
Rogue-Instance Security for Batch
Knowledge Proofs

Gil Segev1(B) , Amit Sharabi2, and Eylon Yogev2

1 School of Computer Science and Engineering, Hebrew University of Jerusalem,
91904 Jerusalem, Israel
segev@cs.huji.ac.il

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
amit.sharabi1@live.biu.ac.il, eylon.yogev@biu.ac.il

Abstract. We propose a new notion of knowledge soundness, denoted
rogue-instance security, for interactive and non-interactive batch knowl-
edge proofs. Our notion, inspired by the standard notion of rogue-key
security for multi-signature schemes, considers a setting in which a mali-
cious prover is provided with an honestly-generated instance x1, and may
then be able to maliciously generate related “rogue” instances x2, . . . ,xk

for convincing a verifier in a batch knowledge proof of corresponding wit-
nesses w1, . . . ,wk for all k instances – without actually having knowledge
of the witness w1 corresponding to the honestly-generated instance. This
setting provides a powerful security guarantee for batch versions of a wide
variety of practically-relevant protocols, such as Schnorr’s protocol and
similar ones.

We present a highly-efficient generic construction of a batch proof-
of-knowledge applicable to any algebraic Sigma protocols. The algebraic
property refers to a homomorphic structure of the underlying group and
includes Schnorr’s protocol and others. We provide an almost tight secu-
rity analysis for our generic batch protocol, which significantly improves
upon the previously known security bounds even for the specific case of
batch Schnorr protocol. We extend our results beyond algebraic Sigma
protocols. We analyze the rogue-instance security of a general batch pro-
tocol with plus-one special soundness (a generalization of standard spe-
cial soundness) and achieve improved security bounds in the generic case.

Our results use a particular type of high-moment assumptions intro-
duced by Rotem and Segev (CRYPTO 2021). These assumptions con-
sider the hardness of a relation against algorithms with bounded expected

Gil Segev is supported by the Israel Science Foundation (Grant No. 1336/22) and
by the European Union (ERC, FTRC, 101043243). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.
Amit Sharabi is sponsored by the Israel Science Foundation (Grant No. 2439/20).
Eylon Yogev is supported by an Alon Young Faculty Fellowship, by the Israel Science
Foundation (Grant No. 2302/22), and by the BIU Center for Research in Applied Cryp-
tography and Cyber Security in conjunction with the Israel National Cyber Bureau in
the Prime Minister’s Office.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 121–157, 2023.
https://doi.org/10.1007/978-3-031-48615-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_5&domain=pdf
http://orcid.org/0000-0002-8073-579X
http://orcid.org/0000-0001-8599-2472
https://doi.org/10.1007/978-3-031-48615-9_5

122 G. Segev et al.

running time. Although Rotem and Segev introduced these assumptions,
they did not provide evidence to support their hardness. To substantiate
and validate the high-moment assumptions, we present a new framework
for assessing the concrete hardness of cryptographic problems against
oracle algorithms with bounded expected runtime. Our framework cov-
ers generic models, including the generic group model, random oracle
model, and more. Utilizing our framework, we achieve the first hardness
result for these high-moment assumptions. In particular, we establish
the second-moment hardness of the discrete-logarithm problem against
expected-time algorithms in the generic group model.

1 Introduction

A zero-knowledge proof-of-knowledge protocol is a powerful cryptographic tool
with diverse applications. It enables a prover to convincingly demonstrate to a
verifier, who holds an instance x, that it possesses knowledge of a valid wit-
ness w for x. The fundamental power of such protocols lies in the ability to
extract a witness from a given prover, a property that varies in its precise for-
mulation across different protocols. Proofs of knowledge play a pivotal role in
cryptographic protocols, both from a theoretical standpoint and in practical
implementations.

One notable example is Schnorr’s protocol [31,32], which serves as a zero-
knowledge proof-of-knowledge for the knowledge of the discrete-logarithm of a
group element. In its interactive form, this protocol offers an efficient identi-
fication scheme, while in its non-interactive form, it translates into a signa-
ture scheme via the Fiat-Shamir transformation. The widespread influence of
the Schnorr identification and signature schemes stems from their conceptual
simplicity and practical efficiency. Another compelling example is a proof-of-
knowledge for a Pedersen commitment or hash function, which is the product of
two Schnorr instances. In this scenario, the prover demonstrates the ability to
“open” the commitment without actually revealing its contents, thus maintain-
ing the privacy of the committer [27]. The wide-ranging applicability of these
protocols within the field of cryptography has garnered substantial attention and
interest in a tight analysis of their security bounds.

Extraction from Special Soundness. Both of the examples presented above exem-
plify Sigma protocols, which are three-move protocols that exhibit the unique
soundness notion called “special soundness”. This property plays a vital role
in the construction of an extractor. Specifically, the property states that it is
possible to extract a witness when provided with two accepting transcripts that
share the same first message but differ in the second message. Consequently, to
establish the protocol’s security based on the hardness of the underlying rela-
tion, the extractor must successfully extract two such valid transcripts from a
potentially malicious prover.

To achieve this goal, existing approaches employ a strategy of executing
the protocol multiple times. The analysis of these approaches draws upon the

Rogue-Instance Security for Batch Knowledge Proofs 123

classic “forking lemma” introduced by Pointcheval and Stern [28] (see also [1,
7,10,21]). These different approaches showcase a trade-off between the success
probability and the running time of the extractor. To provide a concrete example,
let us examine the Schnorr identification scheme and signature scheme, which
derive their security from the hardness of the discrete-logarithm problem. For
the Schnorr identification scheme, suppose we have a malicious prover who runs
in time t and succeeds in impersonating with probability ε. We can transform
this malicious prover into a discrete-logarithm algorithm that runs in time 2t and
succeeds with probability ε2. Similarly, for the Schnorr signature scheme, suppose
the attacker additionally performs at most q queries to the random oracle. We
can transform this attacker into a discrete-logarithm algorithm that runs in time
2t and succeeds with probability ε2/q. For any group of order p, where generic
hardness of discrete-log is believed to hold [33], this leads to the bound ε ≤
(t2/p)1/2 for the Schnorr identification scheme, and a bound of ε ≤ (q · t2/p)1/2

for the Schnorr signature scheme. Other trade-offs that were established lead
to the same bound [5,19]. In idealized models, such as the generic group model
[22,33] and the algebraic group model [2,4,14,15,25,29], it is possible to achieve
an optimal bound of ε ≤ t2/p (see [15,33]).

High-Moment Forking Lemma. The extractor runs the given adversary for the
second time, only if the first time succeeded. Thus, it is convenient to analyze
the expected running-time of the extractor, rather than its strict running-time
[20]. In this case, the result is an algorithm for solving discrete-logarithm with
a bound on its expected running time. Recently, Segev and Rotem [30] have
leveraged this type of analysis to derive tighter bounds for Schnorr’s protocols
(and similar Sigma protocols). Towards this end, they established a hardness of
discrete-logarithm for excepted time algorithms.

In simple terms, their second-moment assumption states that the success
probability ε of any algorithm A solving discrete-logarithm for a group of order
p satisfies ε ≤ E

[
T 2

A

]
/p, where TA denotes the random variable corresponding to

A’s running time.1 Under this assumption, Segev and Rotem were able to derive
the bound of ε ≤ (t2/p)2/3, which is the best-known bound for Schnorr in the
standard model. Achieving the optimal bound in the standard model remains
an open problem that continues to drive ongoing research and exploration.

Batch Protocols. The Schnorr protocol and the Pedersen protocol both admit
efficient batch versions [16]. A batch protocol is given k instances, x1, . . . ,xk, and
allows to prove the knowledge of all corresponding k witnesses with a commu-
nication complexity that is approximately the same as that of a single proof of
knowledge. The efficiency gain provided by batch protocols is a highly desirable
property in many domains. In the context of blockchain, batching is a widely
adopted practice aimed at reducing costs and optimizing resource utilization, the
instances are usually public-keys and the witnesses are private-keys. By grouping

1 They originally stated their assumption for a general d-moment but, in this paper,
we focus on the second-moment.

124 G. Segev et al.

multiple transactions or operations into a single batch, the associated overhead,
such as communication and computation costs (which affect the transaction
fees), can be significantly reduced.

However, the security analysis of batch protocols raises several concerns.
The security bounds vary depending on how the instances are chosen in the
security game (a modeling issue that does not appear with a single instance).
For example, in a permissionless blockchain network, the attacker can choose the
instances (its public-keys) adaptively as a function of existing instances sampled
by honest parties. In such a case, the security reduction cannot assume hardness
of the instances chosen by the adversary. These types of security games are
known in the context of multi-signatures and are called rogue-key attacks (see
[6,7,9,23,26] and the many references therein).

The special soundness property extends to the multiple instance case. In
this setting, the extractor must extract k +1 valid transcripts from which it can
compute all k corresponding witnesses (actually, it needs all k+1 transcripts even
if it aims to compute a single witness). This is a generalization of the standard
special soundness property, which we call plus-one special soundness. However,
deriving tight security bounds for the batch setting is even more challenging than
the single case. A straightforward extension of the single extractor to the batch
version would run the malicious prover k +1 times and would yield an extractor
that runs in approximately (k + 1) · t time, but with a success probability of
εk+1, i.e., an exponential decay in the number of instances. This is indeed the
case in the batch Schnorr protocol given in [16]. Furthermore, the tighter bound
of Segev and Rotem [30] does not seem to extend to the multiple instance case
(regardless of the precise security game definition). This raises the question of
how to derive tight security bounds for batch protocols.

1.1 Our Contributions

We give several contributions towards a better understanding of batch proof-of-
knowledge protocols.

Rogue-Instance Soundness. Our first contribution is a strong security notion
for batch protocols, denoted rogue-instance security, for interactive and non-
interactive batch knowledge proofs. Our notion is inspired by the standard notion
of rogue-key security for multi-signature schemes. We consider a setting in which
a malicious prover is provided with an honestly-generated instance x1 (accord-
ing to some distribution), and is then allowed to maliciously generate related
“rogue” instances x2, . . . ,xk for convincing a verifier in a batch knowledge proof
of corresponding witnesses w1, . . . ,wk for all k instances. This is done without
the malicious prover having knowledge of the witness w1 corresponding to the
honestly-generated instance. This setting provides a powerful security guarantee
for batch versions of numerous practical and relevant protocols, such as Schnorr’s
protocol and similar ones. See Sect. 4 for the precise definition.

Rogue-Instance Security for Batch Knowledge Proofs 125

Batching Algebraic Sigma Protocols We construct batch protocols for a large
family of Sigma protocols and provide a relatively tight analysis. Our construc-
tion works for algebraic Sigma protocols, which captures the proof-of-knowledge
protocol for discrete-logarithm (Schnorr) [31,32], Pedersen commitment [27],
Guillou-Quisquater identification scheme [17] and more. The algebraic property
refers to a homomorphic structure of the underlying group. Algebraic Sigma
protocols consist of an algebraic one-way function f such that the prover aims
to prove knowledge of a preimage under f . The notion of algebraic one-way
function introduced by Catalano et al. [11] which relates to the notion of group-
homomorphic one-way generators introduced by Cramer and Damg̊ard [13]. We
analyze the security of our construction in the rogue-instance game and achieve
the bound ε ≤ (t2/p)2/3 (for groups of order p) which matches the state-of-the-
art bound of Segev and Rotem [30] for a single instance. In particular, our bound
does not depend on the number of rogue instances. In more general form, our
theorem is as follows.

Theorem 1 (Informal). Let Π be an algebraic Sigma protocol for a relation
R ⊆ X × W. If R is second-moment hard with respect to a distribution D, then
R has a batch protocol with rogue soundness error ε(t) ≤ (t2/|W|)2/3.

In particular, our theorem gives us tighter security bounds for the batch
version of Schnorr and Pederson protocols. Specifically, the batch version of
Schnorr’s protocols immediately implies the same bounds for the corresponding
batch identification scheme.

Corollary 1. Assuming that the discrete-logarithm problem is second-moment
hard, any adversary that runs in time t wins in the rogue soundness game for
the batch Schnorr and Okamoto identification schemes with probability at most
(t2/p)2/3, where p is the order of the underlying group.

We extend our results for general batch Sigma protocols. We analyze the
rogue-instance security of a general batch protocol with plus-one special sound-
ness and achieve the bound of ε ≤ (k2 · t2/p)1/2, which is inferior to our bound
for the specific case of algebraic protocols, but superior to previously known
bounds.

Theorem 2 (Informal). Let Π be k-batch Sigma protocol for a relation R ⊆
X ×W with plus-one special soundness. If R is second-moment hard with respect
to a distribution D, then Π has rogue soundness error ε(t) ≤ (k2 · t2/|W|)1/2.

In Table 1 we exemplify the concrete improvements we get in Theorem 1 and
Theorem 2 for various parameter settings.

Non-interactive Proof-of-Knowledge. We construct non-interactive batch argu-
ments from algebraic Sigma protocols by applying the Fiat-Shamir paradigm to
the batch Sigma protocols. Given Theorem 1, the generic analysis of the Fiat-
Shamir yields a bound on the rogue-instance game of ε ≤ q · (t2/p)2/3 when
considering malicious prover who runs in time t and performs at most q queries

126 G. Segev et al.

Table 1. A comparison of the security guarantees for the batch Schnorr scheme pro-
vided by [16] compared to our bounds given in Theorem 2 and in Theorem 1.

Attacker’s Security Batch Bound of Generic bound Algebraic bound

running time parameter parameter [16] Theorem 2 Theorem 1

t λ k (t2/p)1/(k+1) (k2 · t2/p)1/2 (t2/p)2/3

264 256 2 2−42.67 2−63 2−85.33

264 256 4 2−25.6 2−62 2−85.33

280 256 6 2−13.71 2−45.42 2−64

280 512 8 2−39.11 2−173 2−234.66

2100 512 16 2−18.35 2−152 2−208

2100 512 24 2−12.48 2−151.42 2−208

2128 512 24 2−10.24 2−123.42 2−170.66

2128 512 32 2−7.76 2−123 2−170.66

to the random oracle. However, direct analysis of the rogue-instance game yields
a bound of ε ≤ (kq · t2/p)2/3 which is again matches the bound of Rotem and
Segev [30], for a single instance. Informally, we show the following.

Theorem 3 (Informal). Let Π be an algebraic Sigma protocol for a relation
R ⊆ X × W. If R is second-moment hard with respect to a distribution D,
then R has a non-interactive batch argument with rogue soundness error ε(t) ≤
(kq · t2/|W|)2/3.

Establishing Hardness for High-Moment Assumptions. Theorem 1 and Theo-
rem 3 rely on the second-moment-hardness of a relation, an assumption intro-
duced in [30]. While the use of these assumptions is beneficial, there is no evi-
dence to support their hardness. To remedy the situation, we present a new
framework that allows to establish bounds for oracle-algorithms with expected
running time. Utilizing our framework, we achieve the first hardness result for
these high-moment assumptions, relative to a oracle. The general statement of
our framework is somewhat technical and is given in Theorem 2. Thus, we present
two main implications of our framework, which are easier to state.

First, we establish the second-moment hardness of the discrete-logarithm
problem against expected-time algorithms in the generic group model. Shoup [33]
analyzed the generic hardness of the discrete-logarithm problem with respect to
strict time algorithms. He showed that any generic t-time algorithm that solves
the discrete-logarithm problem has success probability at most ε ≤ t2/p. Apply-
ing our framework yields a bound of ε ≤ E

[
T 2

A

]
/p when considering unbounded

algorithms where TA denotes the random variable indicating the algorithm’s
running time.

Theorem 4 (second-moment hardness in generic group model; Infor-
mal). For any query algorithm A, let TA = TA(λ) be a random variable indi-
cating the number of queries performed by A until he stops. For every algorithm

Rogue-Instance Security for Batch Knowledge Proofs 127

A that solves the discrete-logarithm problem in a generic group of prime order p
and succeeds with probability εA it holds that

εA ≤ E
[
T 2

A

]

p
.

Our framework is inspired by [19] which showed a generic framework to
prove bounds with respect to expected-time algorithms when considering only
the first-moment of the expected running time. Their result proves the first-
moment assumption (Definition 1), but cannot be used to derive second-moment
hardness. Moreover, our framework achieves tighter bounds than theirs and is
arguably easier to use (see Corollary 3).

Second, we derive expected-time bounds for SNARKs in the random oracle
model (ROM). We focus on the construction of Micali [24], which compiles a PCP
to a SNARK in the ROM. It is known that if the underlying PCP has soundness
error εPCP, then every malicious prover that makes at most t-queries to the
random oracle can convince the verifier of a false statement with probability at
most ε ≤ t · εPCP + 3

2 · t2

2λ (see analysis in [8]). Using our framework, we derive
the following bound.

Theorem 5 (second-moment hardness of SNARKs; Informal) Suppose
the Micali construction is instantiated for a relation R with a PCP with error
εPCP, and random oracle with output length λ. Then, for every x /∈ L(R) and
every malicious argument prover P̃ that performs TP̃ oracle queries (as a random
variable) and outputs a proof π̃ it holds that

Pr
[Vf (x, π̃) = 1

] ≤ E
[
TP̃
] · εPCP + 4 ·

E

[
T 2

P̃

]

2λ
.

In Sect. 2.6, we further discuss the type of cryptographic problems relative
to an oracle captured by our framework. A formal treatment of the framework,
including definitions, statements, and further examples, is given in Sect. 6.1.

2 Our Techniques

We summarize the main ideas behind our results.

– In Sect. 2.1 we discuss the computational assumptions we consider in this
work.

– In Sect. 2.2 we define batch Sigma protocols and extend the notion of rogue-
key security for multi-signature, to rogue-instance security of batch proof-of-
knowledge.

– In Sect. 2.3 we first show a general compiler from a large family of Σ-protocols
to a batch Σ-protocol. Then, we show the high-level proof of the rogue-
security of batch Σ-protocols constructed via the general compiler.

– In Sect. 2.4 we start by showing how to construct non-interactive batch argu-
ments using the general compiler, then, we bound their rogue-security.

128 G. Segev et al.

– In Sect. 2.5 we show how to apply our techniques on a general batch Σ-
protocol and derive a concrete bound on their rogue-soundness error.

– In Sect. 2.6 we describe our framework for establishing high-moment hardness
assumptions.

2.1 High-Moment Hardness

We begin by describing the computational assumptions that underlie our work.
Let R ⊆ X × W be a relation, where X is the set of instances and W is the set
of witnesses. We note that the relation (and in fact all algorithms that will be
described later on) are with respect to a setup algorithm that produces public
parameters. For the simplicity of this high-level overview, we omit the public
parameters (where formal definitions take them into account).

We consider distribution D over instance-witness pairs such that (x,w) ∈ R.
For example, the distribution can sample a discrete-logarithm challenge. Typi-
cally, the hardness of the distribution is stated with respect to strict-time algo-
rithms, that is, algorithms that run in some fixed time t. Here, we consider
hardness with respect to an algorithm where the running time, t, is a random
variable. We denote by TA,D the random variable indicating the running time
of A on input x where (x,w) ← D. Informally, we say that R is first-moment
hard with respect to the distribution D if for every algorithm A, it holds that

first-moment hardness: Pr [(x, A(x)) ∈ R] ≤ E
[
TA,D

]

|W|0.5
, (1)

where the probability is taken over (x,w) ← D and over A. The first-moment
assumption is justified by the work of Jaeger and Tessaro [19]. They developed
a framework for proving tight bounds on the advantage of an adversary with
expected-time guarantees in generic models (a.k.a. “bad flag analysis”). In par-
ticular, they prove the first-moment hardness of the discrete-logarithm problem
in the generic group model. That is, they show that every algorithm A with an
expected running time E [TA] computes the discrete-logarithm problem in the
generic group model with probability at most E [TA] /p1/2 (where p is the group
size).

Recently, Rotem and Segev [30] have generalized this assumption for higher
moments, where most important for our work is the second-moment assumption.
We say that a relation is second-moment hard with respect to a distribution D
if for every algorithm A it holds that

second-moment hardness: Pr [(x, A(x)) ∈ R] ≤ E
[
T 2

A,D
]

|W| , (2)

where the probability is taken over (x,w) ← D and the algorithm A. The hard-
ness of the second-moment assumption does not follow from the framework of
[19], and has no justification even in generic models. In order to validate this
assumption, we develop a framework (see Sect. 2.6), in the spirit of [19] which

Rogue-Instance Security for Batch Knowledge Proofs 129

does allow us to establish bounds for second-moments. In particular, it allows
us to prove the second-moment hardness of the discrete-logarithm problem in
the generic group model. That is, we show that every algorithm A with an
expected running time E [TA] computes the discrete-logarithm problem in the
generic group model with probability at most E

[
T 2

A

]
/p.

2.2 Rogue-Instance Security for Batch Protocols

We move on to describe our notion of rogue-instance soundness for batch
protocols. In a batch Σ-protocol, we are given k instance-witness pairs
(x1,w1), . . . , (xk,wk). The prover consists of two algorithms P = (P1,P2),
where P1 sends a message α, the verifier V sends a random challenge β ∈ C, P2

responds with a message γ, and the verifier V decides whether to accept.
The standard adaptive soundness requirement considers the case where a

malicious prover wishes to convince the verifier on k instances of its choice.
However, we consider batch Σ-protocols with rogue-instance security, where one
instance x1 is sampled according to a given hard distribution, and the rest of
the instances x2, . . . ,xk are chosen adaptively as a function of x1.

Specifically, a batch Σ-protocol Π has ε rogue-soundness error if for every
malicious prover P̃ = (P̃1, P̃2) that runs in time t it holds that

Pr
[
RogueExpΠ(P̃, λ) = 1

]
≤ ε(t),

where the experiment RogueExpΠ(P̃, λ) defined as follows:

1. (x1,w1) ← Dλ

2. ((x̃2, . . . , x̃k), α, st) ← P̃1(x1)
3. β ← C
4. γ ← P̃2(st, β)
5. Output V(x1, x̃2, . . . , x̃k, α, β, γ).

Recall that the definition above omits the setup phase, see Sect. 4 for the precise
definition.

2.3 Batching Algebraic Sigma Protocols

We first describe our general compiler for batching algebraic Σ-protocols. This
compiler takes an algebraic protocol (which we define next) and outputs a batch
version of it (for the same relation). Then, we show the high-level proof of our
(almost tight) rogue-security for the batch protocol.

Algebraic Sigma Protocols. Algebraic Σ-protocols are defined with respect to an
algebraic one-way function F. The protocol is a proof-of-knowledge of a preimage
of F(r), for randomly sampled r. It is a generalization of the preimage protocol
presented by Cramer and Damg̊ard [13]. Algebraic one-way functions were intro-
duced by [11], a closely related notion to group-homomorphic one-way functions
introduced by [13].

130 G. Segev et al.

Informally, we say that a one-way function F : Am → B is algebraic if A and
B are abelian cyclic groups and for every x, x′ ∈ Am it holds that F(x + x′) =
F(x)·F(x′). We say that a Σ-protocol Π = (P1,P2,V) is algebraic if the protocol
has the following general recipe:

1. The prover P1 produces a message α = F(r) for r ∈ A.
2. A challenge β is sampled from Zp where p is the order of A.
3. The prover P2 produces a message γ = r + β · w.
4. The verifier checks correctness by checking whether F(γ) ?= α · xβ .

General Compiler to Batch Sigma Protocols. We construct a batch Σ proto-
col Π∗ = (P∗

1,P
∗
2,V∗) from algebraic Σ-protocol by invoking the Σ-protocol k

times. Specifically, given k instances, P∗
1 invokes P1(xi) and produces the mes-

sage α which is the multiplication of all αi’s. Then, given k challenges, P∗
2 invokes

P2 for each challenge and produces the compressed message γ by summing the
messages γi. More formally, given an algebraic Σ-protocol Π = (P1,P2,V), we
construct a batch Σ-protocol Π∗ = (P∗

1,P
∗
2,V∗) as follows:

1. The prover P∗
1 invokes αi ← P1(xi) and produces the message α = Πk

i=1αi.
2. k challenges βi are sampled from Zp where p is the order of A.
3. The prover P∗

2 invokes γi ← P2(βi) for each challenge βi and produces the
compressed message γ =

∑k
i=1 γi.

4. The verifier checks correctness by checking whether F(γ) ?= α · Πk
i=1x

βi

i .

One can observe that the completeness of Π∗ follows from the homomorphic
property of F. The prover-to-verifier communication is two group elements. The
verifier sends k elements, but since they are all uniformly random strings, they
can be easily compressed to a single group element using any pseudo-random
generator (e.g., using a random oracle).

Our objective is now to bound the rogue-soundness error of Π∗. To achieve
this, we consider a malicious prover P̃ that given as input an instance x1 which
is sampled from a distribution D, and chooses the rest of the instances x2, . . . ,xk

as a function of x1. Its goal is to convince the verifier on x1, . . . ,xk. We construct
an algorithm that given as input an instance x, invokes P̃ on x in order to obtain
a witness for x. Combined with the second-moment assumption, it allows us to
bound P̃’s success probability (which is the rogue-soundness error).

In order to construct A, we make use of the special soundness property of
Σ-protocols. Note that if a Σ-protocol has special soundness, then our construc-
tion yields a batch protocol which has plus-one special soundness (i.e., given
k + 1 accepting transcripts on k instances with a common first message and
pairwise distinct challenges, one can extract all k witnesses). Obtaining k + 1
valid transcripts from the adversary is very costly. However, in our case, we are
only interested in extracting a single witness. Thus, we define a relaxed notion
called local special soundness that allows to extract a single witness from two
specifically designed transcripts.

Rogue-Instance Security for Batch Knowledge Proofs 131

Local Special Soundness. Informally, a batch Σ-protocol has local special sound-
ness if there exists an extractor E such that given k instances x1, . . . ,xk and a
pair of accepting transcripts with a common first message and only one different
challenge βi �= β′

i, outputs a valid witness for xi. We now show that every batch
Σ-protocol constructed from algebraic Σ-protocol as above, has local special
soundness.

Claim 1 (Informal). The batch Σ-protocol Π∗ constructed above from alge-
braic Σ-protocol has local special soundness.

Proof (Proof sketch). Consider the algorithm E which takes as input a pair of
accepting transcripts (α, β1, . . . , βk, γ), (α, β′

1, . . . , β
′
k, γ′) such that there exists

only one index j on which βj �= β′
j , defined as follows:

1. Let i∗ be the index on which βi∗ �= β′
i∗ .

2. Output (γ − γ′)/(βi∗ − β′
i∗) on the group Zp where p is the order of App.

The proof follows from the homomorphic property of F (see Sect. 5.1 for a com-
plete proof).

Due to the local special soundness property, it is sufficient to construct
an algorithm A that invokes P̃ on x and outputs two accepting transcripts
(α, β1, . . . , βk, γ), (α, β′

1, . . . , β
′
k, γ′) such that β1 �= β′

1.
We reduce the problem of finding two such transcripts to the “collision game”

first introduced in [12]. In more detail, we show that given an algorithm that
succeeds in the collision game, we can construct an algorithm that outputs two
such transcripts, which conclude extracting a witness.

The Collision Game. We consider the collision game first introduced in [12] and
used in [3,18] which consists of a binary matrix H ∈ {0, 1}R×N . The output of
the game is 1 if and only if two 1-entries in the same row have been found.

Informally, the R rows correspond to the prover’s randomness and the N
columns correspond to the verifier’s randomness. An entry of H equals 1 if and
only if the corresponding transcript is accepting. Then, finding two 1-entries in
the same row corresponds to finding two accepting transcripts with a common
first message and distinct challenges. Therefore, an algorithm for the collision
game can be transformed into an algorithm that finds two accepting transcripts,
which by the local special soundness, allows extracting a witness (see Sect. 5.3
for a complete proof).

We now focus on constructing an algorithm for the collision game. In contrast
to the collision game algorithm of [12] which runs in strict polynomial time, our
algorithm runs in expected polynomial time. A similar approach can be found in
[3,18], however, their algorithm minimizes only the first-moment of the expected
running time. The collision game algorithm of [3,18] samples an entry of H, if
this entry equals 1, the algorithm continues to sample the entire row till it
finds another 1-entry. One can observe that the second-moment of the expected
running time of this algorithm is too high to get improved bounds.

132 G. Segev et al.

Our goal is to construct an algorithm that maximizes the trade-off between
the success probability and the second-moment of the expected running time, in
order to use the second-moment assumption.

Lemma 1 (Informal). Let H ∈ {0, 1}R×N be a binary matrix and let ε be the
fraction of 1-entries in H. Then, there exists an algorithm A with oracle access
to H such that the following holds:

1. The expected number of queries performed by A to H is at most 2.
2. The second-moment of the expected number of queries performed by A to H

is at most 4.
3. The probability that A succeeds in the collision game is at least ε1.5.

Proof (Proof sketch). Let B = 1√
ε

and consider the following algorithm A:

AH

1. Sample an entry (ρ, β) in H. If H[ρ, β] = 0, abort. Let F = ∅.
2. For every i ∈ [B]: sample without replacement entries in the same row

ρ. If H[ρ, βi] = 1, set F ← F ∪ {βi}.
3. If F = ∅, abort. Otherwise, choose uniformly at random an index

β′ ∈ F and output ρ, β, β′.

Let QA be a random variable indicating the number of queries performed
by A to H. For this section only, we omit the bound on the expected number
of queries and refer to the second-moment only. A complete proof of the formal
lemma can be found in Sect. 5.2.

By the description of A it performs 1 query to H with probability (1 − ε)
and (1 + B) queries with probability ε. Therefore,

E
[Q2

A

]
= (1 − ε) · 12 + ε · (1 + B)2 ≤ 1 + 2

√
ε + 1 ≤ 4 .

For now, we give a high-level overview of the proof of A’s success probability.
A complete proof can be found in Sect. 5.2. Assuming the first query to H was
1-entry, the algorithm continues to sample entries in the same row. Thus, if it
hit a row with only one 1-entry, it succeeds in the game with probability zero.
Therefore, we divide the rows by the number of 1-entries in it and look at the
probability to sample such a row. Formally, for every 0 ≤ d ≤ N , we let δd be the
fraction of rows with exactly d 1-entries. Assuming the first query was 1-entry,
A succeeds in the game if it finds at least one more 1-entry with B draws. Let
Xd be a random variable indicating the number of 1-entries found in B draws
in a row with exactly d 1-entries. Overall,

Pr [CollGame(A,H) = 1] ≥
N∑

d=2

δd · d

N
· Pr [Xd ≥ 1] .

In Sect. 5.2, we show that the above term is bounded by ≈ ε1.5.

Rogue-Instance Security for Batch Knowledge Proofs 133

2.4 Non-interactive Batch Arguments

In the previous subsection we showed a general compiler for batching algebraic
Σ-protocols and bound their rogue-soundness error. Similarly, in this subsec-
tion we refer to the non-interactive analog. We first construct non-interactive
batch arguments from algebraic Σ-protocols and then bound their rogue-instance
security.

Non-interactive Batch Arguments from Sigma Protocols. We show how to con-
struct non-interactive batch arguments from algebraic Σ-protocols.

The construction is given by applying the Fiat-Shamir paradigm on the
batch Σ-protocol constructed in Sect. 2.3 except for one minor change. Recall
that in the construction of batch Σ-protocols, the prover is given as input k
different challenges for each input. We wish to keep this property in the non-
interactive analog. Specifically, we construct a non-interactive batch argument
NARG = (P,V) from algebraic Σ-protocol by invoking the Σ-protocol k times
and obtaining the challenges from a random oracle function f ∈ U(λ). In more
detail, given k instances, the prover P invokes αi ← P1(xi) and computes α
as the multiplication of αi’s. Then, it obtains each challenge βi by querying
f(x1, . . . ,xk, α, i). Finally, it invokes P2 for each challenge and computes γ by
summing the messages γi. The prover P outputs the proof string (α, γ). The
verifier V computes βi by querying the random oracle f and checking whether
F(γ) ?= α·Πk

i=1x
βi

i . One can observe that the completeness of NARG follows from
the homomorphic property of F and that the proof size is two group elements.

Our objective now is to bound the rogue-soundness error of NARG. Similarly
to the interactive case, the NARG constructed above has local special soundness.
Therefore, in order to extract a witness, it suffices to construct an algorithm that
outputs a pair of transcripts with a common first message and only one different
challenge βi �= β′

i.

Collision Game for the Non-interactive Analog. Similar to the interactive case,
our goal is to reduce the task of finding two such transcripts to the collision
game. However, this transformation presents certain challenges. First, in the
interactive case, we have two elements of randomness - the prover’s randomness
and the verifier’s randomness which can be straightforwardly represented as a
matrix. In contrast, in the non-interactive settings, the verifier’s randomness is
replaced by random oracle queries. A malicious prover performs at most q queries
to the random oracle in order to obtain the challenges. Each answer from the
random oracle may affect the prover’s algorithm.

Secondly, in the interactive case, a prover P can be represented by two algo-
rithms P1,P2. The algorithm P1 outputs the first message α and a state st, and
P2 given as input the challenges βi and the state st. Consequently, in order to
obtain a pair of transcripts with a common first message, we can invoke P1 and
P2, followed by invoking P2 again, on the same state and different challenges.
In the non-interactive analog, a prover P outputs the instances x2, . . . ,xk along
with (α, γ). We assume without loss of generality that P always outputs α that

134 G. Segev et al.

it queried the random oracle f with (x1, x̃2, . . . , x̃k, α). Then, in order to obtain
two transcripts with a common first message, we need to “guess” which random
oracle query the prover is going to output. We invoke the prover once to obtain
(x̃2, . . . , x̃k, α, γ) and let i∗ be the random oracle on which the prover queried
(x1, x̃2, . . . , x̃k, α). Then, we invoke the prover, replicating the same random ora-
cle responses up to the i∗-th query. With probability ≈ 1/q the prover outputs
the same instances and first message α.

Therefore, we reduce the problem of finding two such transcripts into the
“tree game”. In this game, we consider a fixed randomness for the prover and
consider a tree of depth q and degree 2λ. The depth corresponds to the number
of queries performed by the prover and the degree corresponds to the possible
answers from the random oracle f . Consequently, the execution of the prover
corresponds to a random walk on the tree and a leaf corresponds to the output
of the prover. We let the value of a leaf be the random oracle query on which
the prover queried f with this output. More precisely, each leaf corresponds to
an output (x2, . . . ,xk, α, γ), we consider the value of a leaf to be the random
oracle query in which the prover queried f with (x2, . . . ,xk, α). Then, finding two
transcripts with a common first message and distinct challenges corresponds to
finding two leaves with the same value i such that their lowest common ancestor
is an internal node v of height i. A formal proof of the reduction appears in the
full version.

The Tree Game. We introduce a tree game where an algorithm is given oracle
access to a tree T where the value of each leaf is a number. Consider a complete
tree T of depth l and degree r. Let Leaves(T) be the leaves of T and for every
u ∈ Leaves(T) let val(u) be the value “stored” in u. Note that not all leaves hold
a number value, we consider the value of such a leaf as ⊥. During the execution
of the game, the algorithm A is given as input a number k and oracle access to
the tree T and aims to find k + 1 leaves u1, . . . , uk+1 with the same value i that
have the same lowest common ancestor v such that height(v) = i.

Due to the local special soundness property, it is sufficient to construct an
algorithm that outputs two accepting transcripts, then in this section, we con-
sider the specific case where k = 1.

Lemma 2 (Informal). Let T be a complete tree of depth l and degree r and let
ε be the fraction of non-bot leaves in T . Then, there exists an algorithm A with
oracle access to T such that on input k = 1 the following holds:

1. The expected number of queries performed by A to H is at most 2.
2. The second-moment of the expected number of queries performed by A to H

is at most 4.
3. The probability that A succeeds in the collision game is at least ε1.5/l.

Proof (Proof sketch). Let B = 1√
ε

and consider the following algorithm A:

Rogue-Instance Security for Batch Knowledge Proofs 135

AT

1. Sample a leaf u ∈ Leaves(T). If val(u) = ⊥, abort.
2. Let v be the parent of u of height val(u) and let w be the parent of u

of height (val(u) − 1). Let F = ∅.
3. For every i ∈ [B]: sample without replacement leaves from Tv \ Tw. If

val(ui) = val(u), set F ← F ∪ {ui}.
4. If F = ∅, abort. Otherwise, choose uniformly at random a leaf u′ ∈ F

and output u, u′.

Let QA be a random variable indicating the number of queries performed
by A to T . For this section only, we omit the bound on the expected number
of queries and refer to the second-moment only. A complete proof of the formal
lemma appears in the full version.

By the description of A it performs 1 query to T with probability (1− ε) and
(1 + B) queries with probability ε. Therefore,

E
[Q2

A

]
= (1 − ε) · 12 + ε · (1 + B)2 ≤ 1 + 2

√
ε + 1 ≤ 4 .

For now, we give an informal high-level overview of the proof of A’s success
probability. A complete proof appears in the full version. Assume A samples a
leaf u with the value h, then, A continues to sample leaves from the same sub-tree
in order to find another leaf with the value h. Let v be the parent of u of height
h. Note that for every h and v, the number of leaves with the value h in Tv may
be different, which affects its success probability. Therefore, for every value h,
we “divide” the internal nodes to “buckets” by the probability to sample a leaf
with the value h in its sub-tree, and then we look at the probability to “reach”
each bucket.

Formally, for every 0 ≤ d ≤ l log r and 0 ≤ h ≤ l − 1, we let

δd,h = Pr
v:height(v)=h

[|{u ∈ Leaves(Tv) : val(u) = h}|
|Leaves(Tv)| ∈ [2−d, 2−d+1

]
]

.

Note that a node v is in the d-th “bucket” if the probability to sample a leaf with
the value h in the sub-tree Tv is in

[
2−d, 2−d+1

]
. Assuming the first query to the

tree is a leaf u with the value h, the remainder of the game can be modeled by
a hypergeometric distribution. Informally, B elements from a population of size
|Tv \ Tw| containing ≈2−d successes are drawn without replacement. Let Xδd,h

be a random variable indicating the number of leaves with the value h found in
B draws in a sub-tree Tv such that v is in the d-th “bucket”. Thus,

Pr [TreeCollGame(A, T) = 1] ≥
l−1∑

h=0

N∑

d=2

δd,h · 2−d · Pr
[
Xδd,h

≥ 1
]

.

In the full version, we show that the above term is bounded by ≈ ε1.5/l.

136 G. Segev et al.

2.5 General Batch Sigma Protocols

Batch Sigma protocols. In the general case, we consider batch Σ-protocols where
given k instance-witness pairs (xi,wi), the prover P1 sends a message α, the
verifier V samples a challenge β and sends it, the prover P2 responds with a
message γ, and the verifier V decides whether to accept or reject by applying a
predicate to (x1, . . . ,xk, α, β, γ). In order to bound the rogue-soundness error of
batch Σ-protocols, we make use of the special soundness property. In particular,
we consider the plus-one special soundness which guarantees the existence of
an extractor E. When it is given as input k + 1 transcripts of an execution of
a batch Sigma protocol on k instances, the extractor outputs k corresponding
witnesses. More precisely, the extractor is given as input k + 1 transcripts with
a common first message and distinct pairwise challenges.

We construct an algorithm A that given as input an instance x invokes a
malicious prover on input x to obtain k + 1 transcripts, which by the plus-one
special soundness allows extracting k witnesses, specifically, to output a witness
for x. Note that the algorithm needs to invoke the prover multiple times in order
to achieve approximately the same probability as in the specific case of batch
protocols constructed from algebraic Σ-protocols. Unfortunately, it appears that
finding a good trade-off between the second-moment of the expected running
time and the success probability of the algorithm is challenging in this context.
As a result, in the general case, we rely on the first-moment assumption.

Similarly, we reduce the problem of finding k + 1 accepting transcripts to a
generalized version of the collision game first introduced in [12]. In more detail,
we construct an algorithm for the collision game and then use it in order to
obtain k + 1 accepting transcripts (with a common first message and pairwise
distinct challenges), which conclude extracting a witness.

General Collision Game. We provide a general version of the collision game
first introduced in [12] and used in [3,18], which consists of a binary matrix
H ∈ {0, 1}R×N . We generalize the collision game by an additional input, a
number k ∈ N. The output of the game is 1 if and only if k + 1 entries with the
value 1 in the same row have been found. An algorithm for the collision game is
given as input a number k ∈ N and an oracle access to the matrix H.

Informally, the R rows correspond to the prover’s randomness and the N
columns correspond to the verifier’s randomness. An entry of H equals 1 if and
only if the corresponding transcript is accepting. Then, finding k+1 entries with
the value 1 in the same row corresponds to finding k + 1 accepting transcripts
with a common first message and pairwise distinct challenges. Therefore, an
algorithm for the collision game can be transformed into an algorithm that finds
k+1 accepting transcripts, which as discussed above, allows extracting a witness
(see the full version for a complete proof).

Lemma 3 (Informal). Let H ∈ {0, 1}R×N be a binary matrix and let ε be the
fraction of 1-entries in H. Then, there exists an algorithm A with oracle access
to H such that on input k the following holds:

Rogue-Instance Security for Batch Knowledge Proofs 137

1. The expected number of queries performed by A to H is at most k + 1.
2. The probability that A succeeds in the game is at least ε.

Proof (Proof sketch). We consider the following algorithm:

AH(k)

1. Sample an entry (ρ, β) in H. If H[ρ, β] = 0, abort.
2. Sample without replacement entries in the same row ρ, until k + 1

entries with the value 1 are found or the row has been exhausted.

Let QA be a random variable indicating the number of queries performed
by A to H. Note that the number of 1-entries in each row affects the expected
number of queries performed by A. Thus, we let ερ be the fraction of 1-entries in
row ρ. Assuming the first query to H lies in row ρ and equals 1, the remainder
of the algorithm can be modeled by a negative hypergeometric distribution.
Elements from a population of size N − 1 containing ερN − 1 successes are
drawn without replacement till k successes are counted. Thus, assuming that
the first query lies in a row ρ and equals 1, the expected number of queries
performed by A is k(N−1+1)

ερN−1+1 = k
ερ

. Overall,

E [QA] = 1 +
1
R

R∑

1

ερ · k

ερ
= k + 1 .

As discussed in Sect. 2.3, in order to bound the success probability we divide the
rows by the number of 1-entries in it. Formally, for every 0 ≤ d ≤ N , we let δd

be the fraction of rows with exactly d 1-entries. Note that if A’s first query to
H lies in a row with at least k + 1 entries with the value 1, it succeeds in the
game with probability 1. Thus,

Pr [CollGamek(A,H) = 1] ≥
R∑

d=k+1

δd · d

N
.

In the full version, we show that the above term is bounded by ≈ ε.

2.6 Expected Time Hardness Framework

In this subsection, we present our framework for analyzing the expected-time
hardness of cryptographic problems in generic models. Our framework allows
bounding the success probability of query-algorithms in experiments that involve
access to an oracle (e.g., solving discrete-logarithm in the generic group model).
Here, we consider the number of queries performed by the algorithm and ignore
its actual runtime.

Our overall goal is to prove statements of the form: if any algorithm that per-
forms t queries (as a strict parameter) has success probability ε(t) in a particular
experiment, then any algorithm A has success probability E [ε(TA)], where TA is

138 G. Segev et al.

a random variable for the number of queries performed by A. Such a statement
would allow us to derive the desired first-moment and second-moment hardness
that we need for discrete-logarithm and other problems.

Perhaps surprisingly, such a general statement is incorrect, which we demon-
strate via the multiple discrete-logarithm problem. Yun [34] showed that any
generic t-time algorithm given k instances of the discrete-logarithm problem
solves all of them with probability at most ε(t) ≤ (k · t2/p)k (which is tight).
However, this bound does not translate to E [ε(TA)] = kk · E [T 2k

A

]
/pk. To illus-

trate this, consider the following generic algorithm A for the case where k = 2:

1. Perform p1/4 distinct queries to the group generation oracle and store the
query-answer list μ.

2. If there does not exist (x, y), (x′, y′) ∈ μ, such that x �= x′ and y = y′, abort.
3. Otherwise, perform another p1/2 queries to the group generation oracle.

A careful analysis shows that the success probability of this algorithm is ≈ 1/
√

p
and the 4-moment of the expected number of queries is ≈ p, which does not
satisfy the bound of ε ≤ 4 · E [T 4

A

]
/p2.

This raises the question of when can we derive bounds for expected algo-
rithms. What distinguishes the multiple discrete-logarithm (for which we have
no non-trivial bounds for expected algorithms) compared to the single discrete-
logarithm (for which we derive tight bounds for expected algorithms)? We define
a (relatively natural) property of the experiment, called history oblivious, that
can precisely distinguish the two cases and allows us to derive our bounds.
Roughly speaking, history oblivious experiment is defined via the existence of
a predicate on the sequence of query/answer pairs (the trace). When the pred-
icate of the trace is true, then the algorithm is able to solve its task with no
additional queries. When the predicate is false, the trace has a limited effect on
its success probability (only the size of the trace affects the probability and not
its contents).

For example, in the discrete-logarithm problem, the trace to the generic group
would be true if it contains a collision. When the predicate is true, one can easily
deduce a solution. Otherwise, the trace gives almost no helpful information to
the algorithm except for specific elements which are not the discrete-logarithm.
That is, in this case, the advantage only depends on the size of the trace. Any
two traces of the same size for which the predicate is false yield equal success
probability for the algorithm. Observe that this is not the case for multiple
discrete-logarithm. Here, we have three types of interesting traces (rather than
two). A trace can contain no collisions, or a single collision (from which one
can deduce one discrete-logarithm but not the other), or two collisions (from
which one can derive both discrete-logarithms). The predicate in this case would
identify a trace with two collisions. Thus, two traces of the same size, one from
the first type and one from the second type would have drastic different effect
on the success probability, as in the latter it needs to solve only a single discrete-
logarithm.

In summary, for any history oblivious experiment we show that:

Pr[strict algorithms succeeds] ≤ ε(t) =⇒ Pr[expected-time algorithms succeeds] ≤ E [ε(t)] .

Rogue-Instance Security for Batch Knowledge Proofs 139

We formalize the above statement in Theorem 2. This allows us to prove first
and second-moment hardness of discrete-logarithm Eqs. 1 and 2, which are the
basis for our results. It also allows us to derive our bounds for the Micali SNARK
construction given in Theorem 5. Our framework is inspired by the work of Jaeger
and Tessaro [19], however, their tools do not allow us to prove the second-
moment hardness assumptions in generic models. Furthermore, our approach
is arguably simpler to use and provides tighter security bounds even for first-
moment assumptions. We show that our framework recovers the bounds of [19]
in Corollary 3.

3 Preliminaries

For any n ∈ N, we denote the set of all positive integers up to n as [n] :=
{1, . . . , n}. For any finite set S, x ← S denotes a uniformly random element x
from the set S. Similarly, for any distribution D, x ← D denotes an element x
drawn from distribution D.

3.1 High-Moment Hardness

A relation R is a set R = {Rλ}λ∈N, where Rλ ⊆ Pλ × Xλ × Wλ for any λ ∈ N,
for sets X = {Xλ}λ∈N, W = {Wλ}λ∈N and P = {Pλ}λ∈N. The corresponding
language L(Rλ) is the set of public parameters pp and instances x for which
there exists a witness w such that (pp,x,w) ∈ Rλ.

We consider distributions D = {Dλ}λ∈N over the relation where each Dλ

produces (pp,x,w) ∈ Rλ. We note by Dλ(pp) the distribution that produces
(x,w) such that (pp,x,w) ∈ Rλ.

For any such distribution Dλ(pp) and an algorithm A, we denote by TA,Dλ

the random variable indicating the running time of A on input x where (x,w) ←
Dλ(pp).

Definition 1 (First-moment hard relation). Let Δ = Δ(λ), ω = ω(λ) be
functions of the security parameter, and let R = {Rλ}λ∈N be a relation where
Rλ ⊆ Pλ × Xλ × Wλ. Let Setup be a setup algorithm that on input 1λ, outputs
pp ∈ Pλ. We say that R is first-moment hard (with respect to a distribution
D = {Dλ}λ∈N and a setup algorithm Setup) if for every algorithm A and for
every λ ∈ N it holds that

Pr

⎡

⎣(pp,x, w̃) ∈ Rλ

∣
∣
∣
∣
∣
∣

pp ← Setup(1λ)
(x,w) ← Dλ(pp)
w̃ ← A(pp,x)

⎤

⎦ ≤ Δ · E [TA,Dλ

]

|Wλ|ω .

Definition 2 (Second-moment hard relation). Let Δ = Δ(λ), ω = ω(λ)
be functions of the security parameter, and let R = {Rλ}λ∈N be a relation where
Rλ ⊆ Pλ × Xλ × Wλ. Let Setup be a setup algorithm that on input 1λ, outputs
pp ∈ Pλ. We say that R is second-moment hard (with respect to a distribution

140 G. Segev et al.

D = {Dλ}λ∈N and a setup algorithm Setup) if for every algorithm A and for
every λ ∈ N it holds that

Pr

⎡

⎣(pp,x, w̃) ∈ Rλ

∣
∣
∣
∣
∣
∣

pp ← Setup(1λ)
(x,w) ← Dλ(pp)
w̃ ← A(pp,x)

⎤

⎦ ≤ Δ · E [T 2
A,Dλ

]

|Wλ|ω .

3.2 Sigma Protocols

Definition 3 (Σ-Protocol). Let R = {Rλ}λ∈N be a relation, where Rλ ⊆
Pλ × Xλ × Wλ for any λ ∈ N. A Σ-protocol Π for relation R is a 5-
tuple (Setup,P1,P2,V, C) where Setup and P1 are probabilistic polynomial-
time algorithms, P2 and V are deterministic polynomial-time algorithms, and
C = {Cpp}pp∈P is an ensemble of efficiently sampleable sets. The protocol Π is
defined as follows:

1. The algorithm Setup(1λ) produces public parameters pp.
2. The algorithm P1(pp,x,w) produces a message α and a state st.
3. A challenge β is sampled uniformly at random from the challenge set Cpp.
4. The algorithm P2(st, β) produces a message γ.
5. The algorithm V(pp,x, α, β, γ) determines the output of the protocol by out-

putting 0 or 1.

We require that for every λ ∈ N and (x,w) ∈ Rλ it holds that

Pr

⎡

⎢
⎢
⎣V(pp,x, α, β, γ) = 1

∣
∣
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ)
(α, st) ← P1(pp,x,w)
β ← Cpp

γ ← P2(st, β)

⎤

⎥
⎥
⎦ = 1 .

Definition 4 (Special soundness). Let Π = (Setup,P1,P2,V, C) be a Σ-
protocol for a relation R, and let t = t(λ) be a function of the security parameter
λ ∈ N. Then, Π has t-time special soundness if there exists a deterministic t-
time algorithm E that on any public parameters pp ∈ P, any input statement
x ∈ Xλ and any two accepting transcripts with a common first message and
distinct challenges, outputs a witness w such that (pp,x,w) ∈ R.

Definition 5 (Zero knowledge Σ-protocol). Let Π = (Setup,P1,P2,V, C)
be a Σ-protocol for a relation R, and let t = t(λ) be a function of the security
parameter λ ∈ N. Then, Π is t-time zero-knowledge if there exists a probabilistic
t-time algorithm Sim such that for every λ ∈ N and public parameters-instance-
witness tuple (pp,x,w) ∈ Rλ the distributions

⎧
⎨

⎩
(pp,x, α, β, γ)

∣
∣
∣
∣
∣
∣

(α, st) ← P1(pp,x,w)
β ← Cpp

γ ← P2(st, β)

⎫
⎬

⎭
and {Sim(pp,x)}

are identical.

Rogue-Instance Security for Batch Knowledge Proofs 141

3.3 Batch Sigma Protocols

Definition 6 (Batch Σ-protocol). Let R = {Rλ}λ∈N be a relation, where
Rλ ⊆ Pλ × Xλ × Wλ for any λ ∈ N and let K ∈ N be a bound on the number of
instances. A batch Σ-protocol Π for relation R is a 5-tuple (Setup,P1,P2,V, C)
where Setup and P1 are probabilistic polynomial-time algorithms, P2 and V are
deterministic polynomial-time algorithms, and C = {Cpp}pp∈P is an ensemble of
efficiently sampleable sets. For any k ≤ K, the protocol Π is defined as follows:

1. The algorithm P1(pp, (x1,w1), . . . , (xk,wk)) produces a message α and a
state st.

2. A challenge β is sampled uniformly at random from the challenge set Cpp.
3. The algorithm P2(st, β) produces a message γ.
4. The algorithm V(pp,x1, . . . ,xk, α, β, γ) determines the output of the protocol

by outputting 0 or 1.

We require that for every λ, k ∈ N such that k ≤ K, for any (x1,w1), . . . , (xk,wk)
∈ Rλ it holds that

Pr

⎡
⎢⎢⎣V(pp,x1, . . . ,xk, α, β, γ) = 1

∣∣∣∣∣∣∣∣

pp ← Setup(1λ,K)
(α, st) ← P1(pp, (x1,w1), . . . , (xk,wk))
β ← Cpp

γ ← P2(st, β)

⎤
⎥⎥⎦ = 1 .

Definition 7 (Plus-one special soundness). Let Π = (Setup,P1,P2,V, C)
be a batch Σ-protocol for a relation R with a bound K on the number of instances,
and let t = t(λ,K) be a function of K and the security parameter λ ∈ N. Then,
Π has t-time plus-one special soundness if there exists a deterministic t-time
algorithm E that for every λ ∈ N and k ≤ K, on any public parameters pp, any
k inputs statements x1, . . . ,xk ∈ Xλ and any k + 1 accepting transcripts with
a common first message and pairwise distinct challenges, outputs k witnesses
w1, . . . ,wk such that for every i ∈ [k] it holds that (pp,xi,wi) ∈ Rλ.

Definition 8 (Zero knowledge batch Σ-protocol). Let Π = (Setup,
P1,P2,V, C) be a batch Σ-protocol for a relation R with a bound K on the
number of instances, and let t = t(λ,K) be a function of K and the security
parameter λ ∈ N. Then, Π is t-time zero-knowledge if there exists a proba-
bilistic t-time algorithm Sim such that for any k ≤ K, for every λ ∈ N and
(pp,x1,w1), . . . , (pp,xk,wk) ∈ Rλ the distributions

⎧
⎪⎨

⎪⎩
(pp, x1, . . . , xk, α, β, γ)

∣
∣
∣
∣
∣
∣
∣

(α, st) ← P1(pp, (x1, w1), . . . , (xk, wk))

β ← Ck,λ

γ ← P2(st, β)

⎫
⎪⎬

⎪⎭
and {Sim(pp, x1, . . . , xk)}

are identical.

4 Rogue-Instance Security

In this section, we give our definition of rogue-instance security notion for batch
protocols and non-interactive batch arguments, which is inspired by the rogue-
key security notion for multi-signatures.

142 G. Segev et al.

4.1 Batch Sigma Protocols

In a batch Σ-protocol, we are given k instance-witness pairs (x1,w1), . . . ,
(xk,wk). The standard adaptive soundness requirement considers the case where
a malicious prover wishes to convince the verifier on k instances of its choice.
However, we consider batch Σ-protocols with rogue-instance security, where one
instance x1 is sampled according to a given hard distribution, and the rest of
the instances x2, . . . ,xk are chosen adaptively as a function of x1. Formally,

Definition 9 (Rogue soundness). Let Π = (Setup,P1,P2,V, C) be a batch
Σ-protocol for a relation R with a bound K on the number of instances. Then,
Π has (t, εD)-rogue soundness (with respect to a distribution D = {Dλ}λ∈N and
the setup algorithm Setup) if for every λ, k ∈ N such that k ≤ K and for any
t-time malicious prover P̃ = (P̃1, P̃2):

Pr

⎡
⎢⎢⎢⎢⎣
V(pp,x1, x̃2, . . . , x̃k, α, β, γ) = 1

∣∣∣∣∣∣∣∣∣∣

pp ← Setup(1λ,K)
(x1,w1) ← Dλ(pp)

((x̃2, . . . , x̃k), α, st) ← P̃1(pp,x1)
β ← Cpp

γ ← P̃2(st, β)

⎤
⎥⎥⎥⎥⎦

≤ εD(λ, t,K) .

In the full version of the paper, we provide an analogous non-interactive
definition.

5 Batching Algebraic Sigma Protocols

In this section, we define algebraic Σ-protocols and construct their batch version.
Then, we bound the rogue-soundness error of such batch Σ-protocols using the
second-moment assumption (Definition 2).

In Sect. 5.1 we define algebraic one-way functions and construct batch Σ-
protocols from algebraic Σ-protocols. Then, in Sect. 5.2 we generalize the “col-
lision game” presented in [3,12,18] for multiple instances while referring to the
second-moment of the expected running time. Finally, in Sect. 5.3 we prove
the rogue-instance security of batch Σ-protocols constructed from algebraic Σ-
protocols.

5.1 Algebraic Sigma Protocols

In this section, we refer to Σ-protocols that have a specific structure we call
algebraic Σ-protocols and then, we define their batch analog.

Our definition of algebraic Σ-protocols relies on algebraic one-way function,
presented in [11,13].

Definition 10 (Algebraic one-way function). A family of m-variate one-
way functions consists of two algorithms (Setup,F) that work as follows. On
input 1λ, the algorithm Setup(1λ) produces public parameters. Any such public
parameters pp, determines the function Fpp : Am

pp → Bpp such that for every
x ∈ Am

pp, it is efficient to compute Fpp(x). A family of one-way functions is
algebraic if for every λ ∈ N and pp ← Setup(1λ) the following holds:

Rogue-Instance Security for Batch Knowledge Proofs 143

– Algebraic: The sets App,Bpp are abelian cyclic groups with operators (+),
and (·), respectively.

– Homomorphic: For any input x, x′ ∈ Am
pp it holds that F(x + x′) = F(x) ·

F(x′).

We now define the notion of algebraic Σ-protocols, which is a generalization
of the preimage protocol presented in [13].

Definition 11 (Algebraic Σ-protocol). Let R = {Rλ}λ∈N be a relation,
where Rλ ⊆ Pλ×Xλ×Wλ for any λ ∈ N. A Σ-protocol Π = (Setup,P1,P2,V, C)
for relation R is algebraic if there exists m-variate algebraic one-way function
(Setup,F) such that for every pp produced by Setup(1λ) the following holds:

– For every x,w it holds that (pp,x,w) ∈ Rλ if and only if Fpp(w) = x.
– The challenge space Cpp ⊆ Zp where p is the order of App.
– The protocol Π is defined as follows:

1. The algorithm P1(x,w) produces a message α = F(r) for some r ∈ App

and a state st.
2. A challenge β is sampled uniformly at random from the challenge set Cpp.
3. The algorithm P2(st, β) produces a message γ = r + β · w.
4. The algorithm V(x, α, β, γ) determines the output of the protocol by check-

ing whether F(γ) ?= α · xβ.

Note that the setup algorithm of the function is the setup algorithm of the
protocol. In fact, the prover holds a public parameters-instance-witness tuple
such that x = Fpp(w). Thus, the prover convinces the verifier that it knows
the preimage of x. Note that the verifier’s computation can be performed using
exponentiation by squaring, however there may exist more efficient algorithms.

Next, we construct a batch version of any algebraic Σ-protocol as follows.

Construction 1 (Batch Σ-protocol). Let R = {Rλ}λ∈N be a relation, where
Rλ ⊆ Pλ × Xλ × Wλ for any λ ∈ N and let K ∈ N be a bound on the number
of instances. Let Π = (Setup,P1,P2,V, C) be an algebraic Σ-protocol with an
algebaric one-way function (Setup,F). We define Π∗ = (Setup∗,P∗

1,P∗
2,V∗, C)

to be a batch Σ-protocol for relation R as follows. The algorithms Setup∗ and
P∗

1 are probabilistic polynomial-time algorithms, P∗
2 and V∗ are deterministic

polynomial-time algorithms, and C = {Cpp}pp∈P is an ensemble of efficiently
sampleable sets. For every k ≤ K the protocol is defined as follows:

1. The algorithm Setup∗(1λ,K) is the same algorithm as Setup(1λ).
2. The algorithm P∗

1(pp, (x1,w1), . . . , (xk,wk)) invokes (Ri, sti) ← P1(pp,
xi,wi) for every i ∈ [k] and produces a message α = Πk

i=1Ri and a state
st = (st1‖ . . . ‖stk).

3. k different challenges β1, . . . , βk are sampled uniformly at random from the
challenge set Cpp.

4. The algorithm P∗
2(st, β1, . . . , βk) parses st = (st1‖ . . . ‖stk), invokes γi ←

P2(sti, βi) and produces a message γ =
∑k

i=1 γi.

144 G. Segev et al.

5. The algorithm V(pp,x1, . . . ,xk, α, β, γ) determines the output of the protocol
checking whether F(γ) ?= α · Πk

i=1x
βi

i .

Note that the completeness of the protocol above follows from the homomor-
phic property of F and that the prover-to-verifier communication is two-group
elements. The verifier sends k elements, but since they are all uniformly ran-
dom strings, they can be easily compressed to a single group element using any
pseudo-random generator (e.g., using a random oracle).

Definition 12 (Local special soundness). Let Π = (Setup,P1,P2,V, C) be
an algebraic Σ-protocol for a relation R and let Π∗ be the batch Σ-protocol
defined in Lemma 1 with a bound K on the number of instances. Then, Π∗

has local special soundness if there exists a deterministic polynomial time algo-
rithm E that for every λ ∈ N and k ≤ K, given public parameters pp, any
k inputs statements x1, . . . ,xk ∈ Xλ and any pair of accepting transcripts
(α, β1, . . . , βk, γ), (α, β′

1, . . . , β
′
k, γ′) such that there exists only one index j on

which βj �= β′
j, outputs a witness wj such that (xj ,wj) ∈ Rλ.

We now show that every batch Σ-protocol defined in Lemma 1 has local special
soundness.

Claim 2. Let Π = (Setup,P1,P2,V, C) be an algebraic Σ-protocol for a rela-
tion R and let Π∗ be the batch Σ-protocol constructed from Π as defined in
Lemma 1 with a bound K on the number of instances. Then, Π∗ has local special
soundness.

Proof. Consider the algorithm E which takes as input public parameters
pp, instances x1, . . . ,xk and a pair of accepting transcripts (α, β1, . . . , βk, γ),
(α, β′

1, . . . , β
′
k, γ′) such that there exists only one index j on which βj �= β′

j ,
defined as follows:

1. Let i∗ be the index on which βi∗ �= β′
i∗ .

2. Output (γ − γ′)/(βi∗ − β′
i∗) on the group Zp where p is the order of App.

Observe that since the two transcripts are accepting it holds that

Fpp(γ) = α · Πk
i=1x

βi

i and Fpp(γ′) = α · Πk
i=1x

β′
i

i .

Since βi = β′
i for every i �= i∗, it holds that

xβi∗
i∗ · Fpp(γ′) = x

β′
i∗

i∗ · Fpp(γ) .

Note that xi∗ = Fpp(wi∗), therefore, by the homomorphic property, it holds that

Fpp((βi∗ − β′
i∗)wi∗) = Fpp(γ − γ′) .

Thus, (γ − γ′)/(βi∗ − β′
i∗) is a preimage of xi∗ , i.e., a valid witness for xi∗ . The

extractor E performs only three group operations, therefore, Π∗ has local special
soundness.

Rogue-Instance Security for Batch Knowledge Proofs 145

In Sect. 5.3, we show a concrete bound on the rogue soundness error of batch
Σ-protocols defined in Lemma 1. Formally, we prove the following.

Theorem 1. Let Δ = Δ(λ), ω = ω(λ), tP̃ = tP̃(λ,K), tV = tV(λ,K), tW =
tW (λ,K) be functions of the security parameter λ ∈ N and the bound on the
number of instances K ∈ N. Let Π be an algebraic Σ-protocol for a relation R
and let Π∗ = (Setup,P1,P2,V, C) be the batch Σ-protocol constructed from Π
as defined in Lemma 1. If R is second-moment hard with respect to a distribution
D and the setup algorithm Setup, then Π∗ has (tP̃, ε)-rogue soundness error such
that

εD(λ, tP̃, tV, tW ,K) ≤
(

Δ · 32 · (tP̃ + tV + tW)2

|Wλ|ω
)2/3

+
4

|Cpp| ,

where tV denotes the running time of the verifier V and tW denotes the running
time of the witness extractor.

5.2 The Collision Game

Similar to the collision game presented in [3,12,18], we consider a binary matrix
H ∈ {0, 1}R×N . However, instead of looking for two 1-entries in the same row,
the generalized algorithm A is given as input a number k ∈ N and oracle access
to the matrix and its goal is to find k + 1 entries with the value 1 in the same
row in H. Formally, the game is constructed as follows:

CollGamek(A,H)

1. The algorithm A(k) is given oracle access to H and outputs ρ and β1, . . . , βk+1.
2. The output of the game is 1 if and only if H[ρ, β1] = . . . = H[ρ, βk+1] = 1 and

β1, . . . , βk+1 are distinct.

In particular, in this section, we refer to the collision game when k = 1.
We construct an algorithm that finds two 1-entries in the same row in H with
probability at least ≈ ε3/2 and performs ≈ 2 queries to H where ε is the fraction
of 1-entries in H. Formally, we prove the following.

Lemma 3. Let H ∈ {0, 1}R×N be a binary matrix and let ε be the fraction of
1-entries in H. Let QA be a random variable indicating the number of queries
performed by A to H. Then, there exists an algorithm A with oracle access to H
such that on input k = 1 the following holds:

1. E [QA] ≤ 2.
2. E

[Q2
A

] ≤ 4.
3. Either ε < 4

N or Pr[CollGame(A,H) = 1] ≥ ε1.5

8 .

146 G. Segev et al.

Proof. Let B =
⌈

1√
ε

− 1
⌉

and consider the following algorithm A:

AH(1)

1. Sample ρ ← R and β ← N . If H[ρ, β] = 0 abort.
2. Let S = ∅. For every i ∈ [B], sample βi ← N \S and set S = S ∪{βi}.

If for every i ∈ [B] it holds that H[ρ, βi] = 0, abort.
3. Choose uniformly at random an index i for which H[ρ, βi] = 1.
4. Return ρ, β and βi.

We now prove each claim separately.

Claim 4. It holds that E [QA] ≤ 2.

Proof. By the description of A, it performs a single query to H, and then only
with probability ε it performs B queries. Thus, we can bound the expectation
by

E [QA] = 1 + ε · B ≤ 1 +
1√
ε

· ε ≤ 2 .

Claim 5. It holds that E
[Q2

A

] ≤ 4.

Proof. By the description of A, with probability 1−ε, it performs a single query,
and with probability ε it performs (1 + B) queries. Thus, we can bound the
expectation squared by

E
[Q2

A

]
= (1 − ε) · 12 + ε · (1 + B)2 = 1 − ε + ε(1 + 2B + B2)

= 1 + 2εB + εB2 ≤ 1 + 2
√

ε + 1 ≤ 4 .

Claim 6 (Success probability). Either ε < 4
N or Pr[CollGame(A,H) = 1] ≥

ε1.5

8 .

In order to bound A’s success probability, we first show a lower bound on
the probability that A does not abort in Item 2.

Claim 7. Let Xd be a random variable indicating the number of 1-entries found
in B draws in a row with exactly d 1-entries. For every d > 1, it holds that
Pr[Xd ≥ 1] ≥ min{0.5, d·B

2N }.
The proof of Claim 7 appears in the full version.

Proof (Proof of Claim 6). Assuming the first query to the matrix was 1-entry,
A continues to sample entries from the same row. Note that for each row, the
number of 1-entries may be different which affects the success probability of the
algorithm. Therefore, we “divide” the rows into “buckets” by the number of 1-
entries in it. Formally, for every 0 ≤ d ≤ N , we define δd be the fraction of rows
with exactly d 1-entries.

Rogue-Instance Security for Batch Knowledge Proofs 147

When d ≤ 1, we know that the success probability is 0. Thus, we consider
only δd for d ≥ 2. This lets us derive the following:

Pr[CollGame(A, H) = 1] ≥
N∑

d=2

δd
d

N
· Pr [Xd ≥ 1] ≥

N∑
d=2

δd
d

N
·
(

min

{
1

2
,
(d − 1) · B

2(N − 1)

})

Let n :=
⌊
1 + N−1

B

⌋
, then,

Pr[CollGame(A,H) = 1] ≥
n∑

d=2

δd
d

N
· (d − 1) · B

2(N − 1)
+

N∑

d=n+1

δd
d

N
· 1
2

=
B

2

n∑

d=2

δd
d(d − 1)

N(N − 1)
+

1
2

·
N∑

d=n+1

δd
d

N

=
B

2N(N − 1)

n∑

d=0

δd · d(d − 1) +
1
2

·
N∑

d=n+1

δd
d

N

Let ε1 :=
∑n

d=0 δd
d
N and ε2 :=

∑N
d=n+1 δd

d
N . By Jensen’s inequality we get that

1

N(N − 1)

n∑
d=0

δd · d(d − 1) ≥ 1

N(N − 1)
· ε1N (ε1N − 1) ≥ ε21 · N − ε1

N
= ε21 − ε1

N
.

Therefore we get, Pr[CollGame(A,H) = 1] ≥ B
2

(
ε21 − ε1

N

)
+ 1

2ε2. Since ε1+ε1 = ε,
the minimum of the above expression is where ε1 = ε. Thus, we can write

Pr[CollGame(A, H) = 1] ≥ B

2

(
ε2 − ε

N

)
≥ 1

2 · 2
√

ε
· ε2 − ε

2 · √
εN

=
ε1.5

4
−

√
ε

2N
.

Since ε ≥ 4
N , it holds that,

√
ε

2N
≤

√
ε

2
(
4
ε

) =
ε1.5

8
.

This leads to,

Pr[CollGame(A,H) = 1] ≥ ε1.5

8
,

which completes the proof.

5.3 Rogue Soundness Error Bound from the Collision Game

We now use the algorithm for the collision game in order to construct an algo-
rithm that extracts a witness w for an instance x. Then, combined with the
second-moment assumption we prove Theorem 1.

First, we prove the following lemma (which is interesting on its own):

148 G. Segev et al.

Lemma 8. Let tP̃ = tP̃(λ,K), tV = tV(λ,K), tW = tW (λ,K) be functions
of the security parameter λ ∈ N and the bound on the number of instances
K ∈ N. Let Π be an algebraic batch Σ-protocol for a relation R and let
Π∗ = (Setup,P1,P2,V, C) be the batch Σ-protocol constructed from Π as defined
in Lemma 1. Let tV denote the running time of the verifier V and let tW denote
the running time of the witness extractor. Let D = {Dλ}λ∈N be a distribution
over the relation where each Dλ produces (pp,x,w) ∈ Rλ. For every prover
P̃ = (P̃1, P̃2) that runs in time tP̃, there exists an algorithm A∗ such that:

1. E
[
TA∗,Dλ

] ≤ 2 · (tP̃ + tV + tW).
2. E

[
T 2

A∗,Dλ

] ≤ 4 · (tP̃ + tV + tW)2.

3. Either ε < 4
|Cpp| or Pr

⎡

⎣(pp,x1, w̃1) ∈ R
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ,K)
(x1,w1) ← Dλ(pp)
w̃1 ← A∗(pp,x1)

⎤

⎦ ≥ ε1.5

8 where

ε is the rogue-soundness error of Π∗ with respect to a distribution D and the
setup algorithm Setup.

Proof. We denote by aux the variable for tuples of (pp,x,β) where β =
(β2, . . . , βk) and βi ∈ {0, 1}r. We consider binary matrices H = {Haux}pp,xβ ∈
{0, 1}R×N , where the R rows correspond to P̃’s randomness and the N columns
correspond to V’s randomness for one instance. Note that although P̃’s and V’s
randomness depends on the number of instances that the prover outputs, we can
always bound it by the randomness size when P̃ outputs K instances.

An entry of Haux equals 1 if and only if the corresponding transcript (between
P̃ and V) is accepting. Recall that every algorithm A for the collision game aims
to find k + 1 entries with the value 1 in the same row. As P̃’s randomness is
fixed along one row, finding two 1-entries in the same row correspond to finding
two accepting transcripts (α, β1,β, γ), (α, β′

1,β, γ′). Given Claim 2, Π∗ has local
special soundness, i.e., there exists an algorithm E that runs in time tW which
given two accepting transcripts as considered above, extracts a witness for the
instance x1.

Let A be the algorithm for the collision game constructed in Lemma3, we
construct the algorithm A∗ as follows:

Rogue-Instance Security for Batch Knowledge Proofs 149

A∗(pp,x1)

1. Initialize an empty mapping M between the randomness used by P̃
and V and the transcript between them.

2. Let r be V’s randomness size for each instance. For 2 ≤ i ≤ K, sample
βi ← {0, 1}r.

3. Invoke A(1). When A performs a query on (ρ, β) answer as follows:
(a) Invoke ((x̃2, . . . , x̃k), α, st) ← P̃1(pp,x1; ρ).
(b) Invoke γ ← P̃2(β, β2, . . . , βk, st).
(c) Set M [(ρ, β)] ← (x̃2, . . . , x̃k, α, β, β2, . . . , βk, γ).
(d) Return V(pp,x1, x̃2, . . . , x̃k, α, β, β2, . . . , βk, γ) as the answer to

the query.
4. When A outputs ρ, β1, β2: set (x̃2, . . . , x̃k, α∗

1, β
∗
1 , β∗

1,2 . . . , β∗
1,k, γ∗

1) ←
M [ρ, β1] and (x̃2, . . . , x̃k, α∗

2, β
∗
2 , β∗

2,2 . . . , β∗
2,k, γ∗

2) ← M [ρ, β2].
5. Run w̃1 ← E(x̃2, . . . , x̃k, α∗

1, β
∗
1,2, . . . , β

∗
1,k, (β∗

1,1, γ
∗
1,1), (β

∗
2,1, γ

∗
2,1)).

6. Output w̃1.

We prove each claim separately.

Claim 9 (Expected running time). It holds that E
[
TA∗,Dλ

] ≤ 2 · (tP̃ +V+
tW).

Proof. Observe that whenever A query H, the algorithm A∗ invokes P̃ and V.
Thus, the expected number of invocations that A∗ performs to P̃ and V is the
expected number of queries performed by A. Thus, E

[
TA∗,Dλ

] ≤ E [QA] · (tP̃ +
V) + tW ≤ 2 · (tP̃ + tV + tW).

Claim 10 (Second-moment of expected running time). It holds that
E
[
T 2

A∗,Dλ

] ≤ 4 · (tP̃ + tV + tW)2 .

Proof. Following the same observation as in Claim 9 we obtain that

E

[
T

2
A∗,Dλ

]
≤

(
E [QA] · (t

P̃
+ tV)

)2
+ t

2
W ≤

(
E [QA] · (t

P̃
+ tV + tW)

)2
= E [QA]

2 · (t
P̃

+ tV + tW)
2

.

Jensen’s inequality leads to E
[
T 2

A∗,Dλ

] ≤ E
[Q2

A

] · (tP̃ + tV + tW)2 ≤ 4(tP̃ + tV +
tW)2.

Claim 11 (Success probability). Either ε < 4
|Cpp| or

Pr

⎡

⎣(pp,x1, w̃1) ∈ R
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ,K)
(x1,w1) ← Dλ(pp)
w̃1 ← A∗(pp,x1)

⎤

⎦ ≥ ε1.5

8 where ε is the rogue-

soundness error of Π∗ with respect to a distribution D and the setup algorithm
Setup.

Proof. Whenever A succeeds in the collision game with Haux, the algorithm A∗

outputs a witness for x1. Thus,

150 G. Segev et al.

Pr

⎡
⎣(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp ← Setup(1λ,K)
(x1,w1) ← Dλ(pp)
w̃1 ← A∗(pp,x1)

⎤
⎦ =

∑
aux

Pr[aux] · Pr [CollGame(A, Haux) = 1] .

For every aux = (pp,x,β), we let

εaux = Pr

⎡

⎢
⎢
⎣

V(pp,x, x̃2, . . . , x̃k, α, β, β2, . . . , βk, γ) = 1

conditioned on pp ← Setup(1λ,K)

∧ (x1,w1) ← Dλ(pp)

∧ β2, . . . , βk ← Cpp

∣
∣
∣
∣
∣
∣
∣
∣

((x̃2, . . . , x̃k), α, st) ← P̃1(1
λ, pp,x)

β2, . . . , βk ← Cpp

γ ← P̃2(st, β2, . . . , βk)

⎤

⎥
⎥
⎦ .

The collision game matrix Haux has εaux fraction of 1-entries. Thus, conditioned
on aux, the probability that A succeeds in the collision game is ε1.5

aux

8 . Therefore,

Pr

⎡

⎣(pp,x1, w̃1) ∈ R
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ,K)
(x1,w1) ← Dλ(pp)
w̃1 ← A∗(pp,x1)

⎤

⎦ =
∑

aux

Pr[aux] · ε1.5
aux

8
= E

aux

[
ε1.5
aux

8

]

≥
E
aux

[εaux]
1.5

8
≥ ε1.5

8
,

where first inequality follows from Jensen’s inequality and the last inequality
follows from the fact that E

aux
[εaux] = ε.

We are now ready to show a bound on the rogue soundness error of batch
Σ-protocol defined in Lemma 1.

Proof (Proof of Theorem 1). Let P̃ be a cheating prover and let εD be the rogue
soundness error with respect to D and Setup. Given Lemma 8 and the assumption
that R is second-moment hard with respect to the distribution D and the setup
algorithm Setup, it holds that either εD < 4

|Cpp| or,

ε1.5
D
8

≤ Pr

⎡

⎣(pp,x1, w̃1) ∈ R
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ,K)

(x1,w1) ← Dλ(pp)

w̃1 ← A∗(pp,x1)

⎤

⎦ ≤
Δ · E

[
T 2

A∗,D
]

|Wλ|ω ≤ Δ · 4 · (tP̃ + tV + tW)2

|Wλ|ω .

This leads to

εD ≤
(

Δ · 32 · (tP̃ + tV + tW)
|Wλ|ω

)2/3

.

Overall we derive the following bound

εD ≤ max

{(
Δ · 32 · (tP̃ + tV + tW)

|Wλ|ω
)2/3

,
4

|Cpp|

}
≤

(
Δ · 32 · (tP̃ + tV + tW)

|Wλ|ω
)2/3

+
4

|Cpp|

5.4 Algebraic Batch Identification Schemes

An identification scheme consists of a Σ-protocol for relation R and an algorithm
Gen that produces a distribution over (x,w) ∈ R where the public key is the
instance x and the secret key is the witness w. Similarly, we construct a batch

Rogue-Instance Security for Batch Knowledge Proofs 151

identification scheme that consists of batch Σ-protocol defined in Lemma 1 and
an algorithm Gen that given public parameters pp, produces a distribution over
(x,w) ∈ R(pp).

Note that the execution of ID is as the execution of the batch Σ-protocol
where each public key pk corresponds to an instance, and a secret key sk corre-
sponds to a witness.

We consider the rogue-security notion of batch identification scheme, asking a
cheating prover P̃ given as input an instance x produced by Gen, to convince the
verifier V on (x, x̃2, . . . , x̃k) where x̃2, . . . , x̃k are adaptively chosen by P̃ while
given access to an honest transcript-generator for the instance x and another (k−
1) instances by its choice. Formally, we let Transpk1,sk1(·) denote an oracle that
when queried with input (pk2, sk2), . . . (pkk, skk), runs an honest execution of the
protocol on input (pk1, sk1), . . . (pkk, skk) and returns the resulting transcripts
(α, β, γ). We define the rogue-security of a batch identification scheme as follows:

Definition 13 (Rogue soundness). Let ID = (Setup,Gen,P1,P2,V, C) be a
batch identification scheme for a relation R. Then, ID is (t, ε)-rogue soundness
(with respect to Gen and Setup) if for every λ, k ∈ N such that k ≤ K and
for any t-time malicious prover P̃ = (P̃1, P̃2) that performs q queries to the
transcript-generation oracle it holds that:

Pr
[
StrongIdentID(P̃, λ)

]
≤ ε(λ, t, q,K) ,

where the experiment StrongIdentID(P̃, λ) defined as follows:

StrongIdentID(P̃, λ):

1. pp ← Setup(1λ,K).
2. (pk1, sk1) ← Gen(pp).

3. ((p̃k2, . . . , p̃kk), α, st) ← P̃
Transpk1,sk1 (·)
1 (pp, pk1).

4. β ← Cpp.
5. γ ← P̃2(st, β).
6. Output V(pp, pk1, p̃k2, . . . , p̃kk, α, β, γ) = 1.

Recall that batch identification scheme ID consists of a batch Σ-protocol
Π∗ defined in Lemma 1 such that the execution of ID is as the execution of
Π∗ where each public key pk corresponds to an instance and a secret key sk
corresponds to a witness. Thus, if Π∗ is zero-knowledge, we can assume that
every malicious prover does not query the transcript-generation oracle, as such
queries can be internally simulated given the public keys. Formally, if Π∗ is
t-time zero-knowledge (Definition 8), for every malicious prover that performs
q queries to the transcript-generation oracle Transpk1,sk1(·), we can construct a
malicious prover that does not query the transcript-generation oracle and instead
runs the simulator q times to generate transcripts. Specifically, if Π∗ has tSim-
time zero-knowledge, any malicious prover that runs in time tP̃ and performs

152 G. Segev et al.

q queries to Transpk1,sk1(·), can be simulated by a malicious prover that runs in
time tP̃ + q · tSim.

Recall that every batch Σ-protocol Π∗ defined in Lemma 1 is constructed
from an algebraic Σ-protocol Π. We now show that if Π is tSim-time zero-
knowledge, then Π∗ is (k ·tSim)-zero-knowledge. Formally, we prove the following.

Claim 12. Let Π = (Setup,P1,P2,V, C) be an algebraic Σ-protocol for a rela-
tion R and let Π∗ be the batch Σ-protocol constructed from Π as defined in
Lemma 1 with a bound K on the number of instances. If Π is tSim-time zero-
knowledge, then Π∗ is (K · tSim)-time zero-knowledge.

The proof of Claim 12 appears in the full version. Combined with Theorem1,
we derive the following corollary:

Corollary 2. Let Δ = Δ(λ), ω = ω(λ), tP̃ = tP̃(λ), tV = tV(λ,K), tW =
tW (λ,K), tSim = tSim(λ,K), q = q(λ) be functions of the security parameter
λ ∈ N and the bound on the number of instances K ∈ N. Let Π be an alge-
braic Σ-protocol for relation R with tSim-time zero-knowledge and let Π∗ =
(Setup,P1,P2,V, C) be the batch Σ-protocol constructed from Π as defined in
Lemma 1. Let ID = (Setup,Gen,P1,P2,V, C) be the batch identification scheme
consists with Π∗. If R is second-moment hard with respect to Gen, then for
any malicious prover P̃ that runs in time tP̃ and issues q transcript-generation
queries it holds that

Pr
[
StrongIdentID(P̃, λ)

]
≤
(

Δ · 32 · (tP̃ + q · K · tSim + tV + tW)2

|Wλ|ω
)2/3

+
4

|Cpp| ,

where tV is the running time of the verifier V and tW is the running time of the
witness extractor.

6 Proving Expected-Time Hardness in Generic Models

In this section, we present a generic framework for analyzing expected-time
hardness of cryptographic problems. In fact, applying our framework proves the
second-moment assumption (Definition 2) for the discrete-logarithm problem in
the generic group model. Shoup [33] analyzed generic hardness of the discrete-
logarithm problem with respect to strict time algorithms. He showed that any
generic t-time algorithm that solves the discrete-logarithm problem has suc-
cess probability at most ε ≤ t2/p. Applying our framework yields a bound of
ε ≤ E

[
T 2

A

]
/p when considering unbounded algorithms where TA denotes the

random variable indicating the algorithm’s running time.
Our framework is inspired by [19] which showed a generic framework to

prove bounds with respect to expected-time algorithms when considering only
the first-moment of the expected running time. Their result proves the first-
moment assumption (Definition 1) but cannot be used to derive the second-
moment assumption.

In Sect. 6.1 we introduce our framework for proving expected-time hardness.

Rogue-Instance Security for Batch Knowledge Proofs 153

6.1 Our Framework

Definition 14 (Monotonic predicate). A predicate P is monotonic if for
every tr such that P (tr) = 1, it holds that P (tr||tr′) = 1 for every tr′.

We consider distributions D(λ) which produces an oracle O and define the
hardness of a predicate as follows:

Definition 15 (Hard predicate). A predicate P is ε-hard if for every strict
time algorithm At it holds that

Pr
[
P (tr) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− At
O (in)

]
≤ ε(t) .

In addition, we define history-oblivious predicates. Intuitively, this family of
predicates includes predicates on which each query is oblivious to the history
of the query-answer list (see Sect. 2.6 for further discussion). We define history-
oblivious by considering the hardness to set the predicate to output 1 on input
tr‖(x, y) where (x, y) is a fresh query-answer pair and tr is a query-answer list
on which the predicate outputs 0.

For any list of query-answer pairs μ we denote by D(λ, μ) the distribution
D(λ) of all oracles such that for every (xi, yi) ∈ μ it holds that yi = O(xi). We
let X,Y be the query and answer spaces.

Definition 16 (History-oblivious predicate). Let P be an ε-hard predicate.
We say that P is history-oblivious with respect to O if there is a function κ(·),
such that for every t ∈ N the following holds:

1. For every 0 ≤ i ≤ t, every trace tr of length i with P (tr) = 0, and any query
x ∈ X:

Pr
[
P (tr‖(x, y)) = 1

∣
∣
∣
∣

O ← D(λ, tr)
y = O(x)

]
≤ κ(i) .

2.
∑t

j=0 κ(j) ≤ ε(t).

(Above, the length of a trace is the number of query/answer pairs it contains.)
We consider experiments relative to an oracle, for which their security relies
on the trace between the adversary and the oracle. We capture this using a
monotonic predicate on the trace. Formally, we define the following:

Definition 17 (δ-bounded experiment). Let ExpO be an experiment with
oracle access O, and let δ = δ(λ) be a function of the security parameter λ ∈ N.
We say that ExpO is δ-bounded with respect to a monotonic predicate P if for
every (bounded and unbounded) algorithm A it holds that,

Pr
[
ExpO(in, out) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
≤ Pr

[
P (tr) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
+δ .

154 G. Segev et al.

Given the definitions above, we prove the following theorem.

Theorem 2. Let ExpO be a δ-bounded experiment with respect to a predicate P
which is ε-hard. If P is history-oblivious, then, for every unbounded algorithm
A it holds that,

Pr
[
ExpO(in, out) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
≤ E [ε(t)] + δ .

In particular, Theorem2 allows us to recover the same bounds given in [19],
which is captured in the following corollary.

Corollary 3. Let ExpO be a δ-bounded experiment with respect to a predicate P

which is ε-hard where ε(t) = Δtd

N for Δ, d,N ≥ 1. If P is history-oblivious, then,
for every unbounded algorithm A it holds that,

Pr
[
ExpO(in, out) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
≤ d

√
ε(E [TA]) + δ = d

√
Δ

N
· E [TA] + δ ,

where TA is a random variable indicating the number of queries performed by A
until he stops, when given access to an oracle O.

The proof of Corollary 3 appears in the full version, we now prove Theorem 2.

Proof (Proof of Theorem 2). Let tri be the first i pairs in the query-answer list
between the algorithm and the oracle O. Let Yi be an indicator random variable
for the event that (i) |tr| ≥ i; (ii) P (tri) = 1; and (iii) P (tri−1) = 0. Note that,
the events Yi = 1 are mutually exclusive, thus:

Pr
[
P (tr) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
=

∞∑

i=1

Pr
[
Yi = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
,

To simplify the notation throughout the proof, we omit the explicit reference
to the probability taken over the sampling of the oracle O ← D(λ) and the
execution of the algorithm.

Let TA = TA(λ) be a random variable indicating the number of queries
performed by A until he stops, when given access to an oracle O. Note that for
every i ∈ N it holds that Yi = 1 only if the number of queries performed by the
algorithm is at least i. Thus,

Pr
[
P (tr) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
=

∞∑

i=1

Pr
[
Yi = 1

∣
∣ TA ≥ i

] · Pr[TA ≥ i]

≤
∞∑

i=1

Pr
[
Yi = 1

∣
∣ TA ≥ i

] ·
∞∑

t=i

Pr[TA = t]

Rogue-Instance Security for Batch Knowledge Proofs 155

The following claim shows an upper bound on the above term
Pr
[
Yi = 1

∣
∣ TA ≥ i

]
. The proof of the claim appears in the full version.

Claim 13. If P is ε-hard and history-oblivious, then for every i ∈ N, it holds
that Pr

[
Yi = 1

∣
∣ TA ≥ i

] ≤ κ(i).

Given Claim 13 it holds that,

Pr
[
P (tr) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
≤

∞∑

i=1

κ(i) ·
∞∑

t=i

Pr [TA = t]

=
∞∑

t=1

Pr [TA = t] ·
t∑

i=1

κ(i) ≤
∞∑

t=1

Pr [TA = t] · ε(t) = E [ε(t)] ,

where the first equality follows from rearranging the summation, and the last
inequality follows from the fact that P is ε-hard and history-oblivious. Overall,
we conclude that,

Pr
[
ExpO(out) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
≤ E [ε(t)] + δ .

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the fiat-shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Agrikola, T., Hofheinz, D., Kastner, J.: On instantiating the algebraic group model
from falsifiable assumptions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 96–126. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 4

3. Attema, T., Cramer, R., Kohl, L.: A compressed Σ-protocol theory for lattices.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 549–579.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1 19

4. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions
in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56880-1 5

5. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight reductions
and non-rewinding proofs for Schnorr identification and signatures. In: Bhargavan,
K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp.
529–552. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7 24

6. Bellare, M., Dai, W.: Chain reductions for multi-signatures and the HBMS scheme.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 650–
678. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 22

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-030-45724-2_4
https://doi.org/10.1007/978-3-030-45724-2_4
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-65277-7_24
https://doi.org/10.1007/978-3-030-92068-5_22

156 G. Segev et al.

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a gen-
eral forking lemma. In: Proceedings of the ACM Conference on Computer and
Communications Security, pp. 390–399 (2006)

8. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

9. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

10. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

11. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-
way functions: constructions and applications. Theoret. Comput. Sci. 592, 143–165
(2015)

12. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D.
thesis, CWI and University of Amsterdam (1996)

13. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or:
can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

14. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

15. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 3

16. Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.: Batching Schnorr iden-
tification scheme with applications to privacy-preserving authorization and low-
bandwidth communication devices. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 276–292. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30539-2 20

17. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-
34799-2 16

18. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Con-
structions. Information Security and Cryptography, Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14303-8

19. Jaeger, J., Tessaro, S.: Expected-time cryptography: generic techniques and appli-
cations to concrete soundness. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12552, pp. 414–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64381-2 15

20. Katz, J., Lindell, Y.: Handling expected polynomial-time strategies in simulation-
based security proofs. J. Cryptol. 21(3), 303–349 (2008)

https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-540-30539-2_20
https://doi.org/10.1007/978-3-540-30539-2_20
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-030-64381-2_15
https://doi.org/10.1007/978-3-030-64381-2_15

Rogue-Instance Security for Batch Knowledge Proofs 157

21. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

22. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

23. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to Bitcoin. Des. Codes Crypt. 87(9), 2139–2164 (2019). https://
doi.org/10.1007/s10623-019-00608-x

24. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

25. Mizuide, T., Takayasu, A., Takagi, T.: Tight reductions for Diffie-Hellman variants
in the algebraic group model. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 169–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 9

26. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round Schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp.
189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 8

27. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

28. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13, 361–396 (2000)

29. Rotem, L., Segev, G.: Algebraic distinguishers: from discrete logarithms to deci-
sional uber assumptions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol.
12552, pp. 366–389. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64381-2 13

30. Rotem, L., Segev, G.: Tighter security for Schnorr identification and signatures:
a high-moment forking lemma for Σ-protocols. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12825, pp. 222–250. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84242-0 9

31. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

32. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

33. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

34. Yun, A.: Generic hardness of the multiple discrete logarithm problem. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 817–836. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 27

https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/978-3-030-12612-4_9
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/978-3-030-64381-2_13
https://doi.org/10.1007/978-3-030-64381-2_13
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-662-46803-6_27

	Rogue-Instance Security for Batch Knowledge Proofs
	1 Introduction
	1.1 Our Contributions

	2 Our Techniques
	2.1 High-Moment Hardness
	2.2 Rogue-Instance Security for Batch Protocols
	2.3 Batching Algebraic Sigma Protocols
	2.4 Non-interactive Batch Arguments
	2.5 General Batch Sigma Protocols
	2.6 Expected Time Hardness Framework

	3 Preliminaries
	3.1 High-Moment Hardness
	3.2 Sigma Protocols
	3.3 Batch Sigma Protocols

	4 Rogue-Instance Security
	4.1 Batch Sigma Protocols

	5 Batching Algebraic Sigma Protocols
	5.1 Algebraic Sigma Protocols
	5.2 The Collision Game
	5.3 Rogue Soundness Error Bound from the Collision Game
	5.4 Algebraic Batch Identification Schemes

	6 Proving Expected-Time Hardness in Generic Models
	6.1 Our Framework

	References

