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Abstract. We show equivalence between the existence of one-way func-
tions and the existence of a sparse language that is hard-on-average w.r.t.
some efficiently samplable “high-entropy” distribution. In more detail,
the following are equivalent:

– The existence of a S(·)-sparse language L that is hard-on-average
with respect to some samplable distribution with Shannon entropy
h(·) such that h(n) − log(S(n)) ≥ 4 logn;

– The existence of a S(·)-sparse language L ∈ NP, that is hard-on-
average with respect to some samplable distribution with Shannon
entropy h(·) such that h(n) − log(S(n)) ≥ n/3;

– The existence of one-way functions.
where a language L is said to be S(·)-sparse if |L ∩ {0, 1}n| ≤ S(n) for
all n ∈ N. Our results are inspired by, and generalize, results from the
elegant recent paper by Ilango, Ren and Santhanam (IRS, STOC’22),
which presents similar connections for specific sparse languages.

1 Introduction

A one-way function [4] (OWF) is a function f that can be efficiently computed
(in polynomial time), yet no probabilistic polynomial-time (PPT) algorithm can
invert f with inverse polynomial probability for infinitely many input lengths
n. Whether one-way functions exist is unequivocally the most important open
problem in Cryptography (and arguably the most important open problem in
the theory of computation, see e.g., [18]): OWFs are both necessary [15] and
sufficient for many of the most central cryptographic primitives and protocols
(e.g., pseudorandom generators [2,10], pseudorandom functions [6], private-key
encryption [7], digital signatures [22], commitment schemes [20], identification
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protocols [5], coin-flipping protocols [1], and more). These primitives and proto-
cols are often referred to as private-key primitives, or “Minicrypt” primitives [13]
as they exclude the notable task of public-key encryption [4,21]. Additionally,
as observed by Impagliazzo [8,13], the existence of a OWF is equivalent to the
existence of polynomial-time method for sampling hard solved instances for an
NP language (i.e., hard instances together with their witnesses).

A central open question at the intersection of Cryptography and Complexity-
theory, however, is whether the existence of just an average-case hard problem
in NP suffices to get the existence of OWFs:

Does the existence of a language in NP that is hard-on-average imply the
existence of OWFs?

(In Impagliazzo’s language, can we rule out “Pessiland”—a world where NP is
hard on average but OWFs do not exist.) There has been some recent progress
towards this question. Most notably, Liu and Pass [19] recently showed that
(mild) average-case hardness, w.r.t. the uniform distribution of instances, of a
particular natural problem in NP—the time-bounded Kolmogorov Complexity
problem [9,16,17,23,24]—characterizes the existence of OWFs. This problem,
however is not average-case complete for NP so it does not resolve the above
question.

In this work, our goal is to identify properties of languages such that their
average-case hardness implies OWFs:

Can we identify simple/natural properties of a distribution-language pair
(D, L) such that average-case hardness of L with respect to distribution D
implies the existence of OWFs?

Our starting point towards answering this problem is an elegant recent work by
Ilango, Ren and Santhanam [11,12] (IRS). IRS first show that the existence of
OWFs is equivalent to average-case hardness of a Gap version of the Kolmogorov
complexity problem w.r.t. any efficiently computable distribution. In a second
step, they next show that average-case hardness of some specific sparse languages
implies average-case hardness of this Gap problem.

In more detail, their first step shows that OWFs exist iff there exists
some samplable distribution D and efficiently computable thresholds t0, t1,
t1(n) − t0(n) > ω(log n), so that it is hard to decide whether K(x) > t1(|x|)
or K(x) < t0(|x|). Let us highlight that this characterization differs from the
one in [19] in three aspects: (1) it considers unbounded, as opposed to time-
bounded Kolmogorov complexity, (2) hardness holds w.r.t. to a gap problem, as
opposed to a decisional problem, and (3) it considers hardness w.r.t. any effi-
cient distribution, as opposed to the uniform distribution considered in [19]. (In
particular, this result does not provide a candidate distribution for which the
Gap problem may be hard—and it is provably easy with respect to the uniform
distribution.) In the second step, they present some concrete languages (k-SAT
and t-Clique) such that average-case hardness of these languages with respect to
high-entropy distributions implies (but does not characterize) the existence of
OWFs.
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In this work, we show how to generalize the results obtained in the second step
and to demonstrate that the existence of OWFs is equivalent to the existence of a
sparse language that is hard-on-average w.r.t. some efficiently samplable “high-
entropy” distribution. In more details, the Shannon entropy of the sampler needs
to be just slightly bigger than the logarithm of the density of the language.

As a result of independent interest, we additionally show how to generalize
the results of IRS in their Step 1 with respect to K-complexity (but note that
the results with respect to sparse languages no longer pass through this result).1

1.1 Our Results

To formalize the statements of our results, let us briefly state some preliminaries.

Preliminaries We say that a language L ⊂ {0, 1}∗ is S(·)-sparse if for all n ∈ N,
|Ln| ≤ S(n), where Ln = |L∩{0, 1}n|. Given a language L, we abuse the notation
and let L(x) = 1 iff x ∈ L. For a random variable X, let H(X) = E[log 1

Pr[X=x] ]
denote the Shannon entropy of X. A function μ is said to be negligible if for
every polynomial p(·) there exists some n0 such that for all n > n0, μ(n) ≤ 1

p(n) .
We say that D = {Dn}n∈N is an ensemble if for all n ∈ N, Dn is a prob-

ability distribution over {0, 1}n. We say that an ensemble D = {Dn}n∈N is
samplable if there exists a probabilistic polynomial-time Turing machine S such
that S(1n) samples Dn; we use the notation S(1n; r) to denote the algorithm S
with randomness fixed to r. We say that an ensemble D has entropy h(·) if for
all sufficiently large n ∈ N, H(Dn) ≥ h(n).

We say that a language L ⊂ {0, 1}∗ is α(·) hard-on-average (α-HoA) on an
ensemble D = {Dn}n∈N if for all probabilistic polynomial-time heuristics H, for
all sufficiently large n ∈ N,

Pr[x ← Dn : H(x) = L(x)] < 1 − α(n).

We simply say that L is hard-on-average (HoA) on D if for every c, α(n) = 1
2− 1

nc ,
L is α-HoA.

Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said
to be a one-way function (OWF) if for every PPT algorithm A, there exists a
negligible function μ such that for all n ∈ N,

Pr[x ← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ μ(n)

Main Theorem We are now ready to state our main theorem.

Theorem 11 The following are equivalent:

1. The existence of a S(·)-sparse language L that is (1
2 − 1

4n )-HoA with respect
to some samplable distribution with Shannon entropy h(·) such that h(n) −
log(S(n)) ≥ 4 log n;

1 It appears that a similar generalization was concurrently and independently obtained
by IRS in the proceedings version [12]; see Sect. 5 for more details.
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2. The existence of a S(·)-sparse language L ∈ NP, that is HoA with respect
to some samplable distribution with Shannon entropy h(·) such that h(n) −
log(S(n)) ≥ n/3;

3. The existence of one-way functions.

Theorem 11 is proven by, in Sect. 2 showing that (1) implies (3), and in
Sect. 3 showing that (3) implies (2); the fact that (2) implies (1) is trivial. We
present some corollaries of Theorem 11 in Sect. 4. In Sect. 5, we finally present
some result of independent interest that generalize the result in [11] with respect
to the particular K-complexity problem—in particular, we strengthen the result
from [11] to show that that it suffices to assume hardness of approximating K-
complexity (as opposed to assuming hardness of deciding a threshold version of
a Gap-K problem).

1.2 Proof Overview

To explain the proof of our results, and to put it in context, let us start by
reviewing the results of Ilango, Ren and Santhanam (IRS) [11].

IRS Part 1: OWFs from Hardness of Gap-K. As mentioned, IRS first show
that OWFs exist iff there exists some samplable distribution D and efficiently
computable thresholds t0, t1 where t1(n) − t0(n) > ω(log n) so that it is hard to
decide whether K(x) > t1(|x|) or K(x) < t0(|x|) when sampling x from D. We
here focus only on the “if” direction which will be most relevant to us.2 On a high
level, the IRS result is obtained by showing that any sampler that makes this
Gap problem hard must itself be a OWF. In more detail, they first appeal to the
result of [14,15] showing that if OWFs do not exist, then approximate counting
is possible on average. They next show how to use an approximate counter to
solve the Gap-K problem: Given an instance x, approximately count the number
of random strings r that lead the sampler D (given randomness r) to generate
x. If the number is “small”—we refer to such strings x as rare, where “small”
is appropriately defined as a function of t1(|x|) (which, recall, is required to be
efficiently computable), then output NO (i.e., that the K-complexity is large),
and otherwise (i.e., if x is common) output YES.

It remains to analyze that this deciding algorithm works (on average). The
key observation is that common instances x must be YES-instances: their K-
complexity must be small simply by enumerating all common strings (since there
can only be a small number of them!). Thus (whenever the approximate counter
is correct), the decider always gives the right answer on NO-instances. On the
other hand, since YES-instances are sparse, it directly follows by a Union bound,
that the probability that we sample a YES-instance that is rare must be small.
Consequently, the decider will also give the right answer on YES-instances with
high probability. This concludes the existence of OWFs assuming the hardness
of the Gap-K problem.

2 The only-if direction is a direct consequence of [10].
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IRS Part 2: OWF from Specific Sparse Languages. In the second part of
their paper, IRS next present some concrete languages—k-SAT and t-Clique—
and show that average-case hardness with respect to high-entropy distributions
of these concrete languages imply hardness of Gap-K (which in turn by the first
result implies OWFs). This argument relies on the following three steps:

– Step 1 (Language-specific): Proving—using language specific structures—
that YES instances have small K-complexity.

– Step 2 (Generic): Rely on a generic counting argument (following a simi-
lar statement in [19]) to show that elements sampled from any high-entropy
distribution need to have high K-complexity with reasonable (roughly 1/n)
probability.

– Step 3 (Language-specific): Finally, to argue that average-case hardness
of these languages w.r.t. any high-entropy distribution implies average-case
hardness of Gap-K, we additionally need to argue that the thresholds t0, t1
for the K-complexity problem are efficiently computable. Another language
specific argument is used to show that the number of YES-instances in these
languages can be efficiently estimated and this can be used to give the thresh-
olds.

Towards Sparse Languages: A Warm-Up We start by observing that Step
1, in fact, holds for any sparse language that is decideable, or even recursively
enumerable: If the language is sparse and recursively enumerable, then we can
simply compress an instance by writing down its index, so YES-instances need
to have small K-complexity. We additionally note that if the sparsity threshold,
S(·), is efficiently computable, the thresholds t0, t1 for the Gap-K problem also
become efficiently computable and we can also carry out Step 3 (and Step 2 is
obviously generic). Thus, relying on these observations, we can directly obtain a
weaker version of Theorem 11 by appealing to the results of [11]. Let us highlight,
however, that this version is weaker in two important ways:

1. We require the sparse language to be recursively enumerable (to deal with
Step 1).

2. We require the sparsity threshold to be efficiently computable (to deal with
Step 3).

Proving the Full Result To remove the above two restrictions, our key obser-
vation is that passing through K-complexity may not be the right approach.
Rather, we can directly redo Part 1 of IRS (i.e., decide the language using an
approximate counter) for any sparse language w.r.t. to a high-entropy distribu-
tion. Our decider proceeds as follows given an instance x:

– Just as IRS, use the approximate counter to check if the string x is rare (i.e.,
that there is a small number of random coins r for D that generate x).

– If x is deemed rare, then output NO, and otherwise output a random guess
(as opposed to outputting YES as in IRS).
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In the above approach, we still need to define the threshold for what counts as
rare. To do this, we note that we can use approximate counting to estimate the
Shannon entropy of any efficiently sampleable distribution (see Lemma 25), and
we can use the (estimated) Shannon entropy as the threshold for determining
when to deem a string rare. More precisely, we call a string x rare if it is sampled
by D with probability ≤ 2−h+3, where h is the Shannon entropy of D.

To argue that this approach works, we proceed as follows:

– We first note that any distribution D needs to output strings that are rare
(where recall, rare is defined w.r.t. the Shannon-entropy of D) with probability
1/n (See Lemma 22). (This statement is a stronger version of a result shown in
[19], and relies on essentially the same proof as used in [11] to argue that high-
entropy distributions output strings with high K-complexity with reasonable
probability.)

– We next argue that conditioned on D sampling a rare instance, our decider
succeeds with high probability. First, note that the decider always outputs
NO on rare instances (unless the approximate counter fails, which happens
with small probability so we can ignore this event). Next, by the sparsity
of the language and the Union bound, we have that the probability that D
samples a YES-instance that is rare is tiny (technically, ≤ 1/n2) (see Lemma
23). But since the probability that D samples a rare instance is a lot larger,
we have that our decider succeeds with high probability conditioned on rare
instances.

– On common instances, our decider succeeds with probability 1/2 (again, as
long as the approximate counter does not fail, which happens with tiny prob-
ability). So, we conclude that the decider succeeds with probability roughy
1/2 + 1/(2n).

This concludes that (1) implies (3) in Theorem 11. To show that (3) implies
(2) we simply note that one-way functions imply pseudo-random generators
(PRG) by [10], and by considering the language of images of the PRG (which
is extremely sparse) and the distribution that with probability 1/2 samples a
random string and with probability 1/2 samples an image of the PRG (which
has Shannon-entropy entropy 1/2n); this language is hard-on-average on this
distribution by the security of the PRG.

Concluding Corollaries for Concrete Languages We finally observe—using
standard arguments—that the languages considered in [11] (k-SAT and t-Clique)
are sparse, and so is the language of strings with small K-complexity. See Sect. 4
for more details.

In our view, these results show that for many of the corollaries of [11], K-
complexity was perhaps a mirage, and in our eyes, sparsity is the central feature.
We note that a similar phenomena actually happened also with respect to the
vein of work on “hardness magnification”, as shown in the elegant work by Chen,
Jin, Williams [3].

Musings on the Relevance of our Results The reader may wonder why
it matters to deal with non-recursively enumerable languages and with non-
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efficiently computable sparsity. After all, the natural sparse languages we con-
sider in Sect. 4 are both recursively enumerable and have efficiently computable
sparsity. In our opinion, the difference is significant. In particular, removing
these restriction opens up for the possibility of using a probabilistic argument to
define a candidate language that is hard-on-average. Probabilistic arguments are
typically used for proving lower-bounds and our hope is that our result opens
up the avenue for using such techniques.

Back to K-complexity Motivated by the above results, one may wonder
whether the efficient computability condition in the results of [11] w.r.t. K-
complexity is inherent (i.e., whether the efficient computability of the thresholds
t0, t1 in the Gap-K problem is inherent). As a result of independent interest,
we show how to strengthen the result of IRS to show that it suffices to assume
average-case hardness of approximately computing K-complexity within an addi-
tive term of ω(log n) to deduce the existence of one-way function (i.e., that hard-
ness of the search version suffices, and thus we no longer need to consider any
thresholds).3

Theorem 12 The following are equivalent:

– One-way functions exist;
– There exists some efficiently samplable distribution D such that K-complexity

is mildly hard to approximate within an additive term of ω(log n).
– There exists some efficiently samplable distribution D such that K-complexity

is hard to approximate within an additive term of n − no(1).

Let us first compare this result to IRS; the result is strictly stronger as our hard-
ness of approximating K-complexity assumption is trivially implied the deci-
sional Gap-K hardness condition considered in IRS. In fact, as a corollary of
this result (of independent interest), we get a decision-to-search reduction for
K-complexity (for efficiently computable thresholds); See Theorem 51 for more
details.

It is also worthwhile to compare it to the results of [19]; here the results is
incomparable. [19] shows that mild average-case hardness of time-bounded Kol-
mogorov complexity (even to approximate) with respect to the uniform distri-
bution characterizes OWF. We note that K-complexity (and also time-bounded
K-complexity) is easy to approximate within an additive factor of ω(log n) with
overwhelming probability with respect to the uniform distribution so it was cru-
cial for [19] that an approximate factor of O(log n) was employed. Theorem 12
thus cannot hold w.r.t. the uniform distribution, and just as the result in IRS, it
gives no indication of what the hard distribution may be—in fact, as mentioned
before, the distribution D gives the OWF.

3 As mentionned above, it appears that a similar generalization was concurrently and
independently obtained by IRS in the proceedings version [12]; see Sect. 5 for more
details.
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2 OWFs from Avg-Case Hardness of Sparse Languages

Theorem 21 Let S(·) be a function, let h(n) ≥ log S(n) + 4 log n, and let L
be a S(·)-sparse language. Assume there exists some samplable ensemble D with
entropy h(·) such that L is (1

2 − 1
4n )-HoA on D. Then, one-way functions exist.

Before proving the theorem, we will state some useful lemmas.

Lemma 22 (Implicit in [11,19]) Let Dn be a distribution over {0, 1}n with
entropy at least h. Then, with probability at least 1

n over x ← Dn, it holds that

Pr[Dn = x] ≤ 2−h+3

Proof. Assume for contradiction that with probability less than 1
n over x ← Dn,

Pr[Dn = x] ≤ 2−h+3. Let Freq denote the set of strings x ⊆ {0, 1}n such that
Pr[Dn = x] > 2−h+3, and let Rare denote the set of strings ⊆ {0, 1}n such that
Pr[Dn = x] ≤ 2−h+3. Let flag be a binary random variable such that flag = 0 if
Dn ∈ Freq and 1 otherwise (i.e. if Dn ∈ Rare). Let pFreq be the probability that
Dn ∈ Freq and pRare be the probability that Dn ∈ Rare. By the chain rule for
entropy, it holds that

H(Dn) ≤ H(Dn, flag)
= H(flag) + pFreqH(Dn | Dn ∈ Freq) + pRareH(Dn | Dn ∈ Rare)

In the RHS, the first term is at most 1 (since flag is a binary variable). The second
term is at most h−3 since |Freq| ≤ 2h−3. Recall that by assumption, we have that
pRare < 1

n ; furthermore, H(Dn | Dn ∈ Rare) ≤ n (since |Rare| ≤ 2n) and thus
the last term of the RHS is at most 1. Therefore, H(Dn) ≤ 1 + (h − 3) + 1 < h,
which is a contradiction.

Lemma 23 Let Ln ⊂ {0, 1}n be a set of strings such that |Ln| ≤ S(n). Let Dn

be a distribution over {0, 1}n. Let ε be any number satisfying ε ≤ 1
S(n)n2 . Then,

the following holds:

Pr
x←Dn

[Ln(x) = 1 ∧ Pr[Dn = x] ≤ ε] ≤ 1
n2

Proof. By taking a union bound over the at most S(n) instances in Ln, it follows
that Prx←Dn

[Ln(x) = 1 ∧ Pr[Dn = x] ≤ ε] is bounded by S(n) × 1
S(n)n2 = 1

n2 .

We will rely on the following important lemma showing that approximate
counting can be efficiently done infinitely often if one-way functions do not exist.

Lemma 24 ([11,14,15]) Assume that one-way functions do not exist. Then,
for any samplable ensemble D = {Dn}n∈N and any constant q ≥ 1, there exist a
PPT algorithm A and a constant δ > 0 such that for infinitely many n,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1 − 1
nq

where px = Pr[Dn = x].
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In addition, we observe that if approximate counting can be done, the Shan-
non entropy of any samplable distribution D can be estimated efficiently.

Lemma 25 Let D = {Dn}n∈N be a samplable ensemble, let Samp be the corre-
sponding sampler, and let m(·) be a polynomial such that m(n) is greater than
the number of random coins used by Samp(1n). Assume that there exist a PPT
algorithm A, a constant δ, and an infinite set I ⊆ N such that for all n ∈ I,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1 − 1
m(n)

where px = Pr[Dn = x]. Then, there exist a PPT algorithm est and a constant
δ′ such that for all n ∈ I, with probability at least 1 − 1

n2 ,

|est(1n) − H(Dn)| ≤ δ′

Proof. Let n ∈ I be a sufficiently large input length on which A succeeds, and
let m = m(n). Let px denote Pr[Dn = x]. Let A′ be the algorithm defined as
A′(x) = max(2−m,min(1,A(x))). A′ will have the same property that A has in
the assumption since for all x in the support of Dn, it holds that 2−m ≤ px ≤ 1.
We first claim that

|Ex←Dn
[− log A′(x)] − H(Dn)| ≤ − log δ + 1 (1)

If this holds, note that D is samplable and A′ runs in PPT, it follows that we can
empirically estimate Ex←Dn

[− log A′(x)] in polynomial time by collecting at least
polynomially many samples and taking the average. By Hoeffding’s inequality,
the difference between this estimation and the real expectation value is at most
1 with very high probability (≥ 1 − 1

n2 ).
Thus, it remains to show that inequality 1 holds. Notice that

|Ex←Dn
[− log A′(x)] − H(Dn)|

=|Ex←Dn
[− log A′(x)] − Ex←Dn

[− log px]|
≤Ex←Dn

[| − log A′(x) − (− log px)|]
= Pr

x←Dn

[A′ succeeds] · Ex←Dn
[| − log A′(x) − (− log px)| | A′ succeeds]

+ Pr
x←Dn

[A′ fails] · Ex←Dn
[| log A′(x) − (− log px)| | A′ fails]

≤Ex←Dn
[| log

px

A′(x)
| | A′ succeeds] +

1
m

· m

≤Ex←Dn
[− log δ | A′ succeeds] + 1

≤ − log δ + 1

Now we are ready to prove Theorem 21.

Proof (Proof of Theorem 21). Assume for contradiction that one-way functions
do not exist. Then, by Lemma 24, there exist a PPT algorithm A and a constant
δ such that for infinitely many n,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1 − 1
n2
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where px = Pr[Dn = x]. By Lemma 25, there exist a PPT algorithm est and a
constant δ′ such that for all n on which A succeeds, with probability at least
1 − 1

n2 ,
|est(1n) − H(Dn)| ≤ δ′ (2)

Consider some sufficiently large input length n on which A succeeds. Let the
random variable

ε = 2−est(1n)+log n

We are now ready to describe our heuristic H for L. On input x ← Dn, H
computes ε and outputs 0 if A(x) ≤ ε; otherwise, H outputs a random guess
b ∈ {0, 1}. We will show that H solves L with probability 1

2 + 1
4n on the input

length n (whenever n is sufficiently large).
Towards this, let us first assume we have access to a “perfect” approximate-

counter algorithm O such that δ · px ≤ O(x) ≤ px with probability 1 when x
sampled from Dn; let us also assume we have access to a “perfect” entropy-
estimator algorithm est∗ such that |est∗(1n) − H(Dn)| ≤ δ′ with probability 1;
consider the heuristic H′ that behaves just as H except that H′ uses O and est∗

instead of A and est.
We first show that H′ solves L with high probability on Dn. Note that

Pr
x←Dn

[H′(x) = L(x)]

= Pr
x←Dn

[H′(x) = L(x) | O(x) > ε] Pr[O(x) > ε]

+ Pr
x←Dn

[H′(x) = L(x) | O(x) ≤ ε] Pr[O(x) ≤ ε]

=
1
2

(1 − Pr[O(x) ≤ ε]) +
(

1 − Pr
x←Dn

[H′(x) �= L(x) | O(x) ≤ ε]
)

Pr[O(x) ≤ ε]

=
1
2

(1 − Pr[O(x) ≤ ε]) +
(

1 − Pr
x←Dn

[L(x) = 1 | O(x) ≤ ε]
)

Pr[O(x) ≤ ε]

=
1
2

+
1
2

Pr[O(x) ≤ ε] − Pr
x←Dn

[L(x) = 1 | O(x) ≤ ε] Pr[O(x) ≤ ε]

=
1
2

+
1
2

Pr[O(x) ≤ ε] − Pr
x←Dn

[L(x) = 1 ∧ O(x) ≤ ε]

Note that px ≤ ε implies O(x) ≤ ε (since O is a prefect approximate-counter).
In addition, for sufficiently large n, px ≤ 2−H(Dn)+3 implies px ≤ ε since

2−H(Dn)+3 ≤ 2−est∗(1n)+δ′+3 ≤ 2−est∗(1n)+log n = ε.

Thus,

Pr[O(x) ≤ ε] ≥ Pr
x←Dn

[px ≤ ε] ≥ Pr
x←Dn

[px ≤ 2−H(Dn)+3] ≥ 1
n

where the last inequality follows from by Lemma 22.



On One-Way Functions and Sparse Languages 229

Next, observe that ε/δ ≤ 1
S(n)n2 (for sufficiently large n). This follows since

if n is sufficiently large, we have:

ε = 2−est∗(1n)+log n ≤2−H(Dn)+δ′+log n = 2−H(Dn)+log n · 2δ′

≤2−H(Dn)+log n · δn = 2−H(Dn)+2 log nδ

≤2−h(n)+2 log nδ ≤ 2− log S(n)−4 log n+2 log nδ

=
δ

S(n)n2

Finally, since px ≤ O(x)/δ holds with probability 1, it follows that

Pr
x←Dn

[L(x) = 1 ∧ O(x) ≤ ε] ≤ Pr
x←Dn

[L(x) = 1 ∧ px ≤ ε/δ] ≤ 1
n2

where the last inequality follows from Lemma 23 and the fact that ε/δ ≤ 1
S(n)n2 .

Thus, we conclude that

Pr
x←Dn

[H′(x) = L(x)] ≥ 1
2

+
1
2

· 1
n

− 1
n2

We now turn to analyzing H as opposed to H′ and note that H and H′

work identically the same except when either A or est “fail”. Observe that the
probability that A(x) �= O(x) on x sampled from Dn is at most 1

n2 . Additionally,
the probability that |est(1n) − H(Dn)| > δ′ is at most 1

n2 . Thus, by a union
bound, we have that

Pr
x←Dn

[H(x) = L(x)] ≥ 1
2

+
1
2n

− 3
n2

≥ 1
2

+
1
4n

on infinitely many n ∈ N, which is a contradiction.

3 Avg-Case Hardness of Sparse Languages from OWFs

Theorem 31 Assume the existence of one-way functions. Let S(n) = 2n/10 and
h(n) = n/2. Then there exists a S(·)-sparse language L ∈ NP and a samplable
ensemble D with entropy h(·) such that L is HoA on D.

Proof. Assume the existence of OWFs. By [10], there exists some pseudorandom
generator g : {0, 1}n/10 → {0, 1}n. Consider the NP-language L = {g(s) | s ∈
{0, 1}∗}. Note that L is S(·)-sparse for S(n) = 2n/10. Let D = {Dn}n∈N be an
ensemble such that Dn samples from g(Un/10) with probability 1/2 and from
Un with probability 1/2. Note that D has entropy at least h(n) = n/2 (since
with probability 1/2, we sample from Un). Finally, it follows from the pseu-
dorandomness property of g (using a standard argument) that L is HoA over
D.
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4 Corollaries

In this section, we present some direct corollaries that follow by applying our
main theorem to known sparse languages. For convenience of the reader, we
recall the (standard) proofs that these languages are sparse.

4.1 Kolmogorov Complexity

The Kolmogorov complexity (K-complexity) of a string x ∈ {0, 1}∗ is defined to
be the length of the shortest program Π that outputs the string x. More formally,
let U be a fixed Universal Turing machine, for any string x ∈ {0, 1}∗, we define
K(x) = minΠ∈{0,1}∗{|Π| : U(Π) = x}. Let MINK[s] denote the language of
strings x having the property that K(x) ≤ s(|x|). We observes that MINK[s] is
a sparse language when s(n) is slightly below n.

Lemma 41 For all n ∈ N, |MINK[s] ∩ {0, 1}n| ≤ 2s(n)+1.

Proof. The lemma directly follows from the fact that the number of strings with
length ≤ s(n) is at most 2s(n)+1.

Combining Lemma 41, we get:

Corollary 42 Let s(n) ≤ n−4 log n−1 be a function. Assume that there exists
some samplable ensemble D with entropy h(n) ≥ s(n) + 4 log n + 1 such that
MINK[s] is (1

2 − 1
4n )-HoA on D. Then, one-way functions exist.

Proof. By Lemma 41, the number of n-bit YES instances is at most S(n) =
2s(n)+1. Since Dn has entropy h(n) ≥ s(n) + 1 + 4 log n, the corollary follows
directly from Theorem 11.

4.2 k-SAT

Let k, c be two positive integers. The language k-SAT(m, cm) is defined to consist
of all satisfiable k-CNF formulas on m variables with cm clauses. We recall the
well-known fact that k-SAT(m, cm) is a sparse language when c ≥ 2k+1.

Lemma 43 The number of satisfiable k-CNF formulas on m variables with cm
clauses is at most 2m

(
(2k − 1)

(
m
k

))cm, and the number of all such k-CNF for-
mulas is

(
(2k)

(
m
k

))cm.

Proof. We first show that there are ((2k)
(
m
k

)
)cm k-CNF formulas on m variables

with cm clauses. Note that are 2k
(
m
k

)
choices for a single k-clause; therefore, the

number of cm k-clauses is ((2k)
(
m
k

)
)cm.

We then show that there are at most 2m((2k − 1)
(
m
k

)
)cm satisfiable k-CNF

formulas on m variables with cm clauses. Consider any possible assignment x;
the number of k-clauses that is satisfied by x is at most (2k − 1)

(
m
k

)
since given

the choice of k variables, there are at most 2k−1 possible choices of the polarities.
Finally, since there are cm such k-clauses with m variables, we have that the
total number of satisfiable formulas is at most 2m((2k − 1)

(
m
k

)
)cm
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To consider average-case hardness of this problem, we need to have a way to
encode formulas as strings. We use the following standard encoding scheme for k-
SAT from [11]: a m-variable cm-clause k-CNF is represented by using n(m, k, c) =
cm(k�log m + k) bits to describe a sequence of cm clauses (and here n denotes
the length of the input bit string encoding the instance). In each clause, we
specify k literals one-by-one, and each of them takes �log m bits to specify the
index of a variable and 1 bit to fix the polarity. When n is not of the form
n(m, k, c), for an input of length n, we ignore as few bits as possible in the end
of the input such that the prefix of the input is of length n(m, k, c) for some
m. Following [11], let the entropy deficiency of a distribution Dn over n bits
denote the difference between n and H(Dn). The following corollary implies [11,
Theorem 4, Term 1].

Corollary 44 Let k, c be two integers such that c ≥ 2k+2. Let m = m(n) be
a polynomial. Assume that there exists some samplable ensemble D = {Dn}n∈N

with entropy deficiency at most cm(n)/2k+1 distributed over k-CNF formulas on
m(n) variables and cm(n) clauses such that k-SAT is (1

2 − 1
4n )-HoA on D. Then,

one-way functions exist.

Proof. Recall that k-CNF formulas are represented by binary strings using
the standard encoding scheme. Let n′ = n(m(n), k, c) (be the length of the
input without padding); by the encoding scheme, it follows that every m(n)-
variable cm(n)-clause k-CNF formula will be encoded by 2n−n′

n-bit strings. By
Lemma 43, it follows that n′ is at least

log
((

(2k)
(

m

k

))cm)
= cm log 2k + cm log

(
m

k

)

Since Dn has entropy deficiency at most cm/2k+1, it follows that Dn has entropy
lower bounded by:

n′ + (n − n′) − cm/2k+1 ≥ cm

(
log 2k − 1

2k+1
+ log

(
m

k

))
+ (n − n′)

By Lemma 43, the number of n-bit YES instances is at most

S(n) = 2m

(
(2k − 1)

(
m

k

))cm

× 2n−n′
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It follows that

H(Dn) − log S(n) ≥cm

(
log 2k − 1

2k+1
+ log

(
m

k

))
+ (n − n′)

− log
(

2m

(
(2k − 1)

(
m

k

))cm

× 2n−n′
)

=m(c log 2k − c log(2k − 1) − c

2k+1
− 1)

≥m(
c

2k
− c

2k+1
− 1)

≥m

≥4 log n.

where the second inequality follows from the standard inequality that log x −
log(x − 1) ≥ 1

x for all x ≥ 2, the third one from the fact that, by assumption,
c ≥ 2k+2, and the fourth one inequality follows from the fact that due to the
encoding scheme, m ≥ Ω(

√
n).

4.3 t-Clique

Let t : N → N be a function and let t-Clique(m) be the set of graphs on m
vertices having a clique of size at least t(m). We recall the well-known fact that
t-Clique(m) is sparse when t(·) is large enough.

Lemma 45 The number of m-vertex graphs with at least a t-size clique is at
most

(
m
t

)
2(m2 )−(t

2). However, the number of m-vertex graphs is 2(m2 ).

Proof. There are
(
m
2

)
edges in a m-vertex graph, and thus the number of possible

graphs is 2(m2 ). There are
(
m
t

)
choices of cliques in a graph, and after fixing a

clique, there are
(
m
2

)−(
t
2

)
edges in the rest of the graph and therefore the number

of graphs with at least 1 clique is at most
(
m
t

)
2(m2 )−(t

2).

We use the standard encoding scheme for t-Clique from [11]. A m-vertex
graph is encoded by a (n = n(m) =

(
m
2

)
)-bit string where the i-th bit is 1 iff

the i-th edge appears in the graph. For input lengths n that are not of the form
n(m), we ignore as few bits as possible at the end of the input such that the
prefix of the input is of length n(m) for some m.

Corollary 46 Let m(n), t(n) ∈ ω(log m) be two polynomials. Assume that there
exists some samplable ensemble D = {Dn}n∈N with entropy deficiency at most
0.99

(
t(n)
2

)
distributed over m(n)-vertex graphs such that t-Clique(m) is (1

2 − 1
4n )-

HoA on D. Then, one-way functions exist.

Proof. Recall that graphs are represented by binary strings using the standard
encoding scheme. Let n′ = n(m(n)) (be the length of the input without padding);
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by the encoding scheme, it follows that every m(n)-vertex graph will be encoded
by at least 2n−n′

n-bit strings. By Lemma 45, it follows that n′ is at least

log 2(m2 ) =
(

m

2

)

Since Dn has entropy deficiency 0.99
(

t
2

)
, it follows that Dn has entropy lower

bounded by:

n′ + (n − n′) − 0.99
(

t

2

)
≥

(
m

2

)
− 0.99

(
t

2

)
+ (n − n′)

By Lemma 45, the number of n-bit YES instances is at most

S(n) =
(

m

t

)
2(m2 )−(t

2) × 2n−n′

It follows that

H(Dn) − log S(n) ≥
(

m

2

)
− 0.99

(
t

2

)
+ (n − n′)

− log
((

m

t

)
2(m2 )−(t

2) × 2n−n′
)

≥
(

m

2

)
− 0.99

(
t

2

)
− log

(
m

t

)
−

((
m

2

)
−

(
t

2

))

≥
(

t

2

)
− 0.99

(
t

2

)
− t log m

≥4 log n

since t(n) = ω(log m).

5 OWF from Hardness of Approximating K-Complexity

We turn to showing how to (slightly) generalize the result in [11] with respect to
K-complexity, and show that the hardness of approximating K-complexity (even
with respect to unknown thresholds) is equivalent to the existence of OWFs. We
refer the reader to Sect. 4.1 for a formal definition of the notion of K-complexity.

It appears that a similar generalization was concurrently and independently
obtained by IRS in the proceedings version [12] for a general class of complexity
measures satisfying a so-called “coding theorem”—see Theorem 2.2 in [12]—but
their full version has not appeared yet as far as we can tell. The corollary of
this Theorem 2.2 to K-complexity is still stated w.r.t. a gap problem with a
computable threshold.

We start by recalling what it means for a function to be hard on average to
approximate. We say that a function f : {0, 1}∗ → N is α(·) hard-on-average (α-
HoA) to β(·)-approximate on an ensemble D = {Dn}n∈N if for all probabilistic
polynomial-time heuristics H, for all sufficiently large n ∈ N,

Pr[x ← Dn : |H(x) − f(x)| ≤ β(n)] < 1 − α(n).
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We simply say that f is mildly hard-on-average (mildly HoA) to approximate
on D if there exists a polynomial p(·) such that f is 1

p -HoA to approximate;
We say that f is hard-on-average (HoA) to approximate on D if for every c,
α(n) = 1

2 − 1
nc , L is α-HoA to approximate.

The hardness notion above is defined with respect to the search version of
approximating the function f and when considering K-complexity, it asserts
that approximating the value of the K-complexity is hard. We can also con-
sider its decisional version, parametrized by two efficiently computable thresh-
olds t0(·), t1(·), where we aim at deciding whether the input string x is of K-
complexity below t0(|x|) or above t1(|x|). Let GapK[t0, t1] be a promise problem
where YES-instances are strings x ∈ ΠYES such that K(x) ≤ t0(|x|), and NO-
instances are strings x ∈ ΠNO such that K(x) ≥ t1(|x|). We say that GapK[t0, t1]
is mildly hard on average (mildly HoA) on an ensemble D = {Dn}n∈N if there
exists a polynomial p(·) such that for all probabilistic polynomial-time heuristics
H, for all sufficiently large n ∈ N,

Pr[x ← Dn : (x ∈ ΠYES ∧ H(x) = 0) ∨ (x ∈ ΠNO ∧ H(x) = 1)] ≥ 1/p(n).

The result in [11] showed that the existence of a samplable distribution D and
efficiently computable t0, t1, t1(n) − t0(n) ∈ ω(log n) such that GapK[t0, t1] is
mildly HoA on D is equivalent to the existence of OWFs. We show in the fol-
lowing Theorem that it suffices to assume hardness with respect to the search
version (with an additive factor ω(log n)) to obtain OWFs, therefore giving a
search to decision reduction for this problem by going through the notion of
OWFs.

We are not aware of any “direct” way of showing such a decision-to-search
reduction. While one direction is trivial (hardness of decision—with respect to
efficiently computable thresholds—to hardness of search), it is not clear how to
show the converse direction.4

Theorem 51 (Theorem 12, restated) The following are equivalent:

1. One-way functions exist;
2. There exists some efficiently samplable distribution such that K-complexity is

mildly hard to approximate within an additive term of ω(log n).
3. There exists some efficiently samplable distribution such that K-complexity is

hard to approximate within an additive term of n − no(1).
4. There exist some efficiently samplable distribution and efficiently computable

thresholds t0, t1, t1(n)− t0(n) = ω(log n) such that GapK[t0, t1] is mildly HoA.
4 The naive approach to try to prove such a result would be to simply try running

the decision heuristic on different thresholds. There are several problems with this
approach. First, for every threshold t = (t0, t1), there may exist a different heuristic
Ht that solves the decision problem for that threshold, so it’s not clear how to get
a uniform search heuristic. Next, its not even clear how to define efficient threshold
functions as we require n/Gap thresholds to approximate within an additive term
of Gap. Finally, it is not a-prior clear how to use a Gap-K heuristic to approximate
K given that the Gap-K heuristic only works on average.
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Proof (of Theorem 12). (2) ⇒ (1) follows from Theorem 52 (stated and proved
below). The implications (1) ⇒ (3) and (1) ⇒ (4) essentially follow from the
argument proving Theorem 31 (and see also [11]). (3) ⇒ (2) trivially holds. (4)
⇒ (2) follows from the following argument. Assume that there exists a heuristic
H for approximating K-complexity within (t1 − t0)/2. To solve GapK[t0, t1] on
input x, we simply output 1 if H(x) ≤ t0(|x|)+ (t1(|x|)− t0(|x|))/2. Note that if
H succeeds on x (with some probability), our algorithm also succeeds in solving
GapK[t0, t1] on x (with the same probability). This concludes our proof.

Theorem 52 For any constant γ ≥ 3, there exists a polynomial p such that
if there exists a samplable ensemble D on which K-complexity is 1

p -HoA to
(γ log n)-approximate, then OWFs exist.

Proof. Consider some fixed constant γ ≥ 3 and let p(n) = nγ−2. We assume
for contradiction that OWFs do not exist. Then, by Lemma 24, there exist a
constant δ and an approximate counter A for D = {Dn} with an (multiplicative)
approximate factor δ and an error probability ≤ 1

2p(n) . We will use A to compute
the K-complexity of strings sampled by D.

On input x ← Dn, our heuristic H simply outputs −�log A(x)� as (our
estimate of) K(x). H runs in polynomial time since A is a PPT machine. We
next show that H(x) approximates K(x) with probability at least 1− 1

p(n) (over
x ∼ Dn). Fix some input length n on which A succeeds (and there are infinitely
many such input lengths). Let us first assume that A is a “perfect” approximate
counter and δ · px ≤ A(x) ≤ px with probability 1 (where px is defined to be
Pr[Dn = x]). The following two claims will show that H approximate K with
high probability.

Claim 1 K(x) ≤ H(x) + γ log n holds with probability 1.

Proof. We will show that K(x) ≤ −�log px�+2 log(n)+O(1) with probability 1.
Note that H(x) = −�log A(x)� ≥ −�log px� (due to the correctness of A) and γ ≥
3, the claim follows. For any string x ∈ {0, 1}n, let S = {y ∈ {0, 1}n : −�log py� =
−�log px�}. Note that for each y ∈ S, it holds that Pr[Dn = y] = py ≥ 2�log px�.
So S is of size at most 2−�log px�. Membership of S can be checked by using an
exponential time algorithm computing py (enumerating all randomness used in
Dn) with the values −�log px� and n. Therefore, we can compress each element
in S (including x) into −�log px� + 2 log(n) + O(1) bits by hardwiring its index
and running an exhaustive search with the membership checker, which shows
that K(x) ≤ −�log px� + 2 log(n) + O(1).

Claim 2 K(x) ≥ H(x) − γ log n holds with probability at least 1 − 1
2p(n)
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Proof. Towards this, we show that H(x) > K(x) + γ log n with probability at
most 1

2p(n) . This follows from a union bound.

Pr
x←Dn

[H(x) > K(x) + γ log n]

=
n+O(1)∑

w=1

Pr
x←Dn

[K(x) = w ∧ H(x) > w + γ log n]

≤
n+O(1)∑

w=1

Pr
x←Dn

[K(x) = w ∧ Pr[Dn = x] <
1
δ

· 2−w−γ log n]

≤
n+O(1)∑

w=1

2w · 1
δ

· 2−w−γ log n

≤ 1
2p(n)

.

where the second to last line follows from a union bound.

Finally, we note that A is not necessarily a perfect approximate counter and
A fails with probability 1

2p(n) . By a union bound, it follows that

Pr
x←Dn

[|H(x) − K(x)| ≤ γ log n] ≥ 1 − 1
2p(n)

− 1
2p(n)

≥ 1 − 1
p(n)

on infinitely many n.
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