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Abstract. This work studies the key-alternating ciphers (KACs) whose
round permutations are not necessarily independent. We revisit exist-
ing security proofs for key-alternating ciphers with a single permutation
(KACSPs), and extend their method to an arbitrary number of rounds.
In particular, we propose new techniques that can significantly simplify
the proofs, and also remove two unnatural restrictions in the known secu-
rity bound of 3-round KACSP (Wu et al., Asiacrypt 2020). With these
techniques, we prove the first tight security bound for t-round KACSP,
which was an open problem. We stress that our techniques apply to all
variants of KACs with non-independent round permutations, as well as
to the standard KACs.

1 Introduction

The key-alternating ciphers (see Eq. (1)) generalize the Even-Mansour construc-
tion [EM97] over multiple rounds. They can be viewed as abstract construc-
tions of many substitution-permutation network (SPN) block ciphers (e.g. AES
[DR02]). In addition, there are various variants of the key-alternating ciphers.

This work only considers the case of independent round keys, and reduc-
ing their independence is a relatively parallel topic. That is, we are concerned
with different variants of KACs on round permutations, while the round keys
are always independent and random. For convenience, we simply use KAC to
represent the standard KAC with independent permutations, and refer to all the
other variants as KAC-type constructions. In particular, KACSP is a KAC-type
construction in which all the round permutations are identical.

In a t-round KAC or KAC-type construction, the number of different round
permutations, denoted t′, is an important parameter. Clearly, we have t′ = t in
the case of KAC and t′ = 1 in the case of KACSP. When t′ < t, it means that
there are different rounds using the same permutation. For a given construction,
we name the round permutations as follows. In particular, the name Pk will be
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assigned to each round permutation in order from round 1 to round t, where
k ∈ {1, . . . , t′}. For round i, we check if there exists j < i such that round j uses
the same permutation as round i. If so, we use the same name as the permutation
in round j; otherwise, we use the name Pk, where k ∈ {1, . . . , t′} is the smallest
integer not used in previous rounds. For simplicity, we sometimes only use the
permutation names to denote a construction, such as P1P2P3-construction (i.e.
3-round KAC), P1P1P1-construction (i.e. 3-round KACSP), P1P1P2-construction,
etc.

We now give a more formal definition of KAC and KACSP constructions.
Let x ∈ {0, 1}n denote the plaintext, κ0, κ1, . . . , κt ∈ {0, 1}n×(t+1) denote the
t+ 1 round keys, and P1, . . . , Pt denote the permutations over {0, 1}n, then the
outputs of t-round KAC and t-round KACSP are computed as follows.

KACP1,...,Pt; κ0,κ1,...,κt(x) def= κt ⊕ Pt(κt−1 ⊕ Pt−1(· · · P2(κ1 ⊕ P1(κ0 ⊕ x)) · · · )),
(1)

KACSPP1; κ0,κ1,...,κt(x) def= κt ⊕ P1(κt−1 ⊕ P1(· · · P1(κ1 ⊕ P1(κ0 ⊕ x)) · · · )).
(2)

Related Works. Bogdanov et al. [Bog+12] were the first to study the provable
security of t-round KAC (for t ≥ 2), and showed that it is secure up to O(2

2
3n)

queries. On the other hand, they presented a simple distinguishing attack using
O(2

t
t+1n) queries, and conjectured that this attack cannot be improved intrin-

sically. Thus, their result is optimal for 2-round KAC. After a series of papers
[Ste12,LPS12,CS14,HT16], the above conjecture was proved. Roughly, it says
that unless Ω(2

t
t+1n) queries are used, one cannot distinguish t-round KAC from

a truly random permutation with non-negligible advantage, where the round
permutations are public and random.

Another line of research focuses on the variants of KAC constructions, where
round permutations and keys may not be independent of each other. [DKS12]
was the first to study the minimalism of Even-Mansour cipher, and showed that
several of its single-key variants could achieve the same level of security as it.
Later, Chen et al. [Che+18] proved that a variant of 2-round KAC still enjoys
security close to O(2

2
3n) when only n-bit key and a single permutation are used.

Next, [WYCD20] generalized Chen et al.’s technique and proved a tight security
bound (with two unnatural restrictions) for 3-round KACSP. Recently, Tessaro
and Zhang [TZ21] showed that (t−2)-wise independent round keys are sufficient
for t-round KAC to achieve the tight security bound, where t ≥ 8.

Our Contributions. This work focuses on the provable security of KAC or
KAC-type constructions in random permutation model. Our main contribution
is to prove the tight security bound O(2

t
t+1n) for t-round KACSP.

We revisit the security proofs in [Che+18,WYCD20]. The idea of their proofs
is not hard to understand, but the analysis is quite laborious. In particular, the
security bound of [WYCD20] (see Theorem 1) has two unnatural restrictions,
making the result far from elegant. The first is the existence of an error function
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ζ(·), and the second is that it requires 28q2e/2n ≤ qp ≤ qe/5, where qp and qe

denote the number of two types of queries made by the distinguisher respectively.
We propose new techniques that can significantly simplify proofs, thus mak-

ing the security proofs of KAC-type constructions easier to understand and read.
One of the key techniques is a general transformation, which reduces our task
to bounding only one probability in the form of (9) (even for t-round construc-
tions). Note that [WYCD20] needs to bound at least 3 such probabilities. We
stress that the transformation is general and may also be used to simplify other
security proofs. To increase the number of constructive methods, we introduce
a new notion of recycled-edge which is different from the shared-edge used in
[Che+18,WYCD20]. Roughly speaking, recycled-edge is to reuse existing per-
mutation queries made by distinguisher to save resources, while shared-edge is to
reuse the permutation queries generated on-the-fly. We point out that recycled-
edge has the following features compared to shared-edge. First, the analysis of
recycled-edge is easier, which is another important reason why our proof is sim-
pler. Second, the recycled-edge has wider applicability and is less sensitive to
constructions.

Moreover, we provide new ideas to remove the two unnatural restrictions in
the security bound of [WYCD20]. For the first restriction, our approach is to
consider the security proof in two disjoint cases, and provide separate proofs for
each case. It should be pointed out here that these two proofs will be almost
identical, except for slightly different calculations. For the second restriction, our
approach is to increase the number of variables1 so that we can better exploit
the power of multivariate hypergeometric distribution used in the calculation.
Our main finding here is that the improvements in security bound are largely
influenced by computational rather than conceptual factors. This is a key to
addressing the security bound of t-round KACSP. More details about our new
techniques can be found in Sect. 3.

With the above new techniques, we first obtain a neat security bound for the
3-round KACSP (see Theorem 2), and discuss its proof in detail in Sect. 4. We
then generalize the proof to the general t-round KACSP (see Theorem 3), using
almost the same techniques. It should be emphasized that our proof techniques
apply to KAC and all kinds of KAC-type constructions. For example, we also
apply the proof techniques to other variants of 3-round KAC (see Thms. 17 and
18 in the full version [Yu+23] of this paper).

2 Preliminaries

2.1 Notation

Let N = 2n and Pn be the set of all permutations over {0, 1}n. For a permutation
P ∈ Pn, we let P−1 denote its inverse permutation. If A is a finite set, then |A|
and A represent the cardinality and complement of A, respectively. Given a set

1 Each variable represents the number of new edges that can be saved by some con-
structive method, usually denoted by hi in the proofs.
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of n-bit strings A and a fixed k ∈ {0, 1}n, we will use A ⊕ k to denote the set
{a ⊕ k : a ∈ A}. For a finite set S, let x ←$ S denote the act of sampling
uniformly from S and then assigning the value to x. The falling factorial is
usually written by (a)b = a(a − 1) . . . (a − b + 1), where 1 ≤ b ≤ a are two
integers. For a set of pairs Q = {(x1, y1), . . . , (xq, yq)}, where xi’s (resp. yi’s)
are distinct n-bit strings, and a permutation P ∈ Pn, we say that P extends the
set Q, denoted as P ↓ Q, if P(xi) = yi for i = 1, 2, . . . , q. In particular, we write
Dom(Q) := {x1, . . . , xq} (resp. Ran(Q) := {y1, . . . , yq}) as the domain (resp.
range) of Q.

2.2 Random Permutation Model, Transcripts and Graph View

Random Permutation Model. This work studies the security of KAC or
KAC-type constructions under the random permutation model. The model can be
viewed as an enhanced version of black-box indistinguishability with additional
access to the underlying permutations, making security analysis more operable.

Given a t-round KAC or KAC-type construction, the task of distinguisher D is
to tell apart two worlds, the real world and the ideal world. In the real world, the
distinguisher can interact with t′ + 1 oracles (EK , P1, . . . , Pt′), where EK is the
t-round target cipher (denoted as E) computed based on t′ independent random
permutations P1, . . . , Pt′ and a key K. In the ideal world, there are also t′+1 ora-
cles but the first oracle EK is replaced by an independent random permutation
P0. That is, what interact with the distinguisher D are t′ + 1 independent ran-
dom permutations (P0, P1, . . . , Pt′). Furthermore, we allow the distinguisher to
be adaptive and query each permutation oracle in both directions. We can then
define the super-pseudorandom permutation (SPRP) advantage of distinguisher
D on t-round EK (with t′ different permutations) as follows.

AdvSPRP
E,t (D) =

∣
∣PrK←${0,1}(t+1)n;

P1,...,Pt′←$Pn

[DEK ,P1,...,Pt′ = 1]

− PrP0,P1,...,Pt′←$Pn [DP0,P1,...,Pt′ = 1]
∣
∣,

(3)

where all oracles can be queried bidirectionally. In particular, we refer to the
queries on the first oracle (i.e. EK or P0) as construction queries and to the set
formed by them and their answers as Q0. Similarly, the queries on the other t′

oracles are called permutation queries and the resulting sets are denoted as Qi,
where i = 1, . . . , t′.

Transcripts. Formally, the interaction between D and t′ +1 oracles can be rep-
resented by an ordered list of queries, which is often called transcript. Each query
in the transcript is in the form of (i, b, u, v), where i ∈ {0, 1, . . . , t′} represents
the oracle being queried, b indicates whether it is a forward query or backward
query, u is the query value and v is the corresponding answer. We can assume
wlog that the adversary D is deterministic and does not make redundant queries,
since it is computationally unbounded. That means the output of D is entirely
determined by its transcript, which can also be encoded (requiring a description
of D) into t′ + 1 unordered lists of queries.
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In addition, we are more generous to the distinguisher D in the analysis, so
that it will receive the actual key used in the real world (after all queries are done
but before a decision is made). To maintain consistency, D would also receive a
dummy key in the ideal world (even the key is not used). This modification is
justified since it only increases the advantage of D. From the perspective of D, a
transcript τ ∈ T has the form of τ = (Q0,Q1, . . . ,Qt′ ,K), and can be rewritten
as the following unordered lists.

τ =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q0 = {(x1, y1), . . . , (xqe
, yqe

)},

Q1 = {(u1,1, v1,1), . . . , (u1,q1 , v1,q1)},

· · · ,

Qt′ = {(ut′,1, vt′,1), . . . , (ut′,qt′ , vt′,qt′ ),
K = (κ0, . . . , κt)

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (4)

where yj = EK(xj) or yj = P0(xj) (depending on which world) for all j ∈
{1, . . . , qe} and vi,j = Pi(ui,j) for all i ∈ {1, . . . , t′} and j ∈ {1, . . . , qi}, and
where K ∈ {0, 1}(t+1)n is a (t + 1)n-bit key.

Statistical Distance of Transcript Distributions. We already know that the
output of D is a deterministic function on transcript. For any fixed distinguisher
D, its advantage is obviously bounded by the statistical distance of transcript
distributions in two worlds. That is, it is usually to determine the upper bound
of the value (3) as follows,

(3) ≤ ‖Treal − Tideal‖ def=
1
2

∑

τ

|Pr[Tideal = τ ] − Pr[Treal = τ ]|

=
∑

τ

max{0,Pr[Tideal = τ ] − Pr[Treal = τ ]},
(5)

where ‖ · ‖ represents the statistical distance, and Treal (resp. Tideal) denotes
the transcript random variable generated by the interaction of D with the real
(resp. ideal) world. We let T denote the set of attainable transcripts τ such that
Pr[Tideal = τ ] > 0. It is worth noting that although the set T depends on D, the
probabilities Pr[Tideal = τ ] and Pr[Treal = τ ] (for any τ ∈ T ) are independent of
D, since they are inherent properties of the two worlds. The task of bounding
(5) is to figure out two (partial) distributions, of which the one for ideal world is
simple and easy to deal with. Thus, the main effort in various proofs is essentially
to study the random value Treal.

Crucial Probability in the Real World. The basis of studying Treal is
the probability Pr[Treal = τ ], which can be reduced to a conditional prob-
ability with intuitive meaning (see Eq. (7)). For any fixed transcript τ =
(Q0,Q1, . . . ,Qt′ ,K) ∈ T , it has
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Pr[Treal = τ ] = Prκ←${0,1}(t+1)n;
P1,...,Pt′←$Pn

[Eκ ↓ Q0 ∧ P1 ↓ Q1 ∧ · · · ∧ Pt′ ↓ Qt′ ∧ κ = K]

= Prκ←${0,1}(t+1)n;
P1,...,Pt′←$Pn

[P1 ↓ Q1 ∧ · · · ∧ Pt′ ↓ Qt′ ∧ κ = K] (6)

× PrP1,...,Pt′ ←$Pn
[EK ↓ Q0 | P1 ↓ Q1 ∧ · · · ∧ Pt′ ↓ Qt′ ] (7)

The central task of calculating Pr[Treal = τ ] is to evaluate Eq. (7)2, since the
value of Eq. (6) can be solved trivially for any KAC or KAC-type construction.
In this work, we will use a graph view (basically taken from [CS14] and to be
defined in next part), then Eq. (7) can be interpreted as the probability that all
the paths between xj and yj (where (xj , yj) ∈ Q0) are completed, when each
random permutation Pi extending the corresponding set Qi.

Graph View. It is often more convenient to work with constructions and tran-
scripts in a graph view. Here we take only the t-round KAC or KAC-type con-
struction as an example, and other constructions are similar. For a given con-
struction, all the information of transcript τ = (Q0,Q1, . . . ,Qt′ ,K) ∈ T can be
encoded into a round graph G(τ). First, one can view each set Qi as a bipartite
graph with shores {0, 1}n and containing qi (resp. qe, in the case of Q0) disjoint
edges. To have maximum generality, we here keep the value of K = (κ0, . . . , κt)
in graph G(τ)3, where each mapping of XORing round key κi is viewed as a full
bipartite graph (i.e. it contains 2n disjoint edges).

More specifically, graph G(τ) contains 2(t+1) shores, each of which is iden-
tified with a copy of {0, 1}n. The 2(t+1) shores are indexed as 0, 1, 2, . . . , 2t+1.
We use the ordered pair 〈i, u〉 to represent the string u in shore i, where
i ∈ {0, 1, . . . , 2t + 1} and u ∈ {0, 1}n. For convenience, we simply use u to
denote a string if it is clear from the context which shore the u is in. In par-
ticular, the vertices in shore 0 and shore 2t + 1 are often called plaintexts and
ciphertexts, respectively. More care should be taken when t′ < t, as this means
that the target construction uses the same permutation in different rounds. For
any i �= j ∈ {1, . . . , t} that round i and round j use the same permutation,
the shores 2i − 1 and 2j − 1 are actually the same, and the shores 2i and 2j
are also the same. That is, 〈2i − 1, u〉 = 〈2j − 1, u〉 and 〈2i, v〉 = 〈2j, v〉 for all
u, v ∈ {0, 1}n.

We define the even-odd edges between shore 2i and shore 2i+1 as E(2i,2i+1) :=
{(v, v ⊕κi) : v ∈ {0, 1}n} and call them key-edges, where i ∈ {0, . . . , t}. The key-
edges E(2i,2i+1) correspond to the step of XORing round key κi in the KAC or
KAC-type construction, and form a perfect matching of bipartite graph.

For i ∈ {1, . . . , t}, we use the odd-even edges between shore 2i − 1 and shore
2i to represent the queries made to the permutation in round i, and call them

2 For t-round KAC, the technical lemma of [CS14] (see Lemma 1) solves exactly this
probability when |Q0| = 1.

3 Although this leads to a somewhat redundant notation, it is still relatively easy
to understand. For a concrete example, you can refer to Fig. 1 in the full version
[Yu+23, Appendix C].



244 L. Yu et al.

permutation-edges. Naturally, the term Pk-permutation-edge is used to indicate
the round permutation associated with it, where k ∈ {1, . . . , t′}. Based on the
definition of strings above, more care should also be taken when t′ < t. For
any i �= j ∈ {1, . . . , t} that round i and round j use the same permutation,
the bipartite graph between the shore 2i − 1 and 2i, and the bipartite graph
between the shore 2j − 1 and 2j are the same one. More specifically, we define
the permutation-edges between shore 2i − 1 and 2i as E(2i−1,2i) := {〈u, Pk, v〉 :
(u, v) ∈ Qk}4 for i = 1, . . . , t, where Pk (1 ≤ k ≤ t′) is the name of round
permutation between shore 2i−1 and 2i (see the naming in Sect. 1). That is, we
distinguish strings and permutation-edges by the round permutation associated
with them, rather than by shores.

In addition, we should keep in mind that there are implicit permutation-edges
(i.e., {〈xi,Q0, yi〉 : (xi, yi) ∈ Q0}, although not drawn) directly from shore 0 to
shore 2t+1 according to the construction queries in Q0, i.e. these edges are from
the plaintexts xi’s to the corresponding ciphertexts yi’s. Throughout this work,
we use symbols related to x (e.g., xi and x′

i) and y (e.g., yi and y′
i) to denote

plaintexts (i.e., strings in shore 0) and ciphertexts (i.e., strings in shore 2t + 1),
respectively.
Basic Definitions about Graph. We say shore i is to the left of shore j if
i < j, and view paths as oriented from left to right. For convenience, the index
of the shore containing vertex u is written as Sh(u). A vertex u in a shore i is
called right-free, if no edge connects u to any vertex in shore i + 1. A vertex v
in a shore j is called left-free, if no edge connects v to any vertex in shore j − 1.
Notice that right-free vertices and left-free vertices must be located on the odd
and even shores, respectively.

We write R(u) for the rightmost vertex in the path of G(τ) starting at u,
and L(v) for the leftmost vertex in the path of G(τ) ending at v. For any odd
i ∈ {0, . . . , 2t + 1} and i < j ∈ {0, . . . , 2t + 1}, we let Uij denote the set of
paths that starts at a left-free vertex in shore i and reaches a vertex in shore j.
Similarly, for any i < j ∈ {0, . . . , 2t + 1}, we use Zij to denote the set of paths
that starts at a vertex in shore i and reaches a vertex in shore j. That is, the
only difference between Zij and Uij is that the starting vertices on shore i in the
former need not be left-free.

Path-Growing Procedure. In this work, we usually imagine the crucial prob-
ability (7) as connecting all xj with yj through a (probabilistic) path-growing
procedure, where (xj , yj) ∈ Q0. Note that all the key-edges already exist, so we
only need to generate edges from odd shores to the next shore. Given G(τ) and
a vertex u, we define the following procedure to generate a path (u,w1, . . . , wr)
from u.

Let w0 = u. For i from 1 to r, if wi−1 is not right-free and adjacent to some
vertex z in shore i, then let wi = z; otherwise, sample ui uniformly at random
from all left-free vertices in shore i, and let wi = ui.

4 Due to the uniqueness, we will interchangeably use the permutation-edge 〈u, Pk, v〉
and the input-output pair (u, v) under Pk.
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For convenience, we let u → v denote the event that u is connected to v
through the above path-growing procedure and write PrG[u → v] = PrG[wr = v],
where v is a vertex in shore Sh(u) + r. We are now ready to give the key lemma
of [CS14] (adapted slightly to fit here) as follows.

Lemma 1 (Lemma 1 of [CS14]). Given any G(τ) as described above, let u be
any right-free vertex in shore 1 and v be any left-free vertex in shore 2t, then it
has

Pr
G(τ)

[u → v] =
1
N

− 1
N

∑

σ

(−1)|σ|
|σ|
∏

j=1

∣
∣Uij−1ij

∣
∣

N −
∣
∣Q(ij−1)/2

∣
∣
. (8)

where the sum is taken over all sequences σ = (i0, . . . , is) with 1 = i0 < · · · <
is = 2t + 1 (where i0, i1, . . . , is are required to be odd integers), and |σ| = s.

2.3 Two Useful Lemmas

The H-coefficient technique [CS14] is a very popular tool for bounding the statis-
tical distance between two distributions (e.g. Eq. (5)). Its core idea is to properly
partition the set of attainable transcripts T into two disjoint sets, the good tran-
scripts set T1 and the bad transcripts set T2. If for any τ ∈ T1, we are able to
obtain a lower bound (e.g. 1 − ε1) on the ratio Pr[Treal = τ ]/Pr[Tideal = τ ]. And
we can also obtain an upper bound (e.g. ε2) on the value of Pr[Tideal ∈ T2]. The
statistical distance is then bounded by ε1 + ε2. All of the above are formalized
in the following lemma.

Lemma 2 (H-Coefficient Technique, [CS14]). Let E denote the target t-
round KAC or KAC-type construction, and T = T1 ∪ T2 be the set of attainable
transcripts. Assume that there exists a value ε1 > 0 such that

Pr[Treal = τ ]
Pr[Tideal = τ ]

≥ 1 − ε1

holds for any τ ∈ T1, and there exists a value ε2 > 0 such that Pr[Tideal ∈ T2] ≤
ε2. Then for any information-theoretic distinguisher D, it has AdvSPRP

E,t (D) ≤
ε1 + ε2.

To apply Lemma 2, the main task is usually to determine the value of ε1. As
we have argued in the previous section, it is essentially to calculate the crucial
probability (7). The following lemma re-emphasizes this fact.

Lemma 3 (Lemma 2 of [Che+18]). Let E denote the target t-round KAC or
KAC-type construction, and τ = (Q0,Q1, . . . ,Qt′ ,K) ∈ T be an attainable tran-
script, where K is the (t+1)n-bit key. We denote p(τ) = PrP1,...,Pt′ ←$Pn

[(EK ↓
Q0) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)], then

Pr[Treal = τ ]
Pr[Tideal = τ ]

= (N)qe
· p(τ).
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3 Technical Overview

This section outlines the techniques used in security proofs of this work. We
first review the known proof method, then propose a general transformation
to simplify it, and finally give new proof strategies to further simplify security
proofs and remove unnatural restrictions in the known result.

3.1 Proof Method of [Che+18]

The proof method for KAC-type constructions was originally proposed by Chen
et al. [Che+18] in their analysis of the minimization of 2-round KAC. We note
that [WYCD20] also follows this method and further refines it into an easy-to-
use framework. Our approach is more closely inspired by that of [WYCD20] than
by [Che+18].

At a high level, the proof method uses the H-coefficient technique (see The-
orem 2), so the values of ε1 and ε2 need to be determined for good and bad
transcripts, respectively. We focus here only on the main challenge, the value of
ε1, which is equivalent to the crucial probability (7) (see Lemma 3).

For a given construction and transcript (represented equivalently in
graph view), we call a set of pairs of strings A≡ = {(〈0, a1〉, 〈2t +
1, b1〉), . . . , (〈0, am〉, 〈2t+1, bm〉)} a uniform-structure-group, if Sh(R(a1)) = · · · =
Sh(R(am)) < Sh(L(b1)) = · · · = Sh(L(bm)). Clearly, all pairs in A≡ have a
uniform structure in graph view, i.e., the numbers and locations of missing
permutation-edges are the same for each pair of strings (〈0, ai〉, 〈2t+ 1, bi〉). We
now give the general problem abstracted in [WYCD20], but slightly different to
fit better here.

Definition 1 (Completing A Uniform-Structure-Group, [WYCD20]).
Consider a t-round KAC or KAC-type construction E, and fix arbitrarily
an attainable transcript τ = (Q0,Q1, . . . ,Qt′ ,K). Let Q≡

0 = {(xi1 , yi1),
(xi2 , yi2), . . . , (xis

, yis
)} ⊆ Q0 be a uniform-structure-group of plaintext-

ciphertext pairs5, then the problem is to evaluate the probability that Q≡
0 is com-

pleted (i.e. all plaintext-ciphertext pairs in Q≡
0 are connected), written as

pτ (Q≡
0 ) = PrP1,...,Pt′←$Pn

[(EK ↓ Q≡
0 ) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)]. (9)

For 3-round KACSP, [WYCD20] showed that the set Q0 can be divided into
six disjoint uniform-structure-groups Q≡

0,1,Q≡
0,2,Q≡

0,3,Q≡
0,4,Q≡

0,5,Q≡
0,6, and the

crucial probability (7) can be decomposed into six probabilities (in the form of
(9)) associated with them. Then, all that remains is to find a good lower bound
on the probability (9).

It is shown in [WYCD20] that there exists a general framework for the task.
To state it, we should first look at a useful concept called Core.

5 Recall that xi’s and yi’s are by default in shore 0 and shore 2t + 1 respectively, so
we use the simplified notation here.
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Definition 2 (Core, [WYCD20]). For a complete path from xj to yj, we refer
to the set of permutation-edges that make up the path as the Core of (xj , yj), and
denote it as Core(xj , yj). That is,

Core(xj , yj) := {〈u, Pk, v〉 : 〈u, Pk, v〉 is in the path from xj to yj}.

Similarly, when a uniform-structure-group Q≡
0 is completed, we can also

define its Core , i.e. the set of permutation-edges used to connect all plaintext-
ciphertext pairs in Q≡

0 , denoted as Core(Q≡
0 ). That is,

Core(Q≡
0 ) :=

⋃

(xj ,yj)∈Q≡
0

Core(xj , yj).

In order to illustrate the definition of Core more clearly, we also provide several
concrete examples in the full version [Yu+23, Appendix B].
Note that the probability (9) is equivalent to counting all possible permutations
P1, . . . , Pt′ that complete Q≡

0 and also satisfy the known queries Q1, · · · ,Qt′ .
The idea of the general framework is to classify all such possible permutations
P1, . . . , Pt′ , according to the number of new edges added to each round per-
mutation (relative to the known Q1, · · · ,Qt′) in Core(Q≡

0 ). Since the goal is to
obtain a sufficiently large lower bound, a constructive approach can be used.
In particular, for each sequence of the numbers of newly added edges in round
permutations, we should construct as many permutations P1, . . . , Pt′ as possible
that complete Q≡

0 and satisfy these parameters. Summing up a sufficient number
of sequences will give a desired lower bound.

More precisely, we let PC = {(P1, . . . , Pt′) ∈ Pt′
n : (EK ↓ Q≡

0 ) ∧ (P1 ↓ Q1) ∧
· · · ∧ (Pt′ ↓ Qt′)} denote the set of all permutations that complete
Q≡

0 and extend respectively Q1, . . . ,Qt′ , and let C = {Core(Q≡
0 ) :

Q≡
0 is completed by a sequenceof round permutations(P1, . . . , Pt′) ∈ PC} denote

the set of all possible Cores. For each C̃ ∈ C, we can determine a tuple of num-
bers (|C̃1|, |C̃2|, . . . , |C̃t′ |), where |C̃j | represents the number of edges newly added
to Qj in the C̃. Then, we can give a more general form than the framework in
[WYCD20] (i.e., setting t′ = 1) as follows,

(9) = PrP1,...,Pt′ ←$Pn [(EK ↓ Q≡
0 ) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′ )]

=
|PC |

(N − |Q1|)! × · · · × (N − |Qt′ |)!

=

∑
˜C∈C

∣
∣(P1, . . . , Pt′ ) ∈ PC : Core(Q≡

0 ) = C̃
∣
∣

(N − |Q1|)! × · · · × (N − |Qt′ |)!

=

∑
˜C∈C

∏t′
j=1(N − |Qj | − |C̃j |)!

(N − |Q1|)! × · · · × (N − |Qt′ |)!

=

∑
(m1,m2,...,mt′ )

∣
∣{C̃ ∈ C : |C̃1| = m1, . . . , |C̃t′ | = mt′}∣

∣ × ∏t′
j=1(N − |Qj | − mj)!

(N − |Q1|)! × · · · × (N − |Qt′ |)!

=
∑

m1

· · ·
∑

mt′

∣
∣{C̃ ∈ C : |C̃1| = m1, . . . , |C̃t′ | = mt′}∣

∣

(N − |Q1|)m1 × · · · × (N − |Qt′ |)mt′
. (10)
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As mentioned earlier, Eq. (10) essentially turns the task into constructing as
many Cores as possible for different tuples (m1, . . . , mt′), and then summing
their results. In general, the framework can be carried out in three steps. The
first step is to design a method that, for each given tuple (m1, . . . , mt′), ensures
to generate Cores C̃ satisfying |C̃1| = m1, . . . , |C̃t′ | = mt′ . The second step is then
to count the possibilities that can be generated by the first step. And the third
step is to perform a summation calculation, where a trick6 of hypergeometric
distribution (pioneered by [Che+18]) will be used.

Note. It should be pointed out here that all proofs in this work are conducted
under the guidance of this framework (i.e., Eq. (10)). In particular, we showed
that the key task of H-coefficient technique (i.e., Lemma 2) is to bound the prob-
ability (7) in the real world, which can then be reduced to bound the probabilities
of the form (9). Therefore, the framework provides a high-level intuition that we
can always accomplish the above task in three steps (for any KAC or KAC-type
construction7): constructing Cores with specific cardinalities, counting the num-
ber of Cores and performing a summation calculation. When analyzing different
constructions, such as the KACs (setting t′ = t) and KACSPs (setting t′ = 1), the
subtle difference mainly lies in step 1, where the available constructive methods
will be slightly different. In contrast, the detailed analysis and calculations in
steps 2 and 3 are similar.

3.2 A General Transformation

We propose a general transformation to simplify the above proof method of
[Che+18], such that only one probability (9) needs to be bounded. As we shall
see, it does cut out a lot of tedious work and significantly simplify the proof. We
apply this transformation to the security proofs of various constructions in this
work.

For each pair (xj , yj), there are rj :=
(

Sh(L(yj))−Sh(R(xj))+1
)

/2 undefined
edges between xj and yj , where rj ∈ {1, . . . , t} for a good transcript8. We call
rj the actual distance between xj and yj . We say that (xi, yi) is farther than
(xj , yj) if ri > rj ; or closer if ri < rj ; or equidistant, otherwise. Clearly, all pairs
in a uniform-structure-group are equidistant.

The idea of our general transformation is quite natural. First note that the set
Q0 usually contains pairs with various actual distances, leading to the existence
of multiple uniform-structure-groups. Just by intuition, the farther pair (xi, yi)
feels more “hard” (conditionally, in fact) to connect than the closer pair (xj , yj),
given the same available resources. After all, the former tends to consume more

6 The terms arising from a (multivariate) hypergeometric distribution are introduced
to help calculate a lower bound on the target probability, see the full version [Yu+23,
Eq. (30)] for an example.

7 In fact, the idea of this framework is quite general and it can be easily generalized
to other constructions.

8 The definition of good transcripts usually excludes the case where rj = 0. Please
note that we keep all key-edges in the graph view here for maximum generality.
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resources (e.g. new edges), so fewer edges can be freely defined. Assuming this
argument holds, we can define a set Q̂0 satisfying |Q̂0| = |Q0| and in which all
pairs have the maximal actual distance t. That is, all the easier pairs in Q0 are
replaced with the hardest ones, thus making Q̂0 itself a uniform-structure-group.
Then, for the same known queries Q1, . . . ,Qt′ , it should have

Eq. (7) = PrP1,...,Pt′ ←$Pn
[(EK ↓ Q0) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)]

≥ PrP1,...,Pt′ ←$Pn
[(EK ↓ Q̂0) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)] def= pτ (Q̂0).

(11)

Clearly, if we can obtain a good lower bound for pτ (Q̂0), it holds for the target
crucial probability as well. The advantage of this treatment is that we only need
to bound a single probability (9), namely pτ (Q̂0). Of course it comes at a price,
so we need to keep the probability loss within an acceptable range. In short, this
transformation can be seen as sacrificing a small amount of accuracy for great
computational convenience.

All that remains is to find a method to transform closer pairs into farther
ones, and make sure that they are less likely to be connected. We first point out
that the direct transformation does not necessarily hold, although it is intuitively
sound. Taking KAC as an example, we can know from the well-known Lemma 1
that the direct transformation does hold in the average case. However, it does
not hold in the worst case, since counterexamples are not difficult to construct.

We next show that the direct transformation can be proved to hold, if a
simple constraint is added on the replaced farther pairs. First of all, we say that
a vertex u is connected to a vertex v in the most wasteful way9, if all growing
permutation-edges in the path are new (i.e. not defined before then) and each
of them is used exactly once. Similarly, we can also connect a group of pairs of
nodes in the most wasteful way, where all growing permutation-edges in these
paths are new and each of them is used exactly once. The following is a useful
property : for a given group of pairs, the number of new edges added to each round
permutation Pj is fixed (denoted as mj), among all possible paths generated in
the most wasteful way. These numbers m1, . . . , mt′ must be the maximum values
(i.e. the number of missing edges between the group of pairs), determined by the
construction and the number of pairs.

9 Intuitively, this kind of paths require the most new-edges and do not share any
edges with other paths. In the words of [WYCD20], the most wasteful way actually
means sampling an exclusive element for each inner-node. It had also been shown
in [WYCD20] that such samples are easy to analyze. More concrete examples and
analysis can be found in the security proofs, such as the Fig. 1 and Appendix C.3 in
the full version [Yu+23].



250 L. Yu et al.

More formally, we give below the definition of the most wasteful way (in
the contex of plaintext-ciphertext pairs for ease of notation; other cases can be
defined similarly).10

Definition 3 (The Most Wasteful Way). Consider a t-round KAC or KAC-
type construction E, and fix arbitrarily the set of construction queries Q0 and
the key K. Let Q′

k denote the set of all Pk-permutation-edges fixed so far, where
k = {1, . . . , t′}. Let Q̃0 = {(xi1 , yi1), (xi2 , yi2), . . . , (xis

, yis
)} ⊆ Q0 be a set

of plaintext-ciphertext pairs to be connected, where Sh(R(xij
)) < Sh(L(yij

)) for
all j ∈ {1, . . . , s}. We denote by mk the total number of Pk-permutation-edges
missing in the paths between all pairs in Q̃0 (given Q′

1, . . . ,Q′
t′), where k =

{1, . . . , t′}.
Then, Q̃0 is said to be connected in the most wasteful way (with respect

to Q′
1, . . . ,Q′

t′), if the Core of the completed Q̃0 contains exactly mk new Pk-
permutation-edges compared to Q′

k for all k ∈ {1, . . . , t′}.

At this point, we are ready to describe our transformation from Q0 to Q̂0: all
pairs in Q0 whose actual distance is less than t are replaced with new pairs whose
actual distance is equal to t, and it is required that these replaced new pairs must
be connected in the most wasteful way. The correctness of this transformation
can be verified by repeatedly using the general Lemma 4, the proof of which is
given in the full version [Yu+23, Appendix E.1].

Lemma 4 (The Closer The Easier) Consider a t-round (t ≥ 2) KAC
or KAC-type construction E, and fix arbitrarily the sets of known queries
Q1, . . . ,Qt′ and the key K.

Let A≡ = {(x1, y1), . . . , (xs, ys)} be a uniform-structure-group of s plaintext-
ciphertext pairs, where Sh(R(x1)) = · · · = Sh(R(xs)) = 3 and Sh(L(y1)) = · · · =
Sh(L(ys)) = 2t. That is, the actual distance of each pair in A≡ is t − 1.

Let B≡ = {(x′
1, y

′
1), . . . , (x

′
s, y

′
s)} be a uniform-structure-group of s plaintext-

ciphertext pairs, where Sh(R(x′
1)) = · · · = Sh(R(x′

s)) = 1 and Sh(L(y′
1)) = · · · =

Sh(L(y′
s)) = 2t. That is, the actual distance of each pair in B≡ is t.

Assume that s · t ≤ |Qi2 |/2 and |U04| ≤ |Qi2 |/2, where Qi2 denotes the set
of known queries to the second round permutation Pi2 (where i2 ∈ {1, . . . , t′}).
If we both connect A≡ and B≡ in the most wasteful way, then the closer A≡ is
relatively easier. That is, for sufficiently large n, we have

PrP1,...,Pt′←$Pn
[(EK ↓w A≡) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)]

≥ PrP1,...,Pt′←$Pn
[(EK ↓w B≡) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)],

where EK ↓w A≡ (resp. EK ↓w B≡) denotes the event that A≡ (resp. B≡) is
completed in the most wasteful way.

10 It can be verified that the Examples 2 and 4 in full version [Yu+23, Appendix B] are
both connected in the most wasteful way (we purposely assume Q1 = Q2 = ∅ over
there to ensure that each permutation-edge fixed in the path(s) is new compared to
Q1 and Q2).
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The Lemma 4 tells us that the closer pairs are easier to connect than the
farther pairs, even if they are both in the wasteful way. Also note that the
ordinary probability of connecting given pairs must be greater than when only
the most wasteful way is allowed, since there may be other ways of connect-
ing (e.g. reusing edges). Thus, our general transformation replaces the closer
uniform-structure-group (whose connections are unrestricted) by a farther one
that can only be connected in the most wasteful way, the connecting probabil-
ity of course becoming smaller (i.e. Eq. (11) holds). We should also stress that
the assumptions s · t ≤ |Qi2 |/2 and |U04| ≤ |Qi2 |/2 are quite loose, and their
only effect on the security proof is to add a few conditions to the definition of
good transcripts. For convenience, we can simply ignore the assumptions, except
that there is a negligible deviation in the value of ε2. To see this more clearly,
we first point out that the number of pairs that need to be replaced s is often
much smaller than |Qi| and the number of rounds t is a constant. In particu-
lar, the largest s encountered in the security proof for a t-round construction is
s = O(|Qi|/N1/(t+1)). Second, since the expectation of |U04| is |Q1| · |Qi2 |/N ,
the well-known Markov’s inequality is sufficient to give a good upper bound on
the probability Pr[|U04| > |Qi2 |/2].

Finally, we illustrate how the general transformation can be applied in
practical security proofs. The process is quite simple. Given a good tran-
script τ = (Q0,Q1, . . . ,Qt′ ,K), we first partition the set Q0 into disjoint
uniform-structure-groups, such as Q≡

0,1, . . . ,Q≡
0,k. Typically, there is only one

uniform-structure-group, say Q≡
0,k, whose actual distance is t and |Q≡

0,k| =
|Q0| ·

(

1−O( 1
Nt+1 )

)

. That is, only about s = O( 1
Nt+1 ) · |Q0| plaintext-ciphertext

pairs need to be replaced by the general transformation. We write wlog that
Q0 = {(x1, y1), . . . , (xq, yq)} and Q≡

0,k = {(xs+1, ys+1), . . . , (xq, yq)}. We first
arbitrarily choose s right-free vertices u1, . . . , us in the shore 1, and s left-free
vertices v1, . . . , vs in the shore 2t (this always works since both s and |Qi| are
much smaller than N). Then, we define (xq+i, yq+i) := (ui ⊕ κ0, vi ⊕ κt) for
i = 1, . . . , s, and denote the set they form as Q∗

0. Next, we set Q̂0 = Q≡
0,k ∪ Q∗

0,
i.e. Q̂0 = {(xs+1, ys+1), . . . , (xq, yq), (xq+1, yq+1), . . . , (xq+s, yq+s)}. It is easy to
see that Q̂0 is indeed a uniform-structure-group with actual distance t. Please
note that all the known queries Q1, . . . ,Qt′ remain unchanged throughout. Also,
don’t forget that the last s pairs (i.e. Q∗

0) must be connected in the most wasteful
way. Lastly, the property of general transformation (see Eq. (11)) allows us to
focus only on the lower bound of the new probability

PrP1,...,Pt′←$Pn
[EK ↓ Q̂0 | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)]

= PrP1,...,Pt′←$Pn
[EK ↓ Q≡

0,k ∧ EK ↓w Q∗
0 | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)],

(12)

where EK ↓w Q∗
0 denotes the event that the plaintext-ciphertext pairs in Q∗

0 are
connected in the most wasteful way.
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3.3 New Proof Strategies

Although we are guided by the proof method of [Che+18], the low-level proof
strategies are quite different.

We introduce a new notion of recycled-edge, while [WYCD20] only uses the
shared-edge. Intuitively, our use of a recycled-edge means that an edge is recycled
from the known queries (i.e. from Q1, . . . ,Qt′) to build the path, so that one
less new edge is added. Thus, recycled-edges serve the same purpose as shared-
edges, i.e. to reduce the use of new edges when growing paths (relative to the
most wasteful way). The difference between them is that the former reuses known
edges, while the later reuses the newly added edges. We point out that recycled-
edge has the following features compared to shared-edge. First, the analysis of
recycled-edges is easier because each of recycled-edge involves only one path,
whereas each shared-edge involves multiple paths. Second, the recycled-edge is
less sensitive to the construction, and its analysis is relatively uniform in different
constructions. In particular, it exists in the KAC construction where edges cannot
be shared as in [WYCD20].

We provide new ideas to remove the two unnatural restrictions in the security
bound of [WYCD20] (i.e., Theorem 1). The first restriction is the existence of
an error term ζ(qe), making it impossible to obtain a uniform bound for all
qe’s. To get a good bound, [WYCD20] needs to choose an appropriate c for
different values of qe. In particular, it is unnatural that their bound does not
converge to 0 as the number of queries qe decreases to 0. Our observation is
that this problem may be due to the nature of the hypergeometric distribution,
whose variance is not a monotonic function. This leads to the fact that the tail
bound obtained by Chebyshev’s inequality (see Lemma 16 in the full version
[Yu+23]) is also not monotonic, and thus only works well for part of the qe’s,
e.g. qe = ω(N1/2). A natural solution is to give a different proof for the range
of qe = O(N1/2). But one thing to note here is that we need to get a beyond-
birthday-bound (i.e. O(N1/2+ε)-bound for ε > 0), so that the bound is negligible
for all qe = O(N1/2). We found that the proof for qe = ω(N1/2) can be adapted
to the case of qe = O(N1/2) just by modifying several constants defined in the
proof (e.g., the values of M and M0 in Sect. 4). Therefore, the security proofs in
this work usually consider two cases, one is large qe = ω(N1/2) and the other is
small qe = O(N1/2). Their proofs are almost identical except for slightly different
calculations.

The second restriction is that it requires qp ≤ qe/5, where qp and qe are
the number of permutation queries and construction queries respectively. This
is an unnatural limitation on the access ability of distinguisher. After a lot of
effort and calculation, we found that under the proof method of [Che+18], the
main factor affecting the final security bound is the number of variables. Each
variable is used to represent the number of new edges reduced in a Core (relative
to the most wasteful way), and is denoted by hi in our proofs. That is, more
variables usually means a more accurate bound. It is important to note here
that each variable actually corresponds to a constructive method of reducing
new edges, and the results generated by these different methods are required to
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be disjoint. On the other hand, there seems to be an upper bound on the number
of constructive methods of reducing new edges. Therefore, a big challenge is to
perform a fine-grained analysis that allows us to find an appropriate number of
variables to meet both requirements (i.e., accuracy and feasibility).

4 Improved Security Bound of P1P1P1-Construction

4.1 Comparison of the Results

Known Result. Wu et al. [WYCD20] were the first to prove a tight security
bound for the P1P1P1-construction, and their proof was quite laborious.

Theorem 1 (P1P1P1-Construction, Theorem 1 of [WYCD20]). Consider
the P1P1P1-construction. Assume that n ≥ 32 is sufficiently large, 28(qe)

2

N ≤ qp ≤
qe

5 and 2qp + 5qe ≤ N
2 , then for any 6 ≤ c ≤ N1/2

8 , the following upper bound
holds:

AdvSPRP
P1P1P1

(D) ≤ 98c ·
( qe

N3/4

)

+ 10c2 ·
( qe

N

)

+ ζ(qe), (13)

where ζ(qe) =

{
32
c2 , for qe ≤ c

6N1/2

9N
q2

e
, for qe ≥ 7c

6 N1/2 and D can be any distinguisher making

qe construction queries and qp permutation queries.

It can be seen that the above security bound has two unnatural restrictions. The
first is the error term ζ(qe), where the entire range of qe cannot be covered by
a single value c. In particular, this term is non-negligible for small values of qe,
such as qe = O(N1/2), making the security bound quite counter-intuitive. The
second is the requirement on qe and qp, that is, 28(qe)2/N ≤ qp ≤ qe/5, which
is not a reasonable limit on the ability of distinguisher.

Our Result. Using the general transformation and new proof strategies outlined
in Sect. 3, we obtain a neat security bound for the P1P1P1-construction and the
proof is much simpler.

Theorem 2 (P1P1P1-Construction, Improved Bound). Consider the
P1P1P1-construction. For any distinguisher D making qe construction queries
and qp permutation queries, the following upper bound holds:

AdvSPRP
P1P1P1

(D) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

69q

N3/4
+

125q2

N3/2
+

8q4

N3
+

6q6

N5
+

78q

N
+

32N

q2
, for q = ω(N1/2)

12q

N7/10
+

125q2

N7/5
+

135q

N3/4
+

8q4

N3
+

6q6

N5
+

32

N1/10
, for q = O(N1/2)

where q := max{qe, qp}.
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In contrast to Theorem 1, our bound does give a negligible bound for all q =
O(N1/2) (which is better than O(N2/3)-bound but slightly worse than O(N3/4)-
bound), and has no restriction on the values of qe and qp. In fact, the bound
for q = O(N1/2) can be easily improved to O(N3/4−ε)-bound for any ε > 0,
by modifying M to q/N1/2−ε and M0 to q/N1/4+ε, where M and M0 are two
constants to be defined in the proof. Even if we focus only on the large q =
ω(N1/2), our bound is better than Eq. (13) (for which the optimal c = 6 is
set). Most importantly, the proof of Theorem 2 is simpler and can be found in
Sect. 4.2.
Remarks. It should be pointed out that the tightness of our bound is with
respect to attacks achieving constant probability, i.e., an adversary needs q =
Ω(N3/4) queries to distinguish P1P1P1-construction from random with a high
advantage. The curve of our bound (i.e., roughly (q4/N3)

1
4 ) is not as sharp as the

tigher bound (i.e., roughly q4/N3) achieved in the study of KACs (e.g., [HT16]).
We here show that the exact threshold of the two bounds in Theorem 2 can

be determined. In fact, there are values of q that satisfy both bounds (for these
q’s, we can choose the better one at the time of use). More specifically, the first
bound holds for all q >= N1/2+ε for any ε > 0, and the second bound holds for
all q ≤ N11/20/2. Thus, any value in the interval [N1/2+ε, N11/20/2] (e.g., N0.53)
can be safely chosen as the threshold.

The main reason that leads us to discuss two cases is the Eq. (35) in the full
version [Yu+23], where the magnitudes of MN and q2 need to be compared. For
more details, please refer to the calculation below Eq. (34) in the full version
[Yu+23], which shows the analysis for all q ≥ N1/2+ε. If we set M = q

N9/20 there,
then it can be verified that the second bound holds for q ≤ N11/20/2.

4.2 Proof of Theorem 2

As discussed in Sect. 3, we will consider two disjoint cases separately to remove
the first restriction, namely the case q = ω(N1/2) and the case q = O(N1/2). For
each case, the proof is guided by the proof method of [Che+18], thus using the
H-coefficient technique (see Lemma 2) at a high level. Following the technique,
we define the sets of good and bad transcripts, and then determine the values of
ε1 and ε2, respectively. When calculating the value of ε1, we apply the general
transformation (see Eq. (11)) so that only a single probability need to be con-
sidered. Finally, we address this single probability using the general framework
(see Eq. (10)) combined with our new proof strategies.

Preparatory Work. First, we point out the simple fact that for every distin-
guisher D that makes qe construction queries and qp permutation queries, there
exists a D′ making q construction queries and q permutation queries with at
least the same distinguishing advantage, where q = max{qe, qp}. We can just let
D′ simulate the queries of D, and then perform additional q − qe construction
queries and q − qp permutation queries, which obviously increases its advantage.
For computational convenience, we consider the distinguisher D′ that makes q
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construction queries and q permutation queries in the analysis. That is, for each
attainable transcript τ = (Q0,Q1,K) ∈ T , it has |Q0| = |Q1| = q.

To illustrate the key probability (7) of a good transcript, we can assume that
there is no path of length 7 starting from xi ∈ Dom(Q0) in shore 0 or ending at
yi ∈ Ran(Q0) in shore 7 (otherwise, it would be a bad transcript). Then, as in
[WYCD20], the set Q0 can be partitioned into the following 6 uniform-structure-
groups.

– Denote WLOG that Q≡
0,1 = {(x1, y1), . . . , (xα2 , yα2)} ⊂ Q0, where

Sh(R(xi)) = 5 and Sh(L(yi)) = 6 for i = 1, . . . , α2. That is, the actual dis-
tance of Q≡

0,1 is 1 and |Q≡
0,1| = α2. We also denote by R(Q≡

0,1) = {R(xi) : i =
1, . . . , α2}, L(Q≡

0,1) = {L(yi) : i = 1, . . . , α2}.
– Denote WLOG that Q≡

0,2 = {(xα2+1, yα2+1), . . . , (xα2+β2 , yα2+β2)} ⊂ Q0,
where Sh(R(xi)) = 1 and Sh(L(yi)) = 2 for i = α2 + 1, . . . , α2 + β2. That is,
the actual distance of Q≡

0,2 is 1 and |Q≡
0,2| = β2. We also denote by R(Q≡

0,2) =
{R(xi) : i = α2 + 1, . . . , α2 + β2}, L(Q≡

0,2) = {L(yi) : i = α2 + 1, . . . , α2 + β2}.
– Denote WLOG that Q≡

0,3 = {(xα2+β2+1, yα2+β2+1), . . . , (xδ2 , yδ2)} ⊂ Q0,
where Sh(R(xi)) = 3 and Sh(L(yi)) = 4 for i = α2 + β2 + 1, . . . , δ2. That
is, the actual distance of Q≡

0,3 is 1 and |Q≡
0,3| := γ2 = δ2 − α2 − β2. We also

denote by R(Q≡
0,3) = {R(xi) : i = α2 + β2 + 1, . . . , δ2}, L(Q≡

0,3) = {L(yi) : i =
α2 + β2 + 1, . . . , δ2}.

– Denote WLOG that Q≡
0,4 = {(xδ2+1, yδ2+1), . . . , (xδ2+α1 , yδ2+α1)} ⊂ Q0,

where Sh(R(xi)) = 3 and Sh(L(yi)) = 6 for i = δ2 + 1, . . . , δ2 + α1. That is,
the actual distance of Q≡

0,4 is 2 and |Q≡
0,4| = α1. We also denote by R(Q≡

0,4) =
{R(xi) : i = δ2 + 1, . . . , δ2 + α1}, L(Q≡

0,4) = {L(yi) : i = δ2 + 1, . . . , δ2 + α1}.
– Denote WLOG that Q≡

0,5 = {(xδ2+α1+1, yδ2+α1+1), . . . , (xδ2+δ1 , yδ2+δ1)} ⊂
Q0, where Sh(R(xi)) = 1 and Sh(L(yi)) = 4 for i = δ2 + α1 + 1, . . . , δ2 + δ1.
That is, the actual distance of Q≡

0,5 is 2 and |Q≡
0,5| := β1 = δ1 − α1. We also

denote by R(Q≡
0,5) = {R(xi) : i = δ2 + α1 + 1, . . . , δ2 + δ1}, L(Q≡

0,5) = {L(yi) :
i = δ2 + α1 + 1, . . . , δ2 + δ1}.

– Denote WLOG that Q≡
0,6 = {(xδ2+δ1+1, yδ2+δ1+1), . . . , (xq, yq)} ⊂ Q0, where

Sh(R(xi)) = 1 and Sh(L(yi)) = 6 for i = δ2 + δ1 +1, . . . , q. That is, the actual
distance of Q≡

0,6 is 3 and |Q≡
0,6| = δ0 = q−δ1−δ2. We also denote by R(Q≡

0,6) =
{R(xi) : i = δ2 + δ1 + 1, . . . , q}, L(Q≡

0,6) = {L(yi) : i = δ2 + δ1 + 1, . . . , q}.

It is easy to see that the crucial probability

(7) = PrP1←$Pn
[EK ↓ Q0 | P1 ↓ Q1] = PrP1←$Pn

[
6∧

j=1

EK ↓ Q≡
0,j | P1 ↓ Q1].

(14)

In [WYCD20], the probability (14) was decomposed into several conditional
probabilities, which were quite cumbersome to analyze.

Applying General Transformation. We use the general transformation
(see Eq. (11)) here to reduce the task to bounding only one probability. The
basic idea is to replace the uniform-structure-groups whose actual distance is
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less than 3 (i.e. Q≡
0,1,Q≡

0,2,Q≡
0,3,Q≡

0,4,Q≡
0,5) with a new uniform-structure-group

whose actual distance is 3, and make the connecting probability smaller.
First note that when q = O(N3/4), the expectation of α2, β2, γ2 is q3/N2 =

O(q/N1/2), and the expectation of α1, β1 is q2/N = O(q/N1/4). Then, we
denote s = δ1 + δ2 = α1 + β1 + α2 + β2 + γ2 = O(q/N1/4) as the number
of pairs to be replaced. As discussed in Sect. 3, we take arbitrarily s vertices
in shore 0 from the set {0, 1}n \ Dom(Q0) \ Dom(Q1) ⊕ κ0 and denote them as
xq+1, . . . , xq+s. We also take arbitrarily s vertices in shore 2t + 1 from the set
{0, 1}n \ Ran(Q0) \ Ran(Q1) ⊕ κ3 and denote them as yq+1, . . . , yq+s. Then, we
define the new uniform-structure-group Q∗

0 := {(xi, yi) : i = q + 1, . . . , q + s}
and set Q̂0 := Q≡

0,6 ∪ Q∗
0, where the pairs in Q∗

0 must be connected in the most
wasteful way. Using Lemma 4 several times, we can know that

(14) = PrP1←$Pn
[

6∧

j=1

EK ↓ Q≡
0,j | P1 ↓ Q1]

≥ PrP1←$Pn
[EK ↓ Q̂0 | P1 ↓ Q1]

= PrP1←$Pn
[EK ↓ Q≡

0,6 ∧ EK ↓w Q∗
0 | P1 ↓ Q1]. (15)

4.2.1 Case 1: q = ω(N1/2) We mainly focus on the large values of q =
ω(N1/2), and the other case of q = O(N1/2) is similar. Let M = q

N1/2 and
M0 = q

N1/4 . We first give the definition of good and bad transcripts.

Definition 4 (Bad and Good Transcripts, P1P1P1-Construction). For
an attainable transcript τ = (Q0,Q1,K) ∈ T , we say that τ is bad if K ∈
⋃5

i=1 BadKi; otherwise τ is good. The definitions of BadKi are shown below:

K ∈ BadK1 ⇔ there exists a path of length 7 starting from a vertex xi ∈ Dom(Q0)

in shore 0 or ending at a vertex yi ∈ Ran(Q0) in shore 7

K ∈ BadK2 ⇔ α2 > M ∨ β2 > M ∨ γ2 > M ∨ α1 > M0 ∨ β1 > M0

K ∈ BadK3 ⇔ Dom(Q1),R(Q≡
0,1),R(Q≡

0,2),R(Q≡
0,3) are not pairwise disjoint

∨ Ran(Q1), L(Q≡
0,1), L(Q≡

0,2), L(Q≡
0,3) are not pairwise disjoint

K ∈ BadK4 ⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|{x ∈ Dom(Q0) : x ⊕ κ0 ⊕ κ1 is not left-free}| > M0

∨ |(Dom(Q0) ⊕ κ0 ⊕ κ1) ∩ (Ran(Q0) ⊕ κ3)| > M0

∨ |{y ∈ Ran(Q0) : y ⊕ κ3 ⊕ κ2 is not right-free}| > M0

∨ |(Ran(Q0) ⊕ κ3 ⊕ κ2) ∩ (Dom(Q0) ⊕ κ0)| > M0

∨ |{x ∈ Dom(Q0) : x ⊕ κ0 ⊕ κ2 is not left-free}| > M0

∨ |(Dom(Q0) ⊕ κ0 ⊕ κ2) ∩ (Ran(Q0) ⊕ κ3)| > M0

∨ |{y ∈ Ran(Q0) : y ⊕ κ3 ⊕ κ1 is not right-free}| > M0

∨ |(Ran(Q0) ⊕ κ3 ⊕ κ1) ∩ (Dom(Q0) ⊕ κ0)| > M0

K ∈ BadK5 ⇔ |U05| > M0 ∨ |U27| > M0.
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We can determine the value of ε2 = 12q
N3/4 +

3q2

N3/2 +
8q4

N3 + 6q6

N5 from the following
lemma, the proof of which can be found in the full version [Yu+23, Appendix
E.2].

Lemma 5 (Bad Transcripts, q = ω(N1/2)). For any given Q0,Q1 such that
|Q0| = |Q1| = q, we have

PrK←${0,1}4n [τ = (Q0,Q1,K) is bad] ≤ 12q
N3/4

+
3q2

N3/2
+

8q4

N3
+

6q6

N5
.

The following lemma gives a lower bound on Eq. (15) for any good transcript.

Lemma 6 (Good Transcripts, q = ω(N1/2)). Fix arbitrarily a good tran-
script τ = (Q0,Q1,K) ∈ T as defined in Definition 4. Let Q≡

0,6 and Q∗
0 be as

described in Eq. (15), then we have

PrP1←$Pn
[EK ↓ Q≡

0,6 ∧ EK ↓w Q∗
0 | P1 ↓ Q1]

≥ 1
(N)q

×
(

1 − 57q
N3/4

− 122q2

N3/2
− 78q

N
− 32N

q2

)

.
(16)

Before giving the proof of Lemma 6, we first show how to obtain the final security
bound from the above two lemmas. First note that (16) is also a lower bound on
the crucial probability (7), i.e. p(τ) in Lemma 3 when t = 3, t′ = 1. Then it is
not difficult to determine the value of ε1 = 57q

N3/4 +
122q2

N3/2 + 78q
N + 32N

q2 . According
to the H-coefficient technique (see Lemma 2), we can obtain

AdvSPRP
P1P1P1

(D) ≤ ε1 + ε2

=
12q

N3/4
+

3q2

N3/2
+

8q4

N3
+

6q6

N5
+

57q
N3/4

+
122q2

N3/2
+

78q
N

+
32N

q2

=
69q

N3/4
+

125q2

N3/2
+

8q4

N3
+

6q6

N5
+

78q
N

+
32N

q2
,

which is the result of large q = ω(N1/2) in Theorem 2.

Proof (Proof of Lemma 6). Let Q≡
0 = Q̂0 := Q≡

0,6 ∪ Q∗
0 and t = 3, t′ = 1, then

the target probability is exactly an instantiation of the general problem (9). We
apply the general framework (10) to bound it, so roughly in three steps.

The first step is to generate Cores with specific numbers of new
edges. We will use four variables (denoted as h1, h2, h3, h4) to obtain a suffi-
ciently accurate security bound, so four constructive methods of reducing new
edges are needed.

The first method we use is called recycled-edge-based method, which exploits
recycled-edges to reduce a specified number of new edges when building paths.
Intuitively, when we construct a path connecting plaintext-ciphertext pair (xi, yi)
with an actual distance of 3, the choice of the permutation-edge between shore
3 and 4 is quite free and can be “recycled” from the known edges in Q1 for use.
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Thus, we can construct the path with one less new edge. Furthermore, most of
the known edges in Q1 (about the proportion of 1 − O(1/N1/4)) can be used
as recycled-edges. More details about the recycled-edge-based method can be
found in the full version [Yu+23, Appendix C.1].

The other three methods we use are shared-edge-based methods, each of which
exploits a different type of shared-edges to reduce a specified number of new
edges when building paths. Intuitively, we consider two plaintext-ciphertext pairs
together and let them share exactly 1 permutation edge. The two paths can then
be connected with one less new edge than the most wasteful way. In particu-
lar, this work only considers shared-edges of this type, each of which saves 1
new edge for 2 paths. To distinguish, we refer to a shared-edge as (i, j)-shared-
edge, where i and j represent the rounds that the shared-edge lies in two paths
respectively. Note that the positions of the two paths are interchangeable, so
(i, j)-shared-edges and (j, i)-shared-edges are essentially the same type. More
details about the shared-edge-based methods can be found in the full version
[Yu+23, Appendix C.2].

Recalling the Eq. (15), our task is to connect the q pairs of Q̂0 = Q≡
0,6 ∪

Q∗
0 using a specified number of new edges, where Q∗

0 is connected in the most
wasteful way. Let h1, h2, h3, h4 be four integer variables in the interval [0,M ],
where M = q

N1/2 is a constant determined by q. We combine the recycled-edge-
based method, the shared-edge-based methods and the most wasteful way to
accomplish the task in five steps.

1. Select h1 distinct pairs from Q≡
0,6, and connect each of these pairs using the

recycled-edge-based method.
2. Apart from the h1 pairs selected in Step 1, select 2h2 appropriate pairs from

Q≡
0,6, and connect these pairs using the (1, 2)-shared-edge-based method.

3. Apart from the h1+2h2 pairs selected in Steps 1 and 2, select 2h3 appropriate
pairs from Q≡

0,6, and connect these pairs using the (1, 3)-shared-edge-based
method.

4. Apart from the h1+2h2+2h3 pairs selected in Steps 1–3, select 2h4 appropri-
ate pairs from Q≡

0,6, and connect these pairs using the (2, 3)-shared-edge-based
method.

5. Connect the remaining δ0 − h1 −
∑4

i=2 2hi pairs in Q≡
0,6 and the s pairs in

Q∗
0 in the most wasteful way.

Clearly, the above procedure must generate a Core(Q̂0) containing exactly 3q −
∑4

i=1 hi new edges, and all the pairs of Q∗
0 are connected in the most wasteful

way.
As mentioned in Sect. 3, the main factor affecting the final security bound

is the number of variables. A simple explanation is that more variables make
the multivariate hypergeometric distribution used in the calculations more tun-
able. That is why we define four variables h1, h2, h3, h4 here (i.e., to improve the
accuracy), and it can be verified that these four methods necessarily produce dif-
ferent types of paths (i.e., to ensure the plausibility). Note that even considering
only the shared-edge-based methods, our strategy is simpler than [WYCD20].
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In particular, a single selection operation of theirs may generate three different
types of shared-edges, whereas each of our selection operations will only generate
shared-edges of the same type.

The second step is to evaluate the number of Cores that can be
generated in the first step. According to the above procedure of connecting
q plaintext-ciphertext pairs of Q̂0, we determine the number of possibilities for
each step as follows. In the following, RCi(j) denotes the Range (set) of all
possible Candidate values for the to-be-assigned nodes in shore j (according to
the constructive method used in Step i).

1. Since |Q≡
0,6| = δ0, it has

(
δ0
h1

)

possibilities to select h1 distinct pairs from
Q≡

0,6. After the h1 pairs are chosen, we use the recycled-edge-based method
to connect them by first determining a set RC1(3) (the analysis of which is
referred to the RC(3) in full version [Yu+23, Appendix C.1]) and choosing
h1 different u’s from it, and then assigning one u to each pair. In total, the
possibilities of Step 1 is at least

(
δ0
h1

)

· (|RC1(3)|)h1 .
2. For simplicity, we can define a set of plaintext-ciphertext pairs Z ⊂ Q≡

0,6 (see
Eq. (17) for the definition of Z), so that the 2(h2 + h3 + h4) distinct pairs in
Step 2–4 can all be selected from Z. Then in Step 2, we have

(|Z|
h2

)

·
(|Z|−h2

h2

)

possibilities to sequentially select h2 distinct pairs from Z twice, where the
first (resp. second) selected h2 pairs will be constructed as the upper-paths
(resp. lower-paths)11 in the (1, 2)-shared-edge-based method. We then use the
(1, 2)-shared-edge-based method to connect these 2h2 pairs. According to the
discussion in the full version [Yu+23, Appendix C.2], the core task of (1, 2)-
shared-edge-based method is to determine two sets denoted by RC2(2) and
RC2(4). By simple counting, the possibilities of Step 2 is at least (|Z|)2h2

h2!
·

(|RC2(2)|)h2 · (|RC2(4)|)h2 , where (|Z|)2h2
h2!

=
(|Z|

h2

)

·
(|Z|−h2

h2

)

· h2!.
3. For Step 3, we can select 2h3 distinct pairs from Z after removing the 2h2

pairs chosen in Step 2. Then, we have
(|Z|−2h2

h3

)

·
(|Z|−2h2−h3

h3

)

possibilities to
sequentially select h3 distinct pairs from the rest of Z twice (similar to Step
2, the first and second selected h3 pairs will play different roles). After the
2h3 pairs are chosen, we use the (1, 3)-shared-edge-based method to connect
them. According to an analysis similar to that in the full version [Yu+23,
Appendix C.2], the core task of (1, 3)-shared-edge-based method is also to
determine two sets denoted by RC3(4) and RC3(2). By simple counting, the
possibilities of Step 3 is at least (|Z|−2h2)2h3

h3!
· (|RC3(2)|)h3 · (|RC3(4)|)h3 .

4. For Step 4, we can select 2h4 distinct pairs from Z after removing the
2(h2 + h3) pairs chosen in Step 2 and Step 3. Then, we have

(|Z|−2h2−2h3
h4

)

·
(|Z|−2h2−2h3−h4

h4

)

possibilities to sequentially select h4 distinct pairs from
the rest of Z twice (similar to Step 2, the first and second selected h4

pairs will play different roles). After the 2h4 pairs are chosen, we use the
(2, 3)-shared-edge-based method to connect them. According to an anal-
ysis similar to that in the full version [Yu+23, Appendix C.2], the core

11 In Fig. 1 of the full version [Yu+23, Appendix C], the paths between (x2, y2) and
(x′

2, y
′
2) are called the upper-path and lower-path, respectively.
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task of (2, 3)-shared-edge-based method is to determine two sets denoted by
RC4(4) and RC4(2). By simple counting, the possibilities of Step 4 is at least
(|Z|−2h2−2h3)2h4

h4!
· (|RC4(2)|)h4 · (|RC4(4)|)h4 .

5. Step 5 is to connect the remaining (δ0 − h1 −
∑4

i=2 2hi) pairs in Q≡
0,6 and

the s pairs in Q∗
0 in the most wasteful way. According to the analysis in

the full version [Yu+23, Appendix C.3], we can determine a set RC5(2) and
choose (δ0 − h1 −

∑4
i=2 2hi) + s = q − h1 −

∑4
i=2 2hi different w3,2’s from

it, and assign one w3,2 to each pair; then determine a set RC5(4) and choose
q − h1 −

∑4
i=2 2hi different w3,4’s from it, and then assign one w3,4 to each

pair. In total, the possibilities of Step 5 is at least (|RC5(2)|)q−h1−∑4
i=2 2hi

·
(|RC5(4)|)q−h1−∑4

i=2 2hi
.

All that’s left is to give a lower bound on the cardinality for Z and each
RCj(i) mentioned above. Let Λ1 denote the set of h1 pairs selected from Q≡

0,6 in
Step 1. We first give the definition of set Z below12, and denote by |Z| = q0.

Z :={(xi, yi) ∈ Q≡
0,6 \ Λ1 :

xi /∈ Ran(Q0) ⊕ κ0 ⊕ κ1 ⊕ κ3 ∧ xi /∈ Ran(Q0) ⊕ κ0 ⊕ κ2 ⊕ κ3

∧ yi /∈ Dom(Q0) ⊕ κ0 ⊕ κ1 ⊕ κ3 ∧ yi /∈ Dom(Q0) ⊕ κ0 ⊕ κ2 ⊕ κ3

∧ xi ⊕ κ0 ⊕ κ1 is left-free ∧ xi ⊕ κ0 ⊕ κ2 is left-free
∧ yi ⊕ κ1 ⊕ κ3 is right-free ∧ yi ⊕ κ2 ⊕ κ3 is right-free}

(17)

From the BadK4 in Defn. 4, we can know that

q0 = |Z| ≥ δ0 − h1 − 8M0. (18)

Based on the analysis in the full version [Yu+23, Appendix C.1–C.3], we
proceed to lower-bound the cardinality of each RCj(i) as follows.

|RC1(3)| ≥
∣
∣Dom(Q1) \ S1 \ S2

∣
∣ (19)

≥ q − 2M0,

since |S1| = |U05| ≤ M0, |S2| = |U27| ≤ M0 hold in any good transcript (see
BadK5 in Defn. 4).

|RC2(2)| ≥
∣
∣{0, 1}n \ Ran(Q0) ⊕ κ3 \ V \ Dom(Q0) ⊕ κ0 ⊕ κ1 \ U ⊕ κ1

\Dom(Q0) ⊕ κ0 ⊕ κ2 \ U ⊕ κ2

∣
∣ (20)

≥
∣
∣{0, 1}n \ Ran(Q0) ⊕ κ3 \ Ran(Q1) \ Dom(Q0) ⊕ κ0 ⊕ κ1

\ Dom(Q1) ⊕ κ1 \ Dom(Q0) ⊕ κ0 ⊕ κ2 \ Dom(Q1) ⊕ κ2

∣
∣

− 3 · (2h1)
≥ N − 6q − 6h1,

12 See Appendix D of the full version [Yu+23] for an analysis of the constraints on Z,
which are the sum of constraints from the three shared-edge-based methods.



Security Proofs for KACs with Non-Independent Round Permutations 261

where U (resp. V ) denotes the domain (resp. range) of all P1-input-output-pairs
fixed so far (i.e., after Step 1) and 3 · (2h1) = 6h1 is the maximum number13
of new values generated by Step 1 that fall within the constraints of RC2(2).
This is exactly the consequence of updating U, V discussed in the full version
[Yu+23, Appendix C.2]. Due to the similarity, we directly give the remaining
lower bounds without explanation.

|RC2(4)| ≥ N − 4q − 4h1 − 10h2, (21)
|RC3(4)| ≥ N − 4q − 4h1 − 10h2, (22)
|RC3(2)| ≥ N − 4q − 4h1 − 10h2 − 10h3, (23)
|RC4(4)| ≥ N − 6q − 6h1 − 15h2 − 15h3, (24)
|RC4(2)| ≥ N − 4q − 4h1 − 10h2 − 10h3 − 10h4, (25)
|RC5(2)| ≥ N − 4q − 4h1 − 10h2 − 10h3 − 10h4, (26)
|RC5(4)| ≥ N − 5q − 3h1 − 8h2 − 8h3 − 8h4. (27)

Let #Coresi denote the number of Cores(Q̂0) containing exactly i new edges
(relative to Q1). Combining all the above, we finally obtain that

#Cores3q−∑4
i=1 hi

≥
(

δ0
h1

)

· (|RC1(3)|)h1 · (|Z|)2h2+2h3+2h4

h2! · h3! · h4!
· (|RC2(2)|)h2 · (|RC2(4)|)h2

× (|RC3(4)|)h3 · (|RC3(2)|)h3(|RC4(4)|)h4 · (|RC4(2)|)h4

× (|RC5(2)|)q−h1−2h2−2h3−2h4 · (|RC5(4)|)q−h1−2h2−2h3−2h4

≥ (δ0)h1(q − 2M0)h1

h1!
· (q0)2h2+2h3+2h4

h2! · h3! · h4!
· (N − 6q − 6h1)h2 · (N − 4q − 4h1 − 10h2)h2

· (N − 4q − 4h1 − 10h2)h3 · (N − 4q − 4h1 − 10h2 − 10h3)h3

· (N − 6q − 6h1 − 15h2 − 15h3)h4

· (N − 4q − 4h1 − 10h2 − 10h3 − 10h4)h4

· (N − 4q − 4h1 − 10h2 − 10h3 − 10h4)q−h1−2h2−2h3−2h4

· (N − 5q − 3h1 − 8h2 − 8h3 − 8h4)q−h1−2h2−2h3−2h4 .

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

13 Note that Step 1 will generate 2h1 new permutation-edges, so there will be 2h1 new
elements added to U and V respectively (compared to Dom(Q1) and Ran(Q1)). It
can be seen that there are only three constraints related to U and V in Eq. (20),
6h1 is obviously the maximum number of changes. We need to point out that this is
actually an overestimation. For example, newly added permutation-edges in Step 1
of the form 〈xi⊕κ0, P1, ∗〉 cause the set U ⊕κ1 to add new elements (i.e., xi⊕κ0⊕κ1)
which are already included in Dom(Q0) ⊕ κ0 ⊕ κ1. A finer analysis could provide
more accurate results, but this simplified treatment is sufficient here since we are
not seeking to optimize the constant coefficients in security bounds. Also, we use
this easily verifiable overestimation in the evaluation of Eqs. (21)–(26) below.
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The third step is to perform the summation calculation. Since the lower
bound on #Cores3q−∑4

i=1 hi
is known, we are now ready to calculate the final

result. From the Eqs. (10) and (28), we have

(15) =PrP1←$Pn
[EK ↓ Q≡

0,6 ∧ EK ↓w Q∗
0 | P1 ↓ Q1]

≥
∑

0≤h1,...,h4≤M

#Cores3q−∑4
i=1 hi

(N − q)3q−∑4
i=1 hi

≥
∑

0≤h1,...,h4≤M

Eq. (28)
(N − q)3q−∑4

i=1 hi

(29)

By lower-bounding14 the Eq. (29), we end up with

(15) =PrP1←$Pn
[EK ↓ Q≡

0,6 ∧ EK ↓w Q∗
0 | P1 ↓ Q1]

≥ 1
(N)q

×
(

1 − 57q
N3/4

− 122q2

N3/2
− 78q

N
− 32N

q2

)

,

which completes the proof. ��

4.2.2 Case 2: q = O(N1/2) The entire proof is almost the same as in the
case q = ω(N1/2), except for a slight modification to the calculations related to
M and M0. As mentioned before, for any positive ε > 0, if we set M = q/N1/2−ε

and M0 = q/N1/4+ε, then we can get a O(N3/4−ε)-bound.
For simplicity, we here set M = q

N9/20 and M0 = q
N3/10 , i.e. ε = 1

20 . We omit
the details of proof and only list the following two technical lemmas.

Lemma 7 (Bad Transcripts, q = O(N1/2)). For any given Q0,Q1 such that
|Q0| = |Q1| = q, we have

PrK←${0,1}4n [τ = (Q0,Q1,K) is bad] ≤ 12q
N7/10

+
3q2

N7/5
+

8q4

N3
+

6q6

N5
.

Lemma 8 (Good Transcripts, q = O(N1/2)). Fix arbitrarily a good tran-
script τ = (Q0,Q1,K) ∈ T as defined in Definition 4. Let Q≡

0,6 and Q∗
0 be as

described in Eq. (15), then we have

PrP1←$Pn
[EK ↓ Q≡

0,6 ∧ EK ↓w Q∗
0 | P1 ↓ Q1]

≥ 1
(N)q

×
(

1 − 122q2

N7/5
− 135q

N3/4
− 32

N1/10

)

.

According to the H-coefficient technique (see Lemma 2), we can obtain

AdvSPRP
P1P1P1

(D) ≤ ε1 + ε2

=
12q

N7/10
+

3q2

N7/5
+

8q4

N3
+

6q6

N5
+

122q2

N7/5
+

135q
N3/4

+
32

N1/10

=
12q

N7/10
+

125q2

N7/5
+

135q
N3/4

+
8q4

N3
+

6q6

N5
+

32
N1/10

,

which is the result of small q = O(N1/2) in Theorem 2.
14 Although the calculation involves a large number of terms, it is actually simple and

regular; the details can be found in the full version [Yu+23].
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5 Tight Security Bound of t-Round KACSP

In this section, we generalize the proof of 3-round KACSP to the general t-round
KACSP. The proof idea is basically the same, except the notation is heavier.

Theorem 3 (t-Round KACSP). Consider the t-round KACSP (where t ≥ 4),
denoted as P

(t)
1 -construction. For any distinguisher D making qe construction

queries and qp permutation queries, the following upper bound holds:

AdvSPRP

P
(t)
1

(D)

≤

⎧

⎨

⎩

27t4q

Nt/(t+1)
+

15t5q2

N2t/(t+1)
+

2t2qt+1

Nt
+

4t2N

q2
, for q = ω(N

1/2
)

4tq

N7/10
+

15t5q2

N7/5
+

qt−1

N7(t−1)/10
+

22t4q

N3/4
+

tq

Nt/(t+1)
+

2t2qt+1

Nt
+

4t2

N1/10
, for q = O(N

1/2
)

where q := max{qe, qp}.

Note that the value of t = O(1) is a constant. Therefore, the above bound does
show that unless D makes q = Ω(N t/(t+1)) queries, its advantage of distinguish-
ing P

(t)
1 from a truly random permutation is negligible (for sufficiently large n).

In other words, t-round KACSP has the same security level as the t-round KAC.

Proof (Proof of Theorem 3). As discussed in Sect. 4.2, we also consider that
the distinguisher makes q construction queries and q permutation queries in
the analysis. That is, for each attainable transcript τ = (Q0,Q1,K) ∈ T , it
has |Q0| = |Q1| = q. Furthermore, we let ADt−i ⊂ Q0 denote the set of pairs
(xi, yi) ∈ Q0 whose actual distance is i, where i = 1, . . . , t. We also let δi :=
|ADi|. For convenience, we simply use Q≡

0,t to denote AD0 since it is a uniform-
structure-group.

Applying General Transformation. First of all, we also use the general
transformation (see Eq. (11)) here to reduce the task to bounding only one prob-
ability. The basic idea is to replace the uniform-structure-groups whose actual
distance is less than t with a new uniform-structure-group whose actual distance
is t, and make the connecting probability smaller.

Note that the expectation of δi is O(q/N i/(t+1)) and we can wlog assume
that q = O(N t/(t+1)) (otherwise the security bound is invalid). Then, we denote
s =

∑t−1
i=1 δi = O(q/N1/(t+1)) as the number of pairs to be replaced. As discussed

in Sect. 3, it is easy to construct a new uniform-structure-group Q∗
0 := {(xi, yi) :

i = q + 1, . . . , q + s} and set Q̂0 := Q≡
0,t ∪ Q∗

0, where the pairs in Q∗
0 must be

connected in the most wasteful way. Using Lemma 4 several times, we can know
that the crucial probability

(7) ≥ PrP1←$Pn
[EK ↓ Q̂0 | P1 ↓ Q1]

= PrP1←$Pn
[EK ↓ Q≡

0,t ∧ EK ↓w Q∗
0 | P1 ↓ Q1]. (30)

Thus, Eq. (30) becomes the target probability for which we need a lower bound.
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5.1 Case 1: q = ω(N1/2)

As in Sect. 4.2, we mainly focus on the large values of q = ω(N1/2), and the
other case of q = O(N1/2) is similar. We also first give the definition of good
and bad transcripts.

Let Rt−1 = {R(xi) : (xi, yi) ∈ ADt−1} and Lt−1 = {L(yi) : (xi, yi) ∈ ADt−1}
denote the set of all rightmost and leftmost vertices of the pairs whose actual
distance is 1, respectively. Next, we define t − 1 constants Mj = q

Nj/(t+1) related
to the value of q, where j = 1, 2, . . . , t − 1.

Definition 5 (Bad and Good Transcripts, P
(t)
1 -Construction). For an

attainable transcript τ = (Q0,Q1,K) ∈ T , we say that τ is bad if K ∈
⋃5

i=1 BadKi; otherwise τ is good. The definitions of BadKi are shown below:

K ∈ BadK1 ⇔ there exists a path of length 2t + 1 starting from a vertex
xi ∈ Dom(Q0) in shore 0 or ending at a vertex yi ∈ Ran(Q0)
in shore 2t + 1

K ∈ BadK2 ⇔ δi > Mi where i = 1, 2, . . . , t − 1
K ∈ BadK3 ⇔ |Rt−1 ∪ Dom(Q1)| < δt−1 + q ∨ |Lt−1 ∪ Ran(Q1)| < δt−1 + q

K ∈ BadK4 ⇔

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t−1∨

i=1

|{x ∈ Dom(Q0) : x ⊕ κ0 ⊕ κi is not left-free}| > M1

t−1∨

i=1

|(Dom(Q0) ⊕ κ0 ⊕ κi) ∩ (Ran(Q0) ⊕ κt)| > M1

t−1∨

i=1

|{y ∈ Ran(Q0) : y ⊕ κ3 ⊕ κi is not right-free}| > M1

t−1∨

i=1

|(Ran(Q0) ⊕ κ3 ⊕ κi) ∩ (Dom(Q0) ⊕ κ0)| > M1

K ∈ BadK5 ⇔ |U05| > M1 ∨ |U27| > M1.

We can determine the value of ε2 = 5tq
Nt/(t+1) + 2t2qt+1

Nt from the following
lemma, the proof of which can be found in the full version [Yu+23, Appendix
E.3].

Lemma 9 (Bad Transcripts, q = ω(N1/2)). For any given Q0,Q1 such that
|Q0| = |Q1| = q, we have

PrK←${0,1}(t+1)n [τ = (Q0,Q1,K) is bad] ≤ 5tq
N t/(t+1)

+
2t2qt+1

N t
.

The following lemma gives a lower bound on Eq. (30) for any good transcript.
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Lemma 10 (Good Transcripts, q = ω(N1/2)). Fix arbitrarily a good tran-
script τ = (Q0,Q1,K) ∈ T as defined in Definition 5. Let Q≡

0,t and Q∗
0 be as

described in Eq. (30), then we have

PrP1←$Pn
[EK ↓ Q≡

0,t ∧ EK ↓w Q∗
0 | P1 ↓ Q1]

≥ 1
(N)q

×
(

1 − 22t4q
N t/(t+1)

− 15t5q2

N2t/(t+1)
− 4t2 N

q2

)

.
(31)

The proof of Lemma 10 is given in the full version [Yu+23, Appendix E.4]. We
next show how to obtain the final security bound from the above two lemmas.
First note that (31) is also a lower bound on the crucial probability (7), i.e. p(τ)
in Lemma 3 when t′ = 1. Then it is not difficult to determine the value of ε1.
According to the H-coefficient technique (see Lemma 2), we can obtain

AdvSPRP
(P1)t(D) ≤ ε1 + ε2

=
5tq

N t/(t+1)
+

2t2qt+1

N t
+

22t4q
N t/(t+1)

+
15t5q2

N2t/(t+1)
+

4t2 N

q2

≤ 27t4q
N t/(t+1)

+
15t5q2

N2t/(t+1)
+

2t2qt+1

N t
+

4t2 N

q2
,

(32)

which is the result of large q = ω(N1/2) in Theorem 3.

5.2 Case 2: q = O(N1/2)

The entire proof is almost the same as in the case q = ω(N1/2), except for a
slight modification to the calculations related to M1 and Mt−1 and we here set
M1 = q

N3/10 and Mt−1 = q
N9/20 . We omit the details of proof and only list the

following two technical lemmas.

Lemma 11 (Bad Transcripts, q = O(N1/2)). For any given Q0,Q1 such that
|Q0| = |Q1| = q, we have

PrK←${0,1}(t+1)n [τ = (Q0, Q1, K) is bad] ≤ 4tq

N7/10
+

qt−1

N7(t−1)/10
+

tq

Nt/(t+1)
+

2t2qt+1

Nt
.

Lemma 12 (Good Transcripts, q = O(N1/2)). Fix arbitrarily a good tran-
script τ = (Q0,Q1,K) ∈ T as defined in Definition 5. Let Q≡

0,t and Q∗
0 be as

described in Eq. (30), then we have

PrP1←$Pn [EK ↓ Q≡
0,t ∧ EK ↓w Q∗

0 | P1 ↓ Q1] ≥ 1

(N)q
×

(
1 − 15t5q2

N7/5
− 22t4q

N3/4
− 4t2

N1/10

)
.

According to the H-coefficient technique (see Lemma 2), we can obtain

AdvSPRP
P1P1P1

(D) ≤ ε1 + ε2

=
4tq

N7/10
+

qt−1

N7(t−1)/10
+

tq

Nt/(t+1)
+

2t2qt+1

Nt
+

15t5q2

N7/5
+

22t4q

N3/4
+

4t2

N1/10

=
4tq

N7/10
+

15t5q2

N7/5
+

qt−1

N7(t−1)/10
+

22t4q

N3/4
+

tq

Nt/(t+1)
+

2t2qt+1

Nt
+

4t2

N1/10
,

which is the result of small q = O(N1/2) in Theorem 2.
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6 Remarks on Other Variants of KACS

Our proof technology in this work applies to various KAC-type constructions as
well as the standard KAC construction. Our general transformation also works
and the proof idea is similar. The core task is to find enough constructive methods
of reducing new edges, so that the final security bound is sufficiently accurate.

We also find that the more rounds means more methods, so it seems easier
to find enough methods in constructions with more rounds. This is somewhat
counter-intuitive. It might be interesting to figure out whether this phenomenon
is an artifact of the proof technology, or because larger constructions inherently
have more security redundancy.
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