
Distributed-Prover Interactive Proofs

Sourav Das1(B), Rex Fernando2, Ilan Komargodski3,4, Elaine Shi2,
and Pratik Soni5

1 UIUC, Champaign, IL, USA
souravd2@illinois.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
3 Hebrew University of Jerusalem, Jerusalem, Israel

ilank@cs.huji.ac.il
4 NTT Research, Sunnyvale, CA, USA

5 University of Utah, Salt Lake City, UT, USA
psoni@cs.utah.edu

Abstract. Interactive proof systems enable a verifier with limited
resources to decide an intractable language (or compute a hard func-
tion) by communicating with a powerful but untrusted prover. Such sys-
tems guarantee soundness: the prover can only convince the verifier of
true statements. This is a central notion in computer science with far-
reaching implications. One key drawback of the classical model is that
the data on which the prover operates must be held by a single machine.

In this work, we initiate the study of distributed-prover interactive
proofs (dpIPs): an untrusted cluster of machines, acting as a distributed
prover, interacts with a single verifier. The machines in the cluster jointly
store and operate on a massive data-set that no single machine can store.
The goal is for the machines in the cluster to convince the verifier of the
validity of some statement about its data-set. We formalize the commu-
nication and space constraints via the massively parallel computation
(MPC) model, a widely accepted analytical framework capturing the
computational power of massive data-centers.

Our main result is a compiler that generically augments any verifi-
cation algorithm in the MPC model with a (computational) soundness
guarantee. Concretely, for any language L for which there is an MPC
algorithm verifying whether x ∈ L, we design a new MPC protocol capa-
ble of convincing a verifier of the validity of x ∈ L and where if x �∈ L, the
verifier rejects with overwhelming probability. The new protocol requires
only slightly more rounds, i.e., a poly(log N) blowup, and a slightly big-
ger memory per machine, i.e., poly(λ) blowup, where N is the total size
of the dataset and λ is a security parameter independent of N .

En route, we introduce distributed-prover interactive oracle proofs
(dpIOPs), a natural adaptation of the (by now classical) IOP model to
the distributed prover setting. We design a dpIOP for verification algo-
rithms in the MPC model and then translate them to “plain model”
dpIPs via an adaptation of existing polynomial commitment schemes
into the distributed prover setting.

P. Soni—Work was done partially when the author was visiting Carnegie Mellon
University.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 91–120, 2023.
https://doi.org/10.1007/978-3-031-48615-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-48615-9_4

92 S. Das et al.

1 Introduction

Interactive proofs are a natural extension of non-determinism and have become
a fundamental concept in complexity theory and cryptography. The study of
interactive proofs has led to many of the exciting notions that are at the heart
of several areas of theoretical computer science, including zero-knowledge proofs
[40,41] and probabilistically checkable proofs (PCPs) [4,10,11].

An interactive proof is a protocol between a randomized verifier and a pow-
erful but untrusted prover. The goal of the prover is to convince the verifier
regarding the validity of some statement. If the statement is indeed correct, we
require that the verifier should accept an honestly generated proof with high
probability. Otherwise, if the statement is false, the verifier should reject with
high probability any maliciously crafted proof. A particularly interesting and
practical case is when the verifier is significantly weaker than the prover in some
aspect. Typically, verifiers that are weaker in terms of computational abilities
are studied, but other sorts of limitations are relevant.

The standard model of interactive proofs, as described above, has a key limi-
tation: The data must be held by a prover modeled as a single machine. A scenario
where the data is distributed among multiple parties is not natively supported.
Indeed, large organizations nowadays store vast amounts of data, often reaching
petabytes or even exabytes in size. To store and efficiently manage such enormous
volumes of data, these organizations utilize massive data-centers. With existing
succinct arguments, if such an organization takes up the role of the prover, the
only way to use existing interactive proofs technology is by essentially aggregat-
ing the data at a single machine. However, the latter is physically impossible as
there is no one machine that can store so much data.

Motivated by the above scenario, in this work, we study interactive proofs for
distributed provers. We first define a concrete model that captures the constraints
of such a distributed setting, and then design new interactive proofs in our model.

The Distributed Computation Model. We imagine an enormous data-set,
the size of which is denoted N . The data is stored in a cluster split among M
machines; i.e., every machine stores roughly a size N/M portion of the data-set.
As an example, imagine that N = 1017 bytes (100 petabytes) and that each
machine has a hard-disc capable of storing 1013 bytes (10 terabytes). Then, a
cluster consisting of 104 = 10, 000 machines is needed. (Clearly, there is no single
machine capable of storing 100 petabytes).

The distributed prover is the above cluster, consists of M server machines.
The verifier is another machine, as powerful as a single machine in the cluster,
i.e., it can store N/M bits of information. The goal of the distributed prover
is to convince the verifier of the validity of some statement about its data-set.
The distributed prover can perform arbitrary communication (server-to-server or
server-to-client) and local computation, as long as it respects the space constraint
of each machine. If we care about computational complexity of the (honest or
malicious) prover, we shall also require that the local computation of the (honest

Distributed-Prover Interactive Proofs 93

or malicious) provers is polynomial time. Each server machine and the client have
their own private source of randomness.

The above logic coincides with the rationale behind the Massively Parallel
Computation (MPC) model. This model was invented to capture popular mod-
ern parallel computation programming paradigms such as MapReduce, Hadoop,
and Spark, designed to utilize parallel computation power to manipulate and
analyze huge amounts of data. In this model, first introduced by Karloff, Suri,
and Vassilvitskii [42], the size N data-set is stored in a distributed manner among
M machines. The machines are connected via pairwise communication channels
and each machine can only store S = N ε bits of information locally for some
ε ∈ (0, 1). Naturally, we assume that M ≥ N1−ε so that all machines can jointly
at least store the entire data-set.

The primary metric for the complexity of algorithms in this model is their
round complexity. Reasonable polynomial-time computations that are performed
within a machine are considered “for free” since the communication is often the
bottleneck. We typically want algorithms in the MPC framework to have a small
number of rounds, say, poly-logarithmically or even sub-logarithmically many
rounds (in the total data size N). With the goal of designing efficient algorithms
in the MPC model, there is an immensely rich algorithmic literature suggest-
ing various non-trivial efficient algorithms for tasks of interest, including graph
problems [1–3,6–9,12,15,16,26,28,31], clustering [13,14,33,39] and submodular
function optimization [32,34,46].

Succinct Arguments in the MPC Model. In this work, we study the ques-
tion of constructing interactive argument systems in the MPC model, where
the “prover” is a cluster of machines, each with N ε maximum storage, where
N is the size of the witness, and the client is also a machine with the same
storage restriction. Note that it is unrealistic to achieve an argument system
for all polynomial-time computable functions in this model, because there are
various results showing that not all such functions can be computed in the MPC
model [30,54]. Thus, we aim for the best-possible goal: to prove a statement
whose verification algorithm is itself an MPC algorithm.

We design an argument system that supports clusters acting as provers and
where the protocol respects the requirements of the MPC model. Specifically,
we prove the following theorem.

Theorem 1 (Main result; Informal). Let R = {(x,w)} be any relation which
has a massively-parallel verification algorithm Π among M = N1−ε parties each
with space N ε, where N = |w|, and |x| ≤ N ε.

Then there exists an argument system Π ′ for R in the MPC model, which has
M space-bounded provers P1, . . . , PM , and convinces a space-bounded verifier V
that x ∈ LR. The protocol Π ′ has space overhead multiplicative in poly(λ) relative
to Π, where λ is a security parameter, and has round overhead multiplicative in
polylog(N).

Under standard falsifiable cryptographic assumptions, the argument Π ′ is
sound in the CRS model against malicious provers with arbitrary poly(N,λ)
running time and space.

94 S. Das et al.

Our protocol’s soundness relies on the existence of groups of hidden order, which
can be instantiated based on the RSA assumption [53] or on class groups [27,57].

To put the above result in better context, we mention a recent work of Fer-
nando et al. [35] (building on [36]) who built a secure computation compiler for
arbitrary MPC protocols. That is, they compile any MPC protocol into secure
counterparts, which still respect the constraints of the model. In particular, their
protocol can be used as an argument system in the cluster-verifier model we intro-
duce above. Unfortunately, their compiler relies on (publicly verifiable) succinct
non-interactive proofs of knowledge (SNARKs), which are well-known not to be
constructible based on falsifiable assumptions [38,49]. Our main contribution,
and the main technical challenge we overcome, is achieving such an argument
system relying only on falsifiable assumptions. As a bonus, we mention that if
we instantiate the hidden order group using class groups, our protocol requires
only a common random string, whereas the SNARK based solution requires a
structured common reference string.

1.1 Techniques: Distributed IOPs and Distributed Streaming
Polynomial Commitments

To achieve our main result, we use recent work on interactive oracle proofs
(IOPs). Recall that the IOP model is a proof system model that combines fea-
tures of interactive proofs (IPs) and probabilistically checkable proofs (PCPs).
In this model, the verifier is not required to read the prover’s messages in their
entirety; rather, the verifier has oracle access to some of the prover’s messages
(viewed as strings), and may probabilistically query these messages during its
interaction with the prover. IOPs strictly generalize PCPs, and serve as a con-
venient intermediate model for getting succinct “plain model” protocols. Many
recent succinct arguments have been constructed by first giving a protocol in the
IOP model, and then using a vector commitment or polynomial commitment to
instantiate the IOP oracle [18,21,22,27,29,37].

We extend the IOP model to a setting where the prover is distributed —
here on referred to as the distributed IOP. We imagine a prover that is made up
of a collection of servers that can communicate between themselves via peer-to-
peer channels, as in the classical distributed cluster-verifier MPC model. But,
communication between any server and the verifier occurs as in the IOP model:
the verifier has oracle access to a large string committed to by the server, in
addition to being able to communicate directly with any of the parties comprising
the server.

We build a distributed IOP in the MPC model analogous to the “plain model”
protocol we stated above. Specifically, given a distributed, massively-parallel pro-
tocol Π for verifying a relation R, we construct a distributed argument system
Π ′ which works in this new IOP model, and where a distributed group of provers
convince a verifier V that some x ∈ LR. Our argument uses a polynomial com-
mitment oracle, where each prover first streams evaluations of some multilinear
polynomial W over some subset of the Boolean hypercube, and where at the
end the provers have collectively defined W by their evaluations. The verifier

Distributed-Prover Interactive Proofs 95

then interacts with the prover and queries this polynomial IOP oracle in order
to verify the statement x.

Our IOP is inspired by the work of Blumberg et al. [23], who give an IOP for
RAM programs, where the prover’s running time and space are approximately
preserved in relation to the running time and space of the verification algorithm.
At a very high level, the [23] IOP has the prover commit to a polynomial Ŵ ,
which encodes the RAM computation, and then has the prover and verifier
run a sumcheck argument in relation to a polynomial h that is based on Ŵ .
The polynomial h has the property that it can be evaluated at any point via a
constant number of evaluations of Ŵ . At the end of the sumcheck, the verifier
can thus query the IOP oracle in order to do the final random evaluation of h.

We would like to use a similar strategy to [23], having the provers encode
a polynomial Ŵ which encodes the MPC computation, and then using a sum-
check argument to verify the truthfulness of Ŵ . However, since Ŵ now encodes
an interactive protocol between RAM programs ΠL, instead of just a RAM com-
putation, it is unclear how the provers would be able to generate sumcheck
messages without rerunning the MPC protocol many times, thus blowing up the
communication complexity.

To solve this, we use several ideas. First, for each round of the MPC protocol,
the provers commit to a concatenation πr of their states after the round is fin-
ished, using a Merkle tree-based succinct commitment. This defines a statement
(r, πr−1, πr), where a witness for this statement is a set of decommitments for
πr−1 and πr which show honest behavior during this round. If we can build a
knowledge-sound argument for this statement which works in the MPC model
and is round-efficient, this is sufficient to build an argument for honest execution
of the whole protocol ΠL. We then design an IOP similar to [23] for proving the
statement (r, πr−1, πr). Note that even though we have reduced to proving hon-
esty of one round, we still have the problem that knowledge of Ŵ is spread across
all the provers, and no single prover knows the whole description of Ŵ . Thus it
is still unclear how the provers will generate the sumcheck provers’ messages in
a round-efficient way. The main technical part of our paper deals with how to
do this.

Polynomial Commitments. Once we have an IOP for L, we still need to
instantiate it using a polynomial commitment scheme. Informally, a polyno-
mial commitment scheme allows a prover to commit to some low degree poly-
nomial f , and provide evaluations f(x) to a verifier along with a (interac-
tive) proof that the provided evaluation is consistent with the commitment.
Polynomial commitments were introduced by [43] and have recently drawn
significant attention due to their use in compiling oracle proof systems (e.g.,
PCPs and IOPs) into real world proof systems (e.g., arguments). A sequence
of works [5,17,19,24,25,27,44,47,52,55,56,59] have studied several different
aspects of efficiency including getting constant-sized proofs/commitments, sub-
linear (even polylogarithmic) time verification, as well as linear prover time.
However, these works consider a monolithic prover that stores the entire polyno-
mial locally. This is in stark contrast with our setting where there are multiple

96 S. Das et al.

provers P1, . . . , PM , each of which only have streaming access to a small piece
of the description of the polynomial. Looking ahead, the polynomial in our con-
text is the description of the transcript of the RAM computation, which can be
generated as a stream.

The works that come closest to our requirements are that of Block et
al. [21,22] who introduced the streaming model of access where a monolithic
prover has streaming access to the description of the polynomial. They build
a logarithmic round polynomial commitment scheme in the streaming model
where the prover’s memory usage is logarithmic, the prover time is quasilinear,
and requires only a logarithmic number of passes over the stream. Using such a
polynomial commitment scheme they build a succinct argument for RAM com-
putation where the prover is both time- and space- optimal. The key structural
property of their construction that allows for this small-space implementation
in the streaming model is: they show that for each of the logarithmic rounds,
prover’s messages in the interactive proof of consistency can be expressed as a
linear combination of the elements in the description stream. Therefore, it is suf-
ficient for the monolithic prover to take a single pass over its stream to compute
its message in every round. Although, their work still considers a monolithic
prover, this structural property is the starting point of our work. In particular,
we observe that the natural adaptation of Block et al. [22] commitment scheme
to our setting suffices for our purposes. In fact, when the cluster of provers
P1, . . . , PM is viewed as a monolithic prover, then the two schemes are identi-
cal. This allows us to base our security on that of Block et al. [22], which in
turn, is based on groups of hidden order (e.g., RSA and class groups). Due to
the above structural property, in each of the rounds, each of the provers in the
cluster can (a) first compute their contributions to this round’s message in small
space, while making a single pass over their stream, and (b) then all provers
can combine their contributions in logarithmic (in M) rounds via a tree-based
protocol to compute the full round message.

We present our construction in the MPC model in Sect. 6.2. Along the way, we
introduce the definition of polynomial commitments in the MPC model tailored
to the case of multilinear polynomials in Sect. 4.

1.2 Related Work

The terminology of distributed interactive proofs appeared in several prior
works, all of which differ significantly from our notion. The works [20,45,50]
all study a variant of interactive proofs where the verifier is distributed but
the prover is a single machine. The work of [51,58] allow multiple (potentially
mutually-distrusting) provers to efficiently derive a single SNARK for a large
statement/witness pair. While their goal on the surface is similar to ours, both
works inherently require non-falsifiable assumptions since they rely on SNARKs.
In contrast, the main contribution of our work is in building a succinct argument
system that does not require non-falsifiable assumptions.

Distributed-Prover Interactive Proofs 97

1.3 Organization

The rest of the paper is organized as follows. Section 2 contains preliminaries. In
Sect. 3, we define the MPC model and security properties required for argument
systems in this model. In Sect. 4, we define polynomial commitments that work
with distributed committers. Section 5 contains the main construction of succinct
arguments in the MPC model. Section 6 contains our adaptation of the [22]
polynomial commitment.

2 Preliminaries

Let S be some finite, non-empty set. By x ← S we denote the process of sampling
a random element x from S. For any k ∈ N, by Sk we denote the set of all
sequences/vectors of length k containing elements of S where S0 = {ε} for
empty string ε. We let F = Fp denote a finite field of prime cardinality p. We
assume that �b = (bn, . . . , b1), where bn is the most significant bit and b1 is the
least significant bit. For bitstrings �b ∈ {0, 1}n, we naturally associate �b with
integers in the set {0, . . . , 2n − 1}, i.e., �b =

∑n
i=1 bi · 2i−1. For any two equal

sized vectors �u,�v, by �u � �v we denote the coordinate-wise multiplication of �u
and �v. We use uppercase letters to denote matrices, e.g., A ∈ Z

m×n. For m × n
dimensional matrix A, A(i, ∗) and A(j, ∗) denote the i-th row and j-th column
of A, respectively.

Notation for Matrix-Vector “Exponents”. For some group G, A ∈ Z
m×n.

�u = (u1, . . . , um) ∈ G
1×m, and �v = (v1, . . . , vm)� ∈ G

n×1, we let �u �A and A��v
denote a matrix-vector exponent, defined for every j ∈ [n], i′ ∈ [m] as

(�u � A)j =
m∏

i=1

u
A(i,j)
i ; (A � �v)i′ =

n∏

j′=1

v
A(i′,j′)
j′ ,

For any vector �x ∈ Z
n and group element g ∈ G, we define g�x =

(gx1 , . . . , gxn). Finally, for k ∈ Z and a vector �u ∈ G
n, we let �uk denote the

vector (uk
1 , . . . , u

k
n).

2.1 Multilinear Polynomials

An n-variate polynomial f : F
n → F is multilinear if the individual degree of

each variable in f is at most 1.

Fact 1. A multilinear polynomial f : F
n → F (over a finite field F) is uniquely

defined by its evaluations over the Boolean hypercube. Moreover, for every �ζ ∈
F

n,

f(�ζ) =
∑

�b∈{0,1}n

f(�b) ·
n∏

i=1

χ(bi, ζi) ,

where χ(b, ζ) = b · ζ + (1 − b) · (1 − ζ).

98 S. Das et al.

As a shorthand, we will often denote
∏n

i=1 χ(bi, ζi) by χ(�b, �ζ) for n = |�b| = |�ζ|.
Notation for Multilinear Polynomials. Throughout, we denote a multi-
linear polynomial f by the 2n sized sequence Y containing its evaluations
over the Boolean hypercube. That is, Y = (f(�b) : �b ∈ {0, 1}n), and denote
the evaluation of the multilinear polynomial defined by Y on the point �ζ as
ML(Y, �ζ) =

∑
�b∈{0,1}n Y�b · χ(�b, �ζ).

3 Model Definition

In the massively-parallel computation (MPC) model, there are M parties (also
called machines) and each party has a local space of S bits. The input is assumed
to be distributed across the parties. Let N denote the total input size in bits; it
is standard to assume M ≥ N1−ε and S = Nε for some small constant ε ∈ (0, 1).
Note that the total space is M ·S which is large enough to store the input (since
M · S ≥ N), but at the same time it is not desirable to waste space and so it is
commonly further assumed that M · S ∈ Õ(N) or M · S = N1+θ for some small
constant θ ∈ (0, 1). Further, assume that S = Ω(log M).

At the beginning of a protocol, each party receives an input, and the protocol
proceeds in rounds. During each round, each party performs some local com-
putation given its current state (modeled as a RAM program with maximum
space S), and afterwards may send messages to some other parties through pri-
vate authenticated pairwise channels. An MPC protocol must respect the space
restriction throughout its execution, even during the communication phase—to
send a message at the end of a round, a party must write that message in some
designated place in memory, and in order to receive a message at the end of
a round, a party must reserve some space in memory equal to the size of the
message. This in turn implies that each party can send or receive at most S
bits in each round. An MPC algorithm may be randomized, in which case every
machine has a sequential-access random tape and can read random coins from
the random tape. The size of this random tape is not charged to the machine’s
space consumption.

3.1 Succinct Arguments in the MPC Model

We are interested in building a succinct argument in this model for some NP
language L, where the witness w = (w1, . . . , wM) for x ∈ L has size much
larger than S. The prover role is carried out by a group of S-space-bounded
parties P1, . . . , PM , each of which has the statement x and one piece wi of the
witness. They work together to convince a verifier V , which is also S-space-
bounded. Since any prover must at least be powerful enough to verify that
(x,w) ∈ RL, and the MPC model is not known to capture P when the rounds
are bounded, we only consider languages L where the verification algorithm
RL : ((x,w1), . . . , (x,wM)) → {0, 1} is implementable by a MPC protocol ΠL

where each party is S-space-bounded. Given such a protocol, our goal is to build

Distributed-Prover Interactive Proofs 99

a new MPC protocol Π ′
L between M + 1 parties P1, . . . , PM , V , where Pi has

input (x,wi) and V has input x, which satisfies the properties discussed below.

Communication Model and Setup. We assume a synchronous setting, with
pairwise channels between parties. We also allow for a CRS Setup(1λ) →
(α1, . . . , αM), where party i receives αi at the beginning of the protocol. Since
each party must store some αi, it is clear that |αi| ≤ S for all i. Looking ahead,
in our protocol, all parties get the same CRS string α which is a description of
a group of size 2λ, that is, αi = α for all i ∈ [M].

Efficiency Requirements. We want to build a protocol Π ′
L which has effi-

ciency properties as close as possible to the original verification protocol ΠL.
Specifically, if in ΠL each party uses space bounded by S, in Π ′

L each party’s
space should be bounded by S · p(λ), for some fixed polynomial p. Moreover, if
ΠL takes r rounds, Π ′

L should take a small multiplicative factor r · β rounds. In
this paper, we set β = polylog(N).

Security Requirements. Let α be the output of the setup algorithm, and
denote with

Π ′
L 〈[P1, . . . , PM] , V 〉 (

1λ, α, x, w = (w1, . . . , wM)
)

the output of the protocol Π ′
L with interactive RAM programs P1, . . . , PM play-

ing the roles of the M provers, and with the interactive RAM program V playing
the role of the verifier, where each Pi is initialized with input (1λ, α, x, wi), and
V is initialized with input (1λ, α, x). Similarly, denote with

Π ′
L 〈A, V 〉 (

1λ, α, x, w = (w1, . . . , wM)
)

the output of the protocol Π ′
L with an interactive monolithic RAM program

A playing the role of all provers P1, . . . , PM , and with the interactive RAM
program V playing the role of the verifier, where A is initialized with the inputs
of all Pi as defined above, and V is initialized in the same way as above.

We require Π ′
L satisfies completeness and soundness, defined as follows.

Definition 1 (Completeness). Let L be a language with a corresponding MPC
protocol ΠL which implements the verification functionality for RL. For all
(x,w) ∈ RL and for all λ, letting m = m(|x|),

Pr
[
Π ′

L 〈[P1, . . . , PM] , V 〉 (
1λ,Setup(1λ), x, w

)
= 1

]
= 1,

where P1, . . . , PM (resp., V) are the honest provers (resp., verifier), and the
probability is taken over random coins of the parties and of the setup algorithm.

Definition 2 (Soundness). Let L be a language with a corresponding MPC
protocol ΠL which implements the verification functionality RL. Fix a PPT
adversary A = (A1,A2), where A1 takes as input the security parameter and
the output of Setup, and chooses an input x, and where A2 plays the roles of

100 S. Das et al.

the provers P1, . . . , PM . Then ΠL is said to satisfy soundness if there exists a
negligible function negl such that for all λ,

Pr
[

x /∈ L ∧
Π ′

L 〈A2, V 〉 (
1λ, α, x,⊥)

= 1 : (α1, . . . , αM) ← Setup(1λ)
x ← A1(λ, α1, . . . , αM)

]

< negl(λ).

To prove soundness of our protocol, we show the stronger property of witness-
extended emulation as formalized by Lindell [48]. Intuitively, witness-extended
emulation requires the existence of an efficient extractor that can simulate an
adversarial prover’s view while extracting the underlying witness. Below we for-
mally extend the standard definition to the MPC setting in the natural way.

Definition 3 (Witness-Extended Emulation). Let L be a language with a
corresponding MPC protocol ΠL which implements the verification functionality
RL. Fix a PPT adversary A = (A1,A2), where A1 takes as input the security
parameter and the output of Setup and chooses an input x along with a private
state σ, and where A2 takes this σ as input and plays the roles of the provers
P1, . . . , PM . Then ΠL is said to satisfy witness-extended emulation with respect
to L (and RL) if there exists an (expected) PPT machine E (called the “extrac-
tor”) and a negligible function negl such that the following holds. Define two
distributions Dλ

1 and Dλ
2 based on A and E, as follows:

– Dλ
1 : Compute the setup α ← Setup(1λ) and then compute (x, σ) ← A1(1λ, α),

then output (α, rA, rV , x, τ), where τ is the transcript of messages obtained by
the execution Π ′

L 〈A2(σ), V 〉 (
1λ, α, x,⊥)

, rA is the random tape of A1 and
A2, and rV is the random tape of V .

– Dλ
2 : Compute the setup α ← Setup(1λ) and then compute (x, σ) ← A1(1λ, α),

then output (α, rA, rV , x, τ, w) ← EO(1λ, α, x), where O is an oracle which
provides an execution of Π ′

L 〈A2(σ), V 〉 (
1λ, α, x,⊥)

, and allows for rewinding
of the protocol and choosing the randomness of A2 during each round.

With respect to these distributions, for all λ, the following holds:

1. The distributions Dλ
1 and Dλ

2

∣
∣
α,r,x,τ

are identical, where Dλ
2

∣
∣
α,r,x,τ

is the
restriction of D2 to the first four components of the tuple (α, r, x, τ, w).

2. It holds that Pr
[
V accepts and (x,w) /∈ RL : (α, r, x, τ, w) ← Dλ

2

]
< negl(λ).

4 Defining Multilinear Polynomial Commitments
in the MPC Model

In this section, we discuss how to define a polynomial commitment scheme which
works in the MPC model starting with a discussion on how the polynomial is
distributed across all of the M many S-space-bounded parties. Let M be a
power of 2 and let Y ∈ F

N define an n variate multilinear polynomial where
N = 2n. We assume that Y is distributed across all parties in the following

Distributed-Prover Interactive Proofs 101

way: Let {I1, . . . , IM} be the canonical partition of {0, 1}n, that is, Ii = {(i −
1) · N/M, . . . , i · N/M − 1}. We associate each party Pi with the subset Ii, and
assume that Pi holds only the partial vector Yi containing elements from Y
restricted to the indices in Ii. That is,

Yi = (Y�b)�b∈Ii
.

Furthermore, for the canonical partition, if i-th party holds the partial vector
Yi, then they collectively define the multilinear polynomial Y where Y = Y1 ||
Y2 || . . . || YM , where || refers to the concatenation of two vectors.

Definition 4 (Multilinear Polynomial Commitment Syntax). A multi-
linear polynomial commitment has the following syntax.

– PC.Setup(1λ, p, 1n,M) → pp: On input the security parameter 1λ (in unary),
a field size p less than 2λ, the number of variables 1n (also in unary), and
the number of parties M , the setup algorithm PC.Setup is a randomized PPT
algorithm that outputs a CRS pp whose size is at most poly(λ, n, log(M)).

– PC.PartialCom(pp,Yi) → (comi;Zi): On input a CRS pp, and a vector Yi ∈ F

which is the description of a multilinear polynomial restricted to the set Ii ⊂
{0, 1}n, PC.PartialCom outputs a “partial commitment” comi as well as the
corresponding decommitment Zi ∈ Z.

– PC.CombineCom(pp, {comi}i∈[M]) → com: This is an interactive PPT proto-
col in the MPC model computing the following functionality: each party Pi

holds the string (pp, comi), they jointly compute the full commitment com
such that P1 learns com, and outputs it.

– PC.PartialEval(pp,Yi, �ζ) → yi: On input a CRS pp, a partial description vector
Yi, and an evaluation point �ζ ∈ F

n, PC.PartialEval is a PPT algorithm that
outputs the partial evaluation yi.

– PC.CombineEval(pp, {yi}i∈[M], �ζ) → y: This is an interactive PPT protocol in
the MPC model computing the following functionality: each party Pi holds the
string (pp, yi), they jointly compute the full evaluation y such that P1 learns
y, and outputs it.

– PC.IsValid(pp, com,Y,Z) → 0 or 1: On input the CRS pp, a commitment
com, a multilinear polynomial Y and a decommitment Z, PC.IsValid is a PPT
algorithm that returns a decision bit.

– PC.Open: Is a public-coin succinct interactive argument system
〈[P1, . . . , PM], V 〉 in the MPC model, where the statement (pp, com, �ζ, y) and
witness (Y = {Yi}i∈[M],Z = {Zi}i∈[M]), with respect to the relation

R =
{(

(pp, com, �ζ, y), (Y,Z)
)

:
IsValid(pp, com,Y,Z) = 1, and

ML(Y, �ζ) = y

}

,

where each prover Pi has input (pp, com, �ζ, y,Yi,Zi) and V has input
(pp, com, �ζ, y).

In the following sections, we assume that PC.PartialCom works even if we are
given streaming access to Yi.

We now specify the security properties which are required of PC.

102 S. Das et al.

Definition 5 (Multilinear Polynomial Commitment Security). We
require the following three properties from a polynomial commitment scheme:

– Correctness: For every prime p, number of variables n, and all Y and �ζ,

Pr

⎡
⎣1 = PC.Open(pp, com, �ζ, y;Y, Z) :

pp ← PC.Setup(1λ, p, 1n)
{comi, Zi ← PC.PartialCom(pp, Yi)}i∈[M]

com, Z ← PC.CombineCom(pp, {comi}i∈[M])

⎤
⎦ = 1.

– Computational Binding: For every prime q, number of variables n, number
of parties M , and nonuniform polynomial machine A, there exists a negligible
function negl : N → [0, 1] such that for every λ ∈ N and every z ∈ {0, 1}∗,
following holds:

Pr

⎡

⎢
⎢
⎣

b0 = 1
b1 = 1

Y0 �= Y1

:

pp ← PC.Setup(1λ, q, 1n,M)
(com,Y0,Y1,Z0,Z1) ← A(1λ, pp, z)

b0 ← PC.IsValid(pp, com,Y0,Z0)
b1 ← PC.IsValid(pp, com,Y1,Z1)

⎤

⎥
⎥
⎦ < negl(λ).

– Properties of PC.Open: The argument PC.Open satisfies the efficiency, com-
pleteness and witness-extended emulation properties defined in Sect. 3.

Looking ahead, in Sect. 6, we will prove the following theorem, showing the
existence of a scheme PC which satisfies the properties above.

Theorem 2. Assume G is a group sampler where the Hidden Order Assumption
holds. Let n be the number of variables, M ≤ 2n be the number of parties.
Then, the scheme defined in Sect. 6.2 is a polynomial commitment scheme (as
in Sect. 4) for n variate multilinear polynomials over finite field of prime-order
p in the MPC model with M parties with the following efficiency guarantees:

1. PC.PartialCom outputs a partial commitment of size poly(λ) bits, runs in time
2n · poly(λ, n, log(p)), and uses a single pass over the stream.

2. PC.PartialEval outputs a partial evaluation of size �log(p)�, runs in time
(2n/M) · poly(n, log(p)), and uses a single pass over the stream.

3. PC.CombineCom and PC.CombineEval have O(log(M)) rounds, and each party
in it requires poly(λ) bits of space.

4. PC.Open takes O(n · log(M)) rounds with poly(n, λ, log(p), log(M)) commu-
nication.

5. The verifier in PC.Open runs in time poly(λ, n, log(p)).
6. Each party Pi in PC.Open runs in time 2n · poly(n, λ, log(p)), requires space

n · poly(λ, log(p), log(M)), and uses O(n) passes over its stream.

5 Constructing Succinct Arguments in the MPC Model

Our construction uses the subprotocols Distribute, Combine, and CalcMerkleTree
introduced in [35]. These protocols take O(logν M) rounds and the communica-
tion is O(S · ν) per round for each machine, for small integral branching factor
ν ≥ 2.

Distributed-Prover Interactive Proofs 103

5.1 Tools from Prior Work

We import two major tools from previous work. The first is the following lemma,
which says that any RAM program can be transformed into a circuit C, where the
wire assignments of C can be streamed in time and space both proportional to the
time and space of the RAM program, respectively. In addition, the circuit logic
can be represented succinctly by low-degree polynomials which have properties
amenable to sumcheck arguments.

Lemma 1 (From Blumberg et al. [23]). Let M be an arbitrary (non-
deterministic) RAM program that on inputs of length n runs in time T (n) and
space S(n). M can be transformed into an equivalent (non-deterministic) arith-
metic circuit C over a field F of size polylog(T (n)). Moreover, there exist cubic
extensions âdd and m̂ult of the wiring predicates add and mult of C that satisfy:

1. C has size O(T (n) · polylog(T (n)).
2. The cubic extensions âdd and m̂ult of C can be evaluated in time

O(polylog(T (n))).
3. an (input,witness) pair (x,w) that makes M accept can be mapped to a cor-

rect transcript W for C in time O(T (n) · polylog(T (n)) and space O(S(n)) ·
polylog(T (n)). Furthermore, w is a substring of the transcript W , and any
correct transcript W ′ for C possesses a witness w′ for (M,x) as a substring.

4. C can be evaluated “gate-by-gate” in time O(T (n) · polylog(T (n))) and space
O(S(n) · polylog(T (n))).

5. The prover’s sumcheck messages can be computed in space O(S(n) ·
polylog(T (n))).

5.2 Notation

We make the following notational assumptions about the MPC algorithm ΠL

which verifies membership in L.
Let R be the number of rounds that ΠL takes. In each round r ∈ [R] of an

execution of ΠL, the behavior of party i ∈ [M] is described as a succinct RAM
program NextSt(i, r, ·). Thus the program NextSt is a succinct representation
of the entire protocol ΠL. We assume NextSt has size much less than S. For
convenience, we write NextSti,r(·) = NextSt(i, r, ·). We assume that NextSti,r
takes a string sti,r−1||msgini,r−1 as an input and outputs string sti,r||msgouti,r , where
sti,r is the internal, private state of party i in round r and msgini,r−1 is the list
of messages which party i received in round r − 1, and msgouti,r are the outgoing
messages of party i in round r. Note that the space of each party is limited
to S bits, so in particular |sti,r||msgini,r||msgouti,r | ≤ S for each i ∈ [M] and r ∈
[R]. We assume that the first-round private state sti,0 of each party i is equal
to its private input (x,wi) (or x if i = M + 1). In addition, we assume that
msgouti,r = {(j, �j ,mj)}j , where each triple (j, �j ,mj) means that party i should
send message mj to party j, and that party j should store this message at
position �j in msginj,r−1. Finally, we assume that if r is the final round then P1

writes 1 to the first position of st1,r iff x ∈ L.

104 S. Das et al.

5.3 The Construction

The main construction of a succinct argument in the MPC model works as
follows. First, we construct a succinct argument for the following scenario. Fix
a round r and corresponding starting states sti,r−1||msgini,r−1 for each party i ∈
[M], and let πr−1 be a Merkle commitment to the concatenation of all these
starting states. Let sti,r||msgouti,r ||msgini,r be the state of party i after an honest
execution of round r, and let πr be a Merkle commitment to the concatenation
of all these end states. Assuming V has x, πr−1, and πr, the goal is to convince V
that πr is a commitment to states which have been obtained by an honest round-
r interaction, starting with the states committed to by πr−1. If we construct
an argument for this language, and this argument satisfies witness-extended
emulation, this is sufficient for achieving an argument system which verifies an
honest execution of the full protocol ΠL with respect to a witness for L.

In the following, we construct such a “round verification protocol,” which
is our main technical contribution. In Sect. 5.4, we show how to use this round
verification protocol to build an argument system for L.

To start, we define a new machine, which we call NextSt′. As before, we write
NextSt′i,r(·) = NextSt′(i, r, ·). Let

NextSt′i,r(πr−1, πr, sti,r−1,msgini,r−1, ρi,r−1, ρi,r, {ρi→j,r}j) = 1

if the all following holds:

– ρi,r−1 is an opening of πr−1 to (sti,r−1,msgini,r−1) at position i,
– ρi,r is an opening of πr to sti,r||msgouti,r ||msgini,r at position i, where

NextSti,r(sti,r−1,msgini,r−1) = sti,r||msgouti,r ||msgini,r,

– Writing msgouti,r as {(j, �j ,mj)}j , for each j, ρi→j,r is an opening to mj at
position �j in msginj,r.

Otherwise, let

NextSt′i,r(πr−1, πr, sti,r−1,msgini,r−1, ρi,r−1, ρi,r, {ρi→j,r}j) = 0.

Note that since NextSti,r is succinct, NextSt′i,r is also succinct. Let Ci,r be the
circuit corresponding to NextSt′i,r via Lemma 1. Also from Lemma 1, party i
can stream the gate assignments Wi,r of Ci,r in space proportional to the space
taken by an execution of NextSt′i,r.

We take an approach inspired by that of [22,23] in constructing a sumcheck
polynomial that encodes the computation, and using a polynomial commitment
to allow for a succinct verifier. Let s = �log T ′�, where T ′ is the number of
wires in Ci,r (which is constant across i and r). We can index every wire in Ci,r

with some string �x ∈ {0, 1}s. Define the polynomial Ŵi,r(X1, . . . , Xs) to be the
multilinear extension of Wi,r, i.e., for all �x ∈ {0, 1}s, Wi,r(�x) is the value that
Wi,r assigns to wire �x. Now, letting m = �log M�, we can index each party by

Distributed-Prover Interactive Proofs 105

a string �z ∈ {0, 1}m. Define Ŵr(X1, . . . , Xs, Z1, . . . , Zm) to be the multilinear
polynomial such that Ŵr(�x, �z) = Ŵi,r(�x), where i is the index which corresponds
to �z. Let âdd(X1, . . . , X3s) be the succinct, low-degree polynomial from Lemma
1 where âdd(�x1, �x2, �x3) = 1 if in Ci,r the unique gate which has input wires
�x1 and �x2 and output wire �x3 is an addition gate. Note that âdd does not
depend on i (or r for that matter) since, except for some hardcoded input wires,
Ci,r = Ci′,r′ for all i, i′, r, r′. Similarly, define m̂ult(X1, . . . , X3 s). Finally, define
înout(X1, . . . , X3s) so that înout(�x1, �x2, �x3) = 1 if either �x3 is an input wire which
is known by V , or �x3 is an output wire which is known by V and �x1 and �x2 are
the input wires for the gate whose output wire is �x3. Define Î(X1, . . . , Xm) to be
the multilinear polynomial such that Î(�x) is the corresponding bit of πr−1 (or πr)
if �x is an input wire which takes the value of a bit of πr−1 (or πr, respectively),
and is the corresponding bit of the statement to the argument system if r = 0
�x is an input wire which takes the value of the statement, and is 1 if �x is an
output wire which V knows should be 1.

Given above, we can define the polynomial g as follows:

g(�X1, �X2, �X3, �Z) = âdd(�X1, �X2, �X3)(Ŵr(�X3, �Z) − (Ŵr(�X1, �Z) + Ŵr(�X2, �Z)))

+ m̂ult(�X1, �X2, �X3)(Ŵr(�X3, �Z) − (Ŵr(�X1, �Z) · Ŵr(�X2, �Z)))

+ înout(�X1, �X2, �X3)(Ŵr(�X3, �Z) − Î(�X3)).

With this definition, g vanishes on all boolean inputs if and only if Ŵr encodes
transcripts of the correct computations of each party i with respect to starting
states committed to in πr−1 and ending states committed to in πr, and if all
messages sent by i have been stored in the respective msginj,r. For q ∈ Zp, let
hq(�X) = g(�X) · ∏

β∈[m+3 s](1 − (1 − q2
β−1

)Xi). Then, hq(�x) = g(�x) · qbin
−1(�x)

for all �x ∈ {0, 1}m+3 s, where bin−1(�X) is the integer represented by the binary
representation �X. We now have defined the polynomials required for the protocol
below. If P1, . . . PM can collectively construct the prover’s sumcheck messages
for the polynomial hq for a randomly chosen q, then this is sufficient to build
an argument that convinces V that g vanishes on the boolean hypercube. We
now describe the protocol, assuming the provers have an efficient subprotocol
CalcSumcheckProverMsg (defined below) for constructing their responses. This
protocol is heavily inspired by the IOP in [22]. However, that protocol was
significantly simpler, since in their setting, there is only one prover who can
stream the whole polynomial Ŵr. In contrast, we have the task of showing that
it is possible to construct the prover’s sumcheck responses in a round-efficient
way, even given that Ŵr is spread across many different machines.

106 S. Das et al.

VerifyRound: Protocol to verify correctness of one round of ΠL.

Parameters: Tree fan-in ν = s/ log N .

Inputs: Pi has input (r, πr−1, πr, sti,r−1,msgini,r−1, ρi,r−1, ρi,r, {ρi→j,r}j). V
has input (x, r, πr−1, πr). In addition, all parties have the setup α for a
polynomial commitment scheme.

Execution:

1. Independently in parallel, each prover computes
φi = PC.PartialCom(α, Ŵ), where for each �x ∈ {0, 1}s, Ŵ (�x) is the
wire assignment for wire �x in Ci,r. By Lemma 1, the wire assignments
can be computed in a streaming fashion, and PC.PartialCom works given
streaming access to Ŵ .

2. com ← PC.CombineCom(α, {φi}i∈[M]), so that each party obtains com,
the commitment of the polynomial Ŵr defined above.

3. P1 sends this commitment com to V .
4. V chooses q

$←− F and sends q to P1.
5. The provers run Distributeν(q) so that every prover obtains q.
6. The parties now run the sumcheck protocol with respect to hq defined

above. Set y1 ← 0. For each γ ∈ [m + 3s]:
(a) Provers run the subprotocol CalcSumcheckProverMsg to generate

sumcheck prover’s message fγ . P1 sends fγ to V .
(b) V checks that deg fγ = degγ hq, and halts and outputs 0 if the

degrees are different.
(c) V checks that fγ(0) + fγ(1) = yγ , and halts and outputs 0 if the

equality does not hold.
(d) V then chooses ζγ

$←− F, sets yγ+1 ← fγ(ζγ), and sends ζγ to P1.
7. Write �ζ = (�ζ1, �ζ2, �ζ3, �ζ4). The provers and verifier run PC.Open

with respect to statements (α, com, (�ζ1, �ζ4), Ŵr(�ζ1, �ζ4)), (α, com, (�ζ2, �ζ4),
Ŵr(�ζ2, �ζ4)), and (α, com, (�ζ3, �ζ4), Ŵr(�ζ3, �ζ4)). V halts and outputs 0 if
any of these protocols fail to verify.

8. V uses the openings to compute hq(�ζ). It checks whether hq(�ζ) = ym+3s;
if the equality does not hold, V outputs 0; otherwise, it outputs 1.

The CalcSumcheckProverMsg subprotocol

We now show how the parties P1, . . . , PM can generate the sumcheck prover’s
polynomials fγ in a round- and space-efficient manner. For each round γ, the
honest fγ(X) is defined to be the following univariate polynomial:

fγ(X) =
∑

�x∈{0,1}m+3 s−γ

hq(�ζ,X, �x),

Distributed-Prover Interactive Proofs 107

for the random vector �ζ chosen by the verifier in previous rounds. (In round one,
�ζ is the empty vector of length 0.) Recall that hq(�X) = g(�X) · ∏

i∈[m+3 s](1 −
(1 − q2

i

Xi)), for g as defined below (setting �X = (�X1, �X2, �X3, �Z)):

g(�X1, �X2, �X3, �Z) = âdd(�X1, �X2, �X3)(Ŵr(�X3, �Z) − (Ŵr(�X1, �Z) + Ŵr(�X2, �Z)))

+ m̂ult(�X1, �X2, �X3)(Ŵr(�X3, �Z) − (Ŵr(�X1, �Z) · Ŵr(�X2, �Z)))

+ înout(�x1, �x2, �x3)(Ŵr(�X3, �Z) − Î(�X3)).

Observe that hq(�X) can be written as

hq(�X1, �X2, �X3, �Z) =
5∑

i=j

pj(�X1, �X2, �X3, �Z),

where p5(�X1, �X2, �X3, �Z) = înout(�x1, �x2, �x3) · Î(�X3) and can be computed locally
by each party,

p4(�X1, �X2, �X3, �Z) = p′
4(�X1, �X2, �X3, �Z)Ŵr(�X1, �Z)Ŵr(�X2, �Z),

and for all j ∈ {1, 2, 3}

pj(�X1, �X2, �X3, �Z) = p′
j(�X1, �X2, �X3, �Z)Ŵr(�Xj , �Z) .

Here each p′
j is a succinct low-degree polynomial known by V . Thus, to compute

the polynomial fγ(X) in small rounds and space, it is sufficient to compute
∑

�x∈{0,1}m+3 s−γ

pj(�ζ,X, �x) (1)

in small rounds and space for each j ∈ [4] (and p5 locally) and sum the results.
We now show how to do this, focusing first on the case of i ∈ {1, 2, 3}. Note

that in every round except the first, computing the sum in Eq. (1) involves com-
puting O(2|�x|) interpolations of Ŵr. Since the evaluations of Ŵr are distributed
among the M parties P1, . . . , PM , doing these interpolations requires communi-
cation among these parties. If we interpolated pj(�ζ,X, �x) for each �x and then
summed the result, then even if the communication per interpolation is a con-
stant number of rounds, this would mean that computing Eq. (1) would involve
a number of rounds linear in the total computation time. So we need something
slightly more clever than the naive strategy.

Before we go on, we note that for Eq. (1), it suffices to compute
∑

�x∈{0,1}m+3 s−γ

pj(�ζ, ζ ′, �x),

for each ζ ′ ∈ {0, . . . , δ}, where δ is the degree of pj . Once we have these δ+1 field
elements, we can interpolate Eq. (1) in constant space. So we focus on computing
this; i.e., we focus on computing the following for an arbitrary �ζ ∈ F

γ

108 S. Das et al.

∑

�x∈{0,1}m+3 s−γ

pj(�ζ, �x). (2)

Note that each term in the sum above is of the form p′
j(�ζ, �x)Ŵr(�ζ ′, �x′), where

�ζ ′ is obtained from �ζ by deleting some (possibly zero) indices, and �x′ is obtained
from �x in the same manner. The key insight which allows us to compute Eq. (2) in
low rounds is as follows. Imagine that �ζ ′ = (ζ1) is a single element. Then, by the
multilinearity of Ŵr, it follows that Ŵr(ζ1, �x′) = ζ1 ·Ŵr(1, �x′)+(1−ζ1)·Ŵr(0, �x′).
In the same way, if �ζ ′ = (ζ1, ζ2), then

Ŵr(ζ1, ζ2, �x′) = ζ1 · Ŵr(1, ζ2, �x
′) + (1 − ζ1) · Ŵr(0, ζ2, �x

′)

= ζ1 ·
(
ζ2 · Ŵr(1, 1, �x′) + (1 − ζ2) · Ŵr(1, 0, �x′)

)

+ (1 − ζ1) ·
(
ζ2 · Ŵr(0, 1, �x′) + (1 − ζ2) · Ŵr(0, 0, �x′)

)
.

By a simple use of induction, we can write Ŵr(�ζ ′, �x′), for arbitrary �ζ ′, as

Ŵr(�ζ ′, �x′) =
∑

�y∈{0,1}|�ζ′|

c�ζ′,�y · Ŵr(�y, �x′) (3)

where

c�ζ′,�y =
|�ζ′|∏

j=1

(ζj · yj + (1 − ζj)(1 − yj)) =
|�ζ′|∏

j=1

{ζj if yj = 1, otherwise (1 − ζj)} .

It follows that we can rewrite Eq. (2) as

∑

�x∈{0,1}m+3 s−γ

pj(�ζ, �x) =
∑

�x∈{0,1}m+3 s−γ

p′
j(�ζ, �x)

⎛

⎝
∑

�y∈{0,1}|�ζ′|

c�ζ′,�y · Ŵr(�y, �x′)

⎞

⎠ (4)

=
∑

�x∈{0,1}m+3 s−γ

∑

�y∈{0,1}|�ζ′|

c′
�x,�ζ′,�y

· Ŵr(�y, �x′), (5)

where c′
�x,�ζ′,�y

is computable in space proportional to the space required to com-

pute c�ζ′,�y and p′
j(�ζ, �x).

Since Eq. (2) can be written as a weighted sum of evaluations of Ŵr on points
in the boolean hypercube, and since all such evaluations are partitioned across
the provers, each prover can compute a component of the sum by streaming the
computation in space O(S), and then the provers can all sum their components
together using a large-arity tree in constant rounds.

The case where j = 4 is more involved. Recall that the goal is to compute
∑

�x∈{0,1}m+3 s−γ

p4(�ζ, �x), (6)

Distributed-Prover Interactive Proofs 109

for some given �ζ ∈ F
γ . We first handle the case where γ ≤ 3s. In this case,

∑

�x∈{0,1}m+3 s−γ

p4(�ζ, �x) =
∑

�z∈{0,1}m

∑

�x′∈{0,1}3 s−γ

p′
4(�ζ, �x′, �z)Ŵr(�ζ1, �z)Ŵr(�ζ2, �z), (7)

where �ζ1 and �ζ2 are both a combination of �ζ and �x. Observe that from the
discussion above, for each �z ∈ {0, 1}m, the values {Ŵr(�ζj)}�ζj

can be streamed
by a single party Pi, where �z is the binary representation of i, by streaming the
values of Ŵr in the boolean hypercube and then using Eq. (3). Thus, for each �z,
the inner sum

∑
�x′∈{0,1}3 s−γ p′

4(�ζ, �x′, �z)Ŵr(�ζ1, �z)Ŵr(�ζ2, �z) can be computed by a
single party in O(S) space. The parties can then sum these terms in a large-arity
tree, thus computing Eq. (6) in O(1) rounds and O(S) space.

We now consider the case where γ > 3s. Write γ = 3 s+m′, for some m′ > 1,
and write �ζ = (�ζ1, �ζ2, �ζ3, �ζ4). In this case,

∑

�x∈{0,1}m+3 s−γ

p4(�ζ, �x) =
∑

�z′∈{0,1}m−m′
p′
4(�ζ, �z′)Ŵr(�ζ1, �ζ4, �z′)Ŵr(�ζ2, �ζ4, �z′),

and then again by Eq. (3), this is equal to
∑

�z′∈{0,1}m−m′
term�z′ (8)

where term�z′ is the following:

p′
4(�ζ, �z′)

⎛

⎜⎝
∑

�y
(1)
4 ∈{0,1}m′

c�ζ4,�y
(1)
4

· Ŵr(�ζ1, �y
(1)
4 , �z′)

⎞

⎟⎠

⎛

⎜⎝
∑

�y
(2)
4 ∈{0,1}m′

c�ζ4,�y
(2)
4

· Ŵr(�ζ2, �y
(2)
4 , �z′)

⎞

⎟⎠ .

(9)

Note that for any Ŵr(�ζj , �y
(2)
4 , �z′), there is a party (indexed by (�y(2)

4 , �z′) who
can compute this value locally, so WLOG, we assume each party has precom-
puted this corresponding value. Observe that �z′ defines a subset of parties,
indexed by the set S�z′ = {�y4, �z′ : y4 ∈ {0, 1}m′}, and distinct from S�z′′ for all
�z′′ �= �z′. Observe also that for each �z′, to compute term�z′ , only the parties in S�z′

must interact, and they can compute the sum in Eq. (9) in constant rounds and
O(S) space by first computing the two inner sums via large-arity trees as in all
the previous cases, and then multiplying these two summed values together and
weighting them according to p′

4(�ζ, �z′). Thus, to compute the outer sum, for each
�z′, the parties in S�z′ can interact in the manner described above, simultaneously
with all other S�z′′ . Then, once each set has their term of the sum, representative
parties for each of the sets can again use a large-arity tree to obtain the final
result in constant rounds and O(S) space.

We now give the description of CalcSumcheckProverMsg.

110 S. Das et al.

The protocol CalcSumcheckProverMsg.

Parameters: Tree fan-in ν = s/ log N .

Inputs: Pi has input (r, πr−1, πr, sti,r−1,msgini,r−1, ρi,r−1, ρi,r, {ρi→j,r}j). In
addition, all parties have the setup α for a polynomial commitment scheme,
a field element q ∈ F, the round γ of the sumcheck, and the verifier queries
�ζ, where |�ζ| = γ − 1.

Execution:

1. Write hq(�X1, �X2, �X3, �Z) =
∑5

i=j pj(�X1, �X2, �X3, �Z). Party P1 locally
computes summand5 =

∑
�x∈{0,1}m+3s−γ p5(�ζ,X, �x), where

p5(�X1, �X2, �X3, �Z) = înout(�x1, �x2, �x3) · Î(�X3),

and stores the result.
2. For j ∈ {1, . . . , 3}, the parties compute

∑
�x∈{0,1}m+3s−γ pj(�ζ,X, �x) as:

(a) For ζ ′ ∈ {0, . . . ,deg(pj)}, compute
∑

�x∈{0,1}m+3s−γ pj(�ζ, ζ ′, �x) as:
i. Each party Pi streams the computation of Ci,r in order to com-

pute the component componenti of the sum in eq. (5) which it
has access to.

ii. The parties run the protocol Combineν(+, {componenti}i∈[M]) so
that P1 learns

∑
�x∈{0,1}m+3s−γ pj(�ζ, ζ ′, �x).

(b) Once P1 has these deg(pj) + 1 values, it interpolates summandj =
∑

�x∈{0,1}m+3s−γ pj(�ζ,X, �x).

3. The parties now compute summand4 =
∑

�x∈{0,1}m+3s−γ p4(�ζ,X, �x). If
γ ≤ 3s, then for each ζ ′ ∈ {0, . . . ,deg(p4)}:
(a) Each party Pi computes the inner sum

componenti =
∑

�x′∈{0,1}3s−γ

p′
4(�ζ, �x′, �z)Ŵr(�ζ1, �z)Ŵr(�ζ2, �z)

from eq. (7), where �z is the index of i in binary form.
(b) The parties run the protocol Combineν(+, {componenti}i∈[M]) so

that P1 learns
∑

�x∈{0,1}m+3s−γ p4(�ζ, ζ ′, �x).
4. On the other hand, if γ > 3s then for each ζ ′ ∈ {0, . . . ,deg(p4)}:

(a) For each �z′ ∈ {0, 1}m−m′
, the parties in the set S�z′ do the following

to compute term�z′ :
i. Each party Pi in S�z′ computes the component componenti of(∑

�y
(1)
4 ∈{0,1}m′ c�ζ4,�y

(1)
4

· Ŵr(�ζ1, �y
(1)
4 , �z′)

)
which it has access to.

ii. The parties in S�z′ run Combineν(+, {componenti}i∈S�z′) so that
the lexicographically first party in S�z′ learns factor1.

Distributed-Prover Interactive Proofs 111

iii. Each party Pi in S�z′ computes the component componenti of(∑
�y
(2)
4 ∈{0,1}m′ c�ζ4,�y

(2)
4

· Ŵr(�ζ2, �y
(2)
4 , �z′)

)
which it has access to.

iv. The parties in S�z′ run Combineν(+, {componenti}i∈S�z′) so that
the lexicographically first party in S�z′ learns factor2.

v. The lexicographically first party in S�z′ now computes term�z′ =
p′
4(�ζ, �z′) · factor1 · factor2 locally, by eq. (9).

(b) Let Pi�z′ be the lexicographically first party in S�z′ . The parties
{Pi�z′ : �z′ ∈ {0, 1}m−m′} runs Combineν(+, {term�z′}�z′∈{0,1}m−m′) so

that P1 learns
∑

�x∈{0,1}m+3s−γ p4(�ζ, ζ ′, �x), as in eq. (8).
5. Once P1 has these deg(pj) + 1 values, it interpolates them to compute

summand4 =
∑

�x∈{0,1}m+3s−γ p4(�ζ,X, �x).

6. P1 outputs
∑5

j=1 summandj .

Efficiency

We now discuss the efficiency of the VerifyRound protocol.

Round complexity. The protocol VerifyRound can be separated into two steps:
first, the provers commit to the polynomial Ŵr and receive a random q from V ,
and then second, the parties carry out a sumcheck protocol. The first step is dom-
inated by the subprotocols PC.CombineCom(α, {φi}i∈[M]) and Distributeν(q).
Note that since ν = λ, and each of these two protocols take O(logν(M))
rounds, the first step takes a constant number of rounds. The second step takes
(m + 3 s) · (RCalcSumcheckProverMsg + C1) + C2 · RPC.Open rounds, where m + 3s is
polylog(N), RCalcSumcheckProverMsg and RPC.Open are the number of rounds required
for the CalcSumcheckProverMsg and PC.Open subprotocols respectively, and C1

and C2 are constants. As explained in Sect. 6, RPC.Open = polylog(|Ŵr|), which
is polylog(N). As explained in Sect. 5.3, RCalcSumcheckProverMsg is constant. Thus,
(m + 3 s) · (RCalcSumcheckProverMsg + C1) + C2 · RPC.Open is polylog(N). It follows
that the entire protocol VerifyRound takes polylog(N) rounds.

Space complexity per party. By the properties of the polynomial commit-
ment and the sumcheck protocol, the verifier takes space polylog(N) · poly(λ).
The provers each take space S · poly(λ); this follows from the following:

– Each party’s polynomial Ŵ which encodes the wire assignments of Ci,r can
be streamed in space O(S) by Lemma 1, and PC.PartialCom works assuming
streaming access to Ŵ .

– PC.CombineCom and PC.Open are MPC protocols where the provers require
at most S · poly(λ) space, as per the properties of PC.

– CalcSumcheckProverMsg is an MPC protocol where the provers require at
most S · poly(λ) space, as discussed in the previous section.

112 S. Das et al.

5.4 From Round Verification to a Full Argument

In this section, we use the VerifyRound protocol from Sect. 5 and the polynomial
commitment PC from Sect. 6.2 to achieve a succinct argument for a language L,
assuming L has a MPC verification algorithm ΠL as described in Sect. 5.2.

The formal description of the argument system is as follows. Assume the
original protocol ΠL runs for R rounds.

The argument system for L.

Parameters: Tree fan-in ν = s/ log N .

Inputs: Pi has input (x,wi). V has input x. In addition, all parties have
the CRS α for a polynomial commitment scheme.

Execution:

1. V samples a hash key h and sends it to P1. The provers run
Distributeν(h).

2. Each Pi sets sti,0 = (x,wi), and sets msgini,0 to be the empty string.
3. The provers run the subprotocol CalcMerkleTreeh({sti,0}i∈[M]) so that

each Pi learns a Merkle root π0 along with an opening ρi,0 for sti,r.
4. P1 sends π0 to V .
5. For each round r ∈ [R], the parties do the following:

(a) Each Pi runs NextSti,r(sti,r−1,msgini,r−1) to obtain sti,r and msgouti,r .
(b) For prover Pi, for each triple (j, �j ,mj) ∈ msgouti,r , Pi sends (�j ,mj)

to prover Pj , who stores mj at position �j in msginj,r.
(c) The provers run the subprotocol CalcMerkleTreeh on inputs

({(sti,r,msgouti,r ,msgini,r)}i∈[M]) so that each Pi learns a Merkle root
πr along with an opening ρi,r for (sti,r,msgouti,r ,msgini,r).

(d) P1 sends πr to V .
(e) For prover Pi, for each message in msgini,r, Pi sends an opening ρi→j,r

of that position in msgini,r to the sender Pj of that message.
(f) The parties run the subprotocol VerifyRound, where each prover

Pi has input (r, πr−1, πr, sti,r−1,msgini,r−1, ρi,r−1, ρi,r, {ρi→j,r}j), and
the verifier V has input (x, r, πr−1, πr).

(g) If VerifyRound aborts, then V aborts and rejects.
6. P1 sends an opening ρ of the first position of sti,R w.r.t. πR to V .
7. V accepts if the opening bit is 1, and rejects otherwise.

Efficiency. The round complexity of the above argument is R·polylog(N), where
R is the number of rounds taken by ΠL. The space complexity is S · poly(λ) per
party. The round and space complexity of the argument follows from those of
VerifyRound discussed above.

Security. We have the following theorem and defer its proof to the full version.

Distributed-Prover Interactive Proofs 113

Theorem 3. Assume the polynomial commitment scheme PC satisfies the secu-
rity properties in Definition 5. Then the argument system above satisfies witness-
extended emulation with respect to the language L.

6 Constructing Polynomial Commitments in the MPC
Model

Our construction extensively uses the polynomial commitment scheme of Block
et al. [22], which we describe in detail in the full version. To describe our con-
struction, we first introduce the distributed streaming model in Sect. 6.1, then
describe the construction in Sect. 6.2 with its proof in Sect. 6.3.

6.1 Distributed Streaming Model

Looking ahead to our goal of designing succinct arguments in the MPC model,
we consider an enhancement of the streaming model [22] to the MPC setting. We
refer to the model as the distributed streaming model : Let Y ∈ F

N be some mul-
tilinear polynomial and let {Yi ∈ F

N/M}i∈[M] be the set of partial descriptions
vectors such that Y = Y1 || Y2 || . . . || YM . In the distributed streaming model,
we assume that each of the S-space bounded parties Pi have streaming access
only to the elements of their partial description vector Yi, where S � N/M .

While adapting Block et al. [22] to the distributed streaming model, we need
to ensure two properties: (a) low-space provers and (b) a low-round protocol. A
naive low space implementation is achieved by blowing up the number of rounds
of interaction. Similarly, a naive polylogarithmic round protocol is achieved by
simply having each party communicate their whole input (in a single round)
to a single party, but this incurs high space for the prover. Achieving the two
properties together is the main technical challenge. We build a low-space and a
low-round protocol by heavily exploiting the algebraic structure of [22].

6.2 Our New Construction

To support n variate polynomials, recall that each party Pi holds a par-
tial vector Yi over F of size N/M and the corresponding index set Ii =
{(i − 1) · N/M, . . . , iN/M − 1}. The PC.Setup algorithm is identical to [22], and
the PC.PartialCom and PC.CombineCom collectively implement the commitment
algorithm of [22], and PC.Open implements their open algorithm.

PC.Setup(1λ, p, 1n,M) : The public parameters pp output by PC.Setup con-
tains the tuple (g, p, G) where g is a random element of the hidden order group
G and q is a sufficiently large integer odd integer (i.e., q > p · 2n·poly(λ)).

PC.PartialCom(pp,Yi) : Each of the parties locally run this algorithm to
compute their partial commitment to the polynomial. In particular, on inputs
pp = (q, g, G) and the partial sequence Yi ∈ F

N/M , the algorithm PartialCom
outputs a commitment comi to Yi by encoding its elements as an integer in base
q. Specifically, comi = gzi where

114 S. Das et al.

zi = q(i−1)N/M

⎛

⎝
∑

�b∈{0,1}n−m

q
�b · Yi�b

⎞

⎠ , (10)

and private partial decommitment is the sequence Zi = lift(Yi). We give the
formal description of this algorithm in the streaming model below.

Protocol 1 PC.PartialComν(pp,Yi)

Require: Party P holds a string pp = (q, g, G) where |pp| ≤ S and has
streaming access to the elements in the sequence Yi in lexicographic order.

Ensure: P party holds com where com = gzi is as defined in Equation (10).
1: Let com = 1 ∈ G, temp = g.
2: for �b ∈ {0, 1}n−m do
3: com = com · temp(Yi)�b

4: temp = tempq

5: com = comq(i−1)N/M

.
6: output com

PC.CombineCom(pp, {comi}) : Parties each holding their partial commit-
ments comi want to jointly compute a full commitment com =

∏
i∈[M] comi.

For this, parties run the Combine subprotocol on their inputs with op as the
group multiplication and P1 as the receiver. Then, P1 outputs com as the com-
mitment.

PC.PartialEval(pp,Yi, �ζ) : Each of the parties locally run this algorithm to
compute their contributions to the evaluation. In particular, on input the CRS
pp, a partial vector Yi ∈ F

N/M and a evaluation point �ζ ∈ F
n, the partial

evaluation algorithm outputs yi ∈ F such that

yi =
∑

�b∈{0,1}n−m

Yi�b · χ(�ζ,�b + (i − 1) · M) . (11)

We give the formal description of this algorithm in the streaming model below.

Protocol 2 PC.PartialEvalν(pp,Yi, �ζ)

Require: Party P holds a string pp = (q, g, G) and �ζ where |pp|, |�ζ| ≤ S, and
has streaming access to the elements in Yi in lexicographic order.

Ensure: P party holds yi as defined in Equation (11).
1: Let yi = 0 ∈ F.
2: for �b ∈ {0, 1}n−m do
3: yi = yi + (Yi)�b · χ(�ζ,�b + (i − 1) · M)

4: output yi

PC.CombineEval(pp, yi, �ζ) : Parties each holding their partial evaluations yi

want to jointly compute the full evaluation y =
∑

i∈[M] yi. For this, parties run
the Combine subprotocol on their inputs with the field addition as the associate
operator op and P1 as the receiver. Then, P1 outputs y as the evaluation.

Distributed-Prover Interactive Proofs 115

PC.Open The PC.Open algorithm is the natural adaptation of the Open algo-
rithm in [22] to the distributed streaming model. Specifically, all parties (includ-
ing V) hold the public parameters pp = (q, p, G), the claimed evaluation y ∈ F,
the evaluation point �ζ ∈ F

n and the commitment com. Further, each party Pi

has streaming access to the entries in its partial decommitment vector Zi.

The protocol PC.Open.

Inputs: Each party Pi holds a string pp = (q, g, G), �ζ, y and com where
|pp|, |�ζ|, |com|, |y| ≤ S, and has streaming access to the elements in the
sequence Yi in lexicographic order. The verifier V holds pp, �ζ, com, y.

Execution:

1. All parties and the verifier compute the λ-fold repetitions �com(0) and
�y(0) of com and y respectively as done in the Open algorithm of [22]. Pi

views Yi as a vector Zi = lift(Yi) over the integers. Further, let Z =
Z1||Z2|| . . . ZM , and let Z(0) be the λ-fold repetition of Z as done in the
Open algorithm of [22]. By Z

(0)
i we denote the part of Z(0) corresponding

to Zi.
2. For k ∈ [0, . . . , n − 1], do the following:

(a) Each party Pi, having streaming access to columns in Z
(0)
i , computes

their contribution to �y
(k)
L , �y

(k)
R , �com

(k)
L and �com

(k)
R .

(b) Then, each party run the Combine protocol on their respective con-
tributions such that P1 learns �y

(k)
L , �y

(k)
R , �com

(k)
L and �com

(k)
R . P1 then

forwards these values to the verifier V .
(c) V checks that �y(k) = �y

(k)
L · (1 − ζk+1) + �y

(k)
R · ζk+1.

(d) P1 and V run a PoE protocol on inputs (�com
(k)
R , �com(k)/ �com

(k)
L , q, n−

k − 1, λ) as in line 9 of MultiEval procedure of [22].
(e) V samples U (k) = [U (k)

L || U
(k)
R] ← {0, 1}λ×2λ and sends U (k) to P1

where U
(k)
L , U

(k)
R ∈ {0, 1}λ×λ.

(f) P1 runs the Distribute subprotocol with input U (k) with other Pi’s.
(g) All parties Pi and V locally compute the following:

�y(k+1) = U
(k)
L · �y(k)

L + U
(k)
R · �y(k)

R

�com(k+1) = (U (k)
L � �com

(k)
L) � (U (k)

R � �com
(k)
R) .

3. Each party Pi computes Z
(n)
i where Z

(n)
i is obtained by restricting the

summation in the expression for Z(n) to Ii.
4. Parties run the Combine protocol on Z

(n)
i with the integer addition oper-

ation to compute Z(n), and forward to V .
5. V accepts iff ||Z(n)||∞ ≤ p(2λ)n, �y(n) = Z(n) mod p, and �com(n) =

gZ(n)
.

116 S. Das et al.

6.3 Proof of Theroem 2

We now prove Theorem 2 – our main theorem statement for multilinear poly-
nomial commitments in the MPC model. The correctness, binding and witness-
extended emulation properties follow readily from that of [22]: this is because, for
these properties, it suffices to view the cluster of provers as monolithic. In such
a setting, the above described polynomial commitment scheme is then identical
to that of [22]. Finally, we argue about the efficiency of each of the algorithms
next.

Efficiency of PC.PartialCom. In PC.PartialCom (Sect. 6.2), each party Pi runs
through the stream of Yi once, and for each of the 2n/M elements performs the
following computation: In line 3, it does a single group exponentiation where
the exponent is an F value, and performs a single group multiplicaton. In line
4, it performs a group exponentiation where the exponent is q. Thus, lines 3–4
results in total runtime of (2n/M) · poly(λ, log(p), log(q)). On line 5, it performs
a single group exponentiation where the exponent is q(i−1)N/M followed by a
single group multiplication. The former requires (i−1)(N/M)poly(λ, log(q)) time
whereas latter requires poly(λ) run time. Plugging the value of q, results in an
overall time of 2n ·poly(λ, n, log(p)). The output is a single group elements which
require poly(λ) bits, and only one pass over the stream Yi is required.

Efficiency of PC.CombineCom. Recall from Sect. 6.2, that in PC.CombineCom,
all parties run the Combine subprotocol on local inputs of poly(λ) bits. This
requires O(log M) rounds and each party only requires poly(λ) bits of space.

Efficiency of PC.PartialEval. Recall from Sect. 6.2, each party Pi runs through
the stream of Yi once, and for each of the 2n/M elements performs the following
operations in line 3: (a) computes the polynomial χ on inputs of size n, and (b)
performs a single field multiplication and addition. Thus PC.PartialEval’s running
time is bounded by (2n/M)·poly(λ, n, log(p)), the output is a single field element
of �log(p)� bits, and only one pass over Yi is required.

Efficiency of PC.CombineEval. Recall from Sect. 6.2, that in PC.CombineEval,
all parties run the Combine subprotocol on local inputs of poly(λ) bits. This
requires O(log M) rounds and each party only requires poly(λ) bits of space.

Communication/Round Complexity of PC.Open. The round complexity
of PC.Open as described in Sect. 6.2 is dominated by line 2. In particular, line
2 is executed for O(n) times where in each iteration k: parties perform local
computations in all lines except 2-(b), 2-(d) and 2-(f). In particular, in 2-(b)
(resp., 2-(f)), an instantiation of the Combine (resp., Distribute)subprotocol is run
which requires O(log(M)) rounds. Additionally, in 2-(d), party P1 and the verifier
engage in a POE protocol which requires O(n−k) rounds. Therefore, overall, the
round complexity of PC.Open is O(n·log(M)) rounds. In terms of communication
complexity, in each round of the protocol at most poly(λ, n, log(p), log(M)) bits
are transmitted, therefore overall its bounded by poly(λ, n, log(p), log(M)).

The Efficiency of PC.Open. The verifier efficiency is dominated by its com-
putation in the PoE execution in line 2 of each of the n rounds, which is

Distributed-Prover Interactive Proofs 117

bounded by poly(λ, n, log(p), log(q)). Now onto the prover efficiency. The effi-
ciency of each party Pi is dominated by the n iterative executions of line 2
of the PC.Open(Sect. 6.2). In each iteration: in line 2-(a), Pi runs through the
stream of Yi once, and for each of the 2n/M elements performs some poly(λ, n)
computation for computing the matrices M�c as well as an O(n) size-product
of evaluations of the χ function. Further, the prover computation in lines 2-(d)
through 2-(g), doesn’t depend on the stream. In particular, its running time is
dominated by its computation in lines 2-(d) where P1 acts as a prover in the
PoE protocol where the exponent is of the form q2

n−k−1
. This results in overall

running time of 2n · poly(λ, n, log(p)). Further, the prover’s space in each of the
n iterations is poly(λ, log(p), log(M)). Finally, in each run of line 2, a single pass
over the entire stream is sufficient, resulting in O(n) passes over the stream for
each party Pi.

Acknowledgements. Rex Fernando, Elaine Shi, and Pratik Soni were sponsored by
the Algorand Centres of Excellence (ACE) Programme, the Defense Advanced Research
Projects Agency under award number HR001120C0086, the Office of Naval Research
under award number N000142212064, and the National Science Foundation under
award numbers 2128519 and 2044679. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. gov-
ernment or any other entity. Ilan Komargodski is the incumbent of the Harry & Abe
Sherman Senior Lectureship at the School of Computer Science and Engineering at the
Hebrew University, supported in part by an Alon Young Faculty Fellowship, by a grant
from the Israel Science Foundation (ISF Grant No. 1774/20), and by a grant from
the US-Israel Binational Science Foundation and the US National Science Foundation
(BSF-NSF Grant No. 2020643).

References

1. Kook Jin Ahn and Sudipto Guha: Access to data and number of iterations: dual
primal algorithms for maximum matching under resource constraints. ACM Trans.
Parallel Comput. (TOPC) 4(4), 17 (2018)

2. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geo-
metric graph problems. In: STOC 2014 (2014)

3. Andoni, A., Stein, C., Zhong, P.: Log diameter rounds algorithms for 2-vertex and
2-edge connectivity. arXiv preprint arXiv:1905.00850 (2019)

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
hardness of approximation problems. In: 33rd Annual Symposium on Foundations
of Computer Science, FOCS, pp. 14–23 (1992)

5. Arun, A., Ganesh, C., Lokam, S.V., Mopuri, T., Sridhar, S.: Dew: a transparent
constant-sized polynomial commitment scheme. In: Public Key Cryptography, pp.
542–571 (2023)

6. Assadi, S.: Simple round compression for parallel vertex cover. CoRR,
abs/1709.04599 (2017)

7. Assadi, S., Bateni, M.H., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet
EDCS: algorithms for matching and vertex cover on massive graphs. arXiv preprint
arXiv:1711.03076 (2017)

http://arxiv.org/abs/1905.00850
http://arxiv.org/abs/1711.03076

118 S. Das et al.

8. Assadi, S., Khanna, S.: Randomized composable coresets for matching and vertex
cover. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures, pp. 3–12. ACM (2017)

9. Assadi, S., Sun, X., Weinstein, O.: Massively parallel algorithms for finding well-
connected components in sparse graphs. CoRR, abs/1805.02974 (2018)

10. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, STOC, pp. 21–31 (1991)

11. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. Comput. Complex. 1, 3–40 (1991)

12. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and
MapReduce. Proc. VLDB Endow. 5(5), 454–465 (2012)

13. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-
means++. Proc. VLDB Endow. 5(7), 622–633 (2012)

14. Bateni, M.H., Bhaskara, A., Lattanzi, S., Mirrokni, V.: Distributed balanced clus-
tering via mapping coresets. In: Advances in Neural Information Processing Sys-
tems, pp. 2591–2599 (2014)

15. Behnezhad, S., Derakhshan, M., Hajiaghayi, M.T., Karp, R.M.: Massively par-
allel symmetry breaking on sparse graphs: MIS and maximal matching. CoRR,
abs/1807.06701 (2018)

16. Behnezhad, S., Hajiaghayi, M.T., Harris, D.G.: Exponentially faster massively par-
allel maximal matching. arXiv preprint arXiv:1901.03744 (2019)

17. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-Solomon interac-
tive oracle proofs of proximity. In: 45th International Colloquium on Automata,
Languages, and Programming (ICALP), pp. 14:1–14:17. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2018)

18. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

19. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside
the box improves soundness, pp. 5:1–5:32 (2020)

20. Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks.
In: SODA, pp. 2426–2458 (2022)

21. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-
knowledge arguments with (almost) minimal time and space overheads. In: Theory
of Cryptography, pp. 168–197 (2020)

22. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

23. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using mul-
tiple provers. IACR Cryptol. ePrint Arch., p. 846 (2014)

24. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

25. Bootle, J., Chiesa, A., Hu, Y., Orrú, M.: Gemini: elastic snarks for diverse envi-
ronments. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology–
EUROCRYPT 2022. LNCS, vol. 13276, pp. 427–457. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07085-3 15

http://arxiv.org/abs/1901.03744
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-031-07085-3_15

Distributed-Prover Interactive Proofs 119

26. Brandt, S., Fischer, M., Uitto, J.: Matching and MIS for uniformly sparse graphs
in the low-memory MPC model. CoRR, abs/1807.05374 (2018)

27. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

28. Chang, Y.-J., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The complexity of
(Δ+1) coloring incongested clique, massively parallel computation, and centralized
local computation. arXiv preprint arXiv:1808.08419 (2018)

29. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

30. Chung, K.-M., Ho, K.-Y., Sun, X.: On the hardness of massively parallel computa-
tion. In: 32nd ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA, pp. 153–162 (2020)

31. Czumaj, A., �La̧cki, J., Ma̧dry, A., Mitrović, S., Onak, K., Sankowski, P.: Round
compression for parallel matching algorithms. In: STOC (2018)

32. da Ponte Barbosa, R., Ene, A., Nguyen, H.L., Ward, J.: A new framework for
distributed submodular maximization. In: FOCS, pp. 645–654 (2016)

33. Ene, A., Im, S., Moseley, B.: Fast clustering using MapReduce. In: Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 681–689. ACM (2011)

34. Ene, A., Nguyen, H.: Random coordinate descent methods for minimizing decom-
posable submodular functions. In: International Conference on Machine Learning,
pp. 787–795 (2015)

35. Fernando, R., Gelles, Y., Komargodski, I., Shi, E.: Maliciously secure massively
parallel computation for all-but-one corruptions. In: Dodis, Y., Shrimpton, T.
(eds.) Advances in Cryptology. CRYPTO 2022. LNCS, vol. 13507, pp. 688–718.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5 24

36. Fernando, R., Komargodski, I., Liu, Y., Shi, E.: Secure massively parallel com-
putation for dishonest majority. In: Theory of Cryptography - 18th International
Conference, TCC, pp. 379–409 (2020)

37. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over Lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive (2019)

38. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC, pp. 99–108 (2011)

39. Ghaffari, M., Lattanzi, S., Mitrović, S.: Improved parallel algorithms for density-
based network clustering. In: International Conference on Machine Learning, pp.
2201–2210 (2019)

40. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

41. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

42. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce.
In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 938–948 (2010)

https://doi.org/10.1007/978-3-030-45721-1_24
http://arxiv.org/abs/1808.08419
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-031-15802-5_24

120 S. Das et al.

43. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) Constant-size commitments to polyno-
mials and their applications. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 11

44. Kattis, A.A., Panarin, K., Vlasov, A.: Redshift: transparent snarks from list poly-
nomial commitments. In: CCS, pp. 1725–1737 (2022)

45. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: PODC, pp.
255–264 (2018)

46. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in
MapReduce and streaming. TOPC. 2(3), 1–22 (2015)

47. Lee, J.: Dory: efficient, transparent arguments for generalised inner products and
polynomial commitments. In: Theory of Cryptography, pp. 1–34 (2021)

48. Lindell: Parallel coin-tossing and constant-round secure two-party computation. J.
Cryptol. 16, 143–184 (2003)

49. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

50. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive
proofs. In: SODA, pp. 1096–115 (2020)

51. Ozdemir, A., Boneh, D.: Experimenting with collaborative ZK-snarks: zero-
knowledge proofs for distributed secrets. In: USENIX, pp. 4291–4308 (2022)

52. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Theory of Cryptography, pp. 222–242 (2013)

53. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM. 21(2), 120–126 (1978)

54. Roughgarden, T., Vassilvitskii, S., Wang, J.R.: Shuffles and circuits (on lower
bounds for modern parallel computation). J. ACM 65(6), 1–24 (2018)

55. Setty, S., Lee, J.: Quarks: quadruple-efficient transparent Zksnarks. Cryptology
ePrint Archive, Paper 2020/1275 (2020)

56. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
Zksnarks without trusted setup. In: S&P, pp. 926–943 (2018)

57. Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33(4), 2113–2147
(2020)

58. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero
knowledge proof system. In: USENIX, pp. 675–692 (2018)

59. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: S&P, pp. 859–876 (2020)

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6

	Distributed-Prover Interactive Proofs
	1 Introduction
	1.1 Techniques: Distributed IOPs and Distributed Streaming Polynomial Commitments
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Multilinear Polynomials

	3 Model Definition
	3.1 Succinct Arguments in the MPC Model

	4 Defining Multilinear Polynomial Commitments in the MPC Model
	5 Constructing Succinct Arguments in the MPC Model
	5.1 Tools from Prior Work
	5.2 Notation
	5.3 The Construction
	5.4 From Round Verification to a Full Argument

	6 Constructing Polynomial Commitments in the MPC Model
	6.1 Distributed Streaming Model
	6.2 Our New Construction
	6.3 Proof of Theroem 2

	References

