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Abstract. Distributed Oblivious Random Access Memory (DORAM)
is a secure multiparty protocol that allows a group of participants hold-
ing a secret-shared array to read and write to secret-shared locations
within the array. The efficiency of a DORAM protocol is measured by
the amount of communication required per read/write query into the
array. DORAM protocols are a necessary ingredient for executing Secure
Multiparty Computation (MPC) in the RAM model.

Although DORAM has been widely studied, all existing DORAM
protocols have focused on the setting where the DORAM servers are
semi-honest. Generic techniques for upgrading a semi-honest DORAM
protocol to the malicious model typically increase the asymptotic com-
munication complexity of the DORAM scheme.

In this work, we present a 3-party DORAM protocol which requires
O((κ+D) log N) communication per query, for a database of size N with
D-bit values, where κ is the security parameter. Our hidden constants
in the big-O nation are small. We show that our protocol is UC-secure
in the presence of a malicious, static adversary. This matches the com-
munication complexity of the best semi-honest DORAM protocols, and
is the first malicious DORAM protocol with this complexity.

1 Introduction

In this work, we develop the first Distributed Oblivious RAM (DORAM) proto-
col secure against malicious adversaries while matching the communication and
computation costs of the best-known semi-honest constructions.

Poly-logarithmic overhead Oblivious RAM (ORAM) [Ost90,Ost92,GO96]
was developed to allow a client to access a database held by an untrusted server,
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while hiding the client’s access pattern from the server itself with poly-log over-
head. In this work, we focus on Distributed Oblivious RAM, which allows a group
of servers to access a secret-shared array at a secret-shared index. The secret-
shared index can be conceptualized as coming either from an external client or
as the output of a previous secure computation done by the servers.

The efficiency of an ORAM protocol is usually measured by the (amortized)
number of bits of communication required to process a single query. If privacy
were not an issue, in order to retrieve a single D-bit entry from a table of size
N , the client would need to send a log(N)-bit index, and receive a D-bit value,
so the communication would be log(N) + D. In order to make the queries obliv-
ious, it is known that a multiplicative communication overhead of Ω(log(N)) is
required [GO96,LN18]. That is, the optimal communication in the traditional,
passive-server ORAM setting is Ω((D + log N) log N).1 Several ORAM proto-
cols have achieved this “optimal” communication complexity (in slightly different
settings). [LO13] achieved logarithmic amortized overhead in the two-server set-
ting (Fig. 1b), OptORAMa [AKL+20] achieved amortized logarithmic overhead
in the single-server setting (Fig. 1a) with constant > 2228 hidden by the big-O
notation. The constant was later reduced to 9405 in [DO20] and de-amortized in
[AKLS21]. However, despite all these improvements, these works are of only the-
oretical interest, due to large constants. In Appendix A.4 we discuss why none of
these semi-honest constructions can be näıvely compiled to a maliciously secure
DORAM without asymptotic blowup. When a DORAM can store N , D-bit ele-
ments with security parameter is κ, we prove the following theorem:

Theorem 1 (Malicious DORAM, Informal). If Pseudo-Random Functions
exist with O(κ + l) circuit size (where l is the number of input bits and κ is the
computational security parameter), then there exists a (3,1)-malicious DORAM
scheme (see Definition 2) with O((κ + D) log N) communication complexity
between the servers per each query.

The best DORAMs in the semi-honest model have either O((κ+D) log(N))
[LO13,FNO22] or O((log2(N)+D) log(N)) [WCS15] communication complexity
per query. Which of these is better depends on the parameter choices. If D is
large (Ω(log2(N) + κ)) they are equally good. If D is small, [LO13,FNO22]
are better when log(N) = ω(

√
κ) and [WCS15] is better otherwise. Thus, our

server-to-server communication overhead of O((κ+D) log(N)) matches the best
communication complexity of the best DORAM protocols in the semi-honest
model [FNO22,LO13], achieving security against malicious adversaries with no
asymptotic increase in communication costs.

Note that a non-private solution would still require communicating
Θ(log(N) + D) bits to simply send the secret-shared query and secret-shared
response. Thus, our cost of Θ((κ + D) log(N)) has logarithmic overhead when

1 Most ORAM works assume D = Ω(log N), so O((D + log N) log N) = O(D log N)
which is described as a logarithmic “overhead” or a logarithmic “blowup” over O(D)
communication needed to make a query in the insecure setting.
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the block size, D = Ω(κ). Our title refers to this (common) scenario. If D = o(κ),
the overhead is Θ(log(N)κ/D).

As we discuss below, one of the main motivations for studying DORAM is
in service of building efficient, secure multiparty computation (MPC) protocols
in the RAM model of computation.

Fig. 1. Abstract view of different ORAM “flavors” in the client-server model. In client-
server ORAM the client and the server communicate over many rounds. In multiserver
ORAM the client communicates with each server individually over many rounds. In
DORAM, the client communicates a secret shared query to the servers, the DORAM
servers communicate among themselves for several rounds, and respond to the client.
The client’s work is the lowest in the DORAM setting.

1.1 MPC in the RAM Model

Secure Multiparty Computation (MPC) protocols enable a set of mutually dis-
trusting parties, P1, ..., Pn, with private data x1, ..., xn to compute an agreed-
upon (probabilistic) polynomial-time function, f , in such a way that each player
learns the output, f(x1, ..., xn), but no additional information about the other
participants’ inputs [Yao82,Yao86,GMW87,CCD88].

The majority of MPC protocols work in the circuit model of computation
[Vol99], where the functionality, f , is represented as a circuit (either a boolean
circuit, or an arithmetic circuit over a finite field F). Computing in the circuit
model has been advantageous for MPC protocols because circuits are naturally
oblivious, i.e., the sequence of operations needed to compute f is independent of
the private inputs x1, . . . , xn. This reduces the problem of securely computing
an arbitrary function, f , to the problem of securely computing a small set of
universal gates (e.g. AND and XOR).

Although the circuit model of computation is convenient for MPC, many
common functionalities cannot be represented by compact circuits, which means
generic circuit-based MPC protocols cannot compute them efficiently. A simple
database lookup highlights the inefficiency of the circuit model. Consider the
function R(i, y1, . . . , yN ) = yi, which outputs the ith element in a list or the
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function W (i, Y, y1, . . . , yN ) which produces no output but sets yi = Y . These
functionalities can run in constant time in the RAM-model of computation, but
in the circuit model, both R and W have circuit complexity O(N).

In contrast to circuit-based MPC protocols, RAM-MPC framework [OS97]
provides a method of securely computing functions specified in the RAM model
of computation. Efficiency is often a barrier to the deployment of MPC protocols
in practice, and compilation from RAM model into circuits hurts the efficiency
of programs which use random access. Thus, RAM-MPC is a critical step in
making general-purpose MPC protocols that are efficient enough for practical
applications.

1.2 Building RAM-MPC

One method for building RAM-MPC is to use a generic (circuit-model) MPC
protocol to simulate the client for a client-server ORAM protocol [OS97]. For the
purpose of running ORAM clients under MPC, various “MPC friendly” ORAM
protocols have been developed. For example, [WCS15] developed circuit ORAM,
an ORAM maintaining the stringent one-trusted-client one-untrusted-server
security model of traditional ORAM while decreasing the circuit-complexity of
the client. Another example of such efforts, are multi-server ORAM protocols
where the trusted client’s data is shared and accessed across multiple servers.
Assuming some fraction of the servers are honest [OS97,GKK+12,GKW18,
KM19] these works shift some of the communication burden to servers. These
multi-server ORAMs can also be adapted to the MPC context by simulating the
client using (circuit-based) MPC, allowing the MPC participants to play the role
of the additional ORAM servers. Some of these protocols have been implemented
[GKK+12,LO13,ZWR+16,WHC+14,Ds17].

A recent direction in the search for MPC-friendly ORAMs is Distributed
ORAM (DORAM). In a DORAM protocol, both the index i and the database
y1, . . . , yN are secret shared among a number of servers. The goal of the protocol
is to obtain a secret-sharing of yi at minimal communication between the servers
while not exposing any information about i or y1, . . . , yN . DORAM has been
widely studied in the semi-honest model [LO13,GHL+14,FJKW15,ZWR+16,
Ds17,JW18,BKKO20,FNO22,JZLR22,VHG22]. These works have taken several
interesting approaches, emphasizing different parameters, and often presenting
implementations [ZWR+16,Ds17,VHG22,JZLR22].

In this paper, we study DORAM in the malicious model. In particular, we
provide the first DORAM protocol that provides security against malicious
adversaries while matching the asymptotics of the best-known semi-honest con-
struction. We use the generic transformation to compile our DORAM into RAM-
MPC, giving RAM-MPC which is secure against malicious adversaries with an
asymptotic cost on par with the best existing semi-honest constructions.
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2 Notation and Definitions

We denote the 3 parties as P0, P1, P2, and use F2l to denote the finite field of 2l

elements. For x = x0 . . . xn−1 = x ∈ F
n we let x[i : j] = xi . . . xj . For a ∈ Z

+,
[a] represents the set {1, . . . , a}. For any set S, x ∈R S represents choosing x
uniformally at random from S.

N is the number of elements in the DORAM. Each element stored in the
DORAM is a pair (X,Y ), where X ∈ [N ] is the “virtual index” of the D-bit
payload, Y . We assume that only indices in the range [N ] are queried. We use
⊥ /∈ [N ] ∪ {0, 1}D to represent a reserved null-value. κ is the computational
security parameter and σ is a statistical security parameter. Since we want to
achieve failures with probability negligible in N , we must have both κ, σ =
ω(log N).

The primary secret-sharing our protocol uses is (3, 1) Replicated Secret Shar-
ing (RSS) (also called a CNF sharing [CDI05]). [[x]] denotes a RSS of a variable
x. In a (3, 1) RSS sharing, each party holds two shares of an additive sharing:

Definition 1 (replicated secret sharing). Let x, x(0), x(1), x(2) ∈ F s.t x(0)+
x(1) + x(2) = x. we say that P0, P1, P2 hold a replicated secret sharing of x if Pi

hold all x(j) s.t j �= i.

We also use two-party additive sharings. [x](i,j) denotes an additive sharing
of x held by parties Pi and Pj , that is Pi holds x(i) and Pj holds x(j) where
x(i) + x(j) = x.

We use standard Boolean operators (∧, ∨, ¬). We also represent by x
?= y

the Boolean-output operation that outputs 1 if x equals y and 0 otherwise, and
use (b?x : y) to represent an if-then-else statement which evaluates to x if b, and
y otherwise.

Fig. 2. FDORAM: The DORAM functionality

In this work, we define security using the Universal Composability (UC)
framework [Can01], which allows us to formally define DORAM.

Definition 2 (DORAM). A protocol, Π, is said to be a UC maliciously-
secure (n, t)-Distributed ORAM protocol if for all N,D, κ ∈ Z

+, Π UC-realizes
the DORAM functionality (Fig. 2).
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3 Related Work

In this section we present a brief overview of related work; Appendix A contains
a more detailed discussion.

Many DORAMs start with a client-server ORAM and simulate the client
inside of a secure computation. This was the approach taken by [WCS15] and
[ZWR+16]. The generic MPC can be achieved from Garbled Circuits (GC),
which allows for 2 parties, low round complexity, but requires Θ(κ) communica-
tion for each AND gate. Alternatively, it can be achieved using honest-majority
secret-sharing approaches derived from the BGW protocol [BOGW88], which
have Θ(1) communication per AND gate, but need 3 parties and more rounds.

Similarly it is also possible to convert a multi-server ORAM, such as [LO13]
to a DORAM, again by simulating the client inside of a secure computation, and
having each server run by a different party.

Other protocols build DORAM directly. This includes [Ds17,HV20,FJKW15,
JW18,BKKO20,VHG22,FNO22]. This allows use of techniques that are not
applicable for client server ORAMs, such as Function Secret Sharing (FSS),
Secret-Shared PIR (SS-PIR) and efficient shuffles.

Table 1 presents these protocols, with their communication costs. Our com-
munication cost is asymptotically identical to [FNO22] and a BGW-style
instance of [LO13]. Depending on the relationship between κ and log(N) it may
be either asymptotically better or worse than a BGW-style instance of [WCS15].
For small block sizes the communication cost is strictly better than all previous
protocols. Unlike all previous protocols, it is secure against malicious adversaries.

Table 1. Complexity of DORAM protocols. N denotes the number of records, κ is a
cryptographic security parameter, σ is a statistical security parameter, and D is the
record size.

Protocol Communication Parties Security

Circuit ORAM [WCS15] (GC) O
(
κ log3 N + κD log N

)
2 Semi-Honest

Square-root ORAM [ZWR+16] (GC) O
(
κD

√
N log3 N

)
2 Semi-Honest

FLORAM [Ds17] O
(√

κDN log N
)

2 Semi-Honest

[HV20] O
(√

κDN log N
)

2 Semi-Honest

Circuit ORAM [WCS15] (BGW) O
(
log3 N + D log N

)
3 Semi-Honest

[LO13] (BGW) O ((κ + D) log N) 3 Semi-Honest

[FJKW15] O
(
κσ log3 N + σD log N

)
3 Semi-Honest

[JW18] O
(
κ log3 N + D log N

)
3 Semi-Honest

[BKKO20] O
(
D

√
N

)
3 Semi-Honest

DuORAM [VHG22] O (κ · D · log N) 3 Semi-Honest

[FNO22] O ((κ + D) log N) 3 Semi-Honest

Our protocol O ((κ + D) log N) 3 Malicious
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4 Technical Overview

Our protocol is based on the Hierarchical solution [Ost90]. While this technique
has primarily been applied in many client-server ORAMs [GMOT12,KLO12,
LO13,PPRY18,AKLS21], we, like several other works [KM19,FNO22], apply it
to DORAMs. Before understanding our protocol, it is important to understand
the Hierarchical solution in general.

The Hierarchical Solution in Client-Server ORAM: A client-server
ORAM must ensure that the physical access pattern on the server is (compu-
tationally) independent of the client’s queries, regardless of the query sequence.
Let us first consider a slightly weaker primitive: a protocol in which the access
pattern on the server is (computationally) independent of the client’s queries
provided each item is queried at most once. This primitive is called an Oblivious
Hash Table (OHTable) and is much easier to instantiate. Most common hash
tables become oblivious when the hash functions themselves are pseudorandom.
If the hash table can also be constructed on the server in a way that leaks no
information about the contents, or their relation to any later queries, then a full
OHTable protocol has been achieved.

An OHTable may seem significantly weaker that an ORAM, but in fact an
ORAM of size N can be constructed using only Θ(log(N)) OHTables through a
recursive construction known as the “hierarchical solution”, first introduced in
[Ost90]. Assume we have access to a sub-ORAM of capacity N/2. The protocol
then stores all N elements in a single OHTable, and each time an item is accessed,
the item is cached in the sub-ORAM. When an item is queried, the sub-ORAM
is queried first. If the item is not in the sub-ORAM, it has not been queried in
the OHTable, so it can be queried in the OHTable and this will not be a repeated
query into the OHTable. On the other hand, if the item is in the sub-ORAM,
we must still query the OHTable, but in this case, we query random locations in
the OHTable (independent of the client’s query). This ensures that if the client
makes at most N/2 queries, no element is ever queried twice in the OHTable,
and the security of the OHTable is preserved. When the sub-ORAM becomes
full, its contents can be extracted, as well as the contents of the OHTable, and
the OHTable can be rebuilt, with new secret keys for the PRF/hash functions. If
the sub-ORAM is implemented recursively, this results in Θ(log(N)) OHTables,
and a small base-case. Typically we conceptualize the OHTables as arranged
vertically in a “hierarchy” of levels of geometrically increasing size, labeled from
Level 0, the base-case, also called the cache, to the largest level of size N . The
cache could be of constant size, though it is often of size Θ(log(N)) and in our
work is larger (of size Θ(κ) = ω(log N)). Since the cache is very small it can be
implemented using a less efficient “ORAM.”

OMaps: Actually, the recursive construction requires the sub-ORAMs to be
slightly more versatile than an ORAM. Notice that the sub-ORAM has capacity
N/2 but may be required to store elements from the index space [N ]. The ORAM
definition requires the size of the ORAM to be the same size as the index space.
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To implement the recursive hierarchical construction, the sub-ORAMs really
need to implement an Oblivious Map (OMAP). An OMap is essentially just an
ORAM for storing key-value pairs instead of index-value pairs. The OMap func-
tionality is defined formally in Fig. 3. Note that most existing ORAM protocols
actually instantiate the slightly stronger OMap functionality.

Fig. 3. OMap Functionality

Cuckoo Hashing: ORAMs and DORAMs often use Cuckoo Hashing [PR01]
to implement OHTables (e.g. [PR10,GMOT12,LO13,KM19,PPRY18,AKL+20,
FNO22].) In Cuckoo Hashing, there are 2 hash tables, and each item can be
stored in one location in each table. This makes oblivious queries efficient. The
hash output for each table can be revealed and both locations accessed. However,
cuckoo hashing has a non-negligible failure probability. To alleviate this, items
which are unable to be stored can be placed in a super-constant sized “stash”.

Unfortunately, the cuckoo stash introduces some problems in the ORAM
setting. To handle the cuckoo stashes, a standard approach to use a weaker
OHTable which rejects a fixed number of stash elements, and store this stash in
the sub-ORAM [KLO12]. There are two challenges with this approach. First, if
the table is small (say Θ(log(N))), the probability of a build failure is no longer
negligible in N . We address by making our smallest OHTable of size Θ(κ), thanks
to our efficient QuietCache. The second problem is more subtle. The first time a
stashed item is queried, it will always be found in the sub-ORAM, and random
locations will be queried in the OHTable. This effectively resamples the locations
that will be queried in the OHTables, which can leak information about whether
the queried items were stored in the table. We use the Alibi technique [FNO21]
to solve this. When a stash item is placed in the sub-ORAM during builds, it is
tagged with a bit to show that the item should still be queried in the OHTable
during a query. See Supplementary Material B for more details.

The Hierarchical Solution for DORAMs: Distributed ORAMs can also
be built using the Hierarchical solution. Distributed Oblivious Hash Tables
(DOHTables) are multi-party protocols that implement a dictionary data struc-
ture, subject to the fact that no adversarially-controlled subset of parties can
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learn anything about the query pattern from their views of the protocol, pro-
vided each item is queried at most once. Like before, we can cache responses
of queries to a large DOHTable in a sub-DORAM and query the sub-DORAM
first. If the item is not found in the sub-DORAM, the item is queried at the
DOHTable; if it is found, the parties execute a protocol that is indistinguish-
able from a real, unique query to the DOHTable. By recursively implementing
the sub-DORAMs using this technique, a DORAM can be constructed using
Θ(log(N)) DOHTables.

Overview of Our Solution: One approach to building DORAM is to take
an existing ORAM and simulate the client inside of a secure computation (e.g.
[WCS15]). We depart from this approach, noting that DORAM actually allows
for many efficiency improvements that would not be possible in a classic client-
server ORAM. While DORAM has no trusted client, it does have multiple
non-colluding servers which perform local computation and can communicate
between each other. In particular, we examine the (3,1)-setting, where there are
3 servers and at most one corruption. This allows us to do many things more
efficiently than in the client-server ORAM setting.

1. Efficient Shuffles: In the (3,1) setting, similar to [LWZ11] we can secret-
share a list between 2 parties. These parties can then shuffle the list using a
permutation known to them but not the third party. If this process is repeated 3
times, with parties taking turns to be the uninvolved party, the final permutation
will be unknown to all parties. This allows us to shuffle n items of size D with
Θ(nD) communication and small constants.

While this protocol is simple, its significance can be appreciated when com-
pared to the difficulty of shuffling in the classical ORAM setting. In that setting,
shuffling n items requires Θ(n log(n)D) communication with huge constants, or
Θ(n log2(n)D) communication with small constants. A core insight of recent
ORAM protocols [PPRY18,AKLS21] is that full shuffles can be avoided by re-
using randomness and using oblivious tight compaction instead of shuffles. This
brings the cost down to Θ(nD) but the constants are still impractical [DO20].

2. Efficient multi-select: In the (3, 1) setting, it is possible to evaluate circuits
of AND-depth 1 with communication equal to that of a single AND gate. Using
this, we can construct an efficient multi-select protocol. That is, given n secret-
shared items of size D, we can efficient select the kth item for any secret-shared
k ∈ [n] with only Θ(n + D) communication. (See Sect. 6 for more details.) To
the best of our knowledge, efficient multi-selects have not been used to build
DORAMs prior to our work.

3. Separating Builders from Holders: In the classical ORAM setting, the
server can see the access patterns during both builds and queries to an OHTable.
This creates a problem: for efficiency the possible locations in which an item
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may be stored are revealed during a query. To ensure security, the build must
obliviously move each item to its correct location. In the (3, 1) setting we can
instead have a single party, the builder, learn the locations in which items in
the table may be stored. This allows the builder to locally and non-obliviously
calculate the allocation of items to locations. After this, the table is secret-shared
between the other 2 parties, called the holders. During a query, the holders (but
not the builder) learn the locations in which the queried item may be stored and
return their shares of the items in these locations. Since the adversary controls
at most one party, it can either learn the physical locations of stored items
(from the builder) or the potential physical locations of queried items (from a
holder) but not both, preventing it from learning information about whether the
queried items were stored in the table. (Our actual protocol, in fact allows the
builder to construct a useful data-structure for set queries entirely by itself, and
secret-share this to the holders. This is then used to build a DOHTable.)

However, in the malicious setting it is difficult to take advantage of these
techniques, especially the technique of separating builders from holders. If the
builder is malicious, how can we ensure that they build data structures correctly?
Naturally, zero knowledge proofs allow the builder to prove any claim, but how
can it do so efficiently? Furthermore, after we secret-share the data-structure
between two holders, how can we guarantee that they provide the correct shares
during reconstruction? (We can use a (3,1) replicated secret sharing (Sect. 2) to
detect modification of shares when all three parties are involved, but this will
not work with only 2 parties.) Similarly, the multi-select and shuffle protocols
described above are only secure against semi-honest adversaries.

Core Contributions: In this paper, we show how to take advantage of the
existence of multiple non-colluding servers even when one of these parties is
malicious. The primary techniques are as follows:

– Proving in zero-knowledge a distributed statement that builder
built data structures correctly: We present a method by which it can
be efficiently verified that the builder has built and secret shared their data
structure correctly to the two holders without revealing any information to
the holders. Our method is linear in the data-structure size and has small
constants.

– Designing QuietCache and restructuring the DORAM hierarchy:
We present a more efficient distributed, oblivious, maliciously-secure cache
protocol, QuietCache (Sect. 6), which serves as a top level of our DORAM
hierarchy. Querying the standard cache used in the literature when it stores
n elements costs O((n + D) log N) communication. For works targeting the
best-known complexity of O((κ + D) log N), this has restricted the size of
the cache to O(log N). Since Cuckoo Hash Tables with a Stash (CHTwS)
of Θ(log N) elements have non-negligible failure probability and, generally
speaking, all efficient-to-query OHTables are based on CHTwS, previous con-
structions had to design a different type of OHTable for small levels (e.g.
[LO13,FNO22]). Unfortunately, we find that a small size maliciously secure
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OHTables are difficult to construct. To resolve this, we design QuietCache,
which costs O(n log N + D) communication to query. This allows us to have
a large cache (of size Θ(κ) = ω(log N)), thus completely avoiding the need
for small OHTables.

– Mixing Boolean and F2l secret-sharings: Our solutions to the above require
a combination of large-field arithmetic (for MACs and polynomial equality
checks) and bit-wise operations (for equality tests and PRFs). We therefore
require efficient methods of converting between these two types of secret-
sharing: by using the field F2l we can actually convert between these two
types of sharing for free.

In addition, we design an expanded, versatile Arithmetic Black Box (Sect. 5),
and prove it UC-secure against a (3, 1) malicious adversary. This greatly simpli-
fies our later protocol descriptions and proofs.

5 The Arithmetic Black Box (ABB) Model

In order to simplify our protocol descriptions and analysis we use the Arithmetic
Black Box (ABB) model. In the words of its creators an “ABB can be thought
of as a secure general-purpose computer” [DN03]. The ABB is a reactive func-
tionality that allows secret data to be “stored” and allows other functionalities
to compute on secret data. This will be implemented by the stored values being
secret-shared between parties, but the ABB will extract away these details. Most
functionalities will take as inputs (public) identifiers to secret variables already
stored in the ABB and output (public) identifiers to secret variables added to
the ABB. For instance [[z]] = [[x]] + [[y]] indicates that secret variables x and y
are already stored in the ABB, their sum is computed securely, and the sum is
stored in the ABB under the name z.

We use bit-wise RSS as the underlying secret-sharing scheme for the ABB.
Boolean operations (AND, OR, NOT) are achieved using [FLNW17], and
denoted using standard infix operators (∨, ∧, ¬). For any field F2l l ∈ Z

+ we
support the addition (bitwise XOR) and multiplication using [CGH+18]. Both
of these are (3, 1) UC-maliciously secure protocols. Since we use RSS, we can

Table 2. Communication costs of ABB operations.

ABB operation(s) Communication (bits)

Input(x, Pi)/Output([[x]], Pi)/Mult([[x]], [[y]]) Θ(|x|)
RandomElement(�)/Add([[x]], [[y]])/NOT([[x]]) 0

OR([[x]], [[y]])/AND([[x]], [[y]]) Θ(1)

Equal([[x]], [[y]])/IfThenElse([[b]], [[x]], [[y]]) Θ(|x|)
CreateMAC([[x]])/ CheckMAC([[x]])/PRFEval([[x]], [[k]]) Θ(|x| + κ)

ReplicatedTo2Sharing([[x]], i, j, varNamei,j) Θ(|x|)
2SharingToReplicated([xi,j ](i,j), varName) Θ(|x|)
ObliviousShuffle([[X]]) (X ∈ ({0, 1}�)n) Θ(n�)

SilentDotProduct([[X]], [[Y ]], [[M ]]) (X, Y ∈ ({0, 1}�)n Θ(� + κ)
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actually switch between viewing an element as a string of bits and as a field
element at no cost.

We extend the ABB to support various functionalities. The full ABB is pre-
sented in Fig. 4, with costs shown in Table 2. In Supplemental Material C, we
show how all of these functionalities are instantiated. Of note, we add func-
tionalities that allow conversion to a 2-sharing. In the context of the ABB, this
means that the variable names are no longer public, but are known to only 2
parties. This, for instance, allows them to access an element of a secret array
using an index known to them, but not the third party. This is critical in allowing
the Holders to store and access data without the Builder learning the accessed
locations.

6 QuietCache: Maliciously-Secure Oblivious Cache
Construction

In this section, we design a novel, distributed, oblivious, “cache” protocol which
we will use to instantiate the topmost level of our hierarchy.

Unlike the OHTables at all other levels of the hierarchy, the cache must allow
items to be queried more than once, since there is no smaller level to which an
item may be moved. Furthermore, it should allow new items to be added without
requiring an expensive rebuild process. We formalize the functionality that the
cache must satisfy as Functionality FOMap, (Fig. 3).

In similar works, the cache is often instantiated by executing a linear-scan
under MPC [FNO22] this has append complexity O(1) and query complexity
O((D + log N)c) where c is the number of elements in the cache.

There is a fundamental tension here regarding the size of the cache. Since
every (D)ORAM query accesses the cache, performing a linear scan of the cache
adds Ω((D + log N)c) to the (D)ORAM query complexity. When c = Ω(log N),
querying the cache becomes the bottleneck for the entire (D)ORAM protocol,
so most (D)ORAM protocols set c = O(1). Unfortunately, there are multiple
problems with a small cache. First, the “cache-the-stash” technique requires a
cache of at least size Ω(log(N)). Second, small cuckoo hash tables always have
a non-negligible probability of build failure [Nob21], and when the cache (L0)
is small, so are the smaller levels in the hierarchy (L1, L2, . . ..) For this reason,
many hierarchical (D)ORAM protocols (e.g. [LO13]) are forced to use different
types of tables for the smaller levels of the (D)ORAM hierarchy.

We resolve this tension by designing a novel, distributed, oblivious cache
protocol ΠQuietCache that allows us to increase c to c = κ = ω(log N), while
still maintaining efficient access to the cache. Notably, our protocol requires
O(max D,κ) communication to store a new item and O(D + n log N) communi-
cation to query an item. This will mean that our smallest OHTables will be of
size Ω(κ) = ω(log(N)), allowing them to instantiate cuckoo hash tables with a
stash with at most negligible build failure negligible in N , as required.

Our protocol, ΠQuietCache works as follows. The protocol maintains an array
of all items that have been added (either during initialization or later), with
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Fig. 4. Arithmetic Black Box functionality.
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Fig. 5. ΠQuietCache: Protocol for the cache (implementation of smallest FOMap).
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items that were added later appearing later in the array. When a new item is
added, ΠQuietCache does not attempt to delete the old item, but merely places
the new item at the end of the array to indicate it is newer. Authentication
tags are also added to values each time an item is inserted, which will later
allow for efficient queries. To query, we perform a linear scan of the indices,
but not the values. We create a bit-array that is 1 in the location of the array
where the index was most recently added (if any) and 0 elsewhere. Since the
values are all authenticated, we can use our bit-array to very efficiently access
the correct value using FABB.SilentDotProduct (Fig. 4). In the honest-majority
3-party setting, this is very efficient and has essentially the same cost as a single
multiplication. Leveraging the silent dot product is the key trick which enables
ΠQuietCache’s efficiency. Finally, when items need to be extracted we need to
delete old copies of items. We do this using a brute-force check under MPC.

We now show that ΠQuietCache implements FOMap securely.

Proposition 1. Against a static malicious adversary controlling at most one
party out of three, Protocol ΠQuietCache (Fig. 5) UC-realizes functionality
FQuietCache (Fig. 5) with abort in the FABB-hybrid model.

The proof of Proposition 1 is in Appendix G.1. In Appendix H.1 we prove that:

Proposition 2. The communication complexity of ΠQuietCache.Init,ΠQuietCache.
Store,ΠQuietCache.Query,ΠQuietCache.Extract is Θ(κw), O(max D,κ), O(D +
n log N), O(n2 log N + nD), respectively.

7 Maliciously-Secure Oblivious Set Construction

At a high level, our DORAM has a hierarchy of Oblivious Hash Tables (OHTa-
bles), one in each level. It was observed by [MZ14] that once it is known whether
an item is in a given level, it is much easier to access it obliviously. We therefore
adopt the approach of [FNO22] to first have a protocol exclusively to securely
determine whether the item exists at a given level. We call such a protocol a
Distributed Oblivious Set or OSet and we implement (a variant of) this function-
ality in this section. In the next section (Sect. 8) we use this as a sub-protocol
to build (a variant of) an OHTable.

At a high level, ΠOSet obtains efficiency by separating the players into the
roles of “builder” and “holders” [LO13,FNO22]. The Builder constructs a data
structure locally, which is secret-shared between two Holders. The Builder can
learn information about where data is stored in the data structure during a build,
while the Holders can learn the locations that queried items may be located
during queries. If an adversary can only corrupt a single party it therefore is
unable to use this information to learn whether queried items are stored in the
table.

There are two major challenges with this approach. The first is achieving
privacy. The Builder must somehow build the data structures based on knowl-
edge of the locations of items, without learning any information about the items
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Fig. 6. FOSetand ΠOSet: Functionality and Protocol for a Distributed Oblivious Partial
Set
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Fig. 7. FZKPOfValidCHT and ΠZKPOfValidCHT: Functionality and Protocol for verifying
in zero knowledge the correctness of a Cuckoo Hash Table.
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themselves. The second is ensuring correctness. In the malicious setting, there
must be a method to verify that the Builder constructed data structures cor-
rectly. If the Builder were to place an item in the incorrect location, the protocol
would not find the item during queries.

We address the privacy challenge by storing pseudorandom “tags” (based on
a PRF applied each item) rather than the items themselves. We evaluate the
PRF inside of the ABB, so only the PRF output is revealed to the Builder. The
security of the PRF guarantees that no information about the items themselves
is leaked by their outputs. It also guarantees that collisions occur with negligible
probability, so an item will be in the set only if its PRF is in the set of PRF
evaluations (except with negligible probability).

We address the correctness challenge by the protocol proving, in zero-
knowledge, that the data structure which the Builder constructed and shared is
a valid Cuckoo Hash Table of the underlying data. First, we must prove that
the set of items in the table is equal to the set of items that should be there.
We prove this using a multi-set polynomial equality test. Second, we must prove
that each item is in a correct location. This is done by evaluating the hash func-
tions on each item in the table ensuring that the table location matches one of
these hash functions. While we will describe our verification protocol in terms of
general hash functions, in our case, since the item is itself the output of a PRF,
it actually suffices for our “hash functions” to simply be bit-truncations of the
items. This is very efficient: the bit-truncation itself requires no communication,
after which we can evaluate a standard circuit for an equality test.

Note that we verify the first property using polynomials over large fields
whereas we verify the second property using bitwise operations. We can do this
efficiently due to the fact that we represent data in the field F2� , which is also
a valid Boolean sharing (i.e., over F

�
2) (see Appendix C.1). This allows us to

convert between these sharings for free. We therefore cast the data as a field for
efficient polynomial evaluation, while casting it as a Boolean array for efficient
bit-wise equality testing.

One final challenge in constructing our OSet is handling the stash. We will use
Cuckoo Hashing with a Stash in order to ensure that the build failure probability
is negligible. However, for efficiency, the stashed items will not be part of the
OSet (or OHTable), but will instead be inserted into a sub-DOMap. As such,
we will not implement a full Oblivious Set storing all n items, but a Distributed
Oblivious Partial-Set storing n − s of the n items, and rejecting the s items
in the stash. However, allowing the stash to leave the protocol/functionality is
risky. If information about which queries correspond to stashed items is leaked,
this breaks the obliviousness of queries. For instance, the locations of stashed
elements necessary collide with elements that were stored in the OSet. This
means that if a Holder is corrupted and the environment knows some queries
that correspond to stashed elements, it can conclude that any other query that
accesses the same locations is more likely to have been a member of the set. This
coin has another side to it: if the environment can influence the probability of
a stashed item being queried compared to a stored item it can likewise cause
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the accesses to be dependent. (This is exploited for instance by the Alibi attack
(Appendix B) where stash items are never queried, which leaks information
about whether the other queried items were in the set.) Our OSet functionality
will therefore have the limitation that no information about the stash leaves
the ABB outside the protocol, and the calls to build do not depend on which
items were stashed (even conditioned on ABB-revealed values) to avoid leaking
information inside the protocol.

Our OSet also has the limitation that it is only secure if queries are never
repeated. Furthermore, we will need to limit the number of queries to the OSet
data structure. We will later show that the uses of our OSet by the larger protocol
obey all these restrictions. These restrictions are formalized in the following
conditions:

Condition 1 (No Repeats). For all x, Query([[x]], res) is called at most once.

Condition 2 (Limited Queries). Query is called at most n times.

Condition 3 (ABB-Stash Independence). Let stash1, stash2 be two dif-
ferent possible values of stash. The distribution of all outputs of the ABB by
the environment when stash = stash1 must be computationally indistinguishable
from the distribution when stash = stash2.

Condition 4 (Query-Stash Independence). Let stash be the output of
the Build. If x = Xi for any i ∈ [n], the probability that Query(x, res)
occurs/occurred, conditioned on any values revealed by FABB either before or
after, is computationally indistinguishable from independent of stashi.

Our OSet functionality and protocol are presented in Fig. 6. This makes
use of our functionality for verifying, in zero-knowledge, that the Builder (P0)
correctly constructed the Cuckoo Hash table (on the non-stash elements). This
functionality, and the protocol that implements it, are presented in Fig. 7. We
now prove that these protocols correctly implement the desired functionalities.

Proposition 3. Protocol ΠZKPOfValidCHT statistically UC-securely implements
FZKPOfValidCHT in the FABB-hybrid model.

Proof. Note that this protocol makes no assumptions about the parties or the
adversary setting, as all operations are exclusively within the ABB. It inherits
whichever security the ABB is implemented with. Implementing with our ABB
from Fig. 4 yields a 3-party protocol with statistical UC-security with abort
against a malicious adversary statically corrupting one party. Also, note that
this protocol and functionality provide no guarantees that CHT was chosen
uniformly at random from the set of valid CHTs for X, only that it was one
such valid CHT.

By Corollary 1, since ΠZKPOfValidCHT does not reveal any values, it suffices
to prove that the output stored in the ABB is correct (except with negligible
probability).
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Let f(x) = Π[[a]]∈[[X]]([[a]]−x)−Π[[b]]∈[[CHT ]]([[b]]−x). If [[X]] and [[CHT ]] contain
the same multiset, then f(x) will be the zero polynomial. Otherwise, it will be a
non-zero polynomial of degree at most 2c. In this case, by the Schwartz-Zippel
Lemma, the probability that f(x) evaluates to 0 on a point chosen randomly
from GF (2�) is at most 2c

2� , which is at most 2−σ. Note that u = v if and only if
f(w) = 0, where w was chosen randomly from GF (2�). Therefore check1 = 1 if
and only if [[X]] = [[CHT ]], except with negligible probability.

Now we examine the part of the ΠZKPOfValidCHT that verifies that items are
in the correct locations. If check1 = 1, every item in X is in the table (except
with negligible probability). Assuming this is true, if every item is stored in a
correct location, check2 will evaluate to 1, otherwise it will evaluate to 0. (If
check1 = 0, then it does not matter what check2 evaluates to as varName will
be set to 0.) Therefore varName will be set to 1 if, and only if, all items in X
are stored in CHT at a correct location.

We now prove that ΠOSet realizes FOSet subject to our conditions:

Proposition 4. Against a static malicious adversary controlling at most one
party out of three and an environment satisfying Conditions 1, 2, 3 and 4 Pro-
tocol ΠOSet (Fig. 6) statistically (with failure probability negligible in N) real-
izes functionality FOSet (Fig. 6) with abort in the FABB,FZKPOfValidCHT-hybrid
model.

The proof of Proposition 4 is in Appendix G.2. In Appendix H.2 we prove
that:

Proposition 5. ΠOSet.Build has complexity O(n(κ+D)) and ΠOSet.Query has
complexity O(κ).

8 Maliciously-Secure Oblivious Hash Table Construction

In this section, we build a Distributed Oblivious Hash Table (OHTable) using
the OSet protocol outlined in Sect. 7. The OHTable is a protocol for securely
mapping indices to values provided each item is only queried once.

The purpose of the OSet is to check whether the item being queried is in the
domain of the Hash Table. If so, the item will be accessed in the ABB based
on a public tag (which is a PRF evaluation of the index). If not, a pre-inserted
dummy item will be accessed based on its public tag (which is a PRF evaluation
of a counter). The real items and pre-inserted dummies are shuffled prior to the
tags being revealed, hiding which items are real.

The OHTable’s Query function will also provide a way to do a no-op query
that is indistinguishable from a real query. This will be critical in ensuring the
no-repeats condition is satisfied: when the DORAM is queried multiple times for
an item, it will query the item in the OHTable the first time and henceforth will
ask the OHTable to perform a no-op query. Additionally, our OHTable supports
an Extract functionality which returns (in the ABB) an array of the items which
were not queried (padded to length n with copies of (⊥,⊥)).



DORAM Revisited: Maliciously Secure RAM-MPC 461

Fig. 8. FOHTable and ΠOHTable: Functionality and Protocol for Distributed Oblivious
Partial Hash-Table
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Since the OHTable uses our OSet construction which generates a stash, our
OHTable will also generate a stash. The stash elements will be not be stored
in the table; they will be rejected and returned by the Build functionality. Like
the OSet, our OHTable will only be secure if stashed items are queried with
probability equal to items stored in the set.

Like our OSet protocol, our OHTable protocol has a limit on the number of
times Query is executed. It has an additional Extract function which must be
called so the OHTable can be rebuilt when this limit has been reached.

Our protocol is subject to similar conditions as that of our OSet protocol, but
with some modifications. While OSet did not allow repeated queries, OHTable
does not allow repeated queries of real items, but does allow repeated queries of
the null-value ⊥, which is used for the no-op queries. Like in the OSet protocol
we need to limit to n queries. We also need independence from the stash, both for
values revealed by the ABB by the environment and for queries to the OHTable.
However in this case, the stash consists of an array of both indices and values.
In addition, we have a condition that the Extract function will only be called
after the queries have been depleted. We formally state our conditions below:

Condition 5 (No Repeats of Real Items). For all x ∈ [N ], Query([[x]], res)
is called at most once. (Query([[⊥]], res) may be called many times.)

Condition 6 (Limited Queries). Query is called n − s times.

Condition 7 (ABB-Stash Independence). Let (stashX1, stashY1),
(stashX2, stashY2) be two different possible values of (Xstash, Y stash). The dis-
tribution of all outputs of the ABB by the environment when (Xstash, Y stash) =
(Xstash

1 , Y stash
1 ) must be computationally indistinguishable from the distribution

when (Xstash, Y stash) = (Xstash
2 , Y stash

2 ).

Condition 8 (Query-Stash Independence). Let (Xstash, Y stash) be the out-
put of Build. If x = Xi for any i ∈ [n], the probability that Query(x, res) is called
at any time, conditioned on any values revealed by the ABB either before or after,
is computationally indistinguishable from independent of whether x ∈ Xstash.

Condition 9 (Extract at End). The function Extract will only be called at
most once, and only after n − s calls to Query.

We present our OHTable protocol (ΠOHTable) and functionality (FOHTable)
in Fig. 8. We now prove its security. Firstly, we need to demonstrate that if
ΠOHTable is accessed consistently with its conditions, it will also access FOSet in
a manner that is consistent with its conditions. Formally:

Proposition 6. Assuming an environment that follows Conditions 5, 6, 7, 8
and 9 when accessing ΠOHTable, Conditions 1, 2, 3 and 4 will also be satisfied
in calls to FOSet.

The proof is in Appendix G.3
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Proposition 7. Assuming an environment that follows Conditions 5, 6, 7,
8 and 9 ΠOHTable is a secure implementation of FOHTable with abort in the
FABB,FOSet-hybrid model in the 3-party setting against one static malicious
adversary, where FOSet is subject to Conditions 1, 2, 3 and 4.

The proof is in Appendix G.4. Finally, in Appendix H.3 we show that:

Proposition 8. ΠOHTable.Build has complexity O(n(κ + D)) and ΠOHTable.
Query has complexity O(κ) and ΠOHTable.Extract has complexity O(nD).

9 Maliciously-Secure Oblivious Map Construction

As noted above, Oblivious Hash Tables (Sect. 8) have multiple limitations (for-
malized by Conditions 5–9). In particular, it does not allow real items to be
queried multiple times and has very particular restrictions about how the stash
is used by the environment. In this section, we present an Oblivious Map (OMap)
construction that removes these limitations.

We will use the hierarchical solution, but with a twist. We will define our
OMap recursively2. An OMap will consist of an Oblivious Hash Table and a
smaller OMap of roughly half the capacity. This implicitly creates a hierarchy of
OHTables, with the levels corresponding to levels of the recursion. Viewing the
hierarchical solution in terms of recursion will make it much simpler to present
our protocols and prove them secure. We will evidently need a base case: we
use ΠQuietCache for this as ΠQuietCache already implements OMap (although it
is only efficient for smaller table sizes). Our OMap will have a limitation that it
can only be queried a certain number of times. Our final ORAM will be able to
remove this limitation by taking advantage of the fact that its capacity is equal
to the size of the index space. Our condition on the order that OMap should be
accessed is formally stated below.

Condition 10 (OMap Call Pattern). First Init([[X]], [[Y ]], n) is called, where
len([[X]]) = len([[Y ]]) = w ≤ log(N) < κ

4 .
Then there are at most n − w calls to Query([[x]]) each followed immediately by
a call to Add([[x]], [[y]]) (for the same x and some value of y other than ⊥).
Finally, there is a call to Extract.

In more detail, an OMap of capacity n will contain two data objects: an
OHTable with capacity roughly n

2 and a smaller sub-OMap of capacity roughly
n
2 . We first store items in the sub-OMap, until it becomes full. When this hap-
pens, we extract the contents of the sub-OMap and build an OHTable from
its contents. We then initialize a new sub-OMap, in which we store new items.
To avoid querying an item to the OHTable more than once, we first query the
sub-OMap. If the item has already been queried, it will have been re-added
(see Condition 10) and therefore placed in the sub-OMap. If it is found in the

2 Recall that we need to recurse on OMaps rather than ORAMs, since the smaller
levels in the hierarchy need to be able to hold indices from the full space.
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Fig. 9. Recursive OMap protocol
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sub-OMap we therefore do a no-op query to the OHTable. Extract will be called
exactly when the sub-OMap becomes full again, and the contents of both the
OHTable and sub-OMap will be extracted and returned.

Things are complicated slightly by the fact that because of the “cache-the-
stash” technique, our OHTable for storing n elements, actually stores only n− s
elements, and returns a stash of s items which is intended to be “cached.” To
handle this, we increase the capacity of the both the sub-OMap and the OHTable
by s

2 , thus both have a size of n
2 + s

2 . Note that since the OHTable caches s items,
it will only hold n

2 − s
2 real items. This means that each recursive call to the OMap

causes the size to be reduced by slightly less than half; nevertheless as s is very
small relative to n (s = Θ(log(N)) = o(κ) and κ is the size of the base level), the
total recursive depth will still be Θ(log(N)). Additionally, since stashed items
need to be queried in the OHTable with probability equal to stored items, the
OMap will tag stashed items with an Alibi bit (c.f. Appendix B) before placing
them in the sub-OMap. This will slightly increase the size of payloads at smaller
levels of the recursion, but will not affect asymptotic performance.

Our protocol ΠOMap, as well as the functionality FOMap that it implements,
are presented in detail in Figs. 9 and 3 respectively. We next prove the security
of ΠOMap with respect to FOMap. Note that since ΠOMap reveals no values from
the ABB, this security proof is not particular to our 3-party honest-majority
setting. Rather, it applies in any setting given a FABB,FOHTable,FOMap-hybrid
setting, where FOHTable is subject to at most Conditions 5, 6, 7, 8 and 9, and
FOMap is of a smaller capacity and subject to at most Condition 10.

Since ΠOMap does not reveal any values from the ABB, to prove its security
we need only prove two things (see Corollary 1): that the outputs (to the ABB)
are correct and that the conditions on the functionalities it uses are upheld. We
prove these below.

Proposition 9. Assuming an environment that follows Condition 10 and that
n ≥ κ = ω(log(N)), ΠOMap[n,N ] is a secure implementation of FOMap[n,N ]
in the FABB,FOHTable,FOMap[n

2 + log(N)
2 , N ]-hybrid setting, where FOHTable is

subject to Conditions 5, 6, 7, 8 and 9, and FOMap occurs as a single instance of
FOMap[n

2 + log(N)
2 , N ] and is subject to Condition 10.

The proof is in Appendix G.5.

Proposition 10. If ΠOMap is implemented with its functionalities instantiated
in the following ways:

– FOMap implemented recursively with ΠOMap for all n ≥ κ and with
ΠQuietCache once n < κ.

– FOHTable implemented using ΠOHTable, which in turn implements FOSet using
ΠOSet

– FABB is implemented as described in Sect. 5

the resulting protocol will have the following costs:
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– Init : Θ(κw)
– Query: Θ(log(N)(κ + D)
– Add and Extract (combined, amortized over n accesses): Θ(log(N)(κ + D))

The proof is in Appendix H.4
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