulator’s inputs. Thus, to adjust the
hexagon argument to this case, Eq. (4) should now be replaced with

f (x, y∗, z) ≡ f (x, y, z∗) ≡ SB (x, y, y′, z) ≡ SC (x, y, z, z′) (6)
≡ S3 (x, x′, y, z′, x∗

3, f (x∗
3, y′, z)) ≡ S6 (x, x′, y′, z, x∗

6, f (x∗
6, y, z′)) ,

where y∗ ← Qx′,y,y′,z′ , where z∗ ← Rx′,y′,z,z′ , where x∗
3 ← P 3

x,x′,y,z′ , and where
x∗
6 ← P 6

x,x′,y′,z.
We now show where the argument falls short using an example: recall that

we defined the deterministic variant of the convergecast functionality [20], CC :
({0, 1})3 → {0, 1} as CC(x, y, z) = y if x = 0, and CC(x, y, z) = z otherwise.
We claim that there exist distributions and algorithms satisfying Eq. (6), hence
the argument is insufficient to show the impossibility of securely computing CC.
Indeed, take Qx′,y,y′,z′ to always output y∗ = y, take Rx′,y′,z,z′ to always output
z∗ = z, define P 3

x,x′,y,z′ to always output x∗
3 = 1 (causing S3 to obtain z), define

P 6
x,x′,y′,z to always output x∗

6 = 0 (causing S6 to obtain y), and define SB and SC,
both of which hold x, y, and z, to compute CC(x, y, z). Then all six distributions
always output CC(x, y, z).

However, as we next explain, the functionality CC cannot be computed
securely in our setting. Intuitively, this is because the adversary corrupting A
as in Scenario 1c using inputs x = 1 and x′ = 0, learns both y′ and z. Indeed,
in Scenario 1b (where B is corrupted) the output of an honest A is z, and in
Scenario 1d (where C is corrupted) the output of an honest A′ is y′. Since the
adversaries are semi-honest, the adversary corrupting A as in Scenario 1c can
compute both z and y′ by computing the output of the honest A and A′, respec-
tively. However, in the ideal world, a simulator (for the malicious adversary
emulating Scenario 1c) can only learn one of the inputs.

To generalize this intuition, we consider the joint distribution of the outputs
of A and A′ in the six-party protocol, rather than only the distribution of the
output of A. Doing a similar analysis to the NIORP case results in the existence of
six distributions P 3

x,x′,y,z′ , P 6
x,x′,y′,z, Qx,y,y′,z, Q′

x′,y,y′,z′ , Rx,y,z,z′ , and R′
x′,y′,z,z′ ,

and the existence of six algorithms S3, S6, SB, S′
B, SC, and S′

C, where S3 and S6
output two values (corresponding to the outputs of A and A′), such that the
following six distributions are identically distributed:

1. S3(x, x′, y, z′, x∗
3, f(x∗

3, y′, z)), where x∗
3 ← P 3

x,x′,y,z′ .
2. S6(x, x′, y′, z, x∗

6, f(x∗
6, y, z′)), where x∗

6 ← P 6
x,x′,y′,z.
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3. (SB(x, y, y′, z, y∗
1), f(x′, y∗

1 , z′)), where y∗
1 ← Qx,y,y′,z.

4. (f(x, y∗
2 , z),S′

B (x′, y, y′, z′, y∗
2)), where y∗

2 ← Q′
x′,y,y′,z′ .

5. (SC(x, y, z, z′, z∗
1), f(x′, y′, z∗

1)), where z∗
1 ← Rx,y,z,z′ .

6. (f(x, y, z∗
2),S′

C (x′, y′, z, z′, z∗
2)), where z∗

2 ← R′
x′,y′,z,z′ .

We stress that both S3 and S6 output two values from the set of outputs {0, 1, 2},
while SB, S′

B, SC, and S′
C, each output a single value from {0, 1, 2}.

Observe that for the function CC, the above distributions and algorithms do
not exist for all possible choices of inputs. Indeed, for x = 1 and x′ = 0, it holds
that CC(x, y∗

2 , z) = z (from the fourth distribution) and that CC(x′, y′, z∗
1) = y′

(from the fifth distribution). Therefore, the marginal distribution of the first
value must be z, and the marginal distribution of the second value must be y′,
both with probability 1. However, note that S3 is given only one of y′ or z,
depending on the value of x∗

3, hence it cannot output both of them correctly.

Analyzing the Six Joint Distributions Over the Outputs of A and A′. We now
analyze the new six distributions described earlier. First, similarly to the case of
NIORP functionalities, we make the observation that the marginal distribution
of the first entry is independent of x′, y′, and z′, and the marginal distribution
of the second entry is independent of x, y, and z. Let us focus on S3 and the
distribution P 3

x,x′,y,z′ .
Our next goal is to analyze the support of P 3

x,x′,y,z′ , namely, analyze which
inputs x∗

3 can be used by S3. This results in a necessary condition for f to
be securely computable, since if the input x∗

3 must satisfy some condition, in
particular, this implies an input satisfying such condition must exist. We do this
analysis by comparing the first (i.e., left) output of S3 to the distribution in Item
4 above, where the first value is f(x, y∗

2 , z), and by comparing the second (i.e.,
right) output of S3 to the distribution in Item 5 above, where the second value
is f(x′, y′, z∗

1). In fact, rather than directly comparing the outputs, we compare
the information on the equivalence class of z and y′ with respect to the CORE
partitions that can be inferred from the outputs. We next focus on comparing
to f(x, y∗

2 , z) (comparing to f(x′, y′, z∗
1) is analogous).

Let us first recall the definition of the CORE partitions. Recall that for every
x we can view f(x, ·, ·) as a NIORP function. Thus, we can partition Y and Z
according to the CORE partition for the given x. Since we focus on S3 it suffices,
for now, to only consider the partition of Z. Let Mx ∈ {0, 1, 2}|Y|×|Z| be the
matrix associated with f(x, ·, ·), defined as Mx(y, z) = f(x, y, z) for all y ∈ Y
and z ∈ Z. Recall that we denote the partition as Zx = {Zx

j : j ∈ [m(x)]},
and we let z and z̃ be in the same equivalence class if and only if there exist
z1, . . . , zk ∈ Z such that the columns Mx(·, z) and Mx(·, z1) have a common
output, for all i ∈ [k − 1] the columns Mx(·, zi) and Mx(·, zi+1) have a common
output, and the columns Mx(·, zk) and Mx(·, z̃) have a common output. Observe
that for any x ∈ X and every y ∈ Y it holds that if z ∈ Z and z̃ ∈ Z are in
different classes, then f(x, y, z) 	= f(x, y, z̃).
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Now, consider the distribution in Item 4 above, where the first value is
f(x, y∗

2 , z). It follows that S3 must be able to output f(x, y∗
2 , z).11 Next, observe

that from f(x, y∗
2 , z) it is possible to infer the (unique) j ∈ [m(x)] satisfying

z ∈ Zx
j . This is because, as noted earlier, for z and z̃ in different classes, the

output of f on each of them (with the same x and y) is always different. Thus,
for any fixed value for y∗

2 , from the output f(x, y∗
2 , z) we can compute the equiv-

alence class of z.
However, the only information that S3 can obtain on the class j ∈ [m(x)] can

come from the output f(x∗
3, y′, z) (which corresponds to the output it receives

from the trusted party). That is, the only information that S3 can have is the
equivalence class of z with respect to the partition of x∗

3 rather than the partition
with respect to x. Since the first entry in the output of S3 must be identically
distributed to f(x, y∗

2 , z), the value x∗
3 it uses must be such that f(x∗

3, y′, z)
reveals at least the same information on j as f(x, y∗

2 , z) does. This implies that
x∗
3 must be such that if z ∈ Zx∗

3
j∗
3

then z ∈ Zx
j , with probability 1. Furthermore,

this must hold for all z ∈ Z and the distribution P 3
x,x′,y,z′ , from which x∗

3 is
drawn from, is independent of z, it follows that the partition Zx∗

3
must be a

refinement of Zx. That is, any Z ∈ Zx∗
3

must be a subset of some Z ′ ∈ Zx.
Similarly, since S3 must also output f(x′, y′, z∗

1) from the fifth distribution in
Item 5, it follows that Yx∗

3
is a refinement of Yx′ . As a result, we conclude that

for any x, x′ ∈ X there exists x∗
3 ∈ X such that Yx∗

3
is a refinement of Yx′ and

such that Zx∗
3

is a refinement of Zx. We stress that so far, we have not used
the fact that f is ternary-output, thus the existence of such x∗

3 holds for any
function that can be securely computed.

We now have all the necessary tools to prove Items 1 and 2 of Theorem 2.
Let us start with the former. Recall that we need to show that either Yx = {Y}
for all x, or Zx = {Z} for all x. First, since f is ternary-output, for every x it
holds that either Yx = {Y} or Zx = {Z}. Note that this is weaker than what
we wish to show since for one x it might be the case that Yx = {Y}, while for
another x it might be the case that Zx = {Z}. Let us assume that Item 1 of
Theorem 2 does not hold. Then there exist x and x′ such that Yx 	= {Y} and
Zx′ 	= {Z}. Then, as argued above, there exists x∗ such that Yx∗ refines Yx and
Zx∗ refines Zx′ . However, this implies that Yx∗ 	= {Y} and Zx∗ 	= {Z}, which is
impossible for ternary-output functions.

We now prove Item 2 of Theorem 2. From here on, we will only focus on the
first (i.e., left) entry in each of the above 6 distributions (there is no need to
consider the second entry anymore). The proof follows similar ideas to that of
the NIORP case. In more detail, we consider the CORE∧-partition of the inputs
Y∧ and Z∧, and we show that changing, say, z to any z̃ that belongs to the
same equivalence class Z∧

j ∈ Z∧, does not change the distribution. Let us first
recall the definition of CORE∧-partition. We define Z∧ to be the meet of the

11 Formally, the marginal distribution of the first value in the output of S3 is identically
distributed to f(x, y∗

2 , z).
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partitions {Zx}x∈X , defined as

Z∧ :=
{

Z∧ ⊆ Z : Z∧ 	= ∅, and ∀x ∈ X ∃Zx ∈ Zx s.t. Z∧ =
⋂

x∈X
Zx

}
.

For the sake of brevity, we will abuse notations and let S3 only output the first
entry rather than two values.

First observe that if z, z̃ ∈ Z∧
j for some j ∈ [m∧], then for any x there exists

jx ∈ [m(x)] such that z, z̃ ∈ Zx
jx

. Then, a similar analysis to the NIORP case
shows that for any fixed x∗

3 ∈ X satisfying Zx∗
3

refines Zx, it holds that

S3(x, x′, y, z′, x∗
3, f(x∗

3, y′, z)) ≡ S3(x, x′, y, z′, x∗
3, f(x∗

3, y′, z̃)).

As the support of P 3
x,x′,y,z′ is contains only those x∗

3 where Zx∗
3

refines Zx, it
follows that

S3(x, x′, y, z′, x∗
3, f(x∗

3, y′, z)) ≡ S3(x, x′, y, z′, x∗
3, f(x∗

3, y′, z̃)),

where x∗
3 ← P 3

x,x′,y,z′ . Therefore, the same must hold for all of the six distribu-
tions, i.e., they depend on the equivalence classes of y and z with respect to the
CORE∧-partition, rather than depending on the actual values themselves.

In the following we let x0, y0, and z0 be the lexicographically smallest ele-
ments of X , Y, and Z, respectively. For i ∈ [n∧] let Q′′

i := Qx0,yi,y0,z0 , where
yi is the lexicographically smallest elements of Y∧

i . Similarly, for j ∈ [m∧] we
let R′′

j := R′
x0,y0,zj ,z0 , where zj is the lexicographically smallest element of Z∧

j .
Then, similarly to the NIORP case, it follows that for all i ∈ [n∧], all j ∈ [m∧],
all x ∈ X , all y ∈ Y∧

i , and all z ∈ Z∧, it holds that

f(x, y∗, z) ≡ f(x, y, z∗), (7)

where y∗ ← Q′′
i and z∗ ← R′′

j . Note that the proof of Eq. (7) did not use the
fact that f is ternary-output (see the full version for a formal treatment of the
general case).

It is left to show the existence of an algorithm S that given x, x∗ sampled from
an appropriate distribution Px, and f(x, y, z) can generate the distribution in
Eq. (7). Here we use the fact that we showed that for ternary-output functions,
either Yx = {Y} for all x ∈ X , or Zx = {Z} for all x ∈ X . Assume first
the former. In this case we let S(x, x∗, w) = S3(x, x0, y0, z0, x∗, w). Then, for
Px := P 3

x,x0,y0,z0 it holds that

S (x, x∗, f(x∗, y, z)) ≡ S3 (x, x0, y0, z0, x∗, f(x∗, y, z)) ≡ f(x, y∗, z) ≡ f(x, y, z∗),

where x∗ ← Px, y∗ ← Q′′
1 (recall we assume that Yx = {Y} for all x which implies

that n∧ = 1), and z∗ ← R′′
j , as claimed. Now, if we assume that Zx = {Z} for

all x ∈ X , we will define S(x, x∗, w) using S6 rather than S3. In more details, we
let S(x, x∗, w) = S6(x, x0, y0, z0, x∗, w). Then, for Px := P 6

x,x0,y0,z0 it holds that

S (x, x∗, f(x∗, y, z)) ≡ S6 (x, x0, y0, z0, x∗, f(x∗, y, z)) ≡ f(x, y∗, z) ≡ f(x, y, z∗),

where x∗ ← Px, y∗ ← Q′′
i , and z∗ ← R′′

1 (recall we assume that Zx = {Z} for
all x which implies that m∧ = 1), as claimed.
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1.3 Related Work

For non-solitary output functionalities, Cleve [13] showed that without an honest
majority, full security cannot be achieved even for the simple task of fair coin-
tossing (even with a broadcast channel). On the other hand, even if two-thirds
of the parties are honest, there is no fully secure protocol for computing the
broadcast functionality in the plain model (i.e., without setup/proof-of-work
assumptions) [19,25,27].12

For the two-party setting a characterization was given for the set of two-party,
Boolean, symmetric (i.e., where all parties receive the same output) functions
over a constant size domain [4,6,23,26]. The cases of asymmetric functions and
of multiparty functions assuming broadcast but no honest majority, were also
investigated [6,16,17,22,24], but both characterizations are open.

The hexagon argument has been first used in the context of Byzantine agree-
ment to rule out three-party protocols tolerating one corruption [19]. Cohen
et al. [15] considered symmetric (possibly randomized) functionalities in the
point-to-point model, and showed that a symmetric n-party functionality f can
be computed against t corruptions, if and only if f is (n − 2t)-dominated, i.e.,
there exists y∗ such that any n − 2t of the inputs can fix the output of f to be
y∗. They generalized the hexagon argument to the ring argument to obtain their
results.

Recently, Recently, Alon et al. [3] extended the discussion to consider asym-
metric functionalities in the point-to-point model. They provided various neces-
sary and sufficient conditions for a functionality to be securely computable. They
considered some interesting examples for the special case of solitary-output func-
tionalities, however, provided no characterization for any class of functions.

The investigation of the set of solitary output functionalities that can be
securely computed assuming a broadcast channel but no honest majority was
initiated in the work of Halevi et al. [24]. They provided various negative and pos-
itive results, and further investigated the round complexity required to securely
compute solitary output functionalities. Badrinarayanan et al. [7] investigated
the round complexity required to compute solitary output functionalities, assum-
ing the availability of a broadcast channel and no PKI, and vice versa.

1.4 Organization

The preliminaries and definition of the model of computation appear in Sect. 2.
In Sect. 3 we state our results in the point-to-point model. Due to space consid-
erations, the proofs of our results are deferred to the full version.

12 Note that if strictly more than two-thirds of the parties are honest any functionality
can be computed with full security [10].
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2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and
distributions, lowercase for values, and we use bold characters to denote vectors.
For n ∈ N, let [n] = {1, 2 . . . n}. For a set S we write s ← S to indicate that s is
selected uniformly at random from S. Given a random variable (or a distribution)
X, we write x ← X to indicate that x is selected according to X. A ppt algorithm
is probabilistic polynomial time, and a pptm is a polynomial time (interactive)
Turing machine.

A function μ : N → [0, 1] is called negligible, if for every positive polynomial
p(·) and all sufficiently large n, it holds that μ(n) < 1/p(n). We write neg
for an unspecified negligible function and write poly for an unspecified positive
polynomial. For a randomized function (or an algorithm) f we write f(x) to
denote the random variable induced by the function on input x, and write f(x; r)
to denote the value when the randomness of f is fixed to r.

A distribution ensemble X = {Xa,n}a∈Dn,n∈N is an infinite sequence of ran-
dom variables indexed by a ∈ Dn and n ∈ N, where Dn is a domain that might
depend on n. When the domains are clear, we will sometimes write {Xa,n}a,n in
order to alleviate notations.

The statistical distance between two finite distributions is defined as follows.

Definition 3. The statistical distance between two finite random variables X
and Y is

SD (X, Y ) = max
S

{Pr [X ∈ S] − Pr [Y ∈ S]} .

For a function ε : N → [0, 1], the two ensembles X = {Xa,n}a∈Dn,n∈N and
Y = {Ya,n}a∈Dn,n∈N are said to be ε-close, if for all sufficiently large n and
a ∈ Dn, it holds that

SD (Xa,n, Ya,n) ≤ ε(n),

and are said to be ε-far otherwise. X and Y are said to be statistically close,
denoted X

S≡ Y , if they are ε-close for some negligible function ε. If X and Y
are 0-close then they are said to be equivalent, denoted X ≡ Y .

Computational indistinguishability is defined as follows.

Definition 4. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two
ensembles. We say that X and Y are computationally indistinguishable, denoted
X

C≡ Y , if for every non-uniform ppt distinguisher D, there exists a negligible
function μ(·), such that for all n and a ∈ Dn, it holds that

|Pr [D(Xa,n) = 1] − Pr [D(Ya,n) = 1]| ≤ μ(n).
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Definition 5 (Minimal and minimum elements). Let S be a set and let

 be a partial order over S. An element s ∈ S is called minimal, if no other
element is smaller than s, that is, for any s′ ∈ S, if s′ 
 s then s′ = s.

An element s ∈ S is called minimum if it is smaller than any other element,
that is, for any s′ ∈ S it holds that s 
 s′.

We next define a refinement of a partition of some set.

Definition 6 (Refinement of partitions). Let P1 and P2 be two partitions of
some set S. We say that P1 refines P2, if for every S1 ∈ P1 there exists S2 ∈ P2
such that S1 ⊆ S2.

The meet of two partitions is the partition formed by taking all non-empty
intersections. Formally, it is defined as follows.

Definition 7 (Meet of partitions). Let P1 and P2 be two partitions of some
set S. The meet of P1 and P2, denoted P1 ∧ P2, is defined as

P1 ∧ P2 := {S1 ∩ S2 | ∀i ∈ {1, 2} : Si ∈ Pi and S1 ∩ S2 	= ∅} .

Observe that ∧ is associative, thus we can naturally extend the definition for
several partitions.

Definition 8 (Equivalence class and quotient sets). For an equivalence
relation ≡ over some set S, and an element s ∈ S we denote by [s]≡ the equiv-
alence class of s, [s]≡ := {s′ ∈ S : s ≡ s′}. We let S/≡ denote the quotient set
with respect to ≡ defined as the set of all equivalence classes. Stated differently,
it is the partition of S induced by the equivalence relation ≡.

The Model of Computation. In this paper we consider solitary output three-
party functionalities. A functionality is a sequence of function f = {fκ}κ∈N,
where fκ : Xκ × Yκ × Zκ → Wκ for every κ ∈ N.13 The functionality is called
solitary output if only one party obtains an output. We denote the parties by A,
B and C, holding inputs x, y, and z, respectively, and let A receive the output,
denoted w. To alleviate notations, we will remove κ from f and its domain and
range, and simply write it as f : X × Y × Z → W.

We consider the standard ideal vs. real paradigm for defining security. We
mostly consider an ideal computation with guaranteed output delivery (also
referred to as full security), where a trusted party performs the computation
on behalf of the parties, and the ideal-model adversary cannot abort the compu-
tation. We say a protocol admits 1-security if it is fully secure against any single
corrupted party.

13 The typical convention in secure computation is to let f : ({0, 1}∗)3 → {0, 1}∗. How-
ever, we will mostly be dealing with functionalities whose domain is of polynomial
size in κ, which is why we introduce this notation.
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3 Our Main Results in the Point-to-Point Model
In this section, we present the statement of our main results in the point-to-
point model. We present a necessary condition and two sufficient conditions for
solitary output three-party functionalities with polynomial-sized domains, that
can be computed with 1-security without broadcast. In Sect. 3.2.1, we present
several corollaries of our results. In particular, we show that various interesting
families of functionalities, such as deterministic NIORP and (possibly random-
ized) ternary-output functionalities, our necessary and sufficient conditions are
equivalent, thus we obtain a characterization.

3.1 Useful Definitions

Before stating the result, we first present several important definitions. Through-
out the entire subsection, we let f : X × Y × Z → W be a deterministic solitary
output three-party functionality.

The first definition introduces an equivalence relation over the domains Y and
Z with respect to any fixed input x ∈ X . We call this relation the common output
relation (CORE). Note that the relation depends on the security parameter κ
as well. We will not write κ as part of the notations in order to alleviate them.
Definition 9 (CORE and CORE partition). For an input x ∈ X we define
the relation ∼x over Y as follows.

y ∼x y′ if there exist z, z′ ∈ Z such that f(x, y, z) = f(x, y′, z′).

We define relation ≡x, called CORE, to be the transitive closure of ∼x, i.e.,
y ≡x y′ if either y ∼x y′ or if there exist y1, . . . , yk ∈ Y such that

y ∼x y1 ∼x . . . ∼x yk ∼x y′.

Observe that ≡x is an equivalence relation. We let Yx denote the set of equiva-
lence classes of Y formed by ≡x. We also abuse notations, and define the relations
z ∼x z′ and z ≡x z′ over Z similarly, and let Zx denote the set of equivalence
classes over Z formed by ≡x.

Additionally, we denote n(x) = |Yx|, m(x) = |Zx|, and we write

Yx = {Yx
i : i ∈ [n(x)]} and Zx = {Zx

j : j ∈ [m(x)]}.

Finally, we let
Rx = {Yx

i × Zx
j : i ∈ [n(x)], j ∈ [m(x)]}

be the partition of Y ×Z into the combinatorial rectangles formed by Yx and Zx.
We call Yx, Zx, and Rx the CORE partitions of f with respect to x.

We next introduce equivalence relations over X that correspond to the CORE
partitions formed by the inputs. In addition, we define partial orders over the
quotient sets associated with these equivalence relations. Roughly, both the
equivalence relations and the partial orders are defined by comparing the cor-
responding CORE partitions. Similarly to Definition 9, the following definition
also depends κ, which is omitted from the notations to alleviate them.
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Definition 10 (Equivalence relations and partial orders over X ). We
define three equivalence relations ≡B, ≡C, and ≡, over X as follows. We say that
x ≡B x′ if Yx = Yx′ , we say that x ≡C x′ if Zx = Zx′ , and we say that x ≡ x′ if
Rx = Rx′ . Equivalently, x ≡ x′ if x ≡B x′ and x ≡C x′.

We define partial orders 
B, 
C, and 
 over the quotient sets X /≡B, X /≡C,
and X /≡, respectively, as follows. We say that [x]≡B 
B [x′]≡B if Yx refines Yx′ ,
we say that [x]≡C 
C [x′]≡C if Zx refines Zx′ , and we say that [x]≡ 
 [x′]≡ if Rx

refines Rx′ . Equivalently, [x]≡ 
 [x′]≡ if [x]≡B 
B [x′]≡B and [x]≡C 
C [x′]≡C .
For brevity, we write the partial orders as if they are over X , e.g., we write

x 
B x′ instead of [x]≡B 
B [x′]≡B .14 Finally, χ ∈ X is called B-minimal if [χ]≡B
is minimal with respect to 
B, χ is called C-minimal if [χ]≡C is minimal with
respect to 
C, and χ is called R-minimal if [χ]≡ is minimal with respect to 
.

As mentioned in Sect. 1, we are interested in the meet of all CORE partitions.
We call this new partition the CORE∧-partition of f . Similarly to previous
notations, CORE∧-partition also depends on κ, and we will omit it for brevity.

Definition 11 (CORE∧-partition). We denote

Y∧ :=
∧

x∈X
Yx =

∧
χ∈X :

χ is R-minimal

Yχ and Z∧ :=
∧

x∈X
Zx =

∧
χ∈X :

χ is R-minimal

Zχ,

and call these two partitions the CORE∧-partitions of f . We let n∧ = |Y∧| and
m∧ = |Z∧|, and we write the partitions as

Y∧ := {Y∧
i : i ∈ [n∧]} and Z∧ := {Z∧

j : j ∈ [m∧]}.

Finally, we let

R∧ = {Y∧
i × Z∧

j : i ∈ [n∧], j ∈ [m∧]},

be the partition of Y ×Z into the combinatorial rectangles formed by Y∧ and Z∧.
The partitions Y∧ and Z∧ are naturally associated with an equivalence rela-

tion ≡∧ over Y and over Z, respectively: We say that y ≡∧ y′ if there exists
Y∧ ∈ Y∧ such that y, y′ ∈ Y∧. Equivalently, y ≡∧ y′ if y ≡χ y′ for all R-minimal
χ ∈ X . Similarly, z ≡∧ z′ if there exists Z∧ ∈ Z∧ such that z, z′ ∈ Z∧.

We next define an important special property of a functionality f , which
we call CORE∧-forced. This property plays a central role in both our positive
and negative results, and generalizes the forced property defined in [24], which
states that any party can fix the distribution of the output, using an appropriate
distribution over its input.

Roughly, f is called CORE∧-forced if both B and C can each associate a
distribution to each set in the CORE∧-partition of their respective set of inputs,
14 Note that if we had defined �B, �C, and � directly over X , then they would not

correspond to partial orders. Indeed, for the relations to be partial orders, it required
that they are antisymmetric, i.e., if x � x′ and x′ � x then x = x′. Observe that
this is not generally the case, as the only guarantee we have is that x ≡ x′.
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such that the output distribution of A in each combinatorial rectangle in R∧ is
fixed for every input x ∈ X .
Definition 12 (CORE∧-forced). The function f is said to be CORE∧-
forced if there exist two ensembles of efficiently samplable distributions Q =
{Qκ,i}κ∈N,i∈[n∧] and R = {Rκ,j}κ∈N,j∈[m∧] over Y and Z, respectively, such
that the following holds.
{

f(x, y
∗

, zj)
}

κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i

,z∈Z∧
j

S≡
{

f(x, y
∗

, z)
}

κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i

,z∈Z∧
j

S≡
{

f(x, y, z
∗)

}
κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧

i
,z∈Z∧

j

S≡
{

f(x, yi, z
∗)

}
κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧

i
,z∈Z∧

j

where y∗ ← Qκ,i, z∗ ← Rκ,j, and where yi and zj are the lexicographically
smallest elements in Y∧

i and Z∧
j , respectively.

3.2 Our Main Results

We are now ready to state our results, providing both sufficient and necessary
conditions for a deterministic solitary output three-party functionalities with
polynomial-sized domain, to be computable with 1-security over point-to-point
channels. The result for randomized functionalities, where the domain of the
randomness is polynomial as well, is handled below in Proposition 2 by reducing
it to the deterministic case. We start by stating our negative results.
Theorem 3. Let f : X × Y × Z → W be a deterministic solitary output three-
party functionality. Assume that |X |, |Y|, |Z| = poly(κ). If f can be computed
with 1-security, then the following hold.
1. For all sufficiently large κ ∈ N, all B-minimal χB and all C-minimal χC, there

exists an R-minimal χ ∈ X such that χB ≡B χ ≡C χC.
2. f is CORE∧-forced.

Moreover, suppose that f has the property that for all sufficiently large κ, it holds
that either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all x ∈ X and
z, z′ ∈ Z. Then there exists an ensemble of efficiently samplable distributions
P = {Pκ,x}κ∈N,x∈X and there exists a ppt algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i

,z∈Z∧
j

S≡ {f(x, y∗, z)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i

,z∈Z∧
j

,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the
CORE∧-forced property.

Due to space limitations, the proof is given in the full version of the paper
[2]. We now state our two positive results. The first positive result considers
functionalities that satisfy the property given in the “moreover” part of Theorem
3. Interestingly, the protocol used in the proof of the theorem below is a slight
generalization of the protocol suggested by [3].
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Theorem 4. Let f : X × Y × Z → W be a deterministic solitary output three-
party functionality. Assume that oblivious transfer exists, that |X |, |Y|, |Z| =
poly(κ), and that the following hold.
1. For all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or

z ≡x z′ for all x ∈ X and z, z′ ∈ Z.
2. f is CORE∧-forced.
3. There exists an ensemble of efficiently samplable distributions P =

{Pκ,x}κ∈N,x∈X and a ppt algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i

,z∈Z∧
j

S≡ {f(x, y∗, z)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i

,z∈Z∧
j

,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given by the
CORE∧-forced property.

Then f can be computed with 1-security.
Due to space limitations, the proof is given in the full version of the paper

[2]. The next result gives another sufficient condition. In fact, it characterizes a
special class of functionalities, which includes (deterministic) NIORP function-
alities, where the output-receiving party A has no input (see Corollary 4 below).
Here, instead of assuming the functionality satisfies the property stated in the
“moreover” part of Theorem 3, we assume that A has a minimum input, i.e.,
smaller than all other inputs with respect to 
.
Theorem 5. Let f : X × Y × Z → W be a deterministic solitary output three-
party functionality. Assume that |X |, |Y|, |Z| = poly(κ), and that for all suffi-
ciently large κ, there exists χ ∈ X such that for all x ∈ X it holds that χ 
 x.15
Then f can be computed with 1-security if and only if it is CORE∧-forced. More-
over, the protocol in the positive direction admits statistical 1-security.

Due to space limitations, the proof is given in the full version of the paper [2].
The next proposition reduces the randomized case to the deterministic case. We
stress that the reduction holds for general domain sizes, and functionalities where
every party obtains an output (in fact, the reduction can be easily generalized
to the multiparty setting assuming an honest majority).
Proposition 2 (Reducing randomized functionalities to deterministic
functionalities). Let f : ({0, 1}∗)3 → {0, 1}∗ be a (randomized) three-party
functionality. Define the deterministic functionality f ′ : ({0, 1}∗)2 × ({0, 1}∗)2 ×
({0, 1}∗)2 → {0, 1}∗ as follows.

f ′((x, r1), (y, r2), (z, r3)) = f(x, y, z; r1 ⊕ r2 ⊕ r3).

Then f can be computed with 1-security if and only if f ′ can be computed with
1-security.
Due to space limitations, the proof is deferred to the full version [2].
15 Note that there may be several minimum inputs, however, the assumption implies

that they are all equivalent.
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3.2.1 Interesting Corollaries
Although our necessary and sufficient conditions do not coincide in general, for
various interesting families of functionalities the results do form a characteriza-
tion. In the following section, we consider several such interesting families and
present a characterization for them, as can be derived from Theorems 3 to 5.

We first state the characterization for functionalities with at most three pos-
sible outputs. For this class of functionalities, we make the observation that for
every x ∈ X , either y ≡x y′ for all y, y′ ∈ Y, or z ≡x z′ for all z, z′ ∈ Z.
Corollary 1 (Characterization of ternary-output functionalities). Let
f : X × Y × Z → {0, 1, 2} be a deterministic solitary output three-party func-
tionality. Assume that oblivious transfer exists and that |X |, |Y|, |Z| = poly(κ).
Then f can be computed with 1-security if and only if the following hold.
1. For all sufficiently large κ ∈ N, all B-minimal χB and all C-minimal χC, there

exists an R-minimal χ ∈ X such that χB ≡B χ ≡C χC.
2. f is CORE∧-forced.
3. There exists an ensemble of efficiently samplable distributions P =

{Pκ,x}κ∈N,x∈X and a ppt algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i

,z∈Z∧
j

S≡ {f(x, y∗, z)}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i

,z∈Z∧
j

,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the
CORE∧-forced property.

Proof. It suffices to show that Item 1 from the above statement implies Item
1 from Theorem 4. That is, we show that for all sufficiently large κ, either
y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all x ∈ X and z, z′ ∈ Z.
Assume towards contradiction that for infinitely many κ’s, there exist x, x′ ∈ X ,
y, y′ ∈ Y, and z, z′ ∈ Z such that y 	≡x y′ and z 	≡x′ z′. Now, observe that as
f is a ternary-output functionality, it holds that x and x′ are B-minimal and
C-minimal, respectively. Moreover, it holds that z ≡x z′ and that y ≡x′ y′. By
(the assumed) Item 1 there exists an R-minimal χ ∈ X satisfying x ≡B χ ≡C x′.
However, such χ cannot exists since it satisfies y ≡χ y′ and z ≡χ z′. ��

We now state a characterization for functionalities that are symmetric with
respect to the inputs of B and C, i.e., where f(x, y, z) = f(x, z, y) for all x, y, and
z. Here, the characterization follows from the observation all y’s are equivalent
and z’s are equivalent with respect to all x’s. In particular, the CORE∧-forced
property implies the simpler forced property (i.e., both B and C can fix the
distribution of the output).
Corollary 2 (Characterization of (B,C)-symmetric functionalities). Let
f : X × D × D → W be a deterministic solitary output three-party functional-
ity. Assume that oblivious transfer exists, that |X |, |D| = poly(κ), and that for
all sufficiently large κ ∈ N, for all x ∈ X and for all y, z ∈ D it holds that
f(x, y, z) = f(x, z, y). Then f can be computed with 1-security if and only if it
is forced.
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We next state a characterization for the case where the input of party A is
a single bit. The proof follows from the observation that for such functionalities
there exists a minimum χ, hence we can apply Theorem 5.

Corollary 3. Let f : {0, 1} × Y × Z → W be a deterministic solitary output
three-party functionality. Assume that |Y|, |Z| = poly(κ). Then f can be com-
puted with 1-security if and only if the following hold.

1. For all sufficiently large κ ∈ N, either 0 
 1 or 1 
 0.
2. f is CORE∧-forced.

Moreover, the protocol in the positive direction admits statistical 1-security.

Proof. First observe that if 0 
 1 or 1 
 0 for all sufficiently large κ ∈ N,
then f can be computed due to Theorem 5. For the other direction, we consider
two cases. First, if f is not CORE∧-forced then by Theorem 3 it cannot be
computed with 1-security. Otherwise, if 0 	
 1 and 1 	
 0 infinitely often, then
both are R-minimal inputs infinitely often. However, there is no R-minimal χ
such that 0 ≡B χ ≡C 1. Therefore, f cannot be computed due to Theorem 3. ��

If A has no input, then the first property of Corollary 3 holds vacuously. Thus
we have the following.

Corollary 4 (Characterization of NIORP functionalities). Let f : {λ} ×
Y × Z → W be a deterministic solitary output three-party functionality. Assume
that |Y|, |Z| = poly(κ). Then f can be computed with 1-security if and only
if it is CORE∧-forced. Moreover, the protocol in the positive direction admits
statistical 1-security.
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Abstract. We study the problem of secure multiparty computation for
functionalities where only one party receives the output, to which we
refer as solitary MPC. Recently, Halevi et al. (TCC 2019) studied fully
secure (i.e., with guaranteed output delivery) solitary MPC and showed
impossibility of such protocols for certain functionalities when there is
no honest majority among the parties.

In this work, we study the round complexity of fully secure solitary
MPC in the honest majority setting and with computational security.
We note that a broadcast channel or public key infrastructure (PKI)
setup is necessary for an n-party protocol against malicious adversaries
corrupting up to t parties where n/3 ≤ t < n/2. Therefore, we study the
following settings and ask the question: Can fully secure solitary MPC
be achieved in fewer rounds than fully secure standard MPC in which
all parties receive the output?

– When there is a broadcast channel and no PKI:
• We start with a negative answer to the above question. In par-

ticular, we show that the exact round complexity of fully secure
solitary MPC is 3, which is the same as fully secure standard
MPC.

• We then study the minimal number of broadcast rounds needed
to design round-optimal fully secure solitary MPC. We show that
both the first and second rounds of broadcast are necessary when
2�n/5� ≤ t < n/2, whereas pairwise-private channels suffice in
the last round. Notably, this result also applies to fully secure
standard MPC in which all parties receive the output.

– When there is a PKI and no broadcast channel, nevertheless, we
show more positive results:

• We show an upper bound of 5 rounds for any honest major-
ity. This is superior to the super-constant lower bound for fully
secure standard MPC in the exact same setting.

• We complement this by showing a lower bound of 4 rounds when
3�n/7� ≤ t < n/2.

• For the special case of t = 1, n = 3, when the output receiving
party does not have an input to the function, we show an upper
bound of 2 rounds, which is optimal. When the output receiving
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party has an input to the function, we show a lower bound of 3,
which matches an upper bound from prior work.

• For the special case of t = 2, n = 5, we show a lower bound of 3
rounds (an upper bound of 4 follows from prior work).

All our results also assume the existence of a common reference string
(CRS) and pairwise-private channels. Our upper bounds use a decentral-
ized threshold fully homomorphic encryption (dTFHE) scheme (which
can be built from the learning with errors (LWE) assumption) as the
main building block.

1 Introduction

Secure multiparty computation (MPC) [25,39] allows a set of mutually distrust-
ing parties to jointly compute any function on their private data in a way that
the participants do not learn anything about the inputs except the output of the
function. The strongest possible security notion for MPC is guaranteed output
delivery (god for short), which states that all honest parties are guaranteed to
receive their outputs no matter how the corrupt parties behave. An MPC pro-
tocol achieving god is often called a fully secure protocol. A seminal work of
Cleve [13] showed that there exist functionalities for which it is impossible to
construct an MPC protocol with god unless a majority of the parties are honest.

Solitary MPC. Recently, Halevi et al. [29] initiated the study of MPC proto-
cols with god for a special class of functionalities, called solitary functionalities,
which deliver the output to exactly one party. Such functionalities capture many
real world applications of MPC in which parties play different roles and only
one specific party wishes to learn the output. For example, consider a privacy-
preserving machine learning task [35] where several entities provide training data
while only one entity wishes to learn a model based on this private aggregated
data. As another example, a service provider may want to learn aggregated infor-
mation about its users while keeping the users’ data private [8,9]. In the rest of
the paper we refer to such MPC protocols as solitary MPC. For clarity of expo-
sition, we refer to protocols where all parties obtain output as standard MPC.
While the argument of Cleve [13] does not rule out solitary MPC with god in
the presence of a dishonest majority,1 Halevi et al. [29] showed that there exist
functionalities for which solitary MPC with god is also impossible with dishonest
majority. Hence, the results of [13] and [29] rule out the existence of a generic
MPC protocol that can compute any standard and solitary functionality respec-
tively with god in dishonest majority (protocols can exist for specific classes of
functionalities as shown in [4,27,29]). Both impossibility results hold even when

1 Cleve’s argument shows that with dishonest majority, it is impossible for an MPC
protocol to achieve fairness, which guarantees that malicious parties cannot learn the
output while preventing honest parties from learning the output. Since god implies
fairness, this impossibility also holds for standard MPC with god. However, it doesn’t
hold for solitary MPC as fairness is clearly not an issue in the solitary MPC setting.
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parties have access to a common reference string (CRS). In this paper, we focus
on solitary MPC with god in the honest majority setting.

Round Complexity. An important efficiency metric of an MPC protocol is
its round complexity, which quantifies the number of communication rounds
required to perform the protocol. The round complexity of standard MPC has
been extensively studied over the last four decades (see the full version [7] for
a detailed literature survey). In the honest majority setting, three rounds are
known to be necessary [24,28,36] for standard MPC with god, even in the pres-
ence of a common reference string (CRS) and a broadcast channel (without a
PKI setup). Matching upper bounds appear in [3,6,28]. The protocol of Gordon
et al. [28] requires a CRS2, while the other two [3,6] are in the plain model. In
this work we focus on the round complexity aspects of solitary MPC protocols.

Necessity of Broadcast or PKI. A closer look at the above protocols reveals
that all of them assume the existence of a broadcast channel. For solitary MPC
with god, the works of [2,21] show that either a broadcast channel or a public
key infrastructure (PKI) setup is indeed necessary assuming an honest majority
(in particular, when n/3 ≤ t < n/2 for an n-party protocol against adversaries
corrupting up to t parties) even with a CRS.3 Note that although PKI setup and
broadcast channels are equivalent according to [17] from a feasibility perspective,
realizing broadcast under PKI setup with guaranteed termination requires super-
constant rounds, which we will discuss shortly. In light of this, we study the round
complexity of solitary MPC with god when n/3 ≤ t < n/2 in two settings: (a)
there is a broadcast channel and no PKI setup; (b) there is PKI setup and no
broadcast channel. When both broadcast channels and PKI are available, we
know from prior works [28,30] that the exact round complexity is two.

With Broadcast, No PKI. In this setting we investigate whether we can do
better for solitary MPC than standard MPC in terms of round complexity even
in the presence of CRS. In particular,

Assuming a broadcast channel and CRS, can we build a solitary MPC protocol
with god in fewer than three rounds?

2 This protocol uses a decentralized threshold fully homomorphic encryption (dTFHE)
scheme. The public parameter of this dTFHE is assumed to be shared among the
parties and viewed as a common reference string (refer to [28] for further details).

3 Fitzi et al. [21] show that converge-cast cannot be achieved when n/3 ≤ t < n/2 in
the information theoretic setting. Alon et al. [2] show a specific solitary functionality
that cannot be computed by a 3-party MPC protocol with a single corruption with
god in the plain model (with no broadcast channel and no PKI), which also extends
to n/3 ≤ t < n/2. Both arguments also work even in the presence of a CRS. We
present the proof in the full version [7] for completeness.
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Unfortunately, the answer is no! We show that in the presence of a broadcast
channel and CRS, the exact round complexity for solitary MPC with god is also
three, same as standard MPC.

However, broadcast channels are expensive to realize in practice – the sem-
inal works of Dolev and Strong [17] and Fischer and Lynch [19] showed that
realizing a single round of deterministic broadcast requires at least t + 1 rounds
of communication over pairwise-private channels, where t is the number of cor-
rupt parties, even with a public key infrastructure (PKI) setup.4 This can be
overcome by considering randomized broadcast protocols in the honest majority
setting [1,18,20,32] requiring expected constant rounds. In particular, the most
round-efficient protocol to our knowledge is proposed by Abraham et al. [1],
which solves Byzantine agreement for t < n/2 in expected 10 rounds. Neverthe-
less, these protocols do not guarantee termination in constant rounds, which is
the setting we are interested in.5 In fact, it is shown that termination cannot be
guaranteed in constant rounds [12,31].

Recent works [14–16,22] try to minimize the usage of expensive broadcast
channels in the context of round-optimal standard MPC. In particular, they
study whether each round of a round-optimal MPC protocol necessarily requires
a broadcast channel or pairwise-private channels suffice in some of them. In the
context of round-optimal solitary MPC with god, we ask an analogous question:

Is a broadcast channel necessary in every round of a three-round solitary MPC
protocol with god?

We show that a broadcast channel is necessary in both the first and second
rounds in a three-round solitary MPC protocol with god while pairwise-private
channels suffice in the third round.

With PKI, No Broadcast. In this setting a natural question arises: in the
absence of a broadcast channel, if we assume a PKI setup, what is the opti-
mal round complexity for solitary MPC with god? In standard MPC, note that
since standard MPC with god implies broadcast with guaranteed termination,
any protocol without a broadcast channel (only using pairwise-private channels
with PKI setup) should necessarily require super-constant rounds. In contrast,
observe that solitary MPC with god does not imply broadcast with guaranteed
termination, so the same lower bound does not hold. This motivates us to ask
the following question:

4 Note that PKI setup is in fact necessary for realizing a broadcast channel when
t ≥ n/3 (where n is the total number of parties) [33,37].

5 In these randomized broadcast protocols, the number of rounds depends on the
randomness involved in the protocol. For example, the protocol by Abraham
et al. [1] terminates in constant rounds except with constant probability and requires
at least super-polylogarithmic rounds (in the security parameter) to terminate with
all but negligible probability.
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With a PKI setup and no broadcast channel, can we overcome the above
standard MPC lower bound? Specifically, can we build a constant-round solitary

MPC protocol with god in the honest majority setting?

We answer this question in the affirmative by constructing a five-round soli-
tary MPC protocol that achieves god in the above setting.

1.1 Our Results

1.1.1 With Broadcast, No PKI

When there is a broadcast channel but no PKI setup, we show a lower bound of
three rounds for achieving solitary MPC with god in the honest majority setting,
which is the same as the lower bound for standard MPC.

Informal Theorem 1. Assume parties have access to CRS, pairwise-private
channels and a broadcast channel. Then, there exists a solitary functionality f
such that no two-round MPC protocol can compute f with god in the honest
majority setting (in particular, when n/3 ≤ t < n/2) even against a non-rushing
adversary.

This lower bound is tight because we know from prior works [3,6,28] that there
are three-round solitary MPC protocols with god in the honest majority setting.

We then study the minimal number of broadcast rounds needed in a round-
optimal (three-round) solitary MPC protocol with god. We show that a broadcast
channel is necessary in both the first and second rounds.

Informal Theorem 2. Assume parties have access to CRS and pairwise-
private channels. No three-round solitary MPC protocol can compute any soli-
tary functionality f with god in the honest majority setting (in particular, when
2 �n/5� ≤ t < n/2) even against a non-rushing adversary, unless there are broad-
cast channels in both Rounds 1 and 2.

We note that the necessity of a broadcast channel in Round 1 holds for any
n/3 ≤ t < n/2 while the necessity of a broadcast channel in Round 2 only
holds for 2 �n/5� ≤ t < n/2 requiring at least two parties be corrupted. In other
words, for t = 1 and n = 3 only the first round broadcast is necessary. This
is consistent with and proven tight by the upper bound in the work of Patra
and Ravi [36], which constructed a three-round three-party protocol with god
tolerating a single corruption, using broadcast only in Round 1.

For the general case when t ≥ 2, we observe that in the three-round protocols
from prior work [3,6,28], only the first two rounds require a broadcast channel
while the third-round messages can be sent over pairwise-private channels to the
output-receiving party. Thus, our lower bounds are also tight in the general case.

Implications for Standard MPC. The work of Cohen et al. [14] identifies
which rounds of broadcast are necessary for achieving round-optimal (two-round)
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standard MPC with dishonest majority. The recent work of [15] studies this ques-
tion for two-round standard MPC in the honest majority setting, assuming the
presence of a correlated randomness setup (or PKI). However, the same question
for round-optimal (three-round) standard MPC with god in honest majority set-
ting and without correlated randomness (or PKI) is not known; which we address
in this work. Since standard MPC with god implies solitary MPC with god, our
negative results for solitary MPC also apply to standard MPC, namely both the
first and second rounds of broadcast are necessary for a three-round standard
MPC with god. On the other hand, we observe that the existing three-round
protocols [6,28] still work if the third-round messages are sent over pairwise-
private channels (we defer the discussion to the full version [7]), thus we fully
resolve this problem for standard MPC with god in honest majority setting and
without correlated randomness setup (i.e., in the plain and CRS models).

1.1.2 With PKI, No Broadcast

When there is a PKI setup and no broadcast channel, we show that the super-
constant lower bound for standard MPC does not hold for solitary MPC any
more. In particular, we construct a five-round protocol that works for any num-
ber of parties and achieves god in the honest majority setting. Our protocol
builds on the standard MPC protocol with god of Gordon et al. [28] and uses a
decentralized threshold fully homomorphic encryption (dTFHE) scheme (defined
in [10]) as the main building block, which can be based on the learning with errors
(LWE) assumption. Our PKI setup includes a setup for digital signatures as well
as one for dTFHE (similarly as in [28])6.

Informal Theorem 3. Assuming LWE, there exists a five-round solitary MPC
protocol with god in the presence of PKI and pairwise-private channels. The pro-
tocol works for any number of parties n, any solitary functionality and is secure
against a malicious rushing adversary that can corrupt any t < n/2 parties.

We complement this upper bound by providing a lower bound of four rounds in
the same setting even in the presence of a non-rushing adversary.

Informal Theorem 4. Assume a PKI setup and pairwise-private channels.
There exists a solitary functionality f such that no three-round MPC can com-
pute f with god in the honest majority setting (in particular, when 3 �n/7� ≤
t < n/2) even against a non-rushing adversary.

The above lower bound requires t ≥ 3, namely at least 3 parties are corrupted.
Separately we also study the round complexity for scenarios when t < 3.

Special Case: t = 1. When there is only 1 corrupted party, the only relevant
setting is when n = 3. We consider two cases: (a) when the function f involves
an input from the output-receiving party Q, and (b) when f does not involve
6 We leave it as an interesting open problem to achieve the upper bound using weaker

forms of PKI setup and studying the minimal assumption required.
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an input from Q. In the first case, we show a lower bound of three rounds for
achieving solitary MPC with god. That is, there exists a solitary functionality f
(involving an input from Q) such that a minimum of three rounds are required
to achieve solitary MPC with god. Notably, this lower bound also extends to any
n ≥ 3 and n/3 ≤ t < n/2. A three-round upper bound for t = 1 can be achieved
by combining [28] and [17].

In the second case where f does not involve an input from Q, it turns out we
can do better than three rounds. In particular, we show a two-round protocol to
achieve solitary MPC with god. Once again, the main technical tool is decentral-
ized threshold FHE and the protocol can be based on LWE. This upper bound
is also tight as we know from prior work [30] that two rounds are necessary.

Special Case: t = 2. When the number of corrupted parties is 2, we only
consider the case of n = 5 and show a lower bound of three rounds to compute
any function f (with or without input from Q). This lower bound also extends
to any n ≥ 5 and 2 �n/5� ≤ t < n/2. An upper bound of four rounds for t = 2
can also be achieved by combining [28] and [17].

We remark that all our lower bounds above hold not only for PKI, but
naturally extend to arbitrary correlated randomness setup model. We summarize
all our results along with the known related results for the round complexity of
solitary MPC with god in Tables 1 and 2. Note that for certain ranges of (n, t)
such as 3 �n/7� ≤ t < n/2, it is not meaningful for every n (e.g., when n = 8,
there is no appropriate t in the range). This is an artifact of the partitioning
technique used in the proof. Nevertheless, the range is relevant for sufficiently
large values of n. All our results also assume the existence of a common reference
string (CRS) and pairwise-private channels. Our results are highlighted in red.

Table 1. Round complexity of solitary MPC with god. “—” means it doesn’t matter
what value to take. Our results are highlighted in red.

broadcast PKI (n, t) Q has input lower bound upper bound

yes yes t < n/2 — 2 [30] 2 [28]

yes no n/3 ≤ t < n/2 — 3 (Theorem 1) 3 [3,6,28]

no yes n = 3, t = 1 no 2 [30] 2 (full version [7])

no yes n = 3, t = 1 yes 3 (full version [7]) 3 [28] + [17]

no yes n = 5, t = 2 — 3 (full version [7]) 4 [28] + [17]

no yes 3 �n/7� ≤ t < n/2 — 4 (Theorem 4) 5 (Theorem 5)
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Table 2. For the setting with broadcast channels and no PKI setup, we study the
possibility of achieving a three-round solitary MPC with god with fewer broadcast
rounds. “bc in R1” means the parties have access to the broadcast channel in Round
1. All parties have access to pairwise-private channels in all rounds. For all the results,
it doesn’t matter whether Q has input or not. Our results are highlighted in red.

bc in R1 bc in R2 bc in R3 (n, t) Possible?

no yes yes n/3 ≤ t < n/2 No (Theorem 2)

yes no yes 2 �n/5� ≤ t < n/2 No (Theorem 3)

yes yes no t < n/2 Yes [3,6,28]

yes no no n = 3, t = 1 Yes [36]

1.2 Roadmap

We provide a technical overview in Sect. 2 and preliminaries in Sect. 3. In Sect. 4
we present our lower bound results assuming a broadcast channel but no PKI
setup. In Sect. 5 we provide our lower bounds for PKI without broadcast as well
as our main five-round protocol as an upper bound. We defer the results for the
special cases of t = 1 and t = 2 to the full version [7].

2 Technical Overview

2.1 Overview of Upper Bounds

In this section, we give a technical overview of the upper bounds. We will mainly
focus on the general five-round protocol in the setting with PKI and no broad-
cast, and briefly discuss other special cases at the end.

Our starting point is the two-round protocol of Gordon
et al. [28] which achieves guaranteed output delivery (god) in the presence of
an honest majority and delivers output to all parties, assuming the existence of
a broadcast channel and PKI setup. The protocol uses a (t + 1)-out-of-n decen-
tralized threshold fully homomorphic encryption (dTFHE) scheme, where an
FHE public key pk is generated in the setup and the secret key is secret shared
among the parties. The encryptions can be homomorphically evaluated and can
only be jointly decrypted by at least (t+1) parties. Their two-round protocol in
the broadcast model roughly works as follows. First, the PKI setup generates the
dTFHE public key pk and individual secret keys ski for each party Pi. In Round
1, each party Pi computes an encryption of its input xi and broadcasts [[xi]].7

Then each party can homomorphically evaluate the function f on [[x1]], . . . , [[xn]]
to obtain an encryption of the output [[y]]. In Round 2, each party broadcasts a
partial decryption of [[y]]. At the end of this, every party can individually combine
the partial decryptions to learn the output y.

7 We use [[x]] to denote a dTFHE encryption of x.



132 S. Badrinarayanan et al.

One immediate observation is that since we only care about one party
Pn(= Q) receiving the output, the second round also works without a broadcast
channel by requiring every party to only send partial decryptions directly to Q.
The main challenge now is to emulate the first round with pairwise-private chan-
nels instead of broadcast channels. A näıve approach is to employ a (t+1)-round
protocol to realize the broadcast functionality over pairwise-private channels [17],
but this would result in a (t + 2)-round protocol.

Even worse, there seems to be a fundamental barrier in this approach to
design a constant round protocol. At a high level, to achieve guaranteed out-
put delivery, we want all the honest parties to agree on a set of ciphertexts
[[x1]], . . . , [[xn]] so that they can homomorphically evaluate on the same set of
ciphertexts and compute partial decryptions on the same [[y]]. This already
implies Byzantine agreement, which requires at least (t + 1) rounds [17].

Circumventing the Lower Bound. A crucial observation here, which also
separates solitary MPC from standard MPC, is that we do not need all the
honest parties to always agree. Instead, we need them to agree only when Q is
honest. In other words, if the honest parties detect any dishonest behavior of Q,
they can simply abort. This does not imply Byzantine agreement now. Hence
there is a hope to circumvent the super-constant lower bound.

Relying on Honest Q. First, consider a simple case where honest parties only
need to agree on [[xn]] when Q is honest. This can be done in two rounds (by
augmenting the two-round broadcast with abort protocol of [26] with digital
signatures). In Round 1, Q sends [[xn]] to each party (along with its signature).
To ensure Q sends the same ciphertext to everyone, in Round 2, parties exchange
their received messages in Round 1. If there is any inconsistency, then they detect
dishonest behavior of Q, so they can abort; otherwise, all the honest parties will
agree on the same [[xn]] at the end of Round 2 if Q is honest. Unfortunately this
simple approach does not work for parties other than Q. If honest parties want
to agree on [[xi]] for i �= n, they cannot simply abort when detecting inconsistent
messages from Pi (because they are only allowed to abort when Q is dishonest).

Our next attempt is to crucially rely on Q to send out all the ciphertexts. In
Round 1, each party Pi first sends an encryption [[xi]] to Q. Then in Round 2, Q
sends [[x1]], . . . , [[xn]] to each party. In Round 3, parties exchange their messages
received from Q. If the honest parties notice any inconsistency in Q’s Round-2
messages, they can simply abort. Note that every message is sent along with
the sender’s signature, so a malicious Q cannot forge an honest Pi’s ciphertext
[[xi]]; similarly, a malicious Pi cannot forge an honest Q’s Round-2 message.
Therefore, all the honest parties will agree on the same set of ciphertexts at the
end of Round 3 if Q is honest.

Nevertheless, a malicious Q has complete freedom to discard any honest
party’s input in Round 2 (pretending that these parties did not communicate
to him in Round 1) and learn a function excluding these honest parties’ inputs,
which should not be permitted. The crux of the issue is: Even when Q is mali-
cious, the output of f learned by Q must be either ⊥ or include every honest
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party’s input. This is implied by the security guarantees of the MPC protocol.
In particular, in the real/ideal paradigm, a malicious Q in the ideal world can
only obtain an output from the ideal functionality that computes f involving
all the honest parties’ inputs. Therefore, we need a mechanism to ensure that
all the honest parties’ ciphertexts are picked by Q. However, the parties do not
know the identities of the honest parties. How can they ensure this?

Innocent Until Proven Guilty. Our solution to this problem is for every
party Pi to treat other parties with more leniency. That is, unless Pi knows with
absolute certainty that another party Pk is malicious, Pi would demand that the
ciphertexts picked by Q must also include a ciphertext from Pk. To implement
this mechanism, we add another round at the beginning, where each party Pi

sends [[xi]] to every other party. Then in Round 2, each party Pi, besides sending
[[xi]] to Q, also sends all the ciphertexts he has received to Q. In Round 3, Q
picks a set of ciphertexts [[x1]], . . . , [[xn]] and sends to each party. In particular, for
each party Pk, as long as Q received any valid ciphertext for Pk (either directly
from Pk or from other parties), Q must include a ciphertext for Pk. Parties
exchange messages in Round 4 to check Q’s consistency as before. Finally, we
maintain the following invariant for every honest party Pi before sending the
partial decryption in Round 5: if Pi received a ciphertext [[xk]] from party Pk in
Round 1, then the ciphertexts picked by Q must also include a ciphertext from
Pk. Crucially, this invariant allows Q to pick a different ciphertext [[x′

k]] (with a
valid signature) if e.g. that was received by Q from Pk. On the other hand, this
prevents the attacks discussed earlier as a malicious Q can no longer discard an
honest Pk’s ciphertext [[xk]], although Pi is yet to identify the honest parties.

Achieving Fully Malicious Security. To achieve fully malicious security,
we still need to ensure that the adversary’s messages are correctly generated.
The approach taken by [28] is to apply a generic round-preserving compiler [5]
that transforms a semi-malicious protocol (where, the semi-malicious adversary
needs to follow the protocol specification, but has the liberty to decide the input
and random coins in each round) to a malicious protocol using non-interactive
zero-knowledge (NIZK) proofs in the CRS model with broadcast channels. In
particular, in each round, the adversary must prove (in zero-knowledge) that it
is following the protocol consistently with some setting of random coins. How-
ever, we cannot directly apply this round-preserving compiler since we do not
have broadcast channels. This limitation introduces additional complications in
our protocol design to preserve the round complexity while achieving malicious
security. We refer the reader to Sect. 5.2 for more details of the protocol and
other subtle issues we faced in our protocol design.

Special Cases. As we mentioned above, the two-round protocol of Gordon et
al. [28] with broadcast and PKI can be transformed into a (t+2)-round protocol
if the broadcast in the first round is instantiated by a (t + 1)-round protocol
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over pairwise-private channels [17] and parties only send their messages to Q in
the second round. For t = 1 and 2, we can achieve better than five rounds. For
t = 1, when Q does not have input, we can design a two-round protocol which
crucially relies on the fact that at most one party is corrupted. The details are
deferred to the full version [7].

2.2 Overview of Lower Bounds

For each of our lower bound proofs, we design a special solitary function f that
cannot be computed with god. At a high level, we assume towards a contradiction
that there exists an MPC protocol Π that can compute f with god. Next, we
analyze a sequence of scenarios which lead us to the final contradiction regarding
the properties that Π must satisfy. Here, we exploit the guarantees of correctness,
privacy and full-security (guaranteed output delivery). We carefully design the
function f and scenarios for each lower bound proof. For certain proofs, we
leverage a delicate probabilistic argument technique, which we elaborate below.

With Broadcast and no PKI. For our three-round lower bound with a broad-
cast channel and no PKI setup, we design a solitary function f(x1, x2, x3) among
parties P1, P2, and Q (output receiving party) that has an oblivious transfer fla-
vor. The function is defined as f(x1 = (m0,m1), x2 = b, x3 = ⊥) := mb, where
x3 = ⊥ denotes that Q has no input; (m0,m1) ∈ {0, 1}λ denote a pair of strings
and b ∈ {0, 1} denotes a single bit. We assume there exists a two-round protocol
Π that computes f with god and consider three scenarios. The first scenario
involves a malicious P2 who drops his private message towards Q in Round 1
and aborts in Round 2. The second scenario involves a passive Q who behaves
honestly but recomputes the output by locally emulating Scenario 1 in her head.
The security guarantee of god provided by Π allow us to argue that even if P2

does not communicate privately to Q in Round 1 and aborts in Round 2, Q must
still be able to compute the output on x2 i.e. the input with respect to which it
interacted with P1 in Round 1. Intuitively, this implies that Q relies on the fol-
lowing messages to carry information about x2 required for output computation
(i) P1’s broadcast message in Round 2 and (ii) P2’s broadcast message in Round
1. However, we note that, both of these are also available to P1 at the end of
Round 1 itself. This leads us to a final scenario, in that a passive P1 can compute
the residual function f(x̃1, x2, x̃3) for more than one choices of (x̃1, x̃3), while
the input of honest P2 remains fixed – which is the final contradiction. Notably,
our specially designed function f allows P1 to derive P2’s input. We present the
full proof in Sect. 4.1.

Necessity of Broadcast in Round 1. To show the necessity of broadcast in
Round 1 in a three-round solitary MPC protocol with god (with broadcast and
no PKI), we use the same function f as above and assume there exists a three-
round protocol Π that computes f with god and uses the broadcast channel only
in Round 2 and Round 3 (and uses pairwise-private channels in all rounds). We
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first consider a scenario with a malicious P2, who only behaves honestly to P1

and pretends to have received a maliciously computed message from Q in Round
1. In addition, P2 aborts in Round 3. We show that an honest Q in this scenario
must obtain f(x1, x2, x3) as the output, where x1, x2, x3 are the parties’ honest
inputs. First of all, Q must learn an output computed on the honest parties’
inputs x1 and x3 by the god property of Π. The output is also w.r.t. P2’s honest
input x2 because Q’s view in this scenario is subsumed by another scenario
with a malicious Q, where Q only behaves honestly to P1 and pretends to have
received a maliciously computed message from P2 in Round 1. Since the first-
round messages are only sent via pairwise-private channels, P1 cannot distinguish
whether P2 is malicious (first scenario) or Q is malicious (second scenario), and
P1’s view is identically distributed in both scenarios. Comparing the messages
received by Q in the two scenarios, we can conclude Q’s view in the first scenario
is subsumed by its view in the second scenario. Notice that a malicious Q in the
second scenario can only learn an output on the honest parties’ input x1 and x2,
hence Q must learn f(x1, x2, x3) in both scenarios. The key takeaway is that P2’s
input can be considered as “committed” in its private message to P1 in Round
1 and broadcast message in Round 2. This allows a semi-honest P1 to emulate
Q’s view in the first scenario and locally compute f(x1, x2,⊥). Our specially
designed f allows P1 to derive honest P2’s input, violating the security of Π. A
more detailed proof is presented in Sect. 4.2.

Necessity of Broadcast in Round 2. For our result showing necessity of
broadcast in Round 2, we design a more sophisticated function f (see Sect. 4.3
for the construction) and leverage a more involved probabilistic argument in our
proof. We assume there exists a three-round 5-party solitary MPC Π that com-
putes f with god against 2 corruptions which uses broadcast in only Round 1
and Round 3 (and uses pairwise-private channels in all rounds). The argument
involves two crucial observations (1) Π is such that if corrupt P1 participates
honestly using input x1 only in the broadcast communication and private com-
munication towards {P2, P5 = Q} in Round 1 (and sends no other messages
during Π), then there exists some x∗

1 such that the output obtained by Q is not
computed with respect to x∗

1 with a sufficiently large (constant) probability. Intu-
itively, if this does not hold and for all x1 the output is computed with respect to
x1, then it would mean that Π is such that {P2, Q} obtain sufficient information
to compute on x1 at the end of Round 1 itself. This would make Π susceptible to
residual function attack by {P2, Q} which violates security. (2) Π is such that if
corrupt {P3, P4} pretend in Round 2 as if they have not received private commu-
nication from P1 in Round 1, still, the output obtained by Q must be computed
on honest P1’s input x1. This follows from correctness of Π. Next, we design a
final scenario building on (1) and (2) where an adversary corrupting {P1, Q}
obtains multiple outputs, with respect to both input x′

1 �= x∗
1 and x∗

1; which
gives the final contradiction. Crucially, due to absence of broadcast in Round 2,
the adversary is able to keep the honest parties {P2, P3, P4} on different pages
with respect to whether P1 has aborted after Round 1 or not. Specifically, the



136 S. Badrinarayanan et al.

adversarial strategy in the final scenario exploits the absence of broadcast in
Round 2 to ensure the following - (a) view of honest {P3, P4} is similar to the
scenario in (1), where they do not receive any communication from P1 except
its broadcast communication in Round 1 and (b) view of honest P2 is similar to
the scenario in (2). Here, P2 receives communication from P1 in both Round 1
and Round 2; but receives communication from {P3, P4} in Round 2 conveying
that they did not receive P1’s private communication in Round 1 (the Round 2
messages from {P3, P4} could potentially convey this information, depending on
protocol design). This inconsistency in the views of honest parties enables the
adversary to obtain multiple outputs.

With PKI and no Broadcast. The lower-bound arguments in the setting
with a PKI setup and no broadcast tend to be more involved as PKI can be
used to allow output obtaining party Q to have some secret useful for output
computation (as elaborated in the overview of 3-round lower bound above).
For our four-round general lower bound that holds for 3 �n/7� ≤ t < n/2 and
t ≥ 3, we assume there exists a three-round protocol Π with god computing a
specially designed 7-party solitary function f (see Sect. 5.1 for the construction
of f). We analyze four main scenarios as follows. In Scenarios 1 and 2, {P1, P6}
are corrupt and P1 does not communicate directly to anyone throughout. The
crucial difference between them is in the communication of P6 in Round 2 to
{P2, P3, P4, P5}: in Scenario 1, P6 acts as if he did not receive any communication
from P1 in Round 1; in Scenario 2, P6 pretends to have received communication
from P1 in Round 1. We first show that in Scenario 1, there must exist some
x∗
1 such that the output obtained by Q is not computed with respect to x∗

1

with a sufficiently large (constant) probability. Intuitively, this holds because the
communication in Scenario 1 is independent of P1’s input. Next, we prove via a
sequence of hybrids that in Scenario 2, there also exists x∗

1 such that the output
is not computed on x∗

1 with a sufficiently large probability. This lets us infer a
critical property satisfied by Π - if {P3, P4, P5} do not receive any communication
directly from P1 throughout Π and only potentially receive information regarding
P1 indirectly via P6 (say P6 claims to have received authenticated information
from P1 which can be verified by {P3, P4, P5} due to availability of PKI), then
Q obtains an output on some x′

1(�= x∗
1) with a sufficiently large probability.

Next, we consider an orthogonal scenario (Scenario 3) where {P3, P4, P5} are
corrupt and pretend as if they received no information from P1 directly. Correct-
ness of Π ensures that Q must obtain output on honest input of P1 using the
messages from {P1, P2, P6}. Roughly speaking, the above observations enable us
to partition the parties {P1, . . . , P6} into two sets {P1, P2, P6} and {P3, P4, P5}.
Combining the above inferences, we design the final scenario where adversary
corrupts {P1, P2, Q} and participates with x∗

1. Here, P1 behaves honestly only to
P6 (among the honest parties). The communication of corrupt parties is carefully
defined so that the following holds: (a) the views of {P3, P4, P5} are identically
distributed to their views in Scenario 2, and (b) the views of {P1, P2, P6} are
identically distributed to their views in Scenario 3. We then demonstrate that
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Q can obtain an output computed on x∗
1 as well as another output computed on

some x′
1 �= x∗

1 by using the communication from {P1, P2, P6} and {P3, P4, P5}
selectively, violating the security of Π.

Finally, we observe that the above approach inherently demands the presence
of 3 or more corruptions. The main bottleneck in extending it to t = 2 arises from
the sequence of hybrids between Scenario 1 and 2, which requires the presence
of an additional corruption besides {P1, P6}. This shows hope for better upper
bounds (less than four rounds) for lower corruption thresholds. In this direction,
we investigated the cases of t = 1 and t = 2 separately. We showed the necessity
of three rounds for t = 1 when Q has input and for t = 2 (irrespective of whether
Q has input). These lower bounds also employ the common approach outlined
above but differ significantly in terms of the associated scenarios. We refer to the
full version [7] for details. Notably, all the lower bounds also extend to arbitrary
correlated randomness setup.

3 Preliminaries

3.1 Notation and Setting

We use λ to denote the security parameter. By poly(λ) we denote a polynomial
function in λ. By negl(λ) we denote a negligible function, that is, a function f
such that f(λ) < 1/p(λ) holds for any polynomial p(·) and sufficiently large λ.
We use [[x]] to denote an encryption of x.

We consider a set of parties {P1 . . . , Pn}. Each party is modelled as a prob-
abilistic polynomial-time (PPT) Turing machine. We assume that there exists a
PPT adversary who can corrupt up to t parties where n/3 ≤ t < n/2. We assume
throughout that the parties are connected by pairwise-secure and authentic chan-
nels and have access to a common reference string (CRS). Additional setup or
network assumption is explicitly mentioned in the respective sections.

The security definition of solitary MPC with guaranteed output delivery is
deferred to the full version.

3.2 Cryptographic Primitives

In our constructions, we need to use digital signatures, simulation-extractible
non-interactive zero-knowledge (NIZK) arguments, and decentralized threshold
fully homomorphic encryption (dTFHE). In this section, we only define the
syntax of dTFHE and the NIZK languages used in our constructions, and defer
their security definitions to the full version.

Syntax of dTFHE. We define a t-out-of-n decentralized threshold fully homo-
morphic encryption scheme with the following syntax as in [10].

Definition 1 (Decentralized Threshold Fully Homomorphic Encryp-
tion (dTFHE)). Let P = {P1, . . . , Pn} be a set of parties. A dTFHE
scheme is a tuple of PPT algorithms dTFHE = (dTFHE.DistGen, dTFHE.Enc,
dTFHE.PartialDec, dTFHE.Eval, dTFHE.Combine) with the following syntax:
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– (pki, ski) ← dTFHE.DistGen(1λ, 1d, i; ri): On input the security parameter λ, a
depth bound d, party index i and randomness ri, the distributed setup outputs
a public-secret key pair (pki, ski) for party Pi. We denote the public key of the
scheme as pk = (pk1‖ . . . ‖pkn).

– [[m]] ← dTFHE.Enc(pk,m): On input a public key pk, and a plaintext m in
the message space M, it outputs a ciphertext [[m]].

– [[y]] ← dTFHE.Eval(pk,C, [[m1]], . . . , [[mk]]): On input a public key pk, a circuit
C of depth at most d that takes k inputs each from the message space and out-
puts one value in the message space, and a set of ciphertexts [[m1]], . . . , [[mk]]
where k = poly(λ), the evaluation algorithm outputs a ciphertext [[y]].

– [[m : ski]] ← dTFHE.PartialDec(ski, [[m]]): On input a secret key share ski and
a ciphertext [[m]], it outputs a partial decryption [[m : ski]].

– m/⊥ ← dTFHE.Combine(pk, {[[m : ski]]}i∈S): On input a public key pk and
a set of partial decryptions {[[m : ski]]}i∈S where S ⊆ [n], the combination
algorithm either outputs a plaintext m or the symbol ⊥.

NIZK Languages Used. In our solitary MPC protocols, we will consider two
NP languages L1, L2 for the NIZK described below.

– NP Language L1:
Statement st = ([[x]], pk) Witness wit = (x, ρ)
R1(st,wit) = 1 iff [[x]] = dTFHE.Enc(pk, x; ρ).

– NP Language L2:
Statement st = ([[x : sk]], [[x]], pk, i) Witness wit = (sk, r)
R2(st,wit) = 1 iff [[x : sk]] = dTFHE.PartialDec(sk, [[x]]) and
(pk, sk) = dTFHE.DistGen(1λ, 1d, i; r).

4 With Broadcast and No PKI

In this section, we assume a network setting where the parties have access to a
broadcast channel in addition to pairwise-private channels. In terms of setup, we
assume that all parties have access to a common reference string (CRS). First,
we present a new lower bound of three rounds for solitary MPC with god in
Sect. 4.1. Then we study whether it is possible to use fewer rounds of broadcast
and show in Sect. 4.2 and Sect. 4.3 that broadcast is necessary in both the first
and second rounds. The above negative results are tight given the existing results
of [3,6,28,36], which we discuss in the full version [7].

4.1 Necessity of Three Rounds

We show that it is impossible to design a two-round solitary MPC with god in the
honest majority setting (in particular, n/3 ≤ t < n/2), assuming the presence
of pairwise-private channels and a broadcast channel. Our result holds in the
presence of any common public setup such as CRS, even against non-rushing
adversaries and irrespective of whether the output-obtaining party Q provides
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an input or not. We discuss in the full version why the existing proofs of lower
bounds (three rounds) for standard MPC with god in the presence of an honest
majority [24,28,36] do not hold for solitary functionalities.

Theorem 1. Assume parties have access to CRS, pairwise-private channels and
a broadcast channel. Let n and t be positive integers such that n ≥ 3 and n/3 ≤
t < n/2. Then, there exists a solitary functionality f such that no two-round n-
party MPC protocol tolerating t corruptions can compute f with god, even when
the adversary is assumed to be non-rushing.

Proof. For simplicity, we present the argument for the setting n = 3 and t = 1
below and elaborate on how to extend the proof to n/3 ≤ t < n/2 later. Consider
a solitary function f(x1, x2, x3) among {P1, P2, P3} where Q = P3 denotes the
output receiving party. We define f as f(x1 = (m0,m1), x2 = b, x3 = ⊥) := mb,
where x3 = ⊥ denotes that Q has no input; (m0,m1) ∈ {0, 1}λ denote a pair
of strings and b ∈ {0, 1} denotes a single bit. For the sake of contradiction,
suppose there exists a two-round 3-party solitary MPC with god, say Π which
can compute f . Note that at most the adversary corrupts at most one party.

We consider three different scenarios of the execution of Π. For simplicity,
we assume the following about the structure of Π: (a) Round 2 involves only
broadcast messages while Round 1 involves messages sent via both pairwise-
private and broadcast channels. This holds without loss of generality since the
parties can perform pairwise-private communication by exchanging random pads
in the first round and then using these random pads to unmask later broadcasts
[23]. (b) In Round 1, each pair of parties communicate via their pairwise-private
channels (any protocol where a pair of parties does not communicate privately
in Round 1 can be transformed to one where dummy messages are exchanged
between them). (c) Round 2 does not involve any outgoing communication from
Q (as Q is the only party to receive the output at the end of Round 2).

Next, we define some useful notation: Let pci→j denote the pairwise-private
communication from Pi to Pj in Round 1 and br

i→ denote the message broadcast
by Pi in round r, where r ∈ [2], {i, j} ∈ [3]. These messages may be a function
of the crs as per protocol specifications. Let Viewi denotes the view of party Pi

which consists of crs, its input xi, randomness ri and all incoming messages.
Following is a description of the scenarios. In each of these scenarios, we

assume that the adversary uses the honest input on behalf of the corrupt parties
and its malicious behaviour is limited to dropping some of the messages supposed
to be sent by the corrupt party. The views of the parties for all the scenarios are
shown in Table 3.

Scenario 1: The adversary actively corrupts P2 who behaves honestly in Round
1 towards P1 but doesn’t communicate privately to Q in Round 1. In more
detail, P2 sends messages pc2→1, b

1
2→ according to the protocol specification

but drops the message pc2→3. In Round 2, P2 aborts.
Scenario 2: The adversary passively corrupts Q who behaves honestly through-

out and learns output f(x1, x2, x3). Additionally, Q locally re-computes the
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output by emulating Scenario 1, namely when P2 does not communicate pri-
vately to Q in Round 1 and aborts in Round 2. Specifically, Q can locally
emulate this by discarding pc2→3 (private communication from P2 to Q in
Round 1) and b22→ (broadcast communication from P2 in Round 2).

Scenario 3: The adversary corrupts P1 passively who behaves honestly through-
out. P1 also does the following local computation: Locally emulate the view
of Q as per Scenario 1 (from which the output can be derived) for various
choices of inputs of {P1, P3} while the input of P2 i.e. x2 remains fixed. In
more detail, P1 does the following - Let (pc2→1, b

1
2→) be fixed to what was

received by P1 in the execution. Choose various combinations of inputs and
randomness on behalf of P1 and P3. Consider a particular combination, say
{(x̃1, r̃1), (x̃3, r̃3)}. Use it to locally compute ˜b11→, ˜b13→, p̃c1→3, p̃c3→1. Next,

locally compute ˜b21→ using the Round 1 emulated messages which results
in the complete view ˜View3 of Q analogous to Scenario 1, where ˜View3 =
{crs, x̃3, r̃3,

˜b11→, b12→, p̃c1→3,
˜b21→} corresponds to the inputs (x̃1, x2, x̃3).

Table 3. Views of P1, P2, P3 in Scenarios 1 – 3.

Scenario 1 Scenario 2 & 3

View1 View2 View3 View1 View2 View3

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x1, r1, crs) (x2, r2, crs) (x3, r3, crs)

Round 1 pc2→1, pc3→1 pc1→2, pc3→2, pc1→3, –, pc2→1, pc3→1, pc1→2, pc3→2, pc1→3, pc2→3,

b12→, b13→ b11→, b13→ b11→, b12→ b12→, b13→ b11→, b13→ b11→, b12→
Round 2 – b21→ b21→ b22→ b21→ b21→, b22→

The proof skeleton is as follows. First, we claim that if Scenario 1 occurs,
then Q must obtain f(x1, x2, x3) with overwhelming probability. If not, then Π
is vulnerable to a potential attack by semi-honest Q (that is captured in Scenario
2) which enables Q to learn information that he is not supposed to learn; which
violates security. Intuitively, this inference captures Q’s reliance on P1’s messages
in Round 2 and P2’s broadcast in Round 1 to carry information about x2 required
for output computation. Note that this information is available to P1 at the end
of Round 1 itself. Building on this intuition, we show that Π is such that an
adversary corrupting P1 passively (as in Scenario 3) can compute f(x̃1, x2, x̃3)
for any choice of (x̃1, x̃3), which is the final contradiction. We present the formal
proof and show how the proof can be extended for n ≥ 3 and n/3 ≤ t < n/2
(using player partitioning technique [34]) in the full version [7].

4.2 Necessity of Broadcast in Round 1

Now we show that any three-round n-party solitary MPC with god against t
corruptions must use broadcast channel in Round 1, where n/3 ≤ t < n/2.



On the Round Complexity of Fully Secure Solitary 141

Theorem 2. Assume parties have access to CRS and pairwise-private channels.
Let n and t be positive integers such that n ≥ 3 and n/3 ≤ t < n/2. There exists a
solitary functionality f such that no three-round n-party solitary MPC protocol
securely computes f with god against t corruptions, while making use of the
broadcast channel only in Round 2 and Round 3 (pairwise-private channels can
be used in all the rounds).

Proof. For simplicity, we present the argument for the setting n = 3 and t = 1
below. The proof can be extended for n/3 ≤ t < n/2 using player partitioning
technique. Consider the function f(x1, x2, x3) defined as in the proof of Theo-
rem 1, i.e. f(x1 = (m0,m1), x2 = b, x3 = ⊥) := mb. Suppose for the sake of
contradiction that there exists a three-round solitary MPC protocol with god,
say Π that computes f and utilizes broadcast channel only in Rounds 2 and 3
(i.e., Π uses only pairwise-private channels in Round 1, and uses both broadcast
and pairwise-private channels in Rounds 2 and 3).

Without loss of generality, we can assume that Π has the following structure:
(a) No broadcast messages are sent during Round 3, and Round 3 only involves
private messages sent to Q. This is without loss of generality as any solitary MPC
that uses broadcast in the last round can be transformed into one where the
messages sent via broadcast are sent privately only to Q (as Q is the only party
supposed to receive output at the end of Round 3). (b) Round 2 only involves
broadcast messages. This is also without loss of generality since the parties can
perform pairwise-private communication by exchanging random pads in the first
round and then using these random pads to unmask later broadcasts [23].

We analyze three different scenarios of the execution of Π. Before describing
the scenarios, we define some useful notation. We assume (r1, r2, r3) are the
randomness used by the three parties if they behave honestly during the protocol
execution. Let pci→j where i, j ∈ [3] denote the pairwise-private communication
from Pi to Pj in Round 1 if Pi behaves honestly using input xi and randomness ri.
Similarly, let p̃ci→j denote the pairwise-private communication from Pi to Pj in
Round 1 if Pi follows the protocol but uses some other input x̃i and randomness
r̃i. Let b

x,r,pci−1,pci+1
i where i ∈ [3] denote the broadcast communication by

Pi in Round 2 if Pi behaves honestly using input x and randomness r, and
received pci−1 from Pi−1 and pci+1 from Pi+1 in Round 1 (let P0 := P3 and
P4 := P1). Lastly, let pc�

i→3 where i ∈ [2], � ∈ [3] denote the pairwise-private
communication from Pi to Q in Round 3 in Scenario �. A party’s view consists
of crs, its input, randomness and incoming messages. Following is a description
of the three scenarios. The views of the parties are described in Tables 4 – 5.

Scenario 1: Adversary corrupts P2. In Round 1, P2 behaves honestly to P1 using
input x2 and randomness r2 while behaving dishonestly to Q using (x̃2, r̃2).
In other words, P2 sends pc2→1 to P1 and p̃c2→3 to Q.
In Round 2, P2 broadcasts a message as if he behaved honestly in Round 1 to
both parties (using (x2, r2)) and received a message from Q computed using
(x̃3 = ⊥, r̃3) in Round 1. Formally, P2 broadcasts b

x2,r2,pc1→2,p̃c3→2
2 .

In Round 3, P2 aborts.
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Scenario 2: Adversary corrupts Q. In Round 1, Q behaves towards P1 using
(x3 = ⊥, r3) while behaving towards P2 using (x̃3 = ⊥, r̃3). In other words,
Q sends pc3→1 to P1 and p̃c3→2 to P2.
In Round 2, Q broadcasts a message as if he behaved honestly in Round 1 to
both parties (using (x3 = ⊥, r3)) and received a message from P2 in Round
1 using (x̃2, r̃2). Formally, Q broadcasts b

x3,r3,pc1→3,p̃c2→3
3 .

Scenario 3: Adversary passively corrupts P1 behaving honestly using (x1, r1) in
all rounds.

Table 4. Views of {P1, P2, Q} in Scenarios 1 and 2.

Scenario 1 Scenario 2

View1 View2 View3 View1 View2 View3

Initial Input (x1, r1, crs) (x2, r2, crs) (x3 = ⊥, r3, crs) (x1, r1, crs) (x2, r2, crs) (x3 = ⊥, r3, crs)

Round 1 pc2→1, pc3→1 pc1→2, pc3→2 pc1→3, p̃c2→3 pc2→1, pc3→1 pc1→2, p̃c3→2 pc1→3, pc2→3

Round 2 b
x2,r2,pc1→2,p̃c3→2
2 b

x1,r1,pc2→1,pc3→1
1 b

x1,r1,pc2→1,pc3→1
1 b

x2,r2,pc1→2,p̃c3→2
2 b

x1,r1,pc2→1,pc3→1
1 b

x1,r1,pc2→1,pc3→1
1

b
x3,r3,pc1→3,p̃c2→3
3 b

x3,r3,pc1→3,p̃c2→3
3 b

x2,r2,pc1→2,p̃c3→2
2 b

x3,r3,pc1→3,p̃c2→3
3 b

x3,r3,pc1→3,p̃c2→3
3 b

x2,r2,pc1→2,p̃c3→2
2

Round 3 – – pc11→3 – – pc21→3, pc
2
2→3

Table 5. Views of {P1, P2, Q} in Scenario 3.

View1 View2 View3

Initial Input (x1, r1, crs) (x2, r2, crs) (x3 = ⊥, r3, crs)

Round 1 pc2→1, pc3→1 pc1→2, pc3→2 pc1→3, pc2→3

Round 2 b
x2,r2,pc1→2,pc3→2
2 b

x1,r1,pc2→1,pc3→1
1 b

x1,r1,pc2→1,pc3→1
1

b
x3,r3,pc1→3,pc2→3
3 b

x3,r3,pc1→3,pc2→3
3 b

x2,r2,pc1→2,pc3→2
2

Round 3 – – pc31→3, pc
3
2→3

The proof skeleton is as follows. First, we claim if Scenario 1 occurs, then Q
must obtain f(x1, x2,⊥) with overwhelming probability. Due to the god property
of Π, the honest Q in Scenario 1 must learn an output on the honest P1’s input,
namely x1. The output should also be computed on P2’s honest input x2 because
Q’s view is Scenario 1 is subsumed by its view in Scenario 2, where the malicious
Q can only learn an output computed on the honest P2’s input. Intuitively,
P2’s input is “committed” in its private communication to P1 in Round 1 and
broadcast message in Round 2. This allows a semi-honest P1 in Scenario 3 to
emulate Q’s view in Scenario 1 and learn f(x1, x2,⊥), which compromises the
security of Π. We defer the formal proof to the full version [7].



On the Round Complexity of Fully Secure Solitary 143

4.3 Necessity of Broadcast in Round 2

In this section, we show that any three-round n-party solitary MPC with god
against t corruptions must use broadcast channel in Round 2 when 2 �n/5� ≤
t < n/2 (note that t ≥ 2). Interestingly, the use of broadcast in Round 2 is not
necessary for the special case of single corruption (refer full version [7]).

Theorem 3. Assume parties have access to CRS. Let n and t be positive inte-
gers such that n ≥ 5 and 2 �n/5� ≤ t < n/2. Then, there exists a solitary
functionality f such that no three-round n-party solitary MPC protocol tolerat-
ing t corruptions securely computes f with god, while making use of the broadcast
channel only in Round 1 and Round 3 (pairwise-private channels can be used in
all the rounds).

Proof. We present the argument for the setting of n = 5 and t = 2 below, and
elaborate later on how to extend to 2 �n/5� ≤ t < n/2. Consider the solitary
function f(x1, . . . , x5) among {P1, . . . , P5} where Q = P5 denotes the output
receiving party. We clarify that our argument holds irrespective of whether f
involves an input from Q or not. First, set k = 10 (looking ahead, we set k to
be sufficiently large for the probability arguments to go through). Let f(x1 =
(xc, xr), x2 = (x0

2, x
1
2), x3 = (x0

3, x
1
3), x4 = ⊥, x5 = ⊥) be defined as follows,

where xc ∈ {0, 1}, xr, x
0
2, x

1
2, x

0
3, x

1
3 ∈ {0, 1}k and x0

2 �= x1
2, x

0
3 �= x1

3:

f(x1, . . . , x5) =
{

(xr ⊕ x0
2, x0

3) if xc = 0
(xr ⊕ x1

2, x1
3) if xc = 1 .

Suppose for the sake of contradiction that there exists a three-round 5-party
solitary MPC protocol with god against two corruptions, say Π that computes
f and utilizes broadcast channel only in Round 1 and Round 3 (i.e. Π uses
broadcast and pairwise-private channels in Round 1 and Round 3; and only
pairwise-private channels in Round 2).

Without loss of generality, we assume for simplicity the following structure for
Π: (a) Round 3 involves only private messages sent to Q - no broadcast messages.
This is w.l.o.g as any solitary MPC that uses broadcast in last round can be
transformed to one where the messages sent via broadcast are sent privately
only to Q (as Q is the only party supposed to receive output). (b) Round 2 does
not involve messages from Pi (i ∈ [4]) to Q (such a message is meaningful only
if Q communicates to Pi in Round 3, which is not the case as per (a)).

We consider an execution of Π with inputs (x1, . . . , x5) where xi denotes the
input of Pi. In the above definition of f , x4 = x5 = ⊥ indicates that P4 and P5

do not have any inputs. Next, we analyze four different scenarios. Before describ-
ing the scenarios, we define some useful notation. Let b1i denote the broadcast
communication by Pi in Round 1 when Pi behaves honestly. In Rounds 1 and
2, let pcr

i→j where r ∈ [2], i, j ∈ [5] denote the pairwise-private communication
from Pi to Pj in Round r, as per an execution where everyone behaves honestly.

Next, we use ˜pc2i→j to denote the messages that Pi (i ∈ [5]) is supposed to send
in Round 2 to Pj (j ∈ [4] \ i) incase Pi did not receive Round 1 message from
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P1. Note that this communication could be potentially different from what Pi

would send in an honest execution. Lastly, since Round 3 messages to Q could
potentially be different for each of the four scenarios, we index them addition-
ally with � indicating the scenario i.e. pc3,�

j→5 denotes Pj ’s Round 3 message to
Q in Scenario � (j ∈ [4], � ∈ [4]). These messages may be a function of the com-
mon reference string (denoted by crs). A party’s view comprises of crs, its input,
randomness and incoming messages.

Following is a description of the scenarios. In each of these scenarios, we
assume that the adversary uses the honest input on behalf of the corrupt parties
and its malicious behaviour is limited to dropping some of the messages that
were received or supposed to be sent by the actively corrupt parties. The views
of the parties are described in Tables 6, 7, 8 and 9.

[Scenario 1: Adversary corrupts P1. In Round 1, P1 behaves honestly w.r.t his
broadcast communication and private message towards P2 and Q, but drops
his private message towards P3 and P4. Further, P1 remains silent after Round
1 (i.e. does not communicate at all in Round 2 and Round 3). In other words,
in Scenario 1, P1 computes and sends only the following messages honestly :
b11, pc

1
1→2 and pc11→5.

Scenario 2: Adversary corrupts {P1, P2}. P1 behaves identical to Scenario 1. P2

behaves honestly except that he drops his Round 3 message towards Q.
Scenario 3: Adversary corrupts {P3, P4}. In Round 1, {P3, P4} behave honestly

as per protocol steps. In Round 2, {P3, P4} only communicate to P2, towards
whom they pretend that they did not receive Round 1 message from P1 (i.e.

Pi sends ˜pc2i→2 to P2 where i ∈ {3, 4}). Lastly, {P3, P4} remain silent in
Round 3 i.e. do not communicate towards Q.

Scenario 4: Adversary corrupts {P1, Q}. Q behaves honestly throughout the
protocol. P1 behaves as follows: In Round 1, P1 behaves identical to Scenario 1
(i.e. behaves honestly w.r.t its broadcast communication and private message
to P2 and Q; but drops his private message to P3 and P4). In Round 2, P1

behaves honestly only to P2 (but does not communicate to others). Lastly,
P1 sends its Round 3 message to Q as per Scenario 3 (i.e. as per protocol
specifications when P1 does not receive Round 2 message from P3 and P4).
The communication in Round 3 among the corrupt parties is mentioned only
for clarity.

Table 6. Views of {P1, . . . , P5} in Scenario 1.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1 {b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},

{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{1,3} {pc1j→4}j∈[5]\{1,4} {pc1j→5}j∈[5]\{5}
Round 2 {pc2j→1}j∈{2,5} {pc2j→2}j∈{5} {pc2j→3}j∈{2,5} {pc2j→4}j∈{2,5} –

{ ˜pc2j→1}j∈{3,4} { ˜pc2j→2}j∈{3,4} { ˜pc2j→3}j∈{4} { ˜pc2j→4}j∈{3} –

Round 3 – – – – {pc3,1j→5}j∈{2,3,4}
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Table 7. Views of {P1, . . . , P5} in Scenario 2.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1 {b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},

{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{1,3} {pc1j→4}j∈[5]\{1,4} {pc1j→5}j∈[5]\{5}
Round 2 {pc2j→1}j∈{2,5} {pc2j→2}j∈{5} {pc2j→3}j∈{2,5} {pc2j→4}j∈{2,5} –

{ ˜pc2j→1}j∈{3,4} { ˜pc2j→2}j∈{3,4} { ˜pc2j→3}j∈{4} { ˜pc2j→4}j∈{3} –

Round 3 – – – – {pc3,2j→5}j∈{3,4}

Table 8. Views of {P1, . . . , P5} in Scenario 3.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1 {b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},

{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{3} {pc1j→4}j∈[5]\{4} {pc1j→5}j∈[5]\{5}

Round 2 {pc2j→1}j∈{2,5} {pc2j→2}j∈{1,5}, { ˜pc2j→2}j∈{3,4} {pc2j→3}j∈{1,2,5} {pc2j→4}j∈{1,2,5} –

Round 3 – – – – {pc3,3j→5}j∈{1,2}

Table 9. Views of {P1, . . . , P5} in Scenario 4.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1 {b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},

{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{1,3} {pc1j→4}j∈[5]\{1,4} {pc1j→5}j∈[5]\{5}
Round 2 {pc2j→1}j∈{2,5} {pc2j→2}j∈{1,5} {pc2j→3}j∈{2,5} {pc2j→4}j∈{2,5} –

{ ˜pc2j→1}j∈{3,4} { ˜pc2j→2}j∈{3,4} { ˜pc2j→3}j∈{4} { ˜pc2j→4}j∈{3} –

Round 3 – – – – {pc3,4j→5}j∈{1,2} = {pc3,3j→5}j∈{1,2}
– – – – {pc3,4j→5}j∈{3,4} = {pc3,2j→5}j∈{3,4}

The proof skeleton is as follows. First, we claim that there exists an x∗
c ∈

{0, 1} and x∗
r ∈ {0, 1}k such that if Scenario 1 occurs with respect to x1 =

(x∗
c , x

∗
r) and uniformly randomly sampled x2 and x3, then the output obtained

by Q must be computed with respect to ¬x∗
c with a sufficiently large (constant)

probability. Intuitively, if for all xc and xr, the output of Scenario 1 was computed
on xc, then it would mean that {P2, Q} have sufficient information about xc at
the end of Round 1 itself. This would make Π vulnerable to a residual function
attack by {P2, Q}. Next, we claim the same statement also holds for Scenario
2 (with a different probability). Regarding Scenario 3, correctness of Π lets us
infer that Q must compute output on the input x1 = (xr, xc) of honest P1.
Lastly, we argue that Q’s view in Scenario 4 subsumes its views in Scenario 2
and Scenario 3. This would allow corrupt {P1, Q} (who participate with xc = x∗

c)
in Scenario 4 to obtain multiple outputs i.e. output with respect to both ¬x∗

c (as
in Scenario 2) and x∗

c (as in Scenario 3), which contradicts security of Π. This
completes the proof sketch. We present the formal proof and show its extension
to 2 �n/5� ≤ t < n/2 in the full version [7]. Note that for certain cases, such as
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n = 6, this range of values of (n, t) is not meaningful. However, this is relevant
for sufficiently large values of n.

5 With PKI and No Broadcast

In this section, we consider the setting where the parties only have access to
pairwise-private channels. In terms of setup, we assume that all parties have
access to a pubic-key infrastructure (PKI) and a common reference string (CRS).
We first present a lower bound of four rounds for solitary MPC with god. Then
we present a five-round construction that works for any n and t < n/2. Next,
we elaborate on a non-constant round protocol (i.e. (t + 2) rounds) that can be
derived from the protocol of [28]. While the former upper bound significantly
improves over the latter for most values of (n, t), the latter achieves better round
complexity for special cases of t ≤ 2.

5.1 Necessity of Four Rounds

In this section, we assume a network setting where the parties have access to
pairwise-private channels and PKI. We show that when 3 �n/7� ≤ t < n/2, four
rounds are necessary for n-party solitary MPC with god against t corruptions.
This holds irrespective of whether Q has input or not and even if the adversary
is non-rushing. However, the argument crucially relies on the fact that t ≥ 3
(details appear at the end of this section) which leads us to conjecture that
there is a potential separation between the cases of t ≤ 2 and t ≥ 3 for solitary
MPC. We investigate the special cases of t ≤ 2 in the full version [7]. The
impossibility for the general case is formally stated below.

Theorem 4. Assume parties have access to CRS, PKI and pairwise-private
channels. Let n, t be positive integers such that n ≥ 7 and 3 �n/7� ≤ t < n/2.
Then, there exists a solitary functionality f such that no three-round n-party
MPC protocol tolerating t corruptions can compute f with god, even if the adver-
sary is assumed to be non-rushing.

Proof. For simplicity, we consider the setting of n = 7 and t = 3 (extension
to any 3 �n/7� ≤ t < n/2 appears in the full version). Consider the solitary
function f(x1, , . . . , x7) among {P1, . . . , P7} where Q = P7 denotes the output
receiving party. We clarify that our lower bound argument holds irrespective
of whether f involves an input from Q. First, set k = 10 (looking ahead, we
set k to be sufficiently large for the probability arguments to go through). Let
f(x1, x2 = ⊥, x3 = (x0

3, x
1
3), x4 = (x0

4, x
1
4), x5 = ⊥, x6 = (x0

6, x
1
6), x7 = ⊥) be

defined as follows, where x1 ∈ {0, 1}, x0
3, x

1
3, x

0
4, x

1
4, x

0
6, x

1
6 ∈ {0, 1}k and x0

3 �=
x1
3, x

0
4 �= x1

4, x
0
6 �= x1

6:

f(x1, . . . , x7) =

{

(x0
3, x

0
4, x

0
6) if x1 = 0

(x1
3, x

1
4, x

1
6) if x1 = 1

.
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In the definition, x2 = x5 = x7 = ⊥ indicates that P2, P5, P7 do not have
any inputs. Suppose for the sake of contradiction that there exists a three-round
solitary MPC protocol with god, say Π that computes f .

Without loss of generality, we assume that Π has the following structure: (a)
Round 3 involves only messages sent to Q; (b) Round 2 does not involve messages
from Pi (i ∈ [6]) to Q (such a message is meaningful only if Q communicates to
Pi in Round 3, which is not the case as per (a)).

We consider an execution of Π with inputs (x1, . . . , x7) where xi denotes
the input of Pi and analyze four different scenarios. Before describing the sce-
narios, we define some useful notation. In Rounds 1 and 2, let pcr

i→j where
r ∈ [2], {i, j} ∈ [7] denote the pairwise-private communication from Pi to Pj in
Round r, as per an execution where everyone behaves honestly. Next, we use
˜pc2i→j to denote the messages that Pi (i ∈ [7]) is supposed to send in Round 2
to Pj (j ∈ [6] \ i) incase Pi did not receive Round 1 message from P1. Note that
this communication could be potentially different from what Pi would send in
an honest execution. Lastly, since Round 3 messages to Q could potentially be
different for each of the four scenarios, we index them additionally with � indi-
cating the scenario i.e. pc3,�

j→7 denotes Pj ’s Round 3 message to Q in Scenario
� (j ∈ [6], � ∈ [4]). These messages may be a function of the common reference
string (denoted by crs) and the PKI setup. Let αi denote the output of the
PKI setup (or more generally, the output of an arbitrary correlated randomness
setup) to party Pi. A party’s view comprises of crs, αi, its input, randomness
and incoming messages.

Due to the involved nature of the scenarios, we begin with an intuitive
description. Broadly speaking, this argument involves partitioning the parties
{P1, . . . , P6} into two sets {P1, P2, P6} and {P3, P4, P5}. Looking ahead, the final
scenario is designed in a manner that allows a corrupt Q to obtain: (i) output
with respect to some input of P1 using the communication from {P1, P2, P6}
and (ii) output with respect to a different input of P1 using the communication
from {P3, P4, P5}. Tracing back, we carefully design the other scenarios such
that Scenarios 1 and 2 let us conclude that if P1 behaves honestly only in its
messages to P6, then there must exist some x∗

1 ∈ {0, 1} such that the communi-
cation from {P3, P4, P5} to Q enables Q to obtain output with respect ¬x∗

1 with
a sufficiently large probability. On the other hand, Scenario 3 involves corrupt
{P3, P4, P5} who pretend to have received no message from P1, which lets us
conclude that the messages from {P1, P2, P6} in such a case must enable Q to
obtain output with respect to honest input x1 of P1. Combining the above two
inferences in the final scenario lets us reach the final contradiction.
Following is a description of the scenarios. In each scenario, on behalf of the cor-
rupt parties, we assume that the adversary uses the honest input and its mali-
cious behaviour is limited to dropping some of the messages that were received
or supposed to be sent. The views of the parties across various scenarios are
described in Tables 10, 11, 12 and 13.
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Scenario 1: Adversary corrupts {P1, P6}. P1 does not communicate throughout
the protocol. P6 behaves honestly in Round 1 and Round 2 (thereby would

send ˜pc26→j for j ∈ [5]) and aborts (does not communicate) in Round 3.
Scenario 2: Adversary corrupts {P1, P6}. P1 does not communicate throughout

the protocol. P6 behaves honestly in Round 1 and Round 2, except that P6

pretends to have received Round 1 message from P1 (thereby would send
pc26→j for j ∈ [5]). Note that it is possible for P6 to pretend in such a manner
as adversary corrupts both P1, P6. Lastly, P6 aborts in Round 3.

Scenario 3: Adversary corrupts {P3, P4, P5}. All corrupt parties behave honestly
in Round 1. In Round 2, {P3, P4, P5} only communicate towards P6, towards
whom they pretend that they did not receive Round 1 message from P1 (i.e.

Pi sends ˜pc2i→6 to P6 for i ∈ {3, 4, 5}). Lastly, {P3, P4, P5} abort in Round 3.
Scenario 4: Adversary corrupts {P1, P2, Q} who do the following:8

Round 1: P1 behaves honestly only to {P2, P6, Q} (only P6 among the honest
parties). P2 and Q behave honestly.

Round 2: P1 behaves honestly only to {P2, P6, Q}. P2 and Q pretend towards
{P3, P4, P5} as if they did not receive Round 1 message from P1 (i.e. send
˜pc2i→j to Pj for i ∈ {2, 7}, j ∈ {3, 4, 5}). Towards {P1, P2, P6} (only P6

among honest parties), P2 and Q act as if Round 1 message had been
received from P1 (i.e. send pc2i→j to Pj for i ∈ {2, 7}, j ∈ {1, 2, 6} \ i).

Round 3: P1 and P2 drop the Round 2 messages obtained from {P3, P4, P5}
(to emulate Scenario 3) and communicate to Q accordingly.

Table 10. Views of {P1 . . . P7} in Scenario 1.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{1,2} {pc1j→3}j∈[7]\{1,3} {pc1j→4}j∈[7]\{1,4} {pc1j→5}j∈[7]\{1,5} {pc1j→6}j∈[7]\{1,6} {pc1j→7}j∈[7]\{1,7}

Round 2 { ˜pc2j→1}j∈[7]\{1} { ˜pc2j→2}j∈[7]\{1,2} { ˜pc2j→3}j∈[7]\{1,3} { ˜pc2j→4}j∈[7]\{1,4} { ˜pc2j→5}j∈[7]\{1,5} { ˜pc2j→6}j∈[7]\{1,6} –

Round 3 – – – – – – {pc3,1j→7}j∈{2,3,4,5}

Table 11. Views of {P1 . . . P7} in Scenario 2.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{1,2} {pc1j→3}j∈[7]\{1,3} {pc1j→4}j∈[7]\{1,4} {pc1j→5}j∈[7]\{1,5} {pc1j→6}j∈[7]\{1,6} {pc1j→7}j∈[7]\{1,7}

Round 2 { ˜pc2j→1}j∈{2,3,4,5,7} { ˜pc2j→2}j∈{3,4,5,7} { ˜pc2j→3}j∈{2,4,5,7} { ˜pc2j→4}j∈{2,3,5,7} { ˜pc2j→5}j∈{2,3,4,7} { ˜pc2j→6}j∈{2,3,4,5,7} –

pc26→1 pc26→2 pc26→3 pc26→4 pc26→5

Round 3 – – – – – – {pc3,2j→7}j∈{2,3,4,5}

8 Generally, communication between corrupt parties need not be specified but we
include it here for easier understanding of Table 13.
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Table 12. Views of {P1 . . . P7} in Scenario 3.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{2} {pc1j→3}j∈[7]\{3} {pc1j→4}j∈[7]\{4} {pc1j→5}j∈[7]\{5} {pc1j→6}j∈[7]\{6} {pc1j→7}j∈[7]\{7}
Round 2 {pc2j→1}j∈{2,6,7} {pc2j→2}j∈{1,6,7} {pc2j→3}j∈{1,2,6,7} {pc2j→4}j∈{1,2,6.7} {pc2j→5}j∈{1,2,6.7} {pc2j→6}j∈{1,2,7} –

˜{pc2j→6}j∈{3,4,5}
Round 3 – – – – – – {pc3,3j→7}j∈{1,2,6}

Table 13. Views of {P1 . . . P7} in Scenario 4.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{2} {pc1j→3}j∈[7]\{1,3} {pc1j→4}j∈[7]\{1,4} {pc1j→5}j∈[7]\{1,5} {pc1j→6}j∈[7]\{6} {pc1j→7}j∈[7]\{7}

Round 2 { ˜pc2j→1}j∈{3,4,5} { ˜pc2j→2}j∈{3,4,5} { ˜pc2j→3}j∈{2,4,5,7} { ˜pc2j→4}j∈{2,3,5,7} { ˜pc2j→5}{2,3,4,7} { ˜pc2j→6}j∈{3,4,5} –

{pc2j→1}j∈{2,6,7} {pc2j→2}j∈{1,6,7} pc26→3 pc26→4 pc26→5 {pc2j→6}j∈{1,2,7}
Round 3 – – – – – – {pc3,4j→7 ≡ pc3,3j→7}j∈{1,2,6}

{pc3,4j→7 ≡ pc3,2j→6}j∈{3,4,5}

The proof outline is as follows. First, we show that there exits x∗
1 ∈ {0, 1}

such that if Scenario 1 occurs with respect to x∗
1 and uniformly randomly sam-

pled x3, x4, x6, then the output obtained by Q is computed on ¬x∗
1 with a

sufficiently large (constant) probability. Next, we show this is also the case
for Scenario 2 (with a different probability). Since this inference may appear
counter-intuitive, we elaborate the argument in some detail below. Note that
the difference between Scenario 1 and 2 lies in the communication from P6 to
honest parties {P2, P3, P4, P5} in Round 2. While in the former, P6 acts as if he
did not receive Round 1 message from P1; in the latter he pretends as if he did
receive Round 1 message from P1. We define a sequence of hybrids hyb0, . . . , hyb4.
Specifically, hyb0 and hyb4 refer to Scenario 1 and 2 respectively and hybi is same
as hybi−1 (i ∈ {1, . . . , 4}) except that P6 acts towards Pi+1 that he did receive
Round 1 message from P1. We show that in each hybrid, the output obtained by
Q is w.r.t. ¬x∗

1 with a sufficiently large (but slightly different) probability. Next,
if Scenario 3 occurs, then the output obtained by Q must be computed on x1

(honest input of P1) due to correctness of Π. Lastly, we show that such a proto-
col Π is susceptible to an attack by {P1, P2, Q} which allows Q to obtain both
the above evaluations of f (i.e., on both x∗

1 and ¬x∗
1), which is a contradiction

to security of Π. We defer the formal proof to the full version [7].

5.2 General Five-Round Protocol

In this section, we present a five-round solitary output MPC protocol with
guaranteed output delivery that works for any n in the presence of an hon-
est majority - that is, any t < n/2 where n is the number of parties and t
is the number of corrupt parties. Our protocol uses the following primitives: a
(n
2 +1)-out-of-n decentralized threshold FHE scheme dTFHE = (dTFHE.DistGen,

dTFHE.Enc, dTFHE.PartialDec, dTFHE.Eval, dTFHE.Combine), a digital signa-
ture scheme (Gen,Sign,Verify), and a simulation-extractible NIZK argument
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(NIZK.Setup,NIZK.Prove,NIZK.Verify). We use the NIZK argument for two
NP languages L1, L2 defined in Sect. 3.2. All of them can be built assuming
LWE [10,11,38]. Formally, we show the following theorem:

Theorem 5. Assuming LWE, protocol Π5−round described below is a five-round
secure solitary output MPC protocol with god with a PKI setup and pairwise-
private channels. The protocol works for any n, any function and is secure
against a malicious rushing adversary that can corrupt any t < n/2 parties.

Overview. Consider n parties P1, . . . , Pn who wish to evaluate function f :
({0, 1}λ)n−1 → {0, 1}λ. We also denote Pn as the output receiving party Q.
In some places, we use the notation msgi→j to indicate that the message was
sent by party Pi to Pj . At a high level, our protocol works as follows. In Round
1, each party Pi sends to every other party a dTFHE encryption [[xi]] along
with a NIZK argument πi proving that the encryption is well formed. On top of
that, Pi also attaches its signature σi ← Sign(skeyi, ([[xi]], πi)). In Round 2, each
party sends all the messages it received in Round 1 to Q. In Round 3, Q first
initializes a string msg = ⊥ and does the following for each i ∈ [n]: if it received
a valid message from Pi in Round 1, (where valid means the signature σi and
the NIZK πi verify successfully) it includes the message in msg and sets a value
cti = [[xi]]. Else, in Round 2, if a different party Pi1 , forwards a valid message
([[xi]]i1→n, πi1→n, σi1→n) received from Pi in Round 1, include that in msg and
set cti to be [[xi]]i1→n. If no such i1 exists, set cti = ⊥ and append ⊥ to msg.
Then, Q sends msg and a signature on it σmsg to all parties. In Round 4, each
party sends the tuple received from Q in Round 3 to every other party. Finally,
in Round 5, each party Pi sends its partial decryption (along with a NIZK) on
the homomorphically evaluated ciphertext [[y]] = dTFHE.Eval(f, ct1, . . . , ctn) if:
(i) in Round 3, Q sent (msg, σmsg) such that σmsg verifies, (ii) it did not receive
a different tuple (msg′, σmsg′) from another party in Round 4 such that σmsg′

verifies, (iii) in the string msg, every tuple of the form ([[xj ]], πj , σj) is valid, (iv)
for every party Pk, if Pi received a valid message from Pk in Round 1, then
in Q’s Round 3 message msg, there must exist some valid tuple of the form
([[x′

k]], π′
k, σ′

k) on behalf of Pk (not necessarily the one Pi received in Round 1).
After Round 5, Q combines all the partial decryptions (if the NIZK verifies)
to recover the output. Our protocol is formally described below. We defer the
security proof to the full version [7].

CRS: Send crs ← NIZK.Setup(1λ) to every party.

PKI Setup:

– For each i ∈ [n]: sample (pki, ski) ← dTFHE.DistGen(1λ, 1d, i; ri) and (vkeyi,
skeyi) ← Gen(1λ).

– Public key: pk = pk1‖ . . . ‖pkn and {vkeyi}i∈[n].
– Secret keys: (ski, ri, skeyi) to party Pi for each i ∈ [n].

Inputs: For each i ∈ [n], party Pi has an input xi ∈ {0, 1}λ.
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Protocol:

1. Round 1: For each i ∈ [n]:
– Pi computes [[xi]] ← dTFHE.Enc(pk, xi; ρi) using randomness ρi, πi ←

NIZK.Prove(crs, sti,witi) for sti ∈ L1 where sti = ([[xi]], pk) and witi =
(xi, ρi).

– Then, compute σi ← Sign(skeyi, ([[xi]], πi)) and send ([[xi]], πi, σi) to every
party.

2. Round 2: For each i ∈ [n], Pi sends all the messages it received in Round 1
to party Pn(= Q).

3. Round 3: Party Pn(= Q) does the following:
– Define strings msg, ct1, . . . , ctn as ⊥.
– For each i ∈ [n], let {([[xj ]]i→n, πi→n

j , σi→n
j )}j∈[n]\{i} denote the message

received from Pi in Round 2 and ([[xi]]i→n, πi→n
i , σi→n

i ) denote the mes-
sage received from Pi in Round 1.

– For each j ∈ [n], do the following:
• Let {([[xj ]]1→n, π1→n

j , σ1→n
j ), . . . , ([[xj ]]n→n, πn→n

j , σn→n
j )} be the

messages received across both rounds on behalf of party Pj .
• Pick the lowest i1 such that Verify(vkeyj , ([[xj ]]i1→n, πi1→n

j ), σi1→n
j ) =

1 and NIZK.Verify(crs, πi1→n
j , stj) = 1 for stj ∈ L1 where stj =

([[xj ]]i1→n, pk). Set ctj := [[xj ]]i1→n and msg := msg‖“Party j ”‖
([[xj ]]i1→n, πi1→n

j , σi1→n
j ).

• If no such i1 exists, set msg = msg‖“Party j ”‖⊥.
– Compute σmsg ← Sign(skeyn,msg). Send (msg, σmsg) to all parties.
– Set [[y]] = dTFHE.Eval(pk, f, ct1, . . . , ctn).9

4. Round 4: For each i ∈ [n − 1], Pi sends the message received from Q in
Round 3 to every party.

5. Round 5: For each i ∈ [n − 1], Pi does the following:
– Let {(msgj→i, σj→i

msg )}j∈[n−1]\{i} be the messages received in Round 4 and
(msgn→i, σn→i

msg ) be the message from Q in Round 3.
– If Verify(vkeyn,msgn→i, σn→i

msg ) �= 1 (OR) msgn→i is not of the form
(“Party 1 ”‖m1‖ . . . ‖“Party n ”‖mn), send ⊥ to Q and end the round.

– Output ⊥ to Q and end the round if there exists j �= n such that:
• msgj→i �= msgn→i (AND)
• Verify(vkeyn,msgj→i, σj→i

msg ) = 1 (AND)
• msgj→i is of the form (“Party 1 ”‖m1, . . . , ‖“Party n ”‖mn). This

third check is to ensure that a corrupt Pj doesn’t re-use a valid sig-
nature sent by Q in the first round as its message in Round 4.

– Define strings ct1, . . . , ctn.
– Parse msgn→i as (“Party 1 ”‖m1, . . . , ‖“Party n ”‖mn).
– For each j ∈ [n], do the following:

9 Let S = {i|cti = ⊥}. Here, we actually homomorphically evaluate the residual
function fS(·) that only takes as input {xj}j /∈S and uses the default values for all
indices in the set S. For ease of exposition, we skip this notation in the rest of the
protocol and proof.
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• If in Round 1, Pi received ([[xj ]], πj , σj) from Pj such that Verify(vkeyj ,
([[xj ]], πj), σj) = 1 and NIZK.Verify(πj , stj) = 1 for stj ∈ L1 where
stj = ([[xj ]], pk), set bitj = 1. Else, set bitj = 0.

• If mj = ⊥:
* If bitj = 1, send ⊥ to Q and end the round.
* Else, set ctj = ⊥.

• If mj = ([[xj ]]i1→n, πi1→n
j , σi1→n

j ):
* If Verify(vkeyj , ([[xj ]]i1→n, πi1→n

j ), σi1→n
j ) = 1 and NIZK.Verify(crs,

πi1→n
j , stj) = 1 for stj ∈ L1 where stj = ([[xj ]]i1→n, pk), set ctj =

[[xj ]]i1→n.
* Else, send ⊥ to Q and end the round.

– Compute [[y]] ← dTFHE.Eval(pk, f, ct1, . . . , ctn).
– Compute [[y : ski]] ← dTFHE.PartialDec(ski, [[y]])

and πdec
i ← NIZK.Prove(crs, stdeci ,witdeci ) for stdeci ∈ L2 where stdeci =

([[y : ski]], [[y]], pki, i) and witdeci = (ski, ri).
– Send ([[y : ski]], πdec

i ) to Q.
6. Output Computation: Q does the following:

– Recall the value [[y]] computed in Round 3.
– For each i ∈ [n], if NIZK.Verify(crs, πdec

i , stdeci ) �= 1 for stdeci ∈ L2 where
stdeci = ([[y : ski]], [[y]], pki, i), discard [[y : ski]].

– Output y ← dTFHE.Combine(pk, {[[y : ski]]}i∈S) where S contains the set
of non-discarded values from the previous step.

5.3 (t + 2) Round Protocol

We now describe how to transform the two-round protocol (say Π) of [28] into
a (t + 2)-round protocol Π ′ for solitary MPC with god. Recall that protocol
Π (that assumes a PKI setup) achieves god for standard MPC and involves
communication only via broadcast channels in both rounds. We propose the
following changes to Π. First, we employ a (t+1)-round protocol over pairwise-
private channels that realizes the broadcast functionality [17] to execute Round
1 of Π. Next, the messages communicated via broadcast in Round 2 of Π are
instead sent privately only to Q (as only Q is supposed to obtain output) in
Round (t + 2) of Π ′. This completes the high-level description of Π ′ whose
security follows directly from security of Π. This approach achieves better round
complexity than our general five-round construction (Sect. 5.2) when t ≤ 2.
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Abstract. In secure multiparty computation (MPC), the goal is to allow
a set of mutually distrustful parties to compute some function of their
private inputs in a way that preserves security properties, even in the
face of adversarial behavior by some of the parties. However, classical
security definitions do not pose any privacy restrictions on the view of
honest parties. Thus, if an attacker adversarially leaks private informa-
tion to honest parties, it does not count as a violation of privacy. This
is arguably undesirable, and in real-life scenarios, it is hard to imag-
ine that possible users would agree to have their private information
revealed, even if only to other honest parties.

To address this issue, Alon et al. [CRYPTO 20] introduced the notion
of security with friends and foes (FaF security). In essence, (t, h)-FaF
security requires that a malicious adversary corrupting up to t parties
cannot help a coalition of h semi-honest parties to learn anything beyond
what they can learn from their inputs and outputs (combined with the
input and outputs of the malicious parties). They further showed that
(t, h)-FaF security with n parties is achievable for any functionality if
2t + h < n, and for some functionality, (t, h)-FaF security is impossible
assuming 2t + h ≥ n. A remaining important open problem is to char-
acterize the set of n-party functionalities that can be computed with
(t, h)-FaF security assuming 2t + h ≥ n.

In this paper, we focus on the special, yet already challenging, case
of (1, 1)-FaF security for three-party, 2-ary (two inputs), symmetric (all
parties output the same value) functionalities. We provide several posi-
tive results, a lower bound on the round complexity, and an impossibility
result. In particular, we prove the following. (1) we identify a large class
of three-party Boolean symmetric 2-ary functionalities that can be com-
puted with (1, 1)-FaF full security, and (2) We identify a large class of
three-party (possibly non-Boolean) symmetric 2-ary functionalities, for
which no O(log κ)-round protocol computes them with (1, 1)-FaF full
security. This matches the round complexity of our positive results for
various interesting functionalities, such as equality of strings.
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1 Introduction

In secure multiparty computation (MPC), the goal is to allow a set of mutually
distrustful parties to compute some function of their private inputs in a way
that preserves security properties, even despite adversarial behavior by some
of the parties. Some of the most basic security properties that may be desired
are correctness, privacy, independence of inputs, fairness, and guaranteed output
delivery. The notion of full security captures all of the above security properties.1
Classical security definitions (cf., [12]) assume the existence of a single adver-
sarial entity controlling the set of corrupted parties. A malicious adversary may
deviate from the protocol in any way. In particular, it may send non-prescribed
messages to honest parties. Such messages could potentially leak private infor-
mation to honest parties, e.g., the secret input of some other honest party. Since
the classical definitions pose no restrictions on the view of honest parties in
the protocol, they do not count this as a violation of privacy. Moreover, even
the protocol itself may instruct all parties to send their inputs to other honest
parties, if say, all possible corrupted parties have been previously revealed (e.g.,
in the protocol of [19]). Again, this would still not count as a violation of pri-
vacy according to the classical security definition. This is arguably undesirable
in many situations that fall into the MPC framework. Furthermore, when con-
sidering MPC solutions for real-life scenarios, it is hard to imagine that possible
users would agree to have their private inputs revealed to honest parties (albeit
not to malicious ones).

To address this issue, Alon et al. [1] introduced a new security definition
called security with friends and foes (FaF security) that, in addition to standard
security requirement, poses a privacy requirement on the view of subsets of
honest parties. In essence, (t, h)-FaF security requires that for every malicious
adversary A corrupting t parties, and for any disjoint subset of h parties, both
the view of the adversary and the joint view of the additional h parties can be
simulated (separately) in the ideal model. The security of the protocol should
hold even if the malicious adversary sends to some h (semi-)honest parties non-
prescribed messages. In fact, the adversary is allowed to send messages after the
protocol is terminated.

Alon et al. [1] accompanied the new security notion with several feasibility
and impossibility results. They showed that achieving (t, h)-FaF security with n
parties against computational adversaries is achievable for any functionality if
and only if 2t + h < n. That is, if 2t + h < n then for any n-party functionality
there exists a (t, h)-FaF secure protocol computing it, and conversely, if 2t+h ≥
n, then there exists a functionality that cannot be computed with (t, h)-FaF
security. Note that this does not rule out the existence of n-party functionalities
that can still be computed with (t, h)-FaF security, even when 2t+h ≥ n. Indeed,
Alon et al. [1] also presented interesting examples of such functionalities. This

1 Formally, security is defined via the real vs. ideal paradigm, where a (real-world)
protocol is required to emulate an ideal setting, in which the adversary is limited to
selecting inputs for the corrupted parties and receiving their outputs.
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includes n-party coin tossing with (t, h)-FaF security assuming t < n/2 and
h ≤ n − t, and three-party XOR with (1, 1)-FaF security, both of which are
known to be impossible to securely compute without an honest majority (with
standard security requirements) [9]. This raises the following natural question:

Which n-party functionalities can be computed with
(t, h)-FaF security assuming 2t + h ≥ n?

1.1 Our Results

In this paper, we are interested in the special, yet already challenging, three-party
setting where all parties output the same value and are interested in achieving
(1, 1)-FaF security2. We show several positive results, a lower bound on the round
complexity required for achieving FaF security, and an impossibility result. We
next review our results, starting with describing the positive results. Before doing
so, we introduce a dealer model, which simplifies the proofs and descriptions of
our protocols.

The Dealer Model. The following dealer model serves as a middle ground between
the ideal world for FaF security and real-world protocols. It is useful for con-
structing protocols as it abstracts away technical implementation issues. In par-
ticular, this allows our protocols to admit information-theoretic security in the
dealer model. Furthermore, in the dealer model we define, the adversary receives
no messages, and the only attacks it can perform are to change its input and
abort prematurely. This makes the security analysis of such protocols much sim-
pler. Importantly, we show a general compilation from protocols in the dealer
model to protocols in the real world and vice versa. The second direction, where
we compile a real-world FaF secure protocol into a FaF secure protocol in the
dealer model, helps us describe impossibility results in a clear way. It addition-
ally gives more intuition into the impossibility result of Alon et al. [1], where the
attacker aborts by selecting a round independently from its view in the protocol.
The above compilation shows that indeed an attack cannot rely on the view of
the adversary, apart from the round number.

In this dealer model, parties interact in rounds via a trusted dealer, and
the malicious adversary is only allowed to abort in each round. In more detail,
the interaction proceeds as follows. First, the parties send their inputs to the
dealer. The dealer then computes backup values for each pair of parties for each
round. These values will later be used as the output of two parties in case the
remaining third party aborts. Then, in each round, the dealer approaches the
parties in a certain order, without revealing any information to the approached
party, besides the round number. The party being approached responds with
either continue or abort. If it sends abort, then the dealer sends to the remaining
pair of parties a backup value (that depends on the round number). The two
parties output this value and halt. Additionally, the dealer also sends to each

2 The security notion was called FaF full security in [1].
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honest party the appropriate backup values corresponding to the honest party
and the aborting party (this models FaF security where the malicious adversary
may send its real world view to the other parties). If no abort occurred then the
dealer sends the output of the function to all parties.

Theorem 1.1 (Informal). Assume that secure protocols for oblivious transfer
exist. Let f : X × Y × Z → W be a three-party functionality. Then f can be
computed with (1, 1)-FaF security if and only if it can be computed with (1, 1)-
FaF security in the dealer model.

Possibility Results for (1, 1)-FaF Security. We focus on (1, 1)-FaF security in
the three-party setting, assuming that only two parties hold inputs, and that
all parties receive the same output (i.e., symmetric functionalities). We provide
several positive results in this setting.

In our first result, we show that if a 2-ary function (two inputs) f has a two-
party protocol that computes it with both (standard) malicious security and with
(standard) semi-honest security, then f can be computed as a three-party func-
tionality with (1, 1)-FaF security, with all three parties obtaining the output. It
is instructive to note that even if a two-party protocol is secure against malicious
adversaries, it may still not be secure against semi-honest adversaries [5].

Theorem 1.2 (Informal). Assume that secure protocols for oblivious transfer
exist. Let f : X × Y → W be a 2-ary function. Assume that there exists a
protocol π for computing f as a symmetric two-party functionality, providing
both (standard) malicious and semi-honest security. Then f can be computed as
a symmetric three-party functionality with (1, 1)-FaF security.

Note that simply letting the two parties holding inputs run the secure proto-
col between themselves, and then having them send the output to the remaining
third party does not work. This is due to the fact that a corrupt party can lie
about the outcome, and then the third party has no way of detecting who is
lying.

As an application, consider Boolean functionalities, namely, the output of the
parties is a single bit. Asharov et al. [3] characterized all two-party symmetric
Boolean functionalities that can be securely computed. We observe that the
protocol they constructed also admits semi-honest security. Thus, we may apply
Theorem 1.2 to the class of functionalities captured by the (positive) result of [3],
and obtain the following result for three-party FaF-secure computation. First, for
a deterministic function f : X × Y × {λ} → {0, 1} we associate with it a matrix
Mf ∈ {0, 1}|X |×|Y| defined as Mf (x, y) = f(x, y) for all x ∈ X and y ∈ Y. Then
we have the following.

Corollary 1.3. Assume that secure protocols for oblivious transfer exist. Let f :
X ×Y ×{λ} → {0, 1} be a three-party Boolean symmetric functionality. Assume
that either the all-one vector or the all-zero vector is an affine combination3 of
either the rows or the columns of Mf . Then f can be computed with (1, 1)-FaF
security.
3 A affine combination is a linear combination where the sum of the coefficients is 1.
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We now turn to our second positive result, providing several sufficient con-
ditions for the existence of (1, 1)-FaF secure 3-party protocols for Boolean func-
tionalities. For a Boolean function f we let Mf be the negated matrix, defined
as Mf (x, y) = 1 − f(x, y) for all x ∈ X and y ∈ Y.

Theorem 1.4 (Informal). Assume that secure protocols for oblivious trans-
fer exist. Let f : X × Y × {λ} → {0, 1} be a three-party Boolean symmetric
functionality. Assume that at least one of the following holds.

1. Both Mf and Mf have a trivial kernel, or both MT
f and M

T

f have a trivial
kernel, i.e., the kernel contains only the all-zero vector.

2. The all-one vector is a linear combination of either the rows or columns of
Mf , where all coefficients are strictly positive.

Then f can be computed with (1, 1)-FaF security.

The round complexity of the protocol we construct is ω(log κ), where κ is the
security parameter. Below we present a lower bound on the round complexity
that matches the upper bound for several functionalities.

Observe that the class of functionalities captured by Theorem 1.4 is different
from the class of functionalities captured by Corollary 1.3. Indeed, for an integer
m ≥ 2, consider the equality function EQ : [m]2 × {λ} → {0, 1}, defined as
EQ(x, y) = 1 if x = y, and EQ(x, y) = 0 if x �= y. Then the associated matrix
MEQ is the m × m identity matrix, which clearly satisfies Item 1, hence it can
be computed with (1, 1)-FaF security. However, it cannot be computed as a two-
party functionality as it implies coin tossing. We provide a more general theorem
alongside its proof in Sect. 4.2.

Negative Results. We now turn to our negative results. Our first result is a
lower bound on the number of rounds required for FaF security. We identify a
class of functionalities such that, in order to compute any of them with (1, 1)-FaF
security, would require many rounds of interactions. To simplify the presentation
in this introduction, we limit the statement to Boolean functions (see Theorem
5.2 for the generalization to non-Boolean functions).

Theorem 1.5 (Informal). Let f : X × Y × {λ} → {0, 1} be a deterministic
three-party Boolean functionality. Assuming that the matrix Mf has no constant
rows, no constant columns, and that no row or column has its negation appearing
in Mf . Then there is no O(log κ)-round protocol computing f with (1, 1)-FaF
security.

Observe that the equality function EQ : [m]2 × {λ} → {0, 1}, where m ≥
3, satisfies the conditions in Theorem 1.5. Note that this matches the round
complexity of the protocol from Theorem 1.4.

Our final result states there exists a three-party non-Boolean functionality
that depends on two inputs, which cannot be computed with FaF security.
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Theorem 1.6 (Informal). Assume the existence of one-way permutations.
Then there exists a three-party 2-ary symmetric functionality that cannot be
computed with (1, 1)-FaF security.

We do not know if such impossibility results hold for a Boolean functionality,
and we leave it as an interesting open question.

1.2 Our Techniques

In this section, we provide an overview of our techniques. Let us first recall the
definition of (1, 1)-FaF security. We say that a protocol computes a functionality
f with (1, 1)-FaF security, if for any adversary A (statically) corrupting a party
P the following holds: (i) there exists a simulator Sim that can simulate (in the
ideal-world4) A’s view in the real-world (so far, this is standard security), and
(ii) for any uncorrupted party Q �= P, there exists a “semi-honest” simulator
SimQ, such that, given the parties’ inputs and Sim’s ideal-world view (i.e., its
randomness, inputs, auxiliary input, and output received from the trusted party),
can generate a view that is indistinguishable form the real-world view of Q, i.e.,
(VIEWreal

Q ,OUTreal) is indistinguishable from (VIEWideal
SimQ

,OUTideal).
We now proceed to describe our techniques. Throughout the rest of the

section, we denote the parties by A, B, and C, holding inputs x, y, and z, respec-
tively.

Proof of Theorem 1.1. We show that a functionality can be computed with (1, 1)-
FaF security if and only if it can be computed with in an appropriate dealer
model. Let us begin with a more detailed description of a dealer-model protocol.
An r-round protocol in the dealer model for (1, 1)-FaF security is described
as follows. First, the parties send their inputs to the dealer. The dealer then
computes backup value ab0, . . . , abr, ac0, . . . , acr, and bc0, . . . , bcr. Then, for i =
1 to r, the dealer does the following.

1. If no abort was ever sent, approach party A, which responds with either
continue or abort.

2. If A responds with abort, then send x and bci−1 to B and C, sends
ab0, . . . , abi−1 to B and ac0, . . . , aci−1 to C, and halts. Parties B and C then
output bci−1.

3. If A responds with continue, approach party B, which responds with either
continue or abort.

4. If B responds with abort, then sends y and aci−1 to A and C, sends
ab0, . . . , abi−1 to A and bc0, . . . , bci to C, and halts. Parties A and C then
output aci−1.

5. If B responds with continue, approach party C, which responds with either
continue or abort.

4 All the adversary can do in the ideal-world is to select its input for the computation
and receive the output. Specifically, it cannot prevent the output from other parties
or learn anything other than the output.
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6. If C responds with abort, then sends z and abi−1 to A and B, sends ac0, . . . , aci

to A and bc0, . . . , bci to B, and halts. Parties A and B then output abi−1.

If no abort was ever sent, then the dealer sends the last backup values (which
must equal to f(x, y, z) with high probability to ensure correctness), and the
parties output the value they received. Showing that the protocol in the dealer
model can be emulated by a real world protocol (without the dealer) is done using
standard techniques. Specifically, the parties compute a 3-out-of-3 secret sharing
of the backup values, each signed using a signature scheme. This computation is
done using a FaF secure-with-identifiable-abort protocol. That is, the malicious
and semi-honest adversaries may learn the output first, and may prevent the
honest party from receiving the output at the cost of revealing the identity
of the malicious party. Then, in every round, the parties send their shares for
the backup value of the other two parties. If a party changes its share (which is
captured with overwhelming probability using the signature scheme) or does not
send any message at all, then the remaining two parties reconstruct and output
the last backup value that they can reconstruct. See Sect. 3 for more details.

As for the other direction, we compile a real-world FaF secure protocol into a
FaF secure protocol in the dealer model. Here, the dealer samples randomness for
the parties and executes the protocol in its head. For each round i, it computes
the value that a pair of parties output in case the remaining third party aborts
after sending i messages (honestly). It then uses these values to define the backup
values that it gives to the parties in the protocol.

Proof of Theorem 1.2. Recall that we are given a function f , for which there is
a two-party protocol π2 that computes f with both malicious security and with
semi-honest security. We show that f can be computed with (1, 1)-FaF security
in the three-party setting when all parties receive the output. Let r denote the
number of rounds in π2. We assume without loss of generality that the interaction
in π2 is as follows. Each round i ∈ [r] is composed of two messages, the first sent
by A and the second sent by B.5 A malicious party may send any message that
it wants, or send no message at all. In the latter case, the honest party must
output some value from the range of the function (recall that π is fully secure).
These values are called backup values. We denote by a0, . . . , ar and b0, . . . , br the
backup values of the parties A and B, respectively. Specifically, we let ai be the
output of A assuming that B sent the messages of the first i rounds honestly but
did not send the (i + 1)th message, and we let bi be the output of B assuming
that A sent the messages of the first i rounds honestly but did not send the
(i + 1)th message.

We next construct a FaF secure three-party protocol π3. By Theorem 1.1, it
suffices to do so in the dealer model, i.e., it suffices to describe how the dealer
computes the backup values. For every i ∈ [r], the dealer sets abi = f(x, y),
aci = ai, and bci = bi. Intuitively, a corrupt C cannot affect the output of A and
B. Moreover, as π2 admits semi-honest security, the backup values they receive

5 Note that transforming a protocol into one with this structure might double the
number of rounds.
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reveal no information to them.6 As for a malicious A (a malicious B is completely
symmetric), note that A has no view. Therefore, to simulate an adversary A3

corrupting A, we only need to define an appropriate distribution over the inputs
(sent by the simulator to the trusted party), so that the output in both the
real and ideal world are indistinguishable. To do this, we emulate A3 using an
adversary A2 for the two-party protocol π2. The adversary A2 behaves honestly
until the round where A3 aborts, and aborts at the same round. By the assumed
security of π2, this attack can be simulated in the two-party ideal world. This
defines a distribution over the inputs of A. Using the same distribution in the
three-party ideal world results in the same distribution for the output. Now,
consider a semi-honest party Q in the three-party protocol; the challenge in
the FaF model is to construct a view consistent with the input chosen by the
malicious adversary controlling A, and the messages B gets from the dealer. Let i
denote the round where A aborts. If Q = B, then the only information it receives
in the real world is ab0, . . . , abi−1 and the output bci−1 = bi−1. Since abj =
f(x, y) for all j, this can be simulated in the ideal world, since the simulator for
the semi-honest B receives the input of the malicious party A. On the other hand,
if Q = C, then in the real world it receives ac0 = a0, . . . , aci−1 = ai−1. These
values are generated by the simulator for A2 in the two-party setting. Moreover,
they are generated consistently with the output bci−1 = bi−1. Therefore, this
simulator can be used to simulate the view of C.

Proof of Theorem 1.4. We now turn to our second positive result. Here we are
given a three-party Boolean symmetric functionality f : X × Y × {λ} → {0, 1}
satisfying one of two conditions. We show that it can be computed with (1, 1)-
FaF security. Similarly to the previous result, we may describe only the backup
values for the protocol in the dealer model. We construct a protocol inspired by
the protocols of [3,13], which follow the special round paradigm, however, the
proof of security follows a new construction for the simulator.

Roughly, a special round i∗ (whose value is unknown to all parties) is sam-
pled at random according to a geometric distribution with a sufficiently small
parameter α > 0. Before round i∗ is reached, the backup values aci of A and
C, and bci of B and C, are random and independent. After i∗ the backup val-
ues are equal to f(x, y). In more detail, for every i < i∗ we let aci = f(x, ỹi),
where ỹi ← Y is sampled uniformly at random, and for every i < i∗ + 1 we let
bci = f(x̃i, y), where x̃i is chosen according to some distribution that depends
on the function. All other backup values are equal to f(x, y). Finally, the backup
values for A and B are all equal to f(x, y).7

First, observe that a corrupt C cannot attack the protocol, since it cannot
prevent A and B from outputting f(x, y), nor can it provide them with any

6 Note that here are using the fact that π2 is secure against semi-honest adversaries.
Indeed, since A and B are semi-honest, to properly simulate them in the ideal world
we need to use a simulator that does not change its input.

7 The choice of setting bci to equal f(x, y) only from round i∗ + 1 is so that A and C
learn the output before B and C. Another approach could be to modify the dealer
model so that the dealer approaches B before A.
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new information. Next, similarly to [3,13], a corrupt B cannot attack since C
learns the backup value aci before it learns bci. Thus, if B aborts at round i∗ or
afterwards, then A and C output f(x, y). Otherwise, if B aborts before i∗, then A
and C output an independent random value. Additionally, B cannot help either
of the other parties to obtain any additional information. We are left with the
case where A is malicious, which can generate an advantage for C by guessing
i∗+1 and aborting in this round. This causes B and C to output bci∗ = f(x̃i∗ , y),
which is a random value. However, C receives aci∗ = f(x, y) from the dealer.

We show that a simulator exists; we do so by constructing a different simula-
tor than the one constructed by [3,13]. There, the malicious simulator generates
the view exactly the same as in the real world, and the advantage of the adver-
sary is simulated by sending to the trusted party an input sampled according to
a carefully chosen distribution. For our protocol, we let the malicious simulator
send an input according to the “expected” distribution, i.e., the one used in the
real world, which is either a random input before i∗ + 1 or the real input from
i∗ + 1 onward.

We are now left with simulating the advantage that a semi-honest C has
over the honest party B. We define its simulator by sampling the backup values
differently from the real world. In more detail, let i denote the round where the
malicious adversary aborted (set to r + 1 if no such round exists). For every
round j < i the simulator generates a backup value acj according to the same
distribution used in the real world, that is, acj is a random value if j < i∗, and
acj = f(x, y) if j ≥ i∗ (note that since i > j it follows that i ≥ i∗ + 1 in this
case, hence the simulator received f(x, y) from the trusted party). At round i,
if i > i∗ we let the simulator set aci = f(x, y). Otherwise, if i ≤ i∗ then the
simulator samples the backup value according to a carefully chosen distribution.
We show that under our assumptions on f , there exists a distribution such that
the joint distribution of the view generated by the simulator and the output of
honest parties is indistinguishable from the real world. We refer the reader to
Sect. 4.2 for more details.

Proof of Theorem 1.5. We now sketch the proof of our lower bound on the round
complexity required for FaF secure computation. Recall that we fix a three-
party functionality f : X × Y × {λ} → {0, 1}, for which the matrix Mf has no
constant rows, no constant columns, and that no row or column has its negation
appearing in Mf . We show there is no O(log κ)-round protocol computing f
with (1, 1)-FaF security. We assume that f is such that Mf has no duplicated
rows and columns. This is without loss of generality since duplicating rows and
columns, and removing duplications, does not compromise the FaF security of
the protocol.

Assume towards contradiction there exists an r = O(log κ)-round protocol
computing f with (1, 1)-FaF security. We assume without loss of generality that
the protocol is in the dealer model (note that the transformation from a real
world FaF secure protocol to a FaF secure protocol in the dealer model preserves
the number of rounds). To gain some intuition, let us first consider a malicious
adversary B corrupting B that sends continue to the dealer until round r. The
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adversary then aborts, causing A and C to output acr−1, and causing the dealer
to send bcr = f(x, y) to C.

First, we claim that in order to simulate the attack, the malicious simula-
tor SimB must send y to the trusted party, except with negligible probability.
Intuitively, this follows from the following observation. Since Mf (·, y) is not con-
stant, does not appear as duplication, and since the negation of Mf (·, y) does
not appear anywhere else in Mf , for any y′ �= y there exists x1, x2 ∈ X such
that Mf (x1, y) �= Mf (x2, y) and Mf (x1, y

′) = Mf (x2, y
′). Pictorially, the 2 × 2

matrix
y y′( )

x1 a b
x2 b b

where a �= b ∈ {0, 1}, is embedded in Mf restricted to y and y′ (in particular
Mf contains an embedded OR). Now, suppose that the malicious simulator SimB
sends y′ to the trusted party. Consider the semi-honest simulator SimB,C for a
semi-honest C. Note that it will not be able to distinguish between the case
where A has input x1 from the case it has input x2. However, in the real world
C is able to distinguish between them since it receives the output f(x, y).

Next, given that SimB does send y to the trusted party, this implies that in
the ideal world the output of the honest party A is f(x, y). Therefore, the same
must hold in the real world, except with negligible probability. Recall that the
malicious B aborted after receiving r messages from A, thus the output of A is
acr−1. This implies that acr−1 = f(x, y) except with negligible probability.

We can now continue with the same argument as before, this time applied to
a malicious adversary corrupting A and aborting after receiving r − 1 messages
from B. We then apply this argument inductively for all r rounds, each time
accumulating another error (from when comparing the real and ideal world).
Similarly to the lower bound due to [13], we note that when formalizing this
argument, the error that is being accumulated each round is multiplicative, with
the error each time being O(|X |·|Y|). Therefore, after applying the argument r =
O( log κ

log |X |+log |Y| ) times, we conclude that with constant probability the parties
can compute f without any interaction at all, which is a clear contradiction.
We stress that our overall strategy is substantially different from [13] in that we
analyze what the simulator can send to the trusted party. We refer the reader
to Sect. 5 for a formal analysis.

Proof of Theorem 1.6. We now show there exists a three-party functionality that
depends on two inputs and cannot be computed with (1, 1)-FaF security. The
functionality we consider and the proof of impossibility are nearly identical to
that of [1]. Let f be a one-way permutation. We consider the following function-
ality. Party A holds two strings a and yB, and party B holds two string b and
yA. Party C holds no input. The output of all parties is (a, b) if f(a) = yA and
f(b) = yB, and ⊥ otherwise.

Assume towards contradiction there exists a (1, 1)-FaF secure protocol com-
puting the function. We may assume the protocol to be in the dealer model.
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Consider an execution where the strings a and b are sampled uniformly and
independently, and that yA = f(a), yB = f(b). An averaging argument yields
that there must exist a round i, where two parties, say A together with C, can
recover (a, b) with significantly higher probability than B together with C. Our
attacker corrupts A, sends its original inputs a and yB to the dealer, and sends
continue until round i + 1. At round i + 1 it sends abort.

Intuitively, in order to have the output of the honest party B in the ideal
world distributed as in the real world (where it is ⊥ with noticeable probability),
the malicious simulator has to change its input (sent to the trusted party) with
high enough probability. However, in this case, the semi-honest simulator for C,
receives ⊥ from the trusted party. Since the only information it has on b is f(b),
by the assumed security of f , the simulator for B will not be able to recover b
with non-negligible probability. Hence, B’s simulator will fail to generate a valid
view for B. The detailed proof appears in Sect. 6.

1.3 Related Work

Understanding which functionalities can be computed with full security is the
subject of many papers in the standard setting. This started with the seminal
result of Cleve [9], who showed that fair two-party coin tossing is impossible.
Surprisingly, Gordon et al. [13] showed that many two-party functionalities can
be computed with full security. In particular, they showed a functionality con-
taining an embedded XOR that can be computed with full security. This led to
a series of works trying to characterize which two-party functionalities can be
computed with full security [2,3,11,21,22]. In particular, [3] characterized the
set of symmetric Boolean functionalities that are computable with full security.

In the multiparty setting much less is known. In the honest majority setting,
if the parties are given secure point-to-point channels and a broadcast channel,
then any functionality can be computed with full security without any crypto-
graphic assumptions [23]. The dishonest majority setting was first considered
by [14]. They showed that the three-party majority functionality, and n-party
OR can be computed securely, for any number of corruptions. The case where
exactly half of the parties can be corrupted was considered by Asharov et al. [3].
The setting of a non-constant number of parties was considered in Dachman-
Soled [10]. The “Best-of-both-worlds security” definition [17,18,20] requires full
security to hold in case of an honest majority, however, if at least half of the par-
ties are corrupted, then the same protocol should be secure-with-abort. Finally,
Halevi et al. [15] were the first to consider the solitary output setting, where
only one party obtains the output.

1.4 Organization

We present the preliminaries in Sect. 2. We describe the dealer model in Sect. 3.
Then, in Sect. 4 we present our positive results. In Sect. 5 we show our lower
bound on the round complexity of (1, 1)-FaF secure protocols. Finally, in Sect. 6
we show an impossibility for a 2-ary three-party functionality.
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2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and
distributions, lowercase for values, and we use bold characters to denote vectors.
For n ∈ N, let [n] = {1, 2 . . . n}. For a set S we write s ← S to indicate that s is
selected uniformly at random from S. Given a random variable (or a distribution)
X, we write x ← X to indicate that x is selected according to X. We let λ be
the empty string. For a randomized function (or an algorithm) f we write f(x)
to denote the random variable induced by the function on input x, and write
f(x; rnd) to denote its value when the randomness of f is fixed to rnd.

To define security of protocols, we need to define computational indistin-
guishability between two distribution ensembles (i.e., the distributions of the
real and ideal world). A distribution ensemble X = (Xa,n)a∈Dn,n∈N is an infinite
sequence of random variables indexed by a ∈ Dn and n ∈ N, where Dn is a
domain that might depend on n. A ppt algorithm is probabilistic polynomial
time, and a pptm is a polynomial time (interactive) Turing machine. A ppt
algorithm is non-uniform if it receives an advice as an additional input. A func-
tion μ : N → [0, 1] is called negligible, if for every positive polynomial p(·) and
all sufficiently large n, it holds that μ(n) < 1/p(n). We let neg(n) denote an
unspecified negligible function. Computational indistinguishability is defined as
follows.

Definition 2.1. Let X = (Xa,n)a∈Dn,n∈N and Y = (Ya,n)a∈Dn,n∈N be two
ensembles, and let ε = ε(·). We say that X and Y are ε-computationally indis-
tinguishable, denoted X

C≡ε Y , if for every non-uniform ppt distinguisher D
such that for all sufficiently large n and for all a ∈ Dn, it holds that

|Pr [D(Xa,n) = 1] − Pr [D(Ya,n) = 1]| < ε(n).

We say that X and Y are computationally indistinguishable, denoted X
C≡ Y ,

if they are n−c-computationally indistinguishable for all c ∈ N.

Secret Sharing Schemes. A (threshold) secret-sharing scheme [7,25] is a method
in which a dealer distributes shares of some secret to n parties such that t
colluding parties do not learn anything about the secret, and any subset of t+1
parties can fully reconstruct the secret. We let P = {P1, . . . ,Pn} denote the set
of participating parties. As a convention, for a secret s and a party Pi ∈ P, we let
s[i] be the share received by Pi. For a subset S ⊆ P we denote s[S] = (s[i])i∈S .

Definition 2.2 (Secret sharing). A (t + 1)-out-of-n secret-sharing scheme
over a message space M consists of a pair of algorithms (Share,Recon) satisfying
the following properties:

1. (t+1)-reconstructability: For every secret s ∈ M and every subset I ⊆ [n]
of size |I| ≥ t + 1, if (s[1], . . . , s[n]) ← Share(s) then s = Recon(s[I]).



168 B. Alon et al.

2. t-privacy: For every two secrets s1, s2 ∈ M, and every subset I ⊆ [n] of size
|I| ≤ t, the distribution of the shares s1[I] of s1 is identical to that of s2[I]
of s2, where (s1[1], . . . , s1[n]) ← Share(s1) and (s2[1], . . . , s2[n]) ← Share(s2).

In this work, we only consider 3-out-of-3 additive secret sharing schemes.
Here, the message space M is an additive group G, and Share(s) samples
s[1], s[2] ← G independently, and sets s[3] = s − s[1] − s[2]. The reconstruc-
tion algorithm simply adds all shares.

2.2 The Model of Computation

We follow the standard ideal vs. real paradigm for defining security [8,12]. Intu-
itively, security is defined by describing an ideal functionality, in which both the
corrupted and non-corrupted parties interact with a trusted entity. A real-world
protocol is secure if an adversary in the real world cannot cause more harm than
an adversary in the ideal world. In the classical definition, this is captured by
showing that an ideal-world adversary (simulator) can simulate the full view of
the real world malicious adversary. For FaF security, we further require that the
view of a subset of the uncorrupted parties can be simulated in the ideal world
(including the interaction with the adversary). We next give a more detailed
definition, tailored to the three-party setting.

The FaF Real Model

A three-party protocol π is defined by a set of three ppt interactive Turing
machines {A,B,C}. Each Turing machine (party) holds at the beginning of the
execution the common security parameter 1κ, a private input, and random coins.

Throughout the entire work, we will assume the parties execute the protocol
over a synchronous network. That is, the execution proceeds in rounds: each
round consists of a send phase (where parties send their messages for this round)
followed by a receive phase (where they receive messages from other parties). We
consider a fully connected point-to-point network, where every pair of parties is
connected by a communication line. We will consider the secure-channels model,
where the communication lines are assumed to be ideally private (and thus the
adversary cannot read or modify messages sent between two honest parties).
Additionally, we assume the parties have access to a broadcast channel, allowing
each party to faithfully send the same message to all other parties.

An adversary is a non-uniform ppt interactive Turing machine. It starts the
execution with an input that contains the identity of the corrupted party, its
input, and an additional auxiliary input aux ∈ {0, 1}∗. We will only consider
static adversaries that can choose the subset of parties to corrupt prior to the
execution of the protocol. At the end of the protocol’s execution, the adversary
outputs some function of its view (which consists of its random coins, its aux-
iliary input, the input of the corrupted party, and the messages it sees during
the execution of the protocol, and specifically, including possibly non-prescribed
messages sent to it by a malicious adversary).
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We consider two adversaries. The first adversary we consider is a malicious
adversary A that controls a single party P ∈ {A,B,C}. We will refer to P as
the malicious party. The adversary has access to the full view of the corrupted
party. Additionally, the adversary may instruct the corrupted party to deviate
from the protocol in any way it chooses. The adversary can send messages (even
if not prescribed by the protocol) to any uncorrupted party – in every round
of the protocol, and can do so after all messages for this round were sent. The
adversary can also send messages to the uncorrupted parties after the protocol
is terminated. The adversary is also given an auxiliary input auxA.

The second adversary is a semi-honest adversary AQ that controls a party
Q ∈ {A,B,C} \ {P} of the remaining parties (for the sake of clarity, we will only
refer to P as corrupted). Similarly to A, this adversary also has access to the
full view of its party. However, AQ cannot instruct the party to deviate from
the prescribed protocol in any way, but may try to infer information about the
remaining non-corrupted party, given its view in the protocol (which includes
the joint view of P and Q). This adversary is given an auxiliary input auxQ. We
will refer to Q as the semi-honest party.

We next define the real-world global view for security parameter κ ∈ N,
an input tuple (x, y, z), and auxiliary inputs auxA, auxQ ∈ {0, 1}∗ with respect
to adversaries A and AQ controlling the parties P and Q respectively. Let
OUTreal

π,A (κ, (x, y, z)) denote the outputs of the uncorrupted parties (i.e., those
in {A,B,C} \ {P}) in a random execution of π, with A corrupting the party
P. Further let VIEWreal

π,A (κ, (x, y, z)) be the output of the malicious adversary
A during an execution of π. In addition, we let VIEWreal

π,A,AQ
(κ, (x, y, z)) be the

output of AQ during an execution of π when running alongside A.
We let

REALπ,A(auxA), (κ, (x, y, z)) =
(
VIEWreal

π,A (κ, (x, y, z)) , OUTreal
π,A (κ, (x, y, z))

)
,

denote the view of the malicious adversary and the output of the uncorrupted
parties, and we let

REALπ,A(auxA),AQ(auxQ) (κ, (x, y, z))

=
(
VIEWreal

π,A,AQ
(κ, (x, y, z)) , OUTreal

π,A (κ, (x, y, z))
)

,

denote the view of the semi-honest adversary and the output of the uncorrupted
parties.

The FaF Ideal Model

We next describe the interaction in the FaF security ideal model , which specifies
the requirements for fully secure FaF computation of the function f with security
parameter κ. Let A be an adversary in the ideal world, which is given an auxiliary
input auxA and corrupts a party P called corrupted. Further let AQ be a semi-
honest adversary, which controls a party Q ∈ {A,B,C} \ {P} and is given an
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auxiliary input auxQ. We stress that the classical formulation of the ideal model
does not contain the second adversary.

The ideal model roughly follows the standard ideal model, where the parties
send their inputs to a trusted party that does the computation and sends them
the output. Additionally, we give the semi-honest adversary AQ the ideal-world
view of A (i.e., its input, randomness, auxiliary input, and output received from
the trusted party). This is done due to the fact that in the real world, we cannot
prevent the adversary from sending its entire view to the uncorrupted parties.
Formally, the ideal world is described as follows.

The FaF Ideal Model – Full Security.

Inputs: Party A holds 1κ and x ∈ {0, 1}∗, party B holds 1κ and y ∈ {0, 1}∗,
and party C holds 1κ and z ∈ {0, 1}∗. The adversaries A and AQ are given
each an auxiliary input auxA, auxQ ∈ {0, 1}∗ respectively, and the inputs of
the party controlled by them. The trusted party T holds 1κ.

Parties send inputs: Each uncorrupted party (including the semi-honest party)
sends its input to T. The malicious adversary A sends a value v′ as the input
for corrupted party P. If the adversary does not send any input, the trusted
party replaces its input with a default value. Write (x′, y′, z′) for the tuple of
inputs received by the trusted party.

The trusted party performs computation: The trusted party T selects a
random string rnd and computes (wA, wB, wC) = f (x′, y′, z′; rnd), and sends
wA to A, sends wB to B, and sends wC to C.

The malicious adversary sends its (ideal-world) view: A sends to AQ its
randomness, inputs, auxiliary input, and the output received from T.

Outputs: Each uncorrupted party (i.e., not P) outputs whatever output it
received from T, party P output nothing. A and AQ output some function of
their respective views.

We next define the ideal-world global view for security parameter κ ∈ N,
an input tuple (x, y, z), and auxiliary inputs auxA, auxQ ∈ {0, 1}∗ with respect
to adversaries A and AQ controlling the parties P and Q respectively. Let
OUTideal

f,A (κ, (x, y, z)) denote the output of the uncorrupted parties (those in
{A,B,C} \ {P}) in a random execution of the above ideal-world process, with
A corrupting P. Further let VIEWideal

f,A (κ, (x, y, z)) be the output of A in such a
process (this output should simulate the real world view of P). In addition, we
let VIEWideal

f,A,AQ
(κ, (x, y, z)) be the view description being the output of AQ in

such a process, when running alongside A. We let

IDEALf,A(auxA) (κ, (x, y, z)) =
(
VIEWideal

f,A (κ, (x, y, z)) , OUTideal
f,A (κ, (x, y, z))

)
,

and we let

IDEALf,A(auxA),AQ(auxQ) (κ, (x, y, z),AQ)

=
(
VIEWideal

f,A,AQ
(κ, (x, y, z)) , OUTideal

f,A (κ, (x, y, z))
)

.
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Having defined the real and ideal models, we can now define FaF full security
of protocols according to the real/ideal paradigm. For brevity, we will refer to
it simply as FaF security. We define a more general security notion, where the
distinguishing advantage between the real and ideal worlds, is required to be
bounded by a function ε(κ) (we use this in Sect. 5 to state a more general lower
bound on the round complexity required for FaF secure computations).

Definition 2.3 (FaF security). Let π be a protocol for computing f , and let
ε = ε(·) be a function of the security parameter. We say that π computes f
with (1, 1)-FaF ε-security, if the following holds. For every non-uniform ppt
adversary A, controlling at most one party P ∈ {A,B,C} in the real world, there
exists a non-uniform ppt adversary SimA controlling the same party (if there is
any) in the ideal model and for every non-uniform semi-honest ppt adversary
AQ controlling at most one party Q ∈ {A,B,C} \ {P} among the remaining
parties, there exists a non-uniform ppt adversary SimA,Q, controlling the same
party (if there is any) in the ideal-world, such that

{
IDEALf,Sim(auxA) (κ, (x, y, z))

}
κ∈N,x,y,z∈{0,1}∗,auxA∈{0,1}∗

C≡ε

{
REALπ,A(auxA) (κ, (x, y, z))

}
κ∈N,x,y,z∈{0,1}∗,auxA∈{0,1}∗ .

and
{
IDEALf,SimA(auxA),SimA,Q(auxQ)

(
κ, (x, y, z), SimA,Q

)}
κ∈N,x,y,z∈{0,1}∗,auxA,auxQ∈{0,1}∗

C≡ε

{
REALπ,A(auxA),AQ(auxQ) (κ, (x, y, z), AQ)

}
κ∈N,x,y,z∈{0,1}∗,auxA,auxQ∈{0,1}∗ .

We say that π computed f with (1, 1)-FaF security if for all c ∈ N, π computes
f with (1, 1)-FaF κ−c-security.

Observe that the correctness of the computation (in an honest execution)
is implicitly required by the above definition. Indeed, as we allow the adver-
sary to corrupt at most one party, by considering adversaries that corrupt no
party, the definition requires the output of all parties in the real world to be
indistinguishable from f(x, y, z).

We next define the notion of backup values, which are the values that honest
parties output in case the third party aborts (after sending messages honestly).
Note that the notions of backup values are well-defined for any (1, 1)-FaF secure
protocol.

Definition 2.4 (Backup values). Let f : X × Y × Z → W be a three-party
functionality, and let π be an r-round protocol computing f with (1, 1)-FaF secu-
rity. Let i ∈ {0, . . . , r}, sample the randomness of the parties, and consider an
honest execution of π with the sampled randomness until all parties sent i mes-
sages. For two distinct parties P,Q ∈ {A,B,C}, the ith backup value of the pair
{P,Q} is the value that an honest P and Q output if the third party aborts after
sending i messages honestly.
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2.3 FaF Security-With-Identifiable-Abort

Although the focus of this work is on full security, in some of our constructions
we use protocols admitting security-with-identifiable-abort. In terms of the def-
inition, the only requirement that is changed is that the ideal-world simulator
operates in a different ideal model. We next describe the interaction in the FaF-
secure-with-identifiable-abort ideal model for the computation of the function f
with security parameter κ.

Unlike the full security ideal model, here the malicious adversary can instruct
the trusted party not to send the output to the honest parties, however, in this
case, the adversary must publish the identity of a corrupted party. In addition,
since there is no guarantee that in the real world the semi-honest parties will
not learn the output, we always let the them receive their output in the ideal
execution. This allows us to simulate unfair protocols, where in addition to the
malicious adversary learning the output, it can decide whether the semi-honest
parties can learn the output as well.

Let A be a malicious adversary in the ideal world, which is given an auxiliary
input auxA and corrupts a party P ∈ {A,B,C}. Furthermore, let AQ be a semi-
honest adversary, which controls a party Q �= P and is given an auxiliary input
auxQ.

The FaF Ideal Model – Security-with-Identifiable-Abort.

Inputs: Party A holds 1κ and x ∈ {0, 1}∗, party B holds 1κ and y ∈ {0, 1}∗,
and party C holds 1κ and z ∈ {0, 1}∗. The adversaries A and AQ are given
each an auxiliary input auxA, auxQ ∈ {0, 1}∗ respectively, and the inputs of
the party controlled by them. The trusted party T holds 1κ.

Parties send inputs: Each uncorrupted party sends its input to T. The mali-
cious adversary A sends a value v′ as the input for corrupted party P. If the
adversary does not send any input, the trusted party replaces its input with a
default value. Write (x′, y′, z′) for the tuple of inputs received by the trusted
party.

The trusted party performs computation: The trusted party T selects a
random string rnd and computes (wA, wB, wC) = f (x′, y′, z′; rnd), and sends
wP to A and sends wQ to AQ.

The malicious adversary sends its (ideal-world) view: A sends to AQ its
randomness, inputs, auxiliary input, and the output received from T.

Malicious adversary instructs trusted party to continue or halt: The
adversary A sends either continue or (abort,P) to T. If it sent continue, then
for every uncorrupted party P′ �= P the trusted party sends it wP′ . Otherwise,
if A sent (abort,P), then T sends (abort,P) to the all honest parties.

Outputs: Each uncorrupted party (i.e., not P) outputs whatever output it
received from T, party P output nothing. A and AQ output some function of
their respective views.
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2.4 The Two-Party Model

In one of our results, we will be interested in the two-party setting with (stan-
dard) security against both a malicious adversary and a semi-honest adversary,
corrupting one party. In terms of definition, both the real and ideal world in the
two-party setting are defined analogously to the three-party setting. That is, in
the real world, two parties A and B interact, and each holds a private input,
the security parameter, and random coins. In the ideal world, the computation
is done via a trusted party in a similar way to the three-party definition. In
this paper, we consider both security against a malicious adversary, and security
against a semi-honest adversary. We say that a two-party protocol is fully secure
if it is secure against any malicious adversary, and we say that the protocol if it
has semi-honest security if it is secure against any semi-honest adversary.

3 The Dealer Model

In the description of our positive results, it will be convenient to consider a model
with a dealer. Here, the real world is augmented with a trusted dealer, which
is a pptm that can interact with the parties in a limited way. Furthermore,
the adversary is also limited when compared to a real world adversary: the
adversary is assumed to be fail-stop, namely, it acts honestly, however, it may
decide to abort prematurely. Additionally, it may change the input it sends to the
dealer. This model, which we show below to be equivalent to (1, 1)-FaF security,
offers a much simpler way to analyze the security of protocols. Moreover, our
constructions will achieve information-theoretic security in the dealer model.
A similar model was already considered for standard security with a dishonest
majority [2–4,6].

We next describe a blueprint for an r-round protocol in the dealer model
for the (1, 1)-FaF security model. That is, the blueprint instructs the dealer to
compute 3r+3 backup values and does not specify how to compute these backup
values. A protocol in the dealer model is obtained from the blueprint by defining
3r + 3 functions computing these backup values. We will show that such (1, 1)-
FaF secure protocols exist if and only if a (1, 1)-FaF secure protocol exists in
the real world (assuming secure protocols for OT). For simplicity, we assume the
function to be symmetric, i.e., all parties obtain the same output.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 3.1.
Inputs: Parties A, B, and C hold inputs x, y, and z, respectively.
Common input: All parties hold the security parameter 1κ.

1. The honest parties send their inputs to the dealer. The malicious adversary
sends a value as the input for the corrupted party. If the adversary does not
send any input, the dealer replaces it with a default value.

2. The dealer computes backup values ab0, . . . , abr,
ac0, . . . , acr, and bc0, . . . , bcr. It is required that ab0, ac0, and bc0, do not
depend on the inputs of C, B, and A, respectively.
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3. For i = 1 to r:
(a) The dealer approaches party A, which responds with either continue or

abort.
(b) If A responds with abort, then the dealer sends x and bci−1 to B and C,

sends ab0, . . . , abi−1 to B and ac0, . . . , aci−1 to C, and halts. Parties B
and C then output bci−1.

(c) The dealer approaches party B, which responds with either continue or
abort.

(d) If B responds with abort, then the dealer sends y and aci−1 to A and C,
sends ab0, . . . , abi−1 to A and bc0, . . . , bci to C, and halts. Parties A and
C then output aci−1.

(e) The dealer approaches party C, which responds with either continue or
abort.

(f) If C responds with abort, then the dealer sends z and abi−1 to A and B,
sends ac0, . . . , aci to A and bc0, . . . , bci to B, and halts. Parties A and B
then output abi−1.

4. If no party aborted, the dealer sends abr to A, sends bcr to B, and sends acr

to C.
5. Party A output abr, party B output bcr, and party C output acr.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We stress that the dealer is always honest in the above execution. The security
of the protocol is defined by comparing the above execution to the ideal world
defined previously. However, unlike the real world, here the malicious adversary
is only fail-stop. Thus, we say the protocol in the dealer model is (1, 1)-FaF
security if it is (1, 1)-FaF secure against fail-stop adversaries. Furthermore, note
that if the protocol is correct, then it is secure against semi-honest adversaries.
This is because the only information the adversary receives is the last backup
value, which equals to the output. Therefore, when proving security, it suffices to
always consider the case where there is a malicious adversary corrupting a party.
Removing the dealer (i.e., constructing a (1, 1)-FaF secure protocol without the
dealer) can be done using standard techniques. We next provide an intuitive
description of the real-world protocol without the dealer. The formal protocol
appears below.

At the beginning of the interaction, the parties compute a secret sharing of
all the backup values computed by the dealer, using a 3-out-of-3 secret sharing
scheme, and all shares are signed.8 This computation is done using a (1, 1)-FaF
secure-with-identifiable-abort protocol. Then, in each round i, party C broad-
casts its share of abi, then B broadcasts its share of aci, and finally, party A
broadcasts its share of bci. If a party does not send its share or it sends a dif-
ferent share (which is caught using the signature scheme, except with negligible
probability), then the remaining two parties reconstruct the last backup value
for which they hold the aborting party’s share.

Observe that the view of a corrupted party consists of only random indepen-
dent shares. Thus, it aborts (or sends an incorrect share) in the real world if
8 The signature key can be replaced with a one-time MAC for every share.
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and only if it aborts in the dealer model. Additionally, the view of a semi-honest
party consists of random shares, the backup value it computes with the remain-
ing honest party, and the shares it can reconstruct if given the malicious party’s
view. Thus, any attack in the real world can be emulated in the dealer model.

Additionally, the converse is also true. That is, if there is a (1, 1)-FaF secure
protocol computing f in the real world, there is a (1, 1)-FaF secure protocol
computing f in the dealer model. Indeed, the dealer simply computes the backup
values of every pair of parties and interacts with the parties as described in
the above model. Thus, as the real world and the ideal model are essentially
equivalent, we will sometimes refer to the dealer model as the real world. We
next formalize the statement and its proof.

Theorem 3.2. Let f : X × Y × Z → W be a three-party functionality. Then,
assuming secure protocols for OT exist, f can be computed with (1, 1)-FaF secu-
rity in the real world if and only if it can be computed with (1, 1)-FaF security
in the dealer model.

We next prove that any FaF-secure protocol in the dealer model can be
transformed into a FaF-secure protocol in the real world. The other direction is
given in the full version.

Lemma 3.3. Let f : X × Y × Z → W be a three-party functionality. Then,
if secure protocols for OT exist and f can be computed with (1, 1)-FaF security
in the dealer model, then f can be computed with (1, 1)-FaF security in the real
world.

Proof. Assume there is a protocol πD computing f in the dealer model that
is (1, 1)-FaF secure against fail-stop adversaries. We construct a protocol πR

computing f with (1, 1)-FaF security in the real world.
Fix a signature scheme Sig = (Gen,Sign,Ver) (since OT implies one-way

functions [16] and one-way functions imply signature scheme [24], the assumption
of the lemma implies signature schemes). Let ShrGen denote the three-party
functionality that, given the parties’ inputs, outputs a 3-out-of-3 secret sharing
for each of the backup values computed by the dealer, each signed using the
signature scheme. Formally, we define ShrGen as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm 3.4 (ShrGen).
Inputs: Parties A, B, and C hold inputs x, y, and z, respectively.
Common input: The parties hold the security parameter 1κ.

1. Sample a signature scheme keys (pk, sk) ← Gen(1κ).
2. For every i ∈ {0, . . . , r} do the following:

(a) Compute the backup values abi, aci, and bci, as the dealer computes them.
(b) If i = 0, then share each backup value in a 2-out-of-2 additive shar-

ing scheme. Otherwise, share each backup value in a 3-out-of-3 additive
secret-sharing scheme.

(c) If i ≥ 1, then for each backup value of two parties, sign the share of the
third party. That is, for every i ∈ [r] compute the following values:
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– σi,C ← Signsk(abi[C]).
– σi,B ← Signsk(aci[B]).
– σi,A ← Signsk(bci[A]).

3. Compute the following signatures:
– σab,A ← Signsk(abr[A]) and σac,A ← Signsk(acr[A]).
– σab,B ← Signsk(abr[B]) and σbc,B ← Signsk(bcr[B]).
– σac,C ← Signsk(acr[C]) and σbc,C ← Signsk(bcr[C]).

4. The parties obtain the following output.
– A receives the public key pk, the shares of the backup value

(abi[A], aci[A])ri=0 and (bci[A])ri=1, and the signatures (σi,A)ri=1, σab,A, and
σac,A.

– B receives the public key pk, the shares of the backup value
(abi[B], bci[B])ri=0 and (aci[B])ri=1, and the signatures (σi,B)ri=1, σab,B, and
σbc,B.

– C receives the public key pk, the shares of the backup value
(aci[C], bci[C])ri=0 and (abi[C])ri=1, and the signatures (σi,C)ri=1, σac,C, and
σbc,C.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Additionally, for each party P, we let f-P denote the two-party functionality
between the other two parties, obtained from f by fixing the input of P to a
default value (x0 if P = A, y0 if P = B, and z0 if P = C). We consider the following
three-party protocol πR for computing f , described in the {ShrGen, f-A, f-B, f-C}-
hybrid model. By [1, Theorem 4.2] there exists a protocol computing ShrGen with
(1, 1)-FaF security-with-identifiable-abort. Moreover, each f-P can be computed
with semi-honest security [26]. Thus, by the composition theorem, this implies
the existence of a (1, 1)-FaF secure protocol for computing f in the real world.9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 3.5.
Inputs: Parties A, B, and C hold inputs x, y, and z, respectively.
Common input: The parties hold the security parameter 1κ.

1. The parties call ShrGen with (1, 1)-FaF security-with-identifiable-abort, with
their inputs.

2. If P aborts the execution, then the remaining two parties call f-P with their
inputs and output the result.

3. Otherwise, the parties do the following. For i = 1 to r:
(a) Party A broadcasts (bci[A], σi,A).
(b) If A did not send any message or Verpk(bci[A], σi,A) = Fail, then B and C

reconstruct and output bci−1.
(c) Otherwise, party B broadcasts (aci[B], σi,B).

9 Technically, the composition theorem in [1] doesn’t handle a subprotocol with semi-
honest security after an abort occurred. However, we note that since the aborting
party receives no messages at all after it aborts, the proof of the composition theorem
can be easily extended to our setting.
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(d) If B did not send any message or Verpk(aci[B], σi,B) = Fail, then A and C
reconstruct and output aci−1.

(e) Otherwise, party C broadcasts (abi[C], σi,C).
(f) If C did not send any message or Verpk(abi[C], σi,C) = Fail, then A and B

reconstruct and output abi−1.
4. If no abort occurred, then

– A broadcasts (abr, σab,A) and (acr, σac,A).
– B broadcasts (abr, σab,B) and (bcr, σbc,B).
– C broadcasts (acr, σac,C) and (bcr, σbc,C).

5. Since there is at most a single malicious party, each uncorrupted party received
3 shares for at least one of the backup values (one from round r, one from
the other honest party, and one that they hold). Each party outputs the lexi-
cographically first one.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that correctness is immediately implied from the correctness of the
protocol in the dealer model, stating that abr = bcr = acr. The proof of security
is deferred to the full version due to space limitations. ��

4 Feasibility Results for Three-Party FaF Security

In this section, we present our positive results. In Sect. 4.1, we show that if a
function can be computed by a secure two-party protocol, then it can be com-
puted by a three-party (1, 1)-FaF secure protocol. Then, in Sect. 4.2 we provide
feasibility results for symmetric Boolean functions, where all parties output the
same bit as output.

4.1 A Compiler from 2-Party Standard Security to 3-Party
FaF-Security

The next theorem states that if a function can be computed as a two-party sym-
metric functionality (i.e., both parties receive the same output) with security
against a single malicious adversary and with security against a single semi-
honest adversary (and might be also (1, 1)-FaF secure), then it can be computed
with (1, 1)-FaF security as a three-party symmetric functionality. Note that sim-
ply letting the two parties A and B run the secure protocol between themselves,
and then having them send the output to C does not work (since the original
protocol might not be (1, 1)-FaF secure). Furthermore, even if the original two-
party protocol is (1, 1)-FaF secure, a corrupt party can lie about the outcome,
and then C has no way of detecting whether A is lying or B is.

Theorem 4.1. Let g : X × Y → W be a symmetric 2-party functionality, and
let f : X × Y × {λ} → W be the 3-party functionality symmetric variant of g,
i.e., it is defined as f(x, y, λ) = g(x, y) for all x ∈ X and y ∈ Y. Suppose that
there exists a two-party protocol computing g that is both fully secure and has
semi-honest security. Then, assuming secure protocols for OT exist, f can be
computed with (1, 1)-FaF security.



178 B. Alon et al.

Proof. Let π2 be the secure protocol for computing g that is assumed to exist,
and let r denote its number of rounds. We construct a three-party protocol π3

in the dealer model, computing f with (1, 1)-FaF security. By Theorem 3.2 this
implies the existence of a (1, 1)-FaF secure protocol in the real world (assuming
secure protocols for OT). Further let a0, . . . , ar and b0, . . . , br denote the backup
values of A and B, respectively (obtained by sampling randomness for A and B
and simulating them in π2). We assume without loss of generality that in each
round, B is the first to send a message. Thus, A obtains ai before B obtains
bi. We next construct the three-party protocol π3. Recall that a protocol in the
dealer model is given by 3r + 3 functions for computing the backup values for
each pair of parties in each round. We define these backup values as follows.
Given inputs x and y of A and B, respectively, for every i ∈ {0, 1, . . . , r} let
abi = f(x, y, λ), let aci = ai, and let bci = bi. Recall, a0 is the output of A in π2

if B sent no message, and thus is independent of y. Similarly, b0 is independent
of x. Thus, the 0th backup value does not depend on the third party’s input.

Correctness of π3 follows from the correctness of π2, which implies that ar =
br = g(x, y) = f(x, y, λ), except with negligible probability. The proof of security
of π3 is deferred to the full version. ��

4.2 FaF Secure Protocols for Boolean Functionalities

In this section, we consider a Boolean three-party functionality that depends only
on two inputs. We provide three classes of such functions that can be computed
with FaF security. Before stating the theorem, we first introduce some notations.

Notations. For a 2-ary three-party functionality f : X × Y × {λ} → {0, 1}, we
will write f(x, y) instead of f(x, y, λ) for brevity. Additionally, we associate a
matrix Mf ∈ {0, 1}|X |×|Y|, whose rows are indexed by elements x ∈ X , whose
columns are indexed by elements y ∈ Y, and is defined as Mf (x, y) = f(x, y).
We further define the negated matrix Mf as Mf (x, y) = 1 − Mf (x, y) for all
x ∈ X and y ∈ Y.

Definition 4.2. The affine span of a collection of vectors over R is the set of
all their linear combinations where the sum of coefficients is exactly 1.

As a corollary of Theorem 4.1, we apply the characterization from [3] of
the 2-party symmetric Boolean functionalities that can be computed with full
security. We obtain the following result.

Corollary 4.3. Let f : X ×Y ×{λ} → {0, 1} be a Boolean 3-party functionality.
Suppose that the all-one vector or the all-zero vector is in the affine span of either
the rows or the columns of Mf . Then, assuming secure protocols for OT exist,
f can be computed with (1, 1)-FaF security in the dealer model.

We next state the main result of this section. We consider a collection of
systems of linear equations (that depend on the function f). The theorem roughly
states that if any single one of them has a solution, then there exists a FaF secure
protocol computing f .
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Theorem 4.4. Let f : X ×Y ×{λ} → {0, 1} be a Boolean 3-party functionality.
Suppose there exists a probability vector p ∈ R

|X | with no 0 entries, i.e., p =
(px)x∈X satisfies px > 0 for all x ∈ X and

∑
x∈X px = 1, such that for all x ∈ X

it holds that Im(MT
f ) contains the vector

vx =
(
Mf (x, y) · (pT · Mf (·, y)

))T

y∈Y ,

and such that Im(M
T

f ) contains the vector

ṽx =
(
Mf (x, y) · (pT · Mf (·, y)

))T

y∈Y .

Then, assuming secure protocols for OT exist, f can be computed with (1, 1)-FaF
security in the dealer model.

Proof. We present a protocol that (1, 1)-FaF securely computes f in the dealer
model. By Theorem 3.2 this implies the existence of a (1, 1)-FaF secure protocol
in the real world (assuming secure protocols for OT). The protocol follows the
special round paradigm of Gordon et al. [13], where until a special (random and
unknown) round i∗ the parties’ backup values are independent, and from i∗ the
backup values equal to the output of f . We next present the protocol. Recall
that in the dealer model, we may only describe the distribution of the backup
values computed by the dealer.

First, we denote the geometric distribution with parameter α > 0 as Geom(α),
and it is defined as Pri←Geom(α)[i = n] = (1−α)n−1 ·α, for all integers n ≥ 1. We
further fix r(κ) = r = ω(log κ) to be the number of rounds. We are now ready to
describe the distribution of the backup values, given inputs x and y of A and B,
respectively. The dealer samples i∗ ← Geom(α), where α > 0 is sufficiently small
that will be chosen below. Then, for every i ∈ {0, . . . , r}, the dealer computes
backup values as follows. For every i ∈ {0, . . . , i∗} sample x̃i ← p and for every
i ∈ {0, . . . , i∗ + 1} sample ỹi ← Y (i.e., ỹi is uniformly distributed over Y),
independently. Then for every i ∈ {0, . . . , r} the dealer sets abi = f(x, y) and
sets

aci =

{
f(x, ỹi) if i < i∗

f(x, y) otherwise
; bci =

{
f(x̃i, y) if i < i∗ + 1
f(x, y) otherwise

The choice of setting bci to equal f(x, y) only from round i∗ + 1 is so that
A and C learn the output before B and C. Since r = ω(log κ) it follows that
i∗+1 ≤ r except with negligible probability. Therefore abr = bcr = acr = f(x, y)
except with negligible probability, and thus the protocol is correct. Due to space
considerations, the proof of security is deferred in the full version. ��

Theorem 4.4 identifies a set of functionalities that can be computed with
(1, 1)-FaF security. We do not know if there are functionalities that are not
captured by Theorem 4.4, and we leave their existence as an open question.
Corollary 4.6 below provides two simple classes of functionalities captured by
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Theorem 4.4 (though Corollary 4.6 is less general than Theorem 4.4, see the full
version for more details).

The following lemma, states that for certain families of functionalities, there
exists a solution to one of the system of equations considered in Theorem 4.4.

Lemma 4.5. Let f : X × Y × {λ} → {0, 1} be a three-party 2-ary Boolean
functionality. Suppose that one of the following holds.

1. Both Mf and Mf have a trivial kernel.
2. The all-one vector is a linear combination of the rows of Mf , where all coef-

ficients are strictly positive.

Then there exists a probability vector p ∈ R
|X | with no 0 entries, such that

for all x ∈ X it holds that Im(MT
f ) contains the vector

vx =
(
Mf (x, y) · (pT · Mf (·, y)

))T

y∈Y

and Im(M
T

f ) contains the vector

ṽx =
(
Mf (x, y) · (pT · Mf (·, y)

))T

y∈Y .

Proof. Let us first assume that both Mf and Mf have a trivial kernel. Here,
any choice of p with no zero entries works (e.g., the uniform probability vector).
Indeed, vx ∈ Im(MT

f ) if and only if it is orthogonal to the kernel of M . By
assumption, ker(Mf ) = {0} hence any vector is orthogonal to it. Similarly,
ṽx ∈ Im(M

T

f ).
We now assume there exists a vector u ∈ R

|X | with strictly positive entries,
such that uT · Mf = 1T . Here we take p = u/||u||1, where ||u||1 =

∑
x∈X ux is

the 	1 norm of u. Let δ > 0 be such that

pT · Mf = δ · 1T . (1)

Then

vx =
(
Mf (x, y) · (pT · Mf (·, y)

))
y∈Y = (Mf (x, y) · δ)y∈Y = (δ · ex) · Mf ,

where ex is the xth standard basis vector. Thus, vx ∈ Im(MT
f ). It is left to show

that ṽx ∈ Im(M
T

f ). We assume that Mf is not the all-one matrix, as otherwise,
the claim is trivial since ṽx = 0 and Mf is the all-zero matrix. Let J denote
the |X | × |Y| all-one matrix. Observe that by Equation (1) and since p is a
probability vector

pT · Mf = pT · (J − Mf ) = pT · J − δ · 1T
|Y| = (pT · 1|X | − δ) · 1T

|Y| = (1− δ) · 1T .

Since Mf is Boolean and p is a probability vector, for every y ∈ Y it follows
that

δ = pT · M(·, y) ≤ pT · 1 = 1,
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with equality if and only if for every x ∈ X such that px > 0 it holds that
M(x, y) = 1. Since p has no zero entries and M is not the all-one matrix, we
conclude that the inequality is strict; i.e., δ < 1. Therefore, a similar analysis to
the previous case shows that

ṽT
x = ((1 − δ) · ex) · Mf .

��
Note that if MT

f satisfies the conditions in Lemma 4.5, then a secure protocol
can be obtained by switching the roles of A and B. Thus, we obtain the following
corollary. Although less general than Theorem 4.4 (see the full version for a
functionality that is captured by Theorem 4.4 but not by Corollary 4.6), it is
conceptually simpler.

Corollary 4.6. Let f : X × Y × {λ} → {0, 1} be a three-party 2-ary Boolean
functionality. Suppose that one of the following holds.

1. Both Mf and Mf have a trivial kernel, or both MT
f and M

T

f have a trivial
kernel, i.e., it contains only the all-zero vector.

2. The all-one vector is a linear combination of either the rows or columns of
Mf , where all coefficients are strictly positive.

Then, assuming secure protocols for OT exist, f can be computed with (1, 1)-
FaF security in the dealer model.

As an example of Corollary 4.6, consider the equality function EQm : [m]2 ×
{λ} → {0, 1}, where m ≥ 1 is an integer. It is defined as EQm(x, y) = 1 if
x = y and EQm(x, y) = 0 otherwise. Then, MEQm

is the m × m identity matrix.
Therefore, it satisfies Item 1 of Corollary 4.6, hence it can be computed with
(1, 1)-FaF security. To exemplify Item 2, consider the functionality f given by
the following matrix

Mf =

⎛
⎜⎜⎝
0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1

⎞
⎟⎟⎠

Observe that the kernel of both Mf and MT
f contain (1, 1,−1,−1)T , hence Item

1 does not hold for f . However, note that

Mf · (1/4, 1/4, 1/4, 1/4)T = (1/2, 1/2, 1/2, 1/2)T .

Therefore f satisfies Item 2, hence it can be computed with (1, 1)-FaF security.

Remark 4.7. Although only proved for deterministic functionalities, Corollary
4.6 (and the more general Theorem 4.4) can be easily generalized to randomized
functionalities by defining Mf (x, y) = Pr [f(x, y) = 1] for all x ∈ X and y ∈ Y.
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5 Lower Bound on the Round Complexity of FaF Secure
Protocols

In this section, we present a lower bound on the round complexity required for
certain FaF secure computations. Specifically, we focus on deterministic three-
party functionalities that depend on two inputs. Before stating the result, we first
define the notion of maximally informative input. Roughly, an input x ∈ X for
party A is said to be maximally informative if for any other input x′ the input-
output pair (x′, f(x′, y)) does not give to A more information about the input y
of B than the input-output pair (x, f(x, y)). We formalize this by requiring that
for any x′ there exists y0, y1 ∈ Y such that the input x can distinguish y0 from
y1, while x′ cannot distinguish them. Formally we define it as follows.

Definition 5.1 (Maximally informative input). Let f : X × Y × {λ} → W
be a deterministic three-party functionality. We say that an input x ∈ X is
maximally informative if for every x′ ∈ X \ {x} there exists y0, y1 ∈ Y such that
f(x, y0) �= f(x, y1) and f(x′, y0) = f(x′, y1). A maximally informative input
y ∈ Y is defined analogously.

We are now ready to state our theorem. Roughly, it states that for any
deterministic 2-ary functionalities, if all inputs do not fix the output and are
maximally informative, then for any ε, the function cannot be computed with
an O( log ε−1

log |X |+log |Y| )-round FaF secure protocol.

Theorem 5.2. Let f : X ×Y×{λ} → W be a deterministic three-party function-
ality. For every x ∈ X let px

..= maxw∈W Pr [f(x, y) = w] where y ← Y, and let
p1 ..= maxx∈X px. Similarly, for every y ∈ Y let py

..= maxw∈W Pr [f(x, y) = w]
where x ← X , and let p2 ..= maxy∈Y py. Finally, denote p = max{p1, p2}.
Assume that there is no input that fixes the output of f and that all x ∈ X
and y ∈ Y are maximally informative (observe that this implies that p < 1).
Then for any ε = ε(κ) and any r-round protocol π computing f with (1, 1)-FaF
ε-security, it holds that

r ≥
log

(
1
4ε

) − log
(

1
1−p

)
log(9 · |X | · |Y|) .

Due to space limitations, the proof of Theorem 5.2 is deferred to the full
version. As a corollary, we get that for any f satisfying the conditions in Theorem
5.2 there is no O(log κ)-round protocol computing f with (1, 1)-FaF security.

Corollary 5.3. Let f : X × Y × {λ} → W be a deterministic three-party func-
tionality. Assume that there is no input that fixes the output of f and that all
x ∈ X and y ∈ Y are maximally informative. Then there is no O(log κ)-round
protocol computing f with (1, 1)-FaF security.
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Proof. Fix a constant c ∈ N and let ε(κ) = κ−c′
, where c′ = 2c · log(9 · |X | · |Y|).

Since p, |X |, and |Y| are constant, it holds that

c′ ≥
c · log κ · log(9 · |X | · |Y|) + log

(
1

1−p

)
log

(
κ
4

) ,

for all sufficiently large κ. By Theorem 5.2 it follows that r ≥ c · log κ. ��
Below we show an example of a Boolean functionality that can be computed

with (1, 1)-FaF security and satisfies the conditions of Theorem 5.2.
For Boolean functions, the result can be stated in simpler terms using the

associated matrix Mf of the function. Observe that an input x ∈ X is maximally
informative if and only if the row Mf (x, ·) is either constant or the negation
of the row, namely Mf (x, ·), does not appear in Mf . Additionally, note that
duplicating rows and columns, and removing duplications does not compromise
the FaF security of the protocol. Thus, we have the following corollary.

Corollary 5.4. Let f : X × Y × {λ} → {0, 1} be a deterministic three-party
Boolean functionality. Assuming that the matrix Mf has no constant rows, no
constant columns, and that no row or column has its negation appearing in Mf .
Then there is no O(log κ)-round protocol computing f with (1, 1)-FaF security.

As an example, for an integer m ≥ 3, consider the equality function EQm :
[m]2 × {λ} → {0, 1} defined as EQm(x, y) = 1 if x = y, and EQm(x, y) = 0
otherwise. Then MEQm

is the m × m identity matrix. It has no constant rows
and columns, and since m ≥ 3 no row or column has its negation appearing in
MEQm

. Therefore, by Corollary 5.4 any protocol computing it must have round
complexity of ω(log κ). Note that this matches the round complexity of the
protocol given by Corollary 4.6.

6 Impossibility for a Two-Input Three-Party
Functionality

In this section, we show that there is a function with inputs from two parties that
gives the same output to 3 parties and cannot be computed with a (1, 1)-FaF
secure protocol. We prove the following.

Theorem 6.1. Assume the existence of one-way permutations. Then there
exists a three-party symmetric 2-ary functionality for which there is no protocol
computing it with (1, 1)-FaF security.

The functionality we consider and the proof that no protocol computes it with
FaF security is nearly identical to that of [1]. Let f = {fκ : {0, 1}κ 
→ {0, 1}κ}κ∈N

be a one-way permutation. Define the symmetric 3-party functionality Swap ={
Swapκ : {0, 1}2κ × {0, 1}2κ × {λ} 
→ {0, 1}2κ

}
κ∈N

as follows. Parties A and B

each hold two strings (a, yB), (b, yA) ∈ {0, 1}2κ respectively, and party C holds
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no input. The output is defined as: if fκ(a) = yA and fκ(b) = yB, then
Swapκ ((a, yB) , (b, yA) , λ) = (a, b), otherwise Swapκ ((a, yB) , (b, yA) , λ) = ⊥.

Due to space limitations, the proof that Swap cannot be computed with
(1, 1)-FaF security is deferred to the full version.
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Abstract. We introduce a new cryptographic primitive, called Completely
Anonymous Signed Encryption (CASE). CASE is a public-key authenticated
encryption primitive, that offers anonymity for senders as well as receivers. A
“case-packet” should appear, without a (decryption) key for opening it, to be a
blackbox that reveals no information at all about its contents. To decase a case-
packet fully–so that the message is retrieved and authenticated–a verification key
is also required.

Defining security for this primitive is subtle. We present a relatively simple
Chosen Objects Attack (COA) security definition. Validating this definition, we
show that it implies a comprehensive indistinguishability-preservation definition
in the real-ideal paradigm. To obtain the latter definition, we extend the Crypto-
graphic Agents framework of [2,3] to allow maliciously created objects.

We also provide a novel and practical construction for COA-secure CASE
under standard assumptions in public-key cryptography, and in the standard
model.

We believe CASE can be a staple in future cryptographic libraries, thanks to its
robust security guarantees and efficient instantiations based on standard assump-
tions.

1 Introduction

In this work, we introduce a new cryptographic primitive, called Completely Anony-
mous Signed Encryption (CASE). CASE is a public-key authenticated encryption prim-
itive, that offers anonymity for senders as well as receivers. CASE captures the intuition
that once a message is “encased”–resulting in a case-packet–it should appear, to some-
one without a (decryption) key for opening the case-packet, to be a blackbox that reveals
no information at all about its contents.1 To decase a case-packet fully–so that the mes-
sage is retrieved and authenticated–a verification key is also required.

1 For simplicity, we consider a finite message space. If messages of arbitrary length are to be
allowed, we will let a case-packet reveal the length of the message (possibly after padding).
All our definitions and results can be readily generalized to this setting.
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The significance of such a primitive stems from its fundamental nature as well as its
potential as a practical tool. For instance, in blockchain-like systems where data packets
can be publicly posted, for privacy, not only the contents of the packet should be hidden,
but also the originator and the intended recipient of the data should remain anonymous.
Further, we may require that even the recipient of a packet should not learn about its
sender unless they have acquired a verification key that allows them to authenticate
packets from the sender (this is what we call complete anonymity).

CASE, while fundamental in nature, is still a fairly complex primitive, and for-
mally defining security for it is a non-trivial task. It involves two pairs of keys (public
and secret keys, for encryption and signature), used in different combinations (e.g., a
decryption key is enough to open the case-packet for reading a message, but a verifica-
tion key is also needed for authentication), and multiple security requirements based on
which keys are available to the adversary and which are not.

Public-key authenticated encryption has been well-explored in the literature (see
Sect. 1.1) and has also been making its way into standards (e.g., [4,11]). However, these
notions do not incorporate anonymity as we do here. Further, we seek and achieve
significantly more comprehensive security guarantees and strong key-hiding properties.
In particular, we seek security against active adversaries who can access oracles that
combine honest objects with adversarial objects, where “objects” refer to both keys as
well as case-packets. For instance, the adversary can query a decasing oracle with its
own decryption key and case-packet, but requesting to use one of two verification keys
picked by the experiment. We term such attacks Chosen Objects Attack (COA), as a
generalization of Chosen Ciphertext Attack. We present a relatively simple definition
of COA-secure CASE consisting of three elegant experiments (Total-Hiding, Sender-
Anonymity, Unforgeability),2 correctness conditions, an unpredictability condition, and
a set of natural –but new–existential consistency requirements.

Is COA Security Comprehensive? (Yes!) At first glance, our COA security definition
for CASE may appear as an incomplete list of desirable properties. Indeed, given the
subtleties of defining security for a complex primitive, it is not possible to appeal to
intuition to argue that all vulnerabilities have been covered by this definition. Instead,
one should use a comprehensive definition in the real-ideal paradigm, where the ideal
model is intuitively convincing. This approach has formed the foundation for general
frameworks like Universally Composable security [15] and Constructive Cryptogra-
phy [29]. However, using a simulation based security definition for modeling objects
that can be passed around (rather than functionalities implemented using protocols
wherein parties never transfer their secret keys) quickly leads to impossibility results
in the standard model without random oracles (see the full version). To avoid such out-
right impossibility results, we consider a definition in the real-ideal paradigm that uses
indistinguishability-preservation [2,3] as the security notion, rather than simulation.
In the process, we extend the Cryptographic Agents framework of [2,3] to allow mali-
ciously created objects, which is an important additional contribution of this work.

2 These distinct experiments can be combined to give an equivalent unified experiment in which
the adversary is allowed to adaptively attack any of the above security properties over a collec-
tion of keys and case-packets. Such a definition is presented as an intermediate step to showing
the comprehensiveness of this definition (see below).
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Once the definitions are in place, our main results are a novel construction of a
COA-secure CASE from standard assumptions in public-key cryptography, and also
showing that COA-secure CASE meets the real-ideal security definition for CASE.

Our Contributions. We summarize our contributions here.

– We introduce CASE as a practical and powerful cryptographic primitive.
– We present a strong security definition for CASE, called COA security (Sect. 3).
– We give a construction for COA-secure CASE under standard assumptions in the

standard model (Sect. 4). We also show how to leverage the efficiency of any
symmetric-key encryption scheme to get a correspondingly efficient COA-secure
CASE (Sect. 4.4).

– We present the Active Agents Framework as an extension of the Cryptographic
Agents model, to capture comprehensive security guarantees for complex primitives
like CASE under the real-ideal paradigm (Sect. 5).

– We show that COA secure CASE yields a secure implementation of CASE in the
active agents framework (Sect. 6).

While we present the COA security definition upfront, it is important to point out
that this definition was arrived at starting from the security definition in the active agents
framework, and working through the demands of satisfying that definition.

1.1 Related Work

Public-key authenticated encryption has been extensively studied since signcryption
was introduced by Zheng [41]. Despite being a fundamental primitive studied for over
two decades, it has proved challenging to find the right definitions of security for this
notion. Indeed, the original scheme by Zheng was proven secure several years after
its introduction [8]. A sequence of works [5,6,8,34,40] formalized security in the so
called “outsider security model” and “insider security model” where the former is used
to model network attacks while the latter is used to model (a priori) legitimate users
whose keys have been compromised. Even as these basic security definitions remained
ad hoc, a significant number of works have constructed concrete schemes based on
different assumptions [25,26,38,41,42], and gone on to realize advanced properties
[9,13,14,17–19,22,25,27,28,36,37,39].

An early attempt by Gjøsteen and Kråkmo [23] modelled unforgeability and confi-
dentiality in the outsider security model by using an ideal functionality. More recently,
[7] provided a constructive cryptography perspective of the basic security notions of
signcryption. This work modelled the goal of authenticated public-key encryption as a
secure communication network, with static corruption of nodes. As it used a simulation-
based definition for the communication functionality, it does not account (and could not
have accounted) for secret key transfers, or more generally, the use of the scheme’s
objects in non-standard ways outside of the prescribed communication protocols (e.g.,
posting ciphertexts on a bulletin board or forwarding them, using signatures to prove
the possession of a signing key, etc.).

Recently, Bellare and Stepanovs studied signcryption from a quantitative perspec-
tive due to its use in various practical systems and standards [11]. More recently, Alwen
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et al. [4] conducted a thorough study of the “authenticated mode” of the Hybrid Pub-
lic Key Encryption (HPKE) standard, which combines a Key Encapsulation Mechanism
and an Authenticated Encryption. They abstract this notion using a new primitive which
they call Authenticated Public Key Encryption. However, their study is tailored to the
HPKE standard, and primarily studies weaker variants of security. Another recent work
by Maurer et al. [30] studied the related notion of “Multi-Designated Receiver Signed
Public Key Encryption” which allows a sender to select a set of designated receivers
and both encrypt and sign a message that only these receivers will be able to read and
authenticate.

While the aforementioned works make important progress towards the goal of find-
ing the right formalization for public-key authenticated encryption, none of them con-
sider anonymity of the sender and intended receiver. They also work with relatively
weak or ad hoc security definitions and do not comprehensively model an adversary
that can combine honest and adversarial objects via oracles.

2 Technical Overview

We proceed to provide a technical overview of our definitions, constructions and proofs
of security.

2.1 Defining COA-Secure CASE

CASE is a fairly complex primitive. For instance, in contrast to symmetric-key authen-
ticated encryption, encasing and decasing a message involves four keys. Further, in
comparison to signcryption, which itself has been the subject of an extensive body of
work, CASE requires strong key-hiding properties. We also require that even if one of
the two keys used to create a case-packet, or used to decase a possibly malicious case-
packet, is maliciously crafted, the residual hiding assurances for the honestly created
key should hold.

We start off by presenting a fairly intuitive set of security games and correctness
properties. We term our definition security against Chosen Objects Attack, or COA-
security (Sect. 3), since the adversary needs to be provided with oracles which take not
only malicious “ciphertexts” (or case-packets), but also malicious keys; both encasing
and decasing oracles need to be provided to the adversary. There are standard correct-
ness requirements and three security games–total hiding and sender anonymity games
with a flavor of CCA security, and an unforgeability game paralleling a standard signa-
ture unforgeability requirement. In addition, there is an unpredictability requirement
and a set of existential consistency requirements, which are crucial for security against
malicious keys. The former requires that encasing a message with any encryption key
and signing key results in a case-packet with high min-entropy (or results in an error);
while this is implied by the above security experiments for honestly generated keys,
the additional requirement is that it holds for all keys in the key-space. The existential
consistency conditions require that a case-packet should have at most one set of keys
and message that can be associated with it, and similarly a verification key should have
at most one signing key, and an encryption key should have at most one decryption key.
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Like the unpredictability requirement, the consistency requirements are also remark-
ably unremarkable in nature–indeed, one may feel that they are to be expected in any
reasonable scheme–but, they are non-trivial to enforce.

2.2 Constructing a COA-Secure CASE

We start with a sign-then-encrypt strategy. Indeed, in the setting of (non-anonymous)
signcryption, sign-then-encrypt is a generic composition that is known to yield a secure
signcryption [5], but only with the weakened form of “replayable CCA” security (intro-
duced in [5] as generalized CCA or gCCA). The main drawback of this construction is
replayability: suppose Eve receives a case-packet CP signed by Alice and encrypted
using Eve’s encryption key; then, Eve can decrypt it and reencrypt using any encryp-
tion key of its choice (without needing to modify the underlying signature of Alice).
This is clearly problematic because, if Bob receives a case-packet that he can decase
and authenticate to be from Alice, he still cannot be sure if Alice had actually sent it
to him, or to someone like Eve (who then carried out the above attack). An immediate
solution to this is to include in the signed message the encryption key to be used as well;
this would prevent Eve from passing off the signed message with her encryption key in
it as a message intended for Bob. However, this still leaves some non-ideal behavior:
On receiving one case-packet from Alice, Eve can construct many distinct case-packets
by decrypting and reencrypting it with its encryption key many times. Each of these
case-packets would verify as coming from Alice by someone with Eve’s decryption
key. Whether this translates to concrete harm or not is application dependent–but this a
behavior that is not possible in the ideal setting.

We thus want to authenticate the entire case-packet (rather than just the message
and the encryption key) in the signature. However, this leads to a circularity as the
case-packet is determined only after the signature is computed. It turns out that one can
circumvent this circularity by exposing a little more structure from the underlying PKE
scheme. The idea is as follows, instead of signing the case-packet itself, it is enough
to sign everything that goes into the case-packet other than the signature itself–i.e.,
the message, the encryption key, and the randomness that will be used to create the
encryption. This idea should be implemented with some care, so that the security of the
encryption scheme (which is not designed to support message-dependent-randomness)
remains un-affected.

We call an encryption scheme quasi-deterministic if any ciphertext generated by it
includes a part τ that is independent of the message, but is a perfectly binding encoding
of all the randomness r used in the encryption. As a simple example, El Gamal encryp-
tion is quasi-deterministic, since EncElGamal((g, h),m; r) = (gr,m · hr) where (g, h)
is the public-key, m the message and r the randomness, and gr is a binding encoding of
r. The same is true for Cramer-Shoup encryption [16].

This gives us the structure of our final scheme: we need a signature scheme
(with sufficiently short signatures) and a quasi-deterministic PKE scheme (with suf-
ficiently long messages). To encase m, we first pick the randomness r for the PKE
scheme and compute the first component τ of the ciphertext (without needing the
message). Then, we set the case-packet to be pkeEnc(EK,m||σ; r) where σ =
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sigSign(SK,m||EK||τ). Note that, the ciphertext produced by pkeEnc using random-
ness r will contain τ as a part, and during decasing, the signature σ can be verified.

To make this construction work, we need the right kind of PKE and signature
schemes, with their own anonymity and existential consistency in addition to the stan-
dard security guarantees (CCA and strong unforgeability, resp.). We capture these secu-
rity requirements as COA-secure Quasi-Deterministic PKE (COA-QD-PKE) and Exis-
tentially Consistent Anonymous Signatures (ECAS).

COA Secure Quasi-Deterministic PKE. The definition of COA security of PKE
consists of a single indistinguishability requirement–Anonymous-CCA-QD security
(adapted from Anonymous-CCA security [1,12])–plus a set of existential consistency
requirements.

To be able to exploit the quasi-determinism (described above), we need to mod-
ify the CCA security game slightly into a CCA-QD game as follows. The adversary
receives the first part τ of the challenge ciphertext (which does not depend on the mes-
sage) upfront along with the public-key; it receives the rest of the ciphertext after it
submits a pair of challenge messages.

To construct a COA-QD-PKE scheme, we start from an Anonymous-CCA-QD
secure scheme. As it turns out, we already have a construction in the literature that is
Anonymous-CCA-QD secure: [1] showed that with a slight modification, the Cramer-
Shoup encryption scheme [16] becomes Anonymous-CCA secure; we reanalyze this
scheme to show that it is Anonymous-CCA-QD secure as well.3

We also require existential consistency s.t. if a ciphertext decrypts successfully, it
can only decrypt to at most a single message with at most a single decryption key. We
now show how a given Anonymous-CCA-QD-PKE with perfect correctness (such as
the modified Cramer-Shoup scheme [1]) can be modified to be existentially consistent
while retaining its original security. Note that, perfect correctness only refers to honestly
generated keys and ciphertexts, and does not entail existential consistency.

A helpful first step in preventing invalid secret-keys is to redefine it to be the ran-
domness used to generate the original secret-key. Further towards enforcing existential
consistency, we augment the public-key to include a perfectly binding commitment to
the secret-key, and the ciphertext is augmented to include one to the public-key. That is,
the ciphertext has the form (α, β), where α is a commitment to the public-key and β is a
ciphertext in the original scheme. To preserve anonymous-CCA security, we need to tie
α and β together: it turns out to be enough to let β be the encryption of m||d where d is
the canonical decommitment information for α (from which α also can be computed).

Here we point out one subtlety in the above construction. Note that the public-key
is required to include a binding commitment of the secret-key. But we in fact require
that the public-key can be deterministically computed from the secret-key (since this
property will be required of our CASE scheme). Hence the randomness needed to

3 We note that, CCA-QD security is not implied by CCA security and the QD structure alone.
E.g., one can modify a CCA-QD secure PKE scheme such that, if the encoding of the ran-
domness (the pre-computed component of the ciphertext) happens to equal the message, it
simply sets the second component to ⊥, thereby revealing the message; while this remains
CCA secure, an adversary in the CCA-QD game can set one of the challenge messages to be
equal to the encoding of the randomness and break CCA-QD security.
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compute this commitment must already be part of the secret-key, leading to a circu-
larity. This circularity can be avoided by using a commitment scheme that is “fully
binding”–i.e., the output of the commitment is perfectly binding not only for the mes-
sage, but also for the randomness used. An example of such a scheme, under the
DDH assumption, is obtained from the El Gamal encryption scheme mentioned above:
Com(m; g, h, r) = (g, h, gr,mhr).

Existentially Consistent Anonymous Signature. We require ECAS to be a (strongly
unforgeable) signature scheme with an anonymity guarantee: without knowing a verifi-
cation key, one cannot tell if two signatures are signed using the same key or not. We
shall also require existential consistency guarantees of ECAS.

To construct an ECAS scheme, we start with a plain (strongly unforgeable) signa-
ture scheme, which w.l.o.g., has uniformly random signing keys from which verification
keys are deterministically derived (by considering the randomness of the key-generation
process as the signing key). We first augment this scheme to support anonymity by
adding a layer of encryption, and include the decryption key in the signing and verifica-
tion keys of the ECAS scheme. To obtain existential consistency, we make the following
modifications:

– The signing key SK includes the underlying scheme’s signing key, the decryption
key for the encryption layer, and additional randomness for making the commitment
below.

– The verification key V K includes the underlying verification key, the decryption
key for the encryption layer and a commitment to the underlying signing key (using
a fully binding commitment scheme as above).

– The signature includes a commitment to V K (but to the encryption key in it) using
fresh randomness r̂, and a quasi-deterministic encryption of (r̂||σ) where σ is a
signature on m||r̂||τ using the underlying signature scheme, where τ is the first
component of the quasi-deterministic ciphertext.

– Verification corresponds to decrypting the ciphertext, verifying the signature accord-
ing to the underlying signature scheme and then verifying the consistency of the
commitment.

For existential consistency, as well as (strong) unforgeability, we will rely on the
encryption scheme to be a COA-QD-PKE. Note that we have rely on the quasi-
deterministic nature of the encryption scheme to prevent forgeries which simply refresh
the encryption layer (decrypt and re-encrypt).

We point out one subtlety in the above construction. We have defined the signature
above to include a commitment to (SK∗, c, EK∗) rather than the actual verification
key V K = (SK∗, c,DK∗). This is to avoid the following circularity: the commitment
would have the decryption key in it while the encryption would have the randomness
used for this commitment. This would prevent us from arguing the properties of ECAS.

Please refer to the full version for the full details. Note that this construction shares
several similarities with our CASE construction. If one unrolls our CASE construction,
there are two layers of COA-QD-PKE, but using two different keys.

Improving the Efficiency. As described in Sect. 4.4, CASE admits an analogue of
“hybrid encryption,” whereby long messages can be encased at the cost of applying
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symmetric-key encryption (SKE) and collision-resistant hashing to the original mes-
sage, plus the cost of encasing a fixed size message (consisting of the keys for SKE
and hashing, and the hash of the message). This makes our CASE construction quite
practical.

2.3 A Real-Ideal Definition

A major concern with game-based security definitions is that they may leave out sev-
eral subtler aspects of security. For instance, even for the simpler (and heavily studied)
setting of public-key encryption, the security definition has been strengthened incre-
mentally through a sequence of notions that emerged over the decades: Semantic secu-
rity or IND-CPA [24], IND-CCA (1 and 2) [20,32,35], anonymity [12] and robustness
[1,21,31]. With CASE, this is clearly an even more pressing concern, given its complex-
ity. In particular, our definition of COA-secure CASE has several games and conditions
as part of it, and one may suspect that more such components could be added in the
future.

To address this concern, we seek a definition following the real-ideal paradigm,
where by inspecting the ideal world, one can be easily convinced about the meaning-
fulness of the definition. However, a simulation-based definition quickly leads us to
impossibility results. Even for PKE with adaptive security (when decryption keys may
be revealed adaptively–a situation we do intend to cover), as observed by Nielsen [33],
a simulation based definition is impossible to achieve in the standard model.

In this work, we develop a new definition in the real-ideal paradigm that avoids
simulation, but is nevertheless powerful enough to subsume game-based definitions like
IND-CCA security. Our definition is based on the indistinguishability-preserving secu-
rity notion of the Cryptographic Agents framework [2,3]. The original framework of
[2,3] did not allow an adversary to send (possibly maliciously created) objects to an
honest party, and as such was not powerful to capture even IND-CCA security. We
remove this restriction from the framework and extend it with other useful features.
Then, we model CASE in this framework using a natural idealized version, and seek an
indistinguishability-preserving implementation for it.

Our main result in this model, informally, is that a COA-secure CASE scheme is in
fact, an indistinguishability-preserving implementation of ideal CASE. This validates
our COA security definition for CASE.

Active Agents Framework. We briefly discuss the active agents framework (with more
technical details in Sect. 5). The framework is minimalistic and conceptually simple,
and consists of the following:

– Two arbitrary entities. Test models the honest party, and User models the adversary.
– The ideal model has a trusted party B which hands out handles to Test and User for

manipulating data stored with it via an idealized interface called “schema”(akin to a
functionality in the UC security model).

– The real model has Test and User interact with each other using cryptographic
objects, in place of ideal handles.
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� Indistinguishability Preservation: The security requirement in this model is as follows.
For any predicate on Test’s inputs that is hidden from User in the ideal world, it
should be hidden in the real world as well.

An ideal world schema will have an interface corresponding to each algorithm of an
application (such as key generation, encasing and decasing for CASE) and an agent cor-
responding to each cryptographic object (such as keys and ciphertexts). Both Test and
User only get handle numbers to agents. Constructing objects via algorithms is mod-
elled as invoking the corresponding schema command and getting a handle for a new
agent. Sending cryptographic objects is modelled via a special command called Trans-
fer. Test (respectively User) can transfer its agents (via handles) to User (respectively
Test), which gets a new handle number to the transferred agent.

Δ-s-IND-PRE Security. To obtain our full definition, we need to further qualify
indistinguishability-preservation by specifying the class of Tests and Users in the ideal
model. We denote s-IND-PRE as the class of all PPT Test that are hiding against even
unbounded Users in the ideal world (as in [3]).4

The strongest possible s-IND-PRE definition one can ask for in the active agents
framework is for the test-family of all PPT programs, which results in a definition that
is impossible to realize (even for symmetric key encryption and even in the original
framework of [2]–see the full version). However, a more restricted test-family called Δ
suffices to subsume all possible IND-style (a.k.a. “real-or-random”) definitions. Infor-
mally, a Test ∈ Δ reveals everything about the handles for agents it uses in its interac-
tion with User except for a test-bit b corresponding to some arbitrary predicate. When
transferring an agent to User, Test chooses two handles h0, h1 and communicates these
to the user but transfers only agent for hb. Thus, User knows that Test has transferred
one of two known agents to her, but does not know which. User may proceed to perform
any idealized operation with this newly transferred agent.

In intuitive terms, Δ-s-IND-PRE formalizes the following guarantee: as long as
Test does not reveal a secret in the ideal world, the real world will also keep it hidden.
It subsumes essentially all meaningful IND security definitions for a given interface of
the primitive: for any such IND security game, there is Test ∈ Δ which carries out
this game, such that it statistically hides the test-bit when an ideal encryption scheme
is used (e.g., in the case of IND-CCA security this formulation corresponds to a game
that never decrypts a ciphertext that is identical to the ciphertext that was earlier given
as the challenge, called IND-CCA-SE in [10]), and Δ-s-IND-PRE security applied to
this Test translates to the security guarantee in the IND security game.

In particular, Δ-s-IND-PRE security directly addresses the chosen object attacks of
interest, as they can all be captured using specific tests.

Beyond CASE. We point out that the active agents framework developed here is quite
general and can be used to model security for other schemas in the presence of adver-
sarially created objects. The original frameworks of [2,3] modeled security notions for
more advanced primitives like indistinguishability obfuscation, differing-inputs obfus-

4 So that, it is statistical indistinguishability in the ideal model that is required to be preserved
as computational indistinguishability in the real model.
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cation and VGB obfuscation by using different test families. Transferring these defini-
tions to our new model would yield stronger notions with additional non-malleability
guarantees; the resulting primitives remain to be explored. Indeed, as the basic security
definitions for obfuscation and functional encryption are increasingly considered to be
realizable, the achievability of stronger definitions emerges as an important question.

Limits of Δ-s-IND-PRE. Even though Δ-s-IND-PRE security is based on an ideal
world model, and subsumes all possible IND definitions, we advise caution against
interpreting Δ-s-IND-PRE security on par with a simulation-based security definition
(which is indeed unrealizable). For instance, Δ-s-IND-PRE does not require preserving
non-negligible advantages: e.g., a distinguishing advantage of 0.1 in the ideal world
could translate to an advantage of 0.2 in the real world. Note that this is usually not a
concern, since it corresponds to an ideal world that is already “insecure”.

Another issue is that, while an ideal encryption scheme could be used as a non-
malleable commitment scheme, Δ-s-IND-PRE security makes no such assurances. This
is because, in the ideal world, if a commitment is to be opened such that indistinguisha-
bility ceases, then IND-PRE security makes no more guarantees. We leave it as an
intriguing question whether Δ-s-IND-PRE secure encryption could be leveraged in an
indirect way to obtain a non-malleable commitment scheme.

Δ-s-IND-PRE definition also does not cover side-channel attacks. One can extend
the definition to allow the interface of an implementation to have more commands (cor-
responding to leakage) than in the ideal interface of the schema. We defer this to future
work.

Finally, the idealized model in the Agents framework excludes certain kinds of
usages that a simulation-based idealization would permit. Specifically, since the ideal
interface provides honest users only with handles (serial numbers) for the cryptographic
objects they create or receive, they cannot use a cryptographic object as input to another
algorithm, or even to an algorithm in the same scheme (e.g., a key cannot be used as a
message that is encased). We remark that this restriction is, in fact, a desirable feature
in a programming interface for a cryptographic library; violating this interface should
not be up to the programmer, but should be carefully designed, analyzed and exposed
as a new schema by the creators of the cryptographic library.

2.4 Proving COA Security ⇒ Δ-s-IND-PRE Secure CASE

Implementing the schema Σcase is a challenging task because it is highly idealized
and implies numerous security guarantees that may not be immediately apparent. (For
instance, in the ideal world, to produce a case-packet, not only is the signing key needed,
but so is the encryption key; hence an adversary with the signing key who gets oracle
access to encasing and decasing, should not be able to create a new valid case-packet.)
These guarantees are not explicit in the definition of COA security. Nevertheless, we
show the following:

Theorem 1. A Δ-s-IND-PRE secure implementation of Σcase exists if a COA secure
CASE scheme exists.

The construction itself is direct, syntactically translating the elements of a CASE
scheme into those of an implementation of Σcase. However, the proof of security is quite
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non-trivial. This should not be surprising given the simplicity of the COA security def-
inition vis-à-vis the generality of Δ-s-IND-PRE security. We use a careful sequence of
hybrids to argue indistinguishability preservation, where some of the hybrids involve the
use of an “extended schema” (which is partly ideal and partly real). To switch between
these hybrids, we use both PPT simulators (which rely on the indistinguishability and
unforgeability guarantees in the COA security) and computationally unbounded simula-
tors (which rely on existential consistency). As we shall see, the simulators heavily rely
on the fact that Test ∈ Δ, and hence the only uncertainty regarding agents transferred
by Test is the choice between one of two known agents, determined by the test-bit b
given as input to Test. The essential ingredients of these simulators are summarized
below.5

• First, we move from the real execution to a hybrid execution in which objects orig-
inating from Test are replaced with ideal agents, while the objects originating from
the adversary are replaced–by an efficient simulator S†

b (which knows the test bit
b)–with ideal agents only when their structure can be deduced efficiently based on
the objects already in the transcript; otherwise S†

b prepares non-ideal agents which
internally contain cryptographic objects and transfers them.
In this hybrid, an “extended” schema which allows both ideal and non-ideal agents is
used. The extended schema is carefully designed to allow sessions to run correctly,
even when non-ideal agents (prepared by S†

b ) and ideal agents interact with each
other.
A detailed analysis, using a graph G

†
b which encodes the combined view of Test

and A, is used to argue that the modifications in this hybrid will cause the execution
to deviate only if certain “bad events” occur (see the full version). The bad events
mainly correspond to the violation of conditions explicitly included in the COA
security definition (like correctness, unforgeability and unpredictability) or other
consequences of the definition (like encasing resistance, in Sect. 3.1). Since these
bad events can all shown to have negligible probability, making this modification
keeps the experiment’s outcome indistinguishable.6

• The next step is to show that there is a simulator S‡ which does not need to know
the bit b to carry out the above simulation. This is perhaps the most delicate part of
the proof. The high-level idea is to argue that the executions for b = 0 and b = 1
should proceed identically from the point of view of the adversary (as Test hides the
bit b in the ideal world), and hence a joint simulation should be possible. S‡ will
abort when it cannot assign a single simulated object for the two possible choices
of a transferred agent, corresponding to b = 0 and b = 1. Intuitively, this event
corresponds to revealing the test-bit b in the ideal execution. This argument crucially
relies on the hiding properties that are part of COA security. These hiding properties
are used to first show indistinguishability in an augmented security game (Sect. 3.2)
which resembles the over all system conditioned on Test keeping the bit b hidden
statistically in the ideeal execution. Then it is argued that if Test hides the test bit in

5 To facilitate keeping track of the arguments being made, we describe the corresponding hybrids
from Sect. 6. The goal is to show H0 ≈ H7, for hybrids corresponding to real executions with
b = 0 and b = 1 respectively.

6 This corresponds to H0 ≈ H1 (with b = 0) and H6 ≈ H7 (with b = 1).
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this execution, then the simulation is good, unless the augmented security guarantee
can be broken.
The execution of S‡ involves assigning “tentative” objects to handles when they
are needed to compute objects that are being transferred to the adversary, but they
are finalized only they themselves are transferred. The conditions corresponding to
the simulator S‡ failing are carefully restricted to only those cases which reveal the
test-bit. For example, suppose Test transfers a case-packet agent such that it has
different messages in the two executions corresponding to b = 0 and b = 1. Then
there is no consistent assignment of that agent to an object that works for both b = 0
and b = 1. Nevertheless this may still keep b hidden, as long as the corresponding
decryption keys are not transferred. So S‡ can assign a random case-packet to this
agent, provided that a decryption key which can decase the case-packet will be never
transferred.
Here, b not being hidden does not yield a contradiction yet.7

• The next simulator S∗ is computationally unbounded, and helps us move from the
ideal world with the extended schema to the ideal world involving only the schema
Σcase. The key to this step is existential consistency: S∗ will use unbounded com-
putational power to break open objects sent by the adversary and map them to ideal
agents. It replaces the non-ideal agents from before with ideal agents. S∗ can be
thought of as simulating the interface of the extended schema to S‡, while itself
interacting with the ideal schema. Existential consistency guarantees help ensure
that the view of Test and A remains the same.8

• To prove Δ-s-IND-PRE security we need only consider Test ∈ Δ such that the bit
b remains hidden against a computationally unbounded adversary. For such a Test,
the above two hybrids are indistinguishable from each other.9

Together these steps establish that if b is statistically hidden in the ideal execution,
then that it is (computationally) hidden in the real execution. Section 6 and the full
version together present the complete argument.

3 COA Security for CASE

A CASE scheme involves four keys: a signing key (denoted as SK, typically), a ver-
ification key (V K), a decryption key (DK) and an encryption key (EK). Two key
generation processes sample the signing and decryption keys, and each of them can
be deterministically transformed into corresponding verification and encryption keys.
Analogous to encryption and decryption, the two operations in CASE are termed encas-
ing and decasing. We refer to the output of encasing as a case-packet (denoted as CP ).
Below we present the syntax and the COA security definition of a CASE scheme.

Definition 1 (COA-secure CASE). A COA-secure CASE scheme with efficiently rec-
ognizable key-spaces (SK,VK,DK, EK) and message space M consists of the follow-
ing efficient (polynomial in κ) algorithms.

7 This corresponds to showing that if H2 ≈ H5, then H1 ≈ H2 and H5 ≈ H6.
8 This shows H2 ≈ H3 and H4 ≈ H5.
9 That is, H3 ≈ H4.
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– skGen: takes security parameter as input, outputs a signing key SK ∈ SK.
– dkGen: takes security parameter as input, outputs a decryption key DK ∈ DK.
– vkGen: converts SK ∈ SK to a verification key V K ∈ VK ∪ {⊥}.
– ekGen: converts DK ∈ DK to an encryption key EK ∈ EK ∪ {⊥}.
– encase: takes (SK,EK,m) ∈ SK × DK × M, outputs CP ∈ CP ∪ {⊥}.
– decase: takes (V K,DK,CP ) ∈ VK × DK × CP and outputs (m, b) where m ∈

M ∪ {⊥} and b ∈ {0, 1}.
– acc: takes any string obj ∈ {0, 1}poly(κ) as input and outputs a token t ∈

{SK, VK, DK, EK, CP,⊥}.

Of these, vkGen, ekGen, decase and acc are deterministic algorithms. Below we refer
to algorithms decase-msg and decase-verify derived from decase as follows:

– decase-msg(DK,CP ) = m where (m, b) = decase(⊥,DK,CP )
– decase-verify(V K,DK,CP ) = m if decase(V K,DK,CP ) = (m, 1), and ⊥ oth-

erwise.

We require the algorithms of a CASE scheme to satisfy the following:

1. Correctness (of Accept and Accepted Objects): ∀SK ∈ SK, ∀DK ∈ DK,
acc(SK) = SK ⇒ acc

(
vkGen(SK)

)
= VK and acc(DK) = DK ⇒

acc
(
ekGen(DK)

)
= EK. Further, there exists a negligible function negl s.t. ∀κ,

∀SK ∈ SK, DK ∈ DK, EK ∈ EK, m ∈ M, the following probabilities are at
most negl(κ):

Pr
[
acc

(
skGen(1κ

)
) �= SK

]
Pr

[
acc

(
dkGen(1κ

)
) �= DK

]

Pr
[
acc(SK) = SK ∧ acc(EK) = EK ∧ acc

(
encase

(
SK, EK, m

))
�= CP

]

Pr
[
acc(SK) = SK ∧ acc(DK) = DK

∧ decase-msg
(

DK, encase
(
SK, ekGen(DK), m

))
�= m

]

Pr
[
acc(SK) = SK ∧ acc(DK) = DK

∧ decase-verify
(
vkGen(SK), DK, encase

(
SK, ekGen(DK), m

))
�= m

]

2. Total Hiding: For any PPT adversary A = (A0, A1), there exists a
negligible function negl such that, for distinguish-sans-DK as in Fig. 1,

Pr
[
distinguish-sans-DK(A, κ) = 1

]
≤ 1

2
+ negl(κ).

3. Sender Anonymity: For any PPT adversary A = (A0, A1), there exists a negligible
function negl such that, for distinguish-sans-VK as in Fig. 1:

Pr
[
distinguish-sans-VK(A, κ) = 1

]
≤ 1

2
+ negl(κ).

4. Strong-Unforgeability: For any PPT adversary A, there exists a negligible function

negl such that, for forge as in Fig. 1, Pr
[
forge(A, κ) = 1

]
≤ negl(κ).

5. Unpredictability: For all SK ∈ SK, EK ∈ EK, CP ∈ CP (CP �= ⊥) and m ∈
M, there exists a negligible function negl such that Pr

[
encase

(
SK,EK,m

)
=

CP
]

≤ negl(κ).
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6. Existential Consistency: There exist functions (not required to be computationally
efficient) skId : VK → SK∪{⊥}, vkId : CP → VK∪{⊥}, dkId : EK → DK∪{⊥},
ekId : CP → EK ∪ {⊥}, msgId : CP → M ∪ {⊥} such that,

vkGen(SK) = V K ⇒ skId(V K) = SK ∀V K, SK

ekGen(DK) = EK ⇒ dkId(EK) = DK ∀EK, DK

decase-msg(DK, CP ) = m �= ⊥ ⇒ dkId(CP ) = DK,

msgId(CP ) = m ∀DK, CP

decase-verify(V K, DK, CP ) = m �= ⊥ ⇒ vkId(CP ) = V K,

dkId(ekId(CP )) = DK,

msgId(CP ) = m ∀V K, DK, CP

Fig. 1. Experiments for defining COA security of CASE
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Remark 1. Minor variations of the above definition are also acceptable. For example,
one may allow decase and acc to be randomized and all our results can be extended
to this definition too. However, for the sake of convenience, and since our construc-
tion allows it, we have required them to be deterministic. Also, one may include an
additional perfect correctness condition, which our construction meets; but since our
results do not rely on this, we leave this out of the definition.

3.1 Encasing Resistance

We point out an implication of COA security–called “encasing resistance”–that will be
useful later. Encasing resistance requires that any PPT adversary who is given access
to an honestly generated encryption/decryption key-pair only via oracles for encasing
(w.r.t. any signing key) and decasing using those keys, has negligible probability of
generating a “new” valid case-packet for these keys (i.e., a case-packet that is different
from the ones returned by the encasing oracle queries, and which on feeding to the
decasing oracle returns a non-⊥ output).

Fig. 2. Encasing-Resistance Experiment for CASE

Definition 2 (Encasing-Resistance). A CASE scheme satisfies encasing-resistance if,
for all PPT adversaries A, there exists a negligible function negl s.t. for encase-sans-EK
as in Fig. 2:

Pr
[
encase-sans-EK(A, κ) = 1

]
≤ negl(κ) 


Lemma 1. Any COA-secure CASE scheme satisfies encasing-resistance.

Proof sketch 1: The idea behind the proof is that in the encasing-resistance experiment,
the adversary has access to the pair (DK,EK) only through an oracle, and thanks to
the total hiding property, it cannot distinguish if the keys used in the oracle are replaced
with an independent pair (but the experiment’s output is still defined w.r.t. original key
pair). Now, in this modified experiment, the adversary’s goal is to produce a case-packet
that can be decased with a freshly sampled decryption key. This in turn is not feasible,
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because by existential consistency, a case-packet can be decased by at most one decryp-
tion key, and the probability that a freshly sampled decryption key equals the one asso-
ciated with the the case-packet is negligible. The formal argument is given in the full
version. 
�
We point out that the proof crucially relies on existential consistency as well as the hid-
ing guarantees. Indeed, a CASE scheme modified to include a “dummy” case-packet for
which decase-msg yields a non-⊥ message for every decryption key continues to sat-
isfy all the other properties; and this dummy case-packet can be used to violate encasing
resistance of the modified scheme.

3.2 Augmented Security

It would be convenient for us to capture the consequences of the total hiding and sender
anonymity conditions in COA security in an “augmented” hiding experiment. This
experiment allows an adversary A to adaptively choose the kind of hiding property
it wants to attack. The experiment maintains n decryption/encryption key pairs and n
signing/verification key pairs (where n is specified by A), and also allows A to send
more objects to the experiment. Throughout the experiment, the adversary can retrieve
the keys, or access the encase or decase oracles using any combination of these objects.
In the challenge phase, it can specify two such sets of inputs to an oracle, and one of the
two will be randomly used by the experiment. The adversary’s goal is to guess which
set of inputs was chosen in the challenge phase. The experiment aborts if at any point
responding to the adversary will trivially reveal this choice. (E.g., if the two sets of
inputs were to encase two different messages, and later on the decryption key for one
of the two is requested.)

We leave the formal definition of augmented security to the full version, where we
also show that any COA-secure CASE scheme satisfies this definition.

4 Constructing a COA-Secure CASE scheme

In this section, we instantiate a COA-secure CASE scheme. We first describe the build-
ing blocks that will be needed.

4.1 Building Block: COA-Secure QD-PKE

Definition 3: (COA-secure Quasi-Deterministic PKE). A PKE scheme (pkeSKGen,
pkePKGen, pkeEnc, pkeDec) is quasi-deterministic and COA-secure if it has the fol-
lowing additional algorithm

– pkeAcc: takes any string obj ∈ {0, 1}poly(κ) and outputs a token t ∈
{EK, DK, CT,⊥}.

Where, pkeAcc is a deterministic algorithm. We require the algorithms to satisfy the
following:
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1. Correctness: ∀m ∈ M, ∀SK ∈ SK, ∀EK ∈ PK, the following probabilities are
negligible in κ

Pr
[
pkeAcc

(
pkeSKGen(1κ)

) �= DK
]

Pr
[
pkeAcc(EK) = EK ∧ pkeAcc(pkeEnc(EK,m)) �= CT

]

Pr
[
pkeAcc(DK) = DK ∧ pkeAcc(pkePKGen(DK)) �= EK

]

Pr
[
pkeAcc(DK) = DK ∧ pkeDec

(
DK, pkeEnc

(
pkePKGen(DK),m

)) �= m
]

2. Quasi-Deterministic: There exists an efficient randomized algorithm pkeEnc1 and
an inefficient deterministic algorithm pkeEnc2 such that ∀κ, ∀x ∈ M ∀EK ∈ PK,
∀r ∈ {0, 1}poly(κ), it holds that:

pkeEnc(EK,x; r) =
(
pkeEnc1(EK; r), pkeEnc2

(
EK, pkeEnc1(EK; r), x

))

3. Quasi-Deterministic Anonymous IND-CCA security: For any PPT adversary
A = (A0, A1, A2), there exists a negligible function negl(.) such that for
pkeQDAnonCCAExp as in Fig. 3:

Pr
[
pkeQDAnonCCAExp(A) = 1

]
≤ 1

2
+ negl(κ)

Fig. 3. Experiment for COA-secure QD-PKE.

4. Existential Consistency: There exist computationally inefficient deterministic
extractor algorithms pkeSKId : PK → SK ∪ {⊥}, pkePKId : CP → PK ∪ {⊥},
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pkeMsgId : CP → M ∪ {⊥} such that, ∀m ∈ M, ∀EK ∈ PK, ∀CP ∈ CP ,
∀DK ∈ SK:

pkePKGen(DK) = EK ⇒ pkeSKId(EK) = DK

pkeEnc(EK,m) = CP ⇒ pkePKId(CP ) = EK

pkeDec(DK,CP ) = m �= ⊥ ⇒ pkeSKId(pkePKId(CP )) = DK

pkeDec(DK,CP ) = m �= ⊥ ⇒ pkeMsgId(CP ) = m 



�
Following the description in Sect. 2.2, we obtain the following construction of a

COA-secure QD-PKE (proven in the full version).

Lemma 2. Assuming the Decisional Diffie-Hellman assumption (DDH), there exists a
COA-secure Quasi-Deterministic PKE scheme.

4.2 Building Block: Existentially Consistent Anonymous Signature

Definition 4 (Existentially Consistent Anonymous Signature). A signature scheme
(sigSKGen, sigVKGen, sigSign, sigVerify) is Existentially Consistent Anonymous Sig-
nature if it has the following additional algorithm

– sigAcc: takes any string obj ∈ {0, 1}poly(κ) and outputs a token t ∈
{SK, VK, SIG,⊥}.

Where, sigAcc is a deterministic algorithm. We require the algorithms to satisfy the
following:

1. Correctness: ∀κ, there exists a negligible function negl(.) such that, ∀SK ∈ SK,
∀m ∈ M, the following probabilities are negligible in κ

Pr
[
sigAcc

(
sigSKGen(1κ)

) �= SK
]

Pr
[
sigAcc(SK) = SK ∧ sigAcc

(
sigVKGen(SK)

)
�= VK

]

Pr
[
sigAcc(SK) = SK ∧ sigAcc

(
sigSign(SK,m)

)
�= SIG

]

Pr
[
sigAcc(SK) = SK ∧ sigVerify

(
sigVKGen(SK),m, sigSign(SK,m)

)
�= 1

]

2. Strong-Unforgeability: For any PPT adversary A, there exists a negligible function
negl(.) such that for SigForgeExp in Fig. 4:

Pr
[
SigForgeExp(A) = 1

]
≤ negl(κ)

3. (Signer) Anonymity: For any PPT adversary A = (A0, A1), there exists a negligi-
ble function negl(.) such that tfor SigAnonExp as in Fig. 4:

Pr
[
SigAnonExp(A) = 1

]
≤ 1

2
+ negl(κ)
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4. Existential Consistency: There exist computationally inefficient deterministic
extractor algorithms sigVKId : Σ → VK ∪ {⊥}, sigSKId : VK → SK ∪ {⊥}
s.t. ∀SK ∈ SK, ∀V K ∈ VK, ∀σ ∈ Σ, the following probabilities are negligible in
κ:

sigVKGen(SK) = V K ⇒ sigSKId(V K) = SK

sigSign(SK, x) = σ ⇒ sigSKId(sigVKId(σ) = SK

sigVerify(V K, x, σ) = 1 ⇒ sigVKId(σ)) = V K 


Fig. 4. Experiment for Existentially Consistent Anonymous Signature.

Following the description in Sect. 2.2, we obtain the following result (proven in the
full version).

Lemma 3. If there exists a signature scheme, a COA-secure QD-PKE scheme and
a perfectly binding commitment scheme; then there exists a Existentially Consistent
Anonymous Signature scheme.

Compactness. Without loss of generality, we assume that our signature schemes have
fixed length signatures independent of the size of the message (beyond the security
parameter). To achieve compactness, we can start with any plain signature scheme and
define a new scheme where the signature is actually on a hash of the message computed
using a full-domain collision-resistant hash function.

4.3 Main Construction: COA-Secure CASE

We now describe the main construction.

Lemma 4. If there exists a COA-secure QD-PKE scheme and an Existentially Consis-
tent Anonymous Signature scheme, then there exists a COA-secure CASE scheme.
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Fig. 5. COA secure CASE

Proof: Let E be a COA-secure QD-PKE scheme (Definition 3) and S be a ECAS
scheme (Definition 4). We prove that the scheme in Fig. 5 is a COA-secure CASE
scheme (Definition 1).

– Total Hiding: we prove this via a reduction to the quasi-deterministic anon IND-
CCA security of the underlying PKE scheme. Let A be an adversary with advan-
tage α in the distinguish-sans-DK experiment. We build an adversary A∗ for the
pkeQDAnonCCAExp experiment as follows. It accepts (EK0, EK1, τ) from the
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experiment and forwards (EK0, EK1) to A. For any polynomial oracle query of
the form (V K ′, b′, CP ′) from A, it queries the experiment on (b′, CP ′), receives
the decryption m′||σ′, checks if the signature is valid w.r.t. V K ′ and returns m′ to
A. It receives the challenge messages (SK0, SK1,m0,m1) from A, constructs each
m∗

b as m∗
b = mb||σb, where σb = sigSign(SKb,m||PKb||τ). It sends (m∗

0,m
∗
1) to

the experiment, receives the challenge ciphertext and forwards it to A. Finally, it
outputs A’s output. Thus, A∗ has advantage α, which from our assumption that E
is a secure quasi-deterministic anon-PKE scheme, must be negligible.

– Sender Anonymity: we prove this via a reduction to the anonymity of
the underlying signature scheme. Let A be an adversary with advantage α
in the distinguish-sans-VK experiment. We build an adversary A∗ for the
SigAnonExp experiment as follows. For any polynomial oracle query of the form
(b′, EK ′,m′) that it receives from A, it samples randomness r′, constructs τ ′ ←
pkeEnc1(EK ′; r′), queries the oracle on (b′,m′||EK ′||τ ′), gets back σ′ and sends
CP ′ =pkeEnc(EK ′,m′||σ′; r′) to A. When A outputs the challenge (EK,m), it
samples randomness r, constructs τ ← pkeEnc1(EK; r), sends m||EK||τ as the
challenge message to the experiment, receives σ as the challenge signature, sends
CP = pkeEnc(EK,m||σ; r) as the challenge ciphertext to A and outputs A’s out-
put. Thus, A∗ has advantage α, which from our assumption that S is a COA-secure
signature scheme, must be negligible.

– Strong-Unforgeability: we prove this via a reduction to the unforgeability of the
underlying signature scheme. Let A be an adversary with advantage α in the forge
experiment. We build an adversary A∗ for the SigForgeExp experiment as follows. It
receives V K from the experiment and forwards it to A. For any polynomial oracle
query of the form (m′, EK ′) that it receives from A, it samples randomness r′,
constructs τ ′ ← pkeEnc1(EK ′; r′), queries the oracle on m′||EK ′||τ ′, gets back
σ′ and sends CP ′ = pkeEnc(EK ′,m′||σ′; r′) to A. When A outputs the forgery
(DK,CP ), it gets EK ← ekGen(DK), parses CP as (τ, c), decrypts CP to get
m||σ ← decase-verify(V K,DK,CP ) and outputs (m||EK||τ, σ) as its forgery.
Thus, A∗ has advantage α, which from our assumption that S is a COA-secure
signature scheme, must be negligible.

– Unpredictability: this follows trivially from the Quasi-Deterministic property of the
PKE scheme. The PKE ciphertext is of the form (τ, CP ′), but τ must have enough
entropy so that IND-CCA holds.

– Correctness and Existential Consistency: ∀SK ∈ SK,DK ∈ DK,m ∈ M , let
V K ← vkGen(SK), EK ← ekGen(DK), CP ← encase(SK,EK,m).

• From the correctness of the underlying primitives, it holds that the objects are
accepted with probability 1−negl(κ). Further, pkeDec(DK,CP ) outputs m||σ
and sigVerify(V K, σ,m||EK||τ) outputs 1 with probability 1 − negl(κ).

• From the existential consistency of the underlying primitives, it holds that
skId(V K) = SK, dkId(EK) = DK. Further, for any CP ∈ CP s.t.
acc(CP ) = 1, it holds that if decase-msg(DK,CP ) �= ⊥, then ekId(CP ) =
EK. Similarly, if decase-verify(V K,DK,CP ) �= ⊥, it holds that vkId(CP ) =
V K.


�
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4.4 Improving the Efficiency of COA-Secure CASE

We now show how to improve the efficiency of a COA-secure CASE scheme like the
one above, by leveraging the efficiency of a CPA-secure SKE and a collision-resistant
hash scheme, analogous to hybrid encryption.

Fig. 6. Efficient COA secure CASE via hybrid encryption

Lemma 5. The scheme case� in Fig. 6 is a COA-secure CASE scheme (Definition 1), if
S is a CPA-secure SKE scheme, H is a CRHF scheme and case is a COA-secure CASE
scheme.

Please refer to the full version for the proof.
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5 Active Agents Framework

Cryptographic Agents [2] provides a framework that naturally models all cryptographic
objects (keys as well as ciphertexts, in our case) as transferable agents, which the users
can manipulate only via an idealized interface. But the original framework of [2] does
not capture attacks involving maliciously created objects, as only the honest user (Test)
is allowed to create objects. Hence in the case of encryption, even CCA security could
not be modeled in this framework. Here we present the technical details of the active
agents framework which we develop and use. the full version gives a summary of the
substantial differences between the new model and the original model of [2]. Note that
this framework itself is not specialized for CASE; that is carried out in Sect. 6.

5.1 The Model

Agents and Sessions. Agents are interactive Turing machines with tapes for input, out-
put, incoming communication, outgoing communication, randomness and work-space.
A schema defines the behavior of agents corresponding to a cryptographic functionality.
Multiple agents of a schema can interact with one another in a session (as detailed in
the full version).

Ideal World Model. Formally, a schema Σ is described by an agent; it is a program
that will behave differently depending on the contents of its work-tape. (Jumping ahead,
the CASE schema Σcase in Fig. 8 has an agent that can behave as an decryption-key,
encryption-key, signing-key, verification-key or a case-packet.) The ideal system for a
schema Σ consists of two parties Test and User and a fixed third party B[Σ] (for “black-
box”). All three parties are probabilistic polynomial time (PPT) ITMs, have a security
parameter κ built-in. Test and User may be non-uniform. Test receives a test-bit b as
input and User produces an output bit b′.

B[Σ] maintains two lists of handles <Test and <User, which contain the set of han-
dles belonging to Test and User respectively. Each handle in these lists is mapped to
an agent. At the beginning of an execution, both the lists are empty. While Test and
User can arbitrarily talk to each other, their interaction with B[Σ] can be summarized
as follows:

– Creating agents. Test and User can, at any point, request B[Σ] for creating a new
agent. More precisely, they can send a command (init, string) to B[Σ], where
string is an initial input for the agent of the schema. Then, B[Σ] will instantiate
the agent (with an empty work-tape) and run it with string and security parameter
as inputs. It then stores (h, config) in the list of the party who sent the command
(<Test or <User) where config is the agent’s configuration after the execution and
h is a new handle (say, simply, the number of handles stored so far in the list); h is
returned to the relevant party (Test or User).

– Request for Session Execution. At any point in time, Test or User may request
an execution of a session. We describe the process when Test requests a session
execution; the process for User is symmetric.
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Test can send a command (run, (h1, x1) . . . , (ht, xt)), where hi are handles obtained
in the list <Test, and xi are input strings for the corresponding agents.10 B[Σ] exe-
cutes a session with the agents with starting configurations in <Test, corresponding
to the specified handles, with their respective inputs, till it terminates. It obtains a
collection of outputs (y1, . . . , yt) and updated configurations of agents. It generates
new handles h ′

1, . . . , h
′
t corresponding to the updated configurations, adds them to

<Test, and returns (h ′
1, . . . , h

′
t, y1, . . . , yt) to Test. If an agent halts in a session, no

new handle h ′
i is given out for that agent. After a session, the old handles for the

agents are not invalidated; so a party can access a configuration of an agent any
number of times, by using the same handle.

– Transferring agents. Test can send a command (transfer, h) to B[Σ] upon which it
looks up the entry (h, config) from <Test (if such an entry exists) and adds an entry
(h ′, config) to <User, where h ′ is a new handle, and sends the handle h ′ to User.
Symmetrically, User can transfer an agent to Test using the transfer command.

We define the random variable IDEAL〈Test(b) | Σ | User〉 to be the output of
User in an execution of the above system, when Test gets b as the test-bit. We write
IDEAL〈Test | Σ | User〉 to denote the output when the test-bit is a uniformly random
bit. We also define TIME〈Test | Σ | User〉 as the maximum number of steps taken by
Test (with a random input), B[Σ] and User in total.

In this work, we use the notion of statistical hiding in the ideal world as introduced
in [3], rather than the original notion used in [2]. (This still results in a security defini-
tion that subsumes the traditional definitions, as they involve tests that are statistically
hiding.)

Definition 5 ((Statistical) Ideal world hiding). A Test is s-hiding w.r.t. a schema Σ
if, for all unbounded users User who make at most a polynomial number of queries,

IDEAL〈Test(0) | Σ | User〉 ≈ IDEAL〈Test(1) | Σ | User〉. 


Real World Model. The real world for a schema Σ consists of two parties Test and
User that interact with each other arbitrarily, as in the ideal world. However, the third
party B[Σ] in the ideal world is replaced by two other parties I[Π,RepoTest] and
I[Π,RepoUser] (when User is honest), which run the algorithms specified by a cryp-
tographic scheme Π . A cryptographic scheme (or simply scheme) Π is a collection of
stateless (possibly randomized) algorithms Π.init,Π.run and Π.receive, which use a
repository Repo to store a mapping from handles to objects. More precisely, the repos-
itory is a table with entries of the form (h, obj ), where h is a unique handle (say, a
non-negative integer) and obj is a cryptographic object (represented, for instance, as a
binary string). At the start of an execution, Repo is empty.

If a scheme implementation (I[Π,RepoTest] or I[Π,RepoUser]) receives input (init,
string), then it runs Π.init(string) to obtain an object obj which is added to Repo
and a handle is returned. If it receives the command (run, (h1, x1), · · · , (ht, xt)), then

10 If a handle appears more than once among h1, . . . , ht, it is interpreted as separate agents with
the same configuration (but possibly different inputs). In our use-case of CASE, this scenario
is not relevant.
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objects (obj 1, . . . , obj t) corresponding to (h1, . . . , ht) are retrieved from Repo and
Π.run((obj 1, x1), . . . , (obj t, xt)) is evaluated to obtain ((obj ′

1, y1), . . . , (obj
′
t, yt))

where obj ′
i are new objects and yi are output strings; the objects are added to Repo,

with a new handle for each, and the new handles, along with the outputs, are returned.
(If an obj ′

i is empty, then no new handle is added; this corresponds to an agent having
halted.)

I[Π,RepoTest] and I[Π,RepoUser] do not interact with each other, except when
one of them receives a transfer command. If Test sends a command (transfer, h)
to I[Π,RepoTest], it looks for an entry (h, obj ) in RepoTest and sends obj to
I[Π,RepoUser]; on receiving obj from I[Π,RepoTest], I[Π,RepoUser] will run
Π.receive(obj ) which outputs (a possibly modified) object obj ′ and if obj ′ �= ⊥,
I[Π,RepoUser] will add (h ′, obj ′) to RepoUser, where h ′ is a new handle, and outputs
h ′ to User. The process of User transferring an object to Test is symmetric.

When an object is transferred to I[Π,RepoUser], the receive algorithm can be used
to accept or reject the object. This check is performed only once, rather than each time
the object is used: aside from the inefficiency of repeating this operation, note that the
check may be probabilistic and an object may pass sometimes and fail at other times.
Since this is not captured in the ideal world, an object is tested and received once and
for all.

Note that we do not allow Test direct access to the cryptographic objects stored
in its repository. In particular, it cannot look up the object associated with a handle in
RepoTest. Also observe that if User is corrupt, which we denote by A, it may not run
the scheme it is supposed to. It can run any arbitrary algorithm and send any object of
its choice directly to I[Π,RepoTest].

We define the random variable REAL〈Test(b) | Π | A〉 to be the output of A in
an execution of the above system involving Test with test-bit b, I[Π,RepoUser] and
A; as before, we omit b from the notation to indicate a random bit. Also, as before,
TIME〈Test | Π | A〉 is the maximum number of steps taken by Test (with a random
input), I[Π,RepoUser] and A in total.

Definition 6. Test is said to be hiding w.r.t. Π if ∀ PPT party A,

REAL〈Test(0) | Π | A〉 ≈ REAL〈Test(1) | Π | A〉. 


Security Definition. We are ready to present the security definition of a crypto-
graphic agent scheme Π implementing a schema Σ. Below, the honest real-world
user, corresponding to an ideal-world user User, is defined as the composite program
I[Π,RepoUser] ◦ User as shown in Fig. 7.

Test Families. We write Γppt to denote the family of all PPT Test. We also define a test-
family Δ as follows: Test ∈ Δ iff it behaves as follows: every init and run command
it sends to B[Σ] is also reported to User. For transfer commands, it picks two handles
h0, h1 and sends a message (transfer, h0, h1) to User and sends transfer[hb] to B[Σ],
where b is the test-bit.

Now we define our security notion, Δ-s-IND-PRE. Note that below the correctness
and efficiency requirements are w.r.t. all PPTTest, but indistinguishability-preservation
is only for Test ∈ Δ.
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Fig. 7. IDEAL world (left) and REAL world with an honest user.

Definition 7. A cryptographic agent scheme Π is said to be a Δ-s-IND-PRE-secure
scheme for a schema Σ if the following conditions hold.

– Correctness. ∀ PPT User, ∀ Test ∈ Γppt,

IDEAL〈Test | Σ | User〉 ≈ REAL〈Test | Π | I[Π,RepoUser] ◦ User〉.
– Efficiency. There exists a polynomial poly s.t. ∀ PPT User, ∀ Test ∈ Γppt,

TIME〈Test | Π | I[Π,RepoUser] ◦ User〉 ≤ poly(TIME〈Test | Σ | User〉, κ).
– (Statistical) Indistinguishability Preservation. ∀ Test ∈ Δ,

Test is s-hiding w.r.t. Σ ⇒ Test is hiding w.r.t. Π. 


6 CASE in the Active Agents Framework

We now prove Theorem 1, i.e., that a COA secure CASE scheme implies a Δ-
s-IND-PRE secure implementation of Σcase. We first define the schema Σcase, and
then describe the (syntactic) transformation from any COA secure CASE scheme to
Πcase.

Proof of Security: An Overview

We show that the Πcasein Fig. 9 is a Δ-s-IND-PRE secure implementation of Σcase.
Given any Test ∈ Δ that is hiding w.r.t. Σcase, we need to argue that for all PPT
adversary A,

REAL〈Test(0) | Π | A〉 ≈ REAL〈Test(1) | Π | A〉.

The proof uses guarantees such as unforgeability, total hiding and encasing resis-
tance from the underlying COA-Secure CASE scheme case, along with the statisti-
cal guarantees of existential consistency, given in terms of computationally unbounded
algorithms like case.skId, case.ekId and case.msgId. The argument uses a sequence of
hybrid random variables to prove Δ-s-IND-PRE security, Hi for i = 0 to 7:

H0: REAL〈Test(0) | Πcase | A〉 H7: REAL〈Test(1) | Πcase | A〉
H1: IDEAL〈Test(0) | Σ‡

Πcase
| S†

0 ◦ A〉 H6: IDEAL〈Test(1) | Σ‡
Πcase

| S†
1 ◦ A〉

H2: IDEAL〈Test(0) | Σ‡
Πcase

| S‡ ◦ A〉 H5: IDEAL〈Test(1) | Σ‡
Πcase

| S‡ ◦ A〉
H3: IDEAL〈Test(0) | Σcase | S∗ ◦ S‡ ◦ A〉 H4: IDEAL〈Test(1) | Σcase | S∗ ◦ S‡ ◦ A〉
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Fig. 8. Schema Σcase for CASE.

Hybrids H0 and H7 correspond to the output of A in the real world with test bits b =
0 and b = 1 respectively. The simulators S†

b (for b ∈ {0, 1}), S‡ are computationally
bounded while S∗ ◦ S‡ is a computationally unbounded simulator due to S∗.

When Test ∈ Δ is s-hiding w.r.t. Σcase, we show:

1. Firstly, H3 ≈ H4, even though they involve a computationally unbounded simulator
S∗ (by definition of s-hiding of Test).
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Fig. 9. Schema Πcasefor CASE.

2. We rely on the existential consistency of the underlying signature scheme to show
that H2 ≈ H3 and (symmetrically) H4 ≈ H5.

3. We use the augmented security guarantees of the underlying CASE scheme to estab-
lish that H1 ≈ H2 and (symmetrically) H5 ≈ H6.

4. Finally, we argue that H0 ≈ H1 and H6 ≈ H7. This follows from the construction of
S†
0 and S†

1 , conditioned on some “bad events” not occurring. We prove that these bad
events occur with negligible probability using the guarantees - strong-unforgeability,
total hiding, sender anonymity, unpredictability and encasing resistance from the
underlying COA-Secure CASE scheme case (see Lemma ??) and statistical guaran-
tees of sampling from a uniform distribution (sampling of tags in Σcase and Σ‡

Πcase
).

Together, these steps show that any Test ∈ Δ that is s-hiding w.r.t. Σcase is also hiding
w.r.t. Σcase. Please refer to the full version for the full proof.
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Abstract. Updatable encryption (UE) allows a third party to periodi-
cally rotate encryption keys from one epoch to another without the need
to download, decrypt, re-encrypt and upload already encrypted data by a
client. Updating those outsourced ciphertexts is carried out via the use of
so-called update tokens which in turn are generated during key rotation
and can be sent (publicly) to the third party. The arguably most efficient
variant of UE is ciphertext-independent UE as the key rotation does not
depend on the outsourced ciphertexts which makes it particularly inter-
esting in scenarios where access to (information of the) ciphertexts is not
possible during key rotation.

Available security notions for UE cannot guarantee any form of for-
ward security (i.e., old ciphertexts are in danger after key leakage).
Counter-intuitively, forward security would violate correctness, as cipher-
texts should be updatable ad-infinitum given the update token. In this
work, we investigate if we can have at least some form of “controlled” for-
ward security to mitigate the following shortcoming: an adversary would
record available information (i.e., some ciphertexts, all update tokens)
and simply would wait for a single key leakage to decrypt all data ever
encrypted. Our threefold contribution is as follows:
a) First, we introduce an epoch-based UE CPA security notion to allow

fine-grained updatability. It covers the concept of expiry epochs, i.e.,
ciphertexts can lose the ability of being updatable via a token after a
certain epoch has passed. This captures the above mentioned short-
coming as the encrypting party can decide how long a ciphertext can
be updatable (and, hence, decryptable).

b) Second, we introduce a novel approach of constructing UE which
significantly departs from previous ones and in particular views UE
from the perspective of puncturable encryption (Green and Miers,
S&P’15). We define tag-inverse puncturable encryption as a new
variant that generalizes UE and may be of independent interest.

c) Lastly, we present and prove secure the first UE scheme with the
aforementioned properties. It is constructed via tag-inverse punc-
turable encryption and instantiated from standard assumptions. As
it turned out, constructing such puncturing schemes is not straight-
forward and we require adapted proof techniques. Surprisingly, as
a special case, this yields the first backwards-leak UE scheme with
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sub-linear ciphertexts from standard assumptions (an open problem
posted in two recent works by Jiang Galteland and Pan & Miao
et al., PKC’23).

Keywords: Updatable Encryption · Puncturable Encryption ·
Dual-System Groups

1 Introduction

When outsourcing the storage of data, the primary measure to protect its con-
fidentiality is encryption. However, a compromise of the respective encryption
key(s) will potentially expose the entire data to unauthorized parties and may
cause severe damage. Consequently, it is widely considered a good practice to
periodically rotate encryption keys. Major providers of cloud-storage services
such as Google1, Microsoft2 or Amazon3 recommend this practice and some-
times it is even mandated by regulations [1,2]. This raises the immediate ques-
tion of how to efficiently update already outsourced encrypted data to new keys.
An obvious solution for key rotation is to download the data, decrypt it locally
under the old key, re-encrypt it under a new key and upload it again. Unfortu-
nately, this imposes a significant overhead and soon becomes impractical.

Updatable Encryption. At CRYPTO 2013, Boneh, Lewi, Montgomery, and
Raghunathan [3] proposed the concept of updatable encryption (UE). UE is a
symmetric encryption primitive that addresses the above problem by allowing to
update ciphertexts to new keys without the requirement for decryption by means
of a so-called update token. UE schemes can be ciphertext-dependent [3–6] where
the key rotation depends on the specific ciphertext to be updated and, thus, to
compute the update token, a part of every ciphertext needs to be downloaded.
Or, and from an efficiency point more desirable, quite a number of recent works
deal with UE schemes that are ciphertext-independent [7–13] such that the key
rotation is independent of any information of the ciphertexts in the system.

Particularly, we strive for scenarios where the key-rotating party may not
have access to ciphertexts directly.4 Hence, to be as generic as possible, in the
remainder of this work, we focus on UE schemes with ciphertext-independent
updates and will simply call them UE schemes. Such a UE scheme consists of the
usual algorithms (Gen,Enc,Dec) for key generation, encryption and decryption.
Time is discretized in so-called epochs and Gen produces an initial secret key

1 https://cloud.google.com/kms/docs/keyrotation.
2 https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations.
3 https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html.
4 One can think of a user that holds encrypted sensitive data with a current key from

some key management system and gets offline for some time before the ciphertexts
should be decrypted again. However, during the user’s offline time, key rotations
might be executed. This issue was also mentioned during a talk at RWC 2023 on
Google’s crypto agility concerning key rotation [14].

https://cloud.google.com/kms/docs/keyrotation
https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
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K1 (for epoch 1). Additionally, there is an algorithm RotKey which takes a key
Ke and outputs a next-epoch key Ke+1 along with a so-called update token
Δe+1. This update token can be used by a (semi-trusted) third party to update
ciphertexts under key Ke for epoch e to ciphertexts for epoch e + 1 under key
Ke+1 via an algorithm Upd.

Motivating Stronger Guarantees. When looking at state-of-the-art UE
security models5 [11–13], it can be observed that they do not capture the follow-
ing shortcoming. Namely, an adversary would record available information (i.e.,
ciphertexts (Ce)e, all update tokens (Δe+1)e) in the lifetime of the system and
simply would wait for a single key leakage Ke′ in epoch e′ with e′ > e. Such
single key leakage allows to completely break confidentiality of all ciphertexts
captured before.

While such a behavior is demanded by the correctness of current UE defi-
nitions (i.e., ciphertexts should always be updatable by a token to the current
epoch and decryptable), it is a natural question if such a coarse-grained app-
roach is necessary. Indeed, if we want to mitigate such type of shortcoming, we
must introduce a more fine-grained adjustment of the updatability of cipher-
texts. However, since we do not want to allow access to any (information of the)
ciphertexts during key rotation, the token cannot carry the information needed
which ciphertext should be updated and which not. Hence, the only possibility
we see is via the encryption phase where information to limit the updatability
can be embedded.

While post-compromise security for UE (i.e., leaking the current key does
not endanger new ciphertexts) is already well understood and constructions in
the currently strongest security model are available [10–13]. Unfortunately, even
having strong guarantees such as the ones provided by Nishimaki [11], the orthog-
onal security property of forward security (i.e., leaking the current key does not
endanger old ciphertexts) cannot be met by any of the known UE models and
constructions.

Extended UE Security with Expiry Epochs. As an important security
feature, forward security was already considered in cryptographic areas such as
interactive key-exchange protocols (e.g., TLS 1.3, QUIC, hybrid KE, or ratchet-
ing) [17–21], public-key encryption [22,23], digital signatures [24,25], search on
encrypted data [26], mobile Cloud backups [27], proxy cryptography [28], new
approaches to Tor [29], and distributed key management [30], among others.

We believe that forward security yields an important feature for UE in prac-
tice as well and should be inherently considered in full in the UE regime.6
Google’s key management system for instance sets the maximum age for key-

5 Our focus is on the established game-based security models. However, we want to
note that recent works also study UE in composable frameworks and in particular
the framework of constructive cryptography [15,16].

6 Prior work offers only a very weak form of forward security by restricting access to
tokens artificially.
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wrapping ciphertexts to 90 days7, which shows that ciphertexts should not be
made available forever in real-world systems to mitigate the risk after key leak-
ages. While forward security can be achieved in ciphertext-dependent UE in a
fine-grained way (as access to parts of the ciphertexts is allowed during key
rotation), we want to stress that the situation for ciphertext-independent UE is
precarious as the key rotation does not have access to any ciphertext information.

As we show in this work, restricting the update capabilities during the encryp-
tion phase yields fine-grained updatability. In particular, we introduce the con-
cept of expiry epochs such that for every ciphertext, one can decide during
encryption time how long updates should yield decryptable ciphertexts, i.e.,
encryption in epoch e is performed as Ce,eexp ← Enc(Ke,M, eexp) and when epoch
eexp is reached, a ciphertext cannot longer be updated into a decryptable cipher-
text. Note that an update token should still work for all ciphertexts that have
an expiry epoch in the future. Also, by virtually never letting ciphertexts expire,
i.e., using eexp = 2λ for all encryptions with security-parameter values λ ∈ N, we
are essentially back in the currently strongest models [11–13].

This conceptually simple modification has an interesting effect. Namely, to
meet our proposed UE security notion, we at least require the UE scheme to
solely allow ciphertext updates via the token in the forward direction. So far,
such UE schemes are only known to exist by relying on indistinguishability
obfuscation [11]. Our notion even requires more and is particularly not implied
by [11] which makes the task of constructing such a UE scheme non-trivial
(there exists no such UE scheme so far). Moreover, since UE is inspired mainly
by practice, we want constructions from standard assumptions and where key,
ciphertext and token sizes are as compact as possible, but certainly sub-linear in
the maximum number of possible epochs. While compactness can be achieved in
weaker models or from non-standard assumptions [9–11], this important feature
turned out to be non-trivial in our model. Notably, the strongest UE schemes
from standard assumptions [12,13] have linear-size ciphertexts and constructing
schemes with sub-linear ciphertext expansion was posted as a significant open
problem in the aforementioned works.

UE From a Puncturable Perspective. We offer a novel view of UE from the
perspective of Puncturable Encryption (PE). We recall that PE, introduced by
Green and Miers in [31], is a tag-based public-key (or secret-key [32–34]) encryp-
tion primitive with an additional puncturing algorithm that takes a secret key
and a tag t as input, and produces an updated (punctured) secret key. This key
is able to decrypt all ciphertexts except those tagged with t and (updated) secret
keys can be iteratively punctured on distinct tags. PE is a versatile primitive
that has already found numerous applications and in particular where forward
security is required [26,28,30,31,35–39].

In UE, rotating keys from one epoch to the next is abstractly reminiscent of
puncturing when viewing tags as epochs. Loosely speaking, puncturing a key on
an epoch e would make all ciphertexts in epoch e inaccessible (if all ciphertexts
7 https://cloud.google.com/docs/security/key-management-deep-dive/resources/

google-cloud-kms-deep-dive.pdf, Sec. 4.2.

https://cloud.google.com/docs/security/key-management-deep-dive/resources/google-cloud-kms-deep-dive.pdf
https://cloud.google.com/docs/security/key-management-deep-dive/resources/google-cloud-kms-deep-dive.pdf
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are “tagged” on e). However, this would not yield a useful UE scheme and one
needs a mechanism to transform ciphertexts to the next epoch e + 1.

From a forward-security point of view, we want that for some ciphertexts, the
punctured key should not work while for some other ciphertexts, the punctured
key should indeed work. Interestingly, we can make the puncturing more fine-
grained by tagging ciphertexts not only on the current epoch e but allow also
each ciphertext to be associated with a unique tag.

Such a view has an interesting effect. Namely, the crucial point is that punc-
turing would take the current epoch key as input, but also tags for ciphertexts
for which the key should not be punctured. Notably, see that such a feature
partly inverts the view of plain PE. The output of such a puncturing algorithm
would be the punctured key (as in plain PE), but also some information which
ciphertext should be excluded from puncturing (see that we do not want to allow
access to any ciphertext during puncturing).

To transport such information, the concept of update tokens for ciphertexts
must be introduced. Consequently, via such tokens, only ciphertexts that are not
intended to be punctured in the key or are not expired8 yet will be decryptable
after key puncturing while for all other ciphertexts, the key will be punctured
and, hence, decryption will fail. Indeed, such a puncturing view abstractly yields
a UE scheme with “controlled” forward-security guarantees.

1.1 Our Contribution

Briefly summarized, our contribution is as follows:

a) First, we simplify and extend the state-of-the-art UE chosen-plaintext secu-
rity models [11–13] to capture the guarantees provided by UE schemes that
restrict the function of update tokens to ciphertext updates in the forward
direction only. Importantly, we introduce expiry epochs as a fine-grained
updatability feature. By letting ciphertexts expire, we can mitigate the “record
now, leak later” attack discussed above. Moreover, we show that our notion
implies the most recent chosen-plaintext UE notion due to [11,12].

b) Second, we introduce a novel primitive dubbed Tag-Inverse Puncturable
Encryption (TIPE) which we believe provides an easier intuition towards
UE with “controlled” forward-security guarantees. We prove that the TIPE
notion implies our UE notion. In particular, we believe that the tag-inverse
puncturing in TIPE will further increase the applicability of the already very
useful concept of puncturable encryption [31] and might be of independent
interest.

c) Lastly, we construct a TIPE scheme that is secure in our model and thus
yields the first UE scheme with such strong properties. Moreover, its security
is based on the standard d-Lin assumption (where for d = 1 we get SXDH) in
prime-order bilinear groups using the well-known dual-system paradigm [40–
43]. Indeed, to overcome the hurdles towards TIPE with such strong proper-
ties, we require novel construction and adapted proof techniques. Noteworthy,

8 We introduce expiry epoch analogously to our UE model.
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our UE scheme enjoys sub-linear key and ciphertext sizes (yielding the first
backward-leak UE scheme with such properties as a special case and answer-
ing an open problem from [12,13] in the affirmative).

Modelling Key Security Features with Expiry Epochs. Post-compro-
mise security (PCS) is an essential security guarantee in UE and the currently
strongest schemes under standard assumptions are known to achieve it [11–13].
PCS loosely speaking means: once an old key leaks, future ciphertexts are not in
danger even in the presence of tokens. This is due to the fact that tokens cannot
be used to update keys in the forward direction as well for updating ciphertexts
in the backward direction. We achieve PCS as we are building on the strongest
prior (game-based) chosen-plaintext-secure model.

Moreover, the introduction of expiry epochs allows us to achieve forward secu-
rity (FS) when keys are leaked beyond that expiry epoch of a ciphertext—where
by FS we mean, again loosely speaking: once a key leaks, expired ciphertexts
are not in danger even in presence of tokens. Recall that by correctness of UE
schemes without expiry epochs, such strong form of FS cannot be met and is
indeed not foreseen in any prior model (i.e., once a key leaks, old ciphertexts are
immediately in danger when access to all tokens is granted).

In contrast to prior models, we particularly consider the attack that an adver-
sary can use a token Δe to update a key Ke to Ke−1 in the backward direction
(i.e., yielding a key that is consistent with epoch-(e − 1) ciphertexts and which
would break FS). Indeed, the currently strongest UE schemes [11–13] allow for
such an attack. In contrast, in our model, we aim for mitigating such a leakage.
Say, we have a ciphertext that expires in epoch e∗. The token in the expiry
epoch Δe∗+1 should not be of help to update a key Ke∗+1 to an expiry-epoch
key Ke∗ in the backward direction and we explicitly provide the adversary with
capabilities to query such a token.

Noteworthy, when setting the expiry epochs of each ciphertext to 2λ (for
security parameter λ), we achieve the same security guarantees as [11–13] which
we formally show. Moreover, we can even show that our notion implies a simple
and natural “ciphertext indistinguishability” notion where challenge ciphertexts
with different expiry epochs are indistinguishable in the same challenge epoch.

Tag-Inverse Puncturable Encryption as an Abstraction of UE.

In a nutshell, TIPE that can be viewed as a symmetric PE scheme
(Gen,KPunc,Enc,Dec) with an additional algorithm ExPunc to control which
ciphertexts are excluded for key puncturing. Such a scheme is associated to
a polynomial sized set of epochs, i.e., (1, . . . , n), as well as an unbounded
ciphertext-tag space T . KPunc sequentially punctures keys on epochs, i.e.,
removes the ability to decrypt ciphertexts tagged under them step by step. In
addition, KPunc can take a set of tags S ⊆ T (or a special “for-all” tag ∀) and
outputs an update token, which can then be used to exclude ciphertexts carrying
tags in S from puncturing (in case of ∀, all ciphertext can be excluded). In TIPE,
ciphertexts are not only computed w.r.t. a tag t ∈ T , but additionally take an
“expiry-tag” eexp ∈ [n]. If epoch eexp is reached, then for ciphertexts carrying such
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a tag, the key is implicitly punctured and such a ciphertext cannot be excluded
from puncturing anymore.

As a key feature, update tokens can also be associated to such tags or not.
Only ciphertexts with tags in tokens can be excluded from being punctured.
However, there is one exception, a token can be constructed to be working for
all ciphertexts denoted by the symbol ∀ in the token. Moreover, because of
tags, TIPE is stronger than our UE definition as it allows the adversary to even
query more tokens (since those can be crafted in a more fine-grained way via
tags now). Noteworthy, keys are agnostic of tags and, hence, the restriction of
querying keys are the same in UE and TIPE. As a consequence, TIPE yields an
even more fine-grained primitive compared to what our UE notion offers.

Indeed, we can see that UE is essentially a special variant of TIPE. For UE, it
is sufficient to set ∀ as input to key puncturing KPunc and fix the ciphertext-tag
set of TIPE to a singleton T = {t} for any arbitrary tag t. Particularly, we use key
puncturing for rotating to the next UE key (i.e., “puncturing” on the TIPE epoch
e) and exclude puncturing for ciphertexts via a token, i.e., ciphertexts can be
updated to the next epoch (where ciphertexts with expired epochs are punctured
implicitly). Encryption and decryption directly map to UE’s encryption and
decryption functionality, respectively. Moreover, we believe that TIPE provides
an interesting abstraction for protected outsourced file storage with forward
security and fine-grained secure shredding of files (in the vein of puncturable
key wrapping [44], but augmented with efficient key rotation).

Idea of Instantiating TIPE. The main construction idea is the following.
The first ingredient is a special encoding mapping epochs to encoded binary
epochs. See that such binary epochs have only a length of λ while allowing 2λ

epochs. One can think of it as a binary-tree encoding as discussed in detail in
[25, Sec. 4.2] where nodes are labeled as epochs, e.g., epochs e0 = (0, 0, 0), e1 =
(0, 0, 1), . . . , e7 = (1, 1, 1) encoding 23 epochs. However, this is not sufficient
and we need a second ingredient, namely, group elements from the dual-system
groups [42,45,46], to support such an encoding in the final TIPE scheme.

We use a special variant of dual-system groups (DSGs) due to Gong et al. [43]
(which is based on [42]) and that was used to build an unbounded hierarchical
identity-based encryption (HIBE) scheme [47]. Indeed, our is scheme is closely
related to unbounded HIBEs, but we need more features which an HIBE cannot
guarantee. (Particularly, ciphertext updates are not foreseen in HIBEs.) Fortu-
nately, we observe that the above DSG from [43] has more to offer than implying
unbounded HIBEs, which was not known before. Interestingly, we can even use a
relaxed version of their DSG and leave out unnecessary features whereby we did
not add anything to their syntax, correctness or security. As a consequence, we
can safely assume that our relaxed DSG variant is implied by the full DSG vari-
ant from [43] and we give a concrete prime-order instantiation from the standard
d-Lin assumption in the standard model in the extended version of this work [48].

Starting from the initial work by Waters [40], the richness of the dual-system
paradigm was demonstrated in several prior works already (e.g., [42,43,45,46,49–
55]). The abstraction concept of [43] is particularly useful as it provides us with
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functionalities that are also essential in the TIPE (and, hence, UE) paradigm
where ciphertext updates only work in the forward direction. This connection
is new and enriches the applications of the dual-system paradigm. We will now
use such a connection for our TIPE construction.

To construct a TIPE scheme from DSGs with the encoding from [25], we
implicitly encode epochs in keys in a complete binary tree, i.e., the nodes repre-
sent a prefix bit representation of the epoch and, hence, the root of the tree is
associated with key Kε (an initial key used to bootstrap all epoch keys). In its
basic form, this is not new and reminiscent of prior works, e.g., work on forward
secure public-key encryption [22,28,37,38]. However, we need to add ciphertext
updates as well and enhance it to incorporate tokens.

Fortunately, the DSG approach allows us to also encode epochs in ciphertexts
in a complete binary tree similarly to keys, i.e., the nodes represent a prefix
bit representation of epochs and, hence, the root of the tree is associated with
ciphertext Cε

t,eexp
(an initial ciphertext). The more the epochs advance, depending

on the configuration of the tree, the more ciphertext elements are required. See
Fig. 1 for an illustrative example how keys and ciphertext are constructed on the
intuitive level.

Fig. 1. Example of a TIPE key Ke1 = (K1
e1 ,K

01
e1 ,K

001
e1 ) that has been punctured on

epoch e0 = (0, 0, 0). Moreover, a token tailored to t and epoch e0 is generated during
puncturing and can be used to update the ciphertext Ct,e0 to Ct,e1 = (C1

e1 , C
01
e1 , C

001
e1 ).

Only the boxed elements have to be stored and the remaining elements lower in the
tree can be derived from those.

As a ciphertext can have many elements, the main hurdle is the common ran-
domness that blinds the message part where such a randomness has to be “asso-
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ciated” to all ciphertext parts (otherwise decryption will not work). Surprisingly,
we can use techniques from [43] where ciphertexts have “local” randomnesses and
one “global” randomness, where the latter is used to hide the message part and
the local randomness are required to mitigate mix-and-match attacks.

The correctness guarantees are now that a ciphertext for epoch e0 = (0, 0, 0)
(encoded using [25]) can be decrypted by a key in epoch e0, but not with keys in
later epochs.9 When a key is updated to e1 = (0, 0, 1), the node containing key
elements from K000

e1
is discarded and all other key elements will have a uniform

“linear shift” in their group elements. (Such a shift can be seen as switching the
master secret key in an HIBE and we use the same shift for all key elements.)

Moreover, an update token is generated and incorporates the linear shift (as
we have to transport this information to the ciphertexts). Such a token will not
work on any key components, but can be used to “lift” a ciphertext in epoch e0
to a valid ciphertext in epoch e1. The tokens work only on ciphertext element
C000

t,e0
which results in a “shifting” element that can be used to all other ciphertext

elements. The shift operation ensures that the secret key and the ciphertext are
in sync again. After the shifting is done, C000

t,e0
is discarded. This results in a

ciphertext that cannot be decrypted by prior-epoch key elements as the token
does not work on the updated ciphertexts to “undo” the shifting operation. This
is enforced by carefully tailoring the token to epoch e0 (i.e., only working when
C000

t,e0
is present), as well as to the tag t (which excludes that the token works

on any other ciphertext in epoch e0 if the tags are different to t). Particularly,
since C000

t,e0
is not contained in Ct,e1 anymore, such a token cannot be used to

update ciphertext from Ct,e1 to Ct,e0 . Together with expiry epochs (that can
be integrated straightforwardly thanks to using the binary tree and a simple
pruning of the tree accordingly), this yields the desired TIPE properties.

Concerning security, the proof methodology makes use of the dual-system
paradigm where keys and ciphertexts can be of two forms, i.e., normal or semi-
functional. Any combination of both will decrypt correctly as long as the cipher-
text and the key are not both semi-functional.

In a first step, the challenge ciphertext is made semi-functional via introduc-
ing semi-functional components into such a ciphertext. We stress that such a
semi-functional ciphertext can be decrypted by key elements coming from the
normal distribution, but will fail with high probability for semi-functional key
components. This is exactly what we will use in the remainder of the proof where
we carefully introduce uniform randomness into each key and token components
which have key or token elements associated to the challenge ciphertext, respec-
tively. This is done as in the usual dual-system paradigm but adapted to our
setting where we can embed uniform randomness into such components and their
associated tags or epochs encodings are not “prefixes” of the challenge ciphertext
tag or epoch encoding.

9 Also later-epochs keys cannot decrypt prior-epoch ciphertexts.
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1.2 Preliminaries and Outline

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security
parameter. For a finite set S, we denote by s ← S the process of sampling
s uniformly from S. For an algorithm A, let y ← A(λ, x) be the process of
running A on input (λ, x) with access to uniformly random coins and assigning
the result to y. (We may omit to mention the λ-input explicitly and assume that
all algorithms take λ as input.) To make the random coins r explicit, we write
A(λ, x; r). We say an algorithm A is probabilistic polynomial time (PPT) if the
running time of A is polynomial in λ. A function f is negligible if its absolute
value is smaller than the inverse of any polynomial (i.e., if ∀c ∈ N ∃k0 ∀λ ≥ k0 :
|f(λ)| < 1/λc). We write v = (vi)i∈[n], for n ∈ N.

Pairings. Let G, H, GT be cyclic groups. A pairing e : G×H → GT is a map that
is bilinear (i.e., for all g, g′ ∈ G and h, h′ ∈ H, we have e(g·g′, h) = e(g, h)·e(g′, h)
and e(g, h ·h′) = e(g, h) · e(g, h′)), non-degenerate (i.e., for generators g ∈ G, h ∈
H, we have that e(g, h) ∈ GT is a generator), and efficiently computable.

Group Generator. Let G(λ, n′) be a group generator that generates the tuple
(G, H, GT , N, g, h, (gpi

)i∈[n′], e), for a pairing e : G × H → GT , for composite-
order groups G, H, GT , all of known group order N = p1 · · · pn′ , generators
g, h, (gpi

)i∈[n′], and for Θ(λ)-bit primes (pi)i.

Outline of the Paper. In Sect. 2, we present our security model with expiry
epochs and discuss relations to previous models. In Sect. 3, we introduce Tag-
Inverse Puncturable Encryption (TIPE), show how we can instantiate UE from
TIPE and present a concrete TIPE construction. Moreover, we briefly discuss
other applications of TIPE.

2 Updatable Encryption with Expiry Epochs

We define UE with expiry epochs in ciphertexts which allow ciphertexts to being
excluded from updates. We build on the recent UE models [11–13]. The main idea
of UE with expiry epochs is the following. On the very high level, all operations
are bound to discrete epochs 1, 2, . . . where keys and ciphertexts as well as so-
called update tokens are associated to. System setup Gen creates a first-epoch
symmetric key K1. As an illustration, with this key, one can create a first-epoch
ciphertext C1,eexp ← Enc(K1,M, eexp), for some message M and expiry epoch
eexp > 1, and, e.g., outsource C1,eexp to some semi-trusted third-party. With
probabilistic algorithm RotKey, K1 can be updated (or, rotated) to K2 while
also an update token Δ2 is generated. With Δ2, a semi-trusted third-party can
update C1,eexp to C2,eexp ← Upd(Δ2, C1,eexp) such that C2,eexp is “consistent” with
K2. Correctness guarantees that decryption of C2,eexp yields M = Dec(K2, C2,eexp)
as intended (and so on, if the ciphertext is not expired already). More formally:

Definition 1. A UE scheme UE with message space M consist of the PPT
algorithms (Gen, RotKey, Enc, Upd, Dec):
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Gen(λ): on input security parameter λ, key generation outputs an initial (sym-
metric) key K1.

RotKey(Ke): on input key Ke, key rotation outputs an updated key Ke+1 for the
next epoch together with an update token Δe+1.

Enc(Ke,M, eexp): on input key Ke, a message M ∈ M, and expiry epoch eexp,
encryption outputs a ciphertext Ce,eexp or ⊥.

Upd(Δe+1, Ce,eexp): on input an update token Δe+1 and a ciphertext Ce,eexp ,
update outputs an updated ciphertext Ce+1,eexp or ⊥.

Dec(Ke, Ce,eexp): on input key Ke and a ciphertext Ce,eexp , decryption outputs
M ∈ M ∪ {⊥}.

Correctness. We require that an honestly generated epoch-j ciphertext Cj,eexp

(obtained via Enc(Kj ,M, eexp)) is decryptable to M if the expiry epoch is not
reached yet. Moreover, an honest update of a valid ciphertext Cj,eexp (via Δj+1)
from epoch j to j + 1 yields a valid ciphertext Cj+1,eexp that can be decrypted
under the epoch key Kj+1 (obtained via RotKey(Kj)) if the ciphertext is not
already expired. (See that we do not give any correctness guarantees beyond the
expiry epochs.)

More formally, for all λ ∈ N, for all e ∈ [�poly(λ)�], for K1 ← Gen(λ), for
all i ∈ {1, . . . , e}, for all (Ki+1,Δi+1) ← RotKey(Ki), for all M ∈ M, for all
eexp ∈ N, for all j ∈ {1, . . . , e + 1}, for all Cj,eexp ← Enc(Kj ,M, eexp), we require
that M = Dec(Kj , Cj,eexp) holds if eexp ≥ j. Moreover, for all j ∈ {1, . . . , e}, for
all Cj,eexp ← Enc(Kj ,M, eexp), for all i ∈ {j, . . . , e}, for C ′

j,eexp
:= Cj,eexp , for all

C ′
i+1,eexp

← Upd(Δi+1, C
′
i,eexp

), we require that M = Dec(Ke+1, C
′
e+1,eexp

) holds if
eexp ≥ e + 1.

Intuition of Our Security Notion. The notion is an extension of prior-work
notions [11,12] which we augment with the introduction of expiry epochs. (We
later show that our notion implies such prior-work notions.) The distinguishing
feature of our model is that we allow the adversary to query the update token
in an epoch which corresponds to the challenge-ciphertext expiry epoch eexp and
allow that the key in eexp+1 can be retrieved. In models without expiry epochs,
leaking the epoch-e challenge ciphertext and an epoch-e token together with a
key in epoch e + 1 would yield a trivial win (per definition of correctness).

More concretely, in each epoch, the adversary has access to several oracles
as given in Fig. 2. Thereby, we assume that any (expiry-)epoch information is
explicitly retrievable from the keys, tokens, and ciphertexts. The adversary is
allowed to query honestly generated ciphertexts (with chosen expiry epoch) via
Enc′. RotKey′ triggers rotation of the current key to the next epoch. Upd′ is
an oracle that updates chosen but honestly generated ciphertexts to the cur-
rent epoch (depending on the expiry epoch). Corrupt lets the adversary retrieve
either the token or the key for a specific epoch. Chall takes a chosen message
and a chosen but honestly generated ciphertext, and outputs a challenge cipher-
text (depending on a uniform bit b). GetUpdC∗ returns the current challenge
ciphertext. At the end of the experiment, we require that the adversary did not
retrieve keys to trivially decrypt the challenge ciphertext or retrieves an update
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token to update the challenge ciphertext to an epoch where it has a key. If such
validity checks pass and the adversary guessed b correctly, then the adversary
wins the experiment. Otherwise, we say that a UE scheme is EE-IND-UE-CPA
secure as such a notion essentially ensures that fresh and updated ciphertexts
are indistinguishable even if the adversary has access the aforementioned oracles
adaptively. We define:

Definition 2. A UE scheme UE is EE-IND-UE-CPA-secure iff for any PPT
adversary A, the advantage function

Advee-ind-ue-cpaUE,A (λ) :=
∣
∣
∣Pr

[

Expee-ind-ue-cpaUE,A (λ) = 1
]

− 1/2
∣
∣
∣

is negligible in λ, where Expee-ind-ue-cpaUE,A is defined as in Fig. 2.

Fig. 2. Our EE-IND-UE-CPA security notion for UE schemes with expiry epochs.

2.1 Relation to Other UE Security Notions

Our security notions implies IND-UE-CPA security as defined in [11,12]. More-
over, we can even show that our notion implies a simple and natural cipher-
text indistinguishability notion for chosen messages and (public) expiry epochs
where challenge ciphertexts with different expiry epochs are indistinguishable in
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the same challenge epoch. Due to space constraints, we show in the extended
version of this work [48]:

Corollary 1. EE-IND-UE-CPA security implies IND-UE-CPA security with
expiry epochs set to eexp = 2λ.

Corollary 2. EE-IND-UE-CPA security implies ciphertext indistinguishability
for chosen messages and (public) expiry epochs in the same challenge epoch.

3 UE from a Puncturable-Encryption Perspective

We introduce a novel primitive dubbed Tag-Inverse Puncturable Encryption
(TIPE), provide a TIPE security model and show how to construct UE with
expiry epochs from TIPE. Finally, we give an instantiation of TIPE under stan-
dard assumptions. TIPE essentially views UE from the perspective of punc-
turable encryption [31] and generalizes UE. We believe that TIPE has applica-
tion beyond UE.

3.1 Tag-Inverse Puncturable Encryption

The main intuition of TIPE is the following. On the very high level, all operations
are bound to discrete epochs 1, 2, . . . where keys and ciphertexts as well as update
tokens are associated to. Moreover, as in plain PE, ciphertexts are attached with
a tag coming from an exponentially large tag space T . System setup Gen creates
a first-epoch symmetric key K1. To show the idea, with such a key, one can create
a first-epoch ciphertext C1,t,eexp ← Enc(K1, t,M, eexp), for some message M , tag
t ∈ T , and expiry epoch eexp > 1. With probabilistic algorithm KPunc, K1 can
be updated to K2 depending on a tag set S ⊆ T (i.e., for which ciphertexts
the key should not be punctured) while also update tokens (Δ2,t)t∈S∪{∀} are
generated. (We allow even a special symbol ∀ in the token Δ2,∀ which indicates
that the key is not punctured on any ciphertext.) With (Δ2,t)t∈S∪{∀}, a semi-
trusted third-party can update C1,t,eexp to C2,t,eexp ← ExPunc(Δ2,t′ , C1,t,eexp) if
t ∈ {t′,∀} such that C2,t,eexp is “consistent” with K2. Correctness guarantees that
decryption of C2,t,eexp yields M = Dec(K2, C2,t,eexp) as intended (and so on, if the
ciphertext is not expired already). More formally:

Definition 3. A Tag-Inverse Puncturable Encryption (TIPE) scheme TIPE for
epochs (1, . . . , poly(λ)), ciphertext-tag space T , and message space M consists
of the PPT algorithms (Gen,KPunc,Enc,ExPunc,Dec):

Gen(λ) : on input security parameter λ, key generation outputs initial key K1.
KPunc(Ke,S) : on input key Ke for epoch e and ciphertext tags S ⊆ T or

S = ∀, if S ⊆ T , key puncturing outputs a punctured key Ke+1 and tag-
specific tokens (Δe+1,t)t∈S ; otherwise, if S = ∀, outputs a punctured key
Ke+1 and (universal) token Δe+1,∀.

Enc(Ke, t,M, eexp) : on input key Ke, ciphertext tag t ∈ T , message M ∈ M,
and expiry epoch eexp, encryption outputs a ciphertext Ce,t,eexp or ⊥.
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ExPunc(Δe+1,t′ , Ce,t,eexp) : on input token Δe+1,t′ and ciphertext Ce,t,eexp , the
exclude-from-puncturing algorithm outputs a ciphertext Ce+1,t,eexp if t′ ∈
{t,∀} and e < eexp; otherwise outputs ⊥.

Dec(Ke, Ce′,t,eexp) : on input key Ke and ciphertext Ce,t,eexp , decryption outputs
message M ∈ M if e = e′; otherwise outputs ⊥.

Correctness. We require that an honestly generated epoch-j ciphertext Cj,t,eexp

(obtained via Enc(Kj , t,M, eexp)) is decryptable to M if the expiry epoch is not
reached yet. Moreover, an honest exclusion from being punctured for a valid
ciphertext Cj,t,eexp (via Δj+1,S with t ∈ S or S = ∀) from epoch j to j +1 yields
a valid ciphertext Cj+1,t,eexp that can be decrypted under the epoch key Kj+1

(obtained via KPunc(Kj ,S)) if the ciphertext is not already expired. (See that
we do not give any correctness guarantees beyond the expiry epochs.)

More formally, for all λ ∈ N, for all e ∈ [�poly(λ)�], for K1 ← Gen(λ), for all
i ∈ {1, . . . , e}, for any S ∈ T ∪ {∀}, for all (Ki+1,Δi+1,S) ← KPunc(Ki,S),
for all M ∈ M, for all expiry epochs eexp ∈ N, for all t ∈ T , for all
j ∈ {1, . . . , e + 1}, for all Cj,t,eexp ← Enc(Kj , t,M, eexp), we require that
M = Dec(Kj , Cj,t,eexp) holds if eexp ≥ j. Moreover, for all j ∈ {1, . . . , e}, for
all Cj,t,eexp ← Enc(Kj , t,M, eexp), for all i ∈ {j, . . . , e}, for C ′

j,t,eexp
:= Cj,t,eexp ,

for all C ′
i+1,t,eexp

← ExPunc(Δi+1,t′ , C ′
i,t,eexp

) with t′ ∈ {t,∀}, we require that
M = Dec(Ke+1, C

′
e+1,t,eexp

) holds if eexp ≥ e + 1.

Intuition of Our Security Notion. We define IND-TIPE-CPA which guaran-
tees that freshly generated ciphertexts cannot be distinguished from ones that are
excluded from puncturing similarly to UE, but we give more power to the adver-
sary as it is allowed to even query more tokens. Thereby, we assume that any
(expiry-)epoch information is explicitly retrievable from the keys, tokens, and
ciphertexts. Similarly, we assume that any tag information is explicitly retriev-
able from the tokens and ciphertexts.

To emphasize the main difference to our UE model, consider some epoch e′

after the challenge epoch where the adversary queried a key Ke′ and the challenge
ciphertext is not expired, i.e., e′ ≤ eexp. In our UE definition, the adversary is not
allowed to query a token Δe′ while in TIPE, we allow querying tokens (Δe′,t)t∈S
that do not incorporate update capabilities for the challenge tag t∗, i.e., t∗ /∈ S.
Moreover, a token Δe′,∀ is obviously not allowed to be queried in epoch e′. Those
are the essential differences to our UE notion.

Moreover, similarly to our UE notion, we assume that any (expiry-)epoch and
tag information is explicitly retrievable from the keys, tokens, and ciphertexts.
We define:

Definition 4. A TIPE scheme TIPE is IND-TIPE-CPA-secure iff for any PPT
adversary A, the advantage function

Advind-tipe-cpaTIPE,A (λ) :=
∣
∣
∣Pr

[

Expind-tipe-cpaTIPE,A (λ) = 1
]

− 1/2
∣
∣
∣

is negligible in λ, where Expind-tipe-cpaTIPE,A is defined as in Fig. 3.
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Fig. 3. Our IND-TIPE-CPA security notion for TIPE.

3.2 Generic UE Construction from TIPE

In the following, let TIPE = (TIPE.Gen,TIPE.KPunc,TIPE.Enc,TIPE.ExPunc,
TIPE.Dec) be a TIPE with tag space T = {t} and message space MTIPE. We
construct a UE scheme UE = (Gen,RotKey,Enc,Upd,Dec) with message space
M := MTIPE. The main intuition here is that we only need a single tag in T
and each ciphertext is generated with such a tag. Moreover, the key rotation in
UE generates the next UE key and a token that works for any tag, particularly
for the single tag in T . We construct:
Gen(λ) : return K1 ← TIPE.Gen(λ).
RotKey(Ke) : return (Ke+1,Δe+1) ← TIPE.KPunc(Ke,∀).
Enc(Ke,M, eexp) : return Ce,eexp ← TIPE.Enc(Ke, t,M, eexp), for t ∈ T .
Upd(Δe+1, Ce,eexp) return Ce+1,eexp ← TIPE.ExPunc(Ce,eexp ,Δe+1).
Dec(Ke, Ce,eexp) : return M := TIPE.Dec(Ke, Ce,eexp).
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Correctness. See that this directly translates from the TIPE scheme, i.e., the
ciphertexts that were computed by Enc and/or updated via Upd can be decrypted
by Dec if the keys are in the same epoch and the ciphertext is not expired.

Theorem 1. If TIPE is IND-TIPE-CPA secure, then UE is EE-IND-UE-CPA
secure. Concretely, for any PPT adversary A there is a distinguisher D in the
IND-TIPE-CPA security experiment, such that Advind-tipe-cpaTIPE,D (λ) ≥ Advind-ue-cpaUE,A (λ).

Proof. We show the theorem by constructing a PPT distinguisher D in
the IND-TIPE-CPA security experiment with TIPE from any successful PPT
adversary A in the EE-IND-UE-CPA security with UE. D runs A(λ). Let
TIPE.Enc′,KPunc,ExPunc,TIPE.Corrupt,TIPE.Chall,TIPE.GetUnpuncC∗ be the
TIPE oracles. Let A’s oracles be as follows:
Enc′(M, eexp) : return Ce,eexp ← TIPE.Enc′(M, t, eexp), for t ∈ T .
RotKey′ : run KPunc(∀).
Upd′(Ce−1,eexp) : return Ce,eexp ← ExPunc(Ce−1,eexp).
Corrupt(inp, e′) : return the result of TIPE.Corrupt(inp, e′). (This is either a key
or a token depending on inp.)
Chall(M,Ce−1,eexp) : return C∗

e,b ← TIPE.Chall(M,Ce−1,eexp).
GetUpdC∗ : return C∗

e,b ← TIPE.GetUnpuncC∗.
We conclude that D provides a consistent view for A. If A is a successful

PPT adversary in the EE-IND-UE-CPA security experiment with UE (see that
also the validity conditions of TIPE subsumes the validity conditions of UE),
then D is a successful PPT adversary in the IND-TIPE-CPA security experiment
with TIPE. ��

3.3 TIPE from Standard Assumptions

We show how to construct TIPE from standard assumption. Before that, we
introduce encoding of epochs and the dual-system group paradigm. Both are
important ingredients to our construction and discussed in the introduction on
the high-level. In the following, we formally provide such ingredients and give a
proof from standard assumptions.

Encoding of Epochs. We use the encoding function of the recent work due to
Drijvers, Gorbunov, Neven, and Wee [25, Sec. 4.2]. They give a function e that
maps tags t = (t1, . . .) ∈ {1, 2}≤λ−1, for λ = �log2 n�, to epochs [n]:10

e(t) = 1 +
|t|
∑

i=1

(1 + (2λ−i − 1)(ti − 1)).10

10 In the introduction, we used the tag set {0, 1}λ for illustrating purposes; due to
technical reasons, the tag set {1, 2}λ is actually required.
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Moreover, t is the inverse function that maps epochs e ∈ [n] to tags {1, 2}≤λ−1:

t(e) =

⎧

⎪⎨

⎪⎩

ε if e = 1
t(e − 1)||1 if |t(e − 1)| < λ − 1
t||2 if |t(e − 1)| = λ − 1,

for longest string t such that t||1 is a prefix of t(e−1). Furthermore, they define
sets Γt ⊂ {1, 2}≤λ−1 for each t such that:

Γt = {t} ∪ {t||2 : t||1 prefix of t}.

The properties of Γt are: (1) t � t′ ⇔ ∃u ∈ Γt such that u is a prefix of t′, (2)
∀t, it holds Γt(e(t)+1) = Γt\{t} if |t| = λ−1 or Γt(e(t)+1) = (Γt\{t})∪{t||1, t||2}
otherwise, (3) ∀t′ � t, it holds ∀u′ ∈ Γt′ ,∃u ∈ Γt such that u is a prefix of u′.

Dual System Groups. Our (relaxed) DSG DSG based on [43] consists of the
PPT algorithms (SampP,SampG,SampH,SampS,SampK, ŜampG, ŜampH):
SampP(λ, n) : sample (G, H, GT , N, (gpi

)i∈[n′], e) ← G(λ, n′), for fixed integer n′.
Define m : H → GT to be linear map, let ĝ and ĥ be group elements generated
by gs and hs, respectively (see below). Further, pars, p̂ars may contain arbitrary
information. Output public parameters pp = (G, H, GT , N, e,m, pars) and secret
parameters sp = (ĝ, ĥ, p̂ars)
SampG(pp) : output g = (g0, . . . , gn) ∈ G

n+1.
SampS(pp) : output S ∈ G.
SampH(pp) : output h = (h0, . . . , hn) ∈ H

n+1.
SampK(pp) : output K ∈ H.

ŜampG(pp, sp) : output ĝ = (ĝ0, . . . , ĝn) ∈ G
n+1 and gs ∈ G.

ŜampH(pp, sp) : output ĥ = (ĥ0, . . . , ĥn) ∈ H
n+1 and hs, ha ∈ H.

SampG,SampS,SampH and SampK sample from a “normal” distribution (used
for correctness) while ŜampG and ŜampH sample from a “semi-functional” dis-
tribution (used in the security proof). When proving UE security, we can switch
UE ciphertexts and keys to semi-functional ones. The essence of dual system
is then carried out, namely, semi-functional ciphertexts and keys are incompat-
ible meaning that we can derive at a stage where the UE ciphertexts carry a
uniformly random group element and indistinguishability can be shown.

Correctness. For all λ, n ∈ N, for all pp (generated via SampP(λ, n)):

Projectiveness. m(h)s = e(SampS(pp; s), h), for all s ∈ Z
∗
N and h ∈ H.

Orthogonality. e(S, hi) = 1 and e(g0,K) = 1, for all i ∈ [n], (h0, . . . , hn) ←
SampH(pp), S ← SampS(pp), (g0, . . . ) ← SampH(pp), and K ← SampK(pp).

Associativity. e(g0, hi) = e(gi, h0), for all i ∈ [n], (g0, . . . , gn) ← SampG(pp) and
(h0, . . . , hn) ← SampH(pp).

G-H-subgroups. The outputs of SampG(pp) and SampS(pp) are uniformly dis-
tributed over the generators of non-trivial subgroups of G

n+1 and G, respec-
tively. The outputs of SampH(pp) and SampK(pp) are uniformly distributed
over the generators of non-trivial subgroups of H

n+1 and H, respectively.
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Security. For all λ, n ∈ N, for all (pp, sp) ← SampP(λ, n):

Orthogonality. m(ĥ) = 1.
Non-degeneracy. ĥ lies in a subgroup of hs, gs lies in a subgroup of ĝ.
Left-subgroup indistinguishability (LS). For any PPT D, AdvlsDSG,D(λ, n) :=

|Pr [D(pp,g) = 1] − Pr [D(pp,gĝ) = 1]|

is negligible in λ, for g ← SampG(pp) and (ĝ, ·) ← ŜampG(pp, sp).
Right-subgroup indistinguishability (RS). For any PPT D, AdvrsDSG,D(λ, n) :=

∣
∣
∣Pr

[

D(pp, ĥ,gĝ,h) = 1
]

− Pr
[

D(pp, ĥ,gĝ,hĥ) = 1
]∣
∣
∣

is negligible in λ, for g ← SampG(pp), (ĝ, ·) ← ŜampG(pp, sp), h ←
SampH(pp), and (ĥ, ·, ·) ← ŜampH(pp, sp).

Parameter-hiding. The distributions

{pp, ĝ, ĥ, ĝ, ĥ} and {pp, ĝ, ĥ, ĝĝ′, ĥĥ′}

are identically distributed, for (ĝ = (ĝ0, . . . , ĝn), gs) ← ŜampG(pp, sp),
(ĥ = (ĥ0, . . . , ĥn), hs, ha) ← ŜampH(pp, sp), ĝ′ = (1, gγ1

s , . . . , gγn
s ), and

ĥ′ = (1, hγ1
s , . . . , hγn

s ), for γ1, . . . , γn ← ZN .
Computational non-degeneracy (ND). For any PPT D, AdvndDSG,D(λ, n) :=

∣
∣
∣Pr

[

D(pp,S · gĝ,K · ĥα, e(S,K)) = 1
]

− Pr
[

D(pp,S · gĝ,K · ĥα, R = 1
]∣
∣
∣

is negligible in λ, for S = (S, 1, . . .), S ← SampS(pp), g ← SampG(pp),
(ĝ, ·) ← ŜampG(pp, sp), K ← SampK(pp), α ← ZN , and R ← GT .

Remark. The properties have the following implications which we will need later
on. From orthogonality and projectiveness, we retrieve e(S, ĥ) = 1. By projec-
tiveness, it holds m(K)s · m(K ′)s = e(SampS(pp; s),K) · e(SampS(pp; s),K ′) =
m(K · K ′)s, for s ∈ Z

∗
N , and K,K ′ ∈ H. Moreover, by projectiveness and G-

subgroups, we have m(K)s ·m(K)s
′
= e(SampS(pp; s),K)·e(SampS(pp; s′),K) =

e(gs+s′
,K) = m(K)s+s′

, for K ∈ H and suitable generator g ∈ G.

Intuition of Our Construction. Beyond what is already discussed in the
introduction on the intuition of our construction, we give some more technical
details in the following. We assume that tags in the tag set T are integers in
Z

∗
N for simplicity. During key generation, we use λ + 1 as input to the DSG

parameter-sampling algorithm SampP as this will give us one additional element
for embedding the ciphertext tag during encryption. The initial key K1 consists
of DSG group elements (that are sampled from the normal distribution) with a
distinguished element k1 that can be seen as acting similarly to a master secret
key in an (unbounded) HIBE [43]. (K1 corresponds essentially to the root of the
binary tree for the key.)
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Key puncturing KPunc prunes the tree as follows: if a node corresponding
to the current epoch is not a leaf node, then it computes the children of such
a node. One child gets associated with 1 and the other one with 2 which maps
directly to the encoding. Then, the key material of the parent node is discarded;
otherwise, if such a node is a leaf node, then the key material for this node
is discarded. A re-randomization step for all elements forms the resulting key
for epoch e + 1. The corresponding token is computed around a distinguished
element δ (depending on S) which is blinded with epoch (and tag) dependent
group elements from the DSG’s normal distribution; it acts a linear shift for ke.

Encryption Enc, depending on the current tree configuration and the expiry
epoch, computes the ciphertext material depending on such a configuration
where each group element is similarly computed to a simple form of an
unbounded HIBE ciphertext in [43] but enhanced with further DSG group ele-
ments. Those elements are crucial and used in ExPunc. The message itself is
blinded by m(ke)s, where the uniform s is also embedded as “global” random-
ness in ciphertext elements corresponding to the tree configuration (see element
S).

During ExPunc, the linear shift m(δ)s is computed only if ciphertext material
corresponding to the token is available (i.e., if such a token—potentially depend-
ing also on the tag—matches ciphertext material in the current epoch). Such a
shift can then be used to update the blinding group element for the message to
the next epoch. Moreover, the ciphertext tree is pruned analogously to how key
material is delegated and discarded in KPunc. Particularly, ciphertext material
for the node associated to the then-old epoch is discarded. Decryption recovers
the message if the epochs of the key and unexpired ciphertext match.

Our Construction. Let DSG = (SampP,SampG,SampH,SampS,SampK,

ŜampG, ŜampH) be DSG. We construct a TIPE scheme TIPE = (Gen,KPunc,Enc,
ExPunc,Dec) with tag space T = Z

∗
N (determined during Gen) and message space

M:
Gen(λ) : compute (pp, sp) ← SampP(λ + 1), set T = Z

∗
N , sample

(h0, . . . , hλ+1) ← SampH(pp), k1 ← SampK(pp) and return K1 =
({K ′

1},m(k1), pp), with K ′
1 = (h0, k1 · h1, . . . , hλ).

KPunc(Ke,S) : for Ke = ({K ′
u : u ∈ Γt(e)},m(ke), pp), if |t(e)| < λ − 1, then

find K ′
t(e) = (T0, T1, T|t(e)|+1, . . . , Tλ), compute

K ′
t(e+1) = (T0, T1 · T|t(e)|+1, T|t(e)|+2, . . . , Tλ),

K ′
t(e+2) = (T0, T1 · T 2

|t(e)|+1, T|t(e)|+2, . . . , Tλ).

Sample elements δ ← SampK(pp) and (h0, . . . , hλ+1), (hu,0, . . . ,
hu,λ+1)u∈[|Γt(e+1)|] ← SampH(pp), for t(e + 1) = (t(e + 1)1, . . . , t(e + 1)|t(e+1)|),
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compute

Δe+1 =

{

(Δe+1,t)t∈S = (h0, δ · ht
λ+1

∏|t(e+1)|
i=1 h

t(e+1)i

i ,m(ke · δ))t∈S (if S �= ∀)
(h0, δ ·

∏|t(e+1)|
i=1 h

t(e+1)i

i ,m(ke · δ)) (if S = ∀)

K ′′
u = (T ′

u,0hu,0, T
′
u,1 · δ ·

|u|
∏

i=1

hui
u,i, T

′
u,|u|+1hu,|u|+1, . . . , T

′
u,λhu,λ),

for {K ′
u = (T ′

u,0, . . . , T
′
u,λ) : u = (u1, . . .) ∈ Γt(e+1)}. Set Ke+1 = ({K ′′

u : u ∈
Γt(e+1)},m(ke · δ), pp) and return (Δe+1,Ke+1).
Enc(Ke, t,M, eexp) : if e > eexp, return ⊥. For Ke = (. . . ,m(ke), pp), sample
(gu,0, . . . , gu,λ+1)u∈Γt(e)\Γt(eexp+1)} ← SampG(pp), S ← SampS(pp; s), for s ←
Z

∗
N , and for all u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1), return

Ce,t,eexp = ({(Sgu,0,

|u|
∏

i=1

gui
u,i, gu,|u|+1, . . . , gu,λ, gt

u,λ+1)},m(ke)s · M).

ExPunc(Δe+1,t′ , Ce,t,eexp) : if e ≥ eexp or t′ /∈ {t,∀}, return ⊥. For Δe+1,t =
(D0,D1,m(ke+1)) and Ce,t,eexp = ({C ′

u : u ∈ Γt(e)},m(ke)s ·M), if |t(e)| < λ−1,
then find C ′

t(e) = (S0, S1, S|t(e)|+1, . . . , Sλ), compute

C ′
t(e+1) = (S0, S1 · S|t(e)|+1, S|t(e)|+2, . . . , Sλ+1),

C ′
t(e+2) = (S0, S1 · S2

|t(e)|+1, S|t(e)|+2, . . . , Sλ+1).

Sample S ← SampS(pp; s′), for s′ ← Z
∗
N , (gu,0, . . . , gu,λ+1)u∈Γt(e+1) ←

SampG(pp), compute m(δ)s = e(S0,D1)
e(D0,S1Sλ+1)

(where Sλ+1 is only present if t′ �= ∀)
and

C ′′
u = (Su,0Sgu,0, Su,1

|u|
∏

i=1

gui
u,i, Su,|u|+1gu,|u|+1, . . . , Su,λgu,λ, Su,λ+1g

t
u,λ+1),

for {C ′
u = (Su,0, . . . , Su,λ) : u = (u1, . . .) ∈ Γt(e)\Γt(eexp+1)}. Return Ce+1,t,eexp =

({C ′′
u : u ∈ Γt(e+1)},m(ke · δ)s+s′ · M).

Dec(Ke, Ce,t,eexp) : if e > eexp, return ⊥. For Ke = ({K ′
u : u ∈ Γt(e)},m(ke), pp)

and Ce,t,eexp = ({C ′
u : u ∈ Γt(e)}, ST ), find K ′

t(e) = (T0, T1, . . .) and C ′
t(e) =

(S0, S1, . . .), and return

M = ST · e(T0, S1)
e(S0, T1)

.

Correctness. We show:

1) Correct decryption of ciphertexts:

M = ST · e(T0, S1)
e(S0, T1)

= m(ke)s · M · e(h0,
∏e

i=1 gi)
e(Sg0, ke

∏e
i=1 hi)

=
m(ke)s

e(S, ke)
· M = M,

where m(ke)s = e(S, ke), for some s ∈ Z
∗
N , e(S, hi) = 1, for all i ∈ [e], and

e(g0, ke) = 1 due to projectiveness, orthogonality, and associativity.
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2) Correctness for excluding ciphertexts Ce+1,t,eexp = ({C ′′
u : u = (u1, . . .) ∈

Γt(e+1)},m(ke+1)s+s′ · M) from puncturing:

C ′′
u = (Su,0Sgu,0, Su,1

|u|
∏

i=1

gui
u,i, Su,|u|+1gu,|u|+1, . . . , Su,λgt

u,λ+1),

where S ← SampS(pp; s′), for s′ ← Z
∗
N , (gu,0, . . . , gu,λ)u∈Γt(e+1) ←

SampG(pp), m(ke+1)s+s′
= m(ke)s · m(δ)s · m(ke+1)s

′
, for m(δ)s =

e(St(e+1),0,D1)

e(D0,St(e+1),1)
, due to projectiveness, orthogonality, associativity, and G-H-

subgroups.

Theorem 2. If DSG is a DSG scheme, then TIPE is IND-TIPE-CPA-secure.
Concretely, for any PPT adversary A, it holds:

Advind-tipe-cpaTIPE,A (λ) ≤ AdvlsDSG,D1
(λ, λ + 1) + 2 · (|Γt(e∗

exp)
| + q) · poly(λ)·

AdvrsDSG,D2
(λ, λ + 1) + poly(λ) · AdvndDSG,D3

(λ, λ + 1),

with q number of tag-based token queries.

Proof. Let SA,j be the event that A succeeds in Game j. We map the symbol
∀ to the integer 0 for ease of proof exposition. Let SA,j be the event that A
succeeds in Game j. We highlight changes boxed.

Lemma 1 (Game 0 to Game 1). For any PPT adversary A, it holds:

|Pr [SA,0] − Pr [SA,1] | = 0.

Proof. We change the behavior of the challenge oracle such that we use a fresh
encryption instead of updating the ciphertext provided by A. The change is
agnostic of the tag (and independent of the tokens) and the Chall oracle in
Game 1 is as follows:
Chall(M,Ce−1,t,eexp) : if phase = 1, or if t /∈ S and S �= ∀, return ⊥. Set phase = 1.
If (·, e − 1, Ce−1,t,eexp) /∈ L∗, return ⊥. If b = 0, set C∗

e,t,0 ← Enc(Ke, t,M, eexp),

else M := Dec(Ke−1, Ce−1,t,eexp) and C∗
e,t,1 ← Enc(Ke, t,M, eexp) . Set C∗ =

C∗ ∪ (e, C∗
e,t,b), e∗ = e, t∗ = t, e∗

exp = eexp, and return C∗
e,t,b.

Due to correctness (i.e., via perfect re-randomization), the ciphertexts derived
from Enc and ExPunc for an epoch e and tag t yield the same distribution. Hence,
such a change cannot be detected by A.

Lemma 2 (Game 1 to Game 2). For any PPT adversary A there is a
distinguisher D on LS such that

|Pr [SA,1] − Pr [SA,2] | ≤ AdvlsDSG,D(λ, λ + 1).
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Proof. The input is provided as (pp,T), where T = (T0, . . . , Tλ+1) is either
g or gĝ, for g = (g0, . . . , gλ+1) ← SampG(pp) and (ĝ = (ĝ0, . . . , ĝλ+1), ·) ←
ŜampG(pp, sp). The Chall oracle in Game 2 is as follows:
Chall(M,Ce−1,t,eexp) : if phase = 1, or if t /∈ S and S �= ∀, return ⊥. Set phase = 1.
If (·, e − 1, Ce−1,t,eexp) /∈ L∗, return ⊥. With u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1), set

C∗
e,t,0 = ({(ST0gu,0,

|u|
∏

i=1

Tui
i gui

u,i, T|u|+1gu,|u|+1, . . . , T
t
λ+1g

t
u,λ+1)}u,m(ke)s · M)

C∗
e,t,1 = ({(ST0gu,0,

|u|
∏

i=1

Tui
i gui

u,i, T|u|+1gu,|u|+1, . . . , T
t
λ+1g

t
u,λ+1)}u,m(ke)s · M ′),

for M ′ ← Dec(Ke∗−1, Ce∗−1,t,eexp), for (gu,0, . . . , gu,λ+1)u=(u1,...)∈Γt(e)\Γt(eexp+1)
←

SampG(pp), S ← SampS(pp; s), for s ← Z
∗
N . Set C∗ = C∗ ∪ (e, C∗

e,t,b), e∗ = e,
t∗ = t, e∗

exp = eexp, and return C∗
e,t,b.

If T = g, then the challenge ciphertext(s) are distributed as in Game 1. If
T = gĝ, then the challenge ciphertext(s) are distributed as in Game 2.

Lemma 3 (Game 2 to Game 3.1.0). For any PPT adversary A, it holds:

|Pr [SA,2] − Pr [SA,3.1.0] | = 0.

Proof. This is a conceptional change. Essentially we consistently re-randomize
the token and key elements. The KPunc′-oracle in Game 3.0.0 is as follows (where
we alter K ′

e+1 after calling KPunc):
KPunc′(S ′) : run (K ′

e+1,Δ
′
e+1) ← KPunc(Ke,S ′). For K ′

e+1 = ({(Tu,0,

Tu,1, Tu,|u|+1, . . . , Tu,λ) : u ∈ Γt(e+1)},m(Ke), pp) and Δ′
e+1 = (Dt,0,

Dt,1,Dt,2)t∈S′∪{∀}, sample (ht,0, . . . , ht,λ+1)t∈S′∪{∀}, (hu,0, . . . ,
hu,λ+1)u∈Γt(e+1) ← SampH(pp), and compute

Δe+1 = (Dt,0 ht,0 ,Dt,1 · ht
t,λ+1 ·

|t(e+1)|
∏

i=1

h
t(e+1)i

t,i ,Dt,2)t∈S′ ,

K ′
u = (Tu,0 hu,0 , Tu,1

|u|
∏

i=1

hui
u,i , Tu,|u|+1 hu,|u|+1 , . . . , Tu,λ hu,λ ),

for all u ∈ Γt(e+1). Set Ke+1 = ({K ′
u : u ∈ Γt(e+1)},m(Ke), pp). If phase = 1,

and t∗ ∈ S ′ or S ′ = ∀, run C∗
e+1,t∗,b ← ExPunc(Δe+1,t∗ , C∗

e,t∗,b) or C∗
e+1,t∗,b ←

ExPunc(Δe+1,∀, C∗
e,t∗,b), respectively. Set e = e + 1 and S = S ′.

Lemma 4 (Game 3.i.0 to Game 3.i.1). For any PPT adversary A there is
a distinguisher D on RS such that

|Pr [SA,3.i.0] − Pr [SA,3.i.1] | ≤ poly(λ) · AdvrsDSG,D(λ, λ + 1),
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for i ∈ [|Γt(e∗
exp)

| + q] and q the number of tag-based tokens queried in epochs
e∗ − 1 and ê′.

Proof. The input is provided as (pp, ĥ,gĝ,T), where T = (T0, . . . , Tλ+1) is either
h or hĥ, for h = (h0, . . . , hλ+1) ← SampH(pp), (ĥ = (ĥ0, . . . , ĥλ+1), ·, ·) ←
ŜampH(pp, sp), and gĝ = (g0ĝ0, . . . , gλ+1ĝλ+1). We guess the challenge, expiry,
and “window” epoch elements ê∗, ê∗

exp, ê
′ ← [�poly(λ)�] and abort if e∗ �= ê∗ or

e∗
exp �= ê∗

exp, ê′ ≤ ê∗ or ê′ > ê∗
exp. The KPunc′ and Chall oracles are as follows:

KPunc′(S ′) : run (K ′
e+1,Δ

′
e+1) ← KPunc(Ke,S ′). For K ′

e+1 = ({(Tu,j′′,0,

Tu,j′′,1, Tu,j′′,|u|+1, . . . , Tu,j′′,λ) : u ∈ Γt(e+1), j
′′ ∈ [|Γt(e+1)]|],m(Ke), pp) (we

can assume a natural order in K ′
e+1) and Δ′

e+1 = (Dt,0,Dt,1,Dt,2)t∈S′∪{∀},
sample (ht,0, . . . , ht,λ+1)t∈S∪{∀}, (hu,0, . . . , hu,λ+1)u∈Γt(e+1) ← SampH(pp), and
for the (j, j′)-th query (j-th token with its j′-th tag-based part, (j, j′) ∈ [q′]× [qt]
with q = q′ + qt) compute token Δ′

e+1 as follows:

if j + j′ < i + 1 ∧ (e = ê∗ − 1 ∨ e = ê′ − 1):

(Dtj′ ,0htj′ ,0,Dtj′ ,1 · h
tj′
tj′ ,λ+1 · (ĥ)α ·

|t(e+1)|
∏

i=1

h
t(e+1)i

tj′ ,i ,Dtj′ ,2)tj′ ∈S′∪{∀}

if j + j′ = i + 1 ∧ (e = ê∗ − 1 ∨ e = ê′ − 1):

(Dtj′ ,0 T0 ,Dtj′ ,1 · T
tj′
λ+1 ·

|t(e+1)|
∏

i=1

T
t(e+1)i

i ,Dtj′ ,2)tj′ ∈S′∪{∀}

else:

(Dtj′ ,0htj′ ,0,Dtj′ ,1 · h
tj′
tj′ ,λ+1 ·

|t(e+1)|
∏

i=1

h
t(e+1)i

i ,Dtj′ ,2)tj′ ∈S′∪{∀}.

Moreover, compute key K ′
u as follows:

if q + j′′ = i ∧ e = e∗
exp:

(Tu,j′′,0 T0 , Tu,j′′,1 ·
|u|
∏

i=1

Tui
i , Tu,j′′,|u|+1 T|u|+1 , . . . , Tu,j′′,λ Tλ )

else:

(Tu,j,0hu,0, Tu,j,1 ·
|u|
∏

i=1

hui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ),

for all u ∈ Γt(e+1), and α ← ZN . Set Ke+1 = ({K ′
u : u ∈ Γt(e+1)},m(Ke), pp).

If phase = 1, and t∗ ∈ S ′ or S ′ = ∀, run C∗
e+1,t∗,b ← ExPunc(Δe+1,t∗ , C∗

e,t∗,b) or
C∗

e+1,t∗,b ← ExPunc(Δe+1,∀, C∗
e,t∗,b), respectively. Set e = e + 1 and S = S ′.
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Chall(M,Cê∗−1,t∗,ê∗
exp
) : if phase = 1, or if t∗ /∈ S and S �= ∀, return ⊥. Set

phase = 1. If (·, ê∗ − 1, Cê∗−1,t∗,ê∗
exp
) /∈ L∗, return ⊥. Set

C∗
ê∗,t∗,0 = ({(S g0ĝ0 gu,0,

|u|
∏

i=1

(giĝi)ui gui
u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

(gλ+1ĝλ+1)t
∗

gt∗
u,λ+1) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗

exp+1)},m(kê∗)s · M),

C∗
ê∗,t∗,1 = ({(S g0ĝ0 gu,0,

|u|
∏

i=1

(giĝi)ui gui
u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

(gλ+1ĝλ+1)t
∗

gt∗
u,λ+1) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗

exp+1)},m(kê∗)s · M ′),

for M ′ ← Dec(Ke∗−1, Ce∗−1,t∗,eexp), for (gu,0, . . . , gu,λ+1)u=(u1,...)∈Γt(ê∗)

\Γt(ê∗
exp+1) ← SampG(pp), S ← SampS(pp; s), for s ← Z

∗
N . Set C∗ = C∗ ∪

(ê∗, C∗
ê∗,t∗,b), e∗ = ê∗, e∗

exp = ê∗
exp, and return C∗

ê∗,t∗,b.
If T = h, then the token Δe∗,t with t ∈ {t∗,∀}, the token Δe′,t with t /∈ {t∗,∀},
and the key Ke′ (if Ke′ is queried) or the key Ke∗

exp+1 (if Ke′ is not queried) are
distributed as in Game 3.i.0. If T = hĥ, then those are distributed as in Game
3.i.1. This reduction loses a polynomial factor.

Lemma 5 (Game 3.i.1 to Game 3.i.2). For any PPT adversary A, it holds:

|Pr [SA,3.i.1] − Pr [SA,3.i.2] | = 0,

for i ∈ [|Γt(e∗
exp)

| + q] and a large-enough e(λ) polynomial in λ and q the number
of tag-based token queries.

Proof. This is reminiscent of Lemma 11 in [43] and results in a pseudo-normal
semi-functional token and keys. For all key elements in the set Γt(e′) (if Ke′ is
queried) or in Γt(e∗

exp)
(if Ke′ is not queried) and for all tag-based token queries,

we information-theoretically embed (ĥ)α in the i-th (key or token) query step-
by-step for each i. This can be only be done if the key or token queries have no
epoch or tag prefixes with the challenge ciphertext.

For the tokens (Δe∗,t)t∈S∪{∀} before the challenge epoch, see that such a
token has no prefix with the challenge ciphertexts (as the epochs do not match,
i.e., such tokens have the epoch e∗ − 1 encoded and the challenge ciphertext are
in epochs ≥ e∗). We can use this fact to embed a (ĥ)α in (Δe∗,t)t∈S∪{∀} due
to [43]. Moreover, see that by validity condition 2), A is not allowed to query a
token Δe′,t with e∗ < e′ ≤ e∗

exp and t = t∗ or t = ∀ when it has queried a key
Ke′ . Hence, we can use such a fact here to embed an (ĥ)α-element in Ke′ as the
tokens (Δe′,t)t do not share prefixes with the challenge ciphertext. (Otherwise
the token can be used to update the challenge ciphertext which would raise the
validity to fail.) Moreover, no information on ĥ is given out in any Δe′,t due
to orthogonality (i.e., m(ĥ) = 1). For the key Ke∗

exp+1 see that it does not have
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any prefixes of the challenge ciphertext and we can safely embed (ĥ)α (if Ke′

was not queried; otherwise, (ĥ)α has already been embedded in such a key). As
shown in [43], due to non-degeneracy, we have that (hs)α

′
can be replaced by

some suitable (ĥ)α, for suitable α, α′ ∈ ZN .

Lemma 6 (Game 3.i.2 to Game 3.i.3). For any PPT adversary A there is
a distinguisher D on RS such that

|Pr [SA,3.i.2] − Pr [SA,3.i.3] | ≤ poly(λ) · AdvrsDSG,D(λ, λ + 1),

for i ∈ [|Γt(e∗
exp)

| + q] and q number of tag-based token queries.

Proof. In this step, we undo the game hop from Lemma 4. As a result, we now
have a uniform element (ĥ)α embedded in the key and in the token queries
for Ke′ ,Ke∗

exp+1 and Δe∗ ,Δe′ . If T = hĥ, then the tokens Δe∗ ,Δe′ and the
keys Ke′ ,Ke∗

exp+1, are distributed as in Game 3.i.2. If T = h, then those are
distributed as in Game 3.i.3. This reduction loses a polynomial factor.

Lemma 7 (Game 3.|Γt(e∗
exp)

| + q.3 to Game 4). For any PPT adversary A
there is a distinguisher D on ND such that

|Pr
[

SA,3.|Γt(e∗
exp)

|+q.3

]

− Pr [SA,4] | ≤ poly(λ) · AdvndDSG,D(λ, λ + 1),

for i ∈ [|Γt(e∗
exp)

| + 1] and q number of tag-based token queries.

Proof. The input is provided as (pp,Sgĝ,K · (ĥ)α,T), where T is either e(S,K)
or R ← GT , for g ← SampG(pp), (ĝ, ·) ← ŜampG(pp, sp), and h ← SampH(pp),
S ← SampS(pp), S = (S, 1, 0, . . .), K ← SampK(pp). We guess the challenge,
expiry, and “window” epochs elements ê∗, ê∗

exp, ê
′ ← [�e(λ)�] and abort if e∗ �= ê∗

or e∗
exp �= ê∗

exp or ê∗ < ê′ ≤ ê∗
exp. The RotKey′ and Chall oracles are as follows:

KPunc′(S ′) : run (K ′
e+1,Δ

′
e+1) ← KPunc(Ke,S ′). (We additionally assume

that δ which is sampled in KPunc is available in KPunc′ as well
as k1 sampled in Gen in the beginning of the experiment.) For
K ′

e+1 = ({(Tu,j′′,0, Tu,j′′,1, Tu,j′′,|u|+1, . . . , Tu,j′′,λ) : u ∈ Γt(e+1), j
′′ ∈

[|Γt(e+1)]|],m(Ke), pp) (we can assume a natural order in K ′
e+1) and Δ′

e+1 =
(Dt,0,Dt,1,Dt,2)t∈S′∪{∀}, store δe+1 = δ, ke+1 = δ · ke (for e = ê∗ − 1,
we set K · k−1

ê∗−1 as “delta” and K as key in epoch e∗, implicitly), sample
(ht,0, . . . , ht,λ+1)t∈S∪{∀}, (hu,0, . . . , hu,λ+1)u∈Γt(e+1) ← SampH(pp), and for the
(j, j′)-th (j-th token with its j′-th tag-based part) query compute token Δ′

e+1

as follows

if e = ê∗ − 1:

(Dt
j′ ,0ht

j′ ,0, Dt
j′ ,1·ht

j′
t
j′ ,λ+1· K · (̂h)α · k

−1
e · δ

−1
e+1 ·

|t(e+1)|
∏

i=1

h
t(e+1)i
t
j′ ,i , m( K · (̂h)α

))t
j′ ∈S′∪{∀}
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if e = ê′ − 1:

(Dt
j′ ,0ht

j′ ,0, Dt
j′ ,1·ht

j′
t
j′ ,λ+1 · (K · (̂h)α ·

e′
∏

e∗
δ

−1
i · ke′ ·

|t(e+1)|
∏

i=1

h
t(e+1)i
t
j′ ,i ,

m( K · (̂h)α ·
e′
∏

e∗
δ

−1
i ))t

j′ ∈S′∪{∀}

else:

(Dtj′ ,0htj′ ,0,Dtj′ ,1 · h
tj′
tj′ ,λ+1 ·

|t(e+1)|
∏

i=1

h
t(e+1)i

i ,Dtj′ ,2)tj′ ∈S′∪{∀}.

Moreover, compute key K ′
u as follows:

if e = e∗
exp:

(Tu,j′′,0hu,0, Tu,j′′,1 · K · (̂h)α ·
e∗
exp+1
∏

i=e∗+1

δi ·
|u|
∏

i=1

h
ui
u,i, Tu,j′′,|u|+1hu,|u|+1, . . . , Tu,j′′,λhu,λ)

else:

(Tu,j,0hu,0, Tu,j,1 ·
|u|
∏

i=1

hui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ),

for all u ∈ Γt(e+1), and α ← ZN . Set Ke+1 = ({K ′
u : u ∈

Γt(e+1)},m(Ke), pp). If phase = 1, and t∗ ∈ S ′ or S ′ = ∀, run C∗
e+1,t∗,b ←

ExPunc(Δe+1,t∗ , C∗
e,t∗,b) or C∗

e+1,t∗,b ← ExPunc(Δe+1,∀, C∗
e,t∗,b), respectively. Set

e = e + 1 and S = S ′.
Chall(M,Cê∗−1,t∗,ê∗

exp
) : if phase = 1, or if t∗ /∈ S and S �= ∀, return ⊥. Set

phase = 1. If (·, ê∗ − 1, Cê∗−1,t∗,ê∗
exp
) /∈ L∗, return ⊥. Set

C∗
ê∗,t∗,0 = ({( Sg0ĝ0 gu,0,

|u|
∏

i=1

(giĝi)ui gui
u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

( gλĝλ+1 gu,λ+1)t
∗
) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗

exp+1)},T · M)

C∗
ê∗,t∗,1 = ({( Sg0ĝ0 gu,0,

|u|
∏

i=1

(giĝi)ui gui
u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

( gλ+1ĝλ+1 gu,λ+1)t
∗
) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗

exp+1)},T · M ′),

for M ′ ← Dec(Kê∗−1, Cê∗−1,t∗,ê∗
exp
), for (gu,0, . . . , gu,λ+1)u=(u1,...)∈Γt(ê∗)

\Γt(ê∗
exp+1) ← SampG(pp), S ← SampS(pp; s), for s ← Z

∗
N . Set C∗ = C∗ ∪

(ê∗, C∗
ê∗,t∗,b), e∗ = ê∗, e∗

exp = ê∗
exp, and return C∗

ê∗,t∗,b.
See that m(K · (ĥ)α) = m(K) holds. Hence, no information on (ĥ)α is given out
via m in Δe∗ . Moreover, if the adversary queried Ke′ (by validity, it is not allowed



246 D. Slamanig and C. Striecks

to have queried Δe′−1,t with t ∈ {t∗,∀}), then (ĥ)α hides all key elements in Ke′ .
Otherwise, if the adversary did not query Ke′ , then (ĥ)α blinds the key elements
in Ke∗

exp
. Now, if T = e(S,K), then the challenge ciphertext(s) are distributed

as in Game 3.|Γt(e∗
exp)

| + q.3. If T = R, then the challenge ciphertext(s) are
distributed as in Game 4.

Lemma 8 (Game 4). For any PPT adversary A, Pr [SA,4] = 1/2 holds.

Proof. In Game 4, for (uniform) b ∈ {0, 1}, we provide A with challenge cipher-
text(s) that include a uniform GT -element instead of a A-chosen b-dependent
message. Hence, b is completely hidden from A’s view.

Taking Lemmata 1, 2, 3, 4, 5, 6, 7, and 8 together, shows Theorem 2. ��
Applications of TIPE beyond UE. TIPE provides an interesting abstraction
for outsourced file storage with forward-security and fine-grained secure shred-
ding of files. In a recent work, Backendal, Günther and Paterson [44] introduced
such a so-called protected file storage setting and show how this can be instan-
tiated via puncturable key wrapping (introduced in the same work). Loosely
speaking, Backendal et al. achieve forward-security via key-rotation (but this
requires to download, decrypt and re-encrypt of all file encryption keys) and the
shredding of files is achieved via key-puncturing.

We observe that the concept of epochs in TIPE (used as expiry epochs when
instantiating UE from TIPE) allows to implement the fine-grained forward-
security aspect via efficient key-rotation (though in contrast to [44] via help
of the server). Moreover, the ciphertext-tag space in TIPE provides an addi-
tional dimension for granularity which allows to implement a secure fine-grained
shredding of files, i.e., via puncturing of the ciphertext (by excluding them from
updates). We hope that TIPE will find additional applications in this and beyond
this context and leave a more detailed study to future work.
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Abstract. Homomorphic encryption enables public computation over
encrypted data. In the past few decades, homomorphic encryption has
become a staple of both the theory and practice of cryptography. Never-
theless, while there is a general loose understanding of what it means for
a scheme to be homomorphic, to date there is no single unifying minimal
definition that captures all schemes. In this work, we propose a new def-
inition, which we refer to as combinatorially homomorphic encryption,
which attempts to give a broad base that captures the intuitive meaning
of homomorphic encryption.

Our notion relates the ability to accomplish some task when given
a ciphertext, to accomplishing the same task without the ciphertext, in
the context of communication complexity. Thus, we say that a scheme is
combinatorially homomorphic if there exists a communication complex-
ity problem f(x, y) (where x is Alice’s input and y is Bob’s input) which
requires communication c, but can be solved with communication less
than c when Alice is given in addition also an encryption Ek(y) of Bob’s
input (using Bob’s key k).

We show that this definition indeed captures pre-existing notions of
homomorphic encryption and (suitable variants are) sufficiently strong
to derive prior known implications of homomorphic encryption in a
conceptually appealing way. These include constructions of (lossy)
public-key encryption from homomorphic private-key encryption, as well
as collision-resistant hash functions and private information retrieval
schemes.

1 Introduction

Homomorphic encryption, originally proposed by Rivest, Adleman, and Der-
touzos [39], is one of the cornerstones of modern cryptography. Roughly speaking,
an encryption scheme is homomorphic wrt to a function f if given an encryption
of a message m, it is possible to generate an encryption of f(m), without know-
ing the secret key. Homomorphic encryption is used extensively in cryptography,
whether explicitly, or implicitly via homomorphisms offered by concrete schemes
(e.g., based on factoring, discrete log, or lattices). Until 2009, the default inter-
pretation of homomorphic encryption was for f to be a linear function; this is
still a commonly used special case today both in theory and in practice. How-
ever, since then, we have seen the development of fully homomorphic encryption
schemes [11,18], which are homomorphic wrt to all functions f .
c© International Association for Cryptologic Research 2023
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There are many different candidates for homomorphic encryption from
the literature (Goldwasser-Micali [22], Benaloh [6], ElGamal [17], Paillier [34],
Damgård-Jurik [15], Regev [38] and more) and many different interpretations
and precise definitions for what exact form of homomorphism they achieve. How-
ever, all definitions that we are aware of (and are discussed in detail next) are
either too strict, in the sense that they only capture a few of the candidates, or
are too broad, in the sense that they do not draw a clear line between “trivial”
and “nontrivial” homomorphism.

Thus, despite being a central notion in cryptography, there is no canonical
definition of what it means for an encryption scheme to be homomorphic. The
main goal of this work is to introduce such a broad notion (or rather several vari-
ants following one theme) that captures and abstracts the intuition underlying
the concept of homomorphic encryption and may serve as a default “minimal”
interpretation of what homomorphic encryption means.

Let (Gen,Enc,Dec) be a (private-key or public-key) encryption scheme. We
proceed to discuss several takes on the notion of homomorphic encryption, and
what we find lacking in each.

Ideal Homomorphism: A very simple and strong definition of homomorphic
encryption may require that a homomorphically evaluated ciphertext, gen-
erated by an evaluation of the function f on the ciphertext Epk(m), is dis-
tributed similarly1 to Epk

(
f(m)

)
.

This notion is extremely strong (and useful) and is satisfied by a few num-
ber theoretic based schemes such as Goldwasser-Micali [22] and Benaloh [6]
(ElGamal [17] and Paillier/Damgård-Jurik [15,34] also offer some form of
ideal homomorphism but suffer from caveats that are discussed below). Unfor-
tunately, many other schemes, especially lattice-based ones, do not satisfy it.
Moreover, this strong notion is an overkill for many applications.

Algebraic Homomorphism: (a.k.a. Linear Homomorphism or Additive
Homomorphism) An algebraic perspective taken earlier on (and inspired by
the number-theory based schemes available at the time), is to view the plain-
text and ciphertexts spaces as groups, so that the encryption function is a
homomorphism from the former to the latter.2 Thus, running the group oper-
ation on the ciphertexts has the effect of implementing the corresponding
group operation on the plaintexts.
Unfortunately, this definition is quite restrictive. In particular, it does not
capture homomorphisms that are non-linear such as [9,20,28] let alone fully-
homomorphic schemes (e.g., [11,18,21]). ElGamal with plaintexts imple-
mented as group elements is only homomorphic wrt the underlying cryp-
tographic group, whereas ElGamal with plaintexts in the exponent only sup-
ports decryption of small plaintext values. Lattice-based encryption schemes

1 Several variants of the definition are possible depending on whether the similarity
should be perfect, statistical or computational, and also whether it should hold even
given additional information such as Epk(m), or even given the corresponding secret-
key. We ignore these subtleties here.

2 Indeed, this is the source of the term homomorphic encryption.
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such as Regev [38] only support a bounded number of operations that depend
on the modulus-to-noise ratio.

Functional Homomorphism: A typical modern definition of (public-key)
homomorphic encryption states that an encryption scheme (Gen,Enc,Dec)
is homomorphic wrt to a function f , or (more generally) a class
F of functions, if there exists a poly-time Eval algorithm such that
Decsk

(
Evalpk

(
Encpk(m), f

))
= f(m) for all messages m, key-pairs (pk, sk),

and f ∈ F . To avoid trivial solutions, the homomorphic evaluation algo-
rithm is further assumed to be “compact.” This is typically defined to mean
that the size of the generated ciphertext or the decryption circuit is smaller
than the circuit size of f .3 The precise notion of compactness varies both
quantitatively (Should the size of the evaluated ciphertext be independent
of the circuit? Is a poly-logarithmic or even sub-linear dependence allowed?)
and qualitatively (Why circuits? How exactly is circuit complexity measured?
What about redundancies in the representation?). In particular, it is unclear
what a minimal notion of compactness that suffices for applications should
be. Beyond the difficulty with formalizing the common notion of compact-
ness, we point out several additional difficulties with existing definitions of
functional homomorphism:
1. Usually, lattice-based schemes only satisfy an approximate notion of this

definition as there is a noise associated with each ciphertext, and this
noise grows as the homomorphic evaluation is performed, until a point in
which the ciphertext is undecryptable.
This can sometimes be avoided by using a large modulus-to-noise ratio,
but that is merely hiding the problem under the rug—we do think of the
schemes as homomorphic even when the modulus-to-noise ratio is small,
but the definition is not flexible enough to capture this.

2. Discrete-log based schemes such as ElGamal, over a cyclic plaintext group
of order q, are often thought of as linearly homomorphic with addition in
the group Zq. As briefly mentioned above though, one can only decrypt
ciphertexts whose messages are polynomially small as decryption involves
a discrete-log operation.
Despite this well-known fact, ElGamal is considered to be additively
homomorphic but capturing it within the existing framework is quite
messy.

3. Lastly, if one wishes to define homomorphic encryption in general, that is,
not specifically wrt some function f , this approach becomes problematic.
For example, simply assuming the existence of some function f such that

3 If compactness is not required, then the homomorphic evaluation can be trivially
delegated to the decryptor (e.g., by appending the description of the circuit the
ciphertext). Nevertheless, some homomorphic schemes such as [41] or constructions
based on garbled circuits [12,19,25,27] are not compact but are circuit private,
meaning that the ciphertext does not reveal the evaluated circuit. In this work, we
focus on compact homomorphic encryption, which is meaningful even without circuit
privacy.
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the scheme is functionally homomorphic wrt f is not very meaningful if
f is the identity function or a constant function. More generally, it is not
entirely clear what non-triviality constraints f needs to satisfy for this
notion to be meaningful or useful.

1.1 Combinatorially Homomorphic Encryption

Our main contribution is proposing a new definition for homomorphic encryp-
tion. Our goal in this definition is threefold: (1) we wish to find a notion that is
consistent and truly formalizes the intuitive meaning of homomorphic encryp-
tion, drawing precise lines between “trivial” and ”nontrivial” homomorphism; (2)
for the definition to be sufficiently broad to capture all schemes that are currently
thought of as homomorphic (including both number-theory and lattice-based
schemes) and (3) for the definition to be sufficiently strong to preserve the known
implications of existing notions of homomorphic encryption such as public-key
encryption (PKE), collision-resistant hashing (CRH) and private information
retrieval (PIR). We believe that positioning homomorphic encryption as a true
cryptographic primitive, similarly to “one-way function” or “public-key encryp-
tion”, will facilitate a systematic study of its relation with other cryptographic
primitives.

We call this new framework combinatorially homomorphic encryption, of
which we describe several variants. The first variant refers to communication
complexity [43], which we briefly review. Recall that in distributional commu-
nication complexity there are two parties, Alice and Bob, who respectively get
inputs x and y, drawn from some joint distribution. Their goal is to compute
some function f(x, y) while minimizing the number of bits exchanged between
them to the extent possible. In our most basic definition (which is sufficient for
most of the goals listed above), we focus specifically on one-way communication
complexity—that is when communication is only allowed from Alice to Bob (and
not in the other direction). In other words, the minimal number of bits that Alice
needs to send to Bob so that he can compute f(x, y). See [29,36] for a detailed
introduction to communication complexity.

The first instantiation of our framework for homomorphic encryption takes
the following operational perspective. We say that a scheme is communication-
complexity (CC) homomorphic if there exists some one-way communication com-
plexity problem f , which requires communication c, such that if Alice is given,
in addition to x, a ciphertext Enck(y) of Bob’s input using Bob’s key k, then the
communication problem can be solved using less than c bits (and where Alice
and Bob both run in polynomial-time). Note that while it is possible to talk
about CC-homomorphic encryption with respect to a specific communication
complexity problem, our main definition refers to the existence of a communica-
tion complexity problem for which the notion is non-trivial.

Definition 1 (Informally Stated, see Sect. 3). We say that an encryption
scheme (Gen,Enc,Dec) is CC homomorphic if there exists a communication com-
plexity problem f which requires communication c, but there exists a polynomial-
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time one-way protocol for solving the problem f ′((x,Enck(y)), (y, k)
)
, defined as

f ′((x,Enck(y)), (y, k)
)
= f(x, y), with communication less than c.

The definition can be adapted to the public-key setting in the natural way (i.e.,
y is encrypted under the public key and Bob gets the corresponding private key).

CC homomorphic encryption captures the basic intuitive understanding that
homomorphic encryption should enable useful computation on encrypted data.
Here, Alice can perform such a computation in a way that helps Bob derive the
output more efficiently than if Alice had not been given the ciphertext.

We also consider generalizations of this notion in two ways. First, we consider
an interactive variant (presented in the full version), in which the homomorphic
communication game is allowed to be interactive and the communication com-
plexity lower bound holds in the interactive setting (which is the standard model
for communication complexity). Motivated by applications described below, we
also consider comparing the “homomorphic communication complexity” to other
combinatorial measures of the function f such as its VC dimension.4 Lastly,
while our basic definition considers distributional communication complexity
over efficiently sampleable product distributions, it suffices for our results that
the conditional marginal distributions are efficiently sampleable.

Existing Schemes in the Lens of Combinatorially Homomorphic Encryption. To
see that CC homomorphic encryption indeed captures existing schemes, consider
an encryption scheme that is linearly homomorphic mod 2, in the standard
functional sense. To see that such a scheme is combinatorially homomorphic,
consider the inner product communication complexity game in which Alice and
Bob get as input random vectors x, y ∈ {0, 1}n and Bob’s goal is to compute
their inner product 〈x, y〉 = ⊕

i∈[n] xiyi. It is well-known that this task requires
communication complexity Ω(n) (in fact, in the one-way version, this follows
directly from the leftover hash lemma). However, if Alice is given in addition to
x, also a bit-by-bit encryption Enck(y1), . . . ,Enck(yn) of Bob’s input, then using
the linear homomorphism she can compute an encryption of 〈x, y〉 and send it
to Bob, who can decrypt and retrieve the result. The compactness property of
functional homomorphic encryption guarantees that the communication in this
new protocol is smaller than the Ω(n) lower bound that holds when Alice is not
given the encryption of Bob’s input.

The above idea can be generalized to linear homomorphisms over any group,
as stated in the following theorem. A simple unifying explanation is that tra-
ditional homomorphic schemes from the literature imply PIR, which can be
thought of as being CC-homomorphic with respect to the “index” function. In
particular, it shows that Goldwasser-Micali [22], Benaloh [6] and Regev [38] fall
within our framework.

Theorem 1 (Informally Stated, see the full version). Any linearly homo-
morphic private-key encryption scheme is combinatorially homomorphic.
4 More precisely, we consider the VC dimension of the function family

{
fx : {0, 1}n →

{0, 1}}
x
, where fx(y) = f(x, y).
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To illustrate a concrete instantiation, we show a simple private-key scheme
based on Learning with Errors (LWE) that satisfies our definition. The secret key
is a random vector s ← Z

λ
q . To encrypt a bit b ∈ {0, 1}, sample a random a ← Z

λ
q

and output (a, 〈a, s〉+ e+ �q/2� · b) as the ciphertext, where e ∈ Zq comes from
a B-bounded noise distribution. The security of this private-key scheme follows
almost tautologically from decisional LWE.

Now consider the communication complexity game in which Alice and Bob
get as their respective inputs x, y ∈ {0, 1}n and their goal is to compute the
inner product. As mentioned above, it is well known that this problem requires
communication complexity Ω(n). Suppose however that Alice is given a bit-
by-bit encryption of Bob’s input. Namely, ciphertexts c1, . . . , cn such that ci =(
ai, 〈ai, s〉 + ei + �q/2� · yi

)
. Alice can now compute a new ciphertext (a′, σ′),

where a′ =
∑

i xi ·ai and σ′ =
∑

i xi ·
(〈ai, s〉+ei+�q/2�·yi

)
= 〈a′, s〉+∑

i xiei+
�q/2�·〈x, y〉 (and all arithmetic is mod q). Alice sends this ciphertext to Bob who
computes σ′ − 〈a′, s〉 = ∑

i xiei + �q/2� · 〈x, y〉. As long as
∑

i xiei < q/4 (which
holds if B · n < q/4), then Bob can now correctly round and obtain 〈x, y〉.
If the communication in this game (which is (λ + 1) · log(q)) is smaller than
the communication complexity lower bound of Ω(n), then this basic private-key
scheme is CC homomorphic.5

Jumping ahead, one of our main applications is a construction of public-key
encryption from any CC homomorphic private-key encryption (which extends
the [40] construction of public-key encryption from linearly homomorphic
encryption). Thus, the above construction yields a public-key encryption scheme
from LWE which, we believe, cleanly abstracts Regev’s [38] celebrated public-key
scheme. Furthermore, our work is the first one to offer a qualitative notion of
homomorphism, where each choice of parameters (including secret distribution
and noise distribution) can be classified as either being combinatorially homo-
morphic or not.

Note that the definition of CC homomorphic encryption is sufficiently flex-
ible to allow for variations of linear homomorphisms, and even for non-linear
homomorphisms, that may be difficult to capture otherwise. All one needs to do
is to adapt the communication complexity game to capture the specific function-
ality that is offered by the scheme and show the corresponding communication
complexity lower bound (which is usually not difficult).

Consider, for example, the ElGamal cryptosystem [17] with plaintexts in the
exponent, which is widely considered to be homomorphic, yet is not captured
by the standard linearly homomorphic encryption definition (since decryption
involves a discrete-log operation). The scheme works over a cyclic group G of
order q with generator g. The secret key is a random s ← Zq. To encrypt a
bit b ∈ {0, 1}, sample a random r ← Zq and output (gr, gs·r+b). To decrypt a
ciphertext (c0, c1), compute z = c1 · c−s

0 and output 0 if z = 1 and 1 otherwise.

5 The homomorphic private-key to public-key transformation of Rothblum [40] can
also be viewed as morally giving an abstraction of Regev’s scheme, but the actual
formal definition of homomorphic encryption used in [40] is not technically achieved
by the above private-key scheme.
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The security of this private-key scheme follows from the decisional Diffie-Hellman
assumption.

To show that the above encryption scheme is CC-homomorphic we will use
the well-known Disjointness communication complexity problem, where Alice
and Bob are given sets x, y ⊆ [n] respectively, and need to determine whether
their sets are disjoint. Babai et al. [4] showed that the disjointness problem
has communication complexity Ω(

√
n) (on a specific product distribution6).

Suppose however that Alice is given bit-by-bit encryptions c1, ..., cn of Bob’s
input (the input sets x and y can be represented as indicator vectors so that
ci = (gri , gri·s+yi). Alice can then compute

(∏
i∈I(x) gri ,

∏
i∈I(x) gri·s+yi

)
=

(gr′
, gr′·s+∑

i∈I(x) yi), where I(x) = {i : xi = 1}. Alice can send this ciphertext
to Bob who can compute z = gr′·s+∑

i∈I(x) yi · (gr′
)−s = g

∑
i∈I(x) yi . It holds

that z = 1 if and only if the sets are disjoint. Therefore, if the communication
complexity of this protocol (which is 2 log(q)) is smaller than the communi-
cation complexity lower bound (which is

√
n), then the private-key scheme is

CC-homomorphic.
The above idea can be generalized to capture any encryption scheme that

is homomorphic with respect to the OR operation, as stated in the following
theorem.

Theorem 2 (Informally Stated, see the full version). Any OR-homomor-
phic private-key encryption scheme is combinatorially homomorphic.

We also show a specific instantiation of our scheme using low-noise LPN (i.e.,
when the absolute noise is roughly log2(λ)). Using our framework in combination
with the applications listed below, we can re-derive recent results on LPN (due
to [7,10]) in a way that we find to be conceptually simpler.

Applications. As our main technical results, we show that suitable variations
of our basic notion of combinatorially homomorphic encryption suffice to derive
some of the key applications that are known from (say) standard linearly homo-
morphic encryption.

Our first main result shows how to transform any combinatorially homo-
morphic private-key encryption into a public-key one. This generalizes the work
of Rothblum [40], who gave such a transformation for linearly homomorphic
private-key encryption. As a matter of fact, we obtain the stronger notion of lossy
public-key encryption [5,35] (which is equivalent to semi-honest two-message sta-
tistical oblivious transfer [23]).

Theorem 3 (Informally Stated, see Theorem 8). If there exists a combi-
natorially homomorphic private-key encryption scheme then there exists a lossy
public-key encryption scheme.
6 In fact, Razborov [37] showed an input distribution on which the communication

complexity of disjointness is Ω(n). However, since this input distribution is not a
product distribution, using involves slightly more involved techniques (see further
discussion in Sect. 3.1).
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We remark that the security property required from the private-key scheme
is very mild (and in particular is weaker than CPA security). Specifically, we
merely need a weak notion of “entropic security” (see Definition 7) which, loosely
speaking, requires that the distributions

(
y,Enck(y)

)
and

(
y,Enck(y′)

)
are com-

putationally indistinguishable, where y, y′ are independent samples drawn from
Bob’s input distribution in the communication game.

As it is instructive to understanding the power of CC homomorphic encryp-
tion, we briefly sketch a simplified proof of Theorem 3 next. The public key of the
scheme is

(
y,Enck(y)

)
, where y is a random input for Bob in the communication

game, and k is the private key of the private-key scheme. To encrypt a bit b, a
random input x for Alice is sampled, and the ciphertext is Alice’s message in
the “homomorphic” protocol mA, as well as f(x, y)⊕ b. To decrypt, we run Bob
on input

(
(y, k),mA

)
to compute f(x, y), and then we can retrieve the message

bit b. Correctness follows from the correctness of the homomorphic protocol.
As for security, using the entropic security of the private-key scheme, we can
switch the public key

(
y,Enck(y)

)
to the lossy public key

(
y,Enck(y′)

)
. Thus,

the adversary’s goal now is essentially to compute f(x, y) given
(
y,Enck(y′)

)
and

mA.
Assume that this is possible. Then we can derive a more efficient communica-

tion complexity protocol for computing f in the standard setting, in which Alice
gets only x and Bob gets only y. Alice and Bob sample a key k and a ciphertext
Enck(y′) using shared randomness.7 Then, Alice generates a message mA from
the homomorphic protocol and sends it to Bob, who can then run the adversary
on input ((y, c),mA) to compute f(x, y). Since we required that Alice’s message
in the homomorphic protocol is shorter than the communication complexity of
f , we derive a contradiction. Note that this argument immediately gives the
stronger notion of lossy encryption.

This basic result can be generalized to interactive combinatorially homomor-
phic encryption in which case we derive a key agreement protocol (which can be
thought of as an interactive analog of public-key encryption).

Theorem 4 (Informally Stated, see the full version). If there exists an
interactive combinatorially homomorphic encryption scheme then there exists a
key agreement protocol.

Ishai, Kushilevitz and Ostrovsky [26] showed how to construct a collision-
resistant hash function (CRH) from any linearly homomorphic encryption
scheme. Recall that a CRH is a collection of shrinking hash functions so that no
polynomial-time adversary can find a collision, given the description of a random
function from the collection. We generalize the [26] result and construct CRH
from any CC homomorphic encryption.

Theorem 5 (Informally Stated, see Theorem 9). If there exists a com-
binatorially homomorphic encryption scheme (satisfying a mild non-triviality
constraint) then there exists a collision-resistant hash function.
7 As usual in distributional communication complexity, this shared randomness can

be eliminated by non-uniformly fixing the best choice.
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(The mild non-triviality constraint that we require is that the communication
complexity problem is defined wrt a function f such that the function family{
fy : {0, 1}n → {0, 1}}

y
, where fy(x) = f(x, y), is a universal hash function

family).
As in [26], for this application, we do not need the decryption algorithm to

be efficient, and a more general notion of “CC homomorphic commitment” (in
which Bob can be inefficient in the communication game) suffices.

Next, we revisit the Kushilevitz-Ostrovsky [30] construction of private infor-
mation retrieval (PIR) scheme from a linearly homomorphic encryption scheme.8
Recall that a PIR scheme is a two-party protocol between a server, which is given
a database x ∈ {0, 1}n, and a client who is given as input an index i ∈ [n]. The
goal is for the client to reconstruct xi whereas the index i is computationally
hidden from the server (both parties are assumed to be polynomial-time). We
say that the PIR scheme is non-trivial if the communication complexity is less
than n.9

We generalize the [30] construction and derive PIR from combinatorially
homomorphic encryption. For this result, we need the communication in the
homomorphic variant of the communication game to be shorter than before.
Specifically, rather than beating the communication complexity lower bound for
the game, it should beat its VC dimension. We refer to schemes satisfying this
(intuitively stronger) notion as VC homomorphic.

Theorem 6 (Informally Stated, see the full version). Assume that there
exists a VC homomorphic encryption scheme then there exists a non-trivial PIR
scheme.

Applications from Learning Parity with Noise. As noted above, we can capture
a low noise variant of LPN (specifically with an absolute noise level of roughly
log2(n)) in our framework, via a simple construction. Using Theorem 5, we can
use LPN with this noise level to obtain CRH, thereby giving a conceptually
simple derivation of recent results [10,44]. Similarly, using Theorem3 we get a
simple construction of semi-honest 2-message statistical OT from LPN. This can
be viewed as an abstraction of a recent result of Bitansky and Freizeit [7]. We
emphasize though that [7] use the semi-honest construction only as a stepping
stone towards a construction that achieves security against malicious receivers
(but additionally requires a Nisan-Wigderson style derandomization assump-
tion).

8 The [30] construction is based on the Quadratic Residuosity assumption, but is easy
to generalize to compact linearly homomorphic encryption (for a suitable notion of
compactness), see [31,42].

9 While a PIR scheme with communication, say, n − 1 does not seem directly useful,
it is sufficient for deriving some important consequences of PIR such as CRH [26],
oblivious transfer [14], lossy encryption [23] and SZK hardness [32].
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1.2 Related Work

As previously mentioned, Rothblum [40] showed that any linearly homomorphic
encryption that satisfies a mild compactness property can be used to construct
a public-key encryption scheme. His proof relies on the Leftover Hash Lemma
and can be streamlined using our framework (see discussion in Sect. 1.1).

Alamati et al. [1,2] study the possibility of constructing Cryptomania primi-
tives (such as CRH and PKE) based on Minicrypt primitives that are equipped
with certain algebraic structures. Their work is limited to primitives with group
homomorphism over the input or output spaces. In particular, like [40], their
work does not consider non-linear homomorphisms.

Bogdanov and Lee [8] study the limits of security for homomorphic encryp-
tion. Along the way, they introduce a notion of sensitivity for homomorphically
evaluated functions. While this notion suffices for their applications, it does not
seem to be a minimal notion of non-triviality for functional homomorphisms.

Cohen and Naor [13] study a different connection between communication
complexity and cryptography, and in particular, show that the existence of non-
trivial communication complexity protocols in which the inputs are drawn from
efficiently sampleable distributions imply cryptographic primitives (such as dis-
tribution collision-resistant hash functions).

2 Preliminaries

For a distribution D, we denote by x ← D the process of sampling from
D. For any joint distribution (X,Y ) we will denote by x ← Proj1(X,Y ) or
y ← Proj2(X,Y ) sampling from (X,Y ) and keeping only the first or the second
element of the pair, respectively. A function μ : N → [0, 1] is negligible if for every
polynomial p and sufficiently large λ it holds that μ(λ) ≤ 1/p(λ). All logarithms
considered in this paper are in base 2.

Definition 2 (Statistical Distance). Let X and Y be two distributions over a
finite domain U . The statistical distance between X and Y is defined as follows.

SD(X,Y ) = max
f :U→{0,1}

∣
∣
∣Pr

[
f(X) = 1

] − Pr
[
f(Y ) = 1

]∣∣
∣.

If SD(X,Y ) ≤ ε we say that X is ε-close to Y .

Next, we define computational indistinguishability, which can be thought of
as a computational analog of the statistical distance.

Definition 3 (Computational Indistinguishability). We say that two dis-
tribution ensembles X = (Xλ)λ∈N

and Y = (Yλ)λ∈N
are computationally indis-

tinguishable, and denote it by X ≈c Y , if for every probabilistic polynomial-size
distinguisher D there exists a negligible function μ such that for every λ ∈ N,

∣
∣Pr

[D(Xλ) = 1
] − Pr

[D(Yλ) = 1
]∣∣ ≤ μ(λ).



Combinatorially Homomorphic Encryption 261

2.1 Communication Complexity

Communication complexity (CC), introduced by Yao [43], provides a mathe-
matical model for the study of communication between two or more parties. It
has proven to be a powerful tool in a surprising variety of fields such as cir-
cuit complexity, streaming, and quantum computing. We refer to the books by
Kushilevitz and Nisan [29] and by Rao and Yehudayoff [36] for a comprehensive
introduction. We now turn to recall several CC-related definitions that will be
used in this paper.

Let f be a 2-argument function. Consider the setting of two communicating
parties, Alice and Bob, who are given inputs x and y respectively, and wish to
cooperatively compute the value of f(x, y) (without loss of generality we will
require that only Bob outputs this value). The communication between them is
conducted according to some fixed deterministic protocol π. The output of the
protocol (i.e., Bob’s output) on inputs x and y is denoted by π(x, y).

Distributional Communication Complexity. We allow the protocol to err with a
small probability on some input distribution. Namely,

Definition 4 (Protocol Correctness). Given a function f : X × Y → {0, 1}
and a joint input distribution (X,Y ), we say that a deterministic protocol π
computes f with error ε on (X,Y ) if

Pr
[
π(x, y) �= f(x, y) : (x, y) ← (X,Y )

]
≤ ε.

Interchangeably, we can say that the protocol π computes f with correctness 1−ε
on (X,Y ).

The communication complexity of a protocol π on inputs x and y is defined
to be the number of bits exchanged by the parties while running the protocol on
these inputs. The length of a protocol π on input distribution (X,Y ), denoted
by CC[π, (X,Y )], is defined to be the maximal communication complexity of the
protocol on any input in the support of the distribution (notice that this measure
is well-defined since these sets are finite).

The ε-error distributional communication complexity of f on (X,Y ) is the
minimal length of any deterministic protocol computing f with error ε with
respect to (X,Y ). That is,

Definition 5 (Distributional Communication Complexity). Given a
function f and a joint input distribution (X,Y ) we define the ε-error (X,Y )-
distributional communication complexity of f as follows.

DA↔B
(
f, (X,Y ), ε

)
:= min

π computes f
with error ε
on (X,Y )

CC[π, (X,Y )].

The one-way ε-error (X,Y )-distributional communication complexity of f ,
denoted by DA→B

(
f, (X,Y ), ε

)
, is defined similarly but limited to one-round

protocols that consist of only one message - from Alice to Bob.
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Discrepancy. The discrepancy method is a common technique for proving lower
bounds on distributional communication complexity. We now define the discrep-
ancy of a function with respect to an input distribution.

Definition 6 (Discrepancy). Given a function f : X × Y → {0, 1} and a
joint input distribution (X,Y ) we define the discrepancy of f on a rectangle
R = S × T ⊆ (X,Y ), denoted here by Disc

(
f, (X,Y );R

)
, as follows.

Disc
(
f, (X,Y );R

)
:=

∣
∣
∣
∣
∣
Pr

[
(x, y) ∈ R∧f(x, y) = 1

]
−Pr

[
(x, y) ∈ R∧f(x, y) = 0

]
∣
∣
∣
∣
∣
,

where (x, y) ← (X,Y ). The discrepancy of f on (X,Y ) is defined as

Disc
(
f, (X,Y )

)
:= max

R
Disc

(
f, (X,Y );R

)
.

A well-known theorem (see, e.g., [36, Theorem 5.2]) shows that the discrep-
ancy can be used to lower bound distributional communication complexity.

Theorem 7. For any function f : X × Y → {0, 1}, a joint input distribution
(X,Y ) and an error rate ε ∈ (0, 1

2 ) we have that

DA→B
(
f, (X,Y ), ε

) ≥ log
(

1 − 2ε
Disc

(
f, (X,Y )

)
)

2.2 Encryption

In this subsection, we describe the various notions of encryption that will be
used throughout this work.

Definition 7 (M-Entropic Secure Private-Key Encryption). Let M =
(Mλ)λ∈N

be a message space. An M-entropic secure private-key encryption
scheme E = (Gen,Enc,Dec), with correctness error ε = ε(λ), is a triplet of
probabilistic polynomial-time algorithms with the following syntax.

– Key generation. Given a security parameter 1λ, the algorithm Gen outputs
a key k.

– Encryption. Given a message m ∈ Mλ and a key k, the algorithm Enc
outputs a ciphertext c.

– Decryption. Given a ciphertext c and a key k, the algorithm Dec outputs a
message m.

We require E to satisfy the following properties.

– Correctness. For any λ ∈ N and message m ∈ Mλ it holds that
Pr

[
Deck(c) = m

] ≥ 1 − ε(λ), where k ← Gen(1λ) and c ← Enck(m).
– M-entropic security.

(
m,Enck(m)

)
λ∈N

≈c

(
m,Enck(m′)

)
λ∈N

, where m

and m′ are two independent messages sampled from M.
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We remark that the notion of entropic security defined above is morally
weaker than notions such as CPA security since (1) the adversary is not given
access to an encryption oracle and (2) security needs to hold only wrt messages
arising from the given distribution (rather than “worst-case” messages).

Definition 8 (CPA-Secure Private-Key Encryption). A chosen-plaintext
attack (CPA) secure private-key encryption scheme E = (Gen,Enc,Dec) with
message length � = �(λ) and correctness error ε = ε(λ), is defined similarly to
Definition 7 but the entropic security requirement is replaced with the following:

– CPA Security. Consider the following security game.
1. The challenger samples a key k ← Gen(1λ).
2. The adversary chooses a message m of length �(λ) and receives Enck(m)

from the challenger. This step is repeated for a polynomial number of
times.

3. The adversary chooses two challenge message m0,m1 of length �(λ) and
receives from the challenger Enck(mb).

4. The adversary outputs a bit b′ ∈ {0, 1}.
For any probabilistic polynomial-size adversary A, we denote by CPAb

A(1λ) the
output of A in the game above, and we require that there exists a negligible
function μ such that for any λ ∈ N,

∣
∣Pr

[
CPA0

A(1λ) = 1
] − Pr

[
CPA1

A(1λ) = 1
]∣∣ ≤ μ(λ).

We will next define a variant of lossy encryption [5,35], which is equivalent
to a 2-message (semi-honest) statistical OT [35].

Definition 9 (Lossy Encryption). Let ν = ν(λ) and ε = ε(λ). A ν-lossy bit-
encryption scheme E = (Gen,Enc,Dec, LossyGen) with correctness error ε, is a
quadruple of polynomial-time algorithms with the following syntax,

– Key generation. Given a security parameter 1λ, the algorithm Gen outputs
a secret key sk and a public key pk.

– Encryption. Given a bit b and a public key pk, the algorithm Enc outputs a
ciphertext c.

– Decryption. Given a ciphertext c and a secret key sk, the algorithm Dec
outputs a bit b.

– Lossy key generation. Given a security parameter 1λ, the algorithm
LossyGen outputs a lossy key lk.

We require E to satisfy the following properties.

– Correctness. For any λ ∈ N and bit b it holds that Pr
[
Decsk(c) = b

] ≥
1 − ε(λ), where (sk, pk) ← Gen(1λ) and c ← Encpk(b).

– Key indistinguishability.
(
Proj2

(
Gen(1λ)

))
λ∈N

≈c

(
LossyGen(1λ)

)
λ∈N

.
– Lossiness of lossy keys. For any λ ∈ N, we have that

(
lk,Enclk(0)

)
is

ν(λ)-close in statistical distance to
(
lk,Enclk(1)

)
, where lk ← LossyGen(1λ).
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If not otherwise specified, by default, we take the parameters ν and ε to
be negligible in parameter λ. One can also consider relaxed notions of lossy
encryption, where either the correctness error is high—namely, ε(λ) = 1

2 − 1
p(λ) ,

for some polynomial p—or the statistical distance between encryptions under
a lossy key is large—namely, ν(λ) = 1 − 1

p(λ) , for some polynomial p. Next,
we will show that both variants are equivalent to the standard definition. We
note however that if both the correctness and lossiness are close to 1/2, then
amplification is not known (see [16,24] for further discussion and relation to the
circuit polarization problem).

Claim (Weak-Correctness Lossy Encryption implies Lossy Encryption). Assume
there exists a lossy encryption scheme with correctness error 1

2 − 1
p(λ) , for some

polynomial p, then there exists a lossy encryption scheme (Definition 9).

Claim (Weak-Lossiness Lossy Encryption implies Lossy Encryption). Assume
there exists a (1 − 1

p(λ) )-lossy encryption scheme, for some polynomial p, then
there exists a lossy encryption scheme (Definition 9).

The proofs of Sect. 2.2 and Sect. 2.2 are given in the full version.

2.3 Collision Resistant Hash Function

Definition 10 (Collision Resistant Hash Function). A collision resistant
function with input length �(n) and output length �′(n) < �(n) is defined by a
pair of algorithms (Gen,Eval) with the following syntax,

– Key generation. Given 1λ the probabilistic polynomial-time algorithm Gen
outputs an index s.

– Evaluation. Given index s and input x of length �(λ), the polynomial-time
algorithm Eval outputs y ∈ {0, 1}�′(λ).

For any λ ∈ N, s ← Gen(1λ) and x ∈ {0, 1}�(λ) we define hs(x) := Eval(s, x).
We require the scheme to satisfy the following collision resistance property.

– Collision resistance. for every probabilistic polynomial-size adversary A
there exists a negligible function μ such that for any λ ∈ N,

Pr

[

x �= x′ ∧ hs(x) = hs(x′) : s ← Gen(1λ),
(x, x′) ← A(s)

]

≤ μ(λ).

3 Combinatorially Homomorphic Encryption

First, we define an extension of a function ensemble and an input distribution
ensemble with respect to a private key encryption scheme. These will be used
throughout the following sections.

Let f be an ensemble of 2-argument functions. Let (X,Y ) be an ensem-
ble of input distributions, where X = (Xλ)λ∈N

and Y = (Yλ)λ∈N
. Let E =
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(Gen,Enc,Dec) be a private-key encryption scheme (see Definition 7). We extend
f and (X,Y ) by defining for every λ ∈ N,

ExtE(Xλ, Yλ) :=

⎧
⎨

⎩
(
(x, c), (y, k)

)
:
(x, y) ← (Xλ, Yλ)

k ← Gen(1λ)
c ← Enck(y)

⎫
⎬

⎭
,

ExtE(fλ) :
(
(x, c), (y, k)

) �→ fλ(x, y).

We denote ExtE(X,Y ) :=
(
ExtE(Xλ, Yλ)

)
λ∈N

and ExtE(f) :=
(
ExtE(fλ)

)
λ∈N

.

3.1 CC-Homomorphic Encryption

We now introduce our new homomorphic encryption definition. Informally,
an encryption scheme E is combinatorially homomorphic if there exists a
polynomial-time communication protocol for ExtE(f) that utilizes the homo-
morphic properties of E to achieve communication cost that is lower than the
standard communication complexity of f , on a specific input distribution.

We put forward two variants of the definition. Namely, CC-homomorphism
in the perfect correctness regime, where we require the “homomorphic protocol”
for ExtE(f) to have perfect correctness, and CC-homomorphism in the balanced
regime, where we allow imperfect correctness, but require that the function f be
balanced, that is, that Pr [f(x, y) = 0 : (x, y) ← (X,Y )] = 1

2 . In addition to these
two variants, we present an even more general setting in the full version, based
on an average-case adaptation of the distributional communication complexity
definition.

Our definitions will require the input distribution to be efficiently sampleable,
defined as follows.

Definition 11 (Efficiently Sampleable Distribution). We say that a dis-
tribution ensemble (X,Y ) is efficiently sampleable if there exists a probabilistic
polynomial-time sampling algorithm that given 1λ outputs a random element
from (Xλ, Yλ).

Definition 12 (Communication Complexity Homomorphic Encryp-
tion in the Perfect Correctness Regime). A private-key encryption
scheme E (Definition 7) is communication-complexity homomorphic (or CC-
homomorphic) in the perfect correctness regime, if there exists a function ensem-
ble f , an efficiently sampleable product distribution ensemble (X,Y ) and a func-
tion c = c(λ) such that,

– There exists a polynomial-time one-way protocol that computes ExtE(f) with
perfect correctness on input distribution ExtE(X,Y ), using c(λ) bits of com-
munication,

– Any unbounded one-way protocol that computes f on (X,Y ), using c(λ) bits
of communication has correctness at most 1 − 1

p(λ) , for some polynomial p.
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Remark 1. A natural relaxation of the definition allows a negligible failure prob-
ability in the homomorphic communication protocol. However, jumping ahead,
having perfect correctness here will be useful as it will also lead to perfect cor-
rectness in some of our applications (e.g., lossy encryption, see Theorem 8).

Remark 2. Instead of requiring that (X,Y ) is an ensemble of product distribu-
tions, it is sufficient to require it to be an ensemble of joint distributions such
that the conditional distributions X|Y are efficiently sampleable.

Definition 13 (Communication Complexity Homomorphic Encryption
in the Balanced Regime). A private-key encryption scheme E (Definition 7)
is communication-complexity homomorphic (or CC-homomorphic) in the bal-
anced regime, if there exists a function ensemble f , an efficiently sampleable
product distribution ensemble (X,Y ) and a function c = c(λ) such that,

– Pr [f(x, y) = 0 : (x, y) ← (X,Y )] = 1
2 ,

– There exists a polynomial-time one-way protocol that computes ExtE(f) with
correctness at least 1

2 + 1
p(λ) , for some polynomial p, on ExtE(X,Y ) using c

bits of communication,
– There exists a negligible function μ such that any unbounded one-way protocol

that computes f on input distribution (X,Y ) using c bits of communication
has correctness at most 1

2 + μ(λ), for any sufficiently large λ.

4 Applications

In this section, we demonstrate applications of our new notions of homomorphic
encryption. In Sect. 4.1 we construct Lossy Encryption. In Sect. 4.2 we construct
a Collision Resistant Hash function.

4.1 Lossy Encryption

In this section, we show how to use CC-homomorphic encryption to construct
lossy public-key encryption.

Theorem 8 (CC-homomorphic Encryption Implies Lossy Encryp-
tion). Assume there exists a CC-homomorphic encryption scheme in either the
perfect correctness regime (see Definition 12) or the balanced regime (see Defini-
tion 13), then there exists a lossy encryption scheme.

We will prove Theorem8 in the balanced regime (Definition 13). The proof in the
perfect correctness regime (Definition 12) is similar, but produces a (1 − 1

p(λ) )-
lossy encryption, for some polynomial p, with perfect correctness that can be
amplified to full-fledged lossy encryption scheme using Sect. 2.2.

Proof (Proof of Theorem 8.) Let E = (Gen,Enc,Dec) be a Y -entropic secure CC-
homomorphic encryption scheme with respect to function ensemble f and input
product distribution ensemble (X,Y ) such that Pr [f(x, y) = 0 : (x, y) ← (X,Y )]
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= 1
2 . Let π be a polynomial-time one-way protocol computing the extended func-

tion ensemble ExtE(f) with error less than 1
2 − 1

τ(λ) on ExtE(X,Y ), for some poly-
nomial τ , with communication cost c = c(λ), such that any unbounded protocol
for f with error 1

2 − 1
p(λ) on (X,Y ), for some polynomial p, requires strictly more

than c bits of communication.

For the following, given input
(
(x, c), (y, k)

)
from ExtE(X,Y ), we denote

by Alice(x, c) the message Alice generates in the protocol and we denote by
Bob(y, k,mA) the output of Bob after receiving a message mA from Alice. Con-
sider the following scheme (Gen∗,Enc∗,Dec∗, LossyGen∗).

– Key generation. Given a security parameter 1λ the probabilistic
polynomial-time algorithm Gen∗ samples a key k ← Gen(1λ) and an ele-
ment y ← Y , and outputs the public key pk =

(
y,Enck(y)

)
and the secret

key sk = (y, k).
– Encryption. Given the public key pk = (y, c) and a bit b, the probabilistic

polynomial-time algorithm Enc∗ samples x ← X that satisfies f(x, y) = b (by
rejection sampling) and outputs mA = Alice(x, c).

– Decryption. Given the secret key sk = (y, k) and a ciphertext mA, the
deterministic polynomial-time algorithm Dec∗ outputs Bob(y, k,mA).

– Lossy Key generation. Given a security parameter 1λ the probabilistic
polynomial-time algorithm LossyGen∗ samples a key k ← Gen(1λ) and ele-
ments y, y′ ← Y , and outputs the lossy key lk =

(
y,Enck(y′)

)
.

Claim. The scheme satisfies correctness (see Definition 9).

Proof. For any λ ∈ N,

Pr
[
Dec∗

sk

(
Enc∗

pk(b)
) �= b

]
=
(1)

Pr

[
Bob

(
y, k,Alice(x, c)

) �= f(x, y) :
(x, y) ← (X, Y )
s.t. f(x, y) = b

]

=
(2)

Pr
[
Bob

(
y, k,Alice(x, c)

) �= f(x, y) : (x, y) ← (X, Y )
]

≤
(3)

1

2
− 1

τ(λ)
,

where b ← {0, 1}, (sk, pk) ← Gen∗(1λ), k ← Gen(1λ) and c ←
Enck(y), and where (1) is by the definition of the scheme, (2) is since
Pr [f(x, y) = 0 : (x, y) ← (X,Y )] = 1

2 , and therefore sampling b ← {0, 1} and
then sampling from (X,Y ) conditioned on f(x, y) = b is the same as sam-
pling directly from (X,Y ), and (3) is since the protocol π computes ExtE(f) on
ExtE(X,Y ) with error less than B − 1

τ(λ) , and since
(
(x, c), (y, k)

)
is sampled

similarly to a random sample from ExtE(X,Y ).

Claim. The scheme satisfies key indistinguishability (see Definition 9).

Proof. We have that for any fixed y and y′ sampled from Y ,
(
Proj2

(
Gen∗(1λ)

))

λ∈N

=
(
y, c

)
λ∈N

≈c

(
y, c′)

λ∈N
=

(
LossyGen∗(1λ)

)
λ∈N

,
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where k ← Gen(1λ), c ← Enck(y) and c′ ← Enck(y′), and where the equalities
are by the definition of the scheme and the computational indistinguishability is
by the Y -entropic security of E .

Claim. The scheme satisfies lossiness of lossy keys (see Definition 9).

Proof. We will show that given an unbounded distinguisher for encryptions
under a lossy key, with non-negligible distinguishing advantage, one can con-
struct a one-way protocol in the standard distributional communication com-
plexity model (Sect. 2.1) that computes f with correctness 1

2+
1

p(λ) on (X,Y ), for
some polynomial p, with communication cost c. Such a protocol cannot exist by
our assumption that E is CC-homomorphic in the balanced regime with respect
to f and (X,Y ) (see Definition 13).

Assume towards a contradiction that there exists a (computationally
unbounded) distinguisher D and a polynomial p such that for infinitely many
λ ∈ N,

Pr
[
D(

lk,Enc∗
lk(b)

)
= b : b ← {0, 1}, lk ← LossyGen∗(1λ)

]
≥ 1

2
+

1
p(λ)

.

By the definitions of LossyGen∗ and Enc∗ we have that for infinitely many λ ∈ N,

Pr
[
D(

y, c,Alice(x, c)
)
= f(x, y)

]
≥ 1

2
+

1
p(λ)

,

where x ← X, y, y′ ← Y , k ← Gen(1λ) and c ← Enck(y′).
We start by constructing a protocol in the standard distributional communi-

cation complexity model (Sect. 2.1) that uses shared randomness which we will
eliminate later. Consider the following unbounded one-way protocol π∗ between
parties Alice∗ and Bob∗ who are given inputs x and y sampled from (X,Y ) and
have access to shared random coins.

1. Alice∗ and Bob∗ sample a key k ← Gen(1λ), an element y′ ← Y and an
encryption c ← Enck(y′) using the shared random coins.

2. Alice∗ sends mA = Alice(x, c) to Bob∗.
3. Bob∗ runs D on (y, c,mA) and outputs its answer.

We denote by π∗(x, y; r) the output of the protocol on inputs (x, y) and random
coins r. infinitely many λ ∈ N,

Pr

[
π∗(x, y; r) = f(x, y) :

(x, y) ← (X, Y )
r ← {0, 1}∗

]
= Pr

[
D(

y, c,Alice(x, c)
)
= f(x, y)

]
≥ 1

2
+

1

p(λ)
,

where x ← X, y, y′ ← Y , k ← Gen(1λ) and c ← Enck(y′).
The above statement holds over a random choice of r. However, by an aver-

aging argument, for infinitely many λ ∈ N there exists a fixed randomness r∗

such that

Pr
[
π∗(x, y; r∗) = f(x, y) : (x, y) ← (X,Y )

]
≥ 1

2
+

1
p(λ)

.
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To conclude, we have that π∗ with fixed random coins r∗ is an unbounded one-
way protocol that computes f with error less than 1

2 − 1
p(λ) on (X,Y ) with

communication cost |Alice(x, c)| = c, which is a contradiction to the assumption
that such a protocol cannot exist.

4.2 Collision Resistant Hash Function

Next, we use a variant of CC-homomorphic encryption to construct a collision
resistant hash function. First, we define an efficient encoding algorithm for a set
X.

Definition 14 (Efficient Encoding). Let X = (Xλ)λ∈N
be an ensemble of

finite sets. We say that X supports an efficient encoding with input length � =
�(λ) if there exists an efficiently computable (polynomial-time) injective function
Encode : {0, 1}� → Xλ.

Our CRH construction will require a function f and input distribution (X,Y )
such that the ensemble fY = (fλ)λ∈N

, where fλ :=
{
f(·, y) : y ∈ Yλ

}
, is a

universal hash function family. We put forward the definition.

Definition 15 (Universal Hash Function Family). A set H of functions
from X to {0, 1} is a universal hash function family if for every distinct x1, x2 ∈
X the hash function family H satisfies the following constraint.

Pr
[
h(x1) = h(x2) : h ← H

]
≤ 1

2
.

Theorem 9 (CC-Homomorphic Encryption Implies CRH). Assume
there exists a CC-homomorphic encryption scheme (Definitions 12 and 13) with
respect to function f , input distribution (X,Y ) and parameter c that satisfies the
following conditions.

– The function ensemble
({

f(·, y) : y ∈ Yλ

})

λ∈N

is a universal hash function
family.

– The polynomial-time protocol for ExtE(f) is correct on any input from
ExtE(X,Y ) w.p. 1

2 + 1
p(λ) , for some polynomial p,

– The ensemble X supports an efficient encoding with input length �(λ) ≥ c(λ)
for any sufficiently large λ.

Then, there exists a collision resistant hash function (Definition 10).

Remark 3. As a matter of fact, similarly to [26], a relaxed notion of encryption
with an inefficient decryption algorithm (in other words, a commitment scheme)
is sufficient.

We will prove Theorem9 in the balanced regime (Definition 13), but it can
also be adapted to the perfect correctness regime (Definition 12).
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Proof (Proof of Theorem 9). Let f be a function ensemble and (X,Y ) be an
input distribution ensemble such that

({
f(·, y) : y ∈ Yλ

})

λ∈N

is a universal hash
function family and such that X supports an efficient encoding with input length
� = �(λ). Let E = (Gen,Enc,Dec) be a Y -entropic secure encryption scheme.
Let π be a polynomial-time one-way protocol computing the extended function
ensemble ExtE(f) with correctness 1

2 + 1
p(λ) on any input from ExtE(X,Y ), for

some polynomial p, with communication cost �′(λ) < �(λ).
Consider the following scheme (Gen∗,Eval∗).

– Key generation. Given security parameter 1λ, the probabilistic polynomial-
time algorithm Gen∗ samples y ← Y , k ← Gen(1λ) and s ← Enck(y) and
outputs s.

– Evaluation. Given index s and input m ∈ {0, 1}�(λ), the polynomial-time
algorithm Eval∗ outputs Alice

(
Encode(m), s

)
.

We first show that the scheme indeed compresses. Indeed, for any λ ∈ N,
s ← Gen∗(1λ) and m ∈ {0, 1}�(λ),

∣
∣hs(m)

∣
∣ =

∣
∣
∣Alice

(
Encode(m), s

)∣∣
∣ ≤ �′(λ) < �(λ).

Assume towards a contradiction that the scheme is not collision resistant.
Therefore, there exists a probabilistic polynomial-size adversary A and a poly-
nomial q such that for infinitely many λ ∈ N,

Pr

[

m �= m′ ∧ hs(m) = hs(m′) : s ← Gen∗(1λ),
(m,m′) ← A(s)

]

=
1

q(λ)
.

Consider the distinguisher D for the Y -entropic security of E . Given
(
y0, c

)
,

where k ← Gen(1λ), y0, y1 ← Y , b ← {0, 1} and c ← Enck(yb), the distinguisher
D computes (m,m′) ← A(cb). It then checks that m �= m′, that hc(m) = hc(m′)
and that f

(
Encode(m), y0

)
= f

(
Encode(m′), y0

)
. If all checks pass, it outputs 1.

Otherwise, it outputs a random bit. For the following, we denote x := Encode(m),
x′ := Encode(m′).

We first consider the case where b = 0. Given k ← Gen(1λ), y0 ← Y , c ←
Enck(y0) and (m,m′) ← A(c), we define the following events,

1. The event E1 where f(x, y0) = f(x′, y0).
2. The event E2 where m �= m′ and hc(m) = hc(m′).
3. The event E3 where π

(
(x, c), (y0, k)

)
= π

(
(x′, c), (y0, k)

)
.

4. The event E4 where the protocol π is correct on both
(
(x, c), (y0, k)

)
and(

(x′, c), (y0, k)
)
, or is wrong on both of them.

First, since π is correct on any input w.p. at least 1
2 + 1

p(λ) , there exists a
function τ : N → N such that π is correct on any input w.p. exactly 1

2 + 1
τ(λ) ,

and τ(λ) ≤ p(λ) for any λ ∈ N. Therefore,

Pr [E4] =
(
1
2
+

1
τ(λ)

)2

+
(
1
2

− 1
τ(λ)

)2

=
1
2
+

2
τ2(λ)

≥ 1
2
+

2
p2(λ)

. (1)
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Furthermore, we have that,

Pr [E1|E2] =
(1)

Pr [E1|E2 ∧ E3]

≥ Pr [E1 ∧ E4|E2 ∧ E3]
=
(2)

Pr [E1|E2 ∧ E3 ∧ E4] · Pr [E4]

=
(3)

Pr [E4] ,

(2)

where (1) is since assuming E2 happened, we have that Alice(x, c) = hc(m) =
hc(m′) = Alice(x′, c), and therefore, since π is a deterministic one-way protocol,
we have that π

(
(x, c), (y0, k)

)
= π

(
(x′, c), (y0, k)

)
, (2) is by conditional probabil-

ity, and (3) is since if the protocol outputs the same output on both inputs and
is correct on both of them or wrong on both of them, then f(x, y0) = f(x′, y0).

Finally, for infinitely many λ ∈ N we have that,

Pr
[D(y0, c) = 1

]
=
(1)

Pr [E1 ∧ E2] +
1
2

· (
1 − Pr [E1 ∧ E2]

)

=
1
2
+

1
2

· Pr [E1 ∧ E2]

=
1
2
+

1
2
Pr [E1|E2] · Pr [E2]

=
(2)

1
2
+

1
2q(λ)

Pr [E1|E2]

≥
(3)

1
2
+

1
2q(λ)

·
(
1
2
+

2
p2(λ)

)
,

where k ← Gen(1λ), y0 ← Y , c ← Enck(y0) and (m,m′) ← A(c), and where (1)
is by the definition of D, (2) is since D simulates for the adversary A a proper
collision resistant game, and event E2 is the event where A wins in this game,
which happens w.p. 1/q(λ), and (3) is by Eqs. (1) and (2).

On the other hand, for the case where b = 1, we have that for any λ ∈ N,

Pr
[D(y0, c) = 1

]
=
(1)

1

2
+

1

2q(λ)
Pr

[
f(x, y0) = f(x′, y0)|m �= m′ ∧ hs(m) = hs(m

′)
]

≤ 1

2
+

1

2q(λ)
Pr

[
f(x, y0) = f(x′, y0)

]

=
(2)

1

2
+

1

2q(λ)
· 1
2

,

where k ← Gen(1λ), y0, y1 ← Y , c ← Enck(y1) and (m,m′) ← A(c), and where
(1) follows by similar reasoning as in the case where b = 0 and (2) is since x and
x′ are independent of y0 and since fY is a universal hash family, and therefore
the probability that f(x, y0) = f(x′, y0) is 1/2.

Therefore, for infinitely many λ ∈ N,
∣
∣
∣Pr

[D(y0, c0) = 1
] − Pr

[D(y0, c1) = 1
]∣∣
∣ ≥

(
1

2
+

1

2q(λ)
·
(

1

2
+

2

p2(λ)

))

−
(

1

2
+

1

2q(λ)
· 1

2

)

=
2

2q(λ) · p2(λ)
,
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where k ← Gen(1λ), y0, y1 ← Y and cb ← Enck(yb) for b ∈ {0, 1}, in contradic-
tion to the assumption that E is Y -entropic secure.

5 Instantiations

5.1 Low Noise LPN

In this section we will construct a CC-homomorphic encryption scheme from
low noise LPN, thereby giving a conceptually simple derivation of recent results
[7,10,44]. We first present the learning parity with noise assumption. For μ ∈
[0, 1] we denote by Berμ the Bernoulli distribution with mean μ.

Definition 16 (Learning Parity with Noise Assumption). For noise rate
μ = μ(λ) ∈ (0, 1

2 ), the LPNμ assumption is that for any m(λ) = λO(1),

(A,As + e)λ∈N
≈c (A, u)λ∈N

,

where A ← F
m×λ
2 , s ← F

λ
2 , e ← Bermμ and u ← F

m
2 .

Theorem 10 (CC-homomorphic Encryption from Low Noise LPN).
Assuming LPN log2 λ

λ

(Definition 16) there exists a CC-homomorphic encryption
scheme in the balanced regime (Definition 13).

In fact, we will construct a CC-homomorphic encryption scheme that satisfies
the conditions of Theorem 9, thus deriving the following two theorems.

Theorem 11 (Lossy Encryption from Low Noise LPN). Assuming
LPN log2 λ

λ

(Definition 16) there exists a lossy encryption scheme (Definition 9).

Theorem 12 (CRH from Low Noise LPN). Assuming LPN log2 λ
λ

(Defini-
tion 16) there exists a collision resistant hash function (Definition 10).

Theorems 11 and 12 follows directly from Theorems 8 to 10. We note however
that we do not know how to use LPN to derive a similar result to Alekhnovich’s
scheme [3] via our framework. Indeed, the stronger conclusions implied by our
framework (lossy encryption, CRH) are not known from the flavor of LPN used
by Alekhnovich.

We now describe a private-key encryption scheme E = (Gen,Enc,Dec) based
on low noise LPN.

– Key generation. Given a security parameter 1λ, the probabilistic algorithm
Gen outputs a private key s ← F

λ
2 .

– Encryption. Given a message y ∈ F
λ2

2 and a private key s, the probabilistic
algorithm Enc samples a random matrix A ← F

λ2×λ
2 and a random noise

e ← Berλ
2

log2 λ
λ

, and outputs a ciphertext (A,A · s + e + y).

– Decryption. Given a ciphertext (A, b), the deterministic algorithm Dec out-
puts b − A · s.
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We define the following homomorphic operation that supports ciphertext-
plaintext multiplication.

– Ciphertext-plaintext multiplication. Given a plaintext x ∈ F
λ2

2 and a
ciphertext (A, b), where A ∈ F

λ2×λ
2 and b ∈ F

λ2

2 , the deterministic algorithm
PlainMult outputs (x	 · A, x	 · b).

We will show that E is CC-homomorphic with respect to the inner prod-
uct functionality f =

(
fλ(x, y) = x	y

)
λ∈N

over the uniform input distribution
(X,Y ) where X and Y contain vectors in F

λ2

2 , while Xλ is restricted to vectors
with Hamming weight 2λ

log λ . Looking ahead, we will construct a polynomial-time
protocol for ExtE(f) with correctness 1

2 + 1
p(λ) on ExtE(X,Y ), for some poly-

nomial p, that uses c = c(λ) = λ + 1 bits of communication. Furthermore, we
will show that there exists a negligible function μ such that any unbounded
one-way protocol that computes f on (X,Y ) using c bits of communication has
correctness at most 1

2 + μ(λ), for any sufficiently large λ.
Notice that

Pr [f(x, y) = 0 : (x, y) ← (X,Y )] =
1
2
,

and that
({

f(·, y) : y ∈ Yλ

})

λ∈N

is a universal hash function family. Further-
more, the ensemble X supports an efficient encoding with input length 2λ ≥ c,
for any sufficiently large λ. Namely, given a vector m ∈ F

2λ
2 we map every log λ

bits of m to a unit vector in F
λ
2 . Then, we concatenate these unit vectors to a

vector in F
λ2

2 with Hamming weight 2λ
log λ .

First, we will show that the private-key encryption scheme E is Y -entropic
secure (Definition 7).

Claim (Y -Entropic Security of E). Assuming LPN log2 λ
λ

(Definition 16), for every

λ ∈ N and y, y′ ← F
λ2

2 we have that,
(
y,Encs(y)

)
λ∈N

≈c

(
y,Encs(y′)

)
λ∈N

,

where s ← Gen(1λ).

Proof. For any fixed y, y′ ∈ F
λ2

2 ,
(
y,Encs(y

′)
)
λ∈N

=
(
y, (A, A · s + e + y′)

)
λ∈N

≈c
(∗)

(
y, (A, u + y′)

)
λ∈N

=
(
y, (A, u)

)
λ∈N

where u ← F
λ2

2 , s ← F
λ
2 , A ← F

λ2×λ
2 and e ← Berλ

2

log2 λ
λ

, and where (*) holds by
the LPN log2 λ

λ

assumption.

Now, consider the following polynomial-time one-way protocol for the
extended function ensemble ExtE(f). Given inputs x and c = Enck(y), Alice
computes mA = PlainMult(x, c) and sends it to Bob, who outputs Deck(mA).

The communication cost of this protocol is c(λ) = |mA| = λ + 1. We show
the correctness probability of the protocol using the Piling-Up Lemma.
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Lemma 1 (The Piling-Up Lemma [33]). Let e1, ..., ek ∈ F2 be i.i.d. random
variables such that Pr [ei = 1] = ε, then

Pr

[
k⊕

i=1

ei = 0

]

=
1
2
+

1
2
(1 − 2ε)k.

Claim (Protocol Correctness). For every λ ∈ N, x ∈ X and y ∈ Y we have that

Pr
[
Decs

(
PlainMult

(
x,Encs(y)

))
= x	 · y : s ← Gen(1λ)

]
>

1
2
+

1
2λ8

.

Proof. By the definition of E it’s enough to show that Pr
[
x	 · e = 0

]
> 1

2 +
1

2λ8 .
By Lemma 1 we have that

Pr
[
x� · e = 0

]
= Pr

[ 2λ
log λ⊕
i=1

ei = 0
]

≥ 1

2
+
1

2
(1−2

log2 λ

λ
)

2λ
log λ ≥ 1

2
+
1

2
·2−4 log2 λ

λ
2λ

log λ =
1

2
+

1

2λ8
,

where the second inequality holds since 1 − x ≥ 2−2x for x ≤ 1
2 .

Finally, we will show that for the negligible function μ = 2−λ we have that
any unbounded one-way protocol that computes f on input distribution (X,Y )
using c(λ) = λ + 1 bits of communication has correctness at most 1

2 + μ(λ), for
any sufficiently large λ.

Claim (Distributional Communication Complexity Lower Bound for f). For any
λ ∈ N,

DA→B
(
f, (X,Y ),

1
2

− 2−λ
)
= 2λ

Proof. Take λ ∈ N. Let H be a matrix such that H(x, y) = (−1)<x,y>. It is
easy to check that the matrix H satisfies HH	 = H	H = 2λ2

I. Therefore,
‖H‖ =

√
2λ2 . Let R = S × T be a rectangle on (Xλ, Yλ). We have that

Disc
(
fλ;S × T

)
=
(1)

∣
∣
∣
∣
∣
∣

∑

(x,y)∈S×T

Pr [x, y ∈ (X,Y )] (−1)<x,y>

∣
∣
∣
∣
∣
∣

≤
(2)

∣
∣
∣
∣
∣
∣

∑

(x,y)∈S×T

1
(

λ2
2λ

log λ

)
1
2λ2 H(x, y)

∣
∣
∣
∣
∣
∣

=
1

(
λ2
2λ

log λ

)
1
2λ2 |1S · H · 1T |

≤
(3)

1
(

λ2
2λ

log λ

)
1
2λ2 ‖1S‖ · ‖H‖ · ‖1T ‖

≤
(4)

1
(

λ2
2λ

log λ

)
1
2λ2

√(
λ2

2λ
log λ

)
· 2λ2

2 · 2λ2
2

=
1

√(
λ2
2λ

log λ

) ,
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where (1) is by definition, (2) is since Xλ and Yλ are independent and dis-
tributed uniformly over vectors with Hamming weight 2λ

log λ in F
λ2

2 and over F
λ2

2

respectively, (3) is by Cauchy-Schwarz and (4) is since ‖H‖ =
√
2λ2 and since S

and T can contain at most
(

λ2

2λ
log λ

)
and 2λ2

elements respectively. Therefore, by

Theorem 7 we have for error-rate ε(λ) = 1
2 − 2−λ the following,

DA→B
(
f
) ≥ log

(
1 − 2ε(λ)

Disc
(
f, (X,Y )

)
)

≥ 1
2
log

(
λ2

2λ
log λ

)
− λ

=
(∗)

λ

log λ
· log

(
1
2
λ log λ

)
− λ

≥ 2λ

where (*) is since
(
n
k

) ≥ (n
k )

k for any n and k.
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Abstract. The notion of functional re-encryption security (funcCPA)
for public-key encryption schemes was recently introduced by Akavia et
al. (TCC’22), in the context of homomorphic encryption. This notion
lies in between CPA security and CCA security: we give the attacker a
functional re-encryption oracle instead of the decryption oracle of CCA
security. This oracle takes a ciphertext ct and a function f , and returns
fresh encryption of the output of f applied to the decryption of ct; in sym-
bols, ct′ = Enc(f(Dec(ct))). More generally, we even allow for a multi-
input version, where the oracle takes an arbitrary number of ciphertexts
ct1, . . . ct� and outputs ct′ = Enc(f(Dec(ct1), . . . ,Dec(ct�))).

In this work we observe that funcCPA security may have applications
beyond homomorphic encryption, and set out to study its properties. As
our main contribution, we prove that funcCPA is “closer to CPA than
to CCA”; that is, funcCPA secure encryption can be constructed in a
black-box manner from CPA-secure encryption. We stress that, prior to
our work, this was not known even for basic re-encryption queries corre-
sponding to the identity function f .

At the core of our result is a new technique, showing how to handle
adaptive functional re-encryption queries using tools previously devel-
oped in the context of non-malleable encryption, which roughly corre-
sponds to a single non-adaptive parallel decryption query.

1 Introduction

The notion of functional re-encryption FuncCPA security for encryption schemes
was recently introduced by Akavia et al. [1], and shown to be useful in the con-
text of homomorphic encryption schemes. This notion is similar to CCA security,
except that the attacker is given a re-encryption oracle rather than a decryp-
tion oracle. Roughly, the oracle replies to a query ciphertext ct with another
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ciphertext ct′ = Enc(Dec(ct)), corresponding to a fresh encryption of the mes-
sage contained in ct. More generally, the definition even permits “functional” re-
encryption queries: the attacker also specifies a function f , and the oracle returns
ct′ = Enc(f(Dec(ct))). Or even more generally, we can consider “multi-input
functional” re-encryption queries, where the oracle takes an arbitrary number of
ciphetexts ct1, . . . ct� and outputs ct′ = Enc(f(Dec(ct1), . . . ,Dec(ct�))). Below,
when we say FuncCPA, we refer to the strongest notion with multi-input func-
tional queries by default, unless we explicitly restrict to single-input functional
re-encryption or non-functional re-encryption.

At first glance, the FuncCPA-oracle may seem quite useless to the attacker,
as it only returns properly encrypted ciphertexts. One may even be tempted
to assume that every CPA-secure scheme is also FuncCPA-secure. Surprisingly,
this is not the case: Akavia et al. described in [1] a CPA-secure scheme where a
single (non-functional) re-encryption query allows the adversary to recover the
secret key. This example makes FuncCPA an interesting notion to study, as it
lies “somewhere in between” CPA and CCA security.

FuncCPA for Non-Homomorphic Schemes. Although Akavia et al. only consid-
ered FuncCPA in the context of homomorphic encryption, we note that it makes
sense also for schemes that are not homomorphic. For example, consider using a
“secure enclave” (such as a secure hardware or trusted execution environment)
to address the same client-server delegation scenario. In this setting there could
be an “analyst” that wants to perform various studies on sensitive data, multi-
ple clients who are willing to donate their data to those studies (as long as their
privacy is respected), and a worker server on which the studies are computed,
endowed by a secure enclave. The analyst will have a secret-public key pair, they
will send the secret key over a secure channel to the enclave, and publish the cor-
responding public key. Clients who want to donate their data to the studies will
encrypt it under the analyst’s public key, and send the ciphertext to the server.
The server will collect the data (possibly more and over time), and occasionally
will ask the enclave to compute something on the encrypted data. The enclave
will decrypt the given pieces of data, compute the required function, encrypt the
result, and return to the server.1 When each study is over, the server will send
the end-result back to the analyst, to be decrypted and used.

In that setting, we note that the queries made by the server to its secure
enclave are exactly the type of re-encryption queries that we consider: The server
sends encrypted data and some function, and the enclave decrypts, computes the
function, re-encrypts, and return to the server.

Our Main Question. In this work we set out to study the properties of Func-
CPA security. For starters, we give a simple proof that every CCA-secure scheme
is also FuncCPA -secure.2 Having established that FuncCPA security is implied
1 Notice, this application requires FuncCPA security for queries consisting of multiple

ciphertexts, which is why this will be our default notion of FuncCPA security.
2 In fact, we show (see Lemma A.1) that FuncCPA security is implied by CCA security

against “lunchtime attacks”, known as CCA1.
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by CCA security and implies CPA security, the main question that we address
in this work is whether FuncCPA is “more like” CPA or CCA. Specifically we
ask:

Can one construct a FuncCPA-secure encryption scheme from any CPA-
secure one?

We stress that the answer to this question is unknown even if we restrict to basic
(“non-functional”) re-encryption queries Enc(Dec(ct)), corresponding to a single
ciphertext with the identity function f .

The relation between CPA-secure schemes and CCA-secure ones was studied
extensively in the literature, and many construction of the latter are known.
However, all these constructions either require making extra assumptions beyond
just the existence of CPA-secure schemes [8–10,12], or are carried out in idealized
models (e.g., [7]). In particular, whether one can construct a CCA secure scheme
generically from any CPA secure one, is considered a major open problem in
cryptography.

As for standard model constructions from CPA encryption without extra
assumptions, it is known that the existence of CPA-secure encryption can gener-
ically be upgraded to weaker variants of CCA security, such as non-malleability
[3,4,11], bounded CCA security [6], or security against self-destruct attacks [5].
Of particular interest to us, non-malleable encryption corresponds to a “non-
adaptive” variant of CCA-security, where the adversary can only issue one set of
non-adaptive decryption queries in parallel. Pass et al. [11] showed how to gener-
ically transform CPA-security to non-malleability, and Choi et al. [3,4] showed
that this can even be done while using the underlying CPA-secure scheme as a
black box.

1.1 Our Main Result

We show that FuncCPA is “more like CPA than CCA”, specifically we prove:

Theorem 1.1. If CPA-secure encryption schemes exist, then so do FuncCPA-
secure encryption schemes. Moreover, the transformation can be made black-box
in the underlying CPA-secure scheme.

Perhaps surprisingly, the transformation that we describe here is identical to
the CPA-to-non-malleable transformation of Choi et al. from [3], except that we
need to start with a scheme which is already non-malleable. Therefore, one way to
get FuncCPA from CPA in a black-box way is to apply the transformation from
[3] once to get non-malleability, then apply it again to get FuncCPA -security.3

3 Our transformation in Theorem 1.1 is not only FuncCPA-secure, but also non-
malleable. See Remark 3.8.
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Our Technique. For simplicity of notation, we describe our technique for the case
of single-input functional re-encryption queries, but everything trivially general-
izes to multi-input functional re-encryption queries as well. The main difficulty
of a reduction from CPA to FuncCPA security is that we need to simulate adap-
tive queries to a functional re-encryption oracle, which involves decryption. How
do we do this without a decryption oracle? We use the transformation from [3],
which was designed to allow a simulation of a batch of non-adaptive queries to a
decryption oracle, and show that the same approach also allows us to simulate
adaptive queries to a functional re-encryption oracle.

The high-level structure of the transformation from [3] is to encode the mes-
sage with an appropriate error-correcting code, then encrypt the resulting code-
word symbols multiple times under different keys, and check on decryption that
the decrypted words are close enough to each other. Thinking of the encrypted
symbols as a matrix, with the rows corresponding to multiple encryptions and
the columns corresponding to positions in the codeword, Choi et al. observed
that checking closeness can be done just by verifying that the codewords agree
on some small randomly chosen subset of the columns. Hence the decryptor only
needs to know the secret keys for one row to do the actual decryption, and for
that small subset of columns to do the checks. Security is then proven by reduc-
tion to the security of the keys for which the decryptor does not know the secret
keys.

For our purposes, we consider a “bad event” in which the attacker submits
a query ciphertext for which not all the rows are close to each other, but this
“is not caught” by the checks on decryption. As long as this bad event does not
happen, we can show that the decryption procedure will always give the same
answer, no matter which row or columns are used in it. Hence, as long as this bad
event does not happen, one can simulate the attacker’s view without knowing too
many keys. Moreover, we also show that as long as the bad event did not happen
so far, the adversary does not have enough information to cause it to happen in
the next query. This allows us to describe a reduction using “almost-functional”
keys, where the reduction can decrypt all the attacker’s queries except the one
that it will use for its challenge ciphertext. This, in turn, lets us switch from
Enc(f(Dec(ct))) to Enc(0), one query at a time.

Importantly, to turn the advantage of the FuncCPA attacker into an advan-
tage in attacking the underlying scheme, the reduction algorithms that we
describe must know if the bad event occurred on any of the re-encrypted cipher-
texts cti. The key novelty here is the observation that the reduction does not
need to know this at the time of each (functional) re-encryption query. Instead,
it can run the attacker until the end, and check if the bad event had occurred on
any of the ciphertexts (ct1, . . . , ctq) only then. This check requires access to the
decryption oracle, which is where we use the non-malleability of the underlying
encryption scheme (rather than mere CPA security). Namely, non-malleability
allows us to make one such parallel decryption query to know precisely when
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any bad event happened.4 Hence, the reduction to non-malleability will use a
single, non-adaptive parallel decryption query to check whether or not the bad
event occurred in any of the attacker’s queries, despite the attacker making many
adaptive functional re-encryption queries. See more details in Sect. 3.

We note that Choi et al. later described a more efficient CPA-to-non-
malleability transformation [4], and that the same line of reasoning probably
works for that transformation as well. But since we do not focus on efficiency in
this work, we use the (arguably simpler) transformation from [3].

Do we Really Need Two Transformations? Seeing how we need to apply the
same transformation twice, once to move from CPA to non-malleability and a
second time to get FuncCPA, it is natural to ask if we can spare one of them –
can’t we just apply this transformation once?

While we don’t know the answer, our proof technique completely breaks down
without the assumption that the underlying scheme is already non-malleable. In
fact, our intuition is that CPA security of the underlying scheme is not enough
to ensure FuncCPA of the result, and one should be able to exhibit a counter-
example using strong enough homomorphic properties of it. We note, however,
that such counter-example “cannot be too simple”, since the transformation
encrypts different codeword positions with different keys, meaning that any such
example will be at least as hard as showing that bit-encryption does not imply
FuncCPA. Still, we conjecture that non-malleability is really needed for our
proof.

Variations of FuncCPA. As we mentioned above, there are different variants of
FuncCPA -security, with one or more ciphertexts, and with or without functional
queries. Akavia et al. have shown in [1] that these notion are all equivalent for
homomorphic encryption schemes,5 but generally they may differ.

In fact, for our purposes it is convenient to use a possibly-stronger formal
definition than the one from [1]. (This stronger definition was also considered
by Akavia and Vald [2].) Roughly, instead of only requiring that functional re-
encryption queries cannot help the attacker break semantic security, we require
that these queries are indistinguishable from fresh encryptions of some fixed mes-
sage (e.g. 0). This clearly implies that such queries cannot help break semantic
security, but the converse may not hold. We denote this potentially stronger
notion by FuncCPA+.

We note that, prior to the current work, constructing FuncCPA from CPA-
secure encryption is challenging even for the weakest of these notions (non-
functional re-encryption queries not helping break semantic security), while our
positive result applies even to the strongest of them (functional re-encryption
4 This aspect was not needed in the analysis of [3], as they did not have any re-

encryption queries.
5 Intuitively, multiple-ciphertext functional re-encryption oracle can be simulated by

a single-ciphertext non-functional re-encryption oracle, by first homomorphically
applying the function f “inside the encryption”, and then calling the simpler oracle
to ensure the resulting encryption is “fresh”.
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queries with multiple ciphertexts look like encryptions of 0). We discuss implica-
tions and separations between many of these variants in Sect. 2.1 and in Sect.A.

Organization

In Sect. 2 we recall the basic definitions and prove some simple properties of
FuncCPA-security. Our main result Theorem 1.1 is proved in Sect. 3, and we
state a few open problems in Sect. 4. Finally, in appendix A we prove some
relations between various security notions.

2 Definitions

Signatures. A signature scheme S = (Gen,Sig,Ver) consists of randomized key
generation (sk, vk) ← Gen(1λ), signing σ ← Sig(sk,m), and verification, 0/1 ←
Ver(vk, σ,m). The (error-free) correctness condition asserts that for all λ and all
messages m, we have

Pr
[
(sk, vk) ← Gen(1λ), σ ← Sig(sk,m) : Ver(vk, σ,m) = 1

]
= 1.

Definition 2.1 (Secure one-time Signatures). A scheme
S = (Gen,Sig,Ver) is strongly existentially unforgeable under one-time attack
if any PPT adversary A = (A1, A2) has at most a negligible probability negl(λ)
of winning the following game:

1. (sk, vk) ← Gen(1k);
2. (m, state) ← A1(vk);
3. σ ← Sig(sk,m);
4. (m′, σ′) ← A2(state, σ).

A wins the game if (m′, σ′) �= (m,σ) but Ver(vk, σ′,m′) = 1.

Encryption Schemes. We recall below different notions of security for public-key
encryption schemes. Such a scheme E = (Gen,Enc,Dec) (over message space M
which could depend on the security parameter) consists of:

– Key Generation algorithm (dk, ek) ← Gen(1λ). Here dk is the secret key and
ek is the public key.

– Encryption algorithm ct ← Enc(ek, pt) converting message pt ∈ M into
ciphertext ct; and

– Decryption algorithm pt ← Dec(dk, ct) recovering the plaintext pt ∈ M ∪{⊥}
from the ciphertext ct, where ⊥ denotes a decryption failure.

The (error-free6) correction condition asserts that for all λ and all pt ∈ M , we
have

Pr
[
(dk, ek) ← Gen(1λ), ct ← Enc(ek, pt) : Dec(dk, ct) = pt

]
= 1.

6 All the results in this work apply out-of-the-box also to schemes with decryption
errors, as long as they only occur with negligible probability. Otherwise one can
amplify correctness of the underlying CPA-secure scheme before applying our trans-
formation.
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Definition 2.2 ((nm)CPA/CCA1/CCA2/(multi)FuncCPA Security).
An encryption scheme E = (Gen,Enc,Dec) is X-secure for security notion

X ∈ {CPA, CCA1, CCA2, FuncCPA, 1-FuncCPA, ReEncCPA, nmCPA},

if any PPT adversary A = (A1, A2) with access to oracles (O1,O2) below has at
most a negligible advantage negl(λ) in the following game:

1. b ← {0, 1}; (dk, ek) ← Gen(1λ); 2. (pt0, pt1, state) ← AO1
1 (ek);

3. ct ← Enc(ek, ptb); 4. b′ ← AO2
2 (state, ct).

The advantage is defined as |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|, where the
oracles (O1,O2) are instantiated as follows for each notion X:

CPA: O1,O2 always return ⊥.
CCA1: O1(ct′) = Dec(dk, ct′) is decryption oracle, and O2 always returns ⊥.
CCA2: O1(ct′) = Dec(dk, ct′) is decryption oracle, and O2 is the same as O1,

except it returns ⊥ on the challenge ct from Step 3 above.
FuncCPA: O1(ct′1, . . . , ct

′
�, f) = O2(ct′1, . . . , ct

′
�, f) =

Enc(ek, f(Dec(dk, ct′1), . . . ,Dec(dk, ct′�)))
are multi-input functional re-encryption oracles, where � ∈ Z can be arbitrary
and f : (M ∪ {⊥})� → M is any function (specified as a circuit).

1-FuncCPA: Same as FuncCPA, but all functions f are single input (� = 1);
O1(ct′, f) = O2(ct′, f) = Enc(ek, f(Dec(dk, ct′))).

ReEncCPA: Same as FuncCPA, but all functions f are the identity f(pt) = pt;
O1(ct′) = O2(ct′) = Enc(ek,Dec(dk, ct′))

nmCPA: O1 always returns ⊥, while O2 accepts a single “parallel” query {(ct′i)},
and returns {pt′i}, after which it returns ⊥ for all subsequent queries. As with
CCA2 notion, pt′i =⊥, if ct′i = ct from Step 3; and otherwise it is the regular
decryption oracle pt′i = Dec(dk, ct′i).

Multiple-Keys Tag-Based Non-Malleability. For our transformation, it will be
slightly more convenient to use a slight extension of nmCPA security notion,
which is easily seen equivalent to the traditional nmCPA security given in Defi-
nition 2.2.

First, we will use a tagged nmCPA encryption, where the encryption and
decryption routines are also given a tag tg, and correctness in only ensured
when the same tag is used in both.

Pr
[
(dk, ek) ← Gen(1λ), ct ← Enc(ek, tg, pt) : Dec(dk, tg, ct) = pt

]
= 1.

Furthermore, the non-malleability security game is modified so that the adver-
sary submits a set of tag/ciphertext pairs {(tg′

i, ct
′
i)} in parallel, such that each

pair (tg′
i, ct

′
i) �= (tg, ct) differs from the challenge tag/ciphertext pai from Step 3,

and the oracle responds with pt′i = Dec(dk, tg′
i, ct

′
i). Notice, a tagged scheme can

always be converted into a non-tagged scheme by just omitting the tag. Con-
versely, non-tagged scheme for large message space can be made to support tags,
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by viewing the tag as part of the message, and then checking that the decrypted
tag matches the declared one.

Second, we will use a multiple-keys/multiple-message nmCPA which will be
slightly more convenient for our proof. This is known to be equivalent to the
notion from Definition 2.2, e.g., [11, Thm 4]. The full definition is given below.

Definition 2.3 (tag-nmCPA Security). A tagged scheme E = (Gen,
Enc,Dec) is tag-non-malleable secure if for any polynomial p(·), a conforming
PPT adversary A = (A1, A2, A3) has at most a negligible advantage negl(λ) in
the following game:

1. b ← {0, 1}; (dki, eki) ← Gen(1λ) for i = 1, 2, . . . , p(λ);
2.

(
(i1, pt01, pt

1
1, tg1), . . . , (im, pt0m, pt1m, tgm), state) ← A1({eki});

3. ctj ← Enc(ekij
, tgj , pt

b
j) for j = 1, . . . , m;

4.
(
(k1, ct′1, tg

′
1), . . . , (kn, ct′n, tg′

n), state′);← A2(state, ct1, . . . , ctm
)
;

5. pt′� ← Dec(dkk�
, tg′

�, ct
′
�) for � = 1, . . . , n;

6. b′ ← A3(state′, pt′1, . . . , pt
′
n).

A is conforming if the pairs {(k�, tg
′
�, ct

′
�) : � = 1, . . . , n} are disjoint from

{(ij , tgj , ctj) : j = 1, . . . ,m}. The advantage is defined as

|Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|.

2.1 An Alternative Definition of FuncCPA

When proving the FuncCPA security of our construction, it is convenient to use
a possibly-stronger notion than Definition 2.2, that we call FuncCPA+. Rather
than requiring that the functional re-encryption oracle does not help in breaking
semantic security, this definition states that functional re-encryption oracle does
not help because it cannot by distinguished from fresh encryptions of 0 (which
the attacker can do itself).7

Definition 2.4 (FuncCPA+ Security). A (non-tagged) scheme E =
(Gen,Enc,Dec) is FuncCPA+-secure if any PPT adversary A with access to a
re-encryption oracle has at most a negligible advantage negl(λ) in the following
game:

1. b ← {0, 1}; (dk, ek) ← Gen(1λ); 2. b′ ← AreEncb(dk,ek,·,·)(ek).

where the re-encryption oracle takes an arbitrary � and f : (M ∪ {⊥})� → M
(given as a circuit):

reEncb(dk, ek, ct1, . . . , ct�, f) =

{
E(ek, f(Dec(dk, ct1), . . . ,Dec(dk, ct�))) if b = 1

E(ek, 0) if b = 0

7 Having two such flavors is reminiscent of definitions of circular security: Over there
one notion asserts that an encryption of the secret key does not help the attacker
violate semantic security, and the other requires that the attacker cannot distinguish
such encryption from an encryption of zero.
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The advantage is defined as |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|. We can also
define restricted notions 1-FuncCPA+ and ReEncCPA+, corresponding to single
input f (� = 1) and the identity function f , respectively.

First, we show that this notion indeed implies FuncCPA security.

Lemma 2.5. Any scheme which is FuncCPA+-secure, is also FuncCPA-secure.
(Analogously, the same holds for restricted notions 1-FuncCPA and ReEnc-
CPA.)

Proof. We first recall that the “left-or-right” notion from Definition 2.2 where
the attacker chooses pt0, pt1 and gets an encryption of one of them, is known
to be equivalent to a “real-or-zero” notion of security where the attacker only
chooses pt1, and gets either an encryption of pt1 or an encryption of zero. (These
are equivalent upto a factor of 2 in the advantage.) It is therefore sufficient to
show that Definition 2.4 implies this real-or-zero notion.

Let E be a scheme satisfying Definition 2.4, and we want to show that it
also satisfy the (real-or-zero variant of) Definition 2.2. Let A be an adversary
with access to a functional re-encryption oracle, and we want to show that it
only has a negligible advantage in the real-or-zero game against E . Consider the
probability of A outputting 1 in the following four experiments:

1. A’s oracle is implemented by a true functional re-encryption oracle, and its
challenge-ciphertext query is answered by an encryption of pt1.

2. A’s oracle is implemented by a zero-encrypting oracle, and its challenge-
ciphertext query is answered by an encryption of pt1.

3. A’s oracle is implemented by a zero-encrypting oracle, and its challenge-
ciphertext query is answered by an encryption of 0.

4. A’s oracle is implemented by a true functional re-encryption oracle, and its
challenge-ciphertext query is answered by an encryption of 0.

The probabilities in Experiments 1 vs. 2 are close (upto a negligible difference)
by the FuncCPA+-security of E , and the same holds for the probabilities in
Experiments 3 vs. 4. Moreover, the probabilities in Experiments 2 vs. 3 are
close (upto a negligible difference) by the CPA-security of E , which is implied
by FuncCPA+-security. Hence the probability of A outputting 1 in experiments
1 vs. 4. are close upto a negligible difference, as needed.

The proof for restricted variants follows identically.

Are These Definitions Equivalent? Lemma 2.5 says that FuncCPA+ implies
FuncCPA, but we do not know if there is also an implication in the other direc-
tion. One piece of evidence that points toward FuncCPA+ being strictly stronger
than FuncCPA, is that we can show a separation for the analogous notions with a
non-functional re-encryption oracle; namely, ReEncCPA notion. In this notion,
a re-encryption query consists of only a ciphertexts ct (without the function f)
and it is answered by ct′ = Enc(Dec(ct)). See Lemma A.3.
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Other (non-)Relations. In Appendix A we also have several other observa-
tions of interest. In Lemma A.1, we also show that a CCA1-secure scheme is
always FuncCPA+-secure. In Lemma A.4 we also show that a (single-input) 1-
FuncCPA+-secure scheme is not always (multi-input) FuncCPA-secure, while in
Lemma A.2 we show that nmCPA-security of a given scheme is incomparable
with any of the FuncCPA/1-FuncCPA/ReEncCPA-securities (enhanced or not)
of that scheme.

3 From CPA to FuncCPA

This section is devoted to proving our main Theorem 1.1. As mentioned, we will
actually prove (potentially) stronger FuncCPA+ security; namely:

Theorem 3.1. If CPA-secure encryption schemes exist, then so do FuncCPA+-
secure encryption schemes. Moreover, the transformation can be made black-box
in the underlying CPA-secure scheme.

As described in the introduction, we show that applying the CPA-to-nmCPA
black-box transformation of Choi et al. [3], to a scheme which is already nmCPA-
secure, results in a FuncCPA+ scheme. As the existence of CPA-secure schemes
implies the existence of nmCPA-secure ones [11], even with a black-box trans-
formation [3], the theorem follows.

For simplicity of notation (e.g., to avoid double indices), we first describe
our proof for single-input re-encryption queries (i.e., 1-FuncCPA notion, corre-
sponding to single-input function f with arity � = 1). However, there is basically
no difference in extending the proof to support multiple ciphertext queries (e.g.,
general � ≥ 1), and we sketch the extension from 1-FuncCPA+ to full FuncCPA+

security of our transformation in Sect. 3.5.

3.1 Technical Overview

Before describing the CDMW construction itself, we highlight the abstract prop-
erties that it satisfies, and how they are used to prove FuncCPA security. We
rely on the following properties:

1. We have a notion of valid/invalid ciphertexts, and all ciphertexts output by
encryption are valid.

2. For any challenge ciphertext ct∗, the reduction is able to find an alternate
“somewhat defective” secret key, which decrypts all valid ciphertexts except
the challenge ciphertext ct∗ identically to the original key, but is incapable of
breaking the semantic security of ct∗.

3. An adversary who only sees the public key, cannot produce an invalid cipher-
text that decrypts to anything but 0, via either the original key or any defec-
tive key.



Security with Functional Re-encryption from CPA 289

Non-Malleability. Let us briefly outline how the above properties are used in
CDMW to show non-malleability: First, they switch to using an alternate “some-
what defective” decryption key from (2) to answer decryption queries. They
argue that all decryption queries are answered identically with this change. As
per (2), this is true for decryption queries with a valid ciphertext, and as per
(3), queries with invalid ciphertext are always answered by 0 in both cases. We
note that this step crucially relies on the adversary making only one (paral-
lel) decryption query rather than many adaptive queries; i.e. it only provides
non-malleability rather than CCA security. Indeed, an adversary making mul-
tiple adaptive decryption queries (with valid ciphertexts) can learn information
about the secret key from answers to previous decryption queries, so can no
longer rely on (3).8 Second, after switching to using a “somewhat defective”
decryption key, they can switch the challenge ciphertext ct∗ from an encryption
of pt0 to an encryption of pt1 by relying on property (2) that semantic security
of ct∗ is preserved even given the alternate decryption key.

FuncCPA+ Security. Now we show how to use the above properties to prove
FuncCPA+ security. We define a bad event that the adversary submits an invalid
ciphertext that does not decrypt to 0 (either by the original or any alternate
decryption key) during the course of the game. As long as the bad event does
not happen, we can replace the output of each functional re-encryption query
(one by one) by an encryption of 0 via the same argument as above. On the other
hand, we argue that the probability of the bad event occurring is negligible: To
cause the bad event to happen for the first time on functional re-encryption
query i, the adversary would have needed to learn something about the secret
key from the first i − 1 functional re-encryption queries. But because the bad
event did not occur during those queries yet, we can replace their outputs by
encryptions of 0 (by the same argument as above) and argue that this cannot
change the probability of the bad event occurring for the first time in the i’th
query. Once the first i − 1 queries return 0 and do not induce the bad event, we
know that they do not reveal anything about the secret key, which ensures that
probability of the bad event happening on the ith query is negligible.

Formalizing this argument, however, requires handling the following subtle
point: when changing a ciphertext to an encryption of 0 in each step, we must
show this change is not only imperceptible to the adversary, but it also does not
affect the probability of the bad event. In particular, the reduction must check
if the bad event occurred at the very end of the game, which requires checking
if various ciphertexts submitted by the adversary during the game were valid
or invalid. Therefore, we need a stronger version of property (2) to hold: the
semantic security of ct∗ holds even given the alternate decryption key and a
single parallel query to a valid/invalid ciphertext check. To achieve this stronger
property, we need the underlying component scheme used by this transformation
to already be non-malleable.

8 Valid ciphertexts are not necessarily correctly generated and may decrypt differently
depending on the secret key.
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3.2 Building Blocks

Non-malleability. Recall from Definition 2.2 that (tagged) non-malleable encryp-
tion is a weaker variant of (tagged) CCA-secure encryption, where the adversary
only gets to make a single non-adaptive query to the decryption oracle (but that
query can ask to decrypt many ciphertexts). Below it will be convenient to
use the multi-key/multi-message variant of this notion (cf. Definition 2.3). As
mentioned earlier, this is known to be equivalent to the single-key variant from
Definition 2.2 (e.g., [11, Thm 1]).9

One-Time Signatures. Our main construction also uses (one-time) signatures,
which are strongly existentially unforgeable, as per Definition 2.1.

Secret Sharing Encoding Schemes. We will also use the notion of secret-sharing
encoding scheme C = (E,D), similar to the notion of linear error-correcting
secret-sharing [5]. Such a scheme comes with efficient randomized encoding E
and decoding D, and is parameterized by underlying symbol space Σ, as well as
integers k (dimension), n (length), d (decoding radius), and t (privacy parame-
ter). We sometimes abuse notations, denoting by C the resulting code itself (i.e.,
the image of the encoding routine).

Let
[(

n
t

)]
denote the collection of all the subsets S ⊂ [n] of cardinality t, the

code C has the following features:
– The encoding is E : Σk × R → Σn, where R is the randomness space.

The decoding is D : Σn → ((Σk × R) ∪ {⊥}), such that ∀x ∈ Σk, r ∈ R, we
have D(E(x, r)) = (x, r).
Below when we say “decoding to a codeword”, we mean a procedure D′ :
Σn → (Σ ∪ {⊥})n which is defined as

D′(z ∈ Σn) =

{
⊥n if D(z) =⊥
E(D(z)) otherwise.

– The decoding radius of C is at least some large enough d (see below). Namely,
for any x ∈ Σk, r ∈ R and any word z ∈ Σn of Hamming distance at most d
from E(x, r), it holds that D(z) = (x, r).

– There is an efficient extension procedure Extend : Σk × Σt × [(
n
t

)] → Σn

that take as input x ∈ Σk, y ∈ Σt, and a size-t subset S ⊂ [n], |S| = t, and
outputs a codeword z ∈ C such that D(z) = (x, r) for some r, and z|S = y
(i.e., the symbols of z in positions from S are exactly y).
Moreover, for any x ∈ Σk and any S ∈ [(

n
t

)]
, the following two distributions

are equal:

{r ← R : output E(x, r)} and {y ← Σt : output Extend(x, y, S)}.

The parameters of C are set to ensure that (1 − d
n )t ≤ 2−λ.10

9 The theorem in [11, Thm 4] is stated for a non-tagged scheme, but it holds equally
for the tagged version.

10 We note that the requirements from Extend imply that t cannot be too close to n,
at the very least we need n ≥ t + k so that any t-symbol string can be extended to
an encoding of any k-symbol information word.
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Some examples of such codes: using Shamir secret-sharing we can get a con-
struction over a large enough field Σ = F2� with (say) k = 1, t = 2λ, n = 3t
and d = t. Or we can encode the Shamir-based constructions in binary, using
Σ = {0, 1}, k ≥ 3 + log λ, t = 2λk, n = 3t and d = t. A more general use of
Reed-Solomon codes (still with large enough Σ = F2�) could be an arbitrary k,
t = 2λ and n = 3(t+k − 1), and d = t+k − 1. One can also get better efficiency
using Algebraic-Geometric codes as described in [5].

3.3 The CDMW Transformation

We start by describing the CDMW transformation, using an abstraction similar
to Coretti et al. [5]. Denote the security parameter by λ, and we want to construct
an encryption scheme with message space Σk. Below we assume that 0 ∈ Σ, and
we sometimes think of Σ as a large enough field. The construction uses the
following components

– An underlying encryption scheme E = (GenE ,Enc,Dec) with message
space Σ, satisfying tag-nmCPA security (Definition 2.3). Below we sometimes
call it the component encryption scheme.

– A one-time signature scheme S = (GenS ,Sig,Ver), satisfying strong existen-
tial unforgeability (Definition 2.1). We denote by κ = κ(λ) the size of the
verification key.

– A secret-sharing encoding scheme C = (E,D), with underlying symbol
space Σ, dimension k, length n, decoding radius d, and privacy parameter t.

The CDMW construction is an encryption scheme for messages pt ∈ Σk,
E ′ = (Gen′,Enc′,Dec′) as follows:

Key generation Gen′(1λ).

1. Generate 2κn key pairs (eki,j,b, dki,j,b) ← GenE(1λ) with i ∈ [κ], j ∈ [n], and
b ∈ {0, 1};

2. Choose at random a size-t subset S∗ ∈ [(
n
t

)]
, and a random row i∗ ← [κ];

The public key consists of all the 2κn component public keys, and the secret key
consists of the 2(n + (κ − 1)t) component secret keys for the designated row i∗

and columns j ∈ S∗,

ek′ =
{
eki,j,b : b ∈ {0, 1}, i ∈ [κ], j ∈ [n],

}

dk′ =
(
i∗, S∗,

{
dki,j,b : b ∈ {0, 1}, i = i∗ or j ∈ S∗})

.

Encryption Enc′(ek′, pt), pt ∈ Σk.

1. Choose a signature key pair (sk, vk) ← GenS(1λ), with |vk| = κ. Denote the
i’th bit in vk by vi.

2. Choose encoding randomness r ← R and compute the codeword c :=
E(pt, r) ∈ C.
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3. For all i ∈ [κ], j ∈ [n] encrypt cj ∈ Σ under eki,j,vi
with tag vk: cti,j ←

Enc(eki,j,vi
, vk, cj).

Denote the concatenation of all these κn component ciphertexts by �ct =
(cti,j : i ∈ [κ], j ∈ [n]).

4. Compute the signature σ ← Sig(sk, �ct).

The compound ciphertext is ct′ =
(
�ct, vk, σ

)
.

Decryption Dec′(dk′, ct′). Parse ct′ =
(
�ct, vk, σ

)
.

1. Check the signature, if Ver(vk, �ct, σ) = 0 then output 0k and halt.
2. Decrypt all the component ciphertexts for which you have keys, γ′

i,j ←
Dec(dki,j,vi

, vk, cti,j) for i = i∗ or j ∈ S∗.
3. Let c′ = (γ′

i∗,j : j ∈ [n]) be the word encoded in row i∗, and correct c′ to a
codeword, setting c̄ = D′(c′).

4. Check that all the columns in S∗ agree with c̄: For all i ∈ [κ], j ∈ S∗, γ′
i,j = c̄j .

If any of these checks fails then output 0k and halt.
5. Decode (x, r) := D(c̄) and output x.

Connection to Technical Overview. Before giving a formal proof of security, we
briefly discuss how this construction satisfies the abstract properties (1)-(3) from
the technical overview in Sect. 3.1.

For (1), we define valid ciphertexts as ones where there is a single codeword
c̄ ∈ C such that the component ciphertexts in each row i decrypt to a value
sufficiently close (within distance d) to c̄. Otherwise ciphertexts are invalid.

For (2), we can consider different decryption secret keys depending on the
row i∗ they decrypt. The original key picks one fixed row i∗ in which it knows
all the component secret keys for both bits b ∈ {0, 1}. The alternate “somewhat
defective” decryption keys will only know all the secret keys for either b = 0
or b = 1 (but not both) in each row i. In particular, for a challenge ciphertext
ct∗ with verification vk∗ we will pick a somewhat defective decryption key such
that, for each row i, it only knows the secret keys with bit b = 1−v∗

i where v∗
i is

the i’th bit of vk∗. It will decrypt each ciphertext with verification key vk �= vk∗

using the first row i in which the verification key bits differ vi �= v∗
i . In both

cases, we also keep all the component secret keys in the special columns S∗ and
perform the same checks as the original decryption procedure. This ensures that:
(a) the somewhat defective decryption key is incapable of breaking the semantic
security of ct∗ since it is only capable of decrypting the component ciphertexts
of ct∗ is the columns S∗, but these don’t reveal anything about the message by
the hiding of the secret sharing encoding, (b) the somewhat defective decryption
key decrypts every valid ciphertext ct �= ct∗ (having vk �= vk∗) identically to the
original key, since the row i it decrypts will decode to the same codeword c̄ as
in the original decryption and the checks performed are identical.

For (3), in order for the adversary to produce an invalid ciphertext that
decrypts to anything but 0, (via either the original key or any defective key),
there must be some row i that decrypts to a value c that decodes to some
codeword c̄, and some row i′ (possibly i′ = i) that decrypts to a value c′ such
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that c′ is too far (more than d distance) from c̄. But in that case, the decryption
procedure will output 0 with overwhelming probability over the choice of S∗; it
only fails to do so if none of the columns of S∗ overlap with any of the positions in
which c′ differs from c̄, but this only happens with probability ≤ (1− d

n )t ≤ 2−λ.

3.4 Proof of Security

Recall, we first give our main proof for 1-FuncCPA+ security (i.e., a single-
input functional re-encryption oracle). However, as we then discuss in Sect. 3.5,
the proof extends directly to general FuncCPA+ security (with a multi-input
functional re-encryption oracle), with only minimal changes.

Lemma 3.2. If the component encryption scheme E satisfies tag-nmCPA secu-
rity (Definition 2.3) and the signature S satisfies strong existential unforgeability
(Definition 2.1), then the compound scheme E ′ above is 1-FuncCPA+ secure.

Namely we show that under the stated assumptions, the view of a FuncCPA+

attacker A in the “real world” is indistinguishable from its view in an “ideal
world”, in which all the functional re-encryption queries are answered by encrypt-
ing the all-zero plaintext word 0k.

Simplifying Assumptions. Consider some 1-FuncCPA+ adversary A. We some-
times refer to ciphertexts that A submits to the functional re-encryption oracle
as input ciphertexts, and the ones returned from the oracle are called output
ciphertexts.

Firstly, without loss of generality, we can assume that A never submits an
input ciphertext which is equal to a prior output ciphertext. Indeed, if a previ-
ous functional re-encryption query (ct, f) returned some ct′, then a new query
(ct′, f ′) could just as well be replaced by (ct, f ′ ◦ f): By definition these two
queries have identical answers.

Secondly, we will assume that A never queries the oracle on an input cipher-
text ct′ =

(
�ct, vk, σ

)
in which the signature fails to verify Ver(vk, �ct, σ) = 0. This

is because we can test this property efficiently given only ct′ and can replace
any such query (ct′, f) with (ct′′, f) where ct′′ is a fresh (correctly generated)
encryption of 0k.

Thirdly, given the above assumptions, we can also assume (by reduction to
the signature security) that the sets of verification keys in the input ciphertexts
is disjoint from that in the output ciphertexts: To use the same verification key
vk as in previous output ciphertext, the adversary will need to forge a signatures
on the new �ct relative to that previous vk (or a new signature σ on the same �ct),
which can only happen with negligible probability.

We call an adversary for which the above three assumptions hold a conform-
ing adversary. The arguments above imply that conforming adversaries have as
much of an advantage as general ones in distinguishing the real game from the
“ideal” one (upto negligible difference due to forgery of the signatures). Below we
therefore fix one conforming adversary A and analyze its advantage. Important
concepts in our analysis are valid/invalid ciphertexts and bad events, which are
defined next.
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Valid Ciphertext. A compound ciphertext ct′ =
(
�ct, vk, σ

)
is valid — relative to

all the component public/secret key pairs, {(eki,j,b, dki,j,b) : b ∈ {0, 1}, i ∈ [κ], j ∈
[n]} — if the following condition holds:

– There exists a unique codeword c̄ ∈ C such that for all i ∈ [κ], using the i’th
row for decryption yields a word which is at most d away from c̄. Namely,
setting γi,j := Dec(dki,j,vi

, vk, cti,j) and denoting ci = (γi,1, . . . , γi,n) for all i,
all the ci’s are of Hamming distance at most d from c̄.

A ciphertext is invalid if it is not valid.

Bad Events. A big part of the analysis below is devoted to bounding the proba-
bility of the bad event in which A submits an invalid ciphertext to the functional
re-encryption oracle, but this invalid ciphertext “is not caught”.

Consider the set S∗ and all the component public/secret key pairs
{(eki,j,b, dki,j,b) : b ∈ {0, 1}, i ∈ [κ], j ∈ [n]}. We denote by Bad the event
in which A makes a functional re-encryption query with an invalid ciphertext
ct′ =

(
�ct, vk, σ

)
, but the check in step (4) of the decryption procedure does not

trigger. Namely, for all i ∈ [κ], denote by ci = (γi,1, . . . , γi,n) the decryption of
the i’th row (as in the definition of valid ciphertexts above). Then the event Bad
occurs if there is a codeword c̄ = (γ̄1, . . . , γ̄n) ∈ C such that:

– There are indices i1, i2 ∈ [κ], such that D′(ci1) = c̄, but ci2 is at Hamming
distance more than d from c̄.

– All the ci’s agree with c̄ on all the symbols in the columns j ∈ S∗: ∀i ∈
[κ],∀j ∈ S∗ : γi,j = γ̄j .

Let q be a polynomial upper bound on the number of functional re-encryption
queries made by A. For all u ∈ [q] denote by Badu the event in which the u’th
functional re-encryption query causes the above bad event to occur. Also, for
any v ∈ [q], denote by 1stBadv the event where the first query to cause the bad
event to occur is the v’th query i.e.:

1stBadv = Bad1 & . . . & Badv−1 & Badv.

Hybrids. With the same bound q on the number of decryption queries, we con-
sider a set of q + 1 hybrid experiments, H0,H1, . . . , Hq. In the hybrid Hu the
first u functional re-encryption queries are answered by encrypting the all-zero
plaintext, and all the queries from u + 1 and on are answered as in the real 1-
FuncCPA+ game. (Note that the notions of valid/invalid input ciphertexts and
bad events apply to all these hybrids.) The real 1-FuncCPA+ game is there-
fore H0, the ideal game is Hq, and proving Lemma 3.2 boils down to showing
that ∣

∣
∣
∣Pr
Hq

[A → 1] − Pr
H0

[A → 1]
∣
∣
∣
∣ ≤ negl(λ), (1)
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for some negligible function negl(·), where A → 1 is the event of A halting after
outputting 1. To establish Eq. (1), we first note that

∣
∣
∣
∣Pr
Hq

[A → 1] − Pr
H0

[A → 1]
∣
∣
∣
∣ ≤

∣
∣
∣
∣ Pr

Hq

[A → 1 Bad] − Pr
H0

[A → 1 Bad]
∣
∣
∣
∣

+ Pr
H0

[Bad] + Pr
Hq

[Bad].

The heart of proof below consists of the following three lemmas, whose proofs
are provided later in this section:

Lemma 3.3. For all u, v ∈ [q] there is a negligible function negl(·) such that
∣
∣
∣
∣ Pr
Hu−1

[1stBadv] − Pr
Hu

[1stBadv]
∣
∣
∣
∣ < negl(λ).

Lemma 3.4. For all v ∈ [q] there is a negligible function negl(·) such that
Pr
Hq

[Badv] < negl(λ).

Lemma 3.5. For all u ∈ [q] there is a negligible function negl(·) such that
∣
∣
∣
∣Pr
Hu

[A → 1 & Bad] − Pr
Hu−1

[A → 1 & Bad]
∣
∣
∣
∣ ≤ negl(λ).

Given these three lemmas, we complete the proof as follows:
∣
∣
∣
∣Pr
Hq

[A → 1] − Pr
H0

[A → 1]
∣
∣
∣
∣ ≤

∣
∣
∣
∣ Pr

Hq

[A → 1 & Bad] − Pr
H0

[A → 1 & Bad]
∣
∣
∣
∣

+ Pr
H0

[Bad] + Pr
Hq

[Bad]

≤
q∑

u=1

∣
∣
∣
∣ Pr

Hu

[A → 1 & Bad] − Pr
Hu−1

[A → 1 & Bad]
∣
∣
∣
∣

+
q∑

v=1

Pr
H0

[1stBadv] +
q∑

v=1

Pr
Hq

[Badv]

≤ 2q · negl(λ) +
q∑

v=1

Pr
H0

[1stBadv], (2)

where in the first inequality we rely on Bad =
∨

u∈[q] Badu =
∨

u∈[q] 1stBadu and
the last inequality is due to Lemmas 3.4 and 3.5. Moreover, for any v ∈ [q] we
have

Pr
H0

[1stBadv] = Pr
Hq

[1stBadv] +
q∑

u=1

(
Pr

Hu−1
[1stBadv] − Pr

Hu

[1stBadv]
)

≤ Pr
Hq

[Badv] +
q∑

u=1

∣
∣ Pr

Hu−1
[1stBadv] − Pr

Hu

[1stBadv]
∣
∣

≤ (q + 1) · negl(λ), (3)



296 Y. Dodis et al.

with the last inequality due to Lemmas 3.3 and 3.4. Plugging the expression
from Eq. (3) into Eq. (2), we get
∣
∣
∣
∣Pr
Hq

[A → 1] − Pr
H0

[A → 1]
∣
∣
∣
∣ ≤ 2q ·negl(λ)+q · ((q+1) ·negl(λ)) = (q2 +3q) ·negl(λ).

Since negl(·) is negligible and q is polynomial, then also (q2 + 3q) · negl(·) is
negligible, completing the proof of Lemma 3.2. 
�
Proving Lemmas 3.3 through 3.5. The proofs make use of the following two
easy observations:

Fact 3.6 For any u ≥ v, the v’th oracle query in hybrid Hu is answered in a
way that does not depend of the index i∗ or the set S∗ in the secret key.

Proof. By definition of Hu, the v’th output ciphertext consists of just encryption
of the all-zero plaintext, regardless of anything else.

Fact 3.7 For any u, v ∈ [q], if the event Badv does not occur in the hybrid Hu,
then the v’th oracle query is answered in a way that does not pendent of the
index i∗ in the secret key.

Proof. Follows by definition of the bad event Badv. If Badv does not occur,
the v’th input ciphertext is either a valid ciphertext (does not satisfy the first
condition of the bad event), or an invalid ciphertext that triggers one of the
checks on decryption (does not satisfy the second condition of the bad event).
In the first case, all the rows i are decrypted to a word ci within the decoding
radius d of the code from the same codeword c̄, so the recovered value c̄ in step
(3) of decryption will be the same no matter which row i is used, and the rest
of the decryption procedure does not depend on i. On the other hand, in the
second case, the checks in step (4) of decryption will be triggered and cause the
decrypted value to be 0k no matter which row i is used.

Truncated Hybrids. When analyzing the events Badv or 1stBadv, it is convenient
to consider truncated hybrids, where the game is aborted as soon as A makes the
v’th query, indeed whether or not Badv or 1stBadv happen is fully determined as
soon as A made that query, so there is no reason to continue the game. Below we
denote by Hu|v the hybrid Hu, truncated immediately after A’s v’th functional
re-encryption query.

Proof of Lemma 3.3. For all u, v ∈ [q] there is a negligible function negl(·) such
that ∣

∣
∣
∣ Pr
Hu−1

[1stBadv] − Pr
Hu

[1stBadv]
∣
∣
∣
∣ < negl(λ).

Proof. By definition of the truncated hybrids, for any u, v ∈ [q] we have that
Pr

Hu|v
[1stBadv] = Pr

Hu

[1stBadv]. Moreover, we note that when u ≥ v, all the func-

tional re-encryption queries in Hu|v are answered with encryption of the all-zero
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plaintext. It follows that when u > v then the hybrids Hu−1|v and Hu|v are
identical, and therefore

Pr
Hu−1

[1stBadv] = Pr
Hu−1|v

[1stBadv] = Pr
Hu|v

[1stBadv] = Pr
Hu

[1stBadv].

It remains to prove Lemma 3.3 for u ≤ v, which we do by reduction to the tag-
nmCPA security of the component encryption scheme E . Before giving a detailed
reduction, let us start with a high level description. We need to switch the u’th
output ciphertext from real to an encryption of 0k. First, let us switch how the
u’th output ciphertext is generated, by always choosing the codeword symbols cj

in positions j ∈ S∗ uniformly at random and then choosing the remaining code-
word symbols via the Extend procedure to ensure that the codeword encodes
the intended plaintext – by definition, this yields an identically distributed code-
word. Second, let vk∗ be the verification key in the u’th output ciphertext. We
switch how all the oracle queries are answered: instead of decrypting with the
real secret key, we will decrypt each input ciphertext that has verification key
vk′ using some row i in which the i’th bit of vk∗ and vk′ differ. By Fact 3.7, if
the bad event does not occur before the v’th query, then all the oracle queries
are answered identically independent of which row i is used, and therefore this
change cannot affect the probability of the event 1stBadv occurring. With the
above changes, the oracle queries are answered without any knowledge the com-
ponent secret keys dki,j,vk∗

i
for i ∈ [κ], j �∈ S∗. Intuitively this lets us replace

the encrypted value in the u’th output ciphertext from real to an encryption of
0k, since the only component ciphertexts that depend on the plaintext are those
encrypted under component public keys eki,j,vk∗

i
for i ∈ [κ], j �∈ S∗, for which

the secret keys are no longer used by the oracle. However, although these secret
keys are not used by the oracle, they are needed to check if the event 1stBadv

occurred, since this depends on all the components of all input ciphertexts in
oracle queries 1, . . . , v. The key insight is that we can rely on non-malleability
security of the component scheme to check if the event 1stBadv occurred by
making one parallel decryption query on all these ciphertexts at the very end of
the game.

To make the above formal, fix some u ≤ v ∈ [q], and we describe a tag-
nmCPA attacker against the component encryption E , whose advantage is equal
to

∣
∣PrHu−1|v [1stBadv] − PrHu|v [1stBadv]

∣
∣ =

∣
∣PrHu−1 [1stBadv] − PrHu

[1stBadv]
∣
∣.

The Reduction. The tag-nmCPA attacker, denoted B, begins by choosing at
random a signature key-pair (sk∗, vk∗) ← GenS(1λ) and a size-t subset S∗ ⊂
[n]. It also chooses at random κ(n + t) key-pairs for the component encryption
scheme, setting (dki,j,b, eki,j,b) ← GenE(1λ) for every i ∈ [κ], j ∈ [n] and b = vk∗

i ,
and also for every i ∈ [κ], j ∈ S∗ and b = vk∗

i . In words, B chooses one of every
pair of keys (i, j, b) for j /∈ S∗ (corresponding to the bit b = vk∗

i ), and both keys
(i, j, 0), (i, j, 1) for j ∈ S∗.

B then receives κ(n − t) public keys from its challenger, and assigns them to
the missing positions (i, j, b) for j /∈ S∗ and b = vk∗

i . This completes the public
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key for the compound scheme, ek′ =
{
eki,j,b : b ∈ {0, 1}, i ∈ [κ], j ∈ [n],

}
, which

B sends to the 1-FuncCPA+ attacker A.
We note that component secret keys that B knows allow it to decrypt all

input ciphertext queries, except those with verification key vk∗. Indeed for every
other verification key vk �= vk∗ there is at least one index i∗ with vki∗ �= vk∗

i∗ ,
and therefore B has a full functioning compound secret key

dk′ =
(
i∗, S∗,

{
dki,j,b : b ∈ {0, 1}, i = i∗ or j ∈ S∗})

,

that it can use to decrypt. (Moreover, by Fact 3.7, if Badv doesn’t happen then
A will not be able to tell which row was used to answer that query.)

Next, B needs to answer the functional re-encryption queries that A makes.
Let (ct′k, fk) be the k’th functional re-encryption query of A. We can assume
that the verification keys in all the input ciphertexts ct′k are different from vk∗

since (a) for k ≤ u A has no information yet on vk∗ and therefore vku �= vk∗

except with a negligible probability, and (b) for k > u we get vkk �= vk∗ since
A is a conforming adversary. Hence, by the observation above B can decrypt all
these queries. Let ptk be the plaintext that B decrypts for the k’th query. B
replies to the functional re-encryption queries as follows:

– For k = 1, 2, . . . , u − 1, B answer these queries simply by encrypting the
all-zero plaintext.

– For k = u + 1, . . . , v, B replies to the k’th query by encrypting fk(ptk).
– For k = u, B uses its challenge-ciphertext oracle for the component scheme: B

first chooses at random some y ← Σt and extends it to get separate encodings
of both the all-zero plaintext as well as the plaintext fk(ptk). Namely it sets
ck,0 := Extend(0k, y, S∗) and ck,1 := Extend(fk(ptk), y, S∗). (Note again that
ck,0, ck,1 agree on all the columns in S∗, c0,k|S∗ = c1,k|S∗ = y.)

B makes a call to its challenge-ciphertext oracle, relative to all the κ(n − t)
component public keys that it received from its challenger, specifying the
words (c0,k

j : j /∈ S∗) and (c0,k
j : j /∈ S∗) for each “row” i of public keys. It

receives back the ciphertexts {cti,j,b : i ∈ [κ], j /∈ S∗, b = vk∗
i }, encrypting

one of these two words in all the rows. B extends them to a full compound
ciphertext by encrypting the symbols in y for the columns in S∗ (which are
the same between ck,0 and ck,1), relative to the appropriate public keys eki,j,b

for all i ∈ [κ], j ∈ S∗ and b = vk∗
i .

Concatenating all these component ciphertexts to a vector �ct, B uses the
signing key vk∗ to generate a signature σ∗, and replies to A with the output
ciphertext ct′u = (�ct, vk∗, σ∗).

Depending on the answer from the challenge-ciphertext oracle of B, this is
indeed a valid encryption of either the all-zero plaintext or the plaintext
fk(ptk). Moreover, since Extend(· · · ) yields the same distribution on code-
words as E(· · · ), then we also get the right distribution for this output cipher-
text.
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Finally, after A makes its v’th functional re-encryption query, B uses its parallel
decryption query to determine if the event 1stBadv happened. This decryption
query includes all the component ciphertexts in all the functional re-encryption
queries k = 1, 2, . . . . , v, for which B is missing the component secret key.

Importantly, the tags in all these queries are different than the tag vk∗ that
B used for the query to its challenge-ciphertext oracle, hence this is a valid
decryption query that B is allowed to make. Also, we note that a single decryp-
tion query at the end is sufficient, B does not need to make adaptive queries.
Given these decryptions, B can determine if the event 1stBadv occurred or not,
outputting 1 if it occurred and 0 if not.

Analysis of the Reduction. Denote by H ′
u−1 the reduction experimenter where

B’s challenge-ciphertext oracle encrypts the encoded all-zero plaintext, and by
H ′

u the reduction where the oracle encrypts the encoded fu(ptu). Note that the
only difference between H ′

u−1 and the hybrid Hu−1 is that in Hu−1 the same
row is used to decrypt all the queries, whereas B uses different rows for different
queries in H ′

u−1 (and the same holds for H ′
u vs. Hu).11

However, due to Fact 3.7, as long as none of the bad events Bad1, . . . ,Badv−1

happen, the view of A is independent of the row that was used to decrypt. And
as soon as any of these events happen, we are ensured that 1stBadv does not
happen (in any of H ′

u−1,Hu−1,H
′
u, and Hu). It follows that PrH′

u−1
[1stBadv] =

PrHu−1 [1stBadv] and PrH′
u
[1stBadv] = PrHu

[1stBadv]. Hence the advantage of B
in the tag-nmCPA game is exactly

∣
∣
∣
∣
∣

Pr
H′

u−1

[1stBadv] − Pr
H′

u

[1stBadv]

∣
∣
∣
∣
∣
=

∣
∣
∣
∣ Pr
Hu−1

[1stBadv] − Pr
Hu

[1stBadv]
∣
∣
∣
∣ ,

as needed. This completes the proof of Lemma 3.3.

Proof of Lemma 3.4. For all v ∈ [q] there is a negligible function negl(·) such
that PrHq

[Badv] < negl(λ).

Proof. Recall that in the hybrid Hq, all functional re-encryption queries are
answered with a fresh encryption of the all-zero plaintext, regardless of the input
ciphertext. Hence, the view of A in that hybrid is independent of the set S∗ of
columns that is used to check the ciphertext during decryption. We can therefore
analyze the probability of the event Badv in a modified game, in which the set
S∗ is chosen at random after the v’th decryption query.

Let ct′ = (�ct, vk, σ) be the input ciphertext in the v’th query, and denote
by ci ∈ {0, 1,⊥}n the word obtained by decrypting the i’th ciphertext row. To
trigger the bad event Badv, the first conditions says that ct′ must be an invalid
ciphertext, so there are indices i1, i2 ∈ [κ], such that D′(ci1) = c̄ = (γ̄1, . . . , γ̄n),
but ci2 = (γi2,1, . . . , γi2,n) is at Hamming distance more than d from c̄. But in
that case the probability (over S∗ chosen as a random size-t subset of [n]) of the
second condition holding, γi2,j = γ̄j for all j ∈ S∗, is bounded by (1− d

n )t ≤ 2−λ.
11 An “invisible” difference is that u’th output ciphertext is computed using Extend

rather than applying the encoding E(· · · ), but this produces the same distribution
over the codewords.
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Proof of Lemma 3.5. For all u ∈ [q] there is a negligible function negl(·) such
that ∣

∣
∣
∣Pr
Hu

[A → 1 & Bad] − Pr
Hu−1

[A → 1 & Bad]
∣
∣
∣
∣ ≤ negl(λ).

Proof. The proof is nearly identical to Lemma 3.3, by reduction to the tag-
nmCPA-security of the component encryption scheme E . The only differences
are (a) the reduction continues all the way to the end of the game (rather than
aborting it after the v’th functional re-encryption query), and (b) the reduction
algorithm’s output at the end is calculated differently.

Specifically, the tag-nmCPA attacker B begins exactly the same as in the
proof of Lemma 3.3, and answers functional re-encryption queries of A in exactly
the same way. Once A halts with some output bit b, the attacker B uses its par-
allel decryption query to determine if the event Bad happened. This decryption
query includes all the component ciphertexts in all the functional re-encryption
queries k = 1, 2, . . . , q, for which B is missing the component secret key. (As
before, the tags in all these queries are different than the tag vk∗ that B used
for the query to its challenge-ciphertext oracle, hence this is a valid decryption
query that B is allowed to make.) Given these decryptions, B can determine if
the event Bad occurred or not. B then outputs 1 if A returned 1 and Bad did
not occur, and 0 otherwise.

As in the proof of Lemma 3.3, the view of A in the reduction is identical to
its view in the hybrids Hu−1 or Hu as long as the event Bad did not occur, and
therefore the advantage of B is equal to |PrHu

[A → 1 & Bad] − PrHu−1 [A →
1 & Bad]|.
Remark 3.8. We note that since we applied the CDMW transformation to a
non-malleable scheme (which is in particular CPA secure), then the resulting E ′

is also non-malleable, not just 1-FuncCPA+ secure. In fact, it can simultaneously
withstand any number of adaptive functional re-encryption queries and a single
parallel decryption query at the end of the game.

On the other hand, it is easy to see that this scheme is not CCA-secure (not
even CCA1-secure). This is true for the same reason that the original CDMW
transformation fails to produce a CCA-secure scheme: An attacker with adaptive
access to a decryption oracle can use that oracle to detect the columns in the
special subset S∗, then figure out the special row i∗, and then completely break
the scheme.

3.5 Extension to General FuncCPA-Security

The proof of Lemma 3.2 extends easily to show multi-input FuncCPA+ security,
and not just 1-FuncCPA+ security. In fact, the proof is essentially identical with
minor syntactical modifications:

– The simplifying assumptions on the adversary remain the same, but now there
are multiple input ciphertexts for each query. In particular, without loss of
generality, we can assume that (a) none of the input ciphertexts in any query
are equal to any previous output ciphertext, (b) the signatures of all of the
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input ciphertexts verify correctly, (c) the sets of verification keys in the input
ciphertexts is disjoint from that in the output ciphertexts.

– We define the Bad event for a multi-input query is triggered if any of the
ciphertexts in that query satisfy the original definition of the Bad event.

– The rest of the proof proceeds identically. In the proof of Lemma 3.4, we
need to take an additional union bound over all � input ciphertexts in the
v’th query.

4 Conclusions and Open Problems

In this work we proved that FuncCPA secure encryption can be constructed
from any CPA scheme, essentially by applying twice the CPA-to-mnCPA trans-
formation of Choi et al. [3]. A remaining open problem is to come up with
simpler constructions, and in particular to resolve the question of whether a
single application of this transformation suffices.

A similar question can be asked about non-functional re-encryption oracles,
if it is easier to construct a secure scheme against non-functional re-encryption
oracles from CPA than one secure against functional re-encryption? We remark
that sometimes it is easier to withstand non-functional re-encryption. For exam-
ple, ElGamal encryption is easily seen to be secure against non-functional re-
encryption. However, we do not know if it can be proven secure against func-
tional re-encryption under a reasonable assumption (or, conversely, if there is
some surprising attack). More generally, it might be interesting to build natural
number-theoretic FuncCPA+-secure scheme which are not CCA1-secure.

Another open problem is the relation between FuncCPA and FuncCPA+:
we have shown implication in one direction (and separation for non-functional
re-encryption oracles), but the other direction for functional re-encryption ora-
cles remains open. If the general separation is found, it would be interesting to
see if there are any real-world applications which require the stronger form of
FuncCPA+ security, and could be insecure with FuncCPA security.

More generally, it would be good to find more applications of FuncCPA and
FuncCPA+ encryption schemes.

A Direct Implications and Separations

It follows directly from the definitions above that every CCA2-secure scheme is
also nmCPA-secure, which is in turn also CPA secure. Additionally, in Lemma 2.5
we prove that every FuncCPA+-secure scheme is also FuncCPA-secure, which is
in turn CPA secure by definition. Here we study the other (non-)implications.

First, while our intuition tells us that every CCA2-secure scheme should also
be FuncCPA+ secure, we note that this implication is not completely straightfor-
ward, because the FuncCPA attacker is allowed to copy the challenge ciphertext
for its re-encryption queries, while the CCA2-attacker is not allowed to do so.
Nonetheless, we show that our intuition is still correct. In fact, we show that
already (weaker) CCA1-security implies FuncCPA+ security.
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Lemma A.1. Every CCA1-secure encryption scheme is also FuncCPA+-secure.
(In particular, CCA2-security implies the original FuncCPA-security.)

Proof. Let q be the overall number of re-encryption queries made by the
FuncCPA+-attacker A. For 0 < i ≤ q, we define hybrid Hi where the first i
re-encryption queries (�ct, f) by A return E(ek, f(Dec(dk, �ct))), and the remain-
ing (q − i) queries return E(ek, 0). By hybrid argument it is enough to prove
that Hi is indistinguishable from Hi+1, for every 0 < i ≤ q, as H0 and Hq

corresponding to b = 0 and b = 1 experiments, respectively.
For the latter, we have the following almost immediate reduction to CCA1-

security from Definition 2.2. To simulate the j-th query (ctj , fj) of an attacker A
claiming to distinguish Hi from Hi+1, the CCA1 attacker B does the following:

– For j < i, query its decryption oracle O1 on the ciphertexts in �ctj , obtaining
plaintexts �ptj .
Compute pt′j = fj(�ptj), and return to A an honestly generated ct′j =
Enc(ek, pt′j).

– For j = i, query its decryption oracle O1 on the ciphertexts in �cti, obtaining
plaintexts �pti.
Compute pt∗ = fi(�pti), and submit the tuple (pt∗, 0) as its challenge.
Finally, return to A the resulting challenge ciphertext ct∗ to the attacker.

– For j > i, ignore (�ctj , fj), and return E(ek, 0) to A.

For b = 0, this run of B is a perfect simulation of Hi, while for b = 1 it is a
perfect simulation of Hi+1, completing the proof.

In the opposite direction, Akavia et al. demonstrated in [1] that (somewhat
surprisingly) CPA security of a scheme does not imply even the most basic
ReEncCPA security of the same scheme. Below we extend their example to
show that non-malleability (i.e., nmCPA-security) of a scheme also does not
imply even ReEncCPA security. We also demonstrate that even FuncCPA+

security does not imply nmCPA-security.

Lemma A.2. If nmCPA-secure encryption schemes exist, then there exists a
nmCPA-secure encryption scheme which is not ReEncCPA-secure. Conversely,
if FuncCPA+-secure encryption schemes exist, then there exists a FuncCPA+-
secure encryption scheme which is not nmCPA-secure.

Proof. Starting from the easy separation, we can append 0 to all honestly
produced ciphertexts in a FuncCPA+-secure encryption scheme, and have the
decryption oracle simply ignore this appended bit. This clearly does not change
FuncCPA+-security, as all honestly re-encrypted ciphertexts will still end with 0.
However, the scheme is obviously malleable, by flipping the last bit of the chal-
lenge ciphertext from 0 to 1, and calling the decryption oracle of the resulting
(formally “distinct”) ciphertext.

For the other separation, let E = (Gen,Enc,Dec) be a scheme which is
nmCPA-secure according to Definition 2.2, and we modify it into a scheme
E ′ = (Gen′,Enc′,Dec′) as follows:
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– Gen′ just runs Gen twice, outputting the two pairs ((dk, dk′), (ek, ek′)).
Roughly, dk, ek are the “real keys” for decryption and encryption, whereas
dk′, ek′ are used for signalling various events.

– The new encryption Enc′((ek, ek′), pt) checks if pt is the secret key corre-
sponding to either ek or ek′:

• If pt is the secret key corresponding to ek or ek′ then output 1|pt,
• Otherwise output 0|Enc(ek, pt).

– The new decryption Dec((dk, dk′), ct′) parses ct′ = b|ct with b ∈ {0, 1}, then
proceeds as follows:

• If b = 1 and ct = dk′ then output dk,
• If b = 1 and ct �= dk′ then output dk′,
• Otherwise output Dec(dk, ct).

It is easy to see that the modified E ′ is still nmCPA-secure: An nmCPA attack
on E ′ can be turned into nmCPA attack on the underlying E by having the
reduction generate (dk′, ek′) itself, then simulate the sole decryption query to E ′

using its decryption oracle to E : Unless the E ′ attacker guesses dk′ (on which it
has no information other than seeing ek′), then it cannot trigger the 1st bullet
on decryption above.

On the other hand, it is easy to see that a ReEncCPA attacker can break
this scheme completely, first making a query with ct = 11 . . . 1 to get 1|dk′, then
making a second query with 1|dk′ to get “the real key” dk.

Next, we show separation between ReEncCPA and ReEncCPA+ notions (and
conjecture that similar separations hold for FuncCPA and 1-FuncCPA notions).

Lemma A.3. If ReEncCPA-secure encryption schemes exist, then there exists
a ReEncCPA-secure encryption scheme which is not ReEncCPA+-secure.

Proof. Let E = (Gen,Enc,Dec) be a scheme which is ReEncCPA-secure accord-
ing to Definition 2.2, and we modify it into a scheme E ′ = (Gen′,Enc′,Dec′)
as follows: The key generation remains unchanged, Gen′ = Gen. Encryption is
modified by setting

Enc′(ek, pt) =

{
11 . . . 1 if pt is a decryption key corresponding to ek

0|Enc(ek, pt) otherwise.

(Note that it is possible to check efficiently whether the condition above holds.)
Decryption is also modified, as follows:

Dec′(dk, ct′) =

{
dk if ct′ begins with a 1
Dec(dk, ct) if ct′ = 0|ct.

It is easy to see that E ′ is still ReEncCPA-secure according to Definition
2.2 (with a non-functional decryption oracle), since access to the oracle for E ′

can be perfectly simulated using access to the oracle for E . (Indeed ciphertext
beginning with 1 are answered with 11 . . . 1 and ciphertexts beginning with 0 are
answered as in E , with a zero prepended to the reply.) On the other hand, it is
easy to distinguish a true re-encryption oracle from a zero-encrypting one, just
by querying it on any ciphertext that begins with a 1.
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Finally, we show that a 1-FuncCPA+-secure scheme is not necessarily
FuncCPA-secure (and, thus, not necessarily FuncCPA+-secure), assuming the
existence of CCA-secure schemes.

Lemma A.4. If CCA-secure encryption schemes exist, then there exists a 1-
FuncCPA+-secure encryption scheme which is not FuncCPA-secure.

Proof. Let E = (Gen,Enc,Dec) be a CCA-secure scheme, and let OWF (·) be
a one-way function. (Recall that CCA-secure encryption implies the existence
of one-way functions.) Consider the modified scheme E ′ = (Gen′,Enc′,Dec′),
defined as follows:

– Gen′(1λ) runs the underlying key-generation (dk, ek) ← Gen(1λ), and in addi-
tion chooses two uniformly random and independent strings r, s ← {0, 1}λ

and sets y = OWF (r ⊕ s). The public key is ek′ = (ek, y) and the secret key
is dk′ = (dk, r, s).

– Enc′(ek′, pt): If y = OWF (pt) then output pt, else output (0,Enc(ek, pt)).
– Dec′(dk′, (b, ct)): If b = 0 then output Dec(dk, ct). If b = 1 then output r, if

b = 2 then output s.

We show that E ′ is 1-FuncCPA+-secure, but not FuncCPA-secure. To see that E ′

is 1-FuncCPA+-secure, let us again consider only adversaries that never use the
answers from previous re-encryption queries as inputs to future queries. (As we
argued before, we can make this assumption without loss of generality.) Fixing
one such adversary, we consider a sequence of hybrids, where in the i’th hybrid
the first i − 1 queries are answered by encryption of 0, and the i’th query and
later are answered by the single-ciphertext re-encryption oracle. Arguing that
hybrid i is indistinguishable from hybrid i + 1 is done in two steps:

– We first argue that the i’th query will not decrypt to r ⊕ s (except with a
negligible probability), by reduction to the one-wayness of OWF (·). Here, the
reduction algorithm is given the secret key dk of the underlying encryption
scheme Enc.

– Then we replace the i’th query answer by an encryption of zero, and argue
indistinguishability by reduction to the CCA-security of the underlying
scheme E . Here the reduction algorithm is given access to the decryption
oracle of E , that allows it to simulate the answers to all future queries.

On the other hand, it is clear that E ′ is not FuncCPA-secure. The multi-
ciphertext re-encryption oracle is easily distinguishable from a zero-encrypting
oracle, because it enables easy extraction of a pre-image of y under OWF (·):
The multi-ciphertext query (ct1 = (1, 0λ), ct2 = (2, 0λ), f = ⊕) will decrypt ct1
to r and ct2 to s, then compute x = f(r, s) = r ⊕ s, and applying the modified
encryption procedure it will return the pre-image x. (As above, obtaining a pre-
image of y is hard given a zero-encrypting oracle, by reduction to the one-wayness
of OWF (·).)
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Abstract. Registration-based encryption (RBE) [11] is a primitive that
aims to offer what identity-based encryption (IBE) [2] offers without the
so-called key-escrow problem. In RBE parties who wish to join the sys-
tem will generate their own secret and public keys and register their
public keys to a transparent party called key curator (KC) who does not
have any secret state.

The initial constructions of RBE made non-black-box use of building
block primitives, due to their use of either indistinguishability obfus-
cation [11] or some garbling scheme [12]. More recently, it was shown
[14,17] how to achieve black-box constructions of (variants of) RBE and
even stronger primitives based on bilinear maps in which the RBE is
relaxed to have a CRS whose length can grow with the number of reg-
istered identities. Making cryptographic constructions in general, and
RBE in particular, black-box is an important step as it can play a signif-
icant role in its efficiency and potential deployment. Hence, in this work
we ask: what are the minimal assumptions for black-box constructions of
RBE? Particularly, can we black-box construct RBE schemes from the
same assumptions used for public-key encryption or simpler algebraic
assumptions that hold in the generic group model?

In this work, we prove the first black-box separation results for RBE
beyond the separations that follow from the observation that RBE black-
box implies public-key encryption. In particular, we answer both of the
questions above negatively and prove that neither trapdoor permutations
nor (even Shoup’s) generic group model can be used as the sole source
of hardness for building RBE schemes. More generally, we prove that a
relaxation of RBE in which all the keys are registered and compressed
at the same time is already too complex to be built from either of the
above-mentioned primitives in a black-box way. At a technical level, using
compression techniques, we prove lemmas in the TDP and GGM oracle
settings that prove the following intuitive yet useful fact: that compact
strings cannot signal too many trapdoors, even if their generation algo-
rithm takes exponential time. Due to their generality, our lemmas could
be of independent interest and find more applications.
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1 Introduction

Registration-based encryption (RBE) [11] is a primitive that aims to offer what
identity-based encryption (IBE) [2] offers while avoiding the key-escrow problem.
Indeed, IBE suffers from the fact that the third party, (i.e., the private-key
generator,) has a universal trapdoor, (i.e., the master secret key,) allowing it to
decrypt all messages encrypted using the public parameter. However, in RBE,
identities generate their own secret and public keys and then simply register their
public keys to a transparent (public-state) entity, called the key curator (KC).
All KC does is accumulating and compressing the registered public keys in an
online fashion as more and more identities register in the system. Several works
were proposed to add even more desirable properties to RBE. [12] showed how
to base RBE on standard assumptions. [15] constructed verifiable RBE, where
the KC can give succinct proof for the existence/non-existence of users in the
system. In [24], blockchain was used to construct transparent RBE, making the
system even more decentralized by letting the individual participants instead
of the KC manage the keys. Inspired by RBE, more advanced primitives were
defined and constructed, including registered attribute based encryption (ABE)
[17] and registered functional encryption (FE) [6,10].

The initial constructions of RBE were all non-black-box, in the sense that
implementing them required knowing the implementation details of at least one
of the primitives that were used in those constructions. This was due to use of
code obfuscation [11] and/or garbled circuits [12] in such constructions. This was
an undesired state of affair, as non-black-box constructions are more likely to be
inefficient for practical use, and indeed RBE is yet to become practical enough
for real world deployment. This is in contrast with the closely-related primitive
of IBE for which black-box constructions from pairing-based assumptions on
bilinear maps exist [1,2].

More recently, the works of [14,17] showed how to achieve black-box construc-
tions of RBE, provided that it is relaxed so that the common reference string
(CRS) can grow as a function of the total number of registered identities.1 These
works suggest that perhaps even standard RBE could at some point be realized
based on well-founded assumptions in a black-box manner. In the meantime, in
this work, we focus on a tightly related question: if we could base RBE on black-
box assumptions, how simple those assumptions need to be? In particular, what
are the black-box minimal assumptions for constructing RBE? To answer this
question, we also need to understand the black-box barriers that arise against
building RBE from the more desirable type assumptions. In particular, prior to
our work, it was not known whether RBE can be solely based on the assumption
that public-key encryption (PKE) exists.2 Moreover, it was not known whether
simpler algebraic assumptions than those on bilinear maps (e.g., assumptions

1 The work of [17] further generalizes the primitive to attribute-based encryption and
constructs registered ABE, while further relaxing the primitive and allowing inter-
active registration.

2 Note that PKE is indeed necessary for RBE in a black-box way.
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that hold in the generic group model) may suffice for RBE in a black-box way.
We emphasize that although it is known how to bootstrap RBE to IBE [4,7],
black-box separations known for IBE [3] do not automatically carry over to RBE,
as the bootstrapping is non-black-box.

1.1 Our Results

One approach to study the black-box complexity of RBE is to study the pos-
sibility of constructing it in idealized models that provide PKE or simple alge-
braic assumptions for free. In particular, the random trapdoor permutation
(TDP) oracle model provides (CCA-secure) PKE (among other primitives such
as collision-resistant hashing) as a black-box. Moreover, the generic group model
(GGM) [18,23] is an idealized model in which assumptions such as hardness of
discrete logarithm, CDH (computational Diffie-Hellman assumption), and even
DDH (decisional Diffie-Hellman assumption) hold. Hence, it is a very natural
model for studying the possibility of realizing RBE from those assumptions,
which is the approach that we pursue as well.

In this work, we prove the first non-trivial black-box separations about the
complexity of RBE. In particular, we prove the following theorem.

Theorem 1 (Main results – informal). There is no black-box construc-
tion of RBEs in either of the idealized models of random trapdoor permutations
(TDPs) or Shoup’s generic group model. Our impossibility results hold even if the
CRS in RBE can grow (polynomially) with the number of registered identities.

In particular, what we prove is that there is no construction of RBEs whose
security is solely based on the idealized models stated in Theorem 1. We do so
by proving that such schemes can be broken by a polynomial-query attacker.
This is sufficient for ruling out a fully black-box construction [20]. Ruling out
constructions of RBE in the idealized model of TDPs would also rule out using
any primitive P (or rather sets of primitives) that can be constructed from TDP
oracles in a black-box way (e.g., collision-resistant hash functions and public-
key encryption). Ruling out RBE in the GGM would also prove a black-box
separation from concrete assumptions that hold in this model (e.g., DDH).

In Sect. 2, we give an in-depth technical overview of the proof of Theorem 1.
However, here we present some high level discussions about Theorem 1 and why
it does not follow from previous separations known for IBE.

Public-key Compression. We prove Theorem 1 by demonstrating a more general
result about a primitive that is weaker than RBE and yet is black-box implied
by RBE; we refer to that primitive as public-key compression (or PKCom, for
short). PKCom can be thought of as a static variant of RBE. In PKCom a
polynomial number of identities who have generated their own public and secret
keys all arrive at the same time. Then, they send their public-keys pk1, . . . , pkn

to be compressed by the key curator (KC) in “one shot”. Then, the compressed
public parameter pp is broadcast by the KC to the registered identities and can
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be used similarly to the public parameter of IBE to privately encrypt messages
to registered identities. When it comes to decryption, all parties will have access
to each other’s public keys as well as their own secret key, but of course they
do not have access to each others’ secret keys. A very closely related primitive
to PKCom (called slotted registered ABE, as a generalization of IBE) is also
introduced in [17] and is shown to be black-box equivalent to RBE. However,
our primitive is still weaker, as it works with the fixed identities set {1, 2, . . . }
rather than arbitrary strings. These limitations make our impossibility result
stronger.

Main Challenge for Proving Separations for RBE. By now, multiple black-box
separations are known for assumptions behind IBE. Boneh et al. [3] proved that
IBE cannot be black-box constructed from random trapdoor permutations, and
the works of [19,25] showed that IBE cannot be built in what is known as
Shoup’s generic group model [23].3 However, we emphasize that, none of these
works imply a separation for registration based encryption (and its relaxation
PKCom). Below, we first describe the similarities between the two settings, and
then we describe the major difference between them.

The core reason underlying both impossibilities for IBE and ours for RBE
is that a compact public parameter (pp) cannot encode enough information for
securely encrypting to more than an a priori bounded number of identities. How-
ever, when it comes to RBE, there is a big difference that makes the previous
IBE separation techniques come short. The IBE separation proofs [3,25] proceed
by crucially relying on the bounded running time of the setup algorithm: in an
IBE scheme, the setup algorithm, which generates (pp,msk), makes a fixed poly-
nomial q number of (pk, sk) (trapdoor) queries to its oracle. So, if one corrupts
a sufficiently larger-than-q number of random identities and extracts their ded-
icated trapdoors (say by repeated decryptions), the attacker will then recover
all the needed trapdoors and can decrypt the challenge ciphertext of a non-
corrupted identity as well. This “combinatorial” argument, however, completely
breaks down when we move to RBE. Indeed the running time of generating a
public parameter of an n-user RBE grows with the parameter n itself, because
this public parameter is generated through n registration steps. Therefore, the
“setup” procedure (as analogous to IBE) that generates the public parameter
might be asking n or more trapdoor queries.

Compression Techniques. To get around the above challenge, we introduce new
compression techniques to prove exactly that a short pp still cannot encode
enough information for all n users, regardless of how much time it takes to gen-
erate it (see more on this in the technical overview). In fact, our new compression
tool, stated in Lemma 2, (i.e., a bounded-size message/pp cannot compress too
many trapdoors no matter how long it takes to generate it) proves a basic and

3 More specifically, [19] claimed the result in a model that is a mixture of Maurer’s [18]
and Shoup’s [23] models. Then, [22] proved (a tight) separation in Murer’s model,
and finally, [25] proved the separation of IBE in Shoup’s model.
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intuitive fact that could potentially find other applications beyond RBE. For
starters, it already allows us to rule out black-box construction of “leveled” IBE,
where the number of users n is known during setup and the setup time is allowed
to grow with n while the pp is compact, from the GGM. None of the previous
IBE separation techniques allows for proving such an impossibility.

Shoup’s GGM vs. Maurer’s GGM. In Shoup’s GGM [23] group elements do have
(random-looking) representations. Therefore, impossibility results in this model
imply further black-box separations (e.g., from public-key encryption). However,
these corollaries do not automatically follow from results that the primitive is
impossible in Maurer’s model [18], in which group operations are outsourced
to a black-box oracle. In fact, proving the impossibility of a primitive X in
Maurer’s model does not even imply that X is black-box impossible from PKE.
In particular, some impossibility results in Maurer’s GGM cannot be extended
to Shoup’s model; e.g., [21] ruled out sequential (delay) functions in Maurer’s
generic group, while such functions can be obtained from random oracles, which
in turn can be obtained in Shoup’s model. As another example, there exists
natural DDH-based constructions of primitives such as rate-1 OT and private-
information retrieval (PIR) in Shoup’s model [8], yet these primitives can be
proved impossible in Maurer’s group. Thus, proving an impossibility in Shoup’s
model gives the stronger and more meaningful impossibility. See [25] for more
discussion on this topic.

Limits of RBE in Maurer’s GGM. For the reasons above, in this work we aim for
proving impossibility of RBE (and PKCom) in Shoup’s GGM. Having said that,
we first show that a separation of RBE/PKCom in Maurer’s GGM can indeed be
proved as well. Our starting point for showing this barrier is the work of [22] that
ruled out identity based encryption in Maurer’s GGM. Despite focusing on IBE,
their proof does not care about the exact running time that it takes to generate
the public parameter, and it only relies on the number of group elements that
are explicitly planted in the public parameter. This makes their result general
enough to be basically applicable to our PKCom as well, if one opens up their
proof to adapt it to RBE. One limitation of this result, however, is that it does
not allow CRS to be present, and we particularly would like to even allow our
PKCom (and RBE) schemes to have CRS that can grow with the number of
identities. Such extensions would make our impossibility result complement the
recent positive (black-box) results of [14,17] in which hardness assumptions in
pairing-based groups are used to construct RBEs with polynomially long CRS.
The follow-up works of [5,9] further generalized the initial impossibility of [22]
to the point that we could use their results to formally obtain an impossibility of
RBE from Maurer’s GGM as corollary, even with polynomially long CRS. The
reason is that RBEs, just like IBEs, can be used to obtain signature schemes
using the so-called Naor’s trick,4 and the works of [5,9] do indeed rule out the

4 This is done by interpreting the decryption keys as signatures over the identity’s
names interpreted as messages.
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existence of digital signatures for a polynomially large message space in Maurer’s
GGM, even if the scheme has a polynomially long CRS.

2 Technical Overview

We prove that public-key compression schemes cannot be built in a black-box
way from TDPs or in the Shoup generic group. Since RBE and PKCom are
black-box equivalent, our impossibility results will also apply to RBE.5

We prove our two impossibility results by showing that relative to a ran-
dom TDP oracle or a GGM oracle with explicit random labels (i.e., Shoup’s
model [23]), PKCom cannot exist so long as its security is solely based on the
oracle model. More specifically, we show that any purported PKCom construc-
tion relative to either a random TDP oracle a GGM oracle can be broken by an
adversary who makes a polynomial number of queries, while the adversary can
do unbounded amount of computation independent of the oracle.

Outline. We follow the approach of Zhandry [25] for proving our impossibility
results. Zhandry proved that a special type of signature schemes, simply called
restricted signatures, defined in an oracle model, cannot be realized relative to
any oracles. Thus, to prove an impossibility of a primitive X relative to an oracle
O, it suffices to show how to black-box transform any purported construction of
X relative to O into a restricted signature relative to O without losing correctness
and security.6 The rest follows by the impossibility of restricted signatures.

A restricted signature scheme relative to an oracle O has the nor-
mal algorithms (GenO,SigO,VerO) of a signature scheme, but the verifica-
tion algorithm VerO is restricted in the following way: VerO(vrk,m, σ) =
Ver1(Ver0O(vrk,m), σ), where Ver1 makes no oracle calls and vrk,m, σ denote
the verification key, message and signature, respectively. That is, the verifica-
tion algorithm is restricted in that all oracle queries may be made prior to seeing
the signature σ, and upon seeing σ no further queries are permitted. Zhandry
proved that no restricted signatures exist relative to any oracle O by showing
that any such construction can be broken by an adversary that makes a polyno-
mial number of queries to O. As an example of a non-restricted scheme, consider
Lamport’s signatures from OWFs f . In that construction, σ corresponds to OWF
pre-images, while vrk correspond to OWF image values. To verify a signature σ,
one will check a number of image values against their corresponding pre-images
by calling f , making the construction inherently non-restricted, as expected.

Zhandry proved that certain impossibility results, such as the impossibility
of IBE from GGM [3,19,22], may be proved more naturally using the restricted
signatures methodology. In particular, Zhandry showed that one can black-box
transform any IBE construction IBEGGM relative to a GGM oracle into a restricted
signature EGGM, while preserving its correctness and security.
5 The fact that RBE black-box implies PKCom is straightforward, due to PKCom

being a special case. The converse is also true and is proved in [17].
6 By security, here we refer to security against unbounded poly-query adversaries.
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Target Restricted Signatures. For our impossibility results, we would need to
further modify the notion of restricted signatures and work with a primitive
which we call target-restricted signatures. A target restricted signature is defined
over a message space [n] = {1, . . . , n} (think of n as the number of PKCom users),
where the verification algorithm is restricted as it is in restricted signatures, but
correctness and security only hold with respect to a random target message
chosen as h ← [n], where the verification and signing keys in turn may depend
on h. That is, GenO(1n, h ∈ [n]) outputs a pair of keys (vrk, sgk), and we require
that the following holds. (a) δ-target correctness: for a signature σ derived for the
target message h as σ ← SigO(sgk, h) we have VerO(vrk, h, σ) ≥ δ, where VerO

is restricted as above. (b) Zero-time unforgeability: given vrk (derived based on
a random h ← [n]) and h, no poly-query adversary can forge a signature on h
(Definition 4). We show that Zhandry’s proof with almost no modifications also
shows that target restricted signatures for non-negligible δ’s are impossible.

Transformation. After establishing the notion of target-restricted signatures, the
bulk of our technical work is as follows. For a TDP/GGM oracle O, we show how
to black-box transform a purported PKCom construction CMPO into a δ-correct
target restricted signatures, where δ is non-negligible. This is where our new
compression techniques come into play. Below, we first go over more details of
our techniques for the case of TDP oracle, as it captures most of the challenges.

Warm-up: Restricted Oracle Calls. As a warm-up, first let us consider the case
where the TDP oracles (g, e,d) are used by the PKCom scheme PKComg,e,d, in a
special was as PKComg,e,d := (Keyg,Comg,Ence,Decd), where Key is the (public
and secret) key generation algorithm, Com is the key compression algorithm,
Enc is the encryption algorithm, and Dec is the decryption algorithm. Moreover,
assume we do not have a CRS. This setting is already non-trivial, and helps
us get our main insights across. The TDP oracles are defined randomly while
inducing a permutation over the message space {0, 1}κ (Definition 4). Our goal is
to black-box transform such PKComg,e,d constructions into a restricted signature
relative to (g, e,d) with comparable correctness and security.

Non-restricted Signatures from PKCom. A PKCom scheme over identities [n]
naturally induces a signature scheme using Naor’s trick (that applies to IBE
schemes but can be adapted to RBE as well). In that transformation, the secret
keys of an identity are kept as the signature for that identity’s string. The ver-
ification then proceeds by testing the quality of the decryption key (as the sig-
nature) through repeated encryption and decryptions. This scheme is clearly
not restricted. Below, we first describe construction that is a modification of
Naor’s trick construction which is still not restricted. However, our scheme
has the benefit that we can make it restricted with more modifications which
we will explain below. Let (Keyg,Comg,Ence,Decd) be the purported PKCom
scheme relative to a TDP oracle (g, e,d). A verification/signature key pair
(vrk, sgk) ← GenO(1n, h ∈ [n]) on a target message h ∈ [n] is obtained as follows:
generate n public/secret key pairs {(pki, ski)}i∈[n] by running Keyg(1κ), and let
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QGeni denote the set of query-answer (Q-A for short) pairs obtained for generat-
ing (pki, ski). Let pp := Comg(pk1, . . . , pkn). Output vrk := (pp, {QGeni}i�=h) and
sgk := (skh,QGenh).7 A signature on h is (skh,QGenh). Define VerO(vrk, h, σ) =
Ver1O(Ver0O(vrk, h), σ) as follows: Ver0O(vrk, h) generates a random ciphertext
c for a random message m relative to identity h as c ← Ence(pp, h,m), lets
QEnc contain the Q-A pairs (which are only of e-type), and outputs (m, c).8
Then, Ver1O, given σ := (skh,QGenh) and (m, c), simply decrypts Decd(skh, c)
and outputs 1 iff the decryption outputs m. The signature correct, and is also
secure: if an adversary can forge a signature on a target message h, it can also
decrypt ciphertexts for that target index h under the PKCom scheme. (Under
the PKCom scheme, the adversary can have the secret keys for all but the tar-
get index, since the public keys for all non-target indices are submitted by the
adversary itself. Thus, a PKCom adversary can sample vrk itself.) The signature,
however, is not restricted because Ver1O makes queries in order to decrypt.

Making the Signature Restricted. A first (naive) idea in making Ver1 oracle-
free is to have Ver0O pass QEnc, in addition to (vrk,m, c), onto Ver1, and let
Ver1((vrk,m, c,QEnc), σ), where σ := (skh,QGenh), decrypt Decd(skh, c) while
using QEnc and {QGeni} as hints, and respond to queries whose answers cannot
be determined based on these hints with random values. In more detail, for
an emerged query (which can only be of d-type) qu := ((tk, y) −→

d
?) during

Decd(skh, c) if both of the following hold then respond to qu with x:

(a) There exists a Q-A pair (tk −→
g

ik) ∈ ∪iQGeni for some ik; and

(b) there exists ((ik, x) −→
e

y) ∈ QEnc for some x.

Otherwise (i.e., if at least one of the above does not hold), pick a random answer.
We claim we have correctness. This is because (pki, ski) pairs are all generated
honestly by running Keyg, with {QGeni} being their underlying Q-A pairs, and
that all of d queries during Dec are responded to consistently with those of
{QGeni} and QEnc.

However, we cannot reduce the security of the signature to that of the original
PKCom (so to argue security). For example, suppose the PKCom’s user public-
secret key pairs (pki, ski) are simply random index/trapdoor key pairs (iki, tki)
generated by calling g (i.e., pki = iki). An adversary A may then forge a signature
as σ′ := (˜tkh, (˜tkh −→

g
ikh)), where ˜tkh is just a ‘junk’ value. By Conditions (A)

and (b) above, Ver1((vrk,m, c,QEnc), σ′) will always decrypt c to m, outputting
1. But the forger A has not done anything clever, so we cannot use it in a
reduction to break the security of PKComg,e,d. The reason we cannot prove a
security reduction (for arguing the signature is as secure as the base PKCom)

7 The Q-A sets QGeni’s will not be used in this simple construction, but later one
they will be used when we make the signature restricted.

8 Again, the set QEnc will not be used in this (flawed) construction, but will be used
later when we discuss the fixes.
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is that the verification provides ‘free lunch’ to a forger: inverting images with
respect to an ikh whose trapdoor key may not be known to the forger.

Compression to the Rescue. So far, we have not used the fact that pp is compact
(of size � n), so it is not a surprise we cannot establish a security reduction from
the signature to the PKCom. In other words, by plugging in a trivial PKCom
scheme whose pp contains all public keys, we get a restricted signature against
which there exists a generic attack, but the base PKCom is secure! We should use
the fact that |pp| is compact in order to avoid giving free lunch to a forger in the
above sense. Call an ik valid if ik ∈ g(∗). Assume g is sufficiently length increas-
ing so the only way to produce a valid ik is to call g on a preimage. Our main idea
is as follows: letting QGeni be as above (all formed honestly), there must exist
an index h ∈ [n] such that the set of all valid ik’s that emerge as ((ik, ∗) −→

e
?)

queries during a random PKCom encryption Ence(pp, h, ∗) to index h are a sub-
set of those ik’s for which we have (∗ −→

g
ik) ∈ ∪i�=hQGeni. Call this Condition

cover. We will show in a moment why this condition holds, but let us sketch how
to modify VerO(vrk, h, σ) = Ver1(Ver0O(vrk, h), σ) in light of this fact. First,
Ver0O(vrk, h) outputs (m, c,QEnc), as before. Now Ver1((vrk,m, c,QEnc), σ),
where σ := (skh,QGenh), proceeds exactly as before, except in response to a
query qu := ((tk, y) −→

d
?), Condition (a) above will change to

(A) there exists a Q-A pair (tk −→
g

ik) ∈ ∪i�=hQGeni for some ik.

Now correctness still holds, thanks to Condition cover. (Any ((ik, x) −→
e

y) for a
valid ik has a matching trapdoor key (tk −→

g
ik) ∈ ∪i�=hQGeni. All other decryp-

tion queries may be responded to randomly, without creating inconsistencies.)
We should now have security (at least intuitively), because we do not provide
free lunch to a forger anymore: Ver1 inverts images only for ik’s already covered
in (tk −→

g
ik) ∈ ∪i�=hQGeni, but this information is already available to the adver-

sary itself (as part of vrk). Making this intuition formal, however, requires some
delicate reasoning, which we skip here.

Proving Condition cover via a compression technique. Recall that Ence(pp, ∗, ∗)
only calls e, and the only information it gets regarding g is via pp which in turn
has size � n. It is not hard to see if Condition cover does not hold, then by
performing random encryptions for all indices Ence(pp, 1, ∗), . . . , Ence(pp, n, ∗),
we will end up calling e(ik, ∗) upon at least n different valid ik’s. To see this let Qi

contain any ik such that (∗ −→
g

ik) ∈ QGeni. If cover holds, during Ence(pp, u, ∗),
for any u ∈ [n], we will make a query ((iku, ∗) −→

e
?) for a valid iku where

iku /∈ ∪i�=uQGeni. We claim all iki are distinct, so we will have n distinct valid
idi’s. Assume the contrary and that ik1 = ik2. We know both ik1, ik2 ∈ ∪iQi,
because a valid ik cannot come out of thin air. We also know ik1 /∈ ∪i�=1Qi, and
so ik1 ∈ Q1 \∪i�=1Qi. So, if ik1 = ik2, then ik2 ∈ Q1 \∪i�=1Qi, but this contradicts
the fact that ik2 /∈ ∪i�=2Qi.
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Theorem 2 (Compression, informal). Let pp be any advice string of size
� n generated based on (g, e,d). For any poly-query adversary Ag,e,d(pp), the
probability that A can output a list L of ik’s satisfying the following two conditions
is negligible: (a) L has at least n distinct valid ik’s, and (b) no ik in L was
generated as a result of a g query by A itself.

We show if there exists an adversary in the sense of the above theorem, then
one can compress the oracle g. We prove this via Gennaro-Trevisan style com-
pression techniques [13], later generalized by Haitner et al. [16]. In our theorem
description, the adversary A does not need to know which of the n ik’s are valid:
as long as at least n of them are valid we will prove a compression. Our theorem
description holds even if the adversary makes an exponential number of queries
(for a carefully selected exponential). We believe this technique employed within
black-box separations might find other applications.

Allowing a CRS. We will now sketch how things will be different, still in the
limited-access setting (Keyg,Comg,Ence,Decd), by allowing in a CRS. Sup-
pose the CRS is generated as crs ← CRS(1κ, 1n), and is used in key gen-
eration (pk, sk) ← Keyg(crs). Let us first explain what will go wrong if we
leave the above approach unmodified. Recall that Ver1((m, c,QEnc), σ), where
σ := (skh,QGenh), decrypts Decd(skh, c) and handles a query qu : ((tk, c) −→

d
?)

via Conditions (A) and (b) above. We were able to argue correctness because
for some index h with all but negligible probability, all valid ik’s upon which
we have a query ((ik, ∗) −→

e
?) must have been collected in ∪iQGeni�=h. However,

this fact breaks down in the CRS case, because Ence(pp, h, ∗) might call e upon
an ik that comes from crs, and whose trapdoor key is not collected in any of
∪iQGeni. Thus, responding to inversion queries relative to e(ik, ∗) with random
values during decryption will create an inconsistency, destroying correctness.
Since we aim to argue correctness, suppose (skh,QGenh) were generated hon-
estly. Our solution is based on the following intuition: If a query ((tk, ∗) −→

d
?),

where g(tk) = ik, emerges during decryption of a random encryption relative to
Ence(pp, h, ∗) with good probability, then by choosing many (skh,QGenh) and
forming random encryptions as Ence(pp, h, ∗) and decrypting them back (all
using the real oracles) we should collect these tk values. This encrypt-decrypt
process will be performed by GenO(1n, h ∈ [n]) (the key generation algorithm
of the signature scheme) and all the Q-A pairs are appended to a list T, put
in the final vrk. Back to the above discussion, Ver1((m, c,QEnc), σ) will decrypt
Decd(skh, c) as per QEnc if (I) and (b) holds, where (b) is as above and (I) is as
follows.

(I) There exists a Q-A pair (tk −→
g

ik) ∈ T ∪i�=h QGeni for some ik.

The proof of security is similar to the previous case, based on the intuition
illustrated before.

Finally, for the general case in which oracle access is unrestricted (e.g.,
Keyg,e,d) we define the notion of ‘free lunch’ (which might make room for forg-
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eries) as inversions e−1(ik, ∗), where (∗ −→
g

ik) never appears in QGeni�=h, nor

in any safe lists (e.g., T as explained above, or any ik such that (∗ −→
g

ik) is

generated during Encg,e,d(pp, h, ∗)). The chief challenge is to strike a delicate
balance during the decryption performed by Ver1((m, c,QEnc), σ) in between
not overtly answering all d(tk, y) queries as per QEnc (which will violate secu-
rity) and not answering any queries at all (which will destroy correctness). The
main techniques for establishing such a balance were sketched above, but the
whole analysis for the general case requires more involved reasoning.

Impossibility in Shoup’s GGM. We now describe how to derive a restricted sig-
nature scheme EGRR from a PKCom construction PKComGRR , where the oracle
GRR := (label,add) comes with a labeling oracle label producing labels for
exponents in Zp (where p is the order of the group) and add adds two labels.
We assume label produces labels of sufficiently large length, so that produc-
ing a label without calling label or add is effectively impossible. The general
methodology is as follows, but we need some additional ideas to deal with the
algebraic structure imposed bu groups. To illustrate our core ideas suppose we
have no crs and that Com makes no GRR queries, so the PKCom construction
is as (KeyGRR,Com,EncGRR,DecGRR). Assume wlog all algorithms only have access
to add (access to label can be simulated by including the generator as part of
every input). The algorithms GenGRR and SigGRR and Ver0GRR(vrk, h) are defined
exactly as before. A naive idea for Ver1(vrk,m, σ), where σ := ((skh,QGenh)), is
to answer to an add query ((�1, �2) −−→

add
?) according to what can be inferred

from the collective set of Q-A pairs in ∪iQGeni ∪ QEnc. Namely, consider a
matrix M with columns labeled according to labels present in output responses
to queries in ∪iQGeni∪QEnc. A given Q-A pair ((�, �′) −−→

add
�′′) in ∪iQGeni∪QEnc

is embedded into the matrix M by adding a row, which has a 1 on the �-labelled
column, a 1 on the �′ labeled column and a −1 on the �′′-labeled column. For
brevity, we denote such a row with x� + x�′ − x�′′ . Having formed this matrix
M , suppose Ver1 given a query ((�1, �2) −−→

add
?) checks if an answer is present in

M : namely, if there exists a label �∗ such that x�1 +x�2 −x�∗ ∈ Span(M), where
Span denotes row span; if so, respond with �∗, otherwise with a random label.
This restricted signature scheme is correct (similarly to how we argued before),
but is not secure in the sense of having a security reduction from the signature to
the base PKCom. We will now establish a balancing act (in the sense of before)
as follows. Call a label Known if label−1(�) (its discrete log) is recoverable given
∪i�=hQGeni ∪ QEnc. For GGMs, we will prove a compression theorem (stated
later), which as a consequence implies the following covering condition: with all
but negligible probability, there exists an index h such that during a random
encryption Encadd(pp, h, ∗), if there exists a Q-A pair ((�1, �2) −−→

add
�∗) such

that �∗ 	= ⊥, then �1, �2 ∈ Known. That is, for b ∈ {0, 1}, �b is either already a
label in ∪i�=hQGeni, or is obtained via a sequence of add operations on labels
with known discrete logs. With this intuition mind, Ver1 simulates the response
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to an add query ((�1, �2) −−→
add

?) as follows: if there exists a Known label �∗ such

that such that x�1 + x�2 − x�∗ ∈ Span(M), where Span denotes row span; if so,
respond with �∗, else with a random label. This relaxation enables us to prove
that no security is lost in the process. Finally, we derive the covering condition
above from a compression lemma that we develop and prove in GGMs, which
states given a short advice string pp, one can extract a bounded number of valid
� labels (those in the output of label).

Theorem 3 (Informal). Let pp be any advice string of size � n generated
based on (label,add). For any poly-query adversary Alabel,add, the probability
that A can output a list L of �’s satisfying the following two conditions is negli-
gible: (a) L has at least n distinct valid �’s, and (b) no � in the list was generated
as a result of a label or a add query.

All the statements mentioned after Theorem 2 also hold for Theorem 3. The
proof of this is based on a generalization of the Gennaro-Trevisan compression
techniques [13] to the GGM setting. The GGM setting, due to its algebraic
nature, makes the compression argument more delicate and challenging. Our
techniques may be of independent interest.

Why Going through Restricted Signature Instead of a Direct Proof. Even though
we could write a direct proof that avoids going through the notion of restricted
signatures, by using this approach we also get the benefits of the proof of [25]
for free. In particular, a direct proof would involve the high-level approach of
(1) learning useful information about the oracle, (2) doing a reverse sampling of
the keys and faking a partial oracle to be used for decrypting the challenge, and
(3) analyzing the attack through careful hybrids. However, using the restricted
signature approach allows us to have a more modular proof. In particular, with
this approach Step (2) above would not be needed; all we do is a black-box
reduction between RBE and restricted signatures, and the attack on RBE follows
from the poly-query attack on the signatures that is transformed into an attack
on RBE through the black-box reduction between them. In addition to simplicity
and modularity, as a bonus we could also better explain (in the next paragraph)
the new challenges that arise for our separation proof for RBE, in comparison
with IBE, and how we resolve them.

3 Preliminaries

Proofs. All omitted proofs can be found in the full version.

Notation. We use κ for the security parameter. We write negl(x) for a negligible
function of x. For an integer n, [n] := {1, . . . , n}. We write x ← S (resp.,
x ← D) to denote picking an element uniformly at random from a set S (resp., a
distribution D). By Pr[E;D] we denote the probability of E where D is random
space/process over which E is defined. In general, we use ∗ as a placeholder for
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an arbitrary value. For example, (x, ∗, ∗) is a 3-tuple where the first value is x
and the second and third values are two arbitrary values. For function f , then
f(∗) could denote the range of f (we let the context clarify whether f(∗) refers
to a set or a single unspecified value). For an oracle O = (q1, . . . ,qn) consisting
of n different types of queries, we use (x −→

qi

y) to denote one query of type qi

where the input is x and the output is y. Note that both x and y can be tuples.
Also note that we do not use ∗ as a placeholder for y or any term of y since y is
not arbitrary but depends on x and qi. Finally, we explain how we use ⊂ in this
paper. (Note that ⊆ is used in a similar way.) Since a function is formally defined
as a relation, which is a set, when we write f ⊂ g for two functions f, g, we mean
f (viewed as a relation) is a subset of g (also viewed as a relation), which means
that the domain of f is a subset of the domain of g and it is defined similarly
on those points. For two n-tuples x = (x1, · · · , xn) and y = (y1, · · · , yn), x ⊂ y
if and only xi ⊂ yi for every i ∈ [n]. Since an oracle can be viewed as an n-tuple
of functions, the notation O′ ⊂ O is well defined for two oracles O,O′.

3.1 Public Key Compression

Here we define Public Key Compression (PKCom). This primitive allows n
identities id1, . . . , idn to independently sample their public/secret key pairs
(pk1, sk1), . . . , (pkn, skn) and then broadcast (id1, pk1), . . . , (idn, pkn). There is
then a compression algorithm Com that compresses all these public keys into
a short public parameter pp. This pp together with idi can be used to encrypt
to idi. Finally, user idi can use her secret key ski and the set of all public keys
pk1, . . . , pkn to decrypt any message encrypted to her. In the actual definition of
RBE [11], of which PKCom is a special case [17], a user needs only a short pub-
lic “decryption-update” string (which in turn is deterministically derived from
pk1, . . . , pkn) to be able to perform decryption. But since we aim to prove a lower-
bound, by allowing the decryption algorithm to take in all of pk1, . . . , pkn, our
impossibility results will become only stronger. Also, we assume the n identities
are {id1 = 1, . . . , idn = n} for simplicity, and state the scheme for a key encap-
sulation variant; again, both of these will only make our impossibility results
stronger.

Definition 1. A public key compression scheme consists of PPT algorithms
(CRS,Key,Com,Enc,Dec):

– CRS generation. CRS(1κ, 1n) → crs is a randomized algorithm that takes in
a security parameter κ and an integer n (the number of parties), and outputs
a CRS crs of length poly(κ, n). We allow crs to grow polynomially with the
number of users.

– Key generation. Key(1κ, crs) → (pk, sk) takes in 1κ and crs and outputs a
pair of public and secret keys (pk, sk).

– Key compression. Com(crs, {pki}i∈[n]) → pp takes in the security parame-
ter, the crs, a list of public keys {pki}i∈[n], and deterministically outputs pp
as the compressed public key.



Lower Bounds on Assumptions Behind Registration-Based Encryption 319

– Encryption. Enc(pp, id) → (m, ct) takes in pp, a recipient identity id ∈ [n],
and outputs a random m ← {0, 1}κ and a corresponding ciphertext ct.

– Decryption. Dec(crs, id, sk, {pki}i∈[n], ct) → m takes in crs, an identity id ∈
[n], a secret key sk, public keys {pki}i∈[n], a ciphertext ct, and outputs a
plaintext m or a special symbol ⊥.

We require completeness, compactness and security, as defined next.

– Completeness: The decryption algorithm recovers the plaintext with all but
negligible probability. For every n ∈ N, any i ∈ [n], crs ← CRS(1κ, n),
(pki, ski) ← Key(1κ, crs), (m, ct) ← Enc(pp, id), it holds that
Pr[Dec(crs, id, ski, {pki}i∈[n], ct) = m] ≥ 1 − negl(κ).

– Compactness: There exists a fixed polynomial poly such that for all n and
pp formed as above, |pp| = o(n)poly(κ). We require sub-linear compactness,
making our impossibility results stronger.

– Security: Any PPT adversary A has a negligible advantage in the following
game. A is given n and a CRS crs ← CRS(1κ, n), and A outputs a challenge
index h and n − 1 public keys {pki}i�=h. The challenger samples (pkh, ∗) ←
Key(1κ, crs), forms pp := Com(crs, {pki}i∈[n]), and (m, ct) ← Enc(pp, id). A
is given ct, and outputs m′ and wins if m′ = m.

Note that we are making the security notion weaker (the adversary’s job is
more difficult); our impossibility results separates this weak notion of security,
hence making our results stronger.

4 Impossibility of PKCom from TDPs

In this section, we show that there exists an oracle O relative to which TDPs
exists but PKCom does not. We define a distribution on TDP oracles as follows.

Definition 2. We define an oracle distribution Ψ whose samples are oracles
of the form O = (g, e,d). The distribution is parameterized over a security
parameter κ, but we keep it implicit for better readability.

– g : {0, 1}κ 
→ {0, 1}3κ is a random injective length-tripling function, mapping
a trapdoor key to an index key.

– e : {0, 1}3κ × {0, 1}κ 
→ {0, 1}κ is a random function under the following
condition: for all ik ∈ {0, 1}3κ, the function e(ik, ·) is a permutation.

– d : {0, 1}κ × {0, 1}κ 
→ {0, 1}κ is the inversion oracle, where d(tk, y) outputs
x ∈ {0, 1}κ iff e(g(tk), x) = y.

Definition 3 (Validity of partial oracles). We say a partial oracle O′

(defined only on a subset of all points) is Ψ -valid if for some O ∈ Supp(Ψ) :
O′ ⊆ O, where Supp denotes the support of a distribution. We say an oracle
(g, e,d) is TDP-valid if it satisfies TDP’s perfect completeness. A partial TDP-
valid oracle is one which is a subset of a TDP-valid oracle (i.e., a triple (g, e, d)
that satisfies TDP correctness, but which may not be in the support of Ψ). Note
that any Ψ -valid oracle is TDP-valid as well. We say a partial oracle O′ is
TDP-consistent with a set of Query/Answer (Q-A in short) pairs S if O′ ∪ S is
TDP-valid.
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4.1 Oracle-Based Target-Restricted Signatures

Toward proving our impossibility results, inspired by [25], we define the notion
of oracle-aided target-restricted signatures. The signature’s message space is [n],
and we require correctness and security to hold with respect to a single, random
target point, based on which signing and verification keys are generated. We first
present the definition and then compare it to that of [25].

Definition 4 (Target-Restricted signatures [25]). Let n = poly(κ). An
n-target restricted signature scheme (GenO,SigO,VerO) relative to an oracle O
is defined as follows. GenO(1κ,m) → (sgk, vrk): takes in a security parameter
and a target message m ∈ [n], and outputs a signing key sgk and a verification
key vrk. The other algorithms are defined as in standard signature schemes. We
require the following properties.

– δ-target correctness:

Pr[VerO(vrk,m,SigO(sgk,m)) = 1;m ← [n], (sgk, vrk) ← GenO(1κ,m)] ≥ δ,

where the probability is taken over m ← [n], (sgk, vrk) ← GenO(1κ,m) and
the random coins used by SigO and VerO.

– Restricted structure: We have VerO(vrk,m, σ) = Ver1(Ver0O(vrk,m), σ),
where Ver1 makes no oracle calls.

– Zero-time unforgeability: For any PPT adversary A,

Pr[VerO(vrk, m, σ) = 1;m ← [n], (sgk, vrk) ← GenO(1κ, m), σ ← AO(vrk, m)] ≤ negl(κ).

Zhandry [25] defined oracle-based restricted signatures, where signing and
verification keys should work for all messages, and proved such signatures are
impossible relative to any oracle. Namely, there exists an adversary that can forge
a signature by making at most a polynomial number of queries to the oracle, and
by performing possibly exponential-time computations independent of the oracle.
In the setting of [25] the message space is of exponential size, but in our setting
the message space is [n] and the verification key is allowed to grow with [n]. These
differences are useful for our setting as we will derive the existence of target-
restricted signatures during our impossibility proofs. Despite these differences,
the following lemma shows that Zhandry’s proof, that restricted signatures do
not exist, extends almost immediately to our target-restricted setting.

Lemma 1 (Adapted from Lemma 7.4 in [25]). Let 1 ≥ δ > 0 and O be
an oracle. For any target-restricted signature Λ relative to O that has δ target
correctness according to Definition 4, there exists a computationally unbounded
adversary which makes only polynomially many queries to O that breaks Λ with
advantage at least δ3/100.

The proof of the above lemma is basically the same as the proof of Lemma 7.4
in [25]. At a high level, the proof crucially relies on the restricted structure of the
verification algorithm. The key idea of the proof is that since VerO(vrk,m, σ) =
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Ver1(Ver0O(vrk,m), σ), a computationally unbounded adversary can first com-
pute an intermediate value v = Ver0O(vrk,m) by itself and then brute force
search over the circuit Ver1(v, ·) for a valid signature σ satisfying Ver1(v, σ) = 1.
Since target-restricted signatures also have the same restricted structure of verifi-
cation algorithm, the same proof works. For sake of completeness, in Appendix A
we include a full of Lemma 1, which is heavily based on that of [25] and is simply
adapted to our setting.

Equipped with Lemma 1, we show any TDP-oracle-based PKCom may be
transformed into an oracle-based target-restricted signatures, hence obtaining
an impossibility result. As a warm-up and to show our core techniques, we first
present this transformation for the CRS-free case in Sect. 4.2 and then present
the transformation for schemes with CRS in Sect. B.1.

4.2 Impossibility of CRS-Free PKCom from TDP

We first present the transformation to target-restricted signatures for the case
in which the PKCom does not have a CRS. Recall the notions of correctness and
security of PKCom given in Definition 1. These notions are defined analogously
relative to any fixed oracle O = (g, e,d).

Theorem 4. For
ε := 1

poly(κ) let Eg,e,d := (Keyg,e,d,Comg,e,d,Encg,e,d,Decg,e,d) be a (1 − ε)-
correct PKCom scheme with respect to a random TDP oracle O = (g, e,d).
Suppose a public parameter pp under Eg,e,d satisfies |pp| ≤ (n−2)|ik|

2 , where n is
the number of users and ik is a base index key (recall |ik| = 3κ, Defintion 2).
Then, there exists a (1 − ε) (1−2−κ/3)

n -correct target-restricted signature scheme
relative to O = (g, e,d).

Note 1. For all oracle algorithms Ag,e,d considered throughout, we assume when-
ever a Q-A ((tk, y) −→

d
x) is made by Ag,e,d, two dummy queries (tk −→

g
?)

and ((ik, x) −→
e

?) are subsequently made, where ik = g(tk). Thus, whenever
((tk, y) −→

d
x) is in A’s Q-A list, so are (tk −→

g
ik) and ((ik, x) −→

e
y). Moreover, for

any A as above, we assume whenever two Q-A pairs (tk −→
g

∗) and ((ik, x) −→
e

y)

are made first, then no subsequent query ((tk, y) −→
d

?) is ever made.

Bluebird View of the Proof of Theorem 4. We show how to transform PKComs
into target restricted signatures. This is given in Construction 5. The construc-
tion is similar to Lamport’s signatures from OWFs, adapted to the PKE setting.
That is, we generate n public keys {pki}, put all public keys and all secret keys
except the target (hth) one in the verification key. The signature σ on h ∈ [n] is
a secret key for pkh. The verification function will encrypt a random message m
relative to h (performed inside Ver0), and decrypts the ciphertext c inside Ver1
using a signature σ := skh to see if it gets m back. First, it is clear that Ver0
can be performed before seeing σ. The most major step is to make sure Ver1
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can decrypt c without making queries. To this end, we equip the verification key
with Q-A pairs underlying {pki}i�=h (called QGeni in the construction), and we
also let Ver0 pass on all Q-A pairs QEnc underlying c to Ver1. The algorithm
Ver1 simulates responses to its queries using these sets. The main difficulty is
to define the simulated decryption in such a way that we can establish both
correctness and security. (For example, letting Ver1 invert any d(tk, y) that is
“captured” by QEnc and skh will make the scheme forgeable, as a forger can cook
up some fake skh that might pass the test.)

Target-Restricted Signature Construction

We now present our Target-Restricted Signatures construction. In the next sec-
tions we argue its correctness and security based on those of the base PKCom.

Construction 5 (Target-Restricted signatures from PKCom) Suppose
we are given a PKCom scheme Eg,e,d := (Keyg,e,d,Comg,e,d,Encg,e,d,Decg,e,d).
We build an n-target-restricted signature scheme as follows. We assume all the
algorithms satisfy the assumption in Note 1.

– Geng,e,d(1κ, h) where h ∈ [n] is the message to be signed. For i ∈ [n] let
QGeni = ∅.
1. For j ∈ [n], run Keyg,e,d(1κ) → (pkj , skj), and add all g/e Q-A pairs to

QGenj.9

2. Run Comg,e,d(pk1, . . . , pkn) → pp and add all g/e Q-A pairs to QCMP.
3. Return vrk = ((pk1, . . . , pkn),∪j �=hQGenj ∪ QCMP ∪ L), sgk =

(skh,QGenh).
– Sig(sgk, h) → σ: For sgk as above, return σ := (skh,QGenh).
– Verg,e,d(vrk, σ, h) = Ver1(Ver0O(vrk, h), σ): Parse vrk := ((pk1, . . . , pkn),S)

and σ := (skh,QGenh).
1. Ver0g,e,d(vrk, h) → α := (vrk, h,m, c,QEnc), where (m, c) ←

Encg,e,d(pp, h) and QEnc is the set of all Q-A pairs made to g and e.
2. Ver1(α, σ): Retrieve QEnc and S from α. (Recall S = ∪j �=hQGenj ∪

QCMP ∪ L is in vrk.) Parse σ := (skh,QGenh). Let All = S ∪
QEnc ∪ QGenh. Run DecSim(h, skh, {pki}, c, (All,QEnc,QGenh)), which
simulates the execution of DecO(h, skh, {pki}, c) by rendering queries via
(All,QEnc,QGenh), as follows:
(a) For a given g or e query, if the answer is already provided in All, reply

with that answer; else, with a random string z of appropriate length.
In case of answering with a random response, add the Q-A pair to
Fake (initially empty).10

(b) For a query qu := ((tk, y) −→
d

?), if (tk −→
g

ik) ∈ QGenh \ (S ∪ QEnc)

and ((ik, x) −→
e

y) ∈ (All \ QEnc) ∪ Fake for some ik and x, respond to

9 We do not keep track of d queries because of Note 1.
10 Duplicate queries will be replied to with the same random response.
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qu with x. Else if (tk −→
g

ik) ∈ All ∪ Fake for some ik, and ((ik, x) −→
e

y) ∈ All ∪ Fake for some x, respond to qu with x. Else, respond to qu
with a random r ← {0, 1}κ.11

Letting m′ be the output of DecSim, output 1 if m′ = m and 0 otherwise.

Proof Overview. Our goal is to show that Construction 5 provides both correct-
ness and security. We first discuss correctness. For that we have to argue that
if (skh,QGenh) are produced honestly, then DecSim run by Ver1 will output m
with high probability. For this we have to argue that DecSim respond to all g, e
and d queries consistently with how they were responded to before (if ever). For
example, if a query qu was previously asked during the generation of, say, pki, if
the same query is asked again by DecSim, it should receive the same response.
It is easy to see that this is the case for both g and e queries qu. In particular,
in Step 2a of Construction 5 we check if qu is in All, which contains all Q-A
pairs up to that point. The challenging case is when qu is a d query: Step 2b
Construction 5 responds to d queries only in some some special cases: in other
cases it gives a random response. One scenario in which this happens is when
(a) a Q-A pair ((∗ −→

g
ik)) ∈ QGenh; and (b) ((ik, ∗) −→

e
?)∗ ∈ QEnc and (c)

((∗ −→
g

ik)) /∈ ∪iQGeni�=h ∪ QCMP ∪ QEnc. This means that pp brings some ik

information from index h (more specifically, from pkh). We will prove that the
probability that this happens is small; our proof makes use of the fact that |pp|
is compact. In particular, given pp, for at least one index i, pp cannot bring ik
information about pki that is not present in any other pkj ’s. We present and
prove the compression statement in Lemma 2. This statement is of independent
interest and may find applications in some other impossibility results. We will
then make use of this compression theorem to formalize and prove the above
statement that pp loses ‘ik-information’ for some index i. Finally, we use this
statement to give the correctness proof.

Compression Lemma for TDP Oracles

We present the compression lemma below.

Lemma 2. Let Ag,e,d(1κ) → z be an arbitrary algorithm (not necessarily poly-
query) that outputs a string z while calling O = (g, e,d). Let w := � 2|z|

3κ + 1
3�. Let

Bg,e,d(z) be an adversary that takes as input z, makes at most 2κ − w queries
to g and d (in total), and an unlimited number of queries to e, and outputs
a set Chal = {ik1, . . . , ikt}, where w ≤ t ≤ 2κ/3. Also, assume B satisfies the
assumptions in Note 1. Let Q be the set of all queries/responses made by B. We
say Chal is non-trivial if for no i ∈ [t], (∗ −→

g
iki) ∈ Q. We say the event Success

11 By Note 1, any decryption query is followed by two subsequent g and e dummy
queries. In the last case where a random response r for (tk, y) is generated, we reply
to the subsequent dummy e query with y.
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holds if (i) all index keys in Chal are different, (ii) Chal is non-trivial and (iii)
for at least w indices i1, . . . , iw ∈ [t], ikij

∈ g(∗) for j ∈ [w].
We then have Pr[Success] ≤ 2−κ/2, where the probability is taken over

(g, e,d) ← Ψ and the random coins of A and B.

Proof. Assume wlog that both A and B are deterministic. We will prove the
lemma for any fixing of the oracle e (note that the oracles g and e are indepen-
dent), obtaining a stronger result.

Since both A and B are deterministic, for any fixed oracle g (in addition to e
already fixed) the event Sucess either holds or not; i.e., the probability of Success
is either zero or one with respect to any fixed g. Let K = 2κ. We prove that any
fixed oracle g for which Success holds can be uniquely described with

f := log
(

2|z|
(

K

w

)

w!
(

t

w

)

(K3 − w)!
(K3 − K)!

)

(1)

bits. This means that there exists at most 2f different Successful oracles. Using
the inequalities (a/b)b ≤ (

a
b

) ≤ (ae/b)b, the fraction of g oracles for which Success
holds is at most the following.

2f

number of L oracles

≤
2|z|(K

w

)
w!

(
t
w

)
(K3−w)!
(K3−K)!

K3!
(K3−K)!

=
2|z|(K

w

)(
t
w

)

(
K3
w

)

≤ 2|z|( Ke
w

)w( te
w

)w

( K3
w

)w
= 2

|z|
(

e2t

K2w
)
w ≤ 2

|z|
w!(

8 × 2κ/3

22κw
)
w

≤ 2
|z|

(
1

2(3/2)κw
)
w (because

8 × 2κ/3

22κ
≤ 1

2(3/2)κ
for large κ )

≤ 2
|z|

(
1

2(3/2)κ
)
w

=
1

2(3/2)κw−|z| ≤ 1

2κ/2
.

The last inequality follows from 3
2kw − |z| ≥ k/2 implied by w ≥ 2|z|

3κ + 1
3 .

We now prove Eq. 1. Fix a Successful oracle g. Let Chal = {ik1, . . . , ikt} and
wlog assume ik1 <lex ik2 <lex · · · <lex ikt, where <lex denotes lexicographical
ordering. Let (iki1 , . . . , ikiw

) be the w lexicographically smallest elements in Chal
that have a pre-image under g, and let (tki1 , . . . , tkiw

) be their pre-images. By
Condition (iii) of the lemma such a sequence exists. Let Chalx := (tki1 , . . . , tkiw

).
Let U be the set of trapdoor keys tk such that (tk −→

g
?) was queried by Bg,e,d(z).

By definition, for any Successful g, we have U ∩ Chalx = ∅, and hence U ⊆
{0, 1}κ \ Chalx.

Given B we claim that any Successful oracle g can be fully described by
z, Chalx, the index set {i1, . . . , iw} and the output of g on all input points in
{0, 1}κ \ Chalx. Indeed, for any tk /∈ Chalx, the value g(tk) is already given. We
determine the g outputs on inputs in Chalx as follows: Run Bg,e,d(z) to get Chal.
We first explain how to reply to B queries using the provided information.

1. Answering g queries of B: Since U ⊆ {0, 1}κ \ Chalx (recall that U contains
the set of B’s queries to g) and that g is fully determined on {0, 1}κ \ Chalx,
we can successfully answer all of B’s g queries.
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2. Answering e queries of B: the oracle e is fixed and independent of g.
3. Answering d queries: for any query ((tk, y) −→

d
?), by Note 1, tk ∈ U, and

hence tk ∈ {0, 1}κ \ Chalx. Thus, the value of ik := g(tk) can be determined
via the provided information. Once ik is known, since e is also known, we can
compute d(tk, y).

Thus, the set Chal can be retrieved. After that, sort its elements lexico-
graphically to get (ik1, . . . , ikt), and use the provided indices (i1, . . . , iw) to
retrieve (iki1 , . . . , ikiw

). Assuming Chalx = (tk1, . . . , tkw) we have g(tkh) = ikih

for h ∈ [w]. Thus, g can be reconstructed on inputs in Chalx, and hence on all
inputs.

We now count f the number of bits sufficient to describe Chalx, the index set
{i1, . . . , iw} and the output of g on all of {0, 1}κ \ Chalx. We can describe the
ordered set Chalx with log(

(

K
w

)

w!) bits. For describing the (unordered) index set
{i1, . . . , iw}, note that all the indices are distinct and each is in [t]. Thus, we can
describe the index set with log

(

t
w

)

bits. Finally, we can describe the function
g : {0, 1}κ → {0, 1}3κ on {0, 1}κ \ Chalx with log (K3−w)!

(K3−K)! bits. Equation 1 now
follows. ��

5 Impossibility in Shoup’s Generic Group Model

In this section, we show that there exists a Shoup’s GGM oracle relative to which
PKCom does not exist. First, we recall Shoup’s generic group model [23].

Definition 5. Let p ∈ N be a positive integer and let S = {0, 1}w be a set of
strings where w ≥ log p + κ. A random injection label : Zp → S is chosen,
which we will call the labeling function. All parties have access to the oracle
GRR = (label,add), defined in the following way.

– label: The party submits x ∈ Zp, and receives the label of x.
– add: The party submits (�1, �2) ∈ S2. If there exists x1, x2 ∈ Zp such that

label(x1) = �1 and label(x2) = �2, then the party receives label(x1 + x2).
Otherwise, the party receives ⊥. Note that label completely determines add
and thus also determines the whole oracle.

In this section, we will assume that p ∈ [2κ, 2κ+1] and S = {0, 1}3κ.

Lemma 3. Let Alabel,add(1κ) → z be an arbitrary algorithm (not necessar-
ily poly-query) that outputs a string z while calling GRR = (label,add). Let
Blabel,add(z) be an adversary that takes as input the advice z, makes at most u
queries to label and add in total, and outputs a set of labels Chal = {�1, . . . , �t}
where t = 2κ/3. Let w := � 2(|z|+u)

3κ + 1
3�. Let Q be the set of all labels that

appear in the responses to the queries made by B. We say the event Success
holds if (i) all �i’s are different, (ii) for no i ∈ [t], �i ∈ Q, and (iii) for
at least w indices i1, . . . , iw ∈ [t], �ij

∈ label(∗) for j ∈ [w]. We then have
Pr[Success] ≤ 2−κ/2 = negl(κ), where the probability is taken over L ← Ψ and
the random coins of A and B.
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The proof of Lemma 3 is very similar to the proof of Lemma 2 and thus it is
moved to the appendix.

5.1 Impossibility of CRS-Free PKCom in Shoup’s GGM

Similar to Sect. 4.2, we first present the transformation to target-restricted sig-
natures for the case in which the PKCom does not have a CRS.

Definition 6. Let x� be the variable that is either ⊥ or x where x is the element
in Zp whose label is �. If � is invalid label, then x� is ⊥.

Definition 7. Suppose Q is a set of group operation Q-A pairs. We define Eq(Q)
to be the set of homogeneous linear equations that are directly implied by Q. In
other words, for a query ((�1, �2) −−→

add
�3) ∈ Q, if �3 	= ⊥, we add to Eq(Q) the

equation x�1 + x�2 − x�3 = 0.

Definition 8. For a set of Q-A pairs Q, define Var(Q) to be the set of all labels
� 	= ⊥ such that ((∗, ∗) −−→

add
�) ∈ Q.

Definition 9. Let LS be the set of all possible labels � ∈ S = {0, 1}∗ such that
� = label(x) for some x ∈ Zp. Also, let υ = label(1).

Definition 10 (Updating the Known function). Given a list L of add Q-A
pairs, update Known ← Upd(L) as follows. Do the following until no further
updates are possible: if there exists ((�1, �2) −−→

add
�3) ∈ L such that Known(�1) =

� or Known(�2) = �, update Known(�3) = �.

Theorem 6. If there exists a (1 − ε)-correct PKCom scheme (KeyGRR ,
ComGRR ,EncGRR ,DecGRR) in the RR generic group model, then there exists
a δ-correct target-restricted signature scheme in the same model where δ =
(1 − ε) (1−2−κ/3)

n .

Construction 7 Let (KeyGRR ,ComGRR ,EncGRR ,DecGRR) be a PKCom scheme.
We will assume all queries made to GRR are add queries since label queries
can be answered using add queries given υ = label(1). We construct a target-
restricted signature scheme defined over messages in [n] from the PKCom
scheme. We let Known: LS → {⊥,�}, initially set to Known(υ) = �, and ⊥
for all other labels.

– GenGRR(1κ, h) → (sgk, vrk) where h ∈ [n] is the message to be signed. For
i ∈ [n] let QGeni = ∅.
1. For 1 ≤ j ≤ n, run KeyGRR(1κ) → (pkj , skj) and add all Q-A pairs made

to GRR to QGenj.
2. Run ComGRR(pk1, . . . , pkn) → pp and let QCMP be the set of all Q-A

pairs made to GRR.
3. Update Known ← Upd(∪i�=hQGeni ∪ QCMP) (Definition 10).
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4. Return vrk = ((pk1, . . . , pkn),∪j �=hQGenj ∪ QCMP,Known, υ), sgk =
(skh,QGenh).

– Sig(sgk, h) → σ: For sgk as above, return σ := (skh,QGenh).
– VerGRR(vrk, σ, h) = Ver1(Ver0GRR(vrk, h), σ) : Parse

vrk := ((pk1, . . . , pkn),A,Known, υ) and σ := (skh,QGenh).
1. Ver0GRR(vrk, h) → α := (vrk, h,m, c,QEnc), where (m, c) ←

EncGRR(pp, h) and QEnc is the set of all Q-A pairs made to GRR.
2. Ver1(α, σ) : Retrieve QEnc, A and Known from α. Recall A =

∪j �=hQGenj ∪ QCMP. Update Known ← Upd(QEnc). Let All =
∪j �=hQGenj ∪ QCMP ∪ QEnc. Run DecSim which simulates the execution
of DecGRR(h, skh, {pki}, c) by rendering queries via (All,QGenh), as fol-
lows: Initialize two sets E = Eq(All) and V = Var(All). For a given query
add(�1, �2) do the following:
(a) If �1 /∈ V ∪Var(QGenh) or �2 /∈ V ∪Var(QGenh), respond to the query

with ⊥.
(b) Else if both �1, �2 ∈ V, if there exists � ∈ V ∪ Var(QGenh) such that

x�1 + x�2 − x� ∈ Span(E ∪ Eq(QGenh)), return �. If no such an � is
found, respond with a random label �′, add x�1 + x�2 − x�′ to E and
add �′ to V. Also, set Known(�′) = �.

(c) Else if there exists a label � such that x�1 + x�2 − x�′ ∈
Span(Eq(QCMP ∪i QGeni)), return �;

(d) Else, if there exists a label � such that Known(�) = � and x�1 + x�2 −
x� ∈ Span(E∪Eq(QGenh)), return �. Else, respond with a random label
�′, add x�1 +x�2 −x�′ to E, and add �′ to V. Also, set Known(�′) = �.

Let m′ be the output of DecSim, output 1 if m = m′ and 0 otherwise.

Security

Lemma 4 (Security of Construction 7). Construction 7 is one-time
unforgeable if the PKCom scheme is secure.
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A Omitted Proofs

For sake of completeness, here we include a full of Lemma 1, which is heavily
based on that of [25] and is simply adapted to our setting.

Proof (of Lemma 1 - adapted from [25]). Consider choosing an oracle O, a ran-
dom m, and (sgk, vrk) ← GenO(1κ,m), and then fixing them. We will say that
σ is “good” if Pr[VerO(vrk,m, σ) = 1] ≥ δ/2, where the probability is taken
over the random coins of Ver. By correctness, with probability at least δ/2 over
m, (sgk, vrk) ← GenO(1κ,m), there will exist at least one good σ, namely the
output of σ ← SigO(sgk,m).
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Suppose Ver0 was deterministic. Then we could compute v ← Ver0O(vrk,m),
and consider the oracle-free probabilistic circuit C(σ) = Ver1(v, σ). Then an
input σ is good if and only if C(σ) accepts with probability at least δ/2. Since C
is oracle-free, we can brute-force search for such a σ, finding it with probability
at least δ/2. The forgery will then be (m,σ), which is accepted by the challenger
with probability δ/2, giving an overall advantage δ2/4.

For a potentially randomized Ver0, we have to work slightly harder. For a
good σ, we have that Prv←Ver0O(vrk,m)[Pr[Ver1(v, σ) = 1] ≥ δ/4] ≥ δ/4. Mean-
while, we will call a σ “bad” if Prv←Ver0O(vrk,m)[Pr[Ver1(v, σ) = 1] ≥ δ/4] ≤ δ/8.

For a parameter t chosen momentarily, we let v1, . . . , vt ← Ver0O(vrk,m),
and construct circuits Ci(σ) = Ver1(vi, σ). We then brute-force search for a
σ such that Pri←[t][Pr[Ci(σ) = 1] ≥ δ/4] ≥ 3δ/8. By Hoeffding’s inequality,
any good σ will be a solution with probability 1 − 2Ω(δ2t). Meanwhile, any bad
σ will be a solution with probability 2−Ω(δ2t). By setting t such that t/δ2 is
sufficiently longer than the bit-length of signatures, we can union bound over
all bad δ, showing that there will be no bad solutions except with negligible
probability. We will therefore find a not-bad solution with probability at least
δ/2 − negl ≥ δ/3. In this case, with probability at least δ/8 over the choice of v
by the verifier, Pr[Ver1(v, σ) = 1] ≥ δ/4. Hence, the overall success probability
is at least (δ/3) × (δ/8) × (δ/4) ≥ δ3/100. ��

We now present proof of Lemma 3.

Proof (Proof of Lemma 3). Let s = |S| = 23κ. Assume wlog that both A and
B are deterministic. We prove that any fixed labeling function label for which
Success holds can be uniquely described with

f := log
(

2|z|
(

p

w

)

w!
(

t

w

)

(s − w)!
(s − p)!

2uw!
)

(2)

bits.
This means that there exists at most 2f different Successful oracles. Using the

inequalities (a/b)b ≤ (

a
b

) ≤ (ae/b)b, the fraction of g oracles for which Success
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)w =

1
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≤ 1

2κ/2
,

as desired. The last inequality follows from 3
2kw−|z|−u ≥ k/2, in turn obtained

from w ≥ 2(|z|+u)
3κ + 1

3 .
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We now prove Eq. 2. Fix a Successful labelling function label. Let Chal =
{�1, . . . , �t} and wlog assume �1 <lex �2 <lex · · · <lex �t, where ≤lex denotes
lexicographical ordering. Let (�i1 , . . . , �iw

) be the w lexicographically smallest
elements in Chal that have a pre-image under label, and let (xi1 , . . . , xiw

) be
their pre-images. Let Chalx := {xi1 , . . . , xiw

}.
We say a query to add is new for B if it satisfies the following requirements:

(1) the answer to this query is not ⊥; (2) at least one of the input labels has not
been input to queries to add made by B before and the label belongs to Chal.
Such labels are called new labels. Let New be the list of pre-images to the new
labels in the order as they appear in the queries. Let v be a bit string of length
u that records the new queries of B such that the ith bit of v is 1 if and only if
the ith query made by B is a new add query.

Given B we claim that any Successful labeling function label can be fully
described by z, Chalx, the index set {i1, . . . , iw}, v, New and the outputs of
label on all input points in Zp \ Chalx. Indeed, for any x /∈ Chalx, the value
label(x) is already given. We determine the labels of x ∈ Chalx as follows: run
Blabel,add(g, z) to get Chal. We first explain how to reply to B’s queries using
the provided information.

1. Answering label queries of B: By condition (ii), we know the answer does
not appear in Chal, which means the input of the query does not appear in
Chalx. Since label is completely determined on Zp \Chalx, we can successfully
answer such queries.

2. Answering add queries of B: First note that by assumption, if the answer
to the query is not ⊥, then its pre-image must be in Chalx, which means we
can answer correctly assuming we know the pre-images to the input labels. In
the following, we show how to find pre-images with the provided information.
Using v, one can tell if the query is new.

– Suppose the query is new. We then know both of the input labels are
valid.

• If one of the labels has pre-image in Zp\Chalx or has been seen before,
we can retrieve the pre-image of the other label in New.

• Otherwise, it must be the case that both labels are new and we can
retrieve the pre-images in New.

– Suppose the query is not new.
• If the answer query to this query is not ⊥, it must be the case that the

labels either have pre-images in Zp \ Chalx or have been seen before,
we can answer the queries directly.

• Otherwise, it must be the case that the answer to this query is ⊥.

Thus, the set Chal can be retrieved. Once Chal is retrieved, sort its elements to
get (�1, . . . �t) and use the provided (i1, . . . , iw) to retrieve (�i1 , . . . , �iw

). Assum-
ing Chalx = (xi1 , . . . , xiw

), we have label(xih
) = �ih

for h ∈ [w].
We now count f the number of bits required to describe Chalx, the indices

{i1, . . . , iw} and label’s outputs on all of Zp \Chalx. We can describe the sorted
set Chalx with log(

(

p
w

)

w!) bits. We can describe the index set with log
(

t
w

)

bits.



330 M. Hajiabadi et al.

We can describe the function label on Zp \Chalx with log (s−w)!
(s−p)! bits. The string

v has length u. The list New can be described with logw! bits because we can
choose a permutation of the w pre-images whose initial items form the list New.
��

B Attacks on RBE with CRS

B.1 TDP-Impossibility of PKCom with CRS

Theorem 8. For ε := 1
poly(κ) let EO := (CRSO,KeyO,ComO,EncO,DecO) be

a (1 − ε)-correct PKCom scheme with respect to a random TDP oracle O =
(g, e,d). Suppose a public parameter pp under Eg,e,d satisfies |pp| ≤ (n−2)|ik|

2 ,
where n is the number of users and ik is a base index key (recall |ik| = 3κ,
Defintion 2). Also, let α be the number of queries made by CRSO(1κ, 1n) to the
oracle O. Then, there exists a (1 − ε)(1 − 1

α )
(1−2−κ/3)

n -correct target-restricted
signature scheme relative to O = (g, e,d)

We give the construction in Construction 9.

Construction 9. We construct a n-target-restricted signature scheme from any
PKCom scheme EO = (CRSO,KeyO,ComO,EncO,DecO). The construction is
parameterized over an integer s, which will be parameterized later; this parameter
will only affect the size of the verification key. We assume all the algorithms
satisfy the assumption in Note 1.

– GenO(1κ, h) → (sgk, vrk) where h ∈ [n] is the message to be signed:
1. Run CRSO(1κ, 1n) → crs and let QCRS be the set of all Q-A pairs made

to g and e.12

Algorithm 1. SampleKeys(s)
Require: h ∈ [n], crs, {pki}i�=h

K ← φ
j ← 0
while j < s do

j ← j + 1
(pkh, skh) ← Key(1κ, crs)
pp ← Com(crs, pk1, . . . , pkh, . . . , pkn)
(m, ct) ← Enc(pp, h)
run Dec(crs, skh, ct):
for qu = d(tk, y) do:

ik ← g(tk)
add (tk, ik) to K

end for
end while
return K

12 We do not keep track of d queries because of Note 1.
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2. For 1 ≤ j ≤ n, run KeyO(1κ, crs) → (pkj , skj). Let QGenj be the set of
all Q-A pairs made to g and e.

3. Run ComO(crs, pk1, . . . , pkn) → pp and let QCMP be the set of all query
response pairs made to g and e.

4. Run SampleKeys(crs, h, {pki}i�=h) as defined in Algorithm 1 to obtain a
set K.

5. Return vrk = ((pk1, . . . , pkn),∪j �=hQGenj ∪ QCMP,K), sgk =
(skh,QGenh,QCRS).

– Sig(sgk, h) → σ: For sgk as above, return σ = (skh,QGenh,QCRS).
– Verg,e,d(vrk, σ, h) = Ver1(Ver0O(vrk, h), σ): Parse vrk := ((pk1, . . . , pkn),

S,K) and σ := (skh,QGenh,QCRS).
1. Ver0g,e,d(vrk, h) → α := (vrk, h,m, c,QEnc), where (m, c) ←

Encg,e,d(pp, h) and QEnc is the set of all Q-A pairs made to g and e.
2. Ver1(α, σ): Retrieve QEnc, S and K from α. (Recall S = ∪j �=h

QGenj ∪ QCMP ∪ K is in vk.) Parse σ := (skh,QGenh,QCRS).
Let All = S ∪ QEnc ∪ QGenh ∪ QCRS. Run DecSim(crs, h, skh,
{pki}, c, (All,QEnc,QGenh,QCRS)),
which simulates the execution of DecO(crs, h, skh, {pki}, c) by rendering
queries via (All,QEnc,QGenh,QCRS), as follows:
(a) For a given g or e query, if the answer is already provided in All, reply

with that answer; else, with a random string z of appropriate length.
In case of answering with a random response, add the Q-A pair to
Fake (initially empty).13

(b) For a given query qu := ((tk, y) −→
d
?), if for some ik, (tk −→

g
ik) ∈ (All∪

Fake)/(QGenh ∪QCRS) and ((ik, x) −→
e

c) ∈ All for some x, respond to
the query with x. Else, if for some ik, (tk −→

g
ik) ∈ QGenh ∪QCRS and

((ik, x) −→
e

y) ∈ (All/QEnc) ∪ Fake for some x, respond to the query
with x. Else, respond to the query with a random value r ← {0, 1}κ.

Letting m′ be the output of DecSim, output 1 if m′ = m and 0 otherwise.

B.2 Impossibility of PKCom with CRS in Shoup’s GGM

Now, we present the transformation of PKCom to target-restricted signatures
while allowing CRS.

Theorem 10. If there exists a (1−ε)-correct PKCom scheme (CRSGRR ,KeyGRR ,
ComGRR ,EncGRR ,DecGRR) in the RR generic group model, then there exists a δ-
correct target-restricted signature scheme in the same model where δ = (1 −
ε) (1−2−κ/3)

n .

Construction 11. We construct a target-restricted signature scheme defined
over messages in [n] from any PKCom scheme in the following way.

13 Duplicate queries will be replied to with the same random response.
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– GenGRR(1κ, h) → (sgk, vrk) where h ∈ [n] is the message to be signed. For
i ∈ [n] let QGeni = ∅.
1. Run CRSGRR(1κ, 1n) → crs and all Q-A pairs made to GRR to QCRS.
2. For 1 ≤ j ≤ n, run KeyGRR(1κ, crs) → (pkj , skj) and add all Q-A pairs

made to GRR to QGenj.
3. Run ComGRR(crs, pk1, . . . , pkn) → pp and let QCMP be the set of all Q-A

pairs made to GRR.
4. Update Known ← Upd(∪i�=hQGeni ∪ QCMP ∪ QCRS) (Definition 10).
5. Return vrk = ((pk1, . . . , pkn),∪j �=hQGenj ∪ QCMP,Known, υ), sgk =

(skh,QGenh,QCRS).
– Sig(sgk, h) → σ: For sgk as above, return σ := (skh,QGenh,QCRS).
– VerGRR(vrk, σ, h) = Ver1(Ver0GRR(vrk, h), σ) : Parse vrk := ((pk1, . . . , pkn),

A,Known, υ) and σ := (skh,QGenh,QCRS).
1. Ver0GRR(vrk, h) → α := (vrk, h,m, c,QEnc), where (m, c) ←

EncGRR(pp, h) and QEnc is the set of all Q-A pairs made to GRR.
2. Ver1(α, σ) : Retrieve QEnc, A and Known from α. Recall A =

∪j �=hQGenj ∪ QCMP. Update Known ← Upd(QEnc). Let All =
∪j �=hQGenj ∪QCMP∪QEnc. Run DecSim which simulates the execution of
DecGRR(crs, h, skh, {pki}, c) by rendering queries via (All,QGenh,QCRS),
as follows: Initialize two sets E = Eq(All) and V = Var(All). For a given
query add(�1, �2) do the following:
(a) If �1 /∈ V ∪ Var(QGenh ∪ QCRS) or �2 /∈ V ∪ Var(QGenh ∪ QCRS),

respond to the query with ⊥.
(b) Else if both �1, �2 ∈ V, if there exists � ∈ V∪Var(QGenh ∪QCRS) such

that x�1 + x�2 − x� ∈ Span(E ∪ Eq(QGenh ∪ QCRS)), return �. If no
such an � is found, respond with a random label �′, add x�1 +x�2 −x�′

to E and add �′ to V. Also, set Known(�′) = �.
(c) Else if there exists a label � such that x�1 + x�2 − x�′ ∈

Span(Eq(QCMP ∪i QGeni ∪ QCRS)), return �;
(d) Else, if there exists a label � such that Known(�) = � and x�1 + x�2 −

x� ∈ Span(E ∪ Eq(QGenh ∪ QCRS)), return �. Else, respond with a
random label �′ and add x�1 + x�2 − x�′ to E, and add �′ to V. Also,
set Known(�′) = �.
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Abstract. This paper presents the first protocols for Proactive Secret
Sharing (PSS) that only require constant (in the number of parties,
n) communication per party per epoch. By harnessing the power of
expander graphs, we are able to obtain strong guarantees about the secu-
rity of the system. We present the following PSS protocols:

– A PSS protocol that provides privacy (but no robustness) against
an adversary controlling O(n) parties per epoch.

– A PSS protocol that provides robustness (but no privacy) against an
adversary controlling O(n) parties per epoch.

– A PSS protocol that provides privacy against an adversary control-
ling O(na) parties per epoch and provides robustness against an
adversary controlling O(n1−a) parties per epoch, for any constant
0 ≤ a ≤ 1. Instantiating this with a = 1

2
gives a PSS protocol

that is proactively secure (private and robust) against an adversary
controlling O(

√
n) parties per epoch.

Additionally, we discuss how secure channels, whose existence is usually
assumed by PSS protocols, are challenging to create in the mobile adver-
sary setting, and we present a method to instantiate them from a weaker
assumption.

1 Introduction

Most multiparty protocols provide security as long as no more than a certain
threshold of the parties are corrupted, e.g. the Shamir secret-sharing provides
security as long as no more than m-out-of-n of the parties are corrupted. These
protocols implicitly assume that adversarial corruptions are static, i.e., the subset
of corrupted parties does not change over time.

The notion of proactive security [OY91], considers a mobile adversary that
can adaptively corrupt different parties, subject to a maximum corruption
threshold at a given time. More formally, the model considers a multiparty proto-
col with n parties, where time is divided into epochs. In each epoch the adversary
can corrupt up to mof the n parties, learning their state (and in the malicious
model completely controlling their behavior). In the next epoch, the adversary
adaptively chooses a new subset of mparties to corrupt, and this continues indef-
initely. A protocol that can achieve privacy (or robustness) in the face of this
type of mobile adversary is said to be proactively secure.
c© International Association for Cryptologic Research 2023
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When considering proactive security, it is sufficient to consider Proactive
Secret Sharing (PSS), i.e., secret-sharing schemes that can achieve privacy
(and/or robustness) in the face of a mobile adversary. This is because any MPC
protocol that computes on secret shares can be made proactively secure by sim-
ply assuming that each round of the MPC protocol happens within a single
epoch. With this assumption, the adversary is essentially static with respect to
the MPC protocol, and security follows immediately from the proactive security
of the underlying secret sharing scheme together with the (static) security of
the MPC protocol. Thus, previous works focused on building proactive secret
sharing protocols, with the understanding that PSS protocols can be used as
the substrate for general secure multiparty computation secure against mobile
adversaries.

In addition to the design of the secret sharing protocol, i.e., the refreshing of
shares, there is an orthogonal issue which needs to be addressed: the creation and
re-establishing of the secure communication channels between the parties after
(potential) adversarial corruptions. Previous works either simply assume that
an infrastructure for secure channels exists, or have solutions to create secure
channels that require (at least) Θ(n) communication per party per epoch, where
n is the number of parties. We detail the prior art in Appendix A with an
abridged version in Sect. 2.

Our Results

Given the communication complexity of prior constructions, the natural ques-
tion to ask is whether this O(n) communication for PSS is inherent or whether
there exist protocols with sublinear communication. In this work, assuming a
synchronous network, we present the first PSS protocol for single (unbatched)
secrets that achieves sublinear communication. Surprisingly, we show that PSS
is possible against passive mobile adversaries corrupting Θ(n) parties per epoch
with only constant (in n) communication per party! Furthermore, we present a
PSS protocol that is secure against active mobile adversaries corrupting Θ(

√
n)

parties per epoch that also has constant (in n) communication.
Assuming the existence of secure communication channels we show three PSS

protocols with constant communication per party. Our first protocol provides
secrecy for the shared value, but offers no robustness, i.e. it works only against a
passive adversary (Sect. 5). The second provides robustness but no privacy, that
is a malicious adversary cannot corrupt the secret (Sect. 6). Finally, we combine
the first two protocols to provide both secrecy and robustness (Sect. 7). Our first
two protocols are secure against an adversary corrupting Θ(n) parties per epoch
while our third is only secure against an adversary corrupting Θ(

√
n) parties per

epoch. We note, however, that because our per-epoch communication cost is so
low, we can set our epoch times to be much shorter than existing PSS protocols,
which would reduce the number of parties that an adversary can corrupt during
an epoch (see Appendix C).

Note that while the number of messages sent per party per epoch is constant,
and the size of each message is independent of n, the message sizes do depend
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on two other parameters. Like any other PSS protocol, our message sizes depend
on the size of the secret, |F|. For notational simplicity we assume |F| = O(1).
Messages sizes may also depend on the computational security parameter, κ.
Assuming secure channels, our first and second protocols do not depend on κ,
while our third protocol has messages of size O(κ). Note that some works use
batching to combine many secrets to obtain low communication cost per secret.
We do not use batching ; our results hold even if there is only a single secret.

Secure communication channels are required for PSS, so we also develop a
method for establishing secure channels between parties that requires only O(κ)
communication per party per epoch (Sect. 8). Using this protocol to instantiate
secure channels (instead of simply assuming secure channels exist) increases the
communication complexity of our first and second PSS protocols to O(κ) while
our third PSS protocol remains O(κ). Our method requires a minimal trusted
hardware assumption: that each party has access to a secure signing oracle.
The adversary may make the oracle sign arbitrary messages when the party is
corrupted, but cannot learn the secret key. This is a much weaker assumption
than that of secure hardware channels, and is implemented by many common
devices such as Yubikeys or iOS Secure Enclaves.

Our third PSS protocol can be easily modified to achieve a different cryp-
tographic primitive called Proactive Pseudorandomness (PP), that is a protocol
which enables a set of parties to preserve the ability to generate pseudorandom-
ness in the face of a mobile adversary, despite no access to true randomness. Our
protocol requires only O(κ) communication per-party per epoch and maintains
(global) pseudorandomness against a mobile adversary controlling Θ(n) parties
per epoch. Note that previous protocols required O(n) communication. This is
presented in Sect. 9.

Our PSS protocols rely on expander graphs and in Sect. 4 we provide the
properties and theorems for these graphs that we need in our design. Instead
of requiring that each party communicate with every other party, each party
communicates with only a constant number of neighbors, where the assignment
of neighbors is chosen according to an expander graph.

Because each party only communicates with a constant number of other par-
ties, it is possible that an honest party be entirely surrounded by corrupt parties.
As such, the adversary may learn the honest party’s state (by knowing all mes-
sages sent to it) or may cause an honest party to behave incorrectly (by sending
it incorrect messages). Our security guarantees therefore will not be local: they
will not necessarily apply to every honest party. Instead we prove global security
properties that hold over the entire system, e.g. that the adversary is not able
to learn a secret that has been shared between all parties, or that the adversary
cannot cause most parties to behave incorrectly. Intuitively, these global secu-
rity properties will hold because the expansion property of the communication
network ensures that the set of honest parties at different times remain generally
well-connected to each other.
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2 Related Work

A full related work section appears in Appendix A. Table 1 shows the communi-
cation complexity of the works discussed there, as well as our own results. Here
we only provide details of a few of the works.

Table 1. m-out-of-n PSS schemes. �: batch size. ε > 0 is a constant.

Work Communication Threshold Synchrony

[HJKY95] O(n) n = 2m + 1 sync

[CKLS02] O
(
n3

)
n = 3m + 1 async

[SLL10] O(n) n = 3m + 1 async

[ZSVR05] exp(n) n = 3m + 1 async

[BEDLO14] O(n/�) n = 2(m + �) + 1 sync

[ELL20] O(n2/�) n = m +
√

� + 1 sync

[MZW+19] O(n2) n = 2m + 1 sync

[YXD22] O(n2 log n) n = 4m + 1 async

Protocol 1 (passive adversary) O(1) n = (1 + ε)m sync

Protocol 3 O(κ) n = (2 + ε)m2 sync

Proactive secret sharing considers the problem of maintaining the privacy
and robustness of a shared secret in the presence of a mobile adversary [OY91].
In the mobile-adversary model, time is divided into “epochs,” and the adversary
is allowed to corrupt a new subset of parties in every epoch.

In order for PSS to be feasible, we must assume that parties can be securely
“rebooted,” an operation which leaves them in a fresh (uncorrupted) state. We
must also assume that parties can securely delete information, otherwise an
adversary corrupting a party in one epoch could learn their shares from previous
epochs, which would make it impossible to maintain privacy.

Essentially all PSS protocols are built around the idea of “refreshing” the
parties’ shares at every epoch. One method of refreshing shares is to simply
have all parties generate a random sharing of zero, and then add these shares
to the shares of the original secret [HJKY95]. This effectively re-randomizes
the shares, and ensures that shares the adversary learns from different epochs
cannot be combined. An alternative strategy for refreshing is to have each party
re-share their share, then use the linearity of the secret-sharing protocol to have
each party locally reconstruct a new share of the original secret [CKLS02]. Other
works [ELL20,MZW+19,YXD22] share using bivariate polynomials. To achieve
privacy against malicious adversaries, the underlying secret sharing protocol can
be replaced with a Verifiable Secret Sharing protocol (e.g. [Fel87]).

Some PSS protocols (e.g. [SLL10,BDLO15]) consider dynamic committees,
i.e., they assume that committees in different epochs may contain different (pos-
sibly disjoint) sets of parties, and that the threshold may also change between
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epochs. Some PSS protocols (e.g. [CKLS02,ZSVR05,SLL10,YXD22]) consider
an asynchronous model of communication, meaning that although parties are
synchronized across epochs, messages can be arbitrarily delayed by the adversary
within an epoch. In this work, we consider synchronous communication.

The goals of PSS protocols are to tolerate a higher corruption threshold
(usually n/2 or n/3) and to reduce communication complexity. Every previous
PSS protocol requires all-to-all communication during the refresh phase, and
thus every PSS protocol has at least O(n) communication per party per epoch
(and many have O(n2) or even O(n3)).

One way to improve amortized communication complexity is to consider
batches of secrets, which can then be refreshed simultaneously [BDLO15,
BDLO15,ELL20]. By considering batches of O(n) secrets, some PSS protocols are
able to achieve amortized constant in n communication complexity per party per
epoch. This work is the first to achieve communication complexity that is constant
in n without amortization (see Sect. 7). In some applications, batching is appro-
priate, but in others the secret is inherently short. For instance, one of the most
common applications of (proactive) secret-sharing is to store private keys for cryp-
tocurrency wallets. In this case, the secret is a single private signing key, usually
of size 256 bits. This would be much too small to benefit from batching.

One interesting feature of the mobile-adversary model is the problem of how
secure channels are created and maintained between the parties. Essentially all
multiparty protocols assume the parties are connected via secure, authenticated
channels. In most situations, these secure channels can be achieved via a PKI –
each party has a key pair for an authenticated encryption scheme. Unfortunately,
in the mobile-adversary setting the existence of a PKI can no longer create secure
channels, since once an adversary has corrupted a party, they would learn the
party’s long-term secret keys and would be able to impersonate that party and
decrypt all messages to that party in future epochs. This problem was explored in
depth in [CHH97], but their solution is rather cumbersome and re-establishing
secure channels every epoch requires at least O(n) communication per party.
Many PSS protocols (e.g. [OY91,CKLS02,BEDLO14,MZW+19,YXD22]) still
assume that all parties are connected via secure channels.

In Sect. 8 we give a simple solution to the problem of reinstating secure
channels in the mobile adversary model, assuming each party has access to a
lightweight signing oracle (such as can be found in any modern smartphone or
hardware-based cryptocurrency wallet). Our solution for regenerating channel
keys can be used with any existing PSS protocol. It is very light—it only requires
O(κ) communication to establish a channel—so is compatible with our low-
communication PSS protocols.

3 Model

Secrets and Shares. We assume that there is a single secret, denoted s, from
some group F, that is (honestly) distributed by a trusted dealer before the pro-
tocol begins, resulting in each party holding a share. In addition, we require that
the dealer distributes initial PRG keys.
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Epochs. We divide time into epochs consisting of two phases, refresh and retain.
The PSS protocol describes the refresh phase, while the retain phase encom-
passes what parties do with their share outside of the PSS protocol.

1. Refresh:
(a) Reboot
(b) Establish secure channels
(c) Send messages
(d) Securely delete old share (everything except current private key)
(e) Receive messages and compute new share
(f) Securely delete keys (everything except new share)

2. Retain: Parties may use their share, e.g. in the context of an MPC protocol.

Mobile Adversaries. The set of parties in the protocol is denoted {P}n
i=1, and

communication is synchronous.
The adversary, A, is mobile, which means that it can corrupt m(out of n)

parties in each epoch, where mis a function of n. When A corrupts a party, it
is allowed to see all its messages. If A is malicious, it can cause the party to
deviate from the protocol. Furthermore, A is rushing : it can wait to receive all
incoming messages before sending any messages.

We assume parties can securely delete data and have access to fresh ran-
domness. We instantiate secure, authenticated channels between parties using a
(hardware-based) signing oracle. Alternatively, we can simply assume the exis-
tence of secure channels.

Reboots. To handle such an adversary, we assume that it is possible to remove
the adversary’s control of a party by a reboot operation. Rebooting a party will
cause the adversary to lose all access to new information and will cause the party
to return to executing the correct program.

A party is corrupted if it has been corrupted, but not (yet) been rebooted. It
is honest otherwise. By periodically applying reboots, we can limit the number
of parties that are corrupted at any time.

Counting Corruptions. A party which is corrupted during the retain portion
of epoch t is considered corrupt, and counted against the budget of the adversary
in epoch t. As in [HJKY95], we consider that when an adversary corrupts a
party during the refresh phase of epoch t, this counts towards the adversary’s
corruption budget of epoch t and epoch t − 1.

When the committee in epoch t + 1 is disjoint from the committee in epoch
t, there is no need to double count parties who are corrupted during the refresh
phrase. Thus it is typical, when considering dynamic committees, to give the
adversary the power to corrupt up to m-out-of-n parties in the old committee
as well as m-out-of-n of parties in the new committee.

Security. Most PSS protocols simultaneously achieve both privacy and robust-
ness. Privacy ensures that the adversary gains no advantage in guessing the
secret. Robustness ensures that the adversary cannot cause the reconstructed
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value to differ from the secret which was shared. In this work, we will sometimes
consider these two properties separately.

For both private and robust protocols, we will show protocols secure against
malicious (active) adversaries. Our protocols will either provide perfect secu-
rity, ensuring that a property (privacy or robustness) always holds, or they will
provide computationally security, ensuring that a property holds except with
non-negligible probability against a computationally bounded adversary.

Reconstruction. In our protocols it is impossible to guarantee that every hon-
est party holds a valid share at every step of the protocol. This is because each
party communicates with only a constant number of other parties, so it is pos-
sible that an honest party is entirely surrounded by corrupted parties. Since
this type of “eclipse attack” is unavoidable in our model, we consider a slightly
different form of correctness in our constructions. We consider a PSS protocol
robust if, in any given epoch, there exists a reconstruction protocol, which would
allow the (honest) parties to reconstruct the original secret. The key distinction
here is that the reconstruction procedure may require linear communication (e.g.
all parties send their shares to every other party), but since the reconstruction
procedure is not actually run in each epoch, the amortized communication per
epoch can still be sub-linear.

4 Expander Graphs

The key tool in our protocols is expander graphs. These are graphs which, despite
a small number of edges, remain well connected, for certain metrics of connected-
ness. In particular we will examine bipartite graphs, that is G = (L∪R,E) where
E ⊂ L × R. Our graphs will be balanced, that is |L| = |R| = n. Furthermore,
our graphs will be d-regular, that is every vertex (whether in the “left” side L,
or the “right” side R) will have exactly d neighbors, where d is a constant.1

The metric of connectedness that is most relevant to our work is vertex
expansion, which is formally defined below: 2

Definition 1 (Vertex expansion). A bipartite graph G = (L∪R,E), is called
a (γ, α)-expander if for every set S ⊂ L, with |S| ≤ γn, and letting N(S)
represent the set of neighbors of vertices in S, we have

|N(S)| ≥ α |S|

Concretely, we use bipartite d-regular Ramanujan graphs. These are expander
graphs that are essentially optimal according to another metric: spectral expan-
sion. Appendix B contains a more detailed explanation of Ramanujan graphs
and spectral expansion, as well as standard proofs that they have the properties
we require (Theorems 1 and 2 below). Bipartite d-regular Ramanujan graphs

1 A d-regular bipartite graph is always balanced since, |E| = d|L| = d|R| ⇒ |L| = |R|.
2 While this definition is valid for the case α ≤ 1, we will only be interested in the

case where α > 1, i.e. there is actual expansion.



344 B. H. Falk et al.

can be constructed in polynomial time for all degrees and sizes [MSS13] [MSS18]
[Coh16]. Since Ramanujan graphs have optimal spectral expansion, they also
have good vertex expansion:

Theorem 1. A Ramanujan graph is a
(
γ, 1

(1−γ) 4
d+γ

)
expander ∀ γ ∈ [0, 1].

Essentially, the property above will be useful when, if a party has one good
neighbor, it will also be good, for some definition of good to be defined later. In
other situations, a party will only be good if it has a majority of good neighbors.
In such cases, we will need the following property of Ramanujan graphs.

Theorem 2. Ramanujan graphs have the following property. Let S be a set of
size at most δn vertices on the left. Then at most

4δn

( 12 − δ)2d

right-hand vertices have at least 1
2 of their neighbors in S.

5 O(n)-Private PSS with Constant Communication

In this section we present a PSS protocol that is perfectly private (but not
robust) in the presence of an adversary that can corrupt up to δn parties per
epoch, for some constant 0 < δ < 1.

Remark 1. In the case of passive adversaries, the privacy-only PSS protocol
described is actually a full-blown PSS protocol, since passive adversaries cannot
modify the shares. In this section, we prove a slightly stronger result, that the
protocol achieves privacy in the face of an active (malicious) adversary.

As a warmup, consider the following simple (private-only) PSS protocol. The
secret, s, is additively distributed among the players. That is, in epoch t, party
Pi holds s

(t)
i where

∑n
i=1 s

(t)
i = s. To refresh each party additively reshares its

share to all other parties. Then, by summing the shares-of-shares it receives,
each party gains a new re-randomized share of the secret original secret.

In our protocol, instead of each party additively resharing its share to all other
parties, it only reshares to a constant number of neighbors. These neighbors are
chosen according to an expander graph.

Definition 2 (Choosing Neighbors according to a Graph). Let G =
(V,E) be a bipartite graph, with parts L = {L1, . . . , Ln} and R = {R1, . . . , Rn}.
If a protocol with parties P1, . . . , Pn, chooses neighbors according to G it means
that Pj is a neighbor of Pi iff (Li, Rj) ∈ E. Note that the neighborhood relation
is not reflexive. Let N(i) return the indices of the neighbors of Pi, and N−1(j)
return the indices of parties that Pj is a neighbor of.

Remark 2 (Fixed graph). The graph G will always be public and fixed. Thus,
the attacker can therefore choose its corruptions with full knowledge of G.
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At the beginning of each epoch, each party holds an additive share of the
secret, s ∈ F. For each epoch t, party Pi will hold a single share s

(t)
i ∈ F, where∑

1≤i≤n s
(t)
i = s. The secret is reshared according to a constant-degree bipartite

expander. This makes it very efficient, as each party only has to send a constant
number of messages.3 The expansion property of the underlying graph, G, will
guarantee that a mobile adversary (controlling a constant fraction of the parties
in each epoch) will not learn enough shares to reconstruct the secret.

Protocol 1 describes a scheme that achieves Θ(n) proactive privacy with only
Θ(1) communication per player, yet it does not provide robustness.

Protocol 1: Private Efficient PSS

Parameters:
Let G = (L ∪ R,E) be a d-regular bipartite Ramanujan (γ, α) expander,
with parts L = {L1, . . . , Ln} and R = {R1, . . . , Rn}. We choose neighbors
according to graph G.

1. Setup:
The dealer divides the secret using an additive secret sharing, i.e., Pi

receives s
(1)
i for 1 ≤ i ≤ n, where s

(1)
i are chosen uniformly at random

from F subject to the constraint that
∑n

i=1 s
(1)
i = s.

2. Resharing:
(a) At the start of epoch t, party Pi generates a share-of-share s

(t)
i,j for

each neighbor Pj and sends the message to Pj . The shares are chosen
uniformly at random subject to the constraint

∑
j∈N(i) s

(t)
i,j = s

(t)
i . Pi

sends s
(t)
i,j to Pj .

(b) Pj receives values s
(t)
i,j for each i ∈ N−1(j). It computes:

s
(t+1)
j =

∑
i∈N−1(j) s

(t)
i,j .

Theorem 3. Protocol 1 is a correct resharing, i.e., the constructed secret would
remain the same if all parties follow the protocol.

Proof. By induction. For epoch 1,
∑n

i=1 s
(1)
i = s.

Assume for epoch t,
∑n

i=1 s
(t)
i = s. Then for epoch t + 1,

n∑
j=1

s
(t+1)
j =

n∑
j=1

∑
i∈N−1(j)

s
(t)
i,j =

∑
(Li,Rj)∈E

s
(t)
i,j =

n∑
i=1

∑
j∈N(i)

s
(t)
i,j =

n∑
i=1

s
(t)
i = s.

3 In order to instantiate secure channels as described in Sect. 8, each party will also
have to send messages to its neighboring parties, but this will not change the fact
that each party only communicates with O(1) other parties in each epoch.
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We now demonstrate that this protocol maintains privacy against a mobile
adversary who can corrupt O(n) parties per epoch. There are essentially three
ways that a mobile adversary can learn a party’s share in a given epoch: it can
corrupt a party in the current epoch, or it corrupts all the party’s neighbors in
the previous epoch, or all of the party’s neighbors in the subsequent epoch.

To prove the privacy of Protocol 1, let us consider the communication graph,
H. We will represent parties as vertices and messages as edges. Since whether a
party is corrupt or honest depends on the epoch, we will actually have a different
vertex for every party in every epoch. Vertex H

(t)
i will represent Pi in epoch t. If

Pi is corrupted in epoch t, we also call vertex H
(t)
i corrupted; otherwise we call

the vertex honest. We let H(t) = {H
(t)
1 , . . . , H

(t)
n }, i.e. all vertices that represent

parties from epoch t. We call H(t), layer t of the graph H. There are therefore
at most δn corrupted vertices in each layer of H.

We put a directed edge4 from H
(t)
i to H

(t+1)
j if Pi sends a message to Pj in

epoch t+1. Since communication is according to expander G, edge (H(t)
i ,H

(t+1)
j )

exists in H if and only if (Li, Rj) is an edge in G. To make the graph finite, we
set some arbitrarily large upper limit, T on the number of epochs.

We will be able to prove privacy of Protocol 1 by examining paths in H.
In particular, we are concerned with honest paths, which are paths in which
every vertex is honest. Recall that edges are directed; paths will follow the same
orientation as edges. Since all edges are from a vertex from some layer t to a
vertex in layer t + 1, the vertices in a path will be from contiguous layers. We
call a path ancient if the first vertex in the path is in H(1).

We now prove some properties of the graph H. This will later allow us to
prove the desired security properties of Protocol 1.

Lemma 1. Let γ and α be constants such that G is a (γ, α) expander. Let H
be defined as above. If there are at most δn corrupted vertices per layer, and
δ ≤ γ(α − 1) then for every t, there exist at least γn vertices in H(t) that are
part of ancient honest paths.

Proof. First, note that for any expander, γα ≤ 1, so δ ≤ γ(α − 1) also implies:

δ ≤ γα − γ ⇒ δ ≤ 1 − γ ⇒ γ ≤ 1 − δ

We show by induction that for any 1 ≤ t ≤ T , there exist at least γn vertices
in layer t that are part of ancient honest paths.

For t = 1, any honest vertex is on an ancient honest path consisting only of
itself. There are at least (1 − δ)n honest vertices, and (1 − δ) ≥ γ.

Assume for epoch t. We now show it holds for epoch t + 1. If H
(t+1)
i is

honest, and is a neighbor of some vertex H
(t)
j that is part of an ancient honest

4 This assumes a secure channel is already established between Pi and Pj . If Protocol
4 is used to re-establish a secure channel, Pj will also need to send messages to Pi,
but we do not represent this on the graph. Also, if a corrupted Pi should send a
message to Pj but doesn’t, we consider this as Pi sending some default message.
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path, then appending H
(t+1)
i to this path results in a path that is still ancient

and honest and includes H
(t+1)
i . By induction, there are at least γn vertices in

epoch H(t) that are part of ancient honest paths. Due to the expansion property,
there must be at least αγn vertices in epoch H(t+1) that are neighbors of these
vertices, at most δn of which are corrupted. Therefore, there are at least (αγ−δ)n
vertices in H(t+1) are part of ancient honest paths. δ ≤ γ(α− 1), so (αγ − δ)n ≥
(αγ − (α − 1)γ)n ≥ γn. Thus, by induction, at least γn vertices in H(t+1) are
part of honest ancient paths.

Note that if vertex H
(t)
i is on an honest ancient path, this does not guarantee

that A does not learn Pi’s share in epoch t. It guarantees that A did not learn Pi’s
share directly by corrupting it or by learning all messages it received. However,
if A corrupts all of Pi’s neighbors in epoch t+1 it will learn all messages Pi sent
and thus learn Pi’s share in epoch t.

However, the fact that there are honest paths to all future epochs t′ > t,
implies that there is at least 1 vertex in epoch t which is part of these paths, and
for which A did not learn the outgoing messages. This is essentially sufficient to
show that privacy is preserved. Formally, Lemma 1 implies the following:

Corollary 1. If δ ≤ γ(α − 1) there exists an honest path from H(1) to H(T ).

We will now use this property of H to prove the security of Protocol 1.

Lemma 2. If there exists an honest path from H(1) to H(T ), then for all possible
secrets sA, sB ∈ F, the probability that A guesses output sA when s = sA is the
same as the probability that A guesses sA when s = sB.

Proof. Recall that H represents the communication network of the protocol.
Therefore, the existence of an honest path from H(1) to H(T ) means that there
are a sequence of parties, Pf(1), . . . Pf(T ) such that Pf(t) is honest in epoch t and
that Pf(t+1) is a neighbor of Pf(t). This means that A does not see the shares
that these parties hold in the epochs in which they are honest: s

(1)
f(1), . . . , s

(T )
f(T ).

Nor does A see the messages sent between these parties in the epochs in which
they are honest: s

(1)
f(1),f(2), . . . , s

(T−1)
f(T−1),f(T ).

Since A cannot see these messages and shares, it is possible for them to be
modified without A being able to detect it. Clearly, consistency has to be main-
tained: a share must be the sum of all messages received in that epoch. Likewise
the messages sent in an epoch must sum to the share. If these shares and mes-
sages were all incremented by some value Δ, consistency would be maintained.
Each party on the path would receive one message that was Δ larger, would
hold a share that was Δ larger and would send one message that was Δ larger.

We can therefore consider 2 executions. In one, the secret is sA. In another
the secret is sB and all messages and shares along the path are incremented by
Δ = sB −sA 
= 0. All other messages and shares are the same in both executions.
Therefore, the information available to A is the same in both executions.

The probability of the first execution occurring when s = sA is exactly the
same as the probability of the second execution occurring when s = sB . Most
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parties will have the same inputs and outputs in both executions, and so both
events will occur with the same probability. Likewise, A is not able to see any-
thing different in the two executions, so all actions chosen by A, including the
behavior of parties it controls, will be the same in both executions. This is true
whether A sends correct outputs or not, i.e., it holds true even for a malicious
A. The only parties that receive or send different messages are the dealer and
P

(1)
f(1), . . . , P

(T )
f(T ).

The dealer generates shares randomly subject to the sum being equal to the
secret. Therefore, the probability that it chooses any sequence of initial shares
to send to all parties other than Pf(1) is equal (|F|−(n−1)) in both executions.
The final share, sent to Pf(1) is determined by the other shares chosen. Likewise,
each honest party on the path chooses shares-of-shares randomly subject to the
sum being equal to their secret share. Therefore, the probability of the party
choosing any sequence of shares-of-shares to send to parties that are not on the
path (namely |F|−(d−1)) is the same in both executions. The share-of-share sent
on to the next honest party on the path will be uniquely determined by the other
shares-of-shares.

Therefore, for every execution where s = sA and A outputs sA, there is
another execution that when s = sB causes A to output sB with the same
probability. Summing over the finite set of all possible executions, we have that
for all sA, sB ∈ F, Pr(A outputs sA|s = sA) = Pr(A outputs sA|s = sB).

Lemma 2 implies that A obtains no advantage in determining the secret
by participating in the protocol. This holds provided there is an honest path
from H(1) to H(T ), which from Corollary 1 we know happens if δ ≤ γ(α − 1).
Furthermore, since we instantiate with a Ramanujan graph, Theorem 1 shows
that γ(α − 1) ≥ (1 − γ) d−4

d−4+ 4
γ

. Some basic calculus shows that that this is

maximized by γ = 2√
d+2

, for which the value is
√

d−2√
d+2

. This shows that Protocol
1 provides the following privacy guarantee:

Theorem 4. If δ ≤
√

d−2√
d+2

, Protocol 1 provides perfect privacy against (mali-
cious) adversaries controlling at most δn parties per epoch.

Table 2 presents some example values of δ and the smallest necessary value of
d that ensures privacy given δn corruptions per epoch. For instance, for d = 22
it is possible to tolerate 40% of parties being corrupted per epoch.

Table 2. Corruption threshold, δ, as a function of the bandwidth cost, d for the
privacy-only construction (Theorem 4).

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

γ 0.45 0.40 0.35 0.30 0.25 0.20 0.15

d 6 9 14 22 36 64 129
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6 O(n)-Robust only PSS with Constant Communication

The privacy-only construction (Sect. 5) can be adapted to provide robustness,
but not privacy. In this scheme, the “secret” message, s, is known in the clear.
The scheme aims to ensure that the message is not changed despite a large
number of malicious parties and a small amount of communication per party.

Recall that time is divided into epochs. As before, the adversary is allowed
to corrupt δn of the parties from each epoch. In this setting, each party Pi, in
each epoch t, holds a value, s

(t)
i . Our protocol will ensure that the majority of

nodes in a committee hold the correct value.
Note that (as discussed in Sect. 3) because of “eclipse attacks” we cannot

guarantee that all honest parties hold s
(t)
i = s in every epoch t. Instead, we

ensure that the majority of parties hold the correct value. This allows the true
value to be reconstructed by a simple majority vote.

We define deceived nodes to be nodes that are honest but hold and send
incorrect values because they have received incorrect values. This is a departure
from standard PSS and Byzantine models. Due to this relaxation, we are able to
obtain asymptotically optimal (Θ(n)) robustness with only O(1) communication
per party. Specifically, we guarantee that the number of compromised nodes, that
is nodes that are either deceived or corrupt, remains a minority.

Since we guarantee that the majority of nodes are always uncompromised,
it is always possible to use an O(n)-communication reconstruction step which
will allow each honest node to receive the correct value. If every node broadcasts
its value to every other node, then the majority of values any node receives will
be correct. If each honest party then sets its value to the most common value
it received then every honest party will have the correct value. This step only
needs to occur when we wish to return to a situation where every honest node
holds the correct value. For the sake of simplicity we omit further discussion of
the standard model and will focus on the model where we only need a majority
of uncompromised nodes.

The scheme is shown in detail in Protocol 2. It achieves Θ(n) proactive
robustness with only Θ(1) communication per player. However, it does not pro-
vide any privacy as the “secret” is seen by every node.

Protocol 2: Robust (only) Efficient PSS

Parameters:
Let Ĝ be a d̂-regular Ramanujan bipartite expander graph with n vertices
in each part. Choose neighbors according to Ĝ.

1. Setup: s is the “secret”. Dealer sends each party Pi the value s
(1)
i = s.

2. Resharing:
(a) At the start of epoch t, party Pi sends its share to all of its neighbors.

Let s
(t)
i,j denote the message Pi sends to neighbor Pj in epoch t.
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(b) Pj sets its new share to the majority of messages it received, i.e.

s
(t+1)
j = majorityi∈N−1(j)(s

(t)
i,j ). If there is no majority, s

(t+1)
j

def= ⊥.

The fact that the protocol has Θ(1) communication per player is evident from
the fact that each player sends a single message to each of its d̂ neighbors in the
expander and that d̂ is constant. We will now show that the protocol provides
robustness against a malicious proactive adversary controlling δn parties in each
epoch, for any constant 0 < δ < 1

2 .
First we will formalize our terminology. A node Pi is deceived in epoch t if it

is honest in epoch t, but s
(t)
i 
= s. A node is compromised if it is either malicious

or deceived.

Theorem 5 (Security of Protocol 2). Protocol 2 guarantees that in each
epoch, there is a majority of uncompromised nodes, provided A corrupts at most
δn nodes in each epoch, for some constant δ < 1

2 .

Proof. Select some constant ε such that δ < ε < 1
2 . We show there exists some

constant d̂ such that, if Ĝ is a d̂-regular Ramanujan bipartite expander, then the
number of compromised nodes in any epoch is at most εn.

By induction. In epoch 1, there are δn corrupt nodes and no deceived nodes,
so there are δn < εn compromised nodes.

Assume that the statement holds until epoch t. Let X be the set of compro-
mised nodes in epoch t. By the inductive hypothesis |X| ≤ εn. Let Y be the set
of deceived nodes in epoch t + 1. A node will be deceived only if at least half of
the messages it received were incorrect.

Applying Theorem 2, where S is the nodes that are compromised, we obtain:

|Y | ≤ 4εn

d̂
(
1
2 − ε

)2

The number of corrupt nodes in epoch t+1 is at most δn, so the total number
of compromised nodes in epoch t + 1 is at most:

4εn

d̂
(
1
2 − ε

)2 + δn

If d̂ ≥ 4ε
( 1
2−ε)2(ε−δ)

then the number of compromised nodes in epoch t+1 is at
most (ε − δ)n + δn ≤ εn. Thus, by induction there are at most εn compromised
nodes in every epoch. Since ε < 1

2 , most nodes in each epoch are uncompromised.

The above proof works for every ε satisfying δ < ε < 1
2 . A simple calcu-

lus proof, delegated to Supplemental Material D, shows that the expression is
minimized by ε = 1

4

(
δ +

√
δ2 + 4δ

)
. For instance, for δ = 0.1 this yields the

requirement that d̂ ≥ 88.
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7 O(na)-Private, O(n1−a)-Robust PSS with O(κ)
Communication

The PSS protocols presented in Sects. 5 and 6 are extremely limited in that the
first protocol does not provide any robustness (a malicious adversary can modify
the secret) and the second does not provide any privacy (every party knows the
“secret”). In this section we combine the two protocols to create a protocol that
has both privacy and robustness, but still has the desired constant (in n) com-
munication per party per epoch. Specifically, the protocol has privacy against
a proactive adversary corrupting Θ(na) nodes each epoch, robustness against
a proactive adversary corrupting Θ(n1−a) nodes per epoch, and requires Θ(κ)
communication per party per epoch, where κ is a security parameter. The pro-
tocol is perfectly robust, and computationally private, such that the adversary’s
advantage in guessing the secret is negligible in κ. Setting a = 1

2 provides a
constant-communication PSS with both privacy and robustness against a proac-
tive adversary corrupting Θ(

√
n) nodes per epoch.

At a high-level, we start our construction with the private protocol (Protocol
1) and replicate each party, say Pi, of that protocol some number of times. We
consider this set of replicas of Pi as if they are simulating Pi’s actions. However,
they will do it with a twist; they will utilize the robust protocol (Protocol 2)
when they send a message on behalf of Pi. The robust protocol will ensure that
no messages or shares are lost and the underlying private protocol will ensure
that there is privacy for the global secret, delivering the desired result.

However, things are not straightforward; there are two obstacles which need
to be overcome. The first is that for this general idea to work we need to guaran-
tee that the replicas in fact work as replicas. That is, if they are not compromised
(i.e. not corrupted or deceived) then they will execute the same steps with the
same inputs and randomness, otherwise the replicas will be sending different
messages. This is a challenging requirement to satisfy in the proactive setting.
The second issue is that we cannot have a replica of one party send message to
all the replicas of another party as this will increase the communication com-
plexity beyond our goals. Thus, to deliver a solution we need to address these
two problems.

Recall that in Protocol 1, the parties use fresh randomness to generate the
shares-of-shares. As described the fresh randomness is unique to each party and
is generated locally at the time it is needed. Note that we cannot generate
randomness from long-term shared PRG keys, as a proactive adversary can learn
all such keys and know the pseudorandomness being used by every party. Thus,
it seems that, as we require fresh randomness and at the same time need replicas
to have the same randomness, we are stuck in a bind.

To solve this, parties refresh the PRG keys of their neighbors in every epoch.
That is, each party, each epoch, sends their neighbors both a share-of-share, and
a string, called a re-randomizer. A party combines the re-randomizers it receives
to generate a new PRG key. How does a party generate these re-randomizers? It
uses its own PRG key for that epoch. This may seem circular since an adversary
who corrupts a party will learn the re-randomizers that it sends. Security comes



352 B. H. Falk et al.

from combining multiple re-randomizers to create the new key, and choosing
neighbors using an expander graph. Like Protocol 1 ensured a constant fraction
of shares remained private each epoch, this will ensure a constant fraction of
keys remain private. Our solution is therefore also Proactive Pseudorandomness
(PP) protocol, that is a protocol that generates pseudorandomness in a way
that is indistinguishable from random to a mobile adversary. See Sect. 9 for
more details on PP and a simplified version of our protocol that just provides
Proactive Pseudorandomness.

Since pseudorandomness is generated according to PRG keys, we can consider
a correct execution in which parties always generate their messages according
to the keys. This execution is deterministic given the dealer’s initial distribution
of keys and secret shares. We can consider the shares and messages of this
correct execution as the correct shares and messages. To show the robustness of
the protocol, we will show that, every epoch, for any party in the privacy-only
protocol, most of its replicas hold the correct share.

Having resolved the randomness issue, we have made a step forward towards
making replication possible. Now we need to address the issue of not having a
replica send messages to all the replicas of its neighbor. To attain robustness,
at a low communication cost we will have a replica of a party send its messages
only to a small subset of its neighbor’s replicas. We will show that robustness is
maintained despite this dramatically lower communication.

Concretely, we instantiate Protocol 1 with na parties, but in our protocol
each of these will be simulated by n1−a replicas. These replicas will be the actual
parties running the protocol; the fact that they are simulating an execution of
Protocol 1 is a useful abstraction. We label the parties as if they were in a na by
n1−a grid, with row i holding the replicas of Pi from Protocol 1. Pi,j denotes the
party in row i and column j. We denote the set of parties in row i as rowi and
the set of parties in column j as colj . If we wish to specify that we are referring
to a row (resp. column) in a specific epoch t, we use the notation row

(t)
i (resp.

col
(t)
j ).
In more detail, examine party Pi from the private protocol that is replicated

some number of times. If Pi sent Pi′ share-of-share s
(t)
i,i′ in epoch t in Protocol 1,

then each uncompromised replica of Pi will also send replicas of Pi′ , the share
s
(t)
i,i′ in epoch t of the new protocol. We will ensure the majority of replicas of

Pi will send the correct share-of-share. Thus, the replicas of Pi in rowi will send
messages to the replicas of Pi′ in rowi′ . Unfortunately, making every party in
rowi communicate to every party in rowi′ causes the communication complexity
to scale linearly in the amount of replication.

How many parties do they need to communicate to in order to ensure that
the majority of parties in any row always hold the correct share? Surprisingly,
a constant number suffices. The argument is almost identical to that of the
robustness of Protocol 2. To explain this, let’s restrict our view to one replica
of Pi, say Pi.�. Examine the replicas of party Pi′ of which it needs to choose a
subset to communicate with. The expander graph of the robust protocol will tell
us with which replicas of Pi′ the replica Pi,� should talk to, i.e. the columns that
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identify the subset of the replicas of Pi′ . We state two important points that will
aid in the proofs. The replica of Pi also needs to talk to replicas of a party Pi′′ , as
Pi communicates with Pi′′ in the private protocol. The subset of replicas of Pi′′

will be in exactly the same columns as the replicas of Pi′ . Furthermore, assume
that Pj also communicates with Pi′ in the private protocol. Then, the replica Pj,�

of Pj will talk to the subset of the same columns as the replica Pi,�. Saying this
abstractly we have that column colj will only communicate with column colj′ if,
in an instantiation of Protocol 2 with n1−a parties, Pj would communicate with
Pj′ . Pi,j only communicates with Pi′,j′ if row rowi communicates with rowi′ and
column colj communications with colj′ .

One final challenge is that malicious adversaries can choose to send incorrect
randomness in an attempt to create related keys for a Related-Key Attack (RKA)
on the PRG. To solve this, we use a PRF that is secure against additive RKAs
to securely combine the randomness sent to a party. This ensures that if any of
the messages is unknown to the adversary, it will be unable to distinguish the
PRG seeds from ones that were truly generated at random. We instantiate with
the additive-RKA-secure PRF of Bellare and Cash [BC10], which was proven
secure under DDH by [ABPP14]. This PRF is a variant of the Naor-Reingold
PRF, and like Naor-Reingold it has Θ(κ2) bits per key (Θ(κ) values from a
group where DDH is hard). A simple solution would be for each party to send
Θ(κ2)-bit rerandomizers which would be added to form a key for an additive-
RKA-secure PRF. However, it is not actually necessary for each party to send
Θ(κ2) bits. In our protocol each party instead sends a κ-bit PRG seed, which
the recipient expands to generate the Θ(κ2)-bit rerandomizers, which are then
added to create the key for the additive-RKA-secure PRF.

We set the parameters of the protocol as follows: a is a constant such that
0 < a < 1. n is the number of parties, and na and n1−a are both integers. The
parties are arranged in an na by n1−a grid, and are labeled Pi,j for 1 ≤ i ≤ na

and 1 ≤ j ≤ n1−a, such that Pi,j is in row i and column j. Pi,j in epoch t is
represented as P

(t)
i,j . The labels are public.

There are two bipartite expanders of constant degree, G which has na nodes
in each part and will be used for the private portion, and H which has n1−a nodes
in each part and will be used for the robust portion. dG (dH) is the degree of G
(H), respectively. GRi (HRj) represent the sets of indices of right-neighbors of
Li (Lj) in G (H) respectively. Likewise GLi (HLj) represent the sets of indices of
left-neighbors of Ri (Rj) in G (H) respectively. Expanders are fixed and public.

F is a group from which the secret is chosen. K1 is a group from which PRG
seeds are chosen, |K1| = 2κ. K2 is a group from which PRG re-randomizers are
chosen, |K1| = 2Θ(κ2). F : K2 × X → K1 is a Φadd-RKA-PRF where X can be
any PRF input set.
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Protocol 3: Private and Robust Efficient PSS

1. Setup:
The dealer picks s

(1)
1 , . . . , s

(1)
na uniformly at random from F subject to∑na

i=1 si = s, where s is the secret.
The dealer picks k

(1)
1 , . . . , k

(1)
na uniformly at random from K1.

The dealer sends (s(1)i , k
(1)
i ) to Pi,j for all 1 ≤ i ≤ na, 1 ≤ j ≤ n1−a.

Pi,j sets (s(1)i,j , k
(1)
i,j ) to the received value.

2. Resharing:
(a) At the start of epoch t each party Pi,j does the following:

Uses k
(t)
i,j as a PRG seed to pseudorandomly generate r

(t)
i,i′,j ← K1,

s
(t)
i,i′,j ← F, for all i′ ∈ GRi, chosen uniformly at random, subject

only to
∑

i′∈GRi
s
(t)
i,i′,j = s

(t)
i,j .

Sets r
(t)
i,i′,j,j′ = r

(t)
i,i′,j , s

(t)
i,i′,j,j′ = s

(t)
i,i′,j for all i′ ∈ GRi, j′ ∈ HRj .

Sends (r(t)i,i′,j,j′ , s
(t)
i,i′,j,j′) to Pi′,j′ for all i′ ∈ GRi, j′ ∈ HRj .

(b) Each party Pi′,j′ then does the following:
Receives (r(t)i,i′,j,j′ , s

(t)
i,i′,j,j′) from all i ∈ GLi′ , j ∈ HLj′ .

Sets r̂
(t)
i,i′,j′ = majorityj∈HLj′ r

(t)
i,i′,j,j′

Sets ŝ
(t)
i,i′,j′ = majorityj∈HLj′ s

(t)
i,i′,j,j′ .

Use r̂
(t)
i,i′,j′ as a PRG seed to generate rerandomizers k̂

(t)
i,i′,j′ ← K2 for

all i ∈ GLi′ .
Computes a new PRG seed from the provided randomness:
k̂
(t)
i′,j′ =

∑
i∈GLi′ k̂

(t)
i,i′,j′

k
(t+1)
i′,j′ = F (k̂(t)

i′,j′ , 1).
Combines shares-of-shares to get a new share of the secret:
s
(t+1)
i′,j′ =

∑
i∈GLi′ s

(t)
i,i′,j′ .

Before proving properties of the protocol, we provide some definitions. A
corrupted row is one in which there is at least one corrupted party, i.e. row
row

(t)
i is corrupted if there exists j ∈ {1, . . . , n1−a} such that P

(t)
i,j is corrupted.

Two rows row
(t)
i and row

(t+1)
i′ are neighbors if there exist P

(t)
i,j ∈ row

(t)
i , P

(t+1)
i′,j′ ∈

row
(t+1)
i′ such that P

(t)
i,j sends a message to P

(t+1)
i′,j′ . This happens exactly when

(i, i′) ∈ G. We say that row
(w)
iw

, row
(w+1)
iw+1

, . . . , row
(w+x)
iw+x

is a row path if row
(y)
iy

and row
(y+1)
iy+1

are neighbors for all w ≤ y ≤ w+x−1. If a row path consists only
of rows that are not corrupted, we say that it is an honest row path. Lastly, we
call a row path full if it stretches from the first epoch (epoch 1) to the last epoch
(epoch T ), i.e. row

(1)
i1

, . . . , row
(T )
iT

is a full row path for any length-T index set,
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i1, . . . , iT , where it ∈ {1, . . . , na} for 1 ≤ t ≤ T . We sometimes refer to a full row
path row

(1)
i1

, . . . , row
(T )
iT

simply by the sequence of indices it uses: i1, . . . , iT .
These definitions are intentionally analogous to those in the proof of privacy

for Protocol 1. The proof of security will also be similar, in that it will be shown
that if an honest row path exists throughout the entire protocol execution, then
the privacy is preserved. However, the proof first needs to demonstrate that the
adversary is not able to undermine security by using the fact that resharings are
generated pseudorandomly.

We prove this by first comparing the adversary’s view in two different exe-
cutions. The first is an execution of Protocol 3. The second is an execution in
which all PRG seeds in a full row path are generated truly at random. Now,
they cannot be all generated independently. If A is a passive adversary the PRG
seeds in a row will all be the same, but if A is malicious, the PRG seeds may
differ, since A may provide nodes in the row with different randomness. Thus,
we want the alternative execution to have nodes use the same PRG seeds exactly
when they would have the same seeds in the original execution. We thus define
the executions, or games, as follows.

Let GameReal denote an execution of Protocol 3. Given a full row path R =
row

(1)
R1

, . . . , row
(T )
RT

, Game1,R denotes an execution almost identical to Protocol

3 except for the way k
(t+1)
i′,j′ is generated in part (b) of the Resharing step. If

P
(t+1)
i′,j′ /∈ row

(t+1)
Rt+1

, it generates k
(t+1)
i′,j′ in the normal way. However, if P

(t+1)
i′,j′ ∈

row
(t+1)
Rt+1

, it communicates with all other parties in row
(t+1)
Rt+1

to identify the set of

parties which have the same value for k̂
(t)
i′,j′ . It then collaborates with the parties

in this set to generate a new truly random value which all parties in this set
then use for their PRG seeds k

(t+1)
i′,j′ .

Lemma 3. If R = R1, . . . , RT is a full honest row path then any probabilistic
polytime adversary, A, is unable to distinguish GameReal from Game1,R except
with negligible probability.

Proof. By induction on the epoch t. The induction invariant is that A will know,
at most, which parties from a row in the given epoch use the same PRG seeds,
but will have a negligible advantage at guessing these values.

The setup does not differ between GameReal and Game1,R. So initially the
views are identical. Note that A knows that all values of k

(1)
R1,j are identical, but

the value was chosen truly at random by the dealer, so A has no advantage in
guessing it.

We now show that a Resharing step followed by a Reconstruct step preserves
the invariant. We have that A knows which parties in row

(t)
Rt

have identical PRG

keys. At worst, she learns the result of all messages sent by row
(t)
Rt

except those

that are sent to row
(t+1)
Rt+1

. However, by the security of the PRG, the portion
of the PRG output A observes will give A negligible advantage in learning the
seed. Therefore, this information provides negligible assistance in allowing A to
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distinguish the case where the PRG seed, k
(t+1)
i′,j′ was generated using the PRF

(GameReal) and the case where it was generated truly at random (Game1,R).
Additionally, the security of the PRG provides her no advantage in guessing

the randomness sent from parties in row
(t)
Rt

to those in row
(t+1)
Rt+1

. Specifically

k̂
(t)
Rt,Rt+1,j′ is generated from a PRG seeded with r

(t)
Rt,Rt+1,j′ . This, in turn was

taken as the most common value of r
(t)
Rt,Rt+1,j,j′ for j ∈ HLj′ . In GameReal, these

are generated by a PRG on k
(t)
Rt,j , whereas in Game1,R these are generated using

a fresh random value (which is the same for any party holding an identical k
(t)
Rt,j).

By our inductive hypothesis, these cases are indistinguishable to A. Therefore,
by the security of the PRG, the outputs r

(t)
Rt,Rt+1,j,j′ are indistinguishable from

uniformly random to A except that A knows (at worst) which are identical, and
likewise are the computed values r

(t)
Rt,Rt+1,j′ . Therefore, again by the security

of the PRG, the rerandomizer k̂
(t)
Rt,Rt+1,j′ is indistinguishable from uniformly

random (except that A may learn which parties hold the same value).
Note that A may, in the worst case, know and be able to influence all other

rerandomizers that a given party in row
(t+1)
Rt+1

receives. Thus, P
(t)
Rt+1,j′ computes

k̂
(t)
Rt+1,j′ = k̂

(t)
Rt,Rt+1,j′ +

∑
i∈GLi′ /{Rt}

k̂
(t)
i,Rt+1,j′

The second term is, at worst, known and controllable by A. However, we have
shown that the first term is indistinguishable from uniformly at random to A.
Multiple parties in row

(t+1)
Rt+1

may receive the same value as the first term, but
A could introduce different values for the second term. This is equivalent to
a Related-Key Attack, where the first term is the original key and the second
term is an additive modification to the key chosen by A. However, since F is a
Φadd-RKA-PRF, the outputs of F on different, additively-related keys are indis-
tinguishable from random outputs. Thus, A will not be able to distinguish the
seeds k

(t+1)
i′,j′ in GameReal from the truly randomly generated seeds in Game1,R.

The outputs of F on identical keys will be the same, and again in Game1,R,
parties that received the same values of k̂

(t)
Rt+1,j′ will generate and use the same

PRG seeds. Thus the indistinguishability of the two games is preserved after an
epoch, and in particular the adversary may learn (at worst) which parties in the
honest row path in that epoch have the same PRG seeds, but has no advantage
in learning the seeds themselves.

Now, let Game2,R be equivalent to Game1,R except that rather than choosing
a truly random seed for the PRG, parties that have the same value for k̂

(t)
i′,j′

generate a truly random string in place of the PRG output.

Lemma 4. A probabilistic polytime adversary is unable to distinguish Game2,R

from Game1,R, except with negligible probability.
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Proof. This follows immediately from the definition of a PRG. In Game1,R the
PRG seeds are chosen truly at random, and the outputs generated from this seed.
A PRG has the property that an output of such a PRG is computationally indis-
tinguishable from a truly random output, and thus Game1,R is computationally
indistinguishable from Game2,R.

We are now essentially in the same position as the proof of Protocol 1. The
only difference is that replicas in an honest row may not agree on the same ran-
domness to generate their messages (if A sends them inconsistent randomizers).
Nevertheless, this does not undermine privacy, and we can proceed to prove pri-
vacy similar to as for Protocol 1 by considering the case that the secret-shares
on the honest path, and all secret-share messages on the honest path, are incre-
mented by some value sB − sA.

Lemma 5. If there exists a full honest row path, R, then in Game2,R, for all
possible secrets sA, sB ∈ F, the probability that A guesses output sA when s = sA

is the same as the probability that A guesses sA when s = sB.

Proof. For every execution of Game2,R in which A outputs sA when s = sA,
there is an execution in which A outputs sA when s = sB that occurs with equal
probability.

Let us examine an execution in which A outputs sA when s = sA. Now we
will examine another execution in which:

– The true secret is sB , not sA.
– The initial share sent to row

(1)
R1

by the dealer was incremented by sB − sA.

– For all nodes not on path row
(1)
R1

, . . . , row
(T )
RT

, the messages received, data
held, and messages sent are the same as the original execution. (This means
that the data seen by A and its behavior are identical in the two executions.)

– All secret-shares held by parties in path R are incremented by sB − sA.
– All shares of secret-shares sent from parties in R to other parties in R are

incremented by sB − sA.

All parties except for the dealer and those in path R view the same thing in both
executions and make the same choices, so the probability of them doing so is the
same in both executions. This includes A. It remains to show that this is a valid
execution for honest parties on the path. The sum of the messages sent by the
dealer is equal to the true secret, so this is a valid execution by the dealer. For
each party in R, all of the messages they receive from parties in R is incremented
by sB − sA, so, even if these messages disagree, the message they choose as the
“correct” message will also be incremented by sB − sA. Thus the secret share
they compute will be incremented by sB − sA as required. Lastly, all output
messages are the same except those sent to parties in R, and shares-of-shares
sent to R are incremented by sB − sA, so the sum of shares-of-shares output
will still equal the share held by the parties. Thus this is a valid execution by
honest parties. Since each valid execution by honest parties is equally likely, the
probability that this execution occurs is just as likely as the original. Finally,
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the random choices of all parties on the path R are made independently of all
parties not on the path, and in particular of A, so the combined probability of
the modified execution occurring is the same as that of the original.

Theorem 6. If a full honest row path exists, then A has negligible advantage in
guessing the secret.

Proof. If such a path, R, exists, then there is some game Game1,R which, by
Lemma 3 is indistinguishable from GameReal to A. By Lemma 4 this, in turn,
is indistinguishable from Game2,R to A. Now, A’s behavior in Game2,R has
the same probability if the secret is modified. Thus, Game2,R is (perfectly)
indistinguishable to A from an execution of Game2,R with a modified secret.
This in turn is indistinguishable from an execution of Game1,R with a modified
secret, which in turn is indistinguishable from an execution of GameReal with
a modified secret. Since the indistinguishable relation is transitive, this means
that any real execution is indistinguishable to A from another real execution
with a modified secret. Thus, A has negligible advantage in guessing the secret.

Finally, the proofs about the existence of honest paths for Protocol 1 apply
immediately to the case of honest row paths. In particular, as has already been
proven in Corollary 1, if a fixed portion δ of the rows are honest, and δ ≤ γ(α−1),
(where constants γ and α depend on G) then a full honest row-path exists. Since
a dishonest row requires at least one dishonest party, and there are na rows, we
get the following result:

Corollary 2. If there are at most δna malicious nodes, then there exists a full
honest row path.

Theorem 7. There exists some constant δ, such that the protocol is comput-
ationally-private against a malicious proactive adversary corruption at most δna

nodes per epoch.

Now we show that the protocol also has robustness. The approach is very sim-
ilar to that of Protocol 2, though in this case we show that a constant proportion
of columns in the grid are holding and sending correct values.

Again, before proceeding we need to introduce some terminology. A column
is a set of nodes in a given time-step that are in the same column in the grid, i.e.
column col

(t)
j = ∪na

i=1P
(t)
i,j . If the adversary corrupts any party in a column (in

a given time step), then the column is corrupt. Otherwise a column is honest.
Note that, except for the dealer, all (honest) parties’ actions are deterministic.
Therefore, given a certain setup by the dealer, we can consider the correct value
for a data element held, or for a message sent, to be the value that would be sent
if all parties follow the protocol. A column is correct if all of the data held and
messages sent by all parties in the column are correct, and incorrect otherwise.
Column col

(t)
j is a before-neighbor of column col

(t+1)
j′ exactly if there exists i, i′

such that P
(t)
i,j is meant to send a message to P

(t+1)
i′,j′ . This occurs exactly when

(j, j′) ∈ H.
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Lemma 6. If the majority of an honest column’s before-neighbors are correct,
then the column will also be correct.

Proof. Let col
(t+1)
j′ be a column with a majority of correct before-neighbors.

Then, for every node P
(t+1)
i′,j′ ∈ col

(t+1)
j′ , for every i ∈ GLi′ , the majority of

messages s
(t)
i,i′,j,j′ it receives are correct. Thus it will compute the correct value

for ŝ
(t)
i,i′,j′ for all i ∈ GLi′ and thus it will also compute the correct value for

s
(t+1)
i′,j′ . Likewise, for every i ∈ GLi′ , the majority of messages k̂

(t)
i,i′,j,j′ that it

receives will be correct, so it will compute the correct value for k̂
(t)
i,i′,j for every

i ∈ GLi′ and thus compute the correct value for k
(t+1)
i′,j′ . Thus all data held by

P
(t+1)
i′,j′ is correct. Since s

(t+1)
i′,j′ and k

(t+1)
i′,j′ are both correct, the messages that

P
(t+1)
i′,j′ sends in the next resharing step will also be correct. Since this is true for

all P
(t+1)
i′,j′ ∈ col

(t+1)
j′ , then column col

(t+1)
j′ is itself correct.

Theorem 8. If A corrupts δn1−a nodes in each epoch, for some constant δ <
1
2 , then for any constant ε satisfying δ < ε < 1

2 there exists some constant d
such that if H is a d-regular Ramanujan bipartite expander, then at most εn1−a

columns in every epoch are not correct.

Proof. By induction. For the first epoch, there are at most δn1−a corrupt
columns. The remaining nodes are correct, since they received messages only
from the dealer, who is honest. Therefore, the total number of incorrect columns
is δn1−a < εn1−a.

Now, assume at most εn1−a columns are incorrect in epoch t. By Lemma
9, the definition of a Ramanujan d-regular expander and Lemma 6, this means
that the number of honest columns in epoch t + 1 that are incorrect is at most:

4εn1−a

d
(
1
2 − ε

)2

A further δn1−a columns may be corrupt. Therefore, the total number of
incorrect columns in epoch t + 1 is at most

4εn1−a

d
(
1
2 − ε

)2 + δn1−a =

(
δ +

4ε

d
(
1
2 − ε

)2
)

n1−a

If d ≥ 4ε

( 1
2−ε)2(ε−δ)

then this is at most εn1−a.

Setting a concrete value of ε leads immediately to the robust security guar-
antee for Protocol 3.

Theorem 9. Protocol 3 provides robustness against a proactive adversary cor-
rupting Θ(n1−a) nodes in each epoch.
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8 Securing Channels Using Signing Oracles

Our solution for establishing secure channels requires a simple piece of trusted
hardware, a secure signing oracle. The secure signing oracle has a (persistent)
public verification key, and can be used to sign arbitrary messages. The only
trust assumption is that the private key cannot be extracted from the device. In
addition to the signing oracle, we assume that each party has a trusted random
number generator, i.e., every party that is not corrupted in the current epoch
can generate random numbers that are unpredictable to the adversary.

Such devices are commonly available as external devices (e.g. Yubikeys, or
cryptocurrency wallets like the Ledger or Trezor), and are implemented by
Apple’s Secure Enclave on the iOS.5. Suppose, in addition, that the verifica-
tion keys corresponding to these signing oracles are baked into the read-only
memory of every other party.

When a party is corrupted by the adversary, we assume that the adversary
has unfettered access to the signing oracle, and can sign arbitrary messages of
their choosing.

Secure signing oracles do not immediately yield persistent secure channels
on their own, since (1) they do not provide private channels, and (2) since the
adversary (with access to a signing oracle), can always sign additional messages
and inject them into the channels at a later date.

In our solution, we use the persistent key in the signing oracle to bootstrap
new keys for each epoch of the protocol. It is not sufficient to simply use the
signing oracle to sign new epoch-specific keys, because if an adversary corrupts
a party at time t (and gains access to the signing oracle), the adversary can sign
new key material, and hold onto these signed keys until after a reboot.

We can eliminate this attack vector with a simple challenge-response proto-
col. In epoch t, party i will reboot, and generate a new key, pki,t, ski,t. At the
beginning of epoch t, party j will send a challenge ri,j,t, to party i. Party i will
then sign the pair (pki,t, ri,j,t), using their signing oracle, and then return the
signed key to party j. This allows party j to ensure that the new key pki,t was
generated by party i in epoch t (or later).

The formal protocol is described in Protocol 4.

Protocol 4: Establishing Secure Channels

Party i holds a secure signing oracle SOi(·), and verification keys
{VKj}j∈[N ].

– Challenge:
• Peer-to-peer messaging: Player i generates a random challenge

ri,j,t ←r {0, 1}κ for each party, j, with whom they plan to commu-
nicate in epoch t.

5 https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web.

https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
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• Randomness beacon: In the presence of a trusted randomness bea-
con that generates a random nonce, rt ←r {0, 1}κ every epoch,
can use this to avoid communication. Instead, every players sets
ri,j,t = rt, and players do not need to exchange challenges. Thus
the presence of a trusted randomness beacon can reduce the commu-
nication and round complexity. The rest of protocol proceeds in the
same way, whether the challenges ri,j,t were generated and exchanged
by the players or provided by the randomness beacon.

– Key generation: Player i uses its random number generator to generate
a key pair, pki,t, ski,t, for an authenticated encryption scheme.

– Signing: Player i uses their trusted signing oracle, SOi to produce the
signature σi,j,t = SOi(i||pki,t||ri,j,t)

– Communication: Player i sends pki,t, σi,j,t to every player j that the
wish to communicate with in epoch t.

– Verification: Player j checks that the signature σi,j,t is a valid signature
on the message i||pki,t||ri,j,t using the (persistent) verification key VKi.

Theorem 10. Protocol 4 is a secure method for establishing channel keys in the
mobile adversary model. Specifically, consider a PPT mobile adversary who is
allowed to corrupt a (possibly) different subset of parties at every epoch. Then
if j is an uncorrupted party in epoch t, and j accepts pki,t, then (with all but
negligible probability) pki,t was generated by party i in epoch t.

Proof. If party j is honest, and accepts a public key, pki,t from party i in epoch t,
then the signature σi,j,t is valid signature of pki,t||ri,j,t under party i’s persistent
verification key, VKi.

If pki,t, was not generated in epoch t, then either (i) the signature σi,j,t was
generated by an adversary with access to the signing oracle in a prior epoch,
or (ii) the signature σi,j,t was generated by an adversary without access to the
signing oracle in the current epoch.

For case (i), an adversary with access to the signing oracle, would have to
guess the challenge ri,j,t (which was generated uniformly at random from {0, 1}κ

in epoch t. Any polynomial-time adversary can make at most a polynomial
number of queries to the signing oracle (and store the resulting signatures until
epoch t), and thus has at most a negligible probability of querying the oracle
with the challenge ri,j,t.

For case (ii), an adversary who never had access to the signing oracle would
have to guess the signature σi,j,t. A polynomial-time adversary can guess at most
a polynomial number of signatures σ′

i,j,t and check (using the public verification
key VKi) whether the signature is valid on pk′||ri,j,t. Since the adversary can
only make a polynomial number of guesses, the adversary’s success probability
in this scenario is also negligible.

Thus an adversary (who has not corrupted party i in epoch t) has only a
negligible probability of getting party j to accept a public key.
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9 O(n)-secure Proactive Pseudorandomness with O(κ)
Communication

In Sect. 7, we required replicas to have local PRG keys which were generally
indistinguishable from random to A. Using pseudorandomness rather than fresh,
local randomness was necessary to allow replicas to send identical messages.

A simplified version of Protocol 3 can instead be used for a different objec-
tive, replacing the need for fresh, local randomness altogether. In [CH94], Canetti
and Herzberg presented the problem of generating Proactive Pseudorandomness
(PP). They argued that sometimes a source of fresh, local randomness is not
available. They presented a protocol that replaces randomness by pseudoran-
domness generated by PRGs. In order to ensure that the pseudorandomness
remains indistinguishable from random to a mobile adversary, each party, every
epoch, sends every other party a randomizer. Each party combines the randomiz-
ers it receives to construct a new PRG seed. As long as the adversary is unaware
of any one of these randomizers, a party’s new PRG key will be indistinguish-
able from random to A. [CH94] argue that this removes the need for local, fresh
randomness in Proactive protocols.

Like [CH94] we present a protocol that removes the need for fresh, local ran-
domness in proactive protocols provided secure hardware channels exist. Unlike
[CH94], each party communicates with only Θ(1) parties per epoch rather than
all n parties. Since each party only communicates with a constant number of
other parties in each epoch, honest parties are susceptible to “eclipse attacks,”
where the adversary corrupts all of the party’s communication partners. Thus,
we consider a slightly more relaxed notion of PP security than [CH94]. The orig-
inal PP protocol guarantees that every party that is honest in a given epoch
has pseudorandomness that is unpredictable to the adversary. Our protocol will
instead guarantee that in every epoch, at least γn parties will have pseudoran-
domness that is unpredictable to the adversary, where γ is a constant.

The protocol is obtained by simplifying Protocol 3 as follows. We no longer
need replication, so we set a = 1. We are concerned only with keys and key
re-randomizers, so we remove all messages and variables related to shares. Addi-
tionally, since there are no replicas, we do not need to worry about related-key
attacks. We therefore do not need a Φadd-RKA secure PRF to combine the re-
randomizers, simply adding the re-randomizers to generate a new key suffices.
The resulting protocol is presented in Protocol 5.

Protocol 5: Proactive Pseudorandomness

Parameters:
Let G = (L ∪ R,E) be a d-regular bipartite (γ, α) expander, with parts
L = {L1, . . . , Ln} and R = {R1, . . . , Rn}. We choose neighbors according
to graph G. (See Section 5 for the definition of choosing neighbors.)
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1. Setup:
Each party, Pi, is provided an initial truly random seed k1

i from a trusted
source.

2. Re-randomizing:
(a) At the start of epoch t, each party Pi, for each of its neighbors Pj ,

generates re-randomizer rt
i,j = F (kt−1

i , j) and sends it to Pj .
(b) Pj receives a re-randomizer from each party of which it is a neighbor.

It computes its new key as: kt
j =

⊕

i∈N−1(j)
rt
i,j .

It computes a new PRG seed as: k̂t
j = F (kt

j , 0)

To prove the security of this protocol, we first observe that the communication
pattern in Protocol 5 is identical to that of Protocol 1. Thus as in the proof of
security of Protocol 1, we can define a layered graph H, where vertex H

(t)
i

represents Pi at epoch t. We likewise re-use the definitions of an honest vertex,
honest path and honest ancient path. We now establish the following lemma.

Lemma 7. If H
(t)
i is part of some honest ancient path, H

(1)
f(1), . . . , H

(t)
f(t), then

F (kt
i , x) is indistinguishable from random to A for all x /∈ N(i).

Proof. We show this by induction using the following slightly stronger inductive
hypothesis:

A is unable to distinguish the real execution, from an execution in which
F (kf (u)u, ·) is replaced by a truly random function for all 1 ≤ u ≤ v.

For the base case, the key k1
f(1) is generated uniformly at random by a trusted

dealer and sent to an honest party Pf(1) using a secure (hardware) channel. (Note
it is deleted from Pf(1)’s memory during the refresh phase of epoch 2, while Pf(1)

is still honest, so A can never observe it.) Therefore, the outputs of the PRF on
key k1

f(1) will be indistinguishable from those of a random function.
Now assume the statement holds up to some value v ∈ [t−1]. Since F (kv

f(v), ·)
is indistinguishable from a random function to A, the value rv

f(v),f(v+1) is indis-
tinguishable from a random value to A. (This value is generated, sent over a
secure hardware channel, and deleted from the memory of both parties in the
refresh phase of epoch v + 1, during which both Pf(v) and Pf(v+1) are honest,
so A can never observe it.) Therefore, even if A knows all other re-randomizers
sent to Pf(v+1) in round v + 1, rv

f(v),f(v+1) will act as a one-time pad, so from
A’s perspective kv+1

f(v+1) will be distributed according to the uniform distribu-
tion. (Also, it will be deleted by Pf(v+1) before A can observe it.) Thus, by the
security of the PRF, F (kv+1

f(v+1), ·) is indistinguishable from a random function.
Therefore, F (kt

f(t), ·) is indistinguishable from a random function to A.
A may corrupt Pf(t)’s neighbors in epoch t + 1, which would allow A, at most,
to learn F (kt

f(t), j) for j ∈ N(f(t)). However, for other inputs, the output will
be indistinguishable from random to A.
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We can now prove that the random value generated is truly random:

Theorem 11. Let there be a malicious mobile adversary that controls at most
δn parties per epoch, where δ ≤ γ(α−1). Protocol 5 ensures that γn of the PRG
seeds in each epoch are indistinguishable from uniformly random seeds to A.

Proof. Lemma 1 in Sect. 5 states that when δ ≤ γ(α−1), there will always be at
least γn ancient honest paths to H(t). Thus, by Lemma 7, for γn of the parties
in epoch t, F (ki

i, ·) is indistinguishable from a random function. A may receive
F (ki

i, j) for all j ∈ N(i) ⊂ {1, . . . , n} in the next epoch, but will never receive
the output of this function on input 0. Thus, at least γn parties will have PRG
seeds that are indistinguishable from uniformly random to A.

Remark 3 (Malicious adversaries). Recall that Protocol 1 provided only privacy,
but not robustness, so A could change the secret by sending an incorrect mes-
sage, but could not learn the secret. In our PP protocol, a corrupted party can
similarly send incorrect re-randomizers. This will change the PRG seeds gen-
erated in later epochs, but it will not help A learn these seeds or undermine
the pseudorandomness they generate. Therefore, our PP protocol has security
guarantees that are still useful in practice against malicious, mobile adversaries.

Remark 4 (Secure channels). As discussed in Supplemental Material A.2, chan-
nels with proactive security cannot be instantiated with static cryptographic
keys, since a mobile adversary could learn the channel keys in one epoch, and
then continue to read messages on the channel in future epochs. Sect. 8 shows
that proactively-secure channels can easily be instantiated using a trusted (hard-
ware) signing oracle. It might seem that PP could also be used to instantiate
proactively-secure channels. Unfortunately this is not possible.

To see this, note that A is able to see all (potentially encrypted) messages
sent to a party Pi (even when Pi is not corrupted). Suppose Pi is corrupted and
A learns the complete state of Pi, and then Pi is rebooted. Now, if Pi performs
some local operation, A can simulate this since A learnt Pi’s state and Pi has no
fresh randomness. If Pi receives an encrypted message from another party, A can
observe the encrypted message, decrypt the message as Pi would, and continue
to simulate Pi. This is true even if the message is sent using a channel that is
authenticated (by hardware) but is not private. Thus, if A corrupts Pi at any
time and observes all messages Pi receives, A can simulate Pi’s state indefinitely.
This inherent limitation applies to all proactive protocols. Thus, without private
(hardware) channels or fresh local randomness, it is impossible to attain any
privacy in the mobile adversary model.

Furthermore, even if parties do have access to fresh local randomness, if there
are no trusted hardware or authenticated hardware channels, once A corrupts
a party, that party will never be able to authenticate itself. When A corrupts
a party, it learns the entire state of the party at that point in time, and can
therefore pretend to be the party in all future interactions. While the party may
generate fresh local randomness, A can choose randomness from an identical dis-
tribution. Other parties will thus be unable to distinguish A from the real party.
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Therefore, without (hardware) authenticated channels or local secure hardware,
it is impossible to authenticate parties in the mobile adversary model.
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gift from Ripple Labs, Inc.

Supplemental Material

A Previous Work

The Mobile adversary model is particularly challenging, because eventually a
mobile adversary will have corrupted all the parties (but not all simultaneously).
This means that an adversary who corrupts a party should (1) not be able to
read the party’s historical state, and (2) should not be able to predict the party’s
randomness in the future.

This means that at minimum parties need secure deletes, since otherwise
an adversary who corrupted a party at time t, could read all of the messages
received by the party during all previous rounds of the protocol, as well as fresh
randomness, so that an adversary cannot predict the behavior of parties it has
corrupted in the past.

In the original work introducing the mobile adversary [OY91], they imagined
removing an adversary (and securely deleting previous state) by imagining a
“clean” version of the program sitting in read-only memory, a piece of trusted
hardware that would periodically “reboot” the machine to remove the adver-
sary (as well as the history). They also assumed that either “each coin-flip is
generated online (which is the practical assumption on generating randomness
from physical devices), or, more abstractly, that the entire random tape of the
machine is replaced with a new one during reboot.”

Our works, like essentially all prior works in the PSS literature assume parties
can securely delete state variables, and can be securely “rebooted” to obtain a
clean copy of the PSS program.

A.1 PSS Protocols

The mobile-adversary model was introduced in [OY91], where they provided an
information-theoretic protocol for secure computation. Proactive secret shar-
ing has been widely studied e.g. [OY91,HJKY95,FGMY97,Rab98,CKLS02,
ZSVR05] [BHNS99,SLL10,BEDLO14,MZW+19,YXD22] and some works (e.g.
[FGMY97,Rab98]) focused on proactive secret sharing of keys for specific cryp-
tosystems (e.g. RSA).

The main challenge in developing a PSS protocol is how to refresh the shares.
In the semi-honest model, the linearity of secret sharing schemes like Shamir’s
scheme [Sha79] make it straightforward to re-randomize shares when parties are
semi-honest. One method is to have each party generate a fresh sharing of zero,
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then each party locally adds all the shares they received. So the secret, s, can be
shared according to a polynomial f(x), where party i holds f(i), and f(0) = s.
In this method of refreshing, party i generates a polynomial gi(x), such that
gi(0) = 0, and gives gi(j) to party j, and party j calculates their new share as
f(j) +

∑
i gi(j). This is the refresh method laid out in [HJKY95].

Another method is to have party i re-share their share, i.e., party i generates
a new polynomial gi(x) such that gi(0) = f(i), and gives gi(j) to party j. This
re-sharing technique is widely used in Secure Multiparty Computation [GRR98].
Since polynomial interpolation is a linear operation, party j can compute a new
sharing of the original secret, s, by doing local, linear operations on the shares
{gj}i. This is the refresh method laid out in [CKLS02].

Other works [ELL20,MZW+19,YXD22] share using bivariate polynomials.
To obtain security against malicious adversaries (instead of semi-honest adver-
saries), these simple refresh protocols were combined with Verifiable Secret Shar-
ing (like Feldman VSS [Fel87]), as well as BFT consensus.

The mobile adversary model relies on “epochs” – the adversary is static within
an epoch – and this introduces some amount of synchrony into the model. It is
possible to consider an asynchronous model of PSS, where there is still a global
notion of epochs, but communication within an epoch is asynchronous (and
adversarially controlled). PSS protocols that can tolerate asynchronous commu-
nication within an epoch include [CKLS02,ZSVR05,SLL10,YXD22]. Some PSS
schemes have been implemented [SLL10,MZW+19,YXD22].

As is evident from the brief description of prior works, they all require for each
party to carry out a secret sharing in the refresh phase, even in the semi-honest
model. This results in an all-to-all communication between the parties during the
share refresh. In our work, parties do not have all-to-all communication every
epoch, instead they communicate according to an expander graph. Expander
graphs have been used to build Robust Secret Sharing schemes [HO18], but
those constructions only consider a static adversary.

To reduce communication, some protocols can handle batches of independent
secrets, which can reduce amortized communication complexity. Batched PSS
protocols include [BEDLO14,BDLO15,ELL20].

A.2 Refreshing Secure Channels

Most secure multiparty protocols assume that parties can communicate using
“secure, authenticated channels.” In practice, however, these secure channels
are usually secured using public-key encryption, and authenticated using digital
signatures. This works well in the static adversary model.

In the mobile adversary model, parties cannot use persistent keys to secure
and authenticate their channels, because once an adversary has corrupted a
party (and in doing so learned their private keys), the adversary can read all
messages sent to that party during future rounds of the protocol (using the
party’s decryption key) and impersonate the party in all future rounds of the
protocol (using the party’s signing key).
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This problem is not readily solved. If a party is securely rebooted (and gener-
ates new key material), how can they communicate their new public encryption
and verification keys to the other parties? They cannot simply sign their new
key using their old key, since an adversary (who had corrupted the party in the
previous round) could generate a competing key, and sign it using the party’s
old, valid key.

One way to side-step this problem is to assume that parties are connected
via persistent, secure authenticated channels (e.g. secure hardware channels),
thus eliminating the need for key management. This is the approach taken
in [OY91] as well as many subsequent works including [CKLS02,BEDLO14,
MZW+19,YXD22].

In [HJKY95] they addressed this problem by assuming that all parties had
access to an uncensorable broadcast channel. When a party was rebooted, they
would generate new key material, and sign the new key using their old key, and
broadcast their new (signed) key. As noted above, the adversary could do the
same, by generating a new (adversarially controlled) key, and signing this key
with the old key. In this case, however, since the broadcast channel is uncen-
sorable, honest parties would see two new keys broadcast after the reboot. They
would not be able to distinguish which one was valid, but they could refuse to use
either key until the offending party was rebooted again. This provides a method
whereby an adversary could halt the network (by continually broadcasting false
keys after a reboot), but could never violate security.

This problem was explored in depth in [CHH97], where they propose a solu-
tion involving proactive, threshold signature schemes. Essentially, the construc-
tion of [CHH97] works as follows: At the start of the protocol, it is assumed that
all parties hold a share of a private signing key, and the corresponding verifica-
tion key is baked into their read-only memory. This persistent verification key
will then be used to authenticate all short term secrets as follows. When a party
reboots, and generates new key material, they will send their new public keys to
all parties, at which point the parties will run a byzantine agreement protocol
to agree on the party’s public key. Then they will use their long-term key shares
to generate a threshold signature on the party’s new signing key. Unfortunately,
this construction rests on a proactive threshold signature scheme, to avoid cir-
cularity, they show how to convert any proactive threshold signature scheme
(that requires authenticated channels) to one that does not require authenti-
cated channels, using byzantine agreement.

Some PSS protocols (e.g. [SLL10]) consider a dynamic committee model,
where there is a completely new committee in each epoch (and the public keys
of all the new committee members are known in advance), so there is no need
to refresh channel keys. This model does allow members from old committees
to be corrupted (even after their role on a committee is done), so parties use
a forward-secure cryptosystem [CHK03]. This means that an adversary who
corrupts a party cannot decrypt ciphertexts sent to that party in previous epochs.
Unfortunately, forward-secure cryptosystems do not prevent the adversary from
learning messages sent in future epochs.
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[ZSVR05] suggests a few possible approaches for creating persistent secure
channels between parties. One approach is to use trusted hardware to implement
a signing oracle with a monotonically increasing counter. Every time the oracle
signs a message, it would include the counter (that is incremented every epoch),
that ensures that the message was sent during the current epoch. They also sug-
gest an alternative approach with a trusted administrator (with a static public
key), who can identify each party and sign their new keys after each refresh.
They do not, however, describe how a party can authenticate themself to the
trusted administrator after a reboot.

[CKLS02] suggests that if each party has a trusted co-processor (e.g. Intel
SGX [MAA+16]), then the co-processor can have a trusted clock (that is timed
to the epochs), as well as a persistent signing key. Then the co-processor can
generate new session keys every epoch, and sign these new epoch-keys together
with the epoch number (from its trusted clock), using its persistent signing key.
Now that these trusted co-processors are prevalent in commodity hardware, this
is a promising approach. Below (Sect. 8) we show how to eliminate the need for
a full-blown trusted co-processor with a tamper-proof clock.

The assumption that persistent, trusted channels exist (e.g. [OY91,CKLS02,
BEDLO14,MZW+19,YXD22]) is an extremely strong assumption, which we
would like to avoid. Weaker assumptions, assuming a censorship resistant broad-
cast channel as in [HJKY95], or byzantine agreement and threshold secret shar-
ing (as in [CHH97]) are unsatisfactory in our setting because they require all-
to-all O(n) communication per-party, something that we wish to avoid in our
protocol.

In Sect. 8, we outline a novel solution for re-establishing secure, authenticated
channels in the presence of a mobile adversary. Our solution is compatible with
any other proactive secret sharing scheme that requires secure channels and
has the added benefit that it is compatible with essentially any communication
pattern, i.e., it only requires communication between the sender and receiver in
order to set up a secure channel between the two parties.

B Ramanujan Expanders

Ramanujan expanders are expanders with essentially optimal spectral expansion.
The spectral expansion of a graph is the largest absolute value of an eigenvalue of
the adjacency matrix (apart from the trivial eigenvalues ±d). Ramanujan graphs
have spectral expansion at most 2

√
d − 1. This is optimal in the sense that for

any ε > 0, any infinite family of d-regular graphs contains at least some graphs
with spectral expansion greater than (2

√
d − 1 − ε) [Nil91].

Definition 3. A d-regular graph, G, is called a Ramanujan Graph if the spectral
radius of G is bounded by 2

√
d − 1, i.e., for every eigenvalue λ of the adjacency

matrix of G, if |λ| < d, then |λ| < 2
√

d − 1.

In particular, we use balanced bipartite Ramanujan expanders. Balanced
bipartite Ramanujan graphs can be efficiently computed for all degrees and sizes
[MSS13,MSS18,Coh16].
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Ramanujan graphs do not necessarily have optimal vertex expansion. It is
an open problem to find explicit general constructions of bipartite graphs with
near-optimal vertex expansion (see Open Question 6 of Paredes [Par21]). Con-
structing such graphs would improve the concrete results of this paper. Never-
theless, Ramanujan graphs provide good vertex expansion, which is sufficient for
the purposes of this paper.

Below we demonstrate that Ramanujan graphs have the properties our pro-
tocols require. Concretely, we prove Theorems 1 and 2. We start with a standard
theorem relating spectral and vertex expansion:

Theorem 12 (Spectral expansion implies vertex expansion [Vad12]
[Theorem 4.6]). If G is a d-regular graph with second largest eigenvalue λ,
then for every γ ∈ [0, 1], G is a (γ, α) expander where

α =
1

(1 − γ)λ2

d2 + γ
(1)

Combining Definition 3 and Theorem 12 gives our first required property:

Theorem 1 A Ramanujan graph is a
(
γ, 1

(1−γ) 4
d+γ

)
expander ∀ γ ∈ [0, 1].

We now prove the second property. We are given a d-regular, bipartite
expander graph with two sets L and R each of size n. We have a subset S ⊂ L
of nodes of size δn on the left and a value ε1. We want to calculate how many
nodes on the right have more that ε1 fraction of their edges connected to the
set S.

Lemma 8 (Bipartite Expander Mixing [Hae95][Theorem 5.1]). Let G
be a d-regular bipartite graph with spectral radius λ. Suppose, S ⊂ L, and T ⊂ R,
with |S| = α |L|, and |T | = β |R|. Let e(X,Y ) def= |{(x, y) ∈ E | x ∈ X, y ∈ Y }|
then ∣∣∣∣

e(S, T )
e(L,R)

− αβ

∣∣∣∣ ≤ λ

d

√
αβ (2)

Note, that e(L,R) are all the edges in the graph, i.e. d|L|.
Lemma 9. Given a d-regular bipartite expander with spectral radius λ, suppose
a set of δn vertices on the left are in S then at most

λ2δn

(ε1 − δ)2d2
(3)

right vertices have at least an ε1 fraction of left-neighbors in S.

Proof. Let T denote the set of right-hand vertices that have at least an ε1-fraction
of left-neighbors in S. Since G has right-degree d, we have e(S, T ) ≥ dε1 |T |.
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On the other hand, the expander mixing lemma (Lemma 8) tells us that for
α = |T |/n and β = δ,

∣∣∣∣
e(S, T )

nd
− δ

|T |
n

∣∣∣∣ ≤ λ

d

√
δ
|T |
n

⇒ e(S, T )
d

− δ |T | ≤ λ

d

√
nδ |T | (4)

On the other hand, e(S, T ) ≥ dε1 |T |, so we have

ε1 |T | − δ |T | ≤ λ

d

√
nδ |T | ⇒ |T | ≤ λ2δn

(ε1 − δ)2d2
(5)

Since Ramanujan graphs have spectral radius at most 2
√

d − 1, this implies
our required property:

Theorem 2. Ramanujan graphs have the following property. Let S be a set of
size at most δn vertices on the left. Then at most

4δn

( 12 − δ)2d

right-hand vertices have at least 1
2 of their neighbors in S.

C Epoch Length

We present a maliciously-secure PSS protocol in Sect. 7 that can only tolerate
Θ(

√
n) corruptions per epoch, which may seem low compared to existing PSS

protocols (e.g. [HJKY95] and [SLL10]) that can tolerate Θ(n) corruptions per
epoch.

What this comparison hides is we are free to choose the length of an epoch
by choosing how frequently we run the refresh protocol. Decreasing the length
of an epoch will increase the communication cost (per unit time), but should
decrease the number of parties an adversary can corrupt in a given epoch.

To see this in play, imagine that instead of allowing the adversary to corrupt
δ · n parties per epoch (as is standard in the PSS literature), we assumed the
adversary had a fixed corruption rate, i.e., the adversary could corrupt one party
every t(n) units of time. A traditional PSS protocol (tolerating δn corruptions
per epoch), would be secure in this model by setting the epoch length T =
δ · n · t(n).

But now, consider the communication cost. A traditional PSS protocol, toler-
ating δn corruptions per epoch, and requiring Θ(n) communication per refresh,
would have amortized communication cost of Θ

(
1

t(n)

)
per unit time. By con-

trast, our protocol, which requires only Θ (κ) communication per epoch, but
can “only” tolerate Θ(

√
n) corruptions could set a much lower epoch time,

T = Θ(t(n) · √
n), which would make the amortized communication cost of

our protocol Θ
(

κ
t(n)

√
n

)
per unit time, which is much lower for sufficiently large

n.
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Furthermore, this ignores the costs of establishing secure channels in the (nor-
mal) case that secure hardware channels do not exist. Authentication between
parties requires Ω(κ) communication (see Sect. 8 for our instantiation). This
would increase the amortized communication cost of traditional protocols to
Θ

(
κ

t(n)

)
per unit time, but the amortized cost of our maliciously-secure PSS

protocol would remain Θ
(

κ
t(n)

√
n

)
.

What this means is that (for sufficiently large n) we can achieve a lower
amortized communication cost per unit time, while achieving the same level of
security.

D Proof of Lemma 10

Lemma 10. The equation f(x) = 4x
( 1
2−x)2(x−a)

where 0 < a < 1
2 is minimized

over the range a < x < 1
2 by x = 1

4 (a +
√

a2 + 4a).

Proof. First, observe that over the range a < x < 1
2 , f(x) is continuous, differ-

entiable and positive. Therefore, any minimum point of f(x) over a < x < 1
2

is also a maximum point of g(x) = 4
f(x) over the same range. So we will now

instead find the maximum point(s) of g(x) over this range.

g(x) =
( 1
2
− x)2(x− a)

x
=

x3 − ax2 − x2 + ax+ 1
4
x− 1

4
a

x
= x2 − (a+ 1)x+ (a+

1

4
)− 1

4

a

x

Now g(a) = 0, g( 12 ) = 0 and g(x) is positive over a < x < 1
2 , so g(x) is not

maximized over a < x < 1
2 at the end-points. It must be maximum at a point,

v, where the first derivative is 0.

g′(v) = 2v−(a+1)+
a

4v2
= 0 ⇒ 2v3−(a+1)v2+

a

4
= 0 ⇒ (v−1

2
)(2v2−a−a

2
) = 0

The solutions are v = 1
2 , and v = a±√

a2+4a
4 . Only v = a+

√
a2+4a
4 is in the

range a < x < 1
2 , so this value minimizes g(x) and maximizes f(x) over this

range.

References

ABPP14. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key
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Abstract. Despite active research on secret-sharing schemes for arbi-
trary access structures for more than 35 years, we do not understand their
share size – the best known upper bound for an arbitrary n-party access
structure is 2O(n), while the best known lower bound is Ω(n/ log(n)).
Consistent with our knowledge, the share size can be anywhere between
these bounds. To better understand this question, one can study spe-
cific families of secret-sharing schemes. For example, linear secret-sharing
schemes, in which the sharing and reconstruction functions are linear
mappings, have been studied in many papers, e.g., it is known that they
require shares of size at least 20.5n. Secret-sharing schemes in which the
sharing and/or reconstruction are computed by low-degree polynomi-
als have been recently studied by Paskin-Cherniavsky and Radune [ITC
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a lower bound of Beimel et al. [CRYPTO 2021], we show that increas-
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1 Introduction

Secret sharing is a method by which a dealer holding a secret distributes shares to
parties such that only pre-defined authorized subsets of parties can reconstruct
the secret and unauthorized subsets should not learn any information about the
secret. The collection of authorized sets is called the access structure. Origi-
nally, secret sharing was motivated by the problem of secure information stor-
age; nowadays secret-sharing schemes have found numerous other applications
in cryptography, distributed computing, and complexity theory (see, e.g., [9] for
such applications). A major problem with secret-sharing schemes is that the
best known schemes for general n-party access structures have shares of size
2O(n) [4,6,34,37], making the known constructions for general access structures
impractical. On the other hand, the best known lower bound on the total share
size of secret-sharing schemes realizing an arbitrary n-party access structure,
proved by Csirmaz [19,20], is Ω( n2

log n ). Despite active research on secret-sharing
schemes for more than 35 years, determining the share size for arbitrary access
structures is a major open problem.

To better understand this question, one can study specific families of secret-
sharing schemes. Such study can shed light on general secret-sharing schemes,
e.g., provide new techniques for constructing efficient secret-sharing schemes or
provide new lower bound techniques. For example, linear secret-sharing schemes,
in which the sharing and reconstruction are computed by linear mappings, have
been studied in many papers [4,6,8,17,35,37,41], and it is known that they
require shares of size at least 20.5n [8] and every n-party access structure can
be realized by a secret-sharing scheme with share size 20.757n [6]. Secret-sharing
schemes in which the sharing and/or reconstruction are computed by low-degree
polynomials have been recently studied by Paskin-Cherniavsky and Radune [40]
and by Beimel, Othman, and Peter [15]. It was shown in [15] that every n-party
access structure can be realized by a secret-sharing scheme with sharing and
reconstruction computed by polynomials of degree 2 and share size 20.705n, that
is, secret-sharing schemes with degree-2 sharing and reconstruction are more
efficient than the best known linear schemes (i.e., schemes in which the sharing
and reconstruction are computed by polynomials of degree one). Prior to this
work, it was not known if secret-sharing schemes with constant reconstruction
degree d > 2 are more efficient than secret-sharing schemes with reconstruction
degree 2.

In this paper we continue the study of polynomial secret-sharing schemes,
i.e., schemes in which the reconstruction of the secret from the shares of an
authorized set is done by polynomials of constant degree. Our main result in
this paper is showing that the increasing the degree results in better share size,
as described in the next theorem.

Theorem 1.1 (Informal). Every n-party access structure can be realized by a
secret-sharing scheme with reconstruction by polynomials of degree d and share
size 2(0.585+O( log log d

log d ))n.
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In particular, for an arbitrary access structure, we get a secret-sharing scheme
with share size 20.6731n+o(n) and reconstruction degree 243. As lim

d→∞
log log d
log d = 0,

the share size approaches 20.585n+o(n), which is the share size of the best known
secret-sharing scheme [15]. In comparison, Beimel et al. [15] constructed a degree-
2 secret-sharing scheme with share size 20.705n+o(n), and Applebaum and Nir [6]
constructed a linear secret-sharing scheme with share size 20.7575n+o(n).

Beimel and Farràs [10] proved that most access structures can be realized
with secret-sharing schemes that are much more efficient than the best known
schemes for the worst access structures. Beimel et al. [15] showed a similar result
for schemes with reconstruction of degree 2. We generalize this result to arbitrary
reconstruction degrees.

Theorem 1.2 (Informal). Almost all n-party access structures can be realized
by a secret-sharing scheme with reconstruction by polynomials of degree d and
1-bit secrets and with share size 2O( log log d

log d )n.

The previous results and our results on secret-sharing schemes with polyno-
mial reconstruction are summarized in Table 1.

Table 1. Summary of the best upper and lower bounds on the share size for secret-
sharing schemes. The contributions of this work are Corollary 7.3 and Corollary 7.5.

Linear Degree-2 Degree-d Unrestricted

Lower bound
for the worst

access structures

Ω(2n/2−o(n))
[8]

Ω(2n/3−o(n))
[15]

Ω(2n/(d+1)−o(n))
[15]

Ω(n2/ log(n))
[19]

Upper bound
for all

access structures

20.7576n+o(n)

[6]
20.705n+o(n)

[15]
2

(
0.585+O

(
log log d

log d

))
n+o(n)

Corollary 7.3

20.585n+o(n)

[6]

Upper bound
for almost all

access structures

2n/2+o(n)

[10]

2n/3+o(n)

[15]
2
O

(
log log d

log d

)
n

Corollary 7.5

2Õ(
√
n)

[10]

Conditional disclosure of secrets (CDS) protocols were introduced by Gert-
ner, Ishai, Kushilevitz, and Malkin [30]. These protocols are an important tool
in the recent constructions of secret-sharing schemes for arbitrary access struc-
tures [3,4,6,37]. In a k-server CDS protocol for a Boolean function f : [N ]k →
{0, 1}, there are k servers that hold a secret s and have a common random string.
In addition, each server holds a private input xi ∈ [N ]. Each server sends one
message to a referee such that the referee, who knows the private inputs of the
servers but nothing more, learns the secret s if f(x1, . . . , xk) = 1 and learns
nothing otherwise. CDS protocols have been used recently in [3,4,6,15,37] to
construct the best known secret-sharing schemes for arbitrary access structures.
CDS protocols in which the reconstruction is done by polynomials of degree d
have been studied in [28,38] prior to the works on polynomial secret-sharing
schemes. Continuing this line of research, we construct k-server CDS protocols
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that are provably more efficient as the degree of d of the reconstruction grows.
We use them to construct secret-sharing schemes for arbitrary access structures
with reconstruction by polynomials of degree d; these schemes are more efficient
than the best known linear secret-sharing schemes. Specifically, we prove the
following result.

Theorem 1.3 (Informal). For every N > 0, d > 0, k > 1, and function
f : [N ]k → {0, 1}, there is a k-server CDS protocol for f , with degree-d recon-
struction and communication complexity NO((k−1)· log log d

log d ).

For example, we prove that for any function f : [N ]2 → {0, 1} there is a
2-server CDS protocol over F7 with communication complexity O(N1/4) and
reconstruction degree 243. In comparison, the best previously known 2-server
CDS protocol with constant degree reconstruction has degree-2 reconstruction
and communication complexity O(N1/3) [15].

Theorem 1.3 is proved by constructing a CDS protocol for the function
INDEXk

N , where for every D ∈ {0, 1}Nk−1
(called the database) and every

(i2, . . . , ik) ∈ [N ]k−1 (called the index), INDEXk
N (D, i2, . . . , ik) = Di2,...,ik

. This
strategy was used by Liu et al. in [38]. The 2-server CDS protocol of [38] (and
our 2-server CDS protocol) uses the ideas of the 2-server private information
retrieval (PIR) protocol of Dvir and Gopi [22]. Our techniques imply 2-server
PIR protocols over Zm, for m = p1p2 where p1, p2 are primes and p1|p2 − 1,
with communication complexity NOm(

√
log log N/ log N)1 (the protocol of [22] only

works over Z6). Furthermore, we can construct 2-server PIR protocols, in which
the answers of the servers can be computed by a degree-d polynomial, the recon-
struction function is linear, and the communication complexity is NO( log log d

log d ).
By a lower bound of Beimel et al. [15] (generalizing results of [28]), the mes-

sage size of CDS protocols with degree-d reconstruction is Ω(N1/(d+1)). Thus,
while the message size of our protocols does not match the lower bound, our
results show that increasing the degree of the reconstruction in 2-server CDS
protocols provably reduces the message size. The known and new results on the
message size CDS protocols are described in Table 2.

1.1 Our Techniques

Our main result is a general construction of secret-sharing schemes for arbitrary
access structures in which reconstruction is done by low degree polynomials.
We construct it using the same steps as the constructions of the most efficient
known secret-sharing schemes for arbitrary access structures. We start by con-
structing 2-server CDS protocols using matching vectors, following the footsteps
of Liu, Vaikuntanathan, and Wee [38]. We use this 2-server CDS protocols to
construct k-server CDS protocols using decomposable matching vectors, as in
Liu et al. [39]. We then transform this CDS protocol into a robust k-server CDS
protocol using the transformation of Applebaum, Beimel, Nir, and Peter [4]

1 The notation Om(·) allows the constant in the O notation to depend on m.
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Table 2. Summary of best upper and lower bounds on the message size of CDS pro-
tocols for functions f : [N ]k → {0, 1} and INDEXk

N , according to different types of
reconstruction functions. In the first row, we present the best lower bound on the mes-
sage size of CDS protocols for the worst function f : [N ]2 → {0, 1} and for INDEX2

N .
In the second row, we present the best upper bounds for all functions f : [N ]2 → {0, 1}
and for INDEX2

N . In the third and four rows, we present the corresponding bounds for
functions f : [N ]k → {0, 1} and INDEXk

N . The contributions of this work are Corollary
3.7 and Corollary 5.14.

Linear Degree-2 Degree-d Unrestricted

INDEX2
N

and functions
f : [N ]2 → {0, 1}

Ω(N1/2)
[12,28]

Ω(N1/3)
[15]

Ω(N1/(d+1))
[15,28]

Ω(logN)
[2,5,7]

O(N1/2)
[13,28]

O(N1/3)
[38]

N
O

(
log log d

log d

)

Corollary 3.7
N

O
(√

log log N
log N

)

[38]

INDEXk
N

and functions
f : [N ]k → {0, 1}

Ω(N(k−1)/2)
[12,16]

Ω(N(k−1)/3)
[15]

Ω

(
N

k−1
d+1 /k

)

[15]

Ω(logN)
[2,5,7]

O(N(k−1)/2)
[16,38]

O(N(k−1)/3)
[15]

N
O

(
(k−1)· log log d

log d

)

Corollary 5.14
N

O
(√

k
log N

log logN
)

[39]

(with the better analysis of Beimel, Othoman, and Peter [15]), and finally use
a transformation of [6] to construct secret-sharing schemes for arbitrary access
structures. The technical contribution of this paper is in the first two steps. We
show that if the matching vectors are sparse (i.e., the number of non-zero entries
in them is small), then the degree of the reconstruction is low. We construct such
matching vectors and show how to use them to construct 2-server and k-server
CDS protocols with low-degree reconstruction, as explained below.

Matching Vectors and CDS Protocols. We start by recalling that a family of
pairs of vectors ((ui,vi))

N
i=1, where ui,vi ⊆ Z

h
m, is a family S-matching vectors

over Zm if 〈ui,vi〉 ≡ 0 (mod m) for i ∈ [N ] and 〈ui,vj〉 mod m ∈ S for
i 	= j ∈ [N ] (where m = p1 · p2 is a product of two distinct primes p1 < p2,
S ⊆ Zm \ {0}, and 〈ui,vj〉 is the inner product modulo m, i.e.,

∑h
�=1 ui[�] ·vj [�]

mod m). Matching vectors were used by Efremenko [24] and Dvir and Gopi [22]
to construct 3-server and 2-server private information retrieval (PIR) protocols,
respectively. Liu et al. [38] used the ideas in [22] to construct 2-server CDS
protocols. In [22,38], they used matching vectors over Z6. We generalize these
constructions and show that one can use matching vectors over Zp1p2 , where p1
and p2 are primes such that p1 divides p2 − 1. Furthermore, we observe that
one can use S-matching vectors for sets S that are larger than the ones used
in previous constructions on PIR and CDS protocols. Namely, one can take
Sone = {a ∈ Zm : a ≡ 1 (mod p1) ∨ a ≡ 1 (mod p2)} instead of Scan = {a ∈ Zm :
(a ≡ 0, 1 (mod p1)) ∧ (a ≡ 0, 1 (mod p1))} \ {0}, which was used in previous
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works.2 E.g., over Z21 we can use Sone = {1, 4, 7, 8, 10, 13, 15, 16, 19} instead of
Scan = {1, 7, 15}. We use this observation to construct better CDS protocols
with degree-d reconstruction. The construction of Sone-matching vectors that
are shorter than the known Scan-matching vectors may lead to CDS protocols
that are better than the currently best ones.

Sparse Matching Vectors. The most expensive part of computing the reconstruc-
tion function of the CDS protocol over Zm (when considering the degree of the
reconstruction) is computing a〈vi,m〉 mod p2, where a is an element of order p1
in Fp2 , 1 ≤ i ≤ N is an index, and m is a vector sent to the referee by the second
server. Note that

a〈vi,m〉 ≡
h∏

�=1

avi[�]·m[�] (mod p2), (1)

where vi,m ∈ Z
h
m, and vi[�],m[�] are the �-th coordinates of vi and m, respec-

tively. If the server sends ab·m[�] mod p2 for every 1 ≤ � ≤ h and every b ∈ Zp1

(this only increases the communication complexity by a factor of p1), then the
referee can compute this value with a polynomial of degree h. In the best con-
structions of matching vectors, the length of the vectors h is 2Θ(

√
log(N) log log(N))

(over Z6). Thus, we get a CDS protocol with communication complexity and
reconstruction degree 2Θ(

√
log(N) log log(N)).

The starting point of the construction with lower reconstruction degree is to
recall that the order of a is p1 and to write the product in (1) as

∏

�∈{1,...,h},
vi[�] �≡0 (mod p1)

avi[�]·m[�] (mod p2).

This implies that the degree of reconstruction is the number of coordinates in the
matching vectors that are non-zero modulo p1. To get a 2-server CDS protocol
with degree-d reconstruction, we need a family of matching vectors in which each
vi contains at most d coordinates that are non-zero modulo p1; we say that such
family is a d-sparse family.

Constructions of Sparse Matching Vectors. Our goal is to construct a family
of N matching vectors over Zp1·p2 that are d-sparse with respect to p1 and
their length h is as short as possible. By the lower bound of [15] their length is
at least h = Ω(N1/(d+1)) for a constant d. We present 3 constructions in which
h = dO( log d

log log d )4.18
NO( log log d

log d ). The first construction is due to Efremenko [24]; the
construction as described in [24, Appendix A] is sparse. In the second construc-
tion, we show how to improve Efremenko’s construction. For concrete param-
eters, our construction achieves the smallest length h compared to the other 2

2 In [22], they also have a construction that uses a Z6 \ {0}-matching vectors family
over Z6. It is unclear how to use this construction to improve the communication
complexity of PIR and CDS protocols.
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constructions. The downside of our construction is that they are Sone-matching
vectors (compared to Scan in the other two constructions). Sone-matching vec-
tors suffice for constructing 2-server private information retrieval (PIR) pro-
tocols [22], k-CDS protocols, and secret-sharing schemes for arbitrary access
structures. However, they cannot be used in the 3-server PIR protocols of Efre-
menko [24]. The third construction we describe is a construction by Kutin [36];
in this case we need to decouple two of the parameters in the construction to
achieve sparse matching vectors. The advantage of Kutin’s construction com-
pared to the other two constructions is that every m that is a product of two
distinct primes (e.g., m = 6) can be used to achieve every sparsity d. In contrast,
in Efremenko’s construction and in our construction, to get smaller sparsity we
need to use bigger m’s. We remark that we can also use Grolmusz’s construction
of matching vectors [31] to construct sparse matching vectors (again by decou-
pling two parameters). This yields to a construction with similar features as
Kutin’s construction; we do not describe Grolmusz’s construction in this paper.

We next describe the ideas of Efremenko’s construction [24] and our improve-
ment. Efremenko starts with a family of vectors (ũ1, . . . , ũN ) and (ṽ1, . . . , ṽN )
that are the characteristic vectors of N subsets in

(
[h̃]

m−1

)
. If ũi and ṽj are

the characteristic vectors of Ai and Aj , respectively, then 〈ũi, ṽj〉 = |Ai ∩ Aj |
mod m. Thus, 〈ũi, ṽi〉 = m − 1 and 〈ũi, ṽj〉 ∈ {0, . . . , m − 2} for i 	= j. By
adding a first coordinate that is 1 in all vectors, Efremenko constructs Zm \{0}-
matching vectors, where

(
h̃

m−1

)
> N (since there must be at least N distinct

subsets of size m − 1). The sparsity of these vectors is m. To construct Scan-
matching vectors, Efremenko uses the tensor product, Fermat’s little theorem,
and the Chinese reminder theorem (CRT). The length of the resulting vectors is
h̃p2−1 and their sparsity with respect to p1 is mp1 . We modify this construction
by starting with characteristic vectors of sets of size p21 (since p1 < p2, this is
smaller than in Efremenko’s construction). We use Fermat’s little theorem only
with respect to p1 and use a polynomial of degree p1 to deal with the vectors
modulo p2. The length of the vectors in our construction is h̃p1 , where h̃ is bigger
than in Efremenko’s construction; however, our construction yields vectors with
roughly the same length as Efremenko’s construction and smaller sparsity.

k-Server CDS Protocols with Polynomial Decoding. We use 2-server CDS proto-
cols to construct a k-server CDS protocols. Following [39], the first server in the
k-server CDS protocol will simulate the first server in the 2-server CDS protocol
and the last k − 1 servers in the k-server CDS protocol will simulate the second
server in the 2-server CDS protocol. In the simulation, the last k−1 servers need
to send a message depending on their collective inputs, but each server only sees
its input. As in [39], we use decomposable matching vectors to enable the sim-
ulation, that is, matching vectors such that every vector ui can be computed
from k−1 vectors u2,i2 , . . . ,uk,ik

, where each vector ut,it
can be computed from

the input of the t-th server. To construct k-server CDS protocols with polyno-
mial decoding using this approach, we have two challenges. First, we need to
show that the constructions of sparse matching vectors are decomposable. This
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is done by changing the basic construction; instead of taking characteristic vec-
tors of arbitrary sets of size m − 1, we partition the universe into m − 1 parts
(i.e., subsets) and take sets of size m − 1 that contain exactly one party from
each part. The second challenge is to implement the simulation of the second
server’s message in the 2-server CDS protocol using a protocol in which the ref-
eree reconstructs the message using a low-degree polynomial. Liu et al. [39] use
a private simultaneous message (PSM) protocol of [33] for this task; however, it
is not clear how to reconstruct the message with low-degree polynomials in this
protocol. We design a special purpose protocol for this task exploiting the fact
that in CDS protocols the referee knows the inputs (but not the secret).

From k-Server CDS Protocols with Polynomial Decoding to Secret-Sharing with
Polynomial Reconstruction. We transform our k-server CDS protocol into a
robust k-server CDS protocol using the transformation of Applebaum, Beimel,
Nir, and Peter [4] (using the better analysis of Beimel, Othoman, and Peter [15]).
In a robust CDS protocol (abbreviated as RCDS protocol) for a function f , a
server can send messages for more than one input using the same randomness.
The security of the protocol should hold as long as the messages correspond to
zero-inputs (i.e., inputs for which f evaluates to zero). We finally use a transfor-
mation of [6] from RCDS protocols to secret-sharing schemes for arbitrary access
structures. This last transformation is similar to the one in previous papers.

Summary of the Construction. The main conceptual contribution of this paper
is defining sparse matching vectors and showing that they imply CDS proto-
cols with polynomial reconstruction. Towards this good, we generalize the CDS
protocol of [38] to work over arbitrary m = p1 · p2 where p1 and p2 are primes
such that p1 divides p2 − 1. We observe that in this case, we can use a more
relaxed notion of matching vectors (i.e., Sone-matching vectors). Constructing
Sone-matching vectors that are shorter than the known constructions of Scan-
matching vectors will lead to better CDS protocols and secret-sharing schemes.
Our most important technical contribution is constructing a new family of sparse
matching vectors that for concrete parameters are shorter than the matching vec-
tors of Efremenko [23], which are sparse and sparse generalizations of the con-
structions of Grolmusz [31] and Kutin [36]. Our contribution of secret-sharing
schemes with polynomial reconstruction follows the steps of previous construc-
tions [4,6,39]; however, in many steps we encountered technical difficulties and
needed to change the constructions to enable polynomial reconstruction.

Due to the space restrictions of this publication, we omitted all the proofs
and many intermediate results, comments, and remarks. The full version of this
work is available at [11].

1.2 Previous Works

Secret-Sharing Schemes. Secret-sharing schemes were introduced by Shamir [42]
and Blakley [18] for the threshold case, and by Ito, Saito, and Nishizeki [34] for
the general case. Ito et al. presented two secret-sharing schemes with share size
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2n for every access structure. The best currently known secret-sharing schemes
for general n-party access structure are highly inefficient with total share size
of 20.585n [3,4,6,37]. The best known lower bound for the total share size of a
secret-sharing scheme is Ω( n2

log n ) [19,20]; there is an exponential gap between
the lower bound and the upper bound.

Polynomial Secret-Sharing Schemes. Paskin-Cherniavsky and Radune [40]
defined secret-sharing schemes with polynomial sharing; in these schemes the
sharing is computed by constant degree polynomials (there are no restrictions
on the reconstruction functions). They showed limitations of various sub-classes
of secret-sharing schemes with polynomial sharing. Specifically, they showed that
the subclass of schemes for which the sharing is linear in the randomness (and
the secret can be with arbitrary degree) is equivalent to multi-linear schemes up
to a multiplicative factor of O(n) in the share size. This implies that schemes
in this subclass cannot significantly reduce the known share size of multi-linear
schemes. In addition, they showed that the subclass of schemes over finite fields
with odd characteristic such that the degree of the randomness in the sharing
function is exactly 2 or 0 in any monomial of the polynomial can efficiently
realize only access structures whose all minimal authorized sets are singletons.
They also studied the randomness complexity of schemes with polynomial shar-
ing and showed an exponential upper bound on the randomness complexity (as
a function of the share size).3 Beimel, Othman, and Peter [15] defined and stud-
ied secret-sharing schemes and CDS protocols with polynomial reconstruction
and secret-sharing schemes with polynomial sharing and reconstruction. They
constructed a k-server CDS protocols with degree 2 sharing and reconstruction
with message size O(N1/3) and proved a lower bound of Ω(N1/(d+1)) for every
2-server CDS protocol with degree-d reconstruction. They also prove that (under
plausible assumptions) secret-sharing-schemes with polynomial sharing are more
efficient than secret-sharing schemes with polynomial reconstruction.

Conditional Disclosure of Secrets Protocols. CDS protocols were introduced by
Gertner et al. [29]. 2-server CDS are equivalent to secret-sharing for forbid-
den graph access structures [43]. Beimel et al. [13] showed a construction of
2-server CDS protocols with communication complexity of O(

√
N). Later, Gay

et al. [28] showed a construction of 2-server CDS protocol for INDEX2
N and for

every function f : [N ]× [N ] → {0, 1} with linear reconstruction and communica-
tion complexity O(

√
N). They also proved a lower bound of Ω(N1/d+1) on the

communication complexity of 2-server CDS protocols for INDEX2
N in which the

reconstruction is computed by a degree-d polynomial. In particular, they proved
that their linear 2-server CDS protocol for INDEX2

N with communication com-
plexity O(

√
N) is optimal. Beimel et al. [12] proved a lower bound of Ω(

√
N)

on the communication complexity of CDS protocols with linear reconstruction
for almost all functions f : [N ] × [N ] → {0, 1}; Beimel et al. [15] generalized the

3 For linear and multi-linear schemes, there is a tight linear upper bound on the
randomness complexity.
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lower bound on the communication complexity of 2-server CDS protocols with
degree-d reconstruction for almost all functions f : [N ]×[N ] → {0, 1}. Construc-
tions and lower bounds for k-server CDS protocols appear in [12,15,16,30,38];
see Table 2.

Matching Vectors. We next discuss the most relevant results on matching vec-
tors. The study of matching vectors families dates back to the study of set sys-
tems with restricted intersections modulo an integer m, that is, a system of sets
whose size modulo m is some number μ0 and the sizes of the intersection of any
two sets in the system modulo m is in some set L. Such system implies a family
of matching vectors by taking the characteristic vectors of the sets in the sys-
tem. Frankl and Wilson [27] initiated the study of this question and proved upper
bounds on the size of such set systems when the moduli is a prime. Using match-
ing vector terminology, they proved that for any prime p if there is an S-matching
vector family ((ui,vi))N

i=1 over Zh
p , then N ≤ (

h
|S|

)
. They asked if the same lower

bounds apply to composite numbers. Frankl [26] showed that this is not true;
his result implies that for every N there is an Sone-matching vectors family over
Z6 with N vectors of length h = O(N1/3) (where N >

(
h
3

)
). Grolmusz [31]

showed that working over composite numbers can drastically reduce the length
of the matching vectors, i.e., his result implies that there is an Sone-matching
vectors family over Zm, where m = p1p2 for two primes p1 	= p2, with N vectors
and length h = 2O(p2

√
log N log log N). Kutin [36] showed that for every pair of

primes p1 	= p2 and for infinitely many values of N there are Sone-matching vec-
tors families over Zp1p2 of length h = 2O(

√
log N log log N) (notice that he removed

the dependency of p2 in the exponent). Efremenko [24] used matching vectors
to construct locally decodable codes and 3-server private information retrieval
protocols. He also provided another construction of Sone-matching vectors with
length h = 2O(

√
log N log log N). Dvir, Gopalan, and Yekhanin [21] continued the

study of matching vector codes, i.e., locally decodable codes based on matching
vectors. Dvir and Gopi [22] used matching vectors to construct 2-server private
information retrieval protocols and Liu, Vaikuntanathan, and Wee [38,39] used
them to construct CDS protocols, robust CDS protocols, and matching vectors
families. See [11] for more details.

2 Preliminaries

In this section, we will present the definitions needed for this paper. We will start
with some notations, continue by defining secret-sharing schemes for general
access structures, in particular secret-sharing with polynomial reconstruction.
Afterwards, we define conditional disclosure of secrets (CDS) protocols. See the
full version of this work [11] for more formal definitions and more details.

2.1 Notations

For a natural number n ∈ N, we denote [n] � {1, . . . , n}. We denote log the
logarithmic function with base 2. For α ∈ [0, 1], we denote the binary entropy
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of α by H2(α), where H2(α) = −α log α − (1 − α) log(1 − α) for α ∈ (0, 1), and
H2(0) = H2(1) = 0.

For a set A and a positive integer k, we denote by
(
A
k

)
the family of subsets

of A of size k, i.e., {B ⊆ A : |B| = k}.
If two integers a and b are congruent modulo m, we denote a ≡ b (mod m).

If a is the reduction of b modulo m, then we denote a ← b mod m.
We use the Õ notation, called soft-O, as a variant of big O notation that

ignores logarithmic factors, that is, f(n) ∈ Õ(g(n)) if f(n) ∈ O(g(n) logk g(n))
for some constant k.

We next define three vector operations that are used to construct matching
vectors. We define the first two over the ring Zm and the last product over a
field F as this is the way that they are used in this paper.

Definition 2.1 (Pointise and dot product). Let m,h > 0 be two positive
integers and let x,y ∈ Z

h
m. The point-wise product (or Hadamard product) of

x,y, denoted by x � y, is a vector in Z
h
m whose �-th element is the product of

the �-th elements of x,y, i.e. (x � y)[�] = x[�] · y[�] mod m. The dot product
(or inner product) of x and y is 〈x,y〉 =

∑
�∈[h] x[�] · y[�] mod m.

Definition 2.2 (Tensor product). Let F be a field, let N be an integer, and
let x,y ∈ F

N . The tensor product of x,y, denoted by x ⊗ y ∈ F
N2

, is defined
by (x ⊗ y)[i, j] := x[i] · y[j], (where we identify [N2] with [N ]2). Similarly, we
define the �-th tensor power x⊗� ∈ F

N�

as x⊗� = x⊗�−1 ⊗ x.

Theorem 2.3 (Chinese reminder theorem (CRT)). Let n1, n2, . . . , nk be
pairwise relatively prime natural numbers, N = n1n2 . . . nk, and b1, b2, . . . , bk ∈
Z. Then there is a unique x ∈ ZN such that x ≡ bi (mod ni) for all 1 ≤ i ≤ k.

2.2 Access Structures and Secret-Sharing Schemes

The definitions in this section are mainly based on [9]. See the full version of
this work [11] for more formal definitions and more details.

Definition 2.4 (Access structures). Let P = {p1, . . . , pn} be a finite set of
n parties. A collection A ⊆ 2P is monotone if for every set A ∈ A and for
every C ⊆ P such that A ⊆ C it must be that C ∈ A. An access structure is a
monotone collection A ⊆ 2P \∅. A set of parties is called authorized if it is in A
and unauthorized otherwise.

Definition 2.5 (Secret-sharing schemes—Syntax). Let P = {p1, . . . , pn}
be a set of n parties. A secret-sharing scheme with domain of secrets S, set of ran-
dom strings R, and domain of shares S1, S2, · · · , Sn for the parties p1, p2, . . . , pn,
is a mapping Π : S × R → S1 × S2 × · · · × Sn. For a set A ⊆ P , we denote
ΠA(s; r) as the restriction of Π to its A-entries. We define the size of the secret
in Π as log |S|, and the share size of party pj as log |Sj |, the maximum share

size as max
1≤j≤n

log |Sj |, and the total share size as
n∑

j=1

log |Sj |.
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Definition 2.6 (Secret-sharing schemes—Correctness and security). A
secret-sharing scheme Π with finite domain S, where |S| ≥ 2, realizes an access
structure A if the following two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of
parties, that is, for any set A ∈ A (where A = {pi1 , . . . , pi|A|}), there
exists a reconstruction function ReconA : Si1 × · · · × Si|A| → S such that
ReconA(ΠA(s; r)) = s for every s ∈ S and every r ∈ R.

Security. Every unauthorized set cannot learn anything about the secret from
its shares (in the information theoretic sense).

All the secret-sharing schemes presented in this paper are with the domain
of secrets S = {0, 1}, unless stated otherwise.

2.3 Conditional Disclosure of Secrets

Informally, in a CDS protocol there are k servers Q1, . . . , Qk, each holding a
private input xi, the secret s, and a common random string r, and there is a
referee holding x1, . . . , xk. Each server Qi sends the message mi = Enc(xi, s; r)
to the referee, and the referee can reconstruct s if and only if f(x1, . . . , xn) = 1.
In a Robust CDS protocols (RCDS), the security is guaranteed even if the referee
receives a certain amount of messages that correspond to different inputs.

Definition 2.7 (Conditional disclosure of secrets (CDS) protocols).
Let f : X1 ×· · ·×Xk → {0, 1} be a k-input function. A k-server CDS protocol P
for f , with domain of secrets S, domain of common random strings R, and finite
message domains M1, . . . ,Mk, consists of k encoding functions Enc1, . . . , Enck,
where Enci : Xi ×S ×R → Mi for every i ∈ [k]. For an input x = (x1, . . . , xk) ∈
X1 × · · · × Xk, secret s ∈ S, and randomness r ∈ R, we let Enc(x, s; r) =
(Enc1(x1, s; r), . . . , Enck(xk, s; r)). We say that P is a CDS protocol for f if it
satisfies the following properties:

Correctness. There is a deterministic reconstruction function Dec : X1 ×
· · · × Xk × M1 × · · · × Mk → S such that for every input x = (x1, . . . , xk) ∈
X1 × · · · × Xk for which f(x1, . . . , xk) = 1, every secret s ∈ S, and every
common random string r ∈ R, it holds that Dec(x,Enc(x, s; r)) = s.

Security. For every input x = (x1, . . . , xk) ∈ X1×· · ·×Xk with f(x1, . . . , xk) =
0 and for every pair of secrets s, s′ ∈ S, the encodings Enc(x, s; r) and
Enc(x, s′; r) are equally distributed.

The message size of a CDS protocol P is defined as the size of the largest
message sent by the servers, i.e., max1≤i≤k log |Mi|.

In two-server CDS protocols, we sometimes refer to the servers as Alice and
Bob (instead of Q1 and Q2, respectively) and to the referee as Charlie.

Similarly to secret-sharing schemes, all the CDS protocols presented in this
paper are with domain of secrets S = {0, 1}, unless stated otherwise.
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Definition 2.8 (The predicate INDEXk
N). We define the k-input function

INDEXk
N : {0, 1}Nk−1 × [N ]k−1 → {0, 1} where for every D ∈ {0, 1}Nk−1

(a
(k − 1) dimensional array called the database) and every (i2, . . . , ik) ∈ [N ]k−1

(called the index), INDEXk
N (D, i2, . . . , ik) = Di2,...,ik

.

Observation 2.9 ([28]). If there is a k-server CDS protocol for INDEXk
N with

message size M , then for every f : [N ]k → {0, 1} there is a k-server CDS
protocol with message size M .

Definition 2.10 (Zero sets). Let f : X1 × X2 × · · · × Xk → {0, 1} be a k-
input function. We say that a set of inputs Z ⊆ X1 × X2 × · · · × Xk is a
zero set of f if f(x) = 0 for every x ∈ Z. For sets Z1, . . . , Zk, we denote
Enc(Z, s; r) = (Enc(x, s; r))x∈Z1×···×Zk

.

Definition 2.11 (t-RCDS protocols). Let P be a k-server CDS protocol for
a k-input function f : X1 ×X2 ×· · ·×Xk → {0, 1} and Z = Z1×Z2×· · ·×Zk ⊆
X1 × X2 × · · · × Xk be a zero set of f . We say that P is robust for the set Z
if for every pair of secrets s, s′ ∈ S, it holds that Enc(Z, s; r) and Enc(Z, s′; r)
are identically distributed. For an integer t, we say that P is a t-RCDS protocol
if it is robust for every zero set Z1 × Z2 × · · · × Zk such that |Zi| ≤ t for every
i ∈ [k].

2.4 Degree-d Secret Sharing and Degree-d CDS Protocols

We next quote the definition of [15] of secret-sharing with polynomial recon-
struction and CDS with polynomial decoding.

Definition 2.12 (Degree of polynomial). The degree of a multivariate
monomial is the sum of the degree of all its variables; the degree of a polynomial
is the maximal degree of its monomials.

Definition 2.13 Degree-d mapping over F). A function f : F
� → F

m

can be computed by degree-d polynomials over F if there are m polynomi-
als Q1, . . . , Qm : F

� → F of degree at most d such that f(x1, . . . , x�) =
(Q1(x1, . . . , x�), . . . , Qm(x1, . . . , x�)) .

Definition 2.14 (Secret-sharing schemes with degree-d reconstruc-
tion). We say that the scheme Π with domain of secrets S has a degree-d
reconstruction over a finite field F if there are integers �, �1, . . . , �n such that
S ⊆ F

� and Si = F
�i for every i ∈ [N ], and ReconB, the reconstruction function

of the secret, can be computed by degree-d polynomials over F for every B ∈ A.

Definition 2.15 (CDS Protocols with Degree-d Decoding). A CDS
protocol P with domain of secrets S has a degree-d decoding over a finite
field F if there are integers �, �1, . . . , �k ≥ 1 such that S ⊆ F

� and Mi =
F

�i for every 1 ≤ � ≤ k, and for every inputs x1, . . . , xk the function
Decx1,...,xk

: F�1+···+�k → S can be computed by degree-d polynomials over F,
where Decx1,...,xk

(m1, . . . ,mk) = Dec(x1, . . . , xk,m1, . . . ,mk).
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2.5 Matching Vectors

We next define matching vectors (MV), which are vectors whose inner product
lies in a small set S ∪ {0}. These vectors were used in [27,31] to construct a
family of sets whose intersection lies in a small set. They were used in [24] to
construct efficient PIR protocols and in [38] to construct efficient CDS protocols.

Definition 2.16 (Matching vector family [24]). Let m,h > 0 be integers,
and let S ⊆ Zm \ {0} be a set. The family of vectors ((ui,vi))N

i=1, where ui,vi ∈
Z

h
m, is called S-matching vectors if:

1. 〈ui,vi〉 mod m = 0 for i ∈ [N ], and
2. 〈ui,vj〉 mod m ∈ S for i 	= j ∈ [N ].

Let m = p1p2 for some primes p1, p2. In previous works, they mainly considered
the set Scan = {a ∈ Zm : (a mod p1 ∈ {0, 1}) ∧ (a mod p2 ∈ {0, 1})} \ {0}.

In this work, we consider a bigger set

Sone = {a ∈ Zm : a ≡ 1 (mod p1) ∨ a ≡ 1 (mod p2)}.

3 A Polynomial 2-Server CDS Protocol

In this section, we present a 2-server CDS protocol with degree-d decoding for
the INDEX2

N predicate with NO( log log d
log d ) communication. This CDS protocol is a

generalization of the CDS protocol from [38], which is based on a PIR protocol
presented in [22]. In [38], they use matching vector families over m = 3 · 2; We
generalize this protocol and use matching vector families over m = p1p2, for
primes p1, p2 such that p1|p2 −1. We will first present the protocol and prove its
correctness and security. We will then define sparse matching vectors and show
that if we use sparse matching vectors in the CDS protocols, then we get a CDS
protocol with degree-d decoding. In Sect. 4, we will show how to construct sparse
matching vectors.

3.1 The CDS Protocol over m = p1p2

In Fig. 1, we present the 2-server CDS protocol; in the protocol we use an element
a ∈ F

∗
p2

whose order is p1, i.e., p1 is the smallest positive integer such that
ap1 ≡ 1 (mod p2). An element of order p1 exists if and only if p1|p2 − 1. This
generalizes the CDS protocol of [38], which uses matching vectors over m = 2 · 3
and the element a = −1.

Theorem 3.1. Let p1, p2 be two primes such that p1|p2 − 1, and let m = p1p2.
Given an Sone-matching vector family ((ui,vi))N

i=1 over Zh
m, the protocol in Fig. 1

is a 2-server CDS protocol over Fp2 for INDEX2
N with message size h · log m.
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Fig. 1. A polynomial CDS protocol using a matching vector family over Zm where
m = p1p2 for primes p1, p2 such that p1|p2 − 1.

3.2 Sparse Matching Vectors

In order to analyze the degree of the reconstruction function we will introduce
a new definition regarding matching vector families. This new definition is one
of our most important contributions in this paper.

Definition 3.2. ((d, p)-sparse matching vectors). Let ((ui,vi))N
i=1 be an S-

matching vector family over Z
h
m for some m,h ∈ N. We say that ((ui,vi))N

i=1 is
a d-sparse S-matching vector family if for all i ∈ [N ],

|{� ∈ [h] : vi[�] 	= 0}| ≤ d,

i.e., the number of non-zero entries in vi is at most d.
For a prime p such that p|m, we say that ((ui,vi))N

i=1 is (d, p)-sparse if for
all i ∈ [N ],

|{� ∈ [h] : vi[�] 	≡ 0 (mod p)}| ≤ d.

We could have defined the sparsity property to be over ui as well, and our
constructions in Sect. 4 would satisfy this stronger requirement. However, for the
reconstruction degree, sparsity solely for the vi’s suffices.

Next, we use the definition above for the reconstruction degree analysis.
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Lemma 3.3. Let p1, p2 be two primes such that p1|p2 − 1, and let m = p1p2.
Given a (d, p1)-sparse Sone-matching vector family over Zh

m, the reconstruction of
the CDS protocol in Fig. 1 can be computed by a degree-p1d polynomial over Fp2 .

Now, we present two theorems that state the existence of sparse matching
vector families.

Theorem 3.4. For every N, d > 0, there exists primes p1, p2 where p1|p2 − 1,
and p1 ≤ 2 log d

log log d for which there is a (d, p1)-sparse Sone-matching vector family

((ui,vi))N
i=1 over Z

h
m, where m = p1p2, and h ≤ 2d1+

2
log log d N

16 log log d
log d .

Theorem 3.5. For every N, d > 0, there is a (d, 2)-sparse Scan-matching vector
family ((ui,vi))N

i=1 over Z
h
6 with h ≤ dO(1)NO( log log d

log d ).

Combining Fig. 1 and Theorem 3.5 with the CDS protocol in Fig. 1, we get
CDS protocols with various trade-offs between the decoding degree and the
communication complexity.

Theorem 3.6. For every N, d > 0, there is a 2-server CDS protocol over F3

or over Fp2 for some prime p2 = polylog(d) for INDEX2
N , with degree-d recon-

struction and communication complexity dO(1)NO( log log d
log d ).

Corollary 3.7. For every constant d > 0, N > 0, and function f : [N ]2 →
{0, 1}, there is a 2-server CDS protocol for f , with degree-d reconstruction and
communication complexity dO(1)NO( log log d

log d ).

4 Constructions of d-Sparse Matching Vector Families

In this section, we present three different constructions of (d, p1)-sparse matching
vector families over Z

h
m where m = p1p2 and h = dO(1)NO( log log d

log d ). The main
differences between the constructions are the constraints of choosing the primes
p1, p2 as N grows.

In the three constructions of matching vector families, we use a basic con-
struction of an S̃-matching vectors family for a large set S̃. To avoid repetition,
we will present it here, and use it in the constructions with different choices of S̃.

Claim 4.1. Let N, t, w > 0 be integers, where 0 < w < t. There is a (w + 1)-
sparse S̃-matching vector family ((ũi, ṽi))N

i=1 over Z
h̃
t , for S̃ = {t−w, . . . , t−1},

and h̃ = �N1/w� · w + 1.

4.1 Efremenko’s Construction

The first matching vector family we present is the Efremenko’s [24, Appendix
A]. We observe that Efremenko’s construction is sparse. This construction takes
the basic construction from Claim 4.1 and uses Fermat’s little theorem and the
Chinese reminder theorem in order to construct an Scan-matching vector family.
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Construction 4.2. Let p1 < p2 be two primes, m = p1p2, and S̃ = {1, . . . ,m−
1}. Let ((ũi, ṽi))N

i=1, where h̃ = �N1/(m−1)�·(m−1)+1 be the S̃-matching vector
family over Z

h̃
t of Claim 4.1 where t = m (i.e., w = m − 1). For every i ∈ [N ],

we define

– up1,i = ũ⊗(p1−1)
i mod p1,

– up2,i = ũ⊗(p2−1)
i mod p2,

– vp1,i = ṽ⊗(p1−1)
i mod p1,

– vp2,i = ṽ⊗(p2−1)
i mod p2.

Construct ((ui,vi))N
i=1 over Z

h
m, where h = h̃p2 , using the CRT per entry,

where we pad up1,i and vp1,i with zeros to be of length h̃p2 . That is, we define
ui[k] ∈ Zm for k ∈ [h̃p2 ] as the unique element that satisfies
– ui[k] ≡ up1,i[k] (mod p1), and
– ui[k] ≡ up2,i[k] (mod p2).

These elements can be computed as

ui[k] =
(
up1,i[k] · p2(p−1

2 mod p1) + up2,i[k] · p1(p−1
1 mod p2)

)
mod m.

We define vi analogously using vp1,i and vp2,i.
Efremenko [24] proves that ((ui,vi))N

i=1 is an Scan-matching vector family
(recall that Scan = {a ∈ Zm : a mod p1, a mod p2 ∈ {0, 1}} \ {0}).

We now will analyze the sparsity of the matching vectors family ((ui,vi))N
i=1.

From Claim 4.1, the sparsity of ((ũi, ṽi))N
i=1 is m. Thus, the family is (d, p1)-

sparse where d = mp1−1, since the number of entries k where vi[k] 	≡ 0 (mod p1),
by the CRT, is the number of entries k where vp1,i[k] 	≡ 0 (mod p1), which is
mp1−1. The same applies to vi.

For the CDS protocol provided in Fig. 1, we need that p1|p2 − 1. The next
result assures that for every prime p1 there is a fairly small prime p2 such that
p1|p2 − 1.

Theorem 4.3 ([44]). There exists a constant c such that for every integer d ≥ 2
and every a ∈ Z relatively prime to d, there exists a prime p < cd5.18 such that
p ≡ a (mod d).

Using Theorem 4.3 for a prime p1, we can take the least prime p2 such that
p2 ≡ 1 (mod p1) and get that p2 ≤ cp5.18

1 , thus p21 ≤ m ≤ cp6.18
1 . It can be proved

(see [11]) that

h ≤ (
2cp6.18

1

)cp5.18
1 N2/p1 .

Since d = mp1 , we have that p2p1
1 = (p21)

p1 ≤ d ≤ (cp6.18
1 )p1 , which implies that

2p1 log p1 ≤ log d ≤ p1 log c + 6.18p1 log p1.

We take p1 as the smallest prime such that p1 > log d
log log d . From Bertrand’s

postulate (see, e.g., [1]) that states that for every integer k > 0 there is a prime
p such that k ≤ p ≤ 2k, we take such p1 < 2 · log d

log log d .
Combining this with the upper bound on h and on p1, we obtain the following

bound (see [11])

h ≤ dO( log d
log log d )4.18

NO( log log d
log d ) = 2polylog(d)NO( log log d

log d ).
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4.2 Our Construction

In this section, we will prove Theorem 3.4 by showing a construction of a match-
ing vector family generalizing the construction in Sect. 4.1. The matching vector
family in this section will be for a larger set Sone; in return, we will get a more
efficient protocol and more freedom in choosing the pairs of primes p1, p2.

Construction 4.4. Let p1, p2 be primes, and let m = p1p2. Let 0 < w < m be a
weight that will be chosen later. We start with the basic matching vector family
((ũi, ṽi))N

i=1 over Z
h̃
t from Claim 4.1 with t = m and h̃ = w�N1/w� + 1. Define

up1,i = ũ⊗p1−1
i , and vp1,i = ṽ⊗p1−1

i , thus for every i, j ∈ [N ]

〈up1,i,vp1,j〉 ≡ 〈ũ⊗p1−1
i , ṽ⊗p1−1

j 〉 ≡ 〈ũi, ṽj〉p1−1 ≡ 1〈ũi,ṽj〉�≡0 (mod p1) (mod p1).

Next, we define the set A = {a ∈ {m − w, . . . ,m − 1} : a ≡ 0 (mod p1)}. Since
m ≡ 0 (mod p1), the size of A is � w

p1
�. We consider the polynomial R : Fp2 → Fp2

(of degree at most � w
p1

�) such that

1. R(0) ≡ 0 (mod p2), and
2. R(a) ≡ 1 (mod p2) for all a ∈ A.

This polynomial is equal to

R(x) = x

⎛

⎝
∑

a∈A

∏

b∈A,b �=a

x − b

a − b

⎞

⎠ .

Since a, b ≡ 0 (mod p1) and 0 < a, b < m, then a 	≡ b (mod p2), there-
fore the inverse of a − b exists. Note that deg(R) = dR = |A| = � w

p1
�. Let

R(x) ≡ ∑dR

k=1 akxk (mod p2) be the explicit representation of R (as R(0) = 0,
its free coefficient is 0). Define up2,i =

(
a1ũ⊗1, . . . , adR

ũ⊗dR
)

and vp2,j =(
ṽ⊗1, . . . , ṽ⊗dR

)
.

For every i, j ∈ [N ],

〈up2,i,vp2,j〉 ≡
dR∑

k=1

ak〈ũ⊗k
i , ṽ⊗k

j 〉 ≡
dR∑

k=1

ak〈ũi, ṽj〉k ≡ R(〈ũi, ṽj〉) (mod p2).

We pad either up1,i and vp1,i or up2,i and vp2,i such that they will have the
same length. We construct ((ui,vi))N

i=1 over Z
h
m, where h = h̃max{� w

p1
�,p1−1}

using the CRT per entry, i.e., ui[k] is the unique element in Zm such that

– ui[k] ≡ up1,i[k] (mod p1), and
– ui[k] ≡ up2,i[k] (mod p2);

we define vi the same way with vp1,i and vp2,i.

Claim 4.5. Let p1, p2 be primes and let m = p1p2. The family ((ui,vi))N
i=1 over

Z
h
m as in Construction 4.4 with � w

p1
� = p1 − 1 is a (d, p1)-sparse Sone-matching

vector family with h ≤ 4d · N 2 log log d
log d and

√
2p1 log

(
p1/

√
2
) ≤ log d ≤ 2p1 log p1.
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Remark 4.6. We next consider a specific choice of parameters in Construction 4.4
and analyze the resulting properties of the matching vector family. Take p1 = 3,
p2 = 7, and choose w = 8. Then the length of the resulting matching vectors
from Construction 4.4 is h = h̃max{� 8

3 �,2}, where h̃ = O(N1/8), i.e., the length
is O(N1/4). The sparsity is (8 + 1)2 = 81. Using this matching vector family,
the protocol in Fig. 1 is a 2-server CDS protocol over F7, with reconstruction
degree p1 times the sparsity of the matching vectors, i.e. 243, and communication
complexity O(N1/4).

This 2-server CDS protocol has better communication complexity than the
quadratic 2-server CDS protocol from [15] (whose communication complexity
is O(N1/3)).

The following lemma proves Theorem 3.4.

Lemma 4.7. For every N, d > 0, there exist primes p1, p2 where p1|p2 − 1
such that the matching vectors from Construction 4.4 is a (d, p1) − sparse Sone-
matching vector family over Zh

m, where m = p1p2, and h ≤ 2d1+
2

log log d N
16 log log d

log d .

4.3 Kutin’s Construction

In this section, we will prove Theorem 3.5 by presenting a variant of the con-
struction of matching vector family of Kutin [36]. Let p1 < p2 be two primes,
m = p1p2, and t = pe1

1 pe2
2 for some e1, e2 > 0. By Claim 4.1 there is an S̃-

matching vector family ((ũi, ṽi))N
i=1 over Z

h̃
t , where S̃ = {1, . . . , t − 1}, and

h̃ = �N1/(t−1)� · (t − 1) + 1 (i.e., w = t − 1).
Next we define BBR polynomials, which will be used in the construction.

Theorem 4.8 ([36]). Let p1 < p2 be two primes, m = p1 · p2, and t = pe1
1 pe2

2

for two positive integers e1, e2. There exists a polynomial Qm,t(x) over Q such
that:

1. Qm,t(x) =
∑dQ

i=1 bi

(
x
i

)
, where bi ∈ Zm.

2. Qm,t(x) ≡ 0 (mod m) if and only if x ≡ 0 (mod t).
3. deg Qm,t = dQ = max{pe1

1 , pe2
2 } − 1.

4. If x 	≡ 0 (mod t) then Qm,t(x) mod m ∈ Scan.

Note that the coefficients of Q are not necessarily integers, and yet for every
input x, it evaluates to an integer when x is an integer.

Construction 4.9. Let t = pe1
1 pe2

2 , and let Qm,t be the polynomial from Theo-
rem 4.8. We use Claim 4.1 with t and w = t − 1. In this case, ũi = ṽi, since by
definition its first entry is t − w = 1, and ũi is a binary vector. Let Ai ⊆ [h̃] be
the subset defined by ũi, i.e., Ai = {� ∈ [h] : ũi[�] = 1}; as the sparsity of ũi is
w + 1 = t, |Ai| = t. We define vectors ui,vi of length

∑dQ

i=1

(
h
i

)
, where for every

∅ 	= S ⊆ [h̃] of size at most dQ we have the following coordinate in the vectors

– ui[S] = b|S| · 1S⊆Ai
, and
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– vi[S] = 1S⊆Ai
.

The sparsity of this family is the number of non-empty subsets of Ai of size at
most dQ, i.e., at most

∑dQ

i=1

(
t
i

)
.

Our construction is based on Kutin’s construction [36]. Kutin uses h̃ = t1.5 in

Claim 4.1, and gets shorter vectors of length N
O

(√
log log N

log N

)
; however, his vectors

are dense. We get longer vectors that are sparser.

Lemma 4.10. Let ((ũi, ṽi))N
i=1, Qm,t, and ((ui,vi))N

i=1 be as defined in Con-
struction 4.9. Then, for all i, j ∈ [N ],

〈ui,vj〉 = Qm,t(〈ũi, ṽj〉).

Claim 4.11. For every two primes p1, p2 and an integer e1 > 0, there exists
an integer e2 > 0 such that for t = pe1

1 pe2
2 , the family ((ui,vi))N

i=1 as defined in
Construction 4.9 is a (d, p1)-sparse Scan-matching vector family over Z

h
m, such

that h ≤ dO(p1) · N
2p1 log log d

log d , and
√

t/p1 ≤ log d ≤ √
p1t.

The following lemma proves Theorem 3.5.

Lemma 4.12. For every N, d > 0, there exists integers e1, e2 such that the
matching vectors from Construction 4.9 is a (d, 2)−sparse Scan-matching vector
family over Z

h
6 , and h ≤ dO(1)NO( log log d

log d ).

4.4 Comparison of the Three Constructions

We described three constructions of sparse matching vectors. These constructions
have the same asymptotic behavior: For every d there is a d-sparse matching vec-
tor family with vectors of length Od

(
NO( log log d

log d )
)
. The one based on Kutin’s

construction is the most interesting as the vectors can be over Zh
m for m = p1 ·p2

for every two primes p1, p2, e.g., we can take m = 2·3. In the construction we pro-
vide and Efremenko’s construction, the value of m increases as d increases (e.g.,
as the length of the vectors decreases). Our construction yields shorter matching
vectors that can be used to construct CDS protocols and secret-sharing schemes
that are better than the degree-2 construction of [15]. Efremenko’s and Kutin’s
constructions are for the Scan-matching vector family, whereas our construction
yields only an Sone-matching vector family.

For every two primes p1, p2, and m = p1p2, the length of Efremenko’s match-
ing vectors is mp2N1/p1 , and are (mp1 , p1)-sparse. The length in our matching
vector family is p2p1

1 · N1/p1 and they are (p2p1
1 , p1)-sparse. Thus, the sparsity

and length in our matching vector family is much better since p2 > p1 and
p2p1
1 < (p1 · p2)p1 = mp1 , and is independent of the choice of p2. Recall that as

we need that p1 divides p2 − 1, we only know that p2 ≤ c · p5.18
1 .
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5 A Polynomial k-Server CDS Protocol

In this section, we describe a construction of k-server CDS protocol for INDEXk
N

with polynomial reconstruction. Our protocol is a generalization of the k-server
CDS protocol from [39]. It relies on two components. The first is a matching
vector family with a special property of k-decomposability (see Definition 5.1).
Thus, we need to prove that the constructions of sparse matching vectors are
decomposable. The second is simulation of Bob in the 2-server CDS protocol
by k − 1 servers. We need to modify the simulation of [39] such that it can
be computed by a linear function. Towards this goal, we describe a selection
protocol that will be used as a black box in the k-server CDS protocol.

Definition 5.1 (k-decomposability). Let N ′ = k
√

N . A family of vectors
(ui)N

i=1 over Z
h
m is k-decomposable if there exist vector families (u1,i)N ′

i=1, . . . ,

(uk,i)N ′
i=1 over Z

h
m such that under the natural mapping i �→ (i1, . . . , ik) ∈ [N ′]k

ui = u1,i1 � · · · � uk,ik
mod m

for all i ∈ [N ].

Definition 5.2 (Decomposable Matching Vector Families). For integers
N,m, h, k > 0 and S ⊆ Zm \ {0}, a collection of vectors ((ui,vi))N

i=1 over Z
h
m is

a k-decomposable S-matching vector family if it is an S-matching vector family
and (ui)N

i=1, (vi)N
i=1 are k-decomposable (as in Definition 5.1).

5.1 The Selection Protocol

In this section, we will describe an important component of our k-server CDS
protocol. In our k-CDS protocol there will be k servers, the first server will sim-
ulate Alice in the 2-server CDS protocol described in Sect. 3, and the other k−1
servers will simulate Bob, i.e., each server Qj for 2 ≤ j ≤ k, holding an index
ij−1, sends a message such that the referee can reconstruct the messages of Bob
with input i = (i1, . . . , ik−1) in the 2-server CDS protocol. This should be done
in such a way that the referee will not learn any additional information. Further-
more, the referee should reconstruct the message of Bob using a linear function.
We will formulate these requirements as a special case of private simultaneous
message (PSM) protocols [25,32].

Definition 5.3 (PSM protocols). Let Xt be a t-th input space and let Y be
the output space. A private simultaneous messages (PSM) protocol P consists of

– A finite domain R of common random inputs, and k finite message domains
M1, . . . ,Mk, denote M = M1 × · · · × Mk.

– Message encoding algorithms Enc1, . . . , Enck, where Enct : Xt × R → Mt.
– A decoding algorithm Dec : M → Y.

We say that a PSM protocol computes a k-argument function f : X1×· · ·×Xk →
Y, if it satisfies the following two properties:
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Correctness. For all x1 ∈ X1, . . . , xk ∈ Xk, and r ∈ R:

Dec(Enc1(x1; r), . . . , Enck(xk; r)) = f(x1, . . . , xk),

that is, the referee always reconstructs the output of f .
Security. For every m = (m1, . . . ,mk) ∈ M1 × · · · × Mk, x = (x1, . . . , xk)

and x′ = (x′
1, . . . , x

′
k) in X satisfying f(x) = f(x′), it holds that

Pr
r∼U(R)

[(Enc1(x1; r), . . . ,Enck(xk; r)) = m]

= Pr
r∼U(R)

[(Enc1(x′
1; r), . . . , Enck(x′

k; r)) = m],

that is, the referee cannot distinguish between two inputs with the same output,
i.e., the referee only learns the output of f .

The communication complexity of a PSM protocol is defined as log |M|.
Next, we define a function, simulating Bob’s messages, and we design a PSM

for it. In the function, we need the following selection function: each server holds an
input xi ∈ Fp and all servers hold a vector s = (s0, . . . , sp−1) ∈ Z

p
q . The inputs of

the servers define a selection index b =
∏k

i=1 xi mod p; the referee, which knows
x1, . . . , xk, should learn sb without learning any additional information on s.

Definition 5.4 (The selection function). Let q be a positive integer, p be a
prime, and let s = (s0, . . . , sp−1) ∈ Z

p
q be a vector of length p. Let Zp

q ×Fp be the
input space for each server; each server holds the common input s, and a private
input xt. The SELECTION function is defined as follows

fSELECTION(s, x1, . . . , xk) = (sb, x1, . . . , xk)

where b =
∏k

t=1 xt mod p.

In Protocol SELECTION, we assume that the referee knows x1, . . . , xk;
this is the case when we use it in a CDS protocol. For the purpose of analyzing
Protocol SELECTION in Fig. 2 as a PSM protocol (where the referee has no
input), we assume that each server Qj also sends xj and the referee also out-
puts x1, . . . , xk. Furthermore, in the definition of fSELECTION we assume that
all servers have a common input s. We can modify Protocol SELECTION in a
way that only Qk holds s.

Claim 5.5. Let p be a prime and let k, q be integers. The PSM (Enc1, . . . , Enck,
Dec) described in Fig. 2 is a PSM protocol for fSELECTION with communication
complexity (2p − 2) log p.

5.2 Protocols for the Simulation of Bob’s Messages

In this section, we present the polynomial k-server CDS protocol for INDEXk
N

(hence for every function f : [N ]k → {0, 1}). In this protocol, the first server Q1
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Fig. 2. A PSM protocol for the SELECTION function.

holds the database and the k − 1 servers Q2, . . . , Qk collectively hold the index.
In this protocol, the servers that hold the index will simulate Bob in the 2-server
CDS protocol described in Fig. 1, using the PSM protocol SELECTION from
Sect. 5.1. Server Q1 will simulate Alice.

In the CDS protocol of Fig. 1, Bob sends m1
B = sui + r1. In the imple-

mentation of the protocol as a polynomial protocol, Bob sends m′1
B = (am1

B [1]

mod p2, . . . , a
m1

B [h] mod p2) where am1
B [�] ≡ asui[�]+r1[�] (mod p2). Recall that

we use decomposable matching vectors, so for i = (i1, . . . , ik−1) we have ui[�] ≡∏
t∈[k−1] ut,it

[�] (mod m). In particular, ui[�] =
∏

t∈[k−1] ut,it
[�] (mod p1). Thus,

the �-th coordinate of m′1
B is

am1
B [�] ≡ a(s

∏
t∈[k−1] ut,it [�])+r1[�] mod p1 ≡ as·b+r1[�] (mod p2), (2)

where b =
∏

t∈[k−1] ut,it
[�] mod p1. Consider the vector

(ar1[�], as+r1[�], . . . , a(p1−1)s+r1[�]);

the referee should learn the (b + 1)-th coordinate of this vector without learning
any other information. Therefore, each coordinate of the vector can be sent by
Q2, . . . , Qk using the selection protocol. A formal description of a protocol for
this task appears in Fig. 3.
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In addition, Bob sends

m2
B ≡ 〈ui, r2〉 + r3 (mod p2)

≡
⎛

⎝
∑

�∈[h]

ui[�] · r2[�]
⎞

⎠ + r3 ≡
⎛

⎝
∑

�∈[h]

k−1∏

t=1

ut,it
[�] · r2[�]

⎞

⎠ + r3 (mod p2). (3)

This can be done by executing � copies of Protocol SELECTION and sum-
ming the results. As we only want to disclose the sum of the executions, we
mask each with a random element such that the sum of the masks is zero. A
formal description of a protocol for this task appears in Fig. 4. We next describe
the functionality computed by these protocols and prove their correctness and
security.

Definition 5.6. (The function SEND1). Let ((ui,vi))Nk−1

i=1 be a decomposable
matching vector family. For i ∈ [N ], we denote i = (i1, . . . , ik−1), where it ∈
[N1/(k−1)] for every t ∈ [k − 1]. Let r1 ∈ F

h
p1

be the server’s common input and
let i ∈ [N ]. We define the PSM functionality SEND1 as

fSEND1(s, i, r1) = (i, (asui[�]+r1[�] mod p2)�∈[h]).

Notice that r1 is an input of fSEND1 , thus a PSM protocol for this function
should hide it (i.e., the referee should not distinguish between s = 1, i, r1 and
s = 0, i, r′

1 = ui + r1).

Fig. 3. A protocol simulating Bob’s message m1
B .

Lemma 5.7. Protocol Send m1
B described in Fig. 3 is a PSM protocol for the

function fSEND1 .
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Definition 5.8 (The function SEND2). Let ((ui,vi))Nk−1

i=1 be a decomposable
matching vector family. Let r2 ∈ F

h
p2

, r3 ∈ Fp2 be the servers’ common input,
and let i = (i1, . . . , ik−1), where it ∈ [N1/(k−1)] for every t ∈ [k − 1]. We define
function SEND2 as

fSEND2(i, r2, r3) = (i, 〈ui, r2〉 + r3 mod p2).

Fig. 4. A protocol simulating Bob’s message m2
B .

Lemma 5.9. Protocol Send m2
B described in Fig. 4 is a PSM protocol for the

function fSEND2 .

5.3 The k-Server CDS Protocol

In Fig. 5, we describe the k-server CDS protocol for INDEXk
N . This is an imple-

mentation of the 2-server CDS protocol from Fig. 1, where the index i is dis-
tributed between Q2, . . . , Qk and they send Bob’s messages using protocols
Send m1

B and Send m2
B .

Theorem 5.10. Let p1, p2 be primes such that p1|p2 − 1, m = p1 · p2 and
((ui,vi))Nk−1

i=1 be a decomposable (d, p1)-sparse Sone-matching vector family over
Z

h
m. The protocol in Fig. 5 is a k-server CDS protocol over Fp2 for INDEXk

N with
message size h · 2m log m and reconstruction by polynomial of degree d · p1.

In Sect. 6, we will see how to decompose the matching vector families we have
seen in Sect. 4, yielding a decomposable matching vector families as summarized
in the next two theorems.
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Fig. 5. A polynomial k-server CDS protocol using a decomposable matching vector
family over Zm, where m = p1p2 for primes p1, p2 such that p1|p2 − 1.

Theorem 5.11. For every N, d > 0, there exist primes p1, p2 where p1|p2 − 1,
and p1 ≤ 2 log d

log log d such that there is a decomposable (d, p1)-sparse Sone-matching

vector family over Z
h
m where m = p1p2 and h ≤ 2d1+

2
log log d N

2 log log d
log d .

Theorem 5.12. For every N, d > 0, there is a decomposable (d, 2)-sparse Scan-
matching vector family over Z

h
6 , where h ≤ dO(1)NO( log log d

log d ).

Combining Theorems 5.11 and 5.12 with Theorem 5.10, we get the following
theorem, which can be proved similarly as Theorem 3.6

Theorem 5.13. For every N, d > 0, and k > 1, there is a k-server CDS protocol
over F3 or over Fp2 for some prime p2 = polylog(d) for INDEXk

N with degree-d
reconstruction and communication complexity dO(1)NO((k−1)· log log d

log d ).
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Corollary 5.14. For every N, d > 0, k > 1, and function f : [N ]k → {0, 1},
there is a k-server CDS protocol for f , with degree-d reconstruction and commu-
nication complexity dO(1)NO((k−1)· log log d

log d ).

Remark 5.15. Using the construction of the matching vector family over Z21

from Remark 4.6 (in the next section we will show that it is decomposable),
we get a k-server CDS protocol over F7 with reconstruction degree 243 and
communication complexity O(N (k−1)/4). Previously, the best known k-server
CDS protocol with polynomial reconstruction had communication complexity
O(N (k−1)/3) and degree 2 [15].

6 Construction of Decomposable Matching Vector
Families

In this section, we show that the three construction we have seen in Sect. 4
are decomposable. First, we show a decomposition of the basic matching vector
family in Claim 4.1.

Claim 6.1. Let N ′,m, α, h′ > 0, and let u = (ei1,...,iα
)i1,...,iα∈[N ′] be the stan-

dard basis of Zh′
m. Then there is a decomposition u1, . . . ,uα of u.

Claim 6.2. Let N,m,w, k ≥ 0 where 0 ≤ w ≤ m. There is a decomposable
(w + 1)-sparse S̃-matching vector family ((ũi, ṽi))N

i=1 over Z
h̃
m for S̃ = {m −

w, . . . ,m − 1}, where h̃ = �N1/w� · w + 1.

6.1 Decomposability of Efremenko’s and Our MVs

Now, we will show a decomposition for our matching vector family from Con-
struction 4.4; since our construction uses the same techniques as in Construction
4.2, using polynomials and CRT per entry, the decomposition of our matching
vector family will yield a decomposition of Efremenko’s construction.

Construction 6.3. Let N,m,w, k ≥ 0 where 0 ≤ w ≤ m, and m = p1p2, for
two primes p1 < p2. Let ((ũi, ṽi))N

i=1 be the basic matching vector family over
Z

h̃
m from Claim 4.1 For every i = (i1, . . . , ik) ∈ [N ], let (ũ1,i1 , . . . , ũk,ik

), and
(ṽ1,i1 , . . . , ṽk,ik

) be the decompositions for ũi, and ṽi respectively from Claim
6.2.

Recall that in Construction 4.4 we defined up1,i = ũ⊗p1−1
i and up2,i =

(a1ũ⊗1
i , . . . , adR

ũ⊗dR
i ) for some polynomial R(x) =

∑dR

j=0 ajx
j; we also defined

vp1,i,vp2,i similarly. For every t ∈ [k], we define

– up1,t,it
= ũ⊗p1−1

t,it

– up2,t,it
=

{
(ũ⊗1

t,it
, . . . , ũ⊗dR

t,it
) if t < k,

(a1ũ⊗1
t,it

, . . . , adR
ũ⊗dR

t,it
) if t = k.
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Similarly, we define vp1,t,it
,vp2,t,it

. Now, for every i ∈ [N ], t ∈ [k], we define
ut,it

using the CRT per entry similarly to Construction 4.4, and as in the con-
struction in Construction 4.4, (we pad with zeros all vectors of length less than
h). For every � ∈ [h] for h = h̃max{� w

p1
�,p1−1}, ut,it

[�] is the unique element in
Zm satisfying

– ut,it
[�] ≡ up1,t,it

[�] (mod p1), and
– ut,it

[�] ≡ up2,t,i2 [�] (mod p2).

We define vt,it
in the same way.

Claim 6.4. Let N, k,m, h > 0, and let (ui)N
i=1 be a decomposable vector fam-

ily over Z
h
m, where for every i = (i1, . . . , ik) ∈ [N ] the decomposition of ui is

(u1,i1 , . . . ,uk,ik
). Then the r-th tensor power operation preserves decomposabil-

ity, i.e.
u⊗r

i = (u⊗r
1,i1

� · · · � u⊗r
k,ik

).

The next result proves Theorem 5.11.

Lemma 6.5. Let ((ui,vi))N
i=1, be the matching vector family over Zh

m from Con-
struction 4.4. For every i ∈ [N ], (u1,i1 , . . . ,uk,ik

) and (v1,i1 , . . . ,vk,ik
) from

Construction 6.3 are decomposition of ui, vi, respectively.

6.2 Decomposability of Kutin’s MVs

In this section, we will show that the techniques used in Construction 4.9 to con-
struct Scan-matching vector family from the basic matching vector from Claim
4.1 preserve decomposability, and thus will yield a decomposition of the matching
vectors in Construction 4.9.

Construction 6.6. Let N, k,m > 0, such that m = p1p2 for two primes p1 <

p2, and let t = pe1
1 , pe2

2 for some integers e1, e2 > 0. Let ((ũi, ṽi))N
i=1 Z

h̃
m be

the basic matching vector family over Z
h̃
m from Claim 4.1, and for every i =

(i1, . . . , ik) ∈ [N ], let (ũ1,i1 , . . . , ũk,ik
) be the decomposition of ũi from Claim

6.2.
Let Qm,t(x) =

∑dQ

i=1 bi

(
x
i

)
be the BBR polynomial from Theorem 4.8. For

every t ∈ [k], let At,it
⊆ [h̃] be the subset defined by ũt,it

, i.e., At,it
= {� ∈ [h] :

ũt,it
[�] = 1}. We define the vectors ut,it

, vt,it
of length

∑dQ

i=1

(
h
i

)
where for every

∅ 	= S ⊆ [h̃] of size at most dQ we have the following coordinate in the vectors

– ut,it
[S] =

{
1S⊆At,it

if t < k,

b|S| · 1S⊆At,it
if t = k.

– vt,it
[S] = 1S⊆At,it

.

Claim 6.7. Let ((ui,vi))N
i=1 be the matching vector family over Z

h
m from Con-

struction 4.2. For every i = (i1, . . . , ik) ∈ [N ], the vectors (u1,i1 , . . . ,uk,ik
) and

(v1,i1 , . . . ,vk,ik
) from Construction 6.6 are a decomposition of ui and vi, respec-

tively.
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7 A Polynomial Secret Sharing Scheme for General
Access Structures

CDS protocols were used in [4,6,15,37] to construct secret-sharing schemes for
arbitrary access structures. Similarly to Applebaum et al. [4], we construct a
secret-sharing scheme from k-server CDS protocols in two steps, first construct-
ing robust CDS protocols, and then constructing secret-sharing scheme for arbi-
trary access structures, while preserving the reconstruction degree throughout
the steps. Specifically, we use an improved analysis of this transformation given
in [15].

Beimel et al. [15] show a construction of a quadratic (i.e., degree 2) t-RCDS
protocol based on a quadratic k-server CDS protocol. Combining that result
with Theorem 5.13, we get the following result.

Corollary 7.1. Let t < min{N/2k, 2
√

N/k}. Then there is a degree-d k-server
t-RCDS protocol with message size

O(N (k−1)·O( log log d
log d ) · tk · k3k · log2 N · log2k(t)) = Õ(N (k−1)· log log d

log d · tk · k3k).

Next, we present an upper bound on the share size for secret-sharing schemes
for all access structures. For that, we use results on RCDS from [15] and tech-
niques for general constructions from [6].

Theorem 7.2. Assume that there is a k-server CDS protocol, with degree-d
reconstruction, with communication complexity c(k,N, d) = N (k−1)/ξ(d), for
some function ξ(d) ≥ 2, then there is a secret-sharing scheme realizing an arbi-
trary n-party access structure with share size

max
{

20.5n(1+1/ξ(d)), 2n(log(21/ξ(d)+2)−1)
}

· 2o(n).

Combining Theorem 5.13 with Theorem 7.2, we get the following result.

Corollary 7.3. Let d > 2. Every n-party access structure can be realized by a
secret-sharing scheme with degree-d reconstruction over F3 or over Fp2 for some
prime p2 = polylog(d) and share size 2n(0.585+O( log log d

log d )).

Remark 7.4. Applying Theorem 7.2 with the k-server CDS protocol from
Remark 5.15 with communication complexity O(N (k−1)/4) and reconstruction
degree 243, we get a secret-sharing scheme for an arbitrary access structure with
share size 20.6731n+o(n), and reconstruction degree 243.

In comparison, Beimel et al. [15] constructed a quadratic (i.e., degree-2)
secret-sharing scheme with share size 20.705n+o(n), and Applebaum and Nir [6]
constructs a linear secret-sharing scheme with share size 20.7575n+o(n) and a
general (non-polynomial) secret-sharing scheme with share size 20.585n+o(n). As
d increases, the share size in our secret-sharing scheme approaches 20.585n, i.e.,
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it approaches the share size of the scheme of Applebaum and Nir [6], the best
known secret-sharing scheme for an arbitrary access structure.

Almost all access structures admit a secret-sharing scheme with shares of
size 2o(n) and by a linear secret-sharing scheme with share size 2n/2+o(n) [10].
Moreover, almost all access structures can be realized by a quadratic secret-
sharing scheme over F2 with share size 2n/3+o(n) [15]. We use the same tech-
niques as in these previous works and we construct secret-sharing schemes
with polynomial reconstruction and smaller share size for almost all access
structures. Using our polynomial k-server CDS protocols with message size
c(k,N, d) = NO((k−1)· log log d

log d ) from Theorem 5.13, we get the following result.

Corollary 7.5. Almost all access structures can be realized by secret-sharing
scheme with degree-d reconstruction over F3 or over Fp2 for some prime p2 =
polylog(d) and share size 2O(n log log d/ log d)+o(n).

As d grows, we get share size 2εn for every constant ε > 0. If we take d −
O(log n) (or even d = o(1)), then the share size is no(1), however larger than the
share size of [10], where the degree of reconstruction is not bounded.
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12. Beimel, A., Farràs, O., Mintz, Y., Peter, N.: Linear secret-sharing schemes for
forbidden graph access structures. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS,
vol. 10678, pp. 394–423. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70503-3 13

13. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 14

14. Beimel, A., Ishai, Y., Kushilevitz, E.: General constructions for information-
theoretic private information retrieval. J. Comput. Syst. Sci. 71(2), 213–247 (2005)

15. Beimel, A., Othman, H., Peter, N.: Quadratic secret sharing and conditional dis-
closure of secrets. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol.
12827, pp. 748–778. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84252-9 25

16. Beimel, A., Peter, N.: Optimal linear multiparty conditional disclosure of secrets
protocols. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274,
pp. 332–362. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-
3 13

17. Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes
using linear block codes. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS,
vol. 718, pp. 67–79. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57220-1 53

18. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS
National Computer Conference, volume 48, pages 313–317 (1979)

19. Csirmaz, L.: The dealer’s random bits in perfect secret sharing schemes. Studia
Sci. Math. Hungar. 32(3–4), 429–437 (1996)

20. Csirmaz, L.: The size of a share must be large. J. Cryptol. 10(4), 223–231 (1997)
21. Dvir, Z., Gopalan, P., Yekhanin, S.: Matching vector codes. SIAM J. Comput.

40(4), 1154–1178 (2011)
22. Dvir, Z., Gopi, S.: 2-server PIR with sub-polynomial communication. In: 47th

STOC, pp. 577–584 (2015)
23. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: STOC

2009, pp. 39–44 (2009)
24. Efremenko, K.: 3-query locally decodable codes of subexponential length. SIAM J.

Comput. 41(6), 1694–1703 (2012)
25. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: 26th

STOC, pp. 554–563 (1994)
26. Frankl, P.: Constructing finite sets with given intersections. In: Combinatorial

Mathematics, Proceedings of the International Colloquium on Graph Theory and
Combinatorics 1981, vol. 17 of Annals of Discrete Mathematics, pp. 289–291 (1983)

https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-030-64381-2_18
https://doi.org/10.1007/978-3-030-64381-2_18
https://eprint.iacr.org/2023/1158
https://doi.org/10.1007/978-3-319-70503-3_13
https://doi.org/10.1007/978-3-319-70503-3_13
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-030-84252-9_25
https://doi.org/10.1007/978-3-030-84252-9_25
https://doi.org/10.1007/978-3-030-03332-3_13
https://doi.org/10.1007/978-3-030-03332-3_13
https://doi.org/10.1007/3-540-57220-1_53
https://doi.org/10.1007/3-540-57220-1_53


Improved Polynomial Secret-Sharing Schemes 405

27. Frankl, P., Wilson, R.M.: Intersection theorems with geometric consequences. Com-
binatorica 1(4), 357–368 (1981)

28. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional dis-
closure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 24

29. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In: Proceedings of the 30th ACM Symposium
on the Theory of Computing, pp. 151–160 (1998). Journal version: J. of Computer
and System Sciences, 60(3), 592–629, 2000

30. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. JCSS 60(3), 592–629 (2000)

31. Grolmusz, V.: Superpolynomial size set-systems with restricted intersections mod
6 and explicit Ramsey graphs. Combinatorica 20, 71–86 (2000)

32. Ishai, Y., Kushilevitz, E.: Improved upper bounds on information theoretic private
information retrieval. In: Proceedings of the 31st ACM Symposium on the Theory
of Computing, pp. 79–88 (1999). Journal version in [14]

33. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Automata, Languages and Programming, 29th Inter-
national Colloquium, ICALP 2002, pp. 244–256 (2002)

34. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Globecom 87, pp. 99–102 (1987). Journal version: Multiple assign-
ment scheme for sharing secret. J. of Cryptology, 6(1), 15–20, 1993

35. Karchmer, M., Wigderson, A.: On span programs. In: 8th Structure in Complexity
Theory, pp. 102–111 (1993)

36. Kutin, S.: Constructing large set systems with given intersection sizes modulo
composite numbers. Combinatorics, Probability Computing (2002)

37. Liu, T., Vaikuntanatha, V.: Breaking the circuit-size barrier in secret sharing. In:
50th STOC, pp. 699–708 (2018)

38. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-
linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 25

39. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier
for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 567–596. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 21

40. Paskin-Cherniavsky, A., Radune, A.: On polynomial secret sharing schemes. In:
ITC 2020, vol. 163 of LIPIcs, pp. 12:1–12:21 (2020)

41. Pitassi, T., Robere, R.: Lifting Nullstellensatz to monotone span programs over
any field. In: 50th STOC, pp. 1207–1219 (2018)

42. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
43. Sun, H.-M., Shieh, S.-P.: Secret sharing in graph-based prohibited structures. In:

INFOCOM 1997, pp. 718–724. IEEE (1997)
44. Xylouris, T.: On the least prime in an arithmetic progression and estimates for the

zeros of Dirichlet l-functions. Acta Arith 150(1), 65–91 (2011)

https://doi.org/10.1007/978-3-662-48000-7_24
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-78381-9_21
https://doi.org/10.1007/978-3-319-78381-9_21


Near-Optimal Private Information Retrieval
with Preprocessing

Arthur Lazzaretti(B) and Charalampos Papamanthou

Yale University, New Haven, USA
{arthur.lazzaretti,charalampos.papamanthou}@yale.edu

Abstract. In Private Information Retrieval (PIR), a client wishes to access an
index i from a public n-bit database without revealing any information about i.
Recently, a series of works starting with the seminal paper of Corrigan-Gibbs
and Kogan (EUROCRYPT 2020) considered PIR with client preprocessing and
no additional server storage. In this setting, we now have protocols that achieve
˜O(

√
n) (amortized) server time and ˜O(1) (amortized) bandwidth in the two-

server model (Shi et al., CRYPTO 2021) as well as ˜O(
√

n) server time and
˜O(

√
n) bandwidth in the single-server model (Corrigan-Gibbs et al., EURO-

CRYPT 2022). Given existing lower bounds, a single-server PIR scheme with
˜O(

√
n) (amortized) server time and ˜O(1) (amortized) bandwidth is still feasible,

however, to date, no known protocol achieves such complexities. In this paper
we fill this gap by constructing the first single-server PIR scheme with ˜O(

√
n)

(amortized) server time and ˜O(1) (amortized) bandwidth. Our scheme achieves
near-optimal (optimal up to polylogarithmic factors) asymptotics in every rele-
vant dimension. Central to our approach is a new cryptographic primitive that
we call an adaptable pseudorandom set: With an adaptable pseudorandom set,
one can represent a large pseudorandom set with a succinct fixed-size key k,
and can both add to and remove from the set a constant number of elements by
manipulating the key k, while maintaining its concise description as well as its
pseudorandomness (under a certain security definition).

1 Introduction

In private information retrieval (PIR), a server holds a public database DB represented
as an n-bit string and a client wishes to retrieve DB[i] without revealing i to the server.
PIR has many applications in various systems with advanced privacy requirements [2,3,
28,31,38] and comprises a foundational computer science and cryptography problem,
with connections to primitives such as oblivious transfer [19] and locally-decodable
codes [29,40], among others. PIR can be naively realized by downloading the whole DB
for each query, which is prohibitive for large databases. PIR is classically considered
within the two-server model [11,12,14], where DB is replicated on two, non-colluding
servers. For the rest of the paper we use 1PIR to refer to single-server PIR [32] and
2PIR to refer to two-server PIR. Clearly, 1PIR is much more challenging than 2PIR,
but also more useful; it is hard to ensure two servers do not collude and remain both
synchronized and available in practice [6,36].

c© International Association for Cryptologic Research 2023
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Sublinear Time 2PIR. Preliminary PIR works [4,13,20–22,25,30,32,34,35,39] fea-
tured linear server time and sublinear bandwidth. To reduce server time, several
works [1,5,17,18,23,28] proposed preprocessing PIR. These approaches require a
prohibitive amount of server storage due to large server-side data structures. Recently a
new type of preprocessing PIR with offline client-side preprocessing was proposed by
Corrigan-Gibbs and Kogan [16]. Introduced as 2PIR, their scheme has sublinear server
time and no additional server storage — the preprocessing phase outputs just a few bits
to be stored at the client, which is modeled as stateful. A simplified, stripped-down1

version of their protocol, involving three parties, client, server1 and server2, is given
below.

– Offline phase. client sends S1, . . . , S√
n to server1. Each Si is independent and con-

tains
√

n elements sampled uniformly from {0, . . . , n − 1} without replacement.
server1 returns database parities p1, . . . , p√

n, where pi = ⊕j∈Si
DB[j]. These

database parities, along with the respective index sets, are then stored by client
locally.

– Online phase (query to index i). In Step 1, client finds a local set Sj that contains i
and sends S′

j = Sj \ {i} to server2. In Step 2, server2 returns parity p′
j of S′

j , and
client computes DB[i] = pj ⊕ p′

j . In Step 3, client generates a fresh random set
S∗

j that contains i, sends S∗
j \ {i} to server1, gets back its parity p∗

j , and replaces
(Sj , pj) with (S∗

j , p∗
j ⊕ DB[i]). (We note that this last step is crucially needed to

maintain the distribution of the sets at the client side and ensure security of future
queries.)

The complexities of the above protocol are linear (such as client storage and band-
width), but Corrigan-Gibbs and Kogan [16] achieved ˜O(

√
n) time and communication

complexities by introducing the notion of pseudorandom sets: Instead of sending the
sets in plaintext, the client sends a Pseudorandom Permutation (PRP) key so that the
server can regenerate the sets as well as check membership efficiently. However, the
first step of the online phase above requires removing element i from the set Sj . This
cannot be done efficiently with a PRP key, so prior work sends Sj \ {i} in plaintext,
incurring O(

√
n log n) online bandwidth. In a followup work, Shi et al. [37] addressed

this issue. They use no PRPs and construct their sets via privately-puncturable pseudo-
random functions [7,10]. Their primitive allows element removal without key expan-
sion in the online phase, thus keeping a short set description, yielding ˜O(1) bandwidth.

Compiling 2PIR into 1PIR. The original protocol by Corrigan-Gibbs and Kogan [16],
their follow-up work [31], as well as Shi et al.’s polylog bandwidth protocol [37],
are all 2PIR protocols. Corrigan-Gibbs et al. [15] showed how to port the 2PIR proto-
cols by Corrigan-Gibbs and Kogan [16,31] into a 1PIR scheme with the same (amor-
tized2) ˜O(

√
n) complexities. Their main technique, is to transform their initial 2PIR

1 In particular, in Step 1 of the actual protocol’s online phase, the client sends Sj \ {i} with
probability 1−1/

√
n and Sj \{r}, for a random element r, with probability 1/

√
n, to ensure

no information is leaked about i. Also, ω(log λ) parallel executions are required to guaran-
tee overwhelming correctness in λ, to account for puncturing ‘fails’ and when a set Sj that
contains i cannot be found.

2 Amortization is over
√

n queries.
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Table 1. Comparison with related work. Server time and bandwidth are amortized (indicated
with a ∗). All schemes presented have ˜O(

√
n) client time, ˜O(

√
n) client space and no additional

server space. The amortization kicks in after
√

n queries.

scheme model server time∗ bandwidth∗ assumption

[15] 1PIR ˜O(
√

n) ˜O(
√

n) LWE

[37] 2PIR ˜O(
√

n) ˜O(1) LWE

Theorem 52 1PIR ˜O(
√

n) ˜O(1) LWE

scheme [15] into another 2PIR scheme that avoids communication with server1 in the
online phase. We call such a 2PIR protocol 2PIR+. Then, they use fully-homomorhpic
encryption (FHE) [24] to execute both offline and online phases on the same server,
yielding 1PIR. To build the crucial 2PIR+ protocol, they make two simple modifica-
tions of the high-level protocol presented before: (i) In the offline phase, instead of
preprocessing

√
n sets, they preprocess 2

√
n sets, where

√
n is the number of queries

they wish to support; (ii) In the final step of the online phase, instead of picking a fresh
random set S∗

j and then communicating with server1, they use a preprocessed set Sh

from above, avoiding communication with server1 in the online phase. Crucially, Sh

must then be updated to contain i, so that the primary sets maintain the same distribu-
tion after each query. After

√
n queries there are no more preprocessed sets left and the

offline phase is run again, maintaining the same amortized complexity.3

Based on the above, it seems that a natural approach to construct a sublinear-time,
polylog-bandwidth 1PIR scheme (which is the central contribution of this paper) would
be to apply the same trick of preprocessing an additional

√
n random sets to the Shi

et al. protocol [37]. But this strategy runs into a fundamental issue: We would have to
ensure that, in Step 3 of the online phase, when we use one of the preprocessed sets, Sh,
to replace the set that was just consumed to answer query i, the set key corresponding to
Sh would have to be updated to contain i. However, this is not supported in the current
construction of pseudorandom sets by Shi et al. [37]—one can only remove elements,
but not add. Our work capitalizes on this observation.

Technical Highlight: Adaptable Pseudorandom Sets. A substantial part of our con-
tribution is to define and construct an adaptable pseudorandom set supporting both ele-
ment removal and addition. In fact, our technique can support addition and removal of
a logarithmic number of elements. At a high level, our primitive can be used as follows.
Key generation outputs a succinct key sk representing the set. Along with algorithms
for enumeration of sk and membership checking in sk, we define algorithms for remov-
ing an element x from the set defined by sk and adding an element x into the set defined
by sk, both of which output the updated set’s new key sk′. We believe that this primitive
can also be of independent interest outside of PIR.

Our construction of adaptable PRSets is simple. First, we show how previous punc-
turable pseudorandomsets can be modified to support a single addition (instead of a

3 We pick
√

n concretely for exposition. Looking ahead, our scheme achieves a same smooth
tradeoff where by preprocessing O(Q) sets achieves O(n/Q) amortized online time.
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single removal). Then, we show that given both capabilities, one can compose pseudo-
random set keys to support any number of additions and removals. For the usecase of
PIR, it is sufficient to support exactly one removal and one addition, but the technique
can be extended further.

Our Final 2PIR+ and 1PIR Protocols. Armed with adaptable pseudorandom sets, a
high-level description of our new 2PIR+ scheme is as follows. Below, APRS denotes
“adaptable pseudorandom set”.

– Offline phase. client sends
√

n + Q APRS keys sk1, . . ., sk√
n+Q to server1 and

server1 returns database parities p1, . . . , p√
n+Q where pi = ⊕j∈ski

DB[j]. The
database parities are then stored locally by client, together with the respective APRS
keys.

– Online (query to index i). First, client finds APRS key skj that contains i, removes i
from skj and sends sk′

j to server2. Then server2 returns parity p′
j of sk′

j , and client
computes DB[i] = pj ⊕ p′

j . Finally, client adds i into key skh (for some h >
√

n)
and replaces (skj , pj) with (skh, ph ⊕ DB[i]).

The above 2PIR+ protocol requires more work to ensure a small probability of failure
and that the server’s view is uniform. Also, again, we can convert the above 2PIR+
protocol to 1PIR with sublinear complexities, using FHE [15]. Note that using FHE
naively for 1PIR would incur ˜O(n) server time—thus combining FHE with our above
2PIR+ protocol yields a much better (sublinear) FHE-based 1PIR instantiation.

Our Result and Comparison with Related Work. As we discussed, if we require the
server time to be sublinear (with no additional storage), the most bandwidth-efficient
2PIR protocol is the one by Shi et al. [37]. However, the most efficient 1PIR construc-
tion, by Corrigan-Gibbs et al. [15], incurs bandwidth on the order of O(

√
n log n).

In this paper, we fill this gap. Our result (Theorem 52) provides the first 1PIR pro-
tocol with sublinear amortized server time and polylogarithmic amortized bandwidth.

We note that our scheme is optimal up to polylogarithmic factors in every relevant
dimension, given known lower bounds for client-dependent preprocessing PIR where
the server stores only the database [5,15,16]. For a comparison with prior sublinear-
server-time-no-additional-server-storage schemes, see Table 1.

Concurrent Work. We note independently and concurrently, the notion of 1PIR with
polylogarithmic bandwidth and sublinear server time was studied by Zhou et al. [41].
Their work requires use of a privately programmable PRF, and the sets constructed
do not enjoy the same strong security properties as our adaptable pseudorandom sets.
Specifically, our adaptable sets are defined more generally. One can pick L = O(log(N))
(for sets of size N ) additions or removals to support when generating the set key, and
the set will support any number between 0 and L of adaptive additions/removals, main-
taining a concise description, and with each intermediate key satisfying our security
definitions. Our adaptable PRSets could therefore have more applications due to their
higher flexibility. With respect to the final PIR scheme, the asymptotics achieved in
their scheme are the same as the asymptotics achieved here in every dimension (what
we define as near-optimality).

Notation. We use the abbreviation PPT to refer to probabilistic polynomial time. Unless
otherwise noted, we define a negligible function negl(·) to be a function such that for
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every polynomial p(·), negl(·) is less than 1/p(·). We fix λ ∈ N to be a security
parameter. We will also use the notation 1z or 0z to represent 1 or 0 repeated z times.
For any vector or bitstring V , we index V using the notation V [i] to represent the i-th
element or i-th bit of V , indexed from 0. We will also use the notation V [i :] to denote
V from the i-th index onwards. We use x||y to denote the concatenation of bitsring x
and bitstring y. We use S ∼ D to denote that S is “sampled from distribution” D. We
use the notation [x, y] to represent the set {x, x+1, . . . , y − 1}. Finally, we use ˜O(·) to
denote the big-O notation that ignores polylogarithmic terms and any polynomial terms
in the security parameter λ.

2 Background: PIR, Puncturable Functions and Puncturable Sets

We now introduce definitions for 2PIR. We consider 2PIR protocols where only one
server (the second one) participates in the online phase. We refer to these protocols
as 2PIR+. We also formally introduce privately-puncturable PRFs [7] and privately-
puncturable pseudorandom sets [16,37], both crucial for our work. Moving forward,
“PRF” stands for “pseudorandom function” and “PRS” stands for “pseudorandom set”.

Definition 21 (2PIR+ scheme). A 2PIR+ scheme consists of three stateful algorithms
(server1, server2, client) with the following interactions.

– Offline: server1 and server2 receive the security parameter 1λ and an n-bit
database DB. client receives 1λ. client sends one message to server1 and server1
replies with one message.

– Online: For any query x ∈ {0, . . . , n−1}, client sends one message to server2 and
server2 responds with one message. In the end, client outputs a bit b.

Definition 22 (2PIR+ correctness). A 2PIR+ scheme is correct if its honest execu-
tion, with any database DB ∈ {0, 1}n and any polynomial-sized sequence of queries
x1, . . . , xQ, returns DB[x1], . . . ,DB[xQ] with probability 1 − negl(λ).

Definition 23 (2PIR+ privacy). A 2PIR+ scheme (server1, server2, client) is private if
there exists a PPT simulator Sim, such that for any algorithm serv1, no PPT adversary
A can distinguish the experiments below with non-negligible probability.

– Expt0: client interacts with A who acts as server2 and server∗1 who acts as the
server1. At every step t, A chooses the query index xt, and client is invoked with
input xt as its query and outputs its query.

– Expt1: Sim interacts with A who acts as server2 and server∗1 who acts as the
server1. At every step t, A chooses the query index xt, and Sim is invoked with
no knowledge of xt and outputs a query.

We note that in the above definition our adversary A can deviate arbitrarily from
the protocol. Intuitively the privacy definition implies that queries made to server2
will appear random to server2, assuming servers do not collude (as is the case in our
model). Also, note that the above definition only captures privacy for server2 since by
Definition 21, server1 interacts with client before the query indices are picked.



Near-Optimal Private Information Retrieval with Preprocessing 411

Privately-puncturable PRFs. A puncturable PRF is a PRF F whose key k can be
punctured at some point x in the domain of the PRF, such that the output punctured key
kx reveals nothing about Fk(x) [27]. A privately-puncturable PRF is a puncturable PRF
where the punctured key kx also reveals no information about the punctured point x (by
re-randomizing the output Fk(x)). Privately-puncturable PRFs can be constructed from
standard LWE (learning with errors assumption) [7,8,10] and can be implemented to
allow puncturing on m points at once [7]. We now give the formal definition.

Definition 24 (Privately-puncturable PRF [7]). A privately-puncturable PRF with
domain {0, 1}∗ and range {0, 1} has four algorithms: (i) Gen(1λ, L,m) → sk: Out-
puts secret key sk, given security parameter λ, input length L and number of points to
be punctured m; (ii) Eval(sk, x) → b: Outputs the evaluation bit b ∈ {0, 1}, given sk
and input x; (iii) Puncture(sk, P ) → skP : Outputs punctured key skP , given sk and
set P of m points for puncturing; (iv) PEval(skP , x) → b: Outputs the evaluation bit
b ∈ {0, 1}, given skP and x.

There are three properties we require from a privately-puncturable PRF: First, func-
tionality preservation, meaning that PEval(skP , x) equals Eval(sk, x) for all x /∈ P .
Second, pseudorandomness, meaning that the values Eval(sk, x) at x ∈ P , appear
pseudorandom to the adversary that has access to skP and oracle access to Eval(sk, ·)
(as long as the adversary cannot query Eval(sk, x) for x ∈ P , in which case it is trivial
to distinguish). Third, privacy with respect to puncturing, meaning that the punctured
key skP does not reveal anything about the set of points that was punctured. Formal
definitions are given in [7,37]. (We include these only in the full version of the paper
[33, Definitions E1, E2, E3].).

It is important to note here that we will be using a privately-puncturable PRF with
a randomized puncturing algorithm. Although initial constructions were deterministic
[7], Canetti and Chen [10] show how to support randomized puncturing without extra
assumptions and negligible extra cost. Any of the constructions can be extended in the
manner shown in [10] to achieve a randomized puncturing. The randomization will be
important since our add functionality uses rejection sampling.

Privately-puncturable PRSs. A privately-puncturable PRS is a set that contains ele-
ments drawn from a given distribution Dn. (We define a Dn to be used in this work
in Sect. 3.) The set can be represented succinctly with a key sk. Informally, one can
“puncture” an element x, producing a new key that represents a set without x. Privately-
puncturable PRSs were first introduced by Corrigan-Gibbs and Kogan [16] and were
further optimized by Shi et al. [37]. The formal definition is as follows.

Definition 25 (Privately-puncturable PRS [16,37]). A privately-puncturable PRS has
four algorithms: (i) Gen(1λ, n) → (msk, sk): Outputs a set key sk and a mas-
ter key msk, given security parameter λ and the set domain {0, . . . , n − 1}; (ii)
EnumSet(sk) → S: Outputs set S given sk; (iii) InSet(sk, x) → b: Outputs a bit
b denoting whether x ∈ EnumSet(sk); (iv) Resample(msk, x) → skx: Outputs a
secret key skx for a set generated by sk, with x’s membership resampled.4

4 Previously this was called “puncture”. We rename it to “resample” for ease of understanding
and consistency with our work.
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We require three properties from a privately-puncturable PRS: First, pseudorandom-
ness with respect to a distribution Dn, meaning that Gen(1λ, n) generates a key that
represents a set whose distribution is indistinguishable from Dn. Second, functionality
preservation with respect to resampling, informally meaning that the set resulting from
resampling should be a subset of the original set. This means we can only resample
elements already in the set. Third, security in resampling, states that for any (msk, sk)
output by Gen(1λ, n), sk is computationally indistinguishable from a key sk′

x where
(msk′, sk′) is a key output by calling Gen(1λ, n) until InSet(sk′, x) → 1 and sk′

x

is the output of Resample(msk′, x). Formal definitions can be found in [16,37]. (We
also include these in Appendix A, Definitions A3, A1, A2.)

Privately-puncturable PRSs from Privately-puncturable PRFs. Shi et al. [37] con-
structed a privately-puncturable PRS from a privately-puncturable PRF. Let F be a
privately-puncturable PRF and let x ∈ {0, 1}log n be an element of the set domain.
We provide the intuition behind the construction. Consider that we require both con-
cise description and fast membership testing. One first approach to constructing a PRS
could be to define x ∈ S to be F.Eval(sk, x) equals 1. Resampling x would then be
equivalent to puncturing F ’s key at point x. Given x ∈ {0, 1}log n, this approach cre-
ates sets proportional to the size of n/2 in expectation, which is undesirable for our
application; we want sets of size approximately

√
n. To deal with this problem, one can

add additional constraints with respect to suffixes of x. In other words, define x ∈ S
iff F.Eval(sk, x[i :]) equals 1, for all i = [0, log n/2]. Recall x[i :] denotes the suffix
of bitstring x starting at position i. Puncturing in this case would require puncturing at
log n/2 points. While this approach generates sets of expected size

√
n, it introduces

too much dependency between elements in the set: Elements with shared suffixes are
very likely to be together in the set. To deal with this, Shi et al. [37] changed the con-
struction as follows. Let B be an integer greater than 0. Then, let z = 0B ||x. We say
that x ∈ S iff

F.Eval(sk, z[i :]) = 1, for all i = [0, log n/2 + B] .

For clarity we provide a small example here. Suppose n = 16 and that we want to
check the membership of element 7 for set S. First, we represent 7 with log 16 = 4 bits,
72 = 0111. Next, we append B = 4 zeros to the front of the bitstring, so that we have
the string 00000111. Now, we say that 7 ∈ S iff

F.Eval(sk, 00000111) = 1 ∧ F.Eval(sk, 0000111) = 1 ∧ F.Eval(sk, 000111) = 1
∧ F.Eval(sk, 00111) = 1 ∧ F.Eval(sk, 0111) = 1 ∧ F.Eval(sk, 111) = 1 .

Note that adding these B extra checks decreases dependency of set membership
between elements proportional to 2B , since it adds bits unique to each element. As
a tradeoff, it decreases the size of the set proportional to 2B . By picking B =
�2 log log n	, we maintain the set size to be

√
n/ log2 n while having small dependency

between elements—which can be addressed. We give an overview of our remaining
algorithms:

Set Enumeration. Let m = log n/2 + B. Naively, set enumeration would take linear
time, since membership for each x ∈ {0, . . . , n − 1} must be checked. Shi et al. [37]
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observed that due to the dependency introduced, the set can be enumerated in expected
time ˜O(

√
n).

Resampling. To resample an element x from the set S, we puncture the PRF key at the
m = log n/2 + 2 log log n points that determine x’s membership by running

skx ← F.Puncture(sk, {z[i :]}i=[0,m]) .

By the pseudorandomness of F , this will resample x’s membership in S and x will not
be in the set defined by skx with probability 1− 1/2m = 1− 1/

√
n log2 n. Clearly, we

do not remove elements from the set with overwhelming probability. Aside from that,
there is still dependency among elements, and puncturing x may also remove other
elements in S with some small probability. Shi et al. [37] resolve this by bounding
these probabilities to less than 1/2 and running λ parallel executions of the protocol
and taking a majority. Looking ahead, we will require this too.

Key Generation. By Definition 25, key generation for a privately-puncturable PRS out-
puts two keys, key sk that represents the initial set and key msk that is used for punc-
turing. To output msk, we simply call F.Gen(1λ, L,m). To output sk, we pick a set
P of m “useless” strings of L = log n + B bits that start with the 1 bit and output a
second key sk ← F.Puncture(msk, P ). The reason for that is to ensure that resam-
pled keys are indistinguishable from freshly sampled keys as required by the “security
in resampling” property. Therefore we artificially puncture msk in a way that does not
affect the set of elements represented by it, yet we change its format to be the same as
a set key resampled at a given point.

Efficiency and Security. To summarize, the scheme described above by Shi et al. [37]

has the following complexities: Algorithms Gen, InSet and Resample run in ˜O(1)
time. All keys have ˜O(1) size. Algorithm EnumSet runs in expected ˜O(

√
n) time. It

satisfies Definitions A1 and A2 assumming privately-puncturable PRFs with the prop-
erties aforementioned (and shown feasible from LWE in previous works [7,10]).

3 Preliminary 2PIR+ Protocol

We first design a preliminary 2PIR+ protocol (Fig. 1) that helps with the exposition of
our final protocol. In this preliminary 2PIR+ protocol the client has linear local storage
and the communication is amortized ˜O(

√
n). Later, we will convert this 2PIR+ scheme

into a space and communication-efficient 2PIR+ protocol (by using our PRS primitive
of Sect. 4) that will yield our final 1PIR scheme. Crucially, the analysis of the prelimi-
nary protocol is almost the same as that of our final PIR protocol in Sect. 5.

Overview of our Preliminary Protocol. Our preliminary protocol works as follows.
During the preprocessing phase, the client constructs a collection T of � =

√
n log3 n

“primary” sets and a collection Z of an additional
√

n “reserve” sets. All sets are sam-
pled from a fixed distribution Dn over the domain {0, . . . , n−1}. While we can use any
distribution for our preliminary protocol, we use a specific one that will serve the use of
PRSs in Sect. 5. Both T and Z are sent to server1 and client receives the hints back, as
explained in the introduction. Client stores locally the collections T and Z along with
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the hints. This is the main difference with our final protocol, where we will be storing
keys instead of the sets themselves. To query an index x during the query phase, the
client finds some Tj = (Sj , pj) in T such that Sj contains x, “removes” x and sends
the new set to server2. Then server2 computes the parity of the new set and sends the
parity back, at which point the client can compute DB[x], by xoring server2’s response
with pj . As we will see, element removal in this context means resampling the member-
ship of x via a Resample algorithm introduced below. To ensure the set distribution
of T does not change across queries, our protocol has a refresh phase, where element
x is “added”, to the next available reserve set, via an Add algorithm introduced below.
The protocol allows for

√
n queries and achieves amortized sublinear server time over

these
√

n queries. After
√

n queries, we re-run the offline phase.
The above protocol can fail with constant probability, as we will analyze in Lemma

31 below. To avoid this, as we indicate at the top of Fig. 1, we run log n log log n
parallel instances of the protocol and take the majority bit as the output answer. We
now continue with the detailed description of the building blocks (such as algorithms
Resample and Add) that our protocol uses.

Sampling Distribution Dn. For our preliminary protocol we are using the same dis-
tribution as the one induced by the PRS construction by Shi et al. [37] described in
Sect. 2. This will help us seamlessly transition to our space-efficient protocol in Sect. 5.
To sample a set S with elements from the domain {0, . . . , n − 1} we define, for all
x ∈ {0, . . . , n − 1},

x ∈ S ⇔ RO(z[i :]) = 1 for all i ∈ [0,m] ,

where we recall that m = log n/2 + B,B = 2 log log n and z = 0B ||x. Also, RO :
{0, 1}∗ → {0, 1} denotes a random oracle. We use the random oracle for exposition
only—our final construction does not need one. Note for our preliminary protocol, the
adversary cannot call the RO function or otherwise all the sets would revealed. We also
define D

x
n to be a distribution where a set S is sampled from Dn until x ∈ S.

Functions with Respect toDn. We define two functions with respect to the distribution
Dn —these functions will be needed to describe our preliminary scheme. To define
these functions, we first introduce what it means for two elements to be related.

Definition 31. Function Related(x, y), where x, y ∈ {0, . . . , n − 1}, returns a bit
b ∈ {0, 1} where b = 1 (in which case we say that x is related to y) iff x and y share a
suffix of length > log n/2 in their binary representation.

For example Related(1000001, 1100001) = 1 and Related(1000001, 1101111) =
0. Equipped with this, we define our two functions.

– Resample(S, x) → S′: Given x ∈ S as input, define z = 0B ||x. We sample a
uniform bit for each suffix of z, z[i :], for i ∈ [0,m]. For each y ∈ S such that
Related(x, y) (including x), we check if any suffix of y was mapped to 0, and if
so, remove it from S and return this new set.

– Add(S, x) → S′: This function essentially “reprograms” the random oracle such
that RO(z[i :]) = 1 for all i ∈ [0,m], where z = 0B ||x. This may also affect
membership of other elements y ∈ {0, . . . , n − 1} that are not in S, but related to x
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with some probability. For us it will suffice that for most of executions, Add(S, x) =
S ∪ {x}. We bound the probability of this formally in Appendix B.

Fig. 1. Our preliminary 2PIR+ protocol. With n we denote the size of DB and [�] = [1, �].

Efficiency Analysis. Our preliminary protocol in Fig. 1 is inefficient: The online server
time is ˜O(

√
n), client storage and computation is ˜O(n) and bandwidth is ˜O(

√
n). It

supports
√

n queries, after which we need to re-run the offline phase.

Correctness Proof. As we mentioned before, our basic protocol without parallel
instances, has constant failure probability, less than 1/2. We prove this through Lemma
31.

Lemma 31 (Correctness of protocol with no repetitions). Consider the protocol of
Fig. 1 with no repetitions and fix a query xi. The probability that the returned bitDB[xi]
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in Step 4 of Query is incorrect, assuming DB[xi−1] used in Step 2 of Refresh is cor-
rect with overwhelming probability, is less than 1/2.

We give an overview of the intuition of the proof here and defer the full proof of
Lemma 31 to Appendix B. We distinguish two cases. For the first query x1, there are
three cases where our protocol can fail. The first failure occurs if we cannot find an
index j in T such that x ∈ Sj for Tj = (Sj , pj) (Step 1 of Query). We can bound
this failure by 1/n. The second failure occurs when our Resample function does not
remove x. This happens with probability 1/

√
n log2 n. The third failure case occurs

when we remove x, but also remove an element other than x within Resample. This
can bounded by 1/2 log n.

For every other query xi, i greater than 1, we must consider an additional failure
case which occurs when, in the Refresh phase, we add an element other than x within
Add—which we can also bound by 1/2 log n. Computing the final bound requires more
work. It requires showing that Refresh only incurs a very small additional error prob-
ability to subsequent queries, which can also be bounded at the query step. We argue
this formally in our proof of Theorem 31.

Amplifying Correctness via Repetition. To increase correctness of our scheme, we run
k parallel instances of our protocol and set the output bit in Step 3 of Query to equal
the majority of DB[x] over these k instance. We run Refresh with the correct DB[x]
computed in Query so that we can apply Lemma 31. Let C be the event, where, over
k instances of our preliminary PIR scheme, more than k

2 instances output the correct
DB[x]. Using a standard lower-tail Chernoff bound, we have that, if p > 1/2 is the
probability DB[x] is correct, C’s probability > 1− exp(− 1

2pk(p − 1
2 )

2) which is over-
whelming for k = ω(log n), satisfying Definition 22. The same technique is used in our
final PIR scheme.

Privacy Proof. We now show that our preliminary PIR protocol satisfies privacy, per
Definition 23. Proving privacy relies on two properties we define below. Both proofs
are similar, so we provide only the proof of the less intuitive Property 2.

Property 1: Let S ∼ D
x
n and S′ ∼ Dn. Then Resample(S, x) and S′ are statistically

indistinguishable.

Property 2: Let S ∼ Dn and S′ ∼ D
x
n. Then Add(S, x) and S′ are statistically indistin-

guishable.

Lemma 32. Property 2 holds.

Proof. Consider the set S′ ∼ D
x
n and the set S′′ output as (i) S ∼ Dn; (ii) S′′ ←

Add(S, x). For an arbitrary y in the domain we show that Pr[y ∈ S′] = Pr[y ∈ S′′].
Recall m = 1/2 log n + B. We distinguish two cases.

1. y is not related to x.
– Computing Pr[y ∈ S′]. Let Fi be the event that set S′ is output in the i-th try,

where i = 1, 2, . . . ,∞. It is

Pr[y ∈ S′] =
∞
∑

i=1

Pr[y ∈ S′|Fi] Pr[Fi] =
1
2m

∞
∑

i=1

Pr[Fi] =
1
2m

.
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In the above, Pr[y ∈ S′|Fi] = 1/2m since x being in S′ does not affect y’s
membership. Therefore for y to be a member, all m membership-test suffixes of
y must evaluate to 1 during the i-th try, hence the derived probability.

– Computing Pr[y ∈ S′′]. Since adding x to S after S is sampled from Dn does
not affect y’s membership, it is Pr[y ∈ S′′] = 1/2m.

2. y is related to x. Assume there are k (out of m) shared membership-test suffixes of
x and y.

– Computing Pr[y ∈ S′]. Again, let Fi be the event that set S′ is output in the
i-th try, where i = 1, 2, . . . ,∞. It is

Pr[y ∈ S′] =
∞
∑

i=1

Pr[y ∈ S′|Fi] Pr[Fi] =
1

2m−k

∞
∑

i=1

Pr[Fi] =
1

2m−k
.

In the above, Pr[y ∈ S′|Fi] = 1/2m−k. This is because x being in S′ does
affect y’s membership. Therefore for y to be a member, all remaining m − k
membership-test suffixes of y must evaluate to 1 during the i-th try, hence the
derived probability.

– Computing Pr[y ∈ S′′]. Adding x to S after S is sampled from Dn sets k
membership-test suffixes of y to 1. Therefore for y to be a member of S′′, the
remaining membership-test suffixes have to be set to 1 before x is added, mean-
ing Pr[y ∈ S′′] = 1/2m−k.

Therefore the distributions are identical. ��
Given these two properties, our proof sketch goes as follows. For the first query, we
pick an entry Tj = (Sj , pj) from T whose Sj contains the index x we want to query.
Since Sj is the first set in T to contain x, Sj ∼ D

x
n. By Property 1, since what server2

sees is S′ = Resample(Sj , x), S′ is indistinguishable from a random set drawn from
Dn, and therefore, the query reveals nothing about the query index x to server2.

For every other query, we argue that the Refresh step maintains the distribution of
T. Note that after a given set Sj is used, re-using it for the same query or a different
query could create privacy problems. That is why after each query, we must replace
Sj with an identically distributed set. By Property 2, Sj and Add(S0, x) are identically
distributed. Then, the swap maintains the distribution of sets in T and therefore the view
of server2 is also simulatable without x. These arguments form the crux of the proof of
Theorem 31; we provide the full proof in Appendix B.

Theorem 31 (Preliminary 2PIR+ protocol). The 2PIR+ scheme in Fig. 1 is correct
(per Definition 22) and private (per Definition 23) and has: (i) ˜O(n) client storage
˜O(n) client time; (ii) ˜O(

√
n) amortized server time and no additional server storage;

(iii) ˜O(
√

n) amortized bandwidth.

4 Adaptable Pseudorandom Sets

In this section, we introduce the main primitive required for achieving our result, an
adaptable pseudorandom set. The main difference from a privately-puncturable PRS
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introduced in Sect. 2 is the support for the “add” procedure, as well as any logarithmic
(in the set size) number of additions or removals, as opposed to a single removal. This
will eventually allow us to port the protocol from Sect. 3 into a 1PIR protocol that
has much improved complexities, such as sublinear client storage and polylogarithmic
communication. We now give the formal definition and then we present a construction
that satisfies our definition.

Definition 41 (Adaptable PRS). An adaptable PRS has five algorithms: (i)
Gen(1λ, n) → (msk, sk): Outputs our set’s key sk and master key msk, given secu-
rity parameter λ and set domain {0, . . . , n − 1}; (ii) EnumSet(sk) → S: Out-
puts set S given sk; (iii) InSet(sk, x) → b: Outputs bit 1 iff x ∈ EnumSet(sk);
(iv) Resample(msk, sk, x) → skx: Outputs secret key skx that corresponds to an
updated version of the set (initially generated by sk) after element x is resampled; (v)
Add(msk, sk, x) → skx: Outputs secret key skx that corresponds to an updated ver-
sion of the set (initially generated by sk) after element x is added.

Note that our interface differs from privately-puncturable PRSs introduced in Sect. 2
in that our resample and add operations are dependent on both msk and sk; we will see
why below.

Security Definitions for Adaptable PRSs. Our adaptable PRS must satisfy five defini-
tions. Three of them, functionality preservation with respect to resampling, pseudoran-
domness with respect to a distributionDn and security in resampling are identical to the
equivalent definitions from privately-puncturable PRSs, namely Definitions A3, A1, A2
in Appendix A. We give two additional definitions in Appendix A (definitions A5
and A4) that relate to addition. First, functionality preservation with respect to addi-
tion, meaning that adding always yields a superset of the original set and can only
cause elements related to x (which are few) to be added to the set. Second, security in
addition, meaning that generating fresh keys until we find one where x belongs to the
set is equivalent to generating one fresh key and then adding x into it.

Intuition of Our Construction: Introduce an Additional Key. Our core idea is to
use two keys sk[0] and sk[1] and define the evaluation on the suffixes that determines
membership as the XOR of F.Eval(sk[0], ·) and F.Eval(sk[1], ·). In this way, we can
add to one key, and resample the other, independently. Note that this idea can support
any fixed number of additions or resamplings (removals), by adding extra PRF keys.
This simple construction circumvents many problems related with trying to perform
multiple operations on the same key. Each key has one well defined operation. This
also makes showing security and privacy straight-forward to argue.

We present a summary of our construction below. The detailed implementation is in
Fig. 3 in Appendix C.

Key Generation. Let F be a privately-puncturable PRF. For key generation, we run
F.Gen twice, outputting msk[0] and msk[1]. After puncturing on m “useless” points
(for reasons we explained in Sect. 2), we output sk[0] and sk[1]. And finally we output
sk = (sk[0], sk[1]) and msk = (msk[0],msk[1]).
Set Membership and Enumeration. For each x ∈ {0, . . . , n − 1} we define

x ∈ S ⇔ F.Eval(sk[0], z[i :]) ⊕ F.Eval(sk[1], z[i :]) = 1 for all i ∈ [0,m] ,
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where we recall m = log n/2 + B,B = 2 log log n and z = 0B ||x. For enumeration,
we use the same algorithm as Shi et al. [37], with the difference that evaluation is done
as the XOR of two evaluations, as above.

Resampling. Resampling works exactly as resampling in privately-puncturable PRSs
(by calling F.Puncture) and uses, without loss of generality, msk[1] as input. The
output replaces only the second part of sk—thus we require sk as input so that we can
output the first part intact.

Addition. To add an element x, we call F.Puncture on input msk[0], and then check
x’s membership on the punctured key. If x was added, we output the punctured key,
else, we try puncturing from the master key again, until x is resampled into the set. This
is the reason why it is necessary to have a rerandomizable puncture operation. Naively,
this algorithm takes ˜O(

√
n) time, but we show in the Appendix how to reduce this to

˜O(1) by leveraging the puncturable PRF used. Our final theorem is Theorem 41, and
the construction and proof can be found in Appendix C.

Theorem 41 (Adaptable PRS construction). Assuming LWE, the scheme in Fig. 3
satisfies correctness, pseudorandomness with respect to Dn (Definition A1), functional-
ity preservation in resampling and addition (Definitions A3 and A5), security in resam-
pling and addition (Definitions A2 and A4), and has the following complexities: (i) keys
sk and msk have ˜O(1) size; (ii) membership testing, resampling and addition take
˜O(1) time; (iii) enumeration takes ˜O(

√
n) time.

5 More Efficient 2PIR+ and Near-Optimal 1PIR

We now use adaptable PRSs introduced in the previous section to build a more efficient
2PIR+ scheme (one with ˜O(

√
n) client storage and ˜O(1) communication complexity)

which can be compiled, using FHE, into a 1PIR scheme with the same complexities,
as we explained in the introduction. The main idea is to replace the actual sets, stored
by the client in their entirety in our preliminary protocol, with PRS keys that support
succinct representation, addition and removal. In particular, our proposed protocol in
Fig. 2 is identical to our preliminary protocol in Fig. 1 except for the following main
points: (i) In the offline phase, instead of sampling sets from Dn, we generate keys
(msk, sk) for adaptable PRSs that correspond to sets of the same distribution Dn. (ii)
In the online phase, we run Resample and Add defined in the adaptable PRS. These
have exactly the same effect in the output set, except the operations are done on the
set key not the set. (iii) We can check membership efficiently using InSet. We now
introduce Theorem 51.

Theorem 51 (Efficient 2PIR+ protocol). Assuming LWE, the 2PIR+ scheme in Fig. 2
is correct (per Definition 22) and private (per Definition 23) and has: (i) ˜O(

√
n) client

storage and ˜O(
√

n) client time; (ii) ˜O(
√

n) amortized server time and no additional
server storage; (iii) ˜O(1) amortized bandwidth.
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Fig. 2. Our 2PIR+ for n-bit DB using adaptable PRS (Gen, EnumSet, InSet, Resample, Add).

Unlimited Queries. Our scheme can handle
√

n queries but can be extended to unlim-
ited queries: We just rerun the offline phase after all secondary sets are used. This main-
tains the complexities from Theorem 51.

Trade-offs in Client Space and Server Time. Our scheme enjoys a trade-off between
client space and server time. One can increase the number of elements of each PRSet
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to n/Q. This would change the number of sets required for our scheme to Q, and
consequently our scheme would enjoy Q client space, at the expense of requiring n/Q
online server time. This tradeoff holds in the other direction as well (increasing client
space reduces online server time). In any case, the product of client space and online
server time must equal n, as shown by Corrigan-Gibbs et al. in [16].

From 2PIR+ to 1 PIR with Same Complexities. As detailed in [15], we can port our
2PIR+ to 1PIR by merging server1 and server2 and executing the work of server1
using FHE. We require a symmetric key FHE scheme that is gate-by-gate [15], where
gate-by-gate means that encrypted evaluation runs in time ˜O(|C|) for a circuit of size
|C|. As noted in [15], this is a property of standard FHE based on LWE [9,26]. With
this, we can use a batch parity Boolean circuit C that, given a database of size n and l
lists of size m, C computes the parity of the lists in ˜O(l · m + n) time [15]. The last
consideration is how to perform the set evaluation under FHE. This can be done using
slight modifications to our evaluation algorithm and using oblivious sorting. Our main
result, Theorem 52, is as follows.

Theorem 52 (Near-Optimal 1PIR protocol). Assuming LWE, there exists an 1PIR
scheme that is correct (per Definition 22) and private (per Definition 23) and has: (i)
˜O(

√
n) client storage and ˜O(

√
n) client time; (ii) ˜O(

√
n) amortized server time and

no additional server storage; (iii) ˜O(1) amortized bandwidth.

We discuss this further and include the proofs for both theorems in our paper’s full
version [33].

Acknowledgement. This work was supported by the NSF, VMware and Protocol Labs.

A Definitions

A.1 Additional Definitions for Adaptable PRSs

Our adaptable PRS primitive will satisfy the following definitions.

Definition A1 (Pseudorandomness with respect to some distribution Dn for privately-
puncturable PRSs [37]) A privately-puncturable PRS scheme (Gen, EnumSet, InSet,
Resample) satisfies pseudorandomness with respect to some distribution Dn if the
distribution of EnumSet(sk), where sk is output by Gen(λ, n), is indistinguishable
from a set sampled from Dn.

Definition A2 (Security in resampling for privately-puncturable PRSs [37]). A
privately-puncturable PRS scheme (Gen, EnumSet, InSet, Resample) satisfies secu-
rity in resampling if, for any x ∈ {1, . . . , n − 1}, the following two distributions are
computationally indistinguishable.

– Run Gen(λ, n) → (sk,msk), output sk.
– Run Gen(λ, n) → (sk,msk) until InSet(sk, x) → 1, output skx =

Resample(msk, x).
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Definition A3 (Functionality preservation in resampling for privately-puncturable
PRSs [37]). We say that a privately-puncturable PRS scheme (Gen, EnumSet, InSet,
Resample) satisfies functionality preservation in resampling with respect to a predi-
cate Related if, with probability 1−negl(λ) for some negligible function negl(.),
the following holds. If Gen(1λ, n) → (sk,msk) and Resample(msk, x) → skx

where x ∈ InSet(sk) then

1. EnumSet(skx) ⊆ EnumSet(sk);
2. EnumSet(skx) runs in time no more than EnumSet(sk);
3. For any y ∈ EnumSet(sk) \ EnumSet(skx), it must be that Related(x, y) = 1.

Definition A4 (Security in addition for adaptable PRSs). We say that an adaptable
PRS scheme (Gen, EnumSet, InSet, Resample, Add) satisfies security in addition
if, for any x ∈ {0, . . . , n − 1}, the following two distributions are computationally
indistinguishable.

– Run Gen(1λ, n) → (sk,msk) until InSet(sk, x) → 1. Let msk[0] = null and
output (msk, sk).

– Run Gen(1λ, n) → (sk,msk). Output (mskx, skx) ← Add(msk, sk, x).

Definition A5 (Functionality preservation in addition for adaptable PRS). We say that
an adaptable PRS scheme (Gen,EnumSet, InSet,Resample,Add) satisfies func-
tionality preservation in addition with respect to a predicate Related if, with prob-
ability 1 − negl(λ) for some negligible function negl(.), the following holds. If
Gen(1λ, n) → (sk,msk) and Add(msk, sk, x) → skx then

– EnumSet(sk) ⊆ EnumSet(skx);
– For all y ∈ EnumSet(skx) \ EnumSet(sk) it must be that Related(x, y) = 1.

B Correctness Lemmata

See below the proof of Lemma 31. We then use it to prove Theorem 31.

Proof. Recall that we fix B = 2 log log n. As alluded to in Sect. 3, we can split our
failure probability in three cases:

– Case 1: xi is not in any primary set that was preprocessed.
– Case 2: The resampling does not remove xi.
– Case 3: Resampling removes more that just xi from the set.

Case 1: We first note that, from our distribution Dn, for any x ∈ {0, . . . , n − 1}, we
have that, for S ∼ Dn,

Pr[x ∈ S] =
(

1
2

)
1
2 log n+B

=
1√
n

(

1
2

)B

=
1

2B
√

n
.
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Then note that the expected size of S is the sum of the probability of each element being
in the set, i.e.,

E [|S|] = E

[

n−1
∑

x=0

1
2B

√
n

]

=
n−1
∑

x=0

E

[

1
2B

√
n

]

=
√

n

2B
≤

√
n

(log n)2
.

We can conclude that the desired probability is

Pr[x /∈ ∪i∈[1,l]Si] =
(

1 − 1√
n(log n)2

)

√
n(log n)3

≤
(

1
e

)log n

≤ 1
n

,

where � =
√

n log3 n and S1, . . . , S� ∼ (Dn)�.
Case 2: Assuming there is a set S such that xi ∈ S, by construction of Resample,
it is easy to see that the probability that xi is not removed from S is equivalent to a
Bernoulli variable that is 1 with probability p = 1√

n·2B , since we toss 1/2 log n + B

coins, and x is not removed only if all of these coins evaluate to 1. Therefore

Pr[xi ∈ Resample(S, xi)] =
1√

n · 2B
≤ 1√

n log2 n
.

Case 3: Note that for any k less than log n, there are exactly 2log n−k − 1, or less than
2log n−k strings in {0, 1}log n, that are different than x share a suffix of length ≥ k with
x. Note that since x is in the set, for any k, the probability that a string y that has a
common suffix of length exactly k with x is included in the set is the chance that its
initial B bits and its remaining bits not shared with x evaluate to 1, namely, for any k
less than log n and y = {0, 1}log n−k||x[log n − k :] we have that:

Pr[y ∈ S] =
1

2B2log n−k
.

Let Nk be the set of strings in the set that share a longest common suffix with x of
length k. Then, since we know that there are at most 2log n−k such strings, we can say
that for any k, the expected size of Nk is

E [|Nk|] ≤ E

⎡

⎣

2log n−k
∑

x=1

1
2B2log n−k

⎤

⎦ =
2log n−k

∑

x=1

E

[

1
2B2log n−k

]

=
2log n−k

2B2log n−k
=

1
2B

.

Then, for our construction, where we only check prefixes for k greater than (1/2) log n,
we can find that the sum of the expected size of Nk, for each such k is

E

⎡

⎣

log n−1
∑

k= 1
2 log n+1

|Nk|
⎤

⎦ =
log n−1
∑

k= 1
2 log n+1

E [|Nk|] ≤
(

1
2
log n − 1

)

1
2B

≤ 1
2 log n

.

Clearly, we can bound the probability of removing an element along with xi by the
probability that there exists a related element to xi in the set, by previous discussion in
Sect. 3. Then, given each bound above, assuming that the previous query was correct
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and that the refresh phase maintains the set distribution, we see that the probability that
the returned bit DB[xi] is incorrect for query step i is

Pr[DB[xi]is incorrect] ≤ 1
n
+

1√
n log2 n

+
1

2 log n
≤ 3

2 log n
<

1
3

,

for n ≥ 32. ��
Now we introduce a new lemma that will help us prove Theorem 31. This lemma

will bound the probability that Add does not work as expected. The intuition here is that,
just like Resample can remove elements (already in the set) related to the resampled
element, Add can add elements (not in the set) related to the added element. Below, we
are bounding the number of elements that are not x and are expected to be added to the
set when we add x. As we explained in Sect. 3, this is a “failure case”, since it means
that our set will not be what we expect.

Lemma B1 (Adding related elements). For S ∼ Dn, and any x ∈ {0, . . . , n − 1}, the
related set Salmost,x is defined as

Salmost,x = {y | y ∈ Add(S, x) \ (S ∪ {x})} .

Then the expected size of Salmost,x is at most 1
2 log n .

Proof. Note that for any k less than log n, there are less than 2log n−k strings in
{0, 1}log n that share a suffix of length greater than or equal to k with x that do not
equal x. The probability that a string y that has a common suffix of exactly k with x
is included in Salmost,x is the chance that its initial B bits and its remaining bits not
shared with x evaluate to 1. Namely, let us say that

Salmost,x =
⋃

Nk ,

for any k ∈ N that is less than log n and more than (1/2) log n. We define each Nk as

Nk = {y : y = {0, 1}log n−k||x[log n − k :]} .

Since this is the same size as the Nk in Case 3 of Lemma 31, and we are iterating over
the same k, the expected size of Salmost,x is

E [|Salmost,x|] ≤ 1
2 log n

.

��
We are now equipped with all the tools we need to prove Theorem 31. We prove it

below:

Proof. We first prove privacy of the scheme, then proceed to prove correctness. The
asymptotics follow by construction and were argued in Sect. 3.
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Privacy. Privacy for server1 is trivial. It only ever sees random sets generated com-
pletely independent of the queries and is not interacted with online. We present the
privacy proof for server2 below.

Privacy with respect to server2, as per our definition, must be argued by showing
there exists a stateful algorithm Sim that can run without knowledge of the query and
be indistinguishable from an honest execution of the protocol, from the view of any
PPT adversary A acting as server2 for any protocol server∗

1 acting as server1. First,
we note that the execution of the protocol between client and server2 is independent of
client’s interaction with server1. client generates sets and queries server1 in the offline
phase for their parity. Although this affects correctness of each query, it does not affect
the message sent to server2 at each step of the online phase, since this is decided by
the sets, generated by client. Then, we can rewrite our security definition, equivalently,
disregarding client’s interactions with server1.

We want to show that for any query qt for t ∈ [1, Q], qt leaks no information about
the query index xt to server2, or that interactions between client and server2 can be
simulated with no knowledge of xt. To do this, we show, equivalently, that the following
two experiments are computationally indistinguishable.

– Expt0: Here, for each query index xt that client receives, client interacts with
server2 as in our PIR protocol.

– Expt1 In this experiment, for each query index xt that client receives, client ignores
xt, samples a fresh S ∼ Dn and sends S to server2.

First we define an intermediate experiment Expt∗1.

– Expt∗1 : For each query index xt that client receives, client samples S ∼ D
xt
n . client

sends S′ = Resample(S, xt) to the server2.

By Property 1 defined in Sect. 3, S′ is computationally indistinguishable from a fresh
set sampled from Dn. Therefore, we have that Expt∗1 and Expt1 are indistinguishable.
Next, we define another intermediate experiment Expt∗0 to help in the proof.

– Expt∗0: Here, for each query index xt that client receives, client interacts with
server2 as in our PIR protocol, except that on the refresh phase after each query,
instead of picking a table entry Bk = (Sk, Pk) from our secondary sets and running
S′

k = Add(Sk, xt), we generate a new random set S ∼ D
xt
n and replace our used

set with sk instead.

First, we note that by Property 2 defined in Sect. 3, it follows directly that Expt0 and
Expt∗0 are computationally indistinguishable. Now, we continue to show that Expt∗0 and
Expt∗1 are computationally indistinguishable. At the beginning of the protocol, right
after the offline phase, the client has a set of |T | primary sets picked at random. For
the first query index, x1, we either pick an entry (Sj , pj) ∈ T from these random sets
where x1 ∈ Sj or, if the that fails, we run Sj ∼ D

x1
n .

Then, we send to server2 S′
j = Resample(Sj , x). Note that the second case is

trivially equivalent to generating a random set with x1 and resampling it at x1. But in
the first case, note that T holds a sets sampled from Dn in order. As a matter of fact,
looking at it in this way, Sj is the first output in a sequence of samplings that satisfies
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the constraint of x being in the set. Then, if we consider just the executions from 1
to j, this means that picking Sj is equivalent to sampling from D

x1
n , by definition.

Then, by Property 1, it follows that the set that the server sees in the first query is
indistinguishable from a freshly sampled set.

It follows from above that for the first query, q1, Expt∗0 is indistinguishable from
Expt∗1. To show that this holds for all qt for t ∈ [1, Q] we show, by induction, that
after each query, we refresh our set table T to have the same distribution as initially.
Then, by the same arguments above, it will follow that every query qt in Expt∗0 is
indistinguishable from each query in Expt∗1.

Base Case. Initially, our table T is a set of |T | random sets sampled from Dn inde-
pendently from the queries, offline.

Inductive Step. After each query qt, the smallest table entry (Sj , pj) such that xt ∈
Sj is replaced with a set sampled from D

xt
n . Since the sets are identically distributed,

then it must be that the table of set keys T maintains the same distribution after each
query refresh.

Since our set distribution is unchanged across all queries, then using the same argu-
ment as for the first query, each query qt from client will be indistinguishable from a
freshly sampled set to server2. Then, we can say that Expt∗1 is indistinguishable from
Expt∗0. This concludes our proof for experiment indistinguishability. Since we have
defined a way to simulate our protocol without access to each xt, it follows that we
satisfy server2 privacy for any PPT non-uniform adversary A.

Correctness. To show correctness, we consider a slightly modified version of the
scheme: After the refresh phase has used the auxiliary set (Sj , pj), the client stores
(Sj , pj , zj), where zj is the element that was added to Sj as part of the protocol—for
the sets that have not been used, we simply set zj = null. Note that the rest of the
scheme functions exactly as in Fig. 1 and therefore never uses zj . It follows, then, that
the correctness of this modified scheme is exactly equivalent to the correctness of the
scheme we presented. Note that the query phase will fail to output the correct bit only
on the following four occasions: (Case 1). xi is not in any primary set that was prepro-
cessed. (Case 2). The resampling does not remove xi (Case 3). Resampling removes
more that just xi from the set. (Case 4). Parity is incorrect because Add added a related
element during the refresh phase.

Case 1: From the privacy proof above, we know that refreshing the sets maintains the
primary set distribution. Then, we can use the same argument as in Lemma 31 and say
that, for a query xi, for all i ∈ {1, . . . , Q}, we have:

Pr[xi /∈ ∪j∈[1,l]Sj ] =
(

1
e

)log n

≤ 1
n

.

Case 2: Since Resample is independent from the set (just tossing random coins), we
can again re-use the proof of Lemma 31 and say that, for any xi, for all i ∈ {1, .., Q},
we have:

Pr[xi ∈ Resample(S, xi)] ≤ 1√
n(log n)2

.
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Case 3: Case 3 requires us to look into our modified scheme. For the initial primary
sets, the probability of removing an element related to the query is exactly the same as
in Case 3 for our Lemma 31. However, for sets that were refreshed, we need to consider
the fact that these are not freshly sampled sets, in fact, they are sets that were sampled
and then had an Add operation performed on them. For a given query xi, let Sj be the
first set in T that contains xi. Let us denote PuncRel to be the event that we remove
more than just xi when resampling Sj on xi. We split the probability of PuncRel as

Pr[PuncRel] = Pr[PuncRel | Related(xi, zj) = 1 ∧ xi 	= zj ] × Pr[Related(xi, zj) = 1 ∧ xi 	= zj ]

∪ Pr[PuncRel | Related(xi, zj) = 0 ∨ xi = zj ] × Pr[Related(xi, zj) = 0 ∨ xi = zj ] .

The first term corresponds to the case where the added element in a previous refresh
phase, zj , is related to the current query element, xi. Note that if xi equals zj , we get
the same distribution as the initial Sj by Property 2 in Sect. 3. Then, we consider only
the case where zj does not equal xi. Note that we can bound

Pr[Related(xi, zj) = 1 ∧ xi �= zj ] ≤ Pr[Related(Sj , zj) = 1] ≤ 1
2 log n

.

Above, we use Related(Sj , zj) to denote the probability that there is any related
element to zj (not equal to zj) in Sj . We can bound this event by Lemma 31 (see Case
3). Then, we have

Pr[PuncRel | Related(xi, zj) = 1 ∧ xi �= zj ]× Pr[Related(xi, zj) = 1 ∧ xi �= zj ] ≤ 1

2 logn
.

For the second term of our initial equation, since Related(xi, zj) is 0 or xi equals
zj , note that our probability of resampling incorrectly is either independent of zj , since
zj does not share any prefix with xi and therefore the resampling cannot affect zj or
its related elements in any way, by definition; or it is identical to the probability of the
initial set, by Property 2. Therefore, we have that the probability of removing a related
element is at most the probability of removing a related element in the original set,
which by Lemma 31 is

Pr[PuncRel | Related(xi, zj) = 0 ∨ xi = zj ] ≤ 1
2 log n

.

And, therefore, it follows that

Pr[PuncRel | Related(xi, zj) = 0 ∨ xi = zj ] × Pr[Related(xi, zj) = 0 ∨ xi = zj ] ≤ 1

2 log n
.

Finally, we have that Pr[PuncRel] ≤ 1
2 log n + 1

2 log n ≤ 1
log n .

Case 4: Lastly, we have the case that query xi is incorrect because the parity pj from the
set Sj where we found xi is incorrect. This will only happen when we added elements
related to zj when adding zj during the refresh phase. We denote this event AddRel.
By Lemma B1, we have that

Pr[AddRel] ≤ 1
2 log n

.
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We can conclude that at each query xi, i ∈ {1, . . . , Q}, assuming the previous query
was correct, it follows that the probability of a query being incorrect, such that the
output of the query does not equal DB[xi], is:

Pr[incorrect query] ≤ 1
n
+

1√
n log2 n

+
1

log n
+

1
2 log n

≤ 2
log n

≤ 1
3

for n > 405.

Because at each step we run a majority vote over ω(log n) parallel instances, we can
guarantee that, since our failure probability is less than 1

2 , each instance will get back
the correct DB[xi] with overwhelming probability. ��

C PRS Constructions and Proofs

This section presents a construction and proof for the Adaptable PRS, as introduced
and defined in Sect. 4. We present a construction of our Adaptable PRS in Fig. 3. In the
proof, we use a function time: f(·) → N that takes in a function f(·) and output the
number of calls made in f(·) to any PRF function. We also prove Theorem 41 for our
construction in Fig. 3. We prove Theorem 41 below. In the proof, we use properties of
the underlying PRF found only within the full version of the paper [33, Appendix E] or
previous work [37].

Proof. We begin the proof by showing that our scheme in Fig. 3 satisfies the definitions
in Appendix A. We then argue efficiencies.

Correctness and Pseudorandomness with Respect to Dn. Correctness follows from our
construction and functionality preservation of the underlying PRF. Pseudorandomness
follows from pseudorandomness of the underlying PRF ( [33, Definition E1]). Both
incur a negligible probability of failure in λ, inherited from the underlying PRF.
Functionality preservation in resampling and addition. Assuming pseudorandomness
and functionality preservation of the underlying PRF ([33, Definitions E1, E2]), our
PRS scheme satisfies the properties of Functionality Preservation in Addition.

For (sk,msk) ← Gen(1λ, n) until InSet(sk, x), and skx ← Punc(msk, sk, x):

– From construction, EnumSet(skx) ⊆ EnumSet(sk), since puncturing strings that
evaluate to 1 can only reduce the size of the set (since we only resample elements in
the set).

– From the point above, and construction of our EnumSet, it follows that
time(EnumSet(sk)) ≥ time(EnumSet(skx)).

– By construction of our resampling operation and Related function, it must be that

y ∈ EnumSet(sk) \ EnumSet(skx) ↔ Related(x, y) = 1.

Also, for any n, λ ∈ N, x ∈ {0, . . . , n − 1}, for (sk,msk) ← Gen(1λ, n), skx ←
Add(msk, sk, x) we note that:

– By construction, EnumSet(sk) ⊆ EnumSet(skx) since since we only ever make
0 s into 1 s.
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Fig. 3. Our Adaptable PRS Implementation.

– By the converse of same argument as Functionality Preservation in Resampling
above, it follows that

y ∈ EnumSet(skx) \ EnumSet(sk) ↔ Related(x, y) = 1.
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Therefore, our scheme satisfies Functionality preservation in resampling and addition.
Security in resampling. We show that our scheme satisfies Definition A2 below, assum-
ing pseudorandomness and privacy w.r.t. puncturing of the underlying PRF ([33, Defi-
nitions E1, E3], respectively).

To aid in the proof, we define an intermediate experiment, Expt∗1, defined as:

– Expt∗1: Run Gen(λ, n) → (sk,msk), and return skx ← Resample(msk, sk, x).

For each sk output by Gen, sk = (sk[0], sk[1]), two keys of m-puncturable PRFs.
First, we show indistinguishability between Expt∗1 and Expt0:

Assume that there exists a distinguisher D0 than can distinguish Expt∗1 and Expt0.
Let us say that D0 outputs 0 whenever it is on Expt0 and 1 when it is on Expt∗1. Then,
we can construct a D∗

0 with access to D0 that breaks the privacy w.r.t. puncturing of the
PRF as follows. For any x ∈ {0, . . . , n − 1}:

Let m = 1
2 log n + B, L = log n + B, z = 0B ||x.

D∗
0(m,L, z):

1. Define P0 = {z[i :]}i∈[0,m] and let P1, P2 be a set of m random points of
length L starting with a 1-bit.

2. Send P0, P1 to the privacy w.r.t. puncturing experiment and get back skPb

and oracle access to PRF.Eval(sk, ·).
3. Run PRF.Gen(1λ, L,m) → sk, PRF.Puncture(sk, P2) → skP2 .
4. Set secret key sk′ = (skP2 , skPb

).
5. Return D0(sk′).

Note that in the case where b equals 0, the experiment is exactly equivalent to D0’s
view of Expt0, since sk′ is two random m-privately-puncturable PRF keys punctured
and m points starting with a 1-bit. Also, when b is 1, D0’s view is exactly equivalent to
Expt∗1, since we pass in two random m-privately-puncturable PRF keys, one punctured
at m points starting with a 1-bit, and the other at {z[i :]}i∈[0,m], with no constraints
on whether x was in the set before or after the puncturings. Then, since D0’s view is
exactly the same as its experiment, it will distinguish between both with non-negligible
probability, and whatever it outputs, by construction, will be the correct guess for b with
non-negligible probability.

Now we proceed to show that Expt∗1 and Expt1 are indistinguishable, assuming
pseudorandomness of the underlying PRF. Now, assume there exists a distinguisher D1

that can distinguish between Expt∗1 and Expt1 with non-negligible probability. Then,
we can construct a distinguisher D∗

1 that uses D1 to break the pseudorandomness of the
underlying PRF as follows. For any x ∈ {0, . . . , n − 1}:
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Let m = 1
2 log n + B, L = log n + B, z = 0B ||x.

D∗
1(m,L, z) :

1. Send P = {z[i :]}i∈[0,m] to the PRF pseudorandomness experiment, get
back skP and a set of m bits {Mi}i∈[0,m].

2. Let P1 be a set of m random bit strings of length L starting with a 1-bit. Run
PRF.Gen(1λ, L,m) → sk, PRF.Puncture(sk, P1) → skP1 . Let sk′ =
(skP1 , skP ).

3. If ∀i ∈ [0,m], PRF.PEval(skP1 , z[i :]) ⊕ Mi = 1, output D1(sk′), else
output a random bit.

Note that in the case D1’s view in the case where the evaluations as described above
all output 1 is exactly its view in distinguishing between our Expt1 and Expt∗1. With
probability 1

2 , it is given a punctured key where x was an element of the original set,
and with probability 1

2 it is given a punctured key where x was sampled at random.
Then, in this case, it will be able to distinguish between the two with non-negligible
by assumption, and therefore distinguish between the real and random experiment for
pseudorandomness of the PRF. Since the probability of having all the evaluations output
1 is non-negligible, then we break the pseudorandomness of the PRF. By contraposition,
then, assuming pseudorandomness of the PRF, it must be that Expt1 and Expt∗1 are
indistinguishable. This concludes our proof.

Security in Addition. We now show that our scheme satisfies Definition A4, assuming
privacy w.r.t. puncturing of the underlying PRF. Assume there exists a distinguisher D
that can distinguish between these two with non-negligible probability. Then, we can
construct a distinguisher D∗ that breaks privacy w.r.t. puncturing of the PRF as follows,
for any x ∈ {0, . . . , n − 1}:

Let m = 1
2 log n + B, L = log n + B, z = 0B ||x.

D∗(m,L, z) :

1. Define P0 = {z[i :]}i∈[0,m] and let P1, P2 be two sets of random m points
of length L starting with a 1-bit.

2. Send P0, P1, to the privacy w.r.t. puncturing experiment and get back skPb

and oracle access to PRF.Eval(sk, ·).
3. Run PRF.Gen(1λ, L,m) → (msk, sk), PRF.Puncture(sk, P2) → skP2 .
4. Set our secret key sk′ = (skPb

, skP2).
5. If InSet(sk′, x), output D(sk′), else output a random bit.

Consider the case where x ∈ EnumSet(sk′):

– If P0 was punctured, D’s view is exactly equivalent to Expt0 in his experiment,
since in Add we output a secret key sk = (sk[0], sk[1]) where sk[0] is punctured at
x, sk[1] is punctured at m random points starting with a 1, and InSet(sk, x) returns
true.

– If P1 was punctured, D’s view is exactly equivalent to Expt1 in his experiment, by
construction of Gen, P1 and P2, the sk outputted is equivalent to a key outputted by
Gen(1λ, n) where InSet(sk, x) returns true.
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We conclude that, conditioned on InSet(skPb
, x) returning true, D’s view of the exper-

iment is exactly equivalent to the experiment from our Definition A4, and therefore
it will be able to distinguish between whether P0 and P1 was punctured with non-
negligible probability. If we fix a random sk[1], the probability:

Pr [InSet(sk′, x) = true] =
1√
n

> negl(n).

Then, the algorithm D∗ we constructed will break the privacy w.r.t. puncturing of the
PRF with non-negligible probability. By contraposition, assuming privacy w.r.t. punc-
turing, skx and sk are computationally indistinguishable. Following almost exactly
the same argument as above, we can show that the tuples (skx[0],mskx[1]) and
(sk[0],msk[1]) are also indistinguishable. Also, in both tuples (mskx[1], skx[1]) and
(msk[1], sk[1]) the master key is just the unpunctured counterpart of the secret key.
Finally, mskx[0] = msk[0] = null. Then, since we have shown that assuming the
privacy w.r.t. puncturing property, the keys involved are pairwise indistinguishable, by
the transitive property, we see that assuming privacy w.r.t. puncturing, (mskx, skx)
and (msk, sk) are computationally indistinguishable and therefore, security in addition
holds.
Efficiencies. Efficiency for our Gen,InSet and Resample follow from the construction
and efficiencies for our underlying PRF. The two efficiencies which we will show are
EnumSet and Add. Note that in EnumSet, the step 1 takes ˜O(

√
n) time to evaluate

every string of size log n
2 , then, by pseudorandomness of the PRF, at each subsequent

step we only ever keep
√

n strings since half are eliminated. Since there are a logarith-
mic number of steps, we can say that EnumSet runs in probabilistic ˜O(

√
n) time. For

Add, by pseudorandomness of the PRF, our construction will take probabilistic ˜O(
√

n)
time. (We provide better, deterministic bounds in the full version of the paper [33]). ��
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Abstract. When outsourcing a database to an untrusted remote server,
one might want to verify the integrity of contents while accessing it. To
solve this, Blum et al. [FOCS ‘91] propose the notion of memory check-
ing. Memory checking allows a user to run a RAM program on a remote
server, with the ability to verify integrity of the storage with small local
storage.

In this work, we define and initiate the formal study of memory check-
ing for Parallel RAMs (PRAMs). The parallel RAM model is very expres-
sive and captures many modern architectures such as multi-core architec-
tures and cloud clusters. When multiple clients run a PRAM algorithm
on a shared remote server, it is possible that there are concurrency issues
that cause inconsistencies. Therefore, integrity verification is even more
desirable property in this setting.

Assuming only the existence of one-way functions, we construct an
online memory checker (one that reports faults as soon as they occur)
for PRAMs with O(logN) simulation overhead in both work and depth.
In addition, we construct an offline memory checker (one that reports
faults only after a long sequence of operations) with amortized O(1) sim-
ulation overhead in both work and depth. Our constructions match the
best known simulation overhead of the memory checkers in the RAM set-
tings. As an application of our parallel memory checking constructions,
we additionally construct the first maliciously secure oblivious parallel
RAM (OPRAM) with polylogarithmic overhead.

1 Introduction

Consider a large database outsourced to an untrusted remote storage server. A
fundamental cryptographic property one might hope to achieve in this setting is
integrity verification, i.e., the ability to verify that the server has not tampered
with the contents of the storage. For example, if a hospital stores its patients’
medical records on a database, the reliability of the records is crucial. Moreover,
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the use of cloud servers to store personal information (e.g. email, digital pho-
tographs, etc.) is widespread. For all of these applications, it is important to
guarantee the integrity of the contents of the storage.

In the setting where a user outsources a static database, they can simply
authenticate the database to ensure integrity. However, when the user outsources
a database which also has to dynamically support updates, integrity verification
becomes more complicated. This is in fact the problem of memory checking,
which was first introduced by Blum, Evans, Gemmel, Kannan and Naor [6].

In the memory checking setting, a user U would like to run a RAM program
on a remote storage S. A memory checker is a layer between the user U and
remote storage S, as shown in Fig. 1. The user U sends read and write requests
to M, and M then sends its own read and write requests to the unreliable
storage S. The checker M then uses the responses from the server and its own
small private local storage to determine if S responded correctly and send the
correct response to U . If S sends an incorrect response, the checker M reports
that S was faulty and aborts.

Fig. 1. Memory checking model for RAMs as defined by Blum et al. [6]. Here, user U
is accessing a remote storage S. Memory checker M is a layer between C and S that
ensures the correctness of the responses from S.

There are two main efficiency metrics for memory checking: the work blowup
(the ratio of the number of physical accesses by M per underlying logical query
made by U), and the space complexity of the local private storage of M. Using an
authentication tree [6,27], it is possible to achieve O(log N) work blowup with
O(1) word space complexity.

The memory checking model of Blum et al. has been well studied [1,6,17,29,
30] and has found many real-world and theoretical applications. For example,
many secure enclaves such as AEGIS and Intel SGX [14] support the integrity
verification of external memory. On the theoretical side, memory checking has
been used to obtain proofs of retrievability [33] and maliciously secure oblivious
RAM (ORAM) constructions [26,32].

Integrity Verification with Multiple Users. One can also ask if integrity verifica-
tion can be done in a setting where there are multiple users executing a parallel
RAM (PRAM) algorithm on a shared remote storage. The PRAM model is a
generalization of the RAM model that allows for parallel batches of operations
to be made to the server. The PRAM model captures many emerging technolo-
gies. For example, it can model multiple users sharing a common cloud server
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to perform some shared computation, or multiple processors running within
a single multicore system. One can also imagine multiple entities (e.g. hospi-
tals) sharing a single shared database that they dynamically and independently
update. Due to its generality, many recent works have studied cryptography in
the PRAM setting, such as Oblivious PRAM (OPRAM), Garbled PRAM, and
more [7,11,12,25].

Integrity verification can also be useful to ensure that the various entities
have a consistent and most up-to-date view of remote storage. Therefore, it
seems natural to extend memory checking to the parallel setting.

1.1 Our Contributions

In this work, we initiate the formal study of memory checking for PRAM pro-
grams. We first define memory checking notions for PRAMs by generalizing the
definitions of Blum et al. Throughout this section, N is the size of shared remote
storage with word size w, and 1 ≤ m ≤ N is the number of users.

Fig. 2. Memory checking model for PRAMs. Here, U1,U2, . . . ,Um are CPUs that simul-
taneously access a server S. To ensure the correctness of the server’s responses, we
have memory checkers M1,M2, . . . ,Mm as an interface for the clients U1, . . . ,Um,
and the memory checker communicates with the server S to ensure the correctness of
the server’s responses.

In this model, we assume that each user Ui interfaces with a checker Mi

to interact with the server (see Fig. 2). For every batch of logical queries from
{Ui}i, the checkers {Mi}i produce batches of physical requests to the S. While
the checkers {Mi}i can use shared private randomness to generate a secret state
(e.g. authentication keys) before the start of the memory checking protocol, they
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are not allowed to communicate directly to each other after the start of the
protocol. These users can still communicate with each other through the server
in an authenticated manner. This is the most general setting because it does not
require any reliable communication channels between the checkers. Note that
however, our model does not prevent the users Ui from communicating with each
other, but it is general enough to accomodate users that do not communicate
with each other. We formalize this model in Sect. 4.

We focus on three main PRAM models: exclusive-read exclusive-
write (EREW), concurrent-read exclusive-write (CREW) and concurrent-read
concurrent-write (CRCW). In the first model, we assume that at most one user
accesses any index of the remote storage at any parallel time step. In the CREW
model, we allow concurrent read accesses to any location, but only one user can
access any given location for a write. Finally, in the CRCW model we allow con-
current reand and write accesses to memory locations, where we resolve write-
conflicts according to some pre-determined rule (e.g. an arbitrary user wins any
write. See Sect. 3 for more examples). Our results apply to most natural conflict-
resolution rules.

Efficiency Metrics. Like Blum et al., we are interested in minimizing work blowup
(i.e. the ratio of the number of physical queries for every batch of logical queries)
and space complexity of each Mi. Moreover, an additional complexity measure
we hope to minimize in the case of PRAMs is depth or parallel complexity blowup.
In other words, for each parallel batch of instructions from the users {Ui}i, we
hope to minimize the number of parallel batches of instructions from {Mi}i. For
all constructions in this work, the blowup in server space storage is O(1).

The Problem with Concurrency. As we detail in Sect. 2, allowing concurrent
reads and writes makes the memory checking problem more challenging. In the
standard RAM setting (as in Fig. 1), the problem of memory checking boils
down to checking whether a server returns corrupted data when U performs a
read. In the CRCW PRAM setting, we also run into problems when multiple
users execute writes. For example, if multiple users attempt to write to the
same address, S essentially gets to choose which user wins the write. However,
nothing prevents S from pretending that multiple different writes were accepted.
For example, if U1 and U2 both write to some address addr, the server can now
branch the memory into two versions - one with U1 winning the write, and one
with U2 winning the write. Therefore, we need to ensure that S does not branch
the memory and instead commits to a single consistent memory across all users.

Online Memory Checking for PRAMs. The notion of memory checking defined
above is known as online memory checking since no Mi sends incorrect responses
to its user, i.e. the correctness of responses is ensured in an online manner. In
particular, if the server sends an incorrect response to some Mi, there exists
some Mj (possibly different from Mi) which will abort before Mi sends any
response to Ui.
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In the standard single-user RAM setting, one can implement online memory
checkers with collision-resistant hash functions (CRHFs) following the Merkle-
tree paradigm [27] with O(log N) work blowup. Blum et al. show a tree-based
memory checker can also be instantiated with pseudorandom functions with
O(log N) overhead. At a high level, the construction maintains a binary tree
where the leaf nodes correspond to the elements of the underlying database.
Every leaf node is given a counter value keeping track of the number of times
the associated database entry is updated. Every internal node and the root node
contains the sum of the counts of its children nodes. M keeps track of the value
at the root node. Whenever U performs a read to some database entry, M
traverses the path to the corresponding leaf node. While doing so, M verifies
the consistency of the counts of the nodes on the path. Whenever U performs a
write, the counts along the corresponding path are incremented. Since the binary
tree has O(log N) height, this introduces an O(log N) simulation overhead. We
refer the reader to Sect. 2 for more details on this construction.

There is no known construction known construction beating the O(log N)
overhead. Moreover, Dwork, Naor, Rothblum and Vaikuntanathan [17] showed
a Ω(log N/ log log N) lower bound on the blowup for memory checkers which
are deterministic and non-adaptive - capturing most known memory checkers.
Therefore, this is essentially the best work blowup one can hope for.

One can imagine that by serializing a given PRAM algorithm (i.e. at each
time-step, exactly one user accesses the server), one can adapt a tree-based online
memory checker such as the construction of Blum et al. [6] or a Merkle tree [27].
However, this gives a memory checking construction with O(log N) work blowup
and O(m log N) depth blowup. While the work blowup matches that of memory
checking for RAMs, the depth blowup is in fact equal to the total work, and
does not capitalize on the parallelization capabilities of our model. Therefore,
one can ask if it is also possible to also achieve an O(log N) depth blowup. In
this work, we show that this is indeed possible.

Theorem 1 (Informal version of Theorem 7). Assuming the existence
of one-way functions, there exists an online memory checking protocol with
O(log N) work blowup, O(log N) depth blowup and O(1) local space complex-
ity per checker.

We remark that if the underlying algorithm is EREW or CREW, the access
pattern of the resulting memory checking protocol is also EREW or CREW
respectively when interacting with an honest server.

Naor and Rothblum [29] show that one-way functions are in fact necessary
for online memory checking for RAM programs, and hence this assumption is
also necessary for our result. Moreover, when we consider the special case where
m = 1, our result reduces to memory checking for RAM programs, and our
efficiency in fact matches the best known memory checkers [6,17,30].

The starting point of our construction is the authentication tree of Blum
et al. [6]. However, there are two main technical difficulties that arise when
directly implementing their construction. Firstly, since multiple elements of the
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database might be accessed in the same batch of queries, this could result in
many read-write conflicts when updating the internal nodes of the tree. Secondly,
if the underlying algorithm performs concurrent accesses, the database could
potentially branch the history by showing multiple incompatible versions of the
storage to different users. Therefore, we have to ensure that all the users view
exactly one consistent copy of the authentication tree.

To solve the first problem, we simply introduce a simple tie-breaking rule.
If two CPUs in charge of two children nodes want to update the parent node
at the same time, we give the left node priority. This ensures that in an honest
execution, at most one CPU attempts to update any given internal node of the
authentication tree. To avoid the branching-history problem, we use a simple
counting technique. Essentially, in addition to updating the counters of the leaf
nodes of the authentication tree, each CPU also locally keeps track of whether
it successfully executed a write (i.e. if its write won the conflict resolution rule).
Once the counts are propagated through the authentication tree, we can then
verify that the number of successful writes recorded at the root node corresponds
to the total number of CPU writes. If the server tells more than one client
that they “won”, we argue that we will detect a discrepancy. We discuss our
techniques in further detail in Sect. 2.

Offline Memory Checking for PRAMs. Blum et al. [6] also suggest a weaker
notion of memory checking known as offline memory checking. An offline checker
gives a weaker guarantee that after a long sequence of operations to the stor-
age, it can detect whether there was any faulty response from the storage. To
contrast with online memory checking, we note that it is possible that some Mi

sent back an incorrect response to Ui, but by the end of the algorithm, with
high probability, some Mj (not necessarily the same as Mi) reports that some
mistake has occurred.

The main benefit of an offline checker is that it is possible to achieve an
amortized work blowup of O(1). In fact, Blum et al. showed that there exists
a statistically secure offline memory checker with amortized O(1) query com-
plexity, i.e. even a computationally unbounded remote server S cannot fool the
memory checker with high probability. To achieve this, they use ε-biased hash
functions as constructed by Naor and Naor [28]. The work of Arasu et al. [2]

Table 1. Consider offline checking for a storage of size N with a m-user database.
Here, we are given an underlying PRAM program with q queries and depth d over a
database of size N , and the table represents the work and parallel complexity of the
communication with the remote storage after applying an offline memory checker.

Model CPUs Total Work Total Parallel Depth Assumption Reference

RAM 1 O(q + N) – None [6,17]

RAM 1 O(q + N) – OWF [26]

EREW m O(q + N) O(d + N/m + logm) None Theorem 8

CRCW/CREW m O(q + N + dm logm) (d logm + N/m + logm) None Corollary 1

CRCW/CREW m O(q + N) O(d + N/m + logm) OWF Theorem 10
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alludes to the fact that this algorithm is parallelizable for EREW programs1.
We give a formal exposition of the algorithm and prove that this is in fact the
case.

Theorem 2 (Informal version of Theorem 8). There exists a statistically
secure offline memory checker for EREW PRAM algorithms with amortized O(1)
blowup in work and parallel complexity.

Since all CREW and CRCW programs can be emulated in the EREW model
with logarithmic overhead in work and parallel complexity, this additionally
gives us a statistically secure memory checker for CREW and CRCW PRAM
programs as well. However, the amortized blowup of such a scheme is O(log m)
in terms of work and depth.

To achieve O(1) amortized complexity, we instead draw inspiration from the
offline memory checking construction of Mathialagan and Vafa [26] which relies
on authentication.

Theorem 3 (Informal version of Theorem 10). Assuming the existence of
one-way functions, there exists an offline memory checker with amortized O(1)
work blowup and amortized O(1) depth blowup.

The main difficulty in obtaining this result once again is ensuring that the
adversary does not branch the memory (i.e. by accepting different concurrent
writes from the perspective of multiple users). To resolve this issue, we carefully
extend our counting argument from our online memory checking construction to
the offline setting as well. Additionally, authentication seems to be necessary to
prevent any “spoofing” attacks from the server. We elaborate our techniques in
Sect. 2. We state the exact work and parallel overhead of our offline checkers in
Table 1.

Relaxing the Parallelization Requirements. Just like the RAM model, the PRAM
model is rather idealized and abstracts out many practical considerations such
as sychronization. In the respective sections (Remarks 2 and 3), we argue that
the memory checking algorithms are flexible and can in fact be generalized to
work with some notion of “rounds” without the need for synchronization.

Application to Oblivious Parallel RAM (OPRAM). Oblivious RAM is a primitive
which takes a sequence of RAM queries to a server and transforms the access
pattern to remove any information leakage to the server. As a general technique
to ensure privacy of RAM computations, ORAM has many applications including
cloud computing, multi-party protocols, secure processor design, and private
contact discovery, the latter as implemented by the private messaging service
Signal [5,13,15,20–24,34–36].

Boyle, Chung and Pass [7] extended this notion to the parallel RAM setting,
and defined the notion of an Oblivious Parallel RAM (OPRAM). OPRAM is a
1 Arasu et al. [2] ultimately instantiate the algorithm of Blum et al. [6] with pseudo-

random functions.
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compiler that allows multiple users to interact with a remote server in a privacy-
preserving way. After a series of works [7–10], the work of Asharov et al. [3]
constructed an OPRAM with O(log N) blowup.

Theorem 4 (Informal, [3]). Assuming the existence of one-way functions,
there exists an arbitrary CRCW OPRAM scheme with O(log N) blowup in both
work and depth.

Asharov et al. [3] additionally show that their construction is optimal when
the number of CPUs m = O(N0.99).

However, this OPRAM construction is only known to be secure in the honest-
but-curious setting, where the adversary answers all read and write queries hon-
estly. In reality, the adversary can do a lot more. If the adversary tampers with
the database contents and returns corrupted responses, the OPRAM scheme
may no longer be secure. We say that an OPRAM is maliciously secure if it is
secure even against tampering adversaries.

Recently, Mathialagan and Vafa [26] noted that composing memory checkers
with ORAM constructions is sufficient to obtain malicious security. By a sim-
ilar argument, we can combine our PRAM memory checker with the optimal
OPRAM of [3] to obtain the following result.

Theorem 5 (Informal version of Theorem 11). Assuming the existence of
one-way functions, there exists a maliciously secure arbitrary CRCW OPRAM
scheme with O(log2 N) blowup in both work and depth.

To the best of our knowledge, this is the first maliciously secure OPRAM
construction with polylogarithmic overhead.

In the case of ORAMs, Mathialagan and Vafa [26] were able to intricately
interleave offline and online memory checking for RAMs with the optimal ORAM
construction of Asharov et al. [4] to avoid the additional log factor from memory
checking, and obtained a maliciously secure ORAM with optimal logarithmic
overhead. We believe that our offline and online PRAM memory checking con-
structions can also be similarly used to obtain a more efficient maliciously secure
OPRAM. We leave this for future work.

1.2 Related Work

We will compare our model and results to some related work.

Byzantine Agreement and Distributed Consensus. Our model differs from the
traditional distributed algorithms setting for Byzantine agreement [31] crucially
because our model has no reliable communication channels between the users.
The only way the users can communicate with each other in our setting is through
an unreliable remote server. We also assume that the users are trusted. On the
other hand, the focus in many works in Byzantine agreement and consensus
[16,18,19,31] in the presence of faulty/malicious users. For example, in work of
Dolev and Strong [16], all communication channels are thought to be reliable
(i.e. no spoofing attacks), but authentication is still useful in ensuring malicious
users cannot introduce new messages in the information exchange.
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Parallel Memory Checking. In the work of Papamanthou and Tamassia [30],
they consider the parallel complexity of memory checking for a RAM program.
In other words, a single user makes an update to the remote storage, but the
memory checker itself is able to send parallel batches of requests to the remote
storage. Instead, our work focuses on allowing many users to concurrently access
a shared database.

1.3 Organization

In Sect. 2, we discuss the main technical challenges of memory checking with con-
currency, and give an overview of our memory checking algorithms. In Sect. 3, we
define the RAM and PRAM models, and introduce cryptographic primitives that
we use in our construction. In Sect. 4, we formally define the memory checking
model for parallel RAMs. In Sect. 5, we give our online memory checking con-
struction. In Sect. 6, we construct statistically secure offline memory checkers
for EREW algorithms with amortized O(1) complexity. We then show a compu-
tationally secure offline memory checker for CRCW algorithms with amortized
O(1) complexity in Sect. 7. In Sect. 8, we show how we can apply memory check-
ing to obtain a maliciously secure oblivious parallel RAM construction. Many
details have been deferred to the full version of the paper [37].

2 Technical Overview

In this section, we give an overview of our constructions in the EREW setting.
We then highlight the core difficulties that arise in the CRCW setting due to
the concurrency, and describe how we deal with these issues.

2.1 Overview of Our Constructions

First, we give an overview of our algorithms. For simplicity, we first consider the
case where the underlying PRAM program satisfies the EREW model.

Authentication Trees. For our online memory checking construction, we follow
the authentication tree paradigm for RAM models [6,27]. We first recall the
memory checking construction of [6] for RAMs. At a high level, an authentication
tree stores the database at the leaves of a binary tree. At the leaves, the version
number (i.e. the number of updates made) of every element is stored along with
contents of the memory location. The parents of the leaf nodes then contain
the sum of the version numbers of its two children. Every subsequent internal
node contains the sum of the counts on both of its children. Every node is
authenticated. The memory checker then keeps track of the count stored at the
root node at any point in time. The main invariant maintained is that if the
storage functions honestly, then the count stored at any internal node is the sum
of the counts of its two children.
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When a user wants to read a memory location, the checker verifies the counts
of all the elements from the root to the corresponding leaf node, and ensures that
the count is in fact the sum of the counts of its children. When a user writes to
a memory location, it increments the counts of all nodes on the path from the
leaf to the root. At a high level, this is secure because by the security of MACs,
the server S can only present “stale” values with lower counts. Since we know
the count of the root node reliably, one can always detect a replay attack.

Authentication Trees for PRAMs. When extending this construction to EREW
or CREW PRAMs, we run into the issue that if many leaf values are updated
in parallel, there will be many conflicts at the internal nodes of the tree. If we
serialize the updates (i.e. one update is made at a time), the depth complexity
of the algorithm blows up by O(m log N).

In order to update the tree in parallel, we instead carefully assign exactly
one checker to update any internal node in the tree. For EREW/CREW algo-
rithms, clearly at most one checker updates any leaf node. After updating the
leaf nodes, we now have to propagate the updated counts to the rest of the tree.
To ensure that the nodes at the next level have a unique CPU assigned, we
always give priority to the CPU that updated the left child. In other words, the
CPU associated to the right child first checks if the left child was updated (e.g.
by checking a time-stamp). If so, the CPU in charge of the left node is now in
charge of the parent node. Otherwise, the CPU in charge of the right node is
now in charge of the parent. We use a similar rule to assign a checker to any
parent. It is clear that this can be done in an EREW manner with O(1) blowup
in time-complexity.

At the end of each iteration, the algorithm then tallies the number of check-
ers that made updates to the database at a given time-step (can be done in
O(log m) depth), and verifies that the root node count has in fact increased by
that amount. This ensures that all internal nodes were in fact increased consis-
tently. For a full exposition of this algorithm, see Sect. 5.

Offline Memory Checking. We now described our offline memory checking con-
struction from one-way functions, once again in the context of EREW algo-
rithms. We draw inspiration from the counting-based argument of Mathialagan
and Vafa [26].

At a high level, every memory location stored on the server is tagged with a
version number (i.e. the number of times that element was udpated). Whenever
a checker reads or writes to a memory location, it writes back to the memory
location with the version number incremented. The checker also locally incre-
ments a counter. Note that we authenticate every read and write to this server.
In the offline setting, since reads and writes both result in updates to a memory
location, the CREW model and CRCW model both have CRCW offline-checkers.

At the end of the sequence of operations, the checkers sum the version num-
bers of all the elements on the server, and compares this to the sum of the local
counters of all the checkers. By the security of MACs, we have that the sums
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are equal only if the server succeeds in forgery or if the server did not corrupt
any of the responses. For a full exposition and proof of correctness, see Sect. 7.

2.2 Main Challenges with Concurrency

We now describe the subtleties that arise in the CRCW model that do not show
up in the RAM or EREW/CREW PRAM model.

Concurrent Reads and Writes. In the arbitrary CRCW PRAM model, multiple
users are able to write to the same location at any point in time. For example,
suppose both U1 and U2 try to write values v1 and v2 respectively to some address
addr. Then, a malicious storage server S could essentially branch the storage into
two states: a state where location addr contains v1, and a state where location
addr contains v2 instead. Therefore, our memory checking protocol must account
for this, and force the server to commit to one consistent memory. Note that this
may not be a problem for conflict resolution rules such as priority CRCW which
uniquely determines the CPU that “win” the concurrent write.

Preventing Spoofing Attacks. On the other hand, one can also imagine that a
server could block a memory location addr that some user Ui wishes to update, by
“spoofing” some other user Uj . Therefore, the server can repeatedly do this and
block every memory location. However, this attack can be prevented by using
authentication. This fundamentally seems to be the reason we are unable to
obtain a statistically secure CRCW offline memory checker with O(1) amortized
work blowup.

Note that both of the above attacks do not appear in the EREW PRAM
algorithms, since every memory checker knows that there will be no conflict
during a read or a write.

2.3 Our Techniques for Concurrency

Although dealing with memory branching seems like a daunting task, we show
how one can use authentication along with a simple counting argument to prevent
branching in both our offline and online memory checking constructions. We give
a high-level overview of our counting technique.

In both of our online and offline checking constructions, every address is
tagged with a version number count, initialized to 0 at the start of the algo-
rithm. This version number keeps track of the number of times the location was
accessed.We instantiate every write in a few phases. At parallel time-step t, we
do the following:

1. Test phase: First, every user Ui reads from their desired location addr to
retrieve the version number count of the location. Then, every Mi attempts
to write to its desired address, with a test flag set. The Mi also tags their
data with the time-step t, user ID i and increases the version number of count.
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2. Winner phase: Now, every checker reads the same location again to determine
if they “won” the concurrent write.

– If Ui in fact “won” the write (i.e. the storage S reports back with their
write), Mi writes back the contents with the test flag set to false.

– If Ui did not “win” the write, Mi ensures that the winning user Uj in
fact set the test flag to false, set the time-step to t, and has a consistent
count value.

By authenticating all with a shared secret MAC key, one can be sure that
the server is not spoofing fake writes. Additionally, the verification of the “test”
flag ensures that there are no cycle of winners. In other words, we prevent the
scenario where user Ui1 receives the signal that Ui2 won, Ui2 receives the signal
that Ui1 won. While this prevents a spoofing attack, this does not yet prevent
branching in memory.

Throughout the algorithm, every Mi keeps track of the number of concurrent
writes it has won. Let C be the sum of the highest version numbers of all memory
locations, and let M be the sum of the number of concurrent writes won by all
M1,M2, . . . ,Mm. Assuming unforgeability of MACs, our key observation is
that C = M if and only if the server responded with respect to a “consistent
version” of the storage to all users. In fact, if the server lies at any point, it
must be the case that at the end of the algorithm, C < M . We formalize this
argument in the proofs of Theorem 7 and Theorem 10.

3 Preliminaries

Throughout this work, we let λ be the security parameter. In all of these con-
structions, we assume the adversary or the server S runs in time poly[λ]. We say
that a function negl : N → R

+ is negligible if for every constant c, there exists
Nc such that negl(λ) < λ−c for all λ > Nc. For an integer n ∈ N, we denote by
[n] the set {1, 2, . . . , n}. We use the notation (x, y) or (x||y) to indicate string
concatenation of x and y.

3.1 Parallel RAM Machines

RAM Machines. A RAM is an interactive turing machine with memory mem
containing N logical addresses where each memory cell indexed by addr ∈ [N ]
contains a word of size w. The RAM supports read and write operations. Read
operations are of the form (read, addr,⊥) where addr ∈ [N ], the RAM returns
the contents of mem[addr]. Write operations are of the form (write, addr, v), in
which case the RAM updates the contents of mem[addr] to be v. As standard
in previous works, we assume that word-level addition, Boolean operations and
evaluating PRFs can be done in unit cost.

In this work, we generally set w = ω(log λ). While this is not standard for
the RAM model, many memory checking constructions implicitly operate in this
setting since most construction use MACs or CRHFs, which need to be of size
ω(log λ) to be secure against poly[λ] adversaries. For a detailed discussion, see
Sect. 2.4 of [26].
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Parallel RAM Machines. A parallel RAM (PRAM) is a generalization of a RAM
but with multiple CPUs. In fact, a RAM is simply a PRAM with exactly 1 CPU.
A PRAM comprises m CPUs and a shared memory mem containing N logical
addresses where each memory cell indexed by addr ∈ [N ] contains a word of
size w. Just like RAMs, we assume the word-level operations such as word-level
addition, Boolean operations and evaluating PRFs can be done in O(1) time.

At time step t of the execution, each CPU might compute some request
�I
(t)
i = (op, addr, data). Then, the RAM receives a sequence of requests �I(t) :=

(I(t)i : i ⊆ [m]) (i.e. a set of requests from a subset of the CPUs). If opi = read,
then CPUi receives the contents of mem[addri] at the start of time-step t. If
opi = write, then the contents of mem[addri] are updated to datai.

Write Conflict Resolution. In the PRAM model, it is possible that multiple
CPUs attempt to access a given address at the same time. If a PRAM algorithm
guarantees that any address is accessed by at most one CPU at any given time-
step, we say that the algorithm is exclusive-read exclusive-write (EREW). If
CPUs can concurrently read any address but at most one CPU writes to an
address at any given time-step, we say the algorithm is concurrent-read exclusive-
write (CREW).

On the other hand, if there are multiple concurrent accesses to the same
address for both reads and writes, we call this the concurrent-read concurrent-
write (CRCW) model. Since many CPUs can perform a write to the same
address, we need a conflict resolution rule so that the PRAM update opera-
tions are well-defined. Here are a few commonly used rules:

– Arbitrary CRCW: An arbitrarily chosen CPU wins a write.
– Priority CRCW: Processors are ordered by some fixed priority, and the pro-

cessor with the highest priority wins any write.
– Maximum/Minimum CRCW: The write with the maximum or minimum

value is accepted.

It is well known that a CREW or CRCW algorithm can be transformed into
an EREW algorithm with a logarithmic slow-down.

Lemma 1. Consider a (possibly randomized) CREW/CRCW algorithm with
work q and depth d on a m-processor PRAM. Such an algorithm can be converted
into an EREW algorithm with work O(q + dm log m) and depth O(d log m) on
an m-processor PRAM.

Throughout our paper, we often using the following fact about the parallel
runtime of adding n numbers.

Lemma 2. There is an m-CPU EREW algorithm that sums n numbers with
O(n) work and O(n/m + log m) depth.

This is done as follows. First, each of the m processors sums n/m of the
numbers. This step takes O(n) work and O(n/m) depth. Then, the m CPUs
publish their current m values, and these are then summed up in a binary tree
fashion. This step takes O(m) work and O(log m) depth.
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3.2 Authentication

In the full version of this paper, we define the cryptographic primitives we need,
such as pseudorandom function families (PRFs) and message authentication
codes (MACs).

4 Memory Checking Model

In this section, we first recall the notion of memory checking for RAMs as intro-
duced by Blum et al. [6]. We then define our notion of memory checking for
PRAMs.

4.1 Memory Checking for RAMs

We recall the notion of memory checking from Blum et al. [6]. A memory checker
M can be defined as a probablistic RAM program that interacts with a user U
and server S, where U is performing a RAM computation with memory held by S.
Specifically, without a memory checker, U sends (op, addr, data) ∈ {read,write}×
[N ] × ({0, 1}w ∪ {⊥}) to S, who may or may not correctly follow the RAM
command, i.e., may send the wrong word back to U when op = read. M now
serves as an intermediary between U and S (see Fig. 1) that takes in each query
from U and generates and sends (possibly multiple and adaptive) queries to S.
Whenever op = read, U once again generates and sends (possibly multiple and
adaptive) queries to S, and M is then required to either respond to U with some
word or abort by sending ⊥ to indicate a malicious S. Once the memory checker
aborts, the protocol is done. This continues in rounds until U is done sending
queries, of which there are at most poly[λ].

Definition 1 (Online Memory Checker). We say that M is an online
memory checker if for any U the following two properties hold:

1. Completeness: If S is honest, then M never aborts and the responses that
M sends to U are all correct with probability 1 − negl(λ).

2. Soundness: For all p.p.t. S, the probability that M ever sends some incor-
rect response to U is negl(λ). That is, for each request from U , if S sends
an incorrect response to M, M can either independently recover the correct
answer and send it to U , or it can abort by sending ⊥ to U .

We call such a memory checker “online” because the memory checker must
be able to catch incorrect responses from M as soon they are sent. On the other
hand, one can define the notion of an “offline” memory checker:

Definition 2 (Offline Memory Checker). We say that M is an offline
memory checker for U if the following two properties hold:

1. Completeness: If S is honest, then M never aborts, and the responses that
M sends to U are all correct with probability 1 − negl(λ).



450 S. Mathialagan

2. Soundness: For all p.p.t. S, if M ever sends an incorrect response to U , it
must abort by the end of the last request made by U (the user indicates this
by sending ⊥ to M, for example) with probably at least 1 − negl(λ).

In other words, M may send many incorrect responses to U , but if it does,
by the end of the computation, M must detect that there was some error at
some point. We emphasize that M does not need to know where or when an
error occurred.

In both the offline and online memory checking setting, we consider security
versus a malicious adversary A that controls all messages sent to M, i.e., controls
both U and the server responses to M.

4.2 Memory Checking for Parallel RAMs

We now define the memory checking model for PRAMs. As pictured in Fig. 2,
given a PRAM with m CPUs {Ui}i∈[m], we have corresponding family of memory
checkers {Mi}i∈[m]. Before the start of the protocol, there is a set-up phase where
the memory checkers run a probabilistic key generation algorithm (s1, . . . , sm) ←
Gen(1λ, 1m), and obtain secret states based on shared randomness. Now, each
Mi only locally stores si.

Each Mi acts as an intermediary between Ui and the S. If {Ui}i at parallel
time-step t directly sends �I(t) = (I(t)i : i ⊆ [m]) to the server, the server may
not carry out the commands correctly or consistently. Instead, each Ui now
sends I

(t)
i = (opi, addri, datai) to Mi. Now, the family {Mi}i, in parallel, make

multiple (possibly adaptive) queries in parallel �I(t,1), �I(t,2), . . . , �I(t,�t) for some
�t ∈ N to S. Then, Mi needs to respond to Ui either with some word, or ⊥ if
it detects any malicious behavior from the adversary. This continues in rounds
until {Ui}i is done sending queries, of which there are at most poly[λ] batches of
requests.

Definition 3 (Online memory checker for PRAMs). We say that the fam-
ily M = {Mi}i is an parallel online memory checker family if for all CPUs
{Ui}i where each Mi is an intermediary between Ui and S, if the following two
properties hold:

– Correctness: If S is honest, then no Mi aborts and the responses from Mi

to Ui are all correct with probability 1 − negl(λ).
– Soundness: For all p.p.t. S that Mi sends an incorrect response to Ui is

negl(λ). In particular, if S sends an incorrect response to Mi, either Mi

recovers the correct answer and sends it to Ui, or some Mj (not necessarily
the same as Mi) aborts with 1 − negl(λ) probability.

Similarly, we define offline memory checking for PRAMs as follows.

Definition 4 (Offline memory checker for PRAMs). We say that the fam-
ily M = {Mi}i is an parallel online memory checker if for any family {Ui}i,
where each Mi is an intermediary between Ui and S if the following two prop-
erties hold:
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– Correctness: If S is honest, then no Mi aborts and the responses from Mi

to Ui are all correct with probability 1 − negl(λ).
– Soundness: For all p.p.t. S, if any Mi had sent back an incorrect response

to Ui, some Mj (not necessarily the same as Mi) must abort by the end of
the last request made by the clients with probability at least 1 − negl(λ).

Concurrency. We sometimes distinguish a family of memory checkers as compat-
ible with EREW, CREW or CRCW PRAM programs. If not explicitly stated,
we generally default to the arbitrary CRCW model.

Efficiency Metrics. We recap the efficiency metrics as described in Sect. 1. The
main metrics are work and depth blowup, space requirement of the memory
checkers, and the server space blowup.

– Depth blowup: The value of �t (as defined in the first paragraph of this sub-
section). In other words, this is the ratio of the number of parallel steps
conducted by {Mi} for every parallel step of {Ui}i.

– Work blowup: The ratio of |�I(t,1) + �I(t,1) + · · ·+ �I(t,�t)| to �I(t). In other words,
is the ratio of the number of physical queries from {Mi}i to the ratio of
underlying logical queries from {Ui}i. We note that we are only charging the
communication with S as work.

– Memory checker local space: This is the amount of secret local space stored
by each Mi.

– Server space blowup: This is the size of the server storage divided by Nw (the
size of the underlying server storage). In our constructions, this will be O(1)
assuming w = ω(log λ).

5 Efficient Parallel Online Checker

In this section, we present our online-memory checking construction achieving
O(log N) blowup in work and depth. Without loss of generality, suppose m and
N are powers of two.

Algorithm 6 Online memory checker for a PRAM with m CPUs sharing a
work-tape of size N .

Set-up: A key sk ← MACGen(1λ) is sampled and distributed to all checkers
{Mi}i∈[m].
Initial State: The server S’s memory is organized in a binary tree of size
2N of height log2 N . (Note that since the root is the node that is initialized,
initialization only takes O(1) time.)

– Initialize the root node r to contain (r, count := 0, time := 0, test := 0)
(authenticated).

– Each internal node v is of the form (v, count, time) (if uninitialized or if
authentication fails, treat the contents as (v, 0, 0)).
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– The N leaf nodes of the binary tree correspond to the contents of the logi-
cal memory. The leaf node corresponding to addr in the work tape W will
contain (addr, data, count, time, test). If uninitialized, treat the contents as
(addr, data := ∅,CPU := ∅, count := 0, time := 0, test := 0).

– Every Mi has a counter T initialized to 1.
Authentication: Every write is authenticated using MACsk and every read
is verified with Verify. If a read fails authentication, we assume that it is an
uninitialized node.
The algorithm: At iteration T :

– All readers: First, every Mi corresponding to CPUs performing reads pro-
ceeds as follows.

• Every Mi verifies that the root node has time = T − 1 and test = 0.
Record the count value at the root.

• Each Mi traverses the tree along the path to the leaf associated with
addr, in parallel. For each node v along the path with children u and
w, verify that v.count = u.count+w.count (i.e. the count values of the
corresponding nodes add up). If this is not true for any node, abort
and output ⊥.

• Once the leaf node is reached, Mi simply reads the contents of the
leaf node corresponding to addr, and sends data to CPU i.

– All writers: Now, every Mi corresponding to CPUs with writes proceeds
as follows.
1. Test phase: Every Mi reads the leaf node corresponding to addr. Sup-

pose addr has counter value count. Then, every Mi tries to write
(addr, data′, i, count + 1, time := T, test := 1) (in parallel) to the leaf
node corresponding to addr.

2. Winner phase: Each Mi reads the same entry to check if their corre-
sponding write had “won” the concurrent write.

• If yes, rewrite (addr, data′, i, count + 1, time := T, test := 0) to the
same address (i.e. indicate that the test phase is concluded).

• Otherwise, verify that the count value has been incremented, and
time = T , and test = 1.

• Every Mi reads the corresponding leaf node again to ensure that
it is updated with the “winning” entry with test = 0 2.

3. Propagation phase: Now, we propagate the counts from the leaves of
the tree to the root of the tree in parallel one layer at a time, starting
from the bottom, i.e. updating the nodes from h = 0, 1, . . . , log2 N :

• At h = 0 (i.e. leaf nodes), every Mi with a successful write is
assigned to that node.

• At h ≥ 1, each node with children that are updated will be
assigned a checker Mi as follows:
∗ If the left child was updated at round T , the checker Mi assigned

to the left child is assigned to the node.
∗ Otherwise, the checker Mi assigned to the right child at round

T is also assigned to the parent node.
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∗ Note that this can be checked in an EREW manner by simply
having a time-step where any checker Mi assigned to a right
node checks if the sibling left node was updated at time T . If
yes, it will no longer update the values.

• Every node v at level h ≤ log2 N − 1 with an assigned CPU
with children u and w is updated to (v, u.count + w.count, T ).
At h = log2 N (i.e. the root node), the root r is set to (r, u.count+
w.count, T, test := 1).

4. Verification of the root:
• In a separate array of size m (i.e. the number of CPUs), every Mi

writes a 1 if it performed a successful write operation (i.e. “won”
in the “winner phase”) to the database, and 0 otherwise.

• Compute the sum of this array to be some W . Note that this
can be done in O(log m) depth with O(m) work with an EREW
algorithm.

• M1 verifies that the count value of the root of the tree was
increased by W (note that W can be 0 if no writes were per-
formed).
∗ If the count count was in fact correct, update the root to be

(addr, count, T, 0).
∗ Otherwise, abort and output ⊥.

– Every Mi locally increments T .

Remark 1. If the underlying algorithm is CREW, the access patterns of the
memory checkers are also CREW if the server is honest. If the underlying algo-
rithm is EREW, we can make the following modifications to ensure the memory
checkers’ access patterns are also EREW. One can treat every “read” also as a
“write” where the same value is written back. Then, we can simply skip “All
readers” phase of the above algorithm and execute the “All writers” phase. Since
exactly one user is assigned to each internal node when the server is honest, the
resulting memory checking algorithm is also EREW against honest servers.

Remark 2. We can relax the parallelization requirements of the model by instead
having an agreed upon time for ‘read rounds” and “write rounds” for the “All
readers” and “All writers” phase. This ensures that all CPUs can agree on the
time-stamp of the root of the tree. We can also assume that in practice, no writes
happen concurrently (e.g. by adding randomness to the timing of an access), and
the algorithm is essentially EREW. We also assume that any read followed by
an immediate write to the same location is “atomic” and cannot be interfered
(i.e. any read-write to update the counter will not be interleaved with another
CPUs read-write, as this will result in inconsistent counters). The “read rounds”
have no synchronization issues, as long as every CPU agrees on the counter at

2 If there is a rule for conflict resolution that can be easily verified (e.g. the CPU with
the highest priority wins, CPU with the maximum or minimum value write wins,
etc.), then that can also be verified here.
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the root of the tree. During the “write rounds”, the protocol is consistent during
leaf-update phase and propagation phases as long as read-writes are atomic.
During the verification phase, we perform an EREW algorithm sum a set of
values and compare it against the root. As long as this is done in a consistent
and authenticated way, this phase can be done correctly and securely.

Theorem 7. Assuming the existence of one-way functions, there exists an
online memory checker for a m-CPU PRAM with O(log N) work blowup and
O(log N) depth blowup. Each CPU locally needs to store O(1) words and one
PRF key of length �(λ) (for authentication).

Proof. We first start by mentioning some invariants preserved during the algo-
rithm when the server is honest.

Invariants. The main invariant maintained is that the sum of the counts of
every node is the sum of the counts of its children node. Moreover, we have the
following invariants.

– Every Mi has the correct value T of the number of overall requests supported
by the memory checker.

– Every entry is authenticated, unless uninitialized (we treat every entry which
fails authentication as uninitialized). An uninitialized node is treated to have
count = 0.

– Every leaf node v corresponding to addr contains (addr, data,CPU, count, time,
test), where count is the number of times addr was updated, and the time was
the last round when a given node was written to, and test is a boolean value
indicating whether the write corresponds to a “test phase” (defined later).

– Every internal node v is of the form (v, count, time), where count is the total
number of times the leaf nodes of the corresponding sub-tree rooted at v are
updated, and time is the last iteration when any of the leaves of the sub-tree
is updated.

Clearly, the invariants are met at the initialization phase of the algorithm.
Suppose that we are at time T = t of the algorithm, and suppose that the

server has functioned honestly so far and the invariants have been maintained.
Now, we argue that at the end of iteration t, either:

– The memory functioned correctly and the invariant is preserved.
– The memory functions incorrectly and some Mi aborts and outputs ⊥.

The former case is easy. Therefore, it suffices to consider the case where the
memory functions incorrectly.

By unforgeability of MACs, every valid read corresponds to some authenti-
cated write with probability 1 − negl(λ). Therefore, for the rest of this proof,
we limit the memory’s attacks to only replay attacks (i.e. memory sends stale
requests corresponding to each address). There are a few cases to consider when
the memory functions incorrectly.
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Case 1: Memory functions incorrectly during the traversal phase of either the
reads or the writes.

First, notice that the T value of the root is monotone increasing with each
iteration, and therefore any replay attack at on the root node will be detected.
For every internal node and leaf node, notice that the count value is monotone
increasing with every write if the memory functions correctly. Suppose the mem-
ory first performs a replay attack on node u while some Mi is traversing a path,
we note that v.count > u.count + w.count where v is the parent node of u, and
w is a sibling node of u. Therefore, any such replay attack will be caught and
Mi will immediately abort.

Case 2: Memory functions incorrectly during the test and/or winner phases.
Let W be the number of CPUs that “win” during the test phase, and let

U be the number of leaf nodes that are updated with writes. Note that it is
possible that multiple CPUs get the signal that they won the concurrent write.
Let w1, w2, . . . , wU denote the number of “wins” associated to each of the U
nodes that are updated with writes, i.e. number of CPUs that get a signal that
they won per updated leaf node. Since every Mi with a write verifies that some
CPU has won that concurrent write (with test = 0), this ensures that wj ≥ 1.
Moreover, equality holds if and only if there is exactly one CPU that won the
arbitrary write.

Therefore, we have that W =
∑U

j=1 wj ≥ U , where equality holds if and only
if exactly one CPU wins each concurrent write. In other words, if the memory
functions incorrectly in this phase, we must have W > U . Recall that W is
computed during the verification phase, and we argue in the next case that this
inequality will be detected during the verification phase.

Case 1: Memory functions incorrectly during the traversal phase of
either the reads or the writes.
First, notice that the T value of the root is monotone increasing with each
iteration, and therefore any replay attack at on the root node will be detected.
For every internal node and leaf node, notice that the count value is monotone
increasing with every write if the memory functions correctly. Suppose the
memory first performs a replay attack on node u while some Mi is traversing
a path, we note that v.count > u.count+ w.count where v is the parent node
of u, and w is a sibling node of u. Therefore, any such replay attack will be
caught and Mi will immediately abort.

Case 2: Memory functions incorrectly during the test and/or winner
phases.
Let W be the number of CPUs that “win” during the test phase, and let
U be the number of leaf nodes that are updated with writes. Note that it
is possible that multiple CPUs get the signal that they won the concurrent
write. Let w1, w2, . . . , wU denote the number of “wins” associated to each of
the U nodes that are updated with writes, i.e. number of CPUs that get a
signal that they won per updated leaf node. Since every Mi with a write
verifies that some CPU has won that concurrent write (with test = 0), this
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ensures that wj ≥ 1. Moreover, equality holds if and only if there is exactly
one CPU that won the arbitrary write.
Therefore, we have that W =

∑U
j=1 wj ≥ U , where equality holds if and only

if exactly one CPU wins each concurrent write. In other words, if the memory
functions incorrectly in this phase, we must have W > U . Recall that W is
computed during the verification phase, and we argue in the next case that
this inequality will be detected during the verification phase.

Case 3: Memory functions incorrectly during the propagation and/or
the verification phases.
Consider an arbitrary internal node v of the tree. Let v.count be the count
value at time T − 1 this is correct by the induction hypothesis), and let
v.update be the number of leaf nodes of the sub-tree at v that were updated
at time T . We argue by induction on the height of v that for any read to
v, the counter value read is at most v.count + v.update. Moreover, equality
holds if and only if the memory functioned correctly in the sub-tree rooted
at v during the propagation phase.
At h = 0 (i.e. leaf nodes), the statement is clearly true because a replay attack
can only show a smaller counter value than v.count by the monotonicity of
the count values. Therefore, any read to v can only show a value of at most
v.count if it was not updated, and v.count + 1 otherwise.
Now, consider a node v at height h′ ≥ 1. Suppose that u and w are the
children of v, and that the node updating v receives counter values u.count′

and w.count′ when reading u and w respectively. Then, the new updated
counter value of v is

u.count′ + v.count′

≤ u.count + u.update + w.count + w.update

= v.count + v.update

where the first equality holds by the definition of v.count′, the second inequal-
ity holds by the induction hypothesis, and the last equality comes from the
correctness of the memory at time T −1. Therefore, the largest possible count
value associated to any read of v in this iteration is at most v.count+v.update,
where equality holds if and only if the memory functioned correctly in the
sub-tree rooted at v during the propagation phase.
In particular, at the root node r, we have that

r.count′ ≤ r.count + r.update ≤ r.count + U

where equality holds if and only if the memory functioned correctly during
the propagation phase. Moreover, combining this with Case 2, we have that

r.count′ − r.count ≤ U ≤ W

where all the inequalities hold if and only if the memory functioned correctly
at every point in the algorithm. Therefore, if the memory functions incorrectly
at any point, the check at the verification phase will fail, thereby completing
the proof.
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Efficiency. Note that each Mi traverses a path to the desired leaf of CPU i,
and therefore does a O(log N) depth traversal. Moreover, during the propagation
phase, each CPU again updates only elements on the path from the root to its
leaf of the tree, and hence will once again only update O(log N) elements.

Moreover, it is clear that each checker only requires O(1) local space to keep
track of the root of the tree as well as verify the count values of the nodes of the
tree. Therefore, this gives us the desired and space complexity.

6 Statistically Secure EREW Parallel Offline Checker

In the full version of this paper, we show that the offline memory checking
approach of Blum et al. can be naturally parallelized and extended to the EREW
PRAM setting. We state the theorem here.

Theorem 8. Consider w = Θ(log N). Consider an EREW algorithm with work
q and depth d. There is a statistically secure offline memory checker for a m-CPU
EREW algorithm with total work O(q +N +m) and depth O(d+N/m+ log m).
Each Mi has to locally store O(log N + log(1/ε)) bits of memory, where ε =
negl(λ).

We defer the proof and construction to the full version of this paper.

Corollary 1. Consider w = Θ(log N). Consider an arbitrary CRCW algorithm
algorithm with work q and depth d. There is a statistically secure offline memory
checker for a m-CPU EREW algorithm with total work O(q+md log m+N +m)
and depth O(d log m + N/m + log m). Each Mi has to locally store O(log N +
log(1/ε)) bits of memory, where ε = negl(λ).

Proof. Using Lemma 1, we have that the algorithm can be converted into an
EREW algorithm with work q + md log m and depth d log m. Now, we get our
result by applying Theorem 8.

7 CRCW Parallel Offline Checker from One-Way
Functions

In this section, we use authentication to construct an offline memory checker for
CREW and CRCW PRAM programs with amortized O(1) complexity in both
work and depth. In this section, we are once again in the setting where the word
size is w = ω(log λ).

In our construction, every value on the server is stored with metadata MD
representing the following:

– addr: Logical address
– data: Contents of logical address addr.
– count: Number of times this logical address accessed.
– CPU: Name of CPU that last accessed (could be either read or write).
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– time: Last time CPU accessed addr.
– CPUprev: Name of CPU that accessed addr before time.
– timeprev: Last time CPUprev accessed addr.
– test: A boolean bit indicating if the last write happened during the “test”

phase.

We refer to the metadata MD as (count,CPU, time,CPUprev, timeprev, test).

Algorithm 9 Offline memory checker for the arbitrary CRCW model
Setup:

– Fix a MAC family (MACGen,MAC,Verify). Sample sk ← MACGen(1λ) and
distribute sk to all Mi.

– Each Mi associated to CPU i initializes a local counter ti to 0.
– We abuse the notation S[addr] to denote the underlying database entry

at address addr along with the corresponding metadata. We also have
additional O(N) server space for the second phase of the algorithm.

Authentication: Every write is authenticated using MACsk and every read
is verfied with Verifysk. If a read fails authentication, we abort.
Algorithm (query phase):

– Initialize S[addr] to set addr := addr, count := 0, test := 0, and set all
other fields, CPU, time,CPUprev, timeprev to ∅.

– For each batch of requests �I(T ) = (I(T )
i : i ⊆ [m]) at time T :

• All readers: First, we handle all requests which are reads to the
database.

∗ Each Mi reads their corresponding entries, and downloads and
saves the contents. Abort if any of the test values are 1, or if any
of the address values are inconsistent.

∗ For CPU i that performed a read and down-
loaded (addr, data,CPU, count,CPUprev, countprev, test), update the
metadata as follows:
· Set CPUprev := CPU and timeprev = time.
· Set CPU := i and time := T .
· Increment count := count + 1.
· Set test := 1.

∗ Test phase: All Mi’s perform a write to the accessed address with
updated metadata.

∗ Winner phase: Each Mi performs a read to see if it “won” the arbi-
trary write. Note that when the memory is honest, there should
be exactly one write that wins.
· If yes,

write back (addr, data, count,CPU, time,CPUprev, timeprev, test =
0), i.e. update the test value to be 0. Increment local counter ti.

· Else, verify that CPUprev, timeprev and count values are consistent
with their own write attempt, and that the test value is updated
to 0. 3

∗ Every Mi increments their locally stored global timer T .
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• All writers: Same as read phase, except data is now updated with data′

during the test and winner phases.
Algorithm (after query phase):

– Compute t :=
∑

i ti, i.e. the sum of all local counters of all the CPUs.
– Denote caddr := S[addr].count. Compute t′ :=

∑
addr caddr in a tree-like

manner.
– Accept if and only if t = t′, otherwise abort and output ⊥.

Remark 3. As in the online memory checking case, we can relax the paralleliza-
tion requirements of the model for this memory checking protocol. During the
query phase, we assume that in practice, no reads or writes happen concurrently
(e.g. by adding randomness to the timing of an access), and the algorithm is
essentially EREW. We also assume that any read followed by an immediate write
to the same location is “atomic” and cannot be interfered (i.e. any read-write to
update the counter will not be interleaved with another CPUs read-write, as this
will result in inconsistent counters). For the verification phase, every CPU needs
to agree when the verification phase begins, and when to write their respective
local counters on the server. After this, the CPUs have to sum two lists of num-
bers and compare them. Since summing a list is an EREW algorithm, as long
as this is done in a consistent and authenticated way, we can ensure the security
and correctness of our protocol.

Theorem 10. Consider an honest-but-curious implementation with work q and
depth d. Then, there is a post-verifiable offline memory checker with total work
O(q +N), total depth O(d+N/m+log m) and space complexity O(1) words and
one PRF key of length �(λ).

Proof. By unforgeability of MACs, every valid read corresponds to some authen-
ticated write with probability 1 − negl(λ). Therefore, for the rest of this proof,
we limit the memory’s attacks to only replay attacks (i.e. memory sends stale
requests corresponding to each address).

History Graph. For each address addr ∈ S, let Saddr be the set of
(count,CPU, time) tuples corresponding to contents written to addr with flag
test = 0. Construct the following directed acyclic graph Gaddr on Saddr. Intu-
itively, this graph will represent the history of updates made to the values at
addr.

– The root of the graph is (0, ∅, 0).
– If something of the form (addr, ∗, count,CPU, time,CPUprev, timeprev, test := 0)

was ever written to addr, add an edge from (count − 1,CPUprev, timeprev) to
(count,CPU, time). Here, * denotes that the data entry can be any arbitrary
value.

3 If there is a rule for conflict resolution that can be easily verified (e.g. the CPU with
the lowest number wins), then that can also be verified here.
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We abuse the notation |Gaddr| to denote the number of vertices in Gaddr.

Claim. If the memory functioned correctly, then caddr = |Gaddr| − 1. Otherwise,
if the memory functioned incorrectly, for some addr ∈ S, we must have caddr <
|Gaddr| − 1.

Proof. First, we argue that the history graph Gaddr for each addr ∈ S is con-
nected. For all nodes with count value 1, clearly they are adjacent to the root
node (0, ∅, 0). For a node with count = k, it must be adjacent to some node with
count = k − 1, and hence inductively, we must have that Gaddr is connected.

Let haddr denote the height of the graph Gaddr. It is clear that caddr must
correspond to the count value of some node in the graph, and hence caddr ≤ haddr.
Note that haddr = |Gaddr| − 1 if and only if Gaddr is a path. Hence, it suffices to
show that Gaddr is a path if and only if the memory functions correctly.

Clearly, if the memory functions correctly, for every addr ∈ S, the graph
Gaddr is a path. Moreover, the final version of the S[addr] corresponds to the leaf
node of Gaddr, and hence has count |Gaddr| − 1, as desired.

Now, suppose the memory functions incorrectly at some address addr. There
are three ways that the memory could have functioned incorrectly.

– The memory functioned correctly throughout, until the final read to S[addr],
where the memory does a replay attack. Then, caddr < |Gaddr| − 1 since the
memory must have sent back a counter associated to a non-leaf node.

– The memory could have sent back a “stale” entry for some address addr.
Consider the first such replay response. Note that because of the test = 0
flag check, the “stale” request must correspond to some node on Gaddr, say
(count,CPU, time). Moreover, since this is a stale request, it must mean that
this node already has a child in Gaddr. Note that the new update created
must have the form (addr, ∗, count + 1,CPU′, time′,CPU, time). Therefore,
(count,CPU, time) has at least two children, and the graph is no longer a
path.

– Alternatively, the memory could have accepted conflicting writes. In partic-
ular, some Mi and Mj concurrently write to some addr at time time, and
both writes “win” in the winner phase. Then, the corresponding winning
writes, (counti,CPUi, time) and (countj ,CPUj , time), cannot lie on the same
path from the root because they both have the same time value (because by
construction, the time values are increasing on any directed path from the
root).

If the memory functions correctly, note that t =
∑

ti =
∑ |Gaddr| − 1 because

this is the number of times each address is updated, and t′ =
∑

addr caddr =∑ |Gaddr| − 1 = t. Therefore, the memory checker accepts.
Otherwise, if the memory functions incorrectly, then for some address addr′,

caddr′ ≤ |Gaddr′ | − 2. Therefore, T ′ ≤ ∑
addr �=addr′(|Gaddr| − 1) + (|Gaddr′ | − 2) <∑

(|Gaddr|−1) =
∑

ti = T , and hence will be rejected with probability 1−negl(λ).
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Efficiency. During the query phase, it is easy to see that every underlying query
generates O(1) physical queries. Therefore, the work during the query phase is
exactly O(q), and the depth is O(d). During the second phase of the algorithm, we
are summing O(N) counters, and this takes O(N +m) time and O(N/m+log m)
parallel steps. This gives us the desired efficiency.

8 Maliciously Secure Oblivious Parallel RAM

In this full version of this paper, we extend the notion of oblivious parallel RAM
as defined by Boyle et al. [7] to also be secure against tampering adversaries.
We call such an OPRAM construction maliciously secure. We refer the reader
to the full version for a formal definition.

Following the argument of Mathialagan and Vafa [26], we argue that naturally
composing our memory checking construction with existing OPRAM construc-
tions gives us a maliciously secure ORAM.

Theorem 11. Suppose {Ci}i∈[m] is an honest-but-curious oblivious PRAM
implementation. Let {Mi}i∈[m] be a family of online memory checkers. Then
the family {C′

i}i∈[m] obtained by taking C′
i to be the natural composition of Mi

with Ci, i.e. Mi is an intermediary between Ci and the server. The family {C′
i}

is a maliciously secure oblivious PRAM.

Therefore, by choosing {Ci}i to be the optimal OPRAM construction of [3]
(as in Theorem 4) and {Mi}i to be our construction from Sect. 5, we obtain the
following result.

Theorem 12. Assuming the existence of one-way functions, there exists a mali-
ciously secure arbitrary CRCW OPRAM scheme with O(log2 N) blowup in both
work and depth.
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