
Towards Topology-Hiding Computation
from Oblivious Transfer

Marshall Ball1, Alexander Bienstock1, Lisa Kohl2, and Pierre Meyer3(B)

1 New York University, New York, USA
marshall.ball@cs.nyu.edu, abienstock@cs.nyu.edu

2 CWI, Cryptology Group, Amsterdam, The Netherlands
lisa.kohl@cwi.nl

3 IDC Herzliya, ISRAEL and IRIF, Université Paris Cité, CNRS, Paris, France

pierre.meyer@irif.fr

Abstract. Topology-Hiding Computation (THC) enables parties to
securely compute a function on an incomplete network without revealing
the network topology. It is known that secure computation on a complete
network can be based on oblivious transfer (OT), even if a majority of
the participating parties are corrupt. In contrast, THC in the dishon-
est majority setting is only known from assumptions that imply (addi-
tively) homomorphic encryption, such as Quadratic Residuosity, Deci-
sional Diffie-Hellman, or Learning With Errors.

In this work we move towards closing the gap between MPC and THC
by presenting a protocol for THC on general graphs secure against all-
but-one semi-honest corruptions from constant-round constant-overhead
secure two-party computation. Our protocol is therefore the first to
achieve THC on arbitrary networks without relying on assumptions with
rich algebraic structure. As a technical tool, we introduce the notion of
locally simulatable MPC, which we believe to be of independent interest.

1 Introduction

A secure multi-party computation (MPC) protocol enables a set of mutually
distrusting parties with private inputs to jointly perform a computation over
their inputs such that no adversarial coalition can learn anything beyond the
output of the computation. Results in the 1980 s showed that, under widely-
believed assumptions, any function that can be feasibly computed can be com-
puted securely [Yao82,GMW87,BGW88,CCD88].

However, these early protocols and most of the subsequent work (as well as
their corresponding security definitions), assume that the communication graph
is a complete network: any two parties can communication directly. In many sit-
uations communication networks are incomplete and, additionally, the structure
of the communication network itself may be sensitive information which the par-
ticipants desire to keep private (e.g. network topology may reveal information
about users’ locations, or relationships between users).

The full version [BBKM23] is available as entry 2023/849 in the IACR eprint archive.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 349–379, 2023.
https://doi.org/10.1007/978-3-031-48615-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_13&domain=pdf
https://eprint.iacr.org/2023/849
https://eprint.iacr.org
https://doi.org/10.1007/978-3-031-48615-9_13

350 M. Ball et al.

Topology Hiding Computation. Moran et al. [MOR15] noticed that there are
situations where the communication network should additionally be kept pri-
vate: secure computation over a social network, securely computing a function
using individual location data, low locality MPC [BBC+19]. Motivated as such,
Moran et al. [MOR15] then formalized the notion of topology-hiding computation
(THC), where parties can securely compute a function without revealing any-
thing about the communication network (graph), beyond the immediate neigh-
bors they are communicating with and what can be derived from the output of
the function computed (which might be either topology independent, such as a
message broadcast, or topology dependent, such as a routing table). In general,
we say that a protocol is topology-hiding with respect to a class of graphs, if
nothing is revealed beyond membership in that parties only see their immediate
neighborhood and wish to jointly compute a function without revealing any-
thing about the graph topology beyond what can be derived from the output
(which might be topology independent, e.g., a message broadcast, or topology
dependent, e.g., a routing table).

It turns out that even simply broadcasting a message to all parties in
topology-hiding manner (with no privacy guarantees on the information sent)
is challenging, even in the semi-honest setting where adversarial parties are
assumed to follow the protocol execution.1 But exactly how difficult it is to
construct THC protocols remains poorly understood. In this vein, a line of work
has sought to investigate the following question:

Is semi-honest MPC equivalent to semi-honest THC? Are additional
assumptions required to make a secure computation topology-hiding?

The feasibility of semi-honest MPC (for arbitrary functions) obeys a
dichotomy based on the number of corruptions and following this we can collect
the work on semi-honest THC into two categories.

– Honest majority (< n/2 corruptions): In this regime, we know that
semi-honest MPC (on fully connected networks) can be achieved information-
theoretically [BGW88,CCD88,RB89].

For THC (on arbitrary, connected communciation graphs) it has been shown
that key agreement is necessary with even just one corruption [BBC+20].
On the other hand, information-theoretic THC with a single corruption is
possible if (and only if) one is promised that the communication graph is
two-connected [BBC+20] (albeit at high cost).

For single corruption, key agreement is not just necessary but sufficient
to achieve THC (on arbitrary connected graphs) [BBC+20]. For a con-
stant number of corruptions, THC is possible (on arbitrary connected
graphs) assuming constant round MPC with constant computational over-
head [MOR15,BBMM18].

1 In contrast, this is trivial to achieve (in the semi-honest setting) if hiding network
topology is not a concern: simply forward the message through the network.

Towards Topology-Hiding Computation from Oblivious Transfer 351

– Dishonest majority (≥ n/2 corruptions): In the dishonest majority set-
ting, no separation between MPC and THC is known. On the other hand,
constructions of dishonest majority THC from general MPC (with a dis-
honest majority) are only known for very restricted graph classes [MOR15,
BBMM18]: graphs of constant diameter.

Assuming constant round MPC with constant computational overhead,2 THC
is possible for graphs of constant degree and logarithmic diameter [MOR15,
BBMM18].3

THC for arbitrary (connected) graphs is only known from structured hardness
assumptions (such as quadratic residuosity (QR), decisional Diffie-Hellman
(DDH) and Learning with Errors (LWE)) [AM17,ALM17,LZM+18], or ide-
alized obfuscation [BBMM18].

So while there is a clear separation between MPC and THC (with respect to
general graphs) in the honest majority setting, no such separation is known in
the dishonest majority setting. While OT is necessary and sufficient for MPC, it
is unclear if it suffices to construct THC.4 The motivation of this work is, thus,
the following question:

Are THC and MPC equivalent in the dishonest majority setting?

1.1 Our Result

In this work, we make a step towards answering this question in the affirmative,
by proving the following theorem:

Theorem 1 (Topology-Hiding Computation on All Graphs,Informal).
If there exists a two-party MPC protocol with constant rounds and constant com-
putational overhead, then there exists a protocol securely realizing topology-hiding
computation on every network topology in the presence of a semi-honest adver-
sary corrupting any number of parties.

2 MPC with constant computational overhead means that a circuit of size s(n) can
be securely evaluated in time O(s(n)) + poly(λ), where the latter term is a fixed
polynomial of the security parameter.

3 [HMTZ16] gave an early construction of a more efficient protocol for such graphs
from the decisional Diffie-Hellman assumption.

4 On the other hand, it is known that oblivious transfer is necessary to simply com-
municate in a topology-hiding manner in the presence of a dishonest majority. In
particular, OT is implied by topology-hiding broadcast with a dishonest majority
for graphs with just 4 nodes [BBMM18]. Again, because the broadcast function-
ality does not hide its inputs it is trivial to realize without hiding the topology.
[BBC+20] showed that OT is necessary for topology-hiding anonymous broadcast
on even simpler graphs.

352 M. Ball et al.

The main feature of this construction is that it is the first construction of
semi-honest topology-hiding computation tolerating any number of corruptions
on all graphs from unstructured assumptions. As mentioned above, prior to this
work it was only known how to construct THC against a semi-honest majority
from constant round, constant computational overhead MPC for graphs with
at most logarithmic diameter [MOR15,BBMM18], or from structured hardness
assumptions [AM17,ALM17,LZM+18]. For the case of topology-hiding for gen-
eral graphs, it was only known how to construct THC from constant round,
constant computational MPC if the adversary was restricted to a constant num-
ber of corruptions [MOR15,BBMM18].

As an aside, our protocol is secure in the “pseudonymous neighbors” model
(i.e. “knowledge-till-radius-zero” KT0 [AGPV88]), where parties only know
pseudonomyms of their neighbors (in this model, two colluding parties can-
not determine if they share an honest neighbor). In contrast, Moran et al.’s
protocol [MOR15] is only secure in the KT1 model (“knowledge-till-radius-one”
[AGPV88]) where parties know globally consistent names for their neighbors (in
this model, colluding parties can identify exactly which neighbors they have in
common).

On instantiating constant-round constant-overhead secure computation. By
[IKOS08], constant-round and constant-overhead two-party secure computation
is implied by any constant-round OT protocol (which can be based, e.g., on the
learning parity with noise (LPN) assumption [DDN14,YZ16,DGH+20], or on the
computational Diffie-Hellman (CDH) assumption [BM90,DGH+20]) together
with a constant-locality PRG with polynomial stretch (which can be based on a
variant of an assumption by Goldreich [Gol00,MST03,OW14]).

In contrast, all previous constructions of THC for all graphs rely on struc-
tured hardness assumptions such as key-homomorphic encryption (“privately-
key commutative and re-randomizable encryption, PKCR” [AM17,ALM17,
LZM+18]), which does not seem to be implied by LPN/CDH and constant-
locality PRGs (in fact, such a result would be rather surprising). We would like
to point out though that the main focus of this work is not to build THC from
different concrete assumptions, but to move away from structured assumptions,
which are not necessary for secure computation without topology hiding, and—
as we show in this work—are also not necessary for achieving topology-hiding
computation on general graphs.

2 Technical Overview

We first present a high-level overview of our techniques in Sect. 2.1, then present
a more technical description of our core protocol in Sect. 2.2.

First, note that the difficulty in constructing protocols for THC can be
reduced to the ability to perform topology-hiding broadcast (THB) of a single-
bit message. Indeed, once parties can broadcast messages to the network in
a topology-hiding way, one can use generic techniques that allow to establish

Towards Topology-Hiding Computation from Oblivious Transfer 353

secure computation given any OT protocol (leaking only the total number of
nodes in the network). In the following overview, we therefore restrict ourselves
to explaining how to achieve THB. With this simplification, we can capture our
main result in the following theorem:

Theorem 2 (Topology-Hiding Computation on All Graphs, Informal).
If there exists a two-party MPC protocol with constant rounds and constant com-
putational overhead, then there exists a topology-hiding protocol securely realizing
broadcast on the class of all graphs in the presence of a semi-honest adversary
corrupting any number of parties.

For simplicity, we do not explicitly address the subtleties of the neighborhood
models (KT0, where neighbors are pseudonymized, or KT1, where neighbor are
identified “in the clear”) in this exposition, but the following high-level overview
applies to both models.

2.1 A High-Level Overview

Our contribution is three-fold. First, we observe that many topology-hiding com-
putation protocols implicitly follow the following informal paradigm: the parties
run in parallel many instances of some (non topology-hiding on its own) sub-
routine, each one computing the desired function. Topology-hiding properties
of the overall protocol emerge from the fact that the parties participate in each
instance obliviously, meaning that each party is able to perform their role in each
subroutine without being able to identify which execution is which (even while
colluding with other parties). Of particular interest is the protocol of Akavia et
al. [ALM17,ALM20], which can be abstracted out as having the parties locally
setup a mesh of correlated random walks along the topology, then perform some
special-purpose MPC subprotocol along each path. In [ALM17,ALM20], these
subroutines are instantiated by heavily leaning on assumptions with a rich alge-
braic structure. The first step in removing the need for these assumptions is to
identify the properties we need from these MPC subroutines (or at least some
sufficient properties we can instantiate from a form of oblivious transfer).

We then put forward the notion of local simulation as a sufficient security
property to impose on these subroutines in order to allow for oblivious partic-
ipant evaluation. A secure computation protocol over an incomplete network
is locally simulatable if the view of each connected component in the adver-
sary’s subgraph can be generated independently. As an example, in the network
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 (where parties 2 , 3 , 6 , and 7 are corrupt), the views
of parties { 2 , 3 } and { 6 , 7 } should be simulated independently. Intuitively,
this means the adversary cannot tell if { 2 , 3 } and { 6 , 7 } are participating in
the same protocol or, e.g. in two different executions 1 - 2 - 3 - 4 - A - B - C - D
and E - F - G - H - 5 - 6 - 7 - 8 . Ultimately, if using correlated random walks, that
means that each party can participate in the MPC along each path without the
adversary learning which chunk of walk corresponds to which other.

Finally, we provide a protocol for locally simulatable MPC on a path, assum-
ing (semi-honest, static) secure two-party computation with constant rounds and

354 M. Ball et al.

constant overhead. By plugging this into the correlated random walks (i.e. the
parties are obliviously participating in a locally simulatable secure computation
along each random walk), we obtain (dishonest majority, semi-honest, static)
topology-hiding computation on all graphs. Previously, topology-hiding compu-
tation under this assumption was limited to the class of logarithmic-diameter
graphs or to a constant number of corruptions on all graphs [MOR15].

We now expand (still at a high level) on each of these three points, without
assuming familiarity with topology-hiding computation.

A Modular Approach to Topology-Hiding Computation. Topology-
hiding computation allows parties communicating through an incomplete net-
work of point-to-point channels, where each party initially only knows their local
neighborhood (possibly pseudonymized), to perform some secure computation
without revealing any information about the network (beyond what they already
know, e.g. each party’s respective neighborhood).

Our starting point is the observation that many topology-hiding protocols
can be described informally in a very modular fashion, and yet their formal
description (and the corresponding security proof) are inaccessibly monolithic.
We start by a gentle introduction to this concept, with a modular presentation
of the “simplest THC protocol”, realizing an information-theoretic topology-
hiding sum in the presence of a single semi-honest corruption on cycles (more
precisely, we fix a party/vertex set and consider all cycles on this set)5. Every
party already knows they are on a cycle, but the secret part of the topology is
the order in which they are arranged. We then provide a modular description of
Akavia et al.’s [ALM17,ALM20] protocol, realizing (computational, semi-honest,
dishonest majority) topology-hiding computation on the class of all graphs. The
latter introduces the notion of correlated random walks, which form the basis
for essentially all topology-hiding computation protocols on all graphs, tolerat-
ing any number of corruptions [ALM17,ALM20,LZM+18,Li22] (and now, also
ours).

An Introductory Example to Modular THC. Assume n parties are arranged in a
cycle, each party only having access to a secure point-to-point channel with its
neighbors in the cycle. Consider the following protocol (illustrated in Fig. 1a),
which is arguably the simplest (non topology-hiding) MPC protocol for securely
computing a sum in the presence of a single semi-honest corruption. In the first
round, an agreed upon party, which we will refer to as the initiator, samples
a random value and uses it as a one-time pad to mask its input, then sends
the resulting ciphertext to one of its neighbors (chosen arbitrarily). In each
subsequent round, if a party received a message from one of its neighbors, it

5 In fact, the protocol we describe can be seen as a conceptually simpler alternative
to Ball et al.’s [BBC+19, Theorem 4.1] 1-secure, semi-honest, information-theoretic
topology-hiding anonymous broadcast on the class of all cycles with a given vertex
set.

Towards Topology-Hiding Computation from Oblivious Transfer 355

Fig. 1. The topology-hiding protocol of Fig. 1b can be seen as running to 2n parallel
instances of the (non topology-hiding protocol) of Fig. 1a.

sums this message with its own input and passes on the result to its other
neighbor. After n rounds, the initiator receives the sum of all inputs masked by
the one-time pad they themselves sampled, and they can therefore recover the
desired output. Keeping in mind the parties are semi-honest and non-colluding,
correctness and security are straightforward to verify (in essence, a single message
is being passed around the cycle, containing the partial sum of previously visited
parties’ inputs and masked by the initiators’ one-time pad). This only allows
the initiator to get the output, however this can be addressed by running this
“single-initiator” protocol n times sequentially with a fresh initiator for each
instance.

As described, the protocol is not topology-hiding as, by noting in which round
they receive a message, every party can learn their distance to the initiator,
which leaks information about the graph. This can be addressed by considering
the following augmented protocol (illustrated in Fig. 1b):

– In the first round, each party samples two random masks, uses them as one-
time pads for their input, and sends one of the resulting ciphertexts to each
of its neighbors;

356 M. Ball et al.

– In each subsequent round, every party receives two messages, one from each
neighbor. Each party can add their input to these two messages, before for-
warding them along the cycle (the message received from one neighbor is sent
to the other neighbor, after the input is added).

– After n rounds, each party can receive the sum of all inputs by removing the
appropriate mask from either of the messages received in the last round.

The above protocol could be described as running 2n parallel instances of the
“single-initiator” protocol. Each party’s instructions in the augmented protocol
can be seen as participating in each of these protocols: in two of them with the
role of initiator, in another two with the role of the party one hop away from the
initiator, and so on for each of the n possible roles. Crucially, both for correct-
ness and security, each party is able to participate in each subroutine obliviously,
meaning that they are able to fulfill their role without being able to distinguish
these executions and thus, most importantly, recognize which one corresponds
to which initiator.

Takeway for Our Protocol: Skipping ahead, our main protocol will follow this
abstract template: the parties will be participating in a slew of subroutines, where
each party knows exactly their role in the process, but non-neighboring colluding
parties cannot determine if they both participate in any given subroutine or not.

Correlated random walks [ALM17,ALM20]. In retrospect, the above protocol
remains relatively simple to analyze, even without breaking it down into these
subroutines. We now turn our attention to Akavia et al.’s [ALM17,ALM20] con-
struction, for which taking a modular approach is significantly more interesting.
In order to isolate Akavia et al.’s [ALM17,ALM20] key contribution of correlated
random walks, we propose the following abstraction. Say there are n parties in
some incomplete communication network wishing to securely compute an OR
of their inputs. As a starting model, assume one party possesses an idealized
hardware “black box”. This box is unclonable and has the following properties:
any party may enter an input into the box, and after T inputs have been reg-
istered, the box returns their OR, where T is some parameter to be defined.
The first party can place their input in the box, then pass on the latter to a
randomly chosen neighbor. In subsequent rounds, the party who just received
the box adds its input then passes the box to a randomly chosen neighbor. From
a global point of view, the box is performing a random walk and therefore, by
known results on the cover time of a simple random walk in a connected graph,
after T = λ · n3 steps the box will have, with all but negligible probability, vis-
ited every party at least once each. This means that the last party will receive
the correct OR from the box, and because we assumed the box was unclonable,
the protocol securely computes OR6. This allows a randomly chosen7 party to
6 If the box was clonable, a party could make a local copy then learn the partial OR

of the inputs of all parties who previously handled the box by simply plugging 0s
until they receive an output.

7 The stationary distribution is not uniform, but nevertheless each party has non-
negligible probability of being the last party.

Towards Topology-Hiding Computation from Oblivious Transfer 357

learn the output, and we could for instance sequentially repeat the process until
every party obtains the OR. This protocol is not topology-hiding however, since
colluding parties could learn an upper bound on their distance in the graph by
counting the number of steps between when they handled the box8.

Akavia et al.’s [ALM17,ALM20] elegant solution is to have each party initially
send a box to each of their neighbors. In every subsequent round, each party
takes all the boxes it just received (one per neighbor), plugs in their input,
then shuffles all boxes and sends one to each neighbor. After T rounds, each
party opens any of the boxes it holds to recover the result. Observe that each
box, taken individually, performs a random walk through the graph. While the
walks of each box are not independent, but correlated, [ALM20, Lemma 3.14]
establishes that setting T = Θ(λ · n3) guarantees that with all but negligible
probability all boxes will have individually covered the graph.

For completeness, we mention that in reality, Akavia et al. [ALM17,ALM20]
do not rely on this idealized hardware to perform the secure OR on the fly,
but use linearly homomorphic Privately Key-Commutative and Rerandomizable
encryption (lhPKCR) [AM17], which can be instantiated from DDH [AM17],
LWE [LZM+18], or QR [Li22]. In a nutshell, the parties pass around ciphertexts
containing the homomorphically computed partial OR of the inputs of all visited
nodes. In order to not have these ciphertexts be opened prematurely (c.f. the
unclonability assumption on the black boxes), the secret key is re-randomized
(and therefore secret-shared) along the walk: whenever a party receives a cipher-
text they also “add a layer of randomization” to the key, which is possible for
PKCR encryption. After Θ(λ · n3) steps, when the random walk of every mes-
sage is guaranteed to have visited every node with all but negligible probability,
the parties return the ciphertexts to their source, along the reverse walks, and
peeling off layers of encryption as they go.

Takeway for Our Protocol: Abstracting out, Akavia et al.’s [ALM17,ALM20]
protocol can be seen as first having each party sample T permutations on their
neighborhood (as illustrated in Fig. 2, this globally define a mesh of random
walks, where each party knows only their position), and then having the parties
run a special-purpose MPC along each walk. These instances of MPC along
each path are indistinguishable to the parties by using structural properties of
lhPKCR encryption.

Information-Local Simulation. Correlated random walks can be used to
reduce the task of topology-hiding computation on all graphs to that of designing
an MPC the parties can run along each walk without being able to tell when
they are participating in the same execution (i.e. in the same walk) or not. To

8 While this is beyond the scope of this exposition, we could quantify the leakage
in terms of the electric conductance of the graph. What this means additionally is
that the protocol is even insecure against a single corruption as a party can learn
information from just counting the number of rounds between two consecutive visits
of the box.

358 M. Ball et al.

Fig. 2. Local and global views of correlated random walks, obtained by having each
party sampled uniformly at random T permutations on their neighborhood.

instantiate the latter, we put forward the notion of locally simulatable computa-
tion.

Introducing Locally Simulatable Computation. Locally simulatable computation
is an MPC over an incomplete network G where the view of disconnected corrupt
parties can be simulated independently. More formally consider the connected
components Z1,Z2, . . . of the subgraph G[Z] induced by the set of corrupted
parties Z. The views of the parties in each component Zi should be simulated
given only their inputs, outputs, and local views of the graph, independently of
the views of the parties in Z \ Zi. Note that this requirement is orthogonal to
the notion of being topology-hiding9:

9 However our final protocol will turn out to be both topology-hiding and locally
simulatable.

Towards Topology-Hiding Computation from Oblivious Transfer 359

– THC is not necessarily locally simulatable: Without loss of generality, a
topology-hiding computation protocol can be made to be not locally sim-
ulatable, by first broadcasting a long random string (in a topology-hidding
manner). The views of disconnected adversaries cannot be simulated inde-
pendently, as they expect to receive the same string (which is not passed as
input to the simulators, since it is neither an input nor an output).

– Locally simulatable MPC is not necessarily topology-hiding: In locally simu-
latable MPC, each party is assumed to know their position in the graph (or
in other words, the graph class is a singleton). There is no guarantee the
parties can correctly run a locally simulatable MPC protocol if they are in an
unknown graph setting (and having the parties learn information about the
graph to be able to run the protocol would not be topology-hiding).

From Local Simulation to Execution-Obliviousness. Because the views of two
adversarial components Z1 and Z2 are generated independently, the adversary
corrupting the parties cannot tell if Z1 and Z2 are in fact participating in the
same protocol or in different protocols (provided of course they have the same
inputs, outputs, and neighborhoods in all these instances).

We are now ready to sketch our topology-hiding broadcast on all graphs,
assuming the existence of locally simulatable computation on paths of length
T = λ · n3 (which we will instantiate next). Each party Pu samples T random
permutations on their neighborhood (recall this defines 2|E| =

∑
v∈V degv paths,

each one visiting each node at least once w.h.p.), from which they derive 2T ·degu

different “path neighborhoods” with the corresponding positions (more precisely,
2 degu of these neighborhoods are as the ith node on the path, for each i ∈ [T]).
Each party fulfills in parallel their 2T ·degu roles in the 2T ·|E| parallel executions
of locally simulatable OR (the broadcaster always uses the broadcast bit as input
and the other parties use 0, in all their roles), one along each path. Their output
in each of the protocols is then the broadcast bit.

Locally Simulatable MPC on a Path from OT. By what precedes,
topology-hiding broadcast on the class of all graphs can be reduced to a locally
simulatable OR on a path. At a high-level, our OR protocol on the path proceeds
by recursively emulating a two-party computation (2PC) of an OR. Each party
in this top-level 2PC is itself emulated by a 2PC whose two parties are further
emulated by a lower-level 2PC, and so on, until we get to 2PCs between two real
parties on the path. For a 2PC at any given recursion level, each virtual party is
recursively emulated by half of the real parties on the current subset of the path
being considered. That is, at the highest level, the first (resp. second) half of the
real parties emulates the first (resp. second) virtual party. Then, every (1/4)-th
of the real parties emulate a separate virtual parties at recursion depth 1, and
so on, until we reach 2PCs between every pair of neighboring real parties. In a
nutshell, local simulatability stems from the fact that each party only sees 2PC
messages that come from its direct neighbors. For a more detailed overview of
this protocol, we refer the reader to the next subsection.

360 M. Ball et al.

2.2 Technical Overview of the Core Protocol: Locally Simulatable
MPC on a Path

We now focus on presenting our main technical contribution of building locally
simulatable OR on a path. We first describe our construction (see Fig. 3) and then
explain the primary ways in which the protocol enables proper topology-hiding
emulation and local simulatability. In the full version of this paper [BBKM23],
we note some differences between our protocol and the protocol of [MOR15].

Building Locally-Simulatable OR on a Path. The core step in building our full
THB protocol is building a locally-simulatable OR protocol on a directed path
of length � = 2l, for some l ≥ 1 (each such path will be a random walk, so we
can specify its length to be a power of 2). In this setting, each party knows their
position on the path (for i ∈ [0, � − 1]), and we refer to the party at position i

as P̃i. Given each party P̃i’s input bit bi, the protocol outputs
∨�−1

i=0 bi to every
party. When used in the full THB protocol, if P̃i is the broadcaster, then bi = b,
the broadcast bit; otherwise, bi = 0.

In order to compute the OR of their input bits bi, the parties emulate recur-
sive (constant-overhead) 2PC computations. At a high-level, the first and second
�/2 real parties will emulate the first and second virtual parties, P0,0 and P0,1,
respectively, of a 2PC computation. The virtual parties input (b0||b1|| . . . ||b�/2−1)
and (b�/2||b�/2+1|| . . . ||b�−1), respectively, and the 2PC computation outputs to
both virtual parties

∨�−1
i=0 bi. Now, in each round of this 2PC, virtual party P0,0

is emulated recursively via another 2PC between virtual parties P1,0 and P1,1,
which are in turn emulated by, respectively, the first and second �/4 real parties
recursively (and similarly for virtual party P0,1). Virtual party P0,0 is emulated
by virtual parties P1,0 and P1,1 as follows: P1,0 and P1,1 combine their inputs
(b0||b1|| . . . ||b�/4−1) and (b�/4||b�/4+1|| . . . ||b�/2−1) (via the 2PC) so that P0,0’s
input is emulated by x0,0 = (b0||b1|| . . . ||b�/2−1). Similarly, P1,0 and P1,1 each
take as input random strings r̃′

1,0 and r̃′
1,1 and combine them (via the 2PC)

so that P0,0’s random tape is emulated by r̃0,0 = r̃′
1,0 ⊕ r̃′

1,1. Finally, the 2PC
between P1,0 and P1,1 outputs P0,0’s next message in its 2PC with P0,1 to P1,1,
who then passes it to the first virtual party P1,2 that participates in the 2PC
emulating P0,1. Note that only virtual parties P1,1 and P1,2 see and pass to each
other the messages for the higher-level 2PC; as we will see later, this is crucial
to local-simulatability, and topology-hiding in general.

We keep recursively splitting the computation of virtual parties in 2PC’s in
the recursion, until we reach level l−1 of the recursion, in which two real parties,
which are sibling leaves in the recursion tree, compute (many) 2PC’s. Again,
briefly, the 2PC’s that each pair of sibling leaves computes is the emulation of
the next message function of the virtual party at the parent in the recursion tree.
This virtual party in turn is computing a 2PC with its sibling that emulates the
next message function of the virtual party at their parent in the recursion tree.
We continue up the tree like this, until we reach the original OR between the
two largest virtual parties.

Towards Topology-Hiding Computation from Oblivious Transfer 361

Fig. 3. Depiction of the directed path protocol Πdir-path for a path of length � = 8.
Each interior node represents a 2PC which gets its inputs and randomness from its two
children. This 2PC computes the next message for virtual party P0 (resp. P1) in the
2PC at the node’s parent by combining the inputs of its two children into the input and
randomness of P0 (resp. P1). This next message is passed from this node to its sibling in
the protocol via the two neighboring real parties at the rightmost (resp. leftmost) and
leftmost (resp. rightmost) leaves of the corresponding subtrees (indicated by horizontal
lines of matching thickness).

For clarity, we depict an example computation with � = 8 in Fig. 3. We shall
first focus on real parties P̃0 and P̃1. Each party has their respective input bits
which we denote as b0 and b1. The parties also sample several random strings
for (i) the emulation of virtual party P0,0 and (ii) for the emulation of each 2PC
in which virtual party P1,0 participates (one for each of the R2PC rounds of the
root 2PC).

Now, for each round of each 2PC execution that virtual party P1,0 participates
in (i.e., R2

2PC in total), P2,0 and P2,1 execute their own 2PC to emulate P1,0 in
this round. They do so by emulating (via their 2PC execution) P1,0’s input bits
as (b0||b1), P1,0’s input randomness (for emulation of the root 2PC) as r̃′

1,0 =
R̃2,0[0] ⊕ R̃2,1[0], and P1,0’s random tape as r̃1,0 = R̃2,0[1] ⊕ R̃2,1[1] (where
R̃2,0[1], R̃2,1[1] are freshly sampled for each execution in which P1,0 participates).
P2,1 then receives P1,0’s next message as output of this 2PC, and forwards it to
P2,2 (who together with P2,3 will emulate P1,1’s next message). Note that P2,1

will also input to the 2PC P1,1’s previous messages in its 2PC with P1,0, which
P2,1 receives from P2,2.

The 2PC’s which virtual party P1,0 executes with P1,1 correspond to emula-
tions of the next message function of virtual party P0,0 in the highest level 2PC,
which simply computes the OR of P0,0’s and P0,1’s input bits. P1,0 and P1,1

emulate (via these 2PC executions) P0,0’s input bits as (b0||b1||b2||b3), and P0,0’s
random tape as r̃0,0 = r̃′

1,0 ⊕ r̃′
1,1. Again, recall that, recursively, P1,0 (resp. P1,1)

362 M. Ball et al.

was emulated by P2,0 and P2,1 (resp. P2,2 and P2,3) so that its input bits were
(b0||b1) (resp. (b2||b3)) and r̃′

1,0 = R̃2,0[0]⊕R̃2,1[0] (resp. r̃′
1,1 = R̃2,2[0]⊕R̃2,3[0]).

So, when P1,1 computes its output, it will be the next message of P0,0 in its 2PC
computation with P1,0 of the OR functionality, with input x0,0 = b0||b1||b2||b3
and random tape r̃0,0 =

⊕3
i=0 R̃2,i[0]. This output will then be recursively passed

down (via another 2PC) to P2,3, who will then pass it to virtual party P0,1 via
real party P2,4. P0,1’s messages in the 2PC with P0,0 will be similarly recur-
sively emulated so that when P0,0 and P0,1 finally compute their outputs in the
highest-level OR 2PC execution, they will be recursively passed down to each
P1,i, and then again to each P2,i so that finally, all parties P̃i receive

∨7
i=0 bi.

Finally, note that the recursion depth is just l = log2(�). Moreover, when
the 2PC is implemented with a constant round 2PC with constant computa-
tional overhead, we can see that the round complexity grows multiplicatively
in the recursion depth, i.e. O(1)l = poly(�), and moreover the total computa-
tional complexity (and hence communication complexity) is just O(· · · O(O(1)+
poly(λ)) + poly(λ) · · ·) + poly(λ) = poly(�, λ).

Enablers for Proper Topology-Hiding Emulation and Local Simulatability. There
are a few main ways in which this protocol enables proper topology-hiding emu-
lation and local simulatability. First, 2PC messages at any depth of the recursion
are only output and passed between real parties that are neighbors on the path.
This is important since if this were not true, and (random-looking, and thus
unique w.h.p.) messages were passed between real parties several edges away
from each other, then as noted previously, these parties would know that they
participate in the same execution, and thus local simulation would not be pos-
sible. This is the reason why our path protocol uses recursive 2PC’s, as opposed
to, e.g., 3PC’s, as doing so would require real parties to pass messages to other
real parties that are not their neighbors, thus revealing infromation about the
topology (recall that we work in the KT0 model, so parties should not know if
they have a neighbor in common).

Second, virtual parties’ random tapes are collectively emulated by each real
party of which they consist. So, even if the party at the “edge” of a virtual
party that sees the 2PC messages sent by the virtual party they are helping to
emulate is corrupted, if at least one of the other real parties in the virtual party
is uncorrupted, then this 2PC message reveals nothing about the uncorrupted
parties’ inputs. This is because the uncorrupted parties mix in their own fresh
randomness to compute the random tape of the virtual party so that the 2PC
messages are generated with randomness that looks fresh and independent to the
adversary. So, by the security of the 2PC, these messages reveal nothing about
the virtual party’s input (and thus nothing about the uncorrupted real parties’
inputs).

Finally, since we compute an OR amongst all parties, we can simulate virtual
parties’ views with only partial information. Simulation using generic 2PC seems
challenging at a first glance, since in the 2PC in which a corrupted real party is
helping to emulate a virtual party, it may receive 2PC messages from the other

Towards Topology-Hiding Computation from Oblivious Transfer 363

virtual party in the higher-level 2PC. This happens even if some of the other
real parties of which the emulated virtual party consists are not corrupted. We
are thus faced with using generic 2PC simulators only with partial information
on the input (and output) of the corresponding virtual party. However, since
we compute the OR functionality, and based on the output OR’d bit b and the
fact that every real party mixes in their own independent randomness for the
emulation of virtual parties, our local simulators can actually fill in the gaps of
the uncorrupted parties. That is, if b = 0, then our simulator can simply fill
in the uncorrupted parties’ inputs as 0 and sample fresh randomness for them,
which will be a perfect simulation. Even if b = 1, because of the 2PC security of
computing ORs, our simulator can simply simulate as if all of the uncorrupted
parties’ inputs were 1. Although this will not be true for the THB protocol itself,
it can be true for computing recursive ORs, and thus we leverage this along with
2PC security for our proof.

Generalizing to “Efficiently Invertible from Local Information” Functionalities.
We just noted that the fact that our path protocol computes an OR is crucial to
local simulatability. The important part, however, was that from a subset of par-
ties’ input bits and the output bit, one can efficiently compute all other parties’
inputs (0’s if the output is 0; 1’s if the output is 1). In the full version [BBKM23],
we further generalize this strategy to all functionalities F such that given a subset
of parties’ inputs and outputs, there exists an “inverse” algorithm that computes
possible inputs of the other parties that are consistent with the original parties’
outputs. We call such functionalities efficiently invertible from local information.
Other examples of such functionalities include private set intersection, private
set union, and more. However, we do note that there are some efficiently com-
putable functionalities that nonetheless are not efficiently invertible from local
information; for example, leakage resilient one-way functions. Unfortunately, we
cannot extend the strategy to such functionalities.

Now recall that we use secure OR to eventually build our THB protocol,
which in turn can be generically composed with any secure MPC protocol to
get full-fledged THC (see Sect. 6). However, we note that if the eventual THC
computes a functionality that is efficiently invertible from local information, our
path protocol can just directly (and thus more efficiently) be used to compute
the THC, without going through the THB + MPC composition.

3 Preliminaries

Notations. For m < n ∈ N let [n] = {1, . . . , n} and [m,n] = {m,m + 1, . . . , n}.
In our protocols we sometimes denote by B an upper bound on the number
of participating parties. The security parameter is denoted by λ. We will use
0-indexing for many of our definitions and protocols. We also make use of dic-
tionaries in our protocols. For a dictionary D, D[: x] results in a new dictionary
D′ consisting of elements 0 through x of D; i.e., for i ∈ [0, x],D′[i] = D[i], but
for i > x,D′[i] = ⊥. Finally, we let

∣
∣
∣
∣n
j=i

xj = xi||xi+1|| . . . ||xn

364 M. Ball et al.

Graph Notations and Properties. A graph G = (V,E) is a set V of vertices
and a set E of edges, each of which is an unordered pair {v, w} of distinct
vertices. A graph is directed if its edges are instead ordered pairs (v, w) of distinct
vertices. The (open) neighbourhood of a vertex v in an undirected graph G,
denoted NG(v), is the set of vertices sharing an edge with v in G. The closed
neighbourhood of v in G is in turn defined by NG[v] ..= NG(v) ∪ {v}.

3.1 Topology-Hiding Computation (THC)

There are two notions of topology-hiding computation in the literature: game-
based and simulation-based [MOR15]. Since we introduce a feasibility result, we
use a stronger simulation-based definition.

UC Framework. The simulation-based definition is defined in the UC framework
of [Can00]. We will consider computationally bounded, static, and semi-honest
adversaries and environments.

Neighbourhood Models. In this work, we unify the neighbourhood models of
past THC definitions in the literature (for an illustration we refer to Fig. 4). To
simplify the notation, we will consider that Pv in some protocol is associated
with node v in the underlying graph. Typically, THC functionalities are real-
ized in the FG

graph-hybrid model, where FG
graph is some functionality that allows

parties to communicate with their neighbors in the graph. Many works have
used the model of [MOR15], wherein FG

graph informs every party Pv of their local
neighbourhood by indeed sending NG(v) directly to them, and FG

graph thereafter
facilitates communication from Pv to some other node u, only if u is indeed a
neighbor of v. However, [ALM17] instead has FG

graph first sample a random injec-
tive function f : E → [n2], labeling each edge with a random (unique) element
from [n2]. Next, FG

graph informs every party Pv of their local neighbourhood by
instead sending them the set of edge labels Lv := {f((u, v)) : (u, v) ∈ E}. FG

graph

thereafter facilitates communication from Pv along some edge with label l, only
if l corresponds to some edge (v, u) ∈ E according to f .

We refer to these two notions according to the terminology of [AGPV88],
who define the Knowledge Till Radius σ Model (KTσ). These two worlds are
illustrated in Fig. 4. KT1 is called the ‘Common Neighbours’ model, and refers
to the [MOR15] world. Indeed, in this world, parties are given the identities
of their neighbours, so that two colluding parties that each have an edge to a
common party know that this is in fact the case. KT0 is called the ‘Pseudonymous
Neighbours’ model, and refers to the [ALM17] world. In this world, parties are
only given the random (unique) identities of the edges corresponding to their
neighbourhood, as described above, but not the actual identities of the parties
with which they share these edges. So, if two colluding parties each have an edge
to a common party, their respective edges will have different labelings and thus
will not tell them if they indeed share this common neighbour.

Towards Topology-Hiding Computation from Oblivious Transfer 365

Fig. 4. Differing views of parties in KT0 and KT1.

Simulation-Based THC. Now we are ready to introduce our simulation-baesd
topology-hiding computation definition. The real-world protocol is defined in
a model where all communication is transmitted via the functionality FG,KTσ

graph

(described in Fig. 5). The functionality is parameterised by a family of graphs
G, representing all possible network topologies (aka communication graphs) that
the protocol supports. It is also parameterised by the neighbourhood model KTσ,
for σ ∈ {0, 1}. We implicitly assume that every node in a graph is associated
with a specific party identifier, pid.

Initially, before the protocol begins, FG,KTσ

graph receives the network communi-
cation graph G from a special graph party Pgraph and makes sure that G ∈ G.
Then, if σ = 0, it samples a random injective function f : E → [n2], labeling each
edge with an element from [n2], and gives each party Pv with v ∈ V the edge
labels according to its local neighbor-set. Next, during the protocol’s execution,
whenever party Pv wishes to send a message m along edge l, it sends (l,m) to
the functionality; the functionality first checks if there is (v, w) ∈ E such that
f(v, w) = l, and if so delivers (l,m) to Pw. Otherwise, if σ = 1, it simply provides
to each party Pv with v ∈ V its local neighbor-set. Next, during the protocol’s
execution, whenever party Pv wishes to send a message m to party Pw, it sends
(v, w,m) to the functionality; the functionality verifies that the edge (v, w) is
indeed in the graph, and if so delivers (v, w,m) to Pw.

Note that if all the graphs in G have exactly n nodes, then the exact number of
participants is known to all and need not be kept hidden. In this case, defining the
ideal functionality and constructing protocols becomes a simpler task. However,
if there exist graphs in G that contain a different number of nodes, then the model
must support functionalities and protocols that only know an upper bound on
the number of participants. In the latter case, the actual number of participating
parties must be kept hidden.

366 M. Ball et al.

Given a class of graphs G with an upper bound n on the number of parties,
we define a protocol π with respect to G as a set of n ppt interactive Turing
machines (ITMs) (P1, . . . ,Pn) (the parties), where any subset of them may be
activated with (potentially empty) inputs. Only the parties that have been acti-
vated participate in the protocol, send messages to one another (via FG,KTσ

graph),
and produce output.

Fig. 5. The communication graph functionality (unified definition for KT0 and KT1).

Towards Topology-Hiding Computation from Oblivious Transfer 367

An ideal-model computation of a functionality F is augmented to provide the
corrupted parties with the information that is leaked about the graph; namely,
every corrupted (dummy) party should learn its local neighbourhood information
(in KT0 or KT1, respectively). Note that the functionality F can be completely
agnostic about the actual graph that is used, and even about the family G. To
augment F in a generic way, we define the wrapper-functionality WG,KTσ

graph-info(F),
that runs internally a copy of the functionality F. The wrapper WG,KTσ

graph-info(·) acts
as a shell that is responsible to provide the relevant leakage to the corrupted
parties; the original functionality F is the core that is responsible for the actual
ideal computation.

More specifically, the wrapper receives the graph G = (V,E) from the graph
party Pgraph, makes sure that G ∈ G, and sends a special initialization message
containing G to F. (If the functionality F does not depend on the communica-
tion graph, it can ignore this message.) The wrapper then proceeds to process
messages as follows: Upon receiving an initialization message from a party Pv

responds with its local neighbourhood information (just like FG,KTσ

graph). All other
input messages from a party Pv are forwarded to F and every message from F
to a party Pv is delivered to its recipient (Fig. 6).

Fig. 6. The graph-information wrapper functionality (unified definition for KT0 and
KT1).

368 M. Ball et al.

Note that formally, the set of all possible parties V ∗ is fixed in advance. To
represent a graph G′ = (V ′, E′) where V ′ ⊆ V ∗ is a subset of the parties, we use
the graph G = (V ∗, E′), where all vertices v ∈ V ∗ \ V ′ have degree 0.

Definition 1 (Topology-hiding computation). We say that a protocol π
securely realizes a functionality F in a topology-hiding manner with respect to
G tolerating a semi-honest adversary corrupting t parties if π securely realizes
WG,KT0

graph-info(F) in the FG,KT0
graph -hybrid model tolerating a semi-honest adversary cor-

rupting t parties.

Broadcast. In this work we will focus on topology-hiding computation of the
broadcast functionality (see Fig. 7), where a designated and publicly known party,
named the broadcaster, starts with an input value m. Our broadcast functionality
guarantees that every party that is connected to the broadcaster in the commu-
nication graph receives the message m as output. In this paper, we assume the
communication graphs are always connected. However, the broadcaster may not
be participating, in which case it is represented as a degree-0 node in the com-
munication graph (and all the participating nodes are in a separate connected
component.)

Parties that are not connected to the broadcaster receive a message that is
supplied by the adversary (we can consider stronger versions of broadcast, but
this simplifies the proofs).

We denote the broadcast functionality where the broadcaster is Pi by Fbc(Pi).

Fig. 7. The broadcast functionality

Definition 2 (t-THB). Let G be a family of graphs and let t be an integer.
A protocol π is a t-THB protocol with respect to G if π(Pv) securely realizes
Fbc(Pv) in a topology-hiding manner with respect to G, for every Pv, tolerating
a semi-honest adversary corrupting t parties.

Towards Topology-Hiding Computation from Oblivious Transfer 369

3.2 Constant-Overhead Two-Party Computation for Semi-Honest
Adversaries

Definition 3 (Stateless Two-Party Computation Syntax). A R2PC-
round Stateless Two-Party Computation (2PC) protocol 2PCF(x0, x1; r0, r1) :=
(2PCF

0,i, 2PC
F
1,i)i∈[0,R2PC−1] for given functionality F is described by two parties,

P0 and P1, with respective inputs x0, x1 and respective randomness r0, r1 that
use PPT algorithms 2PCF

0,i(x0, {m1,j}j<i; r0) (resp. 2PCF
1,i(x1, {m0,j}j≤i; r1)) to

compute P0’s (resp. P1’s) i-th round message of the protocol, m0,i (resp. m1,i),
taking as input P0’s 2PC input x0 and the j-th round messages of P1 for j < i,
and using P0’s 2PC randomness r0 (resp. P1’s 2PC input x1 and the j-th round
messages of P0 for j ≤ i, and using P1’s 2PC randomness r1). Algorithm
2PCF

0,R2PC−1(x0, {m1,j}j<R2PC−1; r0) (resp. 2PCF
1,R2PC−1(x1, {m0,j}j≤R2PC−1; r1))

additionally gives output y0 (resp. only gives output y1).
We will additionally use the notation 2PCF

i,<ρ(x0, x1; r0, r1) to represent
the first ρ messages that party i receives from party 1 − i on inputs x0, x1 and
randomness r0, r1, respectively.

We defer the standard real/ideal world security definition of 2PC with respect
to a semi-honest adversary to the real version [BBKM23].

Constant-Overhead Constant-Round 2PC. For this work, we need to use a 2PC
with constant overhead and constant round complexity. More precisely, we
require that 2PC satisfies the following properties: First, for any given functional-
ity F and the corresponding circuit CF that computes it, 2PC has computational
(and thus also communication) overhead O(|CF |) + poly(λ), where |CF | is the
size of the circuit, i.e., the number of gates it has. Second, we require the number
of rounds R2PC to be constant.

3.3 Efficiently Invertible from Local Information Functionalities

In the full version [BBKM23], we define special efficiently invertible from local
information functionalities for which we can prove local simulatability of our
path protocol (the OR functionality being one example).

4 Locally Simulatable MPC

In this section we introduce the notion of locally simulatable MPC on discon-
nected graphs.

Towards the definition of locally simulatable MPC, we first recall the stan-
dard definition of a functionality to model a function f : X 0 × · · · × X �−1 →
Y0 × · · · × Y�−1 in Fig. 8.

We define local simulatability relative to a communication network G =
(V,E), where V = {0, . . . , � − 1}, and where two parties Pi and Pj can commu-
nicate if and only if they are connected by an edge (i, j) ∈ E. In the following
we always assume the graph to be connected.

370 M. Ball et al.

Fig. 8. Functionality Ff for computing f : X 0 × · · · × X �−1 → Y0 × · · · × Y�−1.

We model the notion of local simulatability, by requiring a simulator to be
dividable in simulators S1, . . . , Sμ (one for each connected component of the
adversary), where simulator Si has to simulate the view of the i-th component
solely based on the inputs and outputs of the parties in this component.

Real Execution. Let Π be a protocol executed by parties P0, . . . , P�−1 on G,
i.e., a protocol where each party can only send and receive messages from their
neighbors in G. Then, the view ViewΠ

i (x0, . . . , x�−1) of party Pi consists of its
input xi, its internal randomness ri and all messages received by party Pj with
(i, j) ∈ E. Let A be an adversary corrupting a subset I ⊂ {0, . . . , � − 1} of the
players. Then, the view of A in the real execution of Π is of the form

REAL
Π
A,I(x0, . . . , x�−1) =

(
Π(x0, . . . , x�−1),

{
ViewΠ

i (x0, . . . , x�−1)
}

i∈I

)
,

where Π(x0, . . . , x�−1) denotes the outputs of parties P0, . . . , P�−1 after the exe-
cution of Π on input (x0, . . . , x�−1) with randomness (r0, . . . , r�−1).

Ideal Execution. Again, let A be an adversary corrupting a subset I ⊂ V of
the nodes and let I1, . . . , Iμ be a partitioning of I into pairwise disconnected
components, i.e. such that

– I =
⋃μ

j=1 Ij

– Ii, Ij are disconnected for any i �= j, i.e., for each u ∈ Ii and v ∈ Ij it holds
(u, v) /∈ E.

Let Sim = (Sim1, . . . ,Simμ) be a tuple of algorithms10, such that for each j ∈
{1, . . . , μ} the following holds:

– Simj is a PPT algorithm,
– Simj obtains an input/ output pair (xi, yi) for all i ∈ Ij ,
– Simj outputs a simulated view of parties {Pi}i∈Ij

.

10 Note that the distinction into μ different simulators instead of μ copies of the same
simulator is solely for the sake of clarity.

Towards Topology-Hiding Computation from Oblivious Transfer 371

Then, we define the simulated view of Sim in the ideal execution of Ff as

IDEAL
f
Sim,I(x0, . . . , x�−1) =

(
f(x0, . . . , x�−1),

{
Simj((xi, yi)i∈Ij

)
}

j∈μ

)
.

Definition 4 (Local Simulation). Let Π be a protocol on G. We say that
Π emulates Ff relative to G with local simulatability in the static, semi-
honest model against t corruptions if for every PPT adversary A corrupt-
ing a set I ⊂ {0, . . . , � − 1} with |I| ≤ t and for every partitioning of I
into pairwise disconnected components I1, . . . , Iμ, there exists a PPT simulator
Sim = (Sim1, . . . ,Simμ), such that for all x0, . . . , x�−1 ∈ {0, 1}� it holds

{
REAL

Π
A,I(x0, . . . , x�−1)

} ≈c

{
IDEAL

f
Sim,I(x0, . . . , x�−1)

}

4.1 Locally Simulatable Protocols Are Execution-Oblivious

In this section we first define execution obliviousness. Then, in the full version of
the paper [BBKM23], we show that the notion of locally simulatability indeed
guarantees execution-obliviousness (unless the execution can be derived from the
output), as we will require to construct THC.

In the following we restrict to protocols implementing deterministic func-
tionalities with perfect correctness, i.e. for which Π(x0, . . . , x�−1) is well-defined
without specifying the random coins. (Note that the requirements on inputs
and randomness in the following definition are necessary for preventing a trivial
distinguisher.)

Definition 5 (Execution obliviousness.). Let G = (V,E) be a graph with
V = {0, . . . , �−1} and let Π be an �-party protocol on G. We say Π is execution
oblivious on G tolerating t corruptions, if for all sets I ⊆ {0, . . . , � − 1} with
|I| ≤ t and for any partitioning of I into pairwise disconnected components
I1, . . . , Iμ the following holds:

For all inputs (x0, . . . , x�−1), (x
(1)
0 , . . . , x

(1)
�−1), . . . , (x

(μ)
0 , . . . , x

(μ)
�−1) ∈ X0×· · ·×

X�−1 with

– x
(j)
i = xi for all i ∈ Ij , j ∈ [μ], and

– Π(x0, . . . , x�−1) = Π(x(1)
0 , . . . , x

(1)
�−1) = · · · = Π(x(μ)

0 , . . . , x
(μ)
�−1),

it holds:
(
Π(x0, . . . , x�−1),

{
ViewΠ

i (x0, . . . , x�−1; r1, . . . , r�−1)
}

i∈I

)

≈c

⎛

⎝Π(x0, . . . , x�−1),
μ⋃

j=1

{
ViewΠ

i (x(j)
0 , . . . , x

(j)
�−1; r

(j)
0 , . . . , r

(j)
�−1)

}

i∈Ij

⎞

⎠ ,

where the randomness is taken over the random coins r1, . . . , r�−1, {r
(j)
1 , . . . ,

r
(j)
�−1}j∈[μ].

372 M. Ball et al.

Lemma 1 (Locally Simulatable Protocols are Execution Oblivious).
Let G = (V,E) be a graph with V = {0, . . . , � − 1}, let Ff be a deterministic
�-party functionality and let Π be an �-party protocol on G. If Π emulates Ff

relative to G with local simulatability in the static, semi-honest model against t
corruptions, then Π is execution oblivious on G tolerating t corruptions.

We defer the proof of this lemma to the full version [BBKM23].

5 Locally Simulatable Protocol for Directed Paths

In this section, we formally present the protocol for computing on a directed
path some functionality F that is efficiently invertible from local information.
An example of such a functionality is FOR, which we will use to impelement
THB in the next section. We refer the reader back to Sect. 2.2 for a detailed
overview of the protocol. Due to space limitations, we defer the proof of local
simulatability to the full version of this paper [BBKM23].

5.1 The Path Protocol

The directed path protocol Πdir-path is formally presented in Fig. 9. As described
in Sect. 2.2, the protocol works over a directed path Path� = 0 → 1 · · · → �-1
of length � = 2l, for some l > 0. Each party knows its position j on the path and
we refer to each such party as P̃j . The protocol recursively computes the given
functionality F. Recall that F must be efficiently invertible from local informa-
tion, such as FOR, which on input bits bj from each party P̃j , outputs

∨�−1
j=0 bj to

every party. When computation of FOR used in our higher-level THB protocol
of the next section, the input of party P̃j∗ corresponding to the broadcaster will
be bj∗ = b, the broadcast bit, and for all j �= j∗, the input of party P̃j will be
bj = 0.

Πdir-path proceeds by recursively emulating a (constant-round, constant-
overhead) 2PC that computes ((y0|| . . . ||y�/2−1), (y�/2|| . . . ||y�−1)) = F ′((x0|| . . .
||x�/2−1), (x�/2|| . . . ||x�−1)) = F(x0, . . . , x�−1) for two virtual parties, and then
recursively sending the outputs yj to the Parties Pj at the bottom of the recur-
sion tree. Party P0,0 (and similarly for party P0,1) of the highest-level 2PC is
recursively emulated by parties P̃0, . . . P̃�/2−1 on the path by first computing
each message that P0,0 sends in this 2PC via another lower-level 2PC between
virtual parties P1,0 and P1,1. Parties P1,0 and P1,1 combine their inputs and
random strings via this 2PC to emulate P0,0’s input and random tape. P1,1 then
receives P0,0’s next message and sends it to P1,2 (the first party emulating P0,1).
Continuing in the recursion, both P1,0 and P1,1 are then emulated by another
2PC in the same fashion, and so on, until we reach two actual parties on the
path.

For each call (either the invocation or recursive calls) to Πdir-path there are
some parameters known to all participants: the current topology being consid-
ered (each recursive call works over a connected subgraph of the path); the R2PC

Towards Topology-Hiding Computation from Oblivious Transfer 373

round constant-overhead semi-honest stateless protocol 2PC that is being used
for the execution; the recursion depth d; the message virtual party σ ∈ {0, 1,⊥}
who outputs a message for the 2PC that is being emulated by this instance (if
σ = ⊥, this means neither party does); output flag o ∈ {0, 1}, which indicates
whether or not the parties produce an output in this execution; and the 2PC
functionality F that the two virtual parties are computing. For the original invo-
cation call, the path considered is the whole path Path� = 0 → 1 · · · → �-1 ,
the recursion depth is d = 0, message virtual party is σ = ⊥, output flag is o = 1,
and the 2PC functionality that will be recursively computed is F ′; i.e., on input
x0 from P0,0 (recursively

∣
∣
∣
∣�/2−1

j=0
xj) and x1 from P0,1 (recursively

∣
∣
∣
∣�−1

j=�/2
xj),

output F ′(x0, x1) to P0,0 and P0,1.
For each call, each party also receives some local input: their position j on

the corresponding subgraph of the path; their input xj ; a dictionary of random
strings R̃j that they will use for the emulation of high-level 2PC virtual parties;
a set of 2PC messages Mj that they receive from some higher-level 2PC in which
they are assisting the emulation of one of the virtual parties; and their neighbors
on the path, P̃j−1 and P̃j+1. For the original invocation call, each party’s position
is of course j, their input xj , random string dictionary R̃j [·] = ⊥, empty message
set Mj = ∅, and neighbors P̃j−1 and P̃j+1.

Efficiency. Recall that we assume the round complexity of the 2PC protocol is
some constant R2PC and its overhead is c · |CF | + poly(λ) for some constant c,
where CF is the circuit that computes given functionality F. Thus, the round
complexity of Πdir-path is R[�] = 2R2PC ·R[�/2]+2 = Θ

(
� · Rlog �

2PC

)
, which is O(�2).

Furthermore, each real party on the path executes Rlog �−1
2PC 2PC’s. The overhead

of the highest-level 2PC is c · |CF ′ | + poly(λ), the overhead of the 2PC’s in the
next recursion level are then c2 · |CF ′ | + c · poly(λ) + poly(λ), and so on so that
the overhead of the 2PC’s executed by the real parties is O(� · (|CF ′ |+poly(λ))).
Therefore, the total overhead of Πdir-path is O(Rlog �−1

2PC · � · (|CF ′ | + poly(λ))) =
O(�2 · (|CF ′ | + poly(λ))).

374 M. Ball et al.

Fig. 9. Protocol Πdir-path which on input xj from each party ˜Pj on a directed path,

computes F(x0, . . . , x�−1) = (y0, . . . , y�−1) and outputs to party ˜Pj their output yj .
Note: each party knows their position on the path.

Towards Topology-Hiding Computation from Oblivious Transfer 375

Fig. 9. (continued)

376 M. Ball et al.

6 Extension to All Graphs

We refer to the full version of this paper [BBKM23] for how to use our protocol
with local simulatability on paths to achieve topology-hiding computation on all
graphs, building on the technqiues of [ALM17]. We state the relevant Theorem
and Corollaries below.

Theorem 3 (Topology-hiding OR on all graphs). Let κ ∈ N the statistical
security parameter. Let B be an upper bound on the number of parties, and let
� := 2�log(8κ·B3)�. If Πdir-path = (Init, nextdir-path,RetrieveOutput) is an Rdir-path-
round locally simulatable protocol for securely computing (x0, . . . , x�−1) �→
∨�−1

i=0 xi on the directed path 0 → 2 · · · → � − 1 of length � with security
against � − 1 corruptions, then there exists a protocol that securely realises FOR

in a topology-hiding manner against a static semi-honest adversary corrupting
up to all but one party.

As an immediate corollary of the proof of Theorem 3 (in the full ver-
sion [BBKM23]) we obtain a black-box compiler for locally simulatable protocol
for FOR from directed paths to any topology. This is simply due to the observa-
tion that the simulator described above is local. Note though that for the task of
obtaining locally-simulatable OT, one can replace the correlated random walks
by a fixed covering walk11, since for that purpose the topology does not need to
be hidden.

Corollary 1 (Locally simulatable OR on any graph). Let G be a graph.
Assuming the existence of a secure 2-party computation protocol with constant
rounds and constant overhead, there exists a locally simulatable protocol for
securely computing the FOR functionality in the presence of a semi-honest adver-
sary corrupting any number of parties.

Going from THB to general THC can be achieved via standard techniques,
which we briefly recall in the following. On a high level, given topology hiding
broadcast the parties can first decide on an enumeration 1, . . . , |V | of the parties
(this can be achieved, e.g., by each party broadcasting a string in a sufficiently
large interval and sorting the parties based on the lexicographic order of the
strings). Given this enumeration, the parties can set up point to point channels
using any key exchange protocol (which, in particular, is implied by oblivious
transfer). Finally, given these topology-hiding point-to-point channels, the par-
ties can execute any MPC protocol to achieve general topology-hiding secure
computation. We therefore obtain the following corollary.

Corollary 2 (THC on all graphs). Assuming the existence of a secure 2-
party computation protocol with constant rounds and constant overhead, there
exists a protocol for securely computing any efficiently computable functionality
11 A walk in a graph is an alternating sequence of adjacent vertices and edges; both

vertices and edges may be repeated. A covering walk contains each vertex at least
once.

Towards Topology-Hiding Computation from Oblivious Transfer 377

against a semi-honest adversary corrupting all-but-one parties, where only the
total number of parties in the graph is leaked (assuming a known apriori bound
on the number of parties).

Acknowledgments. We thank Elette Boyle, Ran Cohen, and Tal Moran for helpful
discussions. Marshall Ball is supported in part by the Simons Foundation. Lisa Kohl is
funded by NWO Gravitation project QSC. Pierre Meyer was supported by ERC Project
HSS (852952) and by AFOSR Award FA9550-21-1-0046. We thank the anonymous
reviewers of TCC for helpful feedback regarding the presentation of our results.

References

[AGPV88] Awerbuch, B., Goldreich, O., Peleg, D., Vainish, R.: A tradeoff between
information and communication in broadcast protocols. In: Reif, J.H. (ed.)
AWOC 1988. LNCS, vol. 319, pp. 369–379. Springer, New York (1988).
https://doi.org/10.1007/BFb0040404

[ALM17] Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all
graphs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401,
pp. 447–467. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 15

[ALM20] Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all
graphs. J. Cryptol. 33(1), 176–227 (2020)

[AM17] Akavia, A., Moran, T.: Topology-hiding computation beyond logarithmic
diameter. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 609–637. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 21

[BBC+19] Ball, M., Boyle, E., Cohen, R., Malkin, T., Moran, T.: Is information-
theoretic topology-hiding computation possible? In: Hofheinz, D., Rosen,
A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 502–530. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36030-6 20

[BBC+20] Ball, M., et al.: Topology-hiding communication from minimal assumptions.
In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 473–501.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 17

[BBKM23] Ball, M., Bienstock, A., Kohl, L., Meyer, P.: Towards topology-hiding
computation from oblivious transfer. Cryptology ePrint Archive, Paper
2023/849 (2023). https://eprint.iacr.org/2023/849

[BBMM18] Ball, M., Boyle, E., Malkin, T., Moran, T.: Exploring the boundaries of
topology-hiding computation. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 294–325. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 10

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th Annual ACM Symposium on Theory of Computing,
pp. 1–10, Chicago, IL, USA, ACM Press, 2–4 May 1988

[BM90] Bellare, M., Micali, S.: Non-interactive oblivious transfer and applica-
tions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557.
Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 48

[Can00] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptol. 13(1), 143–202 (2000)

https://doi.org/10.1007/BFb0040404
https://doi.org/10.1007/978-3-319-63688-7_15
https://doi.org/10.1007/978-3-319-63688-7_15
https://doi.org/10.1007/978-3-319-56617-7_21
https://doi.org/10.1007/978-3-319-56617-7_21
https://doi.org/10.1007/978-3-030-36030-6_20
https://doi.org/10.1007/978-3-030-64378-2_17
https://eprint.iacr.org/2023/849
https://doi.org/10.1007/978-3-319-78372-7_10
https://doi.org/10.1007/0-387-34805-0_48

378 M. Ball et al.

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: 20th Annual ACM Symposium on Theory
of Computing, pp. 11–19, Chicago, IL, USA, ACM Press, 2–4 May 1988

[DDN14] David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable obliv-
ious transfer based on a variant of LPN. In: Gritzalis, D., Kiayias, A.,
Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 143–158. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12280-9 10

[DGH+20] Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round
oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 26

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Aho, A. (ed.),
19th Annual ACM Symposium on Theory of Computing, pp. 218–229, New
York City, NY, USA, ACM Press, 25–27 May 1987

[Gol00] Goldreich, O.: Candidate one-way functions based on expander graphs.
Cryptology ePrint Archive, Report 2000/063 (2000). https://eprint.iacr.
org/2000/063

[HMTZ16] Hirt, M., Maurer, U., Tschudi, D., Zikas, V.: Network-hiding communica-
tion and applications to multi-party protocols. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 335–365. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 12

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with con-
stant computational overhead. In: Richard, E.L., Cynthia, D. (eds.), 40th
Annual ACM Symposium on Theory of Computing, pp. 433–442, Victoria,
BC, Canada, ACM Press, 17–20 May 2008

[Li22] Li, S.: Towards practical topology-hiding computation. In: Agrawal, S., Lin,
D. (eds.) Advances in Cryptology - ASIACRYPT 2022. ASIACRYPT 2022.
LNCS, vol. 13791, pp. 588–617. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-22963-3 20

[LZM+18] LaVigne, R., Liu-Zhang, C.-D., Maurer, U., Moran, T., Mularczyk, M.,
Tschudi, D.: Topology-hiding computation beyond semi-honest adversaries.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 3–
35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 1

[MOR15] Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 159–181. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 8

[MST03] Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In
44th Annual Symposium on Foundations of Computer Science, pp. 136–
145, Cambridge, MA, USA, IEEE, Computer Society Press, 11–14 October
2003

[OW14] ODonnell, R., Witmer, D.: Goldreich’s prg: evidence for near-optimal poly-
nomial stretch. In: 2014 IEEE 29th Conference on Computational Com-
plexity (CCC), pp. 1–12. IEEE (2014)

[RB89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In: 21st Annual ACM Sympo-
sium on Theory of Computing, pp. 73–85, Seattle, WA, USA, ACM Press,
15–17 May 1989

[Yao82] Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, pp. 160–164,
Chicago, Illinois, IEEE Computer Society Press, 3–5 November 1982

https://doi.org/10.1007/978-3-319-12280-9_10
https://doi.org/10.1007/978-3-030-45724-2_26
https://eprint.iacr.org/2000/063
https://eprint.iacr.org/2000/063
https://doi.org/10.1007/978-3-662-53008-5_12
https://doi.org/10.1007/978-3-031-22963-3_20
https://doi.org/10.1007/978-3-031-22963-3_20
https://doi.org/10.1007/978-3-030-03810-6_1
https://doi.org/10.1007/978-3-662-46494-6_8

Towards Topology-Hiding Computation from Oblivious Transfer 379

[YZ16] Yu, Yu., Zhang, J.: Cryptography with auxiliary input and trapdoor from
constant-noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 214–243. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 9

https://doi.org/10.1007/978-3-662-53018-4_9
https://doi.org/10.1007/978-3-662-53018-4_9

	Towards Topology-Hiding Computation from Oblivious Transfer
	1 Introduction
	1.1 Our Result

	2 Technical Overview
	2.1 A High-Level Overview
	2.2 Technical Overview of the Core Protocol: Locally Simulatable MPC on a Path

	3 Preliminaries
	3.1 Topology-Hiding Computation (THC)
	3.2 Constant-Overhead Two-Party Computation for Semi-Honest Adversaries
	3.3 Efficiently Invertible from Local Information Functionalities

	4 Locally Simulatable MPC
	4.1 Locally Simulatable Protocols Are Execution-Oblivious

	5 Locally Simulatable Protocol for Directed Paths
	5.1 The Path Protocol

	6 Extension to All Graphs
	References

