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Abstract. The field of distributed certification is concerned with certifying prop-
erties of distributed networks, where the communication topology of the network
is represented as an arbitrary graph; each node of the graph is a separate pro-
cessor, with its own internal state. To certify that the network satisfies a given
property, a prover assigns each node of the network a certificate, and the nodes
then communicate with one another and decide whether to accept or reject. We
require soundness and completeness: the property holds if and only if there exists
an assignment of certificates to the nodes that causes all nodes to accept. Our
goal is to minimize the length of the certificates, as well as the communication
between the nodes of the network. Distributed certification has been extensively
studied in the distributed computing community, but it has so far only been stud-
ied in the information-theoretic setting, where the prover and the network nodes
are computationally unbounded.

In this work we introduce and study computationally bounded distributed
certification: we define locally verifiable distributed SNARGs (LVD-SNARGs),
which are an analog of SNARGs for distributed networks, and are able to circum-
vent known hardness results for information-theoretic distributed certification by
requiring both the prover and the verifier to be computationally efficient (namely,
PPT algorithms).

We give two LVD-SNARG constructions: the first allows us to succinctly cer-
tify any network property in P, using a global prover that can see the entire net-
work; the second construction gives an efficient distributed prover, which suc-
cinctly certifies the execution of any efficient distributed algorithm. Our con-
structions rely on non-interactive batch arguments for NP (BARGs) and on
RAM SNARGs, which have recently been shown to be constructible from stan-
dard cryptographic assumptions.
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1 Introduction

Distributed algorithms are algorithms that execute on multiple processors, with each
processor carrying out part of the computation and often seeing only part of the input.
This class of algorithms encompasses a large variety of scenarios and computation mod-
els, ranging from a single computer cluster to large-scale distributed networks such as
the internet. Distributed algorithms are notoriously difficult to design: in addition to
the inherent unpredictability that results from having multiple processors that are usu-
ally not tightly coordinated, distributed algorithms are required to be robust and fault-
tolerant, coping with an environment that can change over time. Moreover, distributed
computation introduces bottlenecks that are not present in centralized computation,
including communication and synchronization costs, which can sometimes outweigh
the cost of local computation at each processor. All of these reasons make distributed
algorithms hard to design and to reason about.

In this work we study distributed certification, a mechanism that is useful for ensur-
ing correctness and fault-tolerance in distributed algorithms: the goal is to efficiently
check, on demand, whether the system is in a legal state or not (here, “legal” varies
depending on the particular algorithm and its purpose). To that end, we compute in
advance auxiliary information in the form of certificates stored at the processors, and
we design an efficient verification procedure that allows the processors to interact with
one another and use their certificates to verify that the system is in a legal state. The
certificates are computed once, and therefore we are traditionally less interested in how
hard they are to compute; however, the verification procedure may be executed many
times to check whether the system state is legal, and therefore it must be highly effi-
cient. Since we do not trust that the system is in a legal state, we think of the certificates
as given by a prover, whose goal is to convince us that the system is in a legal state even
when it is not. One can therefore view distributed certification as a distributed analog
of NP.

Distributed certification has recently received extensive attention in the context of
distributed network algorithms, which execute in a network comprising many nodes
(processors) that communicate over point-to-point communication links. The commu-
nication topology of the network is modeled as an arbitrary undirected network graph,
where each node is a vertex; the edges of the graph represent bidirectional communica-
tion links. The goal of a network algorithm is to solve some global problem related to the
network topology, and so the network graph is in some sense both the input to the com-
putation and also the medium over which the computation is carried out. Typical tasks
in this setting include setting up network infrastructure such as low-weight spanning
trees or subgraphs, scheduling and routing, and various forms of resource allocation;
see the textbook [Pel00] for many examples. We usually assume that the network nodes
initially know only their own unique identifier (UID), their immediate neighbors, and
possibly a small amount of global information about the network, such as its size or its
diameter. An efficient network algorithm will typically have each node learn as little as
possible about the network as a whole, as this requires both communication and time.
This is sometimes referred to as locality [Pel00].

Distributed certification arises naturally in the context of fault tolerance and cor-
rectness in network algorithms (even in early work, e.g., [APV91]), but it was first
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formalized as an object of independent interest in [KKP05]. A certification scheme for
a network property P (for example, “the local states of the network nodes encode a
valid spanning tree of the network”) consists of a prover, which is usually thought of as
unbounded, and a verification procedure, which is an efficient distributed algorithm that
uses the certificates. Here, “efficiency” can take many forms (see the textbook [Pel00]
for some), but it is traditionally measured only in communication and in number of
synchronized communication rounds, not in local computation at the nodes. (A syn-
chronized communication round, or round for short, is a single interaction round dur-
ing which each network node sends a possibly-different message on each of its edges,
receives the messages sent by its neighbors, and performs some local computation.) At
the end of the verification procedure, each network node outputs an acceptance bit, and
the network as a whole is considered to accept if and only if all nodes accept; it suffices
for one node to “raise the alarm” and reject in order to indicate that there is a problem.
Our goal is to minimize the length of the certificates while providing soundness and
completeness, that is — there should exist a certificate assignment that convinces all
nodes to accept if and only if the network satisfies the property P .

To our knowledge, all prior work on distributed certification is in the information-
theoretic setting: the prover and the network nodes are computationally unbounded, and
we are concerned only with space (the length of the certificates) and communication (at
verification time). As might be expected, some strong lower bounds are known: while
any property of a communication topology on n nodes can be proven using O(n2)-
bit certificates by giving every node the entire network graph, it is shown in [GS16]
that some properties do in fact require Ω(n2)-bit certificates in the deterministic set-
ting, and similar results can be shown when the verification procedure can be random-
ized [FMO+19].

Our goal in this work is to circumvent the hardness of distributed certification in the
information-theoretic setting by moving to the computational setting: we introduce and
study computationally sound distributed proofs, which we refer to as locally verifiable
distributed SNARGs (LVD-SNARGs), extending the centralized notion of a succinct
non-interactive argument (SNARG).

Distributed SNARGs. In recent years, the fruitful line of work on delegation of com-
putation has culminated in the construction of succinct, non-interactive arguments
(SNARGs) for all properties in P [CJJ21b,WW22,KLVW23,CGJ+22]. A SNARG is
a computationally sound proof system under which a PPT prover certifies a statement
of the form “x ∈ L”, where x is an input and L is a language, by providing a PPT
verifier with a short proof π. The verifier then examines the input x and the proof π,
and decides (in polynomial time) whether to accept or reject. It is guaranteed that an
honest prover can convince the verifier to accept any true statement with probability 1
(perfect completeness), and at the same time, no PPT cheating prover can convince the
verifier to accept with non-negligible probability (computational soundness).

In this work, we first ask:

Can we construct locally verifiable distributed SNARGs (LVD-SNARGs), a dis-
tributed analog of SNARGs which can be verified by an efficient (i.e., local)
distributed algorithm?
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In contrast to prior work on distributed verification, here when we say “efficient”
we mean in communication and in rounds, but also in computation, combining both
distributed and centralized notions of efficiency. (We defer the precise definition of our
model to Sect. 2.

We consider two types of provers: first, as a warm-up, we consider a centralized
prover, which is a PPT algorithm that sees the entire network and computes succinct
certificates for the nodes. We show that in this settings, there is an LVD-SNARG for any
property in P, using RAM SNARGs [KP16,KLVW23] as our main building block.

The centralized prover can be applied in the distributed context by first collect-
ing information about the entire network at one node, and having that node act as the
prover and compute certificates for all the other nodes. However, this is very inefficient:
for example, in terms of total communication, it is easy to see that collecting the entire
network topology in one location may require Ω(n2) bits of communication to flow
on some edge. In contrast, “efficient” network algorithms use sublinear and even poly-
logarithmic communication.1 This motivates us to consider another type of prover – a
distributed prover—and ask:

If a property can be decided by an efficient distributed algorithm, can it be suc-
cinctly certified by an efficient distributed prover?

Of course, we still require that the verifier be an efficient distributed algorithm, as
in the case of the centralized prover above. We give a positive answer to this question
as well: given a distributed algorithm D, we construct a distributed prover that runs
alongside D with low overhead (in communication and rounds), and produces succinct
certificates at the network nodes.

We give more formal statements of our results in Sect. 1.3 below, but before doing
so, we provide more context and background on distributed certification and on delega-
tion of computation.

1.1 Background on Distributed Certification

The classical model for distributed certification was formally introduced by Korman,
Kutten and Peleg in [KKP05] under the name proof labeling schemes (PLS), but was
already present implicitly in prior work on self-stabilization, such as [APV91]. To cer-
tify a property P of a network graph G = (V,E),2 we first run a marker algorithm
(i.e., a prover), a computationally-unbounded algorithm that sees the entire network, to
compute a proof in the form of a labeling � : V → {0, 1}∗. We refer to these labels as
certificates; each node v ∈ V is given only its own certificate, �(v). We refer to this as
the proving stage.

1 As just one example of many, in [KP98] it is shown that one can construct a k-dominating
set of the network graph in Õ(k) communication per edge, and this is used to construct a
minimum-weight spanning tree in Õ(

√
n) communication per edge.

2 In general, the nodes of the network may have inputs, on which the property may depend, but
for simplicity we ignore inputs for the time being and discuss only properties of the graph
topology itself.
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Next, whenever we wish to verify that the property P holds, we carry out the ver-
ification stage: each node v ∈ V sends its certificate �(v) to its immediate neighbors
in the graph. Then, each node examines its direct neighborhood, its certificates, and the
certificate it received from its neighbors, and deterministically outputs an acceptance
bit.

The proof is considered to be accepted if and only if all nodes accept it. During the
verification stage, the nodes are honest; however, the prover may not be honest during
the proving stage, and in general it can assign arbitrary certificates to any and all nodes
in the network. We require soundness and completeness: the property P holds if and
only if there exists an assignment of certificates to the nodes that causes all nodes to
accept.

The focus in the area of distributed certification is on schemes that use short cer-
tificates. Even short certificates can be extremely helpful: to illustrate, and to famil-
iarize the reader with the model, we describe a scheme from [KKP05] for certify-
ing the correctness of a spanning tree: each node v ∈ V is given a parent pointer
pv ∈ V ∪ {⊥}, and our goal is to certify that the subgraph induced by these pointers,
{(v, pv) : v ∈ V and pv �= ⊥}, is a spanning tree of the network graphG. In the scheme
from [KKP05], each node v ∈ V is given a certificate �(v) = (rv, dv), containing the
following information:

– The purported name rv of the root of the tree, and
– The distance dv of v from the root rv .

(Note that even though the tree has a single root, the prover can try to cheat by claiming
different roots at different nodes, and hence we use the notation rv for the root given to
node v.) To verify, the nodes send their certificates to their neighbors, and check that:

– Their root rv is the same as the root ru given to each neighbor u, and
– If pv �= ⊥, then dpv

= dv − 1, and if pv = ⊥, then dv = 0.

This guarantees the correctness of the spanning tree,3 and requires only O(log n)-bit
certificates, where n is the number of nodes in the network; the verification stage
incurs communication O(log n) on every edge, and requires only one round (each
node sends one message to each neighbor). In contrast, generating a spanning tree from
scratch requires Ω(D) communication rounds, where D is the diameter of the network;
verifying without certificates that a given (claimed) spanning tree is correct requires
Ω̃(

√
n/B) communication rounds, if each node is allowed to send B bits on every edge

in every round [SHK+12].
The original model of [KKP05] is highly restricted: it does not allow randomiza-

tion, and it allows only one round of communication, during which each node sends
its certificate to all of its neighbors (this is the only type of message allowed). Sub-
sequent work studied many variations on this basic model, featuring different gener-
alizations and communication constraints during the verification stage (e.g., [GS16,
OPR17,PP17,FFH+21,BFO22]), different restrictions on how certificates may depend

3 Assuming the underlying network is connected, which is a standard assumption in the area;
otherwise additional information, such as the size of the network, is required.
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on the nodes’ identifiers (e.g., [FHK12,FGKS13,BDFO18]), restricted classes of prop-
erties and network graphs (e.g., [FBP22,FMRT22]), allowing randomization [FPP19,
FMO+19] or interaction with the prover (e.g., [KOS18,NPY20,BKO22]), and in the
case of [BKO22], also preserving the privacy of the nodes using a distributed notion of
zero knowledge. We refer to the survey [Feu21] for an overview of much of the work
in this area.

To our knowledge, all work on distributed certification so far has been in the
information-theoretic setting, which requires soundness against a computationally
unbounded prover, and does not take the local computation time of either the prover or
the verifier into consideration as a complexity measure (with one exception, [AO22],
where the running time of the nodes is considered, but perfect soundness is still
required). Information-theoretic certification is bound to run up against barriers aris-
ing from communication complexity: it is easy to construct synthetic properties that
essentially encode lower bounds from nondeterministic or Merlin-Arthur communica-
tion complexity into a graph problem. More interestingly, it is possible to use reduc-
tions from communication complexity to prove lower bounds on some natural prob-
lems: for example, in [GS16] it was shown that Ω(n2)-bit certificates are required to
prove the existence of a non-trivial automorphism, or non-3-colorability. In addition
to this major drawback, in the information-theoretic setting there is no clear connec-
tion between whether a property is efficiently checkable in the traditional sense (P, or
even NP) and whether it admits a short distributed proof: even computationally easy
properties, such as “the network has diameter at most k” (for some constant k), or
“the identifiers of the nodes in the network are unique,” are known to require Ω̃(n)-
bit certificates [FMO+19]. (These lower bounds are, again, proven by reduction from
2-party communication complexity.) In this work we show that introducing computa-
tional assumptions allows us to efficiently certify any property in P, overcoming the
limitations of the information-theoretic model.

1.2 Background on Delegation of Computation

Computationally sound proof systems were introduced in the seminal work of
Micali [Mic00], who gave a construction for such proofs in an idealized model, the
random-oracle model (ROM). Following Micali’s work, extensive effort went into
obtaining non-interactive arguments (SNARGs) in models that are closer to the plain
model, such as the Common Reference String (CRS) model. Earlier work in this line
of research, such as [ABOR00,DLN+04,DL08,Gro10,BCCT12], relied on knowledge
assumptions, which are non-falsifiable; for languages inNP, Gentry andWichs [GW11]
proved that relying on non-falsifiable assumptions is unavoidable. This led the research
community to focus some attention on delegating efficient deterministic computation,
that is, computation in P.

Initial progress on delegating computation in P assumed the weaker model of a des-
ignated verifier, where the verifier holds some secret that is related to the CRS [KRR13,
KRR14,KP16,BKK+18,HR18]. However, a recent line of work has led to the con-
struction of publicly-verifiable SNARGs for deterministic computation, first for space-
bounded computation [KPY19,JKKZ21] and then for general polynomial-time com-
putation [CJJ21a,WW22,KLVW23]. These latter constructions exploit a connection to
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non-interactive batch arguments for NP (BARGs), which can be constructed from vari-
ous standard cryptographic assumptions [BHK17,CJJ21a,WW22,KLVW23,CGJ+22].
We use BARGs as the basis for the distributed prover that we construct in Sect. 4.

1.3 Our Results

We are now ready to give a more formal overview of our results, although the full
formal definitions are deferred to the Sect. 2. For simplicity, in this overview we restrict
attention to network properties that concern only the topology of the network—in other
words, in the current section, a property P is a family of undirected graphs. (In the
more general case, a property can also involve the internal states of the network nodes,
as in the spanning tree example from Sect. 1.1. This will be discussed in the Technical
Overview.)

Defining LVD-SNARGs. Like centralized SNARGs, LVD-SNARGs are defined in the
common reference string (CRS) model, where the prover and the verifier both have
access to a shared unbiased source of randomness.

An LVD-SNARG for a property P consists of

– A prover algorithm: given a network graph G = (V,E) of size |V | = n and the
common reference string (CRS), the prover algorithm outputs an assignment of
O(poly(λ, log n))-bit certificates to the nodes of the network. The prover may be
either a PPT centralized algorithm, or a distributed algorithm that executes in G in a
polynomial number of rounds, sends messages of polynomial length on every edge,
and involves only PPT computations at each network node. 4

– A verifier algorithm: the verifier algorithm is a one-round distributed algorithm,
where each node of the network simultaneously sends a (possibly different) message
of length O(poly(λ, log n)) on each of its edges, receives the messages sent by its
neighbors, carries out some local computation, and then outputs an acceptance bit.
Each message sent by a node is produced by a PPT algorithm that takes as input
the CRS, the certificate stored at the node, and the input and neighborhood of the
node; the acceptance bit is produced by a PPT algorithm that takes the CRS, the
certificate of the node, the messages received from its neighbors, the input and the
neighborhood.

We require that certificates produced by an honest execution of the prover in the net-
work be accepted by all verifiers with overwhelming probability, whereas for any graph
failing to satisfy the property P , certificates produced by any poly-time cheating prover
(allowing stronger, centralized provers in both cases) will be rejected by at least one
node with overwhelming probability, as a function of the security parameter λ.5 We
refer the reader to Sect. 2.1 for the formal definition.
4 In fact, as we mentioned in Sect. 1, a centralized prover can also be implemented by a dis-
tributed algorithm where one node learns the entire network graph and then generates the
certificates. This is easy to do in polynomial rounds and message length.

5 The schemes we construct actually satisfy adaptive soundness: there is no PPT algorithm that
can, with non-negligible probability, output a network graph and certificates for all the nodes,
such that the property does not hold for the network graph but all of the nodes accept.
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LVD-SNARGs with a global prover.We begin by considering a global (i.e., centralized)
prover, which sees the entire network graph G. In this setting, we give a very simple
construction that makes black-box use of the recently developed RAM SNARGs for
P [KP16,CJJ21b,KLVW23,CGJ+22] to obtain the following:

Theorem 1. Assuming the existence of RAM SNARGs for P and collision-resistant
hash families, for any property P ∈ P, there is an LVD-SNARG with a global prover.

LVD-SNARG s with a distributed prover. As explained in Sect. 1, one of the main
motivations for distributed certification is to be able to quickly check that the network is
in a legal state. One natural special case is to check whether the results of a previously
executed distributed algorithm are still correct, or whether they have been rendered
incorrect by changes or faults in the network. To this end, we ask whether we can
augment any given computationally efficient distributed algorithm D with a distributed
prover, which runs alongside D and produces an LVD-SNARG certifying the execution
of D in the specific network. The distributed prover may add some additional overhead
in communication and in rounds, but we would like the overhead to be small.

We show that indeed this is possible:

Theorem 2. Let D be a distributed algorithm that runs in poly(n) rounds in networks
of size n, where in each round, every node sends a poly(log n)-bit message on every
edge, receives the messages sent by its neighbors in the current round, and then carries
out poly(n) local computation steps.

Assuming the existence ofBARGs forNP and collision-resistant hash families, there
exists an augmented distributed algorithm D′, which carries out the same computation
as D, but also produces an LVD-SNARG certificate attesting that D’s output is correct.

– The overhead of D′ compared to D is an additional O(diam(G)) rounds, during
which each node sends only poly(λ, log n)-bit messages, for security parameter λ.

– The certificates produced are of size poly(λ, log n).

Using known constructions of RAM SNARGs for P and of SNARGs for batch-NP
[CJJ21b,CJJ21a,WW22,KLVW23,CGJ+22], we obtain both types of LVD-SNARGs
(global or distributed prover) for P from either LWE, DLIN, or subexponential DDH.

Distributed Merkle trees (DMTs). To construct our distributed prover, we develop a
data structure that we call a distributed Merkle tree (DMT), which is essentially a global
Merkle tree of a distributed collection of 2|E| values, with each node u initially holding
a value xu→v for each neighbor v. (At the “other end of the edge”, node v also holds
a value xv→u for node v. There is no relation between the value xu→v and the value
xv→u.)

The unique property of the DMT is that it can be constructed by an efficient dis-
tributed algorithm, at the end of which each node u holds both the root of the global
Merkle tree and a succinct opening to each value x(u,v) that it held initially.

The DMT is used in the construction of the LVD-SNARG of Theorem 2 to allow
nodes to “refer” to messages sent by their neighbors. We cannot afford to have node v
store these messages, or even a hash of the messages v received on each of its edges, as
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we do not want the certificates to grow linearly with the degree. Instead, we construct
a DMT that allows nodes to “access” the messages sent by their neighbors: we let each
value xv→u be a hash of the messages sent by node v to node u, and construct a DMT
over these hashes. When node u needs to “access” a message sent by v to construct its
proof, node v produces the appropriate opening path from the root of the DMT, and
sends it to node u. All of this happens implicitly, inside a BARG proof asserting that
u’s local computation is correct.

The remainder of the paper gives a technical overview of our results.

2 Model and Definitions

In this section, we give a more formal overview of our network model; this model is
standard in the area of distributed network algorithms (see, e.g., the textbook [Pel00]).
We then formally define LVD-SNARGs, the object we aim to construct.

Modeling Distributed Networks. A distributed network is modeled as an undirected,
connected6 graph G = (V,E), where the nodes V of the network are the processors
participating in the computation, and the edges E represent bidirectional communica-
tion links between them.

For a node v ∈ V , we denote by NG(v) (or by N(v), if G is clear from context)
the neighborhood of v in the graph G. The communication links (i.e., edges) of node v
are indexed by port numbers, with Iu→v ∈ [n] denoting the port number of the channel
from v to its neighbor u. The port numbers of a given node need not be contiguous,
nor do they need to be symmetric (that is, it might be that Iv→u �= Iu→v). We assume
that the neighborhood N(v) and the port numbering at node v are known to node v
during the verification stage; the node does not necessarily need to have them stored
in memory at the beginning of the verification stage, but it should be able to generate
them at verification time (e.g., by probing its neighborhood, opening communication
sessions with its neighbors one after the other; or, in the case of a wireless network, by
running a neighbor-discovery protocol).

In addition to knowing their neighborhood, we assume that each node v ∈ V has a
unique identifier; for convenience we conflate the unique identifier of a node v with the
vertex v representing v in the network graph. We assume that the UID is represented by
a logarithmic number of bits in the size of the graph. No other information is available;
in particular, we do not assume that the nodes know the size of the network, its diameter,
or any other global properties.

A (synchronous) distributed network algorithm proceeds in synchronized rounds,
where in each round, each node v ∈ V sends a (possibly different) message on each
edge {v, u} ∈ E. The nodes then receive the messages sent to them, perform some
internal computation, and then the next round begins. Eventually, each node halts and
produces some output.

6 We consider only connected networks, since in disconnected networks one can never hope to
carry out any computation involving more than one connected component. Also, it is fairly
standard to assume an undirected graph topology, i.e., bidirectional communication links,
although directed networks are also considered sometimes (for instance, in [BFO22]).
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Distributed Decision Tasks. In the literature on distributed decision and certification,
network properties are referred to as distributed languages. A distributed language is
a family of configurations (G, x), where G is a network graph and x : V → {0, 1}∗

assigns a string x(v) to each node v ∈ V . The assignment xmay represent, for example,
the input to a distributed computation, or the internal states of the network nodes. We
assume that |x(v)| is polynomial of the size of the graph. We usually refer to x as an
input assignment, since for our purposes it represents an input to the decision task.

A distributed decision algorithm is a distributed algorithm at the end of which each
node of the network outputs an acceptance bit. The standard notion of acceptance in
distributed decision [FKP13] is that the network accepts if and only if all nodes accept;
if any node rejects, then the network is considered to have rejected.

Notation. When describing the syntax (interface) of a distributed algorithm, we
describe the input to the algorithm as a triplet (α;G;β), where

– α is a value that is given to all the nodes in the network. Typically this will be the
common reference string.

– G = (V,E) is the network topology on which the algorithm runs.
– β : V → {0, 1}∗ is a mapping assigning a local input to every network node. Each
node v ∈ V receives only β(v) at the beginning of the algorithm, and does not
initially know the local values β(u) of other nodes u �= v.

We frequently abuse notation by writing a sequence of values or mappings instead of
a single one for α or β (respectively); e.g., when we write that the input to a dis-
tributed algorithm is (a, b;G;x, y), we mean that every node v ∈ V (G) is initially
given a, b, x(v), y(v), and the algorithm executes in the network described by the graph
G.

The output of a distributed algorithm in a network G = (V,E) is described by a
mapping o : V → {0, 1}∗ which specifies the output o(v) of each node v ∈ V . In the
case of decision algorithms, the output is a mapping o : V → {0, 1}, and we say that
the algorithm accepts if and only if all nodes output 1 (i.e.,

∧
v∈V o(v) = 1). We denote

this event by “D(α;G;β) = 1”, where D is the distributed algorithm, and (α;G;β) is
its input (as explained above).

In general, when describing objects that depend on a specific graph G, we include
G as a subscript: e.g., the neighborhood of node v in G is denoted NG(v). However,
when G is clear from the context, we omit the subscript and write, e.g., N(v).

2.1 Locally Verifiable Distributed SNARGs

In this section we give the formal definition of locally-verifiable distributed SNARGs
(LVD-SNARGs). This definition allows for provers that are either global (centralized)
or distributed.

Syntax. A locally verifiable distributed SNARG consists of the following algorithms.

Gen(1λ, n) → crs. A randomized algorithm that takes as input a security parameter 1λ

and a graph size n, and outputs a common reference string crs.
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P(crs;G;x) → π. A deterministic algorithm (centralized or distributed)7 that takes a
crs obtained from Gen(1λ, n) and a configuration (G, x), and outputs an assignment of
certificates to the nodes π : V (G) → {0, 1}∗.

V(crs;G;x, π) → b. A distributed decision algorithm that takes a common reference
string crs obtained from Gen(1λ, n), an input assignment x : V → {0, 1}∗, and a proof
π : V → {0, 1}∗, and outputs acceptance bits b : V → {0, 1}∗. In the distributed
algorithm, each node v is initially given the crs, its own local input x(v) (which is
assumed to include its unique identifier), and its own proof π(v). During the algorithm
nodes communicate with their neighbors over synchronized rounds, and eventually each
node produces its own acceptance bit b(v).

Definition 1. Let L be a distributed language. An LVD-SNARG (Gen,P,V) for L must
satisfy the following properties:

Completeness. For any (G, x) ∈ L,

Pr
[

V(crs;G;x, π) = 1
∣
∣
∣
∣
crs ← Gen(1λ, n)
π ← P(crs;G;x)

]

= 1.

Soundness. For any PPT algorithm P∗, there exists a negligible function negl(·) such
that

Pr
[

(G, x) /∈ L
∧ V(crs;G;x, π) = 1

∣
∣
∣
∣
crs ← Gen(1λ, n)
(G, x, π) ← P∗(crs)

]

≤ negl(λ).

Succinctness. The crs and the proof π(v) at each node v are of length at most
poly(λ, log n).

Verifier Efficiency. V runs in a single synchronized communication round, during which
each node sends a (possibly different) message of length poly(λ, log n) to each neigh-
bor. At each node v, the local computation executed by V runs in time poly(λ, |π(v)|) =
poly(λ, log n).

Prover Efficiency. If the prover P is centralized, then it runs in time poly(λ, n).
If the prover P is distributed, then it runs in poly(λ, n) rounds, sends messages of
poly(λ, log n) bits, and uses poly(λ, n) local computation time at every network node.

7 For the centralized case, we denote P(crs, G, x) instead of (crs;G;x) as we have one entity
that receives the entire input.
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3 LVD-SNARGs with a Global Prover

We begin by describing a simple construction for LVD-SNARGs with a global prover
for any property in P. (When we refer to P here, we mean from the centralized point
of view: a distributed language L is in P iff there is a deterministic poly-time Turing
machine that takes as input a configuration (G, x) and accepts iff (G, x) ∈ L.)

Throughout this overview, we assume for simplicity that the nodes of the network
are named V = {1, . . . , n}, with each node knowing its own name (but not necessarily
the size n of the network).

Commit-and-Prove. Fix a language L ∈ P and an instance (G, x) ∈ L. A global prover
that sees the entire instance G can use a (centralized) SNARG for the language L in a
black-box manner, to obtain a succinct proof for the statement “(G, x) ∈ L.” However,
regular SNARGs (as opposed to RAM SNARGs) assume that the verifier holds the entire
input whose membership in L it would like to verify; in our case, no single node knows
the entire instance G, so we cannot use the verification procedure of the SNARG as-is.

Our simple work-around to the nodes’ limited view of the network is to ask the
prover to give the nodes a commitment with local openings C to the entire network
graph (for instance, a Merkle tree [Mer89]), and to each node, a proof πSNARG that the
graph under the commitment is in the language L.

Note that the language for which πSNARG is a SNARG proof is a set of commitments,
not of network configurations—it is the language of all commitments to configurations
in L. However, this leaves us with the burden of relating the commitment C to the true
instance (G, x) in which the verifier executes, to ensure that the prover did not choose
some arbitrary C that is unrelated to the instance at hand. To that end, we ask the prover
to provide each node v with the following:

– The commitment C and proof πSNARG. The nodes verify that they all received the
same values by comparing with their neighbors, and they verify the SNARG proof
πSNARG.

– A succinct opening to v’s neighborhood. Node v verifies that indeed, C opens to its
true neighborhood N(v).

Intuitively, by verifying that the commitment is consistent with the view of all the nodes,
and by verifying the SNARG that the graph “under the commitment” is in the language
L, we verify that the true instance (G, x) is in fact in L.

Although the language L is in P, if we proceed carelessly, we might find ourselves
asking the prover to prove an NP-statement, such as “there exists a graph configuration
(G, x) whose commitment is C, such that (G, x) ∈ L.” Moreover, to prove the sound-
ness of such a scheme, we would need to extract the configuration (G, x) from the proof
πSNARG, in order to argue that a cheating adversary that produces a convincing proof of
a false statement can be used to break either the SNARG or the commitment scheme.
Essentially, we would require a SNARK, a succinct non-interactive argument of knowl-
edge for NP, but significant barriers are known [GW11] on constructing SNARKs from
standard assumptions. To avoid this, we use RAM SNARGs rather than plain SNARGs.
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RAM SNARGs for P. A RAM SNARG ([KP16,BHK17]) is a SNARG that proves that
a given RAM machine M 8 performs some computation correctly; however, instead of
holding the input x to the computation, the verifier is given only a digest of x—a hash
value, typically obtained from a hash family with local openings (for instance, the root
of a Merkle tree of x). In our case, we ask the prover to use a polynomial-time machine
ML that decides L as the RAM machine for the SNARG, and the commitment C as the
digest; the prover computes a RAM SNARG proof for the statement “ML(G, x) = 1.”

Defining the soundness of RAM SNARGs is delicate: because the verifier is not
given the full instance but only a digest of it, there is no well-defined notion of a “false
statement”—a given digest d could be the digest of multiple instances, some of which
satisfy the claim and some of which do not. However, the digest is collision resistant, so
intuitively, it is hard for the adversary to find two instances that have the same digest. We
adopt the original RAM SNARG soundness definition from [KP16,BHK17,KLVW23],
which requires that it be computationally hard for an adversary to prove “contradictory
statements”; given the common reference string, it must be hard for an adversary to
find:

– A digest d, and
– Two different proofs π0 and π1, which are both accepted with input digest d, such
that π0 proves that the output of the computation is 0, and π1 proves that the output
of the computation is 1.

In our construction, the prover is asked to provide the nodes with a digest C, which
is a commitment to the configuration (G, x), and a RAM SNARG proof πSNARG for the
statement “(G, x) ∈ L,” which the prover constructs using a RAM machine ML that
decides membership in L in polynomial time.

Tying the Digest to the Real Network Graph. By themselves, the digest C and the
RAM SNARG proof πSNARG do not say much about the actual instance (G, x) that
we have at hand. As we explained above, we can relate the digest to the real network
by having every node verify that it opens correctly to its local view (neighborhood).
However, this is not quite enough: the prover can commit to (i.e., provide a digest of) a
graph G′ ∈ L that is larger than the true network graph G, such that G′ agrees with G
on the neighborhoods of all the “real nodes” (the nodes of G).9 We prevent the prover
from doing this by:

– Asking the prover to provide the nodes with the size n of the network, and a cer-
tificate proving that the size is indeed n. There is a simple and elegant scheme for
doing this [KKP05], based on building and certifying a rooted spanning tree of the
network; it has perfect soundness and completeness, and requires O(log n)-bit cer-
tificates.

8 A RAM machine M is given query access to an input x and an unbounded random-access
memory array, and returns some output y. Each query to the input x or the memory is consid-
ered a unit-cost operation.

9 This requires that G′ not be connected, but that is not necessarily a problem for the prover,
depending on the property L.
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– The Turing machine ML that verifies membership in L is assumed to take
its input in the form of an adjacency list LG,x = ((v1, x(v1), N(v1)), . . . ,
(vn, x(vn), N(vn),⊥), where ⊥ is a special symbol marking the end of the list, and
each triplet (vi, x(vi), N(vi)) specifies a node vi, its input x(vi), and its neighbor-
hood N(vi). Since ⊥ marks the end of the list, the machine ML is assumed (without
loss of generality) to ignore anything following the symbol ⊥ in its input.

– Recall that we assumed for simplicity that V = {1, . . . , n}. The prover computes a
digest C of LG,x, and gives each node i the opening to the ith entry. Each node ver-
ifies that its entry opens correctly to its local view (name, input, and neighborhood).

– The last node, node n, is also given the opening to the (n + 1)th entry, and verifies
that it opens to ⊥. Node n knows that it is the last node, because the prover gave all
nodes the size n of the network (and certified it).

To prove the soundness of the resulting scheme, we show that if all nodes accept, then
C is a commitment to some adjacency list L′ which has LG,x as a prefix—in the format
outlined above, including the end-of-list symbol ⊥. Since the machine ML interprets ⊥
as the end of its input, it ignores anything past this point, and thus, the prover’s SNARG
proof is essentially a proof for the statement “ML accepts (G, x).” If we assume for the
sake of contradiction that (G, x) �∈ L then we can generate an honest SNARG proof π0

for the statement “ML rejects (G, x),” using the same digest C, 10 and this breaks the
soundness of the SNARG.

4 LVD-SNARGs with a Distributed Prover

One of the main motivations for distributed certification is to help build fault-tolerant
distributed algorithms. In this setting, there is no omniscient global prover that can
provide certificates to all the nodes. Instead, the labels must themselves be produced by
a distributed algorithm, and comprise a proof that a previous execution phase completed
successfully and that its outputs are still valid (in particular, they are still relevant given
the current state of the communication graph and the network nodes). Formally, given
a distributed algorithm D, we want to construct a distributed prover D′ that certifies the
language

LD =

⎧
⎨

⎩
(G, x, y) :

when D executes in the network G
with inputs x : V → {0, 1}∗

,
it produces the outputs y : V → {0, 1}∗

⎫
⎬

⎭
.

Furthermore, D′ should not have much overhead compared to D in terms of communi-
cation and rounds.

Certifying the execution of the distributed algorithm D essentially amounts to prov-
ing a collection of “local” statements, each asserting that at a specific node v ∈ V (G),
the algorithm D indeed produces the claimed output y(v) when it executes in G. The

10 This step is a little delicate, and relies on the fact that in recent RAM SNARG constructions
(e.g., [CJJ21b,KLVW23]), completeness holds for any digest d that opens to the input instance
at every location the RAM machine reads from.
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prover at node v can record the local computation at node v as D executes, including
the messages that node v sends and receives. As a first step towards certifying that D
executes correctly, we could store at each node v a (centralized) SNARG proving that in
every round, v produced the correct messages according to D, handled incoming mes-
sages correctly, and performed its local computation correctly, eventually outputting
y(v). However, this does not suffice to guarantee that the global computation is correct,
because we must verify consistency across the nodes: how can we be sure that incom-
ing messages recorded at node v were indeed sent by v’s neighbors when D ran, and
vice-versa?

A naı̈ve solution would be for node v to record, for each neighbor u ∈ N(v), a hash
H(v,u) of all the messages that v sends and receives on the edge {v, u}; at the other end
of the edge, node u would do the same, producing a hash H(u,v). At verification time,
nodes u and v could compare their hashes, and reject ifH(v,u) �= H(u,v). Unfortunately,
this solution would require too much space, as node v can have up to n − 1 neighbors;
we cannot afford to store a separate hash for each edge as part of the certificate. Our
solution is instead to hash all the messages sent in the entire network together, but in a
way that allows each node to “access” the messages sent by itself and its neighbors. To
do this we use an object we call a distributed Merkle tree (DMT), which we introduce
next.

Distributed Merkle Trees. ADMT is a single Merkle tree that represents a commitment
to an unordered collection of values {xu→v}{u,v}∈E , one value for every directed edge
u → v such that {u, v} ∈ E. (The total number of values is 2|E|.) It is constructed by
a distributed algorithm called DistMake, at the end of which each node v obtains the
following information:

– val: the global root of the DMT.
– rtv: the “local root” of node v, which is the root of a Merkle tree over the local values

{xv→u}u∈N(v).
– Iv and ρv: the index of rtv inside the global DMT, and the corresponding opening
path ρv for rtv from the global root val.

– βv = {(Iv→u, ρv→u)}u∈N(v): for each neighbor u ∈ N(v), the index Iv→u is a
relative index for the position of xv→u under the local root rtv , and the opening
path ρv→u is the corresponding relative opening path from rtv . For every pair of
neighbors v and u, the index Iv→u also equals the number of the port of u in v’s
neighborhood.

The DMT is built such that for any value xv→u, the index of the value in the DMT is
given by Iv ‖ Iv→u, and the corresponding opening path is ρv ‖ ρv→u. Thus, node v
holds enough information to produce an opening and to verify any value that it holds.11

11 For simplicity we assume that nodes can query the communication infrastructure for a consis-
tent order of their neighbors (e.g., by “port number”); thus the relative ordering Iv→u does not
count against v’s storage. This is a standard assumption in the area. In the general case, the
port numbers themselves, which may stand for MAC addresses or similar, do not necessarily
need to be consecutive numbers from 1, . . . , deg(v), but we can order v’s neighbors in order
of increasing port number.
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(Here and throughout, ‖ denotes concatenation; we treat indices as binary strings rep-
resenting paths from the root down (with “0” representing a left turn, and “1” a right.)

The novelty of the DMT is that it can be constructed by an efficient distributed
algorithm, which runs in O(D) synchronized rounds (where D is the diameter of the
graph), and sends poly(λ, log n)-bit messages on every each in each round. We remark
that it would be trivial to construct a DMT in a centralized manner, but the key to the
efficiency of our distributed prover is to provide an efficient distributed construction;
in particular, we cannot afford to, e.g., collect all the values {xu→v}{u,v}∈E in one
place, as this would require far too much communication. We avoid this by giving a
distributed construction where each node does some of the work of constructing the
DMT, and eventually obtains only the information it needs.

We give an overview of the construction of the DMT in Sect. 5, but first we explain
how we use it in the distributed prover.

Using theDMT.We assume for simplicity that in each round r, instead of sending and
receiving messages on all its edges, each node v either sends or reads a message from
one specific edge, determined by its current state. We further assume that each message
sent is a single bit. (Both assumptions are without loss of generality, up to a polynomial
blowup in the number of rounds.)

While running the original distributed algorithm D, the distributed prover stores
the internal computation steps, the messages sent and the messages received at every
node.12 For each node v and neighbor u, node v computes two hashes:

– A hash hv→u of the messages v sent to u, and
– a hash hu→v of the messages v received from u.

A message sent in round r is hashed at index r. Note that both endpoints of the edge
{u, v} compute the same hashes hu→v and hv→u, but they “interpret” them differently:
node v views hu→v as a hash of the messages it received from u, while node u views it
as a hash of the messages it sent to v, and vice-versa for hv→u.

The messages hashes are used to construct the proof, but they are discarded at the
end of the proving stage, so as not to exceed our storage requirements. We use a hash
family with local openings, so that node v is able to produce a succinct opening from
hv→u or hu→v to any specific message that was sent or received in a given round.

Next we construct a DMT over the values {hu→v}{u,v}∈E . Let val
msg be the root

of the DMT. For each neighbor u ∈ N(v), node v obtains from the DMT the index and
opening for the message hash hv→u, and it sends them to the corresponding neighbor
u.

For a given node v and a neighbor of it, u, let Imsg
v,u,r be the index in the DMT of the

message sent by node v to node u in round r, which is given by Iv ‖ Iv→u ‖ r (recall
that r is the index of the r-round message inside hv→u). Node v is able to compute both
Imsg
v,u,r and Imsg

u,v,r and the corresponding opening paths, since it holds both hashes hv→u

and hu→v , learns Iv and βv = {Iv→u}u∈N(v) during the construction of the DMT, and
receives Iu ‖ Iu→v from node v.

12 We believe that this additional temporary storage requirement can be avoided using incremen-
tally verifiable computation, but we have not gone through the details.
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With these values in hand, the nodes can jointly use valmsg as a hash of all the
messages sent or received during the execution of D. Each node v holds indices and
openings for all the messages that it sent or received during the execution. Note that
this is the only information that v obtains; although valmsg is a hash of all the messages
sent in the network, each node can only access the messages that it “handled” (sent or
received) during its own execution. This is all that is required to certify the execution of
D, because a message that was neither sent nor received by a node does not influence
its immediate execution.

Modeling the Distributed Algorithm in Detail. Before proceeding with the construction
we must give a formal model for the internal computation at each network node, as our
goal will be to certify that each step of this computation was carried out correctly. It is
convenient to think of each round of a distributed algorithm as comprising three phases:

1. A compute phase, where each node computes the messages it will send in the current
round and writes them on a special output tape. In this phase nodes may also change
their internal state.

2. A send phase, where nodes send the messages that they produced in the compute
phase. The internal states of the nodes do not change.

3. A receive phase, where nodes receive the messages sent by their neighbors and write
them on a special tape. The internal states of the nodes do not change.

The compute phase at each node is modeled by a RAM machine MD that uses the
following memory sections:

– Env: a read-only memory section describing the node’s environment—its neighbors
and port numbers, and any additional prior information it might have about the net-
work before the computation begins.

– In: a read-only memory section that contains the input to the node.
– Read: a read-only input memory section that contains the messages that the node
received in the previous round.

– Mem: a read-write working memory section, which contains the node’s internal
state.

– Write: a write-only memory section where the machine writes the messages that the
node sends to its neighbors in the current round. In the final round of the distributed
algorithm, this memory section contains the final output of the node.

The state of the RAMmachine, which we denote by st, includes the following informa-
tion:

– Whether the machine will read or write in the current step,
– The memory location that will be accessed,
– If the next step is a write, the value to be written and the next state to which the
RAM machine will transition after writing,

– If the next step is a read, the states to which the RAM machine will transition upon
reading 0 or 1 (respectively).
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(We assume for simplicity that the memory is Boolean, that is, each cell contains a
single bit.)

The send and receive phases can be thought of as follows:

– The send phase is a sequence of 2|E| send steps, each indexed by a directed edge
v → u, ordered lexicographically, first by sender v and then by receiver u. In send
step v → u the message created by v for u in the current round is sent on the edge
between them.

– The receive phase is similarly a sequence of 2|E| receive steps, indexed by the
directed edges of the graph, and ordered lexicographically, again first by the sending
node and then the receiving node. In receive step v → u the message created by v
for u in the current round is received at node u.

Intuitively, using the same ordering for both the send and the receive phase means that
messages are received in the exact same order in which they are sent.

Certifying the Computation of One Node. After constructing the DMT, each node has
access to hashes of the messages it received during the execution of the algorithm. It
would be tempting think of these hashes as input digests, since in some sense incoming
messages do serve as inputs, and to use a RAM SNARG in a black-box manner to cer-
tify that the node carried out its computation correctly. The problem with this approach
is the notion of soundness we require, which is similar to that of a plain SNARG, but
differs from the soundness of a RAM SNARG: in our model, the nodes have access to
their neighborhoods and their individual inputs at verification time, so in some sense
they jointly have the entire input to the computation. We require that the prover should
not be able to prove a false statement, that is, find a configuration (G, x) and a convinc-
ing proof that D(G, x) outputs a value y which is not the true output of D on (G, x).
In contrast, the RAM SNARG verifier has only a digest of the input—although it may
also have a short explicit input, the bulk of the input is implicit and is “specified” only
by the digest, i.e., it is not uniquely specified. The soundness of RAM SNARGs, in turn,
is weaker: they only require that the prover not be able to find a single digest and two
convincing proofs for contradictory statements about the same digest. Because of this
difference, we cannot use RAM SNARGs as a black box, and instead we directly build
the LVD-SNARG from the same primary building block used in recent RAM SNARG
constructions [CJJ21b,KLVW23]: a non-interactive batch argument for NP (BARG).

A (non-interactive) BARG is an argument that proves a set (a batch) of NP state-
ments x1, . . . , xk ∈ L, for an NP language L, such that the size of the proof increases
very slowly (typically, polylogarithmically) with the number of statements k. (This is
not a SNARG for NP, since the proof size does grow polynomially with the length of
one witness.) Several recent works [CJJ21a,KLVW23] have constructed from standard
assumptions BARGs with proof size poly(λ, s, log k), where s is the size of the circuit
that verifies the NP-language. These BARGs were then used in [CJJ21b,KLVW23] to
construct RAM SNARGs for P. Following their approach, we use BARGs to construct
our desired LVD-SNARG. Roughly, our method is as follows.

At each node v, we use a hash family with local openings to commit to the sequence
of RAM machine configurations that v goes through: for example, if the history of
the memory section Read at node v is given by Read0v,Read1v, . . . (with Read0v being
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the initial contents of the memory section, Read1v being the contents following the
first step of the algorithm, and so on), then we first compute individual hashes of
Read0v,Read

1
v, . . ., and then hash together all these hashes to obtain a hash valReadv rep-

resenting the sequence of contents on this memory section at node v. Similarly, let
valMem

v , valWrite
v be commitments to the memory section contents of Mem and Write at

v, and let valstv be a hash of the sequence of internal RAM machine states that node v
went through during the execution of D (in all rounds).

We now construct a BARG to prove the following statement (roughly speaking):
for each round r and each internal step i of the compute phase of that round, there
exist openings of valReadv , valMem

v , valWrite
v and valstv in indices (r, i) and (r, i + 1) to

values str,i, str,i, hReadr,i, hReadr,i+1, hMemr,i, hMemr,i+1, hWriter,i, hWriter,i+1,
such that the following holds:

– If i is a step of the compute phase, and str,i indicates that the machine reads from
location � in memory section TP ∈ {Read,Mem,Write}, then there exists an open-
ing of hTPr,i in location � to a bit b such that upon reading b, MD transitions to
str,i+1. Moreover, the hash values of the memory sections hRead, hMem, hWrite do
not change in step (r, i): we have hReadr,i = hReadr,i+1, hMemr,i = hMemr,i+1,
and hWriter,i = hWriter,i+1.

– If i is a step of the compute phase, and str,i indicates that the machine writes the
value b to location � in memory section TP ∈ {Mem,Write}, then there exists an
opening of hTPr,i+1 in location � to the bit b. Moreover, the hash values of the other
memory sections {hRead, hMem, hWrite} \TP do not change in step (r, i).

– If i is a step of the send phase indexed by v → u (i.e., a step where v sends a message
to u), then there exists a message m such that valmsg opens to m in index Imsg

v,u,r and
hWrite opens to m in index d.

– If i is a step of the receive phase indexed by u → v (i.e., a step where v receives a
message from u), and u is the dth neighbor of v, then there exists a message m such
that valmsg opens to m in index Imsg

u,v,r and hRead opens to m in index d.

In addition to the requirements above, we ust ensure that whenever the contents
of a memory section change, they change only in the location to which the machine
writes, and the hash value for the memory section changes accordingly; for example, if
in step i of the compute phase of round r the machine writes value b to location � of
memory section TP, then we must ensure not only that TPr,i+1 opens to b in location �,
but also that hTPr,i and hTPr,i+1 are hash values of arrays that differ only in location
�. To do so, we use a hash family that also supports write operations (in addition to
local openings), as in the definition of a hash tree in [KPY19]. For example, a Merkle
tree [Mer89] satisfies all of the requirements for a hash tree.

We use the hash write operations to include the following additional requirements
as part of our BARG statement:

– For each step i of the compute phase of each round r, if str,i indicates that the
machine writes value b to location � in memory section TP ∈ {Mem,Write}, then
there exists an opening showing that hTPr,i and hTPr,i+1 differ only in location �.

– For each step of the receive phase of each round r, if the message received in this
step is written to location � of Read, then there exists an opening showing that
hReadr,i, hReadr,i+1 differ only location �.
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There is one main obstacle remaining: in all known BARG constructions, the BARG
is only as succinct as the circuit that verifies the statements it claims. In our case, the
statements involve the indices Imsg

v,u,r, as well as port numbers of the various neighbors
of v, and the corresponding opening paths. These must be “hard-wired” into the circuit,
because they are obtained from the DMT, i.e., they are external to the BARG itself.
Each node v may need to use up to n − 1 indices and openings, one for every neighbor,
so we cannot afford to use a circuit that explicitly encodes them.

Indirect Indexing. To avoid hard-wiring the indices and openings into the BARG, each
node v computes a commitment to the indices, in the form of a locally openable hash
of the following arrays:

– Indin(v), an array containing at each index Iv→u the value Iv ‖ Iv→u.
– Indout(v), an array containing at each index Iv→u the value Iu ‖ Iu→v .
– Port(v), an array containing at each index k the value ⊥ if vk /∈ N(v), or the value

d if vk is the dth neighbor of v.

Denote these hash values by valin(v), valout(v), and valPort(v), respectively.
Now we can augment the BARG, and have it prove the following: at every round r

and step i of the send phase, there exists a port number d, an index I , a message m, and
appropriate openings to the hash values valPort, valout , hWriter,i, val

msg such that

– valPort opens to d in location � such that v� is the node that v sends a message to in
step i of every send phase,

– valout opens to I in location d,
– hWriter,i opens to m in location d, and
– valmsg opens to m in location I ‖ r.

Similarly, at every round r and step i of the receive phase, there exist a port
number d, an index I , a message m, and appropriate openings to the hash values
valPort, val∈, hReadr,i+1, val

msg such that

– valPort opens to d in location k such that vk is the node that v receives a message to
in step i of every send phase,

– valin opens to I in location d,
– hReadr,i+1 opens to m in location d,13 and
– valmsg opens to m in location I ‖ r.

The circuit verifying this BARG’s statement requires only the following values to be
hard-wired: valst, valmsg, valin , valout , valPort, valRead, valMem, valWrite. During verifica-
tion, however, node v must verify that indeed, the hashes valin(v), valout(v), valPort(v)
are correct: node v can do this by re-computing the hashes, using the index Iv which
is stored as part of its certificate, the port numbers {Iv→u}u∈N(v) that it accesses dur-
ing verification, and also indices {Iu}u∈N(v) and port numbers {Iu→v}u∈N(v) that v’s
neighbors can provide in verification time.

13 As explained above, we actually require that this opening show that hReadr,i and hReadr,i+1

only differ in the location d and hReadr,i+1 opens tom in that location.
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The Soundness of our Construction. Following [KLVW23], instead of using regular
BARGs, we use somewhere extractable BARGs (seBARGs): an seBARG is a BARG
with the following somewhere argument of knowledge property: for some index i,
using the appropriate trapdoor, the seBARG proof completely reveals an NP-witness
for the ith statement. Importantly, the trapdoor is generated alongside the crs and the
crs hides the binding index i: the (computationally bounded) prover cannot tell from
the crs alone the binding index i. Conveniently, BARGs can be easily transformed into
seBARGs [CJJ21b,KLVW23], without adding more assumptions.

The overall idea of our soundness proof is similar to the one in [CJJ21b,KLVW23],
although there are some complications (e.g., the need to switch between different nodes
of the network as we argue correctness). Assume for the sake of contradiction that
a cheating prover is able to convince the network to accept a false statement with
non-negligible probability. We proceed by induction over the rounds and internal steps
(inside each compute, send and receive phase) of the distributed algorithm: in the induc-
tion we track the true state of the distributed algorithm, and compare witnesses extracted
from the seBARG to this state. Informally speaking, we prove that from a proof that is
accepted, using the appropriate trapdoor and crs, we can extract at each step a witness
that must be compatible with the true execution of the distributed algorithm, other-
wise we break the seBARG. In the last round, this means that the output encoded in
the witness is the correct output of the distributed algorithm. But this contradicts our
assumption that the adversary convinces the network of a false statement.

5 Distributed Merkle Trees

Finally, we briefly sketch the construction of the distributed Merkle tree used in the
previous section.

The Structure of the DMT. Recall that our goal with the distributed Merkle tree (DMT)
is to hash together all the messages sent during the execution of the distributed algo-
rithm, in such a way that a node can produce openings for its own sent messages.
Accordingly, we construct the DMT in several layers (see Fig. 1):

– At the lowest level, for each node v and neighbor u ∈ N(v), node v hashes together
the messages (mv→u

1 ,mv→u
2 , . . .) that it sent to node u, obtaining a hash rtv→u.

– At the second level, each node v hashes together the hashes of its different edges,
{rtv→u}u∈N(v), ordered by the port numbers Iv→u, obtaining a hash rtv which we
refer to as v’s local root.

– Finally, the nodes collaborate to hash their local roots {rtv}v∈V together to obtain
a global root val. The nodes are initially not ordered, but during the creation of the
DMT, the local roots {rtv}v∈V are ordered; and each node v obtains an index Iv for
its local root, and the corresponding opening path from val to rtv .

Constructing the DMT. After each node computes the hash values rtv→u for each of
its neighbors u ∈ N(v), we continue by having the network nodes compute a spanning
tree ST of the network, with each node v learning its parent pv ∈ N(v) ∪ {⊥}, and its
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Fig. 1: The structure of the DMT constructed over the messages

children Cv ⊆ N(v). The root v0 of the spanning tree is the only node that has a null
parent, i.e., pv0 = ⊥.

We note that using standard techniques, a rooted spanning tree can be constructed in
O(D) rounds in networks of diameter D, using O(log n)-bit messages in every round;
this can be done even if the nodes do not initially know the diameter D or the size n of
the network, and it does not require the root to be chosen or known in advance [Lyn96].

After constructing the spanning tree, we compute the DMT in three stages: in the
first stage nodes compute a Merkle tree of their own values, in the second we go “up
the spanning tree” to compute the global Merkle tree, and the third stage goes “down
the tree” to obtain the indices and the openings.

Stage 1: Local Hash Trees. Let xv be a vector containing the values {rtv→u}u∈N(v)

held by node v, ordered by the port number of the neighbor u ∈ N(v) at node v (padded
up to a power of 2, if necessary). For each node v and neighbor u ∈ N(v), let Iv→u be
a binary representation of the port number of u at v (again, possibly padded).

Each node v computes its local root rtv by building a Merkle tree over the vector
xv , as well as an opening ρv→u for the index Iv→u, for each neighbor u ∈ N(v). We
let βv = {(Iv→u, ρv→u)}u∈N(v).

Stage 2: Spanning Tree Computation. The nodes jointly compute a spanning tree ST
of the network, storing at every node v the parent pv ∈ N(v) of v and the children
Cv ⊆ N(v) of v. In the sequel, we denote by v0 the root of the spanning tree.

Stage 3: Convergecast of hash-tree forests. In this stage, we compute the global hash
tree up the spanning tree ST , with each node v merging some or all of the hash-trees
received from its children and sending the result upwards in the form of a set of HT-
roots annotated with height information.
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Each node v receives from each child c ∈ Cv a set Sc of pairs (rt, h), where rt is a
Merkle-tree root, and h ∈ N is the cumulative height of the Merkle tree. Node v now
creates a forest Fv , as follows:

1. Initially, Fv contains the roots sent up by v’s children, and a new leaf representing
v’s local hash tree: Fv = {(rtv, 0)} ∪ ⋃

c∈Cv
Sc.

2. While there remain two trees in Fv whose roots rt0 and rt1 have the same cumulative
height h (note—we do not care about the actual height of the trees in the forest Fv ,
but rather about their cumulative height, represented by the value h in the node
(rt, h)): node v chooses two such trees and merges them, creating a new root rt of
cumulative height h+1 and placing (rt0, h) and (rt1, h) as the left and right children
of (rt, h + 1), respectively.

3. When there no longer remain two trees in Fv whose roots have the same cumulative
height:
– If v �= v0 (that is, v is not the root of the spanning tree), node v sends its parent,

pv , the set Sv of tree-roots in Fv . The size of this set is at most O(log n), since
it contains at most one root of any given cumulative height (if there were two
roots of the same cumulative height, node v would merge them).

– At the root v0, we do not want to halt until Fv is a single tree. If Fv is not yet
a single tree, node v0 must pad the forest by adding “dummy trees” so that it
can continue to merge. To do so, node v0 finds the tree-root (rt, h) that has the
smallest cumulative height h in Fv . It then creates a “dummy” Merkle-tree of
height h, with root (⊥, h), and adds it to Fv0 . Following this addition, there
exist two tree-roots of cumulative-height h (the original tree-root (rt, h) and
the “dummy” tree-root (⊥, h)), which v0 now merges. It continues on with this
process, at each step choosing a tree with the smallest remaining height, and
either merging it with another same-height tree if there is one, or creating a
dummy tree and merging the shortest tree with it.

When the last stage completes, the forest Fv0 computed by node v0 (the root of the
spanning tree) is in fact a single tree, whose root is the root of the global Merkle tree.
Let val be this root.

Stage 4: Computing Hash-Tree Indices and Openings. In this stage we proceed down
the spanning tree, forwarding the global root val downwards. In addition, as we move
down the tree, each node v annotates its forest Fv with indices and opening paths: first,
it receives from its parent pv an index and opening for every tree-root (rt, h) ∈ Fv

that it sent upwards to pv . Then, it extends this information “downwards” inside Fv ,
annotating each inner node and leaf in Fv with their index and opening path from the
global root val: for example, if (rt0, h) and (rt1, h) are the left and right children of
(rt, h + 1) in Fv , and the index and opening path for (rt, h + 1) are already known to
be I and ρ (resp.), then the index and opening path for (rt0, h) are I ‖ 0 and ρ ‖ rt1
(resp.).

Outputs. The final output at node v is (val, rtv, Iv, ρv, βv). (For the LVD-SNARG, at the
end of the proving stage, βv is discarded, as it is too long to store. However, val, rtv, Iv

and ρv are part of node v’s certificate.)
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We remark that for our purposes, it is not necessary for the nodes to certify that they
computed the DMT correctly: after obtaining the global root and the relevant openings,
the nodes simply use theDMT as they would use a centralized hash with local openings.
The completeness proof of our LVD-SNARG relies on the fact that a correctly-computed
DMTwill open to the correct information everywhere, but the soundness proof does not
rely the details of the construction, only on the fact that the value obtained by opening
various locations of the DMT matches the true execution of the algorithm.

Acknowledgments. We would like to thank Omer Paneth for fruitful and illuminating iscus-
sions.
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