
Guy Rothblum
Hoeteck Wee (Eds.)

LN
CS

 1
43

69

21st International Conference, TCC 2023
Taipei, Taiwan, November 29 – December 2, 2023
Proceedings, Part I

Theory
of Cryptography

Lecture Notes in Computer Science 14369
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Guy Rothblum · Hoeteck Wee
Editors

Theory
of Cryptography
21st International Conference, TCC 2023
Taipei, Taiwan, November 29 – December 2, 2023
Proceedings, Part I

Editors
Guy Rothblum
Apple
Cupertino, CA, USA

Hoeteck Wee
NTT Research
Sunnyvale, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-48614-2 ISBN 978-3-031-48615-9 (eBook)
https://doi.org/10.1007/978-3-031-48615-9

© International Association for Cryptologic Research 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-5273-6472
https://doi.org/10.1007/978-3-031-48615-9

Preface

The 21st Theory of Cryptography Conference (TCC 2023) was held during November
29 – December 2, 2023, at Academia Sinica in Taipei, Taiwan. It was sponsored by the
International Association for Cryptologic Research (IACR). The general chairs of the
conference were Kai-Min Chung and Bo-Yin Yang.

The conference received 168 submissions, of which the Program Committee (PC)
selected 68 for presentation giving an acceptance rate of 40%. Each submission was
reviewed by at least three PC members in a single-blind process. The 39 PC members
(including PC chairs), all top researchers in our field, were helped by 195 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised versions of the 68 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

We are extremely grateful toKevinMcCurley for providing fast and reliable technical
support for the HotCRP review software. We also thank Kay McKelly for her help with
the conference website.

This was the ninth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year, the Test of Time Award Committee
selected the following paper, published at TCC 2007: “Multi-authority Attribute Based
Encryption” byMelissa Chase. The award committee recognized this paper for “the first
attribute-based encryption scheme in which no small subset of authorities can compro-
mise user privacy, inspiring further work in decentralized functional encryption.” The
author was invited to deliver a talk at TCC 2023.

This year, TCC awarded a Best Young Researcher Award for the best paper authored
solely by young researchers. The award was given to the paper “Memory Checking for
Parallel RAMs” by Surya Mathialagan.

We are greatly indebted to the many people who were involved in making TCC 2023
a success. First of all, a big thanks to the most important contributors: all the authors
who submitted fantastic papers to the conference. Next, we would like to thank the PC
members for their hard work, dedication, and diligence in reviewing and selecting the
papers. We are also thankful to the external reviewers for their volunteered hard work
and investment in reviewing papers and answering questions. For running the conference
itself,we are very grateful to the general chairs,Kai-MinChung andBo-YinYang, aswell
as the staff at Academia Sinica (Institute of Information Science and Research Center of
Information Technology Innovation). For helpwith these proceedings, we thank the team
at Springer. We appreciate the sponsorship from IACR, Hackers in Taiwan, Quantum
Safe Migration Center (QSMC), NTT Research and BTQ. Finally, we are thankful to

vi Preface

Tal Malkin and the TCC Steering Committee as well as the entire thriving and vibrant
TCC community.

October 2023 Guy Rothblum
Hoeteck Wee

Organization

General Chairs

Kai-Min Chung Academia Sinica, Taiwan
Bo-Yin Yang Academia Sinica, Taiwan

Program Committee Chairs

Guy N. Rothblum Apple, USA and Weizmann Institute, Israel
Hoeteck Wee NTT Research, USA and ENS, France

Steering Committee

Jesper Buus Nielsen Aarhus University, Denmark
Krzysztof Pietrzak Institute of Science and Technology, Austria
Huijia (Rachel) Lin University of Washington, USA
Yuval Ishai Technion, Israel
Tal Malkin Columbia University, USA
Manoj M. Prabhakaran IIT Bombay, India
Salil Vadhan Harvard University, USA

Program Committee

Prabhanjan Ananth UCSB, USA
Christian Badertscher Input Output, Switzerland
Chris Brzuska Aalto University, Finland
Ran Canetti Boston University, USA
Nico Döttling CISPA, Germany
Rosario Gennaro CUNY and Protocol Labs, USA
Aarushi Goel NTT Research, USA
Siyao Guo NYU Shanghai, China
Shai Halevi AWS, USA
Pavel Hubáček Czech Academy of Sciences and Charles

University, Czech Republic
Yuval Ishai Technion, Israel

viii Organization

Aayush Jain CMU, USA
Zhengzhong Jin MIT, USA
Yael Kalai Microsoft Research and MIT, USA
Chethan Kamath Tel Aviv University, Israel
Bhavana Kanukurthi IISc, India
Jiahui Liu MIT, USA
Mohammad Mahmoody University of Virginia, USA
Giulio Malavolta Bocconi University, Italy and Max Planck

Institute for Security and Privacy, Germany
Peihan Miao Brown University, USA
Eran Omri Ariel University, Israel
Claudio Orlandi Aarhus, Denmark
João Ribeiro NOVA LINCS and NOVA University Lisbon,

Portugal
Doreen Riepel UC San Diego, USA
Carla Ràfols Universitat Pompeu Fabra, Spain
Luisa Siniscalchi Technical University of Denmark, Denmark
Naomi Sirkin Drexel University, USA
Nicholas Spooner University of Warwick, USA
Akshayaram Srinivasan University of Toronto, Canada
Stefano Tessaro University of Washington, USA
Eliad Tsfadia Georgetown University, USA
Mingyuan Wang UC Berkeley, USA
Shota Yamada AIST, Japan
Takashi Yamakawa NTT Social Informatics Laboratories, Japan
Kevin Yeo Google and Columbia University, USA
Eylon Yogev Bar-Ilan University, Israel
Mark Zhandry NTT Research, USA

Additional Reviewers

Damiano Abram
Hamza Abusalah
Abtin Afshar
Siddharth Agarwal
Divesh Aggarwal
Shweta Agrawal
Martin Albrecht
Nicolas Alhaddad
Bar Alon
Benny Applebaum
Gal Arnon

Benedikt Auerbach
Renas Bacho
Saikrishna Badrinarayanan
Chen Bai
Laasya Bangalore
Khashayar Barooti
James Bartusek
Balthazar Bauer
Shany Ben-David
Fabrice Benhamouda
Jean-François Biasse

Organization ix

Alexander Bienstock
Olivier Blazy
Jeremiah Blocki
Andrej Bogdanov
Madalina Bolboceanu
Jonathan Bootle
Pedro Branco
Jesper Buus Nielsen
Alper Çakan
Matteo Campanelli
Shujiao Cao
Jeffrey Champion
Megan Chen
Arka Rai Choudhuri
Valerio Cini
Henry Corrigan-Gibbs
Geoffroy Couteau
Elizabeth Crites
Hongrui Cui
Marcel Dall’Agnol
Quang Dao
Pratish Datta
Koen de Boer
Leo Decastro
Giovanni Deligios
Lalita Devadas
Jack Doerner
Jelle Don
Leo Ducas
Jesko Dujmovic
Julien Duman
Antonio Faonio
Oriol Farràs
Danilo Francati
Cody Freitag
Phillip Gajland
Chaya Ganesh
Rachit Garg
Gayathri Garimella
Romain Gay
Peter Gaži
Ashrujit Ghoshal
Emanuele Giunta
Rishab Goyal
Yanqi Gu

Ziyi Guan
Jiaxin Guan
Aditya Gulati
Iftach Haitner
Mohammad Hajiabadi
Mathias Hall-Andersen
Shuai Han
Dominik Hartmann
Aditya Hegde
Alexandra Henzinger
Shuichi Hirahara
Taiga Hiroka
Charlotte Hoffmann
Alex Hoover
Yao-Ching Hsieh
Zihan Hu
James Hulett
Joseph Jaeger
Fatih Kaleoglu
Ari Karchmer
Shuichi Katsumata
Jonathan Katz
Fuyuki Kitagawa
Ohad Klein
Karen Klein
Michael Klooß
Dimitris Kolonelos
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Alexis Korb
Sabrina Kunzweiler
Thijs Laarhoven
Jonas Lehmann
Baiyu Li
Xiao Liang
Yao-Ting Lin
Wei-Kai Lin
Yanyi Liu
Qipeng Liu
Tianren Liu
Zeyu Liu
Chen-Da Liu Zhang
Julian Loss
Paul Lou

x Organization

Steve Lu
Ji Luo
Fermi Ma
Nir Magrafta
Monosij Maitra
Christian Majenz
Alexander May
Noam Mazor
Bart Mennink
Hart Montgomery
Tamer Mour
Alice Murphy
Anne Müller
Mikito Nanashima
Varun Narayanan
Hai Nguyen
Olga Nissenbaum
Sai Lakshmi Bhavana Obbattu
Maciej Obremski
Kazuma Ohara
Aurel Page
Mahak Pancholi
Guillermo Pascual Perez
Anat Paskin-Cherniavsky
Shravani Patil
Sikhar Patranabis
Chris Peikert
Zach Pepin
Krzysztof Pietrzak
Guru Vamsi Policharla
Alexander Poremba
Alex Poremba
Ludo Pulles
Wei Qi
Luowen Qian
Willy Quach
Divya Ravi
Nicolas Resch
Leah Namisa Rosenbloom
Lior Rotem
Ron Rothblum
Lance Roy

Yusuke Sakai
Pratik Sarkar
Sruthi Sekar
Joon Young Seo
Akash Shah
Devika Sharma
Laura Shea
Sina Shiehian
Kazumasa Shinagawa
Omri Shmueli
Jad Silbak
Pratik Soni
Sriram Sridhar
Akira Takahashi
Ben Terner
Junichi Tomida
Max Tromanhauser
Rotem Tsabary
Yiannis Tselekounis
Nikhil Vanjani
Prashant Vasudevan
Marloes Venema
Muthuramakrishnan Venkitasubramaniam
Hendrik Waldner
Michael Walter
Zhedong Wang
Gaven Watson
Weiqiang Wen
Daniel Wichs
David Wu
Ke Wu
Zhiye Xie
Tiancheng Xie
Anshu Yadav
Michelle Yeo
Runzhi Zeng
Jiaheng Zhang
Rachel Zhang
Cong Zhang
Chenzhi Zhu
Jincheng Zhuang
Vassilis Zikas

Contents – Part I

Proofs and Outsourcing

Beyond MPC-in-the-Head: Black-Box Constructions of Short
Zero-Knowledge Proofs . 3

Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss

Your Reputation’s Safe with Me: Framing-Free Distributed
Zero-Knowledge Proofs . 34

Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss

Locally Verifiable Distributed SNARGs . 65
Eden Aldema Tshuva, Elette Boyle, Ran Cohen, Tal Moran,
and Rotem Oshman

Distributed-Prover Interactive Proofs . 91
Sourav Das, Rex Fernando, Ilan Komargodski, Elaine Shi,
and Pratik Soni

Rogue-Instance Security for Batch Knowledge Proofs . 121
Gil Segev, Amit Sharabi, and Eylon Yogev

On Black-Box Verifiable Outsourcing . 158
Amit Agarwal, Navid Alamati, Dakshita Khurana,
Srinivasan Raghuraman, and Peter Rindal

Theoretical Foundations

Counting Unpredictable Bits: A Simple PRG from One-Way Functions 191
Noam Mazor and Rafael Pass

On One-Way Functions and Sparse Languages . 219
Yanyi Liu and Rafael Pass

Security Proofs for Key-Alternating Ciphers with Non-Independent
Round Permutations . 238

Liqing Yu, Yusai Wu, Yu Yu, Zhenfu Cao, and Xiaolei Dong

Public-Key Encryption, Local Pseudorandom Generators,
and the Low-Degree Method . 268

Andrej Bogdanov, Pravesh K. Kothari, and Alon Rosen

xii Contents – Part I

Cryptography from Planted Graphs: Security with Logarithmic-Size
Messages . 286

Damiano Abram, Amos Beimel, Yuval Ishai, Eyal Kushilevitz,
and Varun Narayanan

Multi-party Computation I

Randomized Functions with High Round Complexity . 319
Saugata Basu, Hamidreza Amini Khorasgani, Hemanta K. Maji,
and Hai H. Nguyen

Towards Topology-Hiding Computation from Oblivious Transfer 349
Marshall Ball, Alexander Bienstock, Lisa Kohl, and Pierre Meyer

On the Impossibility of Surviving (Iterated) Deletion ofWeakly Dominated
Strategies in Rational MPC . 380

Johannes Blömer, Jan Bobolz, and Henrik Bröcher

Synchronizable Fair Exchange . 411
Ranjit Kumaresan, Srinivasan Raghuraman, and Adam Sealfon

DORAM Revisited: Maliciously Secure RAM-MPC with Logarithmic
Overhead . 441

Brett Falk, Daniel Noble, Rafail Ostrovsky, Matan Shtepel,
and Jacob Zhang

3-Party Secure Computation for RAMs: Optimal and Concretely Efficient 471
Atsunori Ichikawa, Ilan Komargodski, Koki Hamada, Ryo Kikuchi,
and Dai Ikarashi

Author Index . 503

Proofs and Outsourcing

Beyond MPC-in-the-Head: Black-Box
Constructions of Short Zero-Knowledge

Proofs

Carmit Hazay1,2 , Muthuramakrishnan Venkitasubramaniam2,
and Mor Weiss1(B)

1 Bar-Ilan University, Ramat Gan, Israel
{carmit.hazay,mor.weiss}@biu.ac.il

2 Georgetown University and Ligero Inc., Washington, USA
mv783@georgetown.edu

Abstract. In their seminal work, Ishai, Kushilevitz, Ostrovsky, and
Sahai (STOC‘07) presented the MPC-in-the-Head paradigm, which
shows how to design Zero-Knowledge Proofs (ZKPs) from secure Multi-
Party Computation (MPC) protocols. This paradigm has since then revo-
lutionized and modularized the design of efficient ZKP systems, with far-
reaching applications beyond ZKPs. However, to the best of our knowl-
edge, all previous instantiations relied on fully-secure MPC protocols and
have not been able to leverage the fact that the paradigm only imposes
relatively weak privacy and correctness requirements on the underlying
MPC.

In this work, we extend the MPC-in-the-Head paradigm to game-
based cryptographic primitives supporting homomorphic computations
(e.g., fully-homomorphic encryption, functional encryption, randomized
encodings, homomorphic secret sharing, and more). Specifically, we
present a simple yet generic compiler from these primitives to ZKPs
which use the underlying primitive as a black box. We also general-
ize our paradigm to capture commit-and-prove protocols, and use it
to devise tight black-box compilers from Interactive (Oracle) Proofs to
ZKPs, assuming One-Way Functions (OWFs).

We use our paradigm to obtain several new ZKP constructions:
1. The first ZKPs for NP relations R computable in (polynomial-time

uniform) NC1, whose round complexity is bounded by a fixed constant
(independent of the depth of R’s verification circuit), with communica-
tion approaching witness length (specifically, n · poly (κ), where n is the
witness length, and κ is a security parameter), assuming DCR. Alterna-
tively, if we allow the round complexity to scale with the depth of the
verification circuit, our ZKPs can make black-box use of OWFs.

2. Constant-round ZKPs for NP relations computable in bounded
polynomial space, with O (n) + o (m) · poly (κ) communication assuming
OWFs, where m is the instance length. This gives a black-box alternative
to a recent non-black-box construction of Nassar and Ron (CRYPTO‘22).

3. ZKPs for NP relations computable by a logspace-uniform family
of depth-d (m) circuits, with n · poly (κ, d (m)) communication assuming
OWFs. This gives a black-box alternative to a result of Goldwasser, Kalai
and Rothblum (JACM).

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 3–33, 2023.
https://doi.org/10.1007/978-3-031-48615-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_1&domain=pdf
http://orcid.org/0000-0002-8951-5099
http://orcid.org/0000-0002-4059-7628
https://doi.org/10.1007/978-3-031-48615-9_1

4 C. Hazay et al.

1 Introduction

Zero-Knowledge Proofs (ZKPs) [GMR85,GMR89] enable a prover P to prove
to an efficient verifier V that x ∈ L for some NP-language L, while revealing
nothing except the validity of the statement. ZKPs have numerous applications,
and are a fundamental building block in the design of many secure Multi-Party
Computation (MPC) protocols.

In their seminal work that introduced the “MPC-in-the-Head” paradigm,
Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS07] established a surprising con-
nection between MPC protocols and ZKPs. Specifically, they gave a construction
in the reverse direction, showing how to construct ZKPs from MPC protocols.
The high-level idea is to associate an NP-relation R = R (x,w) for L with a
function f whose input is x and additive shares of w, and generate the proof
using an MPC protocol Π for f . More specifically, P secret shares w, emulates
“in her head” the execution of Π on x and the witness shares, and commits to
the views of all parties in this execution. The verifier then chooses a subset of
parties whose views are opened and checked for consistency. Importantly, this
ZKP makes black-box use of the underlying primitives (e.g., the one-way func-
tion used to instantiate the commitment scheme) as well as the algorithms of
Π’s participants. Moreover, Π is only required to satisfy relatively weak security
guarantees, specifically correctness and privacy against semi-honest corruptions.

The “MPC-in-the-Head” paradigm draws its power from its generality: it can
be instantiated with any secure MPC protocol Π for f (with essentially any num-
ber of parties), utilizing the efficiency properties of Π to obtain different tradeoffs
between the parameters of the resultant ZKP (e.g., communication complexity,
supported class of languages, etc.). The versatility of the paradigm was demon-
strated in [IKOS07], who – by instantiating the construction with “appropriate”
MPC protocols – designed two types of constant-round communication-efficient
ZKPs. Specifically, using a protocol of [BI05], they construct ZKPs for AC0 (i.e.,
constant-depth circuits over ∧,∨,⊕,¬ gates of unbounded fan-in) whose commu-
nication complexity approaches the witness length, namely it is n · poly(κ, log s)
bits (here, n is the witness length, κ is the security parameter, and s is the size
of the verification circuit for R). And, using a protocol of [DI06], they construct
“constant rate” ZKPs for all NP, namely ZKPs whose communication complex-
ity is O(s)+poly(κ, log s), where s is the size of the verification circuit using gates
of bounded fan in. Both constructions use the underlying commitment scheme
(which can be based on one-way functions) as a black box.

Following its introduction, the “MPC-in-the-Head” paradigm has been exten-
sively used to obtain black-box constructions [IPS08,HIKN08,IPS09,IW14,
GOSV14,IKP+16,GIW16,HVW20], and communication-efficient protocols by
using highly-efficient MPC protocols [GIW16,IPS08,IKO+11,GMO16,AHIV17,
HIMV19,HVW20,BFH+20,HVW22]. In many of these works, the paradigm
was used to compile protocols from semi-honest to malicious security. In the
context of designing sublinear ZK arguments (and ZK-SNARKs), recent works
[AHIV17,BFH+20] have leveraged the MPC-in-the-Head paradigm to obtain
highly-efficient succinct proofs [AHIV22].

Black-Box Constructions of Short Zero-Knowledge Proofs 5

However, Ishai et al. [IKOS07] and, to the best of our knowledge, all follow-up
works, relied on fully-secure MPC protocols (in the simulation-based paradigm).
In particular, the constructions presented in the 15 years since [IKOS07] have
not utilized the fact that the MPC protocol is only required to be correct (when
all parties are honest), and private against semi-honest corruptions. Since such
protocols could potentially be made more efficient than fully-secure protocols,
“MPC-in-the-Head” might not have yet realized its full potential.

1.1 Our Contribution

We extend the “MPC-in-the-Head” paradigm to use game-based primitives that
only guarantee correctness and privacy against semi-honest adversaries. Thus,
we can exploit – for the first time – the observation of [IKOS07] that full security
is not needed, and rely on the weaker requirements essential for the “MPC-in-
the-Head” paradigm. We then use our paradigm to obtain new (also, black-box)
constructions of succinct ZKPs.

ZKPs from Game-Based Primitives: A General Paradigm. We present
a paradigm for constructing ZKPs that can be applied to a wide range of prim-
itives, including Fully Homomorphic Encryption (FHE), Functional Encryption
(FE), Homomorphic Secret Sharing (HSS), Function Secret Sharing (FSS), Ran-
domized Encodings (REs), and Laconic Function Evalaution (LFE). Roughly
speaking, the underlying primitive should contain a method of encoding secret
information, a procedure for generating keys associated with computations, and
a method of performing homomorphic computations on the encoded messages
using the keys. For example, in an FE scheme, encoding the secret is simply
encrypting it, function keys can be generated for different functions, and the
computation can be executed homomorphically over ciphertexts by decrypting
the ciphertext using an appropriate function key. Importantly, our paradigm
preserves the efficiency of the underlying primitive in the following sense: the
communication complexity of the resultant ZKP is proportional to the sum of
(1) the size of the keys; (2) the size of encodings, and (3) the randomness com-
plexity of the primitive (namely; the amount of randomness needed to generate
encodings and keys).1 In particular, the communication complexity does not
depend directly on the size of the computation.

More specifically, we obtain the following result, where the soundness error is
the probability that the verifier accepts a false claim (see Sect. 4 and the theorems
therein for formal statements of the transformation from different primitives):

Theorem 1 (ZKPs from Game-Based Non-Interactive Primitives –
Informal). Let R = R (x,w) be an NP-relation with verification circuit C,
and let κ be a security parameter. Let P = (Gen,Enc,Eval,Dec) be a game-based

1 This dependence on the randomness can be removed by generating the randomness
using a PRG whose output is indistinguishable from random, against non-uniform
distinguishers. This causes only a negligible increase in the soundness error.

6 C. Hazay et al.

non-interactive primitive P ∈ {FHE,FE,FSS,HSS, LFE,RE} for a circuit class
containing C. Assuming ideal commitments, there exists a constant-round ZKP
with constant soundness error, which uses P as a black-box.

Moreover, assume that:

– Keys generated by Gen have length �k (κ),
– Encodings generated by Enc have length �c (κ, l) (l denotes the length of the

encrypted message),
– And the executions of Gen,Enc and Eval each consume �r (κ) random bits,

Then the communication complexity of the proof is O
(
n + �r (κ) + �k (κ) +

�c (κ, n)
)
bits, where n denotes the witness length.

Our paradigm is quite versatile: it can be applied to primitives in which the
homomorphic computation is performed by a single party (as in FE and FHE),
or distributed between multiple parties (as in HSS and FSS); it can handle
primitives with a correctness error, in which decryption might not always yield
the correct output of the computation; and it can rely on secret- or public-key
primitives. See Sect. 4 for the various constructions.

Generalization to Interactive Protocols. We generalize our paradigm to use
interactive protocols as the underlying building block, showing that our paradigm
can be used to design protocols for commit-and-prove style functionalities. In
particular, this generalized paradigm can be applied to Interactive Proofs (IPs)
and Interactive Oracle Proofs (IOPs). As described below, this is useful for
designing black-box variants of (succinct) ZKPs.

(Succinct) Black-Box ZKP Constructions. Similar to [IKOS07], the gener-
ality of our paradigm means it can be instantiated with various underlying prim-
itives. We can additionally exploit the relatively weak security properties required
from the underlying primitives to obtain efficiency gains in the communication
complexity of the resultant ZKP. Specifically, by instantiating our paradigm
with appropriate primitives, we construct ZKPs with new tradeoffs between the
communication complexity, the supported class of languages, and the underly-
ing assumptions. Moreover, we reprove several known results by casting known
construction as special cases of our paradigm. Another attractive feature of our
paradigm is that any future constructions of the underlying primitives can be
plugged-into the compiler of Theorem 1 to obtain a new ZKP system. This is
particularly important given the recent rapid improvement in the design of some
of the underlying primitives (e.g., the relatively new notion of HSS).

We now give more details on these ZKP constructions.

Constant-Round ZKPs Approaching Witness Length. Instantiating The-
orem 1 with an appropriate HSS scheme, we obtain constant-round ZKPs
approaching witness length for (polynomial-time uniform) NC1,2 assuming the
2 By polynomial-time uniform NC1 we mean that there exist a polynomial p(n) and a

Turing machine that on input 1n runs in time p(n) and outputs the circuit (in NC1)
for input length n.

Black-Box Constructions of Short Zero-Knowledge Proofs 7

DCR assumption. (In fact, our ZKPs make a black-box use of HSS, which can be
instantiated with the appropriate parameters assuming DCR.) The round com-
plexity of our ZKPs is bounded by a universal constant, independent of the depth
of the relation’s verification circuit. This should be contrasted with [IKOS07],
who obtain similar ZKPs for AC0 assuming One-Way Functions (OWFs). See
Sect. 4.1 for the construction and proof.

Corollary 1 (Constant-Rnd. ZKPs of Quasi-Linear Length from
DCR). Assume that the DCR hardness assumption (Definition 1) holds. Then
there exists a universal constant c such that any NP-relation in (polynomial-time
uniform) NC1 has a c-round ZKP with 1/8 soundness error and n ·poly (κ) com-
munication complexity, where n denotes the witness length, and κ is the security
parameter.

Next, we show that if the round complexity of the ZKP is allowed to scale with
the depth of the relation’s verification circuit, then our ZKPs can make black-box
use of OWFs (instead of the DCR assumption). This should be contrasted with
Goldwasser et al. [GKR15], who obtain ZKPs approaching witness length for NC
(with log-many rounds), and O(1)-round ZKPs for (polynomial-time uniform)
NC1 relations which follows from [GR20]. Both results are based on OWFs and
use it in a non-black-box way; see Sect. 1.3 for a more detailed comparison.

Corollary 2 (Constant-Rnd. ZKPs of Quasi-Linear Length from
OWFs). Assume that OWFs exist. Then any NP-relation in (polynomial-time
uniform) NC1 has a constant-round ZKP with 1/2 soundness error and n·poly (κ)
communication complexity, where n denotes the witness length, and κ is the secu-
rity parameter. Moreover, the ZKP uses the OWF as a black box.

As a second application, instantiating Theorem 1 with an FHE scheme, we
obtain constant-round ZKPs for all NP, whose communication is proportional
to the witness length. Moreover, our construction is black-box in the underlying
FHE scheme. This gives a black-box alternative to a non-interactive ZKP con-
struction of Gentry et al. [GGI+15] with similar parameters. More formally, we
have the following corollary.

Corollary 3 (Constant-Rnd. ZKPs for all NP from FHE). Assume the
existence of an FHE scheme for all polynomial sized circuits. Then every NP
language has a constant-round ZKP with 3/4 soundness error and O(n) com-
munication complexity, where n denotes the witness length. Moreover, the con-
struction uses the underlying FHE scheme as a black-box.

We note that similar to [GGI+15], to instantiate our construction of Corol-
lary 3 we need an FHE scheme that can evaluate any polynomial-size circuit, and
such constructions are known assuming LWE and circular-security of a particular
encryption, or indistinguishability obfuscation.

Constant-Round ZKPs from OWFs. Instantiating Theorem 1 with an
appropriate Randomized Encoding (RE) [IK00,AIK04] scheme (specifically, an
appropriate garbling scheme), we reprove the following theorem from [HV16],

8 C. Hazay et al.

who explored 2PC-in-the-Head as an intermediate step toward building black-
box adaptively-secure ZKPs from OWFs.

Corollary 4. Assume that OWFs exist. Then any polynomial-size Boolean cir-
cuit C has a constant-round ZKP with 2/3 soundness error and O(κ|C|) com-
munication complexity, where κ is the security parameter. Moreover, the ZKP
uses the OWF as a black-box.

Everything Provable is Provable in Black-Box ZK. Ben-Or et al.
[BGG+88] compiled a public-coin IP3 for any language L to a ZKP for L, by
making non-black-box use of a OWF. Instantiating our generic C&P abstrac-
tion with randomized encodings as the underlying primitive, we obtain a similar
transformation from IPs to ZKPs, which makes only black-box use of the under-
lying OWF. Specifically, we show the following:

Corollary 5 (Everything Provable is Provable in Black-Box ZK).
Assume OWFs exist. Then any L ∈ IP has a zero-knowledge proof which uses
the underlying OWF as a black-box.

Succinct Black-Box ZKPs for Bounded-Space/Bounded-Depth NP.
We use our C&P abstraction to provide an IP-to-ZKP compiler which makes
black-box use of a OWF. Applying this compiler to the “doubly-efficient” IPs
of [GKR15] yields ZKPs for bounded-depth NP, as specified in Corollary 6 (see
the full version for the formal statement). Prior to our work, succinct black-box
ZKPs from OWFs were only known for AC0 [IKOS07].

Corollary 6 (Succinct ZKPs for Bounded-Depth NP – Informal).
Assume OWFs exist, and let κ(m) ≥ log(m) be a security parameter. Let R
be an NP-relation computable by a logspace-uniform family of Boolean circuits
of size poly(m) and depth d(m), where m is the instance length. Then there
exists a ZKP for R in which the prover runs in time poly(m) (given a wit-
ness), the verifier runs in time poly(m,κ), and the communication complexity
is n · poly(κ, d(m)), where n denotes the witness length. Moreover, the protocol
uses the underlying OWF as a black-box.

We extend our black-box IP-to-ZKP compiler to apply to IOPs. Combined
with ideas from [NR22], the compiler can be made to incur only a constant
overhead (as low as roughly 2) in the communication complexity. This gives a
black-box alternative to the recent IOP-to-ZKP compiler of [NR22], with slightly
higher overhead (the compiler of [NR22] has essentially no overhead). Applying
our compiler to the succinct IOPs of [RR20] gives the following result (see the
full version for the formal statement):

Corollary 7 (Succinct ZKPs for Bounded-Space NP – Informal).
Assume OWFs exist, and let κ be a security parameter. Let R be an NP relation
computable in polynomial time and bounded polynomial space (nδ-space for some
3 In a public-coin IP, the verifier’s messages are simply random bits.

Black-Box Constructions of Short Zero-Knowledge Proofs 9

fixed δ ∈ (0, 1))). Then for any constant β ∈ (0, 1), there exists a public-coin,
constant-round, ZKP for R with constant soundness error, and communication
complexity O(n) + mβ · poly(κ), where m,n denote the instance and witness
lengths, respectively. Moreover, the ZKP uses the underlying OWF as a black
box.

1.2 Technical Overview

Our construction is conceptually simple. It relies in a black-box manner on a non-
interactive game-based primitive, that allows for homomorphic computation of
a function f while hiding both the function and the input to it. We first describe
the properties needed from such primitives, then explain how they are used in
our ZKP constructions.

The Building Block: Game-Based Non-interactive Primitive with
Homomorphic Computations. Let R = R (x,w) be an NP relation, and
let L be the corresponding NP language. Let P be a cryptographic primitive
consisting of the following four algorithms:

– Gen is a key generation algorithm used to generate keys, and all setup param-
eters needed to execute the primitive.

– Enc is an encoding procedure used to encode secrets.
– Eval is an evaluation procedure used to homomrphically compute over

encoded secrets.
– Dec is a decoding procedure used to decode the outcome of homomorphic

computations.

These algorithms are required to satisfy the following properties:

– Correctness: homomorphic computations yield the correct outcome; namely,
they emulate the computation over unencoded messages. For simplicity, we
assume perfect correctness in this section; however, our paradigm (described
in Sect. 4) extends to primitives with a correctness error. (See, e.g., Sect. 4.1.)

– Input Privacy: encodings generated by Enc computationally hide the
encoded secrets. (In particular, this implies that the output of a homomorphic
computation over an encoding c hides the secret encoded by c.)

– Function Privacy: outputs of homomorphic computations generated by Eval
reveal only the outcome of the computation, hiding all other information
regarding the evaluated function.

One example of such a primitive is circuit-private Fully Homomorphic
Encryption (FHE). Nevertheless, our abstraction captures a rich class of cryp-
tographic objects, including function-private Functional Encryption (FE) and
homomorphic forms of secret sharing, such as Homomorphic Secret Sharing
(HSS) and Function Secret Sharing (FSS). The latter two examples (HSS
and FSS) differ significantly from the former two (FHE and FE) because, in
HSS/FSS, evaluation is distributed between k parties. We call such primitives
k-party primitives, where a 1-party primitive is a primitive in which evaluation is

10 C. Hazay et al.

not distributed (this is the case in, e.g., FHE and FE). For simplicity, we present
our ZKP blueprint below for 1-party primitives, and it might be helpful for the
reader to keep the FHE example in mind as an instantiation of the blueprint.
We then describe how to generalize our abstraction to k-party primitives (see
also the full abstraction in Fig. 3, Sect. 3). This allows us to obtain Theorem 1
by instantiating our paradigm with recent HSS constructions.

Blueprint of Our ZKP Construction. Similar to the MPC-in-the-head
paradi-gm of [IKOS07], the prover P emulates the primitive’s algorithms “in
her head” and commits to (the transcripts of) these executions. The verifier V
then checks that the primitive was honestly executed. If this is the case, the com-
putation’s output would be 1 if and only if x ∈ L. Our constructions assume an
ideal commitment oracle FCom, which can be instantiated with computationally-
hiding commitments (see Sect. 2.1). We now describe the construction in more
detail. Let C (·, ·) be the verification circuit of R. The ZKP between P with
input x ∈ L and witness w, and V with input x, is executed as follows (see also
Fig. 1).

In the first – and most crucial – step of the ZKP, P additively shares the
witness w = w1 ⊕ w2, and lets C̃ (u) := C (x,w1 ⊕ u). Intuitively, this sharing
divides w into two parts: one is tied to the homomorphic computation, and the
other is the secret over which the computation is executed. This division is essen-
tial because we rely on weak primitives which only guarantee correctness (i.e., in
an honest execution), with no correctness guarantees against malicious corrup-
tions. Indeed, in this case V must check all parts of the execution – including
encoding and homomorphic computation – so none of these steps can depend
directly on the witness w. By separating w into two parts, we can remove the
direct dependence on w from both the encoding and the homomorphic evaluation
steps.4 The prover’s goal now reduces to proving that w2 satisfies C̃.

For this, P performs the following “in her head”. P first generates the keys
for homomorphic computation (by running Gen), then encodes w2 (using Enc)
to an encoding c, and homomorphically evaluates C̃ over c (using Eval) to obtain
an encoded outcome c′. P then commits to all values generated during these exe-
cutions, namely: the randomness needed for the executions of Gen,Enc and Eval,
the encoding c of w2, and the encoded output c′. Notice that to homomorphically
evaluate C̃ on w2, one must perform the following four steps: (1) generate keys
for the homomorphic computation; (2) encode w2; (3) homomorphically evaluate
C̃ over w2; (4) decode the outcome of the homomorphic computation. As noted
above, if all these steps were honestly executed, the outcome is 1 if and only if
x ∈ L (because of perfect correctness). Therefore, the verifier’s goal is to check

4 This is reminiscent of the [IKOS07] construction from passively-secure MPC proto-
cols, in which the witness is secret-shared between the parties participating in the
execution “in-the-head”. We note, however, that our use of secret sharing is concep-
tually different: in our case, there is no underlying two- or multi-party computation.
Instead, one of the shares is hard-wired into the computed function, making its
identity secret, whereas [IKOS07] compute a public function by emulating multiple
parties “in-the-head”.

Black-Box Constructions of Short Zero-Knowledge Proofs 11

that the steps were honestly executed. For this, he randomly chooses one of the
steps and checks that it was honestly executed, where P decommits the inputs,
outputs, and randomness used in the step. The construction is described more
explicitly in Fig. 1.

ZKPs from Game-Based Primitives

Let R = R (x, w) be an NP-relation with verification circuit C (·, ·). The ZKP
uses a non-interactive, game-based primitive P = (Gen,Enc,Eval,Dec) as a
building block, and is executed between a prover P with input (x, w) ∈ R and
a verifier V with input x.

1. Witness Secret Sharing: P additively shares w by picking w1, w2 uni-
formly at random subject to w = w1 ⊕ w2, and commits to w1, w2. Let
˜C (u) := C (x, w1 ⊕ u).

2. Setup: P executes Gen to generate keys, and any public parameters
needed for the execution of P, and commits to the randomness used by
Gen, and its output. (This step might depend on ˜C, and consequently also
on w1, but not on w2.)

3. Witness Encoding: P generates an encoding c of w2 using Enc, and
commits to c and any randomness used for encoding. (This step depends
on w2, but not on w1.)

4. Evaluation: P homomorphically evaluates ˜C on w2, by executing Eval on
c, to obtain an encoded outcome c′, and commits to c′ and any randomness
used for evaluation. (This step depends on ˜C, and consequently also on
w1, but depends only on a computationally-hiding encoding of w2.)

5. Verification: V randomly chooses one of the four steps of homomorphic
evaluation and checks that it was executed correctly, as follows:
(a) Checking Setup: P decommits w1, the randomness used to execute

Gen, as well as all keys and public parameters, and V check that Gen
was executed correctly.

(b) Checking Witness Encoding: P decommits w2, c, the randomness
used for encoding, as well as the keys needed for encoding (as gener-
ated in Step 2), and V checks that Enc was executed correctly.

(c) Checking Evaluation: P decommits c, c′, w1, and the randomness
used for evaluation, and V checks that Eval was executed correctly.

(d) Checking Output: P decommits c′, and any keys needed for decod-
ing (as generated in Step 2), and V checks that c′ decodes to 1.

Fig. 1. ZKP Abstraction (Informal, see Fig. 3 and Sect. 4)

Example: ZKPs from FHE. To demonstrate how to use our paradigm, we
briefly describe an instantiation based on FHE (see the full version for the
detailed construction and proof).5 Let FHE = (Gen,Enc,Eval,Dec) be an FHE
5 We note that a similar construction could be obtained from the paradigm of [IKOS07]

by instantiating an appropriate 2-party protocol from FHE.

12 C. Hazay et al.

scheme. The Setup step (Step 2) consists of executing Gen to generate a public
encryption key pk and secret decryption key sk. pk can be sent to V in the clear,
whereas P commits to sk and the randomness rG used by Gen. The witness
encoding step (Step 3) consists of P executing Enc with sk to encrypt w2, and
committing to w2, the ciphertext c, and the randomness rE used to generate it.
Evaluation (Step 4) consists of P executing Eval to homomorphically evaluate
C̃ on c, to obtain a ciphertext c′. P commits to c′ and the randomness rC

used for evaluation. During verification, V performs one of the following. (1)
Checking setup (Step 5a), by reading rG, pk, sk and checking the execution of
Gen. (2) Checking encryption (Step 5b), by reading rE , w2, pk, c and checking the
execution of Enc. (3) Checking evaluation (Step 5c), by reading rC , w1, pk, c, c

′

and checking the execution of Eval. (4) Checking decryption (Step 5d), by reading
sk, c′ and checking that c′ decrypts to 1.

Analysis. We give a high-level intuition for the security of our paradigm; full
proofs (relying on the specific properties of the underlying primitives) appear in
Sect. 4. Completeness, when P,V are honest, follows directly from the (perfect)
correctness of the underlying primitive.6 As for soundness, any x /∈ L is rejected
with constant probability. Indeed, the witness sharing step (Step 1) binds P to
some “witness” w∗ = w∗

1 ⊕ w∗
2 , for which C (x,w∗) = 0 (because x /∈ L), and in

particular C̃∗ (w∗
2) = 0 where C̃∗ (u) := C (x,w∗

1 ⊕ u). Therefore, if P executed
Steps 2–4 correctly (for C̃∗), then the output will decode to 0, in which case V
rejects if he performs Step 5d, which happens with probability 1/4. Otherwise, P
cheated in one of Steps 2–4, which will be detected if V checks the corresponding
computation in Step 5 (which happens with probability 1/4).

Finally, zero-Knowledge follows from the input and function privacy of the
underlying primitive. The high-level (though somewhat inaccurate) idea is to
describe a simulator Sim which guesses in advance which of the substeps of
Step 5 will be carried out by (the possibly malicious) V∗, committing to “correct”
values for that step, and dummy values for the other steps. If Sim had guessed
correctly, it can continue the simulation; otherwise, it rewinds V∗. Since the
verifier has only four possible choices, in expectation, Sim succeeds in completing
the simulation with overwhelming probability.

We now explain how Sim generates the committed values. The setup and
witness encoding checks (Steps 5a–5b) depend only on w1 and w2 (respectively).
Therefore, these steps can be simulated separately by picking w1 or w2 uniformly
at random (which is identical to their distribution in the real execution because
each witness share in isolation is independent of w). Once w1 (respectively, w2)
have been fixed, the keys (respectively, witness encoding) can then be honestly
generated from this witness share. Moreover, the input privacy of the underlying
primitive guarantees that Sim can simulate the evaluation check in Step 5c.
Indeed, this step depends only on an encoding c of w2, which is computationally
indistinguishable from the encoding of any other value. Thus, to simulate this

6 See Sect. 4 for a generalization to imperfect correctness; e.g., in the HSS-based con-
struction of Theorem 2.

Black-Box Constructions of Short Zero-Knowledge Proofs 13

step, the simulator can choose a random w1, and indistinguishability between the
real and simulated views reduces to indistinguishability between the encodings of
two different messages. Finally, by function privacy, the output check (Step 5d)
can be simulated by generating an encoding of 1.

The (simplified) ZK analysis provided here gives a flavor of how the splitting
of w into two witness shares is used in the proof. The actual proofs are more
intricate and depend on the specific notion of input and function privacy guar-
anteed by the underlying primitive. We refer the interested reader to Sect. 4 for
the complete proofs.

Extension to k-Party Primitives. The ZKP construction of Fig. 1 is based
on a 1-party primitive, namely a primitive in which a single party performs the
evaluation, as is the case in FHE and FE. However, our paradigm generalizes
to k-distributed primitives in which evaluation is distributed between multiple
parties, each generating an output share, where the output can later be recovered
from all shares. (See Fig. 3 in Sect. 3 for the full description.) This flexibility of
our paradigm allows us to use a wider range of underlying primitives, and, in
particular, enables us to obtain the succinct ZKPs of Corollary 1, which are
based on 2-party HSS schemes. While we can rely on a k-distributed primitive
for any k ≥ 1, using k > 2 does not seem to be useful for constructing succinct
ZKPs. Therefore, in the following, we focus on the case that k = 2. (The case of
k = 1 was already discussed above.)

In a 2-distributed primitive, Gen generates a public state pk, as well as secret
keys sk1, sk2 for the parties, and the evaluation is distributed between two parties,
each using its secret key ski to homomorphically compute an output share yi

from the encoded inputs. Output decoding is possible given both output shares
y1, y2. Therefore, using a 2-distributed primitive requires the following changes
to the ZKP described in Fig. 1. First, the setup step (Step 2) generates the public
state pk and both secret keys sk1, sk2. Second, the evaluation step (Step 4) is
performed twice (once with each key ski) to generate a pair of output shares
y1, y2. P then commits to all these values. Moreover, to check the evaluation
(Step 5c), V picks i ← {1, 2} and checks the execution of Eval with ski. Finally,
to check the output value (Step 5d) P decommits y1, y2. (See Fig. 3 for a more
detailed description.)

Variants and Extensions. We described our abstraction for public-key 1- and
2-distributed primitives with perfect correctness, but our paradigm is flexible
and can be instantiated using a wide range of primitives. As discussed above, we
can use k-distributed primitives also for k > 2. We can further support secret-
key primitives (see, e.g., the FE-based construction in the full version), as well
as primitives with a correctness error (see, e.g., the HSS-based construction of
Sect. 4.1). This latter case is handled by having P,V engage in a coin-tossing pro-
tocol before Step 2, which results in P holding a random string r and V holding
a commitment to it. This protocol can be trivially realized in the FCom-hybrid
model with nearly no overhead in communication. Some of our constructions do
not require the function-privacy property of the underlying primitive. In partic-
ular, this is the case for our RE-based construction.

14 C. Hazay et al.

Black-Box Commit-and-Prove. We extend our ZKP paradigm to Commit-
and-Prove (C&P) functionalities that support an iterative commit phase. More
specifically, a C&P protocol for a relation R is executed between P,V with
common input x, and consists of an iterative Commit phase, followed by a Prove
phase. In the ith round of the commit phase, V sends a message zi, following
which P commits to a message yi. In the Prove phase following l commit rounds,
P proves that ((x, z1, . . . , zl), (y1, . . . , yl)) ∈ R. Roughly, the C&P construction
is obtained by having P repeat the witness sharing phase of Step 1 (Fig. 1) for
every message yi, committing to shares yi

1, y
i
2. Then, the Prove phase is executed

by repeating Steps 2–5 of Fig. 1 for the circuit

C̃ ′ (u1, . . . , ul) := C
((

x, z1, . . . , zl
)
,
(
y1
1 ⊕ u1, . . . , y

l
1 ⊕ ul

))

where C denotes the verification circuit of R. Instantiating the generic C&P
construction with randomized encodings as the underlying primitive yields a
C&P protocol which makes a black box use of OWFs. See the full version for
further details.

Succinct ZKP Constructions. An important advantage of the C&P construc-
tion is that the iterative nature of theCommit phase allows us to apply it to interac-
tive protocols. In particular, we obtain a generic compiler from any public-coin IP
for a language L to a ZKP for L, as follows. In the Commit phase, P and V emulate
the original IP protocol, except that P commits to her messages (instead of sending
them directly to V). The Prove phase is then executed for the relation consisting of
all accepting transcripts. That is, C is taken to be the circuit which the IP verifier
applies to the transcript to determine his output. Importantly, the communication
complexity of the ZKP scales with the sum of the communication complexity of the
IP, and the communication complexity of the Prove phase (which depends only on
the size of the verification circuit of the IP verifier). By applying this compiler to
the IPs of Ben-Or et al. [BGG+88] and Goldwasser et al. [GKR15] we obtain the
new black-box ZKPs from OWFs of Corollaries 5 and 6, respectively. Furthermore,
we show that our C&P can also be used to compile IOPs into ZKPs. Applying this
compiler to the succinct IOPs of [RR20] gives our succinct ZKPs of Corollary 7,
that make a black box use of OWFs. This improves a recent result of [NR22], who
achieve a (tighter) non-black-box compilation in the OWF. We note that obtain-
ing the ZKPs of Corollaries 1–4 reduces to instantiating the generic construction of
Theorem 1 with a primitive with appropriate efficiency guarantees. In particular,
the communication complexity of the ZKP scales with the sum of the key length,
encoding length, and the randomness complexity of the underlying primitive.

1.3 Related Works

Interactive (Oracle) Proofs and Short Zero-Knowledge Proofs. Ben-Or
et al. [BGG+88] showed a general compiler transforming any interactive proof
system to one that is also zero-knowledge, assuming only the existence of one-
way functions. In particular, as a corollary, they showed that every language in
PSPACE has a zero-knowledge proof. Kalai and Raz [KR08], and independently

Black-Box Constructions of Short Zero-Knowledge Proofs 15

Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS07], gave the first doubly-efficient
(zero-knowledge) interactive proof for NP relations computable by AC0 circuits.
While the work of [IKOS07] achieved communication complexity n·poly(κ) where
n is the length of the witness, [KR08] achieved a communication of poly(n, κ).
In an influential work, Goldwasser Kalai and Rothblum gave the first (doubly-
efficient) interactive proof for all bounded-depth computations computable by a
logspace-uniform circuit [GKR15] with communication complexity d · poly log S
where d is the depth of the circuit and S is its size. An important feature of
their construction was succinct verification, where the verifier’s runtime was
m · poly(d, log(m)), where m is the instance length. Applying the Ben-Or et al.
compilation [BGG+88] technique to their protocol, they obtained as a corollary a
ZKP for NP languages whose corresponding relation is computable by logspace-
uniform circuits with communication complexity n · poly(κ, d). Implicit in their
construction is a protocol for (polynomial-time) uniform circuits with the same
communication complexity where the verifier’s runtime is quasi-linear in circuit
size.7 While such a construction is not a useful interactive proof for a language in
P when compiled using [BGG+88], it yields a non-trivial short zero-knowledge
proof for NP-languages whose relations can be computed by polynomial-time
uniform bounded-depth circuits.

Reingold, Rothblum, and Rothblum gave a constant-round IP for bounded-
space computations [RRR16] with communication complexity mδ · poly(S) and
verification time mδ · poly(S) + Õ(m) for any constant δ ∈ (0, 1) and language
computable in space S. Similar to [GKR15], they compiled their IP to obtain
a ZKP for NP languages with corresponding relations that can be computed
via a space-bounded Turing machine. Goldreich and Rothblum [GR20] tight-
ened the results of [RRR16] for AC0[2] and NC1 by providing a constant-round
IP with communication mδ+o(1) and verification time m1+o(1). Ron-Zewi and
Rothblum [RR20] gave a succinct IOP for NP languages whose relation can be
computed in mζ-space for some fixed constant ζ ∈ (0, 1) where the communi-
cation complexity is (1 + ε)n for a constant ε ∈ (0, 1) (assuming the witness is
larger than the instance), with constant query complexity. Nassar and Rothblum
[NR22] showed how to compile this protocol into a zero-knowledge proof, with
essentially no overhead in the communication complexity. The result of [GR20]
yields constant-round ZKPs for (polynomial-time uniform) NC1 with commu-
nication complexity n · poly(κ), making non-black box use of OWFs.8 We note
that Xie et al. [XZZ+19] design ZK-IOPs that work for GKR-style protocols (i.e.,
where the verifier needs to evaluate a low-degree extension of the wiring predi-
cate), that are black-box in the underlying OWF, but whose length is polynomial
7 The reason the protocol requires logspace-uniformity is to provide an efficient way

for the verifier to evaluate a point on the low-degree extension of the circuit wiring
predicate. If the circuit class was just polynomial-time uniform, the verifier would
need time that is quasi-linear in the size of the predicate.

8 [GR20] provide a constant-round protocol for sufficiently uniform (i.e., adjacency
predicate) circuits in NC1. However, following the observation made on the proto-
col of [GKR15], the protocol of [GR20] also yields a constant-round protocol for
polynomial-time uniform NC1 with short communication.

16 C. Hazay et al.

in the witness length |n|. On the other hand, our compiler uses the underlying
IP/IOP as a black-box, and can therefore be applied to any IP/IOP.

The round complexity in all these works, except [IKOS07], scales with the
size/depth of the verification circuit for the relation, whereas the round complex-
ity in our ZKPs from DCR (Corollary 1) is bounded by a universal constant,
independent of the circuit depth.

Going beyond one-way functions, the work of [GGI+15] shows how to design a
ZKP for all NP approaching witness length based on fully-homomorphic encryp-
tion schemes.

Other Black-Box Transformations. The work of Hazay and Venkitasub-
ramaniam [HV16] used MPC-in-the-Head to compile 2PC protocols into zero-
knowledge proofs. While their constructions do not yield succinct proofs, they
achieve other features such as input-delayed proofs and adaptive zero-knowledge.
Their work provided a general framework for designing zero-knowledge proofs
from randomized-encodings. Their 2PC-in-the-head paradigm was later used by
Brakerski and Yuen [BY22] to obtain a quantum-secure zero-knowledge proof
by first designing a quantum-secure randomized encoding (actually, a garbled
circuit) and then applying the compiler. Ishai et al. [IKP+16] provide a different
compiler for 2PC protocols by designing a framework of black-box compilers.

Restricting to black-box constructions from one-way functions and succinct
proofs, only the work of [IKOS07] provides a construction for NP-languages
whose relation can be computed by an AC0 circuit. Several works design zero-
knowledge variants of IOPs, referred to as ZK-IOPs, for circuit SAT (or its gen-
eralization to R1CS) [BCGV16,BCG+17a,BCF+17,BBHR19,BCR+19,BCL22]
or based on the GKR protocol [WTS+18,BBHR19,XZZ+19,ZLW+21], but none
yield succinct proofs. The GKR-based ZK-IOPs of Xie et al. [XZZ+19] can be
compiled into ZKP with communication complexity poly(n, κ) and logarithmic
rounds for NC1 circuits, and it is conceivable that a similar technique could be
used to compile the protocols of [RRR16,GR20], perhaps with communication
complexity poly(n, κ) and constant rounds. It is plausible that this communica-
tion can be brought down further to n · poly(κ) by using the ZK variant of the
code-switching technique of [RR20] from [BCL22], thus providing an alternative
path to obtain Corllary 2. However, this approach will only apply to GKR-style
protocols, whereas our approach is more general and works for any IOP while
preserving the efficiency parameters.

Black-Box Commit and Prove. The (single) commit-and-prove functional-
ity dates back to the work of Goldreich et al. [GMW87] and was formalized in
[CLOS02]. Implicit in [IKOS07] was the first black-box commit-and-prove proto-
col based on collision-resistant hash functions. Follow-up works have optimized
the round complexity and achieved other features such as adaptive security.
[GLOV12,GOSV14,OSV15,HV16,KOS18,HV18] improved the concrete round
complexity and also constructed zero-knowledge argument systems from one-
way functions.

Black-Box Constructions of Short Zero-Knowledge Proofs 17

Homomorphic Secret Sharing (HSS). HSS were introduced by [BGI16], who
constructed a 2-party HSS scheme for polynomial-length deterministic branch-
ing programs with an inverse-polynomial correctness error, assuming the DDH
assumption. Using this result in our HSS-based ZKPs (Fig. 4, Sect. 4.1) would
result in a ZKP with inverse polynomial simulation error. Instead, we rely on the
HSS scheme of [RS21] for polynomial-length branching programs (with negligi-
ble correctness error) which are based on the DCR assumption. A similar HSS
construction was provided in [OSY21].

Functional Encryption (FE). Functional encryption, introduced in [BSW11,
O’N10], is a generalization of (public-key) encryption in which function keys
can be used to compute a function of the plaintext directly from the ciphertext
(without knowledge of the decryption key). We instantiate our construction with
the state-of-the-art FE for circuits from [GWZ22] that gives rate-1 ciphertext
size based on indistinguishability obfuscation.

Randomized Encoding (RE). Formalized in the works of [IK00,IK02,AIK06],
randomized encoding explores to what extent the task of securely computing a
function can be simplified by settling for computing an “encoding” of the output.
Loosely speaking, a function f̂(x, r) is said to be a randomized encoding of a
function f if the output distribution depends only on f(x). One of the earliest
constructions of a randomized encoding for Boolean circuits is that of “garbled
circuits” and originates in the work of Yao [Yao86]. Additional variants have been
considered in the literature in the early works of [Kil88,FKN94]. Instantiating
our paradigm with RE implies a theorem proven in [HV16].

Fully Homomorphic Encryption (FHE). First constructed by Gentry
[Gen09], fully homomorphic encryption is a public-key encryption scheme allow-
ing arbitrary computations to be performed on ciphertexts. That is, given a
function f and a ciphertext ct encrypting a message m, it is possible to com-
pute a ciphertext ct′ that encrypts f(m), without knowing the secret decryption
key. FHE can be constructed based on LWE where the approximation factor
in the underlying lattice problem can be polynomial [BV14]. Instantiating our
construction with a rate-1 FHE scheme (e.g., using hybrid encryption) that can
evaluate all polynomial-sized circuits, gives constant-round ZKPs for all NP lan-
guages with total communication complexity O(n).

1.4 Paper Organization

In Sect. 2, we introduce basic preliminaries and security definitions. In Sect. 3 we
introduce our abstraction. In Sect. 4 we instantiate our abstraction with HSS.
Due to space limitations, we defer instantiations of our abstraction with other
primitives, its generalization to commit-and-prove, our black-box compilers from
IPs and IOPs to ZKPs, and most proofs, to the full version.

18 C. Hazay et al.

2 Preliminaries

Notation. Let κ denote the security parameter, and G denote a finite abealian
group. We use PPT to denote probabilsitic polynomial time computation. For a
distribution D, sampling according to D is denote by X ← D, or X ∈R D. For
a pair D,D′ of distributions, we use D ≈ D′ to denote that they are computa-
tionally indistinguishable. We assume familiarity with standard notions of Tur-
ing machines, probabilistic polynomial-time and bounded-space computations.9

When we refer to Turing Machines running in time t(n) and/or space s(n),
we assume t(·) and s(·) are time-constructible and space-constructible (respec-
tively).

Complexity Classes. A language L is in NP if there is a polynomial-time
computable relation RL that consists of pairs (x,w), such that x ∈ L if and only
if there exists a w such that (x,w) ∈ RL. We denote the instance size |x| by m,
and the witness size |w| by n.

A circuit ensemble {Cm}∞
m=1 is a family of circuits indexed by an integer m,

where Cm is a circuit that accepts inputs of length m. AC0 consists of ensembles
of Boolean circuits with polynomial size, constant depth, and unbounded fan-
in. For i ∈ N, NCi contains the ensembles of constant fan-in Boolean circuits
where the mth circuit is of depth logi(m), and NC = ∪i∈NNC

i . The notion of
circuit uniformity describes the complexity of generating the description of the
mth circuit on input 1m. For example, a popular uniformity notion is log-space
uniformity, where there should exist a log-space Turing machine that, on input
1m, outputs a description of Cm. Similarly, polynomial-time uniform means there
exist a polynomial p(m) and a Turing machine that on input 1m runs in time
p(m) and outputs a description of the circuit Cm. In this work we focus on NP
languages whose relations can be expressed via circuits in a particular complexity
class (e.g., AC0 or NC1).

Assumptions. Our HSS-based construction relies on the DCR hardness
assumption [Pai99] that holds in the presence of non-uniform adversaries and a
properly generated RSA number (namely, a product of two random safe primes10

of the same length).

Definition 1 (Non-uniform DCR [Pai99]). The Decisional Composite Resid-
uosity (DCR) assumption states that the uniform distribution over Z∗

N2 is indis-
tinguishable from the uniform distribution on the subgroup of perfect powers of
N in Z

∗
N2

11 in the presence of non-uniform adversaries, for a properly generated
RSA number N .

9 We will assume the multi-tape formulation to capture sub-linear space computations.
10 A safe prime is a prime number of the form 2p + 1, where p is also a prime.
11 We say that t ∈ Z

∗
N2 is a perfect power of N if there exists r ∈ Z

∗
N such that t =

rN mod Z
∗
N2 .

Black-Box Constructions of Short Zero-Knowledge Proofs 19

2.1 Commitment Schemes

Our constructions are proven in the FCOM-hybrid model depicted in Fig. 2,
where our communication complexity analysis only counts the lengths of com-
mitted/decommitted messages.

Functionality FCOM

Functionality FCOM communicates with sender sender and receiver receiver,
and adversary Sim.

1. Upon receiving input (commit, sid, m) from sender where m ∈ {0, 1}t,
internally record (sid, m) and send message (sid, sender, receiver) to the
adversary. Upon receiving approve from the adversary send sid, to receiver.
Ignore subsequent (commit, ., ., .) messages.

2. Upon receiving (reveal, sid) from sender, where a tuple (sid, m) is recorded,
send message m to adversary Sim and receiver. Otherwise, ignore.

Fig. 2. The string commitment functionality.

Remark 1 (Commitment Schemes). We use the commitment-hybrid model to
emphasize that our constructions rely on the underlying commitment instantia-
tion in a black-box manner. However, analogously to [IKOS07], the ideal com-
mitment primitive in all our protocols can be instantiated with any statistically-
binding commitment protocol. We recall that rate-1 non-interactive perfectly-
binding commitment schemes can be constructed based on one-way permuta-
tions (or injective one-way functions), whereas two-round statistically binding
commitment schemes can be constructed based on one-way functions [Nao91].

2.2 Zero-Knowledge Proofs (ZKPs)

A zero-knowledge proof system for an NP language L is a protocol between a
prover P and a computationally bounded verifier V where P wishes to convince
V of the validity of some public statement x. Namely, P wishes to prove that
there exists a witness w such that (x,w) ∈ R, where R is an NP relation for
verifying membership in L. More formally, We denote by 〈A(w), B(z)〉(x) the
random variable representing the (local) output of machine B when interacting
with machine A on common input x, when the random-input to each machine
is uniformly and independently chosen, and A has an auxiliary input w.

Definition 2 (Interactive Proof (IP)). A pair of interactive PPT machines
(P,V) is called a (1 − δ)-complete, (1 − ε)-sound Interactive Proof (IP) system
for a language L if the following two conditions hold:

20 C. Hazay et al.

– (1 − δ)-completeness: For every x ∈ L,

Pr[〈P,V〉(x) = 1] ≥ 1 − δ.

where 〈P,V〉(x) denotes the output of V after he interacts with P on common
input x.

– (1 − ε)-soundness: For every x /∈ L and every interactive machine P∗,

Pr[〈P∗,V〉(x) = 1] ≤ ε.

Definition 3 (μ-Zero-Knowledge). Let (P,V) be an interactive proof system
for some language L. We say that (P,V) is computational zero-knowledge with
μ-simulation error if for every PPT interactive machine V∗ there exists a PPT
algorithm Sim such that for every PPT distinguisher D,

∣
∣
∣
∣ Pr[D(〈P,V∗〉(x)) = 1] − PrD(〈Sim〉(x)) = 1]

∣
∣
∣
∣ ≤ μ(n)

where 〈Sim〉(x) denotes the output of Sim on x and n is the witness length.

Notation 1. We say that a proof system is a (1−ε)-sound ZKP if it is a (1−δ)-
complete, (1 − ε)-sound ZKP with μ simulation error, for δ, μ = negl (n), where
n is the witness length.

2.3 Interactive Oracle Proofs (IOP)

Interactive Oracle Proofs (IOPs) [BCS16,RRR16] are proof systems that com-
bine aspects of Interactive Proofs (IPs) [Bab85,GMR85] and Probabilistically
Checkable Proofs (PCPs) [BFLS91,AS98,ALM+98]. They also generalize Inter-
active PCPs (IPCPs) [KR08]. In this model, similar to the PCP model, the
verifier does not need to read the whole proof, and instead can query the proof
at some locations, while similar to the IP model, there are several interaction
rounds between the prover and verifier. More specifically, a public-coin k-round
IOP has k rounds of interaction, where in the ith round the verifier sends a uni-
formly random message mi to the prover, and the prover responds with a proof
oracle πi. Once the interaction ends, the verifier makes some queries to the proofs
π1, . . . , πk (via oracle access), and either accepts or rejects. More formally,

Definition 4. (Interactive Oracle Proofs). A k-round q-query public-coin
IOP system for a language L is a pair of PPT algorithms (P,V) satisfying the
following properties:

– Syntax: On common input x and prover input w, P and V run an interactive
protocol of k rounds. In each round i, V sends a uniformly random message
mi and P generates a proof oracle πi, to which V has oracle access. Let
π := (π1, π2, . . . , πk). Following the kth round, V makes q queries to π, and
either accepts or rejects.

Black-Box Constructions of Short Zero-Knowledge Proofs 21

– (1 − δ)-completeness: For every x ∈ L,
Pr[〈P,Vπ〉(x) = 1] ≥ 1 − δ.

where 〈P,Vπ〉(x) denotes the output of V after he interacts with P on common
input x, and Vπ denotes that V has oracle access to π.

– (1−ε)-soundness: For every x /∈ L, every interactive machine P∗, and every
proof π̃

Pr[〈P∗,V π̃〉(x) = 1] ≤ ε.

2.4 Homomorphic Secret Sharing (HSS)

Homomorphic secret sharing is an alternative approach to FHE, allowing for
homomorphic evaluation to be distributed among two parties who do not interact
with each other. We follow the definition from [BCG+17b].

Definition 5. (Homomorphic Secret Sharing with δ Error). A (2-party,
public-key) Homomorphic Secret Sharing (HSS) scheme for a class of circuits
C with output group G consists of algorithms (Gen,Enc,Eval) with the following
syntax:

– Gen(1κ) is a key generation algorithm, which on input a security parameter
1κ outputs a public key pk and a pair of evaluation keys (ek0, ek1).

– Enc(pk, x) is an encryption algorithm which given public key pk and secret
input value x ∈ {0, 1}n, outputs a ciphertext ct. We assume the input length
n is included in ct.

– Eval(b, ekb, (ct1, . . . , ctm), C) is an evaluation algorithm, which on input party
index b ∈ {0, 1}, evaluation key ekb, ciphertext cti, and a circuit C ∈ C with
m inputs and n′ output bits, the homomorphic evaluation algorithm outputs
yb ∈ G, constituting party b′s share of an output y ∈ G where G is an abelian
group.

The scheme is required to satisfy the following semantic properties:

– Correctness: For all security parameters κ, all circuits C ∈ C, and all inputs
x1, . . . , xm, we have:

Pr

⎡
⎢⎣y1 ⊕ y2 = C (x1, . . . , xm) :

(pk, ek1, ek2) ← HSS.Gen (1κ)

∀1 ≤ j ≤ m,
(

cj
1, cj

2

)
← HSS.Enc (pk, xj)

∀i ∈ {1, 2}, yi ← HSS.Eval
(
i, eki, c1i , . . . , cm

i , C
)

⎤
⎥⎦ ≥ 1 − δ (κ)

where the probability is over the randomness of Gen,Enc and Eval.
– Security: For every x, x′ ∈ {0, 1}n the distribution ensembles Cb(κ, x) and

Cb(κ, x′) are computationally indistinguishable in the presence of non-uniform
distinguishers, where Cb(κ, x) is obtained by sampling (pk, (ek0, ek1)) ←
Gen(1κ), sampling ctx ← Enc(pk, x), and outputting (pk, ekb, ctx). Cb(κ, x′)
is generated similarly.

Remark 2. (Single ciphertext.). Our ZK construction (Sect. 4.1) requires a sim-
pler definition where Eval is invoked on a single ciphertext.

22 C. Hazay et al.

3 ZKPs from Game-Based Primitives

In this section we describe our abstraction, which uses non-interactive game-
based primitives to design ZKPs. In Sect. 4 we instantiate this abstraction with
various primitives. The abstraction is given in Fig. 3.

At a high level, the building block is a k-distributed, game-based, non-
interactive primitive. More specifically, the primitive should support homomor-
phic evaluation which is distributed between k parties. The primitive consists of
the following algorithms:

1. A key generation algorithm Gen that generates a public state pk and secret
keys sk1, . . . , skk for the k parties.

2. An Encoding algorithm Enc which, given a message w, the public key pk, and
a secret key ski, generates an encoding ci of w with respect to ski.

3. An evaluation procedure Eval which, given the public state pk (and possibly
also ski), an encoding ci of w, and a circuit C, generates an output share yi

of C(w).
4. An output decoder Dec which, given the k output shares y1, . . . , yk, can

decode the output. (We note that decoding might require knowledge of the
secret keys sk1, . . . , skk.)

Roughly, the primitive is required to satisfy the following semantic properties:

1. Correctness: evaluation over encoded inputs yields the correct output. That
is, if the input is encoded using Enc, and the output shares are computed from
the input encodings using Eval, then Dec decodes the correct output.

2. Input privacy: the encodings semantically hide the secret input.
3. Function privacy: the output of Eval hides all information about the com-

puted function, except for the output of the computation.

4 Zero-Knowledge Proof Constructions

In this section, we instantiate our paradigm with an HSS scheme and obtain
constant-round, black-box ZKPs for NC1 assuming the DCR assumption, prov-
ing Corollary 1. In the full version, we instantiate our paradigm with other
game-based primitives such as FSS, FHE, FE, REs and LFEs. Our constructions
are described in the FCom-hybrid model, and use the underlying cryptographic
primitive (as well as any instantiation of the commitment oracle) as a black box.

Remark 3 (On using k-distributed primitives for k > 2). Some of our construc-
tions (e.g. the HSS- and FSS-based constructions) are based on k-distributed
primitives for k ≥ 2. For simplicity, we chose to describe these constructions for
the special case that k = 2, but they naturally extend to any k ≥ 2. We note that
choosing k = 2 also results in lower communication complexity in the resultant
ZKP. This is not only because the communication complexity scales with k, but
also because the most efficient HSS and FSS schemes to date are in the 2-party
setting.

Black-Box Constructions of Short Zero-Knowledge Proofs 23

ZKP Abstraction

Let P = (Gen,Enc,Eval,Dec) be a k-party primitive as described above. The
ZKP for an NP-relation R = R (x, w) with verification circuit C (·, ·) is exe-
cuted between a prover P that has input (x, w) ∈ R and a verifier V that has
input x. The parties have access to an ideal commitment functionality FCom.

1. Witness secret sharing: P additively shares w by picking w1, w2 uni-
formly at random subject to w = w1 ⊕ w2, and uses FCom to commit to
w1, w2. Additionally, P defines ˜C (u) := C (x, w1 ⊕ u).

2. Randomness generation: P and V run a coin tossing protocol to gen-
erate randomness r for Gen,Enc and Eval. At the end of this phase, P
knows r, and V holds a commitment to r. (This can be easily done using
FCom.) The bits of r are used by P in the following steps when executing
a randomized algorithm of P.a

3. Setup: P executes Gen to generate a public state pk (which might be

empty), and k secret states sk1, . . . , skk. This step might depend on ˜C
(and consequently also on w1). P sends pk to V (in the clear), and uses
FCom to commit to sk1, . . . , skk.

4. Witness encoding: P uses pk, sk1, . . . , skk to generate encoding c1, . . . , ck

of w2, and uses FCom to commit to these encodings.
5. Evaluation: For each i ∈ [k], P executes Eval using ci, ˜C, pk and ski (as

appropriate) to generate an output share yi of ˜C (w2), and uses FCom to
commit to these output shares.

6. Verification: V checks that one of the three steps (Steps 3.-5.) was exe-
cuted correctly, or that the output is 1 (each check is performed with
probability 1/4). Specifically, this is done as follows:
(a) Checking setup: P decommits the randomness used to execute Gen,

as well as sk1, . . . , skk, w1, and V checks that Gen was executed cor-
rectly.

(b) Checking witness encoding: P decommits the randomness used for
encoding, as well as w2, c1, . . . , ck and all the keys in {sk1, . . . , skk}
which are used by Enc, and V checks that Enc was executed correctly
on these values.

(c) Checking evaluation: V picks i ← [k], and P decommits the ran-
domness used for the ith execution of Eval, as well as to ski, ci and yi,
and one of w1, w2 (if it is needed for evaluation), and V checks that
the ith execution of Eval was done correctly on these values.

(d) Checking output decoding: P decommits y1, . . . , yk, and all the
keys in {sk1, . . . , skk} which are used by Dec, and V uses Dec to decode
the output y from y1, . . . , yk, and checks that y = 1.

a This step is needed only when P has imperfect correctness, otherwise P can
choose the random bits on her own.

Fig. 3. ZKP Construction from Game-Based Secure Primitives

24 C. Hazay et al.

Recall from Sect. 3 that in our protocols, we secret share the NP witness
w into two additive secret shares w = w1 ⊕ w2, hard-wire w1 into the verifi-
cation circuit C, and then (homomorphically) evaluate this circuit Cx,w1 (u) =
C (x,w1 ⊕ u) on the second witness share w2. Therefore, we will need the under-
lying primitive to support homomorphic computations over circuits of the form
Cx,w1 , for any possible witness share w1. More specifically, we will use the fol-
lowing circuit class which, intuitively, contains all the circuits of the form Cx,w1 ,
where w1 has the same length as a witness w for x.

Notation 2 Let R = R (x,w) be an NP relation, with verification circuit C, and
let L denote the corresponding NP language. For x ∈ L, we define the following
class of circuits:

C̃ (C) = {Cx,w1 (u) = C (x,w1 ⊕ u) :
∃w,w1 ∈ {0, 1}∗ s.t. (x,w) ∈ R ∧ |w| = |w1|} .

4.1 Zero-Knowledge Proofs from Homomorphic Secret Sharing
(HSS)

The construction uses a 2-party Homomorphic Secret Sharing (HSS) scheme
HSS = (HSS.Setup,HSS.Enc,HSS.Eval). Since this is a 2-distributed primitive,
the Setup phase (Step 3 in Fig. 4) generates a public key pk and a pair of eval-
uation keys ek1, ek2. Moreover, the witness encoding step generates a pair of
witness ciphertexts c1, c2, and the evaluation algorithm is executed with each
pair of evaluation key and ciphertext, generating an output share yi. The out-
put is decoded by computing y = y1 ⊕ y2, so the prover need not perform this
step (V can check the output directly by reading y1, y2, see Step 6d in Fig. 4).

Theorem 2 (ZKPs from HSS). Let R = R (x,w) be an NP-relation
with verification circuit C, and let κ be a security parameter. Let HSS =
(HSS.Gen,HSS.Enc,HSS.Eval) be an HSS scheme with δ error for the class C̃ (C)
of circuits (see Notation 2) with output group G. The ZKP of Fig. 4, when instan-
tiated with HSS, is a (1 − δ/4)-complete, (1 − ε)-sound ZKP, with δ + negl (κ)
simulation error, in the FCom-hybrid model, where ε = max {3/4 + δ/4, 7/8}.
Furthermore, the ZKP uses HSS as a black-box.

Moreover, assume that:

– Evaluation and public keys generated by HSS.Gen have length �k (κ),
– Ciphertexts generated by HSS.Enc have length �c (κ,m) (m denotes the length

of the encrypted message),
– And the executions of HSS.Gen,HSS.Enc and (the two executions of) HSS.Eval

each consume �r (κ) random bits,

Then P,V exchange at most 4�r (κ) + �k (κ) + 3 bits, at most 2n + 4�r (κ) + 2 ·
�k (κ) + 2 · �c (κ, n) + 2 log |G| bits are committed, and at most n + �r (κ) + 2 ·
�c (κ, n) + 2 · �k (κ) + 2 log |G| bits are decommitted, where n denotes the witness
length.

Black-Box Constructions of Short Zero-Knowledge Proofs 25

Proof Given an ideal commitment functionality, Step 2 can be executed with
perfect security. Therefore, we assume that rG, r1, r2 are uniformly random in
the following.
(1− δ/4)-Completeness. When both parties are honest, verification can fail only
due to a correctness error of the HSS (see Definition 5), which causes y1⊕y2 �= 1.
(Indeed, all other steps in the proof are deterministic given the randomness
generated in Step 2.) Since the HSS is executed with uniformly random bits, the
correctness of the HSS scheme guarantees that y1 ⊕y2 �= 1 only with probability
δ. Since V checks that y1 ⊕ y2 = 1 if and only if he chooses to perform Step 6d,
V rejects only with probability δ/4.

(1 − ε)-Soundness. Assume that x /∈ L. Let w∗
1 , w

∗
2 denote the witness shares

which P committed to in Step 1, and let w∗ := w∗
1 ⊕ w∗

2 , then C (x,w∗) = 0.
We consider two possible cases. First, if P executed Steps 3-5 honestly, then
y1 ⊕y2 = 1 only with probability δ. This follows from the correctness of the HSS
scheme since it is executed with uniformly random bits. Therefore, if V chooses
to check Step 6d, he rejects with probability at least 1 − δ. Since Step 6d is
performed with probability 1/4, in this case V accepts with probability at most
1 − (1 − δ)/4 = 3/4 + δ/4.

Second, assume that P cheated in one of the Steps 3-5. Since the execution
of each of these steps is deterministic (given the appropriate randomness from
{rG, r1, r2}), then if V checks that step, he will reject. More specifically, if P
cheated in Step 3 or Step 4, then V will accept with probability at most 3/4. If
P cheated in Step 5 then P cheated in the execution of HSS.Eval for i = 1 or
i = 2, and this will be detected by V if he chooses to execute Step 6c with i,
so, in this case, V accepts with probability at most 7/8. Overall, V accepts with
probability max {3/4 + δ/4, 7/8}.

Zero-Knowledge. Let V∗ be a (possibly malicious) PPT verifier. We describe a
simulator Sim for V∗. Sim, on input 1κ, x, operates as follows.

1. Picks i ← {1, 2}. (Intuitively, Sim guesses that if V∗ will choose to perform
Step 6c, it will be with index i.)

2. Executes Steps 1-4 honestly with V∗, using an arbitrary string w∗ as the
witness.

3. Executes Step 5 honestly for i, and sets y3−i := 1⊕yi (in particular, y1⊕y2 =
1). Sim then commits to y1, y2 as the honest prover does.

4. When V∗ makes his choice in Step 6:
(a) If V∗ chose Step 6c with 3 − i then Sim rewinds V∗ back to Step 1 of the

simulation, unless rewinding has already occurred κ times, in which case
Sim halts with no output.

(b) Otherwise, Sim honestly completes the proof by decommitting the appro-
priate values.

26 C. Hazay et al.

ZKP from Homomorphic Secret Sharing

Let HSS = (HSS.Gen,HSS.Enc,HSS.Eval) be a homomorphic secret sharing
scheme. The ZKP for an NP-relation R = R (x, w) with verification circuit
C (·, ·) is executed between a prover P that has input (x, w) ∈ R and a verifier
V that has input x. The scheme is parameterized by a security parameter κ,
and both parties have access to an ideal commitment functionality FCom.

1. Witness secret sharing: P additively shares w by picking w1, w2 uni-
formly at random subject to w = w1 ⊕ w2, and uses FCom to commit to
w1, w2. Additionally, P defines ˜C (u) := C (x, w1 ⊕ u).

2. Randomness generation: P and V run a coin tossing protocol to gener-
ate randomness rG, rE , r1, r2 for HSS.Gen,HSS.Enc and the two executions
of HSS.Eval, at the end of which the randomness is known to P, and V
holds commitments to it.

3. Setup: P executes (pk, ek1, ek2) = HSS.Gen (1κ; rG) to generate a public
encryption key pk, and evaluation keys ek1, ek2, and uses FCom to commit
to ek1, ek2. P sends pk to V in the clear.

4. Witness encryption: P computes a pair of ciphertexts (c1, c2) =
HSS.Enc (pk, w2; rE) of w2, and uses FCom to commit to c1, c2.

5. Evaluation: For i = 1, 2, P computes the ith output share yi =

HSS.Eval
(

i, eki, ci, ˜C; ri

)

of ˜C (w2), and uses FCom to commit to yi.

6. V performs one of the following verification steps (each with probability
1/4):
(a) Checking setup: P decommits rG, ek1, ek2, and V checks that

HSS.Gen was executed correctly.
(b) Checking witness encryption: P decommits rE , w2, c1, c2, and V

checks that HSS.Enc was executed correctly on these values.
(c) Checking evaluation: V chooses i ← {1, 2}, P decommits

ri, eki, ci, yi and w1, and V checks that HSS.Eval was executed cor-
rectly on these values.

(d) Checking decoding: P decommits y1, y2, and V checks that y1⊕y2 =
1.

Fig. 4. A ZKP from HSS

We claim that the real and simulated views – denoted Real and Ideal respec-
tively – are computationally indistinguishable. To prove this, we show that both
are computationally close to the following hybrid distribution H. H is generated
by having Sim secret share the actual witness w when executing Step 1 of the
proof. The rest of the simulation is carried out as described above.

Bounding the Computational Distance Between Real and H. The two differ-
ences between Real and H are: (1) in H, the simulator may abort the simula-
tion in Step 4a; and (2) in Real, y3−i was generated as the output of HSS.Eval,
whereas in H it is generated as y3−i := 1 ⊕ yi. We claim first that (1) happens
only with probability 2−κ. Indeed, the choice that V∗ makes in Step 4 of the

Black-Box Constructions of Short Zero-Knowledge Proofs 27

simulation is independent of i (because the commitments are ideal). Therefore,
the fact that i is random guarantees that rewinding occurs in Step 4a of the
simulation only with probability 1/2 (only if V∗ chooses 3 − i, which happens
with probability at most 1/2 because i is random). Therefore, the probability of
κ rewinds is 2−κ.

Therefore, bounding the computational distance conditioned on the event
that Sim did not abort in H suffices. We can further condition on the witness
shares w1, w2, which are identically distributed in both cases. In this case, yi

is also identically distributed in both cases (since it was generated from w1, w2

given the committed randomness) so we can further condition on yi. Conse-
quently, the only difference is in the distribution of y3−i, which is included in
the view if V∗ chooses to execute Step 6d. Notice that if the output shares satisfy
y1 ⊕ y2 = 1, conditioning on yi determines y3−i. This is always the case in H,
and is also the case in Real, unless a correctness error occurred in the execu-
tion of HSS. That is, unless a correctness error occurred, y3−1 = 1 ⊕ yi also in
Real, namely H and Real would be identically distributed. By the correctness
of HSS, a correctness error occurs only with probability δ. We conclude that the
computational distance between Real, Ideal is 2−κ + δ.

Bounding the Computational Distance Between Ideal and H. The only differ-
ence between the distributions is the witness shares w1, w2 (and any values com-
puted from them), which in H are random secret shares of the actual witness w,
and in Ideal are secret shares of some arbitrary w∗. Since the commitments are
ideal, these are identically distributed in both views. We consider the following
possible cases, based on which check V∗ chooses to perform in Step 6 of the
proof.

Case (1): checking Step (a). This step is independent of the witness shares,
and therefore, in this case, H and Ideal are identically distributed.

Case (2): checking Step (b). This step is independent of w1. Notice that w2

is uniformly random in both distributions when considered separately from w1.
Therefore, H and Ideal are identically distributed in this case.

Case (3): checking Step 6c. Notice that by the definition of Sim, in this case
V∗ chose to check i (i.e., not 3−i, otherwise Sim would have rewinded or aborted,
and in this case H, Ideal would be identically distributed). Since w1 is identically
distributed in both distributions, we will analyze this case conditioned on w1 and
show that computational indistinguishability of H, Ideal follows from the secu-
rity of HSS. More specifically, we show that conditioned on V∗ checking Step 6c
(with index i), a distinguisher D between H, Ideal will enable distinguishing
between encryptions of the witness share w2 in Ideal, and the witness share
w′

2 in H, and this contradicts the security of HSS (Definition 5). We describe
a distinguisher D′ between such encryptions, with w1 hard-wired into it. D′

on input the public key pk, evaluation key eki, and a ciphertext c (generated
either as c ← HSS.Enc (pk, w2) or c ← HSS.Enc (pk, w′

2)) picks randomness r for
HSS.Eval, computes yi = HSS.Eval

(
i, eki, c, C̃; r

)
(D′ can compute C̃ because

28 C. Hazay et al.

it knows w1), runs D on (pk, eki, c, w1, yi, r) and outputs whatever D outputs.12

Notice that if c encrypts w2 then D is executed with a sample from Ideal,
otherwise D is executed with a sample from H, and so D′ obtains the same dis-
tinguishing advantage as D. The security of HSS guarantees that this advantage
is negl (κ).

Case (4): checking Step 6d. We show that the views, in this case, are deter-
ministically computable from the views in case (3), and therefore computational
indistinguishability follows from the analysis of case (3). In case (4), y3−i is
generated in the same way in both H, Ideal: y3−i := 1⊕yi. Therefore, it is com-
putable deterministically from the view of case (3) (in which y1 was generated
from an encryption of w2 in Ideal and from an encryption of w′

2 in H).
In summary, by the triangle inequality, the computational distance between

Real and Ideal is δ + negl (κ).

Communication Complexity. The communication between the parties consists
of both direct messages and committed/decommitted messages. In the analysis,
we use the fact that in the FCom-hybrid model, tossing r coints in Step 2 can
be implemented with r bits of direct communication, and r committed and
decommitted bits. Therefore, the direct communication consists of 4�r (κ) +
�k (κ) + 3 bits. The committed messages consist of a total of 2n + 4�r (κ) + 2 ·
�k (κ) + 2 · �c (κ, n) + 2 log |G| bits. Finally, P decommits at most n + �r (κ) +
2 · �c (κ, n) + 2 · �k (κ) + 2 log |G| bits.

4.2 Constant-Round ZKPs Approaching Witness Length

We use our HSS-based ZKP construction (Fig. 4 and Theorem 2) to design
constant-round ZKPs for NC1 whose total communication complexity (in the
plain model) is quasi-linear in the witness length. The construction is based on
the DCR assumption (Definition 1). This can be thought of as a scaling-up of
a similar result by [IKOS07] who obtain such ZKPs for AC0 based on OWFs,
and a scaling-down of a result by [GKR15] who obtain ZKPs for NC based on
OWFs with the same communication complexity, but whose round complexity
scales with the depth of the circuit. See Sect. 1.3 for further discussion.

Instantiating the ZKPs of Theorem 2 with the following HSS scheme yields
Corollary 1 (see the full version for the proof).

Theorem 3 [RS21]. Assuming the DCR hardness assumption (Definition 1),
there exists an HSS scheme for the class of polynomial size Boolean branching
programs with output group G of size |G| = 2O(κ), with O(κ) output shares, O(κ)
key sizes, poly(κ) randomness and a negligible correctness error, where κ is the
security parameter.

12 We note that D′ does not need to generate the commitments - these do not contribute
to distinguishability because the commitments are ideal.

Black-Box Constructions of Short Zero-Knowledge Proofs 29

Acknowledgments. We thank Shweta Agarwal, Elette Boyle, Yuval Ishai, Justin
Thaler, and Daniel Wichs for several discussions on the various cryptographic primi-
tives. We also thank Guy Rothblum and Ron Rothblum for substantial discussions on
the state-of-the-art for succinct proofs. We thank the anonymous TCC reviewers for
their insightful comments and suggestions. Distribution Statement “A” (Approved for
Public Release, Distribution Unlimited). The first and second authors are supported by
DARPA under Contract No. HR001120C0087. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Government or DARPA.

References

AHIV17. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: CCS, pp.
2087–2104 (2017)

AHIV22. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. IACR Cryptol.
ePrint Arch. 2022(1608) (2022). https://eprint.iacr.org/2022/1608

AIK04. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In:
FOCS, pp. 166–175 (2004)

AIK06. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM
J. Comput. 36(4), 845–888 (2006)

ALM+98. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifica-
tion and the hardness of approximation problems. J. ACM 45(3), 501–555
(1998)

AS98. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization
of NP. J. ACM 45(1), 70–122 (1998)

Bab85. Babai, L.: Trading group theory for randomness. In: STOC, pp. 421–429
(1985)

BBHR19. Ben-Sasson, E. Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowl-
edge with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 23

BCF+17. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M.,
Spooner, N.: Zero knowledge protocols from succinct constraint detection.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 172–206.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 6

BCG+17a. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen,
S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 12

BCG+17b. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic
secret sharing: optimizations and applications. In: CCS, pp. 2105–2122
(2017)

BCGV16. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero
knowledge from linear-algebraic PCPs. In: Kushilevitz, E., Malkin, T.
(eds.) TCC 2016. LNCS, vol. 9563, pp. 33–64. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 2

https://eprint.iacr.org/2022/1608
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-319-70503-3_6
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-662-49099-0_2

30 C. Hazay et al.

BCL22. Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge IOPs with linear-time
prover and polylogarithmic-time verifier. In: Dunkelman, O., Dziembowski,
S. (eds.) Advances in Cryptology—EUROCRYPT 2022, LNCS, vol. 13276,
pp. 275–304. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
07085-3 10

BCR+19. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4

BCS16. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

BFH+20. Bhadauria, R., et al.: Ligero++: a new optimized sublinear IOP. In: CCS,
pp. 2025–2038 (2020)

BFLS91. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations
in polylogarithmic time. In: STOC, pp. 21–31 (1991)

BGG+88. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer,
New York (1990). https://doi.org/10.1007/0-387-34799-2 4

BGI16. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 19

BI05. Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with
applications to database search problems. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 395–411. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 24

BSW11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions
and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 16

BV14. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: ITCS, pp. 1–12. ACM (2014)

BY22. Brakerski, Z., Yuen, H.: Quantum garbled circuits. In: STOC, pp. 804–817.
ACM (2022)

CLOS02. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: STOC, pp. 494–503.
ACM (2002)

DI06. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11818175 30

FKN94. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation
(extended abstract). In: STOC, pp. 554–563 (1994)

Gen09. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

GGI+15. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using
fully homomorphic hybrid encryption to minimize non-interative zero-
knowledge proofs. J. Cryptol. 28(4), 820–843 (2015)

GIW16. Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multi-
party computation. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol.

https://doi.org/10.1007/978-3-031-07085-3_10
https://doi.org/10.1007/978-3-031-07085-3_10
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/11818175_30

Black-Box Constructions of Short Zero-Knowledge Proofs 31

9985, pp. 336–366. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53641-4 14

GKR15. Goldwasser, S., Tauman Kalai, Y., Rothblum, G.N.: Delegating computa-
tion: interactive proofs for muggles. J. ACM 62(4), 27:1–27:64 (2015)

GLOV12. Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-
malleable commitments: a black-box approach. In: FOCS, pp. 51–60. IEEE
Computer Society (2012)

GMO16. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for
boolean circuits. In: USENIX, pp. 1069–1083 (2016)

GMR85. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: STOC, pp. 291–304 (1985)

GMR89. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

GMW87. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: STOC, pp.
218–229 (1987)

GOSV14. Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box
zero knowledge. In: STOC, pp. 515–524 (2014)

GR20. Goldreich, O., Rothblum, G.N.: Constant-round interactive proof systems
for AC0[2] and NC1. In: Goldreich, O. (ed.) Computational Complexity
and Property Testing. LNCS, vol. 12050, pp. 326–351. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-43662-9 18

GWZ22. Guan, J., Wichs, D., Zhandry, M.: Incompressible cryptography. In:
Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EURO-
CRYPT 2022, Part I, pp. 700–730. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-06944-4 24

HIKN08. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via
secure computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
393–411. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78524-8 22

HIMV19. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: Leviosa:
Lightweight secure arithmetic computation. In: CCS, pp. 327–344 (2019)

HV16. Hazay, C., Venkitasubramaniam, M.: On the Power of Secure Two-Party
Computation. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 397–429. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53008-5 14

HV18. Hazay, C., Venkitasubramaniam, M.: Round-optimal fully black-box zero-
knowledge arguments from one-way permutations. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 263–285. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 10

HVW20. Hazay, C., Venkitasubramaniam, M., Weiss, M.: The price of active secu-
rity in cryptographic protocols. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 184–215. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 7

HVW22. Hazay, C., Venkitasubramaniam, M., Weiss, M.: Your reputation’s safe
with me: framing-free distributed zero-knowledge proofs. IACR Cryp-
tol. ePrint Arch. 2022(1523) (2022). https://eprint.iacr.org/2022/1523 (to
appear at TCC 2023)

IK00. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: FOCS, pp.
294–304 (2000)

https://doi.org/10.1007/978-3-662-53641-4_14
https://doi.org/10.1007/978-3-662-53641-4_14
https://doi.org/10.1007/978-3-030-43662-9_18
https://doi.org/10.1007/978-3-031-06944-4_24
https://doi.org/10.1007/978-3-031-06944-4_24
https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-030-03807-6_10
https://doi.org/10.1007/978-3-030-45724-2_7
https://eprint.iacr.org/2022/1523

32 C. Hazay et al.

IK02. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation
via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S.,
Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002.
LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45465-9 22

IKO+11. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Effi-
cient non-interactive secure computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 23

IKOS07. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: STOC, pp. 21–30 (2007)

IKP+16. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.-H.: Secure
protocol transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9815, pp. 430–458. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53008-5 15

IPS08. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85174-5 32

IPS09. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00457-5 18

IW14. Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with
zero-knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
121–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54242-8 6

Kil88. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp.
20–31 (1988)

KOS18. Khurana, D., Ostrovsky, R., Srinivasan, A.: Round optimal black-box
“Commit-and-Prove”. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018.
LNCS, vol. 11239, pp. 286–313. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03807-6 11

KR08. Kalai, Y.T., Raz, R.: Interactive PCP. In: ICALP, pp. 536–547 (2008)
Nao91. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2),

151–158 (1991)
NR22. Nassar, S., Rothblum, R.D.: Succinct interactive oracle proofs: applications

and limitations. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptol-
ogy – CRYPTO 2022, Part I, pp. 504–532. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-15802-5 18

O’N10. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptol.
ePrint Arch. 2010(556) (2010). https://eprint.iacr.org/2010/556

OSV15. Ostrovsky, R., Scafuro, A., Venkitasubramanian, M.: Resettably sound
zero-knowledge arguments from OWFs - the (semi) black-box way. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 345–374.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 15

OSY21. Orlandi, C., Scholl, P., Yakoubov, S.: The rise of Paillier: homomorphic
secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-
X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 678–708. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 24

https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-54242-8_6
https://doi.org/10.1007/978-3-642-54242-8_6
https://doi.org/10.1007/978-3-030-03807-6_11
https://doi.org/10.1007/978-3-030-03807-6_11
https://doi.org/10.1007/978-3-031-15802-5_18
https://doi.org/10.1007/978-3-031-15802-5_18
https://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-662-46494-6_15
https://doi.org/10.1007/978-3-662-46494-6_15
https://doi.org/10.1007/978-3-030-77870-5_24

Black-Box Constructions of Short Zero-Knowledge Proofs 33

Pai99. Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 16

RR20. Ron-Zewi, N., Rothblum, R.D.: Local proofs approaching the witness
length (extended abstract). In: FOCS, pp. 846–857. IEEE (2020)

RRR16. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interac-
tive proofs for delegating computation. In: STOC, pp. 49–62. ACM (2016)

RS21. Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR
and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12827, pp. 687–717. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84252-9 23

WTS+18. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zkSNARKs without trusted setup. In: S&P, pp. 926–943 (2018)

XZZ+19. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct
zero-knowledge proofs with optimal prover computation. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 24

Yao86. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: FOCS, pp. 162–167 (1986)

ZLW+21. Zhang, J., et al.: Doubly efficient interactive proofs for general arithmetic
circuits with linear prover time. In: CCS, pp. 159–177 (2021)

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-84252-9_23
https://doi.org/10.1007/978-3-030-84252-9_23
https://doi.org/10.1007/978-3-030-26954-8_24

Your Reputation’s Safe with Me:
Framing-Free Distributed
Zero-Knowledge Proofs

Carmit Hazay1 , Muthuramakrishnan Venkitasubramaniam2,
and Mor Weiss1(B)

1 Bar-Ilan University, Ramat Gan, Israel
{Carmit.Hazay,Mor.Weiss}@biu.ac.il

2 Georgetown University and Ligero Inc., Washington, USA
mv783@georgetown.edu

Abstract. Distributed Zero-Knowledge (dZK) proofs, recently intro-
duced by Boneh et al. (CRYPTO‘19), allow a prover P to prove NP state-
ments on an input x which is distributed between k verifiers V1, . . . , Vk,
where each Vi holds only a piece of x. As in standard ZK proofs, dZK
proofs guarantee Completeness when all parties are honest; Soundness
against a malicious prover colluding with t verifiers; and Zero Knowledge
against a subset of t malicious verifiers, in the sense that they learn noth-
ing about the NP witness and the input pieces of the honest verifiers.

Unfortunately, dZK proofs provide no correctness guarantee for an
honest prover against a subset of maliciously corrupted verifiers. In par-
ticular, such verifiers might be able to “frame” the prover, causing honest
verifiers to reject a true claim. This is a significant limitation, since such
scenarios arise naturally in dZK applications, e.g., for proving honest
behavior, and such attacks are indeed possible in existing dZKs (Boneh
et al., CRYPTO‘19).

We put forth and study the notion of strong completeness for dZKs,
guaranteeing that true claims are accepted even when t verifiers are mali-
ciously corrupted. We then design strongly-complete dZK proofs using
the “MPC-in-the-head” paradigm of Ishai et al. (STOC‘07), providing
a novel analysis that exploits the unique properties of the distributed
setting.

To demonstrate the usefulness of strong completeness, we present sev-
eral applications in which it is instrumental in obtaining security. First,
we construct a certifiable version of Verifiable Secret Sharing (VSS),
which is a VSS in which the dealer additionally proves that the shared
secret satisfies a given NP relation. Our construction withstands a con-
stant fraction of corruptions, whereas a previous construction of Ishai
et al. (TCC‘14) required k = poly (t). We also design a reusable version
of certifiable VSS that we introduce, in which the dealer can prove an
unlimited number of predicates on the same shared secret.

Finally, we extend a compiler of Boneh et al. (CRYPTO‘19), who
used dZKs to transform a class of “natural” semi-honest protocols in
the honest-majority setting into maliciously secure ones with abort. Our
compiler uses strongly-complete dZKs to obtain identifiable abort.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 34–64, 2023.
https://doi.org/10.1007/978-3-031-48615-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_2&domain=pdf
http://orcid.org/0000-0002-8951-5099
http://orcid.org/0000-0002-4059-7628
https://doi.org/10.1007/978-3-031-48615-9_2

Framing-Free Distributed Zero-Knowledge Proofs 35

1 Introduction

Zero-Knowledge (ZK) Proofs, namely proofs that yield nothing but their valid-
ity, are an essential component of many cryptographic systems. Recently,
[BBC+19b] introduced a distributed model for ZK proofs which captures the
types of proof systems that appear in many existing application scenarios such as
anonymous messaging [CBM15], verifiable function secret sharing [BGI16], and
systems for privately computing aggregate statistics [CB17]. This distributed
model proved particularly suited for proving honest behaviour in Multi-Party
Computation (MPC) protocols [BBC+19b,BGIN19,BGIN20,BGIN21].

ZK Proofs. A standard ZK proof [GMR85] is a 2-party protocol between a
prover P and a verifier V. Both parties are Probabilistic Polynomial Time (PPT),
and have a joint input x. The prover’s goal is to convince V that x ∈ L for some
language L (i.e., a subset of strings). When L is an NP language, P is additionally
given a witness for the membership of x in L. A ZK proof guarantees the following
properties. (1) Correctness, meaning if x ∈ L and both parties honestly follow the
protocol, then V outputs accept (with high probability). (2) Soundness, namely
if x /∈ L then any (possibly malicious and computationally unbounded) P∗

can only cause V to accept x with small probability. (3) Zero Knowledge (ZK),
guaranteeing that even a (possibly malicious and computationally unbounded)
V∗ learns nothing from the execution, except that x ∈ L. In particular, V learns
nothing about the corresponding witness. This is formalized by requiring the
existence of a PPT simulator SimV∗ who on input x can simulate the entire
view of V∗ – consisting of x, the random coin tosses of V∗, and the messages it
received from the honest P.

Distributed ZK (dZK) Proofs. [BBC+19b] generalize standard ZK proofs to
a distributed setting with multiple verifiers V1, . . . ,Vk, where the input statement
x is distributed among them but no verifier knows x in full. (For example, x
could be a secret sharing of some secret, and each Vi holds a share).1 Parties
are connected via secure point-to-point channels as well as a broadcast channel.
In fact, our protocols have the additional feature that following the first round
in which the prover send a single message to each verifier, all communication is
over the broadcast channel and private point-to-point channels are not needed
(except in the first round).

The standard properties of completeness and soundness naturally extend to
the distributed setting, where completeness should hold when all parties are
honest, and soundness should hold against a cheating prover P∗ that colludes
with a subset of at most t verifiers. As for zero knowledge, in the distributed
setting one would generally wish to hide not only the witness w, but also the
parts of the input statement held by the honest parties. More specifically, assume

1 Various works have considered other models, e.g., when security is only computa-
tional, or when the input statement is known in full to all verifiers. These models are
discussed in Sect. 1.5, but similar to [BBC+19b] our focus is on information-theoretic
security when the input statement is distributed between the verifiers.

36 C. Hazay et al.

the input statement x is distributed between the verifiers, where each verifier
Vi holds an input piece x(i). Then we require that a subset T ⊆ [k] , |T | ≤ t
of possibly malicious verifiers learn nothing except

(
x(i)

)
i∈T

and the fact that
x ∈ L, in the sense that there exists a PPT simulator Sim that can simulate
their entire view in the protocol given only

(
x(i)

)
i∈T

.
Boneh et al. [BBC+19b] constructed such dZK proofs for NP whose commu-

nication is linear in the size of the verification circuit, and additionally presented
sublinear dZK proofs for structured languages. (See Sect. 1.5 for further details.)
A main feature of the dZKs of [BBC+19b] — which is crucial to their applica-
tions for designing efficient MPC protocols — is having sublinear communication
between the verifiers. Notice that while generic MPC protocols could be used to
achieve dZK, they would not generally have this feature (see Sect. 1.1 for further
details).

Several recent works [BBC+19b,BGIN19,BGIN20,BGIN21] have demon-
strated the usefulness of dZK proofs towards constructing maliciously-secure
MPC protocols, i.e., ones which guarantee correctness of the outputs and pri-
vacy of the inputs of the honest parties, even when some parties deviate from
the protocol specification. This is done by transforming an MPC protocol Π
with semi-honest security – namely whose security only holds when all parties
follow the protocol, though corrupted parties might still try to learn information
about the inputs of honest parties – into a maliciously secure protocol Π̃. The
high-level idea is to execute Π except for its final round (in which the outputs
are revealed), and use dZK proofs to prove honest behavior in this execution.2

In this context, “honest behaviour” of a party Pi roughly means that there exist
an input xi and random coins ri for which the messages that Pi sent to the
other parties are consistent with xi, ri, the messages Pi received from the other
parties, and Π. This is an NP statement (with witness xi, ri) which is distributed
between the parties Pj , j �= i because Pj knows (only) the messages exchanged
between Pi,Pj , and is known in full to Pi.

“Framing-Free” dZK Proofs. In the 2-party setting, the properties of stan-
dard ZK proofs capture all possible corruption models, namely no corruptions
(completeness), corrupt prover (soundness), or corrupt verifier (ZK). However,
the corresponding properties of dZK proofs do not capture all possible corrup-
tion models in the distributed setting. Indeed, there is no guarantee for an honest
P when the dZK is executed in the presence of maliciously corrupted verifiers,
and in particular, such corrupted verifiers could potentially frame the prover,
i.e., cause the proof of a correct claim to fail. This corruption model was not
explored in previous works on dZK proofs [BBC+19b], and in fact maliciously
corrupted verifiers can frame the prover in their constructions. We note that the
dZKs of [BBC+19b] do implicitly provide a partial guarantee in this case, since

2 More specifically, this paradigm applies to a class of natural protocols which guar-
antee, among other things, that privacy is preserved up to the final round even in
the presence of malicious corruptions; see the full version for further details.

Framing-Free Distributed Zero-Knowledge Proofs 37

P is able to identify cheating verifiers.3 However, the best one can do in this
case is to identify a pair of parties – namely P and one of the verifiers Vi – such
that at least one of them is corrupted, but it is impossible to determine which
one. In particular, one cannot deduce that x ∈ L, otherwise this would lead to
a successful soundness-violating cheating strategy for P colluding with a verifier
Vi: “sacrifice” Vi by causing an inconsistency between P and Vi, which will lead
the other verifiers to (falsely) conclude that x ∈ L.

A “framing-free” guarantee is desirable since such situations naturally arise
in applications of dZK, e.g., when using dZK proofs to prove honest behavior in
MPC protocols as discussed above, and more generally in distributed systems
over shared data. Indeed, when an MPC protocol Π is executed with a subset
T of corrupted parties, the dZK proof of an honest Pi, i /∈ T will be executed in
the presence of corrupted verifiers (namely, the parties in T). In previous works
applying dZK to prove honest behavior [BGIN20,BGIN21], the “solution” is to
have the prover identify a cheating verifier whenever the proof fails, and then dis-
qualify both parties from the next protocol execution. This “player elimination”
techniques is standard in protocol design (and can even be used to obtain guar-
anteed output delivery), but it gives no indication as to which of the eliminated
parties is corrupted. For an honest party who was eliminated from the execution
in this manner, the fact that the computation can be successfully completed
without it might provide little consolation.

In particular, a protocol in which framing is possible encourages attacks
where the adversary targets honest parties and disqualifies them, thus excluding
their inputs from the computation and consequently biasing the outcome. This
is of particular importance in settings – such as voting, auctions, and secure
aggregation – in which elimination harms the reputation of the eliminated party,
or when a biased outcome has severe consequences. Moreover, player elimination
is only useful when there are repeated executions (or multiple phases) of the
protocol, which is not the case in some of the application scenarios in which
framing arises (see the full version [HVW22] for a more detailed discussion).

Thus, “framing-free” dZK proofs are motivated not only by the goal of guar-
anteeing security against all possible corruption patterns, but also because such
attacks naturally arise in many application scenarios of dZK.

1.1 Our Contribution

We put forth a strong completeness notion for dZK proofs which guarantees
that honest provers cannot be framed. More specifically, we define t-strong com-
pleteness which guarantees that when the prover is honest and the verifiers hold
pieces of an x ∈ L then all honest verifiers accept the proof, even in the presence
of a subset of t maliciously-corrupted and computationally-unbounded verifiers.
In terms of communication, we distinguish between the proof generation phase

3 Roughly, this holds in their protocols because the verifiers do not have any private
coins, and P knows the entire input statement x.

38 C. Hazay et al.

in which the prover distributes the proof among the verifiers (with no commu-
nication between the verifiers), and the verification phase in which the proof is
verified. Our goal is for the total communication complexity during verification
to be independent of the computation size (ideally, polynomial in the number
of verifiers, the security parameter, and log |x|). We call such protocols verifica-
tion efficient. This feature is especially important when verifiers are lightweight
devices and stable communication between a large number of verifiers in not
available. A related attractive feature that our protocols provide (in certain set-
tings) is that verifiers require small space to process and verify the proofs. Our
protocols will have the added feature that all communication during verification
is only through broadcasts.

Strongly-Complete dZK Proofs. We construct strongly-complete dZK
proofs by employing the so-called “MPC-in-the-head” paradigm [IKOS07].
Specifically, we construct strongly-complete dZK proofs from an MPC proto-
col Π with t-privacy – namely, in which secrecy of the honest parties’ inputs
holds in the presence of t semi-honest corruptions – and t-robustness (which,
roughly, guarantees correctness of the honest parties’ outputs in the presence of
t malicious corruptions, see Definition 8).

Our construction is informally summarized in the following theorem, where
an unconditionally secure t-dZK is a dZK proof system with completeness, strong
completeness, soundness, and zero-knowledge (as informally defined above) in
the information-theoretic setting in the presence of t corruptions; L̂ for an NP-
language L consists of all robust encodings of x ∈ L (e.g., encoding x using
an error correcting code with good distance);4 and a dZK proof system is ver-
ification efficient if the total communication complexity during verification if
poly (k, κ, log |x|) where k denotes the number of verifiers and κ is a security
parameter. (See Theorem 5 for the formal statement.)

Theorem 1 (dZK from MPC-in-the-Head – Informal). Let t, k ∈ N

such that k > 6t + 2. Let L be an NP-language, and let Π be a perfectly cor-
rect, t-private and perfectly t-robust k-party protocol verifying membership in L̂.
Then assuming ideal coin-tossing, there exists a 2-round unconditionally-secure
verification-efficient t-dZK for L̂.

Moreover, the total proof length in our dZK proof system is qusilinear in the
size of the circuit verifying membership in L, and can be reduced to linear by
increasing the round complexity to 3. Furthermore, we define the ideal dZK func-
tionality and show that our constructions realize it (see the full version [HVW22]
for details).

4 Notice that the dZK proof is for input statements that are distributed between the
verifiers using a robust encoding. [BBC+19b] make the same assumption. The reason
to focus on such languages is because they show [BBC+19a, Sec. 6.3.2] limitations
on the existence of dZK proofs for languages that are not robustly encoded.

Framing-Free Distributed Zero-Knowledge Proofs 39

We note that while strong completeness can be obtained fairly easily in
the computational setting using standard tools such as commitments and signa-
tures, obtaining it in the information theoretic setting seems significantly harder.
Specifically, in the computational model the prover can commit to its messages
to the verifiers, and parties can then prove consistency with respect to these
commitments. (This is exactly the method used to obtain strong completenss
in the GMW compiler [GMW87].) Achieving strong completeness information
theoretically is much harder since the prover is not committed to its messages
to the verifiers.

Theorem 1 gives an alternative approach towards designing dZK proofs (even
without strong completeness) compared to previous works [BBC+19b], who
relied on fully-linear probabilistically-checkable proofs and fully-linear interac-
tive oracle proofs. One advantage of our approach is that the general construc-
tion of Theorem 1 can be instantiated with various MPC protocols to obtain
dZK proofs with different tradeoffs between the parameters. This is particu-
larly appealing since one could potentially leverage the major research effort
devoted towards optimizing MPC protocols, and employ it to obtain dZK proofs
whose parameters are optimized for specific applications. We demonstrate this
versatility of our approach by instantiating our general transformation with two
different MPC protocols, obtaining dZK proofs with different parameters.

The proof of Theorem 1 uses a novel analysis for MPC-in-the-head, exploiting
the distributed setting, as well as a novel protocol for batched verifiable secret
sharing. Both of these might be of independent interest. See Sects. 1.2, 3, and 4
for further details.

dZK Proof Systems Without Strong Completeness. As noted above, our con-
struction gives an alternative approach towards designing dZK proof systems. To
demonstrate this, we describe in the full version [HVW22] a scaled-down variant
of our construction without strong completeness (i.e., in the same security model
as that considered in [BBC+19b], and relying on the same assumption of ideal
coin tossing) with an improved corruption threshold. This gives an alternative
approach towards designing dZK proofs without strong completeness.

Theorem 2 (dZK Without Strong Completeness – Informal). Let t, k ∈
N such that k > 2t + 2. Let L be an NP-language, and let Π be a perfectly
correct, t-private and perfectly t-robust k-party protocol verifying membership
in L̂. Then assuming ideal coin-tossing, there exists a 2-round unconditionally-
secure verification-efficient t-dZK for L̂ without strong completeness.

dZK from Generic MPC Protocols. An alternative route towards design-
ing dZK protocols is to view dZK as an ideal functionality (see the full ver-
sion [HVW22] for further discussion of this functionality), and then use generic
fully-secure MPC protocols to instantiate it. In slightly more details, such a
functionality would take as input each verifier’s input piece, as well as all input
pieces and the witness from the prover. Then, it will check that: (1) for at least
k− t of the verifiers, the input pieces they provided are consistent with the input

40 C. Hazay et al.

pieces the prover provided; and (2) the input pieces define an instance in the rela-
tion. While this gives a generic mechanism for constructing strongly-complete
dZK proofs, unfortunately, it does not yield verification efficient dZKs. Indeed,
even when the most communication-efficient protocols (e.g., [DI06]) are used to
instantiate the ideal dZK functionaility, the total communication between the
verifiers will be proportional to the size of the circuit verifying the relation. In
contrast, in our protocol, following the initial proof generation phase, the com-
munication between the verifiers is independent of the circuit size. (See Sect. 1.5
for further details and comparison with generic MPC protocols.)

Applications. We demonstrate the usefulness of strong completeness by show-
ing several applications of dZK proofs in which strong completeness is crucial.

Verifiable Secret Sharing (VSS) and Extensions. A (robust) t-private
secret sharing scheme allows an honest dealer D to distribute a secret x between
a k parties P1, . . . ,Pk, such that any t parties learn nothing about x, but when
all parties come together they can reconstruct x even in the presence of t mali-
ciously corrupted parties. a Verifiable Secret Sharing (VSS) scheme additionally
guarantees soundness against a corrupted dealer colluding with t parties. Specif-
ically, it guarantees that the secret shares define some secret x∗ which the honest
parties will reconstruct regardless of the shares that the corrupted parties provide
during reconstruction. Ishai and Weiss [IW14] put forth the notion of Certifiable
VSS (cVSS) which additionally guarantees that x is in some NP language L
(and, when the dealer is corrupted, that x∗ ∈ L). They construct such schemes
based on zero-knowledge probabilistically checkable proofs of proximity, in which
t = kε for a small ε < 1.

We use strongly-complete dZK proofs to construct cVSS schemes, in which
the corruption threshold is “inherited” from the underlying dZK. Specifically,
using the dZKs of Theorem 1, we obtain t < (k − 2)/6. Very roughly, the high-
level idea is for the dealer to share x using a standard secret sharing scheme,
and then have all parties engage in a dZK proving that the input pieces held
by the parties share an x ∈ L. We note that strong completeness is essential for
obtaining correctness, which in VSS and cVSS is required to hold for an honest
dealer even if t parties are maliciously corrupted. Indeed, if the underlying dZK
does not have strong completeness then corrupted parties who actively cheat
during the dZK proof can cause it to fail, thus violating correctness.

We also introduce a reusable variant of cVSS, in which the dealer can prove
that x ∈ Li for a sequence of NP-languages Li. In particular, there is no bound
on the number of languages Li, which are determined (i.e., provided to the dealer
and all other parties) in an online fashion, and all membership claims are proven
with relation to the same secret x. We construct reusable cVSS schemes from
strongly-complete dZK proofs. See the full version [HVW22] for further details.

MPC with Identifiable Abort (IA-MPC). Aborts pose a major obsta-
cle in the malicious corruption setting, or even when parties are honest but
have poor network connections. Indeed, a deviating/crashed party could poten-
tially cause the entire computation to fail. The natural mitigation against such

Framing-Free Distributed Zero-Knowledge Proofs 41

“denial-of-completion” attacks is to support Identifiable Abort (IA), i.e., when
the executions fails to complete, the parties can (publicly) identify at least one
malicious/crashed party.

We use strongly-complete dZK proofs to transform a class of “natural” pro-
tocols that are secure in the semi-honest setting (in which even corrupted par-
ties follow the protocol) to protocols that guarantee security with identifiable
abort in the presence of malicious corruptions. This class of “natural” protocols
was introduced by [BBC+19b], who used dZK proofs without strong complete-
ness to transform such protocols into maliciously-secure protocols with (non-
identifiable) abort. Thus, our compiler shows that strong completeness can be
used to obtain identifiable abort. This result is summarized in the following
theorem (see the full version [HVW22] for the formal statement):

Theorem 3 (IA-MPC from Natural Protocols – Informal). Let t, k ∈ N

such that k > 6t + 3, and let Πnat be a natural k-party protocol computing a
function f in the presence of t semi-honest corruptions. Then assuming ideal
coin tossing, there exists a protocol Π which securely computes f with identifiable
abort in the presence of t malicious corruptions.

Our compiler is very similar to the compiler of [BBC+19b]. Their main obser-
vation is that dZK proofs can be used to replace the standard ZK proofs used
in GMW-style compilers [GMW87], and in fact seem to be a more natural tool
in this context. Indeed, the ZK proofs are used to prove honest behavior in an
execution of a semi-honest protocol, and this task exactly requires running a
zero-knowledge proof on a distributed input.

More specifically, the high-level idea of our compiler is to execute all rounds
of Πnat except the final round, then run dZK proofs attesting to the honest
behavior of all parties during this execution, before executing the final round
of Πnat to reveal the output. One notable property of our compiler is that the
compiler itself does not use any broadcasts. In particular, all broadcasted mes-
sages in Π are either broadcasts of Πnat or of the underlying dZK proofs. When
instantiated with our dZK proofs of Theorem 1, the number of broadcast bits
introduced by the dZK proofs could be as low as k2polylog (CC (Πnat)), where
CC (Πnat) denotes the communication complexity of Πnat. We note that the use
of broadcasts is inherent to obtaining identifiable abort [CL14]. Previous works
obtaining identifiable abort either built on specific maliciously-secure protocols
that use a broadcast channel for every multiplication gate, or increased the num-
ber of broadcasts to equal the number of multiplication gates. This includes the
generic compiler from [IOZ14] discussed next.

Our compiler gives an alternative, conceptually simple, approach towards
transforming protocols with semi-honest security into maliciously-secure proto-
cols with identifiable abort in the information-theoretic setting, compared to
an existing compiler of Ishai, Ostrovsky and Zikas [IOZ14]. These approaches
result in incomparable compilers. Specifically, the compiler of [IOZ14] works in
the correlated randomness setting, transforming any semi-honest secure protocol
into a maliciously-secure protocol with identifiable abort, by broadcasting every

42 C. Hazay et al.

message of the semi-honest protocol (and proving honest behavior with relation
to the broadcasted messages). Our compiler works only for “natural” protocols,
but uses much fewer broadcasts. See Sect. 1.5 and the full version [HVW22] for
further discussion and comparison of these compilers.

“Framing-Free” Proofs on Committed or Secret-Shared Data.
[BBC+19b] use dZK proofs to construct proofs on secret shared data. Spe-
cial cases of such proofs have been considered in several recent works, e.g.,
[BGI16,CB17]. Roughly, they allow a client to secret share a (potentially large)
input x among multiple servers, and then prove to the servers that x satisfies
various NP statements. The construction from dZK is conceptually simple: the
client plays the role of the dZK prover, and the servers play the role of the
verifiers. The client first shares x using a robust secret sharing scheme, and dis-
tributes the shares between the servers. The client and servers can then engage
in multiple dZK executions to prove various NP statements on x. Instantiating
this construction with our strongly complete dZK proofs yields “framing-free”
proofs on secret shared data, namely in which a subset of corrupted servers
cannot cause the proof of a true statement to fail. This strengthens the proofs
obtained in [BBC+19b] (based on dZKs without strong completeness), which do
not provide this guarantee.

1.2 Highlights of Our Techniques

In this section we highlight the main techniques used to obtain our results.

dZK Proofs from MPC-in-the-Head. Our dZK proofs are based on the
MPC-in-the-head paradigm, introduced by [IKOS07] in the context of construct-
ing (standard) ZK proofs. The high-level idea of the paradigm is that an MPC
protocol Π computing a predicate “x ∈ L” for some NP language L and some
public x (where the corresponding NP witness w is secret-shared between the
parties executing Π), can be used to design a ZK proof for the membership of
x ∈ L. Indeed, an honest execution of Π on x will result in output 1 if and only
if x ∈ L. Moreover, a main observation made in [IKOS07] is that verifying that
Π was honestly emulated – i.e., that the views of all parties participating in Π
are globally consistent – can be done by checking pairwise consistency of the
views. (The view of a party consists of its input, random coins tosses, and the
messages it received from other parties in the execution.) That is, if the set of
all parties’ views does not correspond to an honest execution of Π on x, then
there is a pair of parties whose views are inconsistent with each other.

This observation immediately gives rise to the following proof system: the
prover P emulates “in its head” the entire execution of Π on x (and the shares
of w), and commits to the views of all parties in this execution. The verifier
V then picks a pair of parties whose views P opens, and V accepts if these
views are pairwise consistent, and these parties output 1 in the execution. Thus,
soundness follows from the (perfect) correctness of Π, whereas if Π is private
against semi-honest corruptions then the proof is also ZK, because the verifier

Framing-Free Distributed Zero-Knowledge Proofs 43

learns only a pair of views in Π, and these reveal only two secret shares of the
witness w which, in turn, reveal no information about w.

The resultant proof system has a large soundness error, i.e., the probability
that V accepts false claims is large. [IKOS07] then show how to reduce the sound-
ness error by relying on a stronger correctness guarantee – known as robustness
– which holds even in the presence of malicious corruptions. Roughly, robust-
ness means that if x /∈ L then even maliciously-corrupted parties cannot cause
honest parties to output 1 in Π. In particular, while V might not open a pair
of inconsistent views during verification (since V opens only a small subset of
views), still robustness guarantees that cheating that occurred in the un-opened
views cannot “propogate” and cause honest parties to accept a false claim in
the execution. Consequently, if x /∈ L then the output reported in the honest
parties’ views which V opened will be 0, and so V will reject. This should be
contrasted with the basic construction described above – using Π that is only
secure against semi-honest corruptions – in which V rejects only if it opened a
pair of inconsistent views, namely the view of a corrupted party.

Novel Verification for MPC-in-the-Head in Distributed Settings. Our
dZK proofs employ the MPC-in-the-Head paradigm, using a novel verification
procedure that exploits the properties of the distributed setting.5 Specifically,
the proof is executed between a prover P that knows x and a corresponding NP
witness w, and k verifiers V1, . . . ,Vk, where each Vi holds a piece x(i) of the input
x (and P knows all input pieces). To simplify the presentation, we describe here
a simplified dZK proof in the correlated randomness model, in which an honest
party samples ahead of time a random string R = (R1, . . . , Rk) from a pre-
defined distribution D, and gives Ri to Vi. We explain below how to remove this
assumption. We stress that the final dZK proof (Fig. 2 in Sect. 4) is in the plain
model and does not use correlated randomness.

The dZK proof proceeds as follows. The correlated randomness consists
of (long) random masks rij for every pair of verifiers Vi,Vj , where Ri =
(rij)j �=i,j∈[k]. The prover emulates “in its head” a k-party protocol Π computing
the predicate

(
x(1), . . . , x(k)

) ∈ L as in the 2-party ZK proof described above.
However, instead of committing to the views, P sends the i’th view to Vi. The
parties then jointly execute the following verification procedure:

1. Each Vi checks local consistency of its view, namely that the input reported
in the view is x(i), and that the output of the ith party given this view is 1. If
the view is not locally consistent then Vi broadcasts a complaint against the
prover. Let C1 denote the set of verifiers that complained against the prover.

2. Each pair Vi,Vj check pairwise consistency of their views by comparing the
messages exchanged between parties i, j in Π.6 This pairwise consistency

5 See Sect. 1.5 for a comparison between our construction and other constructions
using this technique in the two-party and in other distributed settings.

6 The messages sent from party i to party j appear explicitly in the view of party j,
and the messages it sent to party i can be computed from its view.

44 C. Hazay et al.

check is done publicly, by having Vi,Vj broadcast the values to be compared,
masked using rij .

3. The prover broadcasts complaints against verifiers who broadcasted incorrect
messages in Step 2. Let C2 denote the set of verifiers against whome the prover
complained.

4. Finally, each verifier Vi determines its output as follows. If |C1 ∪ C2| > t, or
there exist i, j /∈ C1 ∪ C2 who broadcasted inconsistent messages in Step 2,
then reject. Otherwise, accept.

We note that while this describes the main steps in the dZK proof, the actual
construction is more involved, in several respects. First, to reduce the communi-
cation complexity, instead of sending in Step 2 all the messages exchanged in Π,
the verifiers send information-theoretic MACs of these values. More specifically,
the messages exchanged between i, j are interpreted as the of coefficients of a
univariate polynomial, and the MAC is the evaluation of this polynomial at a
random point (see Step 3 in Fig. 2). This requires the verifiers to jointly sample
a random element of a sufficiently large field. The resultant protocol therefore
uses an ideal coin-tossing functionality as in [BBC+19b] (and makes minimal
use of it). Second, by using MACs we can eliminate the correlated randomness
and have the prover provide random masks as part of the proof, and moreover
each mask will consist of a single field element. Since the random masks are
chosen before the MAC key is sampled, inconsistent views will, with overwhelm-
ing probability, result in inconsistent MACs, even when the prover chooses the
masks.

Finally, the input pieces held by the verifiers should constitute an encoding
of the underlying input x in some robust code, and the parties need to ver-
ify that their input pieces are indeed “close” to a valid encoding. This is done
using a standard technique for batch-testing of code membeship. Specifically,
the verifiers broadcast a random linear combination of the codeword symbols
they hold, which they also mask with a random codeword (masking is needed
to guarantee ZK). Soundness of this test has been studied in several previous
works [AHIV17,BBHR18,BCI+20] (and plays an important role in improving
the concrete efficiency of succinct ZK arguments). However, relying on the anal-
ysis directly in our distributed setting will not guarantee strong completeness
(only identifiable abort). We refine this soundness analysis to apply in the dis-
tributed verification setting while guaranteeing strong completeness. See Sect. 4
for further details and the full construction.

We note that the dZK proofs of [BBC+19b] also require the input pieces to
form a robust encoding, and they show [BBC+19a, Sec. 6.3.2] some limitations
on the existence of dZK proofs when the input statement is not robustly encoded,
at least when security should hold against collusions of the prover and verifiers,
as we consider in this work.

The Security Analysis. Proving security of our dZK proof is more com-
plex than in standard (in particular, 2-party) settings of MPC-in-the-Head,
and requires a novel analysis which combines techniques from the VSS liter-
ature. Intuitively, this is because while in the analysis of ZK proofs such as

Framing-Free Distributed Zero-Knowledge Proofs 45

those of [IKOS07] the verifier can safely reject if an inconsistency is detected,
we cannot immediately reject because inconsistencies might be due to corrupted
verifiers trying to “frame” an honest prover (and so rejecting in this case would
violate strong completeness). Thus, the strong completeness guarantee leads to
a much more intricate soundness analysis.

Proving strong completeness is fairly simple, and it follows from the fact that
all complaints arise from the corrupted parties. That is, either a corrupted party
falsely complaining that its view is not locally consistent, or a corrupted verifier
broadcasting an incorrect MAC in Step 2, causing the prover to complain against
it. Thus, we will have |C1 ∪ C2| ≤ t in Step 4, and all other parties’ views will
be pairwise consistent, so all honest verifiers will accept.

The soundness analysis, however, is much more involved. At a high level, it
proceeds by showing that if

(
x(1), . . . , x(k)

)
/∈ L then there exists a subset H of

parties which constitutes an honest majority in the execution of Π with input
pieces

(
x(1), . . . , x(k)

)
, and therefore their outputs in Π would be 0. Thus, the

checks performed in Step 4 would fail and all honest verifiers would reject. More
specifically, in the analysis we gradually eliminate verifiers (alternatively, parties
in Π, since there is a correspondence between the dZK verifiers and the parties
in Π) until we are left with the set H. We stress that unlike MPC applications
employing the “player elimination” technique, we do not actually eliminate any
verifier from the computation, but rather this “elimination” is only done in the
analysis. Moreover, an “eliminated” verifier is not necessarily corrupted – for
example, it might be an honest verifier who received an incorrect view from the
prover – but rather these are verifiers whose views in Π might not correspond
to honest strategies, and therefore cannot be relied on for verification.

More specifically, the set H is obtained as follows. First, since the verifiers
check that their input pieces are close to a valid codeword, if the test passes then
we are guaranteed that the input pieces of the honest verifiers are at most t-far
from the code, in the following sense. There exists a subset T, |T | ≤ t of honest
verifiers, and a valid codeword, such that the input pieces of all honest verifiers
i /∈ T are identical to the corresponding pieces of the codeword. (Intuitively, the
parties in T hold “incorrect” input pieces.) We then eliminate the verifiers in T .

Next, in the remaining set of ≥ k − t verifiers, there are at most t corrupted
verifiers (i.e., corrupted in the dZK), and we eliminate them as well. These
verifiers need to be eliminated because they cannot be relied on to honestly
check their views. In particular, they might not complain against the prover,
even if their output in Π is 0, or they might cheat in Step 2, sending messages
which are not actually consistent with their views. We note that the existence
of such corrupted verifiers in the dZK execution is also the reason that we need
to rely on robust MPC protocols even though we seemingly check all views in
Π (indeed, the views held by the corrupted verifiers are never checked). Finally,
we eliminate the (at most t) verifiers in C1 ∪ C2.

We thus remain with ≥ k − 3t honest verifiers, whose views are both locally
and pairwise consistent. Their views therefore correspond to an execution of
Π on

(
x(1), . . . , x(k)

)
with an honest majority (when k > 6t + 2), and so the

46 C. Hazay et al.

robustness of Π guarantees that the outputs of these parties must be correct.
(This description is a gross over simplification of the actual analysis, see Sect. 4
for further details, and for a clarification why we need k > 6t + 2 instead of
k > 6t.)

Finally, our verification procedure provides a strong ZK guarantee – veri-
fiers learn nothing beyond the view of the corresponding party in Π (whereas
in [IKOS07] the verifier learns multiple views).

Certifiable VSS (cVSS) and Reusable cVSS. Certifiable VSS (cVSS)
schemes follow naturally from strongly-complete dZK proofs, using a standard
robust secret sharing scheme. Specifically, in a t-robust secret sharing scheme,
reconstruction succeeds even if t parties provide incorrect shares. We note that
many standard VSS schemes employ robust secret sharing as a building block.
Moreover, as discussed in Sect. 1.2, robustly encoding the input seems necessary
in dZKs with security against coalitions of the prover and a subset of verifiers.

Our cVSS Scheme for an NP-language L consists of a dealer D and k
parties P1, . . . ,Pk. The dealer shares its secret x using the robust secret sharing
scheme, and distributes the shares among the parties. The parties then run a
“code membership” test to check that their shares are “close” to a valid secret
sharing of some secret. Then, the parties execute a dZK, in which Pi’s input
piece is its share, attesting to the fact that the shared secret is in L. If the
dZK fails then the parties revert to some fixed sharing of an arbitrary x∗ ∈ L.
Reconstruction is performed by simply running the reconstruction procedure
of the underlying secret sharing scheme (and correcting errors if necessary).
The strong completeness of the dZK guarantees that when the dealer is honest,
corrupted parties cannot “frame” the dealer during the dZK test. Since the code
membership test has a similar strong completeness guarantee, the cVSS is correct
(in the presence of t active corruptions).

Our cVSS scheme is incomparable to the cVSS of [IW14]. Specifically, the
communication during the verification part of their sharing phase (i.e., the part
corresponding to executing the code test and the dZK in our cVSS) is polylog-
arithmic in the total number of parties, and the total communication during
sharing is linear. In contrast, when instantiated with the dZK proofs of The-
orem 1, the communication of our cVSS scheme during sharing would be at
least quadratic. However, to contend with t corruptions, the number of parties
in the cVSS of [IW14] must be a (large) polynomial in t, whereas our cVSS
has k = O (t). Therefore, in many settings, our cVSS might have lower over-
all communication complexity due to the smaller number of parties it employs.
Moreover, our cVSS can be generalized to the reusable setting, as we now discuss.

Reusable cVSS. We generalize the notion of cVSS to allow the dealer to prove
multiple NP statements – which are determined in an online fashion – on the
same shared secret, using the same secret shares. In particular, the scheme now
includes a Prove phase that can be executed following the Sharing phase an
unlimited number of times. In each Prove phase the parties are given an NP

Framing-Free Distributed Zero-Knowledge Proofs 47

language L, and D is additionally given a corresponding witness, and the dealer
proves to the parties that the secret their shares encode is in L.

We note that several subtleties arise when defining reusability, and in par-
ticular, reusabe cVSS is not a strict strengthening of cVSS. The main reason for
this is that since during the Sharing phase the parties still do not know all the
NP languages which will be used during the Prove phases, we cannot generally
guarantee that the secret x which the shares will reconstruct to will be in all NP
languages (and in fact, it might be the case that there exists no such x). Instead,
binding only guarantees that when the Sharing phase terminates, even a mali-
cious dealer D∗ is committed to some secret x, but there is no further guarantee
on x. Binding additionally guarantees that D∗ cannot prove false claims about
x, namely if x /∈ L then an execution of the Prove phase with language L will
fail. This should be contrasted with standard cVSS which isn’t reusable, i.e., it
can be executed only for a single NP language L, but whose binding property
guarantees that the secret x which will be reconstructed, satisfies x ∈ L. Further
subtleties are discussed in the full version [HVW22].

Our reusable cVSS scheme operates similarly to the cVSS scheme described
above. Specifically, to share x the dealer secret shares it using a robust secret
sharing scheme, and the parties then run a code membership test on the shares.
Each Prove phase with NP language L consists of running a dZK for the claim
that the shares reconstruct to a secret in L, and reconstruction is by running
the reconstructor of the underlying secret sharing scheme.

1.3 Open Problems and Future Directions

Our work gives rise to many interesting questions in the context of dZK and
MPC-in-the-Head. First, we did not explore the possibility of obtaining more
efficient constructions for simple NP languages, e.g., with low degree. In par-
ticular, using an appropriate MPC instantiation, it might be possible to design
special-purpose dZKs for simpler languages, with sublinear communication com-
plexity and improved computational complexity. Round complexity is another
important complexity measure. Our construction achieves a 2-round dZK assum-
ing ideal coin-tossing, and leaves open the question of proving this is optimal,
or further improving the round complexity as in the computational setting for
related proof systems [AKP22]. Finally, it would be interesting to find further
applications of dZK proofs, and in particular of strongly-complete ones.

1.4 Paper Organization

In Sect. 2 we introduce basic preliminaries. In Sect. 3 we present our batch code
membership test, and in Sect. 4 we present our dZK proof construction. Due to
space limitations, we defer all proofs, as well as the description of our dZK appli-
cations and the ideal dZK functionality, and an extensive comparison between
dZK and VRS, to the full version [HVW22].

48 C. Hazay et al.

1.5 Related Works

Zero-Knowledge Proofs in Distributed Settings. The notion of ZK in distributed
settings has been extensively explored in a recent sequence of works [CBM15,
CB17,BBC+19b,BGIN20,BGIN21]. The motivation for such models is that they
present a useful abstraction that captures many scenarios naturally arising in
distributed computation. The first two works discussed how to embed distributed
ZK into real-world applications such as anonymous broadcast messaging practi-
cal at a large scale [CBM15], and a federated learning system, denoted by Prio,
with input certification to securely compute aggregate statistics [CB17]. The
latter system has been deployed in various real world scenarios. For instance,
Mozilla uses a modified version of Prio to privately collect web usage statis-
tics, and Apple and Google use Prio for their exposure notifications express
(ENX) system. Nevertheless, the model considered for both [CBM15,CB17] is
limited because they assume that the verifiers are semi-honest, and moreover
they only consider a specific functionality. On the other hand, their dZKs achieve
information-theoretic security.

Different settings have been considered in this context, depending on whether
the input statement is known in full to all verifiers (starting with the work
of [BD91], and more recently in, e.g., [GO07,YW22,BJO+22,AKP22]), or dis-
tributed between them (as in the distributed ZK proofs discussed below); and
whether the resultant scheme is information-theoretically, or only computation-
ally, secure while optimizing different parameters of the proof system.

Another related model is that of Verifiable Relation Sharing (VRS) [GIKR02],
which is similar to the model of dZK proofs considered in this work, in the
sense that the input statement is distributed between the verifiers, but dif-
fers from it because the prover chooses the statement and the verifiers’ shares
(whereas in dZK proofs the prover has no control over the input statement).
Works on VRS [GIKR02,AKP20,AKP22] consider both the information theo-
retic [GIKR02] and the computational setting [AKP20,AKP22], with progres-
sively improving corruption thresholds. Specifically, the VRS of [GIKR02] is for
k ≥ 6t, which the latter pair of works improved by moving to the computational
setting. More specifically, [GIKR02] obtain a 2-round perfectly-secure VRS pro-
tocol whose communication complexity (and in particular, the communication
between the verifiers) scales with the circuit size. This protocol can be made
to be verification efficient (i.e., where the communication between the verifiers
is independent of the circuit size) using the MAC-based verification techniques
used in our dZK proofs. This requires coin tossing, and also relaxing security to
statistical. [AKP22] obtain a 2-round VRS with computational security against
t < (k − 1)(1/2 − ε) for an arbitrarily small ε > 0, assuming non-interactive
commitments (their protocol is not verification-efficient).7 Their result extends

7 [AKP22] also obtain a fully information-theoretically secure VRS assuming ideal
non-interactive commitments, as well as a computationally sound and statistically
ZK (statistically sound and computationally ZK, respectively) VRS based on compu-
tationally binding and statistically hiding (statistically binding and computationally
hiding, respectively) non-interactive commitments [App22].

Framing-Free Distributed Zero-Knowledge Proofs 49

to any single input functionality, resolving the round complexity of such func-
tionalities. (As noted in Sect. 1.3, the round complexity of dZK – which is not a
single input functionality – is not yet resolved for optimal thresholds.)

It is instructive to note that this difference in who chooses the input state-
ment makes VRS and dZK incomparable. Indeed, dZK can be used to prove
correctness “after the fact” (namely, after the parties already have their inputs
fixed), while in VRS the prover chooses the inputs. Therefore, when used in
settings when parties already hold their inputs, VRS necessitates some exter-
nal mechanism for verifying consistency of the parties’ inputs, and the inputs
provided by the prover.8 On the other hand, both primitives can be useful in
constructing similar applications, such as the certified VSS primitive discussed
above. We note that while VRS can also be used to obtain IA-MPC, the con-
struction from dZK is conceptually simpler and more efficient (only additively
increases the round and communication complexities). Using VRS complicates
the protocol (as it requires sending the protocol messages as part of the VRS),
and also increases the round and communication complexities by a multiplica-
tive factor that grows with the respective complexities of the underlying VRS.
See the full version [HVW22] for further discussion of the connection between
the two primitives.

Distributed Zero-Knowledge Proofs. Out of the multitude of distributed models
for ZK, the focus of this work is on the “distributed zero-knowledge” (dZK)
proofs presented in [BBC+19b]. In dZK, the input statement is distributed
between the verifiers (where no verifier knows it in full), and security is uncon-
ditional. [BBC+19b] consider two possible corruption models in the context of
soundness: a malicious prover interacting with honest verifiers (“setting I”), and
a malicious prover colluding with a subset of verifiers (“setting II”). (In this
work we consider only the latter corruption model.) They design dZK systems
based on fully-linear probabilistically checkable proofs or fully-linear interactive
oracle proofs. Specifically, assuming ideal coin tossing, they construct dZKs for
“low-degree languages” in which the communication and round complexities are
logarithmic in the size of the statement.

Assuming ideal coin-tossing, they also provide a 2-round construction for
arbitrary circuits in which the communication complexity is proportional to the
circuit size, and ZK (soundness, respectively) holds against t corrupted verifiers
(t − 1 corrupted verifiers colluding with the prover, respectively), where k > 2t.
We note that their constructions do not achieve strong completeness. In the full
version we adapt our techniques to obtain a 2-round dZK scheme (assuming ideal
coin tossing) without strong completeness with ZK (soundness, respectively)
against t corrupted verifiers (t corrupted verifiers colluding with the prover,
respectively) for k > 2(t + 1), where the communication complexity is quasi-
linear in the circuit size, and can be reduced to linear with one additional round.

8 In the computational setting one can use standard tools such as commitments to
help resolve disputes between parties, but in the information theoretic setting this
seems to require a more sophisticated dispute-resolution sub-protocol.

50 C. Hazay et al.

See the full version [HVW22] for further details and comparison with the results
of [BBC+19b].

Following the formalization of [BBC+19b], several follow-up works [BGIN19,
BGIN20,BGIN21] explored the applicability of dZKs in the context of MPC,
starting with [BGIN19] that focused on the three-party setting with an honest
majority. This simpler case excludes the corruption model of a prover colluding
with a verifier, and therefore only requires a simpler dZK. Building on [BGIN19],
the protocol introduced in [BGIN20] works in the honest majority setting for a
constant number of parties by applying the sublinear dZK from [BBC+19b].
[BGIN21] extends the techniques from [BGIN20] to the dishonest majority set-
ting with preprocessing.

dZK as an Ideal Functionality. As mentioned before, our notion of dZK can be
specified as an ideal functionality, and such a functionality can be realized gener-
ically using a fully secure MPC protocol against active adversaries. However, all
these works will result in communication that is proportional to the circuit size
between the verifiers, so they are not verification efficient.

MPC-in-the-head is a powerful technique, originally introduced in [IKOS07]
as a novel approach towards designing zero-knowledge proofs, based on MPC
protocols. Following this seminal work, this approach has been improved and
optimized [GMO16,AHIV17,CDG+17,KKW18,BFH+20,GSV21].

Comparison With Our MPC-in-the-Head Construction. Our novel
verification technique for the distributed setting has several advantages over
MPC-in-the-head techniques used in the 2-party setting. First, it does not require
commitments, and in particular gives information-theoretic security. Commit-
ments are not needed because sending the views in Π to the verifiers effectively
commits the prover to these views (at least, to the ones given to honest verifiers).
Moreover, usually (e.g., this is the case in [IKOS07]) the soundness error depends
on the number of parties. Indeed, the soundness error depends on the size of the
challenge space, namely the number of possible subsets of views which the veri-
fier opens, where obtaining negl (s) soundness error requires opening Ω (s) views.
Since a single verifier receives all the opened views, the privacy parameter of the
system, and consequently the total number of parties, increases proportionally
to s, and the communication complexity of Π (i.e., the view size) increases
accordingly. In contrast, in our verification procedure all views are simultane-
ously checked, but each verifier sees a single view. Thus, the privacy parameter,
and the total number of parties in Π, is independent of the security parameter.
Instead, the soundness error is roughly proportional to the ratio between the
communication complexity of Π and the size of the field used to generate the
MACs. Obtaining negl (s) soundness error thus requires the field size to be super-
polynomial in s and the communication complexity CC (Π) of Π. Therefore, the
overall communication in Step 2 (Sect. 1.2) would be only polylogarithmic in s.

Comparison With Other MPC-in-the-Head Constructions in a
Distributed Setting. [AKP22] employ the MPC-in-the-head paradigm in the
distributed computational setting. Similar to [IKOS07], the prover in their con-
struction commits to the views in the MPC. However, instead of opening a subset

Framing-Free Distributed Zero-Knowledge Proofs 51

of views (and checking their consistency), [AKP22] exploit the distributed setting
to simultaneously check consistency of all views. Nonetheless, their method of
doing so differs significantly from ours. Specifically, they check local consistency
of each view (roughly, verifying that the party honestly generated its messages
given its input and randomness), by running an appropriate MPC with a “com-
mittee” (i.e., a subset) of the parties. In contrast, we check pairwise consistency
between views by revealing a view in full to a single party and have the parties
compare their messages in the clear (i.e., without any MPC computation). We
are thus able to avoid using commitments and get information-theoretic security.

Identifiable Abort MPC (IA-MPC). Secure computation in the dishonest
majority setting has a significant limitation: it inherently cannot prevent even
a single deviating party from causing the protocol to fail [Cle86]. While guar-
anteed output delivery is possible when there is an honest majority, aborts still
create substantial obstacles. In particular, obtaining guaranteed output delivery
often incurs a large overhead in rounds and communication complexity due to
the player elimination technique. A natural solution to the problem of parties
repeatedly failing the protocol is to support identifiable abort. That is, if the
protocol fails to complete, it must provide a method to (publicly) identify at
least one malicious/crashed party. Identifying cheaters is highly non-trivial for
concretely efficient protocols [IOZ14,SF16,BOS16,CFY17,BOSS20,BMMM20,
Bra21,SSY22] since the parties must reach consensus on the cheater’s identity.
This property is very useful for deterring malicious behavior; in particular, when
penalties are used against malicious parties, as is the case with smart contracts
that run on distributed ledgers and realize a bulletin board.

Amongst these works, only [IOZ14] introduces a generic compiler from any
semi-honestly secure MPC protocol which uses correlated randomness into a
similar protocol which is secure with identifiable abort against malicious adver-
saries. This compiler works by broadcasting each semi-honest message, together
with a zero-knowledge proof of consistency with that party’s committed input
and correlated randomness obtained from the setup phase. It therefore increases
the broadcast complexity of the semi-honest protocol proportionally to the size
of the computation. More recent works (e.g., [BOS16,SF16,BOSS20]) on identifi-
able abort have refined this approach but the overall communication complexity
of these approaches is Ω(κ · |C|) to generate correlated randomness in the offline
phase, and Ω(|C|) in the online phase, where κ the (computational) security
parameter and |C| is the circuit size. While the more recent works achieve iden-
tifiable abort property for specific protocols (e.g., SPDZ-type protocols), the
work of [IOZ14] presents a generic compiler for any semi-honest protocol in the
correlated-randomness model. In this work, we use dZKs to provide a compiler
in similar vein to achieve identifiable abort, but for a class of protocols in the
honest-majority setting.

52 C. Hazay et al.

2 Preliminaries

Notation. F denotes a finite field. A language L over F is a subset L ⊆ F
∗. For

a pair of vectors v, u ∈ F
k, we denote their Hamming distance by d (u, v) =

|{i : ui �= vi}|. We associate with a code C ⊆ F
k an encoding procedure Enc and

a decoding procedure Dec such that for every x, Dec (Enc (x)) = x. We will also
allow for encoding to be randomized (this would be useful for our applications
of dZK). We use PPT to denote probabilsitic polynomial time computation. For
a distribution D, sampling according to D is denote by X ← D, or X ∈R D.
For a pair of random variables X,Y , we use X ≡ Y to denote that X,Y are
identically distributed. For random variables X and Y over a finite domain Ω,
the statistical distance between them is defined as

SD (X,Y) =
1
2

∑

w∈Ω

∣
∣ Pr[X = w] − Pr[Y = w]

∣
∣.

X and Y are ε-statistically close if their statistical distance is at most ε. Ensem-
bles {Xs}s , {Ys}s are statistically close, denoted Xs ≈ Ys, if there exist an
ε(s) = negl (s) such that Xs, Ys are ε (s)-close for every s.

The Ideal Coin-Tossing Functionality. For modularity, our construction will
employ an ideal implementation of coin-tossing, a standard primitive that gen-
erates unpredictable, public randomness.

Coding Notation. For a code C ⊆ F
k and vector v ∈ F

k, denote by d(v, C) the
minimal distance of v from C, namely d (v, C) = minu∈C d (v, u), and denote
by Δ(v, C) the set of positions in which v differs from such a closest codeword
(in case of ties, take the lexicographically first closest codeword). We further
denote, for a vector set V ⊆ F

k and a code C, Δ(V, C) =
⋃

v∈V {Δ(v, C)}, and
denote by d(V,C) the minimal distance between a V and the code C, namely
d(V, C) = minv∈V {d(v, C)}. Our constructions will employ robust codes which,
intuitively, are error correcting.

Definition 1 (Robust Code). A code C ∈ F
k is (ε, t)-robust if for every u ∈ C

and for every v ∈ F
k such that d (u, v) ≤ t, Pr [Dec (u) = Dec (v)] ≥ 1 − ε. C is

perfectly t-robust if it is (0, t)-robust.

Distributed Inputs, Distributed Relations, and Distributed Languages. Let n ∈ N

be a length parameter, F be a finite field, and C ⊆ F
k be a robust code with

encoding procedure Enc and decoding procedure Dec. The following notions are
defined for a fixed n, but naturally extends to a family of length parameters
by using families of codes. For an input x ∈ F

n, a corresponding k-distributed
input X ∈ F

k×n is a matrix such that for every i ∈ [n], the i’th column X[i] of
X satisfies xi = Dec (X[i]) (intuitively, the i’th column of X encodes the i’th
symbol xi of x, possibly with some errors).9 We will write X =

(
x(1), . . . , x(k)

)
,

9 Notice that if Enc is randomized then x might have several corresponding k-
distributed inputs X.

Framing-Free Distributed Zero-Knowledge Proofs 53

where for every i ∈ [k], the input piece x(i) is the i’th row of X (i.e., it is the list
of i’th symbols in the codewords encoding x1, . . . , xn).

Definition 2 (Distributed Languages and Relations). For a language L ⊆
F

n over F, the corresponding k-distributed language L̂C over F with relation to
C is defined as

L̂C =
{

X =
(
x(1), . . . , x(k)

)
: (x1, . . . , xn) ∈ L,

where xi = Dec (X[i]) for all 1 ≤ i ≤ n} .

For an NP-relation R = R (x,w) ∈ F
n × F

∗ over F, the corresponding k-
distributed relation R̂ with relation to C is defined as

R̂C =
{((

x(1), . . . , x(k)
)

, w
)

: ((x1, . . . , xn) , w) ∈ R,

where xi = Dec (X[i]) for all 1 ≤ i ≤ n} .

We call L̂C , R̂C the k-distributed language and the k-distributed relation
that correspond to L,R, respectively. When C is clear from the context, we
omit it and simply write L̂, R̂. For a (distributed) NP-relation R, we denote
L (R) = {x : ∃w s.t. (x,w) ∈ R}.

2.1 Distributed Zero-Knowledge (dZK) Proofs

Following Boneh et al. [BBC+19b], we consider a distributed setting in which a
single prover P interacts with k verifiers V1, . . . ,Vk. Each verifier Vi holds a piece
x(i) ∈ F

∗ of a distributed input
(
x(1), . . . , x(k)

)
encoding some input x ∈ F

∗, and
the prover’s goal is to convince the verifiers that

(
x(1), . . . , x(k)

) ∈ L̂ for some
language L. We assume that

(
x(1), . . . , x(k)

)
is known to the prover. When L

is an NP language, the prover additionally knows a witness w for the fact that
x ∈ L. The parties can communicate over point-to-point channels, as well as a
broadcast channel.

Similar to standard (i.e., 2-party) ZK proofs, the system should satisfy com-
pleteness (when all parties are honest), zero knowledge (against a subset of cor-
rupted verifiers), and soundness. The two latter properties have several possible
interpretations in the distributed setting, as we now explain.

In terms of ZK, following [BBC+19b] we require that a subset of corrupted
verifiers learn nothing on the NP witness, as well as on the input pieces of
the honest verifiers. This is formalized by requiring, as in the standard setting,
the existence of an efficient simulator that can simulate the corrupted verifiers’
views given only their input pieces. This provides a strong ZK property which
is meaningful also for languages and relations in P . There are also two possible
interpretations of the soundness property. We choose to consider the stronger
requirement of soundness against a corrupted prover colluding with a subset of
verifiers, namely for

(
x(1), . . . , x(k)

)
/∈ L̂, the honest verifiers should reject with

54 C. Hazay et al.

high probability. ([BBC+19b] consider also a weaker notion in which soundness
is only required to hold when all verifiers are honest.)

Another concern naturally arises in this distributed setting: that of corrupted
verifiers trying to “frame” an honest prover, namely trying to cause the honest
verifiers to reject a true claim

(
x(1), . . . , x(k)

) ∈ L̂. We require that they succeed
only with small probability. This property, which we call strong completeness,
was not required in the distributed model of [BBC+19b] (and their dZK proofs
do not obtain it), but will be needed for the applications. This discussion is
summarized in the following definition:

Definition 3 (Distributed Zero-Knowledge Proofs). Let R̂ = R̂((
x(1),

. . . , x(k)
)
, w

)
be a k-distributed relation over a finite field F. A k-verifier

(εp, εr, tp, tr) distributed Zero-Knowledge proof ((εp, εr, tp, tr)-dZK) Πdist for Rk

consists of a prover P and verifiers V1, . . . ,Vk satisfying the following:

– Syntax. The input of each Vi is an input piece x(i), and the input of P is(
x(1), . . . , x(k)

)
and a witness w such that

((
x(1), . . . , x(k)

)
, w

) ∈ R̂.10 The
parties interact in rounds over point-to-point channels and a broadcast chan-
nel, where the messages sent by a party in round i are determined given a
next-message function, and depend on its input, randomness, and messages
it received in previous rounds. The protocol terminates after a fixed number
of rounds, and each verifier outputs either accept or reject, based on its view
(which consists of its input and the messages it received throughout the exe-
cution).

– Completeness. For every
(
x(1), . . . , x(k), w

) ∈ R̂, when all parties are honest
then all verifiers accept in the execution of Π on

((
x(1), . . . , x(k)

)
, w

)
with

probability 1.
– (εr, tr)-Strong Completeness. For every

(
x(1), . . . , x(k), w

) ∈ R̂, in an exe-
cution of Π on

((
x(1), . . . , x(k)

)
, w

)
with an honest prover, except with prob-

ability at most εr all honest verifiers accept, even if tr verifiers are corrupted,
computationally unbounded, and may arbitrarily deviate from the protocol.

– (εr, tr)-Soundness. For every (possibly malicious and unbounded) prover P∗,
and any

(
x(1), . . . , x(k)

)
/∈ L̂

(
R̂

)
, even if a subset C of at most tr verifiers

are maliciously corrupted, computationally unbounded and colluding with P,
then except with probability εr all honest verifiers reject in the execution of
Πdist on input

(
x(1), . . . , x(k)

)
with prover P∗ colluding with the verifiers in

C.
– (εp, tp)-Distributed Zero Knowledge (dZK). For every adversary A cor-

rupting a subset T of at most tp verifiers, there exists a PPT simulator Sim

such that for every
((

x(1), . . . , x(k)
)
, w

) ∈ R̂, it holds that

SD

(
Sim

((
x(j)

)

j∈T

)
,ViewΠ,A

((
x(1), . . . , x(k)

)
, w

))
≤ εp

10 We note that w may also be the empty string, e.g., if ̂R corresponds to a language
in P.

Framing-Free Distributed Zero-Knowledge Proofs 55

where ViewΠ,A
(
x(1), . . . , x(k), w

)
denotes the view of the adversary A in an

execution of Π with an honest prover on inputs
(
x(1), . . . , x(k), w

)
.

The following notation will be useful.

Notation 1 (t-dZK). We say that a protocol between a prover P and k veri-
fiers is a t-dZK proof, if it is a (negl (s) , negl (s) , t, t)-dZK proof, where s is a
statistical security parameter.

Next, we describe a special structure of dZK proofs, which the systems con-
structed in this work satisfy. Specifically, the execution is divided into a proof
generation phase in which the prover sends a proof share to each verifier, and
a verification phase in which the proof shares are verified. We are particularly
interested in dZK proofs in which the communicated during the verification
phase is independent of the size of the verification circuit.

Definition 4. We say that a dZK proof is verification efficient if it is a dZK
between the prover and k verifiers, whose execution can be divided into a proof
generation phase in which the prover sends a message to each verifier, and a
verification phase in which all parties interact, and moreover, the communication
complexity during the verification phase is poly (k, s, log n), where s is a statistical
security parameter, and n is the input length. In particular, the communication
complexity during verification is independent of the size of the computation.

Remark 1 (Round Complexity of dZK Proofs). Our dZK proofs are designed in
the coin-tossing hybrid model, in which parties can obtain truly random coins
by calling an ideal coin-tossing oracle. Calls to this oracle are done separately
from communication rounds, namely parties do not exchange any messages in
rounds during which the oracle is called. When counting the round complexity
of a dZK proof, the rounds in which the oracle is called are not counted towards
the round complexity of the system. Thus, if the coin-tossing oracle is replaced
with a secure MPC implementation of coin-tossing, the round complexity of the
resultant system will be the sum of the round complexity of the dZK and of the
secure coin-tossing.

2.2 Secure Multi-Party Computation (MPC) Protocols

In this section we set some notation and terminology relating to MPC protocols,
which will be used in subsequent sections.

Let Π be an MPC protocol between parties P1, . . . , Pk. The view Viewi of
party Pi consists of its input, random coin tosses, and all the messages it received
throughout the protocol execution.

Definition 5 (Pairwise Consistent Views). a pair of views Viewi,Viewj of
parties Pi, Pj in an MPC protocol Π is pairwise consistent if the outgoing mes-
sages from Pi to Pj implicit in Viewi are identical to the incomming messages
from Pi to Pj reported in Viewj, and vice versa.

56 C. Hazay et al.

Definition 6 (ε-Correctness). We say that a k-party protocol Π realizes a
deterministic k-party functionality f

(
x(1), . . . , x(k)

)
with ε-correctness if for

every x(1), . . . , x(k),

Pr
[
∃i ∈ [k] : yi �= f

(
x(1), . . . , x(k)

)]
≤ ε

where yi denotes the output of Pi in Π.
We say that Π is perfectly correct if it is ε-correct for ε = 0.

Definition 7 ((ε, t)-Privacy). Let 1 ≤ t < k. We say that a protocol Π real-
izing a k-party functionality f is (ε, t)-private if for every subset C ⊂ [k] of size
|C| ≤ t there exists a PPT simulator SimC such that for every x(1), . . . , x(k),

SD

(
ViewC

(
x(1), . . . , x(k)

)
,SimC

({
x(i)

}

i∈C
, f

(
x(1), . . . , x(k)

)))
≤ ε

where ViewC

(
x(1), . . . , x(k)

)
denotes the joint view of the parties in C (including

their inputs, random coin tosses, and the messages they received) in a semi-
honest execution of Π in which the parties have inputs x(1), . . . , x(k).

We say that Π is perfectly t private if it is (0, t)-private.

Definition 8 ((ε, t)-Robustness). Let f be a k-party functionality whose out-
puts are in {0, 1}, and let 1 ≤ t < k. We say that a protocol Π realizing f is
(ε, t)-robust if for every subset C ⊂ [k] of size |C| ≤ t and for every x(1), . . . , x(k),
the following holds. If there exists no x(1′), . . . , x(k′) such that: (1) x(i) = x(i′)

for every i /∈ C, and (2) f
(
x(1′), . . . , x(k′)) = 1, then except with probability ε,

all parties i /∈ C output 0 in an execution of Π in which the honest parties have
inputs

{
x(i)

}
i/∈C

, even if the parties in C are maliciously corrupted, colluding,
and computationally unbounded.

We say that Π is perfectly t robust if it is (0, t)-robust.

3 Checking Membership in a Robust Code

In this section, we describe and analyze a batch code membership test. As we
show in the full version [HVW22], this test yields a batched Verifiable Secret
Sharing (VSS) scheme – which allows the dealer to share multiple secrets simul-
taneously – in which the complexity of verifying the shares is independent of the
batch size. First, we establish some notations.

Our test pertains to Reed-Solomon (RS) codes, defined next. We recall that
a [k, δ, d] code refers to a linear code over some underlying field F where k is
block length, δ is the message length (dimension) and d is the minimal distance.

Definition 9 (Reed-Solomon Code). For positive integers k, δ, finite field F,
and a vector η = (η1, . . . , ηk) ∈ F

k of distinct field elements, the code RSF,k,δ,η is
the [k, δ, k−δ+1] linear code over F that consists of all k-tuples (p(η1), . . . , p(ηk))
where p is a polynomial of degree < δ over F.

Framing-Free Distributed Zero-Knowledge Proofs 57

It will be convenient to view m-tuples of codewords in a linear code L as
codewords in an interleaved code Lm, formally:

Definition 10 (Interleaved Code). Let L ⊂ F
k be a [k, δ, d] linear code over

F. We let Lm denote the [mk,mδ, d] (interleaved) code over F whose codewords
are all k × m matrices U such that every column U [i] of U satisfies U [i] ∈ L.
For U ∈ Lm and j ∈ [k], we denote by Uj the jth symbol (row) of U .

Definition 11 (Encoded Message). Let L = RSF,k,δ,η and ζ = (ζ1, . . . , ζ�)
be a sequence of distinct elements of F for
 ≤ δ. For u ∈ L we define
the message Decζ(u) to be (pu(ζ1), . . . , pu(ζ�)), where pu is the polynomial (of
degree < δ) corresponding to u (i.e., pu (x) =

∑δ−1
i=0 uix

i). For U ∈ Lm

with columns U [1], . . . , U [m] ∈ L, we let Decζ(U) be the length-m
 vector
x = (x11, . . . , x1�, . . . , xm1, . . . , xm�) such that (xi1, . . . , xi�) = Decζ(U [i]) for
i ∈ [m]. Finally, when ζ is clear from the context, we say that U encodes x if
x = Decζ(U).

Private (Interleaved) RS Codes. We will in fact use a private variant of the
(interleaved) RS code. Intuitively, in a t-private code encoding is randomized,
and any subset of t codeword symbols reveals no information about the encoded
message (when the codeword was randomly generated). In particular, privacy
requires a randomized encoding procedure Enc. We will sometime explicitly state
the randomness r used for encoding, denoted by Enc (·; r). Formally,

Definition 12 (Private Code). Let t, k ∈ N, and ε ∈ [0, 1]. A code C ⊆ F
k

with a randomized encoding procedure Enc is (ε, t)-private if for every x, x′, and
every subset I ⊆ [k] of size |I| ≤ t, it holds that SD (Enc (x) |I ,Enc (x′) |I) ≤ ε,
where Enc (x) |I denotes the restriction of Enc (x) to the coordinates in I, and the
distance is over the randomness used to encode x, x′. We say that C is perfectly
t-private if it is (0, t)-private.

Intuitively, to guarantee that the RS codeword reveals no information about
the underlying secret, we rely on a randomized version of the code which con-
catenates the message with randomness before encoding it. Specifically, we use
the following private version of RS codes (for our purposes,
 = 1 suffices; but
the notion easily extends to larger
).

Definition 13 (Randomized Reed-Solomon (RRS) Code). For positive
integers k, δ, finite field F, and a vector η = (η1, . . . , ηk) ∈ F

k of distinct field
elements, the code RRSF,k,δ,η is defined by the following encoding and decoding
procedures.

– Enc is a PPT procedure that on input x ∈ F samples r ← F
δ−1 and applies

the encoding procedure of the RS code RSF,k,δ,η (Definition 9) to (x, r). That
is, it computes (p(η1), . . . , p(ηk)) where p (y) = x +

∑δ−1
i=1 riy

i.
– Dec is a deterministic procedure that on input a purported codeword c ∈ F

k

applies the decoding procedure of the RS code RSF,k,δ,η and (if decoding suc-
ceeds) outputs the first symbol of the decoded message.

58 C. Hazay et al.

We will need the following simple fact regarding the RRS code, which follows
from the properties of Shamir’s secret sharing.

Fact 31 (RRS is Robust and Private). For every positive integers k, δ such
that k > 3 (δ − 1), any finite field F, and any vector η = (η1, . . . , ηk) ∈ F

k of
distinct field elements, the code RRSF,k,δ,η is (0, δ − 1)-private and (0, δ − 1)-
robust.

Moreover, the code is (0, δ − 1)-private for any k ≥ δ.

Batch Verification of RS Codewords. We describe a simple procedure for batch
verification of membership in the (randomized) RS code, namely membership in
the Interleaved RS (IRS) code RSm

F,k,δ,η. First, we recall a Lemma from [BCI+20]
regarding IRS codes.

Lemma 32 [BCI+20, Theorem 1.2] Let L = RSF,k′,δ,η be a Reed-Solomon code
with minimal distance d = k′ − δ + 1 and e a positive integer such that e < d/2.
Suppose d(U ′, Lm) > e. Then, for a random w∗ in the column-span of U ′, we
have Pr[d(w∗, L′) ≤ e] ≤ k′/|F|.

The IRS Test

Let L = RSF,k,δ,η and δ = t+ � − 1. The IRS test is executed between a prover
P and k verifiers V1, . . . , Vk. Let x ∈ F

�×m (we think of x as a batch of m
length-� secrets), and let U ∈ Lm such that Decζ(U) = x. In the protocol,
P has input U , and each verifier Vi has as input the ith row Ui of U . The
protocol proceeds as follows.

1. P samples a random vector rb ∈ F
� and a random codeword U∗ ∈ L such

that Decζ(U
∗) = rb. It sends U∗

i to Vi.
2. The verifiers call Fcoin to obtain a random r ∈R F

m.
3. Each verifier Vi computes wi =

∑m
j=1 rj · Ui,j + U∗

i and broadcasts wi.
4. Denote w = (w1, . . . , wk). The verifiers accepts iff d(w, L) ≤ t.

Fig. 1. Verifying Membership in the IRS Code with t Corruptions

Our batched code-membership test, which we call the IRS test, is described
in Fig. 1. Its properties are summarized in the following theorem.

Theorem 4 (IRS Test, Figure 1). Let k > 4δ where δ = t +
. Then, the
protocol described in Fig. 1 satisfies the following properties, even if t verifiers
are maliciously corrupted.

– Correctness. If U ∈ Lm (i.e. the shares held by the parties form a valid code-
word), and the prover is honest, then all honest verifiers accept with probability
1.

Framing-Free Distributed Zero-Knowledge Proofs 59

– Soundness/Commitment. If U /∈ Lm, then except with probability k/|F|
one of the following hold even if the prover and t verifiers are maliciously
corrupted and colluding.

• All honest verifiers reject.
• Let H denote the set of honest parties, and let L′ and L′m denote the

restrictions of the codes L and Lm (respectively) to the coordinates cor-
responding to the parties in H. Let U ′ denote the restriction of U to the
coordinates held by the parties in H. Then d(U ′, L′m) ≤ t, and there exists
a unique codeword Ũ ∈ L′m that agrees with U ′ on H − Δ(U ′, L′m).

– Secrecy. For every x, x′, and any subset T ⊆ [k] , |T | ≤ t, we have
ViewT (x) ≡ ViewT (x′), where ViewT (x) denotes the view of the parties in T
in an execution of the protocol on a random encoding U of x (i.e., U is ran-
dom subject to Decζ (U) = x), in which the prover and the verifeirs Vi, i /∈ T
are honest.

4 dZK Proofs from Secure MPC Protocols

In this section we describe our dZK proofs and prove Theorem 1. Instantiations
and extentions can be found in the full version [HVW22].

Overview of the dZK Proof System. Let R = R (x,w) be a relation over F.
Our dZK proves membership in the corresponding k-distributed relation R̂RRS

(see Definition 2 in Sect. 2, and Definition 13 in Sect. 3). Roughly, we employ
the MPC-in-the-head paradigm in the following way. The prover generates the
proof by emulating “in its head” an MPC protocol Π which checks membership
in R̂RRS. More specifically, Π is a (k + 1)-party protocol between P0, . . . ,Pk,
in which every Pi, i > 0 has input x(i) and P0 holds a corresponding witness
w, and the protocols checks whether

((
x(1), . . . , x(k)

)
, w

) ∈ R̂RRS. The emula-
tion of Π results in views View0, . . . ,Viewk of the parties, and the prover sends
Viewi, i ∈ [k] to Vi (notice that View0 is not given to any verifier). The verifiers
then verify the proof by performing the following. First, they run the IRS test
(Fig. 1) to verify that their input pieces are close to an RRS codeword. If so,
the verifiers call Fcoin to sample a public random value r which will be used
when checking pairwise consistency of the views. More specifically, every pair
of verifiers exchange short authentication tags which are computed from their
views using r. The proof is accepted if these checks pass, allowing for a small
(at most t) number of “errors”. This “error tolerance” is essential to guaran-
teeing strong completeness, namely that corrupted verifiers cannot “frame” an
honest prover. We note that this “error tolerance” significantly complicates the
soundness analysis. Indeed, even if an inconsistency was revealed, the verifiers
cannot immediately reject because that might violate strong completeness. The
soundness analysis thus needs to show that a malicious prover cannot exploit
the error tolerance to convince verifiers of false claims.

Theorem 5 (dZK from MPC-in-the-Head). Let tp, tr, k ∈ N such that k >

6tr+2. Let R̂RRS be a k-distributed relation over a field F, and let Π be a perfectly

60 C. Hazay et al.

dZK from Secure MPC Protocols

For an NP relation R over F, let ̂RRRS be the corresponding k-distributed relation

(see Definition 2, and Definition 13), and let ̂L := ̂L
(

̂RRRS

)

.a The dZK proof system

is executed between a prover P and k verifiers V1, . . . , Vk. It employs a (k +1)-party

MPC protocol Π for ̂RRRS, and is parameterized by a bound t < (k − 2)/6 on the
number of corrupt verifiers.

Proof Generation. The prover P on input
((

x(1), . . . , x(k)
)

, w
) ∈ ̂RRRS operates

as follows:

1. Runs Π “in its head” with parties P0, P1, . . . , Pk holding inputs w, x(1), . . . , x(k)

(respectively).b That is, it honestly emulates the operations of all parties in Π.
Let View1, . . . ,Viewk denotes the views of P1, . . . , Pk in this execution, excluding
their inputs. That is, Pi’s view consists of its coin tosses, and all the messages it
received throughout the execution.

2. For every pair i < j of verifiers, picks rij ← F.
3. Emulates the prover in Step 1. of the IRS test of Figure 1 (with � = 1) to generate

the messages m1, . . . ,mk which the prover sends to V1, . . . , Vk.
4. For every i ∈ [k], sends Viewi, {rij}i<j , {rji}j<i ,mi to Vi.

Verification.

1. The verifiers execute the IRS test of Figure 1 (with � = 1) on their input pieces
x(1), . . . , x(k), using m1, . . . ,mk as the messages from P. For each Vi, if the i’th
verifier rejects in the IRS test then Vi outputs reject.

2. The verifiers call Fcoin to obtain a random r ∈R F.
3. Every Vi performs the following, for every j �= i. Let zj

1, . . . , zj
l denote the field

elements exchanged between Pi, Pj in the execution of Π, as they appear in
Viewi. (The messages from Pj to Pi appear in Viewi. The messages from Pi to
Pj can be computed from Viewi.) Let r′

ij := rij if i < j, otherwise r′
ij := rji.

Then Vi broadcasts mij := pij (r) where pij (x) :=
∑l

f=1 zj
f · xf + r′

ij .
4. Every Vi checks local consistency of Viewi, by checking that the output of Pi

given input x(i) and the messages reported in Viewi is 1. If Viewi is not locally
consistent then Vi broadcasts a complaint against P and rejects. Let C1 denote
the set of verifiers who broadcasted a complaint against P.c

5. P broadcasts a set C2 of parties which it claims are corrupted (i.e., broadcasted
false mij values). Let C := C1 ∪ C2.

6. Every verifier Vi checks that:

(a) |C| ≤ t.
(b) for every j, l /∈ C, mjl = mlj .

If i ∈ C1 or one of the tests failed, then Vi outputs reject. Otherwise, it outputs
accept.

a We note that ̂L is a subset of the code obtained by instantiating Definition 10 with

the RRS code; this is because in ̂L, not only is every column a RRS codeword, but

the underlying encoded message is also in L.
b We note that if R is a relation in P then Π can be a protocol for k parties P1, . . . , Pk.
cWe note that Steps 3. and 4. can be implemented in a single round.

Fig. 2. A t-dZK Protocol for k > 6t + 2

Framing-Free Distributed Zero-Knowledge Proofs 61

correct, (εp, tp)-private and perfectly (3tr + 1)-robust k-party protocol for R̂RRS.

Then the proof system Πdist of Fig. 2 is an (εp, εr, tp, tr)-dZK for L̂
(
R̂RRS

)
, for

εr = max
{

ε′,
(

k

2

)
N

|F|
}

where ε′ denotes the error of the IRS test (specified in Theorem 4), and N bounds
the total number of field elements exchanged between a pair of parties in Π.

Due to space limitations, we defer several remarks, extensions and instantia-
tions, as well as a dZK with improved threshold (but without strong complete-
ness), to the full version [HVW22].

Acknowledgment. We thank Benny Applebaum for helpful discussions and for point-
ing out to us the reduction from VRS to dZK. The first and third authors are sup-
ported by the BIU Center for Research in Applied Crypytography and Cyber Security
in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.
The first author is supported by ISF grant No. 1316/18. The first and second authors
are supported by DARPA under Contract No. HR001120C0087. Any opinions, find-
ings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Government
or DARPA. The first author is supported by the Algorand Centres of Excellence pro-
gramme managed by Algorand Foundation. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of Algorand Foundation.

References

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: CCS, pp.
2087–2104 (2017)

[AKP20] Applebaum, B., Kachlon, E., Patra, A.: The resiliency of MPC with low
interaction: the benefit of making errors (extended abstract). In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 562–594. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 20

[AKP22] Applebaum, B., Kachlon, E., Patra, A.: Verifiable relation sharing and
multi-verifier zero-knowledge in two rounds: trading NIZKs with hon-
est majority: (extended abstract). In: Dodis, Y., Shrimpton, T. (eds.)
Advances in Cryptology – CRYPTO 2022, Part IV, pp. 33–56. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15985-5 2

[App22] Benny Applebaum. Private communication (2022)
[BBC+19a] Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: How to

prove a secret: zero-knowledge proofs on distributed data via fully linear
PCPs. IACR Cryptol. ePrint Arch. 188 (2019)

[BBC+19b] Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-
knowledge proofs on secret-shared data via fully linear PCPs. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp.
67–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-
8 3

https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3

62 C. Hazay et al.

[BBHR18] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon
interactive oracle proofs of proximity. In: ICALP, pp. 14:1–14:17 (2018)

[BCI+20] Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., Saraf, S.: Proximity
gaps for Reed-Solomon codes. In: FOCS, pp. 900–909 (2020)

[BD91] Burmester, M., Desmedt, Y.: Broadcast interactive proofs. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 81–95. Springer, Hei-
delberg (1991). https://doi.org/10.1007/3-540-46416-6 7

[BFH+20] Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T.,
Zhang, Y.: Ligero++: a new optimized sublinear IOP. In: CCS, pp. 2025–
2038 (2020)

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements
and extensions. In: CCS, pp. 1292–1303. ACM (2016)

[BGIN19] Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party
computation via sublinear distributed zero-knowledge proofs. In: CCS, pp.
869–886. ACM (2019)

[BGIN20] Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation
via distributed zero-knowledge proofs. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12493, pp. 244–276. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64840-4 9

[BGIN21] Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Sublinear GMW-style compiler
for MPC with preprocessing. In: Malkin, T., Peikert, C. (eds.) CRYPTO
2021. LNCS, vol. 12826, pp. 457–485. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84245-1 16

[BJO+22] Baum, C., Jadoul, R., Orsini, E., Scholl, P., Smart, N.P.: Feta: efficient
threshold designated-verifier zero-knowledge proofs. In: CCS, pp. 293–306.
ACM (2022)

[BMMM20] Brandt, N.-P., Maier, S., Müller, T., Müller-Quade, J.: Constructing secure
multi-party computation with identifiable abort. IACR Cryptol. ePrint
Arch. 153 (2020)

[BOS16] Baum, C., Orsini, E., Scholl, P.: Efficient secure multiparty computation
with identifiable abort. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9985, pp. 461–490. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53641-4 18

[BOSS20] Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-
round MPC with identifiable abort and public verifiability. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 562–592.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 20

[Bra21] Brandt, N.: Tight setup bounds for identifiable abort. IACR Cryptol.
ePrint Arch. 684 (2021)

[CB17] Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable compu-
tation of aggregate statistics. In: USENIX, pp. 259–282 (2017)

[CBM15] Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous mes-
saging system handling millions of users. In: SP, pp. 321–338 (2015)

[CDG+17] Chase, M., et al.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: CCS, pp. 1825–1842 (2017)

[CFY17] Cunningham, R.K., Fuller, B., Yakoubov, S.: Catching MPC cheaters:
identification and openability. In: ICITS, pp. 110–134 (2017)

[CL14] Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in
secure multiparty computation. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8874, pp. 466–485. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45608-8 25

https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-030-84245-1_16
https://doi.org/10.1007/978-3-030-84245-1_16
https://doi.org/10.1007/978-3-662-53641-4_18
https://doi.org/10.1007/978-3-662-53641-4_18
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-662-45608-8_25

Framing-Free Distributed Zero-Knowledge Proofs 63

[Cle86] Cleve, R.: Limits on the security of coin flips when half the processors are
faulty (extended abstract). In: STOC (1986)

[DI06] Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11818175 30

[GIKR02] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure mul-
tiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 178–193. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 12

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for
boolean circuits. In: USENIX, pp. 1069–1083 (2016)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: STOC, pp. 291–304. ACM
(1985)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: STOC,
pp. 218–229. ACM (1987)

[GO07] Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 18

[GSV21] Gvili, Y., Scheffler, S., Varia, M.: BooLigero: improved sublinear zero
knowledge proofs for boolean circuits. In: Borisov, N., Diaz, C. (eds.) FC
2021. LNCS, vol. 12674, pp. 476–496. Springer, Heidelberg (2021). https://
doi.org/10.1007/978-3-662-64322-8 23

[HVW22] Hazay, C., Venkitasubramaniam, M., Weiss, M.: Your reputation’s safe
with me: framing-free distributed zero-knowledge proofs. IACR Cryptol.
ePrint Arch. 2022(1523) (2022). https://eprint.iacr.org/2022/1523

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation, pp. 21–30. In: STOC (2007)

[IOZ14] Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with
identifiable abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8617, pp. 369–386. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 21

[IW14] Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with
zero-knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
121–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54242-8 6

[KKW18] Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In: CCS, pp. 525–537
(2018)

[SF16] Spini, G., Fehr, S.: Cheater detection in SPDZ multiparty computation.
In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015,
pp. 151–176. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49175-2 8

[SSY22] Simkin, M., Siniscalchi, L., Yakoubov, S.: On sufficient oracles for secure
computation with identifiable abort. In: Galdi, C., Jarecki, S. (eds.) Secu-
rity and Cryptography for Networks: 13th International Conference, SCN
2022, Proceedings, pp. 494–515. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-14791-3 22

https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-662-64322-8_23
https://doi.org/10.1007/978-3-662-64322-8_23
https://eprint.iacr.org/2022/1523
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-642-54242-8_6
https://doi.org/10.1007/978-3-642-54242-8_6
https://doi.org/10.1007/978-3-319-49175-2_8
https://doi.org/10.1007/978-3-319-49175-2_8
https://doi.org/10.1007/978-3-031-14791-3_22
https://doi.org/10.1007/978-3-031-14791-3_22

64 C. Hazay et al.

[YW22] Yang, K., Wang, X.: Non-interactive zero-knowledge proofs to multiple
verifiers. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASI-
ACRYPT 2022. LNCS, vol. 13793, pp. 517–546. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-22969-5 18

https://doi.org/10.1007/978-3-031-22969-5_18

Locally Verifiable Distributed SNARGs

Eden Aldema Tshuva1(B), Elette Boyle2,3, Ran Cohen2, Tal Moran2,
and Rotem Oshman1

1 Tel-Aviv University, Tel Aviv, Israel
{aldematshuva,roshman}@tau.ac.il

2 Reichman University, Herzliya, Israel
{elette.boyle,cohenran,talm}@runi.ac.il

3 NTT Research, Sunnyvale, USA

Abstract. The field of distributed certification is concerned with certifying prop-
erties of distributed networks, where the communication topology of the network
is represented as an arbitrary graph; each node of the graph is a separate pro-
cessor, with its own internal state. To certify that the network satisfies a given
property, a prover assigns each node of the network a certificate, and the nodes
then communicate with one another and decide whether to accept or reject. We
require soundness and completeness: the property holds if and only if there exists
an assignment of certificates to the nodes that causes all nodes to accept. Our
goal is to minimize the length of the certificates, as well as the communication
between the nodes of the network. Distributed certification has been extensively
studied in the distributed computing community, but it has so far only been stud-
ied in the information-theoretic setting, where the prover and the network nodes
are computationally unbounded.

In this work we introduce and study computationally bounded distributed
certification: we define locally verifiable distributed SNARGs (LVD-SNARGs),
which are an analog of SNARGs for distributed networks, and are able to circum-
vent known hardness results for information-theoretic distributed certification by
requiring both the prover and the verifier to be computationally efficient (namely,
PPT algorithms).

We give two LVD-SNARG constructions: the first allows us to succinctly cer-
tify any network property in P, using a global prover that can see the entire net-
work; the second construction gives an efficient distributed prover, which suc-
cinctly certifies the execution of any efficient distributed algorithm. Our con-
structions rely on non-interactive batch arguments for NP (BARGs) and on
RAM SNARGs, which have recently been shown to be constructible from stan-
dard cryptographic assumptions.

R. Oshman’s research is supported by ISF grant no. 2801/20. E. Boyle’s research is supported in
part by AFOSR Award FA9550-21-1-0046 and ERC Project HSS (852952). R. Cohen’s research
is supported in part by NSF grant no. 2055568 and by the Algorand Centres of Excellence pro-
gramme managed by Algorand Foundation. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect the
views of Algorand Foundation. T. Moran’s research is supported by ISF grant no. 2337/22.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 65–90, 2023.
https://doi.org/10.1007/978-3-031-48615-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_3&domain=pdf
https://doi.org/10.1007/978-3-031-48615-9_3

66 E. Aldema Tshuva et al.

1 Introduction

Distributed algorithms are algorithms that execute on multiple processors, with each
processor carrying out part of the computation and often seeing only part of the input.
This class of algorithms encompasses a large variety of scenarios and computation mod-
els, ranging from a single computer cluster to large-scale distributed networks such as
the internet. Distributed algorithms are notoriously difficult to design: in addition to
the inherent unpredictability that results from having multiple processors that are usu-
ally not tightly coordinated, distributed algorithms are required to be robust and fault-
tolerant, coping with an environment that can change over time. Moreover, distributed
computation introduces bottlenecks that are not present in centralized computation,
including communication and synchronization costs, which can sometimes outweigh
the cost of local computation at each processor. All of these reasons make distributed
algorithms hard to design and to reason about.

In this work we study distributed certification, a mechanism that is useful for ensur-
ing correctness and fault-tolerance in distributed algorithms: the goal is to efficiently
check, on demand, whether the system is in a legal state or not (here, “legal” varies
depending on the particular algorithm and its purpose). To that end, we compute in
advance auxiliary information in the form of certificates stored at the processors, and
we design an efficient verification procedure that allows the processors to interact with
one another and use their certificates to verify that the system is in a legal state. The
certificates are computed once, and therefore we are traditionally less interested in how
hard they are to compute; however, the verification procedure may be executed many
times to check whether the system state is legal, and therefore it must be highly effi-
cient. Since we do not trust that the system is in a legal state, we think of the certificates
as given by a prover, whose goal is to convince us that the system is in a legal state even
when it is not. One can therefore view distributed certification as a distributed analog
of NP.

Distributed certification has recently received extensive attention in the context of
distributed network algorithms, which execute in a network comprising many nodes
(processors) that communicate over point-to-point communication links. The commu-
nication topology of the network is modeled as an arbitrary undirected network graph,
where each node is a vertex; the edges of the graph represent bidirectional communica-
tion links. The goal of a network algorithm is to solve some global problem related to the
network topology, and so the network graph is in some sense both the input to the com-
putation and also the medium over which the computation is carried out. Typical tasks
in this setting include setting up network infrastructure such as low-weight spanning
trees or subgraphs, scheduling and routing, and various forms of resource allocation;
see the textbook [Pel00] for many examples. We usually assume that the network nodes
initially know only their own unique identifier (UID), their immediate neighbors, and
possibly a small amount of global information about the network, such as its size or its
diameter. An efficient network algorithm will typically have each node learn as little as
possible about the network as a whole, as this requires both communication and time.
This is sometimes referred to as locality [Pel00].

Distributed certification arises naturally in the context of fault tolerance and cor-
rectness in network algorithms (even in early work, e.g., [APV91]), but it was first

Locally Verifiable Distributed SNARGs 67

formalized as an object of independent interest in [KKP05]. A certification scheme for
a network property P (for example, “the local states of the network nodes encode a
valid spanning tree of the network”) consists of a prover, which is usually thought of as
unbounded, and a verification procedure, which is an efficient distributed algorithm that
uses the certificates. Here, “efficiency” can take many forms (see the textbook [Pel00]
for some), but it is traditionally measured only in communication and in number of
synchronized communication rounds, not in local computation at the nodes. (A syn-
chronized communication round, or round for short, is a single interaction round dur-
ing which each network node sends a possibly-different message on each of its edges,
receives the messages sent by its neighbors, and performs some local computation.) At
the end of the verification procedure, each network node outputs an acceptance bit, and
the network as a whole is considered to accept if and only if all nodes accept; it suffices
for one node to “raise the alarm” and reject in order to indicate that there is a problem.
Our goal is to minimize the length of the certificates while providing soundness and
completeness, that is — there should exist a certificate assignment that convinces all
nodes to accept if and only if the network satisfies the property P .

To our knowledge, all prior work on distributed certification is in the information-
theoretic setting: the prover and the network nodes are computationally unbounded, and
we are concerned only with space (the length of the certificates) and communication (at
verification time). As might be expected, some strong lower bounds are known: while
any property of a communication topology on n nodes can be proven using O(n2)-
bit certificates by giving every node the entire network graph, it is shown in [GS16]
that some properties do in fact require Ω(n2)-bit certificates in the deterministic set-
ting, and similar results can be shown when the verification procedure can be random-
ized [FMO+19].

Our goal in this work is to circumvent the hardness of distributed certification in the
information-theoretic setting by moving to the computational setting: we introduce and
study computationally sound distributed proofs, which we refer to as locally verifiable
distributed SNARGs (LVD-SNARGs), extending the centralized notion of a succinct
non-interactive argument (SNARG).

Distributed SNARGs. In recent years, the fruitful line of work on delegation of com-
putation has culminated in the construction of succinct, non-interactive arguments
(SNARGs) for all properties in P [CJJ21b,WW22,KLVW23,CGJ+22]. A SNARG is
a computationally sound proof system under which a PPT prover certifies a statement
of the form “x ∈ L”, where x is an input and L is a language, by providing a PPT
verifier with a short proof π. The verifier then examines the input x and the proof π,
and decides (in polynomial time) whether to accept or reject. It is guaranteed that an
honest prover can convince the verifier to accept any true statement with probability 1
(perfect completeness), and at the same time, no PPT cheating prover can convince the
verifier to accept with non-negligible probability (computational soundness).

In this work, we first ask:

Can we construct locally verifiable distributed SNARGs (LVD-SNARGs), a dis-
tributed analog of SNARGs which can be verified by an efficient (i.e., local)
distributed algorithm?

68 E. Aldema Tshuva et al.

In contrast to prior work on distributed verification, here when we say “efficient”
we mean in communication and in rounds, but also in computation, combining both
distributed and centralized notions of efficiency. (We defer the precise definition of our
model to Sect. 2.

We consider two types of provers: first, as a warm-up, we consider a centralized
prover, which is a PPT algorithm that sees the entire network and computes succinct
certificates for the nodes. We show that in this settings, there is an LVD-SNARG for any
property in P, using RAM SNARGs [KP16,KLVW23] as our main building block.

The centralized prover can be applied in the distributed context by first collect-
ing information about the entire network at one node, and having that node act as the
prover and compute certificates for all the other nodes. However, this is very inefficient:
for example, in terms of total communication, it is easy to see that collecting the entire
network topology in one location may require Ω(n2) bits of communication to flow
on some edge. In contrast, “efficient” network algorithms use sublinear and even poly-
logarithmic communication.1 This motivates us to consider another type of prover – a
distributed prover—and ask:

If a property can be decided by an efficient distributed algorithm, can it be suc-
cinctly certified by an efficient distributed prover?

Of course, we still require that the verifier be an efficient distributed algorithm, as
in the case of the centralized prover above. We give a positive answer to this question
as well: given a distributed algorithm D, we construct a distributed prover that runs
alongside D with low overhead (in communication and rounds), and produces succinct
certificates at the network nodes.

We give more formal statements of our results in Sect. 1.3 below, but before doing
so, we provide more context and background on distributed certification and on delega-
tion of computation.

1.1 Background on Distributed Certification

The classical model for distributed certification was formally introduced by Korman,
Kutten and Peleg in [KKP05] under the name proof labeling schemes (PLS), but was
already present implicitly in prior work on self-stabilization, such as [APV91]. To cer-
tify a property P of a network graph G = (V,E),2 we first run a marker algorithm
(i.e., a prover), a computationally-unbounded algorithm that sees the entire network, to
compute a proof in the form of a labeling � : V → {0, 1}∗. We refer to these labels as
certificates; each node v ∈ V is given only its own certificate, �(v). We refer to this as
the proving stage.

1 As just one example of many, in [KP98] it is shown that one can construct a k-dominating
set of the network graph in Õ(k) communication per edge, and this is used to construct a
minimum-weight spanning tree in Õ(

√
n) communication per edge.

2 In general, the nodes of the network may have inputs, on which the property may depend, but
for simplicity we ignore inputs for the time being and discuss only properties of the graph
topology itself.

Locally Verifiable Distributed SNARGs 69

Next, whenever we wish to verify that the property P holds, we carry out the ver-
ification stage: each node v ∈ V sends its certificate �(v) to its immediate neighbors
in the graph. Then, each node examines its direct neighborhood, its certificates, and the
certificate it received from its neighbors, and deterministically outputs an acceptance
bit.

The proof is considered to be accepted if and only if all nodes accept it. During the
verification stage, the nodes are honest; however, the prover may not be honest during
the proving stage, and in general it can assign arbitrary certificates to any and all nodes
in the network. We require soundness and completeness: the property P holds if and
only if there exists an assignment of certificates to the nodes that causes all nodes to
accept.

The focus in the area of distributed certification is on schemes that use short cer-
tificates. Even short certificates can be extremely helpful: to illustrate, and to famil-
iarize the reader with the model, we describe a scheme from [KKP05] for certify-
ing the correctness of a spanning tree: each node v ∈ V is given a parent pointer
pv ∈ V ∪ {⊥}, and our goal is to certify that the subgraph induced by these pointers,
{(v, pv) : v ∈ V and pv �= ⊥}, is a spanning tree of the network graphG. In the scheme
from [KKP05], each node v ∈ V is given a certificate �(v) = (rv, dv), containing the
following information:

– The purported name rv of the root of the tree, and
– The distance dv of v from the root rv .

(Note that even though the tree has a single root, the prover can try to cheat by claiming
different roots at different nodes, and hence we use the notation rv for the root given to
node v.) To verify, the nodes send their certificates to their neighbors, and check that:

– Their root rv is the same as the root ru given to each neighbor u, and
– If pv �= ⊥, then dpv

= dv − 1, and if pv = ⊥, then dv = 0.

This guarantees the correctness of the spanning tree,3 and requires only O(log n)-bit
certificates, where n is the number of nodes in the network; the verification stage
incurs communication O(log n) on every edge, and requires only one round (each
node sends one message to each neighbor). In contrast, generating a spanning tree from
scratch requires Ω(D) communication rounds, where D is the diameter of the network;
verifying without certificates that a given (claimed) spanning tree is correct requires
Ω̃(

√
n/B) communication rounds, if each node is allowed to send B bits on every edge

in every round [SHK+12].
The original model of [KKP05] is highly restricted: it does not allow randomiza-

tion, and it allows only one round of communication, during which each node sends
its certificate to all of its neighbors (this is the only type of message allowed). Sub-
sequent work studied many variations on this basic model, featuring different gener-
alizations and communication constraints during the verification stage (e.g., [GS16,
OPR17,PP17,FFH+21,BFO22]), different restrictions on how certificates may depend

3 Assuming the underlying network is connected, which is a standard assumption in the area;
otherwise additional information, such as the size of the network, is required.

70 E. Aldema Tshuva et al.

on the nodes’ identifiers (e.g., [FHK12,FGKS13,BDFO18]), restricted classes of prop-
erties and network graphs (e.g., [FBP22,FMRT22]), allowing randomization [FPP19,
FMO+19] or interaction with the prover (e.g., [KOS18,NPY20,BKO22]), and in the
case of [BKO22], also preserving the privacy of the nodes using a distributed notion of
zero knowledge. We refer to the survey [Feu21] for an overview of much of the work
in this area.

To our knowledge, all work on distributed certification so far has been in the
information-theoretic setting, which requires soundness against a computationally
unbounded prover, and does not take the local computation time of either the prover or
the verifier into consideration as a complexity measure (with one exception, [AO22],
where the running time of the nodes is considered, but perfect soundness is still
required). Information-theoretic certification is bound to run up against barriers aris-
ing from communication complexity: it is easy to construct synthetic properties that
essentially encode lower bounds from nondeterministic or Merlin-Arthur communica-
tion complexity into a graph problem. More interestingly, it is possible to use reduc-
tions from communication complexity to prove lower bounds on some natural prob-
lems: for example, in [GS16] it was shown that Ω(n2)-bit certificates are required to
prove the existence of a non-trivial automorphism, or non-3-colorability. In addition
to this major drawback, in the information-theoretic setting there is no clear connec-
tion between whether a property is efficiently checkable in the traditional sense (P, or
even NP) and whether it admits a short distributed proof: even computationally easy
properties, such as “the network has diameter at most k” (for some constant k), or
“the identifiers of the nodes in the network are unique,” are known to require Ω̃(n)-
bit certificates [FMO+19]. (These lower bounds are, again, proven by reduction from
2-party communication complexity.) In this work we show that introducing computa-
tional assumptions allows us to efficiently certify any property in P, overcoming the
limitations of the information-theoretic model.

1.2 Background on Delegation of Computation

Computationally sound proof systems were introduced in the seminal work of
Micali [Mic00], who gave a construction for such proofs in an idealized model, the
random-oracle model (ROM). Following Micali’s work, extensive effort went into
obtaining non-interactive arguments (SNARGs) in models that are closer to the plain
model, such as the Common Reference String (CRS) model. Earlier work in this line
of research, such as [ABOR00,DLN+04,DL08,Gro10,BCCT12], relied on knowledge
assumptions, which are non-falsifiable; for languages inNP, Gentry andWichs [GW11]
proved that relying on non-falsifiable assumptions is unavoidable. This led the research
community to focus some attention on delegating efficient deterministic computation,
that is, computation in P.

Initial progress on delegating computation in P assumed the weaker model of a des-
ignated verifier, where the verifier holds some secret that is related to the CRS [KRR13,
KRR14,KP16,BKK+18,HR18]. However, a recent line of work has led to the con-
struction of publicly-verifiable SNARGs for deterministic computation, first for space-
bounded computation [KPY19,JKKZ21] and then for general polynomial-time com-
putation [CJJ21a,WW22,KLVW23]. These latter constructions exploit a connection to

Locally Verifiable Distributed SNARGs 71

non-interactive batch arguments for NP (BARGs), which can be constructed from vari-
ous standard cryptographic assumptions [BHK17,CJJ21a,WW22,KLVW23,CGJ+22].
We use BARGs as the basis for the distributed prover that we construct in Sect. 4.

1.3 Our Results

We are now ready to give a more formal overview of our results, although the full
formal definitions are deferred to the Sect. 2. For simplicity, in this overview we restrict
attention to network properties that concern only the topology of the network—in other
words, in the current section, a property P is a family of undirected graphs. (In the
more general case, a property can also involve the internal states of the network nodes,
as in the spanning tree example from Sect. 1.1. This will be discussed in the Technical
Overview.)

Defining LVD-SNARGs. Like centralized SNARGs, LVD-SNARGs are defined in the
common reference string (CRS) model, where the prover and the verifier both have
access to a shared unbiased source of randomness.

An LVD-SNARG for a property P consists of

– A prover algorithm: given a network graph G = (V,E) of size |V | = n and the
common reference string (CRS), the prover algorithm outputs an assignment of
O(poly(λ, log n))-bit certificates to the nodes of the network. The prover may be
either a PPT centralized algorithm, or a distributed algorithm that executes in G in a
polynomial number of rounds, sends messages of polynomial length on every edge,
and involves only PPT computations at each network node. 4

– A verifier algorithm: the verifier algorithm is a one-round distributed algorithm,
where each node of the network simultaneously sends a (possibly different) message
of length O(poly(λ, log n)) on each of its edges, receives the messages sent by its
neighbors, carries out some local computation, and then outputs an acceptance bit.
Each message sent by a node is produced by a PPT algorithm that takes as input
the CRS, the certificate stored at the node, and the input and neighborhood of the
node; the acceptance bit is produced by a PPT algorithm that takes the CRS, the
certificate of the node, the messages received from its neighbors, the input and the
neighborhood.

We require that certificates produced by an honest execution of the prover in the net-
work be accepted by all verifiers with overwhelming probability, whereas for any graph
failing to satisfy the property P , certificates produced by any poly-time cheating prover
(allowing stronger, centralized provers in both cases) will be rejected by at least one
node with overwhelming probability, as a function of the security parameter λ.5 We
refer the reader to Sect. 2.1 for the formal definition.
4 In fact, as we mentioned in Sect. 1, a centralized prover can also be implemented by a dis-
tributed algorithm where one node learns the entire network graph and then generates the
certificates. This is easy to do in polynomial rounds and message length.

5 The schemes we construct actually satisfy adaptive soundness: there is no PPT algorithm that
can, with non-negligible probability, output a network graph and certificates for all the nodes,
such that the property does not hold for the network graph but all of the nodes accept.

72 E. Aldema Tshuva et al.

LVD-SNARGs with a global prover.We begin by considering a global (i.e., centralized)
prover, which sees the entire network graph G. In this setting, we give a very simple
construction that makes black-box use of the recently developed RAM SNARGs for
P [KP16,CJJ21b,KLVW23,CGJ+22] to obtain the following:

Theorem 1. Assuming the existence of RAM SNARGs for P and collision-resistant
hash families, for any property P ∈ P, there is an LVD-SNARG with a global prover.

LVD-SNARG s with a distributed prover. As explained in Sect. 1, one of the main
motivations for distributed certification is to be able to quickly check that the network is
in a legal state. One natural special case is to check whether the results of a previously
executed distributed algorithm are still correct, or whether they have been rendered
incorrect by changes or faults in the network. To this end, we ask whether we can
augment any given computationally efficient distributed algorithm D with a distributed
prover, which runs alongside D and produces an LVD-SNARG certifying the execution
of D in the specific network. The distributed prover may add some additional overhead
in communication and in rounds, but we would like the overhead to be small.

We show that indeed this is possible:

Theorem 2. Let D be a distributed algorithm that runs in poly(n) rounds in networks
of size n, where in each round, every node sends a poly(log n)-bit message on every
edge, receives the messages sent by its neighbors in the current round, and then carries
out poly(n) local computation steps.

Assuming the existence ofBARGs forNP and collision-resistant hash families, there
exists an augmented distributed algorithm D′, which carries out the same computation
as D, but also produces an LVD-SNARG certificate attesting that D’s output is correct.

– The overhead of D′ compared to D is an additional O(diam(G)) rounds, during
which each node sends only poly(λ, log n)-bit messages, for security parameter λ.

– The certificates produced are of size poly(λ, log n).

Using known constructions of RAM SNARGs for P and of SNARGs for batch-NP
[CJJ21b,CJJ21a,WW22,KLVW23,CGJ+22], we obtain both types of LVD-SNARGs
(global or distributed prover) for P from either LWE, DLIN, or subexponential DDH.

Distributed Merkle trees (DMTs). To construct our distributed prover, we develop a
data structure that we call a distributed Merkle tree (DMT), which is essentially a global
Merkle tree of a distributed collection of 2|E| values, with each node u initially holding
a value xu→v for each neighbor v. (At the “other end of the edge”, node v also holds
a value xv→u for node v. There is no relation between the value xu→v and the value
xv→u.)

The unique property of the DMT is that it can be constructed by an efficient dis-
tributed algorithm, at the end of which each node u holds both the root of the global
Merkle tree and a succinct opening to each value x(u,v) that it held initially.

The DMT is used in the construction of the LVD-SNARG of Theorem 2 to allow
nodes to “refer” to messages sent by their neighbors. We cannot afford to have node v
store these messages, or even a hash of the messages v received on each of its edges, as

Locally Verifiable Distributed SNARGs 73

we do not want the certificates to grow linearly with the degree. Instead, we construct
a DMT that allows nodes to “access” the messages sent by their neighbors: we let each
value xv→u be a hash of the messages sent by node v to node u, and construct a DMT
over these hashes. When node u needs to “access” a message sent by v to construct its
proof, node v produces the appropriate opening path from the root of the DMT, and
sends it to node u. All of this happens implicitly, inside a BARG proof asserting that
u’s local computation is correct.

The remainder of the paper gives a technical overview of our results.

2 Model and Definitions

In this section, we give a more formal overview of our network model; this model is
standard in the area of distributed network algorithms (see, e.g., the textbook [Pel00]).
We then formally define LVD-SNARGs, the object we aim to construct.

Modeling Distributed Networks. A distributed network is modeled as an undirected,
connected6 graph G = (V,E), where the nodes V of the network are the processors
participating in the computation, and the edges E represent bidirectional communica-
tion links between them.

For a node v ∈ V , we denote by NG(v) (or by N(v), if G is clear from context)
the neighborhood of v in the graph G. The communication links (i.e., edges) of node v
are indexed by port numbers, with Iu→v ∈ [n] denoting the port number of the channel
from v to its neighbor u. The port numbers of a given node need not be contiguous,
nor do they need to be symmetric (that is, it might be that Iv→u �= Iu→v). We assume
that the neighborhood N(v) and the port numbering at node v are known to node v
during the verification stage; the node does not necessarily need to have them stored
in memory at the beginning of the verification stage, but it should be able to generate
them at verification time (e.g., by probing its neighborhood, opening communication
sessions with its neighbors one after the other; or, in the case of a wireless network, by
running a neighbor-discovery protocol).

In addition to knowing their neighborhood, we assume that each node v ∈ V has a
unique identifier; for convenience we conflate the unique identifier of a node v with the
vertex v representing v in the network graph. We assume that the UID is represented by
a logarithmic number of bits in the size of the graph. No other information is available;
in particular, we do not assume that the nodes know the size of the network, its diameter,
or any other global properties.

A (synchronous) distributed network algorithm proceeds in synchronized rounds,
where in each round, each node v ∈ V sends a (possibly different) message on each
edge {v, u} ∈ E. The nodes then receive the messages sent to them, perform some
internal computation, and then the next round begins. Eventually, each node halts and
produces some output.

6 We consider only connected networks, since in disconnected networks one can never hope to
carry out any computation involving more than one connected component. Also, it is fairly
standard to assume an undirected graph topology, i.e., bidirectional communication links,
although directed networks are also considered sometimes (for instance, in [BFO22]).

74 E. Aldema Tshuva et al.

Distributed Decision Tasks. In the literature on distributed decision and certification,
network properties are referred to as distributed languages. A distributed language is
a family of configurations (G, x), where G is a network graph and x : V → {0, 1}∗

assigns a string x(v) to each node v ∈ V . The assignment xmay represent, for example,
the input to a distributed computation, or the internal states of the network nodes. We
assume that |x(v)| is polynomial of the size of the graph. We usually refer to x as an
input assignment, since for our purposes it represents an input to the decision task.

A distributed decision algorithm is a distributed algorithm at the end of which each
node of the network outputs an acceptance bit. The standard notion of acceptance in
distributed decision [FKP13] is that the network accepts if and only if all nodes accept;
if any node rejects, then the network is considered to have rejected.

Notation. When describing the syntax (interface) of a distributed algorithm, we
describe the input to the algorithm as a triplet (α;G;β), where

– α is a value that is given to all the nodes in the network. Typically this will be the
common reference string.

– G = (V,E) is the network topology on which the algorithm runs.
– β : V → {0, 1}∗ is a mapping assigning a local input to every network node. Each
node v ∈ V receives only β(v) at the beginning of the algorithm, and does not
initially know the local values β(u) of other nodes u �= v.

We frequently abuse notation by writing a sequence of values or mappings instead of
a single one for α or β (respectively); e.g., when we write that the input to a dis-
tributed algorithm is (a, b;G;x, y), we mean that every node v ∈ V (G) is initially
given a, b, x(v), y(v), and the algorithm executes in the network described by the graph
G.

The output of a distributed algorithm in a network G = (V,E) is described by a
mapping o : V → {0, 1}∗ which specifies the output o(v) of each node v ∈ V . In the
case of decision algorithms, the output is a mapping o : V → {0, 1}, and we say that
the algorithm accepts if and only if all nodes output 1 (i.e.,

∧
v∈V o(v) = 1). We denote

this event by “D(α;G;β) = 1”, where D is the distributed algorithm, and (α;G;β) is
its input (as explained above).

In general, when describing objects that depend on a specific graph G, we include
G as a subscript: e.g., the neighborhood of node v in G is denoted NG(v). However,
when G is clear from the context, we omit the subscript and write, e.g., N(v).

2.1 Locally Verifiable Distributed SNARGs

In this section we give the formal definition of locally-verifiable distributed SNARGs
(LVD-SNARGs). This definition allows for provers that are either global (centralized)
or distributed.

Syntax. A locally verifiable distributed SNARG consists of the following algorithms.

Gen(1λ, n) → crs. A randomized algorithm that takes as input a security parameter 1λ

and a graph size n, and outputs a common reference string crs.

Locally Verifiable Distributed SNARGs 75

P(crs;G;x) → π. A deterministic algorithm (centralized or distributed)7 that takes a
crs obtained from Gen(1λ, n) and a configuration (G, x), and outputs an assignment of
certificates to the nodes π : V (G) → {0, 1}∗.

V(crs;G;x, π) → b. A distributed decision algorithm that takes a common reference
string crs obtained from Gen(1λ, n), an input assignment x : V → {0, 1}∗, and a proof
π : V → {0, 1}∗, and outputs acceptance bits b : V → {0, 1}∗. In the distributed
algorithm, each node v is initially given the crs, its own local input x(v) (which is
assumed to include its unique identifier), and its own proof π(v). During the algorithm
nodes communicate with their neighbors over synchronized rounds, and eventually each
node produces its own acceptance bit b(v).

Definition 1. Let L be a distributed language. An LVD-SNARG (Gen,P,V) for L must
satisfy the following properties:

Completeness. For any (G, x) ∈ L,

Pr
[

V(crs;G;x, π) = 1
∣
∣
∣
∣
crs ← Gen(1λ, n)
π ← P(crs;G;x)

]

= 1.

Soundness. For any PPT algorithm P∗, there exists a negligible function negl(·) such
that

Pr
[

(G, x) /∈ L
∧ V(crs;G;x, π) = 1

∣
∣
∣
∣
crs ← Gen(1λ, n)
(G, x, π) ← P∗(crs)

]

≤ negl(λ).

Succinctness. The crs and the proof π(v) at each node v are of length at most
poly(λ, log n).

Verifier Efficiency. V runs in a single synchronized communication round, during which
each node sends a (possibly different) message of length poly(λ, log n) to each neigh-
bor. At each node v, the local computation executed by V runs in time poly(λ, |π(v)|) =
poly(λ, log n).

Prover Efficiency. If the prover P is centralized, then it runs in time poly(λ, n).
If the prover P is distributed, then it runs in poly(λ, n) rounds, sends messages of
poly(λ, log n) bits, and uses poly(λ, n) local computation time at every network node.

7 For the centralized case, we denote P(crs, G, x) instead of (crs;G;x) as we have one entity
that receives the entire input.

76 E. Aldema Tshuva et al.

3 LVD-SNARGs with a Global Prover

We begin by describing a simple construction for LVD-SNARGs with a global prover
for any property in P. (When we refer to P here, we mean from the centralized point
of view: a distributed language L is in P iff there is a deterministic poly-time Turing
machine that takes as input a configuration (G, x) and accepts iff (G, x) ∈ L.)

Throughout this overview, we assume for simplicity that the nodes of the network
are named V = {1, . . . , n}, with each node knowing its own name (but not necessarily
the size n of the network).

Commit-and-Prove. Fix a language L ∈ P and an instance (G, x) ∈ L. A global prover
that sees the entire instance G can use a (centralized) SNARG for the language L in a
black-box manner, to obtain a succinct proof for the statement “(G, x) ∈ L.” However,
regular SNARGs (as opposed to RAM SNARGs) assume that the verifier holds the entire
input whose membership in L it would like to verify; in our case, no single node knows
the entire instance G, so we cannot use the verification procedure of the SNARG as-is.

Our simple work-around to the nodes’ limited view of the network is to ask the
prover to give the nodes a commitment with local openings C to the entire network
graph (for instance, a Merkle tree [Mer89]), and to each node, a proof πSNARG that the
graph under the commitment is in the language L.

Note that the language for which πSNARG is a SNARG proof is a set of commitments,
not of network configurations—it is the language of all commitments to configurations
in L. However, this leaves us with the burden of relating the commitment C to the true
instance (G, x) in which the verifier executes, to ensure that the prover did not choose
some arbitrary C that is unrelated to the instance at hand. To that end, we ask the prover
to provide each node v with the following:

– The commitment C and proof πSNARG. The nodes verify that they all received the
same values by comparing with their neighbors, and they verify the SNARG proof
πSNARG.

– A succinct opening to v’s neighborhood. Node v verifies that indeed, C opens to its
true neighborhood N(v).

Intuitively, by verifying that the commitment is consistent with the view of all the nodes,
and by verifying the SNARG that the graph “under the commitment” is in the language
L, we verify that the true instance (G, x) is in fact in L.

Although the language L is in P, if we proceed carelessly, we might find ourselves
asking the prover to prove an NP-statement, such as “there exists a graph configuration
(G, x) whose commitment is C, such that (G, x) ∈ L.” Moreover, to prove the sound-
ness of such a scheme, we would need to extract the configuration (G, x) from the proof
πSNARG, in order to argue that a cheating adversary that produces a convincing proof of
a false statement can be used to break either the SNARG or the commitment scheme.
Essentially, we would require a SNARK, a succinct non-interactive argument of knowl-
edge for NP, but significant barriers are known [GW11] on constructing SNARKs from
standard assumptions. To avoid this, we use RAM SNARGs rather than plain SNARGs.

Locally Verifiable Distributed SNARGs 77

RAM SNARGs for P. A RAM SNARG ([KP16,BHK17]) is a SNARG that proves that
a given RAM machine M 8 performs some computation correctly; however, instead of
holding the input x to the computation, the verifier is given only a digest of x—a hash
value, typically obtained from a hash family with local openings (for instance, the root
of a Merkle tree of x). In our case, we ask the prover to use a polynomial-time machine
ML that decides L as the RAM machine for the SNARG, and the commitment C as the
digest; the prover computes a RAM SNARG proof for the statement “ML(G, x) = 1.”

Defining the soundness of RAM SNARGs is delicate: because the verifier is not
given the full instance but only a digest of it, there is no well-defined notion of a “false
statement”—a given digest d could be the digest of multiple instances, some of which
satisfy the claim and some of which do not. However, the digest is collision resistant, so
intuitively, it is hard for the adversary to find two instances that have the same digest. We
adopt the original RAM SNARG soundness definition from [KP16,BHK17,KLVW23],
which requires that it be computationally hard for an adversary to prove “contradictory
statements”; given the common reference string, it must be hard for an adversary to
find:

– A digest d, and
– Two different proofs π0 and π1, which are both accepted with input digest d, such
that π0 proves that the output of the computation is 0, and π1 proves that the output
of the computation is 1.

In our construction, the prover is asked to provide the nodes with a digest C, which
is a commitment to the configuration (G, x), and a RAM SNARG proof πSNARG for the
statement “(G, x) ∈ L,” which the prover constructs using a RAM machine ML that
decides membership in L in polynomial time.

Tying the Digest to the Real Network Graph. By themselves, the digest C and the
RAM SNARG proof πSNARG do not say much about the actual instance (G, x) that
we have at hand. As we explained above, we can relate the digest to the real network
by having every node verify that it opens correctly to its local view (neighborhood).
However, this is not quite enough: the prover can commit to (i.e., provide a digest of) a
graph G′ ∈ L that is larger than the true network graph G, such that G′ agrees with G
on the neighborhoods of all the “real nodes” (the nodes of G).9 We prevent the prover
from doing this by:

– Asking the prover to provide the nodes with the size n of the network, and a cer-
tificate proving that the size is indeed n. There is a simple and elegant scheme for
doing this [KKP05], based on building and certifying a rooted spanning tree of the
network; it has perfect soundness and completeness, and requires O(log n)-bit cer-
tificates.

8 A RAM machine M is given query access to an input x and an unbounded random-access
memory array, and returns some output y. Each query to the input x or the memory is consid-
ered a unit-cost operation.

9 This requires that G′ not be connected, but that is not necessarily a problem for the prover,
depending on the property L.

78 E. Aldema Tshuva et al.

– The Turing machine ML that verifies membership in L is assumed to take
its input in the form of an adjacency list LG,x = ((v1, x(v1), N(v1)), . . . ,
(vn, x(vn), N(vn),⊥), where ⊥ is a special symbol marking the end of the list, and
each triplet (vi, x(vi), N(vi)) specifies a node vi, its input x(vi), and its neighbor-
hood N(vi). Since ⊥ marks the end of the list, the machine ML is assumed (without
loss of generality) to ignore anything following the symbol ⊥ in its input.

– Recall that we assumed for simplicity that V = {1, . . . , n}. The prover computes a
digest C of LG,x, and gives each node i the opening to the ith entry. Each node ver-
ifies that its entry opens correctly to its local view (name, input, and neighborhood).

– The last node, node n, is also given the opening to the (n + 1)th entry, and verifies
that it opens to ⊥. Node n knows that it is the last node, because the prover gave all
nodes the size n of the network (and certified it).

To prove the soundness of the resulting scheme, we show that if all nodes accept, then
C is a commitment to some adjacency list L′ which has LG,x as a prefix—in the format
outlined above, including the end-of-list symbol ⊥. Since the machine ML interprets ⊥
as the end of its input, it ignores anything past this point, and thus, the prover’s SNARG
proof is essentially a proof for the statement “ML accepts (G, x).” If we assume for the
sake of contradiction that (G, x) �∈ L then we can generate an honest SNARG proof π0

for the statement “ML rejects (G, x),” using the same digest C, 10 and this breaks the
soundness of the SNARG.

4 LVD-SNARGs with a Distributed Prover

One of the main motivations for distributed certification is to help build fault-tolerant
distributed algorithms. In this setting, there is no omniscient global prover that can
provide certificates to all the nodes. Instead, the labels must themselves be produced by
a distributed algorithm, and comprise a proof that a previous execution phase completed
successfully and that its outputs are still valid (in particular, they are still relevant given
the current state of the communication graph and the network nodes). Formally, given
a distributed algorithm D, we want to construct a distributed prover D′ that certifies the
language

LD =

⎧
⎨

⎩
(G, x, y) :

when D executes in the network G
with inputs x : V → {0, 1}∗

,
it produces the outputs y : V → {0, 1}∗

⎫
⎬

⎭
.

Furthermore, D′ should not have much overhead compared to D in terms of communi-
cation and rounds.

Certifying the execution of the distributed algorithm D essentially amounts to prov-
ing a collection of “local” statements, each asserting that at a specific node v ∈ V (G),
the algorithm D indeed produces the claimed output y(v) when it executes in G. The

10 This step is a little delicate, and relies on the fact that in recent RAM SNARG constructions
(e.g., [CJJ21b,KLVW23]), completeness holds for any digest d that opens to the input instance
at every location the RAM machine reads from.

Locally Verifiable Distributed SNARGs 79

prover at node v can record the local computation at node v as D executes, including
the messages that node v sends and receives. As a first step towards certifying that D
executes correctly, we could store at each node v a (centralized) SNARG proving that in
every round, v produced the correct messages according to D, handled incoming mes-
sages correctly, and performed its local computation correctly, eventually outputting
y(v). However, this does not suffice to guarantee that the global computation is correct,
because we must verify consistency across the nodes: how can we be sure that incom-
ing messages recorded at node v were indeed sent by v’s neighbors when D ran, and
vice-versa?

A naı̈ve solution would be for node v to record, for each neighbor u ∈ N(v), a hash
H(v,u) of all the messages that v sends and receives on the edge {v, u}; at the other end
of the edge, node u would do the same, producing a hash H(u,v). At verification time,
nodes u and v could compare their hashes, and reject ifH(v,u) �= H(u,v). Unfortunately,
this solution would require too much space, as node v can have up to n − 1 neighbors;
we cannot afford to store a separate hash for each edge as part of the certificate. Our
solution is instead to hash all the messages sent in the entire network together, but in a
way that allows each node to “access” the messages sent by itself and its neighbors. To
do this we use an object we call a distributed Merkle tree (DMT), which we introduce
next.

Distributed Merkle Trees. ADMT is a single Merkle tree that represents a commitment
to an unordered collection of values {xu→v}{u,v}∈E , one value for every directed edge
u → v such that {u, v} ∈ E. (The total number of values is 2|E|.) It is constructed by
a distributed algorithm called DistMake, at the end of which each node v obtains the
following information:

– val: the global root of the DMT.
– rtv: the “local root” of node v, which is the root of a Merkle tree over the local values

{xv→u}u∈N(v).
– Iv and ρv: the index of rtv inside the global DMT, and the corresponding opening
path ρv for rtv from the global root val.

– βv = {(Iv→u, ρv→u)}u∈N(v): for each neighbor u ∈ N(v), the index Iv→u is a
relative index for the position of xv→u under the local root rtv , and the opening
path ρv→u is the corresponding relative opening path from rtv . For every pair of
neighbors v and u, the index Iv→u also equals the number of the port of u in v’s
neighborhood.

The DMT is built such that for any value xv→u, the index of the value in the DMT is
given by Iv ‖ Iv→u, and the corresponding opening path is ρv ‖ ρv→u. Thus, node v
holds enough information to produce an opening and to verify any value that it holds.11

11 For simplicity we assume that nodes can query the communication infrastructure for a consis-
tent order of their neighbors (e.g., by “port number”); thus the relative ordering Iv→u does not
count against v’s storage. This is a standard assumption in the area. In the general case, the
port numbers themselves, which may stand for MAC addresses or similar, do not necessarily
need to be consecutive numbers from 1, . . . , deg(v), but we can order v’s neighbors in order
of increasing port number.

80 E. Aldema Tshuva et al.

(Here and throughout, ‖ denotes concatenation; we treat indices as binary strings rep-
resenting paths from the root down (with “0” representing a left turn, and “1” a right.)

The novelty of the DMT is that it can be constructed by an efficient distributed
algorithm, which runs in O(D) synchronized rounds (where D is the diameter of the
graph), and sends poly(λ, log n)-bit messages on every each in each round. We remark
that it would be trivial to construct a DMT in a centralized manner, but the key to the
efficiency of our distributed prover is to provide an efficient distributed construction;
in particular, we cannot afford to, e.g., collect all the values {xu→v}{u,v}∈E in one
place, as this would require far too much communication. We avoid this by giving a
distributed construction where each node does some of the work of constructing the
DMT, and eventually obtains only the information it needs.

We give an overview of the construction of the DMT in Sect. 5, but first we explain
how we use it in the distributed prover.

Using theDMT.We assume for simplicity that in each round r, instead of sending and
receiving messages on all its edges, each node v either sends or reads a message from
one specific edge, determined by its current state. We further assume that each message
sent is a single bit. (Both assumptions are without loss of generality, up to a polynomial
blowup in the number of rounds.)

While running the original distributed algorithm D, the distributed prover stores
the internal computation steps, the messages sent and the messages received at every
node.12 For each node v and neighbor u, node v computes two hashes:

– A hash hv→u of the messages v sent to u, and
– a hash hu→v of the messages v received from u.

A message sent in round r is hashed at index r. Note that both endpoints of the edge
{u, v} compute the same hashes hu→v and hv→u, but they “interpret” them differently:
node v views hu→v as a hash of the messages it received from u, while node u views it
as a hash of the messages it sent to v, and vice-versa for hv→u.

The messages hashes are used to construct the proof, but they are discarded at the
end of the proving stage, so as not to exceed our storage requirements. We use a hash
family with local openings, so that node v is able to produce a succinct opening from
hv→u or hu→v to any specific message that was sent or received in a given round.

Next we construct a DMT over the values {hu→v}{u,v}∈E . Let val
msg be the root

of the DMT. For each neighbor u ∈ N(v), node v obtains from the DMT the index and
opening for the message hash hv→u, and it sends them to the corresponding neighbor
u.

For a given node v and a neighbor of it, u, let Imsg
v,u,r be the index in the DMT of the

message sent by node v to node u in round r, which is given by Iv ‖ Iv→u ‖ r (recall
that r is the index of the r-round message inside hv→u). Node v is able to compute both
Imsg
v,u,r and Imsg

u,v,r and the corresponding opening paths, since it holds both hashes hv→u

and hu→v , learns Iv and βv = {Iv→u}u∈N(v) during the construction of the DMT, and
receives Iu ‖ Iu→v from node v.

12 We believe that this additional temporary storage requirement can be avoided using incremen-
tally verifiable computation, but we have not gone through the details.

Locally Verifiable Distributed SNARGs 81

With these values in hand, the nodes can jointly use valmsg as a hash of all the
messages sent or received during the execution of D. Each node v holds indices and
openings for all the messages that it sent or received during the execution. Note that
this is the only information that v obtains; although valmsg is a hash of all the messages
sent in the network, each node can only access the messages that it “handled” (sent or
received) during its own execution. This is all that is required to certify the execution of
D, because a message that was neither sent nor received by a node does not influence
its immediate execution.

Modeling the Distributed Algorithm in Detail. Before proceeding with the construction
we must give a formal model for the internal computation at each network node, as our
goal will be to certify that each step of this computation was carried out correctly. It is
convenient to think of each round of a distributed algorithm as comprising three phases:

1. A compute phase, where each node computes the messages it will send in the current
round and writes them on a special output tape. In this phase nodes may also change
their internal state.

2. A send phase, where nodes send the messages that they produced in the compute
phase. The internal states of the nodes do not change.

3. A receive phase, where nodes receive the messages sent by their neighbors and write
them on a special tape. The internal states of the nodes do not change.

The compute phase at each node is modeled by a RAM machine MD that uses the
following memory sections:

– Env: a read-only memory section describing the node’s environment—its neighbors
and port numbers, and any additional prior information it might have about the net-
work before the computation begins.

– In: a read-only memory section that contains the input to the node.
– Read: a read-only input memory section that contains the messages that the node
received in the previous round.

– Mem: a read-write working memory section, which contains the node’s internal
state.

– Write: a write-only memory section where the machine writes the messages that the
node sends to its neighbors in the current round. In the final round of the distributed
algorithm, this memory section contains the final output of the node.

The state of the RAMmachine, which we denote by st, includes the following informa-
tion:

– Whether the machine will read or write in the current step,
– The memory location that will be accessed,
– If the next step is a write, the value to be written and the next state to which the
RAM machine will transition after writing,

– If the next step is a read, the states to which the RAM machine will transition upon
reading 0 or 1 (respectively).

82 E. Aldema Tshuva et al.

(We assume for simplicity that the memory is Boolean, that is, each cell contains a
single bit.)

The send and receive phases can be thought of as follows:

– The send phase is a sequence of 2|E| send steps, each indexed by a directed edge
v → u, ordered lexicographically, first by sender v and then by receiver u. In send
step v → u the message created by v for u in the current round is sent on the edge
between them.

– The receive phase is similarly a sequence of 2|E| receive steps, indexed by the
directed edges of the graph, and ordered lexicographically, again first by the sending
node and then the receiving node. In receive step v → u the message created by v
for u in the current round is received at node u.

Intuitively, using the same ordering for both the send and the receive phase means that
messages are received in the exact same order in which they are sent.

Certifying the Computation of One Node. After constructing the DMT, each node has
access to hashes of the messages it received during the execution of the algorithm. It
would be tempting think of these hashes as input digests, since in some sense incoming
messages do serve as inputs, and to use a RAM SNARG in a black-box manner to cer-
tify that the node carried out its computation correctly. The problem with this approach
is the notion of soundness we require, which is similar to that of a plain SNARG, but
differs from the soundness of a RAM SNARG: in our model, the nodes have access to
their neighborhoods and their individual inputs at verification time, so in some sense
they jointly have the entire input to the computation. We require that the prover should
not be able to prove a false statement, that is, find a configuration (G, x) and a convinc-
ing proof that D(G, x) outputs a value y which is not the true output of D on (G, x).
In contrast, the RAM SNARG verifier has only a digest of the input—although it may
also have a short explicit input, the bulk of the input is implicit and is “specified” only
by the digest, i.e., it is not uniquely specified. The soundness of RAM SNARGs, in turn,
is weaker: they only require that the prover not be able to find a single digest and two
convincing proofs for contradictory statements about the same digest. Because of this
difference, we cannot use RAM SNARGs as a black box, and instead we directly build
the LVD-SNARG from the same primary building block used in recent RAM SNARG
constructions [CJJ21b,KLVW23]: a non-interactive batch argument for NP (BARG).

A (non-interactive) BARG is an argument that proves a set (a batch) of NP state-
ments x1, . . . , xk ∈ L, for an NP language L, such that the size of the proof increases
very slowly (typically, polylogarithmically) with the number of statements k. (This is
not a SNARG for NP, since the proof size does grow polynomially with the length of
one witness.) Several recent works [CJJ21a,KLVW23] have constructed from standard
assumptions BARGs with proof size poly(λ, s, log k), where s is the size of the circuit
that verifies the NP-language. These BARGs were then used in [CJJ21b,KLVW23] to
construct RAM SNARGs for P. Following their approach, we use BARGs to construct
our desired LVD-SNARG. Roughly, our method is as follows.

At each node v, we use a hash family with local openings to commit to the sequence
of RAM machine configurations that v goes through: for example, if the history of
the memory section Read at node v is given by Read0v,Read1v, . . . (with Read0v being

Locally Verifiable Distributed SNARGs 83

the initial contents of the memory section, Read1v being the contents following the
first step of the algorithm, and so on), then we first compute individual hashes of
Read0v,Read

1
v, . . ., and then hash together all these hashes to obtain a hash valReadv rep-

resenting the sequence of contents on this memory section at node v. Similarly, let
valMem

v , valWrite
v be commitments to the memory section contents of Mem and Write at

v, and let valstv be a hash of the sequence of internal RAM machine states that node v
went through during the execution of D (in all rounds).

We now construct a BARG to prove the following statement (roughly speaking):
for each round r and each internal step i of the compute phase of that round, there
exist openings of valReadv , valMem

v , valWrite
v and valstv in indices (r, i) and (r, i + 1) to

values str,i, str,i, hReadr,i, hReadr,i+1, hMemr,i, hMemr,i+1, hWriter,i, hWriter,i+1,
such that the following holds:

– If i is a step of the compute phase, and str,i indicates that the machine reads from
location � in memory section TP ∈ {Read,Mem,Write}, then there exists an open-
ing of hTPr,i in location � to a bit b such that upon reading b, MD transitions to
str,i+1. Moreover, the hash values of the memory sections hRead, hMem, hWrite do
not change in step (r, i): we have hReadr,i = hReadr,i+1, hMemr,i = hMemr,i+1,
and hWriter,i = hWriter,i+1.

– If i is a step of the compute phase, and str,i indicates that the machine writes the
value b to location � in memory section TP ∈ {Mem,Write}, then there exists an
opening of hTPr,i+1 in location � to the bit b. Moreover, the hash values of the other
memory sections {hRead, hMem, hWrite} \TP do not change in step (r, i).

– If i is a step of the send phase indexed by v → u (i.e., a step where v sends a message
to u), then there exists a message m such that valmsg opens to m in index Imsg

v,u,r and
hWrite opens to m in index d.

– If i is a step of the receive phase indexed by u → v (i.e., a step where v receives a
message from u), and u is the dth neighbor of v, then there exists a message m such
that valmsg opens to m in index Imsg

u,v,r and hRead opens to m in index d.

In addition to the requirements above, we ust ensure that whenever the contents
of a memory section change, they change only in the location to which the machine
writes, and the hash value for the memory section changes accordingly; for example, if
in step i of the compute phase of round r the machine writes value b to location � of
memory section TP, then we must ensure not only that TPr,i+1 opens to b in location �,
but also that hTPr,i and hTPr,i+1 are hash values of arrays that differ only in location
�. To do so, we use a hash family that also supports write operations (in addition to
local openings), as in the definition of a hash tree in [KPY19]. For example, a Merkle
tree [Mer89] satisfies all of the requirements for a hash tree.

We use the hash write operations to include the following additional requirements
as part of our BARG statement:

– For each step i of the compute phase of each round r, if str,i indicates that the
machine writes value b to location � in memory section TP ∈ {Mem,Write}, then
there exists an opening showing that hTPr,i and hTPr,i+1 differ only in location �.

– For each step of the receive phase of each round r, if the message received in this
step is written to location � of Read, then there exists an opening showing that
hReadr,i, hReadr,i+1 differ only location �.

84 E. Aldema Tshuva et al.

There is one main obstacle remaining: in all known BARG constructions, the BARG
is only as succinct as the circuit that verifies the statements it claims. In our case, the
statements involve the indices Imsg

v,u,r, as well as port numbers of the various neighbors
of v, and the corresponding opening paths. These must be “hard-wired” into the circuit,
because they are obtained from the DMT, i.e., they are external to the BARG itself.
Each node v may need to use up to n − 1 indices and openings, one for every neighbor,
so we cannot afford to use a circuit that explicitly encodes them.

Indirect Indexing. To avoid hard-wiring the indices and openings into the BARG, each
node v computes a commitment to the indices, in the form of a locally openable hash
of the following arrays:

– Indin(v), an array containing at each index Iv→u the value Iv ‖ Iv→u.
– Indout(v), an array containing at each index Iv→u the value Iu ‖ Iu→v .
– Port(v), an array containing at each index k the value ⊥ if vk /∈ N(v), or the value

d if vk is the dth neighbor of v.

Denote these hash values by valin(v), valout(v), and valPort(v), respectively.
Now we can augment the BARG, and have it prove the following: at every round r

and step i of the send phase, there exists a port number d, an index I , a message m, and
appropriate openings to the hash values valPort, valout , hWriter,i, val

msg such that

– valPort opens to d in location � such that v� is the node that v sends a message to in
step i of every send phase,

– valout opens to I in location d,
– hWriter,i opens to m in location d, and
– valmsg opens to m in location I ‖ r.

Similarly, at every round r and step i of the receive phase, there exist a port
number d, an index I , a message m, and appropriate openings to the hash values
valPort, val∈, hReadr,i+1, val

msg such that

– valPort opens to d in location k such that vk is the node that v receives a message to
in step i of every send phase,

– valin opens to I in location d,
– hReadr,i+1 opens to m in location d,13 and
– valmsg opens to m in location I ‖ r.

The circuit verifying this BARG’s statement requires only the following values to be
hard-wired: valst, valmsg, valin , valout , valPort, valRead, valMem, valWrite. During verifica-
tion, however, node v must verify that indeed, the hashes valin(v), valout(v), valPort(v)
are correct: node v can do this by re-computing the hashes, using the index Iv which
is stored as part of its certificate, the port numbers {Iv→u}u∈N(v) that it accesses dur-
ing verification, and also indices {Iu}u∈N(v) and port numbers {Iu→v}u∈N(v) that v’s
neighbors can provide in verification time.

13 As explained above, we actually require that this opening show that hReadr,i and hReadr,i+1

only differ in the location d and hReadr,i+1 opens tom in that location.

Locally Verifiable Distributed SNARGs 85

The Soundness of our Construction. Following [KLVW23], instead of using regular
BARGs, we use somewhere extractable BARGs (seBARGs): an seBARG is a BARG
with the following somewhere argument of knowledge property: for some index i,
using the appropriate trapdoor, the seBARG proof completely reveals an NP-witness
for the ith statement. Importantly, the trapdoor is generated alongside the crs and the
crs hides the binding index i: the (computationally bounded) prover cannot tell from
the crs alone the binding index i. Conveniently, BARGs can be easily transformed into
seBARGs [CJJ21b,KLVW23], without adding more assumptions.

The overall idea of our soundness proof is similar to the one in [CJJ21b,KLVW23],
although there are some complications (e.g., the need to switch between different nodes
of the network as we argue correctness). Assume for the sake of contradiction that
a cheating prover is able to convince the network to accept a false statement with
non-negligible probability. We proceed by induction over the rounds and internal steps
(inside each compute, send and receive phase) of the distributed algorithm: in the induc-
tion we track the true state of the distributed algorithm, and compare witnesses extracted
from the seBARG to this state. Informally speaking, we prove that from a proof that is
accepted, using the appropriate trapdoor and crs, we can extract at each step a witness
that must be compatible with the true execution of the distributed algorithm, other-
wise we break the seBARG. In the last round, this means that the output encoded in
the witness is the correct output of the distributed algorithm. But this contradicts our
assumption that the adversary convinces the network of a false statement.

5 Distributed Merkle Trees

Finally, we briefly sketch the construction of the distributed Merkle tree used in the
previous section.

The Structure of the DMT. Recall that our goal with the distributed Merkle tree (DMT)
is to hash together all the messages sent during the execution of the distributed algo-
rithm, in such a way that a node can produce openings for its own sent messages.
Accordingly, we construct the DMT in several layers (see Fig. 1):

– At the lowest level, for each node v and neighbor u ∈ N(v), node v hashes together
the messages (mv→u

1 ,mv→u
2 , . . .) that it sent to node u, obtaining a hash rtv→u.

– At the second level, each node v hashes together the hashes of its different edges,
{rtv→u}u∈N(v), ordered by the port numbers Iv→u, obtaining a hash rtv which we
refer to as v’s local root.

– Finally, the nodes collaborate to hash their local roots {rtv}v∈V together to obtain
a global root val. The nodes are initially not ordered, but during the creation of the
DMT, the local roots {rtv}v∈V are ordered; and each node v obtains an index Iv for
its local root, and the corresponding opening path from val to rtv .

Constructing the DMT. After each node computes the hash values rtv→u for each of
its neighbors u ∈ N(v), we continue by having the network nodes compute a spanning
tree ST of the network, with each node v learning its parent pv ∈ N(v) ∪ {⊥}, and its

86 E. Aldema Tshuva et al.

Fig. 1: The structure of the DMT constructed over the messages

children Cv ⊆ N(v). The root v0 of the spanning tree is the only node that has a null
parent, i.e., pv0 = ⊥.

We note that using standard techniques, a rooted spanning tree can be constructed in
O(D) rounds in networks of diameter D, using O(log n)-bit messages in every round;
this can be done even if the nodes do not initially know the diameter D or the size n of
the network, and it does not require the root to be chosen or known in advance [Lyn96].

After constructing the spanning tree, we compute the DMT in three stages: in the
first stage nodes compute a Merkle tree of their own values, in the second we go “up
the spanning tree” to compute the global Merkle tree, and the third stage goes “down
the tree” to obtain the indices and the openings.

Stage 1: Local Hash Trees. Let xv be a vector containing the values {rtv→u}u∈N(v)

held by node v, ordered by the port number of the neighbor u ∈ N(v) at node v (padded
up to a power of 2, if necessary). For each node v and neighbor u ∈ N(v), let Iv→u be
a binary representation of the port number of u at v (again, possibly padded).

Each node v computes its local root rtv by building a Merkle tree over the vector
xv , as well as an opening ρv→u for the index Iv→u, for each neighbor u ∈ N(v). We
let βv = {(Iv→u, ρv→u)}u∈N(v).

Stage 2: Spanning Tree Computation. The nodes jointly compute a spanning tree ST
of the network, storing at every node v the parent pv ∈ N(v) of v and the children
Cv ⊆ N(v) of v. In the sequel, we denote by v0 the root of the spanning tree.

Stage 3: Convergecast of hash-tree forests. In this stage, we compute the global hash
tree up the spanning tree ST , with each node v merging some or all of the hash-trees
received from its children and sending the result upwards in the form of a set of HT-
roots annotated with height information.

Locally Verifiable Distributed SNARGs 87

Each node v receives from each child c ∈ Cv a set Sc of pairs (rt, h), where rt is a
Merkle-tree root, and h ∈ N is the cumulative height of the Merkle tree. Node v now
creates a forest Fv , as follows:

1. Initially, Fv contains the roots sent up by v’s children, and a new leaf representing
v’s local hash tree: Fv = {(rtv, 0)} ∪ ⋃

c∈Cv
Sc.

2. While there remain two trees in Fv whose roots rt0 and rt1 have the same cumulative
height h (note—we do not care about the actual height of the trees in the forest Fv ,
but rather about their cumulative height, represented by the value h in the node
(rt, h)): node v chooses two such trees and merges them, creating a new root rt of
cumulative height h+1 and placing (rt0, h) and (rt1, h) as the left and right children
of (rt, h + 1), respectively.

3. When there no longer remain two trees in Fv whose roots have the same cumulative
height:
– If v �= v0 (that is, v is not the root of the spanning tree), node v sends its parent,

pv , the set Sv of tree-roots in Fv . The size of this set is at most O(log n), since
it contains at most one root of any given cumulative height (if there were two
roots of the same cumulative height, node v would merge them).

– At the root v0, we do not want to halt until Fv is a single tree. If Fv is not yet
a single tree, node v0 must pad the forest by adding “dummy trees” so that it
can continue to merge. To do so, node v0 finds the tree-root (rt, h) that has the
smallest cumulative height h in Fv . It then creates a “dummy” Merkle-tree of
height h, with root (⊥, h), and adds it to Fv0 . Following this addition, there
exist two tree-roots of cumulative-height h (the original tree-root (rt, h) and
the “dummy” tree-root (⊥, h)), which v0 now merges. It continues on with this
process, at each step choosing a tree with the smallest remaining height, and
either merging it with another same-height tree if there is one, or creating a
dummy tree and merging the shortest tree with it.

When the last stage completes, the forest Fv0 computed by node v0 (the root of the
spanning tree) is in fact a single tree, whose root is the root of the global Merkle tree.
Let val be this root.

Stage 4: Computing Hash-Tree Indices and Openings. In this stage we proceed down
the spanning tree, forwarding the global root val downwards. In addition, as we move
down the tree, each node v annotates its forest Fv with indices and opening paths: first,
it receives from its parent pv an index and opening for every tree-root (rt, h) ∈ Fv

that it sent upwards to pv . Then, it extends this information “downwards” inside Fv ,
annotating each inner node and leaf in Fv with their index and opening path from the
global root val: for example, if (rt0, h) and (rt1, h) are the left and right children of
(rt, h + 1) in Fv , and the index and opening path for (rt, h + 1) are already known to
be I and ρ (resp.), then the index and opening path for (rt0, h) are I ‖ 0 and ρ ‖ rt1
(resp.).

Outputs. The final output at node v is (val, rtv, Iv, ρv, βv). (For the LVD-SNARG, at the
end of the proving stage, βv is discarded, as it is too long to store. However, val, rtv, Iv

and ρv are part of node v’s certificate.)

88 E. Aldema Tshuva et al.

We remark that for our purposes, it is not necessary for the nodes to certify that they
computed the DMT correctly: after obtaining the global root and the relevant openings,
the nodes simply use theDMT as they would use a centralized hash with local openings.
The completeness proof of our LVD-SNARG relies on the fact that a correctly-computed
DMTwill open to the correct information everywhere, but the soundness proof does not
rely the details of the construction, only on the fact that the value obtained by opening
various locations of the DMT matches the true execution of the algorithm.

Acknowledgments. We would like to thank Omer Paneth for fruitful and illuminating iscus-
sions.

References

[ABOR00] Aiello, W., Bhatt, S.N., Ostrovsky, R., Rajagopalan, S.: Fast verification of any
remote procedure call: short witness-indistinguishable one-round proofs for np. In:
Proceedings of the 27th International Colloquium on Automata, Languages and Pro-
gramming, pp. 463–474 (2000)

[AO22] Aldema Tshuva, E., Oshman, R.: Brief announcement: on polynomial-time local
decision. In: Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing, pp. 48–50 (2022)

[APV91] Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: Proceedings 32nd Annual Symposium of Foundations of Com-
puter Science, pp. 268–277 (1991)

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp.
326–349 (2012)

[BDFO18] Balliu, A., D’Angelo, G., Fraigniaud, P., Olivetti, D.: What can be verified locally?
J. Comput. Syst. Sci. 97, 106–120 (2018)

[BFO22] Ben Shimon, Y., Fischer, O., Oshman, R.: Proof labeling schemes for reachability-
related problems in directed graphs. In: Parter, M. (ed.) SIROCCO 2022. LNCS, vol.
13298, pp. 21–41. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-
09993-9 2

[BHK17] Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch np
verification from standard computational assumptions. In: Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 474–482 (2017)

[BKK+18] Badrinarayanan, S., Kalai, Y.T., Khurana, D., Sahai, A., Wichs, D.: Succinct del-
egation for low-space non-deterministic computation. In: Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 709–721 (2018)

[BKO22] Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks.
In: SODA, pp. 2426–2458. SIAM (2022)

[CGJ+22] Choudhuri, A.R., Garg, S., Jain, A., Jin, Z., Zhang, J.: Correlation intractability and
SNARGs from sub-exponential DDH. Cryptology ePrint Archive (2022)

[CJJ21a] Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol.
12828, pp. 394–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84259-8 14

[CJJ21b] Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. In: 62nd IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pp. 68–79 (2021)

https://doi.org/10.1007/978-3-031-09993-9_2
https://doi.org/10.1007/978-3-031-09993-9_2
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-84259-8_14

Locally Verifiable Distributed SNARGs 89

[DL08] Di Crescenzo, G., Lipmaa, H.: Succinct NP proofs from an extractability assump-
tion. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS,
vol. 5028, pp. 175–185. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-69407-6 21

[DLN+04] Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct proofs for np
and spooky interactions (2004). http://www.cs.bgu.ac.il/kobbi/papers/spooky sub
crypto.pdf

[FBP22] Feuilloley, L., Bousquet, N., Pierron, T.: What can be certified compactly? compact
local certification of MSO properties in tree-like graphs. In: PODC, pp. 131–140.
ACM (2022)

[Feu21] Feuilloley, l.: Introduction to local certification. Disc. Math. Theor. Comput. Sci.
23(3) (2021)

[FFH+21] Feuilloley, L., Fraigniaud, P., Hirvonen, J., Paz, A., Perry, M.: Redundancy in dis-
tributed proofs. Distrib. Comput. 34(2), 113–132 (2021)

[FGKS13] Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally
without identifiers? In: Proceedings of the 2013 ACM Symposium on Principles of
Distributed Computing, pp. 157–165. ACM, New York (2013)

[FHK12] Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on
local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS,
vol. 7702, pp. 224–238. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35476-2 16

[FKP13] Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM (JACM) 60(5), 1–26 (2013)

[FMO+19] Fraigniaud, P., Montealegre, P., Oshman, R., Rapaport, I., Todinca, I.: On dis-
tributed merlin-arthur decision protocols. In: Censor-Hillel, K., Flammini, M. (eds.)
SIROCCO 2019. LNCS, vol. 11639, pp. 230–245. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24922-9 16

[FMRT22] Fraigniaud, P., Montealegre, P., Rapaport, I., Todinca, I.: A meta-theorem for dis-
tributed certification. In: Parter, M. (ed.) SIROCCO 2022. LNCS, vol. 13298, pp.
116–134. Springer, Heidelberg (2022). https://doi.org/10.1007/s00453-023-01185-
1

[FPP19] Fraigniaud, P., Patt-Shamir, B., Perry, M.: Randomized proof-labeling schemes. Dis-
trib. Comput. 32, 217–234 (2019)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

[GS16] Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory
Comput. 12(1), 1–33 (2016)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In: Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing, pp. 99–108 (2011)

[HR18] Holmgren, J., Rothblum, R.: Delegating computations with (almost) minimal time
and space overhead. In: 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 124–135. IEEE (2018)

[JKKZ21] Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.: SNARGs for bounded depth compu-
tations and PPAD hardness from sub-exponential LWE. In: Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pp. 708–721 (2021)

[KKP05] Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. In: Proceedings of the
Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing,
pp. 9–18 (2005)

https://doi.org/10.1007/978-3-540-69407-6_21
https://doi.org/10.1007/978-3-540-69407-6_21
http://www.cs.bgu.ac.il/kobbi/papers/spooky_sub_crypto.pdf
http://www.cs.bgu.ac.il/kobbi/papers/spooky_sub_crypto.pdf
https://doi.org/10.1007/978-3-642-35476-2_16
https://doi.org/10.1007/978-3-642-35476-2_16
https://doi.org/10.1007/978-3-030-24922-9_16
https://doi.org/10.1007/978-3-030-24922-9_16
https://doi.org/10.1007/s00453-023-01185-1
https://doi.org/10.1007/s00453-023-01185-1
https://doi.org/10.1007/978-3-642-17373-8_19

90 E. Aldema Tshuva et al.

[KLVW23] Kalai, Y., Lombardi, A., Vaikuntanathan, V., Wichs, D.: Boosting batch arguments
and RAM delegation. In: Proceedings of the 55th Annual ACM Symposium on The-
ory of Computing (STOC), pp. 1545–1552 (2023)

[KOS18] Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: Symposium
on Principles of Distributed Computing (PODC), pp. 255–264 (2018)

[KP98] Kutten, S., Peleg, D.: Fast distributed construction of small k-dominating sets and
applications. J. Algor. 28, 27 (1998)

[KP16] Kalai, Y., Paneth, O.: Delegating RAM computations. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 91–118. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 4

[KPY19] Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In: Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pp. 1115–1124 (2019)

[KRR13] Kalai, Y.T., Raz, R., Rothblum, R.D.: Delegation for bounded space. In Proceedings
of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 565–574
(2013)

[KRR14] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of
no-signaling proofs. In: Proceedings of the Forty-Sixth Annual ACM Symposium
on Theory of Computing, pp. 485–494 (2014)

[Lyn96] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
[Mer89] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.

LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

[NPY20] Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive
proofs. In: Chawla, S. (ed.) Symposium on Discrete Algorithms (SODA), pp. 1096–
115 (2020)

[OPR17] Ostrovsky, R., Perry, M., Rosenbaum,W.: Space-time tradeoffs for distributed verifi-
cation. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 53–70.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0 4

[Pel00] Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for
Industrial and Applied Mathematics, Philadelphia (2000)

[PP17] Patt-Shamir, B., Perry, M.: Proof-labeling schemes: broadcast, unicast and in
between. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 1–17.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1 1

[SHK+12] Sarma, A.D., et al. Distributed verification and hardness of distributed approxima-
tion. SIAM J. Comput. (special issue of STOC 2011) (2012)

[WW22] Waters, B., Wu, D.J.: Batch arguments for and more from standard bilinear group
assumptions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol.
13508, pp. 433–463. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-15979-4 15

https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-319-72050-0_4
https://doi.org/10.1007/978-3-319-69084-1_1
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-031-15979-4_15

Distributed-Prover Interactive Proofs

Sourav Das1(B), Rex Fernando2, Ilan Komargodski3,4, Elaine Shi2,
and Pratik Soni5

1 UIUC, Champaign, IL, USA
souravd2@illinois.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
3 Hebrew University of Jerusalem, Jerusalem, Israel

ilank@cs.huji.ac.il
4 NTT Research, Sunnyvale, CA, USA

5 University of Utah, Salt Lake City, UT, USA
psoni@cs.utah.edu

Abstract. Interactive proof systems enable a verifier with limited
resources to decide an intractable language (or compute a hard func-
tion) by communicating with a powerful but untrusted prover. Such sys-
tems guarantee soundness: the prover can only convince the verifier of
true statements. This is a central notion in computer science with far-
reaching implications. One key drawback of the classical model is that
the data on which the prover operates must be held by a single machine.

In this work, we initiate the study of distributed-prover interactive
proofs (dpIPs): an untrusted cluster of machines, acting as a distributed
prover, interacts with a single verifier. The machines in the cluster jointly
store and operate on a massive data-set that no single machine can store.
The goal is for the machines in the cluster to convince the verifier of the
validity of some statement about its data-set. We formalize the commu-
nication and space constraints via the massively parallel computation
(MPC) model, a widely accepted analytical framework capturing the
computational power of massive data-centers.

Our main result is a compiler that generically augments any verifi-
cation algorithm in the MPC model with a (computational) soundness
guarantee. Concretely, for any language L for which there is an MPC
algorithm verifying whether x ∈ L, we design a new MPC protocol capa-
ble of convincing a verifier of the validity of x ∈ L and where if x �∈ L, the
verifier rejects with overwhelming probability. The new protocol requires
only slightly more rounds, i.e., a poly(log N) blowup, and a slightly big-
ger memory per machine, i.e., poly(λ) blowup, where N is the total size
of the dataset and λ is a security parameter independent of N .

En route, we introduce distributed-prover interactive oracle proofs
(dpIOPs), a natural adaptation of the (by now classical) IOP model to
the distributed prover setting. We design a dpIOP for verification algo-
rithms in the MPC model and then translate them to “plain model”
dpIPs via an adaptation of existing polynomial commitment schemes
into the distributed prover setting.

P. Soni—Work was done partially when the author was visiting Carnegie Mellon
University.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 91–120, 2023.
https://doi.org/10.1007/978-3-031-48615-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-48615-9_4

92 S. Das et al.

1 Introduction

Interactive proofs are a natural extension of non-determinism and have become
a fundamental concept in complexity theory and cryptography. The study of
interactive proofs has led to many of the exciting notions that are at the heart
of several areas of theoretical computer science, including zero-knowledge proofs
[40,41] and probabilistically checkable proofs (PCPs) [4,10,11].

An interactive proof is a protocol between a randomized verifier and a pow-
erful but untrusted prover. The goal of the prover is to convince the verifier
regarding the validity of some statement. If the statement is indeed correct, we
require that the verifier should accept an honestly generated proof with high
probability. Otherwise, if the statement is false, the verifier should reject with
high probability any maliciously crafted proof. A particularly interesting and
practical case is when the verifier is significantly weaker than the prover in some
aspect. Typically, verifiers that are weaker in terms of computational abilities
are studied, but other sorts of limitations are relevant.

The standard model of interactive proofs, as described above, has a key limi-
tation: The data must be held by a prover modeled as a single machine. A scenario
where the data is distributed among multiple parties is not natively supported.
Indeed, large organizations nowadays store vast amounts of data, often reaching
petabytes or even exabytes in size. To store and efficiently manage such enormous
volumes of data, these organizations utilize massive data-centers. With existing
succinct arguments, if such an organization takes up the role of the prover, the
only way to use existing interactive proofs technology is by essentially aggregat-
ing the data at a single machine. However, the latter is physically impossible as
there is no one machine that can store so much data.

Motivated by the above scenario, in this work, we study interactive proofs for
distributed provers. We first define a concrete model that captures the constraints
of such a distributed setting, and then design new interactive proofs in our model.

The Distributed Computation Model. We imagine an enormous data-set,
the size of which is denoted N . The data is stored in a cluster split among M
machines; i.e., every machine stores roughly a size N/M portion of the data-set.
As an example, imagine that N = 1017 bytes (100 petabytes) and that each
machine has a hard-disc capable of storing 1013 bytes (10 terabytes). Then, a
cluster consisting of 104 = 10, 000 machines is needed. (Clearly, there is no single
machine capable of storing 100 petabytes).

The distributed prover is the above cluster, consists of M server machines.
The verifier is another machine, as powerful as a single machine in the cluster,
i.e., it can store N/M bits of information. The goal of the distributed prover
is to convince the verifier of the validity of some statement about its data-set.
The distributed prover can perform arbitrary communication (server-to-server or
server-to-client) and local computation, as long as it respects the space constraint
of each machine. If we care about computational complexity of the (honest or
malicious) prover, we shall also require that the local computation of the (honest

Distributed-Prover Interactive Proofs 93

or malicious) provers is polynomial time. Each server machine and the client have
their own private source of randomness.

The above logic coincides with the rationale behind the Massively Parallel
Computation (MPC) model. This model was invented to capture popular mod-
ern parallel computation programming paradigms such as MapReduce, Hadoop,
and Spark, designed to utilize parallel computation power to manipulate and
analyze huge amounts of data. In this model, first introduced by Karloff, Suri,
and Vassilvitskii [42], the size N data-set is stored in a distributed manner among
M machines. The machines are connected via pairwise communication channels
and each machine can only store S = N ε bits of information locally for some
ε ∈ (0, 1). Naturally, we assume that M ≥ N1−ε so that all machines can jointly
at least store the entire data-set.

The primary metric for the complexity of algorithms in this model is their
round complexity. Reasonable polynomial-time computations that are performed
within a machine are considered “for free” since the communication is often the
bottleneck. We typically want algorithms in the MPC framework to have a small
number of rounds, say, poly-logarithmically or even sub-logarithmically many
rounds (in the total data size N). With the goal of designing efficient algorithms
in the MPC model, there is an immensely rich algorithmic literature suggest-
ing various non-trivial efficient algorithms for tasks of interest, including graph
problems [1–3,6–9,12,15,16,26,28,31], clustering [13,14,33,39] and submodular
function optimization [32,34,46].

Succinct Arguments in the MPC Model. In this work, we study the ques-
tion of constructing interactive argument systems in the MPC model, where
the “prover” is a cluster of machines, each with N ε maximum storage, where
N is the size of the witness, and the client is also a machine with the same
storage restriction. Note that it is unrealistic to achieve an argument system
for all polynomial-time computable functions in this model, because there are
various results showing that not all such functions can be computed in the MPC
model [30,54]. Thus, we aim for the best-possible goal: to prove a statement
whose verification algorithm is itself an MPC algorithm.

We design an argument system that supports clusters acting as provers and
where the protocol respects the requirements of the MPC model. Specifically,
we prove the following theorem.

Theorem 1 (Main result; Informal). Let R = {(x,w)} be any relation which
has a massively-parallel verification algorithm Π among M = N1−ε parties each
with space N ε, where N = |w|, and |x| ≤ N ε.

Then there exists an argument system Π ′ for R in the MPC model, which has
M space-bounded provers P1, . . . , PM , and convinces a space-bounded verifier V
that x ∈ LR. The protocol Π ′ has space overhead multiplicative in poly(λ) relative
to Π, where λ is a security parameter, and has round overhead multiplicative in
polylog(N).

Under standard falsifiable cryptographic assumptions, the argument Π ′ is
sound in the CRS model against malicious provers with arbitrary poly(N,λ)
running time and space.

94 S. Das et al.

Our protocol’s soundness relies on the existence of groups of hidden order, which
can be instantiated based on the RSA assumption [53] or on class groups [27,57].

To put the above result in better context, we mention a recent work of Fer-
nando et al. [35] (building on [36]) who built a secure computation compiler for
arbitrary MPC protocols. That is, they compile any MPC protocol into secure
counterparts, which still respect the constraints of the model. In particular, their
protocol can be used as an argument system in the cluster-verifier model we intro-
duce above. Unfortunately, their compiler relies on (publicly verifiable) succinct
non-interactive proofs of knowledge (SNARKs), which are well-known not to be
constructible based on falsifiable assumptions [38,49]. Our main contribution,
and the main technical challenge we overcome, is achieving such an argument
system relying only on falsifiable assumptions. As a bonus, we mention that if
we instantiate the hidden order group using class groups, our protocol requires
only a common random string, whereas the SNARK based solution requires a
structured common reference string.

1.1 Techniques: Distributed IOPs and Distributed Streaming
Polynomial Commitments

To achieve our main result, we use recent work on interactive oracle proofs
(IOPs). Recall that the IOP model is a proof system model that combines fea-
tures of interactive proofs (IPs) and probabilistically checkable proofs (PCPs).
In this model, the verifier is not required to read the prover’s messages in their
entirety; rather, the verifier has oracle access to some of the prover’s messages
(viewed as strings), and may probabilistically query these messages during its
interaction with the prover. IOPs strictly generalize PCPs, and serve as a con-
venient intermediate model for getting succinct “plain model” protocols. Many
recent succinct arguments have been constructed by first giving a protocol in the
IOP model, and then using a vector commitment or polynomial commitment to
instantiate the IOP oracle [18,21,22,27,29,37].

We extend the IOP model to a setting where the prover is distributed —
here on referred to as the distributed IOP. We imagine a prover that is made up
of a collection of servers that can communicate between themselves via peer-to-
peer channels, as in the classical distributed cluster-verifier MPC model. But,
communication between any server and the verifier occurs as in the IOP model:
the verifier has oracle access to a large string committed to by the server, in
addition to being able to communicate directly with any of the parties comprising
the server.

We build a distributed IOP in the MPC model analogous to the “plain model”
protocol we stated above. Specifically, given a distributed, massively-parallel pro-
tocol Π for verifying a relation R, we construct a distributed argument system
Π ′ which works in this new IOP model, and where a distributed group of provers
convince a verifier V that some x ∈ LR. Our argument uses a polynomial com-
mitment oracle, where each prover first streams evaluations of some multilinear
polynomial W over some subset of the Boolean hypercube, and where at the
end the provers have collectively defined W by their evaluations. The verifier

Distributed-Prover Interactive Proofs 95

then interacts with the prover and queries this polynomial IOP oracle in order
to verify the statement x.

Our IOP is inspired by the work of Blumberg et al. [23], who give an IOP for
RAM programs, where the prover’s running time and space are approximately
preserved in relation to the running time and space of the verification algorithm.
At a very high level, the [23] IOP has the prover commit to a polynomial Ŵ ,
which encodes the RAM computation, and then has the prover and verifier
run a sumcheck argument in relation to a polynomial h that is based on Ŵ .
The polynomial h has the property that it can be evaluated at any point via a
constant number of evaluations of Ŵ . At the end of the sumcheck, the verifier
can thus query the IOP oracle in order to do the final random evaluation of h.

We would like to use a similar strategy to [23], having the provers encode
a polynomial Ŵ which encodes the MPC computation, and then using a sum-
check argument to verify the truthfulness of Ŵ . However, since Ŵ now encodes
an interactive protocol between RAM programs ΠL, instead of just a RAM com-
putation, it is unclear how the provers would be able to generate sumcheck
messages without rerunning the MPC protocol many times, thus blowing up the
communication complexity.

To solve this, we use several ideas. First, for each round of the MPC protocol,
the provers commit to a concatenation πr of their states after the round is fin-
ished, using a Merkle tree-based succinct commitment. This defines a statement
(r, πr−1, πr), where a witness for this statement is a set of decommitments for
πr−1 and πr which show honest behavior during this round. If we can build a
knowledge-sound argument for this statement which works in the MPC model
and is round-efficient, this is sufficient to build an argument for honest execution
of the whole protocol ΠL. We then design an IOP similar to [23] for proving the
statement (r, πr−1, πr). Note that even though we have reduced to proving hon-
esty of one round, we still have the problem that knowledge of Ŵ is spread across
all the provers, and no single prover knows the whole description of Ŵ . Thus it
is still unclear how the provers will generate the sumcheck provers’ messages in
a round-efficient way. The main technical part of our paper deals with how to
do this.

Polynomial Commitments. Once we have an IOP for L, we still need to
instantiate it using a polynomial commitment scheme. Informally, a polyno-
mial commitment scheme allows a prover to commit to some low degree poly-
nomial f , and provide evaluations f(x) to a verifier along with a (interac-
tive) proof that the provided evaluation is consistent with the commitment.
Polynomial commitments were introduced by [43] and have recently drawn
significant attention due to their use in compiling oracle proof systems (e.g.,
PCPs and IOPs) into real world proof systems (e.g., arguments). A sequence
of works [5,17,19,24,25,27,44,47,52,55,56,59] have studied several different
aspects of efficiency including getting constant-sized proofs/commitments, sub-
linear (even polylogarithmic) time verification, as well as linear prover time.
However, these works consider a monolithic prover that stores the entire polyno-
mial locally. This is in stark contrast with our setting where there are multiple

96 S. Das et al.

provers P1, . . . , PM , each of which only have streaming access to a small piece
of the description of the polynomial. Looking ahead, the polynomial in our con-
text is the description of the transcript of the RAM computation, which can be
generated as a stream.

The works that come closest to our requirements are that of Block et
al. [21,22] who introduced the streaming model of access where a monolithic
prover has streaming access to the description of the polynomial. They build
a logarithmic round polynomial commitment scheme in the streaming model
where the prover’s memory usage is logarithmic, the prover time is quasilinear,
and requires only a logarithmic number of passes over the stream. Using such a
polynomial commitment scheme they build a succinct argument for RAM com-
putation where the prover is both time- and space- optimal. The key structural
property of their construction that allows for this small-space implementation
in the streaming model is: they show that for each of the logarithmic rounds,
prover’s messages in the interactive proof of consistency can be expressed as a
linear combination of the elements in the description stream. Therefore, it is suf-
ficient for the monolithic prover to take a single pass over its stream to compute
its message in every round. Although, their work still considers a monolithic
prover, this structural property is the starting point of our work. In particular,
we observe that the natural adaptation of Block et al. [22] commitment scheme
to our setting suffices for our purposes. In fact, when the cluster of provers
P1, . . . , PM is viewed as a monolithic prover, then the two schemes are identi-
cal. This allows us to base our security on that of Block et al. [22], which in
turn, is based on groups of hidden order (e.g., RSA and class groups). Due to
the above structural property, in each of the rounds, each of the provers in the
cluster can (a) first compute their contributions to this round’s message in small
space, while making a single pass over their stream, and (b) then all provers
can combine their contributions in logarithmic (in M) rounds via a tree-based
protocol to compute the full round message.

We present our construction in the MPC model in Sect. 6.2. Along the way, we
introduce the definition of polynomial commitments in the MPC model tailored
to the case of multilinear polynomials in Sect. 4.

1.2 Related Work

The terminology of distributed interactive proofs appeared in several prior
works, all of which differ significantly from our notion. The works [20,45,50]
all study a variant of interactive proofs where the verifier is distributed but
the prover is a single machine. The work of [51,58] allow multiple (potentially
mutually-distrusting) provers to efficiently derive a single SNARK for a large
statement/witness pair. While their goal on the surface is similar to ours, both
works inherently require non-falsifiable assumptions since they rely on SNARKs.
In contrast, the main contribution of our work is in building a succinct argument
system that does not require non-falsifiable assumptions.

Distributed-Prover Interactive Proofs 97

1.3 Organization

The rest of the paper is organized as follows. Section 2 contains preliminaries. In
Sect. 3, we define the MPC model and security properties required for argument
systems in this model. In Sect. 4, we define polynomial commitments that work
with distributed committers. Section 5 contains the main construction of succinct
arguments in the MPC model. Section 6 contains our adaptation of the [22]
polynomial commitment.

2 Preliminaries

Let S be some finite, non-empty set. By x ← S we denote the process of sampling
a random element x from S. For any k ∈ N, by Sk we denote the set of all
sequences/vectors of length k containing elements of S where S0 = {ε} for
empty string ε. We let F = Fp denote a finite field of prime cardinality p. We
assume that �b = (bn, . . . , b1), where bn is the most significant bit and b1 is the
least significant bit. For bitstrings �b ∈ {0, 1}n, we naturally associate �b with
integers in the set {0, . . . , 2n − 1}, i.e., �b =

∑n
i=1 bi · 2i−1. For any two equal

sized vectors �u,�v, by �u � �v we denote the coordinate-wise multiplication of �u
and �v. We use uppercase letters to denote matrices, e.g., A ∈ Z

m×n. For m × n
dimensional matrix A, A(i, ∗) and A(j, ∗) denote the i-th row and j-th column
of A, respectively.

Notation for Matrix-Vector “Exponents”. For some group G, A ∈ Z
m×n.

�u = (u1, . . . , um) ∈ G
1×m, and �v = (v1, . . . , vm)� ∈ G

n×1, we let �u �A and A��v
denote a matrix-vector exponent, defined for every j ∈ [n], i′ ∈ [m] as

(�u � A)j =
m∏

i=1

u
A(i,j)
i ; (A � �v)i′ =

n∏

j′=1

v
A(i′,j′)
j′ ,

For any vector �x ∈ Z
n and group element g ∈ G, we define g�x =

(gx1 , . . . , gxn). Finally, for k ∈ Z and a vector �u ∈ G
n, we let �uk denote the

vector (uk
1 , . . . , u

k
n).

2.1 Multilinear Polynomials

An n-variate polynomial f : F
n → F is multilinear if the individual degree of

each variable in f is at most 1.

Fact 1. A multilinear polynomial f : F
n → F (over a finite field F) is uniquely

defined by its evaluations over the Boolean hypercube. Moreover, for every �ζ ∈
F

n,

f(�ζ) =
∑

�b∈{0,1}n

f(�b) ·
n∏

i=1

χ(bi, ζi) ,

where χ(b, ζ) = b · ζ + (1 − b) · (1 − ζ).

98 S. Das et al.

As a shorthand, we will often denote
∏n

i=1 χ(bi, ζi) by χ(�b, �ζ) for n = |�b| = |�ζ|.
Notation for Multilinear Polynomials. Throughout, we denote a multi-
linear polynomial f by the 2n sized sequence Y containing its evaluations
over the Boolean hypercube. That is, Y = (f(�b) : �b ∈ {0, 1}n), and denote
the evaluation of the multilinear polynomial defined by Y on the point �ζ as
ML(Y, �ζ) =

∑
�b∈{0,1}n Y�b · χ(�b, �ζ).

3 Model Definition

In the massively-parallel computation (MPC) model, there are M parties (also
called machines) and each party has a local space of S bits. The input is assumed
to be distributed across the parties. Let N denote the total input size in bits; it
is standard to assume M ≥ N1−ε and S = Nε for some small constant ε ∈ (0, 1).
Note that the total space is M ·S which is large enough to store the input (since
M · S ≥ N), but at the same time it is not desirable to waste space and so it is
commonly further assumed that M · S ∈ Õ(N) or M · S = N1+θ for some small
constant θ ∈ (0, 1). Further, assume that S = Ω(log M).

At the beginning of a protocol, each party receives an input, and the protocol
proceeds in rounds. During each round, each party performs some local com-
putation given its current state (modeled as a RAM program with maximum
space S), and afterwards may send messages to some other parties through pri-
vate authenticated pairwise channels. An MPC protocol must respect the space
restriction throughout its execution, even during the communication phase—to
send a message at the end of a round, a party must write that message in some
designated place in memory, and in order to receive a message at the end of
a round, a party must reserve some space in memory equal to the size of the
message. This in turn implies that each party can send or receive at most S
bits in each round. An MPC algorithm may be randomized, in which case every
machine has a sequential-access random tape and can read random coins from
the random tape. The size of this random tape is not charged to the machine’s
space consumption.

3.1 Succinct Arguments in the MPC Model

We are interested in building a succinct argument in this model for some NP
language L, where the witness w = (w1, . . . , wM) for x ∈ L has size much
larger than S. The prover role is carried out by a group of S-space-bounded
parties P1, . . . , PM , each of which has the statement x and one piece wi of the
witness. They work together to convince a verifier V , which is also S-space-
bounded. Since any prover must at least be powerful enough to verify that
(x,w) ∈ RL, and the MPC model is not known to capture P when the rounds
are bounded, we only consider languages L where the verification algorithm
RL : ((x,w1), . . . , (x,wM)) → {0, 1} is implementable by a MPC protocol ΠL

where each party is S-space-bounded. Given such a protocol, our goal is to build

Distributed-Prover Interactive Proofs 99

a new MPC protocol Π ′
L between M + 1 parties P1, . . . , PM , V , where Pi has

input (x,wi) and V has input x, which satisfies the properties discussed below.

Communication Model and Setup. We assume a synchronous setting, with
pairwise channels between parties. We also allow for a CRS Setup(1λ) →
(α1, . . . , αM), where party i receives αi at the beginning of the protocol. Since
each party must store some αi, it is clear that |αi| ≤ S for all i. Looking ahead,
in our protocol, all parties get the same CRS string α which is a description of
a group of size 2λ, that is, αi = α for all i ∈ [M].

Efficiency Requirements. We want to build a protocol Π ′
L which has effi-

ciency properties as close as possible to the original verification protocol ΠL.
Specifically, if in ΠL each party uses space bounded by S, in Π ′

L each party’s
space should be bounded by S · p(λ), for some fixed polynomial p. Moreover, if
ΠL takes r rounds, Π ′

L should take a small multiplicative factor r · β rounds. In
this paper, we set β = polylog(N).

Security Requirements. Let α be the output of the setup algorithm, and
denote with

Π ′
L 〈[P1, . . . , PM] , V 〉 (

1λ, α, x, w = (w1, . . . , wM)
)

the output of the protocol Π ′
L with interactive RAM programs P1, . . . , PM play-

ing the roles of the M provers, and with the interactive RAM program V playing
the role of the verifier, where each Pi is initialized with input (1λ, α, x, wi), and
V is initialized with input (1λ, α, x). Similarly, denote with

Π ′
L 〈A, V 〉 (

1λ, α, x, w = (w1, . . . , wM)
)

the output of the protocol Π ′
L with an interactive monolithic RAM program

A playing the role of all provers P1, . . . , PM , and with the interactive RAM
program V playing the role of the verifier, where A is initialized with the inputs
of all Pi as defined above, and V is initialized in the same way as above.

We require Π ′
L satisfies completeness and soundness, defined as follows.

Definition 1 (Completeness). Let L be a language with a corresponding MPC
protocol ΠL which implements the verification functionality for RL. For all
(x,w) ∈ RL and for all λ, letting m = m(|x|),

Pr
[
Π ′

L 〈[P1, . . . , PM] , V 〉 (
1λ,Setup(1λ), x, w

)
= 1

]
= 1,

where P1, . . . , PM (resp., V) are the honest provers (resp., verifier), and the
probability is taken over random coins of the parties and of the setup algorithm.

Definition 2 (Soundness). Let L be a language with a corresponding MPC
protocol ΠL which implements the verification functionality RL. Fix a PPT
adversary A = (A1,A2), where A1 takes as input the security parameter and
the output of Setup, and chooses an input x, and where A2 plays the roles of

100 S. Das et al.

the provers P1, . . . , PM . Then ΠL is said to satisfy soundness if there exists a
negligible function negl such that for all λ,

Pr
[

x /∈ L ∧
Π ′

L 〈A2, V 〉 (
1λ, α, x,⊥)

= 1 : (α1, . . . , αM) ← Setup(1λ)
x ← A1(λ, α1, . . . , αM)

]

< negl(λ).

To prove soundness of our protocol, we show the stronger property of witness-
extended emulation as formalized by Lindell [48]. Intuitively, witness-extended
emulation requires the existence of an efficient extractor that can simulate an
adversarial prover’s view while extracting the underlying witness. Below we for-
mally extend the standard definition to the MPC setting in the natural way.

Definition 3 (Witness-Extended Emulation). Let L be a language with a
corresponding MPC protocol ΠL which implements the verification functionality
RL. Fix a PPT adversary A = (A1,A2), where A1 takes as input the security
parameter and the output of Setup and chooses an input x along with a private
state σ, and where A2 takes this σ as input and plays the roles of the provers
P1, . . . , PM . Then ΠL is said to satisfy witness-extended emulation with respect
to L (and RL) if there exists an (expected) PPT machine E (called the “extrac-
tor”) and a negligible function negl such that the following holds. Define two
distributions Dλ

1 and Dλ
2 based on A and E, as follows:

– Dλ
1 : Compute the setup α ← Setup(1λ) and then compute (x, σ) ← A1(1λ, α),

then output (α, rA, rV , x, τ), where τ is the transcript of messages obtained by
the execution Π ′

L 〈A2(σ), V 〉 (
1λ, α, x,⊥)

, rA is the random tape of A1 and
A2, and rV is the random tape of V .

– Dλ
2 : Compute the setup α ← Setup(1λ) and then compute (x, σ) ← A1(1λ, α),

then output (α, rA, rV , x, τ, w) ← EO(1λ, α, x), where O is an oracle which
provides an execution of Π ′

L 〈A2(σ), V 〉 (
1λ, α, x,⊥)

, and allows for rewinding
of the protocol and choosing the randomness of A2 during each round.

With respect to these distributions, for all λ, the following holds:

1. The distributions Dλ
1 and Dλ

2

∣
∣
α,r,x,τ

are identical, where Dλ
2

∣
∣
α,r,x,τ

is the
restriction of D2 to the first four components of the tuple (α, r, x, τ, w).

2. It holds that Pr
[
V accepts and (x,w) /∈ RL : (α, r, x, τ, w) ← Dλ

2

]
< negl(λ).

4 Defining Multilinear Polynomial Commitments
in the MPC Model

In this section, we discuss how to define a polynomial commitment scheme which
works in the MPC model starting with a discussion on how the polynomial is
distributed across all of the M many S-space-bounded parties. Let M be a
power of 2 and let Y ∈ F

N define an n variate multilinear polynomial where
N = 2n. We assume that Y is distributed across all parties in the following

Distributed-Prover Interactive Proofs 101

way: Let {I1, . . . , IM} be the canonical partition of {0, 1}n, that is, Ii = {(i −
1) · N/M, . . . , i · N/M − 1}. We associate each party Pi with the subset Ii, and
assume that Pi holds only the partial vector Yi containing elements from Y
restricted to the indices in Ii. That is,

Yi = (Y�b)�b∈Ii
.

Furthermore, for the canonical partition, if i-th party holds the partial vector
Yi, then they collectively define the multilinear polynomial Y where Y = Y1 ||
Y2 || . . . || YM , where || refers to the concatenation of two vectors.

Definition 4 (Multilinear Polynomial Commitment Syntax). A multi-
linear polynomial commitment has the following syntax.

– PC.Setup(1λ, p, 1n,M) → pp: On input the security parameter 1λ (in unary),
a field size p less than 2λ, the number of variables 1n (also in unary), and
the number of parties M , the setup algorithm PC.Setup is a randomized PPT
algorithm that outputs a CRS pp whose size is at most poly(λ, n, log(M)).

– PC.PartialCom(pp,Yi) → (comi;Zi): On input a CRS pp, and a vector Yi ∈ F

which is the description of a multilinear polynomial restricted to the set Ii ⊂
{0, 1}n, PC.PartialCom outputs a “partial commitment” comi as well as the
corresponding decommitment Zi ∈ Z.

– PC.CombineCom(pp, {comi}i∈[M]) → com: This is an interactive PPT proto-
col in the MPC model computing the following functionality: each party Pi

holds the string (pp, comi), they jointly compute the full commitment com
such that P1 learns com, and outputs it.

– PC.PartialEval(pp,Yi, �ζ) → yi: On input a CRS pp, a partial description vector
Yi, and an evaluation point �ζ ∈ F

n, PC.PartialEval is a PPT algorithm that
outputs the partial evaluation yi.

– PC.CombineEval(pp, {yi}i∈[M], �ζ) → y: This is an interactive PPT protocol in
the MPC model computing the following functionality: each party Pi holds the
string (pp, yi), they jointly compute the full evaluation y such that P1 learns
y, and outputs it.

– PC.IsValid(pp, com,Y,Z) → 0 or 1: On input the CRS pp, a commitment
com, a multilinear polynomial Y and a decommitment Z, PC.IsValid is a PPT
algorithm that returns a decision bit.

– PC.Open: Is a public-coin succinct interactive argument system
〈[P1, . . . , PM], V 〉 in the MPC model, where the statement (pp, com, �ζ, y) and
witness (Y = {Yi}i∈[M],Z = {Zi}i∈[M]), with respect to the relation

R =
{(

(pp, com, �ζ, y), (Y,Z)
)

:
IsValid(pp, com,Y,Z) = 1, and

ML(Y, �ζ) = y

}

,

where each prover Pi has input (pp, com, �ζ, y,Yi,Zi) and V has input
(pp, com, �ζ, y).

In the following sections, we assume that PC.PartialCom works even if we are
given streaming access to Yi.

We now specify the security properties which are required of PC.

102 S. Das et al.

Definition 5 (Multilinear Polynomial Commitment Security). We
require the following three properties from a polynomial commitment scheme:

– Correctness: For every prime p, number of variables n, and all Y and �ζ,

Pr

⎡
⎣1 = PC.Open(pp, com, �ζ, y;Y, Z) :

pp ← PC.Setup(1λ, p, 1n)
{comi, Zi ← PC.PartialCom(pp, Yi)}i∈[M]

com, Z ← PC.CombineCom(pp, {comi}i∈[M])

⎤
⎦ = 1.

– Computational Binding: For every prime q, number of variables n, number
of parties M , and nonuniform polynomial machine A, there exists a negligible
function negl : N → [0, 1] such that for every λ ∈ N and every z ∈ {0, 1}∗,
following holds:

Pr

⎡

⎢
⎢
⎣

b0 = 1
b1 = 1

Y0 �= Y1

:

pp ← PC.Setup(1λ, q, 1n,M)
(com,Y0,Y1,Z0,Z1) ← A(1λ, pp, z)

b0 ← PC.IsValid(pp, com,Y0,Z0)
b1 ← PC.IsValid(pp, com,Y1,Z1)

⎤

⎥
⎥
⎦ < negl(λ).

– Properties of PC.Open: The argument PC.Open satisfies the efficiency, com-
pleteness and witness-extended emulation properties defined in Sect. 3.

Looking ahead, in Sect. 6, we will prove the following theorem, showing the
existence of a scheme PC which satisfies the properties above.

Theorem 2. Assume G is a group sampler where the Hidden Order Assumption
holds. Let n be the number of variables, M ≤ 2n be the number of parties.
Then, the scheme defined in Sect. 6.2 is a polynomial commitment scheme (as
in Sect. 4) for n variate multilinear polynomials over finite field of prime-order
p in the MPC model with M parties with the following efficiency guarantees:

1. PC.PartialCom outputs a partial commitment of size poly(λ) bits, runs in time
2n · poly(λ, n, log(p)), and uses a single pass over the stream.

2. PC.PartialEval outputs a partial evaluation of size �log(p)�, runs in time
(2n/M) · poly(n, log(p)), and uses a single pass over the stream.

3. PC.CombineCom and PC.CombineEval have O(log(M)) rounds, and each party
in it requires poly(λ) bits of space.

4. PC.Open takes O(n · log(M)) rounds with poly(n, λ, log(p), log(M)) commu-
nication.

5. The verifier in PC.Open runs in time poly(λ, n, log(p)).
6. Each party Pi in PC.Open runs in time 2n · poly(n, λ, log(p)), requires space

n · poly(λ, log(p), log(M)), and uses O(n) passes over its stream.

5 Constructing Succinct Arguments in the MPC Model

Our construction uses the subprotocols Distribute, Combine, and CalcMerkleTree
introduced in [35]. These protocols take O(logν M) rounds and the communica-
tion is O(S · ν) per round for each machine, for small integral branching factor
ν ≥ 2.

Distributed-Prover Interactive Proofs 103

5.1 Tools from Prior Work

We import two major tools from previous work. The first is the following lemma,
which says that any RAM program can be transformed into a circuit C, where the
wire assignments of C can be streamed in time and space both proportional to the
time and space of the RAM program, respectively. In addition, the circuit logic
can be represented succinctly by low-degree polynomials which have properties
amenable to sumcheck arguments.

Lemma 1 (From Blumberg et al. [23]). Let M be an arbitrary (non-
deterministic) RAM program that on inputs of length n runs in time T (n) and
space S(n). M can be transformed into an equivalent (non-deterministic) arith-
metic circuit C over a field F of size polylog(T (n)). Moreover, there exist cubic
extensions âdd and m̂ult of the wiring predicates add and mult of C that satisfy:

1. C has size O(T (n) · polylog(T (n)).
2. The cubic extensions âdd and m̂ult of C can be evaluated in time

O(polylog(T (n))).
3. an (input,witness) pair (x,w) that makes M accept can be mapped to a cor-

rect transcript W for C in time O(T (n) · polylog(T (n)) and space O(S(n)) ·
polylog(T (n)). Furthermore, w is a substring of the transcript W , and any
correct transcript W ′ for C possesses a witness w′ for (M,x) as a substring.

4. C can be evaluated “gate-by-gate” in time O(T (n) · polylog(T (n))) and space
O(S(n) · polylog(T (n))).

5. The prover’s sumcheck messages can be computed in space O(S(n) ·
polylog(T (n))).

5.2 Notation

We make the following notational assumptions about the MPC algorithm ΠL

which verifies membership in L.
Let R be the number of rounds that ΠL takes. In each round r ∈ [R] of an

execution of ΠL, the behavior of party i ∈ [M] is described as a succinct RAM
program NextSt(i, r, ·). Thus the program NextSt is a succinct representation
of the entire protocol ΠL. We assume NextSt has size much less than S. For
convenience, we write NextSti,r(·) = NextSt(i, r, ·). We assume that NextSti,r
takes a string sti,r−1||msgini,r−1 as an input and outputs string sti,r||msgouti,r , where
sti,r is the internal, private state of party i in round r and msgini,r−1 is the list
of messages which party i received in round r − 1, and msgouti,r are the outgoing
messages of party i in round r. Note that the space of each party is limited
to S bits, so in particular |sti,r||msgini,r||msgouti,r | ≤ S for each i ∈ [M] and r ∈
[R]. We assume that the first-round private state sti,0 of each party i is equal
to its private input (x,wi) (or x if i = M + 1). In addition, we assume that
msgouti,r = {(j, �j ,mj)}j , where each triple (j, �j ,mj) means that party i should
send message mj to party j, and that party j should store this message at
position �j in msginj,r−1. Finally, we assume that if r is the final round then P1

writes 1 to the first position of st1,r iff x ∈ L.

104 S. Das et al.

5.3 The Construction

The main construction of a succinct argument in the MPC model works as
follows. First, we construct a succinct argument for the following scenario. Fix
a round r and corresponding starting states sti,r−1||msgini,r−1 for each party i ∈
[M], and let πr−1 be a Merkle commitment to the concatenation of all these
starting states. Let sti,r||msgouti,r ||msgini,r be the state of party i after an honest
execution of round r, and let πr be a Merkle commitment to the concatenation
of all these end states. Assuming V has x, πr−1, and πr, the goal is to convince V
that πr is a commitment to states which have been obtained by an honest round-
r interaction, starting with the states committed to by πr−1. If we construct
an argument for this language, and this argument satisfies witness-extended
emulation, this is sufficient for achieving an argument system which verifies an
honest execution of the full protocol ΠL with respect to a witness for L.

In the following, we construct such a “round verification protocol,” which
is our main technical contribution. In Sect. 5.4, we show how to use this round
verification protocol to build an argument system for L.

To start, we define a new machine, which we call NextSt′. As before, we write
NextSt′i,r(·) = NextSt′(i, r, ·). Let

NextSt′i,r(πr−1, πr, sti,r−1,msgini,r−1, ρi,r−1, ρi,r, {ρi→j,r}j) = 1

if the all following holds:

– ρi,r−1 is an opening of πr−1 to (sti,r−1,msgini,r−1) at position i,
– ρi,r is an opening of πr to sti,r||msgouti,r ||msgini,r at position i, where

NextSti,r(sti,r−1,msgini,r−1) = sti,r||msgouti,r ||msgini,r,

– Writing msgouti,r as {(j, �j ,mj)}j , for each j, ρi→j,r is an opening to mj at
position �j in msginj,r.

Otherwise, let

NextSt′i,r(πr−1, πr, sti,r−1,msgini,r−1, ρi,r−1, ρi,r, {ρi→j,r}j) = 0.

Note that since NextSti,r is succinct, NextSt′i,r is also succinct. Let Ci,r be the
circuit corresponding to NextSt′i,r via Lemma 1. Also from Lemma 1, party i
can stream the gate assignments Wi,r of Ci,r in space proportional to the space
taken by an execution of NextSt′i,r.

We take an approach inspired by that of [22,23] in constructing a sumcheck
polynomial that encodes the computation, and using a polynomial commitment
to allow for a succinct verifier. Let s = �log T ′�, where T ′ is the number of
wires in Ci,r (which is constant across i and r). We can index every wire in Ci,r

with some string �x ∈ {0, 1}s. Define the polynomial Ŵi,r(X1, . . . , Xs) to be the
multilinear extension of Wi,r, i.e., for all �x ∈ {0, 1}s, Wi,r(�x) is the value that
Wi,r assigns to wire �x. Now, letting m = �log M�, we can index each party by

Distributed-Prover Interactive Proofs 105

a string �z ∈ {0, 1}m. Define Ŵr(X1, . . . , Xs, Z1, . . . , Zm) to be the multilinear
polynomial such that Ŵr(�x, �z) = Ŵi,r(�x), where i is the index which corresponds
to �z. Let âdd(X1, . . . , X3s) be the succinct, low-degree polynomial from Lemma
1 where âdd(�x1, �x2, �x3) = 1 if in Ci,r the unique gate which has input wires
�x1 and �x2 and output wire �x3 is an addition gate. Note that âdd does not
depend on i (or r for that matter) since, except for some hardcoded input wires,
Ci,r = Ci′,r′ for all i, i′, r, r′. Similarly, define m̂ult(X1, . . . , X3 s). Finally, define
înout(X1, . . . , X3s) so that înout(�x1, �x2, �x3) = 1 if either �x3 is an input wire which
is known by V , or �x3 is an output wire which is known by V and �x1 and �x2 are
the input wires for the gate whose output wire is �x3. Define Î(X1, . . . , Xm) to be
the multilinear polynomial such that Î(�x) is the corresponding bit of πr−1 (or πr)
if �x is an input wire which takes the value of a bit of πr−1 (or πr, respectively),
and is the corresponding bit of the statement to the argument system if r = 0
�x is an input wire which takes the value of the statement, and is 1 if �x is an
output wire which V knows should be 1.

Given above, we can define the polynomial g as follows:

g(�X1, �X2, �X3, �Z) = âdd(�X1, �X2, �X3)(Ŵr(�X3, �Z) − (Ŵr(�X1, �Z) + Ŵr(�X2, �Z)))

+ m̂ult(�X1, �X2, �X3)(Ŵr(�X3, �Z) − (Ŵr(�X1, �Z) · Ŵr(�X2, �Z)))

+ înout(�X1, �X2, �X3)(Ŵr(�X3, �Z) − Î(�X3)).

With this definition, g vanishes on all boolean inputs if and only if Ŵr encodes
transcripts of the correct computations of each party i with respect to starting
states committed to in πr−1 and ending states committed to in πr, and if all
messages sent by i have been stored in the respective msginj,r. For q ∈ Zp, let
hq(�X) = g(�X) · ∏

β∈[m+3 s](1 − (1 − q2
β−1

)Xi). Then, hq(�x) = g(�x) · qbin
−1(�x)

for all �x ∈ {0, 1}m+3 s, where bin−1(�X) is the integer represented by the binary
representation �X. We now have defined the polynomials required for the protocol
below. If P1, . . . PM can collectively construct the prover’s sumcheck messages
for the polynomial hq for a randomly chosen q, then this is sufficient to build
an argument that convinces V that g vanishes on the boolean hypercube. We
now describe the protocol, assuming the provers have an efficient subprotocol
CalcSumcheckProverMsg (defined below) for constructing their responses. This
protocol is heavily inspired by the IOP in [22]. However, that protocol was
significantly simpler, since in their setting, there is only one prover who can
stream the whole polynomial Ŵr. In contrast, we have the task of showing that
it is possible to construct the prover’s sumcheck responses in a round-efficient
way, even given that Ŵr is spread across many different machines.

106 S. Das et al.

VerifyRound: Protocol to verify correctness of one round of ΠL.

Parameters: Tree fan-in ν = s/ log N .

Inputs: Pi has input (r, πr−1, πr, sti,r−1,msgini,r−1, ρi,r−1, ρi,r, {ρi→j,r}j). V
has input (x, r, πr−1, πr). In addition, all parties have the setup α for a
polynomial commitment scheme.

Execution:

1. Independently in parallel, each prover computes
φi = PC.PartialCom(α, Ŵ), where for each �x ∈ {0, 1}s, Ŵ (�x) is the
wire assignment for wire �x in Ci,r. By Lemma 1, the wire assignments
can be computed in a streaming fashion, and PC.PartialCom works given
streaming access to Ŵ .

2. com ← PC.CombineCom(α, {φi}i∈[M]), so that each party obtains com,
the commitment of the polynomial Ŵr defined above.

3. P1 sends this commitment com to V .
4. V chooses q

$←− F and sends q to P1.
5. The provers run Distributeν(q) so that every prover obtains q.
6. The parties now run the sumcheck protocol with respect to hq defined

above. Set y1 ← 0. For each γ ∈ [m + 3s]:
(a) Provers run the subprotocol CalcSumcheckProverMsg to generate

sumcheck prover’s message fγ . P1 sends fγ to V .
(b) V checks that deg fγ = degγ hq, and halts and outputs 0 if the

degrees are different.
(c) V checks that fγ(0) + fγ(1) = yγ , and halts and outputs 0 if the

equality does not hold.
(d) V then chooses ζγ

$←− F, sets yγ+1 ← fγ(ζγ), and sends ζγ to P1.
7. Write �ζ = (�ζ1, �ζ2, �ζ3, �ζ4). The provers and verifier run PC.Open

with respect to statements (α, com, (�ζ1, �ζ4), Ŵr(�ζ1, �ζ4)), (α, com, (�ζ2, �ζ4),
Ŵr(�ζ2, �ζ4)), and (α, com, (�ζ3, �ζ4), Ŵr(�ζ3, �ζ4)). V halts and outputs 0 if
any of these protocols fail to verify.

8. V uses the openings to compute hq(�ζ). It checks whether hq(�ζ) = ym+3s;
if the equality does not hold, V outputs 0; otherwise, it outputs 1.

The CalcSumcheckProverMsg subprotocol

We now show how the parties P1, . . . , PM can generate the sumcheck prover’s
polynomials fγ in a round- and space-efficient manner. For each round γ, the
honest fγ(X) is defined to be the following univariate polynomial:

fγ(X) =
∑

�x∈{0,1}m+3 s−γ

hq(�ζ,X, �x),

Distributed-Prover Interactive Proofs 107

for the random vector �ζ chosen by the verifier in previous rounds. (In round one,
�ζ is the empty vector of length 0.) Recall that hq(�X) = g(�X) · ∏

i∈[m+3 s](1 −
(1 − q2

i

Xi)), for g as defined below (setting �X = (�X1, �X2, �X3, �Z)):

g(�X1, �X2, �X3, �Z) = âdd(�X1, �X2, �X3)(Ŵr(�X3, �Z) − (Ŵr(�X1, �Z) + Ŵr(�X2, �Z)))

+ m̂ult(�X1, �X2, �X3)(Ŵr(�X3, �Z) − (Ŵr(�X1, �Z) · Ŵr(�X2, �Z)))

+ înout(�x1, �x2, �x3)(Ŵr(�X3, �Z) − Î(�X3)).

Observe that hq(�X) can be written as

hq(�X1, �X2, �X3, �Z) =
5∑

i=j

pj(�X1, �X2, �X3, �Z),

where p5(�X1, �X2, �X3, �Z) = înout(�x1, �x2, �x3) · Î(�X3) and can be computed locally
by each party,

p4(�X1, �X2, �X3, �Z) = p′
4(�X1, �X2, �X3, �Z)Ŵr(�X1, �Z)Ŵr(�X2, �Z),

and for all j ∈ {1, 2, 3}

pj(�X1, �X2, �X3, �Z) = p′
j(�X1, �X2, �X3, �Z)Ŵr(�Xj , �Z) .

Here each p′
j is a succinct low-degree polynomial known by V . Thus, to compute

the polynomial fγ(X) in small rounds and space, it is sufficient to compute
∑

�x∈{0,1}m+3 s−γ

pj(�ζ,X, �x) (1)

in small rounds and space for each j ∈ [4] (and p5 locally) and sum the results.
We now show how to do this, focusing first on the case of i ∈ {1, 2, 3}. Note

that in every round except the first, computing the sum in Eq. (1) involves com-
puting O(2|�x|) interpolations of Ŵr. Since the evaluations of Ŵr are distributed
among the M parties P1, . . . , PM , doing these interpolations requires communi-
cation among these parties. If we interpolated pj(�ζ,X, �x) for each �x and then
summed the result, then even if the communication per interpolation is a con-
stant number of rounds, this would mean that computing Eq. (1) would involve
a number of rounds linear in the total computation time. So we need something
slightly more clever than the naive strategy.

Before we go on, we note that for Eq. (1), it suffices to compute
∑

�x∈{0,1}m+3 s−γ

pj(�ζ, ζ ′, �x),

for each ζ ′ ∈ {0, . . . , δ}, where δ is the degree of pj . Once we have these δ+1 field
elements, we can interpolate Eq. (1) in constant space. So we focus on computing
this; i.e., we focus on computing the following for an arbitrary �ζ ∈ F

γ

108 S. Das et al.

∑

�x∈{0,1}m+3 s−γ

pj(�ζ, �x). (2)

Note that each term in the sum above is of the form p′
j(�ζ, �x)Ŵr(�ζ ′, �x′), where

�ζ ′ is obtained from �ζ by deleting some (possibly zero) indices, and �x′ is obtained
from �x in the same manner. The key insight which allows us to compute Eq. (2) in
low rounds is as follows. Imagine that �ζ ′ = (ζ1) is a single element. Then, by the
multilinearity of Ŵr, it follows that Ŵr(ζ1, �x′) = ζ1 ·Ŵr(1, �x′)+(1−ζ1)·Ŵr(0, �x′).
In the same way, if �ζ ′ = (ζ1, ζ2), then

Ŵr(ζ1, ζ2, �x′) = ζ1 · Ŵr(1, ζ2, �x
′) + (1 − ζ1) · Ŵr(0, ζ2, �x

′)

= ζ1 ·
(
ζ2 · Ŵr(1, 1, �x′) + (1 − ζ2) · Ŵr(1, 0, �x′)

)

+ (1 − ζ1) ·
(
ζ2 · Ŵr(0, 1, �x′) + (1 − ζ2) · Ŵr(0, 0, �x′)

)
.

By a simple use of induction, we can write Ŵr(�ζ ′, �x′), for arbitrary �ζ ′, as

Ŵr(�ζ ′, �x′) =
∑

�y∈{0,1}|�ζ′|

c�ζ′,�y · Ŵr(�y, �x′) (3)

where

c�ζ′,�y =
|�ζ′|∏

j=1

(ζj · yj + (1 − ζj)(1 − yj)) =
|�ζ′|∏

j=1

{ζj if yj = 1, otherwise (1 − ζj)} .

It follows that we can rewrite Eq. (2) as

∑

�x∈{0,1}m+3 s−γ

pj(�ζ, �x) =
∑

�x∈{0,1}m+3 s−γ

p′
j(�ζ, �x)

⎛

⎝
∑

�y∈{0,1}|�ζ′|

c�ζ′,�y · Ŵr(�y, �x′)

⎞

⎠ (4)

=
∑

�x∈{0,1}m+3 s−γ

∑

�y∈{0,1}|�ζ′|

c′
�x,�ζ′,�y

· Ŵr(�y, �x′), (5)

where c′
�x,�ζ′,�y

is computable in space proportional to the space required to com-

pute c�ζ′,�y and p′
j(�ζ, �x).

Since Eq. (2) can be written as a weighted sum of evaluations of Ŵr on points
in the boolean hypercube, and since all such evaluations are partitioned across
the provers, each prover can compute a component of the sum by streaming the
computation in space O(S), and then the provers can all sum their components
together using a large-arity tree in constant rounds.

The case where j = 4 is more involved. Recall that the goal is to compute
∑

�x∈{0,1}m+3 s−γ

p4(�ζ, �x), (6)

Distributed-Prover Interactive Proofs 109

for some given �ζ ∈ F
γ . We first handle the case where γ ≤ 3s. In this case,

∑

�x∈{0,1}m+3 s−γ

p4(�ζ, �x) =
∑

�z∈{0,1}m

∑

�x′∈{0,1}3 s−γ

p′
4(�ζ, �x′, �z)Ŵr(�ζ1, �z)Ŵr(�ζ2, �z), (7)

where �ζ1 and �ζ2 are both a combination of �ζ and �x. Observe that from the
discussion above, for each �z ∈ {0, 1}m, the values {Ŵr(�ζj)}�ζj

can be streamed
by a single party Pi, where �z is the binary representation of i, by streaming the
values of Ŵr in the boolean hypercube and then using Eq. (3). Thus, for each �z,
the inner sum

∑
�x′∈{0,1}3 s−γ p′

4(�ζ, �x′, �z)Ŵr(�ζ1, �z)Ŵr(�ζ2, �z) can be computed by a
single party in O(S) space. The parties can then sum these terms in a large-arity
tree, thus computing Eq. (6) in O(1) rounds and O(S) space.

We now consider the case where γ > 3s. Write γ = 3 s+m′, for some m′ > 1,
and write �ζ = (�ζ1, �ζ2, �ζ3, �ζ4). In this case,

∑

�x∈{0,1}m+3 s−γ

p4(�ζ, �x) =
∑

�z′∈{0,1}m−m′
p′
4(�ζ, �z′)Ŵr(�ζ1, �ζ4, �z′)Ŵr(�ζ2, �ζ4, �z′),

and then again by Eq. (3), this is equal to
∑

�z′∈{0,1}m−m′
term�z′ (8)

where term�z′ is the following:

p′
4(�ζ, �z′)

⎛

⎜⎝
∑

�y
(1)
4 ∈{0,1}m′

c�ζ4,�y
(1)
4

· Ŵr(�ζ1, �y
(1)
4 , �z′)

⎞

⎟⎠

⎛

⎜⎝
∑

�y
(2)
4 ∈{0,1}m′

c�ζ4,�y
(2)
4

· Ŵr(�ζ2, �y
(2)
4 , �z′)

⎞

⎟⎠ .

(9)

Note that for any Ŵr(�ζj , �y
(2)
4 , �z′), there is a party (indexed by (�y(2)

4 , �z′) who
can compute this value locally, so WLOG, we assume each party has precom-
puted this corresponding value. Observe that �z′ defines a subset of parties,
indexed by the set S�z′ = {�y4, �z′ : y4 ∈ {0, 1}m′}, and distinct from S�z′′ for all
�z′′ �= �z′. Observe also that for each �z′, to compute term�z′ , only the parties in S�z′

must interact, and they can compute the sum in Eq. (9) in constant rounds and
O(S) space by first computing the two inner sums via large-arity trees as in all
the previous cases, and then multiplying these two summed values together and
weighting them according to p′

4(�ζ, �z′). Thus, to compute the outer sum, for each
�z′, the parties in S�z′ can interact in the manner described above, simultaneously
with all other S�z′′ . Then, once each set has their term of the sum, representative
parties for each of the sets can again use a large-arity tree to obtain the final
result in constant rounds and O(S) space.

We now give the description of CalcSumcheckProverMsg.

110 S. Das et al.

The protocol CalcSumcheckProverMsg.

Parameters: Tree fan-in ν = s/ log N .

Inputs: Pi has input (r, πr−1, πr, sti,r−1,msgini,r−1, ρi,r−1, ρi,r, {ρi→j,r}j). In
addition, all parties have the setup α for a polynomial commitment scheme,
a field element q ∈ F, the round γ of the sumcheck, and the verifier queries
�ζ, where |�ζ| = γ − 1.

Execution:

1. Write hq(�X1, �X2, �X3, �Z) =
∑5

i=j pj(�X1, �X2, �X3, �Z). Party P1 locally
computes summand5 =

∑
�x∈{0,1}m+3s−γ p5(�ζ,X, �x), where

p5(�X1, �X2, �X3, �Z) = înout(�x1, �x2, �x3) · Î(�X3),

and stores the result.
2. For j ∈ {1, . . . , 3}, the parties compute

∑
�x∈{0,1}m+3s−γ pj(�ζ,X, �x) as:

(a) For ζ ′ ∈ {0, . . . ,deg(pj)}, compute
∑

�x∈{0,1}m+3s−γ pj(�ζ, ζ ′, �x) as:
i. Each party Pi streams the computation of Ci,r in order to com-

pute the component componenti of the sum in eq. (5) which it
has access to.

ii. The parties run the protocol Combineν(+, {componenti}i∈[M]) so
that P1 learns

∑
�x∈{0,1}m+3s−γ pj(�ζ, ζ ′, �x).

(b) Once P1 has these deg(pj) + 1 values, it interpolates summandj =
∑

�x∈{0,1}m+3s−γ pj(�ζ,X, �x).

3. The parties now compute summand4 =
∑

�x∈{0,1}m+3s−γ p4(�ζ,X, �x). If
γ ≤ 3s, then for each ζ ′ ∈ {0, . . . ,deg(p4)}:
(a) Each party Pi computes the inner sum

componenti =
∑

�x′∈{0,1}3s−γ

p′
4(�ζ, �x′, �z)Ŵr(�ζ1, �z)Ŵr(�ζ2, �z)

from eq. (7), where �z is the index of i in binary form.
(b) The parties run the protocol Combineν(+, {componenti}i∈[M]) so

that P1 learns
∑

�x∈{0,1}m+3s−γ p4(�ζ, ζ ′, �x).
4. On the other hand, if γ > 3s then for each ζ ′ ∈ {0, . . . ,deg(p4)}:

(a) For each �z′ ∈ {0, 1}m−m′
, the parties in the set S�z′ do the following

to compute term�z′ :
i. Each party Pi in S�z′ computes the component componenti of(∑

�y
(1)
4 ∈{0,1}m′ c�ζ4,�y

(1)
4

· Ŵr(�ζ1, �y
(1)
4 , �z′)

)
which it has access to.

ii. The parties in S�z′ run Combineν(+, {componenti}i∈S�z′) so that
the lexicographically first party in S�z′ learns factor1.

Distributed-Prover Interactive Proofs 111

iii. Each party Pi in S�z′ computes the component componenti of(∑
�y
(2)
4 ∈{0,1}m′ c�ζ4,�y

(2)
4

· Ŵr(�ζ2, �y
(2)
4 , �z′)

)
which it has access to.

iv. The parties in S�z′ run Combineν(+, {componenti}i∈S�z′) so that
the lexicographically first party in S�z′ learns factor2.

v. The lexicographically first party in S�z′ now computes term�z′ =
p′
4(�ζ, �z′) · factor1 · factor2 locally, by eq. (9).

(b) Let Pi�z′ be the lexicographically first party in S�z′ . The parties
{Pi�z′ : �z′ ∈ {0, 1}m−m′} runs Combineν(+, {term�z′}�z′∈{0,1}m−m′) so

that P1 learns
∑

�x∈{0,1}m+3s−γ p4(�ζ, ζ ′, �x), as in eq. (8).
5. Once P1 has these deg(pj) + 1 values, it interpolates them to compute

summand4 =
∑

�x∈{0,1}m+3s−γ p4(�ζ,X, �x).

6. P1 outputs
∑5

j=1 summandj .

Efficiency

We now discuss the efficiency of the VerifyRound protocol.

Round complexity. The protocol VerifyRound can be separated into two steps:
first, the provers commit to the polynomial Ŵr and receive a random q from V ,
and then second, the parties carry out a sumcheck protocol. The first step is dom-
inated by the subprotocols PC.CombineCom(α, {φi}i∈[M]) and Distributeν(q).
Note that since ν = λ, and each of these two protocols take O(logν(M))
rounds, the first step takes a constant number of rounds. The second step takes
(m + 3 s) · (RCalcSumcheckProverMsg + C1) + C2 · RPC.Open rounds, where m + 3s is
polylog(N), RCalcSumcheckProverMsg and RPC.Open are the number of rounds required
for the CalcSumcheckProverMsg and PC.Open subprotocols respectively, and C1

and C2 are constants. As explained in Sect. 6, RPC.Open = polylog(|Ŵr|), which
is polylog(N). As explained in Sect. 5.3, RCalcSumcheckProverMsg is constant. Thus,
(m + 3 s) · (RCalcSumcheckProverMsg + C1) + C2 · RPC.Open is polylog(N). It follows
that the entire protocol VerifyRound takes polylog(N) rounds.

Space complexity per party. By the properties of the polynomial commit-
ment and the sumcheck protocol, the verifier takes space polylog(N) · poly(λ).
The provers each take space S · poly(λ); this follows from the following:

– Each party’s polynomial Ŵ which encodes the wire assignments of Ci,r can
be streamed in space O(S) by Lemma 1, and PC.PartialCom works assuming
streaming access to Ŵ .

– PC.CombineCom and PC.Open are MPC protocols where the provers require
at most S · poly(λ) space, as per the properties of PC.

– CalcSumcheckProverMsg is an MPC protocol where the provers require at
most S · poly(λ) space, as discussed in the previous section.

112 S. Das et al.

5.4 From Round Verification to a Full Argument

In this section, we use the VerifyRound protocol from Sect. 5 and the polynomial
commitment PC from Sect. 6.2 to achieve a succinct argument for a language L,
assuming L has a MPC verification algorithm ΠL as described in Sect. 5.2.

The formal description of the argument system is as follows. Assume the
original protocol ΠL runs for R rounds.

The argument system for L.

Parameters: Tree fan-in ν = s/ log N .

Inputs: Pi has input (x,wi). V has input x. In addition, all parties have
the CRS α for a polynomial commitment scheme.

Execution:

1. V samples a hash key h and sends it to P1. The provers run
Distributeν(h).

2. Each Pi sets sti,0 = (x,wi), and sets msgini,0 to be the empty string.
3. The provers run the subprotocol CalcMerkleTreeh({sti,0}i∈[M]) so that

each Pi learns a Merkle root π0 along with an opening ρi,0 for sti,r.
4. P1 sends π0 to V .
5. For each round r ∈ [R], the parties do the following:

(a) Each Pi runs NextSti,r(sti,r−1,msgini,r−1) to obtain sti,r and msgouti,r .
(b) For prover Pi, for each triple (j, �j ,mj) ∈ msgouti,r , Pi sends (�j ,mj)

to prover Pj , who stores mj at position �j in msginj,r.
(c) The provers run the subprotocol CalcMerkleTreeh on inputs

({(sti,r,msgouti,r ,msgini,r)}i∈[M]) so that each Pi learns a Merkle root
πr along with an opening ρi,r for (sti,r,msgouti,r ,msgini,r).

(d) P1 sends πr to V .
(e) For prover Pi, for each message in msgini,r, Pi sends an opening ρi→j,r

of that position in msgini,r to the sender Pj of that message.
(f) The parties run the subprotocol VerifyRound, where each prover

Pi has input (r, πr−1, πr, sti,r−1,msgini,r−1, ρi,r−1, ρi,r, {ρi→j,r}j), and
the verifier V has input (x, r, πr−1, πr).

(g) If VerifyRound aborts, then V aborts and rejects.
6. P1 sends an opening ρ of the first position of sti,R w.r.t. πR to V .
7. V accepts if the opening bit is 1, and rejects otherwise.

Efficiency. The round complexity of the above argument is R·polylog(N), where
R is the number of rounds taken by ΠL. The space complexity is S · poly(λ) per
party. The round and space complexity of the argument follows from those of
VerifyRound discussed above.

Security. We have the following theorem and defer its proof to the full version.

Distributed-Prover Interactive Proofs 113

Theorem 3. Assume the polynomial commitment scheme PC satisfies the secu-
rity properties in Definition 5. Then the argument system above satisfies witness-
extended emulation with respect to the language L.

6 Constructing Polynomial Commitments in the MPC
Model

Our construction extensively uses the polynomial commitment scheme of Block
et al. [22], which we describe in detail in the full version. To describe our con-
struction, we first introduce the distributed streaming model in Sect. 6.1, then
describe the construction in Sect. 6.2 with its proof in Sect. 6.3.

6.1 Distributed Streaming Model

Looking ahead to our goal of designing succinct arguments in the MPC model,
we consider an enhancement of the streaming model [22] to the MPC setting. We
refer to the model as the distributed streaming model : Let Y ∈ F

N be some mul-
tilinear polynomial and let {Yi ∈ F

N/M}i∈[M] be the set of partial descriptions
vectors such that Y = Y1 || Y2 || . . . || YM . In the distributed streaming model,
we assume that each of the S-space bounded parties Pi have streaming access
only to the elements of their partial description vector Yi, where S � N/M .

While adapting Block et al. [22] to the distributed streaming model, we need
to ensure two properties: (a) low-space provers and (b) a low-round protocol. A
naive low space implementation is achieved by blowing up the number of rounds
of interaction. Similarly, a naive polylogarithmic round protocol is achieved by
simply having each party communicate their whole input (in a single round)
to a single party, but this incurs high space for the prover. Achieving the two
properties together is the main technical challenge. We build a low-space and a
low-round protocol by heavily exploiting the algebraic structure of [22].

6.2 Our New Construction

To support n variate polynomials, recall that each party Pi holds a par-
tial vector Yi over F of size N/M and the corresponding index set Ii =
{(i − 1) · N/M, . . . , iN/M − 1}. The PC.Setup algorithm is identical to [22], and
the PC.PartialCom and PC.CombineCom collectively implement the commitment
algorithm of [22], and PC.Open implements their open algorithm.

PC.Setup(1λ, p, 1n,M) : The public parameters pp output by PC.Setup con-
tains the tuple (g, p, G) where g is a random element of the hidden order group
G and q is a sufficiently large integer odd integer (i.e., q > p · 2n·poly(λ)).

PC.PartialCom(pp,Yi) : Each of the parties locally run this algorithm to
compute their partial commitment to the polynomial. In particular, on inputs
pp = (q, g, G) and the partial sequence Yi ∈ F

N/M , the algorithm PartialCom
outputs a commitment comi to Yi by encoding its elements as an integer in base
q. Specifically, comi = gzi where

114 S. Das et al.

zi = q(i−1)N/M

⎛

⎝
∑

�b∈{0,1}n−m

q
�b · Yi�b

⎞

⎠ , (10)

and private partial decommitment is the sequence Zi = lift(Yi). We give the
formal description of this algorithm in the streaming model below.

Protocol 1 PC.PartialComν(pp,Yi)

Require: Party P holds a string pp = (q, g, G) where |pp| ≤ S and has
streaming access to the elements in the sequence Yi in lexicographic order.

Ensure: P party holds com where com = gzi is as defined in Equation (10).
1: Let com = 1 ∈ G, temp = g.
2: for �b ∈ {0, 1}n−m do
3: com = com · temp(Yi)�b

4: temp = tempq

5: com = comq(i−1)N/M

.
6: output com

PC.CombineCom(pp, {comi}) : Parties each holding their partial commit-
ments comi want to jointly compute a full commitment com =

∏
i∈[M] comi.

For this, parties run the Combine subprotocol on their inputs with op as the
group multiplication and P1 as the receiver. Then, P1 outputs com as the com-
mitment.

PC.PartialEval(pp,Yi, �ζ) : Each of the parties locally run this algorithm to
compute their contributions to the evaluation. In particular, on input the CRS
pp, a partial vector Yi ∈ F

N/M and a evaluation point �ζ ∈ F
n, the partial

evaluation algorithm outputs yi ∈ F such that

yi =
∑

�b∈{0,1}n−m

Yi�b · χ(�ζ,�b + (i − 1) · M) . (11)

We give the formal description of this algorithm in the streaming model below.

Protocol 2 PC.PartialEvalν(pp,Yi, �ζ)

Require: Party P holds a string pp = (q, g, G) and �ζ where |pp|, |�ζ| ≤ S, and
has streaming access to the elements in Yi in lexicographic order.

Ensure: P party holds yi as defined in Equation (11).
1: Let yi = 0 ∈ F.
2: for �b ∈ {0, 1}n−m do
3: yi = yi + (Yi)�b · χ(�ζ,�b + (i − 1) · M)

4: output yi

PC.CombineEval(pp, yi, �ζ) : Parties each holding their partial evaluations yi

want to jointly compute the full evaluation y =
∑

i∈[M] yi. For this, parties run
the Combine subprotocol on their inputs with the field addition as the associate
operator op and P1 as the receiver. Then, P1 outputs y as the evaluation.

Distributed-Prover Interactive Proofs 115

PC.Open The PC.Open algorithm is the natural adaptation of the Open algo-
rithm in [22] to the distributed streaming model. Specifically, all parties (includ-
ing V) hold the public parameters pp = (q, p, G), the claimed evaluation y ∈ F,
the evaluation point �ζ ∈ F

n and the commitment com. Further, each party Pi

has streaming access to the entries in its partial decommitment vector Zi.

The protocol PC.Open.

Inputs: Each party Pi holds a string pp = (q, g, G), �ζ, y and com where
|pp|, |�ζ|, |com|, |y| ≤ S, and has streaming access to the elements in the
sequence Yi in lexicographic order. The verifier V holds pp, �ζ, com, y.

Execution:

1. All parties and the verifier compute the λ-fold repetitions �com(0) and
�y(0) of com and y respectively as done in the Open algorithm of [22]. Pi

views Yi as a vector Zi = lift(Yi) over the integers. Further, let Z =
Z1||Z2|| . . . ZM , and let Z(0) be the λ-fold repetition of Z as done in the
Open algorithm of [22]. By Z

(0)
i we denote the part of Z(0) corresponding

to Zi.
2. For k ∈ [0, . . . , n − 1], do the following:

(a) Each party Pi, having streaming access to columns in Z
(0)
i , computes

their contribution to �y
(k)
L , �y

(k)
R , �com

(k)
L and �com

(k)
R .

(b) Then, each party run the Combine protocol on their respective con-
tributions such that P1 learns �y

(k)
L , �y

(k)
R , �com

(k)
L and �com

(k)
R . P1 then

forwards these values to the verifier V .
(c) V checks that �y(k) = �y

(k)
L · (1 − ζk+1) + �y

(k)
R · ζk+1.

(d) P1 and V run a PoE protocol on inputs (�com
(k)
R , �com(k)/ �com

(k)
L , q, n−

k − 1, λ) as in line 9 of MultiEval procedure of [22].
(e) V samples U (k) = [U (k)

L || U
(k)
R] ← {0, 1}λ×2λ and sends U (k) to P1

where U
(k)
L , U

(k)
R ∈ {0, 1}λ×λ.

(f) P1 runs the Distribute subprotocol with input U (k) with other Pi’s.
(g) All parties Pi and V locally compute the following:

�y(k+1) = U
(k)
L · �y(k)

L + U
(k)
R · �y(k)

R

�com(k+1) = (U (k)
L � �com

(k)
L) � (U (k)

R � �com
(k)
R) .

3. Each party Pi computes Z
(n)
i where Z

(n)
i is obtained by restricting the

summation in the expression for Z(n) to Ii.
4. Parties run the Combine protocol on Z

(n)
i with the integer addition oper-

ation to compute Z(n), and forward to V .
5. V accepts iff ||Z(n)||∞ ≤ p(2λ)n, �y(n) = Z(n) mod p, and �com(n) =

gZ(n)
.

116 S. Das et al.

6.3 Proof of Theroem 2

We now prove Theorem 2 – our main theorem statement for multilinear poly-
nomial commitments in the MPC model. The correctness, binding and witness-
extended emulation properties follow readily from that of [22]: this is because, for
these properties, it suffices to view the cluster of provers as monolithic. In such
a setting, the above described polynomial commitment scheme is then identical
to that of [22]. Finally, we argue about the efficiency of each of the algorithms
next.

Efficiency of PC.PartialCom. In PC.PartialCom (Sect. 6.2), each party Pi runs
through the stream of Yi once, and for each of the 2n/M elements performs the
following computation: In line 3, it does a single group exponentiation where
the exponent is an F value, and performs a single group multiplicaton. In line
4, it performs a group exponentiation where the exponent is q. Thus, lines 3–4
results in total runtime of (2n/M) · poly(λ, log(p), log(q)). On line 5, it performs
a single group exponentiation where the exponent is q(i−1)N/M followed by a
single group multiplication. The former requires (i−1)(N/M)poly(λ, log(q)) time
whereas latter requires poly(λ) run time. Plugging the value of q, results in an
overall time of 2n ·poly(λ, n, log(p)). The output is a single group elements which
require poly(λ) bits, and only one pass over the stream Yi is required.

Efficiency of PC.CombineCom. Recall from Sect. 6.2, that in PC.CombineCom,
all parties run the Combine subprotocol on local inputs of poly(λ) bits. This
requires O(log M) rounds and each party only requires poly(λ) bits of space.

Efficiency of PC.PartialEval. Recall from Sect. 6.2, each party Pi runs through
the stream of Yi once, and for each of the 2n/M elements performs the following
operations in line 3: (a) computes the polynomial χ on inputs of size n, and (b)
performs a single field multiplication and addition. Thus PC.PartialEval’s running
time is bounded by (2n/M)·poly(λ, n, log(p)), the output is a single field element
of �log(p)� bits, and only one pass over Yi is required.

Efficiency of PC.CombineEval. Recall from Sect. 6.2, that in PC.CombineEval,
all parties run the Combine subprotocol on local inputs of poly(λ) bits. This
requires O(log M) rounds and each party only requires poly(λ) bits of space.

Communication/Round Complexity of PC.Open. The round complexity
of PC.Open as described in Sect. 6.2 is dominated by line 2. In particular, line
2 is executed for O(n) times where in each iteration k: parties perform local
computations in all lines except 2-(b), 2-(d) and 2-(f). In particular, in 2-(b)
(resp., 2-(f)), an instantiation of the Combine (resp., Distribute)subprotocol is run
which requires O(log(M)) rounds. Additionally, in 2-(d), party P1 and the verifier
engage in a POE protocol which requires O(n−k) rounds. Therefore, overall, the
round complexity of PC.Open is O(n·log(M)) rounds. In terms of communication
complexity, in each round of the protocol at most poly(λ, n, log(p), log(M)) bits
are transmitted, therefore overall its bounded by poly(λ, n, log(p), log(M)).

The Efficiency of PC.Open. The verifier efficiency is dominated by its com-
putation in the PoE execution in line 2 of each of the n rounds, which is

Distributed-Prover Interactive Proofs 117

bounded by poly(λ, n, log(p), log(q)). Now onto the prover efficiency. The effi-
ciency of each party Pi is dominated by the n iterative executions of line 2
of the PC.Open(Sect. 6.2). In each iteration: in line 2-(a), Pi runs through the
stream of Yi once, and for each of the 2n/M elements performs some poly(λ, n)
computation for computing the matrices M�c as well as an O(n) size-product
of evaluations of the χ function. Further, the prover computation in lines 2-(d)
through 2-(g), doesn’t depend on the stream. In particular, its running time is
dominated by its computation in lines 2-(d) where P1 acts as a prover in the
PoE protocol where the exponent is of the form q2

n−k−1
. This results in overall

running time of 2n · poly(λ, n, log(p)). Further, the prover’s space in each of the
n iterations is poly(λ, log(p), log(M)). Finally, in each run of line 2, a single pass
over the entire stream is sufficient, resulting in O(n) passes over the stream for
each party Pi.

Acknowledgements. Rex Fernando, Elaine Shi, and Pratik Soni were sponsored by
the Algorand Centres of Excellence (ACE) Programme, the Defense Advanced Research
Projects Agency under award number HR001120C0086, the Office of Naval Research
under award number N000142212064, and the National Science Foundation under
award numbers 2128519 and 2044679. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. gov-
ernment or any other entity. Ilan Komargodski is the incumbent of the Harry & Abe
Sherman Senior Lectureship at the School of Computer Science and Engineering at the
Hebrew University, supported in part by an Alon Young Faculty Fellowship, by a grant
from the Israel Science Foundation (ISF Grant No. 1774/20), and by a grant from
the US-Israel Binational Science Foundation and the US National Science Foundation
(BSF-NSF Grant No. 2020643).

References

1. Kook Jin Ahn and Sudipto Guha: Access to data and number of iterations: dual
primal algorithms for maximum matching under resource constraints. ACM Trans.
Parallel Comput. (TOPC) 4(4), 17 (2018)

2. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geo-
metric graph problems. In: STOC 2014 (2014)

3. Andoni, A., Stein, C., Zhong, P.: Log diameter rounds algorithms for 2-vertex and
2-edge connectivity. arXiv preprint arXiv:1905.00850 (2019)

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
hardness of approximation problems. In: 33rd Annual Symposium on Foundations
of Computer Science, FOCS, pp. 14–23 (1992)

5. Arun, A., Ganesh, C., Lokam, S.V., Mopuri, T., Sridhar, S.: Dew: a transparent
constant-sized polynomial commitment scheme. In: Public Key Cryptography, pp.
542–571 (2023)

6. Assadi, S.: Simple round compression for parallel vertex cover. CoRR,
abs/1709.04599 (2017)

7. Assadi, S., Bateni, M.H., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet
EDCS: algorithms for matching and vertex cover on massive graphs. arXiv preprint
arXiv:1711.03076 (2017)

http://arxiv.org/abs/1905.00850
http://arxiv.org/abs/1711.03076

118 S. Das et al.

8. Assadi, S., Khanna, S.: Randomized composable coresets for matching and vertex
cover. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures, pp. 3–12. ACM (2017)

9. Assadi, S., Sun, X., Weinstein, O.: Massively parallel algorithms for finding well-
connected components in sparse graphs. CoRR, abs/1805.02974 (2018)

10. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, STOC, pp. 21–31 (1991)

11. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. Comput. Complex. 1, 3–40 (1991)

12. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and
MapReduce. Proc. VLDB Endow. 5(5), 454–465 (2012)

13. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-
means++. Proc. VLDB Endow. 5(7), 622–633 (2012)

14. Bateni, M.H., Bhaskara, A., Lattanzi, S., Mirrokni, V.: Distributed balanced clus-
tering via mapping coresets. In: Advances in Neural Information Processing Sys-
tems, pp. 2591–2599 (2014)

15. Behnezhad, S., Derakhshan, M., Hajiaghayi, M.T., Karp, R.M.: Massively par-
allel symmetry breaking on sparse graphs: MIS and maximal matching. CoRR,
abs/1807.06701 (2018)

16. Behnezhad, S., Hajiaghayi, M.T., Harris, D.G.: Exponentially faster massively par-
allel maximal matching. arXiv preprint arXiv:1901.03744 (2019)

17. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-Solomon interac-
tive oracle proofs of proximity. In: 45th International Colloquium on Automata,
Languages, and Programming (ICALP), pp. 14:1–14:17. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2018)

18. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

19. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside
the box improves soundness, pp. 5:1–5:32 (2020)

20. Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks.
In: SODA, pp. 2426–2458 (2022)

21. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-
knowledge arguments with (almost) minimal time and space overheads. In: Theory
of Cryptography, pp. 168–197 (2020)

22. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

23. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using mul-
tiple provers. IACR Cryptol. ePrint Arch., p. 846 (2014)

24. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

25. Bootle, J., Chiesa, A., Hu, Y., Orrú, M.: Gemini: elastic snarks for diverse envi-
ronments. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology–
EUROCRYPT 2022. LNCS, vol. 13276, pp. 427–457. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07085-3 15

http://arxiv.org/abs/1901.03744
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-031-07085-3_15

Distributed-Prover Interactive Proofs 119

26. Brandt, S., Fischer, M., Uitto, J.: Matching and MIS for uniformly sparse graphs
in the low-memory MPC model. CoRR, abs/1807.05374 (2018)

27. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

28. Chang, Y.-J., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The complexity of
(Δ+1) coloring incongested clique, massively parallel computation, and centralized
local computation. arXiv preprint arXiv:1808.08419 (2018)

29. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

30. Chung, K.-M., Ho, K.-Y., Sun, X.: On the hardness of massively parallel computa-
tion. In: 32nd ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA, pp. 153–162 (2020)

31. Czumaj, A., �La̧cki, J., Ma̧dry, A., Mitrović, S., Onak, K., Sankowski, P.: Round
compression for parallel matching algorithms. In: STOC (2018)

32. da Ponte Barbosa, R., Ene, A., Nguyen, H.L., Ward, J.: A new framework for
distributed submodular maximization. In: FOCS, pp. 645–654 (2016)

33. Ene, A., Im, S., Moseley, B.: Fast clustering using MapReduce. In: Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 681–689. ACM (2011)

34. Ene, A., Nguyen, H.: Random coordinate descent methods for minimizing decom-
posable submodular functions. In: International Conference on Machine Learning,
pp. 787–795 (2015)

35. Fernando, R., Gelles, Y., Komargodski, I., Shi, E.: Maliciously secure massively
parallel computation for all-but-one corruptions. In: Dodis, Y., Shrimpton, T.
(eds.) Advances in Cryptology. CRYPTO 2022. LNCS, vol. 13507, pp. 688–718.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5 24

36. Fernando, R., Komargodski, I., Liu, Y., Shi, E.: Secure massively parallel com-
putation for dishonest majority. In: Theory of Cryptography - 18th International
Conference, TCC, pp. 379–409 (2020)

37. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over Lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive (2019)

38. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC, pp. 99–108 (2011)

39. Ghaffari, M., Lattanzi, S., Mitrović, S.: Improved parallel algorithms for density-
based network clustering. In: International Conference on Machine Learning, pp.
2201–2210 (2019)

40. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

41. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

42. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce.
In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 938–948 (2010)

https://doi.org/10.1007/978-3-030-45721-1_24
http://arxiv.org/abs/1808.08419
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-031-15802-5_24

120 S. Das et al.

43. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) Constant-size commitments to polyno-
mials and their applications. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 11

44. Kattis, A.A., Panarin, K., Vlasov, A.: Redshift: transparent snarks from list poly-
nomial commitments. In: CCS, pp. 1725–1737 (2022)

45. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: PODC, pp.
255–264 (2018)

46. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in
MapReduce and streaming. TOPC. 2(3), 1–22 (2015)

47. Lee, J.: Dory: efficient, transparent arguments for generalised inner products and
polynomial commitments. In: Theory of Cryptography, pp. 1–34 (2021)

48. Lindell: Parallel coin-tossing and constant-round secure two-party computation. J.
Cryptol. 16, 143–184 (2003)

49. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

50. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive
proofs. In: SODA, pp. 1096–115 (2020)

51. Ozdemir, A., Boneh, D.: Experimenting with collaborative ZK-snarks: zero-
knowledge proofs for distributed secrets. In: USENIX, pp. 4291–4308 (2022)

52. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Theory of Cryptography, pp. 222–242 (2013)

53. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM. 21(2), 120–126 (1978)

54. Roughgarden, T., Vassilvitskii, S., Wang, J.R.: Shuffles and circuits (on lower
bounds for modern parallel computation). J. ACM 65(6), 1–24 (2018)

55. Setty, S., Lee, J.: Quarks: quadruple-efficient transparent Zksnarks. Cryptology
ePrint Archive, Paper 2020/1275 (2020)

56. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
Zksnarks without trusted setup. In: S&P, pp. 926–943 (2018)

57. Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33(4), 2113–2147
(2020)

58. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero
knowledge proof system. In: USENIX, pp. 675–692 (2018)

59. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: S&P, pp. 859–876 (2020)

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6

Rogue-Instance Security for Batch
Knowledge Proofs

Gil Segev1(B) , Amit Sharabi2, and Eylon Yogev2

1 School of Computer Science and Engineering, Hebrew University of Jerusalem,
91904 Jerusalem, Israel
segev@cs.huji.ac.il

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
amit.sharabi1@live.biu.ac.il, eylon.yogev@biu.ac.il

Abstract. We propose a new notion of knowledge soundness, denoted
rogue-instance security, for interactive and non-interactive batch knowl-
edge proofs. Our notion, inspired by the standard notion of rogue-key
security for multi-signature schemes, considers a setting in which a mali-
cious prover is provided with an honestly-generated instance x1, and may
then be able to maliciously generate related “rogue” instances x2, . . . ,xk

for convincing a verifier in a batch knowledge proof of corresponding wit-
nesses w1, . . . ,wk for all k instances – without actually having knowledge
of the witness w1 corresponding to the honestly-generated instance. This
setting provides a powerful security guarantee for batch versions of a wide
variety of practically-relevant protocols, such as Schnorr’s protocol and
similar ones.

We present a highly-efficient generic construction of a batch proof-
of-knowledge applicable to any algebraic Sigma protocols. The algebraic
property refers to a homomorphic structure of the underlying group and
includes Schnorr’s protocol and others. We provide an almost tight secu-
rity analysis for our generic batch protocol, which significantly improves
upon the previously known security bounds even for the specific case of
batch Schnorr protocol. We extend our results beyond algebraic Sigma
protocols. We analyze the rogue-instance security of a general batch pro-
tocol with plus-one special soundness (a generalization of standard spe-
cial soundness) and achieve improved security bounds in the generic case.

Our results use a particular type of high-moment assumptions intro-
duced by Rotem and Segev (CRYPTO 2021). These assumptions con-
sider the hardness of a relation against algorithms with bounded expected

Gil Segev is supported by the Israel Science Foundation (Grant No. 1336/22) and
by the European Union (ERC, FTRC, 101043243). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.
Amit Sharabi is sponsored by the Israel Science Foundation (Grant No. 2439/20).
Eylon Yogev is supported by an Alon Young Faculty Fellowship, by the Israel Science
Foundation (Grant No. 2302/22), and by the BIU Center for Research in Applied Cryp-
tography and Cyber Security in conjunction with the Israel National Cyber Bureau in
the Prime Minister’s Office.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 121–157, 2023.
https://doi.org/10.1007/978-3-031-48615-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_5&domain=pdf
http://orcid.org/0000-0002-8073-579X
http://orcid.org/0000-0001-8599-2472
https://doi.org/10.1007/978-3-031-48615-9_5

122 G. Segev et al.

running time. Although Rotem and Segev introduced these assumptions,
they did not provide evidence to support their hardness. To substantiate
and validate the high-moment assumptions, we present a new framework
for assessing the concrete hardness of cryptographic problems against
oracle algorithms with bounded expected runtime. Our framework cov-
ers generic models, including the generic group model, random oracle
model, and more. Utilizing our framework, we achieve the first hardness
result for these high-moment assumptions. In particular, we establish
the second-moment hardness of the discrete-logarithm problem against
expected-time algorithms in the generic group model.

1 Introduction

A zero-knowledge proof-of-knowledge protocol is a powerful cryptographic tool
with diverse applications. It enables a prover to convincingly demonstrate to a
verifier, who holds an instance x, that it possesses knowledge of a valid wit-
ness w for x. The fundamental power of such protocols lies in the ability to
extract a witness from a given prover, a property that varies in its precise for-
mulation across different protocols. Proofs of knowledge play a pivotal role in
cryptographic protocols, both from a theoretical standpoint and in practical
implementations.

One notable example is Schnorr’s protocol [31,32], which serves as a zero-
knowledge proof-of-knowledge for the knowledge of the discrete-logarithm of a
group element. In its interactive form, this protocol offers an efficient identi-
fication scheme, while in its non-interactive form, it translates into a signa-
ture scheme via the Fiat-Shamir transformation. The widespread influence of
the Schnorr identification and signature schemes stems from their conceptual
simplicity and practical efficiency. Another compelling example is a proof-of-
knowledge for a Pedersen commitment or hash function, which is the product of
two Schnorr instances. In this scenario, the prover demonstrates the ability to
“open” the commitment without actually revealing its contents, thus maintain-
ing the privacy of the committer [27]. The wide-ranging applicability of these
protocols within the field of cryptography has garnered substantial attention and
interest in a tight analysis of their security bounds.

Extraction from Special Soundness. Both of the examples presented above exem-
plify Sigma protocols, which are three-move protocols that exhibit the unique
soundness notion called “special soundness”. This property plays a vital role
in the construction of an extractor. Specifically, the property states that it is
possible to extract a witness when provided with two accepting transcripts that
share the same first message but differ in the second message. Consequently, to
establish the protocol’s security based on the hardness of the underlying rela-
tion, the extractor must successfully extract two such valid transcripts from a
potentially malicious prover.

To achieve this goal, existing approaches employ a strategy of executing
the protocol multiple times. The analysis of these approaches draws upon the

Rogue-Instance Security for Batch Knowledge Proofs 123

classic “forking lemma” introduced by Pointcheval and Stern [28] (see also [1,
7,10,21]). These different approaches showcase a trade-off between the success
probability and the running time of the extractor. To provide a concrete example,
let us examine the Schnorr identification scheme and signature scheme, which
derive their security from the hardness of the discrete-logarithm problem. For
the Schnorr identification scheme, suppose we have a malicious prover who runs
in time t and succeeds in impersonating with probability ε. We can transform
this malicious prover into a discrete-logarithm algorithm that runs in time 2t and
succeeds with probability ε2. Similarly, for the Schnorr signature scheme, suppose
the attacker additionally performs at most q queries to the random oracle. We
can transform this attacker into a discrete-logarithm algorithm that runs in time
2t and succeeds with probability ε2/q. For any group of order p, where generic
hardness of discrete-log is believed to hold [33], this leads to the bound ε ≤
(t2/p)1/2 for the Schnorr identification scheme, and a bound of ε ≤ (q · t2/p)1/2

for the Schnorr signature scheme. Other trade-offs that were established lead
to the same bound [5,19]. In idealized models, such as the generic group model
[22,33] and the algebraic group model [2,4,14,15,25,29], it is possible to achieve
an optimal bound of ε ≤ t2/p (see [15,33]).

High-Moment Forking Lemma. The extractor runs the given adversary for the
second time, only if the first time succeeded. Thus, it is convenient to analyze
the expected running-time of the extractor, rather than its strict running-time
[20]. In this case, the result is an algorithm for solving discrete-logarithm with
a bound on its expected running time. Recently, Segev and Rotem [30] have
leveraged this type of analysis to derive tighter bounds for Schnorr’s protocols
(and similar Sigma protocols). Towards this end, they established a hardness of
discrete-logarithm for excepted time algorithms.

In simple terms, their second-moment assumption states that the success
probability ε of any algorithm A solving discrete-logarithm for a group of order
p satisfies ε ≤ E

[
T 2

A

]
/p, where TA denotes the random variable corresponding to

A’s running time.1 Under this assumption, Segev and Rotem were able to derive
the bound of ε ≤ (t2/p)2/3, which is the best-known bound for Schnorr in the
standard model. Achieving the optimal bound in the standard model remains
an open problem that continues to drive ongoing research and exploration.

Batch Protocols. The Schnorr protocol and the Pedersen protocol both admit
efficient batch versions [16]. A batch protocol is given k instances, x1, . . . ,xk, and
allows to prove the knowledge of all corresponding k witnesses with a commu-
nication complexity that is approximately the same as that of a single proof of
knowledge. The efficiency gain provided by batch protocols is a highly desirable
property in many domains. In the context of blockchain, batching is a widely
adopted practice aimed at reducing costs and optimizing resource utilization, the
instances are usually public-keys and the witnesses are private-keys. By grouping

1 They originally stated their assumption for a general d-moment but, in this paper,
we focus on the second-moment.

124 G. Segev et al.

multiple transactions or operations into a single batch, the associated overhead,
such as communication and computation costs (which affect the transaction
fees), can be significantly reduced.

However, the security analysis of batch protocols raises several concerns.
The security bounds vary depending on how the instances are chosen in the
security game (a modeling issue that does not appear with a single instance).
For example, in a permissionless blockchain network, the attacker can choose the
instances (its public-keys) adaptively as a function of existing instances sampled
by honest parties. In such a case, the security reduction cannot assume hardness
of the instances chosen by the adversary. These types of security games are
known in the context of multi-signatures and are called rogue-key attacks (see
[6,7,9,23,26] and the many references therein).

The special soundness property extends to the multiple instance case. In
this setting, the extractor must extract k +1 valid transcripts from which it can
compute all k corresponding witnesses (actually, it needs all k+1 transcripts even
if it aims to compute a single witness). This is a generalization of the standard
special soundness property, which we call plus-one special soundness. However,
deriving tight security bounds for the batch setting is even more challenging than
the single case. A straightforward extension of the single extractor to the batch
version would run the malicious prover k +1 times and would yield an extractor
that runs in approximately (k + 1) · t time, but with a success probability of
εk+1, i.e., an exponential decay in the number of instances. This is indeed the
case in the batch Schnorr protocol given in [16]. Furthermore, the tighter bound
of Segev and Rotem [30] does not seem to extend to the multiple instance case
(regardless of the precise security game definition). This raises the question of
how to derive tight security bounds for batch protocols.

1.1 Our Contributions

We give several contributions towards a better understanding of batch proof-of-
knowledge protocols.

Rogue-Instance Soundness. Our first contribution is a strong security notion
for batch protocols, denoted rogue-instance security, for interactive and non-
interactive batch knowledge proofs. Our notion is inspired by the standard notion
of rogue-key security for multi-signature schemes. We consider a setting in which
a malicious prover is provided with an honestly-generated instance x1 (accord-
ing to some distribution), and is then allowed to maliciously generate related
“rogue” instances x2, . . . ,xk for convincing a verifier in a batch knowledge proof
of corresponding witnesses w1, . . . ,wk for all k instances. This is done without
the malicious prover having knowledge of the witness w1 corresponding to the
honestly-generated instance. This setting provides a powerful security guarantee
for batch versions of numerous practical and relevant protocols, such as Schnorr’s
protocol and similar ones. See Sect. 4 for the precise definition.

Rogue-Instance Security for Batch Knowledge Proofs 125

Batching Algebraic Sigma Protocols We construct batch protocols for a large
family of Sigma protocols and provide a relatively tight analysis. Our construc-
tion works for algebraic Sigma protocols, which captures the proof-of-knowledge
protocol for discrete-logarithm (Schnorr) [31,32], Pedersen commitment [27],
Guillou-Quisquater identification scheme [17] and more. The algebraic property
refers to a homomorphic structure of the underlying group. Algebraic Sigma
protocols consist of an algebraic one-way function f such that the prover aims
to prove knowledge of a preimage under f . The notion of algebraic one-way
function introduced by Catalano et al. [11] which relates to the notion of group-
homomorphic one-way generators introduced by Cramer and Damg̊ard [13]. We
analyze the security of our construction in the rogue-instance game and achieve
the bound ε ≤ (t2/p)2/3 (for groups of order p) which matches the state-of-the-
art bound of Segev and Rotem [30] for a single instance. In particular, our bound
does not depend on the number of rogue instances. In more general form, our
theorem is as follows.

Theorem 1 (Informal). Let Π be an algebraic Sigma protocol for a relation
R ⊆ X × W. If R is second-moment hard with respect to a distribution D, then
R has a batch protocol with rogue soundness error ε(t) ≤ (t2/|W|)2/3.

In particular, our theorem gives us tighter security bounds for the batch
version of Schnorr and Pederson protocols. Specifically, the batch version of
Schnorr’s protocols immediately implies the same bounds for the corresponding
batch identification scheme.

Corollary 1. Assuming that the discrete-logarithm problem is second-moment
hard, any adversary that runs in time t wins in the rogue soundness game for
the batch Schnorr and Okamoto identification schemes with probability at most
(t2/p)2/3, where p is the order of the underlying group.

We extend our results for general batch Sigma protocols. We analyze the
rogue-instance security of a general batch protocol with plus-one special sound-
ness and achieve the bound of ε ≤ (k2 · t2/p)1/2, which is inferior to our bound
for the specific case of algebraic protocols, but superior to previously known
bounds.

Theorem 2 (Informal). Let Π be k-batch Sigma protocol for a relation R ⊆
X ×W with plus-one special soundness. If R is second-moment hard with respect
to a distribution D, then Π has rogue soundness error ε(t) ≤ (k2 · t2/|W|)1/2.

In Table 1 we exemplify the concrete improvements we get in Theorem 1 and
Theorem 2 for various parameter settings.

Non-interactive Proof-of-Knowledge. We construct non-interactive batch argu-
ments from algebraic Sigma protocols by applying the Fiat-Shamir paradigm to
the batch Sigma protocols. Given Theorem 1, the generic analysis of the Fiat-
Shamir yields a bound on the rogue-instance game of ε ≤ q · (t2/p)2/3 when
considering malicious prover who runs in time t and performs at most q queries

126 G. Segev et al.

Table 1. A comparison of the security guarantees for the batch Schnorr scheme pro-
vided by [16] compared to our bounds given in Theorem 2 and in Theorem 1.

Attacker’s Security Batch Bound of Generic bound Algebraic bound

running time parameter parameter [16] Theorem 2 Theorem 1

t λ k (t2/p)1/(k+1) (k2 · t2/p)1/2 (t2/p)2/3

264 256 2 2−42.67 2−63 2−85.33

264 256 4 2−25.6 2−62 2−85.33

280 256 6 2−13.71 2−45.42 2−64

280 512 8 2−39.11 2−173 2−234.66

2100 512 16 2−18.35 2−152 2−208

2100 512 24 2−12.48 2−151.42 2−208

2128 512 24 2−10.24 2−123.42 2−170.66

2128 512 32 2−7.76 2−123 2−170.66

to the random oracle. However, direct analysis of the rogue-instance game yields
a bound of ε ≤ (kq · t2/p)2/3 which is again matches the bound of Rotem and
Segev [30], for a single instance. Informally, we show the following.

Theorem 3 (Informal). Let Π be an algebraic Sigma protocol for a relation
R ⊆ X × W. If R is second-moment hard with respect to a distribution D,
then R has a non-interactive batch argument with rogue soundness error ε(t) ≤
(kq · t2/|W|)2/3.

Establishing Hardness for High-Moment Assumptions. Theorem 1 and Theo-
rem 3 rely on the second-moment-hardness of a relation, an assumption intro-
duced in [30]. While the use of these assumptions is beneficial, there is no evi-
dence to support their hardness. To remedy the situation, we present a new
framework that allows to establish bounds for oracle-algorithms with expected
running time. Utilizing our framework, we achieve the first hardness result for
these high-moment assumptions, relative to a oracle. The general statement of
our framework is somewhat technical and is given in Theorem 2. Thus, we present
two main implications of our framework, which are easier to state.

First, we establish the second-moment hardness of the discrete-logarithm
problem against expected-time algorithms in the generic group model. Shoup [33]
analyzed the generic hardness of the discrete-logarithm problem with respect to
strict time algorithms. He showed that any generic t-time algorithm that solves
the discrete-logarithm problem has success probability at most ε ≤ t2/p. Apply-
ing our framework yields a bound of ε ≤ E

[
T 2

A

]
/p when considering unbounded

algorithms where TA denotes the random variable indicating the algorithm’s
running time.

Theorem 4 (second-moment hardness in generic group model; Infor-
mal). For any query algorithm A, let TA = TA(λ) be a random variable indi-
cating the number of queries performed by A until he stops. For every algorithm

Rogue-Instance Security for Batch Knowledge Proofs 127

A that solves the discrete-logarithm problem in a generic group of prime order p
and succeeds with probability εA it holds that

εA ≤ E
[
T 2

A

]

p
.

Our framework is inspired by [19] which showed a generic framework to
prove bounds with respect to expected-time algorithms when considering only
the first-moment of the expected running time. Their result proves the first-
moment assumption (Definition 1), but cannot be used to derive second-moment
hardness. Moreover, our framework achieves tighter bounds than theirs and is
arguably easier to use (see Corollary 3).

Second, we derive expected-time bounds for SNARKs in the random oracle
model (ROM). We focus on the construction of Micali [24], which compiles a PCP
to a SNARK in the ROM. It is known that if the underlying PCP has soundness
error εPCP, then every malicious prover that makes at most t-queries to the
random oracle can convince the verifier of a false statement with probability at
most ε ≤ t · εPCP + 3

2 · t2

2λ (see analysis in [8]). Using our framework, we derive
the following bound.

Theorem 5 (second-moment hardness of SNARKs; Informal) Suppose
the Micali construction is instantiated for a relation R with a PCP with error
εPCP, and random oracle with output length λ. Then, for every x /∈ L(R) and
every malicious argument prover P̃ that performs TP̃ oracle queries (as a random
variable) and outputs a proof π̃ it holds that

Pr
[Vf (x, π̃) = 1

] ≤ E
[
TP̃
] · εPCP + 4 ·

E

[
T 2

P̃

]

2λ
.

In Sect. 2.6, we further discuss the type of cryptographic problems relative
to an oracle captured by our framework. A formal treatment of the framework,
including definitions, statements, and further examples, is given in Sect. 6.1.

2 Our Techniques

We summarize the main ideas behind our results.

– In Sect. 2.1 we discuss the computational assumptions we consider in this
work.

– In Sect. 2.2 we define batch Sigma protocols and extend the notion of rogue-
key security for multi-signature, to rogue-instance security of batch proof-of-
knowledge.

– In Sect. 2.3 we first show a general compiler from a large family of Σ-protocols
to a batch Σ-protocol. Then, we show the high-level proof of the rogue-
security of batch Σ-protocols constructed via the general compiler.

– In Sect. 2.4 we start by showing how to construct non-interactive batch argu-
ments using the general compiler, then, we bound their rogue-security.

128 G. Segev et al.

– In Sect. 2.5 we show how to apply our techniques on a general batch Σ-
protocol and derive a concrete bound on their rogue-soundness error.

– In Sect. 2.6 we describe our framework for establishing high-moment hardness
assumptions.

2.1 High-Moment Hardness

We begin by describing the computational assumptions that underlie our work.
Let R ⊆ X × W be a relation, where X is the set of instances and W is the set
of witnesses. We note that the relation (and in fact all algorithms that will be
described later on) are with respect to a setup algorithm that produces public
parameters. For the simplicity of this high-level overview, we omit the public
parameters (where formal definitions take them into account).

We consider distribution D over instance-witness pairs such that (x,w) ∈ R.
For example, the distribution can sample a discrete-logarithm challenge. Typi-
cally, the hardness of the distribution is stated with respect to strict-time algo-
rithms, that is, algorithms that run in some fixed time t. Here, we consider
hardness with respect to an algorithm where the running time, t, is a random
variable. We denote by TA,D the random variable indicating the running time
of A on input x where (x,w) ← D. Informally, we say that R is first-moment
hard with respect to the distribution D if for every algorithm A, it holds that

first-moment hardness: Pr [(x, A(x)) ∈ R] ≤ E
[
TA,D

]

|W|0.5
, (1)

where the probability is taken over (x,w) ← D and over A. The first-moment
assumption is justified by the work of Jaeger and Tessaro [19]. They developed
a framework for proving tight bounds on the advantage of an adversary with
expected-time guarantees in generic models (a.k.a. “bad flag analysis”). In par-
ticular, they prove the first-moment hardness of the discrete-logarithm problem
in the generic group model. That is, they show that every algorithm A with an
expected running time E [TA] computes the discrete-logarithm problem in the
generic group model with probability at most E [TA] /p1/2 (where p is the group
size).

Recently, Rotem and Segev [30] have generalized this assumption for higher
moments, where most important for our work is the second-moment assumption.
We say that a relation is second-moment hard with respect to a distribution D
if for every algorithm A it holds that

second-moment hardness: Pr [(x, A(x)) ∈ R] ≤ E
[
T 2

A,D
]

|W| , (2)

where the probability is taken over (x,w) ← D and the algorithm A. The hard-
ness of the second-moment assumption does not follow from the framework of
[19], and has no justification even in generic models. In order to validate this
assumption, we develop a framework (see Sect. 2.6), in the spirit of [19] which

Rogue-Instance Security for Batch Knowledge Proofs 129

does allow us to establish bounds for second-moments. In particular, it allows
us to prove the second-moment hardness of the discrete-logarithm problem in
the generic group model. That is, we show that every algorithm A with an
expected running time E [TA] computes the discrete-logarithm problem in the
generic group model with probability at most E

[
T 2

A

]
/p.

2.2 Rogue-Instance Security for Batch Protocols

We move on to describe our notion of rogue-instance soundness for batch
protocols. In a batch Σ-protocol, we are given k instance-witness pairs
(x1,w1), . . . , (xk,wk). The prover consists of two algorithms P = (P1,P2),
where P1 sends a message α, the verifier V sends a random challenge β ∈ C, P2

responds with a message γ, and the verifier V decides whether to accept.
The standard adaptive soundness requirement considers the case where a

malicious prover wishes to convince the verifier on k instances of its choice.
However, we consider batch Σ-protocols with rogue-instance security, where one
instance x1 is sampled according to a given hard distribution, and the rest of
the instances x2, . . . ,xk are chosen adaptively as a function of x1.

Specifically, a batch Σ-protocol Π has ε rogue-soundness error if for every
malicious prover P̃ = (P̃1, P̃2) that runs in time t it holds that

Pr
[
RogueExpΠ(P̃, λ) = 1

]
≤ ε(t),

where the experiment RogueExpΠ(P̃, λ) defined as follows:

1. (x1,w1) ← Dλ

2. ((x̃2, . . . , x̃k), α, st) ← P̃1(x1)
3. β ← C
4. γ ← P̃2(st, β)
5. Output V(x1, x̃2, . . . , x̃k, α, β, γ).

Recall that the definition above omits the setup phase, see Sect. 4 for the precise
definition.

2.3 Batching Algebraic Sigma Protocols

We first describe our general compiler for batching algebraic Σ-protocols. This
compiler takes an algebraic protocol (which we define next) and outputs a batch
version of it (for the same relation). Then, we show the high-level proof of our
(almost tight) rogue-security for the batch protocol.

Algebraic Sigma Protocols. Algebraic Σ-protocols are defined with respect to an
algebraic one-way function F. The protocol is a proof-of-knowledge of a preimage
of F(r), for randomly sampled r. It is a generalization of the preimage protocol
presented by Cramer and Damg̊ard [13]. Algebraic one-way functions were intro-
duced by [11], a closely related notion to group-homomorphic one-way functions
introduced by [13].

130 G. Segev et al.

Informally, we say that a one-way function F : Am → B is algebraic if A and
B are abelian cyclic groups and for every x, x′ ∈ Am it holds that F(x + x′) =
F(x)·F(x′). We say that a Σ-protocol Π = (P1,P2,V) is algebraic if the protocol
has the following general recipe:

1. The prover P1 produces a message α = F(r) for r ∈ A.
2. A challenge β is sampled from Zp where p is the order of A.
3. The prover P2 produces a message γ = r + β · w.
4. The verifier checks correctness by checking whether F(γ) ?= α · xβ .

General Compiler to Batch Sigma Protocols. We construct a batch Σ proto-
col Π∗ = (P∗

1,P
∗
2,V∗) from algebraic Σ-protocol by invoking the Σ-protocol k

times. Specifically, given k instances, P∗
1 invokes P1(xi) and produces the mes-

sage α which is the multiplication of all αi’s. Then, given k challenges, P∗
2 invokes

P2 for each challenge and produces the compressed message γ by summing the
messages γi. More formally, given an algebraic Σ-protocol Π = (P1,P2,V), we
construct a batch Σ-protocol Π∗ = (P∗

1,P
∗
2,V∗) as follows:

1. The prover P∗
1 invokes αi ← P1(xi) and produces the message α = Πk

i=1αi.
2. k challenges βi are sampled from Zp where p is the order of A.
3. The prover P∗

2 invokes γi ← P2(βi) for each challenge βi and produces the
compressed message γ =

∑k
i=1 γi.

4. The verifier checks correctness by checking whether F(γ) ?= α · Πk
i=1x

βi

i .

One can observe that the completeness of Π∗ follows from the homomorphic
property of F. The prover-to-verifier communication is two group elements. The
verifier sends k elements, but since they are all uniformly random strings, they
can be easily compressed to a single group element using any pseudo-random
generator (e.g., using a random oracle).

Our objective is now to bound the rogue-soundness error of Π∗. To achieve
this, we consider a malicious prover P̃ that given as input an instance x1 which
is sampled from a distribution D, and chooses the rest of the instances x2, . . . ,xk

as a function of x1. Its goal is to convince the verifier on x1, . . . ,xk. We construct
an algorithm that given as input an instance x, invokes P̃ on x in order to obtain
a witness for x. Combined with the second-moment assumption, it allows us to
bound P̃’s success probability (which is the rogue-soundness error).

In order to construct A, we make use of the special soundness property of
Σ-protocols. Note that if a Σ-protocol has special soundness, then our construc-
tion yields a batch protocol which has plus-one special soundness (i.e., given
k + 1 accepting transcripts on k instances with a common first message and
pairwise distinct challenges, one can extract all k witnesses). Obtaining k + 1
valid transcripts from the adversary is very costly. However, in our case, we are
only interested in extracting a single witness. Thus, we define a relaxed notion
called local special soundness that allows to extract a single witness from two
specifically designed transcripts.

Rogue-Instance Security for Batch Knowledge Proofs 131

Local Special Soundness. Informally, a batch Σ-protocol has local special sound-
ness if there exists an extractor E such that given k instances x1, . . . ,xk and a
pair of accepting transcripts with a common first message and only one different
challenge βi �= β′

i, outputs a valid witness for xi. We now show that every batch
Σ-protocol constructed from algebraic Σ-protocol as above, has local special
soundness.

Claim 1 (Informal). The batch Σ-protocol Π∗ constructed above from alge-
braic Σ-protocol has local special soundness.

Proof (Proof sketch). Consider the algorithm E which takes as input a pair of
accepting transcripts (α, β1, . . . , βk, γ), (α, β′

1, . . . , β
′
k, γ′) such that there exists

only one index j on which βj �= β′
j , defined as follows:

1. Let i∗ be the index on which βi∗ �= β′
i∗ .

2. Output (γ − γ′)/(βi∗ − β′
i∗) on the group Zp where p is the order of App.

The proof follows from the homomorphic property of F (see Sect. 5.1 for a com-
plete proof).

Due to the local special soundness property, it is sufficient to construct
an algorithm A that invokes P̃ on x and outputs two accepting transcripts
(α, β1, . . . , βk, γ), (α, β′

1, . . . , β
′
k, γ′) such that β1 �= β′

1.
We reduce the problem of finding two such transcripts to the “collision game”

first introduced in [12]. In more detail, we show that given an algorithm that
succeeds in the collision game, we can construct an algorithm that outputs two
such transcripts, which conclude extracting a witness.

The Collision Game. We consider the collision game first introduced in [12] and
used in [3,18] which consists of a binary matrix H ∈ {0, 1}R×N . The output of
the game is 1 if and only if two 1-entries in the same row have been found.

Informally, the R rows correspond to the prover’s randomness and the N
columns correspond to the verifier’s randomness. An entry of H equals 1 if and
only if the corresponding transcript is accepting. Then, finding two 1-entries in
the same row corresponds to finding two accepting transcripts with a common
first message and distinct challenges. Therefore, an algorithm for the collision
game can be transformed into an algorithm that finds two accepting transcripts,
which by the local special soundness, allows extracting a witness (see Sect. 5.3
for a complete proof).

We now focus on constructing an algorithm for the collision game. In contrast
to the collision game algorithm of [12] which runs in strict polynomial time, our
algorithm runs in expected polynomial time. A similar approach can be found in
[3,18], however, their algorithm minimizes only the first-moment of the expected
running time. The collision game algorithm of [3,18] samples an entry of H, if
this entry equals 1, the algorithm continues to sample the entire row till it
finds another 1-entry. One can observe that the second-moment of the expected
running time of this algorithm is too high to get improved bounds.

132 G. Segev et al.

Our goal is to construct an algorithm that maximizes the trade-off between
the success probability and the second-moment of the expected running time, in
order to use the second-moment assumption.

Lemma 1 (Informal). Let H ∈ {0, 1}R×N be a binary matrix and let ε be the
fraction of 1-entries in H. Then, there exists an algorithm A with oracle access
to H such that the following holds:

1. The expected number of queries performed by A to H is at most 2.
2. The second-moment of the expected number of queries performed by A to H

is at most 4.
3. The probability that A succeeds in the collision game is at least ε1.5.

Proof (Proof sketch). Let B = 1√
ε

and consider the following algorithm A:

AH

1. Sample an entry (ρ, β) in H. If H[ρ, β] = 0, abort. Let F = ∅.
2. For every i ∈ [B]: sample without replacement entries in the same row

ρ. If H[ρ, βi] = 1, set F ← F ∪ {βi}.
3. If F = ∅, abort. Otherwise, choose uniformly at random an index

β′ ∈ F and output ρ, β, β′.

Let QA be a random variable indicating the number of queries performed
by A to H. For this section only, we omit the bound on the expected number
of queries and refer to the second-moment only. A complete proof of the formal
lemma can be found in Sect. 5.2.

By the description of A it performs 1 query to H with probability (1 − ε)
and (1 + B) queries with probability ε. Therefore,

E
[Q2

A

]
= (1 − ε) · 12 + ε · (1 + B)2 ≤ 1 + 2

√
ε + 1 ≤ 4 .

For now, we give a high-level overview of the proof of A’s success probability.
A complete proof can be found in Sect. 5.2. Assuming the first query to H was
1-entry, the algorithm continues to sample entries in the same row. Thus, if it
hit a row with only one 1-entry, it succeeds in the game with probability zero.
Therefore, we divide the rows by the number of 1-entries in it and look at the
probability to sample such a row. Formally, for every 0 ≤ d ≤ N , we let δd be the
fraction of rows with exactly d 1-entries. Assuming the first query was 1-entry,
A succeeds in the game if it finds at least one more 1-entry with B draws. Let
Xd be a random variable indicating the number of 1-entries found in B draws
in a row with exactly d 1-entries. Overall,

Pr [CollGame(A,H) = 1] ≥
N∑

d=2

δd · d

N
· Pr [Xd ≥ 1] .

In Sect. 5.2, we show that the above term is bounded by ≈ ε1.5.

Rogue-Instance Security for Batch Knowledge Proofs 133

2.4 Non-interactive Batch Arguments

In the previous subsection we showed a general compiler for batching algebraic
Σ-protocols and bound their rogue-soundness error. Similarly, in this subsec-
tion we refer to the non-interactive analog. We first construct non-interactive
batch arguments from algebraic Σ-protocols and then bound their rogue-instance
security.

Non-interactive Batch Arguments from Sigma Protocols. We show how to con-
struct non-interactive batch arguments from algebraic Σ-protocols.

The construction is given by applying the Fiat-Shamir paradigm on the
batch Σ-protocol constructed in Sect. 2.3 except for one minor change. Recall
that in the construction of batch Σ-protocols, the prover is given as input k
different challenges for each input. We wish to keep this property in the non-
interactive analog. Specifically, we construct a non-interactive batch argument
NARG = (P,V) from algebraic Σ-protocol by invoking the Σ-protocol k times
and obtaining the challenges from a random oracle function f ∈ U(λ). In more
detail, given k instances, the prover P invokes αi ← P1(xi) and computes α
as the multiplication of αi’s. Then, it obtains each challenge βi by querying
f(x1, . . . ,xk, α, i). Finally, it invokes P2 for each challenge and computes γ by
summing the messages γi. The prover P outputs the proof string (α, γ). The
verifier V computes βi by querying the random oracle f and checking whether
F(γ) ?= α·Πk

i=1x
βi

i . One can observe that the completeness of NARG follows from
the homomorphic property of F and that the proof size is two group elements.

Our objective now is to bound the rogue-soundness error of NARG. Similarly
to the interactive case, the NARG constructed above has local special soundness.
Therefore, in order to extract a witness, it suffices to construct an algorithm that
outputs a pair of transcripts with a common first message and only one different
challenge βi �= β′

i.

Collision Game for the Non-interactive Analog. Similar to the interactive case,
our goal is to reduce the task of finding two such transcripts to the collision
game. However, this transformation presents certain challenges. First, in the
interactive case, we have two elements of randomness - the prover’s randomness
and the verifier’s randomness which can be straightforwardly represented as a
matrix. In contrast, in the non-interactive settings, the verifier’s randomness is
replaced by random oracle queries. A malicious prover performs at most q queries
to the random oracle in order to obtain the challenges. Each answer from the
random oracle may affect the prover’s algorithm.

Secondly, in the interactive case, a prover P can be represented by two algo-
rithms P1,P2. The algorithm P1 outputs the first message α and a state st, and
P2 given as input the challenges βi and the state st. Consequently, in order to
obtain a pair of transcripts with a common first message, we can invoke P1 and
P2, followed by invoking P2 again, on the same state and different challenges.
In the non-interactive analog, a prover P outputs the instances x2, . . . ,xk along
with (α, γ). We assume without loss of generality that P always outputs α that

134 G. Segev et al.

it queried the random oracle f with (x1, x̃2, . . . , x̃k, α). Then, in order to obtain
two transcripts with a common first message, we need to “guess” which random
oracle query the prover is going to output. We invoke the prover once to obtain
(x̃2, . . . , x̃k, α, γ) and let i∗ be the random oracle on which the prover queried
(x1, x̃2, . . . , x̃k, α). Then, we invoke the prover, replicating the same random ora-
cle responses up to the i∗-th query. With probability ≈ 1/q the prover outputs
the same instances and first message α.

Therefore, we reduce the problem of finding two such transcripts into the
“tree game”. In this game, we consider a fixed randomness for the prover and
consider a tree of depth q and degree 2λ. The depth corresponds to the number
of queries performed by the prover and the degree corresponds to the possible
answers from the random oracle f . Consequently, the execution of the prover
corresponds to a random walk on the tree and a leaf corresponds to the output
of the prover. We let the value of a leaf be the random oracle query on which
the prover queried f with this output. More precisely, each leaf corresponds to
an output (x2, . . . ,xk, α, γ), we consider the value of a leaf to be the random
oracle query in which the prover queried f with (x2, . . . ,xk, α). Then, finding two
transcripts with a common first message and distinct challenges corresponds to
finding two leaves with the same value i such that their lowest common ancestor
is an internal node v of height i. A formal proof of the reduction appears in the
full version.

The Tree Game. We introduce a tree game where an algorithm is given oracle
access to a tree T where the value of each leaf is a number. Consider a complete
tree T of depth l and degree r. Let Leaves(T) be the leaves of T and for every
u ∈ Leaves(T) let val(u) be the value “stored” in u. Note that not all leaves hold
a number value, we consider the value of such a leaf as ⊥. During the execution
of the game, the algorithm A is given as input a number k and oracle access to
the tree T and aims to find k + 1 leaves u1, . . . , uk+1 with the same value i that
have the same lowest common ancestor v such that height(v) = i.

Due to the local special soundness property, it is sufficient to construct an
algorithm that outputs two accepting transcripts, then in this section, we con-
sider the specific case where k = 1.

Lemma 2 (Informal). Let T be a complete tree of depth l and degree r and let
ε be the fraction of non-bot leaves in T . Then, there exists an algorithm A with
oracle access to T such that on input k = 1 the following holds:

1. The expected number of queries performed by A to H is at most 2.
2. The second-moment of the expected number of queries performed by A to H

is at most 4.
3. The probability that A succeeds in the collision game is at least ε1.5/l.

Proof (Proof sketch). Let B = 1√
ε

and consider the following algorithm A:

Rogue-Instance Security for Batch Knowledge Proofs 135

AT

1. Sample a leaf u ∈ Leaves(T). If val(u) = ⊥, abort.
2. Let v be the parent of u of height val(u) and let w be the parent of u

of height (val(u) − 1). Let F = ∅.
3. For every i ∈ [B]: sample without replacement leaves from Tv \ Tw. If

val(ui) = val(u), set F ← F ∪ {ui}.
4. If F = ∅, abort. Otherwise, choose uniformly at random a leaf u′ ∈ F

and output u, u′.

Let QA be a random variable indicating the number of queries performed
by A to T . For this section only, we omit the bound on the expected number
of queries and refer to the second-moment only. A complete proof of the formal
lemma appears in the full version.

By the description of A it performs 1 query to T with probability (1− ε) and
(1 + B) queries with probability ε. Therefore,

E
[Q2

A

]
= (1 − ε) · 12 + ε · (1 + B)2 ≤ 1 + 2

√
ε + 1 ≤ 4 .

For now, we give an informal high-level overview of the proof of A’s success
probability. A complete proof appears in the full version. Assume A samples a
leaf u with the value h, then, A continues to sample leaves from the same sub-tree
in order to find another leaf with the value h. Let v be the parent of u of height
h. Note that for every h and v, the number of leaves with the value h in Tv may
be different, which affects its success probability. Therefore, for every value h,
we “divide” the internal nodes to “buckets” by the probability to sample a leaf
with the value h in its sub-tree, and then we look at the probability to “reach”
each bucket.

Formally, for every 0 ≤ d ≤ l log r and 0 ≤ h ≤ l − 1, we let

δd,h = Pr
v:height(v)=h

[|{u ∈ Leaves(Tv) : val(u) = h}|
|Leaves(Tv)| ∈ [2−d, 2−d+1

]
]

.

Note that a node v is in the d-th “bucket” if the probability to sample a leaf with
the value h in the sub-tree Tv is in

[
2−d, 2−d+1

]
. Assuming the first query to the

tree is a leaf u with the value h, the remainder of the game can be modeled by
a hypergeometric distribution. Informally, B elements from a population of size
|Tv \ Tw| containing ≈2−d successes are drawn without replacement. Let Xδd,h

be a random variable indicating the number of leaves with the value h found in
B draws in a sub-tree Tv such that v is in the d-th “bucket”. Thus,

Pr [TreeCollGame(A, T) = 1] ≥
l−1∑

h=0

N∑

d=2

δd,h · 2−d · Pr
[
Xδd,h

≥ 1
]

.

In the full version, we show that the above term is bounded by ≈ ε1.5/l.

136 G. Segev et al.

2.5 General Batch Sigma Protocols

Batch Sigma protocols. In the general case, we consider batch Σ-protocols where
given k instance-witness pairs (xi,wi), the prover P1 sends a message α, the
verifier V samples a challenge β and sends it, the prover P2 responds with a
message γ, and the verifier V decides whether to accept or reject by applying a
predicate to (x1, . . . ,xk, α, β, γ). In order to bound the rogue-soundness error of
batch Σ-protocols, we make use of the special soundness property. In particular,
we consider the plus-one special soundness which guarantees the existence of
an extractor E. When it is given as input k + 1 transcripts of an execution of
a batch Sigma protocol on k instances, the extractor outputs k corresponding
witnesses. More precisely, the extractor is given as input k + 1 transcripts with
a common first message and distinct pairwise challenges.

We construct an algorithm A that given as input an instance x invokes a
malicious prover on input x to obtain k + 1 transcripts, which by the plus-one
special soundness allows extracting k witnesses, specifically, to output a witness
for x. Note that the algorithm needs to invoke the prover multiple times in order
to achieve approximately the same probability as in the specific case of batch
protocols constructed from algebraic Σ-protocols. Unfortunately, it appears that
finding a good trade-off between the second-moment of the expected running
time and the success probability of the algorithm is challenging in this context.
As a result, in the general case, we rely on the first-moment assumption.

Similarly, we reduce the problem of finding k + 1 accepting transcripts to a
generalized version of the collision game first introduced in [12]. In more detail,
we construct an algorithm for the collision game and then use it in order to
obtain k + 1 accepting transcripts (with a common first message and pairwise
distinct challenges), which conclude extracting a witness.

General Collision Game. We provide a general version of the collision game
first introduced in [12] and used in [3,18], which consists of a binary matrix
H ∈ {0, 1}R×N . We generalize the collision game by an additional input, a
number k ∈ N. The output of the game is 1 if and only if k + 1 entries with the
value 1 in the same row have been found. An algorithm for the collision game is
given as input a number k ∈ N and an oracle access to the matrix H.

Informally, the R rows correspond to the prover’s randomness and the N
columns correspond to the verifier’s randomness. An entry of H equals 1 if and
only if the corresponding transcript is accepting. Then, finding k+1 entries with
the value 1 in the same row corresponds to finding k + 1 accepting transcripts
with a common first message and pairwise distinct challenges. Therefore, an
algorithm for the collision game can be transformed into an algorithm that finds
k+1 accepting transcripts, which as discussed above, allows extracting a witness
(see the full version for a complete proof).

Lemma 3 (Informal). Let H ∈ {0, 1}R×N be a binary matrix and let ε be the
fraction of 1-entries in H. Then, there exists an algorithm A with oracle access
to H such that on input k the following holds:

Rogue-Instance Security for Batch Knowledge Proofs 137

1. The expected number of queries performed by A to H is at most k + 1.
2. The probability that A succeeds in the game is at least ε.

Proof (Proof sketch). We consider the following algorithm:

AH(k)

1. Sample an entry (ρ, β) in H. If H[ρ, β] = 0, abort.
2. Sample without replacement entries in the same row ρ, until k + 1

entries with the value 1 are found or the row has been exhausted.

Let QA be a random variable indicating the number of queries performed
by A to H. Note that the number of 1-entries in each row affects the expected
number of queries performed by A. Thus, we let ερ be the fraction of 1-entries in
row ρ. Assuming the first query to H lies in row ρ and equals 1, the remainder
of the algorithm can be modeled by a negative hypergeometric distribution.
Elements from a population of size N − 1 containing ερN − 1 successes are
drawn without replacement till k successes are counted. Thus, assuming that
the first query lies in a row ρ and equals 1, the expected number of queries
performed by A is k(N−1+1)

ερN−1+1 = k
ερ

. Overall,

E [QA] = 1 +
1
R

R∑

1

ερ · k

ερ
= k + 1 .

As discussed in Sect. 2.3, in order to bound the success probability we divide the
rows by the number of 1-entries in it. Formally, for every 0 ≤ d ≤ N , we let δd

be the fraction of rows with exactly d 1-entries. Note that if A’s first query to
H lies in a row with at least k + 1 entries with the value 1, it succeeds in the
game with probability 1. Thus,

Pr [CollGamek(A,H) = 1] ≥
R∑

d=k+1

δd · d

N
.

In the full version, we show that the above term is bounded by ≈ ε.

2.6 Expected Time Hardness Framework

In this subsection, we present our framework for analyzing the expected-time
hardness of cryptographic problems in generic models. Our framework allows
bounding the success probability of query-algorithms in experiments that involve
access to an oracle (e.g., solving discrete-logarithm in the generic group model).
Here, we consider the number of queries performed by the algorithm and ignore
its actual runtime.

Our overall goal is to prove statements of the form: if any algorithm that per-
forms t queries (as a strict parameter) has success probability ε(t) in a particular
experiment, then any algorithm A has success probability E [ε(TA)], where TA is

138 G. Segev et al.

a random variable for the number of queries performed by A. Such a statement
would allow us to derive the desired first-moment and second-moment hardness
that we need for discrete-logarithm and other problems.

Perhaps surprisingly, such a general statement is incorrect, which we demon-
strate via the multiple discrete-logarithm problem. Yun [34] showed that any
generic t-time algorithm given k instances of the discrete-logarithm problem
solves all of them with probability at most ε(t) ≤ (k · t2/p)k (which is tight).
However, this bound does not translate to E [ε(TA)] = kk · E [T 2k

A

]
/pk. To illus-

trate this, consider the following generic algorithm A for the case where k = 2:

1. Perform p1/4 distinct queries to the group generation oracle and store the
query-answer list μ.

2. If there does not exist (x, y), (x′, y′) ∈ μ, such that x �= x′ and y = y′, abort.
3. Otherwise, perform another p1/2 queries to the group generation oracle.

A careful analysis shows that the success probability of this algorithm is ≈ 1/
√

p
and the 4-moment of the expected number of queries is ≈ p, which does not
satisfy the bound of ε ≤ 4 · E [T 4

A

]
/p2.

This raises the question of when can we derive bounds for expected algo-
rithms. What distinguishes the multiple discrete-logarithm (for which we have
no non-trivial bounds for expected algorithms) compared to the single discrete-
logarithm (for which we derive tight bounds for expected algorithms)? We define
a (relatively natural) property of the experiment, called history oblivious, that
can precisely distinguish the two cases and allows us to derive our bounds.
Roughly speaking, history oblivious experiment is defined via the existence of
a predicate on the sequence of query/answer pairs (the trace). When the pred-
icate of the trace is true, then the algorithm is able to solve its task with no
additional queries. When the predicate is false, the trace has a limited effect on
its success probability (only the size of the trace affects the probability and not
its contents).

For example, in the discrete-logarithm problem, the trace to the generic group
would be true if it contains a collision. When the predicate is true, one can easily
deduce a solution. Otherwise, the trace gives almost no helpful information to
the algorithm except for specific elements which are not the discrete-logarithm.
That is, in this case, the advantage only depends on the size of the trace. Any
two traces of the same size for which the predicate is false yield equal success
probability for the algorithm. Observe that this is not the case for multiple
discrete-logarithm. Here, we have three types of interesting traces (rather than
two). A trace can contain no collisions, or a single collision (from which one
can deduce one discrete-logarithm but not the other), or two collisions (from
which one can derive both discrete-logarithms). The predicate in this case would
identify a trace with two collisions. Thus, two traces of the same size, one from
the first type and one from the second type would have drastic different effect
on the success probability, as in the latter it needs to solve only a single discrete-
logarithm.

In summary, for any history oblivious experiment we show that:

Pr[strict algorithms succeeds] ≤ ε(t) =⇒ Pr[expected-time algorithms succeeds] ≤ E [ε(t)] .

Rogue-Instance Security for Batch Knowledge Proofs 139

We formalize the above statement in Theorem 2. This allows us to prove first
and second-moment hardness of discrete-logarithm Eqs. 1 and 2, which are the
basis for our results. It also allows us to derive our bounds for the Micali SNARK
construction given in Theorem 5. Our framework is inspired by the work of Jaeger
and Tessaro [19], however, their tools do not allow us to prove the second-
moment hardness assumptions in generic models. Furthermore, our approach
is arguably simpler to use and provides tighter security bounds even for first-
moment assumptions. We show that our framework recovers the bounds of [19]
in Corollary 3.

3 Preliminaries

For any n ∈ N, we denote the set of all positive integers up to n as [n] :=
{1, . . . , n}. For any finite set S, x ← S denotes a uniformly random element x
from the set S. Similarly, for any distribution D, x ← D denotes an element x
drawn from distribution D.

3.1 High-Moment Hardness

A relation R is a set R = {Rλ}λ∈N, where Rλ ⊆ Pλ × Xλ × Wλ for any λ ∈ N,
for sets X = {Xλ}λ∈N, W = {Wλ}λ∈N and P = {Pλ}λ∈N. The corresponding
language L(Rλ) is the set of public parameters pp and instances x for which
there exists a witness w such that (pp,x,w) ∈ Rλ.

We consider distributions D = {Dλ}λ∈N over the relation where each Dλ

produces (pp,x,w) ∈ Rλ. We note by Dλ(pp) the distribution that produces
(x,w) such that (pp,x,w) ∈ Rλ.

For any such distribution Dλ(pp) and an algorithm A, we denote by TA,Dλ

the random variable indicating the running time of A on input x where (x,w) ←
Dλ(pp).

Definition 1 (First-moment hard relation). Let Δ = Δ(λ), ω = ω(λ) be
functions of the security parameter, and let R = {Rλ}λ∈N be a relation where
Rλ ⊆ Pλ × Xλ × Wλ. Let Setup be a setup algorithm that on input 1λ, outputs
pp ∈ Pλ. We say that R is first-moment hard (with respect to a distribution
D = {Dλ}λ∈N and a setup algorithm Setup) if for every algorithm A and for
every λ ∈ N it holds that

Pr

⎡

⎣(pp,x, w̃) ∈ Rλ

∣
∣
∣
∣
∣
∣

pp ← Setup(1λ)
(x,w) ← Dλ(pp)
w̃ ← A(pp,x)

⎤

⎦ ≤ Δ · E [TA,Dλ

]

|Wλ|ω .

Definition 2 (Second-moment hard relation). Let Δ = Δ(λ), ω = ω(λ)
be functions of the security parameter, and let R = {Rλ}λ∈N be a relation where
Rλ ⊆ Pλ × Xλ × Wλ. Let Setup be a setup algorithm that on input 1λ, outputs
pp ∈ Pλ. We say that R is second-moment hard (with respect to a distribution

140 G. Segev et al.

D = {Dλ}λ∈N and a setup algorithm Setup) if for every algorithm A and for
every λ ∈ N it holds that

Pr

⎡

⎣(pp,x, w̃) ∈ Rλ

∣
∣
∣
∣
∣
∣

pp ← Setup(1λ)
(x,w) ← Dλ(pp)
w̃ ← A(pp,x)

⎤

⎦ ≤ Δ · E [T 2
A,Dλ

]

|Wλ|ω .

3.2 Sigma Protocols

Definition 3 (Σ-Protocol). Let R = {Rλ}λ∈N be a relation, where Rλ ⊆
Pλ × Xλ × Wλ for any λ ∈ N. A Σ-protocol Π for relation R is a 5-
tuple (Setup,P1,P2,V, C) where Setup and P1 are probabilistic polynomial-
time algorithms, P2 and V are deterministic polynomial-time algorithms, and
C = {Cpp}pp∈P is an ensemble of efficiently sampleable sets. The protocol Π is
defined as follows:

1. The algorithm Setup(1λ) produces public parameters pp.
2. The algorithm P1(pp,x,w) produces a message α and a state st.
3. A challenge β is sampled uniformly at random from the challenge set Cpp.
4. The algorithm P2(st, β) produces a message γ.
5. The algorithm V(pp,x, α, β, γ) determines the output of the protocol by out-

putting 0 or 1.

We require that for every λ ∈ N and (x,w) ∈ Rλ it holds that

Pr

⎡

⎢
⎢
⎣V(pp,x, α, β, γ) = 1

∣
∣
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ)
(α, st) ← P1(pp,x,w)
β ← Cpp

γ ← P2(st, β)

⎤

⎥
⎥
⎦ = 1 .

Definition 4 (Special soundness). Let Π = (Setup,P1,P2,V, C) be a Σ-
protocol for a relation R, and let t = t(λ) be a function of the security parameter
λ ∈ N. Then, Π has t-time special soundness if there exists a deterministic t-
time algorithm E that on any public parameters pp ∈ P, any input statement
x ∈ Xλ and any two accepting transcripts with a common first message and
distinct challenges, outputs a witness w such that (pp,x,w) ∈ R.

Definition 5 (Zero knowledge Σ-protocol). Let Π = (Setup,P1,P2,V, C)
be a Σ-protocol for a relation R, and let t = t(λ) be a function of the security
parameter λ ∈ N. Then, Π is t-time zero-knowledge if there exists a probabilistic
t-time algorithm Sim such that for every λ ∈ N and public parameters-instance-
witness tuple (pp,x,w) ∈ Rλ the distributions

⎧
⎨

⎩
(pp,x, α, β, γ)

∣
∣
∣
∣
∣
∣

(α, st) ← P1(pp,x,w)
β ← Cpp

γ ← P2(st, β)

⎫
⎬

⎭
and {Sim(pp,x)}

are identical.

Rogue-Instance Security for Batch Knowledge Proofs 141

3.3 Batch Sigma Protocols

Definition 6 (Batch Σ-protocol). Let R = {Rλ}λ∈N be a relation, where
Rλ ⊆ Pλ × Xλ × Wλ for any λ ∈ N and let K ∈ N be a bound on the number of
instances. A batch Σ-protocol Π for relation R is a 5-tuple (Setup,P1,P2,V, C)
where Setup and P1 are probabilistic polynomial-time algorithms, P2 and V are
deterministic polynomial-time algorithms, and C = {Cpp}pp∈P is an ensemble of
efficiently sampleable sets. For any k ≤ K, the protocol Π is defined as follows:

1. The algorithm P1(pp, (x1,w1), . . . , (xk,wk)) produces a message α and a
state st.

2. A challenge β is sampled uniformly at random from the challenge set Cpp.
3. The algorithm P2(st, β) produces a message γ.
4. The algorithm V(pp,x1, . . . ,xk, α, β, γ) determines the output of the protocol

by outputting 0 or 1.

We require that for every λ, k ∈ N such that k ≤ K, for any (x1,w1), . . . , (xk,wk)
∈ Rλ it holds that

Pr

⎡
⎢⎢⎣V(pp,x1, . . . ,xk, α, β, γ) = 1

∣∣∣∣∣∣∣∣

pp ← Setup(1λ,K)
(α, st) ← P1(pp, (x1,w1), . . . , (xk,wk))
β ← Cpp

γ ← P2(st, β)

⎤
⎥⎥⎦ = 1 .

Definition 7 (Plus-one special soundness). Let Π = (Setup,P1,P2,V, C)
be a batch Σ-protocol for a relation R with a bound K on the number of instances,
and let t = t(λ,K) be a function of K and the security parameter λ ∈ N. Then,
Π has t-time plus-one special soundness if there exists a deterministic t-time
algorithm E that for every λ ∈ N and k ≤ K, on any public parameters pp, any
k inputs statements x1, . . . ,xk ∈ Xλ and any k + 1 accepting transcripts with
a common first message and pairwise distinct challenges, outputs k witnesses
w1, . . . ,wk such that for every i ∈ [k] it holds that (pp,xi,wi) ∈ Rλ.

Definition 8 (Zero knowledge batch Σ-protocol). Let Π = (Setup,
P1,P2,V, C) be a batch Σ-protocol for a relation R with a bound K on the
number of instances, and let t = t(λ,K) be a function of K and the security
parameter λ ∈ N. Then, Π is t-time zero-knowledge if there exists a proba-
bilistic t-time algorithm Sim such that for any k ≤ K, for every λ ∈ N and
(pp,x1,w1), . . . , (pp,xk,wk) ∈ Rλ the distributions

⎧
⎪⎨

⎪⎩
(pp, x1, . . . , xk, α, β, γ)

∣
∣
∣
∣
∣
∣
∣

(α, st) ← P1(pp, (x1, w1), . . . , (xk, wk))

β ← Ck,λ

γ ← P2(st, β)

⎫
⎪⎬

⎪⎭
and {Sim(pp, x1, . . . , xk)}

are identical.

4 Rogue-Instance Security

In this section, we give our definition of rogue-instance security notion for batch
protocols and non-interactive batch arguments, which is inspired by the rogue-
key security notion for multi-signatures.

142 G. Segev et al.

4.1 Batch Sigma Protocols

In a batch Σ-protocol, we are given k instance-witness pairs (x1,w1), . . . ,
(xk,wk). The standard adaptive soundness requirement considers the case where
a malicious prover wishes to convince the verifier on k instances of its choice.
However, we consider batch Σ-protocols with rogue-instance security, where one
instance x1 is sampled according to a given hard distribution, and the rest of
the instances x2, . . . ,xk are chosen adaptively as a function of x1. Formally,

Definition 9 (Rogue soundness). Let Π = (Setup,P1,P2,V, C) be a batch
Σ-protocol for a relation R with a bound K on the number of instances. Then,
Π has (t, εD)-rogue soundness (with respect to a distribution D = {Dλ}λ∈N and
the setup algorithm Setup) if for every λ, k ∈ N such that k ≤ K and for any
t-time malicious prover P̃ = (P̃1, P̃2):

Pr

⎡
⎢⎢⎢⎢⎣
V(pp,x1, x̃2, . . . , x̃k, α, β, γ) = 1

∣∣∣∣∣∣∣∣∣∣

pp ← Setup(1λ,K)
(x1,w1) ← Dλ(pp)

((x̃2, . . . , x̃k), α, st) ← P̃1(pp,x1)
β ← Cpp

γ ← P̃2(st, β)

⎤
⎥⎥⎥⎥⎦

≤ εD(λ, t,K) .

In the full version of the paper, we provide an analogous non-interactive
definition.

5 Batching Algebraic Sigma Protocols

In this section, we define algebraic Σ-protocols and construct their batch version.
Then, we bound the rogue-soundness error of such batch Σ-protocols using the
second-moment assumption (Definition 2).

In Sect. 5.1 we define algebraic one-way functions and construct batch Σ-
protocols from algebraic Σ-protocols. Then, in Sect. 5.2 we generalize the “col-
lision game” presented in [3,12,18] for multiple instances while referring to the
second-moment of the expected running time. Finally, in Sect. 5.3 we prove
the rogue-instance security of batch Σ-protocols constructed from algebraic Σ-
protocols.

5.1 Algebraic Sigma Protocols

In this section, we refer to Σ-protocols that have a specific structure we call
algebraic Σ-protocols and then, we define their batch analog.

Our definition of algebraic Σ-protocols relies on algebraic one-way function,
presented in [11,13].

Definition 10 (Algebraic one-way function). A family of m-variate one-
way functions consists of two algorithms (Setup,F) that work as follows. On
input 1λ, the algorithm Setup(1λ) produces public parameters. Any such public
parameters pp, determines the function Fpp : Am

pp → Bpp such that for every
x ∈ Am

pp, it is efficient to compute Fpp(x). A family of one-way functions is
algebraic if for every λ ∈ N and pp ← Setup(1λ) the following holds:

Rogue-Instance Security for Batch Knowledge Proofs 143

– Algebraic: The sets App,Bpp are abelian cyclic groups with operators (+),
and (·), respectively.

– Homomorphic: For any input x, x′ ∈ Am
pp it holds that F(x + x′) = F(x) ·

F(x′).

We now define the notion of algebraic Σ-protocols, which is a generalization
of the preimage protocol presented in [13].

Definition 11 (Algebraic Σ-protocol). Let R = {Rλ}λ∈N be a relation,
where Rλ ⊆ Pλ×Xλ×Wλ for any λ ∈ N. A Σ-protocol Π = (Setup,P1,P2,V, C)
for relation R is algebraic if there exists m-variate algebraic one-way function
(Setup,F) such that for every pp produced by Setup(1λ) the following holds:

– For every x,w it holds that (pp,x,w) ∈ Rλ if and only if Fpp(w) = x.
– The challenge space Cpp ⊆ Zp where p is the order of App.
– The protocol Π is defined as follows:

1. The algorithm P1(x,w) produces a message α = F(r) for some r ∈ App

and a state st.
2. A challenge β is sampled uniformly at random from the challenge set Cpp.
3. The algorithm P2(st, β) produces a message γ = r + β · w.
4. The algorithm V(x, α, β, γ) determines the output of the protocol by check-

ing whether F(γ) ?= α · xβ.

Note that the setup algorithm of the function is the setup algorithm of the
protocol. In fact, the prover holds a public parameters-instance-witness tuple
such that x = Fpp(w). Thus, the prover convinces the verifier that it knows
the preimage of x. Note that the verifier’s computation can be performed using
exponentiation by squaring, however there may exist more efficient algorithms.

Next, we construct a batch version of any algebraic Σ-protocol as follows.

Construction 1 (Batch Σ-protocol). Let R = {Rλ}λ∈N be a relation, where
Rλ ⊆ Pλ × Xλ × Wλ for any λ ∈ N and let K ∈ N be a bound on the number
of instances. Let Π = (Setup,P1,P2,V, C) be an algebraic Σ-protocol with an
algebaric one-way function (Setup,F). We define Π∗ = (Setup∗,P∗

1,P∗
2,V∗, C)

to be a batch Σ-protocol for relation R as follows. The algorithms Setup∗ and
P∗

1 are probabilistic polynomial-time algorithms, P∗
2 and V∗ are deterministic

polynomial-time algorithms, and C = {Cpp}pp∈P is an ensemble of efficiently
sampleable sets. For every k ≤ K the protocol is defined as follows:

1. The algorithm Setup∗(1λ,K) is the same algorithm as Setup(1λ).
2. The algorithm P∗

1(pp, (x1,w1), . . . , (xk,wk)) invokes (Ri, sti) ← P1(pp,
xi,wi) for every i ∈ [k] and produces a message α = Πk

i=1Ri and a state
st = (st1‖ . . . ‖stk).

3. k different challenges β1, . . . , βk are sampled uniformly at random from the
challenge set Cpp.

4. The algorithm P∗
2(st, β1, . . . , βk) parses st = (st1‖ . . . ‖stk), invokes γi ←

P2(sti, βi) and produces a message γ =
∑k

i=1 γi.

144 G. Segev et al.

5. The algorithm V(pp,x1, . . . ,xk, α, β, γ) determines the output of the protocol
checking whether F(γ) ?= α · Πk

i=1x
βi

i .

Note that the completeness of the protocol above follows from the homomor-
phic property of F and that the prover-to-verifier communication is two-group
elements. The verifier sends k elements, but since they are all uniformly ran-
dom strings, they can be easily compressed to a single group element using any
pseudo-random generator (e.g., using a random oracle).

Definition 12 (Local special soundness). Let Π = (Setup,P1,P2,V, C) be
an algebraic Σ-protocol for a relation R and let Π∗ be the batch Σ-protocol
defined in Lemma 1 with a bound K on the number of instances. Then, Π∗

has local special soundness if there exists a deterministic polynomial time algo-
rithm E that for every λ ∈ N and k ≤ K, given public parameters pp, any
k inputs statements x1, . . . ,xk ∈ Xλ and any pair of accepting transcripts
(α, β1, . . . , βk, γ), (α, β′

1, . . . , β
′
k, γ′) such that there exists only one index j on

which βj �= β′
j, outputs a witness wj such that (xj ,wj) ∈ Rλ.

We now show that every batch Σ-protocol defined in Lemma 1 has local special
soundness.

Claim 2. Let Π = (Setup,P1,P2,V, C) be an algebraic Σ-protocol for a rela-
tion R and let Π∗ be the batch Σ-protocol constructed from Π as defined in
Lemma 1 with a bound K on the number of instances. Then, Π∗ has local special
soundness.

Proof. Consider the algorithm E which takes as input public parameters
pp, instances x1, . . . ,xk and a pair of accepting transcripts (α, β1, . . . , βk, γ),
(α, β′

1, . . . , β
′
k, γ′) such that there exists only one index j on which βj �= β′

j ,
defined as follows:

1. Let i∗ be the index on which βi∗ �= β′
i∗ .

2. Output (γ − γ′)/(βi∗ − β′
i∗) on the group Zp where p is the order of App.

Observe that since the two transcripts are accepting it holds that

Fpp(γ) = α · Πk
i=1x

βi

i and Fpp(γ′) = α · Πk
i=1x

β′
i

i .

Since βi = β′
i for every i �= i∗, it holds that

xβi∗
i∗ · Fpp(γ′) = x

β′
i∗

i∗ · Fpp(γ) .

Note that xi∗ = Fpp(wi∗), therefore, by the homomorphic property, it holds that

Fpp((βi∗ − β′
i∗)wi∗) = Fpp(γ − γ′) .

Thus, (γ − γ′)/(βi∗ − β′
i∗) is a preimage of xi∗ , i.e., a valid witness for xi∗ . The

extractor E performs only three group operations, therefore, Π∗ has local special
soundness.

Rogue-Instance Security for Batch Knowledge Proofs 145

In Sect. 5.3, we show a concrete bound on the rogue soundness error of batch
Σ-protocols defined in Lemma 1. Formally, we prove the following.

Theorem 1. Let Δ = Δ(λ), ω = ω(λ), tP̃ = tP̃(λ,K), tV = tV(λ,K), tW =
tW (λ,K) be functions of the security parameter λ ∈ N and the bound on the
number of instances K ∈ N. Let Π be an algebraic Σ-protocol for a relation R
and let Π∗ = (Setup,P1,P2,V, C) be the batch Σ-protocol constructed from Π
as defined in Lemma 1. If R is second-moment hard with respect to a distribution
D and the setup algorithm Setup, then Π∗ has (tP̃, ε)-rogue soundness error such
that

εD(λ, tP̃, tV, tW ,K) ≤
(

Δ · 32 · (tP̃ + tV + tW)2

|Wλ|ω
)2/3

+
4

|Cpp| ,

where tV denotes the running time of the verifier V and tW denotes the running
time of the witness extractor.

5.2 The Collision Game

Similar to the collision game presented in [3,12,18], we consider a binary matrix
H ∈ {0, 1}R×N . However, instead of looking for two 1-entries in the same row,
the generalized algorithm A is given as input a number k ∈ N and oracle access
to the matrix and its goal is to find k + 1 entries with the value 1 in the same
row in H. Formally, the game is constructed as follows:

CollGamek(A,H)

1. The algorithm A(k) is given oracle access to H and outputs ρ and β1, . . . , βk+1.
2. The output of the game is 1 if and only if H[ρ, β1] = . . . = H[ρ, βk+1] = 1 and

β1, . . . , βk+1 are distinct.

In particular, in this section, we refer to the collision game when k = 1.
We construct an algorithm that finds two 1-entries in the same row in H with
probability at least ≈ ε3/2 and performs ≈ 2 queries to H where ε is the fraction
of 1-entries in H. Formally, we prove the following.

Lemma 3. Let H ∈ {0, 1}R×N be a binary matrix and let ε be the fraction of
1-entries in H. Let QA be a random variable indicating the number of queries
performed by A to H. Then, there exists an algorithm A with oracle access to H
such that on input k = 1 the following holds:

1. E [QA] ≤ 2.
2. E

[Q2
A

] ≤ 4.
3. Either ε < 4

N or Pr[CollGame(A,H) = 1] ≥ ε1.5

8 .

146 G. Segev et al.

Proof. Let B =
⌈

1√
ε

− 1
⌉

and consider the following algorithm A:

AH(1)

1. Sample ρ ← R and β ← N . If H[ρ, β] = 0 abort.
2. Let S = ∅. For every i ∈ [B], sample βi ← N \S and set S = S ∪{βi}.

If for every i ∈ [B] it holds that H[ρ, βi] = 0, abort.
3. Choose uniformly at random an index i for which H[ρ, βi] = 1.
4. Return ρ, β and βi.

We now prove each claim separately.

Claim 4. It holds that E [QA] ≤ 2.

Proof. By the description of A, it performs a single query to H, and then only
with probability ε it performs B queries. Thus, we can bound the expectation
by

E [QA] = 1 + ε · B ≤ 1 +
1√
ε

· ε ≤ 2 .

Claim 5. It holds that E
[Q2

A

] ≤ 4.

Proof. By the description of A, with probability 1−ε, it performs a single query,
and with probability ε it performs (1 + B) queries. Thus, we can bound the
expectation squared by

E
[Q2

A

]
= (1 − ε) · 12 + ε · (1 + B)2 = 1 − ε + ε(1 + 2B + B2)

= 1 + 2εB + εB2 ≤ 1 + 2
√

ε + 1 ≤ 4 .

Claim 6 (Success probability). Either ε < 4
N or Pr[CollGame(A,H) = 1] ≥

ε1.5

8 .

In order to bound A’s success probability, we first show a lower bound on
the probability that A does not abort in Item 2.

Claim 7. Let Xd be a random variable indicating the number of 1-entries found
in B draws in a row with exactly d 1-entries. For every d > 1, it holds that
Pr[Xd ≥ 1] ≥ min{0.5, d·B

2N }.
The proof of Claim 7 appears in the full version.

Proof (Proof of Claim 6). Assuming the first query to the matrix was 1-entry,
A continues to sample entries from the same row. Note that for each row, the
number of 1-entries may be different which affects the success probability of the
algorithm. Therefore, we “divide” the rows into “buckets” by the number of 1-
entries in it. Formally, for every 0 ≤ d ≤ N , we define δd be the fraction of rows
with exactly d 1-entries.

Rogue-Instance Security for Batch Knowledge Proofs 147

When d ≤ 1, we know that the success probability is 0. Thus, we consider
only δd for d ≥ 2. This lets us derive the following:

Pr[CollGame(A, H) = 1] ≥
N∑

d=2

δd
d

N
· Pr [Xd ≥ 1] ≥

N∑
d=2

δd
d

N
·
(

min

{
1

2
,
(d − 1) · B

2(N − 1)

})

Let n :=
⌊
1 + N−1

B

⌋
, then,

Pr[CollGame(A,H) = 1] ≥
n∑

d=2

δd
d

N
· (d − 1) · B

2(N − 1)
+

N∑

d=n+1

δd
d

N
· 1
2

=
B

2

n∑

d=2

δd
d(d − 1)

N(N − 1)
+

1
2

·
N∑

d=n+1

δd
d

N

=
B

2N(N − 1)

n∑

d=0

δd · d(d − 1) +
1
2

·
N∑

d=n+1

δd
d

N

Let ε1 :=
∑n

d=0 δd
d
N and ε2 :=

∑N
d=n+1 δd

d
N . By Jensen’s inequality we get that

1

N(N − 1)

n∑
d=0

δd · d(d − 1) ≥ 1

N(N − 1)
· ε1N (ε1N − 1) ≥ ε21 · N − ε1

N
= ε21 − ε1

N
.

Therefore we get, Pr[CollGame(A,H) = 1] ≥ B
2

(
ε21 − ε1

N

)
+ 1

2ε2. Since ε1+ε1 = ε,
the minimum of the above expression is where ε1 = ε. Thus, we can write

Pr[CollGame(A, H) = 1] ≥ B

2

(
ε2 − ε

N

)
≥ 1

2 · 2
√

ε
· ε2 − ε

2 · √
εN

=
ε1.5

4
−

√
ε

2N
.

Since ε ≥ 4
N , it holds that,

√
ε

2N
≤

√
ε

2
(
4
ε

) =
ε1.5

8
.

This leads to,

Pr[CollGame(A,H) = 1] ≥ ε1.5

8
,

which completes the proof.

5.3 Rogue Soundness Error Bound from the Collision Game

We now use the algorithm for the collision game in order to construct an algo-
rithm that extracts a witness w for an instance x. Then, combined with the
second-moment assumption we prove Theorem 1.

First, we prove the following lemma (which is interesting on its own):

148 G. Segev et al.

Lemma 8. Let tP̃ = tP̃(λ,K), tV = tV(λ,K), tW = tW (λ,K) be functions
of the security parameter λ ∈ N and the bound on the number of instances
K ∈ N. Let Π be an algebraic batch Σ-protocol for a relation R and let
Π∗ = (Setup,P1,P2,V, C) be the batch Σ-protocol constructed from Π as defined
in Lemma 1. Let tV denote the running time of the verifier V and let tW denote
the running time of the witness extractor. Let D = {Dλ}λ∈N be a distribution
over the relation where each Dλ produces (pp,x,w) ∈ Rλ. For every prover
P̃ = (P̃1, P̃2) that runs in time tP̃, there exists an algorithm A∗ such that:

1. E
[
TA∗,Dλ

] ≤ 2 · (tP̃ + tV + tW).
2. E

[
T 2

A∗,Dλ

] ≤ 4 · (tP̃ + tV + tW)2.

3. Either ε < 4
|Cpp| or Pr

⎡

⎣(pp,x1, w̃1) ∈ R
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ,K)
(x1,w1) ← Dλ(pp)
w̃1 ← A∗(pp,x1)

⎤

⎦ ≥ ε1.5

8 where

ε is the rogue-soundness error of Π∗ with respect to a distribution D and the
setup algorithm Setup.

Proof. We denote by aux the variable for tuples of (pp,x,β) where β =
(β2, . . . , βk) and βi ∈ {0, 1}r. We consider binary matrices H = {Haux}pp,xβ ∈
{0, 1}R×N , where the R rows correspond to P̃’s randomness and the N columns
correspond to V’s randomness for one instance. Note that although P̃’s and V’s
randomness depends on the number of instances that the prover outputs, we can
always bound it by the randomness size when P̃ outputs K instances.

An entry of Haux equals 1 if and only if the corresponding transcript (between
P̃ and V) is accepting. Recall that every algorithm A for the collision game aims
to find k + 1 entries with the value 1 in the same row. As P̃’s randomness is
fixed along one row, finding two 1-entries in the same row correspond to finding
two accepting transcripts (α, β1,β, γ), (α, β′

1,β, γ′). Given Claim 2, Π∗ has local
special soundness, i.e., there exists an algorithm E that runs in time tW which
given two accepting transcripts as considered above, extracts a witness for the
instance x1.

Let A be the algorithm for the collision game constructed in Lemma3, we
construct the algorithm A∗ as follows:

Rogue-Instance Security for Batch Knowledge Proofs 149

A∗(pp,x1)

1. Initialize an empty mapping M between the randomness used by P̃
and V and the transcript between them.

2. Let r be V’s randomness size for each instance. For 2 ≤ i ≤ K, sample
βi ← {0, 1}r.

3. Invoke A(1). When A performs a query on (ρ, β) answer as follows:
(a) Invoke ((x̃2, . . . , x̃k), α, st) ← P̃1(pp,x1; ρ).
(b) Invoke γ ← P̃2(β, β2, . . . , βk, st).
(c) Set M [(ρ, β)] ← (x̃2, . . . , x̃k, α, β, β2, . . . , βk, γ).
(d) Return V(pp,x1, x̃2, . . . , x̃k, α, β, β2, . . . , βk, γ) as the answer to

the query.
4. When A outputs ρ, β1, β2: set (x̃2, . . . , x̃k, α∗

1, β
∗
1 , β∗

1,2 . . . , β∗
1,k, γ∗

1) ←
M [ρ, β1] and (x̃2, . . . , x̃k, α∗

2, β
∗
2 , β∗

2,2 . . . , β∗
2,k, γ∗

2) ← M [ρ, β2].
5. Run w̃1 ← E(x̃2, . . . , x̃k, α∗

1, β
∗
1,2, . . . , β

∗
1,k, (β∗

1,1, γ
∗
1,1), (β

∗
2,1, γ

∗
2,1)).

6. Output w̃1.

We prove each claim separately.

Claim 9 (Expected running time). It holds that E
[
TA∗,Dλ

] ≤ 2 · (tP̃ +V+
tW).

Proof. Observe that whenever A query H, the algorithm A∗ invokes P̃ and V.
Thus, the expected number of invocations that A∗ performs to P̃ and V is the
expected number of queries performed by A. Thus, E

[
TA∗,Dλ

] ≤ E [QA] · (tP̃ +
V) + tW ≤ 2 · (tP̃ + tV + tW).

Claim 10 (Second-moment of expected running time). It holds that
E
[
T 2

A∗,Dλ

] ≤ 4 · (tP̃ + tV + tW)2 .

Proof. Following the same observation as in Claim 9 we obtain that

E

[
T

2
A∗,Dλ

]
≤

(
E [QA] · (t

P̃
+ tV)

)2
+ t

2
W ≤

(
E [QA] · (t

P̃
+ tV + tW)

)2
= E [QA]

2 · (t
P̃

+ tV + tW)
2

.

Jensen’s inequality leads to E
[
T 2

A∗,Dλ

] ≤ E
[Q2

A

] · (tP̃ + tV + tW)2 ≤ 4(tP̃ + tV +
tW)2.

Claim 11 (Success probability). Either ε < 4
|Cpp| or

Pr

⎡

⎣(pp,x1, w̃1) ∈ R
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ,K)
(x1,w1) ← Dλ(pp)
w̃1 ← A∗(pp,x1)

⎤

⎦ ≥ ε1.5

8 where ε is the rogue-

soundness error of Π∗ with respect to a distribution D and the setup algorithm
Setup.

Proof. Whenever A succeeds in the collision game with Haux, the algorithm A∗

outputs a witness for x1. Thus,

150 G. Segev et al.

Pr

⎡
⎣(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp ← Setup(1λ,K)
(x1,w1) ← Dλ(pp)
w̃1 ← A∗(pp,x1)

⎤
⎦ =

∑
aux

Pr[aux] · Pr [CollGame(A, Haux) = 1] .

For every aux = (pp,x,β), we let

εaux = Pr

⎡

⎢
⎢
⎣

V(pp,x, x̃2, . . . , x̃k, α, β, β2, . . . , βk, γ) = 1

conditioned on pp ← Setup(1λ,K)

∧ (x1,w1) ← Dλ(pp)

∧ β2, . . . , βk ← Cpp

∣
∣
∣
∣
∣
∣
∣
∣

((x̃2, . . . , x̃k), α, st) ← P̃1(1
λ, pp,x)

β2, . . . , βk ← Cpp

γ ← P̃2(st, β2, . . . , βk)

⎤

⎥
⎥
⎦ .

The collision game matrix Haux has εaux fraction of 1-entries. Thus, conditioned
on aux, the probability that A succeeds in the collision game is ε1.5

aux

8 . Therefore,

Pr

⎡

⎣(pp,x1, w̃1) ∈ R
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ,K)
(x1,w1) ← Dλ(pp)
w̃1 ← A∗(pp,x1)

⎤

⎦ =
∑

aux

Pr[aux] · ε1.5
aux

8
= E

aux

[
ε1.5
aux

8

]

≥
E
aux

[εaux]
1.5

8
≥ ε1.5

8
,

where first inequality follows from Jensen’s inequality and the last inequality
follows from the fact that E

aux
[εaux] = ε.

We are now ready to show a bound on the rogue soundness error of batch
Σ-protocol defined in Lemma 1.

Proof (Proof of Theorem 1). Let P̃ be a cheating prover and let εD be the rogue
soundness error with respect to D and Setup. Given Lemma 8 and the assumption
that R is second-moment hard with respect to the distribution D and the setup
algorithm Setup, it holds that either εD < 4

|Cpp| or,

ε1.5
D
8

≤ Pr

⎡

⎣(pp,x1, w̃1) ∈ R
∣
∣
∣
∣
∣
∣

pp ← Setup(1λ,K)

(x1,w1) ← Dλ(pp)

w̃1 ← A∗(pp,x1)

⎤

⎦ ≤
Δ · E

[
T 2

A∗,D
]

|Wλ|ω ≤ Δ · 4 · (tP̃ + tV + tW)2

|Wλ|ω .

This leads to

εD ≤
(

Δ · 32 · (tP̃ + tV + tW)
|Wλ|ω

)2/3

.

Overall we derive the following bound

εD ≤ max

{(
Δ · 32 · (tP̃ + tV + tW)

|Wλ|ω
)2/3

,
4

|Cpp|

}
≤

(
Δ · 32 · (tP̃ + tV + tW)

|Wλ|ω
)2/3

+
4

|Cpp|

5.4 Algebraic Batch Identification Schemes

An identification scheme consists of a Σ-protocol for relation R and an algorithm
Gen that produces a distribution over (x,w) ∈ R where the public key is the
instance x and the secret key is the witness w. Similarly, we construct a batch

Rogue-Instance Security for Batch Knowledge Proofs 151

identification scheme that consists of batch Σ-protocol defined in Lemma 1 and
an algorithm Gen that given public parameters pp, produces a distribution over
(x,w) ∈ R(pp).

Note that the execution of ID is as the execution of the batch Σ-protocol
where each public key pk corresponds to an instance, and a secret key sk corre-
sponds to a witness.

We consider the rogue-security notion of batch identification scheme, asking a
cheating prover P̃ given as input an instance x produced by Gen, to convince the
verifier V on (x, x̃2, . . . , x̃k) where x̃2, . . . , x̃k are adaptively chosen by P̃ while
given access to an honest transcript-generator for the instance x and another (k−
1) instances by its choice. Formally, we let Transpk1,sk1(·) denote an oracle that
when queried with input (pk2, sk2), . . . (pkk, skk), runs an honest execution of the
protocol on input (pk1, sk1), . . . (pkk, skk) and returns the resulting transcripts
(α, β, γ). We define the rogue-security of a batch identification scheme as follows:

Definition 13 (Rogue soundness). Let ID = (Setup,Gen,P1,P2,V, C) be a
batch identification scheme for a relation R. Then, ID is (t, ε)-rogue soundness
(with respect to Gen and Setup) if for every λ, k ∈ N such that k ≤ K and
for any t-time malicious prover P̃ = (P̃1, P̃2) that performs q queries to the
transcript-generation oracle it holds that:

Pr
[
StrongIdentID(P̃, λ)

]
≤ ε(λ, t, q,K) ,

where the experiment StrongIdentID(P̃, λ) defined as follows:

StrongIdentID(P̃, λ):

1. pp ← Setup(1λ,K).
2. (pk1, sk1) ← Gen(pp).

3. ((p̃k2, . . . , p̃kk), α, st) ← P̃
Transpk1,sk1 (·)
1 (pp, pk1).

4. β ← Cpp.
5. γ ← P̃2(st, β).
6. Output V(pp, pk1, p̃k2, . . . , p̃kk, α, β, γ) = 1.

Recall that batch identification scheme ID consists of a batch Σ-protocol
Π∗ defined in Lemma 1 such that the execution of ID is as the execution of
Π∗ where each public key pk corresponds to an instance and a secret key sk
corresponds to a witness. Thus, if Π∗ is zero-knowledge, we can assume that
every malicious prover does not query the transcript-generation oracle, as such
queries can be internally simulated given the public keys. Formally, if Π∗ is
t-time zero-knowledge (Definition 8), for every malicious prover that performs
q queries to the transcript-generation oracle Transpk1,sk1(·), we can construct a
malicious prover that does not query the transcript-generation oracle and instead
runs the simulator q times to generate transcripts. Specifically, if Π∗ has tSim-
time zero-knowledge, any malicious prover that runs in time tP̃ and performs

152 G. Segev et al.

q queries to Transpk1,sk1(·), can be simulated by a malicious prover that runs in
time tP̃ + q · tSim.

Recall that every batch Σ-protocol Π∗ defined in Lemma 1 is constructed
from an algebraic Σ-protocol Π. We now show that if Π is tSim-time zero-
knowledge, then Π∗ is (k ·tSim)-zero-knowledge. Formally, we prove the following.

Claim 12. Let Π = (Setup,P1,P2,V, C) be an algebraic Σ-protocol for a rela-
tion R and let Π∗ be the batch Σ-protocol constructed from Π as defined in
Lemma 1 with a bound K on the number of instances. If Π is tSim-time zero-
knowledge, then Π∗ is (K · tSim)-time zero-knowledge.

The proof of Claim 12 appears in the full version. Combined with Theorem1,
we derive the following corollary:

Corollary 2. Let Δ = Δ(λ), ω = ω(λ), tP̃ = tP̃(λ), tV = tV(λ,K), tW =
tW (λ,K), tSim = tSim(λ,K), q = q(λ) be functions of the security parameter
λ ∈ N and the bound on the number of instances K ∈ N. Let Π be an alge-
braic Σ-protocol for relation R with tSim-time zero-knowledge and let Π∗ =
(Setup,P1,P2,V, C) be the batch Σ-protocol constructed from Π as defined in
Lemma 1. Let ID = (Setup,Gen,P1,P2,V, C) be the batch identification scheme
consists with Π∗. If R is second-moment hard with respect to Gen, then for
any malicious prover P̃ that runs in time tP̃ and issues q transcript-generation
queries it holds that

Pr
[
StrongIdentID(P̃, λ)

]
≤
(

Δ · 32 · (tP̃ + q · K · tSim + tV + tW)2

|Wλ|ω
)2/3

+
4

|Cpp| ,

where tV is the running time of the verifier V and tW is the running time of the
witness extractor.

6 Proving Expected-Time Hardness in Generic Models

In this section, we present a generic framework for analyzing expected-time
hardness of cryptographic problems. In fact, applying our framework proves the
second-moment assumption (Definition 2) for the discrete-logarithm problem in
the generic group model. Shoup [33] analyzed generic hardness of the discrete-
logarithm problem with respect to strict time algorithms. He showed that any
generic t-time algorithm that solves the discrete-logarithm problem has suc-
cess probability at most ε ≤ t2/p. Applying our framework yields a bound of
ε ≤ E

[
T 2

A

]
/p when considering unbounded algorithms where TA denotes the

random variable indicating the algorithm’s running time.
Our framework is inspired by [19] which showed a generic framework to

prove bounds with respect to expected-time algorithms when considering only
the first-moment of the expected running time. Their result proves the first-
moment assumption (Definition 1) but cannot be used to derive the second-
moment assumption.

In Sect. 6.1 we introduce our framework for proving expected-time hardness.

Rogue-Instance Security for Batch Knowledge Proofs 153

6.1 Our Framework

Definition 14 (Monotonic predicate). A predicate P is monotonic if for
every tr such that P (tr) = 1, it holds that P (tr||tr′) = 1 for every tr′.

We consider distributions D(λ) which produces an oracle O and define the
hardness of a predicate as follows:

Definition 15 (Hard predicate). A predicate P is ε-hard if for every strict
time algorithm At it holds that

Pr
[
P (tr) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− At
O (in)

]
≤ ε(t) .

In addition, we define history-oblivious predicates. Intuitively, this family of
predicates includes predicates on which each query is oblivious to the history
of the query-answer list (see Sect. 2.6 for further discussion). We define history-
oblivious by considering the hardness to set the predicate to output 1 on input
tr‖(x, y) where (x, y) is a fresh query-answer pair and tr is a query-answer list
on which the predicate outputs 0.

For any list of query-answer pairs μ we denote by D(λ, μ) the distribution
D(λ) of all oracles such that for every (xi, yi) ∈ μ it holds that yi = O(xi). We
let X,Y be the query and answer spaces.

Definition 16 (History-oblivious predicate). Let P be an ε-hard predicate.
We say that P is history-oblivious with respect to O if there is a function κ(·),
such that for every t ∈ N the following holds:

1. For every 0 ≤ i ≤ t, every trace tr of length i with P (tr) = 0, and any query
x ∈ X:

Pr
[
P (tr‖(x, y)) = 1

∣
∣
∣
∣

O ← D(λ, tr)
y = O(x)

]
≤ κ(i) .

2.
∑t

j=0 κ(j) ≤ ε(t).

(Above, the length of a trace is the number of query/answer pairs it contains.)
We consider experiments relative to an oracle, for which their security relies
on the trace between the adversary and the oracle. We capture this using a
monotonic predicate on the trace. Formally, we define the following:

Definition 17 (δ-bounded experiment). Let ExpO be an experiment with
oracle access O, and let δ = δ(λ) be a function of the security parameter λ ∈ N.
We say that ExpO is δ-bounded with respect to a monotonic predicate P if for
every (bounded and unbounded) algorithm A it holds that,

Pr
[
ExpO(in, out) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
≤ Pr

[
P (tr) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
+δ .

154 G. Segev et al.

Given the definitions above, we prove the following theorem.

Theorem 2. Let ExpO be a δ-bounded experiment with respect to a predicate P
which is ε-hard. If P is history-oblivious, then, for every unbounded algorithm
A it holds that,

Pr
[
ExpO(in, out) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
≤ E [ε(t)] + δ .

In particular, Theorem2 allows us to recover the same bounds given in [19],
which is captured in the following corollary.

Corollary 3. Let ExpO be a δ-bounded experiment with respect to a predicate P

which is ε-hard where ε(t) = Δtd

N for Δ, d,N ≥ 1. If P is history-oblivious, then,
for every unbounded algorithm A it holds that,

Pr
[
ExpO(in, out) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
≤ d

√
ε(E [TA]) + δ = d

√
Δ

N
· E [TA] + δ ,

where TA is a random variable indicating the number of queries performed by A
until he stops, when given access to an oracle O.

The proof of Corollary 3 appears in the full version, we now prove Theorem 2.

Proof (Proof of Theorem 2). Let tri be the first i pairs in the query-answer list
between the algorithm and the oracle O. Let Yi be an indicator random variable
for the event that (i) |tr| ≥ i; (ii) P (tri) = 1; and (iii) P (tri−1) = 0. Note that,
the events Yi = 1 are mutually exclusive, thus:

Pr
[
P (tr) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
=

∞∑

i=1

Pr
[
Yi = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
,

To simplify the notation throughout the proof, we omit the explicit reference
to the probability taken over the sampling of the oracle O ← D(λ) and the
execution of the algorithm.

Let TA = TA(λ) be a random variable indicating the number of queries
performed by A until he stops, when given access to an oracle O. Note that for
every i ∈ N it holds that Yi = 1 only if the number of queries performed by the
algorithm is at least i. Thus,

Pr
[
P (tr) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
=

∞∑

i=1

Pr
[
Yi = 1

∣
∣ TA ≥ i

] · Pr[TA ≥ i]

≤
∞∑

i=1

Pr
[
Yi = 1

∣
∣ TA ≥ i

] ·
∞∑

t=i

Pr[TA = t]

Rogue-Instance Security for Batch Knowledge Proofs 155

The following claim shows an upper bound on the above term
Pr
[
Yi = 1

∣
∣ TA ≥ i

]
. The proof of the claim appears in the full version.

Claim 13. If P is ε-hard and history-oblivious, then for every i ∈ N, it holds
that Pr

[
Yi = 1

∣
∣ TA ≥ i

] ≤ κ(i).

Given Claim 13 it holds that,

Pr
[
P (tr) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
≤

∞∑

i=1

κ(i) ·
∞∑

t=i

Pr [TA = t]

=
∞∑

t=1

Pr [TA = t] ·
t∑

i=1

κ(i) ≤
∞∑

t=1

Pr [TA = t] · ε(t) = E [ε(t)] ,

where the first equality follows from rearranging the summation, and the last
inequality follows from the fact that P is ε-hard and history-oblivious. Overall,
we conclude that,

Pr
[
ExpO(out) = 1

∣
∣
∣
∣

O ← D(λ)
out

tr←− AO (in)

]
≤ E [ε(t)] + δ .

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the fiat-shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Agrikola, T., Hofheinz, D., Kastner, J.: On instantiating the algebraic group model
from falsifiable assumptions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 96–126. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 4

3. Attema, T., Cramer, R., Kohl, L.: A compressed Σ-protocol theory for lattices.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 549–579.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1 19

4. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions
in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56880-1 5

5. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight reductions
and non-rewinding proofs for Schnorr identification and signatures. In: Bhargavan,
K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp.
529–552. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7 24

6. Bellare, M., Dai, W.: Chain reductions for multi-signatures and the HBMS scheme.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 650–
678. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 22

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-030-45724-2_4
https://doi.org/10.1007/978-3-030-45724-2_4
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-65277-7_24
https://doi.org/10.1007/978-3-030-92068-5_22

156 G. Segev et al.

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a gen-
eral forking lemma. In: Proceedings of the ACM Conference on Computer and
Communications Security, pp. 390–399 (2006)

8. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

9. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

10. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

11. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-
way functions: constructions and applications. Theoret. Comput. Sci. 592, 143–165
(2015)

12. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D.
thesis, CWI and University of Amsterdam (1996)

13. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or:
can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

14. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

15. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 3

16. Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.: Batching Schnorr iden-
tification scheme with applications to privacy-preserving authorization and low-
bandwidth communication devices. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 276–292. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30539-2 20

17. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-
34799-2 16

18. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Con-
structions. Information Security and Cryptography, Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14303-8

19. Jaeger, J., Tessaro, S.: Expected-time cryptography: generic techniques and appli-
cations to concrete soundness. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12552, pp. 414–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64381-2 15

20. Katz, J., Lindell, Y.: Handling expected polynomial-time strategies in simulation-
based security proofs. J. Cryptol. 21(3), 303–349 (2008)

https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-540-30539-2_20
https://doi.org/10.1007/978-3-540-30539-2_20
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-030-64381-2_15
https://doi.org/10.1007/978-3-030-64381-2_15

Rogue-Instance Security for Batch Knowledge Proofs 157

21. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

22. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

23. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to Bitcoin. Des. Codes Crypt. 87(9), 2139–2164 (2019). https://
doi.org/10.1007/s10623-019-00608-x

24. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

25. Mizuide, T., Takayasu, A., Takagi, T.: Tight reductions for Diffie-Hellman variants
in the algebraic group model. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 169–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 9

26. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round Schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp.
189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 8

27. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

28. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13, 361–396 (2000)

29. Rotem, L., Segev, G.: Algebraic distinguishers: from discrete logarithms to deci-
sional uber assumptions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol.
12552, pp. 366–389. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64381-2 13

30. Rotem, L., Segev, G.: Tighter security for Schnorr identification and signatures:
a high-moment forking lemma for Σ-protocols. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12825, pp. 222–250. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84242-0 9

31. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

32. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

33. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

34. Yun, A.: Generic hardness of the multiple discrete logarithm problem. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 817–836. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 27

https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/978-3-030-12612-4_9
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/978-3-030-64381-2_13
https://doi.org/10.1007/978-3-030-64381-2_13
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-662-46803-6_27

On Black-Box Verifiable Outsourcing

Amit Agarwal1(B) , Navid Alamati2 , Dakshita Khurana1 ,
Srinivasan Raghuraman3 , and Peter Rindal2

1 University of Illinois Urbana-Champaign, Champaign, USA
{amita2,dakshita}@illinois.edu
2 Visa Research, Palo Alto, USA
{nalamati,perindal}@visa.com

3 Visa Research and MIT, Cambridge, USA

Abstract. We study verifiable outsourcing of computation in a model
where the verifier has black-box access to the function being computed.
We introduce the problem of oracle-aided batch verification of computa-
tion (OBVC) for a function class F . This allows a verifier to efficiently
verify the correctness of any f ∈ F evaluated on a batch of n instances
x1, . . . , xn, while only making λ calls to an oracle for f (along with
O(nλ) calls to low-complexity helper oracles), for security parameter λ.
We obtain the following positive and negative results:

– We build OBVC protocols for the class of all functions that admit
random-self-reductions. Some of our protocols rely on homomorphic
encryption schemes.

– We show that there cannot exist OBVC schemes for the
class of all functions mapping λ-bit inputs to λ-bit outputs,
for any n = poly(λ).1(1 The authors grant IACR a non-
exclusive and irrevocable license to distribute the article under the
https://creativecommons.org/licenses/by-nc/3.0/.)

1 Introduction

We study the problem of verifiably outsourcing computation in a model where
the verifier has black-box access to the function being computed as well as to
certain low-complexity helper functions.

A large body of work in the study of delegation, starting with [24,26], con-
sider the setting where a computationally bounded prover generates efficiently
checkable proofs π attesting to the correctness of relatively inefficient compu-
tation. A major downside of existing works is that they require the prover and
verifier to agree on and use a specific circuit Cf for computing the function f .
In other words, the verification scheme is inherently tied to a fixed (arbitrary)
implementation of f which is publicly known to both the prover (server) and
the verifier (client).

On the other hand, consider a scenario where a cloud-based service provider
offers a service computing f (for example, f can be matrix multiplication) on
arbitrary client data. The client would like to ensure correctness of returned
c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 158–187, 2023.
https://doi.org/10.1007/978-3-031-48615-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_6&domain=pdf
http://orcid.org/0000-0002-7642-1341
http://orcid.org/0000-0001-8621-7486
http://orcid.org/0000-0001-5315-4503
http://orcid.org/0000-0001-6737-6991
http://orcid.org/0000-0003-2402-7411
https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1007/978-3-031-48615-9_6

On Black-Box Verifiable Outsourcing 159

outcomes. There are a few reasons why the “circuit-dependent verification” app-
roach above poses a barrier to verifiable computation in this scenario. First of
all, the service provider may be using a proprietary code/implementation Cf

to compute f (e.g. some proprietary matrix multiplication algorithm) which it
is unwilling to disclose to its clients. As such, running a verifiable outsourcing
protocol where the client/verifier depends on the code Cf is simply not feasible.
Second, even if the company is willing to disclose its code/implementation, the
client would have to audit it (for e.g. using formal verification) to make sure
that Cf is indeed a sound implementation of f , which can be quite complex.
Third, the company may make frequent updates to Cf (for e.g. to add perfor-
mance optimizations) which would require the client to keep checking this code
continually. Finally, making verification independent of the code of f may also
lead to efficiency improvements for the verifier in certain settings. Motivated by
these questions, we study the following problem:

What classes of functions admit oracle-aided verifiable computation schemes?

The notion of oracle-aided computation captures “circuit-independence” in
the context of verifiable computation, as we discuss next. We consider a batch
verification scenario: suppose a verifier is given access to an oracle Of for function
f ∈ F . Is it possible for the verifier, using only λ = log2 n queries to Of , to verify
the correctness of a large batch of computations y1 = f(x1), . . . , yn = f(xn)?
Oracle access to Of ensures that the verification scheme is oblivious to any spe-
cific implementation Cf that the server may use to perform the computation.
Indeed, the client can instantiate such an oracle using any arbitrary implementa-
tion C ′

f which need not depend on the server’s implementation Cf . The restric-
tion of λ oracle queries ensures that even if the oracle Of is instantiated with a
naive/inefficient implementation C ′

f on the client side, the total work performed
by the client over the entire batch will be relatively small (as long as the security
parameter λ is smaller than the batch size).

1.1 Our Results

Motivated by the above considerations, we formalize the notion of oracle aided
verifiable computation (OBVC) in the batched setting. At a high level, an OBVC
protocol for function class F , defined on � bit inputs, consists of a weak client
who wishes to outsource the computation of some function f ∈ F on a batch
of n instances, let’s say x1, . . . , xn, to a powerful server. The client is assisted
by a function oracle Of along with some helper oracles Og1 , . . . ,Ogm

which are
computationally “weaker” than Of . This is formalized by requiring that the com-
bined time complexity of helper oracles be smaller than the time complexity of
the function f i.e.

∑m
i=1 Tgi

(�) = o(Tf (�)). The server can use an arbitrary imple-
mentation Cf of the function f . The completeness guarantee of OBVC ensures
that the client, when interacting with an honest server (i.e. a server holding a
correct circuit Cf for f and following the protocol steps), always outputs the
correct evaluation i.e. f(x1), . . . , f(xn). On the other hand, the soundness guar-
antee of OBVC ensures that a malicious server (i.e. a server who deviates from the

160 A. Agarwal et al.

protocol or uses an incorrect circuit C ′
f) cannot make the client accept incorrect

evaluations on any input in the batch, except with some negligible probability.
We require the scheme to have the following efficiency properties: i) the

number of oracle queries made by V to the function oracle Of is O(λ), ii) the
number of queries made to each helper oracle Ogi

is O(nλ), iii) there is a constant
c such that the running time of the verifier (as an oracle machine) is λc · o(n ·
Tf (�)), where Tf (�) is the time complexity of computing f on � bit inputs. Note
that the efficiency condition ensures that the OBVC protocol is non-trivial in
that the verifier efficiency is better than computing the function on all n inputs
in time n · O(Tf (�)) or, by making O(n) oracle queries to Of .

Random Self Reducible Functions. In this work, we build an OBVC scheme for the
class of all Random Self-Reducible (RSR) functions. We now briefly describe this
property. If a function f admits K RSR, then computing f on any chosen input
x can be reduced to computing f on a set of uniformly random (not necessarily
independent) inputs r1, . . . , rK , where K is some fixed constant dependent on
f . More formally, there exists a randomized algorithm called RSR.Encode which
takes as input x and outputs a set of random instances r1, . . . , rK . We will some-
times call these random instances as “shares” of the original input x (borrowing
the terminology from secret-sharing literature). Given the evaluation of f on
these random instances, f(r1), . . . , f(rK), there exists a deterministic algorithm
called RSR.Decode which outputs f(x). Moreover, RSR.Encode and RSR.Decode
are much “simpler” to compute than f and this is formalized by requiring that
the combined time complexity of RSR.Encode and RSR.Decode is much less than
that of f . (Note that these only depend on the functionality f and not on its
circuit/implementation.) Many useful functions such as integer multiplication,
matrix multiplication, polynomial multiplication, integer division, exponentia-
tion, and trigonometric functions such as sine and cos admit RSR. In our positive
result, we assume that the RSR.Encode and RSR.Decode functions are available
to the verifier as helper oracles.

Theorem 1. (Informal) Let F� be the class of all Random Self-Reducible func-
tions on � = �(λ) bit inputs. Assuming homomorphic encryption scheme (HE)
for F�, there exists an OBVC scheme for F�.

In this work, we are also interested in studying the limitations of OBVC
schemes. In other words, we would like to understand whether all large classes
of functions can admit OBVC schemes. To that end, we have the following result:

Theorem 2. (Informal) Let Fλ be the class of all functions mapping λ bit inputs
to λ bit outputs. Then, Fλ does not admit an OBVC scheme.

We will elaborate upon these two results in the next section.

On Black-Box Verifiable Outsourcing 161

1.2 Our Techniques

Positive result. Let us start by describing a simplified version of our idea (which
doesn’t directly work). Consider the following protocol: The client sends all n
instances, x1, . . . , xn, to the server and the server is supposed to respond with
y1 = f(x1), . . . , yn = f(xn). On receiving y1, . . . , yn from the server, the client
performs a cut-and-chose style check on some small subset T , where |T | = λ (λ
being the security parameter), in the following way: It randomly selects T ⊂ [n]
and checks whether yi = Of (xi) for all i ∈ T , where Of is an oracle that
returns the evaluation of f . If the check fails, the client aborts. Otherwise, the
client outputs y1, . . . , yn. On an intuitive level, if the server is cheating on some
instance xi0 where i0 ∈ [n], then it runs the risk of being caught in the cut-and-
chose check. However, this strategy fails since even if |T | = n−1, the prover can
get away with a probability atleast 1

n , which is non-negligible. Hence this basic
scheme does not work.

The major downside of the above scheme is that a malicious server can cor-
rupt the computation on a single instance and go undetected with non-negligible
probability. One may attempt to resolve this issue is that of error correction. In
more detail, we could force a malicious server to corrupt the computation on
many parts of a codeword in order to successfully corrupt the computation on
a single instance. This would hopefully reduce the probability of a malicious
server going undetected. However, this alone does not suffice. The real issue that
the above example highlights is that a malicious server can, with probability 1,
selectively corrupt the computation on a single instance xi in the batch where
i ∈ [n], error-corrected or otherwise. Unless the verifier is invoking the oracle
Of on all n instances, it runs the risk of accepting a bad set of y1, . . . , yn. This
is true even if one employs error correction techniques on each instance as the
adversary may be able to identify the error-corrected instances corresponding
to each instance. Our idea to tackle this is to leverage the property of Random
Self-Reduction (RSR). In the following description, we will assume that we are
dealing with the class of functions admitting RSR, and that the RSR.Encode and
RSR.Decode functions are available to the verifier as helper oracles.

Suppose our function f of interest admits K RSR with K = 1. As a first step,
we will show that RSR helps us to reduce the probability of selective corruptions
from 1 to 1

n . Looking ahead, our next step will be to show that assuming this
lower probability of selective corruptions, error-correction tools, i.e., repetition
and majority decoding, can be used to achieve negligible soundness error. For our
first step, we modify our previous basic protocol in the following way: Instead of
sending x1, . . . , xn to the server, we will first map each instance xi to a uniformly
random instance ri using RSR.Encode, shuffle the set {r1, . . . , rn}, and send this
shuffled set to the server. After receiving the answers from the server, the client
will perform a cut-and-chose check as described earlier. If the cut-and-chose
check passes, it reverse shuffles the server’s responses and applies RSR.Decode
to each of them to get the actual outputs. We claim that this protocol reduces
the probability of selective corruptions to 1

n , i.e., the prover cannot selectively
corrupt the computation on a particular instance xi0 with probability better

162 A. Agarwal et al.

than 1
n . This follows because a 1 RSR is a random mapping, and have shuffled

the random mappings of the instance as well.
Having achieved this lower probability of selective corruptions, we move on

to our next and final step for the case of K = 1. We claim that we can now
boost the soundness of this protocol by performing repetitions and majority
decoding in the following way: For each instance xi in the batch, we apply
RSR.Encode independently λ times, where λ is a security parameter, to get
{ri,j}i∈[n],j∈[λ]. We then proceed as described earlier i.e. the client randomly
shuffles {ri,j}i∈[n],j∈[λ], sends this shuffled set to the server and performs cut-
and-chose check on the server’s responses. If the cut-and-chose check passes, it
reverse shuffles the server’s responses and applies RSR.Decode to each of them.
Additionally, it performs a majority decoding on the results of RSR.Decode to
get the final outputs. If the cut-and-chose check passes, it ensures that any ran-
dom subset of size λ of the server’s responses will have less than λ

2 corruptions
(except with negligible probability) due to Hoeffding’s bound. Note that this
holds regardless of having achieved a low probability of selective corruptions.
But crucially, the low probability of selective corruptions allows to translate the
guarantee on random subsets of size λ to subsets that precisely correspond to the
repetitions of each instance. This, in turn, ensures that the majority decoding for
each instance will always result in the correct output. To further illustrate this,
note that if we skip the shuffling step (that was partially responsible for a low
probability of selective corruptions) and only perform random mapping (using
RSR.Encode) along with repetitions, it won’t get us negligible soundness error.
This is because a cheating server can again selectively corrupt only {ri0,j}j∈[λ]

i.e., all the random instances in every repetition corresponding to a particular
input xi0 and avoid detection with non-negligible probability.

We now turn towards the case of functions which admit K RSR where K > 1.
Compared to K = 1 case, this case is much more tricky to handle for the fol-
lowing reason. Suppose we invoke RSR.Encode on each instance xi (without any
repetitions) to form a set of random instances {r1i , . . . , rK

i }. As with the K = 1
case, a natural extension of the previous approach in order to thwart selective
corruptions would be to gather all the n · K random instances {rk

i }i∈[n],k∈[K],
shuffle them, and send them to the server. In the K = 1 setting, we argued that
the prover cannot selectively corrupt the computation on a particular instance
xi0 with probability better than 1

n due to the random mapping and shuffling
step. However, this is no longer true for the K > 1 case. The reason is that
although each individual share in the set {r1i0 , . . . , r

K
i0

}, corresponding to a par-
ticular instance xi0 , is uniformly random, the joint distribution is not necessarily
uniform. For example, it may happen that any two shares in the set {r1i0 , . . . , r

K
i0

}
completely reveal the instance xi0 . Therefore, an unbounded server can poten-
tially try a brute force approach to find out which shares correspond to a partic-
ular instance xi0 and then selectively corrupt the computation on those shares.

To handle this, we make the following observation. Suppose we are deal-
ing with a restricted kind of “non-communicating” prover Pno-com. Such a
prover is defined as a tuple of K non-communicating provers Pno-com =

On Black-Box Verifiable Outsourcing 163

(P1
no-com, . . . ,PK

no-com). While each prover in the tuple can be an arbitrary
unbounded machine, the restriction is that they are not allowed to communicate
with each other during the protocol execution. The idea then is to modify the
protocol in the following manner: Instead of sending all K shares correspond-
ing of each instance xi to a single prover, we will only send the kth shares of
each instance to the kth non-communicating prover Pk

no-com. On receiving the
responses from each Pk

no-com, the verifier applies an independent cut-and-chose
check on the responses sent by each Pk

no-com. Since each individual prover is now
receiving only a single share (for each instance xi), we can re-apply the sound-
ness logic discussed for the K = 1 RSR case after doing λ independent repeti-
tions. This means that for each individual non-communicating prover Pk

no-com, if
the cut-and-chose check passes, then any random subset of size λ of the Pk

no-com

responses will have less than λ
2K

1 corruptions (except with negligible probability)
due to Hoeffding’s bound. It turns out that ensuring fewer than λ

2K corruptions
with respect to each instance i ∈ [n] and prover Pk

no-com suffices for the majority
decoding argument (as mentioned in the K = 1 RSR case) to go through.

Note that eventually we would like to construct a protocol which is sound
against a single prover P. To this end, we introduce an intermediate notion
of a “no-signaling prover” where we ease the non-communicating restriction in
Pno-com. Formally, a “no-signaling prover” is defined as a tuple of K provers
Pno-com = (P1

no-sig, . . . ,P
K
no-sig). While each prover in the tuple can be an arbitrary

unbounded machine, the restriction is that for all k ∈ [K], the distribution
of the responses of the kth prover Pk

no-sig should be independent of the shares
received by the other provers {Pi

no-sig}i∈[K],i �=k. We then show that our modified
protocol for handling arbitrary non-communicating provers is also sound against
arbitrary no-signaling provers. Intuitively, the reason why this works is because
the cut-and-chose check that we apply on each individual Pk

no-sig responses is
local. In more detail, suppose Predk is a binary predicate capturing the following
event: there exists i0 ∈ [n] such that the server Pk

no-sig responds incorrectly to
more than λ

2K fraction of RSR instances {ri0,j}j∈[λ] and the cut-and-chose check
on its responses passes. Since this predicate is local, i.e., the predicate output
depends only on the responses of Pk

no-sig, it can be shown that any Pk
no-sig which

makes Predk true with non-negligible probability (over the randomness of the
verifier) directly implies a non-communicating prover Pk

no-com which makes Predk

true with non-negligible probability (thus contradicting our soundness analysis
for arbitrary non-communicating provers).

Finally, we show that the restriction to a no-signaling set of provers can
be removed by a slight modification to the protocol where the verifier simply
encrypts each RSR instance {rk

i,j}i∈[n],j∈[λ],k∈[K] under an independent public-
key pki,j,k before sending it to a single server P. If the public-key encryption
scheme is homomorphic, then the server can compute the answers to verifier
messages “under the hood” of the HE scheme (using HE.Eval) and send the

1 We use λ
2K

as opposed to λ
2

as this is what we need in the setting of K provers to
make the rest of the analysis work out.

164 A. Agarwal et al.

encrypted responses back to the verifier. The verifier then simply decrypts all
the responses and runs the no-signaling verifier (which is identical to the non-
communicating verifier) to derive the final output. With this transformation, it
can be shown that the soundness of the previous protocol (i.e., without apply-
ing encryption) against arbitrary unbounded no-signaling provers Pno-sig directly
implies soundness of the transformed protocol (i.e., after applying encryption)
against arbitrary computationally bounded provers P. Formally, the analysis uses
a reduction to the semantic security of the encryption scheme.

Negative result. Towards a negative result, an ideal goal would be to tightly
characterize functions that do not admit an OBVC scheme. However, getting
such a strong negative result seems difficult as there might be arbitrary properties
of functions (other than RSR) that one could potentially leverage in order to
construct an OBVC scheme. Therefore, we settle for a weaker goal where we show
that it is impossible to construct an OBVC scheme for a “large enough” function
class F . Specifically, we consider the function class Fλ = {{0, 1}λ → {0, 1}λ},
the class consisting of all functions mapping λ bit inputs to λ bit outputs.

We now adopt the following approach: Suppose there exists a OBVC scheme
Π for Fλ and let fλ be a function sampled randomly from Fλ. Then we show
that there exists a malicious prover P∗ that breaks the soundness of Π with non-
negligible probability. Allowing fλ to be sampled randomly from Fλ enables us
to model this game in the well-known Random Oracle Model (ROM) [6]. In this
terminology, the oracle Of will be identical to a Random Oracle (RO). Let n
be the number of instances in the batch and t be the number of queries that
V is allowed to make to Of . For the OBVC scheme to be meaningful, we know
that t should be strictly less than n. However, note that in our OBVC definition,
we also allow the verifier to have access to poly(λ) function-dependent helper
oracles, each of which can be invoked O(nλ) times. To model these helper oracles
faithfully in ROM, we will assume that these are encoded as an s-bit auxiliary
input aux and handed over to the verifier as a preprocessing advice. Note that
this aux can depend arbitrarily on the entire RO function table, for example, it
can contain global information about the entire RO function f .

Our idea to construct a malicious prover P∗ that breaks the soundness of
any potential OBVC scheme Π in this ROM setting is as follows. Let Q denote
the set of queries that the V makes to Of during the protocol. Since t < n,
it holds that a randomly sampled instance xφ from the batch {x1, . . . , xn} will
be outside Q with probability atleast 1 − t/n. Therefore, we can switch into a
hybrid where the prover locally reprograms the value of f(xφ) to a random value
Δ in the image of f . Intuitively, one could invoke a lazy-sampling argument for
ROM to argue that this change will go unnoticed to the verifier if it does not
query Of at xφ. Indeed, if this were true, then it would have been sufficient
to break soundness with non-negligible probability. However, there is a subtle
flaw in directly applying such a lazy-sampling argument. Recall that we are
in a setting where the verifier is allowed to compute auxiliary information aux
about Of before the protocol begins. This hinders a direct application of lazy-
sampling argument as aux might potentially contain information (for e.g. a small

On Black-Box Verifiable Outsourcing 165

digest) about the entire Of . Hence, it is no longer true that points outside Q
are independent from the verifier’s view.

To resolve this, we apply some of the techniques that were developed in earlier
works [16,17,28] which studied security of cryptographic protocols where adver-
sary can contain auxiliary information about the Random Oracle, also known
as the Auxiliary Input Random Oracle (AI-RO) model. We specifically use the
results in [16] where authors define a new relaxed model called Bit-Fixing Ran-
dom Oracle (BF-RO) model. At a high level, in the BF-RO model, the aux is
constrained so that it only contains information about p points (p is a tunable
parameter) in Of which can be chosen arbitrarily. Based on this modeling, the
authors show that security theorems proved in BF-RO model can be carried over
to the AI-RO model with a loss in advantage proportional to st/p (recall that s
is the length of advice string in AI-RO model and t is the number of queries to
Of). By setting s, t, p appropriately, one can get negligible loss in advantage.

Returning to our setting, recall that it was not possible to apply lazy sampling
in the AI-RO model we were dealing with. Therefore, as a first step, we will
restrict ourselves to the BF-RO model where aux is constrained so that it only
contains information about/fixes some p points of the random oracle. Let us
denote these set of p points by P. Fortunately, in this model, we can apply the
lazy-sampling technique for the points outside P. Therefore, as long as we can
ensure that xφ is outside both P and Q (recall that Q is the set of queries that
the verifier makes during the protocol), then the malicious prover P∗ which we
described earlier will work. We show formally that this is indeed the case for all
α′ ∈ (0, 1], p ∈ 2(1−α′)λ, thus giving us an impossibility result for OBVC in the
BF-RO model. Finally, we are also able to apply a lemma from [16] to lift our
impossibility result from the BF-RO model to the AI-RO model with appropriate
setting of parameters.

1.3 Related Work

Our idea of verifiable computation of functions in a “circuit-independent” fashion
is inspired from the early works on Self-Testing/Self-Correcting programs [7,25].
In these works, it was shown that if a program P correctly computes a random
self-reducible (RSR) function f on “most” inputs, then it can be used to correctly
compute f on “all” inputs using only oracle access to P . However, a major
limitation of these works is that the adversarial program is limited to a stateless
machine. In other words, the response provided by P on a particular query is not
allowed to depend on the previous queries. In our work, we consider the setting
of arbitrary stateful prover which is strictly general than a stateless program.

Later works [8] extended this idea to deal with adaptive programs (i.e.
programs whose response in a particular query can depend on the previous
queries arbitrarily) but protocols in this setting required two or more inde-
pendent copies of the program which, analogously, can be thought of as non-
communicating provers. This work requires an additional property of “downward
self-reducibility” (which roughly means that computing f on input x of size �
can be reduced to computing f on random “smaller” instances of size � − 1).

166 A. Agarwal et al.

Thus, our result, which only relies on random-self-reducibility to instances of the
same size, is more general.

Rubinfeld [27] extended the work on program checking to a batched setting
where the verifier is trying to verify the computation of P on batch of n inputs.
Again, this work was limited to stateless program as opposed to stateful prover
which we consider. Bellare et. al. [5] proposed a different approach to batch
verification for the specific case of modular exponentiation function by allowing
the verifier to compute the function on some small number of inputs on its own.

As discussed earlier in the introduction, succinct non-interactive arguments
(SNARGs) for P (where proof size and verification time are polylogarithmic in
the security parameter) and batch arguments (BARGs) for NP, where a batch of
statements can be verified in time that is sublinear in the number of statements
[10,12,13,21,22,29] are closely related primitives. A related line of work [2,14,19]
similarly considers the possibility of using FHE and a preprocessing stage to
perform verifiable computation. Unfortunately, all of these works require the
verifier to have non-black-box access to the circuit Cf for the function f , and
are therefore not applicable to the setting of black-box verification.

2 Preliminaries

Throughout the paper, we use bold-letters to indicate vectors (which can some-
times be equivalently represented as strings). For a vector v of length n, we use
the notation vi to indicate the ith co-ordinate of v where i ∈ [n]. For a subset
S ⊆ [n], we use vS := (vi)i∈S to denote the subvector of v restricted to the
positions i ∈ S. For a bit string b = (b1, . . . , bn) ∈ {0, 1}n of arbitrary length
n ≥ 0, we use RW(b) and HW(b) to indicate the relative and absolute ham-
ming weight of b respectively. Throughout the paper, we use λ to indicate the
security parameter. By poly(λ) and negl(λ), we mean the class λO(1) and 1

λω(1) .
We sometimes abuse notation and use poly(λ) and negl(λ) to refer to a mem-
ber from the class poly(λ) and negl(λ) respectively. Given a security parameter
λ, we use PPT to denote probabilitic poly(λ)-time Turing Machines and non-
uniform PPT to denote PPT machines with poly(λ)-sized advice. We say that
two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ} are computationally
indistinguishable, denoted by X ≈c Y , if for every non-uniform PPT algorithm
D, there exists a negligible function negl(λ) such that for all λ ∈ N, we have
|Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]| ≤ negl(λ).

2.1 Mathematical Preliminaries and Definitions

Theorem 3 (Hoeffding’s inequality [20]). Let b ∈ {0, 1}nm be a bitstring
with relative hamming weight μ = RW(b). Let the random variables X1, . . . , Xk

be obtained by sampling k entries from b with replacement, i.e. the Xi’s are inde-
pendent and Pr[Xi = 1] = μ. Furthermore, let the random variables Y1, . . . , Yk

be obtained by sampling k entries from b without replacement. Then, for any
δ > 0, the random variables X̄ = 1

k

∑
i Xi and Ȳ = 1

k

∑
i Yi satisfy:

On Black-Box Verifiable Outsourcing 167

Pr[|Ȳ − μ| ≥ δ] ≤ Pr[|X̄ − μ| ≥ δ] ≤ 2 · e−2δ2k

Definition 1. An (N,M) source is a random variable X with range [M]N . A
source is called p-bit-fixing if it is fixed on at most p coordinates and uniform on
the rest.

Theorem 4 ([16]). Let X be distributed uniformly over [M]N and Z := f(X),
where f : [M]N → {0, 1}s is an arbitrary function. For any γ > 0 and
p ∈ N, there exists a family {Yz}z∈{0,1}s of convex combinations Yz of p-bit-
fixing (N,M)-sources such that for any distinguisher D taking an s-bit input
and querying at most t < p coordinates of its oracle,

|Pr[DX(f(X) = 1)] − Pr[DYf(X)(f(X)) = 1]| ≤ (s + log 1/γ) · t

p
+ γ

2.2 Bit Fixing Random Oracle Model

In this section, we will define the Auxiliary Input Random Oracle (AI-RO) and
Bit fixing Random Oracle (BF-RO) model as described in Coretti et. al. [16]. An
oracle O consists of two interfaces O.pre and O.main. We will define two types
of entities (modeled as turing machines) and their access to O.

– Two-stage entity : Such an entity E is split up into two parts E = (E1, E2).
The first part E1 can access O.pre and the second part E2 can access O.main.
Furthermore, E1 can pass on some auxiliary information to the second part.

– Single-stage entity: Such an entity E only accesses O.main.

Let FM,N be the set of all possible functions f : [M] → [N]. Now we will
define different types of oracles that we will use:

– Auxiliary Input Random Oracle AI-RO(M,N): Samples a random function
table F ← FM,N ; outputs F at O.pre; answers queries x ∈ [M] at O.main by
the corresponding value F (x) ∈ [N].

– Bit fixing Random Oracle BF-RO(p,M,N): Samples a random function
table F ← FM,N ; outputs F at O.pre; takes a list at O.pre of at most p
query/answer pairs (called “bit-fixing” pairs), {(xi, yi)}i∈[p], that override F
in the corresponding position i.e. ∀i ∈ [p], we set F (xi) = yi. Then it answers
queries x ∈ [M] at O.main by the corresponding value F (x) ∈ [N].

2.3 Homomorphic Encryption

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,
HE.Dec,HE.Eval) is a quadruple of PPT algorithms as follows.

– Key Generation: The algorithm (pk, sk) ← HE.Keygen(1λ) takes a unary rep-
resentation of the security parameter λ and outputs a public encryption key
pk, and a secret decryption key sk.

168 A. Agarwal et al.

– Encryption: The algorithm c ← HE.Encpk(μ) takes the public key pk and a
single bit message μ ∈ {0, 1} and outputs a ciphertext c. For encrypting � bit
messages, we can simply invoke HE.Enc bit-by-bit.

– Decryption: The algorithm μ∗ ← HE.Decsk(c) takes the secret key sk and a
ciphertext c and outputs a message μ∗ ∈ {0, 1}.

– Homomorphic Evaluation: The algorithm cf ← HE.Evalpk(f, c1, . . . , c�) takes
the public key pk, a function f : {0, 1}� → {0, 1} and a set of ciphertexts
c1, . . . , c� and outputs a ciphertext cf

2.

As mentioned in [11], the representation of function f can vary between
schemes, and it is best to leave this issue outside of the syntactic definition for
our purposes.

The above algorithms must satisfy the following properties:

– CPA-security: A scheme HE is IND-CPA secure if the following holds:

{c ← HE.Encpk(0) : (pk, sk) ← HE.Keygen(1λ)}λ

≈c

{c ← HE.Encpk(1) : (pk, sk) ← HE.Keygen(1λ)}λ

where λ ∈ N.
– F-homomorphism: Let F� ⊆ {{0, 1}� → {0, 1}} be a set of functions where

� = �(λ). A scheme HE is F-homomorphic (or, homomorphic for the class F) if
for any sequence of functions f� ∈ F� and respective inputs μ1, . . . , μ� ∈ {0, 1},
it holds that:

Pr

[
HE.Decsk (HE.Evalpk (f, c1, . . . , c�)) �= f(μ1, . . . , μ�) :

pk, sk ← HE.Keygen(1λ)

∀i ∈ [�], ci ← HE.Encpk (μi)

]
= negl(λ)

– Compactness: A scheme HE is compact if there exists a polynomial s = s(λ)
such that the output length of HE.Eval is at most s bits long (regardless of f
or the number of inputs).

2.4 Random Self Reducibility

Intuitively, a function f has Random Self Reducibility (RSR) property if com-
puting f on a given input x can be “easily” reduced to computing f on uniformly
random inputs. We now provide a formal definition inspired by [4,7].

Definition 2 (Random Self Reduction (RSR)). A function f : D → R is
K random self reducible (henceforth denoted by K-RSR) if there exists a pair of
algorithms (RSR.Encode,RSR.Decode) where,

2 For syntactic simplicity, we only consider functions with a single bit output. The
generalization to functions with arbitrary output length can be done by splitting a
multi-bit output function into multiple functions with single bit output.

On Black-Box Verifiable Outsourcing 169

– RSR.Encode(x) : This is a randomized algorithm which takes an � bit input
x ∈ {0, 1}� ∩ D and outputs K values r1, . . . rK , where each ri ∈ {0, 1}� ∩ D.
It also outputs a state st.

– RSR.Decode({y1, . . . , yK}, st): This is a deterministic algorithm which takes
as input K values {yi}i∈[K] from R, along with a state st, and outputs a value
y ∈ R.

The above algorithms must satisfy the following properties.

– Correctness: For all � ∈ N and x ∈ {0, 1}� ∩ D, we have:

Pr

[
RSR.Decode({y1, . . . , yK}, st) = f(x) :

{r1, . . . , rK}, st ← RSR.Encode(x)

∀i ∈ [K] : yi := f(ri)

]
= 1

– Uniformity: For all � ∈ N, x ∈ {0, 1}� ∩ D, i ∈ [K],

{ri : r1, . . . , rK ← RSR.Encode(x)} ≡ U�

where U� is the uniform distribution on � bit strings.
– Efficiency: Let TRSR.Encode(�) and TRSR.Decode(�) be the time complexity of

RSR.Encode and RSR.Decode respectively on inputs of size �. Let Tf (�) be
the (worst-case, over all inputs of size �) time complexity of computing f3.
Then, the efficiency condition requires that for all constants c > 0:

TRSR.Encode(�) + TRSR.Decode(�) = o(Tf (�))

Blum et. al. [7] showed that many interesting and useful functions, such as
modular multiplication, modular exponentiation, integer division, matrix mul-
tiplication, polynomial multiplication (over a ring) admit efficient random self
reductions. Later works also extended RSR to trigonometric functions such as
sine and cosine [3,15], and real-valued functions such as floating-point exponen-
tiation and floating point logarithm [18].

2.5 No-Signaling Prover

We define the notion of no-signaling prover in a manner similar to prior works
[9,23]. Intuitively, for a no-signaling set of provers Pno-sig = (P1, . . . ,PK), the
response of each prover Pi is allowed to depend on the queries to all provers as
a function but the distribution of each prover’s response (modeled as a random
variable) should be (computationally) independent of the queries sent to the
other provers.
3 In cases where Tf (�) is not known, due to circuit lower bound barriers, we can fix

Tf (�) to be the best known time complexity for computing f on (worst-case) inputs
of size �. For example, if f is the matrix multiplication function of two � × � bit
matrices, then we can set Tf (�) = �2.3728596 for inputs of length 2�2 (encoding two
�×� sized bit-matrix as a bit-string) based on the fastest known matrix multiplication
algorithm [1].

170 A. Agarwal et al.

Definition 3 (No-signaling prover). Let Q denote the alphabet of the
queries. A prover system Pno-sig = (P1, . . . ,PK) is called a no-signaling multi-
prover system if the following holds:

{
Game0k(x, {yi

0}i∈[K],i �=k,{yi
1}i∈[K],i �=k)

}

k∈[K],x∈Q,yi
0∈Q,yi

1∈Q

≈c

{
Game1k(x, {yi

0}i∈[K],i �=k,{yi
1}i∈[K],i �=k)

}

k∈[K],x∈Q,yi
0∈Q,yi

1∈Q

where the games are formally defined below:

Game0k(x, {yi
0}i∈[K],i �=k, {yi

1}i∈[K],i �=k)

1 : Send x to Pk.

2 : ∀i ∈ [K], i �= k : send yi
0 to Pi.

3 : Receive z from Pk.

4 : Output z.

Game1k(x, {yi
0}i∈[K],i �=k, {yi

1}i∈[K],i �=k)

1 : Send x to Pk.

2 : ∀i ∈ [K], i �= k : send yi
1 to Pi.

3 : Receive z from Pk.

4 : Output z.

3 Defining Oracle-Aided Batch Verifiable Computation

We provide two definitions for Oracle-aided Batch Verifiable Computation -
one in the single server setting (OBVC) and the other in multi-server setting
(MOBVC).

Definition 4 (Oracle-aided Batch Verifiable Computation). Let � ∈ N

parameterize input length, m = poly(�) for some polynomial poly(·), n denote a
number of instances, and λ denote a security parameter. Let f� be an arbitrary
function in a class F� ⊆ {{0, 1}� → {0, 1}∗}, and let X = {0, 1}� denote the
domain of f�.

An oracle-aided batch verifiable computation OBVC for the function class F�

is an interactive protocol between a randomized client/verifier V and a determin-
istic server/prover P, with the following syntax.

– The client V obtains input a batch of n inputs, x = x1, . . . , xn, where each
xi ∈ X .

– The server P obtains a circuit Cf for computing f .
– The client V interacts with the server P, and can additionally make oracle

calls to a function oracle Of as well as to m helper oracles Og1 , . . . ,Ogm
.

Finally, V outputs OUT where OUT is either y1, . . . , yn where yi ∈ Range(f)
or OUT = ⊥.

The protocol satisfies the following properties.

– Non-triviality: The combined time complexity of helper oracles is smaller than
the time complexity of the function f i.e.

∑m
i=1 Tgi

(�) = o(Tf (�)).

On Black-Box Verifiable Outsourcing 171

– Completeness: Let OUT(〈P(Cf),VOf ,{Ogi
}i∈[m]〉) denote the output of V at the

end of protocol. For all l ∈ N, fl ∈ Fl, n ∈ N, x ∈ X n, λ ∈ N,

PrV[OUT = fl(x1), . . . , fl(xn)] = 1

where the probability is taken over the internal coin tosses of V.
– Soundness: There exists a negligible function negl(·) s.t. for all adversarial

P∗, for all l ∈ N, fl ∈ Fl, n = poly(λ),x ∈ X n, λ ∈ N,

PrV[OUT = f(x1), . . . , f(xn) ∨ OUT = ⊥] ≥ 1 − negl(λ)

where the probability is taken over the internal coin tosses of V.
When referring to computational soundness, we quantify over all non-uniform
PPT provers P∗.

– Privacy: For all adversarial P∗, there exists a simulator SimP s.t. there exists
a negligible function negl(·) s.t. for all λ ∈ N, fλ ∈ Fλ, n ∈ N,x ∈ X n,

VIEW(P∗) ≈c Sim(1λ, 1n,X)

– Efficiency: For every � ∈ N, f� ∈ F�, n ∈ N, x ∈ X n and λ ∈ N, the number of
oracle queries made by V to the function oracle Of is O(λ) and the number
of queries made to each helper oracle Ogi

is O(nλ). Furthermore, there is a
constant c such that the running time of the verifier (as an oracle machine)
is λc · o(n · Tf (�)).

Note that the efficiency condition ensures that the OBVC protocol is non-
trivial in the sense that the V is doing something better than the trivial strategies
where it computes the function on all n inputs on its own using an internal
algorithm in time n · O(Tf (�)) or, alternatively, does the same task by making
O(n) oracle queries to Of .

We now define K-Multi-server Oracle-aided Batch Verifiable Computation
(K-MOBVC) which is a straightforward generalization of the single server defi-
nition to a multi-server/multi-prover system P = (P1, . . . ,PK) with K provers.
Also, in this definition, we do not require the privacy condition.

Definition 5 (Multi-server Oracle-aided Batch Verifiable Computa-
tion).

Refer to the full version of this paper.

4 Protocol for Functions Admitting 1-RSR

In the following section, we provide a construction of OBVC scheme for functions
admitting 1-RSR. The idea behind our protocol is simple: First the verifier maps
each of its instance xi to a uniformly random instance si using the RSR.Encode
function. Then it sends all the randomized instances {si}i∈[n] to the prover in
a shuffled order, and the prover is supposed to respond back with {f(si)}i∈[n].
Intuitively, this shuffling, coupled with the fact that RSR.Encode outputs a uni-
formly random sample, prevents a malicious prover from selectively providing

172 A. Agarwal et al.

incorrect responses on some instances (for e.g. the seventh instance x7). How-
ever, note that a malicious prover might still provide incorrect responses on some
indices not knowing which instances they correspond to. To tackle this, the ver-
ifier uses a cut-and-choose based checking mechanism. Specifically, it selects a
small random subset of the indices, gets the correct answer for those indices
from the oracle Of , and then checks whether the prover’s responses match. This
check ensures that if the prover is misbehaving on “too many” indices, then
he will be caught with “overwhelming” probability. Formally, once the check
passes, it is ensured that the prover is not lying on more than some (fixed) con-
stant fraction of indices except with some negligible probability. However, note
that, our soundness condition requires the output of the verifier be correct on
all instances (and not just most of the instances). To achieve this, we perform
a parallel repetition of each instance for some security parameter λ many times
and then select the majority of responses as the correct answer. Intuitively, we
can select our parameters in a way so that if the cut-and-chose check passes,
then it is ensured that the majority, among λ repetitions, encodes the correct
answer for that instance.

Theorem 5. There exists a OBVC scheme, specifically Protocol 4, for the class
F1-RSR

� consisting of all � bit functions that admit 1-RSR with soundness against
arbitrary unbounded provers.

Corollary 6. For all 0 < δ < 1, n ∈ O(2λδ

), Protocol 4 is an OBVC scheme for
F1-RSR

� with soundness error negl(λ). Alternatively, one could set λ = ω(log n)
and get a soundness error of negl(n).

In the rest of this section, we will prove Theorem 5. We note that the com-
pleteness of our protocol follows directly from the correctness property of RSR.
We now proceed to discuss non-triviality, privacy, efficiency and prove soundness.

Non-triviality, Privacy and Efficiency Analysis. In our protocol, the verifier
uses two helper oracles namely ORSR.Encodef

and ORSR.Decodef
. By Definition 2,

we know that TRSR.Encode(�) + TRSR.Decode(�) = o(Tf (�)). Hence, our protocol
satisifes the non-triviality condition.

The privacy of our scheme follows directly from the uniformity condition of
RSR. More formally, the simulator Sim(1λ, 1n,X) simply samples nλ uniformly
random instances from X and outputs it. Since each share si,j in Protocol 4 is a
uniformly random and independent (from everything else) element from X , the
simulation is perfect.

For efficiency, we note that each helper oracle is invoked exactly nλ times,
the function oracle Of is invoked exactly λ times and the running time of V is
exactly O(nλ) as shuffling, majority and cut-and-chose check can be computed
in linear time.

On Black-Box Verifiable Outsourcing 173

Protocol 4

Common input: 1λ, 1n

V’s additional input: Inputs x1, . . . , xn, oracle Of , helper oracles
ORSR.Encodef

, ORSR.Decodef

P’s additional input: Circuit Cf for computing f .

1. ∀i ∈ [n], V generates λ independent RSR instances, si,1, . . . , si,λ, where
si,j , sti,j ← ORSR.Encodef

(xi). It sets s := s1,1, . . . , s1,λ, . . . , sn,1, . . . , sn,λ.
2. V samples a random permutation π on [nλ] and sets s′ := π(s). It sends

s′ to P.
3. ∀i ∈ [n], j ∈ [λ], P computes z′

i,j = Cf (s′
i,j).

4. P sets z′ := z1,1, . . . , z1,λ, . . . , zn,1, . . . , zn,λ and sends z′ to V.
5. V samples a random subset T ⊂ [n] × [λ] of size λ and checks whether

the following holds:

∀(i, j) ∈ T : z′
i,j = f(s′

i,j)

6. If the check fails, then V outputs ⊥. Otherwise it proceeds.
7. V computes z = π−1(z′).
8. ∀i ∈ [n], j ∈ [λ], V computes ui,j ← ORSR.Decodef

(zi,j , sti,j).
9. ∀i ∈ [n], V computes ufinal

i = Majority(ui,1, . . . , ui,λ).
10. V outputs ufinal

1 , . . . , ufinal
n .

Soundness Analysis. The high level intuition behind the soundness is the follow-
ing: If the checking phase in Protocol step 5, 6 passes, then with high probability
the verifier will output correct values i.e. with high probability, all ufinal

i will equal
f(xi). To prove this, we will have to show that, for each i ∈ [n], the majority
of {ui,j}j∈[λ] will be equal to f(xi) (with high probability) if the testing phase
passes. To do so, we first consider the following experiment which basically cap-
tures the execution of Protocol 4 with an arbitrary fixed prover P∗ and defines
random variables b and its inverse binv.

Experiment Exp1-RSR(P∗,x)

1 : ∀i ∈ [n], j ∈ [λ], si,j ← RSR.Encode(xi)

2 : s := s1,1, . . . , s1,λ, . . . , sn,1, . . . , sn,λ

3 : π ← random permutation on [nλ]

4 : s′ := π(s)

5 : z′ ← P∗(s′)

6 : T ← random λ sized subset of [n] × [λ]

7 : ∀i ∈ [n], j ∈ [λ], bi,j =

{
0 ; z′

i,j = f(s′
i,j)

1 ; otherwise

8 : b := b1,1, . . . , b1,λ, . . . , bn,1, . . . , bn,λ

9 : binv := π−1(b)

174 A. Agarwal et al.

Now, based on the above experiment, we define the advantage of an adver-
sarial prover P∗ for an arbitrary instance x:

Adv1-RSRδ,Δ (P∗,x) = Pr

⎡

⎢
⎢
⎢
⎢
⎣

∃i ∈ [n],RW(binvi,1 || . . . ||binvi,λ) > δ + Δ

∧

RW(bT) = 0

: Exp1-RSR(P∗,x)

⎤

⎥
⎥
⎥
⎥
⎦

In a protocol execution with malicious prover P∗, b will be an arbitrary
bitstring. We will now prove some properties about any arbitrary bitstring b
which will enable us to finally establish the soundness claim.

Lemma 1. Suppose b ∈ {0, 1}nλ is an arbitrary bitstring of length nλ. We sam-
ple a uniformly random subset T ⊂ [nλ] and use bT to denote the corresponding
|T | sized substring of b. Let Bδ

T = {b′ ∈ {0, 1}nλ : |RW(b′) − RW(bT)| < δ} be
the set of all nλ-length strings which are”δ-close” to the substring bT in terms of
relative Hamming weight. Then, for all b ∈ {0, 1}nλ and real-valued δ ∈ (0, 1):

PrT [b /∈ Bδ
T] ≤ 2 · e−2δ2 T |

where the probability is over the sampling of subset T .

Proof. The proof for the above lemma follows directly from Hoeffding’s bound
(Theorem 3).

Lemma 2. Suppose b ∈ {0, 1}nλ is an arbitrary bitstring of length nλ. Let
P1, . . . , Pn be a random partitioning of the bits of b where each partition contains
exactly λ bits. Then, for all b ∈ {0, 1}nλ, ∀i ∈ [n], ∀Δ ∈ (0, 1):

Pr[|RW(b) − RW(bPi
)| ≥ Δ] ≤ 2 · e−2Δ2λ

where the probability is over the sampling of random partition.

Proof. The proof follows directly from Hoeffding’s bound (Theorem 3).

Corollary 7. Let F denote a indicator random variable denoting the following
failure event:

F =

{
1 ∃i ∈ [n], s.t. |RW(b) − RW(bPi

)| ≥ Δ

0 otherwise

Then, we have that:

Pr[F = 1] ≤ n · 2 · e−2Δ2λ

Proof. The proof follows directly by applying Lemma 2 and union bounding
across all n partitions.

On Black-Box Verifiable Outsourcing 175

Lemma 3. Suppose b is an arbitrary bitstring from {0, 1}nλ. We probe a ran-
dom substring bT , of size |T |, from b. Also, let P1, . . . , Pn be a random parti-
tioning of the bits of b where each partition contains exactly λ bits. Then, for
all n ∈ N, λ ∈ N, b ∈ {0, 1}nλ, real valued δ,Δ ∈ (0, 1), it holds that:

Pr

⎡

⎣
∃i ∈ [n],RW(Pi) ≥ δ + Δ∧

RW(bT) = 0

⎤

⎦ ≤ 2 · e−2δ2 T | + n · 2 · e−2Δ2λ

Proof. Consider the following indicator random variables.

Eδ
1 =

{
1 b ∈ {b′ ∈ {0, 1}nλ : |RW(b′) − RW(bT)| ≥ δ}
0 otherwise

EΔ
2 =

{
1 ∃i ∈ [n], s.t. |RW(b) − RW(bPi

)| ≥ Δ

0 otherwise

E3 =

{
1 RW(bT) �= 0
0 otherwise

From the probability bounds from Lemma 1 and Lemma 2, we get the fol-
lowing bound. For all b ∈ {0, 1}nλ, for all real-valued δ,Δ ∈ (0, 1):

Pr[Eδ
1 = 1 ∧ EΔ

2 = 1] ≤ 2 · e−2δ2 T | + n · 2 · e−2Δ2λ (1)

This implies that:

Pr[(Eδ
1 = 1 ∧ EΔ

2 = 1)
∧

E3 = 0] ≤ 2 · e−2δ2 T | + n · 2 · e−2Δ2λ

=⇒ Pr

⎡

⎣
∃i ∈ [n],RW(Pi) ≥ δ + Δ∧

RW(bT) = 0

⎤

⎦ ≤ 2 · e−2δ2 T | + n · 2 · e−2Δ2λ

Claim 1. For all n ∈ N, x ∈ X n and for all arbitrary unbounded provers P∗:

Adv1-RSRδ,Δ (P∗,x) ≤ 2 · e−2δ2 T | + n · 2 · e−2Δ2λ

Proof. This follows directly from Lemma 3 and the definition of Adv1-RSRδ,Δ .

Claim 2. Fix |T | = λ. Then for all 0 < δ < 1, for n = 2λδ

, for all x ∈ X n and
for all arbitrary unbounded provers P∗,

Adv1-RSRδ=0.25,Δ=0.25(P
∗,x) = negl(λ)

Proof. By setting δ = 0.25, Δ = 0.25 in Claim 1, we get:

Adv1-RSRδ=0.25,Δ=0.25(P
∗,x) ≤ 2

20.18|T | +
2n

20.18λ

176 A. Agarwal et al.

For n ≤ 20.17λ and |T | = λ, we get,

Adv1-RSRδ=0.25,Δ=0.25(P
∗,x) ≤ 2

20.18λ
+

2n

20.18λ

= negl(λ)

which proves the claim.

Remark 1. Claim 2 shows that one of the following two events will happen
(except with some negligible probability): 1) the relative hamming weight in
each random partition Pi of b is less than 0.5 or 2) the relative hamming weight
of the random substring bT is non-zero. In Case 1, this implies that for all i ∈ [n],
more than 50% of the zi,j are correct. This ensures that for all i ∈ [n], more
than 50% of {ui,j}j∈[λ] will equal to f(xi). If this happens, for all i ∈ [n], ufinal

i

will be equal to f(xi) due to the majority rule. In Case 2, the verifier will simply
detect and abort as prescribed in Step 5 and 6 of the protocol. This concludes
our soundness analysis.

5 Protocol for Functions Admitting K-RSR

In this section, we will extend the basic protocol from Sect. 4 to the more general
case of functions which admit K-RSR for any constant K > 1. As an interme-
diate step, we will construct a protocol which is sound against a restricted class
of provers. Specifically, we will consider a setting where the prover is a tuple of
K no-signaling provers as defined in Definition 3. Finally, we will show how this
“no-signaling” constraint can be computationally enforced using homomorphic
encryption. Our final protocol will be sound against an arbitrary non-uniform
PPT prover P.

5.1 OBVC with Multiple Provers

Protocol 5.1 describes our OBVC construction for functions that admit K-RSR.
At a high level, the protocol is a simple extension of Protocol 4 in the following
way: In K-RSR, each invocation of RSR.Encode(xi) will yield K shares, each
being uniformly random (although jointly they may be not). The verifier simply
executes K instances of the protocol for 1-RSR setting where the kth prover Pk

receives all the kth shares. In the end, the verifier simply aggregates the result
from all the K provers and computes the output.

Theorem 8. There exists a K-MOBVC scheme, specifically Protocol 5.1, for
the class FK-RSR

� consisting of all � bit functions that admit K-RSR for any
K ≥ 1 with soundness against arbitrary unbounded no-signaling provers Pno-sig =
(Pno-sig1 , . . . ,Pno-sigK

).

Corollary 9. For all 0 < δ < 1, n ∈ O(2λδ

), Protocol 5.1 is an MOBVC
scheme for FK-RSR

� with soundness error negl(λ). Alternatively, one could set
λ = ω(log n) and get a soundness error of negl(n).

On Black-Box Verifiable Outsourcing 177

In the rest of this section, we will prove Theorem 8. We note that the com-
pleteness of Protocol 5.1 follows directly from the correctness property of RSR.
We now proceed to discuss non-triviality, efficiency and prove soundness.

Protocol 5.1

Common input: 1λ, 1n, f
V’s additional input: Inputs x1, . . . , xn, oracle Of , helper oracles
ORSR.Encodef

, ORSR.Decodef
.

P’s additional input: Circuit Cf for computing f .

1. For each xi, V generates λ independent RSR instances. Formally, ∀i ∈
[n], j ∈ [λ]: {si,j,k}k∈[K], sti,j ← ORSR.Encodef

(xi).
2. ∀k ∈ [K], the following steps are performed:

(a) V sets sk := s1,1,k, . . . , s1,λ,k, . . . , sn,1,k, . . . , sn,λ,k.
(b) V samples a random permutation πk on [nλ] and sets s′k := πk(sk).

It sends s′k to Pk.
(c) ∀i ∈ [n], j ∈ [λ],Pk computes z′

i,j,k := Cf (s′k
i,j)

(d) Pk sets z′k := z′
1,1,k, . . . , z′

1,λ,k, . . . , z′
n,1,k, . . . , z′

n,λ,k. It sends z′k to
V.

(e) V samples a random subset T k ⊂ [n] × [λ] of size λ and checks
whether the following holds:

∀(i, j) ∈ T k : z′k
i,j = Of (s′k

i,j)

(f) If the check fails, then V outputs ⊥. Otherwise it proceeds.
(g) V computes zk := (πk)−1(z′k).

3. ∀i ∈ [n], j ∈ [λ], V computes ui,j ← ORSR.Decodef
({zk

i,j}k∈[K], sti,j).
4. ∀i ∈ [n], V sets ufinal

i = Majority(ui,1, . . . , ui,λ)
5. V outputs ufinal

1 , . . . , ufinal
n

Non-triviality. In our protocol, the verifier uses two helper oracles namely
ORSR.Encodef

and ORSR.Decodef
. By Definition 2, we know that TRSR.Encode(�) +

TRSR.Decode(�) = o(Tf (�)). Hence, our protocol satisifes the non-triviality con-
dition.

Efficiency. For efficiency, we note that each helper oracle is invoked exactly nλ
times, the function oracle Of is invoked exactly Kλ times and the running time
of V is exactly O(nKλ) as shuffling, majority and cut-and-chose check can be
computed in linear time. Here K is a constant which depends on the function f
(but independent of n, λ and �).

Before proving soundness against no-signaling provers, we consider a relaxed
case of “non-communicating” provers as an intermediate step. Such a prover is a
tuple of K “non-communicating” local algorithms i.e. Pno-com = (P1, . . . ,PK)
where the next-message function of each Pi only depends on the messages

178 A. Agarwal et al.

it exchanges with V, and not on the interaction of V with other provers
{Pj}j∈[K],j �=i.

Soundness analysis for non-communicating provers. We consider the follow-
ing experiment capturing the execution of Protocol 5.1 with an arbitrary non-
communicating prover P∗

no-com and defines random variables bk and its inverse
binvk

.

Experiment ExpK-RSR(P∗
no-com,x)

1 : ∀i ∈ [n], j ∈ [λ], {si,j,k}k∈[K] ← RSR.Encodej(xi)

2 : ∀k ∈ [K] :

3 : sk := s1,1,k, . . . , s1,λ,k, . . . , sn,1,k, . . . , sn,λ,k

4 : πk ← random permutation on [nλ]

5 : s′k := πk(sk)

6 : z′k ← P∗
no-comk(s′k)

7 : T k ← random λ sized subset of [n] × [λ]

8 : ∀i ∈ [n], j ∈ [λ], bk
i,j =

{
0 ; z′k

i,j = f(s′k
i,j)

1 ; otherwise

9 : bk := bk
1,1, . . . , b

k
1,λ, . . . , bk

n,1, . . . , b
k
n,λ

10 : binvk

:= (πk)−1(bk)

11 : Parse binvk

as binv
k

1,1 , . . . , binv
k

1,λ , . . . , binv
k

n,1 , . . . , binv
k

n,λ

Based on the above experiment, we now define the advantage of the kth

prover P∗
no-comk, for any arbitrary k ∈ [K], on an arbitrary instance x in the

following way.

AdvK-RSR
δ,Δ (P∗

no-comk
,x) = Pr

⎡
⎢⎢⎢⎢⎢⎣

∃i ∈ [n],RW(binv
k

i,1 || . . . ||binvk

i,λ) > δ + Δ

∧

RW({bk
i,j}(i,j)∈T k) = 0

: ExpK-RSR(P∗
no-com,x)

⎤
⎥⎥⎥⎥⎥⎦

(2)

Lemma 4. For all n ∈ N, λ ∈ N, x ∈ X n and for all arbitrary unbounded
non-communicating provers P∗

no-com = (P∗
no-com1, . . . ,P

∗
no-comK), k ∈ [K] and real

valued δ,Δ ∈ (0, 1),

AdvK-RSR
δ,Δ (P∗

no-comk,x) ≤ 2 · e−2δ2 T k| + n · 2 · e−2Δ2λ

Proof. This follows from Claim 1 and the fact that each individual share in K-
RSR is uniformly random (and hence the view of P∗

no-comk in Protocol 5.1 is
identical to the view of P∗ in Protocol 4).

On Black-Box Verifiable Outsourcing 179

Soundness analysis for no-signaling provers. In this section, we will extend
the soundness analysis of Protocol 5.1 from non-communicating multi-provers
to multi-provers who can communicate arbitrarily but follow a special “no-
signaling” requirement which we formalize in Definition 3. To do so, we consider
an experiment ExpK-RSR(P∗

no-sig,x) which captures the execution of Protocol 5.1
with an arbitrary fixed no-signaling prover P∗

no-sig = (Pno-sig1 , . . . ,Pno-sigK
) and

defines random variables bk and its inverse binvk

. This experiment is identical to
ExpK-RSR(P∗

no-com,x) defined earlier except that we have switched from P∗
no-com

to P∗
no-sig.

Based on the experiment ExpK-RSR(P∗
no-sig,x), we now define the advantage

of the kth prover Pno-sigk
in Eq. 3 and denote it by AdvK-RSR(P∗

no-sigk
,x).

AdvK-RSR
δ,Δ (P∗

no-sigk
,x) = Pr

⎡
⎢⎢⎢⎢⎢⎣

∃i ∈ [n],RW(binv
k

i,1 || . . . ||binvk

i,λ) > δ + Δ

∧

RW(bk

T k) = 0

: ExpK-RSR(P∗
no-sig,x)

⎤
⎥⎥⎥⎥⎥⎦

(3)

Lemma 5. Assume there exists a function ε(·, ·, ·, ·, ·) such that for any arbitrary
non-communicating multi-prover P∗

no-com = (P∗
1, . . . ,P

∗
K), for all δ ∈ [0, 1],Δ ∈

[0, 1], k ∈ K, n ∈ poly(λ), x ∈ X n, λ ∈ N, it holds that AdvK-RSR
δ,Δ (P∗

no-comk,x) ≤
ε(λ, n, δ,Δ,K). Then it follows that for any arbitrary no-signaling multi-prover
P∗
no-sig = (P∗

1, . . . ,P
∗
K), there exists a negligible function negl(·) such that for all

δ ∈ [0, 1],Δ ∈ [0, 1], k ∈ K, n = poly(λ), x ∈ X n, λ ∈ N, it holds that:

AdvK-RSR
δ,Δ (P∗

no-sigk
,x) ≤ ε(λ, n, δ,Δ,K) + negl(λ)

Proof. Suppose the lemma is false i.e. there exists a no-signaling multi-prover
P∗
no-sig = (P∗

no-sig1
, . . . ,P∗

no-sigK
) and a fixed polynomial p(·) such that for infinitely

many λ ∈ N, there exists δ∗ ∈ [0, 1],Δ∗ ∈ [0, 1], k∗ ∈ K,n∗ ∈ poly(λ), x∗ ∈ X n

such that

AdvK-RSR
δ,Δ (P∗

no-sigk∗ ,x∗) ≥ ε(λ, n∗, δ∗,Δ∗,K) +
1

poly(λ)

Given this, we can construct a new prover P∗
no-com = (P∗

no-com1, . . . ,P
∗
no-comK)

which will contradict the ε upper bound for the advantage of P∗
no-comk.

180 A. Agarwal et al.

P∗
no-comk=k∗

1 : Receive s′k=k∗
.

2 : For all k ∈ [K], k �= k∗, set s′k := 0nλ, where 0 is a default element.

3 :

4 : For all k ∈ [K], send s′k to P∗
no-sigk

.

5 : For all k ∈ [K], receive z′k from P∗
no-sigk

.

6 : Output z′k∗
.

P∗
no-comk �=k∗

1 : Receive s′k.

2 : Output ⊥.

From the above construction, it follows that:

AdvK-RSR
δ,Δ (P∗

no-comk∗ ,x
∗
) = Pr

⎡
⎢⎢⎢⎢⎢⎣

∃i ∈ [n],RW(binv
k∗

i,1 || . . . ||binvk∗
i,λ) > δ + Δ

∧

RW(bk∗
T) = 0

: Exp′K-RSR(P∗
no-sig,x)

⎤
⎥⎥⎥⎥⎥⎦

,

(4)

where the experiment Exp′K-RSR(P∗
no-sig,x) is defined as follows (the difference

from ExpK-RSR(P∗
no-sig,x) have been highlighted in blue):

Experiment Exp′K-RSR(P∗
no-sig,x)

1 : ∀i ∈ [n], j ∈ [λ], {si,j,k}k∈[K] ← RSR.Encodej(xi)

2 : ∀k ∈ [K] :

3 : sk :=

{
s1,1,k, . . . , s1,λ,k, . . . , sn,1,k, . . . , sn,λ,k ; k = k∗

0nλ ; otherwise

4 : πk ← random permutation on [nλ]

5 : s′k := πk(sk)

6 : z′k ← P∗
no-sigk

(s′k)

7 : T k ← random λ sized subset of [n] × [λ]

8 : ∀i ∈ [n], j ∈ [λ], bk
i,j =

{
0 ; z′k

i,j = f(s′k
i,j)

1 ; otherwise

9 : bk := bk
1,1, . . . , b

k
1,λ, . . . , bk

n,1, . . . , b
k
n,λ

10 : binvk

:= (πk)−1(bk)

11 : Parse binvk

as binv
k

1,1 , . . . , binv
k

1,λ , . . . , binv
k

n,1 , . . . , binv
k

n,λ

On Black-Box Verifiable Outsourcing 181

Let p indicate the R.H.S probability value in Eq. 4. By the no-signaling prop-
erty established in Definition 3, there exists negl(·) such that:

p ≥ AdvK-RSR
δ,Δ (P∗

no-sigk=k∗ ,x∗) − negl(λ)

Since we have assumed (towards contradiction) that AdvK-RSR
δ,Δ (P∗

no-sigk=k∗ ,

x∗) ≥ ε(λ, n∗, δ∗,Δ∗,K) + 1
poly(λ) , it follows that:

AdvK-RSR
δ,Δ (P∗

no-comk∗ ,x∗) = p ≥ ε(λ, n∗, δ∗,Δ∗,K) +
1

poly(λ)
− negl(λ)

This directly contradicts the fact that for any arbitrary non-communicating
multi-prover P∗

no-com = (P∗
1, . . . ,P

∗
K), for all δ ∈ [0, 1],Δ ∈ [0, 1], k ∈ K, n =

poly(λ), x ∈ X n, λ ∈ N, it holds that AdvK-RSR
δ,Δ (P∗

no-comk,x) ≤ ε(λ, n, δ,Δ,K).

We will now define the advantage of the overall prover system P∗
no-sig =

(P∗
no-sig1

, . . . ,P∗
no-sigK

) as follows:

AdvK-RSR
δ,Δ (P∗

no-sig,x) = Pr

⎡
⎢⎢⎢⎢⎢⎣

∃i ∈ [n],RW(
∣∣∣
∣∣∣
j∈[λ],k∈[K]

binv
k

i,j) > (δ + Δ)

∧

RW(b1
T1 || . . . ||b1

T K) = 0

: ExpK-RSR(P∗
no-sig,x)

⎤
⎥⎥⎥⎥⎥⎦

(5)

Claim 3. Fix |T 1| = . . . = |TK | = λ and let K be some fixed constant. Then,
for all 0 < δ < 1, for n ∈ O(2λδ

), for all x ∈ X n and for all arbitrary unbounded
no-signaling provers P∗

no-sig,

AdvK-RSR
δ=0.25/K,Δ=0.25/K(P∗

no-sig,x) = negl(λ)

Proof. From Lemma 4 and Lemma 5, we know that:

AdvK-RSR
δ,Δ (P∗

no-sigk
,x) ≤ ε(λ, n, δ,Δ,K) + negl(λ)

where ε(λ, n, δ,Δ,K) = 2 · e−2δ2|T k| + n · 2 · e−2Δ2λ.
By union bound, we note that

AdvK-RSR
δ,Δ (P∗

no-sig,x) ≤ Σk∈KAdv
(1,K)-RSR
δ,Δ (P∗

no-sigk
,x).

Assuming |T 1| = . . . = |TK | = |T |, we get that:

AdvK-RSR
δ,Δ (P∗

no-sig,x) ≤ 2K · e−2δ2 T | + n · 2K · e−2Δ2λ + K · negl(λ)

By setting δ = 0.25/K, Δ = 0.25/K, we get:

AdvK-RSR
δ=0.25/K,Δ=0.25/K(P∗

no-sig,x) ≤ 2K

20.18T |/K2 +
2nK

20.18λ/K2 + K · negl(λ)

182 A. Agarwal et al.

For constant K, n ≤ 2
0.17λ

K2 and |T | = λ, we get,

AdvK-RSR
δ=0.25/K,Δ=0.25/K(P∗

no-sig,x) ≤ 2K

2
0.18
K2 λ

+
2nK

2
0.18
K2 λ

+ K · negl(λ)

= negl(λ)

Remark 2. Claim 3 shows that one of the following two events will happen
(except with some negligible probability): 1) For all i ∈ [n], the relative hamming
weight of the string

∣
∣
∣
∣
∣
∣
j∈[λ],k∈[K]

binv
k

i,j is less than 0.5/K or 2) the relative ham-

ming weight of the substring b1
T 1 || . . . ||b1

T K is non-zero. In Case 1, this implies
that for all i ∈ [n], for more than 50% of the j values, all {zk

i,j}k∈[K] are correct.
This ensures that for all i ∈ [n], more than 50% of {ui,j}j∈[λ] will equal to f(xi).
If this happens, for all i ∈ [n], ufinal

i will be equal to f(xi) due to the majority
rule. In Case 2, the verifier will simply detect and abort as prescribed in the
protocol. This concludes our soundness proof.

5.2 OBVC with a Single Prover

We will now provide aOBVC protocol for all the class of all K-RSR functions which
is sound against a single non-uniform PPT prover. The protocol construction is
almost identical to the Protocol 5.1 except for the following modification: The ver-
ifier samples a fresh HE key pair for each RSR instance and encrypts it before send-
ing it to the prover. The prover is supposed to respond with HE encrypted values
obtained by performing a homomorphic evaluation of the circuit Cf on the cipher-
texts sent by the verifier. We describe the protocol formally in Fig. 5.2.

Theorem 10. Let FK-RSR
� denote the class of all � bit functions that admit

K-RSR for any K ≥ 1. Assuming a homomorphic encryption scheme for
FK-RSR

� , there exists a OBVC scheme, specifically Protocol 5.2, for FK-RSR
� with

soundness against arbitrary non-uniform PPT provers.

Corollary 11. For all λ = ω(log n), Protocol 5.2 is an OBVC scheme for
FK-RSR

� with soundness error negl(n) against non-uniform PPT provers.

In the rest of this section, we will prove Theorem 10. We note that the
completeness of Protocol 5.2 follows directly from the correctness property of
RSR and F-homomorphism property of the HE scheme. We now proceed to
discuss non-triviality, privacy, efficiency and prove soundness.

Non-triviality, Privacy and Efficiency Analysis. In our protocol, the verifier
uses two helper oracles namely ORSR.Encodef

and ORSR.Decodef
. By Definition 2,

we know that TRSR.Encode(�) + TRSR.Decode(�) = o(Tf (�)). Hence, our protocol
satisfies the non-triviality condition.

The privacy of our protocol follows directly from the CPA-security of the
underlying HE scheme. More formally, the simulator Sim(1λ, 1n,X) simply runs
the verifier V on inputs x1 = . . . = xn = 0 where 0 is a default element in

On Black-Box Verifiable Outsourcing 183

the domain of f . By the CPA-security of HE scheme and a standard hybrid
argument, the view of the server in the real protocol will be computationally
indistinguishable from the simulated view.

For efficiency, note that each helper oracle is invoked exactly nλ times
and the Of is invoked exactly Kλ times. For security parameter λ,
let THE.Keygen(λ), THE.Enc(λ) and THE.Dec(λ) denote the time-complexity of
HE.Keygen, HE.Enc and HE.Dec respectively. Then the running time of V is
exactly O(nKλ(THE.Keygen(λ) + � · THE.Enc(λ) + � · THE.Dec(λ))) as the bottle-
neck cost comes from generating HE keys for each of the nKλ shares i.e.
{si,j,k}i∈[n],j∈[λ],k∈[K] and then encrypting and decrypting them. The other steps
like shuffling, majority and cut-and-chose check can be computed in linear time.
Here K is a constant which depends on the function f (but independent of n, λ
and �).

Protocol 5.2

Common input: 1λ, 1n, f
V’s additional input: Inputs x1, . . . , xn, oracle Of , helper oracles
ORSR.Encodef

, ORSR.Decodef
.

P’s additional input: Circuit Cf for computing f .

1. For each xi, V generates λ independent RSR instances Formally, ∀i ∈
[n], j ∈ [λ]: {si,j,k}k∈[K], sti,j ← ORSR.Encodef

(xi).
2. ∀i ∈ [n], j ∈ [λ], k ∈ [K], V generates pki,j,k, ski,j,k ← HE.Keygen(1λ).
3. ∀i ∈ [n], j ∈ [λ], k ∈ [K], V computes cti,j,k ← HE.Encpki,j,k

(1λ, si,j,k).
4. For all k ∈ [K], it sets sk := (ct1,1,k, pk1,1,k), . . . , (ct1,λ,k,

pk1,λ,k), . . . , (ctn,1,k, pkn,1,k), . . . , (ctn,λ,k, pkn,λ,k).
5. ∀k ∈ [K], V samples a random permutation πk on [nλ] and sets s′k :=

πk(sk).
6. V sends s′1, . . . , s′K to P.
7. ∀k ∈ [K], P parses s′k

i,j as (ct∗, pk∗) and computes ct′i,j,k :=
HE.Evalpk∗(Cf , ct∗).

8. ∀k ∈ [K], P sets z′k := ct′1,1,k, . . . , ct′1,λ,k, . . . , ct′n,1,k, . . . , ct′n,λ,k.
9. P sends z′1, . . . , z′K to V.

10. ∀k ∈ [K], V samples a random subset T k ⊂ [n]× [λ] of size λ and checks
whether the following holds:

∀(i, j) ∈ T k : HE.Decski′,j′,k
(z′k

i,j) = f(sk
i′,j′)

where (i′, j′) := π−1
k (i, j).

11. If the check fails, then V outputs ⊥. Otherwise it proceeds.
12. ∀k ∈ [K], V computes zk := π−1

k (z′k).
13. ∀i ∈ [n], j ∈ [λ], V computes ui,j ← ORSR.Decodef

({wi,j,k}k∈[K], sti,j),
where wi,j,k = Decski,j,k

(zk
i,j)

14. ∀i ∈ [n], V sets ufinal
i = Majority(ui,1, . . . , ui,λ)

15. V outputs ufinal
1 , . . . , ufinal

n

184 A. Agarwal et al.

Soundness Analysis. Now we will show how the security of Protocol 5.1 against
arbitrary no-signaling multi-prover Pno-sig can be carried over to the security of
Protocol 5.2 against arbitrary non-uniform PPT prover P. As mentioned earlier,
the main ingredient used in Protocol 5.2 is an HE scheme. The main idea behind
the security proof amounts to showing that any malicious PPT prover in Protocol
5.2 will conform to the notion of no-signaling prover as defined in Definition 3.
The formal proof follows via reduction to the CPA-security of the HE scheme.
We refer the readers to the full version.

6 Impossibility of Oracle-Aided Batch Verifiable
Computation

Definition 6. A (s(λ), t(λ), q(λ), n(λ)) OBVC scheme Π = (P,V) in the O
model is defined as follows.

– The verifier V which is a two-staged entity i.e. V = (V1,V2). V1 is compu-
tationally unbounded; it interacts with O.pre and outputs an s-bit “advice”
string. V2 is computationally bounded and also query bounded. It takes an
s-bit auxiliary input and makes at most t queries to O.main.

– The prover P which is a single staged entity and makes at most q queries to
O.main. There is no computational bound on the prover.

We will use the notation 〈PO,VO〉Π to denote the following protocol interaction:

– V1 interacts with O.pre and outputs an s-bit “advice” string.
– V1 passes a s-bit auxiliary input aux to V2.
– Sample a batch of instances I ⊆ [M] where |I| = n. Send I to V2.
– P and V2 interact with each other while having access to O.main.
– V2 returns OUT in the end.

The scheme Π satisfies the following properties.

– Completeness: For all λ ∈ N,

Pr[OUT = O(xI
1), . . . ,O(xI

n)] = 1

– Soundness: For all adversarial P∗, there exists a negligible function negl(·)
s.t. for all λ ∈ N:

Pr[OUT = O(xI
1), . . . ,O(xI

n) ∨ OUT = ⊥] = 1 − negl(λ)

– Efficiency: We say that an OBVC scheme is efficient if the s(λ) ∈ poly(λ)
and t(λ) ∈ o(n(λ)).

Theorem 12. For all n ∈ poly(λ), α′ ∈ (0, 1], t ∈ o(n), q = q(λ), s ∈ poly(λ),
for every (s, t, q, n) OBVC scheme Π = (P,V) in the O := BF-RO(M = 2λ, N =
2λ, p = 2(1−α′)λ) model, there exists a malicious prover Pmal and noticeable
function ε′(λ) s.t. for all λ ∈ N:

Pr
[
OUT �= O(xI

1), . . . ,O(xI
n) ∧ OUT �= ⊥ : OUT ← 〈PO

mal,V
O〉Π

] ≥ ε′(λ)

On Black-Box Verifiable Outsourcing 185

Proof. Refer to the full version.

We will now lift the above theorem from the Bit-fixing RO model to
Auxiliary-input RO model.

Theorem 13. For all n ∈ poly(λ), α ∈ (0, 1], q = 2(1−α)λ, t ∈ o(n), s ∈ poly(λ),
for every (s, t, q, n) OBVC scheme Π = (P,V) in the O := AI-RO(M = 2λ, N =
2λ), there exists a malicious prover Pmal and noticeable function ε(λ) s.t. for all
λ ∈ N:

Pr
[
OUT �= O(xI

1), . . . ,O(xI
n) ∧ OUT �= ⊥ : OUT ← 〈PO

mal,V
O〉Π

] ≥ ε(λ)

Proof. The formal proof leverages Theorem 4. We refer the readers to the full
version.

Disclaimer

Case studies, comparisons, statistics, research and recommendations are pro-
vided “AS IS” and intended for informational purposes only and should not be
relied upon for operational, marketing, legal, technical, tax, financial or other
advice. Visa Inc. neither makes any warranty or representation as to the com-
pleteness or accuracy of the information within this document, nor assumes any
liability or responsibility that may result from reliance on such information. The
Information contained herein is not intended as investment or legal advice, and
readers are encouraged to seek the advice of a competent professional where such
advice is required.

These materials and best practice recommendations are provided for infor-
mational purposes only and should not be relied upon for marketing, legal, reg-
ulatory or other advice. Recommended marketing materials should be indepen-
dently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any
kind, contained in this document.

Acknowledgments. A. Agarwal and D. Khurana were supported in part by NSF
CAREER CNS-2238718, DARPA SIEVE and an award from Visa Research. This mate-
rial is based upon work supported by the Defense Advanced Research Projects Agency
through Award HR00112020024.

References

1. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplica-
tion. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 522–539. SIAM (2021)

186 A. Agarwal et al.

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient
verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-
2 14

3. Ar, S., Blum, M., Codenotti, B., Gemmell, P.: Checking approximate computations
over the reals. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on
Theory of Computing, pp. 786–795 (1993)

4. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Locally random reductions:
improvements and applications. J. Cryptol. 10(1), 17–36 (1997)

5. Bellare, M., Garay, J.A., Rabin, T.: Batch verification with applications to cryp-
tography and checking. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998.
LNCS, vol. 1380, pp. 170–191. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054320

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73 (1993)

7. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. In: Proceedings of the Twenty-Second Annual ACM Sympo-
sium on Theory of Computing, pp. 73–83 (1990)

8. Blum, M., Luby, M., Rubinfeld, R.: Program result checking against adaptive pro-
grams. In: Distributed Computing and Cryptography: Proceedings of a DIMACS
Workshop, October 4–6, 1989, vol. 2, p. 107. American Mathematical Soc. (1991)

9. Brakerski, Z., Holmgren, J., Kalai, Y.: Non-interactive ram and batch NP delega-
tion from any PIR. Cryptology ePrint Archive (2016)

10. Brakerski, Z., Holmgren, J., Kalai, Y.: Non-interactive delegation and batch NP
verification from standard computational assumptions. In: Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 474–482 (2017)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

12. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12828, pp. 394–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84259-8 14

13. Choudhuri, A.R., Jain, A., Jin, Z.: Snargs for P from LWE. In: 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver,
CO, USA, February 7–10, 2022. pp. 68–79. IEEE (2021). https://doi.org/10.1109/
FOCS52979.2021.00016

14. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483–501. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 26

15. Cleve, R., Luby, M.: A note on self-testing/correcting methods for trigonometric
functions. International Computer Science Inst. (1990)

16. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 9

17. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles with
auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 16

https://doi.org/10.1007/978-3-642-14165-2_14
https://doi.org/10.1007/978-3-642-14165-2_14
https://doi.org/10.1007/BFb0054320
https://doi.org/10.1007/BFb0054320
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1007/978-3-642-14623-7_26
https://doi.org/10.1007/978-3-642-14623-7_26
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-319-56614-6_16

On Black-Box Verifiable Outsourcing 187

18. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-
testing/Correcting for polynomials and for approximate functions. In: STOC, vol.
91, pp. 32–42. Citeseer (1991)

19. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

20. Hoeffding, W.: Probability inequalities for sums of bounded random variables. The
Collected Works of Wassily Hoeffding, pp. 409–426 (1994)

21. Hulett, J., Jawale, R., Khurana, D., Srinivasan, A.: SNARGs for P from sub-
exponential DDH and QR. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology - EUROCRYPT 2022, Part II. Lecture Notes in Computer Science,
vol. 13276, pp. 520–549. Springer, Heidelberg, Germany, Trondheim, Norway (May
30 - Jun 3, 2022). https://doi.org/10.1007/978-3-031-07085-3 18

22. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.Y.: SNARGs for bounded depth
computations and PPAD hardness from sub-exponential LWE. In: Khuller, S.,
Williams, V.V. (eds.) STOC ’21: 53rd Annual ACM SIGACT Symposium on The-
ory of Computing, Virtual Event, Italy, June 21–25, 2021, pp. 708–721. ACM
(2021). https://doi.org/10.1145/3406325.3451055

23. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of
no-signaling proofs. In: Proceedings of the Forty-Sixth Annual ACM Symposium
on Theory of Computing, pp. 485–494 (2014)

24. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 723–
732 (1992)

25. Lipton, R.: New directions in testing. Distrib. Comput. Crypt. 2, 191–202 (1991)
26. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298

(2000)
27. Rubinfeld, R.: Batch checking with applications to linear functions. Inf. Process.

Lett. 42(2), 77–80 (1992)
28. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO

2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5 12

29. Waters, B., Wu, D.J.: Batch arguments for np and more from standard bilinear
group assumptions. In: Annual International Cryptology Conference, pp. 433–463.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4 15

https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-031-07085-3_18
https://doi.org/10.1145/3406325.3451055
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-031-15979-4_15

Theoretical Foundations

Counting Unpredictable Bits: A Simple
PRG from One-Way Functions

Noam Mazor1(B) and Rafael Pass1,2

1 Cornell Tech, New York, USA
noammaz@gmail.com, rafaelp@tau.ac.il

2 Tel-Aviv University, Tel Aviv, Israel

Abstract. A central result in the theory of Cryptography, by H̊astad,
Imagliazzo, Luby and Levin [SICOMP’99], demonstrates that the exis-
tence one-way functions (OWF) implies the existence of pseudo-random
generators (PRGs). Despite the fundamental importance of this result,
and several elegant improvements/simplifications, analyses of construc-
tions of PRGs from OWFs remain complex (both conceptually and tech-
nically).

Our goal is to provide a construction of a PRG from OWFs with a
simple proof of security ; we thus focus on the setting of non-uniform
security (i.e., we start off with a OWF secure against non-uniform PPT,
and we aim to get a PRG secure against non-uniform PPT).

Our main result is a construction of a PRG from OWFs with a self-
contained, simple, proof of security, relying only on the Goldreich-Levin
Theorem (and the Chernoff bound). Although our main goal is simplicity,
the construction, and a variant there-of, also improves the efficiency—in
terms of invocations and seed lengths—of the state-of-the-art construc-
tions due to [Haitner-Reingold-Vadhan, STOC’10] and [Vadhan-Zheng,
STOC’12], by a factor O(log2 n).

The key novelty in our analysis is a generalization of the Blum-Micali
[FOCS’82] notion of unpredictabilty—rather than requiring that every
bit in the output of a function is unpredictable, we count how many
unpredictable bits a function has, and we show that any OWF on n input
bits (after hashing the input and the output) has n + O(log n) unpre-
dictable output bits. Such unpredictable bits can next be “extracted”
into a pseudorandom string using standard techniques.

N. Mazor—Part of this work was done while at Tel Aviv University and while visiting
the Simons Institute. Research partly supported by Israel Science Foundation grant
666/19, NSF CNS-2149305 and NSF CNS-2128519.
R. Pass—Part of this work was done while visiting the Simons Institute. Supported
in part by NSF Award CNS 2149305, NSF Award SATC-1704788, NSF Award
RI-1703846, AFOSR Award FA9550-18-1-0267, and a JP Morgan Faculty Award.
This material is based upon work supported by DARPA under Agreement No.
HR00110C0086. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of
the United States Government or DARPA.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 191–218, 2023.
https://doi.org/10.1007/978-3-031-48615-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-48615-9_7

192 N. Mazor and R. Pass

1 Introduction

Pseudorandom generators (PRGs) are one of the most fundamental crypto-
graphic building blocks [BM82]. Roughly speaking, a PRG is a function taking
a seed of length n and expanding it into a longer string, of say, length 2n, such
that the output string is indistinguishable from random. While the existence of
PRGs almost immediately implies the existence of one-way functions (OWF), it
is significantly harder to show that OWFs imply the existence of PRGs. Indeed,
the first construction of PRGs from OWFs was obtained in the seminal work
by H̊astad, Impagliazzo, Luby and Levin (HILL) [HILL99]. This beautiful work
introduced a host of new notions and techniques and is a technical tour-de-
force. To understand the importance of this result, let us remark that still today,
known constructions of e.g., secure private-key encryption [GM84], commitment
schemes [Nao91], zero-knowledge [GMW87], pseudorandom functions [GGM84]
from the minimal assumption of OWFs, all pass through the notion of a PRG
and the result of [HILL99].

Consequently, it would be desirable to come up with simpler construc-
tions/proofs of the existence of PRGs from OWFs. Additionally, the PRGs con-
struction of HILL, while asymptotically efficient, has a large polynomial running
time. In particular, the PRG requires invoking the underlying OWFs O(n11)
times, where n is the security parameter. Since then, several simplifications and
improvements (in terms of the efficiency of the construction) were obtained by
Holenstein [Hol06a], Haitner, Harnik and Reingold [HHR06], Haitner, Reingold
and Vadhan [HRV13], Vadhan and Zheng [VZ12], leading up to constructions of
PRGs from OWFs using only ω(n3)1 non-adaptive invocations of the underlying
OWF, and using a seed of length ω(n4); additionally, Vadhan and Zheng [VZ12]
show how to improve the seed length to ω(n3 log n), but at the price of using an
adaptive construction. Finally, Haitner and Vadhan [HV17] obtained a construc-
tion with a simpler security proof (focusing only on the setting on non-uniform
security), but which required ω(n6 log n) invocations of the OWF. But despite
these beautiful works—and the intriguing new notions that they introduce—the
security proofs involved remain quite complicated (even the simplest one with
looser parameters in [HV17]).

Our Results. The goal of this paper is to provide a simple, self-contained, proof of
the existence of PRGs from any OWFs. Our proof relies only on standard results
such as the Goldreich-Levin (GL) Theorem [GL89] and the Chernoff bound (and
in case we want to optimize the seed-length using an adaptive construction, also
the Leftover-hash Lemma (LHL) [HILL99]). The hope is that our proof will
enable teaching the construction of a PRG from any OWF in graduate course
in Cryptography.

1 More formally, for any function q(n) = ω(n3), there exists a construction of a PRG
from OWFs that uses q calls. HRV [HRV13] state their result with additional log n
factor in both the seed length and the number of calls. However, the improved
parameters can be easily deduced from their main theorem.

Counting Unpredictable Bits 193

Following Haitner and Vadhan [HV17], as our (main) goal is to present a
security proof that is as easy as possible, we focus on the setting of non-uniform
security (i.e., we start off with a OWF that is secure against non-uniform poly-
time algorithms, and obtain a PRG secure against non-uniform polytime algo-
rithms). (As we note in the full version of this paper, our proof of security also
readily adapts to the uniform setting if we rely on Holenstein’s Uniform Hard-
core Lemma [Hol06b].)

Perhaps surprisingly, along the way, we manage to also improve the concrete
efficiency of the PRG, obtaining a construction that only requires invoking the
underlying OWF ω(n3/ log2 n) number of times, shaving a factor log2 n from the
best constructions [HRV13,VZ12], both in terms of number of invocations and
seed length. (On a very high level, this improvement comes from the fact that
we are relying on a simpler notion of “pseudo-entropy” and can next rely on a
simpler 0–1 Chernoff bound instead of a “multi-valued” Chernoff bound as in
[HRV13], which results in a tighter bound.)

Our main result is a non-adaptive construction of a PRG from any OWFs,
with a simple proof of security.

Theorem 1.1 (Non-adaptive Construction of a PRG from OWFs).
Assume the existence of a one-way function secure against non-uniform
polynomial-time algorithms. Then there exists a PRG secure against non-
uniform polynomial-time algorithms that non-adaptively invokes the underlying
OWF ω(n3/ log2 n) times, and that has a seed of length ω(n4/ log2 n).

As mentioned above, Vadhan and Zheng [VZ12] showed how to use adaptive
calls to the underlying OWF to improve the seed length in the construction of
[HRV13]; we note that the same method applies also to our construction enabling
us again to shave log2 n in the number of invocations of f and the seed length.

Theorem 1.2 (Adaptive PRG Construction from OWF with improved
seed length). Assume the existence of a one-way function secure against non-
uniform polynomial-time algorithms. Then there exist a PRG secure against non-
uniform polynomial-time algorithms that adaptively invokes the underlying OWF
ω(n3/ log2 n) times, and that has a seed of length ω(n3/ log n).

On Concrete Efficiency (Exponentially-Hard OWFs). While shaving a log2 n
factor may not seem significant (when the running time is O(n3), this does
make a significant difference in the regime of exponential security, or in the
regime of concrete security. In particular, if we start off with an exponentially-
secure OWF (i.e., a OWF secure against circuits of size 2Ω(n)), then we can
get a PRG that only invokes the OWF ω(log n) times. This matches the bound
of the best PRG from exponentially-secure OWFs from Haitner, Harnik and
Reingold [HHR06], but only uses non-adaptive calls to the underlying OWF,
whereas [HHR06] required adaptive calls, and may make the construction more
feasible in practice. On the downside, our construction uses a seed of length
O(n2), while [HHR06] uses seed of length ω(n log n). We believe we can get a
similar seed length using a better hash function, but we defer the details to a
future version.

194 N. Mazor and R. Pass

Theorem 1.3. Assume the existence of a one-way function secure against
circuits of size 2Ω(n). Then there exists a PRG secure against non-uniform
polynomial-time algorithms that non-adaptively invokes the underlying OWF
ω(log n) times.

We remark that the final PRG is also secure against exponential-size attackers,
but only achieves negligible indisitinguishability gap.

The Key Insight: Counting Unpredictable Bits. Starting with the work of HILL,
the key method for constructing a PRG from OWFs is to start with a OWF
and turning it into a generator of some “weak” form of pseudorandomness.
Later these weak forms of pseudorandomness can be gradually amplified to
achieve full pseudorandomness. Towards this, HILL introduced the notion of
pseudo-entropy—roughly speaking, which requires a distribution to be indistin-
guishable from a distribution with some entropy. Haitner, Reingold and Vadhan
[HRV13](HRV) improved and simplified the HILL construction by introducing
and working with a relaxed notion of next-block pseudo-entropy, where follow-
ing earlier notions of pseudorandomness by Shamir [Sha83] and Blum-Micali
[BM82], we focus on the ability of a distinguisher to learn something about the
next “block” in a sequence—and in more detail, this next block is required to
have “high pseudo-entropy in expectation over random blocks (see [HRV13] for
the formal definition).

In this work, we consider a strengthening of the HRV notion (which is incom-
parable to HILL notion): We start by going back to the “plain” notion of unpre-
dictability from Blum-Micali [BM82]: Recall that we say that a function satisfies
unpredictability for the i-th bit, if no non-uniform PPT attacker can guess the
i-th bit of the output of the function on a random input given the first i−1 bits.
We are interesting in counting how many unpredictable bits a function has. The
simplest way to do this would be to say that a function has k unpredictable bits
if there exists a set S of indexes, with |S| ≥ k, such that for each i ∈ S, the i-th
bit is unpredictable for f .

Such a notion will be a bit too strong for our needs—we want to allow
the indexes of the unpredictable bits to depend on the inputs. We do this by
allowing the set S(x) of “unpredictable bits” to be a function of the input x,
and we require that for each bit i in the union of the support of S(Un), we have
that unpredictability of the i-th bit holds conditioned on sampling an input x
such that i ∈ S(x) (That is, unpredictability of bit i holds whenever i is in the
set of “unpredictable bits”). To measure the number of such unpredictable bits,
we simply consider the expected size of S(Un): Roughly speaking, we say that a
function has k(·) unpredictable bits if for every inverse polynomial ε, there exists
function S such that (1) the expected size of S(Un) is at least k(n), and (2) the
bits specified by S are ε-unpredictable. More formally,

Definition 1.4. We say that a function g : {0, 1}m(n) → {0, 1}�(n) has k(·)-
unpredictable bits if for every inverse polynomial ε(·), there exists some S such
that (1) for all n ∈ N, E

[∣∣S(Um(n))
∣
∣] ≥ k(n), and (2) for all nonuniform PPT

Counting Unpredictable Bits 195

A, every sufficiently large n, every i ∈ ⋃
x∈{0,1}m(n) Supp(S(x)), A distinguishes

between

– {x ← {0, 1}m(n)|i ∈ S(x) : g(x)<i, g(x)i}
– {x ← {0, 1}m(n)|i ∈ S(x) : g(x)<i, U}
with probability at most ε(n).

For our purposes, we will need to generalize this definition to also apply to
families of functions {gh}h∈ {0,1}∗ , where the above conditions hold for gh for
a randomly sampled “key” h (looking forward, for us, this key, will just be the
description of a hash function based on inner-products mod 2).

2 Proof Overview

We present here our whole construction and provide a detailed proof overview—
in essence, the below description provides the whole proof except that it omits
standard hybrid arguments/reductions. (The formal proof in Sects. 4 to 7 of
course provides those details). We note that our construction closely follows the
construction paradigm of HRV but due to the use of our notion of unpredictabil-
ity, as opposed to next-bit pseudoentropy, we are able to simplify the analysis
in the non-uniform setting (and improve its parameters).

Let M be an n×n binary matrix, and we define the hash function M(x) = Mx
mod 2, where x is interpreted as a binary vector. A simple form of the Leftover-
hash Leamm (LHL) [HILL99] states that {M,M(X)k)} is 1/poly(n)-close to
{M,Uk}, if X has min-entropy k + c log n for a sufficiently large c, and when M
is sampled at random from the set of n × n binary matrices.2

– Step 1: Unpredictability Generators from Regular OWF. We start
by showing how to turn any regular OWF—recall that for a r(·)-regular
OWF, each element in the support of the function on inputs of length n has
between 2r(n)−1 and 2r(n) pre-images—into a function family that has n +
O(log n) unpredictable bits; we refer to such function as an “unpredictability
generator”.
For inputs of length n, the construction is defined as:

gM (x) = M(f(x))||M(x),

where the “hash function” M is described by an n×n binary matrix. In other
words, we are applying n GL-predicates to f(x), and then the same n GL

2 As an additional didactic contribution, we show that this simple form of the LHL
follows as a direct corollary of the GL-theorem; while this observation may already
be folklore, as far as we know, it has not been explicitly stated anywhere (more than
for the case of extracting 1, or O(log n) bits).

196 N. Mazor and R. Pass

predicates to x.3

First, note that the since f(·) is r(·)-regular, f(Un) has min-entropy n−r(n)−
1 and thus by the (simple) LHL the first n − r(n) − O(log n) bits of M(f(x))
are 1/poly(n)-close to uniform, and thus unpredictable. Next, we want to
argue that bits n + 1, . . . , n + r(n) + c log n, for any c, also are unpredictable.
Assume not; that is, there exists some efficient algorithm P and some index
i such that

P (f(x),M,M(x)<i) = M(x)i

with inverse polynomial advantage. By the GL theorem, this means that
there exists some PPT algorithm E such that E(f(x),M,M(x)<i) = x with
inverse polynomial probability, which in turn means that there exists some
E′ that computes x with probability 2−i/poly(n) ≥ 2−r(n)−O(log n) given
just f(x) (by guessing M(x)<i). But since f(x) has at least 2r(n)−1 pre-
images, and all of which are equally likely, we have that the probability that
Pr [E′(f(x)) = x] = Pr

[
E′(f(x)) ∈ f−1(f(x))

]
/2r(n)−1, and thus E′ inverts

f with inverse polynomial probability, which is a contradiction.
Thus, we conclude that for every inverse polynomial ε, there exists a set S
of ε-unpredictable indexes of size [n − r(n) − O(log n)] + [r(n) + c log n] =
n + (c − O(1)) log n (and which contains indexes 1, . . . n − r(n) − O(log n), as
well as n + 1, . . . n + r(n) + c log n).
(Note that the set S depends on the unpredictability advantage ε, but so far
does not depend on the input x.)

– Step 2: Unpredictability Generators from Any OWF. We next show
that the same construction actually works also for any (not necessarily reg-
ular) OWF. This directly follows from the observation that any OWF can
be essentially split into regular OWFs on a partition of the input domain.
In more detail, we can partition the input domain of the OWF into domains
D1,D2, . . ., such that (1) for each r, f is r-regular when restricted to Dr—
refer to this function as fr, and (2) for each r such that Dr has inverse
polynomial density in {0, 1}n,4 we have that f is one-way also on Dj . The set
Dj is simply the inputs x ∈ {0, 1}n such that f(x) has between 2j−1 and 2j

pre-images, and note that condition 2 follows directly from the assumption
that f is one-way.

3 We note that this step differs from the next-bit pseudo-entropy generator of HRV
where H is only applied to x and not f(x); this is the crucial difference that allows
us to get unpredictability as opposed to next-bit pseudo-entropy. Additionally, we
note that HRV has to work with a specially constructed hash function H (based
on concatenation of a Reed-Solomon Code and the Hadamard code); Haitner and
Vadhan [HV17] showed how to just use the standard GL predicate, but this gave
a final PRG construction with significantly worse parameters. Finally, Vadhan and
Zheng [VZ12] show how to analyze also the construction without any hash function
(achieving the same parameters as HRV), but this requires a much more complicated
proof.

4 Formally, r = r(n) is a function of the input length n, and we here require the
density condition to hold for all n ∈ N .

Counting Unpredictable Bits 197

Now, consider the set of “common” r’s such that Dr has inverse polynomial
density (and thus fr is one-way). By Step 1, we have shown that there exists
some (appropriately large) set Sr of unpredictable indexes for every fr such
that r is “common”, and for every such x ∈ Dr we define S(x) = Sr. For the
remaining x’s (that correspond to rare regularities), let S(x) simply be the
empty set. By a union bound over the n possible regularities, it follows that
S(x) is set to the empty set only for a small fraction of inputs, and thus the
expected size of S(Un) is still n + O(log n).
To show that unpredictability holds, assume for contradiction that there exists
some i in the (union) of the support of S(Un) such that bit i can be predicted
with inverse polynomial probability conditioned on i ∈ S(x) for infinitely
many input lengths n. Then, note that i ∈ S(x) implies that x ∈ Dr for
some “common” regularity r, so we can always find some common r (for each
input length n) such that prediction also succeeds conditioned on x ∈ Dr (for
infinitely many input lengths), but this contradicts the unpredictability of bit
i for the function fr.

– Step 3: From Unpredictability to Random-Index Unpredictability.
In the next step, we consider a slightly stronger notion of unpredictability.
Rather than bounding the expected size of the unpredictable set, the notion
of k(·)-random bits unpredictability requires that for each index i, we
have that Pr [i ∈ S(Un)] ≥ k(n)/�(n), where �(·) denotes the output length of
the function. Note that by the linearity of expectation, this directly implies
“plain” k-bits unpredictability (so this notion is a strengthening of “plain”
unpredictability).
To turn an unpredictability generator into a random-bit unpredictability gen-
erator, we rely on the same transformation as Haitner et al. [HRV13] used in
their “entropy equalization step” (and which was first used by [HRVW09]).
Given a function g : {0, 1}n → {0, 1}�(n) that has k-bit unpredictability,
consider the “shifted” direct-product function g′:

g′(i, x1, . . . , xr) = g(x1)≥i||g(x2)|| . . . ||g(xr−1)||g(xr)<i

where i ∈ [�(n)], xj ∈ {0, 1}n (see Fig. 1). That is, we apply the function g
on r random inputs, output the concatenation (i.e., the direct product) and
then simply truncate the i−1 bits from the beginning and the �− (i−1) bits
from the end, for a random i (specified by the inputs).
Note that each bit of g′ is part of the unpredictable set for f with probability
k(n)/�(n). To see this, note that clearly a random index into g is part of
the unpredictable set for g with probability k(n)/�(n); but each bit of g′ has
exactly the same distribution as a random bit of g. Thus, g′ has (r − 1)k(n)
random unpredictable bits (while using a seed of length n · r + log �(n)).

198 N. Mazor and R. Pass

i − 1 � − i + 1

g(x1) g(x2) g(x3) . . . g(xr−1) g(xr)

Fig. 1. The construction of a function with random-bits-unpredictability from a func-
tion g : {0, 1}n → {0, 1}�(n) with bits-unpredictability. We take r copies of g, and
truncate the i − 1 first bits and � − i + 1 last bits, such that the output, marked in
white, is of length (r − 1)�.

Finally, recall that the function obtained in Step 2 has a seed of length n,
outputs 2n bits and has (n+c log n)-bit unpredictability, for any c. If we plug
in this function into g, we get a function with seed length nr+O(log n), output
length 2(r−1)n and satisfying (r−1)(n+c log n)-random bit unpredictability.
To get “expansion” (i.e., more unpredictable bits than the seed length), we
set r = n/ log n, which results in a function g : {0, 1}n2/ log n+O(log n) →
{0, 1}2n2/ log n−2n that has n2/ log n + c · n) random unpredictable bits, for
any c.

– Step 4: Pseudorandomness from Random-Bit Unpredictability. In
the final step, we show how to turn any generator of random-bit unpredictabil-
ity into a standard PRG. The transformation is simple and goes back to HILL;
it was also used by HRV to turn next-bit pseudo-entropy into pseudorandom-
ness, but for us, it will be even simpler (and due to this reason we can also
improve the parameters from HRV).
The transformation consists of doing a t-wise direct product of a function
g : {0, 1}m(n) → {0, 1}�(n) that has k(n) random unpredictable bits, and then
applying any (seeded) extractor coordinate-wise to the outputs of g. In more
details, the ith block of the output will be H(g(x1)i, g(x2)i, . . . g(xt)i), where
H is an appropriate hash function, selected as part of the seed (and which
also can be included in the output). (See Fig. 2).

g(x1)

g(x2)
...

g(xt)

output bits

H : {0, 1}t → {0, 1}q

Fig. 2. Extracting pseudoentropy from a function g with random-bits unpredictability.
We take t copies of g and apply a hash function (random matrix) on every column.

Counting Unpredictable Bits 199

To analyze this construction, first note that by a standard hybrid argument,
we simply need to show that each such output block i is indistinguishable
from uniform given the prefix up to block i. Next—and this is the key step—
note that we can furthermore move to a hybrid where for each j ∈ [t], we
replace g(xj)i with a random bit whenever i is in the unpredictable set for xj .
Indistinguishability of the real experiment and this hybrid follows from the
definition of unpredictability through an essentially standard hybrid argu-
ment, but there is an important subtlety: The set S(x) is not efficiently com-
putable, so in the hybrid argument it is not clear how to efficiently emulate
the hybrids (and in particular, in Hybrid j, how to simulate all other “rows”
j′ �= j). Since we are in the non-uniform setting, this issue, however, is easy
to deal with: we can simply non-uniformly pick the best choices for those
values.Finally, by the Chernoff bound, we have that except with negligible
probability, the number of “rows” j such bit i is unpredictable for g is at
least t · k(n)/�(n)−√

tω(log n), and thus all those bits will be uniform in the
above hybrid. It follows that the min-entropy of the string on which we apply
the extractor is t · k(n)/�(n) − √

tω(log n) and thus roughly this many bits
may be extracted from each block; thus in total, we get t ·k(n)− �

√
tω(log n)

pseudorandom bits.
The input is of length t · m(n), so we need to choose t such that t ·
k(n) − �

√
tω(log n) > t · m(n), which yields t ≥ ω(log n)�2/(k − m)2. Plug-

ging in the construction from Step 3, we have that k(n) = m(n) + O(n),
�(n) = O(n2/ log n) which yields t ≥ ω(log n�2/n2) = ω(n2/ log n).
Note that the total seed length becomes t · m(n) + |H| = ω(n4/ log2 n) + |H|.
If we rely on a random matrix as a hash function (and the above simpli-
fied LHL), its description length will be t(n)2 = n4/ log2 n (see Fig. 3 for the
complete construction).5

output bits
H : {0, 1}t → {0, 1}q

gA(x1
1) gA(x2

1) gA(x3
1) . . . gA(xr−1

1) gA(xr
1)

gA(x1
2) gA(x2

2) gA(x3
2) . . . gA(xr−1

2) gA(xr
2)

gA(x1
3) gA(x2

3) gA(x3
3) . . . gA(xr−1

3) gA(xr
3)

...
gA(x1

t) gA(x2
t) gA(x3

t)
. . .

gA(xr−1
t) gA(xr

t)

Fig. 3. The non-adaptive PRG construction. There are t ≈ n2/ log n rows, each row
has r ≈ n/ log n i.i.d copies of gA(x) = (A(f(x)), A(x)), shifted by a random offset.
Every fully populated column, marked in white, is hashed by H.

5 In this step we save log2 n factor over HRV. The reason is that we apply the Chernoff
bound on a random variable that can only take zero-one values, while HRV consider
the sample entropy of the next bit, which can take larger values.

200 N. Mazor and R. Pass

Further Improving the Seed Length: Vadhan and Zheng [VZ12] presented an
elegant approach for shaving a factor n/ log n in terms of the seed length in the
construction of HRV. Their idea is to note that to compute “coordinate” j, we do
not actually need to know the “seed” xj′

to earlier coordinates j′ < j, and thus
we can take the input to coordinate j − 1 from coordinate j (while additionally
outputting O(log n) bits). The same method can be applied to our construction
and can be analyzed in a modular way. (We note that we do not claim any
original contributions w.r.t. this step on top of [VZ12]; the only “novelty” here
is the modular analysis of their construction.) Doing this yields an (adaptive)
construction with seed length ω(n3/ log n) + |H|. So, to take advantage of this
saving, we also need to have a hash function with a better description length.
This is easily obtain by using a standard constructions of pair-wise independent
hash functions (e.g., ha,b(x) = ax + b where the operations are over F2n) and
appealing to the standard LHL [HILL99] (instead of the above simplified form),
which yields a description length of O(t(n)) = O(n2/ log2 n), and thus a total
seed length of ω(n3/ log n)

3 Preliminaries

3.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and
distributions, uppercase for random variables, and lowercase for values and func-
tions. Let poly stand for the set of all polynomials. Let ppt stand for probabilistic
poly-time, and n.u.-poly-time stand for non-uniform poly-time. An n.u.-poly-
time algorithm A is equipped with a (fixed) poly-size advice string set {zn}n∈N

(that we typically omit from the notation). Let neg stand for a negligible func-
tion. For n ∈ N, let [n] := {1, . . . , n}. Given a vector s ∈ {0, 1}n, let si denote
its i-th entry, and s1,...,i denote its first i entries. For a function f : D → R, and
an image y ∈ R, let f−1(y) = {x ∈ D : f(x) = y}.

The support of a distribution P over a finite set S is defined by Supp(P) :=
{x ∈ S : P(x) > 0}. Let d ← P denote that d was sampled according to P.
Similarly, for a set S, let s ← S denote that s is drawn uniformly from S. For
n ∈ N, we denote by Un the uniform distribution over {0, 1}n, and by U the
uniform distribution over {0, 1}. The statistical distance (also known as, variation
distance) of two distributions P and Q over a discrete domain X is defined by
SD(P,Q) := maxS⊆X |P(S) − Q(S)| = 1

2

∑
x∈S |P(x) − Q(x)|. For distribution

ensembles P = {Pn}n∈N
and Q = {Qn}n∈N

we write P c≈ε Q if for every n.u.-
poly-time A, for all but finitely many n’s, |Pr [A(Pn) = 1] − Pr [A(Qn) = 1]| ≤
ε(n). We write P c≈ Q if |Pr [A(Pn) = 1] − Pr [A(Qn) = 1]| = neg(n) for every
such A.

Lastly, we identify a matrix M ∈ {0, 1}n×m with a function M : {0, 1}n →
{0, 1}m by M(x) := x · M mod 2, thinking of x ∈ {0, 1}n as a vector with
dimension n.

Counting Unpredictable Bits 201

3.2 One-Way Functions and Pseudorandom Generators

We now formally define basic cryptographic primitives. We start with the defi-
nition of one-way function.

Definition 3.1 (One-way function). A polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ is called a n.u-one-way function if for every n.u.-poly-time
algorithm A, there is a negligible function ν : N → [0, 1] such that for every
n ∈ N

Prx←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

] ≤ ν(n)

For simplicity, we assume that the one-way function f is length-preserving. That
is, |f(x)| = |x| for every x ∈ {0, 1}∗. This can be assumed without loss of
generality, and is not crucial for our constructions.

In Sect. 4 we use one-way functions to construct PRGs. The latter is formally
defined below.

Definition 3.2 (Pseudorandom generator). Let n be a security parameter.
A polynomial-time computable function G : {0, 1}n → {0, 1}m(n) is called a n.u-
pseudorandom generator if for every n > 0 it holds that m(n) > n and, for every
n.u.-poly-time algorithm D, there is a negligible function ν : N → [0, 1] such that
for every n > 0,

∣
∣
∣Prx←{0,1}n [D(G(x)) = 1] − Prx←{0,1}m(n) [D(x) = 1]

∣
∣
∣ ≤ ν(n).

As in this paper we are focusing on the non-uniform setting, we will refer to
n.u-one-way functions and n.u-PRGs simply by one-way functions and PRGs.

A key ingredient in the construction of PRG from one-way function is the
Goldreich-Levin hardcore predicate. We will use the following version, which is
a combination between Goldreich-Levin and Yao’s distinguishing to prediction
lemma [Yao82].

Lemma 3.3 (Goldreich-Levin [GL89,Yao82]). There exists an oracle-aided
PPT A such that the following holds. Let n ∈ N be a number, and Q a distri-
bution over {0, 1}n × {0, 1}∗, and let D be an algorithm such that

Pr(x,z)←Q,r←{0,1}n [D(z, r,GL(x, r)) = 1]
− Pr(x,z)←Q,r←{0,1}n [D(z, r, U) = 1] ≥ α

for some α, where GL(x, r) := 〈x, r〉 is the Goldreich-Levin predicate. Then

Pr(x,z)←Q
[
AD(1n, 1	1/α
, z) = x

]
≥ α3/8n.

3.3 Min-Entropy and Extraction

The min-entropy of a distribution Q, denoted by H∞(Q) is defined by

H∞(Q) := − log(max
q∈Supp(Q)

{Pr [Q = q]}).

We will use the following simplified version of the leftover hash lemma, which
shows that a random matrix is a strong extractor.

202 N. Mazor and R. Pass

Lemma 3.4 (Leftover hash lemma, simplified version). Let n ∈ N, ε ∈
[0, 1], and let X be a random variable over {0, 1}n. Let M ← {0, 1}n×� be a
random matrix for � ≤ H∞(X) − 3 log 1/ε − 4 log n − 4. Then,

SD((M,M(X)), (M,U�)) ≤ ε

for U� being the uniform distribution over {0, 1}�.

The above (simplified) version of the leftover hash lemma can be proven
using GL. (The proof may be folklore, but we have not previously seen it in the
literature.)

Proof. Let � ≤ H∞(X)−3 log(1/ε)−4 log n−4 < n, and let M ← {0, 1}n×� be a
random matrix. Assume there exists an (inefficient) algorithm that distinguishes
M,M(X) from M,U� with advantage ε. By a simple hybrid argument, there
exists an (inefficient) distinguisher D and an index i ∈ [�], such that

Pr [D(M,M(X)<i,M(X)i) = 1] − Pr [D(M,M(X)<i, U) = 1] ≥ ε/� ≥ ε/n.

Observe that M(X)i = 〈Mi,X〉 is the GL hard-core predicate, and thus we
get that there exists algorithm A such that Pr [A(M,M(X)<i) = X] ≥ ε3/8n4.
Consider the algorithm A′ that given M , guess M(X)<i and runs A. Clearly,

Pr [A′(M) = X] ≥ 2−i · ε3/8n4 ≥ 2−� · ε3/8n4 > 2−H∞(X),

which is a contradiction, since M is independent from X. �

We will also use the well-known Chernoff bound in our proof.

Fact 3.5 (Chernoff bound). Let A1, ..., An be independent random variables
s.t. Ai ∈ {0, 1}. Let Â = Σn

i=1Ai and μ = E
[
Â

]
. For every ε ∈ [0, 1] It holds

that:

Pr
[∣∣
∣Â − μ

∣
∣
∣ ≥ ε · μ

]
≤ 2 · e−ε2·μ/3.

4 Unpredictable Bits

In this section we define bits-unpredictability, which is the main building block in
the construction. We will consider such a notion of unpredictability for families
of functions.

Definition 4.1 (Unpredictable bits). Let m = m(n), � = �(n), λ = λ(n)
and k = k(n) be integer functions, and let ε = ε(n) ∈ [0, 1]. We say that
a function family g =

{
ga : {0, 1}m(n) → {0, 1}�(n)

}

a∈{0,1}λ(n)
has (k, ε)-bits-

unpredictability if for every n ∈ N and x ∈ {0, 1}m(n), there exists a set
S(x) ⊆ [�(n)], such that, for Xn ← {0, 1}m(n) and A ← {0, 1}λ(n):

Counting Unpredictable Bits 203

1. For every n, E [|S(Xn)|] ≥ k(n), and,
2. for every sequence {in}n∈N

such that in ∈ ⋃
x∈{0,1}m(n) S(x),

{
(A, gA(Xn)<in

, gA(Xn)in
)|in∈S(Xn)

}
n∈N

c≈ε

{
(A, gA(Xn)<in

, U)|in∈S(Xn)

}
n∈N

.

We say that g has k-bits-unpredictability if it has (k, n−c)-bits-unpredictability for
every c ∈ N.

We will also consider a stronger notion of unpredictability—called k-random-
bit unpredictability, that requires each individual bit to be unpredictable with
probability k/� where � is the output length.

Definition 4.2 (Random bits unpredictability). Let m = m(n), � = �(n)
and k = k(n) be integer functions, and let ε = ε(n) ∈ [0, 1]. We say that a func-
tion family g =

{
ga : {0, 1}m(n) → {0, 1}�(n)

}

a∈{0,1}λ(n)
has (k, ε)-random-bits-

unpredictability if it satisfies Definition 4.1 except that condition (1) is replaced
by:

1. For every i ∈ [�(n)], Pr [i ∈ S(Xn)] ≥ k(n)/�(n).

We say that g has k-random-bits-unpredictability if it has (k, n−c)-bits- unpre-
dictability for every c ∈ N.

5 OWFs ⇒ Unpredictable Bits

In this section, we prove the next theorem, which shows how to construct a
function family with non-trivial bits-unpredictability from one-way functions.

Theorem 5.1 (OWFs imply unpredictability). Let f : {0, 1}n → {0, 1}n be
a one-way function and let Mn = {0, 1}n×n be the family of all n × n matrices.
Let g =

{
gM : {0, 1}n → {0, 1}2n

}

M∈Mn

defined by

gM (x) = M(f(x)),M(x).

Then g has (n + log n)-bits-unpredictability.

We start with proving Theorem5.1 for the case that f is a regular one-way
function on a partial domain. We later show how Theorem5.1 follows from this
case.

Definition 5.2 (Regular one-way function, partial domain). For every
n ∈ N, let Ωn ⊆ {0, 1}n be a set. An efficiently computable function f : Ωn →
{0, 1}n is a one-way function if for every n.u.-poly-time algorithm E,

Pr
[
E(f(Wn)) ∈ f−1(f(Wn))

]
= neg(n)

for Wn ← Ωn. Such a function is r = r(n) regular if for every n and x ∈ Ωn,

2r >
∣
∣f−1(f(x))

∣
∣ ≥ 2r−1.

204 N. Mazor and R. Pass

Lemma 5.3. Let ε = ε(n) ∈ [0, 1] and r = r(n) ∈ N be functions. Let
Ωn ⊆ {0, 1}n be a set such that |Ωn| = ε(n) · 2n, and let f : Ωn → {0, 1}n

be a r-regular one-way function. Let Mn ← Mn be a random matrix, and
Yn = (Mn(f(Wn),Mn(Wn)) for Wn ← Ωn. Then the following holds for every
c ∈ N:

For every n ∈ N there exists a set Sn ⊆ [2n] such that |Sn| = n + 4c log n −
log(1/ε), and for every sequence {in}n∈N

with in ∈ Sn it holds that

{(Mn, (Yn)≤in
)}n∈N

c≈n−c {(Mn, (Yn)<in
, U)}n∈N

.

In the following, fix c ∈ N, and let r, ε, Ωn,Mn,Wn and Yn be as defined in
Lemma 5.3. For every n ∈ N, let

Sn = [n − r(n) − 8c log n − log(1/ε(n))] ∪ {n < i ≤ n + r(n) + 12c log n} . (1)

Clearly, the size of S is n + 4c log n − log(1/ε), as stated in Lemma 5.3. To prove
the lemma, we use the following two claims.

Claim 5.4. For every n ∈ N and every i ∈ [n − r(n) − 8c log n − log(1/ε(n))] it
holds that

SD((Mn,Mn(f(Wn))≤i), (Mn,Mn(f(Wn))<i, U)) ≤ n−c,

for M ← Mn.

Proof. To prove the claim we will show that H∞(f(Wn)) ≥ n−r(n)−log(1/ε(n)).
The proof is then immediate from the leftover hash lemma (Lemma 3.4) and a
simple hybrid argument, as by Lemma 3.4, Mn(f(Wn))≤i) is statistically close
to i uniform bits. To show the bound on the min-entropy of f , compute,

H∞(f(X)) = − log(max
y

Pr [f(X) = y])

≥ − log(max
y

∣
∣f−1(y)

∣
∣

|Ωn|) > − log(
2r

ε2n
) = n − r − log(1/ε)

as stated. �

Claim 5.5. For every sequence {in}n∈N
, with in ∈ [r(n) + 12c log n] it holds

that

{(Mn, f(Wn),Mn(Wn)≤in
)}n∈N

c≈ {(Mn, f(Wn),Mn(Wn)<in
, U)}n∈N

.

Proof. Assume towards a contradiction that the claim does not hold. That is,
there exists some algorithm E and a sequence {in}n∈N

, such that

|Pr [E(Mn, f(Wn),Mn(Wn)≤in
) = 1]

− Pr [E(Mn, f(Wn),Mn(Wn)<in
, U) = 1] | ≥ n−d

Counting Unpredictable Bits 205

for some constant d ∈ N and for infinitely many n’s. Fix such n ∈ N, and omit
it from the notation. Let i∗ = in, assume without loss of generality that

Pr [E(M,f(W),M(W)≤i∗) = 1] − Pr [E(M,f(W),M(W)<i∗ , U) = 1] ≥ n−d.

By Lemma 3.3 (Goldreich-Levin), the existence of E implies that there exists
an algorithm E′ such that

Pr
[
E′(1nc

,M, f(W),M(W)<i∗) = W
]

≥ n−2d.

Let Ê be the algorithm that on input f(W), sample M ← {0, 1}n×n, and guess
r ← {0, 1}i∗−1. It then outputs E′(1nc

,M, f(W), r). Since Pr [M(W)<i∗ = r] =
2−i∗+1, it holds that

Pr
[
Ê(f(W)) = W

]
≥ n−2d · 2−i∗+1. (2)

Since f has at least 2r−1 ≥ 2i∗−12c log n pre-images, it holds that

Pr
[
Ê(f(W)) ∈ f−1(f(W))

]
≥ 2r−1 · Pr

[
Ê(f(W)) = W

]

≥ 2i∗−12c log n−1 · Pr
[
Ê(f(W)) = W

]
. (3)

Combining Eqs. (2) and (3), we get that

Pr
[
Ê(f(W)) = W

]
≥ n−2d−12c−1

which is a contradiction since f is a one-way function. �

5.1 Proving Lemma 5.3.

We are now ready to prove Lemma 5.3.

Proof (Proof of Lemma 5.3). Assume towards a contradiction that the lemma
does not hold. That is, there exists a constant c, a n.u.-poly-time algorithm E
and a sequence {in}n∈N

with in ∈ Sn such that,

|Pr [E(Mn, (Yn)≤in
) = 1] − Pr [E(Mn, (Yn)<in

, U) = 1]| > n−c

for infinitely many n’s, where Sn is the set defined in Eq. (1) with respect to the
constant c. We conclude the proof by the observation that, either for infinitely
many such n’s it holds that in ≤ n, or for infinitely many such n’s in > n. In the
first case, E contradicts Claim 5.4. In the second, E contradicts Claim 5.5 by a
simple data-processing argument. �

206 N. Mazor and R. Pass

5.2 Proving Theorem 5.1

Proof (Proof of Theorem 5.1). Fix c ∈ N. The proof follows by the observa-
tion that every one-way function is a combination of regular one-way func-
tions. Let f : {0, 1}n → {0, 1}n be a one-way function, and for every x ∈
{0, 1}n, let Df (x) = log

∣
∣f−1(f(x))

∣
∣�. For every n ∈ N and r ∈ [n], let

Ωr
n = {x ∈ {0, 1}n : Df (x) = r}. Let εr(n) = |Ωr

n| /2n and let Sr
n be the set

Sn promised by Lemma 5.3 with respect to r. Observe that for every function
r = r(n), fr : Ωr

n → {0, 1}n is r-regular function. Moreover, for every such r with
εr(n) ≥ n−2c for every n ∈ N, it holds that the function fr is one-way. Indeed,
an algorithm E that inverts fr with probability α(n) inverts f with probability
at least α(n) · Pr [Df (Xn) = r(n)] ≥ α(n) · n−2c.

For x ∈ {0, 1}n, let S(x) = SDf (x)
n if εDf (x)(n) ≥ n−2c or ∅ otherwise. In the

following we show that

Pr [|S(Xn)| < n + 2c log n] ≤ n−c. (4)

It then follows that

E [|S(Xn)|] ≥ (n + 2c log n)(1 − n−c) ≥ n + c log n

as stated. To see Eq. (4), let Gn =
{
r ∈ [n] : εr(n) ≥ n−2c

}
. By definition of S

and Gn we get that for every r ∈ Gn and x with Df (x) = r

|S(x)| ≥ (n + 4c log n − log(1/n−2c))
= n + 2c log n.

Thus, Pr [|S(Xn)| < n + 2c log n] ≤ Pr [Df (Xn) /∈ Gn], and it is enough to
bound Pr [Df (Xn) /∈ Gn]. By union bound, as Df (x) can get at most n val-
ues, and for every r /∈ Gn it holds that Pr [Df (Xn) = r] ≤ n−2c, we get that
Pr [Df (Xn) /∈ Gn] ≤ n−2c · n ≤ n−c, as we wanted to show.

Next, assume toward a contradiction that g has no (n + log n, n−c)-bits-
unpredictability with respect to the above sets S(x). Namely, there exists an
algorithm E such that

|Pr [E(Mn, gMn
(Xn)≤in

) = 1 | in ∈ S(Xn)]

− Pr [E(Mn, gMn
(Xn)<in

, U) = 1 | in ∈ S(Xn)] | > n−c

for some sequence {in}n∈N
and for infinite many n’s. Below we show how to

construct a regular one-way function on partial domain fr∗
, such that E con-

tradicts Lemma 5.3 with respect to fr∗
. To do so, fix such n and observe that,

by an averaging argument, there exists some r∗ ∈ [n] such that in ∈ Sr∗
n , and,

|Pr [E(Mn, gMn
(Xn)≤in

) = 1 | in ∈ S(Xn),Df (Xn) = r∗]

− Pr [E(Mn, gMn
(Xn)<in

, U) = 1 | in ∈ S(Xn),Df (Xn) = r∗] | > n−c.

Counting Unpredictable Bits 207

Since S(Xn) is determined by Df (Xn), we get that,

|Pr [E(Mn, gMn
(Xn)≤in

) = 1 | Df (Xn) = r∗]

− Pr [E(Mn, gMn
(Xn)<in

, U) = 1 | Df (Xn) = r∗] | > n−c.

Lastly, observe that the event Df (Xn) = r does not depend on Mn, and only
depend on f(Xn). Thus, we can write the above as

∣
∣
∣Prx←Ωr∗

n
[E(Mn, gMn(x)≤in) = 1] − Prx←Ωr∗

n
[E(Mn, gMn(x)<in , U) = 1]

∣
∣
∣ ≥ n−c.

Moreover, since in ∈ Sr∗
n , it holds that εr∗

(n) ≥ n−2c. For every n let r∗(n)
be as described above (or, if no such r∗ exists, let r∗(n) be arbitrary r with
εr(n) ≥ n−2c).6 The above is a contradiction to Lemma 5.3, as by construction
fr∗

: Ωr∗
n → {0, 1}n is a regular one-way function (note that, while r∗ may not

be an efficiently computable function, fr∗
is). �

6 Bits Unpredictability ⇒ Random Bits Unpredictability

The next theorem, proven below, shows how to convert bits unpredictability to
random bits unpredictability.

Theorem 6.1 (Bits unpredictability to random bits unpredictability).
Let m = m(n), � = �(n), λ = λ(n) and k = k(n) be integer functions and
let g =

{
ga : {0, 1}m(n) → {0, 1}�(n)

}

a∈{0,1}λ(n)
be a function family with k-

bits-unpredictability. Then, for every polynomial r = r(n), the function family
gr =

{
gr

a : [�(n)] × ({0, 1}m(n))r(n) → {0, 1}(r(n)−1)�(n)
}

a∈{0,1}λ(n)
defined by

gr
a(i, x1, . . . , xr) = ga(x1)≥i, ga(x2), . . . , ga(xr−1), ga(xr)<i

has (r(n) − 1)k(n)-random-bits unpredictability.

We get the following corollary, on construction of random-bits unpredictability
from a one-way function.

Corollary 6.2 (OWF to random-bits unpredictability). Let f : {0, 1}n →
{0, 1}n be a one-way. Then there exists an efficiently computable function fam-
ily g′ =

{
g′

a : {0, 1}m′(n) → {0, 1}�′(n)
}

a∈{0,1}λ(n)
with k′-random-bits unpre-

dictability, for m′(n) = O(n2/ log n), �′(n) = O(n2/ log n), λ(n) = n2 and
k′(n) ≥ m′(n) + n.

Moreover, the construction uses r(n) non-adaptive calls to f .

6 That is, for every n for which E distinguishes gMn(Xn)≤in from (gMn(Xn)<in , U)
given in ∈ S(Xn), we define r∗(n) as described, and for all other n’s we define r∗(n)
arbitrarily such that Pr [Df (Xn) = r∗(n)] is noticeable.

208 N. Mazor and R. Pass

Proof. Let g be the function family defined in Theorem5.1. Let r(n) =
�2n/ log n�+3, and let g′ = gr, as defined in Theorem 6.1. It holds that m′(n) =
�log n� + n · r(n) = O(n2/ log n), and �′(n) = 2n · (r(n) − 1) = O(n2/ log n).
Moreover, by Theorem 6.1,

k′(n) = (r(n)−1)(n+log n) = log n+n·r(n)+log n·(r(n)−2)−n ≥ m′(n)+2n−n.

�

6.1 Proving Theorem 6.1

Proof (Proof of Theorem 6.1). Let �,m, λ, k and g be as in Theorem 6.1, and fix
a polynomial r = r(n) and a constant c. In the following we prove that gr has
((r−1)k, n−c)-random bits unpredictability. For every n ∈ N and x ∈ {0, 1}m(n),
let Sg(x) be the set promised by Definition 4.1 with respect to the (k, n−c)-bits-
unpredictability of g.

For i ∈ [�(n)] and x1, . . . , xr ∈ ({0, 1}m(n))r(n), define the set

S(i, x1, . . . , xr) = (
⋃

j∈[r]

{
z + (j − 1)n − (i − 1) : z ∈ Sg(xj)

}
)
⋂

[�(n)·(r(n)−1)].

let X1
n, . . . , Xr

n ← {0, 1}m(n) and In ← [�(n)]. Clearly, for every i ∈ [�(n) ·
(r(n) − 1)], it holds that

Pr
[
i ∈ S(In,X1

n, . . . , Xr
n)

]
= Pr [(i + In mod �(n)) ∈ Sg(Xn)]

=
E [|Sg(Xn)|]

�(n)
≥ k(n)

�(n)
=

(r(n) − 1)k(n)
(r(n) − 1)�(n)

.

Let Sn = S(In,X1
n, . . . , Xr

n). Assume toward a contradiction that gr does not
have (r−1)k-random-bits unpredictability with respect to the above set S. That
is, there exists an algorithm E and an index z = z(n) ∈ [� · (r − 1)], such that,
for An ← {0, 1}λ(n),

|Pr
[
E(An, gr

An
(In,X1

n, . . . , Xr
n)≤z) = 1 | z ∈ Sn

]

− Pr
[
E(An, gr

An
(In,X1

n, . . . , Xr
n)<z, U) = 1

] | z ∈ Sn| ≥ n−c.

For infinitely many n’s. Fix such n and omit n from the notation. By an
averaging argument, there exists an index i∗ ∈ [�(n)] such that

|Pr
[
E(A, gr

A(i∗,X1, . . . , Xr)≤z) = 1 | z ∈ S]

− Pr
[
E(A, gr

A(i∗,X1, . . . , Xr)<z, U) = 1
] | z ∈ S| ≥ n−c.

Recall that gr
A is produced by r blocks of the form gA(Xj) (with a random

shift). Let s = � z+(i∗−1)
� � be the index of the block in which the index z belongs

to, and i be the index of z inside the block. That is, s and i are such that

Counting Unpredictable Bits 209

gr
A(i∗,X1, . . . , Xr)≤z = gA(X1)≥i∗ , gA(X2), . . . , gA(Xs)≤i. Consider the algo-

rithm E′ that, given a, ga(x)≤i and a bit b, sample X1, . . . , Xs−1 uniformly at
random and executes E(a, ga(X1)>i∗ , ga(X2), . . . , ga(x)<i, b).

Observe that,

|Pr [E′(A, gA(X)<i, gA(X)i) = 1 | i ∈ Sg(X)]
− Pr [E′(A, gA(X)<i, U) = 1 | i ∈ Sg(X)] |

= |Pr
[
E(A, gA(i∗,X1, . . . , Xr)≤z) = 1 | z ∈ S]

− Pr
[
E(A, gA(i∗,X1, . . . , Xr)<z, U) = 1 | z ∈ S] |

≥ n−c.

The above is a contradiction to the (k, n−c)-bits unpredictability of g, since by
assumption, it holds for infinitely many n’s �

7 Extracting Pseudorandomness and the Main Theorem

In this section we prove Theorem 7.1, which is the last step in our main con-
struction. Theorem 7.1 shows how to extract pseudorandomness from random
bits unpredictability.

Theorem 7.1 (Extracting from random bits unpredictability). Let s =
ω(1), m = m(n), � = �(n), λ = λ(n) and k = k(n) be integer functions, and
let g =

{
ga : {0, 1}m(n) → {0, 1}�(n)

}

a∈{0,1}λ(n)
be a function family with k(n)-

random-bits-unpredictability. Then the following holds for every polynomial t =
t(n). Let α(n) = k(n)/�(n), and let Hn ← {0, 1}t(n)×q(n) be a random matrix,
for q = αt − √

αt · s log n − s log n�. Then for X1
n . . . , X

t(n)
n ← ({0, 1}m(n))t(n)

and An ← {0, 1}λ(n), the distribution ensemble

{Hn,An,Hn(gAn (X1
n)1,...,gAn (Xt(n)

n)1),...,Hn(gAn (X1
n)�(n),...,gAn (Xt(n)

n)�(n))}n∈N

is pseudorandom.

We prove Theorem 7.1 below, but first let us deduce our main theorem.

Theorem 7.2 (PRG construction).
For any function s(n) = ω(1), there exists a construction of a PRG from a one-
way function, that uses O(s(n) · n3/ log2 n) non-adaptive calls to the one-way
function and a seed of length O(s2(n) · n4/ log2 n)).

Proof (Proof of Theorem 7.2). Let f : {0, 1}n → {0, 1}n be a one-way function,
g′ =

{
g′

a : {0, 1}m′(n) → {0, 1}�′(n)
}

a∈{0,1}λ(n)
be the function family promised

by Corollary 6.2, and let α = k′/�′ ≤ 1.
Let s be as in Theorem 7.2 (assume without loss of generality that s(n) ≤

log n), t = 4� �′2s log n
(k′−m′)2 � = O(s ·n2/ log n), m = t ·m′ and � = (αt−√

αts log n−

210 N. Mazor and R. Pass

s log n�)�′. Let H = {0, 1}t×(αt−√
αts log n−s log n�) be the set of all matrices of

size t × (αt − √
αts log n − s log n�), and let G : H × {0, 1}λ × {0, 1}m → H ×

{0, 1}λ × {0, 1}� be the function defined by

G(H,A,W1, . . . ,Wt) :=
H,A,H(gr

A(W1)1, . . . gr
A(Wt)1), . . . , H(gr

A(W1)�′ , . . . , gr
A(Wt)�′).

By Theorem 7.1, the output of G is pseudorandom when H ← H, and
W1, . . . ,Wt ← ({0, 1}m2)t. We need to show that G is expanding. To do so,
it is enough to verify that m < �.

Indeed,

� − m = (αt −
√

αts log n − s log n�)�′ − tm′

> αt�′ − 2�′√ts log n − tm′

= tk′ − 2�′√ts log n − tm′

= t(k′ − m′) − 2�′√ts log n

≥ 0,

where the last inequality holds since m = m′t and since t(k′ −m′) ≥ 2�′√ts log n
by our choice of t.

Moreover, G uses tr = O(s ·n3/ log n) calls to f and has seed length log |H|+
λ + t · m2 = log |H| + O(t2 + n2 + s · n4/ log2 n) = O(s2 · n4/ log2 n). �

7.1 Exponentially-Hard OWFs

Before proving Theorem 7.1, we state and prove our results for exponentially-
hard one-way functions. We start with a formal definition of the latter.

Definition 7.3 (Exponentially hard one-way function). A polynomial-
time computable function f : {0, 1}∗ → {0, 1}∗ is called a T = T (n)-hard one-way
function if for every n.u. algorithm A of size at most T (n), for all but finitely
many n ∈ N,

Prx←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

] ≤ 1/T (N).

f is n.u exponentially-hard one-way function if it is 2cn-hard one-way function
for some constant c > 0.

We get the following theorem:

Theorem 7.4 (PRG construction from exponentially-hard OWFs). For
any function s(n) = ω(1), there exists a construction of a poly-time secure
PRG from an exponentially-hard one-way function, that uses O(s(n) · log n) non-
adaptive calls to the one-way function.

Counting Unpredictable Bits 211

Proof. Let f be an 2cn-hard one-way function. We use the well-known fact that
we can extract δn GL hard-core bits from the input of f , for some constant
c > δ > 0. Thus, by the construction in Theorem 5.1, we get a function family g
with (n + εn)-bits-unpredictability, for some constant ε > 0 (and g only makes
one call to f).

Next, by Theorem 6.1, and taking r = �3/ε� + 1 = O(1), we get that the
function family g′ = gr has k′(n) = (�3/ε� (1+ε)n)-random-bits-unpredictability.
Moreover, gr has input length m′(n) = O(log n) + n(�3/ε� + 1), output length
�′(n) = 2n(�3/ε�). We get that k′(n) − m′(n) = Ω(n) = Ω(�′(n)).

Let α = k′(n)/�′(n). Let s be as in Theorem 7.4, t = 4� �′2s log n
(k′−m′)2 � = O(s log n),

m = t ·m′ and � = (αt−√
αts log n−s log n�)�′. Let H be the set of all matrices

of size t × (αt − √
αts log n − s log n�), and let G : H × {0, 1}λ × {0, 1}m →

H × {0, 1}λ × {0, 1}� be the function defined by

G(H,A,W1, . . . ,Wt) :=
H,A,H(gr

A(W1)1, . . . gr
A(Wt)1), . . . , H(gr

A(W1)�′ , . . . , gr
A(Wt)�′).

By Theorem 7.1, the output of G is pseudorandom when H ← H, and
W1, . . . ,Wt ← ({0, 1}m2)t. By the same calculation as in the proof of Theo-
rem 7.2, G is expanding. Moreover, G uses tr = O(s log n) calls to f .

7.2 Proving Theorem 7.1

By a simple hybrid argument, it is enough to prove the following claim.

Claim 7.5. Let g, t,Hn, An and X1
n, . . . , Xt

n be as in Theorem7.1. Then for
every sequence {in}n∈N

, and for every n.u.-poly-time algorithm E,

|Pr [E(Hn,An,gAn (X1
n)<in ,...,gAn (Xt

n)<in ,Hn(gAn (X1
n)in ,...,gAn (Xt

n)in)) = 1]

− Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, Uq(n)) = 1

] | = neg(n).

Proof. (Proof of Theorem 7.1). Theorem 7.1 follows from Claim 7.5 by a simple
hybrid argument. �

In the following we prove Claim 7.5. Fix c ∈ N, a n.u.-poly-time E and a constant
d such that t(n) ≤ nd for large enough n. We want to show that

|Pr [E(Hn,An,gAn (X1
n)<in ,...,gAn (Xt

n)<in ,Hn(gAn (X1
n)in ,...,gAn (Xt

n)in)) = 1]

− Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, Uq(n)) = 1

] | < n−c. (5)

for all but finitely many n’s. Let c′ = c + d + 2. For every n ∈ N and j ∈ [t(n)],
let Sj

n = Sg(Xj
n) be the set promised by the assumed (k, n−c′

)-random-bits-
unpredictability property of g. We define the random variables Q1, . . . , Qt as
follows. For every j ∈ t, let Qj = gA(Xj

n)in
if in /∈ Sj

n, or a uniform bit otherwise.

212 N. Mazor and R. Pass

By the definition of bits-unpredictability, it holds that for every n.u.-poly-time
algorithm E′,

∣
∣Pr

[
E′(gA(Xj

n)<in
, gA(Xj

n)in
) = 1

] − Pr
[
E′(gA(Xj

n)<in
, Qj) = 1

]∣∣ ≤ n−c′
.
(6)

The proof of Claim 7.5 follows from the following two claims.

Claim 7.6. For all but infinitely many n’s,

|Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
,Hn(Q1, . . . , Qt)) = 1

]

− Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, Uq(n)) = 1

] | < n−c/2

Claim 7.7. For all but infinitely many n’s,

|Pr [E(Hn,An,gAn (X1
n)<in ,...,gAn (Xt

n)<in ,Hn(gAn (X1
n)in ,...,gAn (Xt

n)in)) = 1]

− Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
,Hn(Q1, . . . , Qt)) = 1

] | < n−c/2

We will prove Claim 7.6 and Claim 7.7 below, but first let us prove Claim 7.5.

Proof. (Proof of Claim 7.5). Equation (5) holds by Claim 7.6 and Claim 7.7 and
the triangle inequality. The claim follows since Eq. (5) holds for every c ∈ N. �

7.3 Proving Claim 7.6

Proof. (Proof of Claim 7.6).
We will show that given gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, the distribution of

(Q1, . . . , Qt) is n−c/3-close to a distribution with min-entropy at least q(n) +
ω(log n). The proof then follows by the leftover hash lemma.

To do so, we start by showing that with probability 1 − n−c/3, there are at
least q(n) + ω(log n) indexes j such that in ∈ Sj . To see the above, fix n and
omit it from the notation. Let q′ = q + s log n, and for every j ∈ [t], let δj be an
indicator for the event that i ∈ Sj . By construction, δ1, . . . , δt are independent
random variables, and by the definition of k-random-bits-unpredictability, for
each j ∈ [t], it holds that Pr [δj = 1] ≥ k/� = α. Thus, by Chernoff inequality,
for large enough n it holds that

Pr

⎡

⎣
t∑

j=1

δj < q′

⎤

⎦ = Pr

⎡

⎣
t∑

j=1

δj < αt −
√

αts log n

⎤

⎦ ≤ 2−s log n/3 < n−c/3,

as we wanted to show. Next, let J =
{
j : in ∈ Sj

}
be the set of j’s for which Qj

is uniform independent bit. By the above Pr [|J | < q′] < n−c/3, and thus the
distribution (Q1, . . . , Qt) is n−c/3 close to the distribution (Q1, . . . , Qt)||J |≥q′ .
To bound the min-entropy of the latter, we want to show that for every q1, . . . , qt,

Counting Unpredictable Bits 213

it holds that Pr
[
Q1, . . . , Qt = q1, . . . , qt | |J | ≥ q′] ≤ 2−q′

, which concludes the
proof. It holds that,

Pr
[
Q1, . . . , Qt = q1, . . . , qt | |J | ≥ q′]

= EJ←J ||J |>q′
[
Pr

[
Q1, . . . , Qt = q1, . . . , qt | J = J

]]

≤ EJ←J ||J |>q′

[
2−|J|

]

≤ 2−q′
,

where the first inequality holds since for every j ∈ J , Qj is a uniform and
independent random bit. �

7.4 Proving Claim 7.7

Proof. (Proof of Claim 7.7). Assume towards a contradiction that the claim does
not hold. That is,

|Pr [E(Hn,An,gAn (X1
n)<in ,...,gAn (Xt

n)<in ,Hn(gAn (X1
n)in ,...,gAn (Xt

n)in)) = 1]

− Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
,Hn(Q1, . . . , Qt)) = 1

] | ≥ n−c/2

for some algorithm E and for infinitely many n’s. By data-processing inequality,
it holds that for some n.u.-poly-time Ê and for infinitely many n’s,

|Pr
[
Ê(An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, gAn

(X1
n)in

, . . . , gAn
(Xt

n)in
) = 1

]

− Pr
[
Ê(An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, Q1, . . . , Qt) = 1

]
| ≥ n−c/2.

Fix such n. By a simple hybrid argument, we get that there exists some j∗ ∈ [t],
such that,

|Pr
[
Ê(An,gAn (X1

n)<in ,...,gAn (Xt
n)<in ,gAn (X1

n)in ,...,gAn (Xj∗
n)in ,Qj∗+1,...,Qt) = 1

]

− Pr
[
Ê(An,gAn (X1

n)<in ,...,gAn (Xt
n)<in ,gAn (X1

n)in ,...,gAn (Xj∗−1
n)in ,Qj∗

,...,Qt) = 1
]
|

≥ n−c′
/2.

By a simple averaging argument, there is a fixing x1, . . . , xj∗−1, xj+1, . . . , xt for
X1

n, . . . , Xj∗−1
n ,Xj∗+1

n , . . . , Xt
n, and bj for every Qj with in ∈ Sg(xj), such that

the following holds. Let qj(a) = ga(xj) if in /∈ Sg(xj), or bj otherwise. Then it
holds that

|Pr[Ê(An, gAn
(x1)<in

, . . . , gAn
(Xj∗

n), . . . , gAn
(xt)<in

,

gAn
(x1)in

, . . . , gAn
(Xj∗

n)in
, qj∗+1(An), . . . , qt(An)) = 1]

− Pr[Ê(An, gAn
(x1)<in

, . . . , gAn
(Xj∗

n), . . . , gAn
(xt)<in

,

gAn
(x1)in

, . . . , Qj∗
, qj∗+1(An), . . . , qt(An)) = 1]|

≥ n−c′
/2.

214 N. Mazor and R. Pass

The above is a contradiction to the bit-unpredictability property of g. Indeed,
Let

E′(a, ga(x)<i, b)

= Ê(An, gAn
(x1)<in

, . . . , ga(x)<i, . . . , gAn
(xt)<in

,

gAn
(x1)in

, . . . , gAn
(xj∗−1)in

, b, qj∗+1(An), . . . , qt(An)).

We get that

|Pr [E′(An, gAn
(Xn)<in

, gAn
(Xn)in

) = 1]

− Pr [E′(An, gAn
(Xn)<in

, Q) = 1] | ≥ n−c′
/2.

where Q is equal to gAn
(Xn)in

) if in /∈ Sg(Xn), or uniform bit otherwise. This
is a contradiction to Eq. (6). �

8 Saving Seed Length

In this section we show how to use the transformation from [VZ12] to get the
following theorem.

Theorem 8.1. (PRG construction). For any function s = ω(1), there exists
a construction of a PRG from a one-way function, that uses O(s(n) · n3/ log2 n)
calls to the one-way function and a seed of length O(s(n) · n3/ log n).

To get an improvement in the seed length, we will also need to use a hash function
with a shorter description in the extraction step, described in Sect. 7. For this,
we need to define 2-universal families.

Definition 8.2. (2-universal family). A family of function F ={
f : {0, 1}n → {0, 1}�

}
is 2-universal if for every x �= x′ ∈ {0, 1}n it holds that

Prf←F [f(x) = f(x′)] = 2−�.
A universal a family is explicit if given a description of a function f ∈ F and

x ∈ {0, 1}n, f(x) can be computed in polynomial time (in n, �).

The family of all matrices of size n × m is an explicit 2-universal family, but
it is well known that there are explicit 2-universal families with description size
O(n+m). An important property of 2-universal families is that they can be used
to construct a strong extractor. This is stated in the leftover hash lemma:

Lemma 8.3. (Leftover hash lemma, standard version, [ILL89]).
Let n ∈ N, ε ∈ [0, 1], and let X be a random variable over {0, 1}n. Let H ={

h : {0, 1}n → {0, 1}�
}

be a 2-universal hash family with � ≤ H∞(X)−2 log 1/ε.
Then,

SD((H,H(X)), (H,U�)) ≤ ε

for U� being the uniform distribution over {0, 1}� and H being the uniform dis-
tribution over H.

Counting Unpredictable Bits 215

We are now ready to prove the main result of this section.

Proof. Observe that the significant parts of the seed of the PRG G defined in
the proof of Theorem7.2 are the description of H, and t inputs to the function
gr.

More Efficient Hash Function. We start with reducing the description length
of H by using more efficient 2-universal family. Indeed, the proof of Claim7.5
holds also when Hn is a random function from a 2-universal family instead of a
random matrix. We change the proof of Theorem7.2, such that

H =
{

h : {0, 1}t(n) → {0, 1}αt−√
αts log n−s log n

}

is a 2-universal family of description size log |H| = O(t).

Using the transformation of [VZ12]. Next, we use the transformation of [VZ12]
to avoid the need to get t independent inputs for gr as input to the PRG. Let us
first recall the construction given in Sects. 5 to 7. The construction starts with
a function family g which has non-trivial bits-unpredictability. Then, for every
j ∈ [t] we compute

Y j = gr
A(Ij ,X1

j , . . . , Xr
j) = gA(Xj,1)≥Ij , gA(Xj,2), . . . , gA(Xj,r)<Ij .

Finally, we extract pseudorandom bits by applying an extractor on Y 1
i , . . . Y t

i for
every i ∈ [(r − 1)�]. We prove that H(Y 1

i , . . . Y t
i) is indistinguishable from uni-

form, given A, Y 1
i<, . . . Y t

<i. Moreover, by inspecting the reductions in the proofs
of Theorems 6.1 and 7.1, it is not hard to see that H(Y 1

i , . . . Y t
i) is indistinguish-

able from uniform, even given I1, . . . , It (in addition to A, Y 1
i<, . . . Y t

<i).
Vadhan and Zheng [VZ12] observed that for computing Y j

i , we only need to
know the value of A, Ij and exactly one (specific) of the values of Xj,1, . . . , Xj,r.
In particular, we don’t need to know the value of Xj,1, . . . , Xj,α−1, where α
is such that i = α · � + β for β ∈ [�], to compute Y j

i . Thus, we can sample
each input to g only when it is used. This gives rise to an algorithm G′ that
computes the output of the PRG in the following way: First, G′ samples A, and
for each j ∈ [t], the G′ samples Ij , and Xj,r,Xj,r−1 uniformly at random. Then,
for each i from (r − 1)� to (r − 2)� + 1, the algorithm computes H(Y 1

i , . . . Y t
i)

(notice that the relevant bits have already been fixed by A, Ij ,Xj,r and Xj,r−1)
and outputs the hashed value. The total length of the output of G′ so far is
q = � · t(m/� + Ω(log n/�)) = tm + Ω(t · log n). After finishing, the algorithm
samples Xj,r−2 uniformly at random for every j, and continues this process for
another � indexes (i from (r − 2)� to (r − 3)� + 1), and so on. This process of
sampling and hashing continues until it gets to i = 1, where in the k-th iteration,
G′ samples Xj,r−k for each j, and the hashes H(Y 1

i , . . . Y t
i) for each i between

(r − k)� to (r − k − 1)� + 1. This results with tm + Ω(t · log n) pseudorandom
bits in every iteration.

Clearly, the output of the described G′ is equal to the output of the PRG.
Moreover, the output in the k-th iteration is indistinguishable from uniform,

216 N. Mazor and R. Pass

even given the parts of Y j
<(r−k−1)� that have already been sampled up to the

k-th iteration (that is, A, Ij and

Y j [k] := Y j
(r−k−1)�−(Ij−1), . . . , Y

j
(r−k−1)�−1 = gA(Xj,r−k)<Ij).

More formally, for every k ∈ [r − 1], let Zk be the output of G′ in the k-th
iteration. It follows from the proof of Theorem 7.1 that for every such k,

(A, I1, . . . , It, Y 1[k], . . . , Y t[k], Zk)
c≈ (A, I1, . . . , It, Y 1[k], . . . , Y t[k], Uq). (7)

Using an hybrid argument we can also see that

(A, I1, . . . , It, Y 1[k], . . . , Y t[k], Z1, . . . , Zk) (8)
c≈ (A, I1, . . . , It, Y 1[k], . . . , Y t[k], Uk·q).

The idea in [VZ12] is to output only Ω(t · log n) bits of the above algorithm
in each iteration k, and to use the other tm pseudorandom bits to sample the
inputs X1,r−k−1, . . . Xt,r−k−1 of g for the next iteration. Since the output of G′

in each iteration is indistinguishable from uniform, the output of this process is
pseudorandom by a simple hybrid argument.

Indeed, fix a distinguisher E, a constant c ∈ N and a large enough n ∈ N , and
for each τ ∈ [r−1] let G′(τ) be the algorithm that samples X1,r−k−1, . . . Xt,r−k−1

uniformly at random in the beginning of each iteration k ≤ τ , and uses the
first tm bits of the output of each iteration k > τ as X1,r−k−1, . . . Xt,r−k−1.
That is, G′(r − 1) is simply the algorithm G′ described above, while G′(1)
is the algorithm considered by [VZ12], that only uses randomness to sample
X1,r−1,X1,r, . . . , Xt,r−1,Xt,r. Let Z1(τ), . . . , Zr−1(τ) be the output of G′(τ) in
each iteration respectively, and let Zk(τ)>tm be the last w − tm bits of Zk(τ).
Since the output of G′ is pseudorandom, we get that,

|Pr
[
E(Z1(r − 1)>tm, . . . , Zr−1(r − 1)>tm) = 1

]

− Pr
[
E(U(r−1)·(q−tm)) = 1

] | < n−c.

We want to show that it also holds that
∣
∣Pr

[
E(Z1(1)>tm, . . . , Zr−1(1)>tm) = 1

] − Pr
[
E(U(r−1)·(q−tm)) = 1

]∣∣ < 2n−c,

and thus it is enough to show that

|Pr
[
E(Z1(r − 1)>tm, . . . , Zr−1(r − 1)>tm) = 1

]

− Pr
[
E(Z1(1)>tm, . . . , Zr−1(1)>tm) = 1

] | < n−c.

Assume towards a contradiction that the above does not hold. By an
hybrid argument, there exists some τ ∈ [r − 1] such that E distinguish
between (Z1(τ)>tm, . . . , Zr−1(τ)>tm) and (Z1(τ + 1)>tm, . . . , Zr−1(τ + 1)>tm)
with advantage n−c/r.

Counting Unpredictable Bits 217

Observing that (Zτ+1(τ)>tm, . . . , Zr−1(τ)>tm) can be computed from Zτ (τ)
and A, I1, . . . , It, Y 1[τ], . . . , Y t[τ], while (Zτ+1(τ + 1)>tm, . . . , Zr−1(τ + 1)>tm)
can be computed by the same function from Uq

and A, I1, . . . , It, Y 1[τ], . . . , Y t[τ], we get the following by data processing. E
distinguishes between

A, I1, . . . , It, Y 1[τ], . . . , Y t[τ], Z1(τ)>tm, . . . , Zτ (τ)>tm, Zτ (τ)≤tm

and

A, I1, . . . , It, Y 1[τ], . . . , Y t[τ], Z1(τ + 1)>tm, . . . , Zτ (τ + 1)>tm, Utm

with the same advantage, n−c/r. Since by definition (Z1(τ), . . . , Zτ (τ)) ≡
(Z1(τ + 1), . . . , Zτ (τ + 1)) ≡ (Z1, . . . , Zτ), we get a contradiction to Eq. (8).

To see that G′(1) outputs more pseudorandom bits than the randomness
used, observe that G′(1) uses 2tm random bits to sample

X1,r−1,X1,r, . . . , Xt,r−1,Xt,r,

and outputs Ω(t · log n) pseudorandom bits in each iteration. Thus, for r =
Ω(m/ log n), G′(1) an expanding function. �

References

[BM82] Blum, M., Micali, S.: How to generate cryptographically strong sequences
of pseudo random bits. In: Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 112–117 (1982). (cit. on pp. 2, 4)

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications
of random functions (extended abstract). In: Blakley, G.R., Chaum, D.
(eds.) CRYPTO 1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 22

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way func-
tions. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing (STOC), pp. 25–32 (1989). (cit. on pp. 2, 11)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
270–299 (1984). (cit. on p. 2)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: Stoc 19,
pp. 218–229 (1987). (cit. on p. 2)

[HHR06] Haitner, I., Harnik, D., Reingold, O.: On the power of the randomized
iterate. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 22–40.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 2

[HILL99] Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 1364–1396 (1999).
(cit. on pp. 2, 5, 10)

[Hol06a] Holenstein, T.: Pseudorandom generators from one-way functions: a simple
construction for any hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 443–461. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878 23

https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/11818175_2
https://doi.org/10.1007/11681878_23
https://doi.org/10.1007/11681878_23

218 N. Mazor and R. Pass

[Hol06b] Holenstein, T.: Strengthening key agreement using hard-core sets. Ph.D.
thesis. ETH Zurich (2006). (cit. on pp. 3, 9)

[HRV13] Haitner, I., Reingold, O., Vadhan, S.: Efficiency improvements in construct-
ing pseudorandom generators from one-way functions. SIAM J. Comput.
42(3), 1405–1430 (2013). (cit. on pp. 2–4, 7)

[HRVW09] Haitner, I., Reingold, O., Vadhan, S., Wee, H.: Inaccessible entropy. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing
(STOC), pp. 611–620 (2009). (cit. on p. 7)

[HV17] Haitner, I., Vadhan, S.: The many entropies in one-way functions. In: Tuto-
rials on the Foundations of Cryptography. ISC, pp. 159–217. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57048-8 4

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudorandom generation from
one-way functions. In: Annual ACM Symposium on Theory of Computing
(STOC), pp. 12–24 (1989). (cit. on p. 24)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 151–158
(1991). (cit. on p. 2)

[Sha83] Shamir, A.: On the generation of cryptographically strong pseudorandom
sequences. ACM Trans. Comput. Syst. (TOCS) 1(1), 38–44 (1983). (cit.
on p. 4)

[VZ12] Vadhan, S., Zheng, C.J.: Characterizing pseudoentropy and simplifying
pseudorandom generator constructions. In: Annual ACM Symposium on
Theory of Computing (STOC), pp. 817–836 (2012). (cit. on pp. 2, 3, 6, 9,
10, 23–26)

[Yao82] Yao, A.C.: Theory and applications of trapdoor functions. In: Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 80–91 (1982).
(cit. on p. 11)

https://doi.org/10.1007/978-3-319-57048-8_4

On One-Way Functions and Sparse
Languages

Yanyi Liu1(B) and Rafael Pass2

1 Cornell Tech, New York, USA
ttyl2866@cornell.edu

2 Tel-Aviv University & Cornell Tech, Tel Aviv-Yafo, Israel

ttrafaelp@tau.ac.il

Abstract. We show equivalence between the existence of one-way func-
tions and the existence of a sparse language that is hard-on-average w.r.t.
some efficiently samplable “high-entropy” distribution. In more detail,
the following are equivalent:

– The existence of a S(·)-sparse language L that is hard-on-average
with respect to some samplable distribution with Shannon entropy
h(·) such that h(n) − log(S(n)) ≥ 4 logn;

– The existence of a S(·)-sparse language L ∈ NP, that is hard-on-
average with respect to some samplable distribution with Shannon
entropy h(·) such that h(n) − log(S(n)) ≥ n/3;

– The existence of one-way functions.
where a language L is said to be S(·)-sparse if |L ∩ {0, 1}n| ≤ S(n) for
all n ∈ N. Our results are inspired by, and generalize, results from the
elegant recent paper by Ilango, Ren and Santhanam (IRS, STOC’22),
which presents similar connections for specific sparse languages.

1 Introduction

A one-way function [4] (OWF) is a function f that can be efficiently computed
(in polynomial time), yet no probabilistic polynomial-time (PPT) algorithm can
invert f with inverse polynomial probability for infinitely many input lengths
n. Whether one-way functions exist is unequivocally the most important open
problem in Cryptography (and arguably the most important open problem in
the theory of computation, see e.g., [18]): OWFs are both necessary [15] and
sufficient for many of the most central cryptographic primitives and protocols
(e.g., pseudorandom generators [2,10], pseudorandom functions [6], private-key
encryption [7], digital signatures [22], commitment schemes [20], identification

Supported by a JP Morgan fellowship.
Supported in part by NSF Award CNS 2149305, NSF Award CNS-2128519, NSF Award
RI-1703846, AFOSR Award FA9550-18-1-0267, FA9550-23-1-0312, a JP Morgan Fac-
ulty Award, the Algorand Centres of Excellence programme managed by Algorand
Foundation, and DARPA under Agreement No. HR00110C0086. Any opinions, find-
ings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Government,
DARPA or the Algorand Foundation.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 219–237, 2023.
https://doi.org/10.1007/978-3-031-48615-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-48615-9_8

220 Y. Liu and R. Pass

protocols [5], coin-flipping protocols [1], and more). These primitives and proto-
cols are often referred to as private-key primitives, or “Minicrypt” primitives [13]
as they exclude the notable task of public-key encryption [4,21]. Additionally,
as observed by Impagliazzo [8,13], the existence of a OWF is equivalent to the
existence of polynomial-time method for sampling hard solved instances for an
NP language (i.e., hard instances together with their witnesses).

A central open question at the intersection of Cryptography and Complexity-
theory, however, is whether the existence of just an average-case hard problem
in NP suffices to get the existence of OWFs:

Does the existence of a language in NP that is hard-on-average imply the
existence of OWFs?

(In Impagliazzo’s language, can we rule out “Pessiland”—a world where NP is
hard on average but OWFs do not exist.) There has been some recent progress
towards this question. Most notably, Liu and Pass [19] recently showed that
(mild) average-case hardness, w.r.t. the uniform distribution of instances, of a
particular natural problem in NP—the time-bounded Kolmogorov Complexity
problem [9,16,17,23,24]—characterizes the existence of OWFs. This problem,
however is not average-case complete for NP so it does not resolve the above
question.

In this work, our goal is to identify properties of languages such that their
average-case hardness implies OWFs:

Can we identify simple/natural properties of a distribution-language pair
(D, L) such that average-case hardness of L with respect to distribution D
implies the existence of OWFs?

Our starting point towards answering this problem is an elegant recent work by
Ilango, Ren and Santhanam [11,12] (IRS). IRS first show that the existence of
OWFs is equivalent to average-case hardness of a Gap version of the Kolmogorov
complexity problem w.r.t. any efficiently computable distribution. In a second
step, they next show that average-case hardness of some specific sparse languages
implies average-case hardness of this Gap problem.

In more detail, their first step shows that OWFs exist iff there exists
some samplable distribution D and efficiently computable thresholds t0, t1,
t1(n) − t0(n) > ω(log n), so that it is hard to decide whether K(x) > t1(|x|)
or K(x) < t0(|x|). Let us highlight that this characterization differs from the
one in [19] in three aspects: (1) it considers unbounded, as opposed to time-
bounded Kolmogorov complexity, (2) hardness holds w.r.t. to a gap problem, as
opposed to a decisional problem, and (3) it considers hardness w.r.t. any effi-
cient distribution, as opposed to the uniform distribution considered in [19]. (In
particular, this result does not provide a candidate distribution for which the
Gap problem may be hard—and it is provably easy with respect to the uniform
distribution.) In the second step, they present some concrete languages (k-SAT
and t-Clique) such that average-case hardness of these languages with respect to
high-entropy distributions implies (but does not characterize) the existence of
OWFs.

On One-Way Functions and Sparse Languages 221

In this work, we show how to generalize the results obtained in the second step
and to demonstrate that the existence of OWFs is equivalent to the existence of a
sparse language that is hard-on-average w.r.t. some efficiently samplable “high-
entropy” distribution. In more details, the Shannon entropy of the sampler needs
to be just slightly bigger than the logarithm of the density of the language.

As a result of independent interest, we additionally show how to generalize
the results of IRS in their Step 1 with respect to K-complexity (but note that
the results with respect to sparse languages no longer pass through this result).1

1.1 Our Results

To formalize the statements of our results, let us briefly state some preliminaries.

Preliminaries We say that a language L ⊂ {0, 1}∗ is S(·)-sparse if for all n ∈ N,
|Ln| ≤ S(n), where Ln = |L∩{0, 1}n|. Given a language L, we abuse the notation
and let L(x) = 1 iff x ∈ L. For a random variable X, let H(X) = E[log 1

Pr[X=x]]
denote the Shannon entropy of X. A function μ is said to be negligible if for
every polynomial p(·) there exists some n0 such that for all n > n0, μ(n) ≤ 1

p(n) .
We say that D = {Dn}n∈N is an ensemble if for all n ∈ N, Dn is a prob-

ability distribution over {0, 1}n. We say that an ensemble D = {Dn}n∈N is
samplable if there exists a probabilistic polynomial-time Turing machine S such
that S(1n) samples Dn; we use the notation S(1n; r) to denote the algorithm S
with randomness fixed to r. We say that an ensemble D has entropy h(·) if for
all sufficiently large n ∈ N, H(Dn) ≥ h(n).

We say that a language L ⊂ {0, 1}∗ is α(·) hard-on-average (α-HoA) on an
ensemble D = {Dn}n∈N if for all probabilistic polynomial-time heuristics H, for
all sufficiently large n ∈ N,

Pr[x ← Dn : H(x) = L(x)] < 1 − α(n).

We simply say that L is hard-on-average (HoA) on D if for every c, α(n) = 1
2− 1

nc ,
L is α-HoA.

Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said
to be a one-way function (OWF) if for every PPT algorithm A, there exists a
negligible function μ such that for all n ∈ N,

Pr[x ← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ μ(n)

Main Theorem We are now ready to state our main theorem.

Theorem 11 The following are equivalent:

1. The existence of a S(·)-sparse language L that is (1
2 − 1

4n)-HoA with respect
to some samplable distribution with Shannon entropy h(·) such that h(n) −
log(S(n)) ≥ 4 log n;

1 It appears that a similar generalization was concurrently and independently obtained
by IRS in the proceedings version [12]; see Sect. 5 for more details.

222 Y. Liu and R. Pass

2. The existence of a S(·)-sparse language L ∈ NP, that is HoA with respect
to some samplable distribution with Shannon entropy h(·) such that h(n) −
log(S(n)) ≥ n/3;

3. The existence of one-way functions.

Theorem 11 is proven by, in Sect. 2 showing that (1) implies (3), and in
Sect. 3 showing that (3) implies (2); the fact that (2) implies (1) is trivial. We
present some corollaries of Theorem 11 in Sect. 4. In Sect. 5, we finally present
some result of independent interest that generalize the result in [11] with respect
to the particular K-complexity problem—in particular, we strengthen the result
from [11] to show that that it suffices to assume hardness of approximating K-
complexity (as opposed to assuming hardness of deciding a threshold version of
a Gap-K problem).

1.2 Proof Overview

To explain the proof of our results, and to put it in context, let us start by
reviewing the results of Ilango, Ren and Santhanam (IRS) [11].

IRS Part 1: OWFs from Hardness of Gap-K. As mentioned, IRS first show
that OWFs exist iff there exists some samplable distribution D and efficiently
computable thresholds t0, t1 where t1(n) − t0(n) > ω(log n) so that it is hard to
decide whether K(x) > t1(|x|) or K(x) < t0(|x|) when sampling x from D. We
here focus only on the “if” direction which will be most relevant to us.2 On a high
level, the IRS result is obtained by showing that any sampler that makes this
Gap problem hard must itself be a OWF. In more detail, they first appeal to the
result of [14,15] showing that if OWFs do not exist, then approximate counting
is possible on average. They next show how to use an approximate counter to
solve the Gap-K problem: Given an instance x, approximately count the number
of random strings r that lead the sampler D (given randomness r) to generate
x. If the number is “small”—we refer to such strings x as rare, where “small”
is appropriately defined as a function of t1(|x|) (which, recall, is required to be
efficiently computable), then output NO (i.e., that the K-complexity is large),
and otherwise (i.e., if x is common) output YES.

It remains to analyze that this deciding algorithm works (on average). The
key observation is that common instances x must be YES-instances: their K-
complexity must be small simply by enumerating all common strings (since there
can only be a small number of them!). Thus (whenever the approximate counter
is correct), the decider always gives the right answer on NO-instances. On the
other hand, since YES-instances are sparse, it directly follows by a Union bound,
that the probability that we sample a YES-instance that is rare must be small.
Consequently, the decider will also give the right answer on YES-instances with
high probability. This concludes the existence of OWFs assuming the hardness
of the Gap-K problem.

2 The only-if direction is a direct consequence of [10].

On One-Way Functions and Sparse Languages 223

IRS Part 2: OWF from Specific Sparse Languages. In the second part of
their paper, IRS next present some concrete languages—k-SAT and t-Clique—
and show that average-case hardness with respect to high-entropy distributions
of these concrete languages imply hardness of Gap-K (which in turn by the first
result implies OWFs). This argument relies on the following three steps:

– Step 1 (Language-specific): Proving—using language specific structures—
that YES instances have small K-complexity.

– Step 2 (Generic): Rely on a generic counting argument (following a simi-
lar statement in [19]) to show that elements sampled from any high-entropy
distribution need to have high K-complexity with reasonable (roughly 1/n)
probability.

– Step 3 (Language-specific): Finally, to argue that average-case hardness
of these languages w.r.t. any high-entropy distribution implies average-case
hardness of Gap-K, we additionally need to argue that the thresholds t0, t1
for the K-complexity problem are efficiently computable. Another language
specific argument is used to show that the number of YES-instances in these
languages can be efficiently estimated and this can be used to give the thresh-
olds.

Towards Sparse Languages: A Warm-Up We start by observing that Step
1, in fact, holds for any sparse language that is decideable, or even recursively
enumerable: If the language is sparse and recursively enumerable, then we can
simply compress an instance by writing down its index, so YES-instances need
to have small K-complexity. We additionally note that if the sparsity threshold,
S(·), is efficiently computable, the thresholds t0, t1 for the Gap-K problem also
become efficiently computable and we can also carry out Step 3 (and Step 2 is
obviously generic). Thus, relying on these observations, we can directly obtain a
weaker version of Theorem 11 by appealing to the results of [11]. Let us highlight,
however, that this version is weaker in two important ways:

1. We require the sparse language to be recursively enumerable (to deal with
Step 1).

2. We require the sparsity threshold to be efficiently computable (to deal with
Step 3).

Proving the Full Result To remove the above two restrictions, our key obser-
vation is that passing through K-complexity may not be the right approach.
Rather, we can directly redo Part 1 of IRS (i.e., decide the language using an
approximate counter) for any sparse language w.r.t. to a high-entropy distribu-
tion. Our decider proceeds as follows given an instance x:

– Just as IRS, use the approximate counter to check if the string x is rare (i.e.,
that there is a small number of random coins r for D that generate x).

– If x is deemed rare, then output NO, and otherwise output a random guess
(as opposed to outputting YES as in IRS).

224 Y. Liu and R. Pass

In the above approach, we still need to define the threshold for what counts as
rare. To do this, we note that we can use approximate counting to estimate the
Shannon entropy of any efficiently sampleable distribution (see Lemma 25), and
we can use the (estimated) Shannon entropy as the threshold for determining
when to deem a string rare. More precisely, we call a string x rare if it is sampled
by D with probability ≤ 2−h+3, where h is the Shannon entropy of D.

To argue that this approach works, we proceed as follows:

– We first note that any distribution D needs to output strings that are rare
(where recall, rare is defined w.r.t. the Shannon-entropy of D) with probability
1/n (See Lemma 22). (This statement is a stronger version of a result shown in
[19], and relies on essentially the same proof as used in [11] to argue that high-
entropy distributions output strings with high K-complexity with reasonable
probability.)

– We next argue that conditioned on D sampling a rare instance, our decider
succeeds with high probability. First, note that the decider always outputs
NO on rare instances (unless the approximate counter fails, which happens
with small probability so we can ignore this event). Next, by the sparsity
of the language and the Union bound, we have that the probability that D
samples a YES-instance that is rare is tiny (technically, ≤ 1/n2) (see Lemma
23). But since the probability that D samples a rare instance is a lot larger,
we have that our decider succeeds with high probability conditioned on rare
instances.

– On common instances, our decider succeeds with probability 1/2 (again, as
long as the approximate counter does not fail, which happens with tiny prob-
ability). So, we conclude that the decider succeeds with probability roughy
1/2 + 1/(2n).

This concludes that (1) implies (3) in Theorem 11. To show that (3) implies
(2) we simply note that one-way functions imply pseudo-random generators
(PRG) by [10], and by considering the language of images of the PRG (which
is extremely sparse) and the distribution that with probability 1/2 samples a
random string and with probability 1/2 samples an image of the PRG (which
has Shannon-entropy entropy 1/2n); this language is hard-on-average on this
distribution by the security of the PRG.

Concluding Corollaries for Concrete Languages We finally observe—using
standard arguments—that the languages considered in [11] (k-SAT and t-Clique)
are sparse, and so is the language of strings with small K-complexity. See Sect. 4
for more details.

In our view, these results show that for many of the corollaries of [11], K-
complexity was perhaps a mirage, and in our eyes, sparsity is the central feature.
We note that a similar phenomena actually happened also with respect to the
vein of work on “hardness magnification”, as shown in the elegant work by Chen,
Jin, Williams [3].

Musings on the Relevance of our Results The reader may wonder why
it matters to deal with non-recursively enumerable languages and with non-

On One-Way Functions and Sparse Languages 225

efficiently computable sparsity. After all, the natural sparse languages we con-
sider in Sect. 4 are both recursively enumerable and have efficiently computable
sparsity. In our opinion, the difference is significant. In particular, removing
these restriction opens up for the possibility of using a probabilistic argument to
define a candidate language that is hard-on-average. Probabilistic arguments are
typically used for proving lower-bounds and our hope is that our result opens
up the avenue for using such techniques.

Back to K-complexity Motivated by the above results, one may wonder
whether the efficient computability condition in the results of [11] w.r.t. K-
complexity is inherent (i.e., whether the efficient computability of the thresholds
t0, t1 in the Gap-K problem is inherent). As a result of independent interest,
we show how to strengthen the result of IRS to show that it suffices to assume
average-case hardness of approximately computing K-complexity within an addi-
tive term of ω(log n) to deduce the existence of one-way function (i.e., that hard-
ness of the search version suffices, and thus we no longer need to consider any
thresholds).3

Theorem 12 The following are equivalent:

– One-way functions exist;
– There exists some efficiently samplable distribution D such that K-complexity

is mildly hard to approximate within an additive term of ω(log n).
– There exists some efficiently samplable distribution D such that K-complexity

is hard to approximate within an additive term of n − no(1).

Let us first compare this result to IRS; the result is strictly stronger as our hard-
ness of approximating K-complexity assumption is trivially implied the deci-
sional Gap-K hardness condition considered in IRS. In fact, as a corollary of
this result (of independent interest), we get a decision-to-search reduction for
K-complexity (for efficiently computable thresholds); See Theorem 51 for more
details.

It is also worthwhile to compare it to the results of [19]; here the results is
incomparable. [19] shows that mild average-case hardness of time-bounded Kol-
mogorov complexity (even to approximate) with respect to the uniform distri-
bution characterizes OWF. We note that K-complexity (and also time-bounded
K-complexity) is easy to approximate within an additive factor of ω(log n) with
overwhelming probability with respect to the uniform distribution so it was cru-
cial for [19] that an approximate factor of O(log n) was employed. Theorem 12
thus cannot hold w.r.t. the uniform distribution, and just as the result in IRS, it
gives no indication of what the hard distribution may be—in fact, as mentioned
before, the distribution D gives the OWF.

3 As mentionned above, it appears that a similar generalization was concurrently and
independently obtained by IRS in the proceedings version [12]; see Sect. 5 for more
details.

226 Y. Liu and R. Pass

2 OWFs from Avg-Case Hardness of Sparse Languages

Theorem 21 Let S(·) be a function, let h(n) ≥ log S(n) + 4 log n, and let L
be a S(·)-sparse language. Assume there exists some samplable ensemble D with
entropy h(·) such that L is (1

2 − 1
4n)-HoA on D. Then, one-way functions exist.

Before proving the theorem, we will state some useful lemmas.

Lemma 22 (Implicit in [11,19]) Let Dn be a distribution over {0, 1}n with
entropy at least h. Then, with probability at least 1

n over x ← Dn, it holds that

Pr[Dn = x] ≤ 2−h+3

Proof. Assume for contradiction that with probability less than 1
n over x ← Dn,

Pr[Dn = x] ≤ 2−h+3. Let Freq denote the set of strings x ⊆ {0, 1}n such that
Pr[Dn = x] > 2−h+3, and let Rare denote the set of strings ⊆ {0, 1}n such that
Pr[Dn = x] ≤ 2−h+3. Let flag be a binary random variable such that flag = 0 if
Dn ∈ Freq and 1 otherwise (i.e. if Dn ∈ Rare). Let pFreq be the probability that
Dn ∈ Freq and pRare be the probability that Dn ∈ Rare. By the chain rule for
entropy, it holds that

H(Dn) ≤ H(Dn, flag)
= H(flag) + pFreqH(Dn | Dn ∈ Freq) + pRareH(Dn | Dn ∈ Rare)

In the RHS, the first term is at most 1 (since flag is a binary variable). The second
term is at most h−3 since |Freq| ≤ 2h−3. Recall that by assumption, we have that
pRare < 1

n ; furthermore, H(Dn | Dn ∈ Rare) ≤ n (since |Rare| ≤ 2n) and thus
the last term of the RHS is at most 1. Therefore, H(Dn) ≤ 1 + (h − 3) + 1 < h,
which is a contradiction.

Lemma 23 Let Ln ⊂ {0, 1}n be a set of strings such that |Ln| ≤ S(n). Let Dn

be a distribution over {0, 1}n. Let ε be any number satisfying ε ≤ 1
S(n)n2 . Then,

the following holds:

Pr
x←Dn

[Ln(x) = 1 ∧ Pr[Dn = x] ≤ ε] ≤ 1
n2

Proof. By taking a union bound over the at most S(n) instances in Ln, it follows
that Prx←Dn

[Ln(x) = 1 ∧ Pr[Dn = x] ≤ ε] is bounded by S(n) × 1
S(n)n2 = 1

n2 .

We will rely on the following important lemma showing that approximate
counting can be efficiently done infinitely often if one-way functions do not exist.

Lemma 24 ([11,14,15]) Assume that one-way functions do not exist. Then,
for any samplable ensemble D = {Dn}n∈N and any constant q ≥ 1, there exist a
PPT algorithm A and a constant δ > 0 such that for infinitely many n,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1 − 1
nq

where px = Pr[Dn = x].

On One-Way Functions and Sparse Languages 227

In addition, we observe that if approximate counting can be done, the Shan-
non entropy of any samplable distribution D can be estimated efficiently.

Lemma 25 Let D = {Dn}n∈N be a samplable ensemble, let Samp be the corre-
sponding sampler, and let m(·) be a polynomial such that m(n) is greater than
the number of random coins used by Samp(1n). Assume that there exist a PPT
algorithm A, a constant δ, and an infinite set I ⊆ N such that for all n ∈ I,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1 − 1
m(n)

where px = Pr[Dn = x]. Then, there exist a PPT algorithm est and a constant
δ′ such that for all n ∈ I, with probability at least 1 − 1

n2 ,

|est(1n) − H(Dn)| ≤ δ′

Proof. Let n ∈ I be a sufficiently large input length on which A succeeds, and
let m = m(n). Let px denote Pr[Dn = x]. Let A′ be the algorithm defined as
A′(x) = max(2−m,min(1,A(x))). A′ will have the same property that A has in
the assumption since for all x in the support of Dn, it holds that 2−m ≤ px ≤ 1.
We first claim that

|Ex←Dn
[− log A′(x)] − H(Dn)| ≤ − log δ + 1 (1)

If this holds, note that D is samplable and A′ runs in PPT, it follows that we can
empirically estimate Ex←Dn

[− log A′(x)] in polynomial time by collecting at least
polynomially many samples and taking the average. By Hoeffding’s inequality,
the difference between this estimation and the real expectation value is at most
1 with very high probability (≥ 1 − 1

n2).
Thus, it remains to show that inequality 1 holds. Notice that

|Ex←Dn
[− log A′(x)] − H(Dn)|

=|Ex←Dn
[− log A′(x)] − Ex←Dn

[− log px]|
≤Ex←Dn

[| − log A′(x) − (− log px)|]
= Pr

x←Dn

[A′ succeeds] · Ex←Dn
[| − log A′(x) − (− log px)| | A′ succeeds]

+ Pr
x←Dn

[A′ fails] · Ex←Dn
[| log A′(x) − (− log px)| | A′ fails]

≤Ex←Dn
[| log

px

A′(x)
| | A′ succeeds] +

1
m

· m

≤Ex←Dn
[− log δ | A′ succeeds] + 1

≤ − log δ + 1

Now we are ready to prove Theorem 21.

Proof (Proof of Theorem 21). Assume for contradiction that one-way functions
do not exist. Then, by Lemma 24, there exist a PPT algorithm A and a constant
δ such that for infinitely many n,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1 − 1
n2

228 Y. Liu and R. Pass

where px = Pr[Dn = x]. By Lemma 25, there exist a PPT algorithm est and a
constant δ′ such that for all n on which A succeeds, with probability at least
1 − 1

n2 ,
|est(1n) − H(Dn)| ≤ δ′ (2)

Consider some sufficiently large input length n on which A succeeds. Let the
random variable

ε = 2−est(1n)+log n

We are now ready to describe our heuristic H for L. On input x ← Dn, H
computes ε and outputs 0 if A(x) ≤ ε; otherwise, H outputs a random guess
b ∈ {0, 1}. We will show that H solves L with probability 1

2 + 1
4n on the input

length n (whenever n is sufficiently large).
Towards this, let us first assume we have access to a “perfect” approximate-

counter algorithm O such that δ · px ≤ O(x) ≤ px with probability 1 when x
sampled from Dn; let us also assume we have access to a “perfect” entropy-
estimator algorithm est∗ such that |est∗(1n) − H(Dn)| ≤ δ′ with probability 1;
consider the heuristic H′ that behaves just as H except that H′ uses O and est∗

instead of A and est.
We first show that H′ solves L with high probability on Dn. Note that

Pr
x←Dn

[H′(x) = L(x)]

= Pr
x←Dn

[H′(x) = L(x) | O(x) > ε] Pr[O(x) > ε]

+ Pr
x←Dn

[H′(x) = L(x) | O(x) ≤ ε] Pr[O(x) ≤ ε]

=
1
2

(1 − Pr[O(x) ≤ ε]) +
(

1 − Pr
x←Dn

[H′(x) �= L(x) | O(x) ≤ ε]
)

Pr[O(x) ≤ ε]

=
1
2

(1 − Pr[O(x) ≤ ε]) +
(

1 − Pr
x←Dn

[L(x) = 1 | O(x) ≤ ε]
)

Pr[O(x) ≤ ε]

=
1
2

+
1
2

Pr[O(x) ≤ ε] − Pr
x←Dn

[L(x) = 1 | O(x) ≤ ε] Pr[O(x) ≤ ε]

=
1
2

+
1
2

Pr[O(x) ≤ ε] − Pr
x←Dn

[L(x) = 1 ∧ O(x) ≤ ε]

Note that px ≤ ε implies O(x) ≤ ε (since O is a prefect approximate-counter).
In addition, for sufficiently large n, px ≤ 2−H(Dn)+3 implies px ≤ ε since

2−H(Dn)+3 ≤ 2−est∗(1n)+δ′+3 ≤ 2−est∗(1n)+log n = ε.

Thus,

Pr[O(x) ≤ ε] ≥ Pr
x←Dn

[px ≤ ε] ≥ Pr
x←Dn

[px ≤ 2−H(Dn)+3] ≥ 1
n

where the last inequality follows from by Lemma 22.

On One-Way Functions and Sparse Languages 229

Next, observe that ε/δ ≤ 1
S(n)n2 (for sufficiently large n). This follows since

if n is sufficiently large, we have:

ε = 2−est∗(1n)+log n ≤2−H(Dn)+δ′+log n = 2−H(Dn)+log n · 2δ′

≤2−H(Dn)+log n · δn = 2−H(Dn)+2 log nδ

≤2−h(n)+2 log nδ ≤ 2− log S(n)−4 log n+2 log nδ

=
δ

S(n)n2

Finally, since px ≤ O(x)/δ holds with probability 1, it follows that

Pr
x←Dn

[L(x) = 1 ∧ O(x) ≤ ε] ≤ Pr
x←Dn

[L(x) = 1 ∧ px ≤ ε/δ] ≤ 1
n2

where the last inequality follows from Lemma 23 and the fact that ε/δ ≤ 1
S(n)n2 .

Thus, we conclude that

Pr
x←Dn

[H′(x) = L(x)] ≥ 1
2

+
1
2

· 1
n

− 1
n2

We now turn to analyzing H as opposed to H′ and note that H and H′

work identically the same except when either A or est “fail”. Observe that the
probability that A(x) �= O(x) on x sampled from Dn is at most 1

n2 . Additionally,
the probability that |est(1n) − H(Dn)| > δ′ is at most 1

n2 . Thus, by a union
bound, we have that

Pr
x←Dn

[H(x) = L(x)] ≥ 1
2

+
1
2n

− 3
n2

≥ 1
2

+
1
4n

on infinitely many n ∈ N, which is a contradiction.

3 Avg-Case Hardness of Sparse Languages from OWFs

Theorem 31 Assume the existence of one-way functions. Let S(n) = 2n/10 and
h(n) = n/2. Then there exists a S(·)-sparse language L ∈ NP and a samplable
ensemble D with entropy h(·) such that L is HoA on D.

Proof. Assume the existence of OWFs. By [10], there exists some pseudorandom
generator g : {0, 1}n/10 → {0, 1}n. Consider the NP-language L = {g(s) | s ∈
{0, 1}∗}. Note that L is S(·)-sparse for S(n) = 2n/10. Let D = {Dn}n∈N be an
ensemble such that Dn samples from g(Un/10) with probability 1/2 and from
Un with probability 1/2. Note that D has entropy at least h(n) = n/2 (since
with probability 1/2, we sample from Un). Finally, it follows from the pseu-
dorandomness property of g (using a standard argument) that L is HoA over
D.

230 Y. Liu and R. Pass

4 Corollaries

In this section, we present some direct corollaries that follow by applying our
main theorem to known sparse languages. For convenience of the reader, we
recall the (standard) proofs that these languages are sparse.

4.1 Kolmogorov Complexity

The Kolmogorov complexity (K-complexity) of a string x ∈ {0, 1}∗ is defined to
be the length of the shortest program Π that outputs the string x. More formally,
let U be a fixed Universal Turing machine, for any string x ∈ {0, 1}∗, we define
K(x) = minΠ∈{0,1}∗{|Π| : U(Π) = x}. Let MINK[s] denote the language of
strings x having the property that K(x) ≤ s(|x|). We observes that MINK[s] is
a sparse language when s(n) is slightly below n.

Lemma 41 For all n ∈ N, |MINK[s] ∩ {0, 1}n| ≤ 2s(n)+1.

Proof. The lemma directly follows from the fact that the number of strings with
length ≤ s(n) is at most 2s(n)+1.

Combining Lemma 41, we get:

Corollary 42 Let s(n) ≤ n−4 log n−1 be a function. Assume that there exists
some samplable ensemble D with entropy h(n) ≥ s(n) + 4 log n + 1 such that
MINK[s] is (1

2 − 1
4n)-HoA on D. Then, one-way functions exist.

Proof. By Lemma 41, the number of n-bit YES instances is at most S(n) =
2s(n)+1. Since Dn has entropy h(n) ≥ s(n) + 1 + 4 log n, the corollary follows
directly from Theorem 11.

4.2 k-SAT

Let k, c be two positive integers. The language k-SAT(m, cm) is defined to consist
of all satisfiable k-CNF formulas on m variables with cm clauses. We recall the
well-known fact that k-SAT(m, cm) is a sparse language when c ≥ 2k+1.

Lemma 43 The number of satisfiable k-CNF formulas on m variables with cm
clauses is at most 2m

(
(2k − 1)

(
m
k

))cm, and the number of all such k-CNF for-
mulas is

(
(2k)

(
m
k

))cm.

Proof. We first show that there are ((2k)
(
m
k

)
)cm k-CNF formulas on m variables

with cm clauses. Note that are 2k
(
m
k

)
choices for a single k-clause; therefore, the

number of cm k-clauses is ((2k)
(
m
k

)
)cm.

We then show that there are at most 2m((2k − 1)
(
m
k

)
)cm satisfiable k-CNF

formulas on m variables with cm clauses. Consider any possible assignment x;
the number of k-clauses that is satisfied by x is at most (2k − 1)

(
m
k

)
since given

the choice of k variables, there are at most 2k−1 possible choices of the polarities.
Finally, since there are cm such k-clauses with m variables, we have that the
total number of satisfiable formulas is at most 2m((2k − 1)

(
m
k

)
)cm

On One-Way Functions and Sparse Languages 231

To consider average-case hardness of this problem, we need to have a way to
encode formulas as strings. We use the following standard encoding scheme for k-
SAT from [11]: a m-variable cm-clause k-CNF is represented by using n(m, k, c) =
cm(k�log m + k) bits to describe a sequence of cm clauses (and here n denotes
the length of the input bit string encoding the instance). In each clause, we
specify k literals one-by-one, and each of them takes �log m bits to specify the
index of a variable and 1 bit to fix the polarity. When n is not of the form
n(m, k, c), for an input of length n, we ignore as few bits as possible in the end
of the input such that the prefix of the input is of length n(m, k, c) for some
m. Following [11], let the entropy deficiency of a distribution Dn over n bits
denote the difference between n and H(Dn). The following corollary implies [11,
Theorem 4, Term 1].

Corollary 44 Let k, c be two integers such that c ≥ 2k+2. Let m = m(n) be
a polynomial. Assume that there exists some samplable ensemble D = {Dn}n∈N

with entropy deficiency at most cm(n)/2k+1 distributed over k-CNF formulas on
m(n) variables and cm(n) clauses such that k-SAT is (1

2 − 1
4n)-HoA on D. Then,

one-way functions exist.

Proof. Recall that k-CNF formulas are represented by binary strings using
the standard encoding scheme. Let n′ = n(m(n), k, c) (be the length of the
input without padding); by the encoding scheme, it follows that every m(n)-
variable cm(n)-clause k-CNF formula will be encoded by 2n−n′

n-bit strings. By
Lemma 43, it follows that n′ is at least

log
((

(2k)
(

m

k

))cm)
= cm log 2k + cm log

(
m

k

)

Since Dn has entropy deficiency at most cm/2k+1, it follows that Dn has entropy
lower bounded by:

n′ + (n − n′) − cm/2k+1 ≥ cm

(
log 2k − 1

2k+1
+ log

(
m

k

))
+ (n − n′)

By Lemma 43, the number of n-bit YES instances is at most

S(n) = 2m

(
(2k − 1)

(
m

k

))cm

× 2n−n′

232 Y. Liu and R. Pass

It follows that

H(Dn) − log S(n) ≥cm

(
log 2k − 1

2k+1
+ log

(
m

k

))
+ (n − n′)

− log
(

2m

(
(2k − 1)

(
m

k

))cm

× 2n−n′
)

=m(c log 2k − c log(2k − 1) − c

2k+1
− 1)

≥m(
c

2k
− c

2k+1
− 1)

≥m

≥4 log n.

where the second inequality follows from the standard inequality that log x −
log(x − 1) ≥ 1

x for all x ≥ 2, the third one from the fact that, by assumption,
c ≥ 2k+2, and the fourth one inequality follows from the fact that due to the
encoding scheme, m ≥ Ω(

√
n).

4.3 t-Clique

Let t : N → N be a function and let t-Clique(m) be the set of graphs on m
vertices having a clique of size at least t(m). We recall the well-known fact that
t-Clique(m) is sparse when t(·) is large enough.

Lemma 45 The number of m-vertex graphs with at least a t-size clique is at
most

(
m
t

)
2(m2)−(t

2). However, the number of m-vertex graphs is 2(m2).

Proof. There are
(
m
2

)
edges in a m-vertex graph, and thus the number of possible

graphs is 2(m2). There are
(
m
t

)
choices of cliques in a graph, and after fixing a

clique, there are
(
m
2

)−(
t
2

)
edges in the rest of the graph and therefore the number

of graphs with at least 1 clique is at most
(
m
t

)
2(m2)−(t

2).

We use the standard encoding scheme for t-Clique from [11]. A m-vertex
graph is encoded by a (n = n(m) =

(
m
2

)
)-bit string where the i-th bit is 1 iff

the i-th edge appears in the graph. For input lengths n that are not of the form
n(m), we ignore as few bits as possible at the end of the input such that the
prefix of the input is of length n(m) for some m.

Corollary 46 Let m(n), t(n) ∈ ω(log m) be two polynomials. Assume that there
exists some samplable ensemble D = {Dn}n∈N with entropy deficiency at most
0.99

(
t(n)
2

)
distributed over m(n)-vertex graphs such that t-Clique(m) is (1

2 − 1
4n)-

HoA on D. Then, one-way functions exist.

Proof. Recall that graphs are represented by binary strings using the standard
encoding scheme. Let n′ = n(m(n)) (be the length of the input without padding);

On One-Way Functions and Sparse Languages 233

by the encoding scheme, it follows that every m(n)-vertex graph will be encoded
by at least 2n−n′

n-bit strings. By Lemma 45, it follows that n′ is at least

log 2(m2) =
(

m

2

)

Since Dn has entropy deficiency 0.99
(

t
2

)
, it follows that Dn has entropy lower

bounded by:

n′ + (n − n′) − 0.99
(

t

2

)
≥

(
m

2

)
− 0.99

(
t

2

)
+ (n − n′)

By Lemma 45, the number of n-bit YES instances is at most

S(n) =
(

m

t

)
2(m2)−(t

2) × 2n−n′

It follows that

H(Dn) − log S(n) ≥
(

m

2

)
− 0.99

(
t

2

)
+ (n − n′)

− log
((

m

t

)
2(m2)−(t

2) × 2n−n′
)

≥
(

m

2

)
− 0.99

(
t

2

)
− log

(
m

t

)
−

((
m

2

)
−

(
t

2

))

≥
(

t

2

)
− 0.99

(
t

2

)
− t log m

≥4 log n

since t(n) = ω(log m).

5 OWF from Hardness of Approximating K-Complexity

We turn to showing how to (slightly) generalize the result in [11] with respect to
K-complexity, and show that the hardness of approximating K-complexity (even
with respect to unknown thresholds) is equivalent to the existence of OWFs. We
refer the reader to Sect. 4.1 for a formal definition of the notion of K-complexity.

It appears that a similar generalization was concurrently and independently
obtained by IRS in the proceedings version [12] for a general class of complexity
measures satisfying a so-called “coding theorem”—see Theorem 2.2 in [12]—but
their full version has not appeared yet as far as we can tell. The corollary of
this Theorem 2.2 to K-complexity is still stated w.r.t. a gap problem with a
computable threshold.

We start by recalling what it means for a function to be hard on average to
approximate. We say that a function f : {0, 1}∗ → N is α(·) hard-on-average (α-
HoA) to β(·)-approximate on an ensemble D = {Dn}n∈N if for all probabilistic
polynomial-time heuristics H, for all sufficiently large n ∈ N,

Pr[x ← Dn : |H(x) − f(x)| ≤ β(n)] < 1 − α(n).

234 Y. Liu and R. Pass

We simply say that f is mildly hard-on-average (mildly HoA) to approximate
on D if there exists a polynomial p(·) such that f is 1

p -HoA to approximate;
We say that f is hard-on-average (HoA) to approximate on D if for every c,
α(n) = 1

2 − 1
nc , L is α-HoA to approximate.

The hardness notion above is defined with respect to the search version of
approximating the function f and when considering K-complexity, it asserts
that approximating the value of the K-complexity is hard. We can also con-
sider its decisional version, parametrized by two efficiently computable thresh-
olds t0(·), t1(·), where we aim at deciding whether the input string x is of K-
complexity below t0(|x|) or above t1(|x|). Let GapK[t0, t1] be a promise problem
where YES-instances are strings x ∈ ΠYES such that K(x) ≤ t0(|x|), and NO-
instances are strings x ∈ ΠNO such that K(x) ≥ t1(|x|). We say that GapK[t0, t1]
is mildly hard on average (mildly HoA) on an ensemble D = {Dn}n∈N if there
exists a polynomial p(·) such that for all probabilistic polynomial-time heuristics
H, for all sufficiently large n ∈ N,

Pr[x ← Dn : (x ∈ ΠYES ∧ H(x) = 0) ∨ (x ∈ ΠNO ∧ H(x) = 1)] ≥ 1/p(n).

The result in [11] showed that the existence of a samplable distribution D and
efficiently computable t0, t1, t1(n) − t0(n) ∈ ω(log n) such that GapK[t0, t1] is
mildly HoA on D is equivalent to the existence of OWFs. We show in the fol-
lowing Theorem that it suffices to assume hardness with respect to the search
version (with an additive factor ω(log n)) to obtain OWFs, therefore giving a
search to decision reduction for this problem by going through the notion of
OWFs.

We are not aware of any “direct” way of showing such a decision-to-search
reduction. While one direction is trivial (hardness of decision—with respect to
efficiently computable thresholds—to hardness of search), it is not clear how to
show the converse direction.4

Theorem 51 (Theorem 12, restated) The following are equivalent:

1. One-way functions exist;
2. There exists some efficiently samplable distribution such that K-complexity is

mildly hard to approximate within an additive term of ω(log n).
3. There exists some efficiently samplable distribution such that K-complexity is

hard to approximate within an additive term of n − no(1).
4. There exist some efficiently samplable distribution and efficiently computable

thresholds t0, t1, t1(n)− t0(n) = ω(log n) such that GapK[t0, t1] is mildly HoA.
4 The naive approach to try to prove such a result would be to simply try running

the decision heuristic on different thresholds. There are several problems with this
approach. First, for every threshold t = (t0, t1), there may exist a different heuristic
Ht that solves the decision problem for that threshold, so it’s not clear how to get
a uniform search heuristic. Next, its not even clear how to define efficient threshold
functions as we require n/Gap thresholds to approximate within an additive term
of Gap. Finally, it is not a-prior clear how to use a Gap-K heuristic to approximate
K given that the Gap-K heuristic only works on average.

On One-Way Functions and Sparse Languages 235

Proof (of Theorem 12). (2) ⇒ (1) follows from Theorem 52 (stated and proved
below). The implications (1) ⇒ (3) and (1) ⇒ (4) essentially follow from the
argument proving Theorem 31 (and see also [11]). (3) ⇒ (2) trivially holds. (4)
⇒ (2) follows from the following argument. Assume that there exists a heuristic
H for approximating K-complexity within (t1 − t0)/2. To solve GapK[t0, t1] on
input x, we simply output 1 if H(x) ≤ t0(|x|)+ (t1(|x|)− t0(|x|))/2. Note that if
H succeeds on x (with some probability), our algorithm also succeeds in solving
GapK[t0, t1] on x (with the same probability). This concludes our proof.

Theorem 52 For any constant γ ≥ 3, there exists a polynomial p such that
if there exists a samplable ensemble D on which K-complexity is 1

p -HoA to
(γ log n)-approximate, then OWFs exist.

Proof. Consider some fixed constant γ ≥ 3 and let p(n) = nγ−2. We assume
for contradiction that OWFs do not exist. Then, by Lemma 24, there exist a
constant δ and an approximate counter A for D = {Dn} with an (multiplicative)
approximate factor δ and an error probability ≤ 1

2p(n) . We will use A to compute
the K-complexity of strings sampled by D.

On input x ← Dn, our heuristic H simply outputs −�log A(x)� as (our
estimate of) K(x). H runs in polynomial time since A is a PPT machine. We
next show that H(x) approximates K(x) with probability at least 1− 1

p(n) (over
x ∼ Dn). Fix some input length n on which A succeeds (and there are infinitely
many such input lengths). Let us first assume that A is a “perfect” approximate
counter and δ · px ≤ A(x) ≤ px with probability 1 (where px is defined to be
Pr[Dn = x]). The following two claims will show that H approximate K with
high probability.

Claim 1 K(x) ≤ H(x) + γ log n holds with probability 1.

Proof. We will show that K(x) ≤ −�log px�+2 log(n)+O(1) with probability 1.
Note that H(x) = −�log A(x)� ≥ −�log px� (due to the correctness of A) and γ ≥
3, the claim follows. For any string x ∈ {0, 1}n, let S = {y ∈ {0, 1}n : −�log py� =
−�log px�}. Note that for each y ∈ S, it holds that Pr[Dn = y] = py ≥ 2�log px�.
So S is of size at most 2−�log px�. Membership of S can be checked by using an
exponential time algorithm computing py (enumerating all randomness used in
Dn) with the values −�log px� and n. Therefore, we can compress each element
in S (including x) into −�log px� + 2 log(n) + O(1) bits by hardwiring its index
and running an exhaustive search with the membership checker, which shows
that K(x) ≤ −�log px� + 2 log(n) + O(1).

Claim 2 K(x) ≥ H(x) − γ log n holds with probability at least 1 − 1
2p(n)

236 Y. Liu and R. Pass

Proof. Towards this, we show that H(x) > K(x) + γ log n with probability at
most 1

2p(n) . This follows from a union bound.

Pr
x←Dn

[H(x) > K(x) + γ log n]

=
n+O(1)∑

w=1

Pr
x←Dn

[K(x) = w ∧ H(x) > w + γ log n]

≤
n+O(1)∑

w=1

Pr
x←Dn

[K(x) = w ∧ Pr[Dn = x] <
1
δ

· 2−w−γ log n]

≤
n+O(1)∑

w=1

2w · 1
δ

· 2−w−γ log n

≤ 1
2p(n)

.

where the second to last line follows from a union bound.

Finally, we note that A is not necessarily a perfect approximate counter and
A fails with probability 1

2p(n) . By a union bound, it follows that

Pr
x←Dn

[|H(x) − K(x)| ≤ γ log n] ≥ 1 − 1
2p(n)

− 1
2p(n)

≥ 1 − 1
p(n)

on infinitely many n.

References

1. Blum, M.: Coin flipping by telephone - a protocol for solving impossible prob-
lems. In: COMPCON’82, Digest of Papers, Twenty-Fourth IEEE Computer Society
International Conference, San Francisco, California, USA, February 22–25, 1982,
pp. 133–137. IEEE Computer Society (1982)

2. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

3. Chen, L., Jin, C., Williams, R.R.: Hardness magnification for all sparse np lan-
guages. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 1240–1255. IEEE (2019)

4. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

5. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC ’90, pp. 416–426 (1990). http://doi.acm.org/10.1145/100216.100272

6. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: CRYPTO, pp. 276–288 (1984)

7. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

8. Gurevich, Y.: The challenger-solver game: variations on the theme of p=np. In:
Logic in Computer Science Column, The Bulletin of EATCS (1989)

http://doi.acm.org/10.1145/100216.100272

On One-Way Functions and Sparse Languages 237

9. Hartmanis, J.: Generalized kolmogorov complexity and the structure of feasible
computations. In: 24th Annual Symposium on Foundations of Computer Science
(sfcs 1983), pp. 439–445 (1983). https://doi.org/10.1109/SFCS.1983.21

10. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

11. Ilango, R., Ren, H., Santhanam, R.: Hardness on any samplable distribution suf-
fices: New characterizations of one-way functions by meta-complexity. Electron.
Colloquium Comput. Complex. 28, 82 (2021)

12. Ilango, R., Ren, H., Santhanam, R.: Robustness of average-case meta-complexity
via pseudorandomness. In: Proceedings of the 54th Annual ACM SIGACT Sym-
posium on Theory of Computing, pp. 1575–1583 (2022)

13. Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Com-
plexity Theory ’95, pp. 134–147 (1995)

14. Impagliazzo, R., Levin, L.A.: No better ways to generate hard NP instances than
picking uniformly at random. In: 31st Annual Symposium on Foundations of Com-
puter Science, St. Louis, Missouri, USA, October 22–24, 1990, Volume II, pp.
812–821 (1990)

15. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: 30th Annual Symposium on Foundations of
Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989, pp. 230–235 (1989)

16. Ko, K.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci.
48(3), 9–33 (1986). https://doi.org/10.1016/0304-3975(86)90081-2

17. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.
Int. J. Comput. Math. 2(1–4), 157–168 (1968)

18. Levin, L.A.: The tale of one-way functions. Problems of Information Transmission
39(1), 92–103 (2003). https://doi.org/10.1023/A:1023634616182

19. Liu, Y., Pass, R.: On one-way functions and Kolmogorov complexity. In: 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16–19, 2020, pp. 1243–1254. IEEE (2020)

20. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991). https://doi.org/10.1007/BF00196774

21. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signa-
tures and public-key cryptosystems (reprint). Commun. ACM 26(1), 96–99 (1983).
https://doi.org/10.1145/357980.358017

22. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC, pp. 387–394 (1990)

23. Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of
the 15th Annual ACM Symposium on Theory of Computing, 25–27 April, 1983,
Boston, Massachusetts, USA, pp. 330–335. ACM (1983)

24. Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-force
searches) algorithms. Ann. Hist. Comput. 6(4), 384–400 (1984)

https://doi.org/10.1109/SFCS.1983.21
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1023/A:1023634616182
https://doi.org/10.1007/BF00196774
https://doi.org/10.1145/357980.358017

Security Proofs for Key-Alternating
Ciphers with Non-Independent Round

Permutations

Liqing Yu1,3, Yusai Wu3(B), Yu Yu2,3 , Zhenfu Cao1 , and Xiaolei Dong1

1 East China Normal University, Shanghai, China
lqyups@126.com, {zfcao,dong-xl}@sei.ecnu.edu.cn

2 Shanghai Jiao Tong University, Shanghai, China
yuyu@yuyu.hk

3 Shanghai Qi Zhi Institute, Shanghai, China
yusaiwu@126.com

Abstract. This work studies the key-alternating ciphers (KACs) whose
round permutations are not necessarily independent. We revisit exist-
ing security proofs for key-alternating ciphers with a single permutation
(KACSPs), and extend their method to an arbitrary number of rounds.
In particular, we propose new techniques that can significantly simplify
the proofs, and also remove two unnatural restrictions in the known secu-
rity bound of 3-round KACSP (Wu et al., Asiacrypt 2020). With these
techniques, we prove the first tight security bound for t-round KACSP,
which was an open problem. We stress that our techniques apply to all
variants of KACs with non-independent round permutations, as well as
to the standard KACs.

1 Introduction

The key-alternating ciphers (see Eq. (1)) generalize the Even-Mansour construc-
tion [EM97] over multiple rounds. They can be viewed as abstract construc-
tions of many substitution-permutation network (SPN) block ciphers (e.g. AES
[DR02]). In addition, there are various variants of the key-alternating ciphers.

This work only considers the case of independent round keys, and reduc-
ing their independence is a relatively parallel topic. That is, we are concerned
with different variants of KACs on round permutations, while the round keys
are always independent and random. For convenience, we simply use KAC to
represent the standard KAC with independent permutations, and refer to all the
other variants as KAC-type constructions. In particular, KACSP is a KAC-type
construction in which all the round permutations are identical.

In a t-round KAC or KAC-type construction, the number of different round
permutations, denoted t′, is an important parameter. Clearly, we have t′ = t in
the case of KAC and t′ = 1 in the case of KACSP. When t′ < t, it means that
there are different rounds using the same permutation. For a given construction,
we name the round permutations as follows. In particular, the name Pk will be
c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 238–267, 2023.
https://doi.org/10.1007/978-3-031-48615-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_9&domain=pdf
http://orcid.org/0000-0002-9278-4521
http://orcid.org/0000-0002-5250-5030
https://doi.org/10.1007/978-3-031-48615-9_9

Security Proofs for KACs with Non-Independent Round Permutations 239

assigned to each round permutation in order from round 1 to round t, where
k ∈ {1, . . . , t′}. For round i, we check if there exists j < i such that round j uses
the same permutation as round i. If so, we use the same name as the permutation
in round j; otherwise, we use the name Pk, where k ∈ {1, . . . , t′} is the smallest
integer not used in previous rounds. For simplicity, we sometimes only use the
permutation names to denote a construction, such as P1P2P3-construction (i.e.
3-round KAC), P1P1P1-construction (i.e. 3-round KACSP), P1P1P2-construction,
etc.

We now give a more formal definition of KAC and KACSP constructions.
Let x ∈ {0, 1}n denote the plaintext, κ0, κ1, . . . , κt ∈ {0, 1}n×(t+1) denote the
t+ 1 round keys, and P1, . . . , Pt denote the permutations over {0, 1}n, then the
outputs of t-round KAC and t-round KACSP are computed as follows.

KACP1,...,Pt; κ0,κ1,...,κt(x) def= κt ⊕ Pt(κt−1 ⊕ Pt−1(· · · P2(κ1 ⊕ P1(κ0 ⊕ x)) · · ·)),
(1)

KACSPP1; κ0,κ1,...,κt(x) def= κt ⊕ P1(κt−1 ⊕ P1(· · · P1(κ1 ⊕ P1(κ0 ⊕ x)) · · ·)).
(2)

Related Works. Bogdanov et al. [Bog+12] were the first to study the provable
security of t-round KAC (for t ≥ 2), and showed that it is secure up to O(2

2
3n)

queries. On the other hand, they presented a simple distinguishing attack using
O(2

t
t+1n) queries, and conjectured that this attack cannot be improved intrin-

sically. Thus, their result is optimal for 2-round KAC. After a series of papers
[Ste12,LPS12,CS14,HT16], the above conjecture was proved. Roughly, it says
that unless Ω(2

t
t+1n) queries are used, one cannot distinguish t-round KAC from

a truly random permutation with non-negligible advantage, where the round
permutations are public and random.

Another line of research focuses on the variants of KAC constructions, where
round permutations and keys may not be independent of each other. [DKS12]
was the first to study the minimalism of Even-Mansour cipher, and showed that
several of its single-key variants could achieve the same level of security as it.
Later, Chen et al. [Che+18] proved that a variant of 2-round KAC still enjoys
security close to O(2

2
3n) when only n-bit key and a single permutation are used.

Next, [WYCD20] generalized Chen et al.’s technique and proved a tight security
bound (with two unnatural restrictions) for 3-round KACSP. Recently, Tessaro
and Zhang [TZ21] showed that (t−2)-wise independent round keys are sufficient
for t-round KAC to achieve the tight security bound, where t ≥ 8.

Our Contributions. This work focuses on the provable security of KAC or
KAC-type constructions in random permutation model. Our main contribution
is to prove the tight security bound O(2

t
t+1n) for t-round KACSP.

We revisit the security proofs in [Che+18,WYCD20]. The idea of their proofs
is not hard to understand, but the analysis is quite laborious. In particular, the
security bound of [WYCD20] (see Theorem 1) has two unnatural restrictions,
making the result far from elegant. The first is the existence of an error function

240 L. Yu et al.

ζ(·), and the second is that it requires 28q2e/2n ≤ qp ≤ qe/5, where qp and qe

denote the number of two types of queries made by the distinguisher respectively.
We propose new techniques that can significantly simplify proofs, thus mak-

ing the security proofs of KAC-type constructions easier to understand and read.
One of the key techniques is a general transformation, which reduces our task
to bounding only one probability in the form of (9) (even for t-round construc-
tions). Note that [WYCD20] needs to bound at least 3 such probabilities. We
stress that the transformation is general and may also be used to simplify other
security proofs. To increase the number of constructive methods, we introduce
a new notion of recycled-edge which is different from the shared-edge used in
[Che+18,WYCD20]. Roughly speaking, recycled-edge is to reuse existing per-
mutation queries made by distinguisher to save resources, while shared-edge is to
reuse the permutation queries generated on-the-fly. We point out that recycled-
edge has the following features compared to shared-edge. First, the analysis of
recycled-edge is easier, which is another important reason why our proof is sim-
pler. Second, the recycled-edge has wider applicability and is less sensitive to
constructions.

Moreover, we provide new ideas to remove the two unnatural restrictions in
the security bound of [WYCD20]. For the first restriction, our approach is to
consider the security proof in two disjoint cases, and provide separate proofs for
each case. It should be pointed out here that these two proofs will be almost
identical, except for slightly different calculations. For the second restriction, our
approach is to increase the number of variables1 so that we can better exploit
the power of multivariate hypergeometric distribution used in the calculation.
Our main finding here is that the improvements in security bound are largely
influenced by computational rather than conceptual factors. This is a key to
addressing the security bound of t-round KACSP. More details about our new
techniques can be found in Sect. 3.

With the above new techniques, we first obtain a neat security bound for the
3-round KACSP (see Theorem 2), and discuss its proof in detail in Sect. 4. We
then generalize the proof to the general t-round KACSP (see Theorem 3), using
almost the same techniques. It should be emphasized that our proof techniques
apply to KAC and all kinds of KAC-type constructions. For example, we also
apply the proof techniques to other variants of 3-round KAC (see Thms. 17 and
18 in the full version [Yu+23] of this paper).

2 Preliminaries

2.1 Notation

Let N = 2n and Pn be the set of all permutations over {0, 1}n. For a permutation
P ∈ Pn, we let P−1 denote its inverse permutation. If A is a finite set, then |A|
and A represent the cardinality and complement of A, respectively. Given a set

1 Each variable represents the number of new edges that can be saved by some con-
structive method, usually denoted by hi in the proofs.

Security Proofs for KACs with Non-Independent Round Permutations 241

of n-bit strings A and a fixed k ∈ {0, 1}n, we will use A ⊕ k to denote the set
{a ⊕ k : a ∈ A}. For a finite set S, let x ←$ S denote the act of sampling
uniformly from S and then assigning the value to x. The falling factorial is
usually written by (a)b = a(a − 1) . . . (a − b + 1), where 1 ≤ b ≤ a are two
integers. For a set of pairs Q = {(x1, y1), . . . , (xq, yq)}, where xi’s (resp. yi’s)
are distinct n-bit strings, and a permutation P ∈ Pn, we say that P extends the
set Q, denoted as P ↓ Q, if P(xi) = yi for i = 1, 2, . . . , q. In particular, we write
Dom(Q) := {x1, . . . , xq} (resp. Ran(Q) := {y1, . . . , yq}) as the domain (resp.
range) of Q.

2.2 Random Permutation Model, Transcripts and Graph View

Random Permutation Model. This work studies the security of KAC or
KAC-type constructions under the random permutation model. The model can be
viewed as an enhanced version of black-box indistinguishability with additional
access to the underlying permutations, making security analysis more operable.

Given a t-round KAC or KAC-type construction, the task of distinguisher D is
to tell apart two worlds, the real world and the ideal world. In the real world, the
distinguisher can interact with t′ + 1 oracles (EK , P1, . . . , Pt′), where EK is the
t-round target cipher (denoted as E) computed based on t′ independent random
permutations P1, . . . , Pt′ and a key K. In the ideal world, there are also t′+1 ora-
cles but the first oracle EK is replaced by an independent random permutation
P0. That is, what interact with the distinguisher D are t′ + 1 independent ran-
dom permutations (P0, P1, . . . , Pt′). Furthermore, we allow the distinguisher to
be adaptive and query each permutation oracle in both directions. We can then
define the super-pseudorandom permutation (SPRP) advantage of distinguisher
D on t-round EK (with t′ different permutations) as follows.

AdvSPRP
E,t (D) =

∣
∣PrK←${0,1}(t+1)n;

P1,...,Pt′←$Pn

[DEK ,P1,...,Pt′ = 1]

− PrP0,P1,...,Pt′←$Pn [DP0,P1,...,Pt′ = 1]
∣
∣,

(3)

where all oracles can be queried bidirectionally. In particular, we refer to the
queries on the first oracle (i.e. EK or P0) as construction queries and to the set
formed by them and their answers as Q0. Similarly, the queries on the other t′

oracles are called permutation queries and the resulting sets are denoted as Qi,
where i = 1, . . . , t′.

Transcripts. Formally, the interaction between D and t′ +1 oracles can be rep-
resented by an ordered list of queries, which is often called transcript. Each query
in the transcript is in the form of (i, b, u, v), where i ∈ {0, 1, . . . , t′} represents
the oracle being queried, b indicates whether it is a forward query or backward
query, u is the query value and v is the corresponding answer. We can assume
wlog that the adversary D is deterministic and does not make redundant queries,
since it is computationally unbounded. That means the output of D is entirely
determined by its transcript, which can also be encoded (requiring a description
of D) into t′ + 1 unordered lists of queries.

242 L. Yu et al.

In addition, we are more generous to the distinguisher D in the analysis, so
that it will receive the actual key used in the real world (after all queries are done
but before a decision is made). To maintain consistency, D would also receive a
dummy key in the ideal world (even the key is not used). This modification is
justified since it only increases the advantage of D. From the perspective of D, a
transcript τ ∈ T has the form of τ = (Q0,Q1, . . . ,Qt′ ,K), and can be rewritten
as the following unordered lists.

τ =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q0 = {(x1, y1), . . . , (xqe
, yqe

)},

Q1 = {(u1,1, v1,1), . . . , (u1,q1 , v1,q1)},

· · · ,

Qt′ = {(ut′,1, vt′,1), . . . , (ut′,qt′ , vt′,qt′),
K = (κ0, . . . , κt)

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (4)

where yj = EK(xj) or yj = P0(xj) (depending on which world) for all j ∈
{1, . . . , qe} and vi,j = Pi(ui,j) for all i ∈ {1, . . . , t′} and j ∈ {1, . . . , qi}, and
where K ∈ {0, 1}(t+1)n is a (t + 1)n-bit key.

Statistical Distance of Transcript Distributions. We already know that the
output of D is a deterministic function on transcript. For any fixed distinguisher
D, its advantage is obviously bounded by the statistical distance of transcript
distributions in two worlds. That is, it is usually to determine the upper bound
of the value (3) as follows,

(3) ≤ ‖Treal − Tideal‖ def=
1
2

∑

τ

|Pr[Tideal = τ] − Pr[Treal = τ]|

=
∑

τ

max{0,Pr[Tideal = τ] − Pr[Treal = τ]},
(5)

where ‖ · ‖ represents the statistical distance, and Treal (resp. Tideal) denotes
the transcript random variable generated by the interaction of D with the real
(resp. ideal) world. We let T denote the set of attainable transcripts τ such that
Pr[Tideal = τ] > 0. It is worth noting that although the set T depends on D, the
probabilities Pr[Tideal = τ] and Pr[Treal = τ] (for any τ ∈ T) are independent of
D, since they are inherent properties of the two worlds. The task of bounding
(5) is to figure out two (partial) distributions, of which the one for ideal world is
simple and easy to deal with. Thus, the main effort in various proofs is essentially
to study the random value Treal.

Crucial Probability in the Real World. The basis of studying Treal is
the probability Pr[Treal = τ], which can be reduced to a conditional prob-
ability with intuitive meaning (see Eq. (7)). For any fixed transcript τ =
(Q0,Q1, . . . ,Qt′ ,K) ∈ T , it has

Security Proofs for KACs with Non-Independent Round Permutations 243

Pr[Treal = τ] = Prκ←${0,1}(t+1)n;
P1,...,Pt′←$Pn

[Eκ ↓ Q0 ∧ P1 ↓ Q1 ∧ · · · ∧ Pt′ ↓ Qt′ ∧ κ = K]

= Prκ←${0,1}(t+1)n;
P1,...,Pt′←$Pn

[P1 ↓ Q1 ∧ · · · ∧ Pt′ ↓ Qt′ ∧ κ = K] (6)

× PrP1,...,Pt′ ←$Pn
[EK ↓ Q0 | P1 ↓ Q1 ∧ · · · ∧ Pt′ ↓ Qt′] (7)

The central task of calculating Pr[Treal = τ] is to evaluate Eq. (7)2, since the
value of Eq. (6) can be solved trivially for any KAC or KAC-type construction.
In this work, we will use a graph view (basically taken from [CS14] and to be
defined in next part), then Eq. (7) can be interpreted as the probability that all
the paths between xj and yj (where (xj , yj) ∈ Q0) are completed, when each
random permutation Pi extending the corresponding set Qi.

Graph View. It is often more convenient to work with constructions and tran-
scripts in a graph view. Here we take only the t-round KAC or KAC-type con-
struction as an example, and other constructions are similar. For a given con-
struction, all the information of transcript τ = (Q0,Q1, . . . ,Qt′ ,K) ∈ T can be
encoded into a round graph G(τ). First, one can view each set Qi as a bipartite
graph with shores {0, 1}n and containing qi (resp. qe, in the case of Q0) disjoint
edges. To have maximum generality, we here keep the value of K = (κ0, . . . , κt)
in graph G(τ)3, where each mapping of XORing round key κi is viewed as a full
bipartite graph (i.e. it contains 2n disjoint edges).

More specifically, graph G(τ) contains 2(t+1) shores, each of which is iden-
tified with a copy of {0, 1}n. The 2(t+1) shores are indexed as 0, 1, 2, . . . , 2t+1.
We use the ordered pair 〈i, u〉 to represent the string u in shore i, where
i ∈ {0, 1, . . . , 2t + 1} and u ∈ {0, 1}n. For convenience, we simply use u to
denote a string if it is clear from the context which shore the u is in. In par-
ticular, the vertices in shore 0 and shore 2t + 1 are often called plaintexts and
ciphertexts, respectively. More care should be taken when t′ < t, as this means
that the target construction uses the same permutation in different rounds. For
any i �= j ∈ {1, . . . , t} that round i and round j use the same permutation,
the shores 2i − 1 and 2j − 1 are actually the same, and the shores 2i and 2j
are also the same. That is, 〈2i − 1, u〉 = 〈2j − 1, u〉 and 〈2i, v〉 = 〈2j, v〉 for all
u, v ∈ {0, 1}n.

We define the even-odd edges between shore 2i and shore 2i+1 as E(2i,2i+1) :=
{(v, v ⊕κi) : v ∈ {0, 1}n} and call them key-edges, where i ∈ {0, . . . , t}. The key-
edges E(2i,2i+1) correspond to the step of XORing round key κi in the KAC or
KAC-type construction, and form a perfect matching of bipartite graph.

For i ∈ {1, . . . , t}, we use the odd-even edges between shore 2i − 1 and shore
2i to represent the queries made to the permutation in round i, and call them

2 For t-round KAC, the technical lemma of [CS14] (see Lemma 1) solves exactly this
probability when |Q0| = 1.

3 Although this leads to a somewhat redundant notation, it is still relatively easy
to understand. For a concrete example, you can refer to Fig. 1 in the full version
[Yu+23, Appendix C].

244 L. Yu et al.

permutation-edges. Naturally, the term Pk-permutation-edge is used to indicate
the round permutation associated with it, where k ∈ {1, . . . , t′}. Based on the
definition of strings above, more care should also be taken when t′ < t. For
any i �= j ∈ {1, . . . , t} that round i and round j use the same permutation,
the bipartite graph between the shore 2i − 1 and 2i, and the bipartite graph
between the shore 2j − 1 and 2j are the same one. More specifically, we define
the permutation-edges between shore 2i − 1 and 2i as E(2i−1,2i) := {〈u, Pk, v〉 :
(u, v) ∈ Qk}4 for i = 1, . . . , t, where Pk (1 ≤ k ≤ t′) is the name of round
permutation between shore 2i−1 and 2i (see the naming in Sect. 1). That is, we
distinguish strings and permutation-edges by the round permutation associated
with them, rather than by shores.

In addition, we should keep in mind that there are implicit permutation-edges
(i.e., {〈xi,Q0, yi〉 : (xi, yi) ∈ Q0}, although not drawn) directly from shore 0 to
shore 2t+1 according to the construction queries in Q0, i.e. these edges are from
the plaintexts xi’s to the corresponding ciphertexts yi’s. Throughout this work,
we use symbols related to x (e.g., xi and x′

i) and y (e.g., yi and y′
i) to denote

plaintexts (i.e., strings in shore 0) and ciphertexts (i.e., strings in shore 2t + 1),
respectively.
Basic Definitions about Graph. We say shore i is to the left of shore j if
i < j, and view paths as oriented from left to right. For convenience, the index
of the shore containing vertex u is written as Sh(u). A vertex u in a shore i is
called right-free, if no edge connects u to any vertex in shore i + 1. A vertex v
in a shore j is called left-free, if no edge connects v to any vertex in shore j − 1.
Notice that right-free vertices and left-free vertices must be located on the odd
and even shores, respectively.

We write R(u) for the rightmost vertex in the path of G(τ) starting at u,
and L(v) for the leftmost vertex in the path of G(τ) ending at v. For any odd
i ∈ {0, . . . , 2t + 1} and i < j ∈ {0, . . . , 2t + 1}, we let Uij denote the set of
paths that starts at a left-free vertex in shore i and reaches a vertex in shore j.
Similarly, for any i < j ∈ {0, . . . , 2t + 1}, we use Zij to denote the set of paths
that starts at a vertex in shore i and reaches a vertex in shore j. That is, the
only difference between Zij and Uij is that the starting vertices on shore i in the
former need not be left-free.

Path-Growing Procedure. In this work, we usually imagine the crucial prob-
ability (7) as connecting all xj with yj through a (probabilistic) path-growing
procedure, where (xj , yj) ∈ Q0. Note that all the key-edges already exist, so we
only need to generate edges from odd shores to the next shore. Given G(τ) and
a vertex u, we define the following procedure to generate a path (u,w1, . . . , wr)
from u.

Let w0 = u. For i from 1 to r, if wi−1 is not right-free and adjacent to some
vertex z in shore i, then let wi = z; otherwise, sample ui uniformly at random
from all left-free vertices in shore i, and let wi = ui.

4 Due to the uniqueness, we will interchangeably use the permutation-edge 〈u, Pk, v〉
and the input-output pair (u, v) under Pk.

Security Proofs for KACs with Non-Independent Round Permutations 245

For convenience, we let u → v denote the event that u is connected to v
through the above path-growing procedure and write PrG[u → v] = PrG[wr = v],
where v is a vertex in shore Sh(u) + r. We are now ready to give the key lemma
of [CS14] (adapted slightly to fit here) as follows.

Lemma 1 (Lemma 1 of [CS14]). Given any G(τ) as described above, let u be
any right-free vertex in shore 1 and v be any left-free vertex in shore 2t, then it
has

Pr
G(τ)

[u → v] =
1
N

− 1
N

∑

σ

(−1)|σ|
|σ|
∏

j=1

∣
∣Uij−1ij

∣
∣

N −
∣
∣Q(ij−1)/2

∣
∣
. (8)

where the sum is taken over all sequences σ = (i0, . . . , is) with 1 = i0 < · · · <
is = 2t + 1 (where i0, i1, . . . , is are required to be odd integers), and |σ| = s.

2.3 Two Useful Lemmas

The H-coefficient technique [CS14] is a very popular tool for bounding the statis-
tical distance between two distributions (e.g. Eq. (5)). Its core idea is to properly
partition the set of attainable transcripts T into two disjoint sets, the good tran-
scripts set T1 and the bad transcripts set T2. If for any τ ∈ T1, we are able to
obtain a lower bound (e.g. 1 − ε1) on the ratio Pr[Treal = τ]/Pr[Tideal = τ]. And
we can also obtain an upper bound (e.g. ε2) on the value of Pr[Tideal ∈ T2]. The
statistical distance is then bounded by ε1 + ε2. All of the above are formalized
in the following lemma.

Lemma 2 (H-Coefficient Technique, [CS14]). Let E denote the target t-
round KAC or KAC-type construction, and T = T1 ∪ T2 be the set of attainable
transcripts. Assume that there exists a value ε1 > 0 such that

Pr[Treal = τ]
Pr[Tideal = τ]

≥ 1 − ε1

holds for any τ ∈ T1, and there exists a value ε2 > 0 such that Pr[Tideal ∈ T2] ≤
ε2. Then for any information-theoretic distinguisher D, it has AdvSPRP

E,t (D) ≤
ε1 + ε2.

To apply Lemma 2, the main task is usually to determine the value of ε1. As
we have argued in the previous section, it is essentially to calculate the crucial
probability (7). The following lemma re-emphasizes this fact.

Lemma 3 (Lemma 2 of [Che+18]). Let E denote the target t-round KAC or
KAC-type construction, and τ = (Q0,Q1, . . . ,Qt′ ,K) ∈ T be an attainable tran-
script, where K is the (t+1)n-bit key. We denote p(τ) = PrP1,...,Pt′ ←$Pn

[(EK ↓
Q0) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)], then

Pr[Treal = τ]
Pr[Tideal = τ]

= (N)qe
· p(τ).

246 L. Yu et al.

3 Technical Overview

This section outlines the techniques used in security proofs of this work. We
first review the known proof method, then propose a general transformation
to simplify it, and finally give new proof strategies to further simplify security
proofs and remove unnatural restrictions in the known result.

3.1 Proof Method of [Che+18]

The proof method for KAC-type constructions was originally proposed by Chen
et al. [Che+18] in their analysis of the minimization of 2-round KAC. We note
that [WYCD20] also follows this method and further refines it into an easy-to-
use framework. Our approach is more closely inspired by that of [WYCD20] than
by [Che+18].

At a high level, the proof method uses the H-coefficient technique (see The-
orem 2), so the values of ε1 and ε2 need to be determined for good and bad
transcripts, respectively. We focus here only on the main challenge, the value of
ε1, which is equivalent to the crucial probability (7) (see Lemma 3).

For a given construction and transcript (represented equivalently in
graph view), we call a set of pairs of strings A≡ = {(〈0, a1〉, 〈2t +
1, b1〉), . . . , (〈0, am〉, 〈2t+1, bm〉)} a uniform-structure-group, if Sh(R(a1)) = · · · =
Sh(R(am)) < Sh(L(b1)) = · · · = Sh(L(bm)). Clearly, all pairs in A≡ have a
uniform structure in graph view, i.e., the numbers and locations of missing
permutation-edges are the same for each pair of strings (〈0, ai〉, 〈2t+ 1, bi〉). We
now give the general problem abstracted in [WYCD20], but slightly different to
fit better here.

Definition 1 (Completing A Uniform-Structure-Group, [WYCD20]).
Consider a t-round KAC or KAC-type construction E, and fix arbitrarily
an attainable transcript τ = (Q0,Q1, . . . ,Qt′ ,K). Let Q≡

0 = {(xi1 , yi1),
(xi2 , yi2), . . . , (xis

, yis
)} ⊆ Q0 be a uniform-structure-group of plaintext-

ciphertext pairs5, then the problem is to evaluate the probability that Q≡
0 is com-

pleted (i.e. all plaintext-ciphertext pairs in Q≡
0 are connected), written as

pτ (Q≡
0) = PrP1,...,Pt′←$Pn

[(EK ↓ Q≡
0) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)]. (9)

For 3-round KACSP, [WYCD20] showed that the set Q0 can be divided into
six disjoint uniform-structure-groups Q≡

0,1,Q≡
0,2,Q≡

0,3,Q≡
0,4,Q≡

0,5,Q≡
0,6, and the

crucial probability (7) can be decomposed into six probabilities (in the form of
(9)) associated with them. Then, all that remains is to find a good lower bound
on the probability (9).

It is shown in [WYCD20] that there exists a general framework for the task.
To state it, we should first look at a useful concept called Core.

5 Recall that xi’s and yi’s are by default in shore 0 and shore 2t + 1 respectively, so
we use the simplified notation here.

Security Proofs for KACs with Non-Independent Round Permutations 247

Definition 2 (Core, [WYCD20]). For a complete path from xj to yj, we refer
to the set of permutation-edges that make up the path as the Core of (xj , yj), and
denote it as Core(xj , yj). That is,

Core(xj , yj) := {〈u, Pk, v〉 : 〈u, Pk, v〉 is in the path from xj to yj}.

Similarly, when a uniform-structure-group Q≡
0 is completed, we can also

define its Core , i.e. the set of permutation-edges used to connect all plaintext-
ciphertext pairs in Q≡

0 , denoted as Core(Q≡
0). That is,

Core(Q≡
0) :=

⋃

(xj ,yj)∈Q≡
0

Core(xj , yj).

In order to illustrate the definition of Core more clearly, we also provide several
concrete examples in the full version [Yu+23, Appendix B].
Note that the probability (9) is equivalent to counting all possible permutations
P1, . . . , Pt′ that complete Q≡

0 and also satisfy the known queries Q1, · · · ,Qt′ .
The idea of the general framework is to classify all such possible permutations
P1, . . . , Pt′ , according to the number of new edges added to each round per-
mutation (relative to the known Q1, · · · ,Qt′) in Core(Q≡

0). Since the goal is to
obtain a sufficiently large lower bound, a constructive approach can be used.
In particular, for each sequence of the numbers of newly added edges in round
permutations, we should construct as many permutations P1, . . . , Pt′ as possible
that complete Q≡

0 and satisfy these parameters. Summing up a sufficient number
of sequences will give a desired lower bound.

More precisely, we let PC = {(P1, . . . , Pt′) ∈ Pt′
n : (EK ↓ Q≡

0) ∧ (P1 ↓ Q1) ∧
· · · ∧ (Pt′ ↓ Qt′)} denote the set of all permutations that complete
Q≡

0 and extend respectively Q1, . . . ,Qt′ , and let C = {Core(Q≡
0) :

Q≡
0 is completed by a sequenceof round permutations(P1, . . . , Pt′) ∈ PC} denote

the set of all possible Cores. For each C̃ ∈ C, we can determine a tuple of num-
bers (|C̃1|, |C̃2|, . . . , |C̃t′ |), where |C̃j | represents the number of edges newly added
to Qj in the C̃. Then, we can give a more general form than the framework in
[WYCD20] (i.e., setting t′ = 1) as follows,

(9) = PrP1,...,Pt′ ←$Pn [(EK ↓ Q≡
0) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)]

=
|PC |

(N − |Q1|)! × · · · × (N − |Qt′ |)!

=

∑
˜C∈C

∣
∣(P1, . . . , Pt′) ∈ PC : Core(Q≡

0) = C̃
∣
∣

(N − |Q1|)! × · · · × (N − |Qt′ |)!

=

∑
˜C∈C

∏t′
j=1(N − |Qj | − |C̃j |)!

(N − |Q1|)! × · · · × (N − |Qt′ |)!

=

∑
(m1,m2,...,mt′)

∣
∣{C̃ ∈ C : |C̃1| = m1, . . . , |C̃t′ | = mt′}∣

∣ × ∏t′
j=1(N − |Qj | − mj)!

(N − |Q1|)! × · · · × (N − |Qt′ |)!

=
∑

m1

· · ·
∑

mt′

∣
∣{C̃ ∈ C : |C̃1| = m1, . . . , |C̃t′ | = mt′}∣

∣

(N − |Q1|)m1 × · · · × (N − |Qt′ |)mt′
. (10)

248 L. Yu et al.

As mentioned earlier, Eq. (10) essentially turns the task into constructing as
many Cores as possible for different tuples (m1, . . . , mt′), and then summing
their results. In general, the framework can be carried out in three steps. The
first step is to design a method that, for each given tuple (m1, . . . , mt′), ensures
to generate Cores C̃ satisfying |C̃1| = m1, . . . , |C̃t′ | = mt′ . The second step is then
to count the possibilities that can be generated by the first step. And the third
step is to perform a summation calculation, where a trick6 of hypergeometric
distribution (pioneered by [Che+18]) will be used.

Note. It should be pointed out here that all proofs in this work are conducted
under the guidance of this framework (i.e., Eq. (10)). In particular, we showed
that the key task of H-coefficient technique (i.e., Lemma 2) is to bound the prob-
ability (7) in the real world, which can then be reduced to bound the probabilities
of the form (9). Therefore, the framework provides a high-level intuition that we
can always accomplish the above task in three steps (for any KAC or KAC-type
construction7): constructing Cores with specific cardinalities, counting the num-
ber of Cores and performing a summation calculation. When analyzing different
constructions, such as the KACs (setting t′ = t) and KACSPs (setting t′ = 1), the
subtle difference mainly lies in step 1, where the available constructive methods
will be slightly different. In contrast, the detailed analysis and calculations in
steps 2 and 3 are similar.

3.2 A General Transformation

We propose a general transformation to simplify the above proof method of
[Che+18], such that only one probability (9) needs to be bounded. As we shall
see, it does cut out a lot of tedious work and significantly simplify the proof. We
apply this transformation to the security proofs of various constructions in this
work.

For each pair (xj , yj), there are rj :=
(

Sh(L(yj))−Sh(R(xj))+1
)

/2 undefined
edges between xj and yj , where rj ∈ {1, . . . , t} for a good transcript8. We call
rj the actual distance between xj and yj . We say that (xi, yi) is farther than
(xj , yj) if ri > rj ; or closer if ri < rj ; or equidistant, otherwise. Clearly, all pairs
in a uniform-structure-group are equidistant.

The idea of our general transformation is quite natural. First note that the set
Q0 usually contains pairs with various actual distances, leading to the existence
of multiple uniform-structure-groups. Just by intuition, the farther pair (xi, yi)
feels more “hard” (conditionally, in fact) to connect than the closer pair (xj , yj),
given the same available resources. After all, the former tends to consume more

6 The terms arising from a (multivariate) hypergeometric distribution are introduced
to help calculate a lower bound on the target probability, see the full version [Yu+23,
Eq. (30)] for an example.

7 In fact, the idea of this framework is quite general and it can be easily generalized
to other constructions.

8 The definition of good transcripts usually excludes the case where rj = 0. Please
note that we keep all key-edges in the graph view here for maximum generality.

Security Proofs for KACs with Non-Independent Round Permutations 249

resources (e.g. new edges), so fewer edges can be freely defined. Assuming this
argument holds, we can define a set Q̂0 satisfying |Q̂0| = |Q0| and in which all
pairs have the maximal actual distance t. That is, all the easier pairs in Q0 are
replaced with the hardest ones, thus making Q̂0 itself a uniform-structure-group.
Then, for the same known queries Q1, . . . ,Qt′ , it should have

Eq. (7) = PrP1,...,Pt′ ←$Pn
[(EK ↓ Q0) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)]

≥ PrP1,...,Pt′ ←$Pn
[(EK ↓ Q̂0) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)] def= pτ (Q̂0).

(11)

Clearly, if we can obtain a good lower bound for pτ (Q̂0), it holds for the target
crucial probability as well. The advantage of this treatment is that we only need
to bound a single probability (9), namely pτ (Q̂0). Of course it comes at a price,
so we need to keep the probability loss within an acceptable range. In short, this
transformation can be seen as sacrificing a small amount of accuracy for great
computational convenience.

All that remains is to find a method to transform closer pairs into farther
ones, and make sure that they are less likely to be connected. We first point out
that the direct transformation does not necessarily hold, although it is intuitively
sound. Taking KAC as an example, we can know from the well-known Lemma 1
that the direct transformation does hold in the average case. However, it does
not hold in the worst case, since counterexamples are not difficult to construct.

We next show that the direct transformation can be proved to hold, if a
simple constraint is added on the replaced farther pairs. First of all, we say that
a vertex u is connected to a vertex v in the most wasteful way9, if all growing
permutation-edges in the path are new (i.e. not defined before then) and each
of them is used exactly once. Similarly, we can also connect a group of pairs of
nodes in the most wasteful way, where all growing permutation-edges in these
paths are new and each of them is used exactly once. The following is a useful
property : for a given group of pairs, the number of new edges added to each round
permutation Pj is fixed (denoted as mj), among all possible paths generated in
the most wasteful way. These numbers m1, . . . , mt′ must be the maximum values
(i.e. the number of missing edges between the group of pairs), determined by the
construction and the number of pairs.

9 Intuitively, this kind of paths require the most new-edges and do not share any
edges with other paths. In the words of [WYCD20], the most wasteful way actually
means sampling an exclusive element for each inner-node. It had also been shown
in [WYCD20] that such samples are easy to analyze. More concrete examples and
analysis can be found in the security proofs, such as the Fig. 1 and Appendix C.3 in
the full version [Yu+23].

250 L. Yu et al.

More formally, we give below the definition of the most wasteful way (in
the contex of plaintext-ciphertext pairs for ease of notation; other cases can be
defined similarly).10

Definition 3 (The Most Wasteful Way). Consider a t-round KAC or KAC-
type construction E, and fix arbitrarily the set of construction queries Q0 and
the key K. Let Q′

k denote the set of all Pk-permutation-edges fixed so far, where
k = {1, . . . , t′}. Let Q̃0 = {(xi1 , yi1), (xi2 , yi2), . . . , (xis

, yis
)} ⊆ Q0 be a set

of plaintext-ciphertext pairs to be connected, where Sh(R(xij
)) < Sh(L(yij

)) for
all j ∈ {1, . . . , s}. We denote by mk the total number of Pk-permutation-edges
missing in the paths between all pairs in Q̃0 (given Q′

1, . . . ,Q′
t′), where k =

{1, . . . , t′}.
Then, Q̃0 is said to be connected in the most wasteful way (with respect

to Q′
1, . . . ,Q′

t′), if the Core of the completed Q̃0 contains exactly mk new Pk-
permutation-edges compared to Q′

k for all k ∈ {1, . . . , t′}.

At this point, we are ready to describe our transformation from Q0 to Q̂0: all
pairs in Q0 whose actual distance is less than t are replaced with new pairs whose
actual distance is equal to t, and it is required that these replaced new pairs must
be connected in the most wasteful way. The correctness of this transformation
can be verified by repeatedly using the general Lemma 4, the proof of which is
given in the full version [Yu+23, Appendix E.1].

Lemma 4 (The Closer The Easier) Consider a t-round (t ≥ 2) KAC
or KAC-type construction E, and fix arbitrarily the sets of known queries
Q1, . . . ,Qt′ and the key K.

Let A≡ = {(x1, y1), . . . , (xs, ys)} be a uniform-structure-group of s plaintext-
ciphertext pairs, where Sh(R(x1)) = · · · = Sh(R(xs)) = 3 and Sh(L(y1)) = · · · =
Sh(L(ys)) = 2t. That is, the actual distance of each pair in A≡ is t − 1.

Let B≡ = {(x′
1, y

′
1), . . . , (x

′
s, y

′
s)} be a uniform-structure-group of s plaintext-

ciphertext pairs, where Sh(R(x′
1)) = · · · = Sh(R(x′

s)) = 1 and Sh(L(y′
1)) = · · · =

Sh(L(y′
s)) = 2t. That is, the actual distance of each pair in B≡ is t.

Assume that s · t ≤ |Qi2 |/2 and |U04| ≤ |Qi2 |/2, where Qi2 denotes the set
of known queries to the second round permutation Pi2 (where i2 ∈ {1, . . . , t′}).
If we both connect A≡ and B≡ in the most wasteful way, then the closer A≡ is
relatively easier. That is, for sufficiently large n, we have

PrP1,...,Pt′←$Pn
[(EK ↓w A≡) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)]

≥ PrP1,...,Pt′←$Pn
[(EK ↓w B≡) | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)],

where EK ↓w A≡ (resp. EK ↓w B≡) denotes the event that A≡ (resp. B≡) is
completed in the most wasteful way.

10 It can be verified that the Examples 2 and 4 in full version [Yu+23, Appendix B] are
both connected in the most wasteful way (we purposely assume Q1 = Q2 = ∅ over
there to ensure that each permutation-edge fixed in the path(s) is new compared to
Q1 and Q2).

Security Proofs for KACs with Non-Independent Round Permutations 251

The Lemma 4 tells us that the closer pairs are easier to connect than the
farther pairs, even if they are both in the wasteful way. Also note that the
ordinary probability of connecting given pairs must be greater than when only
the most wasteful way is allowed, since there may be other ways of connect-
ing (e.g. reusing edges). Thus, our general transformation replaces the closer
uniform-structure-group (whose connections are unrestricted) by a farther one
that can only be connected in the most wasteful way, the connecting probabil-
ity of course becoming smaller (i.e. Eq. (11) holds). We should also stress that
the assumptions s · t ≤ |Qi2 |/2 and |U04| ≤ |Qi2 |/2 are quite loose, and their
only effect on the security proof is to add a few conditions to the definition of
good transcripts. For convenience, we can simply ignore the assumptions, except
that there is a negligible deviation in the value of ε2. To see this more clearly,
we first point out that the number of pairs that need to be replaced s is often
much smaller than |Qi| and the number of rounds t is a constant. In particu-
lar, the largest s encountered in the security proof for a t-round construction is
s = O(|Qi|/N1/(t+1)). Second, since the expectation of |U04| is |Q1| · |Qi2 |/N ,
the well-known Markov’s inequality is sufficient to give a good upper bound on
the probability Pr[|U04| > |Qi2 |/2].

Finally, we illustrate how the general transformation can be applied in
practical security proofs. The process is quite simple. Given a good tran-
script τ = (Q0,Q1, . . . ,Qt′ ,K), we first partition the set Q0 into disjoint
uniform-structure-groups, such as Q≡

0,1, . . . ,Q≡
0,k. Typically, there is only one

uniform-structure-group, say Q≡
0,k, whose actual distance is t and |Q≡

0,k| =
|Q0| ·

(

1−O(1
Nt+1)

)

. That is, only about s = O(1
Nt+1) · |Q0| plaintext-ciphertext

pairs need to be replaced by the general transformation. We write wlog that
Q0 = {(x1, y1), . . . , (xq, yq)} and Q≡

0,k = {(xs+1, ys+1), . . . , (xq, yq)}. We first
arbitrarily choose s right-free vertices u1, . . . , us in the shore 1, and s left-free
vertices v1, . . . , vs in the shore 2t (this always works since both s and |Qi| are
much smaller than N). Then, we define (xq+i, yq+i) := (ui ⊕ κ0, vi ⊕ κt) for
i = 1, . . . , s, and denote the set they form as Q∗

0. Next, we set Q̂0 = Q≡
0,k ∪ Q∗

0,
i.e. Q̂0 = {(xs+1, ys+1), . . . , (xq, yq), (xq+1, yq+1), . . . , (xq+s, yq+s)}. It is easy to
see that Q̂0 is indeed a uniform-structure-group with actual distance t. Please
note that all the known queries Q1, . . . ,Qt′ remain unchanged throughout. Also,
don’t forget that the last s pairs (i.e. Q∗

0) must be connected in the most wasteful
way. Lastly, the property of general transformation (see Eq. (11)) allows us to
focus only on the lower bound of the new probability

PrP1,...,Pt′←$Pn
[EK ↓ Q̂0 | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)]

= PrP1,...,Pt′←$Pn
[EK ↓ Q≡

0,k ∧ EK ↓w Q∗
0 | (P1 ↓ Q1) ∧ · · · ∧ (Pt′ ↓ Qt′)],

(12)

where EK ↓w Q∗
0 denotes the event that the plaintext-ciphertext pairs in Q∗

0 are
connected in the most wasteful way.

252 L. Yu et al.

3.3 New Proof Strategies

Although we are guided by the proof method of [Che+18], the low-level proof
strategies are quite different.

We introduce a new notion of recycled-edge, while [WYCD20] only uses the
shared-edge. Intuitively, our use of a recycled-edge means that an edge is recycled
from the known queries (i.e. from Q1, . . . ,Qt′) to build the path, so that one
less new edge is added. Thus, recycled-edges serve the same purpose as shared-
edges, i.e. to reduce the use of new edges when growing paths (relative to the
most wasteful way). The difference between them is that the former reuses known
edges, while the later reuses the newly added edges. We point out that recycled-
edge has the following features compared to shared-edge. First, the analysis of
recycled-edges is easier because each of recycled-edge involves only one path,
whereas each shared-edge involves multiple paths. Second, the recycled-edge is
less sensitive to the construction, and its analysis is relatively uniform in different
constructions. In particular, it exists in the KAC construction where edges cannot
be shared as in [WYCD20].

We provide new ideas to remove the two unnatural restrictions in the security
bound of [WYCD20] (i.e., Theorem 1). The first restriction is the existence of
an error term ζ(qe), making it impossible to obtain a uniform bound for all
qe’s. To get a good bound, [WYCD20] needs to choose an appropriate c for
different values of qe. In particular, it is unnatural that their bound does not
converge to 0 as the number of queries qe decreases to 0. Our observation is
that this problem may be due to the nature of the hypergeometric distribution,
whose variance is not a monotonic function. This leads to the fact that the tail
bound obtained by Chebyshev’s inequality (see Lemma 16 in the full version
[Yu+23]) is also not monotonic, and thus only works well for part of the qe’s,
e.g. qe = ω(N1/2). A natural solution is to give a different proof for the range
of qe = O(N1/2). But one thing to note here is that we need to get a beyond-
birthday-bound (i.e. O(N1/2+ε)-bound for ε > 0), so that the bound is negligible
for all qe = O(N1/2). We found that the proof for qe = ω(N1/2) can be adapted
to the case of qe = O(N1/2) just by modifying several constants defined in the
proof (e.g., the values of M and M0 in Sect. 4). Therefore, the security proofs in
this work usually consider two cases, one is large qe = ω(N1/2) and the other is
small qe = O(N1/2). Their proofs are almost identical except for slightly different
calculations.

The second restriction is that it requires qp ≤ qe/5, where qp and qe are
the number of permutation queries and construction queries respectively. This
is an unnatural limitation on the access ability of distinguisher. After a lot of
effort and calculation, we found that under the proof method of [Che+18], the
main factor affecting the final security bound is the number of variables. Each
variable is used to represent the number of new edges reduced in a Core (relative
to the most wasteful way), and is denoted by hi in our proofs. That is, more
variables usually means a more accurate bound. It is important to note here
that each variable actually corresponds to a constructive method of reducing
new edges, and the results generated by these different methods are required to

Security Proofs for KACs with Non-Independent Round Permutations 253

be disjoint. On the other hand, there seems to be an upper bound on the number
of constructive methods of reducing new edges. Therefore, a big challenge is to
perform a fine-grained analysis that allows us to find an appropriate number of
variables to meet both requirements (i.e., accuracy and feasibility).

4 Improved Security Bound of P1P1P1-Construction

4.1 Comparison of the Results

Known Result. Wu et al. [WYCD20] were the first to prove a tight security
bound for the P1P1P1-construction, and their proof was quite laborious.

Theorem 1 (P1P1P1-Construction, Theorem 1 of [WYCD20]). Consider
the P1P1P1-construction. Assume that n ≥ 32 is sufficiently large, 28(qe)

2

N ≤ qp ≤
qe

5 and 2qp + 5qe ≤ N
2 , then for any 6 ≤ c ≤ N1/2

8 , the following upper bound
holds:

AdvSPRP
P1P1P1

(D) ≤ 98c ·
(qe

N3/4

)

+ 10c2 ·
(qe

N

)

+ ζ(qe), (13)

where ζ(qe) =

{
32
c2 , for qe ≤ c

6N1/2

9N
q2

e
, for qe ≥ 7c

6 N1/2 and D can be any distinguisher making

qe construction queries and qp permutation queries.

It can be seen that the above security bound has two unnatural restrictions. The
first is the error term ζ(qe), where the entire range of qe cannot be covered by
a single value c. In particular, this term is non-negligible for small values of qe,
such as qe = O(N1/2), making the security bound quite counter-intuitive. The
second is the requirement on qe and qp, that is, 28(qe)2/N ≤ qp ≤ qe/5, which
is not a reasonable limit on the ability of distinguisher.

Our Result. Using the general transformation and new proof strategies outlined
in Sect. 3, we obtain a neat security bound for the P1P1P1-construction and the
proof is much simpler.

Theorem 2 (P1P1P1-Construction, Improved Bound). Consider the
P1P1P1-construction. For any distinguisher D making qe construction queries
and qp permutation queries, the following upper bound holds:

AdvSPRP
P1P1P1

(D) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

69q

N3/4
+

125q2

N3/2
+

8q4

N3
+

6q6

N5
+

78q

N
+

32N

q2
, for q = ω(N1/2)

12q

N7/10
+

125q2

N7/5
+

135q

N3/4
+

8q4

N3
+

6q6

N5
+

32

N1/10
, for q = O(N1/2)

where q := max{qe, qp}.

254 L. Yu et al.

In contrast to Theorem 1, our bound does give a negligible bound for all q =
O(N1/2) (which is better than O(N2/3)-bound but slightly worse than O(N3/4)-
bound), and has no restriction on the values of qe and qp. In fact, the bound
for q = O(N1/2) can be easily improved to O(N3/4−ε)-bound for any ε > 0,
by modifying M to q/N1/2−ε and M0 to q/N1/4+ε, where M and M0 are two
constants to be defined in the proof. Even if we focus only on the large q =
ω(N1/2), our bound is better than Eq. (13) (for which the optimal c = 6 is
set). Most importantly, the proof of Theorem 2 is simpler and can be found in
Sect. 4.2.
Remarks. It should be pointed out that the tightness of our bound is with
respect to attacks achieving constant probability, i.e., an adversary needs q =
Ω(N3/4) queries to distinguish P1P1P1-construction from random with a high
advantage. The curve of our bound (i.e., roughly (q4/N3)

1
4) is not as sharp as the

tigher bound (i.e., roughly q4/N3) achieved in the study of KACs (e.g., [HT16]).
We here show that the exact threshold of the two bounds in Theorem 2 can

be determined. In fact, there are values of q that satisfy both bounds (for these
q’s, we can choose the better one at the time of use). More specifically, the first
bound holds for all q >= N1/2+ε for any ε > 0, and the second bound holds for
all q ≤ N11/20/2. Thus, any value in the interval [N1/2+ε, N11/20/2] (e.g., N0.53)
can be safely chosen as the threshold.

The main reason that leads us to discuss two cases is the Eq. (35) in the full
version [Yu+23], where the magnitudes of MN and q2 need to be compared. For
more details, please refer to the calculation below Eq. (34) in the full version
[Yu+23], which shows the analysis for all q ≥ N1/2+ε. If we set M = q

N9/20 there,
then it can be verified that the second bound holds for q ≤ N11/20/2.

4.2 Proof of Theorem 2

As discussed in Sect. 3, we will consider two disjoint cases separately to remove
the first restriction, namely the case q = ω(N1/2) and the case q = O(N1/2). For
each case, the proof is guided by the proof method of [Che+18], thus using the
H-coefficient technique (see Lemma 2) at a high level. Following the technique,
we define the sets of good and bad transcripts, and then determine the values of
ε1 and ε2, respectively. When calculating the value of ε1, we apply the general
transformation (see Eq. (11)) so that only a single probability need to be con-
sidered. Finally, we address this single probability using the general framework
(see Eq. (10)) combined with our new proof strategies.

Preparatory Work. First, we point out the simple fact that for every distin-
guisher D that makes qe construction queries and qp permutation queries, there
exists a D′ making q construction queries and q permutation queries with at
least the same distinguishing advantage, where q = max{qe, qp}. We can just let
D′ simulate the queries of D, and then perform additional q − qe construction
queries and q − qp permutation queries, which obviously increases its advantage.
For computational convenience, we consider the distinguisher D′ that makes q

Security Proofs for KACs with Non-Independent Round Permutations 255

construction queries and q permutation queries in the analysis. That is, for each
attainable transcript τ = (Q0,Q1,K) ∈ T , it has |Q0| = |Q1| = q.

To illustrate the key probability (7) of a good transcript, we can assume that
there is no path of length 7 starting from xi ∈ Dom(Q0) in shore 0 or ending at
yi ∈ Ran(Q0) in shore 7 (otherwise, it would be a bad transcript). Then, as in
[WYCD20], the set Q0 can be partitioned into the following 6 uniform-structure-
groups.

– Denote WLOG that Q≡
0,1 = {(x1, y1), . . . , (xα2 , yα2)} ⊂ Q0, where

Sh(R(xi)) = 5 and Sh(L(yi)) = 6 for i = 1, . . . , α2. That is, the actual dis-
tance of Q≡

0,1 is 1 and |Q≡
0,1| = α2. We also denote by R(Q≡

0,1) = {R(xi) : i =
1, . . . , α2}, L(Q≡

0,1) = {L(yi) : i = 1, . . . , α2}.
– Denote WLOG that Q≡

0,2 = {(xα2+1, yα2+1), . . . , (xα2+β2 , yα2+β2)} ⊂ Q0,
where Sh(R(xi)) = 1 and Sh(L(yi)) = 2 for i = α2 + 1, . . . , α2 + β2. That is,
the actual distance of Q≡

0,2 is 1 and |Q≡
0,2| = β2. We also denote by R(Q≡

0,2) =
{R(xi) : i = α2 + 1, . . . , α2 + β2}, L(Q≡

0,2) = {L(yi) : i = α2 + 1, . . . , α2 + β2}.
– Denote WLOG that Q≡

0,3 = {(xα2+β2+1, yα2+β2+1), . . . , (xδ2 , yδ2)} ⊂ Q0,
where Sh(R(xi)) = 3 and Sh(L(yi)) = 4 for i = α2 + β2 + 1, . . . , δ2. That
is, the actual distance of Q≡

0,3 is 1 and |Q≡
0,3| := γ2 = δ2 − α2 − β2. We also

denote by R(Q≡
0,3) = {R(xi) : i = α2 + β2 + 1, . . . , δ2}, L(Q≡

0,3) = {L(yi) : i =
α2 + β2 + 1, . . . , δ2}.

– Denote WLOG that Q≡
0,4 = {(xδ2+1, yδ2+1), . . . , (xδ2+α1 , yδ2+α1)} ⊂ Q0,

where Sh(R(xi)) = 3 and Sh(L(yi)) = 6 for i = δ2 + 1, . . . , δ2 + α1. That is,
the actual distance of Q≡

0,4 is 2 and |Q≡
0,4| = α1. We also denote by R(Q≡

0,4) =
{R(xi) : i = δ2 + 1, . . . , δ2 + α1}, L(Q≡

0,4) = {L(yi) : i = δ2 + 1, . . . , δ2 + α1}.
– Denote WLOG that Q≡

0,5 = {(xδ2+α1+1, yδ2+α1+1), . . . , (xδ2+δ1 , yδ2+δ1)} ⊂
Q0, where Sh(R(xi)) = 1 and Sh(L(yi)) = 4 for i = δ2 + α1 + 1, . . . , δ2 + δ1.
That is, the actual distance of Q≡

0,5 is 2 and |Q≡
0,5| := β1 = δ1 − α1. We also

denote by R(Q≡
0,5) = {R(xi) : i = δ2 + α1 + 1, . . . , δ2 + δ1}, L(Q≡

0,5) = {L(yi) :
i = δ2 + α1 + 1, . . . , δ2 + δ1}.

– Denote WLOG that Q≡
0,6 = {(xδ2+δ1+1, yδ2+δ1+1), . . . , (xq, yq)} ⊂ Q0, where

Sh(R(xi)) = 1 and Sh(L(yi)) = 6 for i = δ2 + δ1 +1, . . . , q. That is, the actual
distance of Q≡

0,6 is 3 and |Q≡
0,6| = δ0 = q−δ1−δ2. We also denote by R(Q≡

0,6) =
{R(xi) : i = δ2 + δ1 + 1, . . . , q}, L(Q≡

0,6) = {L(yi) : i = δ2 + δ1 + 1, . . . , q}.

It is easy to see that the crucial probability

(7) = PrP1←$Pn
[EK ↓ Q0 | P1 ↓ Q1] = PrP1←$Pn

[
6∧

j=1

EK ↓ Q≡
0,j | P1 ↓ Q1].

(14)

In [WYCD20], the probability (14) was decomposed into several conditional
probabilities, which were quite cumbersome to analyze.

Applying General Transformation. We use the general transformation
(see Eq. (11)) here to reduce the task to bounding only one probability. The
basic idea is to replace the uniform-structure-groups whose actual distance is

256 L. Yu et al.

less than 3 (i.e. Q≡
0,1,Q≡

0,2,Q≡
0,3,Q≡

0,4,Q≡
0,5) with a new uniform-structure-group

whose actual distance is 3, and make the connecting probability smaller.
First note that when q = O(N3/4), the expectation of α2, β2, γ2 is q3/N2 =

O(q/N1/2), and the expectation of α1, β1 is q2/N = O(q/N1/4). Then, we
denote s = δ1 + δ2 = α1 + β1 + α2 + β2 + γ2 = O(q/N1/4) as the number
of pairs to be replaced. As discussed in Sect. 3, we take arbitrarily s vertices
in shore 0 from the set {0, 1}n \ Dom(Q0) \ Dom(Q1) ⊕ κ0 and denote them as
xq+1, . . . , xq+s. We also take arbitrarily s vertices in shore 2t + 1 from the set
{0, 1}n \ Ran(Q0) \ Ran(Q1) ⊕ κ3 and denote them as yq+1, . . . , yq+s. Then, we
define the new uniform-structure-group Q∗

0 := {(xi, yi) : i = q + 1, . . . , q + s}
and set Q̂0 := Q≡

0,6 ∪ Q∗
0, where the pairs in Q∗

0 must be connected in the most
wasteful way. Using Lemma 4 several times, we can know that

(14) = PrP1←$Pn
[

6∧

j=1

EK ↓ Q≡
0,j | P1 ↓ Q1]

≥ PrP1←$Pn
[EK ↓ Q̂0 | P1 ↓ Q1]

= PrP1←$Pn
[EK ↓ Q≡

0,6 ∧ EK ↓w Q∗
0 | P1 ↓ Q1]. (15)

4.2.1 Case 1: q = ω(N1/2) We mainly focus on the large values of q =
ω(N1/2), and the other case of q = O(N1/2) is similar. Let M = q

N1/2 and
M0 = q

N1/4 . We first give the definition of good and bad transcripts.

Definition 4 (Bad and Good Transcripts, P1P1P1-Construction). For
an attainable transcript τ = (Q0,Q1,K) ∈ T , we say that τ is bad if K ∈
⋃5

i=1 BadKi; otherwise τ is good. The definitions of BadKi are shown below:

K ∈ BadK1 ⇔ there exists a path of length 7 starting from a vertex xi ∈ Dom(Q0)

in shore 0 or ending at a vertex yi ∈ Ran(Q0) in shore 7

K ∈ BadK2 ⇔ α2 > M ∨ β2 > M ∨ γ2 > M ∨ α1 > M0 ∨ β1 > M0

K ∈ BadK3 ⇔ Dom(Q1),R(Q≡
0,1),R(Q≡

0,2),R(Q≡
0,3) are not pairwise disjoint

∨ Ran(Q1), L(Q≡
0,1), L(Q≡

0,2), L(Q≡
0,3) are not pairwise disjoint

K ∈ BadK4 ⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|{x ∈ Dom(Q0) : x ⊕ κ0 ⊕ κ1 is not left-free}| > M0

∨ |(Dom(Q0) ⊕ κ0 ⊕ κ1) ∩ (Ran(Q0) ⊕ κ3)| > M0

∨ |{y ∈ Ran(Q0) : y ⊕ κ3 ⊕ κ2 is not right-free}| > M0

∨ |(Ran(Q0) ⊕ κ3 ⊕ κ2) ∩ (Dom(Q0) ⊕ κ0)| > M0

∨ |{x ∈ Dom(Q0) : x ⊕ κ0 ⊕ κ2 is not left-free}| > M0

∨ |(Dom(Q0) ⊕ κ0 ⊕ κ2) ∩ (Ran(Q0) ⊕ κ3)| > M0

∨ |{y ∈ Ran(Q0) : y ⊕ κ3 ⊕ κ1 is not right-free}| > M0

∨ |(Ran(Q0) ⊕ κ3 ⊕ κ1) ∩ (Dom(Q0) ⊕ κ0)| > M0

K ∈ BadK5 ⇔ |U05| > M0 ∨ |U27| > M0.

Security Proofs for KACs with Non-Independent Round Permutations 257

We can determine the value of ε2 = 12q
N3/4 +

3q2

N3/2 +
8q4

N3 + 6q6

N5 from the following
lemma, the proof of which can be found in the full version [Yu+23, Appendix
E.2].

Lemma 5 (Bad Transcripts, q = ω(N1/2)). For any given Q0,Q1 such that
|Q0| = |Q1| = q, we have

PrK←${0,1}4n [τ = (Q0,Q1,K) is bad] ≤ 12q
N3/4

+
3q2

N3/2
+

8q4

N3
+

6q6

N5
.

The following lemma gives a lower bound on Eq. (15) for any good transcript.

Lemma 6 (Good Transcripts, q = ω(N1/2)). Fix arbitrarily a good tran-
script τ = (Q0,Q1,K) ∈ T as defined in Definition 4. Let Q≡

0,6 and Q∗
0 be as

described in Eq. (15), then we have

PrP1←$Pn
[EK ↓ Q≡

0,6 ∧ EK ↓w Q∗
0 | P1 ↓ Q1]

≥ 1
(N)q

×
(

1 − 57q
N3/4

− 122q2

N3/2
− 78q

N
− 32N

q2

)

.
(16)

Before giving the proof of Lemma 6, we first show how to obtain the final security
bound from the above two lemmas. First note that (16) is also a lower bound on
the crucial probability (7), i.e. p(τ) in Lemma 3 when t = 3, t′ = 1. Then it is
not difficult to determine the value of ε1 = 57q

N3/4 +
122q2

N3/2 + 78q
N + 32N

q2 . According
to the H-coefficient technique (see Lemma 2), we can obtain

AdvSPRP
P1P1P1

(D) ≤ ε1 + ε2

=
12q

N3/4
+

3q2

N3/2
+

8q4

N3
+

6q6

N5
+

57q
N3/4

+
122q2

N3/2
+

78q
N

+
32N

q2

=
69q

N3/4
+

125q2

N3/2
+

8q4

N3
+

6q6

N5
+

78q
N

+
32N

q2
,

which is the result of large q = ω(N1/2) in Theorem 2.

Proof (Proof of Lemma 6). Let Q≡
0 = Q̂0 := Q≡

0,6 ∪ Q∗
0 and t = 3, t′ = 1, then

the target probability is exactly an instantiation of the general problem (9). We
apply the general framework (10) to bound it, so roughly in three steps.

The first step is to generate Cores with specific numbers of new
edges. We will use four variables (denoted as h1, h2, h3, h4) to obtain a suffi-
ciently accurate security bound, so four constructive methods of reducing new
edges are needed.

The first method we use is called recycled-edge-based method, which exploits
recycled-edges to reduce a specified number of new edges when building paths.
Intuitively, when we construct a path connecting plaintext-ciphertext pair (xi, yi)
with an actual distance of 3, the choice of the permutation-edge between shore
3 and 4 is quite free and can be “recycled” from the known edges in Q1 for use.

258 L. Yu et al.

Thus, we can construct the path with one less new edge. Furthermore, most of
the known edges in Q1 (about the proportion of 1 − O(1/N1/4)) can be used
as recycled-edges. More details about the recycled-edge-based method can be
found in the full version [Yu+23, Appendix C.1].

The other three methods we use are shared-edge-based methods, each of which
exploits a different type of shared-edges to reduce a specified number of new
edges when building paths. Intuitively, we consider two plaintext-ciphertext pairs
together and let them share exactly 1 permutation edge. The two paths can then
be connected with one less new edge than the most wasteful way. In particu-
lar, this work only considers shared-edges of this type, each of which saves 1
new edge for 2 paths. To distinguish, we refer to a shared-edge as (i, j)-shared-
edge, where i and j represent the rounds that the shared-edge lies in two paths
respectively. Note that the positions of the two paths are interchangeable, so
(i, j)-shared-edges and (j, i)-shared-edges are essentially the same type. More
details about the shared-edge-based methods can be found in the full version
[Yu+23, Appendix C.2].

Recalling the Eq. (15), our task is to connect the q pairs of Q̂0 = Q≡
0,6 ∪

Q∗
0 using a specified number of new edges, where Q∗

0 is connected in the most
wasteful way. Let h1, h2, h3, h4 be four integer variables in the interval [0,M],
where M = q

N1/2 is a constant determined by q. We combine the recycled-edge-
based method, the shared-edge-based methods and the most wasteful way to
accomplish the task in five steps.

1. Select h1 distinct pairs from Q≡
0,6, and connect each of these pairs using the

recycled-edge-based method.
2. Apart from the h1 pairs selected in Step 1, select 2h2 appropriate pairs from

Q≡
0,6, and connect these pairs using the (1, 2)-shared-edge-based method.

3. Apart from the h1+2h2 pairs selected in Steps 1 and 2, select 2h3 appropriate
pairs from Q≡

0,6, and connect these pairs using the (1, 3)-shared-edge-based
method.

4. Apart from the h1+2h2+2h3 pairs selected in Steps 1–3, select 2h4 appropri-
ate pairs from Q≡

0,6, and connect these pairs using the (2, 3)-shared-edge-based
method.

5. Connect the remaining δ0 − h1 −
∑4

i=2 2hi pairs in Q≡
0,6 and the s pairs in

Q∗
0 in the most wasteful way.

Clearly, the above procedure must generate a Core(Q̂0) containing exactly 3q −
∑4

i=1 hi new edges, and all the pairs of Q∗
0 are connected in the most wasteful

way.
As mentioned in Sect. 3, the main factor affecting the final security bound

is the number of variables. A simple explanation is that more variables make
the multivariate hypergeometric distribution used in the calculations more tun-
able. That is why we define four variables h1, h2, h3, h4 here (i.e., to improve the
accuracy), and it can be verified that these four methods necessarily produce dif-
ferent types of paths (i.e., to ensure the plausibility). Note that even considering
only the shared-edge-based methods, our strategy is simpler than [WYCD20].

Security Proofs for KACs with Non-Independent Round Permutations 259

In particular, a single selection operation of theirs may generate three different
types of shared-edges, whereas each of our selection operations will only generate
shared-edges of the same type.

The second step is to evaluate the number of Cores that can be
generated in the first step. According to the above procedure of connecting
q plaintext-ciphertext pairs of Q̂0, we determine the number of possibilities for
each step as follows. In the following, RCi(j) denotes the Range (set) of all
possible Candidate values for the to-be-assigned nodes in shore j (according to
the constructive method used in Step i).

1. Since |Q≡
0,6| = δ0, it has

(
δ0
h1

)

possibilities to select h1 distinct pairs from
Q≡

0,6. After the h1 pairs are chosen, we use the recycled-edge-based method
to connect them by first determining a set RC1(3) (the analysis of which is
referred to the RC(3) in full version [Yu+23, Appendix C.1]) and choosing
h1 different u’s from it, and then assigning one u to each pair. In total, the
possibilities of Step 1 is at least

(
δ0
h1

)

· (|RC1(3)|)h1 .
2. For simplicity, we can define a set of plaintext-ciphertext pairs Z ⊂ Q≡

0,6 (see
Eq. (17) for the definition of Z), so that the 2(h2 + h3 + h4) distinct pairs in
Step 2–4 can all be selected from Z. Then in Step 2, we have

(|Z|
h2

)

·
(|Z|−h2

h2

)

possibilities to sequentially select h2 distinct pairs from Z twice, where the
first (resp. second) selected h2 pairs will be constructed as the upper-paths
(resp. lower-paths)11 in the (1, 2)-shared-edge-based method. We then use the
(1, 2)-shared-edge-based method to connect these 2h2 pairs. According to the
discussion in the full version [Yu+23, Appendix C.2], the core task of (1, 2)-
shared-edge-based method is to determine two sets denoted by RC2(2) and
RC2(4). By simple counting, the possibilities of Step 2 is at least (|Z|)2h2

h2!
·

(|RC2(2)|)h2 · (|RC2(4)|)h2 , where (|Z|)2h2
h2!

=
(|Z|

h2

)

·
(|Z|−h2

h2

)

· h2!.
3. For Step 3, we can select 2h3 distinct pairs from Z after removing the 2h2

pairs chosen in Step 2. Then, we have
(|Z|−2h2

h3

)

·
(|Z|−2h2−h3

h3

)

possibilities to
sequentially select h3 distinct pairs from the rest of Z twice (similar to Step
2, the first and second selected h3 pairs will play different roles). After the
2h3 pairs are chosen, we use the (1, 3)-shared-edge-based method to connect
them. According to an analysis similar to that in the full version [Yu+23,
Appendix C.2], the core task of (1, 3)-shared-edge-based method is also to
determine two sets denoted by RC3(4) and RC3(2). By simple counting, the
possibilities of Step 3 is at least (|Z|−2h2)2h3

h3!
· (|RC3(2)|)h3 · (|RC3(4)|)h3 .

4. For Step 4, we can select 2h4 distinct pairs from Z after removing the
2(h2 + h3) pairs chosen in Step 2 and Step 3. Then, we have

(|Z|−2h2−2h3
h4

)

·
(|Z|−2h2−2h3−h4

h4

)

possibilities to sequentially select h4 distinct pairs from
the rest of Z twice (similar to Step 2, the first and second selected h4

pairs will play different roles). After the 2h4 pairs are chosen, we use the
(2, 3)-shared-edge-based method to connect them. According to an anal-
ysis similar to that in the full version [Yu+23, Appendix C.2], the core

11 In Fig. 1 of the full version [Yu+23, Appendix C], the paths between (x2, y2) and
(x′

2, y
′
2) are called the upper-path and lower-path, respectively.

260 L. Yu et al.

task of (2, 3)-shared-edge-based method is to determine two sets denoted by
RC4(4) and RC4(2). By simple counting, the possibilities of Step 4 is at least
(|Z|−2h2−2h3)2h4

h4!
· (|RC4(2)|)h4 · (|RC4(4)|)h4 .

5. Step 5 is to connect the remaining (δ0 − h1 −
∑4

i=2 2hi) pairs in Q≡
0,6 and

the s pairs in Q∗
0 in the most wasteful way. According to the analysis in

the full version [Yu+23, Appendix C.3], we can determine a set RC5(2) and
choose (δ0 − h1 −

∑4
i=2 2hi) + s = q − h1 −

∑4
i=2 2hi different w3,2’s from

it, and assign one w3,2 to each pair; then determine a set RC5(4) and choose
q − h1 −

∑4
i=2 2hi different w3,4’s from it, and then assign one w3,4 to each

pair. In total, the possibilities of Step 5 is at least (|RC5(2)|)q−h1−∑4
i=2 2hi

·
(|RC5(4)|)q−h1−∑4

i=2 2hi
.

All that’s left is to give a lower bound on the cardinality for Z and each
RCj(i) mentioned above. Let Λ1 denote the set of h1 pairs selected from Q≡

0,6 in
Step 1. We first give the definition of set Z below12, and denote by |Z| = q0.

Z :={(xi, yi) ∈ Q≡
0,6 \ Λ1 :

xi /∈ Ran(Q0) ⊕ κ0 ⊕ κ1 ⊕ κ3 ∧ xi /∈ Ran(Q0) ⊕ κ0 ⊕ κ2 ⊕ κ3

∧ yi /∈ Dom(Q0) ⊕ κ0 ⊕ κ1 ⊕ κ3 ∧ yi /∈ Dom(Q0) ⊕ κ0 ⊕ κ2 ⊕ κ3

∧ xi ⊕ κ0 ⊕ κ1 is left-free ∧ xi ⊕ κ0 ⊕ κ2 is left-free
∧ yi ⊕ κ1 ⊕ κ3 is right-free ∧ yi ⊕ κ2 ⊕ κ3 is right-free}

(17)

From the BadK4 in Defn. 4, we can know that

q0 = |Z| ≥ δ0 − h1 − 8M0. (18)

Based on the analysis in the full version [Yu+23, Appendix C.1–C.3], we
proceed to lower-bound the cardinality of each RCj(i) as follows.

|RC1(3)| ≥
∣
∣Dom(Q1) \ S1 \ S2

∣
∣ (19)

≥ q − 2M0,

since |S1| = |U05| ≤ M0, |S2| = |U27| ≤ M0 hold in any good transcript (see
BadK5 in Defn. 4).

|RC2(2)| ≥
∣
∣{0, 1}n \ Ran(Q0) ⊕ κ3 \ V \ Dom(Q0) ⊕ κ0 ⊕ κ1 \ U ⊕ κ1

\Dom(Q0) ⊕ κ0 ⊕ κ2 \ U ⊕ κ2

∣
∣ (20)

≥
∣
∣{0, 1}n \ Ran(Q0) ⊕ κ3 \ Ran(Q1) \ Dom(Q0) ⊕ κ0 ⊕ κ1

\ Dom(Q1) ⊕ κ1 \ Dom(Q0) ⊕ κ0 ⊕ κ2 \ Dom(Q1) ⊕ κ2

∣
∣

− 3 · (2h1)
≥ N − 6q − 6h1,

12 See Appendix D of the full version [Yu+23] for an analysis of the constraints on Z,
which are the sum of constraints from the three shared-edge-based methods.

Security Proofs for KACs with Non-Independent Round Permutations 261

where U (resp. V) denotes the domain (resp. range) of all P1-input-output-pairs
fixed so far (i.e., after Step 1) and 3 · (2h1) = 6h1 is the maximum number13
of new values generated by Step 1 that fall within the constraints of RC2(2).
This is exactly the consequence of updating U, V discussed in the full version
[Yu+23, Appendix C.2]. Due to the similarity, we directly give the remaining
lower bounds without explanation.

|RC2(4)| ≥ N − 4q − 4h1 − 10h2, (21)
|RC3(4)| ≥ N − 4q − 4h1 − 10h2, (22)
|RC3(2)| ≥ N − 4q − 4h1 − 10h2 − 10h3, (23)
|RC4(4)| ≥ N − 6q − 6h1 − 15h2 − 15h3, (24)
|RC4(2)| ≥ N − 4q − 4h1 − 10h2 − 10h3 − 10h4, (25)
|RC5(2)| ≥ N − 4q − 4h1 − 10h2 − 10h3 − 10h4, (26)
|RC5(4)| ≥ N − 5q − 3h1 − 8h2 − 8h3 − 8h4. (27)

Let #Coresi denote the number of Cores(Q̂0) containing exactly i new edges
(relative to Q1). Combining all the above, we finally obtain that

#Cores3q−∑4
i=1 hi

≥
(

δ0
h1

)

· (|RC1(3)|)h1 · (|Z|)2h2+2h3+2h4

h2! · h3! · h4!
· (|RC2(2)|)h2 · (|RC2(4)|)h2

× (|RC3(4)|)h3 · (|RC3(2)|)h3(|RC4(4)|)h4 · (|RC4(2)|)h4

× (|RC5(2)|)q−h1−2h2−2h3−2h4 · (|RC5(4)|)q−h1−2h2−2h3−2h4

≥ (δ0)h1(q − 2M0)h1

h1!
· (q0)2h2+2h3+2h4

h2! · h3! · h4!
· (N − 6q − 6h1)h2 · (N − 4q − 4h1 − 10h2)h2

· (N − 4q − 4h1 − 10h2)h3 · (N − 4q − 4h1 − 10h2 − 10h3)h3

· (N − 6q − 6h1 − 15h2 − 15h3)h4

· (N − 4q − 4h1 − 10h2 − 10h3 − 10h4)h4

· (N − 4q − 4h1 − 10h2 − 10h3 − 10h4)q−h1−2h2−2h3−2h4

· (N − 5q − 3h1 − 8h2 − 8h3 − 8h4)q−h1−2h2−2h3−2h4 .

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

13 Note that Step 1 will generate 2h1 new permutation-edges, so there will be 2h1 new
elements added to U and V respectively (compared to Dom(Q1) and Ran(Q1)). It
can be seen that there are only three constraints related to U and V in Eq. (20),
6h1 is obviously the maximum number of changes. We need to point out that this is
actually an overestimation. For example, newly added permutation-edges in Step 1
of the form 〈xi⊕κ0, P1, ∗〉 cause the set U ⊕κ1 to add new elements (i.e., xi⊕κ0⊕κ1)
which are already included in Dom(Q0) ⊕ κ0 ⊕ κ1. A finer analysis could provide
more accurate results, but this simplified treatment is sufficient here since we are
not seeking to optimize the constant coefficients in security bounds. Also, we use
this easily verifiable overestimation in the evaluation of Eqs. (21)–(26) below.

262 L. Yu et al.

The third step is to perform the summation calculation. Since the lower
bound on #Cores3q−∑4

i=1 hi
is known, we are now ready to calculate the final

result. From the Eqs. (10) and (28), we have

(15) =PrP1←$Pn
[EK ↓ Q≡

0,6 ∧ EK ↓w Q∗
0 | P1 ↓ Q1]

≥
∑

0≤h1,...,h4≤M

#Cores3q−∑4
i=1 hi

(N − q)3q−∑4
i=1 hi

≥
∑

0≤h1,...,h4≤M

Eq. (28)
(N − q)3q−∑4

i=1 hi

(29)

By lower-bounding14 the Eq. (29), we end up with

(15) =PrP1←$Pn
[EK ↓ Q≡

0,6 ∧ EK ↓w Q∗
0 | P1 ↓ Q1]

≥ 1
(N)q

×
(

1 − 57q
N3/4

− 122q2

N3/2
− 78q

N
− 32N

q2

)

,

which completes the proof. ��

4.2.2 Case 2: q = O(N1/2) The entire proof is almost the same as in the
case q = ω(N1/2), except for a slight modification to the calculations related to
M and M0. As mentioned before, for any positive ε > 0, if we set M = q/N1/2−ε

and M0 = q/N1/4+ε, then we can get a O(N3/4−ε)-bound.
For simplicity, we here set M = q

N9/20 and M0 = q
N3/10 , i.e. ε = 1

20 . We omit
the details of proof and only list the following two technical lemmas.

Lemma 7 (Bad Transcripts, q = O(N1/2)). For any given Q0,Q1 such that
|Q0| = |Q1| = q, we have

PrK←${0,1}4n [τ = (Q0,Q1,K) is bad] ≤ 12q
N7/10

+
3q2

N7/5
+

8q4

N3
+

6q6

N5
.

Lemma 8 (Good Transcripts, q = O(N1/2)). Fix arbitrarily a good tran-
script τ = (Q0,Q1,K) ∈ T as defined in Definition 4. Let Q≡

0,6 and Q∗
0 be as

described in Eq. (15), then we have

PrP1←$Pn
[EK ↓ Q≡

0,6 ∧ EK ↓w Q∗
0 | P1 ↓ Q1]

≥ 1
(N)q

×
(

1 − 122q2

N7/5
− 135q

N3/4
− 32

N1/10

)

.

According to the H-coefficient technique (see Lemma 2), we can obtain

AdvSPRP
P1P1P1

(D) ≤ ε1 + ε2

=
12q

N7/10
+

3q2

N7/5
+

8q4

N3
+

6q6

N5
+

122q2

N7/5
+

135q
N3/4

+
32

N1/10

=
12q

N7/10
+

125q2

N7/5
+

135q
N3/4

+
8q4

N3
+

6q6

N5
+

32
N1/10

,

which is the result of small q = O(N1/2) in Theorem 2.
14 Although the calculation involves a large number of terms, it is actually simple and

regular; the details can be found in the full version [Yu+23].

Security Proofs for KACs with Non-Independent Round Permutations 263

5 Tight Security Bound of t-Round KACSP

In this section, we generalize the proof of 3-round KACSP to the general t-round
KACSP. The proof idea is basically the same, except the notation is heavier.

Theorem 3 (t-Round KACSP). Consider the t-round KACSP (where t ≥ 4),
denoted as P

(t)
1 -construction. For any distinguisher D making qe construction

queries and qp permutation queries, the following upper bound holds:

AdvSPRP

P
(t)
1

(D)

≤

⎧

⎨

⎩

27t4q

Nt/(t+1)
+

15t5q2

N2t/(t+1)
+

2t2qt+1

Nt
+

4t2N

q2
, for q = ω(N

1/2
)

4tq

N7/10
+

15t5q2

N7/5
+

qt−1

N7(t−1)/10
+

22t4q

N3/4
+

tq

Nt/(t+1)
+

2t2qt+1

Nt
+

4t2

N1/10
, for q = O(N

1/2
)

where q := max{qe, qp}.

Note that the value of t = O(1) is a constant. Therefore, the above bound does
show that unless D makes q = Ω(N t/(t+1)) queries, its advantage of distinguish-
ing P

(t)
1 from a truly random permutation is negligible (for sufficiently large n).

In other words, t-round KACSP has the same security level as the t-round KAC.

Proof (Proof of Theorem 3). As discussed in Sect. 4.2, we also consider that
the distinguisher makes q construction queries and q permutation queries in
the analysis. That is, for each attainable transcript τ = (Q0,Q1,K) ∈ T , it
has |Q0| = |Q1| = q. Furthermore, we let ADt−i ⊂ Q0 denote the set of pairs
(xi, yi) ∈ Q0 whose actual distance is i, where i = 1, . . . , t. We also let δi :=
|ADi|. For convenience, we simply use Q≡

0,t to denote AD0 since it is a uniform-
structure-group.

Applying General Transformation. First of all, we also use the general
transformation (see Eq. (11)) here to reduce the task to bounding only one prob-
ability. The basic idea is to replace the uniform-structure-groups whose actual
distance is less than t with a new uniform-structure-group whose actual distance
is t, and make the connecting probability smaller.

Note that the expectation of δi is O(q/N i/(t+1)) and we can wlog assume
that q = O(N t/(t+1)) (otherwise the security bound is invalid). Then, we denote
s =

∑t−1
i=1 δi = O(q/N1/(t+1)) as the number of pairs to be replaced. As discussed

in Sect. 3, it is easy to construct a new uniform-structure-group Q∗
0 := {(xi, yi) :

i = q + 1, . . . , q + s} and set Q̂0 := Q≡
0,t ∪ Q∗

0, where the pairs in Q∗
0 must be

connected in the most wasteful way. Using Lemma 4 several times, we can know
that the crucial probability

(7) ≥ PrP1←$Pn
[EK ↓ Q̂0 | P1 ↓ Q1]

= PrP1←$Pn
[EK ↓ Q≡

0,t ∧ EK ↓w Q∗
0 | P1 ↓ Q1]. (30)

Thus, Eq. (30) becomes the target probability for which we need a lower bound.

264 L. Yu et al.

5.1 Case 1: q = ω(N1/2)

As in Sect. 4.2, we mainly focus on the large values of q = ω(N1/2), and the
other case of q = O(N1/2) is similar. We also first give the definition of good
and bad transcripts.

Let Rt−1 = {R(xi) : (xi, yi) ∈ ADt−1} and Lt−1 = {L(yi) : (xi, yi) ∈ ADt−1}
denote the set of all rightmost and leftmost vertices of the pairs whose actual
distance is 1, respectively. Next, we define t − 1 constants Mj = q

Nj/(t+1) related
to the value of q, where j = 1, 2, . . . , t − 1.

Definition 5 (Bad and Good Transcripts, P
(t)
1 -Construction). For an

attainable transcript τ = (Q0,Q1,K) ∈ T , we say that τ is bad if K ∈
⋃5

i=1 BadKi; otherwise τ is good. The definitions of BadKi are shown below:

K ∈ BadK1 ⇔ there exists a path of length 2t + 1 starting from a vertex
xi ∈ Dom(Q0) in shore 0 or ending at a vertex yi ∈ Ran(Q0)
in shore 2t + 1

K ∈ BadK2 ⇔ δi > Mi where i = 1, 2, . . . , t − 1
K ∈ BadK3 ⇔ |Rt−1 ∪ Dom(Q1)| < δt−1 + q ∨ |Lt−1 ∪ Ran(Q1)| < δt−1 + q

K ∈ BadK4 ⇔

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t−1∨

i=1

|{x ∈ Dom(Q0) : x ⊕ κ0 ⊕ κi is not left-free}| > M1

t−1∨

i=1

|(Dom(Q0) ⊕ κ0 ⊕ κi) ∩ (Ran(Q0) ⊕ κt)| > M1

t−1∨

i=1

|{y ∈ Ran(Q0) : y ⊕ κ3 ⊕ κi is not right-free}| > M1

t−1∨

i=1

|(Ran(Q0) ⊕ κ3 ⊕ κi) ∩ (Dom(Q0) ⊕ κ0)| > M1

K ∈ BadK5 ⇔ |U05| > M1 ∨ |U27| > M1.

We can determine the value of ε2 = 5tq
Nt/(t+1) + 2t2qt+1

Nt from the following
lemma, the proof of which can be found in the full version [Yu+23, Appendix
E.3].

Lemma 9 (Bad Transcripts, q = ω(N1/2)). For any given Q0,Q1 such that
|Q0| = |Q1| = q, we have

PrK←${0,1}(t+1)n [τ = (Q0,Q1,K) is bad] ≤ 5tq
N t/(t+1)

+
2t2qt+1

N t
.

The following lemma gives a lower bound on Eq. (30) for any good transcript.

Security Proofs for KACs with Non-Independent Round Permutations 265

Lemma 10 (Good Transcripts, q = ω(N1/2)). Fix arbitrarily a good tran-
script τ = (Q0,Q1,K) ∈ T as defined in Definition 5. Let Q≡

0,t and Q∗
0 be as

described in Eq. (30), then we have

PrP1←$Pn
[EK ↓ Q≡

0,t ∧ EK ↓w Q∗
0 | P1 ↓ Q1]

≥ 1
(N)q

×
(

1 − 22t4q
N t/(t+1)

− 15t5q2

N2t/(t+1)
− 4t2 N

q2

)

.
(31)

The proof of Lemma 10 is given in the full version [Yu+23, Appendix E.4]. We
next show how to obtain the final security bound from the above two lemmas.
First note that (31) is also a lower bound on the crucial probability (7), i.e. p(τ)
in Lemma 3 when t′ = 1. Then it is not difficult to determine the value of ε1.
According to the H-coefficient technique (see Lemma 2), we can obtain

AdvSPRP
(P1)t(D) ≤ ε1 + ε2

=
5tq

N t/(t+1)
+

2t2qt+1

N t
+

22t4q
N t/(t+1)

+
15t5q2

N2t/(t+1)
+

4t2 N

q2

≤ 27t4q
N t/(t+1)

+
15t5q2

N2t/(t+1)
+

2t2qt+1

N t
+

4t2 N

q2
,

(32)

which is the result of large q = ω(N1/2) in Theorem 3.

5.2 Case 2: q = O(N1/2)

The entire proof is almost the same as in the case q = ω(N1/2), except for a
slight modification to the calculations related to M1 and Mt−1 and we here set
M1 = q

N3/10 and Mt−1 = q
N9/20 . We omit the details of proof and only list the

following two technical lemmas.

Lemma 11 (Bad Transcripts, q = O(N1/2)). For any given Q0,Q1 such that
|Q0| = |Q1| = q, we have

PrK←${0,1}(t+1)n [τ = (Q0, Q1, K) is bad] ≤ 4tq

N7/10
+

qt−1

N7(t−1)/10
+

tq

Nt/(t+1)
+

2t2qt+1

Nt
.

Lemma 12 (Good Transcripts, q = O(N1/2)). Fix arbitrarily a good tran-
script τ = (Q0,Q1,K) ∈ T as defined in Definition 5. Let Q≡

0,t and Q∗
0 be as

described in Eq. (30), then we have

PrP1←$Pn [EK ↓ Q≡
0,t ∧ EK ↓w Q∗

0 | P1 ↓ Q1] ≥ 1

(N)q
×

(
1 − 15t5q2

N7/5
− 22t4q

N3/4
− 4t2

N1/10

)
.

According to the H-coefficient technique (see Lemma 2), we can obtain

AdvSPRP
P1P1P1

(D) ≤ ε1 + ε2

=
4tq

N7/10
+

qt−1

N7(t−1)/10
+

tq

Nt/(t+1)
+

2t2qt+1

Nt
+

15t5q2

N7/5
+

22t4q

N3/4
+

4t2

N1/10

=
4tq

N7/10
+

15t5q2

N7/5
+

qt−1

N7(t−1)/10
+

22t4q

N3/4
+

tq

Nt/(t+1)
+

2t2qt+1

Nt
+

4t2

N1/10
,

which is the result of small q = O(N1/2) in Theorem 2.

266 L. Yu et al.

6 Remarks on Other Variants of KACS

Our proof technology in this work applies to various KAC-type constructions as
well as the standard KAC construction. Our general transformation also works
and the proof idea is similar. The core task is to find enough constructive methods
of reducing new edges, so that the final security bound is sufficiently accurate.

We also find that the more rounds means more methods, so it seems easier
to find enough methods in constructions with more rounds. This is somewhat
counter-intuitive. It might be interesting to figure out whether this phenomenon
is an artifact of the proof technology, or because larger constructions inherently
have more security redundancy.

Acknowledgements. We would like to thank the anonymous reviewers of TCC 2023
for their valuable comments. Yu Yu is supported by the National Natural Science
Foundation of China (Grant Nos. 62125204 and 92270201), the National Key Research
and Development Program of China (Grant No. 2018YFA0704701), and the Major
Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008). Yu
Yu also acknowledges the support from the XPLORER PRIZE. This work is supported
in part by the National Key Research and Development Program of China (Grant No.
2022YFB2701400) and in part by the National Natural Science Foundation of China
(Grant No. 62132005, 62172162).

References

[Bog+12] Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Stein-
berger, J., Tischhauser, E.: Key-alternating ciphers in a provable setting:
encryption using a small number of public permutations. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
45–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29011-4_5 (cited on p. 2)

[Che+18] Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.P.: Minimizing the
two-round even-Mansour cipher. J. Cryptol. 4, 1064–1119 (2018). https://
doi.org/10.1007/s00145-018-9295-y (cited on pp. 2, 3, 8, 9, 11, 15, 17)

[CS14] Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 327–350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5_19 (cited on pp. 2, 6, 8)

[DKS12] Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the
even-Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29011-4_21 (cited on p. 2)

[DR02] Daemen, J., Rijmen, V.: The advanced encryption standard process.
In: The Design of Rijndael. Information Security and Cryptography.
Springer, Berlin, Heidelberg (2002).https://doi.org/10.1007/978-3-662-
04722-4 (cited on p. 1)

[EM97] Even, S., Mansour, Y.: A construction of a cipher from a single pseudo-
random permutation. J. Cryptol. 3, 151–162 (1997). https://doi.org/10.
1007/s001459900025 (cited on p. 1)

https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/s00145-018-9295-y
https://doi.org/10.1007/s00145-018-9295-y
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-29011-4_21
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/s001459900025

Security Proofs for KACs with Non-Independent Round Permutations 267

[HT16] Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length exten-
sion: exact bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4_1 (cited on pp. 2, 17)

[LPS12] Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security anal-
ysis of the iterated even-Mansour cipher. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34961-4_18 (cited on p. 2)

[Ste12] Steinberger, J.P.: Improved security bounds for key-alternating ciphers via
Hellinger distance. In: IACR Cryptology ePrint Archive, p. 481 (2012).
http://eprint.iacr.org/2012/481 (cited on p. 2)

[TZ21] Tessaro, S., Zhang, X.: Tight security for key-alternating ciphers with cor-
related sub-keys. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021.
LNCS, vol. 13092, pp. 435–464. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-92078-4_15 (cited on p. 2)

[WYCD20] Wu, Y., Yu, L., Cao, Z., Dong, X.: Tight security analysis of 3-round
key-alternating cipher with a single permutation. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 662–693. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64837-4_22 (cited on pp. 2, 3,
9, 10, 12, 15, 16, 18, 21)

[Yu+23] Yu, L., Wu, Y., Yu, Y., Cao, Z., Dong, X.: security proofs for key-
alternating ciphers with non-independent round permutations. In: IACR
Cryptology ePrint Archive, Paper 2023/1355 (2023). https://eprint.iacr.
org/2023/1355 (cited on pp. 3, 6, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 24,
25, 27, 28)

https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-642-34961-4_18
http://eprint.iacr.org/2012/481
https://doi.org/10.1007/978-3-030-92078-4_15
https://doi.org/10.1007/978-3-030-92078-4_15
https://doi.org/10.1007/978-3-030-64837-4_22
https://eprint.iacr.org/2023/1355
https://eprint.iacr.org/2023/1355

Public-Key Encryption, Local
Pseudorandom Generators,
and the Low-Degree Method

Andrej Bogdanov1(B), Pravesh K. Kothari2, and Alon Rosen3,4

1 University of Ottawa, Ottawa, Canada
abogdano@uottawa.ca

2 Carnegie Mellon University, Pittsburgh, USA
praveshk@cs.cmu.edu

3 Bocconi University, Milan, Italy
alon.rosen@unibocconi.it

4 Reichman University, Herzliya, Israel

Abstract. The low-degree method postulates that no efficient algorithm
outperforms low-degree polynomials in certain hypothesis-testing tasks.
It has been used to understand computational indistinguishability in
high-dimensional statistics.

We explore the use of the low-degree method in the context of cryptog-
raphy. To this end, we apply it in the design and analysis of a new public-
key encryption scheme whose security is based on Goldreich’s pseudoran-
dom generator. The scheme is a combination of two proposals of Apple-
baum, Barak, and Wigderson, and inherits desirable features from both.

Keywords: Public-key encryption · local cryptography · hypothesis
testing

1 Introduction

Hypothesis testing is concerned with the computational task of detecting a noisy
signal. The question is cast as a distinguishing problem between a pure noise dis-
tribution Q and an alternative distribution P that contains a planted signal. The
goal is to understand tradeoffs between the “amplitude” θ and the “frequency” m.

Several works [BR13,HWX15,BB20] uncover that such problems exhibit
statistical-to-computational gaps: depending on θ, there is a range of frequen-
cies m ∈ [mstat,mcomp] for which hypothesis testing is possible, but no efficient
algorithm is known.

The low-degree method is a heuristic for generating remarkably accurate esti-
mates of the computational threshold mcomp at which the hypothesis testing
problem becomes feasible [HKP+17]. It relies on the observation that for several
natural average-case hypothesis testing problems, the optimal polynomial time
distinguisher amounts to computing a low-degree polynomial in input samples.

The method was first employed [BHK+19] in constructing lower bound wit-
nesses for the sum-of-squares semidefinite programming hierarchy for the planted
c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 268–285, 2023.
https://doi.org/10.1007/978-3-031-48615-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-48615-9_10

PKE, Local PRGs, and the Low-Degree Method 269

clique problem. It was later [HKP+17] shown to be powerful enough to capture
natural spectral algorithms and in fact used to design new algorithms for certain
Bayesian estimation problems [HS17]. Indeed, no efficient algorithm appears to
outperform what can be inferred by observing “local statistics”.

In [HKP+17], the authors make the pseudocalibration conjecture positing
that hardness in the low-degree model implies sum-of-squares lower bounds for
average-case refutation problems under certain mild niceness conditions. Later
works [HS17,Hop18,KWB19] have proposed a stronger variant of the pseudocal-
ibration conjecture positing that thresholds computed in the low-degree method
are in fact mcomp i.e., a threshold for all polynomial time computable distin-
guishers. In the past few years, a sequence of works have used the low-degree
method to find evidence of gap between computational and statistical thresholds
for a number of average-case algorithmic problems.

In this work we will be interested in exploring the applicability of the low-
degree method to cryptography, and in particular to the design and analysis
of a new public-key cryptosystem. While we do not claim that the method’s
predictions always coincide with the computational infeasibility threshold mcomp,
we do believe that it can serve a guideline for sound design, in addition to being
a sanity-check for assessing security.

1.1 Goldreich’s Pseudorandom Generator

The main object underlying our new public-key encryption scheme is Goldreich’s
candidate one-way function [Gol11]. We will instantiate it in a way that may
allow us to conjecture it to be a pseudorandom generator given known attacks.

The function, denoted FH , maps n bits to m bits. It is described in terms of
two main objects:

– A d-hypergraph H on on n vertices and m (ordered) hyperedges, each of
size d. See Fig. 2 where the vertices are represented by circles (◦) and the
hyperedges are represented by squares (�).

– A d-ary predicate that is applied to the projection of an n-bit input x on each
one of the m hyperedges of H (Fig. 1).

Fig. 1. An instance of Goldreich’s function with predicate x1 ⊕ x2 ⊕ x3 ⊕ x4x5. The
non-linear part x4x5 is shaded light grey. (Color figure online)

270 A. Bogdanov et al.

For concreteness, we set H to be a 5-hypergraph on n vertices and m hyper-
edges, let d = k + 3, and k = 2. In Sect. 6 we give a more general description
parametrized by k. We set the predicate to be x1 ⊕ x2 ⊕ x3 ⊕ x4x5 [MST06].

1.2 A New Public-Key Encryption Scheme

Recall that a public-key encryption scheme involves three algorithms: Key gener-
ation, Encryption, and Decryption (see Sect. 2). Our scheme has binary message
space and we allow both imperfect correctness and security.

Encryption. In our scheme, encryptions of 0 are outputs y = FH(x) of Goldre-
ich’s function applied to a random input x. Encryptions of 1 are random m-bit
strings y. Indistinguishability of encryptions of 0 from encryptions of 1 follows
from pseudorandomness of FH given H.

Decryption. Decryption is made possible thanks to logarithmic size hypergraphs
(called”hyperloops”) that are planted in H in the key generation process. These
hyperloops make it effectively possible to distinguish between y = FH(x) and a
random m-bit string y (see Sect. 1.3).

Key-generation. A hyperloop is a 3-hypergraph in which every vertex has degree
two. Let L0 be a fixed hyperloop with �0 = O(log n) hyperedges. The public key
of our scheme consists of a 5-hypergraph H sampled as follows. Let:

– L be the union of t = 2Θ(�0) vertex-disjoint copies of L0,
– Q be a random 3-hypergraph with n vertices and hyperedge probability

O(n−3/2−δ),
– P = Q ∪ L where L is planted on a random subset of vertices of Q,
– H be obtained by randomly adding 2 vertices to each hyperedge in P .

The public key is the 5-hypergraph H and the secret key is S1, . . . , St, where
Si ⊆ {1, . . . , m} are the hyperedges corresponding to the ith planted copy of L0.

1.3 Correctness

The hypergraph H is published, enabling anybody to encrypt by evaluating the
function FH on a random input. Knowledge of S1, . . . , St enables correct decryp-
tion, since each planted hyperloop S gives noticeable advantage in distinguishing
the output of FH from a random string: all vertices in a hyperloop S have degree
two, and so whenever y = FH(x), the linear part ⊕j∈S(xj1 ⊕ xj2 ⊕ xj3) in the
bit z = ⊕j∈Syj cancels out to 0. It follows that z = ⊕j∈Sxj4xj5 , which has bias
2−|S| (when H is“typical”).

PKE, Local PRGs, and the Low-Degree Method 271

Fig. 2. A public key and ciphertext with a single planted hyperloop L0 (from Fig. 4).
The secret key and the ciphertext section used in decryption are marked in red.

The decryption function is then a majority of parities over hyperloops S ⊆
{1, . . . , m}. Specifically, testing whether more than (1+2−|S|)t/2 of z1, . . . , zt are
zero enables it to distinguish y = FH(x) from random with advantage 1 − o(1)
(see Claim 6) .

1.4 Security

For the scheme to be secure it is necessary that the output of the function
FH is pseudorandom and that the public key H hides the planted hyperloops
S1, . . . , St. This will in particular be true if:

1. A planted hypergraph P = Q ∪ L is indistinguishable from a random one Q.
2. The output of FH is pseudorandom when H is a random hypergraph Q.

While these two properties may be strictly stronger than required, we will
analyze their individual plausibility. Our examination is conducted both in light
of the best known asymptotic attacks, and within the low-degree framework.

A distinguisher of non-negligible advantage exists as there is already notice-
able probability that FH contains a constant-sized subset of output bits that
always XOR to zero. Our security argument applies to distinguishers of any con-
stant advantage. Ruling those out is sufficient to obtain a gap between decryp-
tion advantage and distinguishing advantage, which can then be amplified (at
some cost in efficiency). On the other hand, the secret key can be inverted by
exhaustive search in time

(
m
�0

)
= nO(log n) so we will restrict the analysis to

distinguishers that run in time no(log n).

Indistinguishability of P and Q. The distributions P and Q are statistically dis-
tinguishable since the planted hyperloops L of size �0 in P are unlikely to appear
in Q. There are two natural distinguishers to try in this context. Exhaustive
search for a hyperloop of size �0 has complexity at least n−O(1)

(
m
�0

)
. Another

272 A. Bogdanov et al.

possibility is to look for a discrepancy in the number of hyperedges between P
and Q. As long as the 2Θ(�0) hyperedges present are within o(1) of the standard
deviation n0.75−δ/2 in the number of edges of Q this discrepancy will not be
noticeable.

These two distinguishers are based on counting size-�0 hyperloops and count-
ing hyperedges. The counts are polynomials of degree �0 and one, respectively, in
the adjacency tensor of H. In Proposition 1 we show that they are close to best
possible in the low-degree framework: For every ε there exists an δ and a choice
of L0 so that no polynomial of degree at most (1 − ε)�0 has constant advantage.

Conjecture 1. For a sufficiently small constant δ, m = n1.5−δ, �0 = 0.36 log n,
and t = n0.75−δ, P and Q are (1 − Ω(1))-indistinguishable in nO(1)-time.

Pseudorandomness of FQ. For a random Q, the output y = FQ(x) has
been conjectured to be computationally indistinguishable from a random y ∈
{0, 1}m given Q. When the hyperedge probability is O(n−3/2−δ) the graph
has m = Θ(n1.5−δ) edges with high probability. The best known distinguisher
has complexity mΘ(n2δ) and is based on a landmark result of Feige, Kim, and
Ofek [FKO06]. They prove that H is likely to contain 2Θ(�1) hyperloops each
of size �1 ≈ n2δ. The distinguisher effectively inverts the secret key and runs
our decryption algorithm assuming the “public key” is sampled from the model
distribution Q.

In Proposition 2 we show that the advantage of any statistic that depends
arbitrarily in Q but has most degree d in y in distinguishing y = FQ from random
is upper bounded by the expected number of hyperloops of size at most d in Q.
This expectation is o(1) when d = o(n−2δ), that is for any statistic of degree just
too low to “see” the hyperloops in Q. This complements results on the small-bias
of FQ [MST06,ABR16,OW14,AL18].

Conjecture 2. For every δ, m = n1.5−δ, random x ∈ {0, 1}n, y ∈ {0, 1}m,
(Q,FQ(x)) and (Q, y) are o(1)-indistinguishable in nO(1)-time.

1.5 The Low-Degree Method

The low-degree method is a formal framework for arguing computational hard-
ness of hypothesis testing. Although the method is, in full generality, neither
complete or sound, it correctly predicts the computational threshold mcomp for
a variety of problems. The method is effective in settings where the computa-
tional advantage is non-negligible but vanishing (e.g., n−Ω(1)), and where the
model distribution is a high-dimensional product distribution. It is in particular
applicable for analyzing the two security claims from Sect. 1.4 and for detecting
vulnerabilities in alternative design choices.

We are in particular interested in the following question: For which planted
structures L are the distributions Q and P = Q ∪ L computationally indistin-
guishable? Perhaps the simplest attack is to try and detect a discrepancy in
the number of edges. Should the edge numbers be close, could the attacker rely

PKE, Local PRGs, and the Low-Degree Method 273

on discrepancies on other fixed-size substructures such as 5-cycles? It turns out
that this won’t help as long as the planted substructure L is sufficiently small-set
expanding (see Proposition 1).

Consider for example an alternative construction P ′ = Q ∪ L′ in which L′

now consists of a union of 2Θ(�0) independent random size-�0 hyperloops. P ′

and Q are now distinguishable as L′ will induce a significant discrepancy in the
number of 4-cliques. These additional structures completely break security of
encryption.

The low-degree method is in general incomplete as it does not model algebraic
attacks. For example it predicts that random n-bit strings of parities 0 and 1 are
degree-(n − 1) indistinguishable. Nevertheless we believe that it can be a useful
guide in “noisy linear algebra” type constructions with noticeable security error.

One technical difficulty in low-degree analysis is the lack of a triangle inequal-
ity. In our case we show that P = Q ∪ L is low-degree indistinguishable from
Q and that (Q,FQ) is low-degree indistinguishable from (Q, random). However
we cannot compose the two claims to conclude that (P, FP) is low-degree indis-
tinguishable from (Q, random). Nevertheless, we prove a weaker security claim
with an additional assumption on the “distinguisher” in Theorem 7.

1.6 Relation to the ABW Schemes

Applebaum, Barak, and Wigderson [ABW10] proposed two closely related
public-key encryption schemes that differ from ours in the choice of planted
structure L and predicate used in the underlying pseudorandom generator.

In their first scheme (ABW1) L is a single hyperloop of size � = Θ(n2δ) and
the predicate is the randomized function x1⊕x2⊕x3⊕e, where e is a noise bit of
probability n−2δ. Alternatively, e can be replaced by an AND of k = log �+O(1)
input bits. This encryption is not local (although in any reasonable parameter
setting a small value of k may suffice.) Their security analysis relies on statistical
indistinguishability of Q and P = Q ∪ L thus obviating the need for additional
computational assumptions.

The main difference is that, unlike ABW1, our proposal has constant locality.
Another difference is that our construction doesn’t use extrinsic noise bits e. The
role of the noise is played by the nonlinear part x4x5 of our predicate.

In their second scheme (ABW2) L is a single subgraph of size � = �0 =
Θ(log n), with fewer vertices than hyperedges. The predicate in this construction
can be arbitrary. To decrypt one checks whether the �-bit part of the ciphertext
restricted to L has a preimage. (With a small modification this scheme supports
errorless decryption.)

Unlike in ABW2, our secret key consists of multiple planted known linear
dependencies between the output bits. This endows our scheme with natural
leakage-resilience: Even if a small subset of these dependencies becomes public
encryption remains secure. Another difference is that our decryption may be of
lower complexity in some models as it is a majority of parities, while ABW2 rely
on a hardcoded lookup table.

274 A. Bogdanov et al.

Moreover, we believe that our scheme may be marginally more secure than
theirs. A brute-force search for the secret key would have complexities

(
m
�0

)
and(

n
�0

)
in our and their variant, respectively. The gap is most prominent when

m = n3/2−δ is large, i.e., when δ is small. In the regime where δ approaches 1/2
lower-degree attacks (based on detecting some substructure present in L) become
possible. A more precise low-degree analysis is needed for a fair comparison.

As for security guarantees, Applebaum, Barak, and Widgerson identify a
discrepancy in the number of small cycles as a potential vulnerability of their
schemes and account for it in parameter setting. The low-degree method system-
atically rules out all attacks of this type and more. While the low-degree method
readily applies to ABW1 and ABW2, its relevance in security analysis is better
highlighted in our scheme as it informs choices in the construction (hyperloop
sampling in key generation) and parameters (size and density of hyperloops)
(Fig. 3).

Fig. 3. Comparison with ABW1 and ABW2

1.7 Open Questions

One weakness of our security analysis is that it relies on computational indistin-
guishability of the model hypergraph distribution Q and the planted distribution
P that contains 2Θ(�0) copies of the planted hyperloop L0 with �0 = Θ(log n)
edges. Might it be possible to argue that the proximity is statistical?

Feige, Kim, and Ofek prove that a random 3-hypegraph with n vertices and
hyperedge probability p = O(n−3/2/�

1/2
0) is likely to contain K�0 hyperloops of

size �0 (for any desired constant K). We believe, however, that the number of
disjoint hyperloops of size �0 is at most polynomial by the following heuristic
argument. In expectation a large fraction of the hyperloop pairs intersect. If we
model the intersection graph as a random graph its maximum independent set
would have expected size logarithmic in the number of hyperloops 2�0 , namely
polynomial in the hyperloop size �0. Thus it appears that the planted instance
P is statistically far apart from the model instance Q.

Is it is possible to efficiently sample the public-key L of K�0 intersecting size-
�0 hyperloops jointly with the random hypergraph Q? If so security would follow
directly from the pseudorandomness of FQ. Our current proof of correctness
(Claim 6) would no longer apply owing to intersections between the hyperloops
which result in statistical dependencies in decryption. Nevertheless, decryption
remains correct as most of the intersections between the K�0 hyperloops are small

PKE, Local PRGs, and the Low-Degree Method 275

on average. Although the information bits z1, . . . , zt arising from the different
hyperloops in the decryption process would be dependent, their correlations are
sufficiently small to enable reliable decryption.

Concerning empirical security, it is unclear if the noise Q is needed at all in
the construction. Could the scheme be secure even if P consists of nothing but
n1.1 randomly planted copies of L0?

2 Public Key Encryption

Our encryption scheme has binary message space, decrypts incorrectly with
bounded probability δ, and has noticeable (but still bounded) computational
distance ε between the distribution of encryptions of zero and those of one.
Assuming both errors are sufficiently small constants they can be amplified to
be negligible at a loss of parameters [DNR04].

Definition 1 (Syntax). A public key encryption scheme consists of three algo-
rithms (Gen,Enc,Dec) such that for n ∈ N, Gen(1n) outputs a pair of keys
(sk, pk); Enc(pk, b) encrypts a message b with the public key pk and outputs
a ciphertext c; Dec(sk, c) decrypts a ciphertext c using the secret key sk and
outputs a message b.

Both key-generation, Gen, and encryption, Enc, are randomized. As men-
tioned above, we allow the decryption algorithm, Dec, to make errors.

Definition 2 (δ-correctness).
A public key encryption scheme (Gen,Enc,Dec) is correct with probability δ
if

Pr [Dec(sk,Enc(pk, b)) = b] ≥ δ,

where probability is taken over the randomness of Gen and Enc. We call 1 − δ
the decryption error.

Security is defined through indistingushability of encryptions [GM84]. To this
end, we rely on the notion computational indistinguishability.

Definition 3 (ε-indistinguishability). Two distributions X,Y are ε-
indistinguishable if for any probabilistic polynomial time algorithm A:

|Pr[A(X) = 1] − Pr[A(Y) = 1]| ≤ ε.

Definition 4 (ε-security). A public key encryption scheme (Gen,Enc,Dec) is
said to have security error ε ∈ [0, 1] if the distributions (pk,Enc(pk, 0)) and
(pk,Enc(pk, 1)) are ε-indistinguishable, where probabilities are over the random-
ness of Gen and Enc.

276 A. Bogdanov et al.

3 The Low-Degree Method

Suppose we want to distinguish distribution P from model distribution Q. One
way is to sort the outcomes x in order of decreasing likelihood ratio L(x) =
P (x)/Q(x), say “p” if it is large and “q” if it is small. The Neyman-Pearson
Lemma says that this test minimizes the false positive error among all tests
with a given false negative error.

The likelihood ratio can also be used to argue indistinguishability. For any
test T ,

|P (T)−Q(T)| = |EQ[(L−1)·1T]| ≤
√

EQ[(L − 1)2] · EQ[12T] =
√

VarQ[L] · Q(T).

Therefore the statistical distance is at most the standard deviation of L under
Q. Even if the variance is greater than one but bounded, this bound rules out
the possibility that P (T) → 1 and Q(T) → 0 so the statistical distance between
P and Q must be bounded away from one.

Example. Let Q and P consist of n i.i.d. ±1 bits that are unbiased and ε-
biased, respectively. The likelihood ratio is L(x) =

∏
(1 + εxi), its variance is

Var[L] =
∏

E[(1 + εxi)2] − 1 = (1 + ε2)n − 1. The variance is o(1) as long as
ε � 1/

√
n, which matches the regime in which we cannot distinguish reliably. If

we expand L(x) as a polynomial we get L(x) = 1 + ε
∑

xi + ε2
∑

i�=j xixj + · · · .
The degree-d part contributes

(
n
d

)
ε2d to the variance so the main contribution

comes from the degree-1 part L1(x) = 1 + ε
∑

xi. In fact we can use the value
of L1 to distinguish P and Q when VarQ[L1] is large.

This example suggests using the low-degree projection L1 or more generally
Ld to distinguish P from Q assuming Q is a product distribution over bits. (The
theory generalizes to product distributions over other domains.) The advantage
of Ld is that it can be computed in size

(
n
d

)
. In contrast, L may not be efficiently

computable in general. For a number of statistical hypothesis testing problems,
the best efficient distinguishers are based on the value of some low-degree poly-
nomial. Among those distinguishers, Ld is optimal in the following sense:

Claim 1. Among all degree-d polynomials f , Ld maximizes the advantage

ad = max
f

EP [f] − EQ[f]
√

VarQ[f]
.

Moreover, ad = ‖Ld − 1‖Q.

A degree-d polynomial can capture any “d-local” statistic. For example, if P
and Q are graphs (represented by their adjacency matrices) then f can compute
the number of copies of any given induced subgraph with d edges. A natural
distinguisher in this context is a test of the form f(x) > t for a suitable threshold
t. If it happens that VarP [f] = O(VarQ[f]) then f will be concentrated around its
means under both P and Q so a large value of ad means that f(P) will typically

PKE, Local PRGs, and the Low-Degree Method 277

be large while f(Q) will typically be small. If on the other hand VarP [f] �
VarQ[f] then it may be reasonable to try g(x) = (f(x)−EQ[f])2 as a distinguisher
of degree 2d. Thus small advantage is evidence of failure for all distinguishers of
this type.

Proof (Proof of Claim 1). The maximum advantage can be rewritten as
maxEP [f] where f is constrained to have degree d, mean EQ[f] = 0 and variance
EQ[f2] = 1. Since f has degree at most d,

EP [f] = EQ[f · L] = EQ[f · (Ld − EQ[Ld])] = EQ[f · (Ld − 1)],

This expression is maximized when f = (Ld − 1)/‖Ld − 1‖. (As the maximum is
invariant under scaling and shifting we can also take f = Ld.) The advantage is

EP [Ld − 1]
‖Ld − 1‖Q

=
EQ[Ld(Ld − 1)]

‖Ld − 1‖Q
= ‖Ld − 1‖Q.

If Q is the p-biased product distribution over {±1}n so that Pr(Xi = −1) = p,
Pr(Xi = 1) = q = 1−p. The Fourier basis is given by φS(x) =

∏
i∈S φ(xi), where

φ(−1) = −√
q/p and φ(1) =

√
p/q. The squared degree-d advantage a2

d is

a2
d = ‖Ld − 1‖2Q =

∑

1≤|S|≤d

EP [φS]2. (1)

4 Planting Hyperloops

A hyperloop is a 3-hypergraph in which every vertex has degree two. Let Q be
a random 3-hypergraph on n vertices with edge probability p and P = Q ∪ L
where L is a hyperloop on � edges.

Proposition 1. Assume that for every 1 ≤ s ≤ d, every set of s hyperedges
in L touches at least (3/2 − δ)(s + 1) − 2δ vertices. If p ≥ C

√
dn−3/2−δ and

� ≤ η
√

pn3/Cd3/2 for some constant C and sufficiently large n then the degree-
d advantage ad(P,Q) is ≤ η.

The proposition guarantees degree-d indistinguishability as long as L is small-
set expanding and the number of planted hyperedges is within o(η/d3/4) standard
deviations of the expected number of hyperedges pn3 in the host hypergraph Q.
Thus in this regime, no low-degree distinguisher can significantly improve over
counting hyperedges.

In our intended application L will consist of �/�0 vertex-disjoint copies of a
single hyperloop L0 with �0 = O(log n) hyperedges. By Claim 5 a random choice
of L0 will have the desired expansion with constant probability.

Proof. We expand ad in the Fourier basis as:

a2
d =

∑

1≤|S|≤d

EP [φS]2 =
∑

1≤|S|≤d

(
1 − p

p

)|S|
Pr[S ⊆ L]2.

278 A. Bogdanov et al.

A copy of S in L is a map from the vertices of S to the vertices of L that maps
edges into edges. Let C(S,L) be the number of such copies. By a union bound
Pr[S ⊆ L] ≤ C(S,L)/n(n − 1) · · · (n − v(S) + 1) where v(S) is the number of
vertices in S. Assuming that v(S) ≤ 3d = O(

√
n) the denominator dominates

nv(S) so Pr[S ⊆ L] � C(S,L)n−v(S). Therefore a2
d ≤ ∑

1≤|S|≤d f(S) where
f(S) = ((1 − p)/p)|S|C(S,L)2n−2v(S).

If the vertex sets of S and S′ are disjoint then f(S ∪S′) ≤ f(S)f(S′). There-
fore f(S′) ≤ ∏

C f(S) where the product ranges over the connected components
S of S′:

a2
d ≤

∑

1≤|S′|≤d

∏

c.c. S of S′
f(S) ≤

(
1 +

∑

1≤|S|≤d
S connected

f(S)
)d

− 1.

To obtain ad ≤ η it is therefore sufficient to show that the summation over
connected S is at most η2/2d.

Claim 2. If S is connected then C(S,L) ≤ 3|L| · 2|S|.

Proof. Let s = |S| and let e1, . . . , es be an ordering of the edges so that ei is
connected to e1, . . . , ei−1 for all i. The first edge e1 = {v1, v2, v3} of S can map
into L into at most � ways, and there are 3! = 6 ways to assign v1, v2, v3 that are
consistent with this edge map. Since L has degree two and e2 intersects e1, the
image of e2 is fixed by this assignment. There are then at most two ways to assign
the vertices of e2\e1. By the same argument there are at most two ways to assign
the vertices of ei \ (e1 ∪ · · · ∪ ei−1). Therefore C(S,L) ≤ 3!|L| · 2s−1 = 3|L| · 2s.

Applying this bound and disregarding the (1 − p)|S| factor (which will be
small) we obtain

∑

1≤|S|≤d
S connected

f(S) ≤ 9�2bd where bd =
∑

1≤|S|≤d

1
(p/2)|S|n2v(S)

.

Let N(s, v) be the number of connected 3-hypergraphs with s edges that span
a fixed set of v vertices and appear at least once in L. Then

bd ≤
d∑

s=1

∑

v

(
n

v

)
N(s, v)(p/2)−sn−2v ≤

d∑

s=1

∑

v

N(s, v)
v!

· (p/2)−sn−v. (2)

The leading term s = 1, for which v must equal 3, contributes O(1/pn3). The
objective is to show that it dominates the summation assuming that L is suffi-
ciently expanding. If this is the case then the advantage will be bounded as long
as 1/pn3 = O(η−2/d�2), or � = O(η

√
pn3/d). Owing to some slackness in the

calculation we will only show that the dominating term is at most O(
√

d/pn3),
thereby accounting for the additional

√
d factor in the statement.

Claim 3. N(s, v)/v! = O(csss/2) for some constant c.

PKE, Local PRGs, and the Low-Degree Method 279

Proof. Let u be the number of degree-1 vertices. Since all vertices have degree
1 or 2 we must have v = (3s + u)/2. There are

(
v
u

)
ways to choose the degree-1

vertices. Once these are fixed we argue that the hypergraph can be chosen in
Θ(h(s, u)) ways, where

h(s, u) =
(3 s)!

s! · 6s · 2(3 s−u)/2
.

Using Stirling’s formula we obtain N(s, v) = O(c′ss2s/u!(v − u)!) for some con-
stant c′. The denominator is minimized when u = �v/2� which gives, again
applying Stirling’s formula, N(s, v) = O(css2s/vv). As the maximum degree is
2, v must be at least 3s/2 and the claim follows.

Let C be the set of 3s “clones” consisting two copies of each degree-2 vertex
and all the degree-1 vertices. The clones can be partitioned into s hyperedges
in (3s)!/(s! · 6s) ways. Each (s, u)-hypercycle arises from 2(3s−u)/2 partitions of
clones in which no pair of clones is covered by the same hyperedge.

Thus the number of (s, u)-hypercycles is between qh(s, u) and h(s, u), where
q is the probability that no pair of clones is covered by the same hyperedge when
the partition is chosen at random.

It remains to lower bound q by a constant. The random partition can be
sampled by randomly arranging the 3s clones and assigning clones 3j, 3j + 1,
and 3j + 2 to the j-th hyperedge. After arranging the u degree-one vertices and
the first clone of the remaining (3s−u)/2 vertices, no pair is covered by the same
hyperedge as long as each of the second clones is separated by the corresponding
first clone by at least two other clones when its position in the arrangement
is chosen. For any given second clone, this happens with probability at least
1 − 4/((3s + u)/2) (as there are at most four forbidden positions). Thus q is at
least (1 − 4/((3s + u)/2))(3s−u)/2 ≥ (1 − 4/(3s/2))3s/2 ≥ e−4.

Plugging into (2) we obtain

bd �
d∑

s=1

∑

v

(p/2c
√

s)−sn−v �
d∑

s=1

(p/2c
√

d)−sn−v(s),

where v(s) = minS⊆L,S connected,|S|=s v(S).
Assume p/2c

√
d ≥ n−3/2−δ for some constant δ > 0. Then the summation is

dominated by the term s = 1 as long as (3/2 + δ)s − v(s) < −3/2 + δ, or

v(s) ≥ (3/2 + δ)(s + 1) − 2δ for every s ≤ d. (3)

4.1 Expansion of 3-Regular Graphs

Assume L consists of �/�0 vertex-disjoint copies of a single hyperloop L0 with �0
edges. If L0 satisfies (3) so will L. It will be more convenient to analyze the dual
object L∗

0 of L0 obtained by transposing the incidence matrix of L0. Then L∗
0

is a simple 3-regular graph with �0 vertices and 3�0/2 edges. Equation (3) then
any set of s ≤ d vertices in L∗

0 must touch at least (3/2 + δ)(s + 1) − 2δ edges.

280 A. Bogdanov et al.

Fig. 4. (a) A hyperloop L and (b) its dual representation L∗

Claim 4. If a set S of size s touches e edges then the cut (S, S) has size at least
2e − 3s.

Proof. We can write e = in + out where in and out is the number of edges
inside S and leaving S, respectively. Since every vertex (in S) has degree 3,
2in + out = 3s. Therefore out = 2e − 3s.

It is therefore sufficient that the cut (S, S) has size at least 2δ(s − 1) + 3 for
every set S of s vertices in L∗

0. If L∗
0 has sufficiently high girth and high spectral

expansion this would hold for sets up to size linear in �0. However this type of
analysis would likely give poor concrete parameters: Even if L∗

0 is Ramanujan its
spectral expansion would be at most 1−2

√
2/3 ≈ 0.06, which merely guarantees

that |(S, S)| ≥ 0.17s. To obtain the desired expansion for small sets the girth
would need to be at least 18 resulting in a prohibitively large L∗

0.
In terms of concrete parameters there exists a hyperloop L0 on 14 vertices

that satisfies (3) with d = 9 and δ = 1/8 (see Fig. 5). A random construction
also works well asymptotically:

Fig. 5. A size 14 hyperloop L∗
0 with δ = 1/8 for d = 9.

Claim 5. For every ε > 0 there exists a δ > 0 so that for sufficiently large �0
and for a random L0 (3) is satisfied with constant probability up to d = (1−ε)�0.

PKE, Local PRGs, and the Low-Degree Method 281

Proof. We sample L0 from the configuration model in which vertices are cloned
thrice and then the clones are randomly matched. We consider three parameter
ranges.

If ε�0 < s ≤ (1 − ε)�0, with probability approaching one as �0 → ∞, L0

is a edge-expander [HLW06] so |(S, S)| ≥ α min{|S|, |S|} for every S for some
absolute expansion constant α. This is at least 2δ(|S| − 1) + 3 for all |S| = s in
the desired range as long as δ ≤ αε/2 − 3/2(�0 − 1).

If 4 ≤ s ≤ ε�0, the probability that there exists a set of s vertices that touches
at most v = αs edges is at most

(
�0
s

)(
3�0/2

v

)
· 2v

3�0
· 2v − 1
3�0 − 1

· 2v − 3 s + 1
3�0 − 3 s + 1

≤
(e�0

s

)s(3e�

2v

)v(2v

3�0

)3 s

=
(

c(α)
(s

�0

)2−α
)s

,

where c(α) = (8eα3/27)(3e/2α)α. Setting α = 1/8 − 3δ/4 we obtain that (3)
can be satisfied for all 4 ≤ d ≤ �0 with probability that approaches one as ε
approaches zero.

If 1 ≤ s ≤ 3 we will argue that v(1) = 3, v(2) = 5, and v(3) = 7, namely
the graph has no parallel edges, no self-loops, and has girth at least five, with
probability Ω(1). Consider the following procedure for sampling the graph. Start
with the integer sequence s = (1, 2, . . . , 3�0/2). Now insert another copy of each
integer at a random position in the sequence. In the resulting sequence of length
3�0 identify the integers with edges and the “clones” at positions 3j, 3j +1, 3j +
2 with vertex j. We describe a sequence of events G1, . . . , G3�/2 where Gi is
measurable in the filtration obtained by exposing the j-th insertion, each Gi has
probability at least 1−O(1/�0) conditioned on G1, . . . , Gi−1, and the conjunction
G1 ∩ . . . ∩ G3�/2 implies the desired properties.

The property v(1) = 3 (no parallel edges or self-loops) will be satisfied as long
as the two copies of every integer are spaces at least three items apart. It is clearly
sufficient that this holds at the time of insertion as subsequent insertions can
only increase the distance. The corresponding event Gj has clearly the desired
properties as at the time of each insertion there are only four forbidden positions
out of at least 3�0/2.

Similarly, v(2) = 5 and v(3) = 7 (the girth is at least five) is satisfied as long
at when i is inserted it does not land two slots within any number that is within
“two hops” to the copy of i that is already present, where a hop between i and
i′ is allowed if they appear within two positions of each other. This specifies at
most 160 forbidden positions so the corresponding event Gj still has probability
1 − O(1/�0).

5 Low-Degree Security of Goldreich’s Function

We show that Goldreich’s function on a random hypergraph is secure with
respect to low-degree tests. We consider tests f that receive as input a hyper-
graph H and a string y that is either an output FH of Goldreich’s function or a

282 A. Bogdanov et al.

random string R. The test f may depend arbitrarily on H but must have degree
at most d in y.

Proposition 2. The squared low-degree advantage of f is at most the expected
number of projections of FH on nonempty subsets of size at most d that have
nonzero bias.

In particular, if the predicate is of the form X1 + X2 + X3 + g(Y) then all
nonzero bias subsets must come from hyperloops induced by the X-variables.
Therefore a2

d is at most the expected number of hyperloops of size at most d in a
random 3-hypergraph. Any hyperloop that spans a specific set of v vertices must
have at least 2v/3 hyperedges, so in the H(n, p) model the expected number of
hyperloops that span some set of v vertices is at most

(
n

v

)((
v
3

)

2v/3

)
p2v/3 ≤

(
en

v

)v(
ev2p

4

)2v/3

.

Assuming d ≤ 0.4p−2n−3 = Ω̃(n2δ), the expectation is dominated by the first
term v = 6 for which it has value Õ(n−4δ).

Proof (Proof of Proposition 2). As in the proof of Claim 1, the advantage is
maxf E[f(H,FH)] where f is constrained to have zero mean and unit variance
under the model distribution (H,R). We can write EH,FH

[f] = EH,R[f ·L] where
L is the joint likelihood ratio

L(h, r) =
Pr(H = h, FH = r)
Pr(H = h, r = R)

=
Pr(FH = r|H = h)

Pr(r = R)
.

Namely, L(h, r) equals the conditional likelihood ratio L(r|h). Thus the opti-
mal choice of f is the conditional degree-d projection Ld(r|h) and the squared
advantage is Var[Ld]. By the total variance formula, Var[Ld] = EVar[Ld|H] +
VarE[Ld|H]. For fixed h, Ld has the Fourier expansion

Ld(· |h) =
∑

|S|≤d

E[L(R|h)χS(R)]χS =
∑

|S|≤d

E[χS(FH)]χS ,

In particular, E[Ld(·|h)] = 1 for every h and VarE[Ld|H] = 0. It follows that
the advantage is

Var[Ld] = EVar[Ld|H] = E

∑

1≤|S|≤d

E[χS(FH)|H]2.

As χS(FH) is nonzero only when FH is nonuniform and it is at most one oth-
erwise, the right hand side is at most the expected number of biased subsets of
FH .

PKE, Local PRGs, and the Low-Degree Method 283

6 The Encryption Scheme

We present a general construction that exhibits a tradeoff between the parameter
k that governs the locality of encryption and the size of the hyperloop �0.

We will assume that the vertices in a hyperedge are ordered. Let

– Q be a random 3-hypergraph with n vertices and hyperedge probability
C

√
dn−3/2−δ,

– L0 be a fixed 3-hypergraph on �0 = 0.09 · 2k log n vertices satisfying Claim 5,
– L consists of t = O(1/β2 log 1/δ) vertex-disjoint copies of L0, β = (1 −

2−k+1)�0 ,
– P be the m-edge hypergraph union of Q and a copy of L planted on a random

subset of 3�/2 vertices of Q,
– H be (k + 3)-hypergraph obtained by extending each hyperedge of P with k

random vertices,
– F : {0, 1}n → {0, 1}m be the function obtained by evaluating the (k + 3)-ary

predicate x1 ⊕x2 ⊕x3 ⊕ (w1 ∧ · · · ∧wk) on all sequences of input bits indexed
by hyperedges in H.

The key generation procedure outputs H as the public key and disjoint �0-
subsets S1, . . . , St of {1, . . . , m} indexing the copies of L0 in P as the secret key.

To encrypt a 0, output y = F (x) for a random x. To encrypt a 1, output a
random string of length m.

To decrypt y, calculate the parities zi = ⊕j∈Si
yj for all 1 ≤ j ≤ t. If more

than (1 + β)t/2 of them are zero output 0, otherwise output 1.
Call the public key good if all extensions of the hyperedges in L are pair-

wise disjoint. By a union bound the public key is good except with probability
O(�2k2/n) = n−Ω(1).

Claim 6. Assuming H is good, decryption is correct except with probability δ.

Proof. For an encryption of 1, the bits z1, . . . , zt are independent random so the
probability that more than (1 + β)t/2 of them are zero is at most δ by Chernoff
bounds.

For an encryption of 0, each bit zi evaluates to an �0-XOR of disjoint k-ANDs
so it has bias β. As z1, . . . , z� are independent the probability that fewer than
(1 + β)t/2 are zero is at most δ again.

Theorem 7. If f has degree less than (1 − ε)�0 and bounded 4-norm, the dis-
tinguishing advantage E[f(P, FP)] − E[f(Q,R)] is n−Ω(1).

We do not know if a bounded variance assumption on f would suffice.

Proof. We may assume E[f(Q,R)] = 0. By Proposition 1, for every g of degree
at most d = (1−ε)�0, E[g(P)]−E[g(Q)] ≤ n−Ω(1)

√
Var[g(Q)]. Given f of degree

d let g(G) = E[f(G,FG)|G]. Then g has the same degree as f and

E[f(P, FP)] − E[f(Q,FQ)] ≤ n−Ω(1)
√

Var[f(Q,FQ)].

284 A. Bogdanov et al.

By Proposition 2 applied to f2,

|E[f(Q,FQ)2] − E[f(Q,R)2]| ≤ n−Ω(1)
√

Var[f(Q,R)2].

By the boundedness of the 4-norm of f ,

Var[f(Q,FQ)2] ≤ Var[f(Q,R)2] + n−Ω(1)

so E[f(P, FP)]−E[f(Q,FQ)] = n−Ω(1). By Proposition 2 applied to f this time,

E[f(Q,FQ)] − E[f(Q,R)] = n−Ω(1)
√

Var[f(Q,R)] = O(n−Ω(1)).

The claim follows by the triangle inequality.

Acknowledgments. We thank Caicai Chen, Yuval Ishai, and Chris Jones for their
advice and feedback. Part of this work done when the first and second authors visited
Bocconi University. Andrej Bogdanov is supported by an NSERC Discovery Grant
and Hong Kong RGC GRF CUHK14209920. Pravesh Kothari is supported by NSF
CAREER Award #2047933, Alfred P. Sloan Fellowship and a Google Research Scholar
Award. Alon Rosen is supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (Grant agreement
No. 101019547) and Cariplo CRYPTONOMEX grant.

References

[ABR16] Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias
generators. J. Cryptol. 29(3), 577–596 (2016)

[ABW10] Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from
different assumptions. In: Proceedings of the Forty-Second ACM Sympo-
sium on Theory of Computing, STOC 2010, pp. 171–180. Association for
Computing Machinery, New York (2010)

[AL18] Applebaum, B., Lovett, S.: Algebraic attacks against random local func-
tions and their countermeasures. SIAM J. Comput. 47(1), 52–79 (2018)

[BB20] Brennan, M.S., Bresler, G.: Reducibility and statistical-computational gaps
from secret leakage. In: Abernethy, J.D., Agarwal, S. (eds.) Conference
on Learning Theory, COLT 2020, Graz, Austria, 9–12 July 2020, Virtual
Event, vol. 125 of Proceedings of Machine Learning Research, pp. 648–847.
PMLR (2020)

[BHK+19] Barak, B., Hopkins, S.B., Kelner, J.A., Kothari, P.K., Moitra, A., Potechin,
A.: A nearly tight sum-of-squares lower bound for the planted clique prob-
lem. SIAM J. Comput. 48(2), 687–735 (2019)

[BR13] Berthet, Q., Rigollet, P.: Complexity theoretic lower bounds for sparse
principal component detection. In: Shalev-Shwartz, S., Steinwart, I. (eds.)
Proceedings of the 26th Annual Conference on Learning Theory, vol. 30
of Proceedings of Machine Learning Research, Princeton, NJ, USA, 12–14
June 2013, pp. 1046–1066. PMLR (2013)

[DNR04] Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from
decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 21

https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21

PKE, Local PRGs, and the Low-Degree Method 285

[FKO06] Feige, U., Kim, J.H., Ofek, E.: Witnesses for non-satisfiability of dense ran-
dom 3cnf formulas. In: 2006 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2006), pp. 497–508 (2006)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[Gol11] Goldreich, O.: Candidate one-way functions based on expander graphs.
In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscel-
lanea on the Interplay between Randomness and Computation. LNCS, vol.
6650, pp. 76–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22670-0 10

[HKP+17] Hopkins, S.B., Kothari, P.K., Potechin, A., Raghavendra, P., Schramm, T.,
Steurer, D.: The power of sum-of-squares for detecting hidden structures.
In: Umans, C. (ed.) 58th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2017, Berkeley, CA, USA, 15–17 October 2017, pp.
720–731. IEEE Computer Society (2017)

[HLW06] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applica-
tions. Bull. Am. Math. Soc. 43(04), 439–562 (2006)

[Hop18] Hopkins, S.: Statistical Inference and the Sum of Squares Method. PhD
thesis, Cornell University (2018)

[HS17] Hopkins, S.B., Steurer, D.: Efficient bayesian estimation from few samples:
community detection and related problems. In: Umans, C. (ed.) 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, 15–17 October 2017, pp. 379–390. IEEE Computer
Society (2017)

[HWX15] Hajek, B., Wu, Y., Xu, J.: Computational lower bounds for community
detection on random graphs. In: Proceedings of The 28th Conference on
Learning Theory, vol. 40 of Proceedings of Machine Learning Research,
Paris, France, 03–06 July 2015, pp. 899–928. PMLR (2015)

[KWB19] Kunisky, D., Wein, A.S., Bandeira, A.S.: Notes on computational hardness
of hypothesis testing: predictions using the low-degree likelihood ratio. In:
Cerejeiras, P., Reissig, M. (eds.) ISAAC 2019, vol. 385, pp. 1–50. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-97127-4 1

[MST06] Mossel, E., Shpilka, A., Trevisan, L.: On epsilon-biased generators in nc0.
Random Struct. Algor. 29(1), 56–81 (2006)

[OW14] O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In: 2014 IEEE 29th Conference on Computational
Complexity (CCC), pp. 1–12 (2014)

https://doi.org/10.1007/978-3-642-22670-0_10
https://doi.org/10.1007/978-3-642-22670-0_10
https://doi.org/10.1007/978-3-030-97127-4_1

Cryptography from Planted Graphs:
Security with Logarithmic-Size Messages

Damiano Abram1 , Amos Beimel2 , Yuval Ishai3(B) , Eyal Kushilevitz3 ,
and Varun Narayanan4

1 Aarhus University, Aarhus, Denmark
2 Ben-Gurion University, Beersheba, Israel

3 Technion, Haifa, Israel
yuval.ishai@gmail.com

4 University of California, Los Angeles, USA

Abstract. We study the following broad question about cryptographic
primitives: is it possible to achieve security against arbitrary poly(n)-time
adversary with O(log n)-size messages? It is common knowledge that the
answer is “no” unless information-theoretic security is possible. In this
work, we revisit this question by considering the setting of cryptography
with public information and computational security.

We obtain the following main results, assuming variants of well-
studied intractability assumptions:

– A private simultaneous messages (PSM) protocol for every f :
[n] × [n] → {0, 1} with (1 + ε) log n-bit messages, beating the known
lower bound on information-theoretic PSM protocols. We apply this
towards non-interactive secure 3-party computation with similar
message size in the preprocessing model, improving over previous
2-round protocols.

– A secret-sharing scheme for any “forbidden-graph” access structure
on n nodes with O(log n) share size.

– On the negative side, we show that computational threshold
secret-sharing schemes with public information require share size
Ω(log log n). For arbitrary access structures, we show that compu-
tational security does not help with 1-bit shares.

The above positive results guarantee that any adversary of size no(log n)

achieves an n−Ω(1) distinguishing advantage. We show how to make the
advantage negligible by slightly increasing the asymptotic message size,
still improving over all known constructions.

The security of our constructions is based on the conjectured hard-
ness of variants of the planted clique problem, which was extensively
studied in the algorithms, statistical inference, and complexity theory
communities. Our work provides the first applications of such assump-
tions to improving the efficiency of mainstream cryptographic primitives,
gives evidence for the necessity of such assumptions, and suggests new
questions in this domain that may be of independent interest.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 286–315, 2023.
https://doi.org/10.1007/978-3-031-48615-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_11&domain=pdf
http://orcid.org/0009-0004-3916-7550
http://orcid.org/0000-0002-6572-4195
http://orcid.org/0009-0009-4096-6305
http://orcid.org/0009-0009-9277-3863
http://orcid.org/0009-0000-6620-2754
https://doi.org/10.1007/978-3-031-48615-9_11

Cryptography from Planted Graphs 287

1 Introduction

We consider the following broad question about cryptographic primitives:

Is it possible to achieve security against arbitrary poly(n)-time adversaries
with messages of size O(log n)?

It is not hard to see that the answer is “no” unless information-theoretic secu-
rity is possible. Indeed, a non-uniform adversary can simply apply a brute-force
distinguisher implemented by a circuit of size 2O(log n) = poly(n). A similar argu-
ment works for efficient uniform adversaries. In this work, we revisit this question
by considering the setting of cryptography with public information. Public infor-
mation may be viewed as a cheap resource: it can often be preprocessed (i.e., gen-
erated in an offline phase), it does not require secure storage, and (under strong
cryptographic assumptions) can even be generically compressed [HJK+16].

As a concrete example, consider the problem of 2-out-of-n secret sharing. It is
known that in any such information-theoretic scheme, even when sharing a 1-bit
secret, the bit-length of at least one share must be at least log n [KN90,CCX13].1

We ask whether the share size can be reduced, in the computational setting, if
the dealer is allowed to publish public information that is generated jointly
with the shares. As argued above, this relaxation is necessary for breaking the
log n lower bound even in the computational security setting. Moreover, by a
simple conditioning argument, public information is not helpful at all in the
information-theoretic setting.

We start with a seemingly unrelated observation that if such a 2-out-of-n
scheme exists, then (a variant of) the planted clique problem is computationally
hard. Specifically, for a fixed public information I, we generate a polynomial-
size, n-partite graphs G whose nodes are all pairs (i, si), where i ∈ [n] and
si is a possible share for the i-th party (any string of the appropriate length).
We put an edge in G between (i, si) and (j, sj) (where i �= j) if the parties
i, j on shares si, sj respectively, and with public information I, reconstruct the
secret 1. Note that a legal sharing of the secret 1 forms a size-n clique in G
between (1, s1), . . . , (n, sn). A legal sharing of the secret 0 forms instead a size-n
independent set in G. The 1-security of the secret-sharing scheme implies that if
we pick a random secret b and apply the sharing algorithm to get (I, s1, . . . , sn)
then, given a node (i, si) (corresponding to the view of the i-th party in the
secret-sharing), it is hard to decide whether it belongs to a size-n clique or a
size-n independent set of G (defined by the selected I).

The above observation suggests that the hardness of finding planted cliques
is necessary for improved 2-out-of-n secret sharing in the public information
setting. It is natural to ask whether it is also sufficient. Next, we outline an
idea in this direction. This construction does not improve the share size, but it
demonstrates in a simple way a high-level idea that we will apply to improve the
efficiency of other primitives. First, sample an n-partite random graph, where
each part is of size L, and each potential edge between two parts appears with

1 Here and elsewhere, log n stands for log2 n.

288 D. Abram et al.

probability 0.5. Then, if the secret is 1, plant in this graph a random n-partite
clique (i.e., select one random node from each of the n parts and add to the
graph all the edges between them, if they do not already exist); similarly, if
the secret is 0, plant in the graph a random n-partite anti-clique. The resulting
graph will be the public information. The share of party i will be the i-th node
of the planted clique/anti-clique. The reconstruction is simple: given two shares
(i, si) and (j, sj) the share is determined by whether there is an edge between
them in the public graph. For the security of the scheme, we assume that an
adversary that sees the graph and gets the share of a party, i.e., a node in a
clique or anti-clique, cannot distinguish between these two cases. Unfortunately,
with the above simple planting procedure, the problem can be conjectured to be
hard only if L ≥ n (see Sect. 2.1); hence the share size, which is log L, is at least
logarithmic.

Generalizing the above example, in this work we systematically explore the
possibility of obtaining computational security with logarithmic-size messages
using public information. We show that plausible intractability conjectures about
different variants the planted clique problem, collectively referred to as “planted
graph” problems, can be used to construct secret-sharing schemes and secure
computation protocols that beat the best known, and typically the best possible,
information-theoretic protocols.

We apply our approach to several different problems. These include private
simultaneous messages (PSM) protocols and secure 3-party computation, as well
as secret sharing for “forbidden-graph” access structures. For all these primi-
tives, we show how relaxing the standard model by allowing public information
can improve over the communication complexity of the best known solutions,
assuming plausible hardness conjectures about planted graph problems. Similar
results are not known under any other cryptographic assumptions, or even by
using ideal forms of obfuscation. In fact, as in the above examples, assuming
the hardness of planted graph problems can be shown to be necessary. Finally,
we also study the extent to which one can go below logarithmic-size messages.
For the case of secret sharing, we get both positive and negative results about
the access structures that can be realized using computational secret sharing
schemes with public information and very short shares.

Different variants of the planted clique problem, introduced in [Jer92,Kuč95],
were studied within the algorithms, statistical inference, and complexity-
theory communities. While such problems have already found some crypto-
graphic applications, these are either in the context of diversifying assump-
tions [JP00,ABW10] or specialized tasks [GKVZ22]. Our work gives the first
applications of planted graph problems to improving the efficiency of mainstream
cryptographic tasks, and suggests new questions about such problems that may
be of independent interest outside the cryptography community.

1.1 Our Results

We now give a more detailed account of our results. For each result, we describe
the task that we study, the previously known results, and our new results

Cryptography from Planted Graphs 289

obtained by using hardness assumptions about planted graphs. For a more
detailed and technical overview, see Sect. 2.

3-Party 2-Input Offline-Online MPC. In this setting, we have 3 semi-honest
parties, Alice and Bob who have inputs x and y, respectively, and Carol who has
no input and should receive the output f(x, y). We allow an offline stage (that
does not depend on the inputs x, y) and generates correlated randomness to Alice
and Bob and some public information. The goal is for the online stage to be non-
interactive and highly efficient. That is, each of Alice and Bob sends a single short
message to Carol. Based on these messages and the public information, Carol
computes the output. As far as we know, the construction in the literature that
achieves the most lightweight online phase in this setting is the one-time truth
table protocol of Ishai et al. [IKM+13]. This solution, however, uses at least
two rounds of communication. Our new construction, in contrast, uses only one
round and, as [IKM+13], for every function f : [n] × [n] → {0, 1} has message
size of O(log n) bits. It relies on a planted graph assumption, and is achieved via
a PSM protocol, as described next.

PSM Protocols with Public Information. The private simultaneous messages
(PSM) model, introduced in [FKN94], is similar to the above MPC model: after
being given common randomness, Alice and Bob simultaneously send a single
message encoding their inputs x and y; each message only depends on the input of
the party and the common randomness. Carol should be able to compute f(x, y)
from these messages and is required to learn no additional information. Most
of the study of PSM protocols [IK97,BIKK14,LVW17,AHMS18] focused on the
information-theoretic setting, where the best known protocols for arbitrary func-
tions f : [n] × [n] → {0, 1} has communication complexity O(n0.5) [BIKK14].

The [BIKK14] protocol can be transformed into a computational PSM pro-
tocol with public information and short messages, as follows. Sample shared
randomness r for Alice and Bob, and let the public information include the
encryptions of the [BIKK14] protocol message of Alice on (x, r) under some
secret key Kx, for every x ∈ [n], in a randomly permuted order and, similarly,
encryptions of the message of Bob on (y, r), for every y ∈ [n]. Then, given
the actual inputs x, y, Alice sends to Carol the key Kx and the location of the
corresponding encryption (according to the permutation) and, similarly, Bob
sends the key Ky and the location of the corresponding encryption. Carol then
decrypts the two messages and compute the output, as in the [BIKK14] protocol.
The public information length is O(n1.5) and the communication complexity is
O(log n + λ), where λ denotes a security parameter.

In this paper, we show how to use a planted graph assumption, to construct
a PSM protocol with messages of size O(log n). For the PSM protocol, we plant
the bipartite graph representing the function f , denoted Hn, in a larger random
graph to obtain a graph G. The public information consists of G and the shared
randomness (only known by Alice and Bob) is the mapping of all nodes in Hn

to the corresponding nodes in G. On input x, y, Alice and Bob send to Carol

290 D. Abram et al.

the corresponding nodes in G according to this mapping. Carol outputs 1 if and
only if there is an edge between the two nodes in G she received.

The security of the protocol relies on the assumption that the graph Hn is
hidden within the graph G. This assumption seems to be at least as plausible
as the planted Clique assumption that was studied more extensively. More con-
cretely, the planted graph assumption that we use assumes that an adversary
that receives two nodes x, y from the bipartite graph, cannot distinguish, in
time no(log n) and advantage 1/nc, for some constant c, between the case that
the function graph Hn was planted in a random graph, as above, and the case
of a random graph where only the edge (x, y) was set according to f(x, y) (see
Sect. 2.1 for a detailed discussion of the planted graph assumption and its vari-
ants). The security of the above MPC and PSM protocols inherits the property
that the adversary cannot achieve 1/nc advantage for some constant c (but we
do not obtain negligible advantage, and this is inherent for the planted clique
assumption). Moreover, they achieve security only against quasi-polynomial-time
adversaries. This is weaker than the typical sub-exponential security achieved
under standard cryptographic assumptions but stronger than fine-grained secu-
rity [Mer78,BRSV18], where security holds against fixed poly-time adversaries.
Note that a similar notion of quasi-polynomial security is achieved by other
constructions (e.g., [ABW10,BLVW19]).

Forbidden Graph Secret-Sharing Schemes. For a fixed graph G with n nodes, a
dealer is required to distribute a secret bit b to the n nodes (parties) so that any
2 nodes can reconstruct the secret if and only if they are connected by an edge
(there is no additional requirements on sets of size different than 2). Forbidden
Graph Secret-Sharing schemes (FGSS) were introduced in [SS97] and studied
in [BIKK14]. The best known information theoretic FGSS scheme has share size
2Õ(

√
log n) [LVW17]. The best known computational FGSS scheme has share size

poly(log n) (assuming the existence of one-way functions) [ABI+23b]. We show
a computational FGSS scheme with public information and share size O(log n)
based on the hardness of deciding whether a random graph H appears in a large
random graph G (both graphs are included in the public information of the
FGSS scheme).

We also accompany the above positive results by some negative results. In
the full version of the paper [ABI+23a, Section 8], we show that computational
threshold secret-sharing schemes even with public information require share size
Ω(log log n). Furthermore, in the full version of the paper [ABI+23a, Section 9],
we show that, when considering secret-sharing schemes with one-bit shares, all
access structures that can be realized with computational security with public
information can also be realized information-theoretically. A summary of our
main results is presented in Table 1 below.

2 Overview of Techniques

This paper studies the relation between cryptographic primitives, such as PSM
protocols and secret-sharing schemes, and planted subgraph problems.

Cryptography from Planted Graphs 291

Table 1. Bounds on the complexity of 2-party PSM protocols, n-party forbidden graph
secret-sharing schemes, and 2-out-of-n secret-sharing schemes for the information-
theoretic case and the computational case with public information. The values refer
to constructions with privacy error ε = n−1/2 and perfect correctness. The complexity
is defined as the maximum message-size (resp. share-size) for a single party. The PSH
and PRSH assumptions are informally described in Sect. 2.1.

Information Theoretic Computational with Public Information

Bound Reference Bound Assumption Reference

PSM ≤ √
n [BIKK14] ≤ 1.01 · log na PSH [ABI+23a]

≥ 1.25 · log na [AHMS18] ≥ log n

Forbidden Graph ≤ 2Õ(
√

log n) [LVW17] ≤ 1.01 · log n PRSH [ABI+23a]

Secret Sharing ≥ log n [CCX13] ≥ 1
5 log log n [ABI+23a]

2-out-of-n ≤ log n [Sha79] ≤ log n [Sha79]

Secret Sharing ≥ log n − On(1) [ABI+23a] ≥ 1
5 log log n [ABI+23a]

a The bound holds for a 1 − on(1) fraction of functions f : [n] × [n] → {0, 1}.

2.1 Planted Subgraph Assumptions

Suppose that G and H are graphs with N and n nodes respectively, where N > n.
The operation of planting H into G consists in selecting a random subset S of
n vertices in G and modifying the edges so that the subgraph induced by S
is isomorphic to H. In other words, we are hiding a copy of H inside G. We
are particularly interested in the case in which G is an Erdős-Rényi random
graph, i.e. each edge is independently drawn with probability 1/2. We denote its
distribution by G(N, 1/2).

We analyse three main subfamilies of assumptions: planted clique (PC),
planted subgraph (PS), and planted subgraph with hints (PSH). The first one has
a long history: it was introduced in the ’90 s [Jer92,Kuč95] and has been studied
since then [AKS98,FK03,Ros08,Ros10,FGR+13,BHK+16,ABdR+18,MRS21].
The other two assumptions are introduced for the first time in this work. We
describe them below.

The Planted Clique (PC) Assumption. The PC assumption states that a random
graph with a large planted clique looks random. Formally, for an appropriate
choice of parameters N , T , and ε, it claims that, for every T (n)-time adversary
A,

∣
∣
∣Pr

[A(G) = 1
∣
∣G

$← G(N, 1/2, n)
] − Pr

[A(G) = 1
∣
∣G

$← G(N, 1/2)
]
∣
∣
∣ ≤ ε(n).

Above, G(N, 1/2, n) denotes the distribution that plants an n-node clique in a
random N -node graph.

The assumption was independently introduced by Jerrum [Jer92] and Kučera
[Kuč95] and has been studied since then. The hardness of the problem is sup-
ported by the NP-hardness of finding, or even approximating, the largest clique
in a graph [Kar72,H̊as96a].

292 D. Abram et al.

Trivial attacks, such as counting the number of edges in G, break the
assumption for any ε = negl(n). However, the assumption is believed to hold
against PPT adversaries when ε = n−c for a constant c > 0, and N is suf-
ficiently large. Indeed, all the known attacks fail when N = ω(n2) [Kuč95,
AKS98,DM15a,CX16]. In this parameter setting, the assumption is also sup-
ported by many results proving hardness against particular classes of adversaries
[FK03,Ros08,FGR+13,GS14,BHK+16,ABdR+18,FGN+20]. Finally, concern-
ing the computational power of the attacker, it is known that nO(log n)-time
algorithms can detect the planted clique with Θ(1) advantage [HK11]. This leads
to the following conjecture.

Conjecture 1 (PC – Informal). For any constant δ > 0, the PC assumption
holds with N = n2+δ and ε = n−c against all no(log n)-time adversaries.

We refer to Sect. 4.1 for a more rigorous discussion about this assumption.

The Planted Subgraph (PS) Assumption. The PS assumption generalizes what
we described above: instead of hiding a clique in a random graph, we hide an n-
node subgraph H coming from some distribution D. The assumption claims the
resulting graph looks random even when H is revealed. The concept is formalized
similarly to the PC problem: for every T -time adversary A,
∣
∣
∣
∣
∣
Pr

[

A(G,H) = 1

∣
∣
∣
∣
∣

H
$← D

G
$← G(N, 1/2,H)

]

− Pr

[

A(G,H) = 1

∣
∣
∣
∣
∣

H
$← D

G
$← G(N, 1/2)

]∣
∣
∣
∣
∣
≤ ε.

Above, G(N, 1/2,H) denotes the distribution that plants H in a random N -node
graph.

We are particularly interested in two variants of the PS assumption: the case
in which D is deterministic and the case in which the D outputs a random n-node
graph. We refer to the latter as the planted random subgraph (PRS) assumption.

It is generally believed that breaking the PS assumption is easiest when D
deterministically outputs an n-node clique. For instance, the successful attacks
against the PC problem leverage the particular structure of cliques. If we plant a
generic subgraph, these algorithms do not perform as well. It is therefore conjec-
tured that, for an overwhelming fraction of subgraphs H, the PS assumption
holds for D ≡ H2 with parameters T = no(log n) and ε = n−c even when
N = n1+δ (planted cliques needed N = n2+δ). This implies that the PRS
assumption holds with similar parameters. We refer to Sect. 4.2 for more details.

The Planted Subgraph with Hints (PSH) Assumption. The PSH assumption is a
variant of the PS assumption in which the adversary is provided with hints: we
reveal where we hid a subset S of nodes of the planted graph. The size of S is
bounded by a parameter t. Usually, t is small, e.g., t = 2. Clearly, after revealing
the hints, the graph does not look random anymore: the adversary notices that
G hides the subgraph induced by S. The PSH assumption claims, however, that
2 We use D ≡ H to denote the distribution that always outputs the subgraph H.

Cryptography from Planted Graphs 293

the adversary cannot tell if G hides the whole graph H or just the subgraph
induced by S. Formally, for any subset S with fewer than t vertices and every
T -time adversary A,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A(

Gb,H, (ub
i)i∈S

)

= b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b
$← {0, 1}

H
$← D, H ′ ← Subgraph(H,S)

(

G1, (u1
i)i∈S

) $← G(N, 1/2,H, S)
(

G0, (u0
i)i∈S

) $← G(N, 1/2,H ′, S)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ ε.

Above, G(N, 1/2,H, S) denotes the distribution that plants H in a random
N -node graph and reveals where the nodes in S are hidden. The algorithm
Subgraph(H,S) outputs instead the subgraph of H induced by S. When D out-
puts random n-node graph, we refer to the assumption as PRSH (planted ran-
dom subgraph with hints).

It is believed that revealing t = O(1) nodes on the planted graph does not
affect the security of the assumption. This leads to the following conjectures.

Conjecture 2 (Weak-PSH, PSH, PRSH – Informal)

– (Weak-PSH). Let (Hn)n∈N be a family of n-node graphs. For any constants
δ > 0 and t ∈ N, the PSH assumption holds for D ≡ Hn with N = n2+δ, t
leaked nodes, and ε = n−c against all no(log n)-time adversaries.

– (PSH). For any constants δ > 0 and t ∈ N, the PSH assumption holds
for most D ≡ Hn with N = n1+δ, t leaked nodes, and ε = n−c against all
no(log n)-time adversaries.

– (PRSH). For any constants δ > 0 and t ∈ N, the PRSH assumption holds
with N = n1+δ, t leaked nodes, and ε = n−c against all no(log n)-time adver-
saries.

We highlight that all the variations of planted problems we considered above
are statistically hard only when n = O(log N) (e.g., the largest clique in a
random N -node graph has O(log N) size [BE76]). In this parameter regime,
our constructions would be outperformed by known information-theoretic upper
bounds [BIKK14,LVW17].

We provide evidence supporting our conjectures: we show that the Weak-PSH
assumption holds against any adversary that can be represented as a degree-D
multivariate polynomial, where D = (log n)2−ε and ε > 0 (a low-degree polyno-
mial). We also show that, independently of N and the number of hints, cliques
are the planted subgraph that are most easily detected by low-degree polynomi-
als. In the domain of planted problems, low-degree polynomials are a powerful
class of adversaries. For instance, all known attacks against the planted clique
problem belong to this class. For this reason, it was even conjectured that, for
planted problems, security against degree-D polynomials implies security against
generic 2D-time adversaries [Hop18, Conjecture 2.2.4]. We refer to Sect. 4.3 for
further details.

294 D. Abram et al.

Future Work. All variants of planted problems we described above can easily be
solved by quasi-polynomial-time adversaries (the advantage is Ω(1)). Further-
more, there exist explicit PPT adversaries that solve the problems with inverse-
polynomial advantage. These facts contrast with the security level usually desired
in cryptographic assumptions: we would like that, for every subexponential-time
adversary, the advantage is negligible. One could therefore wonder whether there
exist more clever ways of planting subgraphs (e.g., choosing the graph G from a
more sophisticated distribution than G(N, 1/2)) so that we either achieve

– negligible advantage against all PPT adversaries, or
– inverse-polynomial advantage against all subexponential-time adversaries, or

(even better)
– negligible advantage against all subexponential-time adversaries.

All these questions remain open. We leave them for future work.

2.2 PSM Protocols with Logarithmic Message-Size

We use the (Weak-)PSH conjecture to build a computational PSM protocol with
O(log n) message-size.

Private Simultaneous Messages Protocols with Public Information. PSM proto-
cols are a cryptographic primitive that specifies how two parties can simultane-
ously encode their inputs (each encoding only depends on the input of the party
and a common random string) and non-interactively evaluate from the encod-
ings a function f on the parties’ inputs. An external observer that only sees the
encoding of the inputs is guaranteed to learn no information beyond the output
of the function.

We consider a computational version of the primitive in which a setup is used
to generate common randomness for the parties (which is kept secret) along with
some public information I. The latter is necessary for the reconstruction of the
output, however, it does not help in learning additional information about the
inputs.

We highlight that PSM protocol always needs an algorithms that sets up the
randomness of the parties, no matter what3. The main novelty in this work is
that we allow some information to be public. Since we are considering security in
a computational setting, the public information can help in decreasing the size
of the message of the parties: I can hide all the information about the function f
and its outputs. By revealing the encodings of their inputs x, y, the parties can
make the extraction of f(x, y) from I easy, while all other information remains
secret. This is exactly the blueprint used by our constructions. In the paper, we
focus our attention to functions of the form f : [n] × [n] → {0, 1}.

3 If the parties use independent randomness, an adversary can run a residual function
attack. Check the full version of the paper [ABI+23a, Section 5.1] for more details.

Cryptography from Planted Graphs 295

A Trivial Construction from OWFs. Before using techniques based on planted
subgraphs, we linger for a moment on the notion of PSM protocols with public
information and we check what can be achieved using more standard crypto-
graphic primitives.

We can obtain a trivial construction using OWFs. Represent the function f
as an n × n truth table T in which each row is associated with an input of the
first party and each column is associated with an input of the second party. We
permute all the rows and all the columns of T independently using permutations
φ0 and φ1. Let T ′ be the result. For every i, we encrypt all the elements in the
i-th row of T ′ using a key k0

i . We then perform a similar operation on the already
encrypted matrix switching to columns: for every j, we encrypt all the elements
in the j-th column using the key k1

j . The public information I will consist of the
resulting doubly-encrypted matrix.

In order for the parties to evaluate f on input x and y, they just need to
send (x′, k0

x′) and (y′, k1
y′), where x′ = φ0(x) and y′ = φ1(y). The output is

obtained by decrypting the element in position (x′, y′) in I using the keys sent
by the parties. Observe that even if we assume exponentially secure OWFs and
we opt for security against no(log n)-time adversaries, this construction requires
Ω(log2 n) message-size.

PSM Protocols with Public Information from PSH. Using planted subgraphs, we
obtain a PSM protocol with public information where the message-size is nearly
optimal: under the PSH conjecture, for most functions f : [n] × [n] → {0, 1},
the parties just need to communicate (1 + δ) · log n bits where δ is an arbi-
trarily small positive constant. Under the Weak-PSH conjecture, we achieve
instead (2 + δ) · log n message-size for all functions. Observe that there is an
information-theoretical lower bound that requires at least log n bits of commu-
nication. Importantly, our construction achieves security against no(log n)-time
adversaries with inverse-polynomial privacy error.

The construction is rather simple: we represent the function f as a bipartite
graph H with n nodes per part. Each node on the left will be associated with
a different input for the first party. Similarly, each node on the right will be
associated with a different input for the second party. We connect two nodes
with an edge if the evaluation of f on the corresponding values gives 1. The
public information will consist of a large random graph G in which we plant a
copy of H. The setup will provide the parties with the position of the hidden
subgraph. In order to evaluate the function, all the parties need to do is to reveal
where the node associated to their input is hidden. The output of the function
is 1 if and only if there is a edge connecting the broadcast nodes.

Under the PSH assumption with t = 2, the view of an external observer is
as if it was given a random graph with a planted edge (if the output is 1) or a
planted “non-edge” (if the output is 0). So, no information about the inputs is
revealed beyond the result of the evaluation.

Theorem 3 (Informal). Under the PSH conjecture for t = 2, for most func-
tions f : [n] × [n] → {0, 1}, the construction described above is a PSM proto-

296 D. Abram et al.

col with public information that is secure against no(log n)-time adversaries with
ε = n−c privacy error. The message size is (1 + δ) · log n for a small positive
constant δ.

Under the Weak-PSH conjecture for t = 2, the construction is secure against
the same class of adversaries for every function f : [n]×[n] → {0, 1} and achieves
(2 + δ) · log n message-size.

Privacy Amplification. The disadvantage of the construction we just described
is the inverse-polynomial privacy error ε. We therefore tried to amplify it to
ε = negl(n). Unfortunately, techniques such as Yao’s XOR lemma, do not seem
to help. Another possible approach would have been the technique used in
[BGIK22]. This solution, however, would have increased the message size to
Ω(log2 n). We recall that the trivial solution from OWF achieves exactly this
complexity.

In the end, we came up with a candidate construction that we believe to
achieve negligible privacy error against no(log n)-time adversaries with ω(1) · log n
message-size. The idea is rather simple: we additively secret share the function
f among r = ω(1) virtual parties. As we did for f in the previous paragraph,
we can represent each share gj as a 2n-node graph Hj . The public information
will consist of a vector I = (G1, . . . , Gr) where Gj is a random N -node graph in
which we planted Hj .

In order to evaluate the function, the parties encode their inputs as in the
original construction with respect to each graph Gj . In particular, the parties
reveal where the node associated with their input is hidden in Gj . For every
j ∈ [r], the parties obtain a different output bit zj (zj will be equal to 1, if
the broadcast nodes in Gj are adjacent). By XORing all these values, they
reconstruct the output of the evaluation.

To support our claim of security, observe that an adversary cannot learn
where Hj is hidden by solely looking at Gj : it has to work on the joint distri-
bution (G1, . . . , Gr). Indeed, each Hj is secret and uniformly distributed, so Gj

is just a random graph. The natural attack would require the adversary to find
a permutation of the graphs G1, . . . , Gr, so that their “XOR” hides a copy of
f4. However, only a negligible fraction of all permutations satisfies the desired
property. In the full version of the paper [ABI+23a, Section 5.3], we consider
more sophisticated attacks.

Offline-Online 2-Input Non-Interactive 3-PC with Logarithmic Communication.
Our PSM protocols give rise to very lightweight 2-input 3-party protocols with
an offline phase. Our setting is the following: suppose that Alice and Bob have
some input x, y ∈ [n]. After receiving some correlated randomness from a trusted
dealer, in the so called offline phase, they want to reveal the evaluation of a
function f : [n]× [n] → {0, 1} on their inputs to their friend, Carol. Carol should
be the only one that learns such output. In our setting, Alice and Bob are,

4 We “XOR” two graphs by XORing their adjacency matrices.

Cryptography from Planted Graphs 297

however, lazy: they want to send a single immediate message that is as short as
possible.

PSM protocols with public information are the solution to this problem: the
trusted dealer provides the common randomness to Alice and Bob and the public
information to Carol. At that point, Alice and Bob independently encode their
inputs using the PSM protocol and send their messages to Carol. The public
information allows Carol to retrieve the output.

The construction withstands a semi-honest adversary that corrupts at most
one party. Observe that the online phase requires a single round of interaction.
Furthermore, our PSM protocols allow us to achieve ω(1) · log n communication.
To our knowledge, the only solution that achieves lower communication com-
plexity is the one-time truth table protocol of [IKM+13]. Such solution would,
however, require more than one round of interaction.

Compressing the Public Information. In this work, we decreased the message-
size of PSM protocols by introducing public information. A natural question is
how big the public information needs to be and whether this can be reused (e.g.,
the construction based on graph cannot be used more than once).

A partial answer is given by universal samplers [HJK+16]. This primitive can
be thought as a small public obfuscated program that, on input the description
of a distribution D, it outputs a sample from D without revealing any additional
information about it. For instance, if D produces large random RSA moduli,
nobody will learn the factorisation of the output of the universal sampler.

Now, suppose that a trusted dealer provides the parties of the PSM protocol
with a key pair (pk, sk) and a universal sampler U . Everybody can evaluate U on
input the distribution that generates the PSM public information I and encrypts
the common randomness under pk. Everybody is able to retrieve I, but only the
PSM participants can recover the common randomness using sk [ASY22].

The universal samplers presented in [HJK+16] set an upper-bound L on the
size of the distributions that can be evaluated. In particular, the size of the
sampler is poly(λ,L) where λ is a security parameter. In these constructions,
the size of U would therefore be greater than the one of I. Using a sampler has
nevertheless an advantage: if we rely on a programmable random oracle, U can
be reused without limits. In other words, universal samplers allow us to compile
a single-use PSM protocol into a reusable one.

The good news is that the issue with sizes can be fixed: Abram, Obremski
and Scholl [AOS23] built an unbounded universal sampler (again, using a pro-
grammable random oracle). This is a universal sampler that sets no bound the
size of the distributions that can be given as input. The size of U is simply
poly(λ). Notice that if we aim for security against no(log n)-time adversaries, the
size of the sampler is polylog n.

We formalize our results about PSM protocols in the full version of this paper
[ABI+23a, Section 5].

298 D. Abram et al.

2.3 Forbidden Graph Secret-Sharing Schemes with Logarithmic
Share-Size

We use the PRSH assumption to build forbidden graph secret-sharing schemes
with O(log n) share-size.

Forbidden Graph Secret-Sharing Schemes. Secret-sharing schemes are a primi-
tive that allows to share a secret among n parties. In order to reconstruct the
secret, the participants need to collaborate. Whether the reconstruction succeeds
or not depends on the set of players that collaborate: some subsets are guaran-
teed to succeed, some of them are guaranteed to learn no information about the
secret, some of them have no guarantee (they may get the whole secret, just
some leakage or nothing at all). This reconstruction policies are described by
the so called access structure.

We are interested in a particular version of primitive called forbidden graph
secret-sharing schemes [SS97]: the access structure is described by an n-node
graph Q. Each party is associated with a different node. A pair of players is
guaranteed to reconstruct the secret if and only if there is an edge connecting
their nodes. If such edge does not exist, they learn no information about the
secret. Finally, if a subset of more than 2 parties collaborates, the construction
gives no guarantee on whether the secret can be recovered.

Secret-Sharing Schemes with Public Information. Similarly to what we did for
PSM protocols, we consider security against computational adversaries and we
augment the primitive with public information: in order to secret-share a value
x, a player will broadcast large public information I along with small shares
s1, . . . , sn, one for each party. The public information will be necessary to recon-
struct the secret, however, it will not help in learning x. Since we are in a
computational setting, the public information can help in decreasing the size of
the shares.

This version of the primitive is motivated by the fact that, in many set-
tings, the cost of storing private information is higher than the one for public
information. Moreover, in this kind of schemes, the reconstruction of the secret
requires minimal communication. This is even more interesting whenever the
public information is reusable.

A Trivial Construction from OWFs. Before presenting our solution based on
graphs, we linger for a moment on the definition and we try to check what can
be achieved using already known primitives. We can consider a forbidden graph
secret-sharing scheme in which the share of each party Pi consists just of a λ-
bit key ki for a symmetric encryption scheme. The public information consists
instead of a list of n ciphertexts, the i-th one of which is an encryption under ki

of the i-th share of information-theoretical forbidden-graph secret-sharing (e.g.
[BIKK14]) of our secret.

It is trivial to see that this scheme is secure. If we opted for security against
no(log n)-time adversaries, the share size would be log2 n.

Cryptography from Planted Graphs 299

Forbidden Graph Secret-Sharing Schemes with Public Information from PRSH.
Using planted subgraphs, we obtain a forbidden graph secret-sharing scheme
with public information in which the share-size is O(log n) and the secret is a
bit. Under the PRSH conjecture, we obtain (1 + δ) · log n share-size where δ
is a small positive constant. Under the Weak-PSH conjecture, the complexity
becomes instead (2 + δ) · log n. Importantly, our construction achieves security
against no(log n)-time adversaries with inverse-polynomial privacy error.

The construction works as follows: we sample a random n-node graph H
and we plant it in a larger random graph G. Each node in H is associated to a
different party. Next, we modify H: we compare it to the graph access structure
Q. For any edge that does not appear in Q, we remove the corresponding edge
in H (if such edge exists). Let H ′ be the graph obtained in this way. In order to
secret-share b = 1, we publish the pair (H ′, G) and we provide each party with
the position of its node in G. In order to secret-share b = 0, we perform the same
operations except that we publish (H ′, G) where G is the complementary graph
of G (i.e., G will have all the edges that do not appear in G).

If a pair of parties is allowed to reconstruct, they can recover b by just
comparing the edge that connects their nodes in H ′ with the edge that connects
their shares in G. If both edges exist or both do not, the secret is 1. Otherwise,
it is 0.

Observe that under the PRSH assumption with t = 2, all the information
the parties see in G is the edge (or non-edge) that connects their shares. All the
rest looks random. If the pair is not allowed to reconstruct the secret, their edge
in G will be independent of the graph H ′ (their edge was removed from H).

Theorem 4 (Informal). Under the PRSH conjecture for t = 2, the construc-
tion described above is a forbidden graph bit secret-sharing scheme with public
information that is secure against no(log n)-time adversaries with ε = n−c privacy
error. The share size is (1 + δ) · log n for a small positive constant δ.

In the context of secret sharing, amplifying privacy to a negligible error is
easy. We just need to apply Yao’s XOR lemma with r = ω(1) repetitions. The
share-size becomes therefore ω(1) · log n (we recall that the trivial VBB solution
requires log2 n share-size).

Theorem 5 (Informal). Under the Weak-PSH conjecture, for every graph
access structure, there exists a forbidden graph secret-sharing scheme with public
information, a one-bit secret, and ω(1) · log n share-size. The scheme is secure
against no(log n)-time adversaries with ε = negl(n) privacy error.

Compressing the Public Information. Similarly to PSM protocols, we can use
universal samplers to compress the public information and make it reusable. The
technique requires the use of a programmable random oracle.

Suppose that a trusted setup provides the parties with an unbounded uni-
versal sampler U . Suppose also that each party Pi is associated with a key pair
(pki, ski). In order for P1 to share a bit b, the players can run U on input the
distribution that generates the secret-sharing of a random bit c and outputs the

300 D. Abram et al.

public information, the encryption of the share si under pki for every i and the
encryption of c under pk1. Each party can retrieve its share, P1 also learns the
random secret c. At that point, P1 can simply broadcast b ⊕ c. Observe that b
can be recovered if and only the parties are able to reconstruct c.

This solution decreases the size of the public information and makes it
reusable. A minor disadvantage is that the size of the private information stored
by each party increases as the size of ski is at least λ bits where λ is a security
parameter. The cost of such storage is however amortized over many executions
of the secret-sharing scheme. Notice that the communication complexity of the
reconstruction is as before: the parties just need to communicate ω(1) · log n bits.

We formalize our results about forbidden-graph secret-sharing schemes in the
full version of this paper [ABI+23a, Section 6].

2.4 On Breaking the logn Barrier for 2-out-of-n Secret-Sharing
Schemes

Unlike PSM protocols, in the context of secret-sharing schemes with public infor-
mation, the lower bound on the share size is unclear. In particular, is it possible
to design schemes with δ · log n share size for any δ < 1? We studied this question
in the simplest setting: 2-out-n secret-sharing schemes. Unfortunately, we could
not find an answer, however, we came up with necessary and sufficient conditions
for this to happen.

An Equivalent Condition. We show that 2-out-of-n secret-sharing schemes with
public information and share-size 	 is equivalent to a multipartite version of
the planted clique problem: given the public information I, we can derive an
n-partite graph with 2� nodes per part. Each of the nodes in the i-th partition
corresponds to a different share for party Pi. We connect all the pairs of nodes
that correspond to shares that reconstruct to 1.

By the correctness of the secret-sharing scheme, if the public information
hides the secret b = 1, the graph we derived hides an n-node clique (the nodes
containing the shares of the n parties with the secret 1 and a random string of
the dealer generating the public information I). If instead the secret is b = 0,
the graph hides an n-node independent set. Independently of the secret, each of
the nodes in the hidden subgraph lies on a different part. The security of the
2-out-of-n secret-sharing scheme guarantees that the two distributions on graphs
are indistinguishable even if we leak one of the nodes in the hidden subgraphs.

The above argument can be reversed to show that distributions over graphs
with the described properties imply a 2-out-of-n secret-sharing scheme with pub-
lic information. Finding them is however not simple when 	 < log n. Indeed, we
would need to hide an n-node clique in a graph that has less than n2 nodes. In
this parameter setting, the attacks of [Kuč95,AKS98] succeed in recovering the
clique for all the graph distributions we tried. The multipartite nature of the
graph makes our goal even harder.

Cryptography from Planted Graphs 301

Necessary Conditions and Sufficient Conditions. We consider a somewhat simi-
lar problem. We look for a distribution D over N -node graphs that contain both
a t-node clique and a t-node independent set, where t is large. We would like
that, for such distribution, it is infeasible to distinguish between a random node
in the clique and a random node in the independent set.

We prove that this problem is strictly related to 2-out-of-n secret sharing:
if the distribution D is possible for t = ω(N3/4), then 2-out-of-n secret-sharing
schemes with δ · log n share-size exists for some δ < 1. If instead, D does not
exist for any t = ω(N1/2), then 2-out-of-n secret-sharing schemes with δ · log n
share-size are impossible for all δ < 1.

Theorem 6 (Necessary condition – Informal). Suppose that 2-out-of-n
secret-sharing schemes with public information and δ · log n share-size exist for
some δ < 1. Then, there exists a distribution D that outputs an N -node graph
with an ω(N1/2)-node clique and an ω(N1/2)-node independent set, such that it
is hard to distinguish a random node on the clique from a random node on the
independent set.

Theorem 7 (Sufficient condition – Informal). Suppose there exists a dis-
tribution D that outputs an N -node graph with an ω(N3/4)-node clique and an
ω(N3/4)-node independent set, such that it is hard to distinguish between a ran-
dom node on the clique and a random node on the independent set. Then, for
some δ < 1 there exist 2-out-of-n secret-sharing schemes with public information
and δ · log n share-size.

We formalize these results in the full version [ABI+23a, Section 7].

A Lower-Bound on the Share-Size. We prove a lower-bound for 2-out-of-n secret-
sharing schemes with public information: the share-size needs to be at least
1
5 log log n.

The idea is rather simple: a 2-out-of-n secret-sharing scheme induces a 2-out-
of-n′ scheme for any n′ ≤ n. The security of the construction does not depend
on n′ but only on n. On the other hand, the size of the public information I
decreases with n′. Indeed, as we discussed above, I can be represented as an
n-partite graph. If we restrict the scheme to n′ parties, we just need to consider
n′ of the parts.

Now, if the share-size 	 is smaller than 1
5 log log n, there exists an n′ > 2� for

which the size of the public information becomes O(log n). Such public informa-
tion is too small to help against poly(n)-time adversaries. Therefore, it must be
that the induced scheme is statistically secure. Lower bounds for the information-
theoretical case require that 	 ≥ log n′. That contradicts the choice of our n′.

We formalize the lower bound in the full version of this paper [ABI+23a,
Section 8].

On the Relation between our Primitives and Planted Subgraph Problems. The
discussion about breaking the log n barrier for 2-out-of-n secret-sharing schmes
highlighted something important: planted subgraph assumptions are not only

302 D. Abram et al.

sufficient to obtain PSM protocols and forbidden graph secret-sharing schemes
with O(log n) share size, they are also necessary.

For instance, consider a function f : [n] × [n] → {0, 1} and let H be the
corresponding graph representation. We can reframe the security of any PSM
protocol for f with O(log n) message-size as a planted subgraph problem: we
create a bipartite graph. Each node on the left side corresponds to a different
message the first party can send. Similarly, each node on the right side corre-
sponds to a different message for the second party. We connect any pair of nodes
with an edge if the corresponding PSM messages give output 1. It is easy to see
that the graph hides at least one copy of H. Breaking the security of the protocol
corresponds to recognising which nodes of H were broadcast by the parties.

We can use an analogous argument to show that also forbidden graph secret-
sharing schmees with O(log n) share-size can be reframed as a planted subgraph
problem.

Secret-Sharing Schemes with 1-bit Shares. We study the following scenario:
employing public information, when can we construct secret-sharing schemes
with one-bit shares?

If an n-party gap access structure has at least ω(log n)-gap between the size
of every qualified set and the size of every forbidden set, using virtual black
box obfuscation (VBB), we can construct a secret-sharing scheme with one-bit
shares as follows: The dealer with secret s distributes an independently and
uniformly chosen bit ri to each party Pi and publishes a VBB obfuscation of
the function that, when queried with Q, (ri)i∈Q for any qualified set Q, outputs
s and outputs ⊥ otherwise. Then, a computationally bounded adversary with
shares (ri)i∈F needs to correctly guess ω(log n) random bits to recover the share,
hence succeeds with negligible probability.

However, for a perfect access structure, where every set is either qualified
or forbidden, we show that a secret-sharing scheme with one-bit shares even
with public information achieves less than 1/6-indistinguishability advantage
and perfect correctness only if it admits a perfectly secure secret-sharing scheme.
In other words, access structures that are not binary ideal do not admit a secret-
sharing scheme with one-bit shares even with public information.

To prove this impossibility, we develop an alternative characterization for
binary ideal access structures: an access structure is binary ideal if and only if
the set difference between any minimal qualified set and a maximal forbidden set
has odd sized. We then prove using a combinatorial argument that whenever this
condition is not satisfied, there exists a minimal qualified set Q and a maximal
forbidden set F such that |Q\F | = 2. We show that an adversary who randomly
corrupts one amongst the forbidden sets F,Q\{i} or Q\{j}, where {i, j} = Q\F
can recover the secret with 2/3 advantage. We formalize these results in the full
version of the paper [ABI+23a, Section 8].

Cryptography from Planted Graphs 303

3 Preliminaries

Notation. For any integer n ∈ N, we use [n] to denote the set {1, . . . , n}. For
every n,N ∈ N such that n ≤ N , we use [n;N] to denote the set {n, n+1, . . . , N}.
Notice that [0, 1] denotes the interval of real values x ∈ R such that 0 ≤ x ≤ 1.
For any n,N ∈ N such that n ≤ N , Inj(n,N) represents the set of injective
functions [n] → [N]. We use Sym(n) to denote the set of permutations of [n].

We use negl : N → R to denote a generic negligible function, i.e., negl(n) =
o(n−c) for every constant c ∈ N. We use poly(n) to denote a generic function
that is O(nc) for some constant c > 0. Given a distribution μ over the space Ω
and a function f : Ω → R, we use Eμ[f] to denote the expectation of f(x) for
x

$← μ. In a similar way, we use Varμ[f] to denote the variance of f(x) for x
$← μ.

Give two vectors x, y ∈ {0, 1}n, we use 〈x, y〉 to denote their inner-product.
We use w(x) to denote the Hamming weight of x, i.e., the number of non-zero
entries of x.

4 The Planted Subgraph Problem

In this section, we study the hardness of planted subgraph problems. Before
presenting our assumptions, we introduce some notation. All the graphs in the
paper are finite, undirected and simple. Furthermore, we assume that the set of
nodes is [n] for some n ∈ N. Given a graph G, we denote its complementary by
G: this is the graph in which, for every i �= j, the edge (i, j) appears if and only
if (i, j) does not appear in G. We use G(n, 1/2) to denote a Erdős-Rényi random
graph, i.e., the uniform distribution over n-node graphs. Observe that each edge
appears independently of the others with probability 1/2. We denote the clique
with n-nodes by Kn. For any n-node graph H and S ⊆ [n], Subgraph(H,S)
denotes the subgraph of H induced by the nodes in S. Notice that this graph
has only |S| nodes and its edges are in one-to-one correspondence with the edges
of H having both endpoints in S. We will make extensive use of the following
planting experiment, where we sample a random graph R and then hide inside
it a public random graph H.

Definition 1 (Planting). Let DR(1ln) and DH(1ln) be distributions over
graphs.

We define the distribution G(DR,DH) as follows:

1. R
$← DR(1ln)

2. H
$← DH(1ln)

3. Let N and 	 be the number of nodes of R and H respectively.
4. If 	 > N , output ⊥.
5. φ

$← Inj(,N)
6. G ← R
7. For all i, j ∈ [], if (i, j) appears in H, add (φ(i), φ(j)) to G.
8. For all i, j ∈ [], if (i, j) does not appear in H, remove (φ(i), φ(j)) from G.
9. Output (G,H, φ).

304 D. Abram et al.

We often refer to the graph generated by DR as the ambient graph. We call
the output of DH the hidden graph. Observe that G(DR,DH) hides a copy of
H in the ambient graph. More specifically, the copy is the subgraph induced by
φ
(

[]
)

. In other words, the edge (i, j) will appear in H if and only if (φ(i), φ(j))
appears in G.

In the paper, we will rarely use the general notation G(DR,DH). Instead, we
will typically refer to the following special cases:

– When DR = G(N, 1/2), we write G(N, 1/2,DH).
– When DR = G(N, 1/2) and DH(1ln) ≡ Kn, we write G(N, 1/2, n).
– When DR = G(N, 1/2) and DH(1ln) ≡ Hn where Hn is a fixed graph, we

write G(N, 1/2,Hn).
– When DR = G(N, 1/2) and DH(1ln) = G(n, 1/2), we write G(N, 1/2, n, 1/2).

4.1 The Planted Clique Assumption

We now present the assumptions we will use in this paper. We start by
recalling the planted clique assumption, a problem that has been extensively
studied by the computational complexity community over the last decades
[Jer92,Kuč95,AKS98,FK03,BHK+16,MRS21]. The assumption states that it is
hard to distinguish a random graph with a large planted clique from a random
graph. The problem is related to the NP-hardness of finding or even approxi-
mating the largest clique contained in a graph [Kar72,ALM+92,AS92,BGLR93,
BS94,BGS95,FGL+95,H̊as96a,H̊as96b].

Definition 2 (The planted clique assumption [Jer92,Kuč95]). Let N : N →
N be a function such that N(n) ≥ n for every n ∈ N. Let T : N → N be a time
bound and let ε : N → [0, 1] be an indistinguishability bound. We say that the
(N,T, ε)-planted clique (PC) assumption holds if the following distributions are
ε(n)-computationally indistinguishable for any

(

T (n) ·poly(n)
)

-time probabilistic
adversary.

{

G
∣
∣
∣(G,R, φ) $← G(N, 1/2, n)

}

and
{

G
∣
∣
∣G

$← G(N, 1/2)
}

It is easy to see that the (N,T, ε)-PC assumption implies the (N ′, T ′, ε′)-PC
assumption for any functions N ′ ≥ N , T ′ ≤ T and ε′ ≥ ε.

Attacks Against the PC Assumption. A result by Bollobás and Erdős [BE76]
proves that the largest clique in an N -node random graph has almost always
Θ(log N) size. Therefore, the PC assumption cannot hold against computation-
ally unbounded adversaries when N = poly(n).

The most natural attack against the PC assumption is edge-counting : if the
graph G hides a clique, it will be denser on average. When N = poly(n), this
leads to a polynomial-time attack with n−c advantage (c is a positive constant).

Cryptography from Planted Graphs 305

Another almost as straightforward attack is the degree attack : the planted
nodes have on average higher degree. In a random N -node graph, the degree of
the nodes is described by a binomial probability distribution with average (N −
1)/2 and standard deviation Θ(

√
N). After planting the clique, the distribution

of the degree of the planted nodes is shifted by n. As noticed by Kučera in
[Kuč95], this not only gives a probabilistic polynomial time attack with inverse-
polynomial advantage: when n = Ω

(√
N · log N

)

, it is possible to recover the
planted clique with constant probability by simply picking the nodes with highest
degree.

This approach can be generalized to a common-neighbour attack : for any
constant d > 0, we consider all subsets of d pair-wise adjacent nodes and we count
the number of common neighbours. In a random graph, the average number of
common neighbours is Θ(N/2d) and its standard deviation is still Θ(

√
N). On

the other hand, when the d nodes lie on the planted clique, the distribution of
common neighbours is shifted by n − d.

In [HK11], it was also noticed that the PC assumption can be broken in time
nO(log n): the adversary can iterate through all subsets of d = 3 log n nodes. If
the graph is random, with high probability, none of these subsets will form a
clique.

The last common family of attacks relies on spectral analysis. For instance,
in [AKS98], Alon et al. showed that the planted clique can be found with
constant probability whenever N < n2/100. Other attacks were studied in
[FK00,McS01,FR10,AV11,DGGP14,DM15a,CX16]. To this day, none of the
approaches discussed above succeeds in describing an no(log n)-time attack with
on(1)-advantage when N = ω(n2).

Conjectured Hardness. Motivated by the failed attacks described above, it is
conjectured that, for N = n2+δ, the advantage of any no(log n) time adver-
sary against the PC problem is dominated by n−c for some constant c > 0
[MRS21]. As discussed in [BBB19], the assumption is also supported by its hard-
ness against several classes of attacks: greedy algorithms [McD74,GM75,Kar76,
Pit82,Jer92], local algorithms [GS14,COE15,RV17], query models [FGN+20],
bounded-depth circuits [Ros08], monotone circuits [Ros10], statistical query algo-
rithms [FGR+13] and resolution [ABdR+18]. Hardness was also proven in the
Lovász-Shrijver [FK03] and Sum-of-Squares convex programming hierarchies
[MPW15,BHK+16,DM15b,HKP+18].

Conjecture 8 (The PC assumption). For any constant δ > 0, there exists
a constant c > 0 such that the (n2+δ, T, n−c)-PC assumption holds for every
T = no(log n).

The PC assumption has been previously used in cryptography. Juels and
Peinado [JP00] used a planted clique hardness assumption to build one-way func-
tions, zero-knowledge proofs, and hierarchical key generation. More recently, in
the context of machine learning, Goldwasser et al. [GKVZ22] used planted cliques
to show how a malicious learner can hide a backdoor in a classifier. The assump-
tion was also used to prove hardness of k-wise dependence testing [AAK+07],

306 D. Abram et al.

approximating Nash equilibria [HK11], sparse principal component detection
[BR13,BBH18,BB19], restricted isometry sensing [KZ14,WBP16], community
detection [HWX15], adaptive estimators [SBW19], matrix completion [Che15],
and submatrix detection [MW15,CLR17,BBH19,MRS21]. In [ERSY22], the PC
assumption was used to prove that the NP-Complete Clique problem admits a
non-adaptive pseudorandom self-reduction.

4.2 The Planted Subgraph Assumption

We now generalize the PC assumption: instead of planting an n-sized clique in
a random graph, we plant a generic n-node graph coming from a distribution
D(1ln). We say that the planted subgraph assumption holds for D if the resulting
graph looks random even if we reveal the output of D.

The idea of generalizing the PC problem to a different distribution of hidden
subgraphs is not new. For instance, the planted dense subgraph assumption,
which hides a dense subgraph in a large and sparser ambient graph, has been
used in learning theory [HWX15,BBH19]. The DUE assumption, introduced by
Applebaum et al. [ABW10] to build PKE, is also somewhat related: it conjectures
the hardness of detecting a subset of nodes with a small number of neighbours
hidden in a random regular bipartite graph.

Definition 3 (The planted subgraph assumption). Let D(1ln) be an effi-
cient distribution outputting an n-node graph. Let N : N → N be a function
such that N(n) ≥ n for every n ∈ N. Let T : N → N be a time bound and
let ε : N → [0, 1] be an indistinguishability bound. We say that the (D, N, T, ε)-
planted subgraph (PS) assumption holds if the distributions
{

(G,H)
∣
∣
∣(G,H, φ) $← G(N, 1/2,D)

}

and
{

(G,H)
∣
∣
∣G

$← G(N, 1/2),H $← D(1ln)
}

are ε(n)-computationally indistinguishable for any
(

T (n) · poly(n)
)

-time prob-
abilistic adversary We say that the (N,T, ε)-planted random subgraph (PRS)
assumption holds if the (D, N, T, ε)-PS assumption holds for D = G(n, 1/2).

Observe that if D(1ln) ≡ Kn, we obtain exactly the PC assumption. Once again,
it is easy to see that, for any distribution D, the (D, N, T, ε)-PS assumption
implies the (D, N ′, T ′, ε′)-PS whenever N ′ ≥ N , T ′ ≤ T and ε′ ≥ ε.

Planting Fixed Families of Graphs. We are particularly interested in a variation
of the PS assumption: the case in which D(1ln) ≡ Hn where (Hn)n∈N is a fixed
family of n-node graphs. It is believed that hiding any subgraph Hn is at least as
easy as hiding a clique, i.e., detecting Hn is harder. Indeed, cliques have easily
recognisable characteristics that do not occur on most graphs: they are extremely
dense, their nodes have large degree, and any subset of their vertices has a lot
of common neighbours. The common approaches to solve the PC problem try to
leverage these traits.

On the other hand, the vast majority of n-node graphs do not satisfy any of
these properties. It is conjectured that, for all δ > 0, the PS assumption holds

Cryptography from Planted Graphs 307

for every family (Hn)n∈N with parameters N = n2+δ, ε = n−c and T = no(log n).
In Sect. 4.3, we provide some evidence to support this claim: we show that the
assumption holds against any adversary that can be represented as a degree-
(log n)2−ε polynomial where ε > 0. In the domain of planted problems, this kind
of adversaries have always turned out to lead to the best known attacks. For this
reason, it was even conjectured that if no degree-D polynomial can distinguish,
then the planted assumption holds against any adversary running in time 2O(D)

[Hop18, Conjecture 2.2.4].
We additionally conjecture that, except for an inverse-polynomial fraction of

n-node graphs Hn, the PS assumption holds, for every δ > 0, with parameters
N = n1+δ, ε = n−c and T = no(log n). In other words, the size of the graph
is n1+δ (compared to n2+δ for hiding cliques). In some sense, these conjectures
give information about the worst-case hardness and the average-case hardness
of detecting a subgraph planted in a random graph.

Planting Random Graphs. Another interesting version of the PS problem is
the case in which D(1ln) = G(n, 1/2). We refer to this variation as the PRS
assumption. Even in this case, the assumption is believed to hold with param-
eters N = n1+δ, ε = n−c and T = no(log n). This fact is actually implied by
the conjectured average-case hardness of detecting planted subgraphs. The PRS
assumption is however strictly weaker: if we plant a fixed graph Hn, the adver-
sary receives an Hn-dependent non-uniform advice. The same would not happen
when Hn is sampled at random.

4.3 The Planted Subgraph Assumption with Hints

We finally present a variation of the PS assumption in which we provide the
adversary with hints: we leak the position of t nodes in the hidden subgraph.
Formally, the assumption states that even if we reveal where a subset S of t
nodes is hidden, then we cannot distinguish between a graph in which we plant
H

$← D(1ln) and a random graph in which we hide the subgraph of H induced
by S. We will consider small t, e.g., t = 2.

The PC assumption is considered robust against leakage. For instance, Bren-
nan and Bresler [BB20] studied several variations of the PC problem in which
the adversary is provided with leakage about the position of the planted clique.
The authors consider e.g. the case in which the clique is planted in a multipartite
graph (the clique will have a single node in each part of the graph).

Definition 4 (The planted subgraph assumption with hints). Let D(1ln)
be an efficient distribution outputting an n-node graph. Let N, t : N → N be func-
tions such that N(n) ≥ n ≥ t for every n ∈ N. Let T : N → N be a time bound and
let ε : N → [0, 1] be an indistinguishability bound. We say that the (D, N, t, T, ε)-
planted subgraph with hints (PSH) assumption holds if, for every subset S ⊆ [n]
such that |S| ≤ t, the following distributions are ε(n)-computationally indistin-

308 D. Abram et al.

guishable for any
(

T (n) · poly(n)
)

-time probabilistic adversary

⎧
⎨

⎩

G, H

(ui)i∈S

∣
∣
∣
∣
∣
∣

(G, H, φ)
$← G(N, 1/2, D)

∀i ∈ S : ui ← φ(i)

⎫
⎬

⎭
and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G, H

(ui)i∈S

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

H
$← D(1l

n
)

H
′ ← Subgraph(H, S)

(G, H
′
, φ)

$← G(
N, 1/2, H

′)

∀i ∈ S : ui ← φ(i)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

We say that the (N, t, T, ε)-planted random subgraph with hints (PRSH) assump-
tion holds if the (D, N, t, T, ε)-PSH assumption holds for D = G(n, 1/2).

Observe that if t = 0, we obtain exactly the PS assumption.

Conjectured Hardness. Revealing t = On(1) nodes on the planted graph is
believed to not affect the overall security of the planted subgraph assumptions.

When t is super-constant, the hardness of the problem becomes, however, less
clear. For instance, revealing t = log n nodes on a planted clique would allow
distinguishing the graph from a random one with constant advantage by simply
counting the number of common neighbours of the t nodes. This leads to the
following conjectures.

Conjecture 9 (wPSH, PSH, and PRSH). Let (Hn)n∈N be a family of n-
node graphs.

– Weak-PSH Conjecture (Weak Planted Subgraph with Hints). For
every constants δ > 0 and t ∈ N, there exists a constant c > 0 such that
the (DH , n2+δ, t, T, n−c)-PSH assumption holds for DH(1ln) ≡ Hn, for all
T = no(log n).

– PSH Conjecture (Planted Subgraph with Hints). For every n ∈ N,
there exits a subset of n-node graphs Rn with the following characteristics:
1. |Rn| ≥ (1 − negl(n)) · 2m where m = n(n − 1)/2.
2. For every constants δ > 0 and t ∈ N, there exists a constant c > 0 such

that, for all T = no(log n), the (DH , n1+δ, t, T, n−c)-PSH assumption holds
for DH ≡ Hn ∈ Rn.

– PRSH Conjecture (Planted Random Subgraph with Hints). For
every constants δ > 0 and t ∈ N, there exists a constant c > 0 such that the
(n1+δ, t, T, n−c)-PRSH assumption holds for all T = no(log n).

Security Against Low-Degree Polynomials. We now provide some evidence to
support our conjectures: we show that the weak PSH assumption holds for any
graph Hn against all adversaries that can be represented as degree-(log n)1+ε

polynomials where ε < 1. In the domain of planted problems, interestingly, all
known successful attacks belong to this class [Hop18]. Low-degree polynomials
can be incredibly useful in detecting structures planted in large objects. To give
an example, given a graph H with D edges, we can use a degree-D polynomial p
to tell how many copies of H are hidden in another larger graph. Moreover, if the
polynomial p is M -variate, we can always evaluate it in time D · (M

D

)

. For these
reasons, Hopkins conjectured that if there exists no degree-D distinguisher, then

Cryptography from Planted Graphs 309

the planted assumption holds against generic 2O(D)-time adversaries [Hop18,
Conjecture 2.2.4]. We highlight that such conjecture was introduced in the con-
text of the study of algorithms, where a different notion of indistinguishability is
in use: two distributions are “algorithmically indistinguishable” if the advantage
of any efficient adversary is 1−Ω(1) (i.e., it is impossible to efficiently distinguish
with vanishing error probability). It is, however, reasonable to assume that the
conjecture scales to other notions of indistinguishability, e.g., the standard one
in cryptography, where we require the advantage to be negligible, or the main
notion we adopt here, where the advantage is required to be n−Ω(1).

Theorem 10. Let (Hn)n∈N be a sequence of graphs where Hn has n nodes
and let t ∈ N be a constant. Let (Sn)n∈N be a sequence of sets where Sn =
{un,1, . . . , un,�n

} ⊆ [n] and 	n ≤ t. Let N(n) := n2+δ where δ > 0 is a constant.
Let μn be the distribution that samples (G,H ′

n, φ) $← G(N(n), 1/2,H ′
n), where

H ′
n ← Subgraph(Hn, Sn), then reorders the nodes in G so that φ(ui) ends up

in the i-th position and, finally, outputs a bit string encoding the edges of the
graph except those that have both endpoints in φ(Sn). Let νn be the analogous
distribution where, instead, we sample G from G(N(n), 1/2,Hn). Let M(n) be
the length of the strings generated by μn and νn.

For any constant 0 < ε ≤ 2 and sequence of polynomials (pn)n∈N, where
pn ∈ R[X1, . . . , XM] has degree at most D(n) := (log n)2−ε, we have

Adv(pn) :=
|Eνn

[pn] − Eμn
[pn]|

√

Varμn
[pn]

≤ n−Ω(1). (1)

More in detail, maxpn
Adv(pn) is

(N − n)! · √
(n − �n)!

(N − �n)!

√
√
√
√

∑

w(α)≤D(n)

(N − V (α) − �n

n − V (α) − �n

)2

·
∑

π∈Sym(n−�n)

(−1)〈π◦h+h,α′〉 (2)

where α denotes a subset of at most D edges in an n-node graph. We encode α
as a vector of bits (the i-th bit indicates whether the i-th edge is in the subset
or not). We use a similar representation for H (therefore, the inner-product is
well-defined). We use π ◦H to denote the graph obtained by permuting the nodes
(n.b. not the edges) of H according to π (once again we represent this graph as
a vector). Finally, V (α) denotes the total number of nodes touched by the edges
in α.

The notion of advantage used for low-degree polynomials may first look a bit odd.
We explain why it is a meaningful definition. Suppose that Varμn

[pn] ∼ Varνn
[pn].

When (1) does not hold, then, it is usually easy to distinguish between μn

and νn just based on the result of the evaluation of pn: since the distributions
pn(μn) and pn(νn) are concentrated around their mean, one can effectively dis-
tinguish between the distributions by determining whether the sample is “large”
or “small.” Conversely, if (1) holds, an attacker has a hard time distinguishing
between μn and νn just based on the evaluation of pn: if the result is close to
Eνn

[pn], it could be that we actually received a sample from νn, or it could be

310 D. Abram et al.

that, due to its variance, pn(μn) produced a sample that is relatively far away
from its expectation. Since Varμn

[pn] ∼ Varνn
[pn], the adversary faces a similar

dilemma even if we obtain a value that is close to Eμn
[pn] or far from both

Eμn
[pn] and Eνn

[pn]. If instead Varμn
[pn] and Varνn

[pn] are far apart, the poly-
nomials qn :=

(

pn(X) − Eμn
[pn]

)2 and q′
n :=

(

pn(X) − Eνn
[pn]

)2 most likely do
not satisfy (1). We prove Theorem 10 in the full version of this work [ABI+23a].

Interpretation. Theorem 10 highlights some important facts. First of all, it con-
firms the intuition that cliques are the easiest subgraph we can detect (indepen-
dently of N , t and D). Indeed, equation (2) reaches its maximum when π ◦h = h
for every π ∈ Sym(n). We observe that the vectors (π ◦ H + H)π∈Sym(n) give a
good description of how “structured” H is (e.g., if H is a clique or an indepen-
dent set, all these vectors are 0). We conjecture that, for most graphs H, the sum
∑

π∈Sym(n)(−1)〈π◦H+H,α〉 should be small for all choices of α, as 〈π ◦ H + H,α〉
should assume the values 0 and 1 almost equally often. We leave the rigorous
study of this problem to future work.

The PRSH Conjecture. The PSH conjecture tells us information about the
average-case hardness of detecting planted subgraphs: if N = n1+δ, the assump-
tion holds for an overwhelming fraction of n-node graphs. The conjecture is
therefore related to the hardness of the PRSH problem: in the following theo-
rem, we prove that the former implies the latter.

Theorem 11. The PSH conjecture implies the PRSH conjecture.

Proof. Suppose this is not the case: there exists a δ > 0 and t ∈ N such that,
for every c > 0, there exists an adversary A that breaks the PRSH assumption
for N = n1+δ with advantage asymptotically greater than n−c. In the context of
this proof, we say that an n-node graph Hn is good if Hn ∈ Rn. Now, consider
the PSH conjecture and let c > 0 be the constant associated with δ and t.
Consider the adversary A that breaks the PRSH assumption for parameters
δ, t and c/2. For any n ∈ N, we consider the good graph Hn for which the
advantage of the adversary A in the PRSH game conditioned on the hidden
subgraph being Hn is greatest (the maximum exists as there are only a finite
number of n-node graphs for a fixed n). Since a random graph is good with
probability 1 − negl(n) and since A has advantage asymptotically greater than
n−c/2 against the PRSH game, the advantage of the adversary A in the PRSH
game conditioned on the hidden subgraph being Hn must be asymptotically
greater than n−c/2 − negl(n) > n−c. Such adversary would therefore contradict
the PSH conjecture for the graph family (Hn)n∈N. ��

Acknowledgements. We thank Uriel Feige, Prasad Raghavendra, and Daniel Reich-
man for helpful discussions and literature pointers. Damiano Abram was supported by
a GSNS travel grant from Aarhus University and by the Aarhus University Research
Foundation (AUFF). Amos Beimel was supported by ERC Project NTSC (742754)
and ISF grant 391/21. Yuval Ishai and Varun Narayanan were supported by ERC
Project NTSC (742754), BSF grant 2018393, and ISF grant 2774/20. Work of Varun

Cryptography from Planted Graphs 311

Narayanan was done while working at Technion, Israel Institute of Technology. Eyal
Kushilevitz was supported by BSF grant 2018393 and ISF grant 2774/20.

References

[AAK+07] Alon, N., Andoni, A., Kaufman, T., Matulef, K., Rubinfeld, R., Xie, N.
Testing k-wise and almost k-wise independence. In: Johnson, D.S., Feige, U. (eds.),
39th ACM STOC, pp. 496–505. ACM Press, June 2007

[ABdR+18] Atserias, A., et al. Clique is hard on average for regular resolution. In:
Diakonikolas, I., Kempe, D., Henzinger, M. (eds.), 50th ACM STOC, pp. 866–877.
ACM Press, June 2018

[ABI+23a] Abram, D., Beimel, A., Ishai, Y., Kushilevitz, E., Narayanan, V.: Cryp-
tography from planted graphs: security with logarithmic-size messages. Cryptology
ePrint Archive, 2023 (2023)

[ABI+23b] Applebaum, B., Beimel, A., Ishai, Y., Kushilevitz, E., Liu, T., Vaikun-
tanathan, V.: Succinct computational secret sharing. In: Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, STOC 2023 (2023)

[ABW10] Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from
different assumptions. In: Schulman, L.J. (ed.), 42nd ACM STOC, pp. 171–180.
ACM Press, June 2010

[AHMS18] Applebaum, B., Holenstein, T., Mishra, M., Shayevitz, O.: The commu-
nication complexity of private simultaneous messages, revisited. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 261–286. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 9

[AKS98] Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a
random graph. Random Struct. Algorithms 13(3-4), 457–466 (1998)

[ALM+92] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifiac-
tion and hardness of approximation problems. In: Proceedings of the 33rd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 1992 (1992)

[AOS23] Abram, D., Obremski, M., Scholl, P.: On the (Im)possibility of distributed
samplers: lower bounds and party-dynamic constructions. Cryptology ePrint
Archive, 2023 (2023)

[AS92] Arora, S., Safra, S.: Approximating clique is NP complete. In: Proceedings of
the 33rd IEEE Annual Symposium on Foundations of Computer Science, FOCS
1992 (1992)

[ASY22] Abram, D., Scholl, P., Yakoubov, S.: Distributed (Correlation) samplers: how
to remove a trusted dealer in one round. In: Dunkelman, O., Dziembowski, S.
(eds.) Advances in Cryptology - EUROCRYPT 2022. EUROCRYPT 2022. LNCS,
vol. 13275, pp. 790–820. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-06944-4 27

[AV11] Ames, B., Vavasis, S.: Nuclear norm minimization for the planted clique and
biclique problems. In: Mathematical Programming (2011)

[BB19] Brennan, M., Bresler, G.: Optimal average-case reductions to sparse PCA:
from weak assumptions to strong hardness. In: Proceedings of 32nd Conference on
Learning Theory (2019)

[BB20] Brennan, M., Bresler, G.: Reducibility and statistical-computational gaps from
secret leakage. In: Proceedings of 33rd Conference on Learning Theory (2020)

[BBB19] Boix-Adserà, E., Brennan, M., Bresler, G.: The average-case complexity of
counting cliques in Erdős-Rényi hypergraphs. In: Zuckerman, D. (ed.), 60th FOCS,
pp. 1256–1280. IEEE Computer Society Press, November 2019

https://doi.org/10.1007/978-3-319-78375-8_9
https://doi.org/10.1007/978-3-031-06944-4_27
https://doi.org/10.1007/978-3-031-06944-4_27

312 D. Abram et al.

[BBH18] Brennan, M., Bresler, G., Huleihel, W.: Reducibility and computational lower
bounds for problems with planted sparse structure. In: Proceedings of 31st Confer-
ence on Learning Theory (2018)

[BBH19] Brennan, M., Bresler, G., Huleihel, W.: Universality of computational lower
bounds for submatrix detection. In: Proceedings of 32nd Conference on Learning
Theory (2019)

[BE76] Bollobás, B., Erdős, P.: Cliques in random graph. In: Mathematical Proceedings
of the Cambridge Philosophical Society (1976)

[BGIK22] Boyle, E., Gilboa, N., Ishai, Y., Kolobov, V.I.: Programmable distributed
point functions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. Part IV, vol.
13510 of LNCS, pp. 121–151. Springer, Heidelberg, August 2022. https://doi.org/
10.1007/978-3-031-15985-5 5

[BGLR93] Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistic
checkable proofs and application to approximation. In: Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, STOC 1993 (1993)

[BGS95] Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-
approximability: towards tight results. In: Proceedings of the 36th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 1995 (1995)

[BHK+16] Barak, B., Hopkins, S., Kelner, J., Kothari, P.K., Moitra, A., Potechin,
A.: A nearly tight sum-of-squares lower bound for the planted clique problem. In:
Dinur, I. (ed.), 57th FOCS, pp. 428–437. IEEE Computer Society Press, October
2016

[BIKK14] Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic
complexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol.
8349, pp. 317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54242-8 14

[BLVW19] Brakerski, Z., Lyubashevsky, V., Vaikuntanathan, V., Wichs, D.: Worst-
case hardness for LPN and cryptographic hashing via code smoothing. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 619–635. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 21

[BR13] Berthet, Q., Rigollet, P.: Complexity theoretic lower bounds for sparse prin-
cipal component detection. In: The 26th Annual Conference on Learning Theory,
COLT 2013 (2013)

[BRSV18] Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-
case assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10991, pp. 789–819. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 26

[BS94] Bellare, M., Sudan, M.: Improved non-approximability results. In: Proceedings
of the 26th Annual ACM Symposium on Theory of Computing, STOC 1994 (1994)

[CCX13] Cascudo, I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret
sharing and its applications. In: IEEE Transactions on Information Theory (2013)

[Che15] Chen, Y.: Incoherence-optimal matrix completion. In: IEEE Transactions on
Information Theory (2015)

[CLR17] Cai, T.T., Liang, T., Rakhlin, A.: Computational and statistical boundaries
for submatrix localization in a large noisy matrix. In: The Annals of Statistics
(2017)

[COE15] Coja-Oghlan, A., Efthymiou, C.: On independent sets in random graphs. In:
Random Structures and Algorithms (2015)

[CX16] Chen, Y., Xu, J.: Statistical-computational tradeoffs in planted problems and
submatrix localization with a growing number of clusters and submatrices. J. Mach.
Learn. Res. 17(1), 882–938 (2016)

https://doi.org/10.1007/978-3-031-15985-5_5
https://doi.org/10.1007/978-3-031-15985-5_5
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-030-17659-4_21
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26

Cryptography from Planted Graphs 313

[DGGP14] Dekel, Y., Gurel-Gurevich, O., Peres, Y.: Finding hidden cliques in linear
time with high probability. In: Combinatorics, Probability and Computing (2014)

[DM15a] Deshpande, Y. and Montanari, A.: Finding hidden cliques of size
√

N/e in
nearly linear time. In: Foundations of Computational Mathematics (2015)

[DM15b] Deshpande, Y., Montanari, A.: Improved sum-of-squares lower bounds for
hidden clique and hidden submatrix problems. In: Proceedings of 28th Conference
on Learning Theory (2015)

[ERSY22] Elrazik, R.A., Robere, R., Schuster, A., Yehuda, G.: Pseudorandom self-
reductions for NP-complete problems. In: ITCS 2022 (2022)

[FGL+95] Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive
proofs and the hardness of approximating cliques. J. ACM 43(2), 268–292 (1995)

[FGN+20] Feige, U., Gamarnik, D., Neeman, J., Rácz, M.Z., Tetali, P.: Finding cliques
using few probes. Random Struct. Algorithms 56(1), 142–153 (2020)

[FGR+13] Feldman, V., Grigorescu, E., Reyzin, L., Vempala, S.S., Xiao, Y.: Statistical
algorithms and a lower bound for detecting planted cliques. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.), 45th ACM STOC, pp. 655–664. ACM Press,
June 2013

[FK00] Feige, U., Krauthgamer, R.: Finding and certifying a large hidden clique in a
semirandom graph. In: Random Structures Algorithms (2000)

[FK03] Feige, U., Krauthgamer, R.: The probable value of the lovász-schrijver relax-
ations for maximum independent set. In: SIAM Journal of Computing (2003)

[FKN94] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation
(extended abstract). In: Proceedings of the Twenty-Sixth Annual ACM Symposium
on Theory of Computing, STOC, vol. 1994, pp. 554–563 (1994)

[FR10] Feige, U., Ron, D.: Finding hidden cliques in linear time. In: 21st International
Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis
of Algorithms (2010)

[GKVZ22] Goldwasser, S., Kim, M.P., Vaikuntanathan, V., Zamir, O.: Planting unde-
tectable backdoors in machine learning models. In: Proceedings of the 63rd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2022 (2022)

[GM75] Grimmett, G.R., McDiarmid, C.J.: On colouring random graphs. In: Mathe-
matical Proceedings of the Cambridge Philosophical Society (1975)

[GS14] Gamarnik, D., Sudan, M.: Limits of local algorithms over sparse random
graphs. In: Naor, M. (ed.), ITCS 2014, pp. 369–376. ACM, January 2014

[H̊as96a] H̊astad, J.: Clique is hard to approximate within n1−ε. In: 37th FOCS, pp.
627–636. IEEE Computer Society Press, October 1996

[H̊as96b] H̊astad, J.: Testing of the long code and hardness for clique. In: 28th ACM
STOC, pp. 11–19. ACM Press, May 1996

[HJK+16] Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.:
How to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 24

[HK11] Hazan, E., Krauthgamer, R.: How hard is it to approximate the best nash
equilibrium? SIAM J. Comput. 40(1), 79–91 (2011)

[HKP+18] Hopkins, S.B., Kothari, P., Potechin, A.H., Raghavendra, P., Schramm,
T.: On the integrality gap of degree-4 sum of squares for planted clique. In: ACM
Transactions on Algorithm, vol. 14, no. 3, Article No.: 28, pp. 1–31 (2018)

[Hop18] Hopkins, S.: Statistical inference and the sum of squares method. Phd thesis,
Cornell University (2018)

https://doi.org/10.1007/978-3-662-53890-6_24

314 D. Abram et al.

[HWX15] Hajek, B., Wu, Y. and Xu, J.: Computational lower bounds for community
detection on random graphs. In: The 28th Annual Conference on Learning Theory,
COLT 2015 (2015)

[IK97] shai, Y., Kushilevitz, E.: Private simultaneous messages protocols with appli-
cations. In: Proceedings of Fifth Israel Symposium on Theory of Computing and
Systems, ISTCS 1997, Ramat-Gan, Israel, 17–19 June 1997, pp. 174–184 (1997)

[IKM+13] Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36594-2 34

[Jer92] Jerrum, M.: Large cliques elude the metropolis process. In: Random Structures
and Algorithms (1992)

[JP00] Juels, A.: Peinado, M.: Hiding cliques for cryptographic security. Des. Codes
Cryptography 20, 269–280 (2000)

[Kar72] Karp, R.: Reducibility among combinatorial problems. In: The Complexity of
Computer Computations, Plenum Press (1972)

[Kar76] Karp, R.: Probabilistic analysis of some combinatorial search problems. New
directions and recent results. In: Algorithms and Complexity (1976)

[KN90] Kilian, J., Nisan, N.: Private communication (1990)
[Kuč95] Kučera, L.: Expected complexity of graph partitioning problems. In: Discrete

Applied Mathematics, vol. 57 (1995)
[KZ14] Koiran, P., Zouzias, A.: Hidden cliques and the certification of the restricted

isometry property. In: IEEE Transactions on Information Theory (2014)
[LVW17] Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via

non-linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 25

[McD74] McDiarmid, C.: Colouring random graphs. In: Annals of Operations
Research, vol. 1, no. 3 (1974)

[McS01] McSherry, F.: Spectral partitioning of random graphs. In: 42nd FOCS, pp.
529–537. IEEE Computer Society Press, October 2001

[Mer78] Merkle, R.: Secure communications over insecure channels. In: Communica-
tions of the ACM (1978)

[MPW15] Meka, R., Potechin, A., Wigderson, A.: Sum-of-squares lower bounds for
planted clique. In: Servedio, R.A., Rubinfeld, R. (eds.), 47th ACM STOC, pp. 87–
96. ACM Press, June 2015

[MRS21] Manurangsi, P., Rubinstein, A., Schramm, T.: The strongish planted clique
hypothesis and its consequences. In: Lee, J.R. (ed.), ITCS 2021, vol. 185, pp. 10:1–
10:21. LIPIcs, January 2021

[MW15] Ma, Z., Wu, Y.: Computational barriers in minimax submatrix detection. In:
The Annals of Statistics (2015)

[Pit82] Pittel, B.: On the probable behaviour of some algorithms for finding the sta-
bility number of a graph. In: Mathematical Proceedings of the Cambridge Philo-
sophical Society (1982)

[Ros08] Rossman, B.: On the constant-depth complexity of k-clique. In: Ladner, R.E.,
Dwork, C. (eds.), 40th ACM STOC, pp. 721–730. ACM Press, May 2008

[Ros10] Rossman, B.: The monotone complexity of k-clique on random graphs. In: 51st
FOCS, pp. 193–201. IEEE Computer Society Press, October 2010

[RV17] Rahman, M., Virag, B.: Local algorithms for independent sets are half-optimal.
In: The Annals of Probability (2017)

https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25

Cryptography from Planted Graphs 315

[SBW19] Shah, N., Balakrishnan, S., Wainwright, M.: Feeling the bern: adaptive esti-
mators for bernoulli probabilities of pairwise comparisons. In: IEEE Transactions
on Information Theory (2019)

[Sha79] Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11),
612–613 (1979)

[SS97] Sun, H.M., Shieh, S.P.: Secret sharing in graph-based prohibited structures. In:
INFOCOM 1997 (1997)

[WBP16] Wang, T., Berthet, Q., Plan, Y.: Average-case hardness of rip certification.
In: Advances in Neural Information Processing Systems (2016)

Multi-party Computation I

Randomized Functions with High Round
Complexity

Saugata Basu1(B), Hamidreza Amini Khorasgani1, Hemanta K. Maji1,
and Hai H. Nguyen2

1 Department of Computer Science, Purdue University, West Lafayette, USA
{sbasu,haminikh,hmaji}@purdue.edu

2 Department of Computer Science, ETH Zurich, Zürich, Switzerland
haihoang.nguyen@inf.ethz.ch

Abstract. Consider two-party secure function evaluation against an
honest-but-curious adversary in the information-theoretic plain model.
We study the round complexity of securely realizing a given secure func-
tion evaluation functionality.

Chor-Kushilevitz-Beaver (1989) proved that the round complexity of
securely evaluating a deterministic function depends solely on the car-
dinality of its domain and range. A natural conjecture asserts that this
phenomenon extends to functions with randomized output.

Our work falsifies this conjecture – revealing intricate subtleties even
for this elementary security notion. For every r, we construct a function
fr with binary inputs and five output alphabets that has round complex-
ity r. Previously, such a construction was known using (r + 1) output
symbols. Our counter-example is optimal – we prove that any securely
realizable function with binary inputs and four output alphabets has
round complexity at most four.

We work in the geometric framework Basu-Khorasgani-Maji-Nguyen
(FOCS–2022) introduced to investigate randomized functions’ round
complexity. Our work establishes a connection between secure compu-
tation and the lamination hull (geometric object originally motivated
by applications in hydrodynamics). Our counterexample constructions
are related to the “tartan square” construction in the lamination hull
literature.

Keywords: Two-party secure computation · Information-theoretic
security · Semi-honest adversary · Round complexity · Geometry of
secure computation · Generalized convex hull · Lamination hull ·
Hydrodynamics

H. H. Nguyen—This work was done while the author was at Purdue.
Basu was partially supported by NSF grants CCF-1910441 and CCF-2128702. Khoras-
gani, Maji, and Nguyen are supported in part by an NSF CRII Award CNS–1566499,
NSF SMALL Awards CNS–1618822 and CNS–2055605, the IARPA HECTOR project,
MITRE Innovation Program Academic Cybersecurity Research Awards (2019–2020,
2020–2021), a Ross-Lynn Research Scholars Grant, a Purdue Research Foundation
(PRF) Award, and The Center for Science of Information, an NSF Science and Tech-
nology Center, Cooperative Agreement CCF–0939370.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 319–348, 2023.
https://doi.org/10.1007/978-3-031-48615-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-48615-9_12

320 S. Basu et al.

1 Introduction

Secure multi-party computation (MPC) [13,18] allows mutually distrusting par-
ties to compute securely over their private data. In general, MPC requires an
honest majority or oblivious transfer to compute tasks securely. Even if honest
parties are not in the majority, several tasks are securely computable in the
information-theoretic plain model without oblivious transfer or other hardness
of computation assumptions. For example, the Dutch auction mechanism [6]
securely performs auctions. These information-theoretic protocols, if they exist,
are highly desirable – they are perfectly secure, fast, and require no setup or
preprocessing. With rapid increases in the computational power of parties, the
round complexity of these protocols becomes the primary bottleneck, signifi-
cantly impacting their adoption.

This work studies the round complexity of MPC in the two-party information-
theoretic plain model against honest-but-curious adversaries. Alice and Bob have
private inputs x ∈ X and y ∈ Y , respectively, and their objective is to securely
sample an output z from the distribution f(x, y) over the sample space Z. The
distribution f(x, y) is publicly known, and both parties must receive the identical
output z. Parties have unbounded computational power and honestly follow
the protocol; however, they are curious to obtain additional information about
the other party’s private input. An ideal communication channel connects the
parties, and they send messages in alternating rounds.1 The round complexity of
securely computing f is the (worst-case) minimum number of rounds required
to perform this sampling task securely.

We aim to investigate factors causing high round complexity for these secure
sampling tasks. Increasing the size of the input or output sets would certainly
lead to higher round complexity. However, even after fixing the input and output
sets, the complexity of representing the probability distributions could influence
the round complexity. There is a natural conjecture in this context.

It is conjectured that only the sizes of the input and output sets determine
the round complexity. The complexity of representing the probability distribu-

tions f(x, y) is absorbed within the private computation that parties perform,
and it does not impact the round complexity.

This (extremely strong) conjecture is known to hold for (a) classical com-
munication complexity where correctness (not security) is considered, (b) the
secure computation tasks with deterministic output, and (c) randomized out-
put tasks with a small output set. In the sequel, Sect. 1.1, Sect. 1.2, and
Sect. 1.4 present evidence supporting the credibility of this conjecture. Our work
refutes this conjecture. Section 2 presents our contributions and Sect. 3 high-
lights the underlying technical approach.

1.1 Discussion: Interaction in a World Without Security

Consider the classical communication complexity objective of correctly (possibly
insecurely) evaluating a randomized output function with minimum interaction.

1 Both parties know which party speaks in which round.

Randomized Functions with High Round Complexity 321

In this context, the following canonical interactive protocol is natural. Alice
sends her input x to Bob. Bob samples z ∼ f(x, y) and sends the output z to
Alice.2 The round complexity of this (insecure) protocol is two. More gener-
ally, its communication complexity is log card (X)+ log card (Z), where card (S)
represents the cardinality of the set S. These upper bounds on the interaction
complexity hold irrespective of the complexity of representing the individual
probabilities f(x, y)z, the probability to output z ∈ Z conditioned on the input
(x, y) ∈ X × Y . The computational complexity of sampling their output did not
overflow into the interaction complexity because its impact was contained within
the respective parties’ private computation.

1.2 Round Complexity of Deterministic Functions

A particular class of functions widely studied in communication complexity and
cryptography is the class of deterministic functions. The function f is deter-
ministic if the support of the distribution f(x, y) is a singleton set for every
(x, y) ∈ X × Y – the output z is determined entirely by the parties’ private
inputs (x, y). For example, in an auction, the price is determined by all the bids.

Chor-Kushilevitz-Beaver [4,8,17] characterized all deterministic functions
that are securely computable in the two-party information-theoretic plain model
against honest-but-curious adversaries. The secure protocols for such functions
follow a general template – parties rule out specific outputs in each round.
Excluding outputs, in turn, rules out private input pairs (because each input
pair produces one output). For example, the Dutch auction mechanism rules
out the price that receives no bids. Such functions are called decomposable func-
tions because these secure protocols incrementally decompose the feasible input-
output space during their evolution. Decomposable functions are securely com-
putable with perfect security.

Let us reason about the round complexity of a deterministic function f : X ×
Y → Z, represented by round (f). One has to exclude card (Z) − 1 outputs so
that only the output z = f(x, y) remains feasible. So, if f has a secure protocol
in this model, then

round (f) � card (Z) − 1.

Furthermore, the Markov property for interactive protocols holds in the
information-theoretic plain model. The joint distribution of inputs conditioned
on the protocol’s evolution is always a product distribution. Excluding output
also excludes private inputs of the parties. For example, if Alice sends a message
in a round, she rules out some of her private inputs. This observation leads to
the bound

round (f) � 2 · card (X) − 1.

2 We assume that parties have access to randomness with arbitrary bias; more con-
cretely, consider the Blum-Schub-Smale model of computation [5]. For example, par-
ties can have a random bit that is 1 with probability 1/π.

322 S. Basu et al.

Likewise, we also have

round (f) � 2 · card (Y) − 1.

Combining these observations, Chor-Kushilevitz-Beaver [4,8,17] concluded that

round (f) � min {card (Z) , 2 · card (X) , 2 · card (Y)} − 1. (1)

The cardinalities of the private input and output sets determine the upper bound
on the round complexity of f if it has a secure protocol. This phenomenon from
the classical communication complexity extends to the cryptographic context for
deterministic functions.

1.3 Round Complexity of Randomized Functions with Small
Output Set

For functions with randomized output, the first conjecture already holds for small
values of card (Z). For example, card (Z) � 3 implies that round (f) � 2 [11].
In fact, this paper will prove that card (Z) � 4 implies round (f) � 4. It is
fascinating that the complexity of sampling from the distributions f(x, y) does
not impact the round complexity; its role is localized to the parties’ private
computation.

1.4 Round Complexity of Randomized Functions (General Case)

For three decades, there was essentially no progress in determining the round
complexity of securely computing general randomized functions – barring a few
highly specialized cases [11]. Last year, Basu, Khorasgani, Maji, and Nguyen
(FOCS 2022) [1] showed that determining “whether a randomized f has an r-
round protocol or not” is decidable. They reduced this question to a geometric
analog: “does a query point Q belong to a recursively-generated set S(r).” They
start with an initial set of points S(0), and recursively build S(i+1) from the set
S(i) using a geometric action, for i ∈ {0, 1, . . . }. The function f has an (at most)
r-round protocol if (and only if) a specific query point Q belongs to the set S(r).

These set of points
{
S(i)

}
i�0

lie in the ambient space

R
card(X)−1 × R

card(Y)−1 × R
card(Z).

Again, the dimension of the ambient space (of their embedding) is determined
entirely by the cardinalities of the inputs and output sets. This feature of their
embedding added additional support to the conjecture.

Consider an analogy from geometry. Consider n initial points in R
d, where

n � d. At the outset, any point inside the convex hull can be expressed as a
convex linear combination of the initial points that lie on the convex hull; their
number can be � d. However, Carathéodory’s theorem [7] states that every point
in its interior is expressible as a convex linear combination of (at most) (d + 1)

Randomized Functions with High Round Complexity 323

initial points on the convex hull. At an abstract level: canonical representations
may have significantly lower complexity. It is similar to the Pumping lemma
for regular languages and (more generally) the Ogden lemma for context-free
languages.

Likewise, a fascinating possibility opens up in the context of Basu et al.’s
geometric problem. The canonical protocol for f could have round complexity
determined solely by the dimension of their ambient space, which (in turn) is
determined by the cardinality of the input and output sets. In fact, an optimistic
conjecture of O

(
card (Z)2

)
upper bound on the round complexity appears in

the full version of their paper [2, Section 7, Conjecture 1].

We Refute This Conjecture. The analogies break exactly at |Z| = 5.
Represent a randomized function with input set X × Y and output set Z
as f : X × Y → R

Z . For every r ∈ {1, 2, . . . }, we construct a function
fr : {0, 1}×{0, 1} → R

{1,2,3,4,5} with round complexity r. Previously, Basu et al.
constructed functions gr : {0, 1} × {0, 1} → R

{1,2,...,r+1} with round complexity
r, i.e., their example had card (Z) = (r + 1). In our example, card (Z) = 5,
a constant. Moreover, we prove the optimality of the counterexamples: Any
f : {0, 1} × {0, 1} → R

{1,2,3,4} has round complexity � 4.

Looking Ahead. Our results indicate that any upper bound on the round
complexity of f must involve the complexity of representing (the probabilities
appearing in) the function f . For example, consider a randomized function whose
probabilities are integral multiples of 1/B. Then, the round complexity of f
should be upper bounded by some function of card (X), card (Y), card (Z), and
B. The B-term represents (intuitively) “the condition number of the function f .”
If this dependence on B can, in fact, be a poly(log(B)) dependence, then it will
lead to efficient secure algorithms, ones with round complexity of poly(log B).

Our work considers the round complexity of perfectly secure protocols. The
case of statistically secure protocols remains an interesting open problem. In
fact, the decidability of the question: “Is there an r-round ε-secure protocol for
f?” remains unknown, which is a more fundamental problem. Basu et al. [1]
only considered the perfect security case. The technical machinery to handle
statistical security for general randomized output functions does not exist. This
work does not contribute to these two research directions.

1.5 Overview of the Paper

We discuss our contributions in Sect. 2. In Sect. 3, we provide a technical overview
of our paper. In Sect. 4, we discuss the relation of our work with lamination hull.
Section 5 presents the BKMN geometric framework. Section 6 introduces nota-
tions and preliminaries. Section 7 contains all results pertaining to constructing
high-round complexity randomized functions. Section 8 shows that our coun-
terexamples are optimal.

324 S. Basu et al.

2 Our Contributions

Theorem 1 (Functions with arbitrarily high round complexity). For
any r ∈ {1, 2, . . . , }, there is a function fr : {0, 1} × {0, 1} → R

{1,2,3,4,5} such
that round (fr) = r.

The function fr has an r-round perfectly secure protocol (and r bits of commu-
nication) but no (r − 1)-round perfectly secure protocol. This result proves that
there are functions with arbitrary large round complexity with a constant input
and output set size. Previously, Basu et al. [1] constructed functions with high
round complexity with (r+1) output alphabets. This result is a counterexample
to the folklore conjecture. Section 7 presents the definition of the functions and
the proof.

Our counterexample is also optimal, which is a consequence of our following
result.

Theorem 2 (Bounded Round Complexity for card (Z) � 4). Any function
f : {0, 1} × {0, 1} → R

Z with card (Z) � 4 has round (f) � 4.

Section 8 proves this theorem.

3 Technical Overview of Our Results

The presentation in this work is entirely geometric. No background in security
is necessary. We use the geometric embedding of BKMN [1] to translate round
complexity problems into geometric problems. Security is already folded inside
their geometric embedding.

3.1 High-Level Summary of the BKMN Geometric Framework

Section 5 presents a detailed version of this section. Consider a randomized out-
put function f : {0, 1} × {0, 1} → R

Z . BKMN approach considers the ambient
space R

d, where d = card (Z) + 2. They present the following maps

1. Function encoding. f �→ (A,B, V), where the matrix A ∈ M2×card(Z)(R)3,
the matrix B ∈ M2×card(Z)(R), and the vector V ∈ R

card(Z)

2. Query point. f �→ Q(f) ∈ R
card(Z)

3. Initial set. (A,B) �→ S(0) ⊆ R
d satisfying card

(
S(0)

)
= card (Z).

They present the following recursive definition of S(i+1) ⊆ R
d from S(i) ⊆ R

d,
for all i ∈ {0, 1, . . . }.

S(i+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∑

k=1

λ(k) · Q(k) :

t ∈ {1, 2, . . . },
λ(1), λ(2), . . . , λ(t) � 0,

λ(1) + λ(2) +· · · + λ(t) = 1,
Q(1), Q(2), . . . , Q(t) ∈ S(i), and(

Q
(1)
1 = Q

(2)
1 = · · · = Q

(t)
1 or

Q
(1)
2 = Q

(2)
2 = · · · = Q

(t)
2

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

3 Mm×n(R) denotes the set of all m-by-n matrices with elements in R.

Randomized Functions with High Round Complexity 325

Intuitively, this recursive definition ensures the following. Pick any t points
Q(1), Q(2), . . . , Q(t) ∈ S(i), where t ∈ {1, 2, . . . }. If the first coordinates of all
these t points are identical, or the second coordinates of all these t points are
identical, then add all possible convex linear combinations (i.e., the convex hull)
of

{
Q(1), Q(2), . . . , Q(t)

}
to the set S(i+1).

Remark 1 (Communication complexity). Restricting the recursive definition to
t = 2 corresponds to investigating the communication complexity of f . This
version of the recursion is closely connected to the lamination hull defined in
Sect. 4.

Observe that, in the recursive definition, the points need not be distinct.
Therefore, choosing Q(1) = Q(2) = · · · = Q(t) ensures that S(i) ⊆ S(i+1). Using
this recursive definition, we have the following sequence of sets in R

d:

S(0) ⊆ S(1) ⊆ S(2) ⊆· · ·

Connection to Round Complexity of Secure Computation. BKMN [1]
proved that, for all r ∈ {0, 1, . . . }, round (f) � r if and only if Q(f) ∈ S(r).
Therefore, to prove round (f) = r, it suffices to prove that Q(f) ∈ S(r) \ S(r−1).

3.2 The “Tartan Square” Meets Secure Computation

Our objective is to prove that there is a function fr : {0, 1}×{0, 1} → R
Z , where

Z = {1, 2, . . . , 5}, such that fr ∈ S(r) \ S(r−1), for every r ∈ {1, 2, . . . }. Recall
that S(0) is determined by fr and card

(
S(0)

)
= card (Z) = 5. Furthermore, all

the sets S(i) are in ambient space R
7, for i ∈ {0, 1, . . . }.

A preliminary step towards designing such functions is to determine an initial
set of points S(0) such that we have

S(0)
� S(1)

� S(2)
� · · ·

Otherwise, suppose S(i) = S(i+1), for some i ∈ {0, 1, . . . }. Then, S(j) = S(i),
for all j � i, and the round complexity cannot surpass i. So, our objective is
to construct an initial set S(0) of constant size in an ambient space of constant
dimension such that the evolution of the sequence S(0) → S(1) → S(2) → · · ·
does not stabilize. It is unclear whether such an initial set S(0) even exists.

Illustrative Example. We present an initial set S(0) ⊆ R
3 such that the evo-

lution of the recursively defined sets does not stabilize. We emphasize that this
illustrative example is for intuition purposes only. The actual constructions are
presented in Sect. 7, where the ambient space is R

7.
We work in the ambient space R

3 for the illustrative example. Consider an
initial set of points

R
3 ⊇ S(0) :=

{
(2, 0, 0), (0, 1, 0), (1, 3, 0), (3, 2, 0), (2, 1, 1)

}

326 S. Basu et al.

1. For example, consider the points (0, 1, 0) and (2, 1, 1) in the set S(0). The
recursive definition allows the addition of the line segment PQ to the set
S(1). In particular, this line segment’s midpoint (1, 1, 1/2) is in the set S(1).

2. Similarly, considering the points (1, 3, 0) and (1, 1, 1/2) in the set S(1), we
conclude that their midpoint (1, 2, 1/4) is in the set S(2).

3. Now, consider the points (3, 2, 0) and (1, 2, 1/4) in the set S(2). Their midpoint
(2, 2, 1/8) is in the set S(3).

4. Finally, the midpoint of the points (2, 0, 0) and (2, 2, 1/8) in the set S(3) is
(2, 1, 1/16), which is in the set S(4).

Let us summarize what we have achieved thus far. Beginning with the point
(2, 1, 1) ∈ S(0), we identified the point (2, 1, 1/16) ∈ S(4). One can prove that
this point (2, 1, 1/16) 	∈ S(3). Therefore, we conclude that the point (2, 1, 1/16) ∈
S(4) \ S(3).

Using analogous steps as above, starting instead with the point (2, 1, 1/16) ∈
S(4) \S(3) will lead to the point

(
2, 1, 1/(16)2

)
∈ S(8) \S(7) In general, using this

construction, we will have
(

2, 1,
1

16k

)
∈ S(4k) \ S(4k−1).

This sequence of points, for k ∈ {0, 1, 2, . . . }, demonstrate that the sequence
S(0) → S(1) → S(2) →· · · does not stabilize. This example is the “tartan square”
from the lamination hull literature; refer to Remark 2 in Sect. 4.

This illustrative example leads to the following conclusion. In an ambient
space of constant dimension and starting with a suitable initial set S(0) of con-
stant size, the sequence S(0) → S(1) → S(2) →· · · may not stabilize.

3.3 Overview: Proof of Theorem 1

For r ∈ {1, 2, . . . }, we will appropriately choose the probabilities of the function
fr : {0, 1} × {0, 1} → R

Z , such that card (Z) = 5. Using the BKMN geometric
framework (see Sect. 3.1), we will generate:

1. Function encoding (A,B, Vr). We emphasize that all our functions fr are
designed so that they map to the same (A,B); only Vr is different.

2. Query point Q(fr) ∈ R
7.

3. Initial point set S(0) ⊆ R
7, which is identical for all fr because (a) all functions

map to identical (A,B), and (b) (A,B) alone determine S(0).

Sect. 5.1 presents the definition of the function fr.
Next, the choice of the S(0) ensures that the evolution of the sets S(0) →

S(1) → S(2) →· · · does not stabilize. It essentially mimics the tartan square con-
struction of Sect. 3.2. However, we emphasize that in this section, the ambient
space is R

7 (the ambient space for the tartan square example was R
3). Fur-

thermore, we design our function fr such that the corresponding query point
Q(fr) ∈ S(r) \ S(r−1). Consequently, we have round (fr) = r.

Randomized Functions with High Round Complexity 327

3.4 Overview: Proof of Theorem 2

We aim to prove that round (f) � 4, for any function f : {0, 1} × {0, 1} → R
Z

such that card (Z) � 4. Toward this objective, we begin with the following
observations.

1. Recall that in the BKMN framework card
(
S(0)

)
= card (Z).

2. Furthermore, if S(4) = S(5), then S(j) = S(4), for all j � 4. In this case,
round (f) � 4, because S(r) \ S(r−1) = ∅, for all r ∈ {5, 6, . . . }.

To prove our theorem, it will suffice to prove that the evolution of the sets
S(0) → S(1) → S(2) → · · · stabilizes by i = 4 when card

(
S(0)

)
� 4.4 We prove

this result using an exhaustive case analysis (see Sect. 8).

4 Lamination Hull

Consider an ambient space R
d. The lamination hull is parameterized by a set

of points Λ ⊆ R
d. Given a set of initial point S(0,Λ) ⊆ R

d, recursively define
S(i+1,Λ) from S(i) as follows

S(i+1,Λ) :=

⎧
⎨

⎩
λ · Q(1) + (1 − λ) · Q(2) :

Q(1), Q(2) ∈ S(i,Λ),
λ ∈ [0, 1], and

Q(1) − Q(2) ∈ Λ

⎫
⎬

⎭
.

Intuitively, one can add the line segment Q(1)Q(2) to the set S(i+1,Λ) for any
Q(1), Q(2) ∈ S(i,Λ) if Q(1) − Q(2) ∈ Λ. The lamination hull is the limit of the
sequence S(0,Λ) → S(1,Λ) → S(2,Λ) → · · ·. This hull is tied to computing the
stationary solutions to the following differential equations underlying incom-
pressible porous media [9,10,12,14].

Incompressible Porous Media (IPM) Equations

Conservation of Mass, Incompressibility, and Darcy’s Law

∂tρ + ∇ · (ρv) = 0, ∇ · v = 0,
μ

κ
v = −∇p − ρg, (2)

where ρ is the fluid density, v is the fluid velocity, and g is the gravity.

When Λ = (0, R, . . . , R) ∪ (R, 0, R, . . . , R) ⊆ R
d, the sequence S(0,Λ) →

S(1,Λ) → S(2,Λ) → · · · is identical to the sequence defined by Basu et al. [1]
for the communication complexity case (see Remark 1). Basu et al. [1] proved
that the points in the recursively defined sets are related to secure computation
protocols. As a consequence of this connection, secure computation protocols
manifest in physical processes in nature. This connection is mentioned in [3,
Page 20].
4 We highlight a subtlety. We only need to prove that S(4) = S(5). It is inconsequential

if they have stabilized even earlier. For example, it may be the case that S(j) = S(j+1)

for some j ∈ {0, 1, 2, 3}.

328 S. Basu et al.

Remark 2 (Independent discovery of the “tartan square” construction). Our
work independently discovered the “tartan square” construction in the lami-
nation hull literature [16, Figure 2, Page 3]. Consider ambient dimension R

3 and
Λ = (0, R, R)∪(R, 0, R) ⊆ R

d. The “tartan square” is a set of 5 points in R
3 such

that the sequence S(0,Λ) → S(1,Λ) → S(2,Λ) → · · · does not stabilize. Section 3
uses this example to provide the intuition underlying our counterexample con-
structions.

5 BKMN Geometric Framework: A Formal Introduction

Basu-Khorasgani-Maji-Nguyen [1] presents a new approach for studying the
round complexity of any (symmetric) functionality f : X × Y → R

Z . In the
following discussion, we shall recall this approach for the particular case where
the input domain satisfies X = Y = {0, 1}.

From the given functionality f , BKMN22 defines the following maps.

1. Function encoding: f �→ (A,B, V)
2. Query point: f �→ Q(f)
3. Initial set: (A,B) �→ S(0)

4. Recursive construction: S(i) �→ S(i+1) for any i ∈ {0, 1, 2, . . . }.

Function Encoding

There are matrices A ∈ M2×card(Z)(R), B ∈ M2×card(Z)(R), and vector
V ∈ R

card(Z) such that

f(x, y)z = Ax,z · By,z · Vz for all x ∈ X, y ∈ Y, z ∈ Z, and
∑

x∈X

Ax,z = 1,
∑

y∈Y

By,z = 1 for all z ∈ Z.a

a If such an encoding does not exist, there is no secure protocol for f [15].

The query point Q(f) is constructed as follows.

Query Point Construction

Q(f) :=
(

1/2, 1/2,
1
4

· V

)
∈ R × R × R

card(Z)

The initial set S(0) is constructed from (A,B) as follows.

Randomized Functions with High Round Complexity 329

Constructing the initial set S(0) from (A,B)

S(0) := {(A0,z, B0,z, e(z)) : z ∈ Z} ⊆ R
d,

where d := card (Z) + 2, and e(z) is the standard unit vector whose
coordinates are all zeros except that the z-th coordinate is one.

They consider the sequence S(0),S(1), . . . ,S(i), . . . where for any i ∈
{0, 1, . . . }, the geometric action that recursively generates S(i+1) from S(i) is
defined as follows:

Geometric Action: Constructing S(i+1) from S(i)

For any t ∈ {1, 2, . . . } and points Q(1), Q(2), . . . , Q(t) ∈ S(i), add all
convex linear combinations of the points {Q(1), Q(2), . . . , Q(t)} to the set
S(i+1) if (and only if)

1. Q
(1)
1 = Q

(2)
1 = · · · = Q

(t)
1 , or

2. Q
(1)
2 = Q

(2)
2 = · · · = Q

(t)
2 .

For a point Q ∈ R
d, Q1 represents the first coordinate of Q, and Q2

represents the second coordinate of Q.

Some Clarifications.

1. A convex linear combination of the points Q(1), . . . , Q(t), is a point of the

form λ(1) · Q(1) + · · · + λ(t) · Q(t), where λ(1), . . . , λ(t) � 0 and
t∑

i=1

λ(i) = 1.

All possible convex linear combinations consider all possible such λ(1), . . . λ(t)

values.
2. The points Q(1), . . . , Q(t) in the definition need not be distinct
3. Considering t = 1 in the definition above ensures that S(i) ⊆ S(i+1).
4. Since efficiency is not a consideration in the current context, we consider t ∈

{1, 2, . . . }. Otherwise, by Carathéodory’s theorem [7], it suffices to consider
only t = (d + 1).

BKMN’s Reduction. Given the initial set S(0), one constructs the sequence
S(0) → S(1) → S(2) → . . . recursively based on the geometric action. Basu
et al. reduce the problem of the round complexity of secure computation of ran-
domized functions to the problem of testing whether a point belongs to a set in
a high dimensional space.

330 S. Basu et al.

BKMN’s Reduction

For any r ∈ {1, 2, . . . },

1. round (f) � r if and only if Q(f) ∈ S(r).
2. round (f) = r if and only if Q(f) ∈ S(r) \ S(r−1).

5.1 An Example

In this section, we consider an example and find the corresponding encoding,
query point, and sets S(0),S(1), . . . based on BKMN’s approach. For any r =
4k + 1 where k ∈ {0, 1, . . . }, we construct a functionality fr : {0, 1} × {0, 1} →
R

{1,2,3,4,5} and then show in Sect. 7 that round (fr) = r. We emphasize that
it is also possible to construct such functionality for the cases that r = 4k or
r = 4k + 2 or r = 4k + 3 where k ∈ {0, 1, 2, . . . }.

Consider the following functionality

f4k+1(0, 0) =
(

3
16

· σk,
1
4

· σk+1,
1
8

· σk,
3
8

· σk,
3

24k+2

)
,

f4k+1(0, 1) =
(

9
16

· σk,
1
4

· σk+1, 0 · σk,
1
8

· σk,
3

24k+2

)
,

f4k+1(1, 0) =
(

1
16

· σk,
3
4

· σk+1,
1
8

· σk, 0 · σk,
1

24k+2

)
,

f4k+1(1, 1) =
(

3
16

· σk,
3
4

· σk+1, 0 · σk, 0 · σk,
1

24k+2

)
,

where σk := 1−(1/16)k

1−1/16 for k ∈ {0, 1, 2, . . . }. Following BKMN’s approach (refer
to Sect. 5), the encoding of f4k+1 is the triplet (A,B, V4k+1), where

A =
(

3/4, 1/4, 1/2, 1, 3/4
1/4, 3/4, 1/2, 0, 1/4

)
∈ M2×5(R),

B =
(

1/4, 1/2, 1, 3/4, 1/2
3/4, 1/2, 0, 1/4, 1/2

)
∈ M2×5(R),

V4k+1 =
(

σk, 2σk+1,
σk

4
,
σk

2
,

1
24k−1

)
∈ R

5.

Note that the first row of matrix A corresponds to input X = 0, and its second
row corresponds to X = 1. Similarly, the first row of B corresponds to input
Y = 0, and the other row corresponds to Y = 1. The initial set S(0) is derived
from (A,B, V4k+1) as follows.

S(0) = {P (z) : z ∈ {1, 2, 3, 4, 5}}, where

P (1) = (3/4, 1/4, 1, 0, 0, 0, 0),

Randomized Functions with High Round Complexity 331

P (2) = (1/4, 1/2, 0, 1, 0, 0, 0),

P (3) = (1/2, 1 , 0, 0, 1, 0, 0),

P (4) = (1 , 3/4, 0, 0, 0, 1, 0),

P (5) = (3/4, 1/2, 0, 0, 0, 0, 1).

Note that S(i) ⊆ R
7 for all i ∈ {0, 1, . . . }. The query point is defined as

Q(f4k+1) =
(

1
2
,

1
2
,

1
4

· σk

4
,

σk+1

2
,

σk

16
,

σk

8
,

1
24k+1

)
∈ R

7.

To prove that round(f4k+1) = 4k + 1, it suffices to prove the following result.

Lemma 1. It holds that Q(f4k+1) ∈ S(4k+1) \ S(4k).

We provide a proof for Lemma1 in Sect. 7 (refer to the proof of Theorem3).

6 Preliminaries

This section introduces some notations and definitions to facilitate our presen-
tation.

6.1 Notations

We will use the following notations for a point p ∈ R
d, a scalar c ∈ R, and a set

S ⊆ R
d.

p + S := {p + q : q ∈ S}, c · S := {c · q : q ∈ S}.

We use the standard notations \,∪,∩ to denote the minus, union, and intersec-
tion operators on sets, respectively.

6.2 Convex Geometry

For any two points x, y ∈ R
d, the line segment between x and y, denoted as xy,

is the set of all points t ·x+(1− t) ·y for t ∈ [0, 1]. A subset of R
d is a convex set

if, given any two points in the subset, the subset contains the whole line segment
joining them. A convex combination is a linear combination of points in which
all coefficients are non-negative and sum up to 1. An extreme point of a convex
set S ⊆ R

d is a point that does not lie on any open line segment joining two
distinct points of S.

Definition 1 (Convex Hull). For any set S ⊆ R
d, the convex hull of S,

denoted as conv(S), is the set of all convex combinations of points in S.

For example, every line segment is the convex hull of the two endpoints. The
following facts follow directly from the definition of the convex hull.

Fact 1. For any subset S ⊆ R
d, it holds that conv(conv(S)) = conv(S).

Fact 2. For any S ⊆ T ⊆ R
d, it holds that conv(S) ⊆ conv(T).

332 S. Basu et al.

7 Functions with High Round Complexity

This section provides a formal proof for Theorem1 restated as follows.

Theorem 3. For every r ∈ N, there exists a function fr : {0, 1} × {0, 1} → R
Z

such that card (Z) = 5 and fr has r-round perfectly secure protocol but no (r−1)-
round secure protocol.

We begin with introducing some notations. Let P = (P1, P2, P3, P4, P5, P6, P7)
denote a point in R

2 × R
5. We define the following projections

π : R
2 × R

5 → R
2, π(P) := (P1, P2)

π1 : R
2 × R

5 → R, π1(P) := P1

π2 : R
2 × R

5 → R, π2(P) := P2

ρ : R
2 × R

5 → R
5, ρ(P) := (P3, P4, P5, P6, P7)

We use ei ∈ R
5, where i ∈ {1, . . . , 5}, to represent the ith vector of the

standard basis for R
5. All coordinates of ei are 0 except the ith coordinate,

which is equal to 1. For example, if P = (1/4, 1/2, 0, 1, 0, 0, 0), then

π(P) = (1/4, 1/2), π1(P) = 1/4, π2(P) = 1/2, ρ(P) = (0, 1, 0, 0, 0) = e2.

Our Initial Set of Points. We define the following five points in R
2

a1 = (3/4, 1/4), a2 = (1/4, 1/2), a3 = (1/2, 1), a4 = (1, 3/4), a5 = (3/4, 1/2).

The initial set S(0) is defined as

S(0) := {P ∈ R
2 × R

5 : ∃ i ∈ {1, 2, 3, 4, 5}, π(P) = ai and ρ(P) = ei}.

Recursive construction of S(i). For i ∈ {1, 2, . . . }, let S(i) ⊆ R
2 × R

5 be the set
defined recursively from S(i−1) according to Fig. 1.

For t ∈ {1, 2, . . . } and any points Q(1), Q(2), . . . , Q(t) ∈ S(i−1) satisfying

π1(Q(1)) = π1(Q(2)) = · · · = π1(Q(t)), or

π2(Q(1)) = π2(Q(2)) = · · · = π2(Q(t))

add all possible convex linear combinations of Q(1), Q(2), . . . , Q(t) to the set S(i).

Fig. 1. Recursive procedure to construct S(i) from S(i−1) for i ∈ {1, 2, . . . }.

In addition to Theorem 3, we shall also prove the following result.

Theorem 4 (Does not Stabilize). For all i ∈ {1, 2, . . . }, S(i−1)
� S(i).

Intuitively, the choice of the S(0) ensures that the evolution of the sets S(0) →
S(1) → S(2) →· · · does not stabilize.

Randomized Functions with High Round Complexity 333

axis-2

axis-1

a6

a1

a2

a3

a4

a5

a7 a8

Fig. 2. An example showing that the sequence {S(i)}∞
i=0 does not stabilize.

Additional points and notations. We define the following additional points for
our analysis (refer to Fig. 2).

a6 = (1/2, 1/2), a7 = (1/2, 3/4), a8 = (3/4, 3/4)

Let a1a8 denote the set of points on the line segment that connects the point a1

to the point a8. The segments a2a5, a3a6, a4a7 are defined similarly. For any set
Ω ⊆ R

2, we define the set S(i)
Ω as follows.

S(i)
Ω := {Q ∈ S(i) : π(Q) ∈ Ω}

Whenever Ω is a singleton set, we omit the brackets. For example,

S(0)
a1

= {(3/4, 1/4, 1, 0, 0, 0, 0)}, S(0)
a2

= {(1/4, 1/2, 0, 1, 0, 0, 0)},

S(0)
a3

= {(1/2, 1, 0, 0, 1, 0, 0)}, S(0)
a4

= {(1, 3/4, 0, 0, 0, 1, 0)},

S(0)
a5

= {(3/4, 1/2, 0, 0, 0, 0, 1)}, S(0)
a6

= S(0)
a7

= S(0)
a8

= ∅.

Moreover, for any set Ω ⊆ R
2 × R

5, we define ρ (Ω) := {ρ(P) : P ∈ Ω}. For
example, ρ(S(0)

a4) = {(0, 0, 0, 1, 0)} = {e4}.
For i ∈ {0, 1, 2, . . . }, we define

σi :=
i−1∑

k=0

1
16k

=
1 − (1/16)i

1 − 1/16
,

αi := σi · e1
2

+ σi · e4
4

+ σi · e3
8

+ σi · e2
16

+
e5
16i

,

βi := σi+1 · e2
2

+ σi · e1
4

+ σi · e4
8

+ σi · e3
16

+
e5

24i+1
,

γi := σi+1 · e3
2

+ σi+1 · e2
4

+ σi · e1
8

+ σi · e4
16

+
e5

24i+2
,

δi := σi+1 · e4
2

+ σi+1 · e3
4

+ σi+1 · e2
8

+ σi · e1
16

+
e5

24i+3
.

334 S. Basu et al.

Moreover, α∗, β∗, γ∗, δ∗ are defined as the limit of sequences αi, βi, γi, δi respec-
tively (refer to Proposition 4). We prove some algebraic properties of αi, βi, γi, δi

in Sect. 7.4.
Now, we state all claims needed for the proof of Theorem 3. Assuming these

claims, we first prove Theorem 3 in Sect. 7.1. Then, we prove these claims in
Sect. 7.2

Lemma 2. For every i ∈ {0, 1, 2, . . . }, the following identities hold.

ρ(S(4i)
a5

) = ρ(S(4i+1)
a5

) = ρ(S(4i+2)
a5

) = ρ(S(4i+3)
a5

),

ρ(S(4i+1)
a6

) = ρ(S(4i+2)
a6

) = ρ(S(4i+3)
a6

) = ρ(S(4i+4)
a6

),

ρ(S(4i+2)
a7

) = ρ(S(4i+3)
a7

) = ρ(S(4i+4)
a7

) = ρ(S(4i+5)
a5

),

ρ(S(4i+3)
a8

) = ρ(S(4i+4)
a8

) = ρ(S(4i+5)
a8

) = ρ(S(4i+6)
a8

).

Lemma 3. For all i ∈ {0, 1. . . . },
ρ(S(4i)

a5
) = conv({α0, αi)}), ρ(S(4i+1)

a6
) = conv({β0, βi}),

ρ(S(4i+2)
a7

) = conv({γ0, γi}), ρ(S(4i+3)
a8

) = conv({δ0, δi}).

Lemma 4. For any i ∈ {0, 1, 2, . . . }, it holds that

αi+1 /∈ ρ(S(4i)
a5

), βi+1 /∈ ρ(S(4i+1)
a6

), γi+1 /∈ ρ(S(4i+2)
a7

), δi+1 /∈ ρ(S(4i+3)
a8

).

7.1 Proofs of Theorem 3 and Theorem 4

Proof (of Theorem 3). Suppose r = 4k + 1, where k ∈ {0, 1, 2, . . . }. Recall the
functionality f4k+1 defined in Sect. 5.1

f4k+1(0, 0) =
(

3
16

· σk,
1
4

· σk+1,
1
8

· σk,
3
8

· σk,
3

24k+2

)

f4k+1(0, 1) =
(

9
16

· σk,
1
4

· σk+1, 0 · σk,
1
8

· σk,
3

24k+2

)

f4k+1(1, 0) =
(

1
16

· σk,
3
4

· σk+1,
1
8

· σk, 0 · σk,
1

24k+2

)

f4k+1(1, 1) =
(

3
16

· σk,
3
4

· σk+1, 0 · σk, 0 · σk,
1

24k+2

)

where σk := 1−(1/16)k

1−1/16 for k ∈ {0, 1, 2, . . . }. As we discussed in Sect. 5.1, the
encoding of f4k+1 is the triplet (A,B, V4k+1), where

A =
(

3/4, 1/4, 1/2, 1, 3/4
1/4, 3/4, 1/2, 0, 1/4

)
∈ M2×5(R),

B =
(

1/4, 1/2, 1, 3/4, 1/2
3/4, 1/2, 0, 1/4, 1/2

)
∈ M2×5(R),

V4k+1 =
(

σk, 2σk+1,
σk

4
,
σk

2
,

1
24k−1

)
∈ R

5.

Randomized Functions with High Round Complexity 335

and the query point is the following:

Q(f4k+1) =
(

1
2
,

1
2
,

1
4

· σk

4
,

σk+1

2
,

σk

16
,

σk

8
,

1
24k+1

)
∈ R

7.

Now, recall that

βk = σk+1 · e2
2

+ σk · e1
4

+ σk · e4
8

+ σk · e3
16

+
e5

24k+1

This implies ρ (Q(f4k+1)) = βk. Thus, it follows from Lemma 3 and Lemma 4
that ρ(Q(f4k+1)) ∈ S(4k+1)

a6 but ρ(Q(f4k+1)) 	∈ S(4(k−1)+1)
a6 . Moreover, Lemma 2

implies that S(4(k−1)+1)
a6 = S(4k)

a6 . Thus, we conclude that

Q(f4k+1) ∈ S(4k+1) \ S(4k)

which is what we promised to prove in Lemma 1. This implies that fr has r
round secure protocol but no (r − 1) secure protocol.

We can extend the proof to the case that r 	= 4k + 1 for any k. The idea is
similar. We can find 3 different family of functions corresponding to r = 4k, r =
4k + 2, r = 4k + 3. We only need to choose a different query point in Fig. 2,
a5, a7, or a8 and scale that figure and transfer it appropriately such that query
points (1/2, 1/2) is on a5, a7, or a8 depending on the remainder of division of r
by 4. Then, we can find appropriate functionalities. This completes the proof of
the theorem.

Proof (of Theorem 4). Theorem 4 follows directly from Lemma 3 and Lemma 2.

7.2 Proofs of Claims Needed for Theorem 3

This section proves all the claims needed for Theorem 3 assuming other results
that will be proved in Sect. 7.3.

Proof (of Lemma 2). We prove by induction on i.

Base Case. From the recursion in Lemma 6, one can verify that

ρ(S(0)
a5

) = ρ(S(1)
a5

) = ρ(S(2)
a5

) = ρ(S(3)
a5

) = {e5},

ρ(S(1)
a6

) = ρ(S(2)
a6

) = ρ(S(3)
a6

) = ρ(S(4)
a6

) =
e2 + e5

2
,

ρ(S(2)
a7

) = ρ(S(3)
a7

) = ρ(S(4)
a7

) = ρ(S(5)
a7

) =
e3
2

+
e2 + e5

4
,

ρ(S(3)
a8

) = ρ(S(4)
a8

) = ρ(S(5)
a8

) = ρ(S(6)
a8

) =
e4
2

+
e3
4

+
e2 + e5

8
.

Induction Step. Suppose the induction hypothesis holds for (i − 1). It follows
from Lemma 6 that

ρ(S(4i+3)
a5

) = conv

(
ρ(S(4i+2)

a5
) ∪ 1

2
·
(
e1 + ρ(S(4i+2)

a8
)
))

336 S. Basu et al.

= conv

(
conv

(
ρ(S(4i+1)

a5
) ∪ 1

2
·
(
e1 + ρ(S(4i+1)

a8
)
))

∪ 1
2

·
(
e1 + ρ(S(4i+2)

a8
)
))

By the induction hypothesis, ρ(S(4i+2)
a8) = ρ(S(4i+1)

a8). Therefore, we have

1
2

·
(
e1 + ρ(S(4i+1)

a8
)
)

=
1
2

·
(
e1 + ρ(S(4i+2)

a8
)
)

This, together with Fact 1 and Lemma 6, implies that

ρ(S(4i+3)
a5

) = conv

(
ρ(S(4i+1)

a5
) ∪ 1

2
·
(
e1 + ρ(S(4i+1)

a8
)
))

= ρ(S(4i+2)
a5

).

Likewise, one can show that ρ(S(4i+2)
a5) = ρ(S(4i+1)

a5) and ρ(S(4i+1)
a5) = ρ(S(4i)

a5).
These imply that

ρ(S(4i)
a5

) = ρ(S(4i+1)
a5

) = ρ(S(4i+2)
a5

) = ρ(S(4i+3)
a5

).

The proof of other equalities is similar.

Proof (of Lemma 3). We prove by induction on i (refer to Fig. 3).

Base Case. For i = 0,

ρ(S(0)
a5

) = {α0} = {e5},

ρ(S(1)
a6

) = {β0} =
{

e2 + e5
2

}
,

ρ(S(2)
a7

) = {γ0} =
{

e3
2

+
e2 + e5

4

}
,

ρ(S(3)
a8

) = {δ0} =
{

e4
2

+
e3
4

+
e2 + e5

8

}
.

Induction Step. Suppose the lemma is true for i. We shall show that it is true
for i + 1.

ρ(S(4i+4))
a5) = conv

(
ρ(S(4i+3)

a5) ∪ 1

2

(
e1 + ρ(S(4i+3)

a8)
))

(Lemma 6)

= conv

(
ρ(S(4i)

a5) ∪ 1

2

(
e1 + ρ(S(4i+3)

a8)
))

(Lemma 2)

= conv

(
conv({α0, αi}) ∪ 1

2
(e1 + conv({δ0, δi}))

)
(Induction hypothesis)

= conv

(
{α0, αi} ∪

{
e1 + δ0

2
,
e1 + δi

2

})
(Fact 1)

= conv ({α0, αi} ∪ {α1, αi+1}) Proposition 2

= conv({α0, αi+1}) (Proposition 5 and Fact 2)

Similarly, it holds that

ρ(S(4i+5)
a6

) = conv({β0, βi+1}),

ρ(S(4i+6))
a7

= conv({γ0, γi+1}),

ρ(S(4i+7)
a8

) = conv({δ0, δi+1}),

which completes the proof.

Randomized Functions with High Round Complexity 337

axis-2

axis-1

⊗

S(0)

e1

e2

e3

e4

α0 = e5

axis-2

axis-1

⊗

S(1)

e1e1

e2

e3

e4

α0 = e5
β0 = e2+α0

2

axis-2

axis-1

S(2)

⊗

e1

e2

e3

e4

α0
β0 = e2+e5

2

γ0 = e3+β0
2

axis-2

axis-1

S(3)

⊗

e1

e2

e3

e4

α0
β0

γ0

δ0 = e4+γ0
2

axis-2

axis-1

S(4)

⊗

e1

e2

e3

e4

conv(α0,
δ0 + e1

2
︸ ︷︷ ︸

α1

)
β0

γ0
δ0

axis-2

axis-1

S(5)

⊗

e1

e2

e3

e4

conv(α0, α1)

γ0
δ0

conv(β0,
e2 + α1

2
︸ ︷︷ ︸

β1

)

axis-2

axis-1

S(6)

⊗

e1

e2

e3

e4

conv(α0, α1)

δ0

conv(γ0,

γ1
︷ ︸︸ ︷

e3 + β1

2
)

conv(β0, β1)

axis-2

axis-1

S(7)

⊗

e1

e2

e3

e4

conv(α0, α1)

conv(δ0,

δ1
︷ ︸︸ ︷

e4 + γ1

2
)

conv(γ0, γ1)

conv(β0, β1)

Fig. 3. The evolution of ρ(S(i)
a5), ρ(S(i)

a6), ρ(S(i)
a7), ρ(S(i)

a8) up to step eight.

338 S. Basu et al.

Proof (of Lemma 4). Lemma 4 follows directly from Lemma 3 and Proposition 5.

7.3 Proof of Claims Needed for Lemma2, Lemma3, and Lemma4

This section proves results that are needed for the proof of Lemma 2, Lemma 3,
and Lemma 4. The result below follows directly from the definition of the
sequence {Si}∞

i=0.

Proposition 1. For any set Ω and any i ∈ {0, 1, . . . }, the following property
holds.

S(i)
Ω ⊆ S(i+1)

Ω .

The following result says that for any i ∈ {0, 1, . . . }, all the points in the line
segment a1a8 at round (i+1) except the new ones at the point a8 are constructed
solely from the points at a1, a8, a5 at round i, and similarly for others.

Lemma 5. For every i ∈ {0, 1, . . . },

S(i+1)
a1a8

\
(
S(i+1)

a8
\ S(i)

a8

)
= conv

(
S(i)

a1
∪ S(i)

a8
∪ S(i)

a5

)
,

S(i+1)
a2a5

\
(
S(i+1)

a5
\ S(i)

a5

)
= conv

(
S(i)

a2
∪ S(i)

a5
∪ S(i)

a6

)
,

S(i+1)
a3a6

\
(
S(i+1)

a6
\ S(i)

a6

)
= conv

(
S(i)

a3
∪ S(i)

a6
∪ S(i)

a7

)
,

S(i+1)
a4a7

\
(
S(i+1)

a7
\ S(i)

a7

)
= conv

(
S(i)

a4
∪ S(i)

a7
∪ S(i)

a8

)
.

Proof (of Lemma 5). We prove by induction on i.

Base Case. For i = 0, we have

S(0)
a1

= {(3/4, 1/4, 1, 0, 0, 0, 0, 0)}, S(0)
a5

= {(3/4, 1/2, 0, 0, 0, 0, 1)}, S(0)
a8

= ∅.

It implies that

conv
(
S(0)

a1
∪ S(0)

a8
∪ S(0)

a5

)
= conv

(
S(0)

a1
∪ S(0)

a5

)
.

Observe that π1(P) = 3/4, for any point P ∈ S(0)
a1 ∪ S(0)

a5 . Therefore, any convex
combination of a point in S(0)

a1 and a point in S(0)
a5 is in the set S(1)

a1a8
. Notice that

S(0)
a8 = S(1)

a8 = ∅. This shows that

conv
(
S(0)

a1
∪ S(0)

a8
∪ S(0)

a5

)
⊆ S(1)

a1a8
= S(1)

a1a8
\

(
S(1)

a8
\ S(0)

a8

)
.

To prove the other direction, observe that any point in S(1)
a1a8

except for the points

in S(1)
a8 \ S(0)

a8 is a convex combination of a set of points in S(0)
a1a8

= S(0)
a1 ∪ S(0)

a5 by
definition. Thus, it follows that

S(1)
a1a8

\
(
S(1)

a8
\ S(0)

a8

)
= S(1)

a1a8
⊆ conv

(
S(0)

a1
∪ S(0)

a5

)
= conv

(
S(0)

a1
∪ S(0)

a8
∪ S(0)

a5

)
.

Randomized Functions with High Round Complexity 339

Induction Hypothesis. We assume that

S(i)
a1a8

\
(
S(i)

a8
\ S(i−1)

a8

)
= conv

(
S(i−1)

a1
∪ S(i−1)

a8
∪ S(i−1)

a5

)
,

and similarly for other equations.

Induction Step. Note that for any point P in the set S(i)
a1 ∪S(i)

a8 ∪S(i)
a5 , we have

π1(P) = 3/4. Therefore,

conv
(
S(i)

a1
∪ S(i)

a8
∪ S(i)

a5

)
⊆ S(i+1)

a1a8

Since a4a7 is the only line segment that contains a8 such that a8 is not an end
point of it, we have:
(
S(i+1)

a8
\ S(i)

a8

)
∩ conv

(
S(i)

a1
∪ S(i)

a8
∪ S(i)

a5

)
=

(
S(i+1)

a8
\ S(i)

a8

)
∩ conv

(
S(i)

a8

)
= ∅.

Therefore, we conclude that

conv
(
S(i)

a1
∪ S(i)

a8
∪ S(i)

a5

)
⊆ S(i+1)

a1a8
\

(
S(i+1)

a8
\ S(i)

a8

)
.

To prove the other direction, note that any point in S(i+1)
a1a8

\S(i+1)
a8 is constructed

from a convex combination of the points in S(i)
a1a8

\ S(i)
a8 . Thus, we have

S(i+1)
a1a8

\ S(i+1)
a8 ⊆ conv

(
S(i)
a1a8

\ S(i)
a8

)

⊆ conv
(
S(i)
a1a8

\
(
S(i)
a8 \ S(i−1)

a8

))
(Fact 2)

= conv
(
conv

(
S(i−1)
a1 ∪ S(i−1)

a8 ∪ S(i−1)
a5

))
(Induction hypothesis)

= conv
(
S(i−1)
a1 ∪ S(i−1)

a8 ∪ S(i−1)
a5

)
(Fact 1)

⊆ conv
(
S(i)
a1 ∪ S(i)

a8 ∪ S(i)
a5

)
, (Proposition 1 and Fact 2)

Since S(i)
a8 ⊆ conv

(
S(i)

a1 ∪ S(i)
a8 ∪ S(i)

a5

)
, it follows that

S(i+1)
a1a8

\
(
S(i+1)

a8
\ S(i)

a8

)
=

(
S(i+1)

a1a8
\ S(i+1)

a8

)
∪ S(i)

a8
⊆ conv

(
S(i)

a1
∪ S(i)

a8
∪ S(i)

a5

)
.

We have shown that

S(i+1)
a1a8

\
(
S(i+1)

a8
\ S(i)

a8

)
= conv

(
S(i)

a1
∪ S(i)

a8
∪ S(i)

a5

)
.

We prove other equations in a similar manner, which completes the proof.

Next, using Lemma 5, we prove a recursive construction of the projection ρ
at the points ai for 1 � i � 8.

340 S. Basu et al.

Lemma 6. For all i ∈ {0, 1, . . . },

ρ(S(i)
a1

) = {e1}, ρ(S(i)
a2

) = {e2}, ρ(S(i)
a3

) = {e3}, ρ(S(i)
a4

) = {e4}.

Furthermore, for all i ∈ {1, 2, . . . , },

ρ(S(0)
a5

) = {e5}, ρ(S(i+1)
a5

) = conv

(
ρ(S(i)

a5
) ∪ 1

2
·
(
e1 + ρ(S(i)

a8
)
))

,

ρ(S(0)
a6

) = ∅, ρ(S(i+1)
a6

) = conv

(
ρ(S(i)

a6
) ∪ 1

2
·
(
e2 + ρ(S(i)

a5
)
))

,

ρ(S(0)
a7

) = ∅, ρ(S(i+1)
a7

) = conv

(
ρ(S(i)

a7
) ∪ 1

2
·
(
e3 + ρ(S(i)

a6
)
))

,

ρ(S(0)
a8

) = ∅, ρ(S(i+1)
a8

) = conv

(
ρ(S(i)

a8
) ∪ 1

2
·
(
e4 + ρ(S(i)

a7
)
))

.

Proof (of Lemma 6). Initially, ρ(S(0)
a1) = {e1}. At any round i ∈ {1, 2 . . . },

there is no new point constructed at a1, since a1 is an extreme point of
conv(a1, a2, a3, a4, a5). Therefore, ρ(S(i)

a1) = {e1}. Similarly, we have

ρ(S(i)
a2

) = {e2}, ρ(S(i)
a3

) = {e3}, ρ(S(i)
a4

) = {e4}, for every i ∈ {0, 1, . . . }.

Let P ∈ S(i+1)
a5 . It follows from Lemma 5 that there are points Pa1 ∈ S(i)

a1 ,
Pa8 ∈ S(i)

a8 , Pa5 ∈ S(i)
a5 , and λ1, λ8, λ5 � 0 such that

P = λ1 · Pa1 + λ8 · Pa8 + λ5 · Pa5 , and λ1 + λ8 + λ5 = 1.

Projecting these points into the second coordinate, we have

π2(P) = λ1 · π2(Pa1) + λ8 · π2(Pa8) + λ5 · π2(Pa5).

This together with π2(P) = π2(Pa5) = 1
2 (π2(Pa1) + π2(Pa8)) implies that λ1 =

λ8. Thus, the point P is in the set conv
(
S(i)

a5 ∪ 1
2 ·

(
S(i)

a1 + S(i)
a8

))
. This implies

that

S(i+1)
a5

⊆ conv

(
S(i)

a5
∪ 1

2
·
(
S(i)

a1
+ S(i)

a8

))
.

Projecting this fact into coordinates {3, 4, 5, 6, 7} yields

ρ(S(i+1)
a5

) ⊆ conv

(
ρ(S(i)

a5
) ∪ 1

2
·
(
ρ(S(i)

a1
) ∪ ρ(S(i)

a8
)
))

= conv

(
ρ(S(i)

a5
) ∪ 1

2
·
(
e1 + ρ(S(i)

a8
)
))

(since ρ(S(i)
a1

) = {e1}).

Conversely, it suffices to show that

conv

(
S(i)

a5
∪ 1

2
·
(
S(i)

a1
+ S(i)

a8

))
⊆ S(i+1)

a5
.

Randomized Functions with High Round Complexity 341

This follows directly from the fact that a5 is the midpoint of the segment a1a8.
We have proved that

ρ(S(i+1)
a5

) = conv

(
ρ(S(i)

a5
) ∪ 1

2
·
(
e1 + ρ(S(i)

a8
)
))

.

Similarly, the other three equations for a6, a7, a8 also hold.

7.4 Properties of the Four Sequences

We first recall the definition of the four sequences αi, βi, γi, σi as follows. For
i ∈ {0, 1, 2, . . . },

σi :=
i−1∑

k=0

1
16k

=
1 − (1/16)i

1 − 1/16
,

αi := σi · e1
2

+ σi · e4
4

+ σi · e3
8

+ σi · e2
16

+
e5
16i

,

βi := σi+1 · e2
2

+ σi · e1
4

+ σi · e4
8

+ σi · e3
16

+
e5

24i+1
,

γi := σi+1 · e3
2

+ σi+1 · e2
4

+ σi · e1
8

+ σi · e4
16

+
e5

24i+2
,

δi := σi+1 · e4
2

+ σi+1 · e3
4

+ σi+1 · e2
8

+ σi · e1
16

+
e5

24i+3
.

Proposition 2. For all i ∈ {0, 1, . . . },

αi+1 =
e1 + δi

2
, βi =

e2 + αi

2
, γi =

e3 + βi

2
, δi =

e4 + γi

2
.

Proof. By definition,

e2 + αi

2
=

e2

2
+

σi

2
· (e1

2
+

e4

4
+

e3

8
+

e2

16
) +

e5

2 · 16i
=

e2

2
+

σi

2
· (e1

2
+

e4

4
+

e3

8
+

e2

16
) +

e5

2 · 16i
=

(
1 +

σi

16

)
· e2

2
+ σi · (e1

4
+

e4

8
+

e3

16
) +

e5

2 · 16i
= σi+1 · e2

2
+ σi · (e1

4
+

e4

8
+

e3

16
) +

e5

2 · 16i (Proposition 3)

= βi

The proofs of the other equations are similar.

The following proposition follows from the definition of σi.

Proposition 3. For all i ∈ {1, 2, . . . },

σi = 1 +
1
16

σi−1.

342 S. Basu et al.

Proposition 4. The following statements hold.

lim
i→∞

αi =
8
15

e1 +
4
15

e4 +
2
15

e3 +
1
15

e2 =: α∗,

lim
i→∞

βi =
8
15

e2 +
4
15

e1 +
2
15

e4 +
1
15

e3 =: β∗,

lim
i→∞

γi =
8
15

e3 +
4
15

e2 +
2
15

e1 +
1
15

e4 =: γ∗,

lim
i→∞

δi =
8
15

e4 +
4
15

e3 +
2
15

e2 +
1
15

e1 =: δ∗.

Proof. First, note that

lim
i→∞

σi−1 = lim
i→∞

σi = lim
i→∞

1 − (1/16)i

1 − 1/16
= 16/15.

Now, we have

lim
i→∞

αi = lim
i→∞

σi ·
(e1

2
+

e4
4

+
e3
8

+
e2
16

)
+

e5
16i

=
16
15

·
(e1

2
+

e4
4

+
e3
8

+
e2
16

)

=
8
15

e1 +
4
15

e4 +
2
15

e3 +
1
15

e2 = α∗.

Similarly, we can find the limi→∞ βi = β∗, limi→∞ γi = γ∗, and limi→∞ δi = δ∗

(Fig. 4).

0

β0 βi βi+1 β∗

Fig. 4. Visualization of sequence {βi}∞
i=1 (refer to Proposition 5)

Proposition 5. For all i ∈ {0, 1, . . . },

αi+1 =
15
16

· α∗ +
1
16

· αi, βi+1 =
15
16

· β∗ +
1
16

· βi,

γi+1 =
15
16

· γ∗ +
1
16

· γi, δi+1 =
15
16

· δ∗ +
1
16

· δi.

Randomized Functions with High Round Complexity 343

Consequently, αi is on the line segment between α0 = e5 and αi+1; and αi+1 is
on the line segment between αi and α∗. More formally,

αi ∈ conv(α0, αi+1), αi+1 ∈ conv(αi, α
∗),

βi ∈ conv(β0, βi+1), βi+1 ∈ conv(βi, β
∗),

γi ∈ conv(γ0, γi+1), γi+1 ∈ conv(γi, γ
∗),

δi ∈ conv(δ0, δi+1), δi+1 ∈ conv(δi, δ
∗).

Proof. By definition,

αi = σi ·
(e1

2
+

e4
4

+
e3
8

+
e2
16

)
+

e5
16i

.

So, we have

αi+1 = σi+1 ·
(e1

2
+

e4

4
+

e3

8
+

e2

16

)
+

e5

16i+1

=
(
1 +

σi

16

)
·
(e1

2
+

e4

4
+

e3

8
+

e2

16

)
+

e5

16i+1
(Proposition 3)

=
(e1

2
+

e4

4
+

e3

8
+

e2

16

)
+

1

16
·
(
σi ·

(e1

2
+

e4

4
+

e3

8
+

e2

16

)
+

e5

16i

)

=
15

16
· α∗ +

1

16
· αi

The proofs of the three other equations are similar.

8 On the Optimality of Our Constructions

This section proves Theorem 2 mentioned in Sect. 2. It suffices to prove the fol-
lowing Theorem 5.

Theorem 5. Let S(0) be a subset of R
6 of size 4. Then, there exists an i∗ ∈

{0, 1, 2, 3, 4} such that S(i∗) = S(i∗+1).

According to the above theorem, if the initial set S(0) is a subset of R
6 of size

4, the sequence S(0) → S(1) → S(2) → . . . stabilizes after at most 4 rounds. The
following result is a consequence of the above theorem and [1,11].

Corollary 1. Let f : {0, 1} × {0, 1} → R
Z such that card (Z) � 4. If f has a

perfectly secure protocol, then there is a perfectly secure protocol for f with at
most 4 rounds.

8.1 Proof of Theorem 5

To prove Theorem 5, We will enumerate over all possible cases for S(0) and show
that in each case the sequence S(0),S(1), . . . stabilizes in at most four rounds
i.e. S(4) = S(5). It was already shown in [11] that there is an at most two-round
secure protocol for a secure function with card (Z) � 3. Therefore, without loss

344 S. Basu et al.

of generality, we only need to enumerate over the cases that the final result in
S(∞) is connected. Moreover, we only need to consider one case among a set of
cases that are similar. For example, in case 1, we consider 4 horizontally aligned
points. The case that 4 points are aligned vertically is similar to case 1 and we
do not need to consider it. We complete the proof by stating and proving the
following lemma (Lemma 7).

Lemma 7. The following table states the values of i∗ (defined in Theorem5)
for each enumerated case (Table 1).

Table 1. The number of rounds needed to stabilize the sequence S(0), S(1), . . . for each
enumerated case.

Case Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

i∗ 1 1 2 1 2 2 1 2 2 1 2 2 4 2 3 3 2

Proof. In all cases except case 6, one can easily verify that S(i∗) = S(i∗+1) for
the i∗ mentioned in the table. The reason is that in all those cases, when the
final shape in the projected space (projection under π) stabilizes, then the whole
shape stabilizes. More formally, in all cases except case 6, one can verify that
π(S(i∗)) = π(S(i∗+1)) implies that S(i∗) = S(i∗+1). For all cases except case 6,
we show in the following that π(S(i∗)) = π(S(i∗+1)).

Now, we discuss case 6 in the following figure. At time 0, there are four points.
Suppose ρ(S(0)

ai) = ei where ei ∈ R
4 represents the i-th standard basis vector in

R
4. The points a1 and a2 are axis aligned, so ρ(S(1)

a1a2
) = conv(e1, e2). Similarly,

ρ(S(1)
a3a4

) = conv(e3, e4). Now, notice that at the end of time 1, there are two
objects at point p. One of them is (p, e1+e2

2) and the other one is (p, e3+e4
2).

They are both axis aligned. So, we have ρ(S(2)
p) = conv(e1+e2

2 , e3+e4
2) and the

shape stabilizes at step 2.

a1 a2

a3

a4

a1 a2

a3

a4

p
a1 a2

a3

a4

p

In the following, we enumerate over all possible cases and study the evolution
of the sequence S(0),S(1),

If There are 3 Collinear Points. There will be 4 cases as follows.

Randomized Functions with High Round Complexity 345

1.

2.

3.

4.

There are No 3 Collinear Points

Subcase 1: Two points are horizontally collinear and the other two points are
vertically collinear. There are 2 cases as follows.

5.

6.

Subcase 2: Two points are horizontally collinear and the other two are also
horizontally collinear.

7.

8.

346 S. Basu et al.

9.

10.

11.

Subcase 3: Two points are horizontally collinear, and the other two points are
not collinear.

12.

13.

14.

15.

Randomized Functions with High Round Complexity 347

16.

17.

We have exhaustively enumerated all possible cases and proved that the
sequence S(0),S(1), . . . stabilizes after at most four rounds, which completes the
proof.

References

1. Basu, S., Khorasgani, H.A., Maji, H.K., Nguyen, H.H.: Geometry of secure two-
party computation. In: 63rd FOCS, pp. 1035–1044. IEEE Computer Society Press,
October/November 2022

2. Basu, S., Khorashgani, H.A., Maji, H.K., Nguyen, H.H.: Geometry of secure
two-party computation (2022). https://www.cs.purdue.edu/homes/hmaji/papers/
BKMN22.pdf. Accessed 15 Feb 2023

3. Basu, S., Kummer, M., Netzer, T., Vinzan, C.: New directions in real alge-
braic geometry. https://publications.mfo.de/bitstream/handle/mfo/4031/OWR
2023 15.pdf?sequence=-1&isAllowed=y

4. Beaver, D.: Perfect privacy for two-party protocols. In: Proceedings of DIMACS
Workshop on Distributed Computing and Cryptography, vol. 2, pp. 65–77 (1991)

5. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the
real numbers: Np-completeness, recursive functions and universal machines (1989)

6. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

7. Carathéodory, C.: Über den variabilitätsbereich der fourier’schen konstanten von
positiven harmonischen funktionen. Rendiconti Del Circolo Matematico di Palermo
(1884–1940), 32(1), 193–217 (1911)

8. Chor, B., Kushilevitz, E.: A zero-one law for Boolean privacy (extended abstract).
In: 21st ACM STOC, pp. 62–72. ACM Press, May 1989

9. Cordoba, D., Faraco, D., Gancedo, F.: Lack of uniqueness for weak solutions of the
incompressible porous media equation. Arch. Ration. Mech. Anal. 200, 725–746
(2011)

10. Córdoba, D., Gancedo, F.: Contour dynamics of incompressible 3-d fluids in a
porous medium with different densities. Commun. Math. Phys. 273, 445–471
(2007)

https://www.cs.purdue.edu/homes/hmaji/papers/BKMN22.pdf
https://www.cs.purdue.edu/homes/hmaji/papers/BKMN22.pdf
https://publications.mfo.de/bitstream/handle/mfo/4031/OWR_2023_15.pdf?sequence=-1&isAllowed=y
https://publications.mfo.de/bitstream/handle/mfo/4031/OWR_2023_15.pdf?sequence=-1&isAllowed=y
https://doi.org/10.1007/978-3-642-03549-4_20

348 S. Basu et al.

11. Data, D., Prabhakaran, M.: Towards characterizing securely computable two-party
randomized functions. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10769, pp. 675–697. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76578-5 23

12. De Lellis, C., Székelyhidi Jr., L.: The Euler equations as a differential inclusion.
Ann. Math. 1417–1436 (2009)

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC, pp. 218–229. ACM Press, May 1987

14. Hitruhin, L., Lindberg, S.: Lamination convex hull of stationary incompressible
porous media equations. SIAM J. Math. Anal. 53(1), 491–508 (2021)

15. Kilian, J.: More general completeness theorems for secure two-party computation.
In: 32nd ACM STOC, pp. 316–324. ACM Press, May 2000

16. Kolář, J.: Non-compact lamination convex hulls. In: Annales de l’Institut Henri
Poincaré C, Analyse non linéaire, vol. 20, pp. 391–403. Elsevier (2003)

17. Kushilevitz, E.: Privacy and communication complexity. In: 30th FOCS, pp. 416–
421. IEEE Computer Society Press, October/November 1989

18. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-319-76578-5_23
https://doi.org/10.1007/978-3-319-76578-5_23

Towards Topology-Hiding Computation
from Oblivious Transfer

Marshall Ball1, Alexander Bienstock1, Lisa Kohl2, and Pierre Meyer3(B)

1 New York University, New York, USA
marshall.ball@cs.nyu.edu, abienstock@cs.nyu.edu

2 CWI, Cryptology Group, Amsterdam, The Netherlands
lisa.kohl@cwi.nl

3 IDC Herzliya, ISRAEL and IRIF, Université Paris Cité, CNRS, Paris, France

pierre.meyer@irif.fr

Abstract. Topology-Hiding Computation (THC) enables parties to
securely compute a function on an incomplete network without revealing
the network topology. It is known that secure computation on a complete
network can be based on oblivious transfer (OT), even if a majority of
the participating parties are corrupt. In contrast, THC in the dishon-
est majority setting is only known from assumptions that imply (addi-
tively) homomorphic encryption, such as Quadratic Residuosity, Deci-
sional Diffie-Hellman, or Learning With Errors.

In this work we move towards closing the gap between MPC and THC
by presenting a protocol for THC on general graphs secure against all-
but-one semi-honest corruptions from constant-round constant-overhead
secure two-party computation. Our protocol is therefore the first to
achieve THC on arbitrary networks without relying on assumptions with
rich algebraic structure. As a technical tool, we introduce the notion of
locally simulatable MPC, which we believe to be of independent interest.

1 Introduction

A secure multi-party computation (MPC) protocol enables a set of mutually
distrusting parties with private inputs to jointly perform a computation over
their inputs such that no adversarial coalition can learn anything beyond the
output of the computation. Results in the 1980 s showed that, under widely-
believed assumptions, any function that can be feasibly computed can be com-
puted securely [Yao82,GMW87,BGW88,CCD88].

However, these early protocols and most of the subsequent work (as well as
their corresponding security definitions), assume that the communication graph
is a complete network: any two parties can communication directly. In many sit-
uations communication networks are incomplete and, additionally, the structure
of the communication network itself may be sensitive information which the par-
ticipants desire to keep private (e.g. network topology may reveal information
about users’ locations, or relationships between users).

The full version [BBKM23] is available as entry 2023/849 in the IACR eprint archive.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 349–379, 2023.
https://doi.org/10.1007/978-3-031-48615-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_13&domain=pdf
https://eprint.iacr.org/2023/849
https://eprint.iacr.org
https://doi.org/10.1007/978-3-031-48615-9_13

350 M. Ball et al.

Topology Hiding Computation. Moran et al. [MOR15] noticed that there are
situations where the communication network should additionally be kept pri-
vate: secure computation over a social network, securely computing a function
using individual location data, low locality MPC [BBC+19]. Motivated as such,
Moran et al. [MOR15] then formalized the notion of topology-hiding computation
(THC), where parties can securely compute a function without revealing any-
thing about the communication network (graph), beyond the immediate neigh-
bors they are communicating with and what can be derived from the output of
the function computed (which might be either topology independent, such as a
message broadcast, or topology dependent, such as a routing table). In general,
we say that a protocol is topology-hiding with respect to a class of graphs, if
nothing is revealed beyond membership in that parties only see their immediate
neighborhood and wish to jointly compute a function without revealing any-
thing about the graph topology beyond what can be derived from the output
(which might be topology independent, e.g., a message broadcast, or topology
dependent, e.g., a routing table).

It turns out that even simply broadcasting a message to all parties in
topology-hiding manner (with no privacy guarantees on the information sent)
is challenging, even in the semi-honest setting where adversarial parties are
assumed to follow the protocol execution.1 But exactly how difficult it is to
construct THC protocols remains poorly understood. In this vein, a line of work
has sought to investigate the following question:

Is semi-honest MPC equivalent to semi-honest THC? Are additional
assumptions required to make a secure computation topology-hiding?

The feasibility of semi-honest MPC (for arbitrary functions) obeys a
dichotomy based on the number of corruptions and following this we can collect
the work on semi-honest THC into two categories.

– Honest majority (< n/2 corruptions): In this regime, we know that
semi-honest MPC (on fully connected networks) can be achieved information-
theoretically [BGW88,CCD88,RB89].

For THC (on arbitrary, connected communciation graphs) it has been shown
that key agreement is necessary with even just one corruption [BBC+20].
On the other hand, information-theoretic THC with a single corruption is
possible if (and only if) one is promised that the communication graph is
two-connected [BBC+20] (albeit at high cost).

For single corruption, key agreement is not just necessary but sufficient
to achieve THC (on arbitrary connected graphs) [BBC+20]. For a con-
stant number of corruptions, THC is possible (on arbitrary connected
graphs) assuming constant round MPC with constant computational over-
head [MOR15,BBMM18].

1 In contrast, this is trivial to achieve (in the semi-honest setting) if hiding network
topology is not a concern: simply forward the message through the network.

Towards Topology-Hiding Computation from Oblivious Transfer 351

– Dishonest majority (≥ n/2 corruptions): In the dishonest majority set-
ting, no separation between MPC and THC is known. On the other hand,
constructions of dishonest majority THC from general MPC (with a dis-
honest majority) are only known for very restricted graph classes [MOR15,
BBMM18]: graphs of constant diameter.

Assuming constant round MPC with constant computational overhead,2 THC
is possible for graphs of constant degree and logarithmic diameter [MOR15,
BBMM18].3

THC for arbitrary (connected) graphs is only known from structured hardness
assumptions (such as quadratic residuosity (QR), decisional Diffie-Hellman
(DDH) and Learning with Errors (LWE)) [AM17,ALM17,LZM+18], or ide-
alized obfuscation [BBMM18].

So while there is a clear separation between MPC and THC (with respect to
general graphs) in the honest majority setting, no such separation is known in
the dishonest majority setting. While OT is necessary and sufficient for MPC, it
is unclear if it suffices to construct THC.4 The motivation of this work is, thus,
the following question:

Are THC and MPC equivalent in the dishonest majority setting?

1.1 Our Result

In this work, we make a step towards answering this question in the affirmative,
by proving the following theorem:

Theorem 1 (Topology-Hiding Computation on All Graphs,Informal).
If there exists a two-party MPC protocol with constant rounds and constant com-
putational overhead, then there exists a protocol securely realizing topology-hiding
computation on every network topology in the presence of a semi-honest adver-
sary corrupting any number of parties.

2 MPC with constant computational overhead means that a circuit of size s(n) can
be securely evaluated in time O(s(n)) + poly(λ), where the latter term is a fixed
polynomial of the security parameter.

3 [HMTZ16] gave an early construction of a more efficient protocol for such graphs
from the decisional Diffie-Hellman assumption.

4 On the other hand, it is known that oblivious transfer is necessary to simply com-
municate in a topology-hiding manner in the presence of a dishonest majority. In
particular, OT is implied by topology-hiding broadcast with a dishonest majority
for graphs with just 4 nodes [BBMM18]. Again, because the broadcast function-
ality does not hide its inputs it is trivial to realize without hiding the topology.
[BBC+20] showed that OT is necessary for topology-hiding anonymous broadcast
on even simpler graphs.

352 M. Ball et al.

The main feature of this construction is that it is the first construction of
semi-honest topology-hiding computation tolerating any number of corruptions
on all graphs from unstructured assumptions. As mentioned above, prior to this
work it was only known how to construct THC against a semi-honest majority
from constant round, constant computational overhead MPC for graphs with
at most logarithmic diameter [MOR15,BBMM18], or from structured hardness
assumptions [AM17,ALM17,LZM+18]. For the case of topology-hiding for gen-
eral graphs, it was only known how to construct THC from constant round,
constant computational MPC if the adversary was restricted to a constant num-
ber of corruptions [MOR15,BBMM18].

As an aside, our protocol is secure in the “pseudonymous neighbors” model
(i.e. “knowledge-till-radius-zero” KT0 [AGPV88]), where parties only know
pseudonomyms of their neighbors (in this model, two colluding parties can-
not determine if they share an honest neighbor). In contrast, Moran et al.’s
protocol [MOR15] is only secure in the KT1 model (“knowledge-till-radius-one”
[AGPV88]) where parties know globally consistent names for their neighbors (in
this model, colluding parties can identify exactly which neighbors they have in
common).

On instantiating constant-round constant-overhead secure computation. By
[IKOS08], constant-round and constant-overhead two-party secure computation
is implied by any constant-round OT protocol (which can be based, e.g., on the
learning parity with noise (LPN) assumption [DDN14,YZ16,DGH+20], or on the
computational Diffie-Hellman (CDH) assumption [BM90,DGH+20]) together
with a constant-locality PRG with polynomial stretch (which can be based on a
variant of an assumption by Goldreich [Gol00,MST03,OW14]).

In contrast, all previous constructions of THC for all graphs rely on struc-
tured hardness assumptions such as key-homomorphic encryption (“privately-
key commutative and re-randomizable encryption, PKCR” [AM17,ALM17,
LZM+18]), which does not seem to be implied by LPN/CDH and constant-
locality PRGs (in fact, such a result would be rather surprising). We would like
to point out though that the main focus of this work is not to build THC from
different concrete assumptions, but to move away from structured assumptions,
which are not necessary for secure computation without topology hiding, and—
as we show in this work—are also not necessary for achieving topology-hiding
computation on general graphs.

2 Technical Overview

We first present a high-level overview of our techniques in Sect. 2.1, then present
a more technical description of our core protocol in Sect. 2.2.

First, note that the difficulty in constructing protocols for THC can be
reduced to the ability to perform topology-hiding broadcast (THB) of a single-
bit message. Indeed, once parties can broadcast messages to the network in
a topology-hiding way, one can use generic techniques that allow to establish

Towards Topology-Hiding Computation from Oblivious Transfer 353

secure computation given any OT protocol (leaking only the total number of
nodes in the network). In the following overview, we therefore restrict ourselves
to explaining how to achieve THB. With this simplification, we can capture our
main result in the following theorem:

Theorem 2 (Topology-Hiding Computation on All Graphs, Informal).
If there exists a two-party MPC protocol with constant rounds and constant com-
putational overhead, then there exists a topology-hiding protocol securely realizing
broadcast on the class of all graphs in the presence of a semi-honest adversary
corrupting any number of parties.

For simplicity, we do not explicitly address the subtleties of the neighborhood
models (KT0, where neighbors are pseudonymized, or KT1, where neighbor are
identified “in the clear”) in this exposition, but the following high-level overview
applies to both models.

2.1 A High-Level Overview

Our contribution is three-fold. First, we observe that many topology-hiding com-
putation protocols implicitly follow the following informal paradigm: the parties
run in parallel many instances of some (non topology-hiding on its own) sub-
routine, each one computing the desired function. Topology-hiding properties
of the overall protocol emerge from the fact that the parties participate in each
instance obliviously, meaning that each party is able to perform their role in each
subroutine without being able to identify which execution is which (even while
colluding with other parties). Of particular interest is the protocol of Akavia et
al. [ALM17,ALM20], which can be abstracted out as having the parties locally
setup a mesh of correlated random walks along the topology, then perform some
special-purpose MPC subprotocol along each path. In [ALM17,ALM20], these
subroutines are instantiated by heavily leaning on assumptions with a rich alge-
braic structure. The first step in removing the need for these assumptions is to
identify the properties we need from these MPC subroutines (or at least some
sufficient properties we can instantiate from a form of oblivious transfer).

We then put forward the notion of local simulation as a sufficient security
property to impose on these subroutines in order to allow for oblivious partic-
ipant evaluation. A secure computation protocol over an incomplete network
is locally simulatable if the view of each connected component in the adver-
sary’s subgraph can be generated independently. As an example, in the network
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 (where parties 2 , 3 , 6 , and 7 are corrupt), the views
of parties { 2 , 3 } and { 6 , 7 } should be simulated independently. Intuitively,
this means the adversary cannot tell if { 2 , 3 } and { 6 , 7 } are participating in
the same protocol or, e.g. in two different executions 1 - 2 - 3 - 4 - A - B - C - D
and E - F - G - H - 5 - 6 - 7 - 8 . Ultimately, if using correlated random walks, that
means that each party can participate in the MPC along each path without the
adversary learning which chunk of walk corresponds to which other.

Finally, we provide a protocol for locally simulatable MPC on a path, assum-
ing (semi-honest, static) secure two-party computation with constant rounds and

354 M. Ball et al.

constant overhead. By plugging this into the correlated random walks (i.e. the
parties are obliviously participating in a locally simulatable secure computation
along each random walk), we obtain (dishonest majority, semi-honest, static)
topology-hiding computation on all graphs. Previously, topology-hiding compu-
tation under this assumption was limited to the class of logarithmic-diameter
graphs or to a constant number of corruptions on all graphs [MOR15].

We now expand (still at a high level) on each of these three points, without
assuming familiarity with topology-hiding computation.

A Modular Approach to Topology-Hiding Computation. Topology-
hiding computation allows parties communicating through an incomplete net-
work of point-to-point channels, where each party initially only knows their local
neighborhood (possibly pseudonymized), to perform some secure computation
without revealing any information about the network (beyond what they already
know, e.g. each party’s respective neighborhood).

Our starting point is the observation that many topology-hiding protocols
can be described informally in a very modular fashion, and yet their formal
description (and the corresponding security proof) are inaccessibly monolithic.
We start by a gentle introduction to this concept, with a modular presentation
of the “simplest THC protocol”, realizing an information-theoretic topology-
hiding sum in the presence of a single semi-honest corruption on cycles (more
precisely, we fix a party/vertex set and consider all cycles on this set)5. Every
party already knows they are on a cycle, but the secret part of the topology is
the order in which they are arranged. We then provide a modular description of
Akavia et al.’s [ALM17,ALM20] protocol, realizing (computational, semi-honest,
dishonest majority) topology-hiding computation on the class of all graphs. The
latter introduces the notion of correlated random walks, which form the basis
for essentially all topology-hiding computation protocols on all graphs, tolerat-
ing any number of corruptions [ALM17,ALM20,LZM+18,Li22] (and now, also
ours).

An Introductory Example to Modular THC. Assume n parties are arranged in a
cycle, each party only having access to a secure point-to-point channel with its
neighbors in the cycle. Consider the following protocol (illustrated in Fig. 1a),
which is arguably the simplest (non topology-hiding) MPC protocol for securely
computing a sum in the presence of a single semi-honest corruption. In the first
round, an agreed upon party, which we will refer to as the initiator, samples
a random value and uses it as a one-time pad to mask its input, then sends
the resulting ciphertext to one of its neighbors (chosen arbitrarily). In each
subsequent round, if a party received a message from one of its neighbors, it

5 In fact, the protocol we describe can be seen as a conceptually simpler alternative
to Ball et al.’s [BBC+19, Theorem 4.1] 1-secure, semi-honest, information-theoretic
topology-hiding anonymous broadcast on the class of all cycles with a given vertex
set.

Towards Topology-Hiding Computation from Oblivious Transfer 355

Fig. 1. The topology-hiding protocol of Fig. 1b can be seen as running to 2n parallel
instances of the (non topology-hiding protocol) of Fig. 1a.

sums this message with its own input and passes on the result to its other
neighbor. After n rounds, the initiator receives the sum of all inputs masked by
the one-time pad they themselves sampled, and they can therefore recover the
desired output. Keeping in mind the parties are semi-honest and non-colluding,
correctness and security are straightforward to verify (in essence, a single message
is being passed around the cycle, containing the partial sum of previously visited
parties’ inputs and masked by the initiators’ one-time pad). This only allows
the initiator to get the output, however this can be addressed by running this
“single-initiator” protocol n times sequentially with a fresh initiator for each
instance.

As described, the protocol is not topology-hiding as, by noting in which round
they receive a message, every party can learn their distance to the initiator,
which leaks information about the graph. This can be addressed by considering
the following augmented protocol (illustrated in Fig. 1b):

– In the first round, each party samples two random masks, uses them as one-
time pads for their input, and sends one of the resulting ciphertexts to each
of its neighbors;

356 M. Ball et al.

– In each subsequent round, every party receives two messages, one from each
neighbor. Each party can add their input to these two messages, before for-
warding them along the cycle (the message received from one neighbor is sent
to the other neighbor, after the input is added).

– After n rounds, each party can receive the sum of all inputs by removing the
appropriate mask from either of the messages received in the last round.

The above protocol could be described as running 2n parallel instances of the
“single-initiator” protocol. Each party’s instructions in the augmented protocol
can be seen as participating in each of these protocols: in two of them with the
role of initiator, in another two with the role of the party one hop away from the
initiator, and so on for each of the n possible roles. Crucially, both for correct-
ness and security, each party is able to participate in each subroutine obliviously,
meaning that they are able to fulfill their role without being able to distinguish
these executions and thus, most importantly, recognize which one corresponds
to which initiator.

Takeway for Our Protocol: Skipping ahead, our main protocol will follow this
abstract template: the parties will be participating in a slew of subroutines, where
each party knows exactly their role in the process, but non-neighboring colluding
parties cannot determine if they both participate in any given subroutine or not.

Correlated random walks [ALM17,ALM20]. In retrospect, the above protocol
remains relatively simple to analyze, even without breaking it down into these
subroutines. We now turn our attention to Akavia et al.’s [ALM17,ALM20] con-
struction, for which taking a modular approach is significantly more interesting.
In order to isolate Akavia et al.’s [ALM17,ALM20] key contribution of correlated
random walks, we propose the following abstraction. Say there are n parties in
some incomplete communication network wishing to securely compute an OR
of their inputs. As a starting model, assume one party possesses an idealized
hardware “black box”. This box is unclonable and has the following properties:
any party may enter an input into the box, and after T inputs have been reg-
istered, the box returns their OR, where T is some parameter to be defined.
The first party can place their input in the box, then pass on the latter to a
randomly chosen neighbor. In subsequent rounds, the party who just received
the box adds its input then passes the box to a randomly chosen neighbor. From
a global point of view, the box is performing a random walk and therefore, by
known results on the cover time of a simple random walk in a connected graph,
after T = λ · n3 steps the box will have, with all but negligible probability, vis-
ited every party at least once each. This means that the last party will receive
the correct OR from the box, and because we assumed the box was unclonable,
the protocol securely computes OR6. This allows a randomly chosen7 party to
6 If the box was clonable, a party could make a local copy then learn the partial OR

of the inputs of all parties who previously handled the box by simply plugging 0s
until they receive an output.

7 The stationary distribution is not uniform, but nevertheless each party has non-
negligible probability of being the last party.

Towards Topology-Hiding Computation from Oblivious Transfer 357

learn the output, and we could for instance sequentially repeat the process until
every party obtains the OR. This protocol is not topology-hiding however, since
colluding parties could learn an upper bound on their distance in the graph by
counting the number of steps between when they handled the box8.

Akavia et al.’s [ALM17,ALM20] elegant solution is to have each party initially
send a box to each of their neighbors. In every subsequent round, each party
takes all the boxes it just received (one per neighbor), plugs in their input,
then shuffles all boxes and sends one to each neighbor. After T rounds, each
party opens any of the boxes it holds to recover the result. Observe that each
box, taken individually, performs a random walk through the graph. While the
walks of each box are not independent, but correlated, [ALM20, Lemma 3.14]
establishes that setting T = Θ(λ · n3) guarantees that with all but negligible
probability all boxes will have individually covered the graph.

For completeness, we mention that in reality, Akavia et al. [ALM17,ALM20]
do not rely on this idealized hardware to perform the secure OR on the fly,
but use linearly homomorphic Privately Key-Commutative and Rerandomizable
encryption (lhPKCR) [AM17], which can be instantiated from DDH [AM17],
LWE [LZM+18], or QR [Li22]. In a nutshell, the parties pass around ciphertexts
containing the homomorphically computed partial OR of the inputs of all visited
nodes. In order to not have these ciphertexts be opened prematurely (c.f. the
unclonability assumption on the black boxes), the secret key is re-randomized
(and therefore secret-shared) along the walk: whenever a party receives a cipher-
text they also “add a layer of randomization” to the key, which is possible for
PKCR encryption. After Θ(λ · n3) steps, when the random walk of every mes-
sage is guaranteed to have visited every node with all but negligible probability,
the parties return the ciphertexts to their source, along the reverse walks, and
peeling off layers of encryption as they go.

Takeway for Our Protocol: Abstracting out, Akavia et al.’s [ALM17,ALM20]
protocol can be seen as first having each party sample T permutations on their
neighborhood (as illustrated in Fig. 2, this globally define a mesh of random
walks, where each party knows only their position), and then having the parties
run a special-purpose MPC along each walk. These instances of MPC along
each path are indistinguishable to the parties by using structural properties of
lhPKCR encryption.

Information-Local Simulation. Correlated random walks can be used to
reduce the task of topology-hiding computation on all graphs to that of designing
an MPC the parties can run along each walk without being able to tell when
they are participating in the same execution (i.e. in the same walk) or not. To

8 While this is beyond the scope of this exposition, we could quantify the leakage
in terms of the electric conductance of the graph. What this means additionally is
that the protocol is even insecure against a single corruption as a party can learn
information from just counting the number of rounds between two consecutive visits
of the box.

358 M. Ball et al.

Fig. 2. Local and global views of correlated random walks, obtained by having each
party sampled uniformly at random T permutations on their neighborhood.

instantiate the latter, we put forward the notion of locally simulatable computa-
tion.

Introducing Locally Simulatable Computation. Locally simulatable computation
is an MPC over an incomplete network G where the view of disconnected corrupt
parties can be simulated independently. More formally consider the connected
components Z1,Z2, . . . of the subgraph G[Z] induced by the set of corrupted
parties Z. The views of the parties in each component Zi should be simulated
given only their inputs, outputs, and local views of the graph, independently of
the views of the parties in Z \ Zi. Note that this requirement is orthogonal to
the notion of being topology-hiding9:

9 However our final protocol will turn out to be both topology-hiding and locally
simulatable.

Towards Topology-Hiding Computation from Oblivious Transfer 359

– THC is not necessarily locally simulatable: Without loss of generality, a
topology-hiding computation protocol can be made to be not locally sim-
ulatable, by first broadcasting a long random string (in a topology-hidding
manner). The views of disconnected adversaries cannot be simulated inde-
pendently, as they expect to receive the same string (which is not passed as
input to the simulators, since it is neither an input nor an output).

– Locally simulatable MPC is not necessarily topology-hiding: In locally simu-
latable MPC, each party is assumed to know their position in the graph (or
in other words, the graph class is a singleton). There is no guarantee the
parties can correctly run a locally simulatable MPC protocol if they are in an
unknown graph setting (and having the parties learn information about the
graph to be able to run the protocol would not be topology-hiding).

From Local Simulation to Execution-Obliviousness. Because the views of two
adversarial components Z1 and Z2 are generated independently, the adversary
corrupting the parties cannot tell if Z1 and Z2 are in fact participating in the
same protocol or in different protocols (provided of course they have the same
inputs, outputs, and neighborhoods in all these instances).

We are now ready to sketch our topology-hiding broadcast on all graphs,
assuming the existence of locally simulatable computation on paths of length
T = λ · n3 (which we will instantiate next). Each party Pu samples T random
permutations on their neighborhood (recall this defines 2|E| =

∑
v∈V degv paths,

each one visiting each node at least once w.h.p.), from which they derive 2T ·degu

different “path neighborhoods” with the corresponding positions (more precisely,
2 degu of these neighborhoods are as the ith node on the path, for each i ∈ [T]).
Each party fulfills in parallel their 2T ·degu roles in the 2T ·|E| parallel executions
of locally simulatable OR (the broadcaster always uses the broadcast bit as input
and the other parties use 0, in all their roles), one along each path. Their output
in each of the protocols is then the broadcast bit.

Locally Simulatable MPC on a Path from OT. By what precedes,
topology-hiding broadcast on the class of all graphs can be reduced to a locally
simulatable OR on a path. At a high-level, our OR protocol on the path proceeds
by recursively emulating a two-party computation (2PC) of an OR. Each party
in this top-level 2PC is itself emulated by a 2PC whose two parties are further
emulated by a lower-level 2PC, and so on, until we get to 2PCs between two real
parties on the path. For a 2PC at any given recursion level, each virtual party is
recursively emulated by half of the real parties on the current subset of the path
being considered. That is, at the highest level, the first (resp. second) half of the
real parties emulates the first (resp. second) virtual party. Then, every (1/4)-th
of the real parties emulate a separate virtual parties at recursion depth 1, and
so on, until we reach 2PCs between every pair of neighboring real parties. In a
nutshell, local simulatability stems from the fact that each party only sees 2PC
messages that come from its direct neighbors. For a more detailed overview of
this protocol, we refer the reader to the next subsection.

360 M. Ball et al.

2.2 Technical Overview of the Core Protocol: Locally Simulatable
MPC on a Path

We now focus on presenting our main technical contribution of building locally
simulatable OR on a path. We first describe our construction (see Fig. 3) and then
explain the primary ways in which the protocol enables proper topology-hiding
emulation and local simulatability. In the full version of this paper [BBKM23],
we note some differences between our protocol and the protocol of [MOR15].

Building Locally-Simulatable OR on a Path. The core step in building our full
THB protocol is building a locally-simulatable OR protocol on a directed path
of length � = 2l, for some l ≥ 1 (each such path will be a random walk, so we
can specify its length to be a power of 2). In this setting, each party knows their
position on the path (for i ∈ [0, � − 1]), and we refer to the party at position i

as P̃i. Given each party P̃i’s input bit bi, the protocol outputs
∨�−1

i=0 bi to every
party. When used in the full THB protocol, if P̃i is the broadcaster, then bi = b,
the broadcast bit; otherwise, bi = 0.

In order to compute the OR of their input bits bi, the parties emulate recur-
sive (constant-overhead) 2PC computations. At a high-level, the first and second
�/2 real parties will emulate the first and second virtual parties, P0,0 and P0,1,
respectively, of a 2PC computation. The virtual parties input (b0||b1|| . . . ||b�/2−1)
and (b�/2||b�/2+1|| . . . ||b�−1), respectively, and the 2PC computation outputs to
both virtual parties

∨�−1
i=0 bi. Now, in each round of this 2PC, virtual party P0,0

is emulated recursively via another 2PC between virtual parties P1,0 and P1,1,
which are in turn emulated by, respectively, the first and second �/4 real parties
recursively (and similarly for virtual party P0,1). Virtual party P0,0 is emulated
by virtual parties P1,0 and P1,1 as follows: P1,0 and P1,1 combine their inputs
(b0||b1|| . . . ||b�/4−1) and (b�/4||b�/4+1|| . . . ||b�/2−1) (via the 2PC) so that P0,0’s
input is emulated by x0,0 = (b0||b1|| . . . ||b�/2−1). Similarly, P1,0 and P1,1 each
take as input random strings r̃′

1,0 and r̃′
1,1 and combine them (via the 2PC)

so that P0,0’s random tape is emulated by r̃0,0 = r̃′
1,0 ⊕ r̃′

1,1. Finally, the 2PC
between P1,0 and P1,1 outputs P0,0’s next message in its 2PC with P0,1 to P1,1,
who then passes it to the first virtual party P1,2 that participates in the 2PC
emulating P0,1. Note that only virtual parties P1,1 and P1,2 see and pass to each
other the messages for the higher-level 2PC; as we will see later, this is crucial
to local-simulatability, and topology-hiding in general.

We keep recursively splitting the computation of virtual parties in 2PC’s in
the recursion, until we reach level l−1 of the recursion, in which two real parties,
which are sibling leaves in the recursion tree, compute (many) 2PC’s. Again,
briefly, the 2PC’s that each pair of sibling leaves computes is the emulation of
the next message function of the virtual party at the parent in the recursion tree.
This virtual party in turn is computing a 2PC with its sibling that emulates the
next message function of the virtual party at their parent in the recursion tree.
We continue up the tree like this, until we reach the original OR between the
two largest virtual parties.

Towards Topology-Hiding Computation from Oblivious Transfer 361

Fig. 3. Depiction of the directed path protocol Πdir-path for a path of length � = 8.
Each interior node represents a 2PC which gets its inputs and randomness from its two
children. This 2PC computes the next message for virtual party P0 (resp. P1) in the
2PC at the node’s parent by combining the inputs of its two children into the input and
randomness of P0 (resp. P1). This next message is passed from this node to its sibling in
the protocol via the two neighboring real parties at the rightmost (resp. leftmost) and
leftmost (resp. rightmost) leaves of the corresponding subtrees (indicated by horizontal
lines of matching thickness).

For clarity, we depict an example computation with � = 8 in Fig. 3. We shall
first focus on real parties P̃0 and P̃1. Each party has their respective input bits
which we denote as b0 and b1. The parties also sample several random strings
for (i) the emulation of virtual party P0,0 and (ii) for the emulation of each 2PC
in which virtual party P1,0 participates (one for each of the R2PC rounds of the
root 2PC).

Now, for each round of each 2PC execution that virtual party P1,0 participates
in (i.e., R2

2PC in total), P2,0 and P2,1 execute their own 2PC to emulate P1,0 in
this round. They do so by emulating (via their 2PC execution) P1,0’s input bits
as (b0||b1), P1,0’s input randomness (for emulation of the root 2PC) as r̃′

1,0 =
R̃2,0[0] ⊕ R̃2,1[0], and P1,0’s random tape as r̃1,0 = R̃2,0[1] ⊕ R̃2,1[1] (where
R̃2,0[1], R̃2,1[1] are freshly sampled for each execution in which P1,0 participates).
P2,1 then receives P1,0’s next message as output of this 2PC, and forwards it to
P2,2 (who together with P2,3 will emulate P1,1’s next message). Note that P2,1

will also input to the 2PC P1,1’s previous messages in its 2PC with P1,0, which
P2,1 receives from P2,2.

The 2PC’s which virtual party P1,0 executes with P1,1 correspond to emula-
tions of the next message function of virtual party P0,0 in the highest level 2PC,
which simply computes the OR of P0,0’s and P0,1’s input bits. P1,0 and P1,1

emulate (via these 2PC executions) P0,0’s input bits as (b0||b1||b2||b3), and P0,0’s
random tape as r̃0,0 = r̃′

1,0 ⊕ r̃′
1,1. Again, recall that, recursively, P1,0 (resp. P1,1)

362 M. Ball et al.

was emulated by P2,0 and P2,1 (resp. P2,2 and P2,3) so that its input bits were
(b0||b1) (resp. (b2||b3)) and r̃′

1,0 = R̃2,0[0]⊕R̃2,1[0] (resp. r̃′
1,1 = R̃2,2[0]⊕R̃2,3[0]).

So, when P1,1 computes its output, it will be the next message of P0,0 in its 2PC
computation with P1,0 of the OR functionality, with input x0,0 = b0||b1||b2||b3
and random tape r̃0,0 =

⊕3
i=0 R̃2,i[0]. This output will then be recursively passed

down (via another 2PC) to P2,3, who will then pass it to virtual party P0,1 via
real party P2,4. P0,1’s messages in the 2PC with P0,0 will be similarly recur-
sively emulated so that when P0,0 and P0,1 finally compute their outputs in the
highest-level OR 2PC execution, they will be recursively passed down to each
P1,i, and then again to each P2,i so that finally, all parties P̃i receive

∨7
i=0 bi.

Finally, note that the recursion depth is just l = log2(�). Moreover, when
the 2PC is implemented with a constant round 2PC with constant computa-
tional overhead, we can see that the round complexity grows multiplicatively
in the recursion depth, i.e. O(1)l = poly(�), and moreover the total computa-
tional complexity (and hence communication complexity) is just O(· · · O(O(1)+
poly(λ)) + poly(λ) · · ·) + poly(λ) = poly(�, λ).

Enablers for Proper Topology-Hiding Emulation and Local Simulatability. There
are a few main ways in which this protocol enables proper topology-hiding emu-
lation and local simulatability. First, 2PC messages at any depth of the recursion
are only output and passed between real parties that are neighbors on the path.
This is important since if this were not true, and (random-looking, and thus
unique w.h.p.) messages were passed between real parties several edges away
from each other, then as noted previously, these parties would know that they
participate in the same execution, and thus local simulation would not be pos-
sible. This is the reason why our path protocol uses recursive 2PC’s, as opposed
to, e.g., 3PC’s, as doing so would require real parties to pass messages to other
real parties that are not their neighbors, thus revealing infromation about the
topology (recall that we work in the KT0 model, so parties should not know if
they have a neighbor in common).

Second, virtual parties’ random tapes are collectively emulated by each real
party of which they consist. So, even if the party at the “edge” of a virtual
party that sees the 2PC messages sent by the virtual party they are helping to
emulate is corrupted, if at least one of the other real parties in the virtual party
is uncorrupted, then this 2PC message reveals nothing about the uncorrupted
parties’ inputs. This is because the uncorrupted parties mix in their own fresh
randomness to compute the random tape of the virtual party so that the 2PC
messages are generated with randomness that looks fresh and independent to the
adversary. So, by the security of the 2PC, these messages reveal nothing about
the virtual party’s input (and thus nothing about the uncorrupted real parties’
inputs).

Finally, since we compute an OR amongst all parties, we can simulate virtual
parties’ views with only partial information. Simulation using generic 2PC seems
challenging at a first glance, since in the 2PC in which a corrupted real party is
helping to emulate a virtual party, it may receive 2PC messages from the other

Towards Topology-Hiding Computation from Oblivious Transfer 363

virtual party in the higher-level 2PC. This happens even if some of the other
real parties of which the emulated virtual party consists are not corrupted. We
are thus faced with using generic 2PC simulators only with partial information
on the input (and output) of the corresponding virtual party. However, since
we compute the OR functionality, and based on the output OR’d bit b and the
fact that every real party mixes in their own independent randomness for the
emulation of virtual parties, our local simulators can actually fill in the gaps of
the uncorrupted parties. That is, if b = 0, then our simulator can simply fill
in the uncorrupted parties’ inputs as 0 and sample fresh randomness for them,
which will be a perfect simulation. Even if b = 1, because of the 2PC security of
computing ORs, our simulator can simply simulate as if all of the uncorrupted
parties’ inputs were 1. Although this will not be true for the THB protocol itself,
it can be true for computing recursive ORs, and thus we leverage this along with
2PC security for our proof.

Generalizing to “Efficiently Invertible from Local Information” Functionalities.
We just noted that the fact that our path protocol computes an OR is crucial to
local simulatability. The important part, however, was that from a subset of par-
ties’ input bits and the output bit, one can efficiently compute all other parties’
inputs (0’s if the output is 0; 1’s if the output is 1). In the full version [BBKM23],
we further generalize this strategy to all functionalities F such that given a subset
of parties’ inputs and outputs, there exists an “inverse” algorithm that computes
possible inputs of the other parties that are consistent with the original parties’
outputs. We call such functionalities efficiently invertible from local information.
Other examples of such functionalities include private set intersection, private
set union, and more. However, we do note that there are some efficiently com-
putable functionalities that nonetheless are not efficiently invertible from local
information; for example, leakage resilient one-way functions. Unfortunately, we
cannot extend the strategy to such functionalities.

Now recall that we use secure OR to eventually build our THB protocol,
which in turn can be generically composed with any secure MPC protocol to
get full-fledged THC (see Sect. 6). However, we note that if the eventual THC
computes a functionality that is efficiently invertible from local information, our
path protocol can just directly (and thus more efficiently) be used to compute
the THC, without going through the THB + MPC composition.

3 Preliminaries

Notations. For m < n ∈ N let [n] = {1, . . . , n} and [m,n] = {m,m + 1, . . . , n}.
In our protocols we sometimes denote by B an upper bound on the number
of participating parties. The security parameter is denoted by λ. We will use
0-indexing for many of our definitions and protocols. We also make use of dic-
tionaries in our protocols. For a dictionary D, D[: x] results in a new dictionary
D′ consisting of elements 0 through x of D; i.e., for i ∈ [0, x],D′[i] = D[i], but
for i > x,D′[i] = ⊥. Finally, we let

∣
∣
∣
∣n
j=i

xj = xi||xi+1|| . . . ||xn

364 M. Ball et al.

Graph Notations and Properties. A graph G = (V,E) is a set V of vertices
and a set E of edges, each of which is an unordered pair {v, w} of distinct
vertices. A graph is directed if its edges are instead ordered pairs (v, w) of distinct
vertices. The (open) neighbourhood of a vertex v in an undirected graph G,
denoted NG(v), is the set of vertices sharing an edge with v in G. The closed
neighbourhood of v in G is in turn defined by NG[v] ..= NG(v) ∪ {v}.

3.1 Topology-Hiding Computation (THC)

There are two notions of topology-hiding computation in the literature: game-
based and simulation-based [MOR15]. Since we introduce a feasibility result, we
use a stronger simulation-based definition.

UC Framework. The simulation-based definition is defined in the UC framework
of [Can00]. We will consider computationally bounded, static, and semi-honest
adversaries and environments.

Neighbourhood Models. In this work, we unify the neighbourhood models of
past THC definitions in the literature (for an illustration we refer to Fig. 4). To
simplify the notation, we will consider that Pv in some protocol is associated
with node v in the underlying graph. Typically, THC functionalities are real-
ized in the FG

graph-hybrid model, where FG
graph is some functionality that allows

parties to communicate with their neighbors in the graph. Many works have
used the model of [MOR15], wherein FG

graph informs every party Pv of their local
neighbourhood by indeed sending NG(v) directly to them, and FG

graph thereafter
facilitates communication from Pv to some other node u, only if u is indeed a
neighbor of v. However, [ALM17] instead has FG

graph first sample a random injec-
tive function f : E → [n2], labeling each edge with a random (unique) element
from [n2]. Next, FG

graph informs every party Pv of their local neighbourhood by
instead sending them the set of edge labels Lv := {f((u, v)) : (u, v) ∈ E}. FG

graph

thereafter facilitates communication from Pv along some edge with label l, only
if l corresponds to some edge (v, u) ∈ E according to f .

We refer to these two notions according to the terminology of [AGPV88],
who define the Knowledge Till Radius σ Model (KTσ). These two worlds are
illustrated in Fig. 4. KT1 is called the ‘Common Neighbours’ model, and refers
to the [MOR15] world. Indeed, in this world, parties are given the identities
of their neighbours, so that two colluding parties that each have an edge to a
common party know that this is in fact the case. KT0 is called the ‘Pseudonymous
Neighbours’ model, and refers to the [ALM17] world. In this world, parties are
only given the random (unique) identities of the edges corresponding to their
neighbourhood, as described above, but not the actual identities of the parties
with which they share these edges. So, if two colluding parties each have an edge
to a common party, their respective edges will have different labelings and thus
will not tell them if they indeed share this common neighbour.

Towards Topology-Hiding Computation from Oblivious Transfer 365

Fig. 4. Differing views of parties in KT0 and KT1.

Simulation-Based THC. Now we are ready to introduce our simulation-baesd
topology-hiding computation definition. The real-world protocol is defined in
a model where all communication is transmitted via the functionality FG,KTσ

graph

(described in Fig. 5). The functionality is parameterised by a family of graphs
G, representing all possible network topologies (aka communication graphs) that
the protocol supports. It is also parameterised by the neighbourhood model KTσ,
for σ ∈ {0, 1}. We implicitly assume that every node in a graph is associated
with a specific party identifier, pid.

Initially, before the protocol begins, FG,KTσ

graph receives the network communi-
cation graph G from a special graph party Pgraph and makes sure that G ∈ G.
Then, if σ = 0, it samples a random injective function f : E → [n2], labeling each
edge with an element from [n2], and gives each party Pv with v ∈ V the edge
labels according to its local neighbor-set. Next, during the protocol’s execution,
whenever party Pv wishes to send a message m along edge l, it sends (l,m) to
the functionality; the functionality first checks if there is (v, w) ∈ E such that
f(v, w) = l, and if so delivers (l,m) to Pw. Otherwise, if σ = 1, it simply provides
to each party Pv with v ∈ V its local neighbor-set. Next, during the protocol’s
execution, whenever party Pv wishes to send a message m to party Pw, it sends
(v, w,m) to the functionality; the functionality verifies that the edge (v, w) is
indeed in the graph, and if so delivers (v, w,m) to Pw.

Note that if all the graphs in G have exactly n nodes, then the exact number of
participants is known to all and need not be kept hidden. In this case, defining the
ideal functionality and constructing protocols becomes a simpler task. However,
if there exist graphs in G that contain a different number of nodes, then the model
must support functionalities and protocols that only know an upper bound on
the number of participants. In the latter case, the actual number of participating
parties must be kept hidden.

366 M. Ball et al.

Given a class of graphs G with an upper bound n on the number of parties,
we define a protocol π with respect to G as a set of n ppt interactive Turing
machines (ITMs) (P1, . . . ,Pn) (the parties), where any subset of them may be
activated with (potentially empty) inputs. Only the parties that have been acti-
vated participate in the protocol, send messages to one another (via FG,KTσ

graph),
and produce output.

Fig. 5. The communication graph functionality (unified definition for KT0 and KT1).

Towards Topology-Hiding Computation from Oblivious Transfer 367

An ideal-model computation of a functionality F is augmented to provide the
corrupted parties with the information that is leaked about the graph; namely,
every corrupted (dummy) party should learn its local neighbourhood information
(in KT0 or KT1, respectively). Note that the functionality F can be completely
agnostic about the actual graph that is used, and even about the family G. To
augment F in a generic way, we define the wrapper-functionality WG,KTσ

graph-info(F),
that runs internally a copy of the functionality F. The wrapper WG,KTσ

graph-info(·) acts
as a shell that is responsible to provide the relevant leakage to the corrupted
parties; the original functionality F is the core that is responsible for the actual
ideal computation.

More specifically, the wrapper receives the graph G = (V,E) from the graph
party Pgraph, makes sure that G ∈ G, and sends a special initialization message
containing G to F. (If the functionality F does not depend on the communica-
tion graph, it can ignore this message.) The wrapper then proceeds to process
messages as follows: Upon receiving an initialization message from a party Pv

responds with its local neighbourhood information (just like FG,KTσ

graph). All other
input messages from a party Pv are forwarded to F and every message from F
to a party Pv is delivered to its recipient (Fig. 6).

Fig. 6. The graph-information wrapper functionality (unified definition for KT0 and
KT1).

368 M. Ball et al.

Note that formally, the set of all possible parties V ∗ is fixed in advance. To
represent a graph G′ = (V ′, E′) where V ′ ⊆ V ∗ is a subset of the parties, we use
the graph G = (V ∗, E′), where all vertices v ∈ V ∗ \ V ′ have degree 0.

Definition 1 (Topology-hiding computation). We say that a protocol π
securely realizes a functionality F in a topology-hiding manner with respect to
G tolerating a semi-honest adversary corrupting t parties if π securely realizes
WG,KT0

graph-info(F) in the FG,KT0
graph -hybrid model tolerating a semi-honest adversary cor-

rupting t parties.

Broadcast. In this work we will focus on topology-hiding computation of the
broadcast functionality (see Fig. 7), where a designated and publicly known party,
named the broadcaster, starts with an input value m. Our broadcast functionality
guarantees that every party that is connected to the broadcaster in the commu-
nication graph receives the message m as output. In this paper, we assume the
communication graphs are always connected. However, the broadcaster may not
be participating, in which case it is represented as a degree-0 node in the com-
munication graph (and all the participating nodes are in a separate connected
component.)

Parties that are not connected to the broadcaster receive a message that is
supplied by the adversary (we can consider stronger versions of broadcast, but
this simplifies the proofs).

We denote the broadcast functionality where the broadcaster is Pi by Fbc(Pi).

Fig. 7. The broadcast functionality

Definition 2 (t-THB). Let G be a family of graphs and let t be an integer.
A protocol π is a t-THB protocol with respect to G if π(Pv) securely realizes
Fbc(Pv) in a topology-hiding manner with respect to G, for every Pv, tolerating
a semi-honest adversary corrupting t parties.

Towards Topology-Hiding Computation from Oblivious Transfer 369

3.2 Constant-Overhead Two-Party Computation for Semi-Honest
Adversaries

Definition 3 (Stateless Two-Party Computation Syntax). A R2PC-
round Stateless Two-Party Computation (2PC) protocol 2PCF(x0, x1; r0, r1) :=
(2PCF

0,i, 2PC
F
1,i)i∈[0,R2PC−1] for given functionality F is described by two parties,

P0 and P1, with respective inputs x0, x1 and respective randomness r0, r1 that
use PPT algorithms 2PCF

0,i(x0, {m1,j}j<i; r0) (resp. 2PCF
1,i(x1, {m0,j}j≤i; r1)) to

compute P0’s (resp. P1’s) i-th round message of the protocol, m0,i (resp. m1,i),
taking as input P0’s 2PC input x0 and the j-th round messages of P1 for j < i,
and using P0’s 2PC randomness r0 (resp. P1’s 2PC input x1 and the j-th round
messages of P0 for j ≤ i, and using P1’s 2PC randomness r1). Algorithm
2PCF

0,R2PC−1(x0, {m1,j}j<R2PC−1; r0) (resp. 2PCF
1,R2PC−1(x1, {m0,j}j≤R2PC−1; r1))

additionally gives output y0 (resp. only gives output y1).
We will additionally use the notation 2PCF

i,<ρ(x0, x1; r0, r1) to represent
the first ρ messages that party i receives from party 1 − i on inputs x0, x1 and
randomness r0, r1, respectively.

We defer the standard real/ideal world security definition of 2PC with respect
to a semi-honest adversary to the real version [BBKM23].

Constant-Overhead Constant-Round 2PC. For this work, we need to use a 2PC
with constant overhead and constant round complexity. More precisely, we
require that 2PC satisfies the following properties: First, for any given functional-
ity F and the corresponding circuit CF that computes it, 2PC has computational
(and thus also communication) overhead O(|CF |) + poly(λ), where |CF | is the
size of the circuit, i.e., the number of gates it has. Second, we require the number
of rounds R2PC to be constant.

3.3 Efficiently Invertible from Local Information Functionalities

In the full version [BBKM23], we define special efficiently invertible from local
information functionalities for which we can prove local simulatability of our
path protocol (the OR functionality being one example).

4 Locally Simulatable MPC

In this section we introduce the notion of locally simulatable MPC on discon-
nected graphs.

Towards the definition of locally simulatable MPC, we first recall the stan-
dard definition of a functionality to model a function f : X 0 × · · · × X �−1 →
Y0 × · · · × Y�−1 in Fig. 8.

We define local simulatability relative to a communication network G =
(V,E), where V = {0, . . . , � − 1}, and where two parties Pi and Pj can commu-
nicate if and only if they are connected by an edge (i, j) ∈ E. In the following
we always assume the graph to be connected.

370 M. Ball et al.

Fig. 8. Functionality Ff for computing f : X 0 × · · · × X �−1 → Y0 × · · · × Y�−1.

We model the notion of local simulatability, by requiring a simulator to be
dividable in simulators S1, . . . , Sμ (one for each connected component of the
adversary), where simulator Si has to simulate the view of the i-th component
solely based on the inputs and outputs of the parties in this component.

Real Execution. Let Π be a protocol executed by parties P0, . . . , P�−1 on G,
i.e., a protocol where each party can only send and receive messages from their
neighbors in G. Then, the view ViewΠ

i (x0, . . . , x�−1) of party Pi consists of its
input xi, its internal randomness ri and all messages received by party Pj with
(i, j) ∈ E. Let A be an adversary corrupting a subset I ⊂ {0, . . . , � − 1} of the
players. Then, the view of A in the real execution of Π is of the form

REAL
Π
A,I(x0, . . . , x�−1) =

(
Π(x0, . . . , x�−1),

{
ViewΠ

i (x0, . . . , x�−1)
}

i∈I

)
,

where Π(x0, . . . , x�−1) denotes the outputs of parties P0, . . . , P�−1 after the exe-
cution of Π on input (x0, . . . , x�−1) with randomness (r0, . . . , r�−1).

Ideal Execution. Again, let A be an adversary corrupting a subset I ⊂ V of
the nodes and let I1, . . . , Iμ be a partitioning of I into pairwise disconnected
components, i.e. such that

– I =
⋃μ

j=1 Ij

– Ii, Ij are disconnected for any i �= j, i.e., for each u ∈ Ii and v ∈ Ij it holds
(u, v) /∈ E.

Let Sim = (Sim1, . . . ,Simμ) be a tuple of algorithms10, such that for each j ∈
{1, . . . , μ} the following holds:

– Simj is a PPT algorithm,
– Simj obtains an input/ output pair (xi, yi) for all i ∈ Ij ,
– Simj outputs a simulated view of parties {Pi}i∈Ij

.

10 Note that the distinction into μ different simulators instead of μ copies of the same
simulator is solely for the sake of clarity.

Towards Topology-Hiding Computation from Oblivious Transfer 371

Then, we define the simulated view of Sim in the ideal execution of Ff as

IDEAL
f
Sim,I(x0, . . . , x�−1) =

(
f(x0, . . . , x�−1),

{
Simj((xi, yi)i∈Ij

)
}

j∈μ

)
.

Definition 4 (Local Simulation). Let Π be a protocol on G. We say that
Π emulates Ff relative to G with local simulatability in the static, semi-
honest model against t corruptions if for every PPT adversary A corrupt-
ing a set I ⊂ {0, . . . , � − 1} with |I| ≤ t and for every partitioning of I
into pairwise disconnected components I1, . . . , Iμ, there exists a PPT simulator
Sim = (Sim1, . . . ,Simμ), such that for all x0, . . . , x�−1 ∈ {0, 1}� it holds

{
REAL

Π
A,I(x0, . . . , x�−1)

} ≈c

{
IDEAL

f
Sim,I(x0, . . . , x�−1)

}

4.1 Locally Simulatable Protocols Are Execution-Oblivious

In this section we first define execution obliviousness. Then, in the full version of
the paper [BBKM23], we show that the notion of locally simulatability indeed
guarantees execution-obliviousness (unless the execution can be derived from the
output), as we will require to construct THC.

In the following we restrict to protocols implementing deterministic func-
tionalities with perfect correctness, i.e. for which Π(x0, . . . , x�−1) is well-defined
without specifying the random coins. (Note that the requirements on inputs
and randomness in the following definition are necessary for preventing a trivial
distinguisher.)

Definition 5 (Execution obliviousness.). Let G = (V,E) be a graph with
V = {0, . . . , �−1} and let Π be an �-party protocol on G. We say Π is execution
oblivious on G tolerating t corruptions, if for all sets I ⊆ {0, . . . , � − 1} with
|I| ≤ t and for any partitioning of I into pairwise disconnected components
I1, . . . , Iμ the following holds:

For all inputs (x0, . . . , x�−1), (x
(1)
0 , . . . , x

(1)
�−1), . . . , (x

(μ)
0 , . . . , x

(μ)
�−1) ∈ X0×· · ·×

X�−1 with

– x
(j)
i = xi for all i ∈ Ij , j ∈ [μ], and

– Π(x0, . . . , x�−1) = Π(x(1)
0 , . . . , x

(1)
�−1) = · · · = Π(x(μ)

0 , . . . , x
(μ)
�−1),

it holds:
(
Π(x0, . . . , x�−1),

{
ViewΠ

i (x0, . . . , x�−1; r1, . . . , r�−1)
}

i∈I

)

≈c

⎛

⎝Π(x0, . . . , x�−1),
μ⋃

j=1

{
ViewΠ

i (x(j)
0 , . . . , x

(j)
�−1; r

(j)
0 , . . . , r

(j)
�−1)

}

i∈Ij

⎞

⎠ ,

where the randomness is taken over the random coins r1, . . . , r�−1, {r
(j)
1 , . . . ,

r
(j)
�−1}j∈[μ].

372 M. Ball et al.

Lemma 1 (Locally Simulatable Protocols are Execution Oblivious).
Let G = (V,E) be a graph with V = {0, . . . , � − 1}, let Ff be a deterministic
�-party functionality and let Π be an �-party protocol on G. If Π emulates Ff

relative to G with local simulatability in the static, semi-honest model against t
corruptions, then Π is execution oblivious on G tolerating t corruptions.

We defer the proof of this lemma to the full version [BBKM23].

5 Locally Simulatable Protocol for Directed Paths

In this section, we formally present the protocol for computing on a directed
path some functionality F that is efficiently invertible from local information.
An example of such a functionality is FOR, which we will use to impelement
THB in the next section. We refer the reader back to Sect. 2.2 for a detailed
overview of the protocol. Due to space limitations, we defer the proof of local
simulatability to the full version of this paper [BBKM23].

5.1 The Path Protocol

The directed path protocol Πdir-path is formally presented in Fig. 9. As described
in Sect. 2.2, the protocol works over a directed path Path� = 0 → 1 · · · → �-1
of length � = 2l, for some l > 0. Each party knows its position j on the path and
we refer to each such party as P̃j . The protocol recursively computes the given
functionality F. Recall that F must be efficiently invertible from local informa-
tion, such as FOR, which on input bits bj from each party P̃j , outputs

∨�−1
j=0 bj to

every party. When computation of FOR used in our higher-level THB protocol
of the next section, the input of party P̃j∗ corresponding to the broadcaster will
be bj∗ = b, the broadcast bit, and for all j �= j∗, the input of party P̃j will be
bj = 0.

Πdir-path proceeds by recursively emulating a (constant-round, constant-
overhead) 2PC that computes ((y0|| . . . ||y�/2−1), (y�/2|| . . . ||y�−1)) = F ′((x0|| . . .
||x�/2−1), (x�/2|| . . . ||x�−1)) = F(x0, . . . , x�−1) for two virtual parties, and then
recursively sending the outputs yj to the Parties Pj at the bottom of the recur-
sion tree. Party P0,0 (and similarly for party P0,1) of the highest-level 2PC is
recursively emulated by parties P̃0, . . . P̃�/2−1 on the path by first computing
each message that P0,0 sends in this 2PC via another lower-level 2PC between
virtual parties P1,0 and P1,1. Parties P1,0 and P1,1 combine their inputs and
random strings via this 2PC to emulate P0,0’s input and random tape. P1,1 then
receives P0,0’s next message and sends it to P1,2 (the first party emulating P0,1).
Continuing in the recursion, both P1,0 and P1,1 are then emulated by another
2PC in the same fashion, and so on, until we reach two actual parties on the
path.

For each call (either the invocation or recursive calls) to Πdir-path there are
some parameters known to all participants: the current topology being consid-
ered (each recursive call works over a connected subgraph of the path); the R2PC

Towards Topology-Hiding Computation from Oblivious Transfer 373

round constant-overhead semi-honest stateless protocol 2PC that is being used
for the execution; the recursion depth d; the message virtual party σ ∈ {0, 1,⊥}
who outputs a message for the 2PC that is being emulated by this instance (if
σ = ⊥, this means neither party does); output flag o ∈ {0, 1}, which indicates
whether or not the parties produce an output in this execution; and the 2PC
functionality F that the two virtual parties are computing. For the original invo-
cation call, the path considered is the whole path Path� = 0 → 1 · · · → �-1 ,
the recursion depth is d = 0, message virtual party is σ = ⊥, output flag is o = 1,
and the 2PC functionality that will be recursively computed is F ′; i.e., on input
x0 from P0,0 (recursively

∣
∣
∣
∣�/2−1

j=0
xj) and x1 from P0,1 (recursively

∣
∣
∣
∣�−1

j=�/2
xj),

output F ′(x0, x1) to P0,0 and P0,1.
For each call, each party also receives some local input: their position j on

the corresponding subgraph of the path; their input xj ; a dictionary of random
strings R̃j that they will use for the emulation of high-level 2PC virtual parties;
a set of 2PC messages Mj that they receive from some higher-level 2PC in which
they are assisting the emulation of one of the virtual parties; and their neighbors
on the path, P̃j−1 and P̃j+1. For the original invocation call, each party’s position
is of course j, their input xj , random string dictionary R̃j [·] = ⊥, empty message
set Mj = ∅, and neighbors P̃j−1 and P̃j+1.

Efficiency. Recall that we assume the round complexity of the 2PC protocol is
some constant R2PC and its overhead is c · |CF | + poly(λ) for some constant c,
where CF is the circuit that computes given functionality F. Thus, the round
complexity of Πdir-path is R[�] = 2R2PC ·R[�/2]+2 = Θ

(
� · Rlog �

2PC

)
, which is O(�2).

Furthermore, each real party on the path executes Rlog �−1
2PC 2PC’s. The overhead

of the highest-level 2PC is c · |CF ′ | + poly(λ), the overhead of the 2PC’s in the
next recursion level are then c2 · |CF ′ | + c · poly(λ) + poly(λ), and so on so that
the overhead of the 2PC’s executed by the real parties is O(� · (|CF ′ |+poly(λ))).
Therefore, the total overhead of Πdir-path is O(Rlog �−1

2PC · � · (|CF ′ | + poly(λ))) =
O(�2 · (|CF ′ | + poly(λ))).

374 M. Ball et al.

Fig. 9. Protocol Πdir-path which on input xj from each party ˜Pj on a directed path,

computes F(x0, . . . , x�−1) = (y0, . . . , y�−1) and outputs to party ˜Pj their output yj .
Note: each party knows their position on the path.

Towards Topology-Hiding Computation from Oblivious Transfer 375

Fig. 9. (continued)

376 M. Ball et al.

6 Extension to All Graphs

We refer to the full version of this paper [BBKM23] for how to use our protocol
with local simulatability on paths to achieve topology-hiding computation on all
graphs, building on the technqiues of [ALM17]. We state the relevant Theorem
and Corollaries below.

Theorem 3 (Topology-hiding OR on all graphs). Let κ ∈ N the statistical
security parameter. Let B be an upper bound on the number of parties, and let
� := 2�log(8κ·B3)�. If Πdir-path = (Init, nextdir-path,RetrieveOutput) is an Rdir-path-
round locally simulatable protocol for securely computing (x0, . . . , x�−1) �→
∨�−1

i=0 xi on the directed path 0 → 2 · · · → � − 1 of length � with security
against � − 1 corruptions, then there exists a protocol that securely realises FOR

in a topology-hiding manner against a static semi-honest adversary corrupting
up to all but one party.

As an immediate corollary of the proof of Theorem 3 (in the full ver-
sion [BBKM23]) we obtain a black-box compiler for locally simulatable protocol
for FOR from directed paths to any topology. This is simply due to the observa-
tion that the simulator described above is local. Note though that for the task of
obtaining locally-simulatable OT, one can replace the correlated random walks
by a fixed covering walk11, since for that purpose the topology does not need to
be hidden.

Corollary 1 (Locally simulatable OR on any graph). Let G be a graph.
Assuming the existence of a secure 2-party computation protocol with constant
rounds and constant overhead, there exists a locally simulatable protocol for
securely computing the FOR functionality in the presence of a semi-honest adver-
sary corrupting any number of parties.

Going from THB to general THC can be achieved via standard techniques,
which we briefly recall in the following. On a high level, given topology hiding
broadcast the parties can first decide on an enumeration 1, . . . , |V | of the parties
(this can be achieved, e.g., by each party broadcasting a string in a sufficiently
large interval and sorting the parties based on the lexicographic order of the
strings). Given this enumeration, the parties can set up point to point channels
using any key exchange protocol (which, in particular, is implied by oblivious
transfer). Finally, given these topology-hiding point-to-point channels, the par-
ties can execute any MPC protocol to achieve general topology-hiding secure
computation. We therefore obtain the following corollary.

Corollary 2 (THC on all graphs). Assuming the existence of a secure 2-
party computation protocol with constant rounds and constant overhead, there
exists a protocol for securely computing any efficiently computable functionality
11 A walk in a graph is an alternating sequence of adjacent vertices and edges; both

vertices and edges may be repeated. A covering walk contains each vertex at least
once.

Towards Topology-Hiding Computation from Oblivious Transfer 377

against a semi-honest adversary corrupting all-but-one parties, where only the
total number of parties in the graph is leaked (assuming a known apriori bound
on the number of parties).

Acknowledgments. We thank Elette Boyle, Ran Cohen, and Tal Moran for helpful
discussions. Marshall Ball is supported in part by the Simons Foundation. Lisa Kohl is
funded by NWO Gravitation project QSC. Pierre Meyer was supported by ERC Project
HSS (852952) and by AFOSR Award FA9550-21-1-0046. We thank the anonymous
reviewers of TCC for helpful feedback regarding the presentation of our results.

References

[AGPV88] Awerbuch, B., Goldreich, O., Peleg, D., Vainish, R.: A tradeoff between
information and communication in broadcast protocols. In: Reif, J.H. (ed.)
AWOC 1988. LNCS, vol. 319, pp. 369–379. Springer, New York (1988).
https://doi.org/10.1007/BFb0040404

[ALM17] Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all
graphs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401,
pp. 447–467. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 15

[ALM20] Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all
graphs. J. Cryptol. 33(1), 176–227 (2020)

[AM17] Akavia, A., Moran, T.: Topology-hiding computation beyond logarithmic
diameter. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 609–637. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 21

[BBC+19] Ball, M., Boyle, E., Cohen, R., Malkin, T., Moran, T.: Is information-
theoretic topology-hiding computation possible? In: Hofheinz, D., Rosen,
A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 502–530. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36030-6 20

[BBC+20] Ball, M., et al.: Topology-hiding communication from minimal assumptions.
In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 473–501.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 17

[BBKM23] Ball, M., Bienstock, A., Kohl, L., Meyer, P.: Towards topology-hiding
computation from oblivious transfer. Cryptology ePrint Archive, Paper
2023/849 (2023). https://eprint.iacr.org/2023/849

[BBMM18] Ball, M., Boyle, E., Malkin, T., Moran, T.: Exploring the boundaries of
topology-hiding computation. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 294–325. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 10

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th Annual ACM Symposium on Theory of Computing,
pp. 1–10, Chicago, IL, USA, ACM Press, 2–4 May 1988

[BM90] Bellare, M., Micali, S.: Non-interactive oblivious transfer and applica-
tions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557.
Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 48

[Can00] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptol. 13(1), 143–202 (2000)

https://doi.org/10.1007/BFb0040404
https://doi.org/10.1007/978-3-319-63688-7_15
https://doi.org/10.1007/978-3-319-63688-7_15
https://doi.org/10.1007/978-3-319-56617-7_21
https://doi.org/10.1007/978-3-319-56617-7_21
https://doi.org/10.1007/978-3-030-36030-6_20
https://doi.org/10.1007/978-3-030-64378-2_17
https://eprint.iacr.org/2023/849
https://doi.org/10.1007/978-3-319-78372-7_10
https://doi.org/10.1007/0-387-34805-0_48

378 M. Ball et al.

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: 20th Annual ACM Symposium on Theory
of Computing, pp. 11–19, Chicago, IL, USA, ACM Press, 2–4 May 1988

[DDN14] David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable obliv-
ious transfer based on a variant of LPN. In: Gritzalis, D., Kiayias, A.,
Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 143–158. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12280-9 10

[DGH+20] Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round
oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 26

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Aho, A. (ed.),
19th Annual ACM Symposium on Theory of Computing, pp. 218–229, New
York City, NY, USA, ACM Press, 25–27 May 1987

[Gol00] Goldreich, O.: Candidate one-way functions based on expander graphs.
Cryptology ePrint Archive, Report 2000/063 (2000). https://eprint.iacr.
org/2000/063

[HMTZ16] Hirt, M., Maurer, U., Tschudi, D., Zikas, V.: Network-hiding communica-
tion and applications to multi-party protocols. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 335–365. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 12

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with con-
stant computational overhead. In: Richard, E.L., Cynthia, D. (eds.), 40th
Annual ACM Symposium on Theory of Computing, pp. 433–442, Victoria,
BC, Canada, ACM Press, 17–20 May 2008

[Li22] Li, S.: Towards practical topology-hiding computation. In: Agrawal, S., Lin,
D. (eds.) Advances in Cryptology - ASIACRYPT 2022. ASIACRYPT 2022.
LNCS, vol. 13791, pp. 588–617. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-22963-3 20

[LZM+18] LaVigne, R., Liu-Zhang, C.-D., Maurer, U., Moran, T., Mularczyk, M.,
Tschudi, D.: Topology-hiding computation beyond semi-honest adversaries.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 3–
35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 1

[MOR15] Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 159–181. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 8

[MST03] Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In
44th Annual Symposium on Foundations of Computer Science, pp. 136–
145, Cambridge, MA, USA, IEEE, Computer Society Press, 11–14 October
2003

[OW14] ODonnell, R., Witmer, D.: Goldreich’s prg: evidence for near-optimal poly-
nomial stretch. In: 2014 IEEE 29th Conference on Computational Com-
plexity (CCC), pp. 1–12. IEEE (2014)

[RB89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In: 21st Annual ACM Sympo-
sium on Theory of Computing, pp. 73–85, Seattle, WA, USA, ACM Press,
15–17 May 1989

[Yao82] Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, pp. 160–164,
Chicago, Illinois, IEEE Computer Society Press, 3–5 November 1982

https://doi.org/10.1007/978-3-319-12280-9_10
https://doi.org/10.1007/978-3-030-45724-2_26
https://eprint.iacr.org/2000/063
https://eprint.iacr.org/2000/063
https://doi.org/10.1007/978-3-662-53008-5_12
https://doi.org/10.1007/978-3-031-22963-3_20
https://doi.org/10.1007/978-3-031-22963-3_20
https://doi.org/10.1007/978-3-030-03810-6_1
https://doi.org/10.1007/978-3-662-46494-6_8

Towards Topology-Hiding Computation from Oblivious Transfer 379

[YZ16] Yu, Yu., Zhang, J.: Cryptography with auxiliary input and trapdoor from
constant-noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 214–243. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 9

https://doi.org/10.1007/978-3-662-53018-4_9
https://doi.org/10.1007/978-3-662-53018-4_9

On the Impossibility of Surviving
(Iterated) Deletion of Weakly Dominated

Strategies in Rational MPC

Johannes Blömer1 , Jan Bobolz2 , and Henrik Bröcher1(B)

1 Paderborn University, Paderborn, Germany
{bloemer,bhenrik}@uni-paderborn.de

2 University of Edinburgh, Edinburgh, UK
jan.bobolz@ed.ac.uk

Abstract. Rational multiparty computation (rational MPC) provides a
framework for analyzing MPC protocols through the lens of game theory.
One way to judge whether an MPC protocol is rational is through weak
domination: Rational players would not adhere to an MPC protocol if
deviating never decreases their utility, but sometimes increases it.

Secret reconstruction protocols are of particular importance in this
setting because they represent the last phase of most (rational) MPC
protocols. We show that most secret reconstruction protocols from the
literature are not, in fact, stable with respect to weak domination. Fur-
thermore, we formally prove that (under certain assumptions) it is impos-
sible to design a secret reconstruction protocol which is a Nash equilib-
rium but not weakly dominated if (1) shares are authenticated or (2)
half of all players may form a coalition.

Keywords: Game Theory · Rational Secret Sharing · Multiparty
Computation · Rational Cryptography · Iterated Deletion of Weakly
Dominated Strategies

1 Introduction

A multiparty computation (MPC) protocol is one that allows n parties, each with
their own secret input xi, to jointly compute the value of a function f(x1, . . . , xn).
Applications range from jointly evaluating statistics on confidential data in a
privacy-preserving way, to replacing trusted parties which setup cryptographic
systems, to substituting trusted hardware by software. Security typically ensures
the correctness of results while guaranteeing to leak no more information about

This work was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Centre “On-The-Fly Computing“ under the project number
160364472 – SFB 901/3.
J. Bobolz—Work done while at Paderborn University.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 380–410, 2023.
https://doi.org/10.1007/978-3-031-48615-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_14&domain=pdf
http://orcid.org/0000-0002-6065-3535
http://orcid.org/0000-0001-9704-2124
http://orcid.org/0009-0008-3938-5485
https://doi.org/10.1007/978-3-031-48615-9_14

On the Impossibility of Surviving IDoWDS in Rational MPC 381

the inputs than the computation’s result itself leaks. Traditionally, these prop-
erties must hold with respect to adversaries that are allowed to corrupt certain
parties while non-corrupted parties honestly follow the protocol prescriptions.

In this paper, we are interested in rational MPC [14], i.e. rather than par-
titioning the MPC protocol participants into a set of strictly honest and a set
of arbitrarily malicious parties, we instead analyze the parties’ behavior from a
game-theoretic point of view. This means that we assume that every participant
is rational (rather than honest or malicious) and tries to maximize some utility
function. Rational MPC addresses the following issues with the standard MPC
definition: On one hand, the standard definition is too strong because it covers
arbitrarily irrational destructive behavior. On the other hand, the standard def-
inition is too weak because it assumes that at least one party honestly executes
the protocol even if it is potentially irrational to do so. Rational MPC offers
an alternative that takes game-theoretic incentives into account when evaluat-
ing MPC protocols. It is the better formalization for scenarios where one can
reasonably assume participants to act rationally (e.g., in economics).

Using game theory terminology, the n MPC parties are players. Each player
i chooses a strategy Mi, which is an interactive Turing machine describing how
they want to behave in the protocol. Then the Turing machines run their pro-
grams, interacting with each other. At the end, the utility of each player is
determined, roughly speaking, by their machine’s output. An MPC protocol
(M1, . . . ,Mn) is a tuple of suggested strategies for the n players, also called a
mechanism. The goal is to design mechanisms which are stable in the sense that
rational, utility-maximizing participants follow their prescriptions. A common
notion of stability is the Nash equilibrium (NE), where no player i can (signif-
icantly) improve her expected utility by deviating from her prescribed strategy
Mi. In some situations, especially when there is uncertainty about the other play-
ers’ strategies or utilities, a NE is considered too weak and additional properties
are required. For example, think of switching to a strategy which additionally
to the original behaviour protects against some denial of service attack by the
other players. If it is possible to protect against such an attack without additional
cost, why should a player not switch? Additionally, uncertainty may generally
arise in network settings, where the other players’ strategies might be affected
by external factors like connection failures or lost messages. Based on these con-
siderations, the requirement that a NE survives the iterated deletion of weakly
dominated strategies (IDoWDS) has been used in rational secret reconstruction
repetitively [1,12,14,20]. A strategy Mi is weakly dominated if there exists a
strategy M∗

i that does (significantly) better against some strategy profile of the
other players, and does not perform (significantly) worse against any strategy
profile. Surviving IDoWDS means that in a process where, repeatedly, all weakly
dominated strategies are deleted, the original strategy Mi remains. This process
is reasoned by the assumption that a rational player would always switch to a
dominating strategy M∗

i since this may only increase her gain. Like [1,12,14,20],
we call a protocol a practical mechanism or rationally secure, if its strategies (1)
form a NE and (2) survive IDoWDS.

382 J. Blömer et al.

Typically, rational MPC protocols work in two stages: first, the parties run
a standard MPC protocol with malicious security for the functionality f . As the
result of that protocol, the parties receive secret shares si of the computation
result s = f(x1, . . . , xn). In the second stage, the parties run a rational MPC
secret reconstruction phase, to which each party contributes their share si, and
the protocol yields the final result s for everyone. This structure is reminiscent of
standard MPC protocols (e.g., GMW [11]), which also yield a secret-sharing of
the result s and then have the parties reconstruct it. In contrast to the standard
setting, where secret reconstruction amounts to simply having all the (honest)
parties broadcast their shares to everyone, secret reconstruction in the rational
setting is much more complicated. This is because, in some scenarios, it is irra-
tional for a party i to simply broadcast their share si [14]. Broadcasting the
share does not help player i to reconstruct the secret, but it may help others.
So for players that prefer to learn the result and prefer others not to learn the
result, the simple “everyone broadcast their shares” protocol breaks down.

As a consequence, secret reconstruction protocols play a crucial role in ratio-
nal MPC. The secret reconstruction scenario can be described as follows: A dealer
samples a secret s and secret shares (si)n

i=1 of s, as well as digital signatures σi on
(i, si) (for ease of exposition, we assume authentication via digital signatures).
When using secret reconstruction as part of a larger rational MPC protocol,
we can imagine that (si, σi)n

i=1 are the result of some MPC computation. The
player machine Mi gets as input its signed share (si, σi) (and the corresponding
public key). The machines M1, . . . ,Mn then interact with each other. Finally,
each Mi outputs what it thinks the reconstructed secret is. The rational utilities
that player i tries to maximize are natural, i.e. the player prefers outputting the
correct secret over outputting a wrong secret (prefers correctness) and the player
prefers other players not to learn the secret (prefers exclusivity).

Several works have tackled the problem of rational secret reconstruction. To
sidestep the issue that rational participants may be hesistant broadcasting their
share for fear of unnecessarily helping others, most existing secret reconstruction
protocols [1,12,14,20] take a randomized number of rounds and use dummy
rounds to punish participants who refuse to broadcast. Ultimately, parties in
those protocols still broadcast shares, but there is randomness and uncertainty
involved about when (non-dummy) shares are broadcast.

Another challenge for rational secret reconstruction is the authentication of
the result s: If a party i can broadcast a fake share so that all other parties
receive a wrong reconstruction result s′ �= s (while i can reconstruct the real
result), then doing so is rational. For this reason, inherently, there needs to be
some way for parties to check whether the correct share was broadcast or at
least whether the reconstruction result is valid.

1.1 Our Contribution

We show that almost all known secret reconstruction protocols do not survive
iterated deletion of weakly dominated strategies (where weak domination is
adapted to the computational setting in a natural way, see Definition 9). We

On the Impossibility of Surviving IDoWDS in Rational MPC 383

observe that any “natural” strategy Mi is weakly dominated by a machine M∗
i

that works as follows: M∗
i behaves exactly like Mi except that it adds an addi-

tional check to messages it receives in the first round. If all other players j �= i
happen to send messages of the format (LEAK, sj , σj) such that σj is a valid
signature on (j, sj), then M∗

i uses the received shares (s1, . . . , sn) to reconstruct
the secret s. In this case, M∗

i continues to behave like Mi, but outputs the s from
the leaked shares in the end. In all other cases, M∗

i outputs what Mi outputs.
In other words, M∗

i hopes that all other players decide to deviate from the
protocol and instead simply send this special format message containing their
input in plain. And indeed, if the other players play this (artificial) strategy, then
M∗

i outputs the correct secret with probability 1. This is significantly better
than a typical protocol Mi, which we (for now) assume just aborts because of
an unexpected first-round message format (LEAK, . . .). Furthermore, M∗

i never
does worse than Mi, because the only way M∗

i deviates is by outputting a secret
s that is guaranteed to be the correct secret (assuming unforgeable signatures),
which is the preferred outcome of a rational player. So M∗

i is never worse than
Mi, but does significantly better against strategies that leak their input, which
means that M∗

i weakly dominates Mi. This makes intuitive sense: the additional
signature check can only help player i, so it is irrational not to include it.

Hence, any “natural” strategy Mi, which does not include such a first-message
check itself, is weakly dominated by the modified strategy M∗

i . It follows that
Mi does not survive iterated deletion of weakly dominated strategies (IDoWDS)
(or, more specifically, Mi does not even survive the first “iteration” of IDoWDS
because it is weakly dominated w.r.t. the original strategy set). We apply this
observation to existing protocols in Sect. 4, demonstrating that almost all known
secret reconstruction protocols from the literature do not survive IDoWDS.

In addition to falsifying claims from the literature, the goal of this paper is to
characterize the extent of this IDoWDS issue. Can existing protocols be fixed?
What classes of protocols are susceptible to the issue? It may be tempting to try
to fix the issue by including the first-message check of M∗

i in the original protocol.
If Mi already checks the first message, then M∗

i has no advantage over Mi and
does not weakly dominate it. However, there is an essentially endless supply of
other ways to encode the input-leaking message. Say a strategy Mi does check
if the first messages contain messages of the format (LEAK, sj , σj). Then this
strategy is still weakly dominated by a strategy M∗∗

i , which works like Mi, but
additionally checks whether the first messages have the format (LEAK, sj , σj),
where x denotes some other encoding, e.g., base64 or the bitwise negation of
the canonical representation. Similarly to above, M∗∗

i weakly dominates Mi, as
it cannot do worse than Mi, but does better against the strategies that leak
their input by sending (LEAK, sj , σj). Intuitively, no matter how many different
ways of interpreting the first message a strategy implements, it is likely that one
can come up with a new (contrived) representation not covered by it. Hence,
it seems exceedingly unlikely that any reasonable strategy exists that survives
IDoWDS. We formalize this idea in Sect. 5, proving that if we allow strategies

384 J. Blömer et al.

to be non-uniform Turing machines and the dealer “sufficiently” authenticates
the secret shares, then there exists no strategy that is not weakly dominated.

What could be possible ways around this issue? For this, we examine what
makes the machine M∗

i work. Because the shares are signed in the examples
above, M∗

i can be sure that when it receives authenticated first-round shares,
M∗

i (almost) never outputs the wrong secret, no matter what the remaining n−1
parties do. This enables the argument that M∗

i weakly dominates Mi: If it were
possible for n−1 parties to convince M∗

i to output a wrong secret, then M∗
i does

not necessarily weakly dominate Mi anymore. So counter-intuitively, in order for
the secret-sharing scenario to possess a rational mechanism (circumventing weak
domination by M∗

i), the shares must not be authenticated too well. However, in
order for a mechanism to be a Nash equilibrium, authentication must also not
be too weak : If it were possible for a party to convince all others of a wrong
secret (while receiving the correct secret himself), then doing so is rational.

There is indeed a (small) middle ground between perfect authentication and
no authentication, which sidesteps our initial weak domination result. Indeed,
the third protocol of Abraham, Dolev, Gonen, and Halpern [1] avoids the ini-
tial weak domination counterexample as follows: Instead of authenticating the
secret-sharing with signatures or MACs (as in the first two instantiations in
[1]), their third instantiation uses Reed-Solomon codes (i.e. Shamir shares with
redundancy). This instantiation hits the sweet spot between too much and too
little authentication: Reed-Solomon codes are strongly authenticating against
up to n/3 parties (even providing error correction), but for n − 1 parties, it is
trivial to manipulate shares to make the last party believe in a wrong secret.
This allows their protocol to be a Nash equilibrium while avoiding our initial
counterexample, which requires stronger authentication.

However, the third protocol of Abraham et al. [1] is also weakly dominated
in certain (reasonable) settings, even if it requires a different counterexample.
Roughly speaking, the weakly dominating strategy for this protocol only devi-
ates from the original protocol when the original protocol would output a recon-
structed secret sunlikely that is only correct with negligible probability (say, for
simplicity, an error symbol). Because this is almost certainly not the correct
secret, deviating in this case is never worse than the original strategy, which
has minimal utility outputting the (likely) wrong secret. The deviation is some-
times better against strategies that would make the original protocol consistently
output a wrong secret sunlikely. This is possible in the Reed-Solomon scenario
because n − 1 parties can easily change the shared secret in a way that is unde-
tectable to the last party. In this case, the deviation would correct the wrong
sunlikely to the correct secret instead, achieving significantly higher utility. We
explain this counterexample in our full version [5, Sect. 7] in detail.

Still, while our initial counterexample rules out most (authenticated) secret
sharing settings, and our second counterexample rules out using Reed-Solomon
for some secret distributions, it may well be that there are other secret distri-
butions for which Reed-Solomon secret sharing presents a way out of the weak
domination issues. To approach this remaining possibility, we offer additional

On the Impossibility of Surviving IDoWDS in Rational MPC 385

secret-distribution-agnostic insights when considering coalitions (as is standard
in the rational MPC literature [1,18]). In Sect. 6, we show that if we consider
coalitions of at least n/2 rational players, then no reasonable secret reconstruc-
tion protocol exists (at least not for typical secret-sharing schemes) that is ratio-
nal to play for the coalition. Essentially, we show that in that setting, either
authentication is good enough for the weak domination counterexample to work,
or authentication is weak enough to enable the coalition to play a strategy that
is better for them than the prescribed strategy (meaning that there is no Nash
equilibrium). In particular, this effectively rules out the existence of rational
secret reconstruction for the important n = 2 setting. Overall, our results in
Sect. 5, Sect. 6, and [5, Sect. 7] comprehensively characterize the extent of the
IDoWDS issue for rational MPC protocols.

1.2 Consequences

Our results call into question a wide range of rational MPC protocols, for
secret reconstruction in particular. The most immediate insight is that the pop-
ular strategy of authenticating shares with digital signatures, with one-time
information-theoretically secure MACs (Construction 6), or with zero-knowledge
proofs seem to be widely incompatible with weak domination requirements. In all
those cases, this strong authentication makes adding a first-round check to the
strategy weakly dominate any reasonable protocol’s strategies. In particular, all
secret reconstruction protocols from [1,12,14,20] exhibit this weak domination
flaw. We discuss concrete examples in Sect. 4, unifying several of the protocols
in a common framework. See [5, Sect. 7] for the counterexample for the Reed-
Solomon based secret reconstruction protocol from [1].

Our impossibility result for rationally secure secret reconstruction carries over
to general rational MPC, which was approached so far by “take any actively
secure general-purpose MPC protocol which computes a sufficiently authenti-
cated secret sharing and replace the final reconstruction phase by a rationally
secure one” [1,12,14,20]. Since by our result such reconstruction mechanisms in
many settings do not exist, such compositions which survive IDoWDS do not
exist, either. Our results from Sect. 6 rule out this approach for coalitions of n/2
and more players, which especially covers two party computations. Therefore,
these approaches have to be rethought with respect to weak domination.

In conclusion, our results (summarized in Table 1) show that in many impor-
tant settings, the approaches and techniques known from the literature are
incompatible with respect to the cryptographic version of IDoWDS.

1.3 The Way Forward for Rational MPC

Given the extent of the IDoWDS issue regarding our current understanding of
how to design rational MPC protocols, the question arises how future rational
MPC research should deal with our results. As motivated in Sect. 1.1, in net-
work settings and, especially, cryptographic settings, the notion of IDoWDS is

386 J. Blömer et al.

Table 1. Overview of our results for coalitions of t parties and k-out-of-n secret sharing
schemes having the corresponding property from column one. Each result applies to
any mechanism in the given setting. We assume t < k as otherwise coalitions are able
to reconstruct secrets, which inherently leads to unstable mechanisms. Note, t = 1
represents the non-coalition case.

majority coalition t ≥ n/2 t < n/2

local (n − t)-verifiable (e. g.
shares authenticated using
signatures, MACs, . . .)

weakly dominated (for non-uniform
strategies: Theorems 2 and 3)

Reed-Solomon codes based (e. g.
redundant Shamir shares)

weakly dominated for certain secret
distributions (c. f. [5, Theorem 5])

verifiable-or-fully-broken (e. g.
additive sharing, Shamir’s sharing
for k > n/2)

weakly dominated or no Nash
equilibrium (Theorem 4)

no result

philosophically reasonable and its ideas should be represented somehow. Given
that, we see two approaches for handling the IDoWDS property in the future.

The first way is to concentrate future research on settings and protocols for
rational secret reconstruction or, more generally, MPC protocols, which are not
ruled out by our results. In Sect. 6.3 we show that settings with coalitions of n/2
and more players cannot be proven rationally secure in almost any reasonable
setting. As we only rule out Reed-Solomon based reconstruction protocols for
certain secret distributions, it is still open whether there are such protocols not
prone to weak domination for some secret distributions. Those, however, would
need to exploit properties of the secret distribution to avoid our counterexample.

The second way is to tweak the definitions of what we consider rationally
secure. As our adaptation of IDoWDS to the computational setting is quite
natural (as discussed in the full version [5]), it seems that one needs to find
a replacement for IDoWDS on the game-theoretic side, which reflects rational
behavior and in particular the idea of “weak dominance rationality”, but whose
computational translation is less strict and does not rule out the same wide
range of protocols ruled out by the current definition. For example, Hillas and
Samet [15] propose to iteratively delete so called weak flaws instead of weakly
dominated strategies and claim this reflects “weak dominance rationality” better
than IDoWDS. This is a potential candidate for a replacement. Other replace-
ments, already suggested in the literature, are discussed below. Either option
leads to many open questions and paves the way for new interesting research
and results.

1.4 Organization

In Sect. 2, we discuss related work. In Sect. 3, we introduce the models of com-
munication and non-uniform computation as well as other relevant standard
primitives from cryptography and game theory. Then, in Sect. 3.4 we define the

On the Impossibility of Surviving IDoWDS in Rational MPC 387

rational secret reconstruction game central to this work. In Sect. 4, we show that
most previously published mechanisms are weakly dominated. We generalize this
result to arbitrary mechanisms in the non-uniform setting in Sect. 5. In Sect. 6,
we extend the previous results to coalitions.

2 Discussion of Related Work

For the last 20 years a lot of research has been done on the interplay between
game theory and cryptography (see for example the surveys [9,17], and [21]
for a more practically oriented perspective). This covers, at least, two different
aspects: on the one hand, cryptographic approaches to game-theoretic prob-
lems, e.g. replacing mediators in certain games (see e.g. [8,16] and many subse-
quent papers); on the other hand, using game-theoretic concepts in the design of
cryptographic primitives, e.g. replacing malicious adversaries by rational adver-
saries, or mixtures of malicious and rational adversaries (see [20]). The sec-
ond line of research was initiated by Halpern and Teague [14]. They initiated
the study of rational multiparty computation and, in particular, rational secret
reconstruction. Instead of designing protocols resistant to malicious adversar-
ial behavior, they studied secret reconstruction and multiparty computation
under the assumption that agents act rationally. Recently, this approach led
to game-theoretic notions of fairness in multiparty coin toss and leader elec-
tion [3,6,7,13,27].

Most relevant to our work is the work of Halpern and Teague and the research
that followed it [1,2,10,12,18,19]. In this approach, secret reconstruction, and
more generally a multiparty computation of some functionality, is modeled as a
game, with the goal of designing protocols that satisfy various game-theoretic
properties within this game, e.g. constitute a Nash equilibrium. However, there
has never been any consensus about the right definition for a good rational
strategy in multiparty computation, especially around weak domination and
iterated deletion of weakly dominated strategies.

In this section, we explore the history of weak domination in the literature,
argue why we should not just abandon weak-domination-like properties, and
then discuss more recent definitions in that context.

2.1 History of (Iterated) Deletion of Weakly Dominated Strategies

The notion of iterated deletion of weakly dominated strategies has been intro-
duced in the computational context by Halpern and Teague [14]. They argue that
every protocol with a fixed last round, in which the parties send their shares,
is weakly dominated: it is better for player i to deviate and not send her share,
because revealing her share can only help others learn the secret and does not
help her at all. This argument is wrong: as observed by [18], this deviation can
be detected and punished by the other players, e.g., by checking whether player
i indeed sends her share, and only then revealing their own shares. Because
refusing to send the share leads to not learning the secret when played against

388 J. Blömer et al.

those punishment strategies, it does not weakly dominate the original strategy
of simply sending the last message.

Nevertheless, their argument against last rounds inspired several secret recon-
struction protocols [1,12,14,20] that introduce uncertainty about which round is
the last. The underlying idea of those protocols is that not sending some round’s
message is risky: if it turns out that this was not the last round, the other par-
ties will abort the protocol, making it impossible to learn the secret. On the
positive side, the protocols of [1,12,14,20] enable reconstruction of n-out-of-n
secret sharing in a Nash sense, which does indeed require hiding the last round.
In particular, [1,12,20] enable two-party secret reconstruction. Note that for k-
out-of-n (k < n) secret sharing, the simple “everyone broadcast their shares in
round 1” strategy is a Nash equilibrium.

On the negative side, in this paper, we show that all those protocols are
still weakly dominated, contrary to stated goals and claims. The issue with the
proof sketches by [1,12,14,20] is that they (implicitly) only consider deviations
that send or do not send the expected messages in some round. However, there
is another form of deviation, which we will call undetectable deviation, which
forms the basis of our counterexample: This kind of deviation keeps following
the protocol (sending the expected messages) outwardly, but secretly adds an
additional check to improve utility in some contrived scenarios. Undetectable
deviations (which are invisible to the other parties) were seemingly overlooked
in those proofs without any formal justification.

Later, Kol and Naor showed that, in a very restricted strategy space, no
strategy is weakly dominated [18, Theorem A.3]. Their strategy space essentially
only considers the choice of either sending a share in some round or keeping
silent in that round. Additionally invoking purely game-theoretic criticism of
weak domination [24,26], they conclude that weak domination is not a useful
notion, as it does not seem to rule out several “bad” strategies.

2.2 In Defense of Weak Domination

We disagree with Kol and Naor’s assessment of weak domination, given that our
results show that, if we do not severely restrict our strategy space, all strategies
are weakly dominated. As a consequence, weak domination seems to deserve
criticism for being too harsh, rather than too forgiving.

To (somewhat informally) reflect on the role that weak domination serves
in modeling rational behavior, consider the strategy Mbackdoor

i (Fig. 1), which
allows the other players to unanimously vote to have party i self destruct. We
can view this vote as a backdoor that triggers irrational behavior if all other
parties collaborate. If the vote does not pass (which is the default behavior if
everyone plays Mbackdoor

i), Mbackdoor
i behaves reasonably. Clearly, Mbackdoor

i is
not a reasonable strategy to play for a rational player. Any rational player would
(at least) remove the irrational behavior (line 3), as it does not serve any positive
purpose for them and may only serve to sabotage them. Hence we would expect
our definitions to reflect this and identify Mbackdoor

i as a bad strategy.

On the Impossibility of Surviving IDoWDS in Rational MPC 389

Fig. 1. Strategy Mbackdoor
i , augmenting some reasonable strategy Mi with a self-

destruct if the other players unanimously vote for it. Serves as an illustration of the
need for the weak domination property.

Consider the mechanism (Mbackdoor
1 , . . . ,Mbackdoor

n) for n > 2. If everyone
keeps to the prescribed strategies Mbackdoor

i , then nobody sends any messages
in the first round and the backdoor is not triggered. If a single party deviates,
they can also not trigger the backdoor, as this requires cooperation of other
players. Hence (Mbackdoor

1 , . . . ,Mbackdoor
n) is a Nash equilibrium (assuming the

non-backdoored (M1, . . . ,Mn) are reasonable).
The notion of a Nash equilibrium does not detect the issue with Mbackdoor

i ,
because it only considers scenarios where almost everyone executes the pre-
scribed protocol. This is where weak domination comes in: for weak domination,
we need to consider all possible behavior of the other parties. It is then easy to see
that Mbackdoor

i is weakly dominated by a strategy ignoring the vote outcome:
this is (1) clearly better against strategies where all other players collaborate
to trigger the backdoor in Mbackdoor

i , and (2) it is never worse than Mbackdoor
i

(assuming self-destruction has minimal utility and Mi is reasonable).
Overall, we conclude that the field should have some notion that detects

“backdoored” strategies such as Mbackdoor
i . For this, Nash equilibria are not

sufficient, and weak domination, while very suitable for this very task in spirit,
in actuality is too eager and removes too many strategies, as we show in this
paper.

2.3 Alternative Notions

The notion of weak domination has been widely abandoned in the more recent
rational MPC literature, which the literature generally justifies with Kol-Naor’s
observation that weak domination is too forgiving and hence not meaningful
(even though this is only true in a very restricted strategy space).

As a replacement, Kol and Naor themselves suggest strict Nash equilibria
[10,18], which essentially requires that unilateral (detectable) deviation signif-
icantly decreases utility (as opposed to simply not increasing utility as in the
standard notion). While strict Nash equilibria capture some intuitions of irra-
tional behavior, by its nature it also only considers unilateral deviations and
fails to detect some issues that were (in spirit) caught by weak domination.

390 J. Blömer et al.

For example, if we consider Mbackdoor′
i that behaves like Mbackdoor

i but also,
if the vote is not unanimous, punishes everyone that voted for triggering the
backdoor (e.g., by shunning them from the rest of the protocol). This way, any
unilateral deviation in the first round leads to a decrease in utility, making
(Mbackdoor′

1 , . . . ,Mbackdoor′
n) a strict Nash equilibrium (assuming Mi is reason-

able), but the backdoor is still very much present in Mbackdoor′
i .

Another notion that may replace weak domination are Nash equilibria that
are stable with respect to trembles [10]. The idea is to model deviating behav-
ior as another strategy: we consider strategies that usually play the prescribed
strategies, but “tremble” with some probability and play some completely arbi-
trary strategy. The notion then says that even when playing against trembling
strategies, it is still rational to follow the protocol honestly. Similarly to weak
domination, this notion considers deviations of all players (though it has only
been formally defined for n = 2 players [10]). However, for technical reasons
(probably as they noticed problems similar to our weak domination counterex-
ample), the notion explicitly removes undetectable deviations from considera-
tion. In somewhat simplified terms, their definition requires that any improve-
ment against trembles strategies can be achieved in a way that does not alter
behavior against the originally prescribed (non-trembles) strategies. In other
words, undetectable deviations, that do not alter the behavior against the pre-
scribed strategies (such as our weak domination counterexamples) are exempt
from this definition (i.e. even if one such undetectable deviation were a significant
improvement against trembling strategies, the definition would not consider this
an issue). Because of this, the stability with respect to trembles notion also fails
to detect backdoors such as Mbackdoor

i , i.e. (Mbackdoor
1 , . . . ,Mbackdoor

n) is a Nash
equilibrium that is stable with respect to trembles (assuming Mi are reason-
able). Even though removing the backdoor improves utility significantly against
strategies that sometimes tremble to trigger the backdoor, Mbackdoor

i and the
non-backdoored version behave the same against non-trembling strategies, and
hence this improvement is ignored by the notion.

Overall, while the field has largely moved on from weak domination, we argue
that (1) it did so for the wrong reasons (believing the notion is too forgiving
rather than, as we show, too strict), and that (2) it did so without adequately
replacing the notion with something that can detect bad mechanisms that would
be intuitively considered irrational, such as Mbackdoor

i . This paper and its impos-
sibility results supply more adequate reasons why weak domination may be dis-
missed for now by future protocols (given that it rules out many settings), and
explain why one should not attempt to prove future protocols rationally secure
regarding weak domination. Our results should also inform the design of future
stability notions to replace weak domination, providing some baseline potential
counterexamples to check new notions against.

3 Preliminaries

For more detailed intuitions and discussions on this section’s definitions, we refer
to the full version [5]. We will use following notation. We define [n] := {1, . . . , n}.

On the Impossibility of Surviving IDoWDS in Rational MPC 391

For index set I ⊆ [n] let −I := [n] \ I, when n is clear from the context.
Similarly, let −i := −{i} = [n]\{i} for a single index i ∈ [n]. For sets S1, . . . , Sn,
we define S×I :=×i∈I

Si. For a vector (s1, . . . , sn) ∈ S×[n], let sI denote the
restriction of s to the indices contained in I. For s, s′ ∈ S×[n], let (sI , s

′
−I)

denote the tuple s∗ = (s∗
1, . . . , s

∗
n) with s∗

i := si if i ∈ I and s∗
i := s′

i otherwise. If
the context is clear, we omit the additional parentheses, especially when being
used within functions, e. g. we write u(1λ, sI , s

′
−I) instead of u(1λ, (sI , s

′
−I)). A

function μ : N → R≥0 is negligible if ∀c > 0 ∃λ0 ∀λ ≥ λ0 : μ(λ) ≤ λ−c. A
function p : N → R≥0 is noticeable if p(λ) ≥ 1/q(λ) for some polynomial q.

3.1 Model of Computation and Communication

Interaction is modeled using interactive Turing machines (ITMs) which are prob-
abilistic polynomial-time (ppt) with respect to security parameter λ. Communi-
cation proceeds round-based and simultaneous, where in each round k and for
each pair Mi,Mj of ITMs, Mi sends a, possibly empty, message m

(k,i)
j to Mj .

Our results also transfer to models where messages may be delayed but even-
tually are delivered. For our general results, we require non-uniform ITMs.

Definition 1. A non-uniform ppt interactive Turing machine (ITM) is a pair
(M,a) where a = (a1, a2, . . .) is an infinite sequence of auxiliary strings with
|aλ| being polynomially bounded in λ and M is a ppt ITM with a special tape for
the non-uniform advice. For given input (security) parameter λ ∈ N and input
x, M is run on (1λ, x, aλ) where we require the running time to be polynomial
in λ and the length |x| of x per round of communication.

3.2 Secret Sharing

In the following we define secret sharing schemes with respect to access struc-
tures. We extend the standard secret sharing definition (c. f. [4]) by additional
information which is used for authentication and (local) verification of shares.

Definition 2 (Access Structure). Let M = {P1, . . . , Pn} be a set of n par-
ties. A set A of subsets of M is called monotone if A ∈ A and A ⊆ B ⊆ M
implies B ∈ A. An access structure A ⊆ P(M) with n parties is a monotone
collection of non-empty subsets of M . A set A ⊆ M is called qualified if A ∈ A

and non-qualified if A �∈ A.

Definition 3 (Secret Sharing Scheme with locally verifiable recon-
struction). Let A be an access structure with n parties and S be a finite set of
secrets where |S| ≥ 2. A (perfect) secret sharing scheme with domain of secrets
S realizing access structure A with locally verifiable reconstruction is a tuple of
ppt algorithms Π = (SetupΠ ,Share,Recon), where

– SetupΠ(1λ), on input security parameter 1λ, outputs public parameters pp
with |pp| ≥ λ.

392 J. Blömer et al.

– Share(pp, s), on input public parameters pp and secret s ∈ S, outputs for each
i ∈ [n] a triple (s(i), τ (i), σ(i)) consisting of share s(i), local verification infor-
mation τ (i) ∈ {0, 1}∗, and authentication information σ(i) = (σ(i)

1 , . . . , σ
(i)
n) ∈

{0, 1}∗.
– Recon(pp, τ (i), (s(j), σ(j)

i)j∈A), on input public parameters pp, Pi’s local ver-
ification information τ (i), and, for A ⊆ [n], tuples (s(j), σ(j)

i)j∈A of shares
and authentication information, deterministically outputs an element from
S ∪ {⊥}.

We require correctness: For all λ ∈ N, pp ← SetupΠ(1λ), s ∈ S, and for all
(s(i), τ (i), σ(i))i∈[n] ← Share(pp, s), A ∈ A, i ∈ A it holds

Pr[Recon(pp, τ (i), (s(j), σ(j)
i)j∈A) = s] = 1.

If A = {A ⊆ [n] | |A| ≥ m}, we say Π is an m-out-of-n secret sharing scheme.

In a secret sharing scheme with locally verifiable reconstruction, after public
parameters are set up, a dealer shares a secret among n parties. Then, qualified
groups of parties may correctly reconstruct this secret by pooling their shares
and authentication information. Following standard notion of privacy assures
that non-qualified groups do learn nothing on this secret.

Definition 4 (Perfect privacy). A secret sharing scheme Π for access struc-
ture A and secret domain S has perfect privacy if ∀λ ∈ N, ∀pp ← SetupΠ(1λ),
∀A �∈ A, and ∀s, s′ ∈ S, it holds that Share(pp, s)A and Share(pp, s′)A are iden-
tically distributed.

In addition to privacy we define the non-standard property of (non-uniform)
local t-verifiability. This property ensures that it is infeasible for ppt adversaries
to make an honest player output a wrong secret by manipulating up to t shares.

Fig. 2. Experiment for local verification of secrets for secret sharing scheme Π with
respect to non-uniform adversary (A, (ω1, ω2, . . .)), set C ⊂ [n] of corrupted parties,
and family of secret distributions S.

On the Impossibility of Surviving IDoWDS in Rational MPC 393

Definition 5 ((Non-uniform) local t-verifiability). Secret sharing scheme
Π has local verifiability against up to t corruptions if ∀ non-uniform ppt A,
∀C ⊂ [n], |C| ≤ t, there is a negligible function μ such that

Pr[ForgeS,C
A,Π(λ) = 1] ≤ μ(λ),

where the experiment ForgeS,C
A,Π(λ) is defined in Fig. 2.

Note, the stronger notions of robust secret sharing (RSS) and verifiable secret
sharing (VSS) (c. f. [22]) are different from local verifiability. Construction 6 is
an example for a secret sharing scheme by Abraham et al. [1] which satisfies
locally (n − 1)-verifiable reconstruction. It authenticates shares from Shamir’s
secret sharing scheme [25] with the idea of information checking from [23].

Construction 6 (Secret Sharing Scheme ΠADGH [1]). The m-out-of-n
secret sharing scheme ΠADGH = (SetupADGH,ShareADGH,ReconADGH) with domain
of secrets S is defined as follows

– SetupADGH(1λ): Generates and returns the description of a field F with |F| >
2λ and S ⊂ F as public parameters pp.

– ShareADGH(pp, s): Generates uniformly at random a degree-(m−1) polynomial
h ∈ F[X] constrained by h(0) = s. For each i, j ∈ [n], i �= j, it chooses
uniformly at random Pi’s verification information y

(i)
j ← F and computes

Pj’s corresponding authentication information b
(j)
i , c

(j)
i ∈ F such that c

(j)
i =

b
(j)
i · h(i) + y

(i)
j . For each i ∈ [n], it sets s(i) = (i, h(i)), τ (i) = (y(i)

1 , . . . , y
(i)
n),

and σ(i) = ((b(i)1 , c
(i)
1), . . . , (b(i)n , c

(i)
n)), and returns (s(i), τ (i), σ(i)).

– ReconADGH(pp, y(i), ((j, s(j)), (b(j)i , c
(j)
i))j∈A): Compute set of indices of valid

shares as H =
{

j ∈ A|c(j)i = b
(j)
i · s(j) + y

(i)
j

}
. If |H| < m output ⊥. Other-

wise choose m values (j, s(j)), interpolate the corresponding degree-(m − 1)
polynomial h ∈ F[X], and output h(0).

3.3 Game-Theoretic Notions

In the following we define the game-theoretic notions necessary to model ratio-
nality of participants in a computational setting. These originate mainly from
the survey of Katz [17] but are suitably adapted to our (non-uniform) setting.

Definition 7 (Typed Computational Game). A typed computational game
Γ =

({D(λ)}λ∈N
, (Si)i∈[n], (ui)i∈[n]

)
with n players P1, . . . , Pn consists of

– A set Ti of types for each player Pi and a corresponding ppt-sampleable family
of (input) type distributions {D(λ)}λ∈N

over T×[n].
– A set Si of ppt ITMs with (local) output space Oi ⊆ {0, 1}∗ for each player

Pi.
– A utility function ui for each player Pi which maps security parameter λ,

types (t1, . . . , tn) ∈ T×[n], and (local) ITM outputs (o1, . . . , on) ∈ O×[n] to a
utility in R.

394 J. Blömer et al.

For a given security parameter λ and ITMs (M1, . . . ,Mn), we overload notation
and define the utility ui(1λ, (M1, . . . ,Mn)) = E

[
ui(1λ, t1, . . . , tn, o1, . . . , on)

]
,

where (t1, . . . , tn) ← D(λ) and oi is the output of ITM Mi(1λ, ti) after inter-
acting with all the other ITMs. For a coalition C ⊆ [n] we define utility
uC(1λ, (M1, . . . ,Mn)) :=

∑
i∈C ui(1λ, (M1, . . . ,Mn)), where each ITM Mi, i ∈

C, is run with input (1λ, (ti)i∈C).

In a typed computational game, first the players choose their strategies, i. e.
ITMs. Afterwards, the security parameter is fixed, the types (t1, . . . , tn) are
privately sampled by an external Dealer (in game theory often called Nature),
and each ti is (privately) written on the input tape of Mi which starts the
interaction. Fixing the ITMs before sampling types is of major importance with
respect to types which are based on computationally hard problems.

Utilities in typed computational games depend on the (local) outputs and
sampled types. They are (a-priori) computed as expected value over the sampling
of types, interaction of machines and their final outputs. For a coalition C of
players, we define the utility uC as sum over the parties’ individual utilities
when their ITMs are run on their shared inputs. This reflects the idea that in a
realistic setting parties who form a coalition split up their gains.

With respect to the framework from Definition 7 the notion of t-resilient
equilibria, an adaption of ε-Nash equilibria, serves as first concept to describe
stable strategy profiles.

Definition 8 (t-Resilient Computational Equilibrium). For a typed com-
putational game Γ =

({D(λ)}λ∈N
, (Si)i∈[n], (ui)i∈[n]

)
we call strategy profile

M = (M1, . . . ,Mn) ∈ S×[n] t-resilient computational equilibrium if for all
C ⊆ [n], |C| = t, and all strategies M ′

C ∈ S×C there exists a negligible func-
tion μ such that

uC(1λ,M ′
C ,M−C) ≤ uC(1λ,M) + μ(λ)

For some scenarios the stability of t-resilient equilibria is insufficient and com-
plementary properties are demanded. One such property relies on the dominance
of strategies which we define for typed computational games.

Definition 9 (Dominance in Typed Computational Games). Let typed
computational game Γ =

({D(λ)}λ∈N
, (Si)i∈[n], (ui)i∈[n]

)
. For player Pi a strat-

egy M∗
i ∈ Si weakly dominates M ′

i ∈ Si if

1. “Never non-negligibly worse”: For all M−i ∈ S×−i there exists a negligible
function μ such that

ui(1λ,M∗
i ,M−i) ≥ ui(1λ,M ′

i ,M−i) − μ(λ)

2. “Sometimes significantly better”: There exists a noticeable function p and an
opponent strategy profile M−i ∈ S×−i such that

ui(1λ,M∗
i ,M−i) ≥ ui(1λ,M ′

i ,M−i) + p(λ)

On the Impossibility of Surviving IDoWDS in Rational MPC 395

If the second condition holds for all strategies, then M∗
i strictly dominates

M ′
i . For each player Pi, denote the set of its strictly dominated strategies by

sDOMi(Γ) and its weakly dominated strategies by wDOMi(Γ).

In contrast to Nash equilibria, there does not seem to be a consensus on how
to generalize domination to a setting that includes coalitions. We refer to Sect. 6
for our definition of domination with coalitions.

Note that, essentially, weakly dominated strategies are irrelevant for the
game. No rational player would consider playing them. So conceptually, weakly
dominated strategies can be safely deleted from the pool of considered strategies.
Deleting strategies, however, may render other strategies weakly dominated,
with respect to the reduced strategy sets. So with the same reasoning, those
“new” weakly dominated strategies should be deleted as well. This process leads
to following definition of iterated deletion of weakly dominated strategies.

Definition 10 (Iterated Deletion of Weakly Dominated Strategies).
Let typed computational game Γ 0 =

({D(λ)}λ∈N
, (S0

i)i∈[n], (ui)i∈[n]

)
. For all

i ∈ [n] and j ∈ N define Sj
i := Sj−1

i \ wDOMi(Γ j−1) and Γ j =
({D(λ)}λ∈N

,

(Sj
i)i∈[n], (ui)i∈[n]

)
. Then S∞

×[n]
:=

⋂∞
j=1 Sj

×[n] is the set of strategies which
survives the process of iterated deletion of weakly dominated strategies and
Γ∞ =

({D(λ)}λ∈N
, (S∞

i)i∈[n], (ui)i∈[n]

)
is its corresponding game. A strategy

profile (M1, . . . ,Mn) ∈ S0
×[n] survives the iterated deletion of weakly dominated

strategies, if (M1, . . . ,Mn) ∈ S∞
×[n].

For our upcoming results, it is important to note that any weakly dominated
strategy w.r.t. the original (full) strategy set is deleted in the first iteration and
can never be considered rational to play according to this notion. Indeed, our
results will only focus on the first iteration of iterated deletion, i. e. we generally
show that strategies are weakly dominated from the start (rather than becoming
weakly dominated in later iterations).

In important publications [1,12,14], founding the field of rational secret
reconstruction and rational MPC, a mechanism is only considered “practical” if
it both is a Nash equilibrium and survives the iterated deletion of weakly dom-
inated strategies. Otherwise, playing such a mechanism is arguably irrational.

3.4 Rational Secret Reconstruction

In this section, we define the secret reconstruction game in the spirit of [12] as
an instantiation of a typed computational game (Definition 7). For this, we need
to define the types, allowed strategies, and utility functions.

Definition 11 (Secret reconstruction game with locally verifiable
reconstruction). The secret reconstruction game with family of secret distribu-
tions {S(λ)}λ∈N

over secret domain S, access structure A, secret-sharing scheme
Π = (SetupΠ ,Share,Recon) with locally verifiable reconstruction consists of

396 J. Blömer et al.

– Type distribution D(λ): Sample public parameters pp ← SetupΠ(1λ), secret
s ← S(λ), and shares (s(i), τ (i), σ(i))i∈[n] ← Share(pp, s). Set type ti :=
(pp, (s(i), τ (i), σ(i))).

– A set Si of ppt ITMs with (local) output space S ∪ {⊥}.
– A utility function ui for each player Pi which maps security parameter, secret

s ∈ S, and the parties’ outputs (s1, . . . , sn) ∈ (S ∪ {⊥})n to a utility in R.

Definition 11 models a scenario where players first choose the ITMs they
use for reconstructing the secret which is afterwards shared among them by
an external party. The secrets are sampled according to a publicly known dis-
tribution which depends on the security parameter. This dependence is espe-
cially important if the secret’s length increases with the security parameter, e. g.
when it corresponds to a secret key. Then each player runs their ITM on input
(s(i), τ (i), σ(i)), consisting of the player’s share s(i), local verification information
τ (i), and authentication information σ(i) as in Definition 3. The ITM eventu-
ally outputs a guess for the secret or an error symbol ⊥. After the execution, a
player’s utility depends on the shared secret and the output guesses.

While utility functions might encode anything, previous works [1,12,14,18]
modeled players to prefer learning the (correct) secret over not learning the
secret, and to prefer the others not to learn the (correct) secret.

Definition 12. Let ui be the secret reconstruction utility of player Pi from a
secret reconstruction game (Definition 11). We say ui

– prefers correctness, if there exists a noticeable function p such that for all
λ ∈ N, secrets s ∈ S, and guesses s∗, s′ ∈ (S ∪ {⊥})n with s∗

i = s �= s′
i we

have
ui(1λ, s, s∗) > ui(1λ, s, s′) + p(λ).

– prefers exclusivity, if for all j �= i there exists a noticeable function p such that
for all λ ∈ N, secrets s ∈ S, and guesses s∗, s′ ∈ (S ∪ {⊥})n with s∗

j = s �= s′
j

and s∗
−j = s′

−j we have

ui(1λ, s, s′) > ui(1λ, s, s∗) + p(λ).

If ui prefers both correctness and exclusivity, then we call it natural.

This restriction of utilities, which arguably applies to many real-world appli-
cations, was used to show negative results [1,3,14,20] as well as to construct
protocols being a computational equilibrium [1,12,14,18].

Finally, we restrict the distribution of secrets to be non-trivial to rule out
scenarios where ITMs are able to correctly guess the secret without any inter-
action: The distribution must not be concentrated too much on a single secret.

Definition 13 (Non-trivial secret distribution). A family of secret distri-
butions {S(λ)}λ∈N

over secret domain S is called non-trivial if there exists a
noticeable function p such that for all secrets s ∈ S

Pr[S(λ) = s] < 1 − p(λ).

On the Impossibility of Surviving IDoWDS in Rational MPC 397

4 Weak Domination in Existing Secret Reconstruction
Protocols

In this section we describe several existing strategies from [1,12] which were for-
merly claimed to survive the iterated deletion of weakly dominated strategies in
the secret reconstruction game. Contradicting these claims we construct a coun-
terexample which weakly dominates the original strategies if the initial secret-
sharing scheme is locally verifiable. This counterexample serves as blueprint for
other protocols like [14,18] and provides an intuition for our general results.

The above-mentioned protocols follow the generic pattern depicted in Fig. 3.
We describe this pattern using standard terminology from multiparty computa-
tion, i.e. we use an ideal functionality that has to be replaced by an appropriate
protocol. Using the functionality description allows us to abstract from many
irrelevant details. In accordance with the secret reconstruction game, input ti
for ITM MADGH

i includes public parameters pp and a triple (s(i), τ (i), σ(i)) con-
sisting of share s(i), local verification information τ (i), and authentication infor-
mation σ(i). They assume there is some fake secret ŝ ∈ S which is not in the
support of distribution S of secrets and, therefore, is distinguishable from the
initially shared secret s∗. The main loop always begins with a first phase where
the parties query an ideal functionality Fβ,ŝ (Fig. 4) using their types. Function-
ality Fβ,ŝ first checks consistency and validity of these inputs and, if successful,
returns a fresh round sharing (s(i), τ (i), σ(i)) of either s∗ with probability β or
of ŝ with probability 1 − β. Afterwards MADGH

i sends its round share s(i) and
authentication information σ

(i)
j to each Mj as well as simultaneously obtains

a message parsed as (s(j), σ(j)
i). MADGH

i uses its round verification information
τ (i) to locally reconstruct a corresponding secret. If the reconstruction fails with

Fig. 3. Secret reconstruction strategy generalized from several protocols of [1,12] using
an ideal functionality Fβ,ŝ (Fig. 4) instead of an MPC protocol.

398 J. Blömer et al.

error symbol ⊥, MADGH
i leaves the loop and only listens to any further com-

munication. If the reconstructed secret s∗ does not equal the fake secret ŝ, s∗

is locally output as final guess. Otherwise, the loop’s next round begins. Note,
the protocol makes each Mi correctly output the initially shared secret s∗ in an
expected number of 1/β loop runs.

This protocol pattern randomizes the last round in order to overcome the
problem that “send no/wrong share” weakly dominates “send share” in a fixed
last round. Due to the secret-sharing’s privacy, it is indistinguishable for devi-
ating parties whether the current round’s secret equals the initial secret s∗ or
the fake secret ŝ. When a party deviates such that she makes the reconstruc-
tion either fail with ⊥ or a wrong secret s �= ŝ, the remaining parties stop the
interaction. If this happens in a fake round, which with probability 1 − β is the
case, this stop of interaction acts as punishment as the deviating party obtains
no further information on s∗.

In order to instantiate MADGH
i such that “send no/wrong share” not weakly

dominates “send share”, the secret-sharing scheme, its access structure, and
the parameter β have to be chosen suitably. Depending on the given utilities,
these ingredients have to be chosen such that the expected loss of making the
protocol stop in a fake round outweighs the expected gain of exclusively learning
the secret by deviating in a non-fake round. In short, the punishment deters
active deviations which are observable by the remaining players. This, however,
does not account for local deviations which are not observable. To see this,
consider our counterexample MADGH

i (Fig. 5) which extends strategy MADGH
i

by a simple check at the end of its first loop run. Concretely, MADGH
i checks

whether each other machine sent a specially formatted LEAK-message containing
their share and authentication information. If these values reconstruct to a valid
secret under the initial verification information τ (i), then s∗ is output. MADGH

i

weakly dominates the original approach MADGH
i in certain settings as specified

in following theorem.

Fig. 4. Functionality Fβ,ŝ which, given a consistent and valid sharing of secret s∗,
returns a fresh sharing of s∗ with probability β and of ŝ with probability 1 − β.

On the Impossibility of Surviving IDoWDS in Rational MPC 399

Theorem 1. Let Π = (SetupΠ ,Share,Recon) be a secret-sharing scheme (Def-
inition 3) with perfect privacy (Definition 4). Consider a secret reconstruction
game (Definition 11) for Π, with non-trivial distribution of secrets (Defini-
tion 13) and reconstruction utilities preferring correctness (Definition 12). If Π
has local (n − 1)-verifiability (Definition 5), then for strategy MADGH

i (Fig. 3)
there exists a weakly dominating strategy MADGH

i .

We sketch the proof idea of Theorem1. For more details we refer to the anal-
ogous formal proof of our generalized non-uniform result Theorem2. In order
to weakly dominate MADGH

i (Fig. 3) our constructed strategy MADGH
i (Fig. 5)

has to be 1) noticeably better against at least one opponent strategy but 2)
never more than negligibly worse against any opponent strategy. Regarding 1),
consider strategies M ′

j→i (Fig. 6) which send (LEAK, s(j), σ
(j)
i), i. e. a specially

marked message containing the initial share and authentication information, to
MADGH

i and terminate. With respect to strategies M ′
j→i ITM MADGH

i correctly
parses the incoming messages, reconstructs the initial secret, and outputs it.
Because MADGH

i is not instructed to parse the specific LEAK-format, reconstruc-
tion fails, MADGH

i leaves its loop, and only listens without a correct output.
As we assume correctness-preferring reconstruction utilities, which value correct
outputs with a noticeably higher utility than wrong outputs, requirement 1) is
satisfied. Regarding 2), in comparison to MADGH

i ITM MADGH
i may only deviate

and lead to a worse utility, if the remaining (n − 1)-parties sent shares which
make MADGH

i reconstruct neither the initial secret s∗ nor ⊥ under the initial
τ (i). Assuming local (n−1)-verifiability, this happens with negligible probability
against any ppt strategy M ′

j→i. Hence, compared to MADGH
i , the expected loss

of MADGH
i is at most negligible which satisfies requirement 2).

Fig. 5. Strategy MADGH
i which weakly dominates MADGH

i (Fig. 3).

400 J. Blömer et al.

Fig. 6. Strategies M ′
j→i.

Theorem 1 applies directly to all but one concrete protocol instantiations
and settings of MADGH

i from [1,12], as they use locally (n − 1)-verifiable secret
sharings. In the full version [5], we explain this in detail. Also, we describe
another counterexample for the last missing instantiation [1, Proposition 3].

5 Impossibility Results for Surviving Iterated Deletion
of Weakly Dominated Strategies

As explained in the introduction, the counterexample shown in Sect. 4 can be
counteracted by adding the same first-round check to the honest protocol. How-
ever, informally, one can argue that there are many different checks that simply
expect different encodings of the special first-round message, and not all of them
can be built into a polynomial-time strategy. In this section, we show that in cer-
tain settings, local (n−1)-verifiability and iterated deletion of weakly dominated
strategy (IDoWDS) are provably incompatible. We start with a non-uniform set-
ting in Sect. 5.1 and then discuss other settings in Sect. 5.2.

5.1 Impossibility with Respect to Non-uniform Strategies

We consider the non-uniform setting. We show that for a secret reconstruction
game local (n − 1)-verifiability and iterated deletion of weakly dominated strat-
egy (IDoWDS) are incompatible, i.e. in this setting every non-uniform strategy
is weakly dominated by some other non-uniform strategy. This is formalized
in Theorem 2 and Corollary 1. The only restrictions we need are non-trivial
distributions and correctness-preferring utilities. Recall that for trivial secret
distributions, i.e. distributions that are concentrated on a single secret, secret
reconstruction games are mostly vacuous.

Theorem 2. Let Π = (SetupΠ ,Share,Recon) be a secret-sharing scheme (Def-
inition 3) with perfect privacy (Definition 4). Consider a secret reconstruction
game (Definition 11) for Π, with non-uniform strategies, non-trivial distribu-
tion of secrets (Definition 13), and reconstruction utilities preferring correct-
ness (Definition 12). Let (Mi, ω

′
1, ω

′
2, . . .) be a strategy for the secret reconstruc-

tion game, i.e. a non-uniform ppt ITM. If Π has (non-uniform) local (n − 1)-
verifiability (Definition 5), then there exists another strategy (M∗

i , (ω1, ω2, . . .))
which weakly dominates (Mi, ω

′
1, ω

′
2, . . .) (Definition 9).

On the Impossibility of Surviving IDoWDS in Rational MPC 401

Corollary 1. In the non-uniform setting there exists no strategy profile for the
secret reconstruction game setting described in Theorem2 which survives the
iterated deletion of weakly dominated strategies (Definition 10).

Proof (Theorem 2). In order to prove Theorem 2, given strategy (Mi, ω
′
1, ω

′
2, . . .),

where we from now on drop its auxiliary inputs (ω′
1, ω

′
2, . . .) which are immaterial

to the argument, we define a new strategy (M∗
i , (ω1, ω2, . . .)) as in Fig. 7.

Fig. 7. Improved strategy (M∗
i , (ω1, ω2, . . .))

(M∗
i , (ω1, ω2, . . .)) extends Mi by an additional check whether it obtained

one-time pad encryptions of the original signed shares using the non-uniform keys
ωλ = (ωλ,1, . . . , ωλ,n). Without loss of generality we assume that the messages
mj that Mi receives from other strategies are of the same length as the advice
strings ωλ,j (which in turn have the length of shares). If this is not the case, we
only consider prefixes of mj of the appropriate length. Since (M∗

i , (ω1, ω2, . . .))
in its first step simulates Mi until the end of the communication round, it also
needs the M ′

is advice string as additional input. To simplify notation, we do not
include this in the description of (M∗

i , (ω1, ω2, . . .)).
To prove Theorem 2, first note that (M∗

i , (ω1, ω2, . . .)) (Fig. 7) is ppt. Next,
we show its weak dominance over Mi (Definition 9). We split the proof for com-
putational weak dominance into two Lemmas 1 and 2: On the one hand, we
show that M∗

i achieves at most negligibly less utility than Mi with respect to
any opponent strategy M−i (Lemma 1). On the other hand, we show the exis-
tence of an opponent strategy M−i that achieves noticeably higher utility than
Mi (Lemma 2). Taken together, Lemmas 1 and 2 show that both requirements
of computational weak dominance are satisfied which finishes the proof. ��
Lemma 1. Let (non-uniform) ITM Mi be a strategy for the secret reconstruc-
tion game for a secret sharing scheme Π = (SetupΠ ,Share,Recon) with locally
(n− 1)-verifiable reconstruction and non-uniform strategies. Then for any oppo-
nent strategy profile M−i and strategy (M∗

i , (ω1, ω2, . . .)) (Fig. 7) there exists a
negligible function μ such that for all λ ∈ N

ui(1λ,Mi,M−i) ≤ ui(1λ, (M∗
i , (ω1, ω2, . . .)),M−i) + μ(λ) (1)

402 J. Blömer et al.

Proof. For the sake of contradiction assume that for some (M∗
i , (ω1, ω2, . . .)),

M−i, and all negligible functions μ we have

ui(1λ,Mi,M−i) > ui(1λ, (M∗
i , (ω1, ω2, . . .)),M−i) + μ(λ).

Note that the only deviation of ITM (M∗
i , (ω1, ω2, . . .)) from the original strat-

egy Mi happens within lines 2–4 (Fig. 7). Since, by assumption, reconstruction
utilities prefer correctness, compared to Mi this deviation only decreases utility
if the secret output in line 4 is not correct. In order to decrease utility more
than negligibly, entering line 4 and outputting the wrong secret has to happen
with a non-negligible probability. However, in that case from (M∗

i , (ω1, ω2, . . .))
and M−i we immediately get an adversary violating the local (n−1)-verifiability
property of Π = (SetupΠ ,Share,Recon) (see Definition 3). ��
Lemma 2. Let ITM Mi be a strategy for the secret reconstruction game for
secret sharing scheme Π = (SetupΠ ,Share,Recon) with locally (n − 1)-verifiable
reconstruction and with non-uniform strategies (Definition 11). If the distribu-
tion of secrets is non-trivial (Definition 13) and reconstruction utilities prefer
correctness, then there exist auxiliary strings (ω1, ω2, . . .), an opponent strategy
M−i, and a noticeable function p such that for all λ ∈ N

ui(1λ, (M∗
i , (ω1, ω2, . . .)), (M−i, (ω1, ω2, . . .)))

≥ ui(1λ,Mi, (M−i, (ω1, ω2, . . .))) + p(λ),

where each strategy in profile M−i gets the same sequence of auxiliary strings.

Proof. Consider the opponent strategies (M ′
j→i, (ω1, ω2, . . .)), j �= i, described

in Fig. 8. Together they form the profile M−i.

Fig. 8. Strategies (M ′
j→i, (ω1, ω2, . . .))

The strategies in (M ′
j→i, (ω1, ω2, . . .)) are tailored towards(M∗

i , (ω1, ω2, . . .))
and simply send one-time pad encryptions of their shares to Mi. Obviously, these
are not useful (or rational) strategies but are still relevant for weak domination.

In the following, to ease notation, we exclude the shares verification and
authentication information which are not relevant to the argument itself. Also,
to increase readability, we drop the auxiliary strings from the non-uniform ITMs
(M∗

i , (ω1, ω2, . . .)) and (M ′
j→i, (ω1, ω2, . . .)) when possible.

On the Impossibility of Surviving IDoWDS in Rational MPC 403

For the sake of contradiction assume that for all (ω1, ω2, . . .) and all notice-
able functions p

ui(1λ,M∗
i , (M ′

j→i)j 	=i) < ui(1λ,Mi, (M ′
j→i)j 	=i)) + p(λ). (2)

First note, the strategies M ′
j→i have the fixed output ⊥ irrespective of Mi. There-

fore, against M ′
j→i, the only difference in Mi’s utility originates from the output

of Mi itself. Further, because we assume utilities which prefer correctness, any
output of Mi which is not the correct secret results in noticeably less utility com-
pared to the correct secret. By construction, M∗

i always correctly reconstructs
and outputs the originally shared secret in line 4 when the remaining parties
run M ′

j→i. Therefore, M∗
i achieves the optimal utility with respect to the ITMs

M ′
j→i. Hence, in order to satisfy Eq. (2), strategy Mi has to output the correct

secret with overwhelming probability for all choices of auxiliary strings. By an
averaging argument this also holds when choosing the auxiliary strings uniformly
at random. Formally, there exists a negligible function μ such that

Pr[s ← S(λ), ωλ ← {0, 1}�(λ) : Mi(Share(s) ⊕ ωλ) = s] = 1 − μ(λ).

for all λ ∈ N. We rewrite above equation as

Pr[s ← S(λ), ωλ ← {0, 1}�(λ) : Mi(ωλ) = s] = 1 − μ(λ).

In particular, by the uniform choice of ω the input of Mi is stochastically inde-
pendent of s but Mi still outputs s with overwhelming probability. This, however,
contradicts the non-trivial distribution of secrets because there exists a notice-
able function p such that for any machine M ′, especially Mi, we have

Pr[s ← S(λ), ωλ ← {0, 1}�(λ) : M ′(ωλ) = s] ≤ max
S∈S

Pr[S(λ) = s] < 1 − p(λ).

Concretely, for the negligible function μ and noticeable function p the previous
equations imply relation p(λ) < μ(λ), which for λ large enough is false. ��

5.2 Impossibility with Respect to Other Settings

If we examine the proof above, the main challenge for proving that every strategy
is weakly dominated is coming up with a first-message encoding for which we can
prove that the original strategy does not check it in any way. We mask the first-
round message by XORing with some bit string that is the same for all machines
M ′

j→i, but to which the original strategy has no access. In the non-uniform set-
ting, we essentially prove that a ppt machine cannot check all XOR masks, and
then encode some XOR mask that is not checked in the non-uniform advice string
ω of the counterexample machines (M∗

i , (ω1, ω2, . . .)), (M ′
j→i, (ω1, ω2, . . .)).

Another alternative for getting an XOR mask that is not accessed by the
original strategy Mi presents itself in the random oracle model: If the original
strategy Mi is such that it never queries a random oracle (e.g., any strategy

404 J. Blömer et al.

in the standard model), then in the random oracle model, Mi is weakly dom-
inated by some random oracle model strategy M∗

i . M∗
i works as in the non-

uniform example, but sources the XOR mask from the random oracle (e.g., as
H(1)||H(2)|| . . .). The first-round messages of M ′

j→i do not convey any informa-
tion about the secret at all to the original non-random-oracle strategy.

Other ways are conceivable as well. For example, assume that the dealer
extends each party’s type ti by some shared random bit string ω or there is
some common reference string that we know is ignored by the original machine
Mi (e.g., if Mi is a subprotocol in a larger protocol).

6 Impossibility of Rational Mechanisms for Majority
Coalitions

In many cases, we not only want to look at individual rational actors, but also
design mechanisms that are rational to follow for coalitions of actors [1]. So
instead of standard (computational) Nash equilibria, in the coalition setting
one considers t-resilient computational equilibria (Definition 8). Even though it
seems not to have been done in the literature [1], we argue that in order to
properly take coalitions into account, one must also account for coalitions when
considering weak domination of strategies.

In this section, we provide evidence that there cannot be any reasonable
secret-reconstruction mechanism that for coalitions of size t ≥ n/2 is both (1)
a t-resilient computational Nash equilibrium and (2) in some sense “t-resilient
against weak domination”, i.e. there is no t-coalition strategy that is sometimes
(significantly) better (against some strategy of the non-coalition members) and
never (non-negligibly) worse. This seems to be true as long as the secret-sharing
scheme is verifiable-or-fully-broken (Definition 15), which is the case for the most
popular secret-sharing schemes. We formally prove impossibility for those secret-
sharing schemes and non-uniform strategies (so that we can apply a version of
Theorem 2), but the result also generalizes to the settings discussed in Sect. 5.2
and intuitively, as argued in the introduction, similar results should apply to any
reasonable concrete protocol with uniform strategies.

Intuitively, a mechanism designer has the choice between two options regard-
ing authentication of the secret-sharing: The first option is to make the secret-
sharing scheme very well authenticated, so that n − t parties cannot convince t
honest parties of a wrong secret. But then any (t-coalition) strategy is weakly
dominated similar to Sect. 5, as the strategy that applies a share verification
check to (some encoding of) the first-round messages can be sure that if the
check succeeds, it outputs the correct secret. The alternative option is to make
the secret-sharing scheme not as well authenticated, so that a coalition of n − t
parties can convince someone of a wrong secret. But in that case, no strategy can
be a (n − t)-resilient Nash equilibrium because it is always better for a coalition
of n − t parties to deviate to convince the other parties of a wrong secret. But
if a strategy is not a (n − t)-resilient Nash equilibrium, then it also cannot be
a t-resilient Nash equilibrium because t ≥ n − t for t ≥ n/2. Overall, no matter

On the Impossibility of Surviving IDoWDS in Rational MPC 405

whether authentication is chosen to be strong or weak, you get a problem with
either weak domination or Nash equilibria.

To prove this, we first introduce a notion of weak domination for coalitions
in Sect. 6.1, then go on to explain our assumption on the possible secret-sharing
schemes in Sect. 6.2, and finally prove the impossibility result in Sect. 6.3.

6.1 Weak Domination for Coalitions

First, we generalize the notion of weakly dominated strategies to weakly domi-
nated strategies with respect to coalitions. While definitions of Nash equilibria
with respect to coalitions (Definition 8) are widely available, it seems a similar
generalization for weak domination is much less standard. For Nash equilibria, it
is argued that if coalitions form, they may have an incentive to deviate from the
prescribed mechanism in order to improve their utility. We argue that similarly,
for weak domination with coalitions, it is reasonable for a coalition to devi-
ate from the mechanism because there is an alternative coalition strategy that
is never (non-negligibly) worse than the mechanism, but is (noticeably) better
against some strategies of the non-coalition parties. We generalize Definition 9
for coalitions as follows.

Definition 14 (Dominance with coalition C). Let typed computational
game Γ =

({D(λ)}λ∈N
, (Si)i∈[n], (ui)i∈[n]

)
and C ⊆ [n]. A partial strategy

M∗
C ∈ S×C weakly dominates M ′

C ∈ S×C with respect to coalition C if

1. “Never non-negligibly worse”: For all M−C ∈ S×−C, there exists a negligible
function μ such that

uC(1λ,M∗
C ,M−C) ≥ uC(1λ,M ′

C ,M−C) − μ(λ)

2. “Sometimes significantly better”: There exists a noticeable function p and a
partial opponent strategy M−C ∈ S×−C

uC(1λ,M∗
C ,M−C) ≥ uC(1λ,M ′

C ,M−C) + p(λ)

where uC is defined as in Definition 7. We say that the coalition strategy M ′
C ∈

S×C is weakly dominated if there is some M∗
C that weakly dominates it.

The original non-coalition definition (Definition 9) is the special case with |C| =
1. We omit a definition of iterated deletion of weakly dominated strategies with
respect to coalitions (it is not actually clear what that should look like, but it
also is not necessary to our argument).

Theorem 2 can be generalized to coalitions as follows.

Theorem 3. Let Π = (SetupΠ ,Share,Recon) be a secret-sharing scheme (Def-
inition 3) with perfect privacy (Definition 4). Consider a secret reconstruction
game (Definition 11) for Π, with non-uniform strategies, non-trivial distribu-
tion of secrets (Definition 13), and reconstruction utilities preferring correctness
(Definition 12). Let C ⊂ [n], t = |C|, and let MC = (Mi)i∈C be some par-
tial non-uniform strategy profile. If Π has (non-uniform) local n − t-verifiability
(Definition 5), then there exists a non-uniform partial strategy profile M∗

C that
weakly dominates MC (Definition 14).

406 J. Blömer et al.

Proof (sketch). Given partial strategy profile MC = (Mi)i∈C , define partial
strategy profile M∗

C as follows. Choose i ∈ C arbitrarily. Then M∗
C consists

of (M∗
i , (ω1, ω2, . . .)) and strategies Mj , j ∈ C \ {i}. The rest of the proof is as

the proof for Theorem 2. ��

6.2 An Assumption on the Secret-Sharing Scheme

For the results in this section, we require the secret-sharing scheme to have a
specific property. Namely, we want that for any number k of corrupted shares, it
must be either (1) infeasible to circumvent authentication (meaning it has local
k-verifiability as in Definition 5), or (2) very easy to circumvent authentication
in the following sense: Manipulating the k corrupted shares results in a sharing
of a different secret s′ related to the original secret s∗ (even if the k parties may
not be able to reconstruct s∗ from their shares). Then given the related secret
s′, it must be easy to find s∗. For example, for an additive (xor) secret-sharing,
the process (2) can be accomplished by incrementing some corrupted share by
1, which results in a secret s′ = s∗ +1, so given s′, it is easy to retrieve s∗. There
must not be an in-between where authentication is broken against k parties, but
it also is not possible for k parties to both change the sharing to a different secret
and then reliably infer the real secret.

Definition 15 (Verifiable-or-fully-broken secret sharing schemes). Let
Π be a secret-sharing scheme (Definition 3) for n parties. We say that Π is
verifiable-or-fully-broken (for secret distributions S(1λ)) if for all k ∈ [1, n − 1],
Π has local k-verifiability, or there is a C ⊆ [n], |C| = k and a deterministic
polynomial-time algorithm A such that Pr[ForgeRelS,C

A,Π(λ) = 1] ≥ 1 − μ(λ) for
some negligible function μ, where ForgeRelS,C

A,Π is as in Fig. 9.

Fig. 9. Experiment for fully breaking verification of secrets for secret-sharing scheme
Π with respect to deterministic adversary A, set C ⊂ [n] of corrupted parties, and
family of secret distributions S.

This definition covers many standard schemes (c. f. examples in [5, Sect. 6])
which are widely used and arguably the most relevant ones. Note that Shamir’s

On the Impossibility of Surviving IDoWDS in Rational MPC 407

secret sharing for threshold m ≤ n/2 does not fall under this, but that case is
less interesting in our setting because a coalition of k > n/2 can then reconstruct
the secret without any interaction (in particular, if used for sharing secrets in
multiparty computation, the coalition would be able to see all of it).

6.3 Proving Impossibility

We are now ready to prove the following theorem.

Theorem 4. Let Π be a secret-sharing scheme (Definition 3) with perfect pri-
vacy (Definition 3) that is verifiable-or-fully-broken (Definition 15) for secret dis-
tributions S. Consider the secret reconstruction game for secret sharing scheme
Π with non-uniform strategies, non-trivial distribution of secrets S (Defini-
tion 13), and reconstruction utilities preferring correctness and exclusivity (Def-
inition 12). Let t ≥ n/2. Then there exists no mechanism with the following
properties:

– If everyone follows the mechanism, the correct secret is reconstructed with
probability 1.

– The mechanism is a t-resilient Nash equilibrium (Definition 8).
– There is no coalition C ⊆ [n], |C| = t such that MC is weakly dominated

(Definition 14).

Overall, this indicates that for most typical secret-sharing schemes, there is no
pleasing mechanism that could be considered fully “rational”. In contrast to
Sect. 5, Theorem 4 does not assume that the secret sharing needs to be authen-
ticated (but rather shows that whether or not authentication is applied, both
cases run into rational issues).

For the proof, there are two cases, similar to how we argued at the beginning
of this section: (1) if the secret sharing scheme Π has (non-uniform) local n − t-
verifiability (Definition 5), then every mechanism is t-weakly dominated (because
of Theorem 3). Otherwise (2) the secret sharing scheme does not have local
n − t verifiability. Then it also does not have local t ≥ n − t verifiability. Then
Definition 15 gives us an adversary A that manipulates the coalition shares,
altering the shared secret from s∗ to some s′ �= s∗ (for the non-coalition parties),
and can output the correct s∗ for the coalition parties. We use A to construct
a coalition strategy with better utility than the mechanism, meaning that the
mechanism is not a t-resilient computational Nash equilibrium.

Proof. Theorem 4 follows from Theorem 3 for the case that Π has (non-uniform)
local n − t-verifiability, and from Lemma3 in the other case. ��
Lemma 3. In the setting of Theorem4, assume Π does not have (non-uniform)
local t-verifiability. Then no mechanism (M1, . . . ,Mn) ∈ S×[n] is a t-resilient
computational Nash equilibrium.

408 J. Blömer et al.

Fig. 10. Improved strategy M∗
i for coalition member i ∈ C

Proof. Let M = (M1, . . . ,Mn) be a mechanism. Let C and A be as in Defini-
tion 15, C ⊆ [n], |C| = t. Let (M∗

i)i∈C be as in Fig. 10.
Consider a run of strategies ((M∗

i)i∈C , (Mi)i/∈C) from the point of view of the
coalition strategies M∗

i . If A outputs manipulated shares that are possible output
of Share(pp, s′) for some secret s′, the result of the honestly run mechanism
will be s′. This is because all the coalition members get the same output from
the deterministic A, and the honestly executed mechanism always succeeds in
reconstructing the input shared secret (in this case the manipulated one).

That means that from the point of view of A, everything is exactly as in
ForgeRelS,C

A,Π(λ). So that with overwhelming probability, the coalition members
output the right secret s∗ = sguess and the non-coalition members output a wrong
secret s′ �= s∗. Because parties prefer exclusivity, it follows that the coalition
utility

∑
i∈C ui(1λ, (M∗

i)i∈C ,M−C) with the strategies M∗
i is noticeably larger

than the coalition utility
∑

i∈C ui(1λ,M) for the mechanism (where everyone
learns the correct secret). Hence M is not a t-resilient Nash equilibrium. ��

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able feedback and constructive comments.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets
game theory: robust mechanisms for rational secret sharing and multiparty compu-
tation. In: Proceedings of the 25th Annual Symposium on Principles of Distributed
Computing, PODC, pp. 53–62. ACM (2006)

2. Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure
computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
426–445. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-
4 24

3. Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret
sharing. J. Cryptol. 24(1), 157–202 (2011)

4. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC
2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20901-7 2

https://doi.org/10.1007/978-3-642-20465-4_24
https://doi.org/10.1007/978-3-642-20465-4_24
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2

On the Impossibility of Surviving IDoWDS in Rational MPC 409

5. Blömer, J., Bobolz, J., Bröcher, H.: On the impossibility of surviving (iterated)
deletion of weakly dominated strategies in rational MPC. Cryptology ePrint
Archive, Paper 2022/1762 (2022)

6. Chung, K.-M., Chan, T.-H.H., Wen, T., Shi, E.: Game-theoretic fairness meets
multi-party protocols: the case of leader election. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 3–32. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84245-1 1

7. Chung, K.-M., Guo, Y., Lin, W.-K., Pass, R., Shi, E.: Game theoretic notions of
fairness in multi-party coin toss. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018.
LNCS, vol. 11239, pp. 563–596. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03807-6 21

8. Dodis, Y., Halevi, S., Rabin, T.: A cryptographic solution to a game theoretic prob-
lem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 7

9. Dodis, Y., Rabin, T.: Cryptography and game theory. In: Algorithmic Game The-
ory, pp. 181–207 (2007)

10. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard
communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
419–436. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-
2 25

11. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proceedings of the
19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)

12. Gordon, S.D., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006).
https://doi.org/10.1007/11832072 16

13. Groce, A., Katz, J.: Fair computation with rational players. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 7

14. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation:
extended abstract. In: Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, pp. 623–632. ACM (2004)

15. Hillas, J., Samet, D.: Dominance rationality: a unified approach. Games Econ.
Behav. 119, 189–196 (2020)

16. Hubáček, P., Nielsen, J.B., Rosen, A.: Limits on the power of cryptographic cheap
talk. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 277–
297. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 16

17. Katz, J.: Bridging game theory and cryptography: recent results and future direc-
tions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 15

18. Kol, G., Naor, M.: Cryptography and game theory: designing protocols for exchang-
ing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 18

19. Kol, G., Naor, M.: Games for exchanging information. In: Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, pp. 423–432 (2008)

20. Lysyanskaya, A., Triandopoulos, N.: Rationality and adversarial behavior in multi-
party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–
197. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 11

21. Manshaei, M.H., Zhu, Q., Alpcan, T., Bacşar, T., Hubaux, J.P.: Game theory meets
network security and privacy. ACM Comput. Surv. (CSUR) 45(3), 1–39 (2013)

https://doi.org/10.1007/978-3-030-84245-1_1
https://doi.org/10.1007/978-3-030-84245-1_1
https://doi.org/10.1007/978-3-030-03807-6_21
https://doi.org/10.1007/978-3-030-03807-6_21
https://doi.org/10.1007/3-540-44598-6_7
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/11832072_16
https://doi.org/10.1007/978-3-642-29011-4_7
https://doi.org/10.1007/978-3-642-40041-4_16
https://doi.org/10.1007/978-3-540-78524-8_15
https://doi.org/10.1007/978-3-540-78524-8_18
https://doi.org/10.1007/11818175_11

410 J. Blömer et al.

22. Rabin, T.: Robust sharing of secrets when the dealer is honest or cheating. J. ACM
41(6), 1089–1109 (1994)

23. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pp. 73–85. ACM (1989)

24. Samuelson, L.: Dominated strategies and common knowledge. Games Econ. Behav.
4(2), 284–313 (1992)

25. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
26. Stahl, D.O.: Lexicographic rationalizability and iterated admissibility. Econ. Lett.

47(2), 155–159 (1995)
27. Wu, K., Asharov, G., Shi, E.: A complete characterization of game-theoretically

fair, multi-party coin toss. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022. LNCS, vol. 13275, pp. 120–149. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-06944-4 5

https://doi.org/10.1007/978-3-031-06944-4_5
https://doi.org/10.1007/978-3-031-06944-4_5

Synchronizable Fair Exchange

Ranjit Kumaresan1 , Srinivasan Raghuraman2(B) , and Adam Sealfon3

1 Visa Research, Austin, USA
2 Visa Research and MIT, Cambridge, USA

srini131293@gmail.com
3 Google Research, San Francisco, USA

Abstract. Fitzi, Garay, Maurer, and Ostrovsky (J. Cryptology 2005)
showed that in the presence of a dishonest majority, no primitive of car-
dinality n−1 is complete for realizing an arbitrary n-party functionality
with guaranteed output delivery. In this work, we introduce a new 2-party
primitive FSyX (“synchronizable fair exchange”) and show that it is com-
plete for realizing any n-party functionality with fairness in a setting
where all parties are pairwise connected by instances of FSyX.

In the FSyX-hybrid model, the two parties load FSyX with some input,
and following this, either party can trigger FSyX with a “witness” at a
later time to receive the output from FSyX. Crucially the other party also
receives output from FSyX when FSyX is triggered. The trigger witnesses
allow us to synchronize the trigger phases of multiple instances of FSyX,
thereby aiding in the design of fair multiparty protocols. Additionally, a
pair of parties may reuse a single a priori loaded instance of FSyX in any
number of multiparty protocols (involving different sets of parties). (The
authors grant IACR a non-exclusive and irrevocable license to distribute
the article under the https://creativecommons.org/licenses/by-nc/3.0/),
(This work was done in part while all the authors were at MIT).

Keywords: secure computation · fair exchange · completeness ·
preprocessing

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually mistrusting par-
ties to perform a joint computation on their inputs that reveals only the outcome
of the computation and nothing else. Showing feasibility [7,13,22,34,37] of this
seemingly impossible to achieve notion has been one of the most striking con-
tributions of modern cryptography. However, definitions of secure computation
do vary across models, in part owing to the general impossibility results for fair
coin-tossing [15]. In settings where the majority of the participating parties are
dishonest (including the two party setting), a protocol for secure computation
only provides security-with-abort, and in particular is not required to guaran-
tee important properties such as guaranteed output delivery or even fairness1.
1 Fairness means that either all parties get the output or none do. Guaranteed output

delivery means that all parties get the output.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 411–440, 2023.
https://doi.org/10.1007/978-3-031-48615-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_15&domain=pdf
http://orcid.org/0009-0004-2128-1734
http://orcid.org/0000-0001-6737-6991
http://orcid.org/0000-0002-3860-223X
https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1007/978-3-031-48615-9_15

412 R. Kumaresan et al.

On the other hand, when up to t < n/3 parties are corrupt, then there exist
protocols for n-party secure computation that guarantee output delivery [7,13].
This result can be extended to a setting where up to t < n/2 parties are corrupt
assuming the existence of a broadcast channel [22,34].

Given the state of affairs, there has been extensive research to better under-
stand the problem of fairness and guaranteed output delivery in secure computa-
tion in setting where t ≥ n/2. For instance, while Cleve [15] showed that dishon-
est majority fair coin tossing is impossible, several works [3,4,23,25] showed the
existence of non-trivial functions for which fair secure computation is possible
in the dishonest majority setting.

Most relevant to our work is the work of Fitzi, Garay, Maurer, and Ostrovsky
[18] who studied complete primitives for secure computation with guaranteed
output delivery. They showed that no ideal primitive of cardinality2 n − 1 is
complete for n-party secure computation. More generally, for n ≥ 3 and k < n,
they show that no primitive of cardinality k is complete when t ≥ �k−1

k+1 · n�.
It follows that when t ≥ �n/3�, no primitive of cardinality 2 is complete for
secure computation. Also, when t ≥ n − 2, no primitive of cardinality k < n is
complete for secure computation. They also show a primitive of cardinality n
that is complete for n-party secure computation when t ≥ n − 2.

It is interesting to note that the above impossibility results are derived in
[18] by showing the impossibility of broadcast given a primitive of cardinality
k.3 Recently, Cohen and Lindell [16] showed that the presence of a broadcast
channel is inconsequential to achieving the goal of fairness, i.e., they showed that
any protocol for fair computation that uses a broadcast channel can be compiled
into one that does not use a broadcast channel. They also showed that assuming
the existence of a broadcast channel, any protocol for fair secure computation
can be compiled into one that provides guaranteed output delivery. Importantly,
all these transformations only require primitives of cardinality 2.

Given the above, one wonders whether the impossibility result of [18] can be
bypassed if we restrict our attention to fair secure computation alone. Gordon
et al. [24] propose primitives that are complete for fair MPC.4 The upside of
these primitives is that unlike [18], their primitive complexity is independent of
the function being computed. However, these primitives are still n-wise primi-
tives, and thus do not answer the question of whether a primitive of cardinality
n − 1 can be complete for n-party fair secure computation.

Our Contributions. In this work, we introduce a new 2-party primitive FSyX

(“synchronizable fair exchange,” or simply “synchronizable exchange”) and show
2 Cardinality refers to the number of parties interacting with a single instance of the

ideal primitive.
3 Although unstated in [18], we believe that their lower bound proof extends even for

reactive functionalities. That is, no (n − 1)-wise reactive functionality is sufficient
to realize broadcast (and consequently, secure computation with guaranteed output
delivery).

4 In fact, some of their primitives are also complete for secure computation with guar-
anteed output delivery.

Synchronizable Fair Exchange 413

that it is complete for realizing any n-party functionality with fairness in a
setting where all n parties are pairwise connected by independent instances of
FSyX.5 Additionally, a pair of parties may reuse a single instance of FSyX in any
number of multiparty protocols, possibly involving different sets of parties.

Synchronizable exchange FSyX is a two-party symmetric primitive which is reac-
tive (like the commitment functionality Fcom [10]) and works in two phases. In
the first phase, which we call the load phase, parties submit their private inputs
x1, x2 along with public inputs (f1, f2, φ1, φ2). Here f1, f2 are possibly random-
ized functions6, and φ1, φ2 are Boolean predicates. The public input must be
submitted by both parties, and the submitted values must match. Upon receiv-
ing these inputs, FSyX computes f1(x1, x2) and delivers the respective outputs
to both parties. Next, in the trigger phase, which can be initiated at any later
time after the load phase, party Pi can send a “witness” wi to FSyX following
which FSyX checks if φi(wi) = 1. If that is indeed the case, then FSyX computes
f2(x1, x2, wi) and delivers the respective outputs along with wi to both parties.
We stress that FSyX guarantees that both parties get the output of f2. We state
our main theorem.

Theorem 1 (informal). Assuming the existence of enhanced trapdoor permu-
tations, there exists a two-phase two-party functionality which is complete for
fair secure multiparty computation.

To use multiple pairwise instances of synchronizable exchange to achieve n-
wise fair secure computation, the main idea is to keep different instances of FSyX

“in sync” with each other throughout the protocol execution. That is, we need
to ensure that all pairwise FSyX instances are, loosely speaking, simultaneously
loaded, and if so, simultaneously triggered. Ensuring this in the presence of byzan-
tine adversaries is somewhat tricky, and we outline our techniques below.

Reduction to Fair Reconstruction. First, we let parties run an (unfair) MPC
protocol for a function f that accepts parties’ inputs and computes the function
output, then computes secret shares of the function output, and then computes
commitments on these secret shares. The MPC protocol outputs to all parties the
set of all commitments, and to each individual party the corresponding share of
the function output. Since the MPC protocol itself does not guarantee fairness,
it may be that some honest party does not receive the output. In that case,
all parties terminate and abort the protocol, and no party learns the function
output. If the protocol has not terminated, then all that is left to perform a
fair reconstruction of the function output from the secret shares. The above

5 The primitive complexity of FSyX is independent of the function that is fairly com-
puted. As mentioned before, this was the case with the primitives proposed by [24],
but not [18].

6 While we introduce FSyX in terms of arbitrary functions f1, f2, our (strongest) results
can be obtained by, loosely speaking, setting f1(x1, x2) = (v1 ⊕ x1, v2 ⊕ x2) for
randomly chosen v1, v2, and f2(x1, x2, w; v1, v2) = Hash(v1 ⊕ v2‖w) (see Sect. 5).

414 R. Kumaresan et al.

technique of reducing fair computation of a function to fair reconstruction of a
(non-malleable) additive secret sharing scheme is a well-known technique [24].

Synchronization via Trigger Conditions. The commitments generated in the
above step are used to define the trigger conditions, specifically the trigger wit-
ness must include (among other things) openings to the commitments (i.e., the
secret shares). That is, each pair of parties initiate the load phase with their
FSyX instance. We will need to ensure that the protocol proceeds only if all FSyX

instances were loaded. To do this, we let the load phase of each FSyX instance to
output a receipt (think of these as signatures on some special instance-specific
message) that indicates that the FSyX instance has been loaded. (Note that by
[16], we can assume a broadcast channel while developing our protocol, and then
use their compiler to remove the broadcast channel from our protocol. Note that
such a broadcast channel can be used to set up a temporary PKI among the
participants.) Following this parties broadcast to all other parties the receipts
they have obtained in the load phase. In an honest execution, at the end of this
broadcast step, each party would possess receipts from every pairwise FSyX. On
the other hand, corrupt parties may not broadcast some receipts, resulting in a
setting where corrupt parties possess all receipts, but honest parties do not.

To maintain that FSyX instances remain in sync, we let the trigger conditions
ask for all receipts (each individual FSyX instance can verify these load receipts
using, e.g., digital signature verification). This way, we ensure that any FSyX

instance can be triggered only if all FSyX instances were loaded. Recall that by
definition, FSyX outputs the trigger witness along with the output of f2. This in
turn ensures that if, say an FSyX instance between Pi and Pj was triggered by Pi,
then Pj would obtain the load receipts which it can then use as part of trigger
witnesses for other FSyX instances associated with Pj . Finally, because parties
only receive additive secret shares of the output, to get the final output the
adversary will need to trigger at least one FSyX instance associated with an honest
party. The ideas outlined above ensures that honest party (and consequently
every honest party) will be able to continue triggering other FSyX instances
associated with it, and obtain the final output. An additional detail to note is
that in our constructions, we let the Boolean predicates φ1, φ2 depend on time.
This is required to ensure termination of our protocols (i.e., force a time limit on
when the adversary must begin triggering the FSyX instances to obtain output).
Therefore, in the terminology of [32], our functionality FSyX is clock-aware. The
techniques we use to ensure termination may be reminiscent of techniques used
in the design of broadcast protocols from point-to-point channels in the dishonest
majority setting [17].

Complexity, Preprocessing, and Assumptions. The complexity of FSyX is the
sum of the complexities of the functions f1, f2, and the predicates φ1, φ2. In our
construction of n-party fair secure computation of an n-input function f whose
output length is �out, the complexity of each FSyX instance is O(n2λ�out) (λ
denotes the security parameter) and is otherwise independent of the size of the
function that is being computed. With additional assumptions, specifically with

Synchronizable Fair Exchange 415

a non-interactive non-committing encryption [31] (alternatively, a programmable
random oracle), the use of FSyX can be preprocessed in a network-independent
manner to support any number of executions.7 That is, a pair of parties can
preprocess an instance of FSyX by loading it once, and then reusing it across
multiple independent (possibly concurrent) executions of secure computation
involving different sets of parties. Of course, to enable this type of preprocess-
ing, we rely on a variant of FSyX which can be triggered multiple times (but
loaded only once). In this case, the complexity of f1 is O(λ), while the complex-
ity of f2 is O(nλ) per trigger invocation, and the complexities of φ1, φ2 would
be O(nλ) per trigger invocation for a protocol involving n parties. Thus, assum-
ing preprocessing, the total communication complexity of FSyX invocations is
O(n3λ) (i.e., O(n2) invocations of O(nλ) each). We emphasize that in the pre-
processing setting, FSyX need not be triggered when the protocol participants
behave honestly.

Theorem 2 (informal). Let λ be a computational security parameter. Assum-
ing the existence of enhanced trapdoor permutations, for every n ≥ 2, there exists
a two-phase two-party primitive which is complete for fair secure n-party com-
putation of any n-input function f whose output length is �out such that for each
instance of the primitive it holds that

– in the standard model, the complexity of the first phase is O(n2λ�out) and
the complexity of the second phase is O(nλ), and

– in the programmable random oracle model, the complexity of the first phase is
O(λ) and the complexity of the second phase is O(nλ), and the inputs/outputs
to the primitive are independent of the function f .

Relationship to Other Primitives. [18] investigate a number of interesting primi-
tives that are complete for secure computation with guaranteed output delivery
for various parameter regimes. (See [18] for a discussion of complete primitives
for secure computation with abort.) For t < n/3, they identify secure channels
(with cardinality 2) as a complete primitive. For t < n/2, they identify two com-
plete primitives converge cast and oblivious cast. Both these have cardinality 3.
For t < n, they identify universal black box (UBB) as a complete primitive of
cardinality n. Note that unlike FSyX, the complexity of UBB is proportional to
the complexity of f . Improving on this, [24] show fair reconstruction of a non-
malleable secret sharing scheme as a complete primitive of cardinality n, whose
complexity is independent of the function being computed. In addition, [24] inves-
tigate the power of primitives that guarantee fairness but are restricted in other
ways. For instance, they study fair coin flipping and simultaneous broadcast,
and show that neither is complete for fair computation. Note that simultaneous
broadcast was shown in [27] to be complete for partial fairness [26]. None of the
primitives discussed in [18,24] are reactive. A well-known example of a reactive

7 Preprocessing for a bounded number of executions may be achieved by assuming
only receiver non-committing encryption [11].

416 R. Kumaresan et al.

functionality which is complete for (unfair) UC secure MPC is the two-phase
two-party UC commitment functionality Fcom [12].

Timed commitments [9] (and numerous related works such as [19,21]) can
be used to enable a fair exchange of digital signatures, fair auctions, and more
under a somewhat non-standard security notion. Other works with similar secu-
rity notions that consider fairness in secure computation include [20,32,33] (see
also numerous references therein). Another line of research investigates the use
of physical/hardware assumptions to enforce fairness. For example, [30] relies
on physical envelopes which provide some form of synchronizability. There are
numerous works in the optimistic model (cf. [5,6] and several follow-up works)
that minimize the use of a trusted third party to restore fairness when breached.
Another line of research [1,2,8] investigates a non-standard notion of fair secure
computation where participants who do not obtain output are instead compen-
sated monetarily (via cryptocurrency).

Recent work [14,36] (following [32]) has shown that fair secure computation is
possible assuming the existence of trusted execution environments (alternatively,
witness encryption [14]) and a bulletin board abstraction (or blockchain) to
which all parties have read/write access. In these works, the bulletin board
can be interpreted as a cardinality n primitive that helps in synchronizing the
trusted execution environments. While not the focus of our work, we note that
ideas similar to [14,36] may help to implement FSyX using trusted execution
environments (e.g., Intel SGX) and a bulletin board abstraction.

Remarks. Note that our functionality FSyX is both reactive and clock-aware.
One may wonder which, if not both, of these properties are essential. It has
been shown in [35] that non-reactive functionalities of cardinality smaller than
n do not suffice for fair multiparty coin tossing, thus answering an important
question regarding the design of our functionality FSyX. Indeed, FSyX must be
reactive. We leave open the requirement of clock-awareness. We conjecture that
non-clock-aware functionalities of cardinality smaller than n (whether reactive
or not), for e.g., two-wise coin tossing, two-wise simultaneous exchange, etc.,
do not suffice for fair multiparty coin tossing. However, we would also like to
note that we require clock-awareness only to ensure termination of the protocol
(an implicit requirement), not privacy or fairness, making the answer to the
question of whether clock-awareness is needed, perhaps more nuanced than one
would initially presume.

2 Preliminaries

2.1 Secure Computation

We recall most of the definitions regarding secure computation from [23] and
[16]. We present them here for the sake of completeness and self-containedness.

Synchronizable Fair Exchange 417

Consider the scenario of n parties P1, . . . , Pn with private inputs x1, . . . , xn ∈ X 8.
We denote x = (x1, . . . , xn) ∈ X n.

Functionalities. A functionality f is a randomized process that maps n-tuples
of inputs to n-tuples of outputs, that is, f : X n → Yn. We write f = (f1, . . . , fn)
if we wish to emphasize the n outputs of f , but stress that if f1, . . . , fn are
randomized, then the outputs of f1, . . . , fn are correlated random variables.

Adversaries. We consider security against static t-threshold adversaries, that
is, adversaries that corrupt a set of at most t parties, where 0 ≤ t < n9. We
assume the adversary to be malicious. That is, the corrupted parties may deviate
arbitrarily from an assigned protocol.

Model. We assume the parties are connected via a fully connected point-to-
point network; we refer to this model as the point-to-point model. We sometimes
assume that the parties are given access to a physical broadcast channel in addi-
tion to the point-to-point network; we refer to this model as the broadcast model.
The communication lines between parties are assumed to be ideally authenti-
cated and private (and thus an adversary cannot read or modify messages sent
between two honest parties). Furthermore, the delivery of messages between
honest parties is guaranteed. We sometimes assume the parties are connected
via a fully pairwise connected network of oblivious transfer channels in addi-
tion to a fully connected point-to-point network; we refer to this model as the
OT-network model. We sometimes assume that the parties are given access to a
physical broadcast channel in addition to the complete pairwise oblivious trans-
fer network and a fully connected point-to-point network; we refer to this model
as the OT-broadcast model.

Protocol. An n-party protocol for computing a functionality f is a protocol
running in polynomial time and satisfying the following functional requirement: if
for every i ∈ [n], party Pi begins with private input xi ∈ X , then the joint distri-
bution of the outputs of the parties is statistically close to (f1(−→x), . . . , fn(−→x)).
We assume that the protocol is executed in a synchronous network, that is,
the execution proceeds in rounds: each round consists of a send phase (where
parties send their message for this round) followed by a receive phase (where
they receive messages from other parties). The adversary, being malicious, is
also rushing which means that it can see the messages the honest parties send
in a round, before determining the messages that the corrupted parties send in
that round.

8 Here we have assumed that the domains of the inputs of all parties is X for simplicity
of notation. This can be easily adapted to consider setting where the domains are
different.

9 Note that when t = n, there is nothing to prove.

418 R. Kumaresan et al.

Security with Fairness. The security of a protocol is analyzed by comparing
what an adversary can do in a real protocol execution to what it can do in an
ideal scenario that is secure by definition. This is formalized by considering an
ideal computation involving an incorruptible trusted party to whom the parties
send their inputs. The trusted party computes the functionality on the inputs
and returns to each party its respective output. Loosely speaking, a protocol is
secure if any adversary interacting in the real protocol (where no trusted party
exists) can do no more harm than if it were involved in the above-described ideal
computation.

Execution in the Ideal Model. The parties are P1, . . . , Pn, and there is an adver-
sary A who has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n]
the set of indices of the parties corrupted by A. An ideal execution for the
computation of f proceeds as follows:

– Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary
A receives an auxiliary input z.

– Send inputs to trusted party: The honest parties send their inputs to the
trusted party. The corrupted parties controlled by A may send any values of
their choice. In addition, there exists a special abort input. Denote the inputs
sent to the trusted party by x′

1, . . . , x
′
n.

– Trusted party sends outputs: If x′
i 	∈ X for any i ∈ [n], the trusted

party sets x′
i to some default input in X . If there exists an i ∈ [n] such

that x′
i = abort, the trusted party sends ⊥ to all the parties. Otherwise, the

trusted party chooses r uniformly at random, computes zi = f i(x′
1, . . . , x

′
n; r)

for every i ∈ [n] and sends zi to Pi for every i ∈ [n].
– Outputs: The honest parties output whatever was sent by the trusted party.

The corrupted parties output nothing and A outputs an arbitrary (proba-
bilistic polynomial-time computable) function of its view.

We let Idealfairf,I,S(z)(
−→x , λ) be the random variable consisting of the output

of the adversary and the output of the honest parties following an execution in
the ideal model described above.

Execution in the Real Model. We next consider the real model in which an n-
party protocol π is executed by P1, . . . , Pn (and there is no trusted party). In
this case, the adversary A gets the inputs of the corrupted party and sends all
messages on behalf of these parties, using an arbitrary polynomial-time strategy.
The honest parties follow the instructions of π.

Let f be as above and let π be an n-party protocol computing f . Let A be a
non-uniform probabilistic polynomial-time machine with auxiliary input z. We
let Realπ,I,A(z)(x1, . . . , xn, λ) be the random variable consisting of the view of
the adversary and the output of the honest parties following an execution of π
where Pi begins by holding xi for every i ∈ [n].

Security as Emulation of an Ideal Execution in the Real Model. Having defined
the ideal and real models, we can now define security of a protocol. Loosely

Synchronizable Fair Exchange 419

speaking, the definition asserts that a secure protocol (in the real model) emu-
lates the ideal model (in which a trusted party exists). This is formulated as
follows.

Definition 1. Protocol π is said to securely compute f with fairness if for every
non-uniform probabilistic polynomial-time adversary A in the real model, there
exists a non-uniform probabilistic polynomial-time adversary S in the ideal model
such that for every I ⊆ [n] with |I| ≤ t,

{
Idealfairf,I,S(z)(

−→x , λ)
}

−→x ∈Xn,z∈{0,1}∗
≡ {

Realπ,I,A(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions.
A protocol is statistically secure if the random variables Idealfairf,I,S(z)(

−→x , λ) and
Realπ,I,A(z)(

−→x , λ) are statistically close, and computationally secure if they are
computationally indistinguishable.

2.2 The Hybrid Model

Let type ∈ {g.d., fair, id-fair, abort, id-abort}. Let G be a functionality and let π
be an n-party protocol for computing some functionality f , where π includes
real messages between the parties as well as calls to G. Let A be a non-uniform
probabilistic polynomial-time machine with auxiliary input z. A corrupts at most
t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. Let HybridG,type

π,I,A(z)(
−→x , λ) be the random variable consisting

of the view of the adversary and the output of the honest parties, following an
execution of π with ideal calls to a trusted party computing G according to the
ideal model “type” where Pi begins by holding xi for every i ∈ [n]. Security
in the model “type” can be defined via natural modifications. We call this the
(G, type)-hybrid model.

2.3 Fairness Versus Guaranteed Output Delivery

We recall here some of the results from [16].

Lemma 1 [16]. Consider n parties P1, . . . , Pn in a model without a broadcast
channel. Then, there exists a functionality f : X n → Yn such that f cannot be
securely computed with guaranteed output delivery in the presence of t-threshold
adversaries for n/3 ≤ t < n.

Lemma 2 [16]. Consider n parties P1, . . . , Pn in a model with a broadcast chan-
nel. Then, assuming the existence of one-way functions, for any functionality
f : X n → Yn, if there exists a protocol π which securely computes f with fair-
ness, then there exists a protocol π′ which securely computes f with guaranteed
output delivery.

420 R. Kumaresan et al.

Lemma 3 [16]. Consider n parties P1, . . . , Pn in a model with a broadcast chan-
nel. Then, assuming the existence of one-way functions, for any functionality
f : X n → Yn, if there exists a protocol π which securely computes f with fair-
ness, then there exists a protocol π′ which securely computes f with fairness and
does not make use of the broadcast channel.

3 Synchronizable Exchange

We are interested in solving the problem of securely computing functionalities
with fairness, most commonly referred to as fair secure computation. We begin
with the case of two parties. It is known that fair two-party secure computation
is impossible in the standard model as well as in the (Fbc,FOT)-hybrid model
[15]. This result generalizes to the setting of n parties that are trying to compute
in the presence of a t-threshold adversary for any n/2 ≤ t < n.

Fig. 1. The ideal functionality F2PC.

One could define the ideal functionality, F2PC as in Fig. 1. Clearly, any 2-party
functionality can be securely computed with fairness in the (F2PC, fair)-hybrid
model. One can then ask the following question in the context of n > 2 parties:

Consider n parties P1, . . . , Pn in the OT-broadcast model. Does there exist a
protocol that securely computes FMPC with fairness in the (F2PC, fair)-hybrid

model?

We are interested in security in the presence of a t-threshold adversary for any
n/2 ≤ t < n. While we do not know the answer to this question, it seems that
the answer to this question would be negative. The intuition for this is that the
various invocations of the ideal functionality F2PC cannot “synchronize” with
each other and thus we would run into issues similar to the those highlighted by
the impossibility result in [15], namely, some party/parties obtain information
about the output of the protocol before the others and if these parties were cor-
rupt, they may choose to abort the protocol without the honest parties receiving
their outputs.

Equipped with this intuition, we propose the primitive, FSyX, which we call
“synchronizable exchange”. We define the ideal functionality for FSyX in Fig. 2.
We associate the type g.d. to the ideal functionality FSyX when working in the

Synchronizable Fair Exchange 421

Fig. 2. The ideal functionality FSyX.

FSyX-hybrid model. When interacting with this functionality, parties first submit
their inputs to FSyX which then gives them a “receipt” acknowledging the end of
the input submission phase. Following this, the functionality simply waits for a
trigger from one of the parties. Once the trigger is received (we specify conditions
for the validity of a trigger), then the functionality will deliver the outputs
according to the specification. In the formal specification, we allow parties P1, P2

to submit two functions f1, f2 and two Boolean predicates (that check validity
of a trigger value) φ1, φ2 along with their inputs x1, x2. FSyX then computes
f1(x1, x2) and sends this value as a “receipt” that the input submission phase
has ended. The actual output of the computation is f2(x1, x2) and this will be
provided to the parties at the end of the trigger phase. Note that the trigger
phase can be activated by either party Pi. However, Pi would need to provide a
“witness” w that satisfies φi.

Note that FSyX is at least as strong as F2PC. In order to realize F2PC in the
FSyX-hybrid model, we set f1 = ε (the empty string), f2 = f , φ1 = φ2 = 1. The
hope in defining this reactive functionality, however, is to achieve synchroniza-
tion of multiple invocations of the ideal functionality FSyX. In a nutshell, the
synchronization of multiple invocations of the ideal functionality FSyX is enabled
by the “trigger” phase of functionality. We will be using f1 to provide a proof
to parties other than P1, P2 that the input submission phase has ended for par-
ties P1, P2. In other words, if we wish to synchronize multiple invocations of the
ideal functionality FSyX, we set the witness for the trigger phase of each of the
invocations to be the set of all receipts obtained from the inputs phases of the
invocations. The set of all receipts acts as a proof that every invocation of the
ideal functionality completed its load phase successfully. We use this feature of
FSyX in order to design a protocol for fair secure computation.

Multiple Triggers and Witnesses. Note that as described, the load phase of the
functionality FSyX can only be executed successfully once. And, once it has been
successfully executed, the functionality is in the trigger phase. However, whilst
in the trigger phase, the primitive may be triggered any number of times suc-
cessfully or unsuccessfully. Furthermore, triggering the primitive with different

422 R. Kumaresan et al.

witnesses may actually produce different outputs, as modeled by having the out-
put f2 depend on the witness w in addition to x1, x2. This will be important for
us in Sect. 5.

Remark. We crucially require that ⊥ is a special symbol different from the empty
string. We use ⊥ as a means of signalling that the load phase of FSyX did not
complete successfully. We will however allow parties to attempt to invoke the
load phase of the functionality at a later time. However, as we proceed, we will
also have our functionality be clock-aware and thus only accept invocations to
the load phase until a certain point in time. After the load phase times out, the
functionality is rendered completely unusable. Similarly, if the load phase has
been completed successfully, a clock-oblivious version of the functionality can be
triggered at any point in time as long as a valid witness is provided, no matter
the number of failed attempts. The clock-aware version of the functionality,
however, will only accept invocations of the trigger phase until a certain point in
time. After the trigger phase times out, the functionality is rendered completely
unusable.

Clock-Awareness. A technicality that arises in the protocol is that of guaranteed
termination. Specifically, we will need our ideal functionality to be “clock-aware”.
The issue of modeling a trusted clock has been studied in the literature. In this
work, we stick to the formalism outlined in [32]. We recall the main ideas here.
We assume a synchronous execution model, where protocol execution proceeds
in atomic time steps called rounds. We assume that the trusted clocks of attested
execution processors and the network rounds advance at the same rate. It is easy
to adapt our model and results if the trusted clocks of the processors and the
network rounds do not advance at the same rate. In each round, the environment
must activate each party one by one, and therefore, all parties can naturally
keep track of the current round number. We will use the symbol r to denote the
current round number. A party can perform any fixed polynomial (in λ) amount
of computation when activated, and send messages. We consider a synchronous
communication model where messages sent by an honest party will be delivered
at the beginning of the next round. Whenever a party is activated in a round,
it can read a buffer of incoming messages to receive messages sent to itself in
the previous round. To model trusted clocks in attested execution processors,
we will provide a special instruction such that ideal functionalities, in particular
FSyX can query the current round number. We say that a functionality F is
clock-aware if the functionality queries the local time; otherwise we say that
the functionality F is clock-oblivious. For the rest of the work, we will always
assume that FSyX is clock-aware. We would also like to stress that we require
only relative clocks - in other words, trusted clocks of all functionalities need not
be synchronized, since our protocol will only make use of the number of rounds
that have elapsed since initialization. Therefore, we will assume that when a
functionality reads the clock, a relative round number since the first invocation
of the functionality is returned. Thus, when working in this model, we assume
that every party and every invocation of the ideal functionality FSyX has access

Synchronizable Fair Exchange 423

to a variable r that reflects the current round number. More generally, every
function and predicate that is part of the specification of FSyX may also take r
as an input. Finally, the functionality may also time out after a pre-programmed
amount of time. We describe this clock-aware functionality in Fig. 3.

Fig. 3. The clock-aware ideal functionality FSyX.

Infinite Timeouts. We note here that it is possible to set either one or both of
INPUT TIMEOUT and TRIGGER TIMEOUT to be ∞. What this means is that
the functionality retains its state even if it goes offline. Its state would comprise
(x1, x2) and which phase (input or trigger) it is currently in. We also require that
if the functionality does go offline and come back online, it can still access the
current value of the clock, r. The only time we use this feature of the primitive
is in Sect. 5 where we are able to preprocess the functionality for an unbounded
number of fair multiparty computations that would be run in the future. In this
case, we would need to trigger this functionality whenever an adversary attempts
to break fairness. Since we have no bound on how many computations we will
run, we will set the TRIGGER TIMEOUT to be ∞. In practice, one could also
just set TRIGGER TIMEOUT to be a very large number. We stress however that
the functionality is stateful and able to read time irrespective of whether it goes
offline intermittently.

4 Fair Secure Computation in the FSyX-Hybrid Model

In this section, we will describe how a set of n parties in the OT-network model
that have pairwise access to the ideal functionality FSyX can implement n-party
fair secure function evaluation. To begin with, we will assume that the n-parties
are in the point-to-point model and develop a protocol in the (Fbc,FMPC,FSyX)-
hybrid model. By virtue of Lemmas 3 and 4, we can get to the FSyX-hybrid
model. We first provide some intuition for our construction.

424 R. Kumaresan et al.

4.1 Intuition

We first start with the 3-party case as a warm-up. Let P1, P2, and P3 be the
three parties with inputs x1, x2 and x3 respectively. For i, j ∈ {1, 2, 3} with
i < j, we have that parties Pi and Pj have access to the ideal functionality FSyX.
In particular, let F i,j

SyX represent the instantiation of the FSyX functionality used
by parties Pi, Pj . We wish to perform fair secure function evaluation of some
3-input 3-output functionality F .

Reduction to Single Output Functionalities. Let (y1, y2, y3)
$← F (x1, x2, x3) be

the output of the function evaluation. We define a new four input single output
functionality F ′ such that

F ′(x1, x2, x3, z) = F 1(x1, x2, x3)‖F 2(x1, x2, x3)‖F 3(x1, x2, x3)⊕z = y1‖y2‖y3⊕z

where z = z1‖z2‖z3 and |yi| = |zi| for all i ∈ [3]. The idea is that the party Pi

will obtain z′ = F ′(x1, x2, x3, z) and zi. Viewing z′ = z′
1‖z′

2‖z′
3 where |z′

i| = |zi|10
for all i ∈ [3], party Pi reconstructs its output as

yi = zi ⊕ z′
i

Now, we may assume that the input of party Pi is (xi, zi) (or we can generate
random zis as part of the computation) which determines z. It thus suffices to
consider fair secure function evaluation of single output functionalities.

Reduction to Fair Reconstruction. We will use ideas similar to [24,29] where
instead of focusing on fair secure evaluation of an arbitrary function, we only
focus on fair reconstruction of an additive secret sharing scheme. The main idea
is to let the three parties run a secure computation protocol that computes
the output of the secure function evaluation on the parties’ inputs, and then
additively secret shares the output. Given this step, fair secure computation then
reduces to fair reconstruction of the underlying additive secret sharing scheme.

The Underlying Additive Secret Sharing Scheme. We use an additive secret shar-
ing of the output y. Let the shares be yi for i ∈ [3]. That is, it holds that

y =
⊕
i∈[3]

yi

We would like party Pi to reconstruct y by obtaining all shares yi for each i ∈ [3].
Initially, each party Pi is given yi. Therefore, each party Pi only needs to obtain
yj and yk for j, k 	= i.

Fair Reconstruction via FSyX. We assume that the secure function evaluation
also provides commitments to all the shares of the output. That is, Pi receives
(yi,

−→c) for each i ∈ [3], where Com is a commitment scheme and
−→c = {Com(y1),Com(y2),Com(y3)}

10 We may assume without loss of generality that the lengths of the outputs of each
party are known beforehand.

Synchronizable Fair Exchange 425

Furthermore, we assume that each party Pi picks its own verification key vki and
signing key ski with respect to a signature scheme with a signing algorithm Sign
and a verification algorithm Verify, for each i ∈ [3]. All parties then broadcast
their verification keys to all parties. Let

−→
vk = {vk1, vk2, vk3}

Each pair of parties Pi and Pj then initializes F i,j
SyX with inputs

xi =
(−→
vk, ski, yi,

−→c
)

and
xj =

(−→
vk, skj , yj ,

−→c
)

The function f1 checks if both parties provided the same value for
−→
vk,−→c and

checks the yi and yj are valid openings to the corresponding commitments. It
also checks that the signing keys provided by the parties are consistent with
the corresponding verification keys (more precisely, we will ask for randomness
provided to the key generation algorithm of the signature scheme). If all checks
pass, then F i,j

SyX computes

σi,j = Sign((i, j); ski)‖Sign((i, j); skj)

This completes the description of f1.

Synchronization Step. The output of f1 for each of the F i,j
SyX will provide a way

to synchronize all FSyX instances. By synchronization, we mean that an F i,j
SyX

instance cannot be triggered unless every other instance has already completed
its load phase successfully. We achieve synchronization by setting the predicate
φk(w) (for k ∈ {i, j}) to output 1 if and only if w consists of all signatures

−→σ = {σi,j}i<j

That is, each instance F i,j
SyX will accept the same trigger w = −→σ . We define f2

to simply output both yi and yj to both parties if φk(w) = 1.

Protocol Intuition. We briefly discuss certain malicious behaviors and how we
handle them. From the description above, it is clear that parties have no informa-
tion about the output until one of the FSyX instances is triggered. Furthermore,
note that this implies that the corrupt parties must successfully complete the
load phases of the instances of FSyX that it shares with all of the honest parties
in order to obtain the witness that can be used to trigger the FSyX instances.
Following the load phases of all of the FSyX instances, we ask each party to
broadcast the receipt σi,j obtained from F i,j

SyX. Now suppose parties Pi and Pj

are both dishonest, and suppose they do not broadcast σi,j . Note also that since
Pi and Pj collude, they do not need the help of FSyX to compute σi,j . Since hon-
est Pk does not know the synchronizing witness −→σ , it will not be able to trigger

426 R. Kumaresan et al.

any of the FSyX instances. However, note that for the adversary to learn the
output of the computation, the corrupt party Pi (without loss of generality) will
need to trigger F i,k

SyX to obtain Pk’s share of the key. However, once Pi triggers
F i,k

SyX, it follows that Pk would obtain the synchronizing witness −→σ using which
it can trigger both F i,k

SyX and F j,k
SyX and learn its output.

Termination. The protocol as described up until this point does not have guar-
anteed termination. In particular, the honest parties will need to wait for the
corrupted parties to broadcast their receipts in order to be able to trigger the
instances of FSyX and obtain the output. Time outs do not help in this case as
the adversary may simply wait until the last moment to trigger instances of FSyX

and obtain their outputs leaving only insufficient time for the honest parties to
trigger their instances of FSyX and obtain their outputs. In order to ensure termi-
nation, we make use of the clock. The main invariant that we want to guarantee
is that if an instance of FSyX involving an (honest) party is triggered, then every
other instance of FSyX that the (honest) party is involved in, also needs to be
triggered. One way to implement this idea is to assume that all instances of FSyX

time out after

T =
(

3
2

)
= 3

rounds. Furthermore, an instance of FSyX accepts triggers in some round τ ∈ [T]
(that is, until it times out) if and only if you provide a proof that t − 1 other
instances of FSyX were triggered until now. As before, we will have FSyX leak the
triggering witness to the parties. Thus, if F i,j

SyX is triggered in some round t, then
Pi (and/or Pj) can trigger all the other F i,k

SyX (and/or F j,k
SyX) channels that it is

involved in, in round τ + 1.
Suppose some honest party, say Pi, does not obtain the output of the compu-

tation while the adversary has learned the output. Since the adversary learned
the output, this means that the adversary triggered F i,j

SyX for some j (otherwise
the adversary would not have learnt yi and would not have received the output).
That means Pi would have been able to trigger all the other channels that it is
involved in and generate the final output in the next round. The only issue with
this argument would be when F i,j

SyX was triggered last, that is, in round τ = T .
However this is not possible since until this time, at most T − n + 1 < T − 1,
assuming n ≥ 3, instances of FSyX could have been be triggered. This is because
n − 1 instances of FSyX must be left untriggered in round τ = T − 1 since the
honest party didn’t get its output.

Reducing the Duration of Time Outs. A more clever solution will allow us to
terminate within T = n rounds. In order to trigger an instance of FSyX in some
round τ ∈ [T], you must provide a proof that other instances of FSyX involving at
least τ different parties have been triggered. Consider the first round τ in which
Pi is an honest party and F i,j

SyX is triggered for some j. If τ = 1, then the single
invocation already gives a proof that channels involving two parties, namely, i, j,
have been triggered. Otherwise, by assumption, proofs of invocations of instances

Synchronizable Fair Exchange 427

of FSyX involving τ different parties were needed to trigger F i,j
SyX. But Pi is not

one of these parties as τ is the first round in which F i,j
SyX was triggered for any

j. Consequently, Pi, on this invocation, obtains a proof that instances of FSyX

involving at least τ + 1 parties have been triggered, and can thus trigger all
channels in round τ + 1. As before, the only gap in the argument is the case
τ = T . One can trivially see that since F i,j

SyX has not been triggered for any j,
it is impossible to obtain a proof that instances of FSyX involving at least T
different parties have been triggered.

Simulation. We look ahead for the issues that come up while trying to prove
security, that is, during the simulation. The simulator will release to the adver-
sary, the adversary’s shares of the output, which can be simulated. But, it also
releases commitments to all the shares of the output. Since the simulator does
not know the output a priori, and does not know whether the adversary is going
to abort the computation, in which case, no one knows the output, it has to
produce commitments that it can later equivocate. In this context, we use, not
regular commitments, but honest-binding commitments. In this case, the simu-
lator can produce commitments to garbage but can later open them to be valid
shares of the output. The rest of the computations can be trivially simulated.
The only other detail to be looked into is that of the clock. We need to determine
if the adversary has decided to abort the computation, that is, if the adversary
is going to receive the output of the computation of not. This is done by noticing
if and when the adversary decides to trigger the instances of FSyX that involve
honest parties. We know that if the adversary ever triggers an instance of FSyX

involving an honest party, then all parties will be in a position to receive the
output. Thus, the simulator can simply run the adversary to determine whether
it has decided to enable parties to obtain the output, in which the simulator
would ask the trusted party to continue, or not, in which case the simulator
would ask the trusted party to abort.

4.2 Protocol

We now present the protocol for fair secure computation in the (Fbc,FMPC,FSyX)-
hybrid model.

Preliminaries. F is the n-input n-output functionality to be computed; xi

is the input of party Pi for i ∈ [n]; Fa,b
SyX represents the instantiation of

the FSyX functionality used by parties Pa, Pb with time out round numbers
INPUT TIMEOUT = 0 and TRIGGER TIMEOUT = n for a < b, where a, b ∈
[n];

(
Com,Open, C̃om, ˜Open

)
is an honest-binding commitment scheme; V =

(Gen,Sign,Verify) is a signature scheme; r denotes the current round number.

428 R. Kumaresan et al.

Protocol. The protocol ΠFMPC proceeds as follows:

– Define F ′ to the be the following n-input n-output functionality: On input−→x = (x1, . . . , xn):
• Let (y1, . . . , yn) = F (x1, . . . , xn) and let

y = y1‖ . . . ‖yn

Sample random strings αi
$← {0, 1}∗ such that |αi| = |yi| for each i ∈ [n].

Let
α = α1‖ . . . ‖αn

Let z = y ⊕ α.
• Sample a random additive n-out-of-n secret sharing z1, . . . , zn of z such

that
z =

⊕
i∈[n]

zi

• Compute commitments along with their openings (cz
i , ω

z
i) $← Com(zi) to

each of the shares zi for each i ∈ [n]. Let
−→
cz = (cz

1, . . . , c
z
n)

• Sample random proof values π1, . . . , πn
$← {0, 1}λ. Compute commit-

ments along with their openings (cπ
i , ωπ

i) $← Com(πi) to each of the proof
values πi for each i ∈ [n]. Let

−→
cπ = (cπ

1 , . . . , cπ
n)

• Party Pi receives output
(
αi,

−→
cz , ωz

i , zi,
−→
cπ , ωπ

i , πi

)
for each i ∈ [n].

– The parties invoke the ideal functionality FMPC with inputs ((x1, F
′), . . . ,

(xn, F ′)). If the ideal functionality returns ⊥ to party Pi, then Pi aborts for
any i ∈ [n]. Otherwise, party Pi receives output

(
αi,

−→
cz , ωz

i , zi,
−→
cπ , ωπ

i , πi

)
for

each i ∈ [n].
– Each party Pi, for each i ∈ [n], picks a random βi ∈ {0, 1}∗ and uses this ran-

domness to pick a signing and verification key pair (ski, vki) = V.Gen(1λ;βi).
It then invokes the ideal functionality Fbc and broadcasts vki to all other
parties. If it does not receive vkj for all j 	= i, it aborts. Otherwise, it obtains

−→
vk = (vk1, . . . , vkn)

– For each a, b ∈ [n] with a < b, define the following functions.
• Let fa,b

1 be the function that takes as input (γ, γ′) and parses

γ =
(−→
vk, sk, β,

−→
cz , ωz, z,

−→
cπ , ωπ, π

)

and
γ′ =

(−→
vk′, sk′, β′,

−→
cz ′, ωz ′, z′,

−→
cπ ′, ωπ ′, π′

)

It checks that:

Synchronizable Fair Exchange 429

∗ −→
vk =

−→
vk′,

−→
cz =

−→
cz ′,

−→
cπ =

−→
cπ ′

∗ (sk, vka) = V.Gen(1λ;β), (sk′, vkb) = V.Gen(1λ;β′)
∗ Open(cz

a, ωz, z) = Open(cz
b , ω

z ′, z′) = 1
∗ Open(cπ

a , ωπ, π) = Open(cπ
b , ωπ ′, π′) = 1

If all of these checks pass, then fa,b
1 outputs

σa,b = (V.Sign((a, b); ska),V.Sign((a, b); skb))

and otherwise it outputs ⊥.
• Let φa,b

1 be the function that takes as input a witness w, which is either
of the form (0,−→σ) or of the form

(
1,−→z ,

−→
ωz,−→π ,

−→
ωπ,

−→
ind

)
.

∗ If w is of the first form, then it tests if r = 1 and

V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

for all a, b ∈ [n] with a < b, outputting 1 if so and 0 if not.
∗ If w is of the second form, then it checks that:

· |−→π | =
∣∣∣−→ωπ

∣∣∣ =
∣∣∣−→ind

∣∣∣ = r

· −→
ind consists of distinct indices in [n].

· Open
(
cz
indj

, ωz
j , zj

)
= 1 for every j ∈ [r].

· Open
(
cπ
indj

, ωπ
j , πj

)
= 1 for every j ∈ [r].

If all of these checks pass, then φa,b
1 outputs 1 and otherwise it outputs

0.
• Let φa,b

2 be identical to φa,b
1 .

• Let fa,b
2 be the function that takes as input (γ, γ′) where γ, γ′ are as

above, and outputs (ωz, z, ωπ, π, ωz ′, z′, ωπ ′, π′).
– Set r = 011. Each party Pa for each a ∈ [n] will now run the load phase to

set up each instance of FSyX that it is involved in. For each pair of parties
Pa, Pb with a 	= b for a, b ∈ [n], let a′ = min(a, b) and b′ = max(a, b). For each
such pair of parties Pa, Pb, party Pa runs the load phase of Fa′,b′

SyX , providing
inputs (xa, f), where

xa =
(−→
vk, ska, βa,

−→
cz , ωz

a, za,
−→
cπ , ωπ

a , πa

)

and
f =

(
fa′,b′
1 , fa′,b′

2 , φa′,b′
1 , φa′,b′

2

)

– If r > n, abort. Otherwise, while r ≤ n,
11 This does not entail actually setting r = 0, but rather viewing the current round as

round zero and henceforth referencing rounds with respect to it, that is, viewing r as
the round number relative to the round number when this statement was executed.

430 R. Kumaresan et al.

• If a party Pa for a ∈ [n] receives σa′,b′ from each Fa′,b′
SyX it is involved

in, indicating that the load phase of all such FSyX functionalities were
completed successfully, and r = 0, it invokes the ideal functionality Fbc

and broadcasts −→σa = {σa′,b′}a′=a ∨ b′=a

to all the parties. Otherwise, it invokes the ideal functionality Fbc when
r = 1 and broadcasts abort to all the parties and aborts.

• If a party Pa for a ∈ [n] receives −→σ such that

V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

for all a, b ∈ [n] with a < b, and r = 1, then it uses the witness w = (0,−→σ)
to invoke the trigger phase of each instance of FSyX that it is involved in.
Once all such instances of FSyX involving party Pa have been triggered,
use the shares z1, . . . , zn to reconstruct z, parses z as z1‖ . . . ‖zn where
|zi| = |yi| for all i ∈ [n]12 and computes yi = zi ⊕ αi to obtain the output
of the computation.

• If party Pa for a ∈ [n] has not received the output of the computation
and an instance of FSyX involving party Pa is first triggered in round
1 ≤ r < n, it triggers each instance of FSyX that it is involved in during
round r + 1 using the output out it receives from the instance of FSyX as
follows:

∗ If out1 = (0,−→σ), then r = 1. Let Fa′,b′
SyX be the instance of FSyX that

was triggered, where a′ = a ∨ b′ = a. Parse

out2 =
(
ωz, z, ωπ, π, ωz ′, z′, ωπ ′, π′)

It prepares the witness

w =
(
1, (z, z′),

(
ωz, ωz ′) , (π, π′),

(
ωπ, ωπ ′) , (a′, b′)

)

∗ If out1 =
(
1,−→z ,

−→
ωz,−→π ,

−→
ωπ,

−→
ind

)
, it prepares the witness

w =
(
1,−→z ′,

−→
ωz ′,−→π ′,

−→
ωπ ′,

−→
ind′

)

where
· |−→z ′| = r + 1, −→z ′|[r] = −→z |[r], z′

r+1 = za

·
∣∣∣−→ωz ′

∣∣∣ = r + 1,
−→
ωz ′

∣∣∣
[r]

=
−→
ωz

∣∣∣
[r]

, ωz
r+1

′ = ωz
a

· |−→π ′| = r + 1, −→π ′|[r] = −→π |[r], π′
r+1 = πa

12 We may assume without loss of generality that the lengths of the outputs of each
party are known beforehand.

Synchronizable Fair Exchange 431

·
∣∣∣−→ωπ ′

∣∣∣ = r + 1,
−→
ωπ ′

∣∣∣
[r]

=
−→
ωπ

∣∣∣
[r]

, ωπ
r+1

′ = ωπ
a

·
∣∣∣−→ind′

∣∣∣ = r + 1,
−→
ind′

∣∣∣
[r]

=
−→
ind

∣∣∣
[r]

, ind′
r+1 = a

Once all instances of FSyX involving party Pa have been triggered, it
uses the shares z1, . . . , zn to reconstruct z, parses z as z1‖ . . . ‖zn where
|zi| = |yi| for all i ∈ [n] and computes yi = zi ⊕ αi to obtain the output
of the computation.

• If party Pa for a ∈ [n] has not received the output of the computation and
an instance of FSyX involving party Pa is triggered and r = n, it receives
all shares of z. It uses the shares z1, . . . , zn to reconstruct z, parses z as
z1‖ . . . ‖zn where |zi| = |yi| for all i ∈ [n] and computes yi = zi ⊕ αi to
obtain the output of the computation.

Remark. It is possible to replace the O(n2) signatures with n other commitments
to n other independent random proof values (akin to π) that can be used to prove
that all the instances of FSyX completed their load phases successfully.

4.3 Proof Sketch of Security

We sketch the proof of security of the above protocol. The correctness of the
computation of the functionality F ′ follows by definition from the correctness
of the ideal functionality FMPC. Furthermore, we have that at the end of the
invocation of the ideal functionality FMPC, either all honest parties unanimously
abort or all honest parties unanimously continue. Thus, assuming that FMPC did
not abort, every party receives the output of F ′. For every i ∈ [n], let

−→
vki denote

the set of verification keys that were obtained by party Pi. Note that, by the
correctness of the ideal functionality Fbc,

−→
vk =

−→
vki

for all i ∈ [n]. If
−→
vk does not contain vkj for every i ∈ [n], which would happen

in the case that some corrupt parties do not broadcast their verification keys,
all honest parties unanimously abort. Otherwise, all honest parties unanimously
continue. Assuming the honest parties have not aborted, we note that if the
corrupt parties do not provide valid inputs to the load phase of even one of the
instances of FSyX that they are involved in along with an honest party, say Pi for
some i ∈ [n], by the correctness of the ideal functionality FSyX and the binding
property for the honestly generated commitments, that particular instance of
FSyX will not complete its load phase successfully. In this case Pi will force all
honest parties to unanimously abort, since no party (not even the corrupt ones)
can obtain their output. We thus consider the case where all instances of FSyX

have completed their load phases successfully. At this point, if all parties broad-
cast all the signatures they obtained from the instances of FSyX, all parties can
trigger the instances of FSyX that they are involved in to receive all the shares of
z, reconstruct z and finally obtain their output correctly. The issue arises when
some corrupt parties do not broadcast the signatures they obtained from the

432 R. Kumaresan et al.

instances of FSyX. If a corrupt party triggers any instance of FSyX involving an
honest party, say Pi for some i ∈ [n], with a witness of the form (0,−→σ) in round
1, then the honest party obtains a tuple of values (z, ωz, π, ωπ) from the corrupt.
In addition its own such tuple of values, it obtains a valid witness to trigger all
the instances of FSyX that it is involved in round 2. Since n ≥ 2, Pi succeeds in
doing this and obtaining the shares of z, z and hence finally its output correctly.
Consider any honest party Pj for j 	= i. Since n > 2, Pj , as did Pi, proceeds to
trigger all the instances of FSyX that it is involved in round 3. If no corrupt party
triggers any instance of FSyX involving an honest party with a witness of the form
(0,−→σ) in round 1, if the adversary is to obtain the output, it must instruct a
corrupt party to trigger an instance of FSyX that it is involved in along with an

honest party, but now using a witness of the form
(
1,−→z ,

−→
ωz,−→π ,

−→
ωπ,

−→
ind

)
. Let r

be the first round when a corrupt party triggers an instance of FSyX that it is
involved in along with an honest party, say Pi for some i ∈ [n], using a witness
of the form

(
1,−→z ,

−→
ωz,−→π ,

−→
ωπ,

−→
ind

)
. Then, it must be the case that i 	∈ −→

ind and
that Pi now obtains the tuple of values (z, ωz, π, ωπ) corresponding to r par-
ties other than itself. Combining this information with its own tuple of values
(z, ωz, π, ωπ), it obtains a valid witness to trigger all the instances of FSyX that
it is involved in round r+1. If r < n, Pi succeeds in doing this and obtaining the
shares of z, z and hence finally its output correctly. Consider any honest party
Pj for j 	= i. If r + 1 = n, then Pj receives all the shares of z and consequently
its output correctly. If r + 1 < n, then Pj , as did Pi, proceeds to trigger all the
instances of FSyX that it is involved in round r + 2. Finally, we note that r < n
since r is the first round when a corrupt party triggers an instance of FSyX that
it is involved in along with an honest party, which means that the witness it
used to trigger the instance of FSyX can have the tuple of values (z, ωz, π, ωπ)
corresponding to at most n − 1 parties as at least one of the parties is honest.
If this does not happen, then no party (not even the corrupt ones) obtains their
output. This completes the proof of correctness.

We state the following lemma and defer its proof to the full version [28].

Lemma 4. If
(
Com,Open, C̃om, ˜Open

)
is an honest-binding commitment

scheme and V is a signature scheme, then the protocol ΠFMPC securely computes
FMPC with fairness in the (Fbc,FMPC,FSyX)-hybrid model.

4.4 Getting to the FSyX-Hybrid Model

Combining Lemmas 3 and 4, we obtain the following theorem.

Theorem 1. Consider n parties P1, . . . , Pn in the point-to-point model. Then,
assuming the existence of one-way functions, there exists a protocol π which
securely computes FMPC with fairness in the presence of t-threshold adversaries
for any 0 ≤ t < n in the (FOT,FSyX)-hybrid model.

Synchronizable Fair Exchange 433

As discussed in Sect. 3, F2PC, and hence FOT, can be realized in the FSyX-
hybrid model. We thus have the following theorem.

Theorem 2. Consider n parties P1, . . . , Pn in the point-to-point model. Then,
assuming the existence of one-way functions, there exists a protocol π which
securely computes FMPC with fairness in the presence of t-threshold adversaries
for any 0 ≤ t < n in the FSyX-hybrid model.

It is important to note that via this transformation, we have not introduced
a need for the parties to have access to multiple instances of the ideal function-
ality FSyX as opposed to one. This is because, in the protocol ΠFMPC, the ideal
functionality FOT will only be used to emulate the ideal functionality FMPC.
During this stage, we do not make any use of the ideal functionality FSyX. Once
we are done with the single invocation of FMPC, we only invoke the ideal func-
tionality FSyX. As a consequence, parties can reuse the same instance of FSyX to
first emulate FOT and then as a complete FSyX functionality. We note that this
however does increase the number of times the functionality is invoked.

5 Preprocessing FSyX

In this section, we will describe how a pair of parties can “preprocess” an instance
of the ideal functionality FSyX. We first describe what we mean by “preprocess”.
What we would like to enable is the following. We already know that the ideal
functionality FSyX allows the pair of parties to perform fair two-party compu-
tations. We would like to set up the FSyX functionality such that after a single
invocation of the load phase, the two parties can perform an arbitrary (a priori
unknown) polynomial number of fair two-party computations. Furthermore, if
the parties are honest, they would not need to invoke the ideal functionality, that
is, the “preprocessing” of the functionality is optimistic. Combining this with the
protocol for fair multiparty computation in the FSyX-hybrid model from Sect. 4,
we are able to show how an arbitrary set of n parties in the point-to-point model
that have pairwise access to the ideal functionality FSyX that has been prepro-
cessed, can perform an arbitrary (a priori unknown) polynomial number of fair
multiparty computations. To begin with, we will assume that the n-parties are in
the point-to-point model and develop a protocol in the (Fbc,FMPC,FSyX)-hybrid
model. We first provide some intuition for our construction. Our full protocol
and proof can be found in the full version [28].

5.1 Intuition

We first start with the 3-party case as a warm-up. Let P1, P2, and P3 be the three
parties, subsets (or all) of which would like to perform an unbounded (a priori
unknown polynomial) number of secure function evaluations. For i, j ∈ {1, 2, 3}
with i < j, we have that parties Pi and Pj have access to the ideal functionality
FSyX. In particular, let F i,j

SyX represent the instantiation of the FSyX functionality
used by parties Pi, Pj . We wish to perform fair secure function evaluation of

434 R. Kumaresan et al.

some 3-input 3-output functionality F . We assume, as before, a reduction to
single output functionality F ′.

Instance and Party Independence. Looking ahead, as in Sect. 4, we will use the
instances of the ideal functionality FSyX to perform fair reconstruction. In order
to be able to preprocess the instances of the functionality for arbitrary recon-
structions, what is being reconstructed must be independent of the secure func-
tion evaluation and, in particular, the inputs of the parties. Furthermore, it must
also be independent of the specific parties that are performing the reconstruc-
tion. However, until now, we have been assuming that the output of the secure
function evaluation on the parties’ inputs is what is being reconstructed, which
does not satisfy our requirements and hence would not allow preprocessing. In
order to fix this, we assume that the output of the secure function evaluation
on the parties’ inputs is encrypted under a key and that key is what will be
reconstructed fairly. Note that the key can be chosen independent of the secure
function evaluation and the parties’ inputs. We would also like it to be the
case that even after reconstructing once, our preprocessing is valid. This would
require that the preprocessing allows for the generation and fair reconstruction
of multiple independent (to a computational adversary) keys, one for each secure
function evaluation. Thus, what is actually done during the preprocessing phase
is the following. Each pair of parties Pi and Pj then initializes F i,j

SyX. The function

f1 samples two random values vi,j , vj,i
$← {0, 1}λ and sends these respectively

to Pi and Pj . Let
Vi,j = Vj,i = vi,j ⊕ vj,i.

The Underlying Additive Secret Sharing Scheme. For the instance of secure
function evaluation with identifier id, we sample a unique key, Kid, to encrypt
the output yid of the secure function evaluation. Let Enc denote the encryption
algorithm of an encryption scheme. The parties would receive ctid = Enc(yid;Kid)
and then fairly reconstruct Kid. We use an independent additive secret sharing
of the key Kid for each party. Let the shares be kid,i,j for i, j ∈ [3]. That is, it
holds that

Kid =
⊕
j∈[3]

kid,i,j

for each i ∈ [3]. We would like party Pi to reconstruct Kid by obtaining all shares
kid,i,j for each j ∈ [3]. Initially, each party Pi is given kid,i,i. Therefore, each
party Pi only needs to obtain kid,i,j and kid,i,j′ for j, j′ 	= i. Looking ahead, we
would use the instances of the ideal functionality FSyX to allow parties to fairly
learn all their shares of Kid. However, since we are preprocessing the instances,
the information needed to compute these shares must be independent of the
instance of secure function evaluation. The value that the instance F i,j

SyX would
release fairly to parties Pi and Pj is Vi,j . Thus, party Pi additionally receives

ctid,i,j = Enc(kid,i,j ;hid,i,j)

Synchronizable Fair Exchange 435

where
hid,i,j = H(Vi,j‖id)

where H is a hash function (random oracle). The intuition is that the instances
of the ideal functionality FSyX to allow parties to fairly learn the Vi,js, and hence
the hid,i,js and finally kid,i,js, thus fairly reconstructing Kid. It is important to
note that using Vi,js that are independent of the instance of secure function
evaluation, we can fairly reconstruct, using per-instance (computationally inde-
pendent) hash values hid,i,j generated using Vi,js, per-instance (independent)
encryption keys Kid.

An Attempt at Fair Reconstruction via FSyX. We assume that the secure function
evaluation with identifier id provides the encryption ctid of the output yid of the
secure function evaluation. Additionally, party Pi receives ctid,i,j for each j ∈ [n]
and kid,i,i. From our earlier discussion, the instances of the ideal functionality
FSyX allow parties to fairly learn the Vi,js. In order to allow reuse of the prepro-
cessing, however, the instances of the ideal functionality FSyX must only allow
parties to fairly learn the hid,i,js. As a first attempt to ensure this, we require
the secure function evaluation to also give party Pi a signature σi on id. That
is, Pi receives (

ctid, {ctid,i,j}j∈[3] , kid,i,i, σi

)

We will have the parties fairly learn the hid,i,js using the instances of the ideal
functionality FSyX. We achieve this by setting the predicate φk(w) (for k ∈ {i, j})
to output 1 if and only if w consists of both signatures (σi, σj). That is, each
instance F i,j

SyX will accept the trigger wi,j = (id, σi, σj). We define f2 to simply
output hid,i,j to both parties if φk(w) = 1. Parties learn signatures of other
parties by broadcasting their signatures and waiting for other parties to do so. If
party Pi receives signatures from every other party, it can trigger every instance
of the ideal functionality FSyX it is involved in, thus learning hid,i,j for each
j ∈ [3] and finally learning Kid. Malicious parties may however not broadcast
their signatures. Concretely, we have the following attack: Suppose P1 is honest
while P2 and P3 are corrupt. P2 and P3 already know σ2 and σ3 and only need
σ1 to learn the output. P1 broadcasts σ1 while P2 and P3 do not broadcast σ2

and σ3. Finally, P2 triggers the ideal functionality F1,2
SyX using (σ1, σ2) and learns

the output. P1, on the other hand, only learns σ2 and hence does not learn the
output.

Fair Reconstruction via FSyX. We fix the protocol sketch described above using
a technique we developed for termination of the protocol described in Sect. 4.
The protocol for reconstruction proceeds in T = n rounds. In order to trigger
an instance of FSyX in some round τ ∈ [T], you must provide a proof that
other instances of FSyX involving at least τ different parties have been triggered.
Consider the first round τ in which Pi is an honest party and F i,j

SyX is triggered
for some j. If τ = 1, then the single invocation already gives a proof that
channels involving two parties, namely, i, j, have been triggered. Otherwise, by
assumption, proofs of invocations of instances of FSyX involving τ different parties

436 R. Kumaresan et al.

were needed to trigger F i,j
SyX. But Pi is not one of these parties as τ is the first

round in which F i,j
SyX was triggered for any j. Consequently, Pi, on this invocation,

obtains a proof that instances of FSyX involving at least τ + 1 parties have been
triggered, and can thus trigger all channels in round τ + 1. The only gap in
the argument is the case τ = T . One can trivially see that since F i,j

SyX has not
been triggered for any j, it is impossible to obtain a proof that instances of FSyX

involving at least T different parties have been triggered.

Optimistic Preprocessing. In the case where parties are honest, we can simply
have the secure function evaluation provide the output instead of parties having
to trigger their instances of the ideal functionality FSyX. We are guaranteed, by
virtue of the fair reconstruction techniques discussed thus far, that in the case
where parties behave adversarially, the honest parties do have a way to obtain the
output of the computation. In this way, in the optimistic setting, parties never
have to trigger the instances of the ideal functionality FSyX. Combined with the
fact that the actual preprocessing phase is extremely simple, we see that this
paradigm makes fair secure function evaluation just as efficient as secure function
evaluation with abort in the optimistic case.

Simulation. We look ahead for the issues that come up while trying to prove secu-
rity, that is, during the simulation. The simulator will release to the adversary,
the encryption of the output and encryptions of the adversary’s shares of the
key used to encrypt the output. Since the simulator does not know the output a
priori, and does not know whether the adversary is going to abort the computa-
tion, in which case, no one knows the output, it has to produce encryptions that
it can later equivocate. In this context, we use, not a regular encryption scheme,
but non-interactive non-committing encryption commitments. In this case, the
simulator can produce encryptions to garbage but can later decrypt them to be
valid shares of the key and the actual output. The rest of the computations can
be trivially simulated. The only other detail to be looked into is that of the clock.
We need to determine if the adversary has decided to abort the computation,
that is, if the adversary is going to receive the output of the computation of
not. This is done by noticing if and when the adversary decides to trigger the
instances of FSyX that involve honest parties. We know that if the adversary
ever triggers an instance of FSyX involving an honest party, then all parties will
be in a position to receive the output. Thus, the simulator can simply run the
adversary to determine whether it has decided to enable parties to obtain the
output, in which the simulator would ask the trusted party to continue, or not,
in which case the simulator would ask the trusted party to abort.

We state our main theorem below and refer the reader to the full version [28]
for further details.

Theorem 3. Consider n parties P1, . . . , Pn in the point-to-point model. Then,
assuming the existence of enhanced trapdoor permutations, there exists a protocol
π in the programmable random oracle model which securely preprocesses for and

Synchronizable Fair Exchange 437

computes and arbitrary (polynomial) number of instances of FMPC with fairness
in the presence of t-threshold adversaries for any 0 ≤ t < n in the FSyX-hybrid
model. Furthermore, for each FSyX instance, the complexity of its load phase is
O(λ) and the complexity of its trigger phase is O(nλ).

Disclaimer

Case studies, comparisons, statistics, research and recommendations are pro-
vided “AS IS” and intended for informational purposes only and should not be
relied upon for operational, marketing, legal, technical, tax, financial or other
advice. Visa Inc. neither makes any warranty or representation as to the com-
pleteness or accuracy of the information within this document, nor assumes any
liability or responsibility that may result from reliance on such information. The
Information contained herein is not intended as investment or legal advice, and
readers are encouraged to seek the advice of a competent professional where such
advice is required.

These materials and best practice recommendations are provided for infor-
mational purposes only and should not be relied upon for marketing, legal, reg-
ulatory or other advice. Recommended marketing materials should be indepen-
dently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any
kind, contained in this document.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) Financial Cryptography and Data Security - FC 2014 Workshops, BIT-
COIN and WAHC 2014, Christ Church, Barbados, 7 March 2014, Revised Selected
Papers. LNCS, vol. 8438, pp. 105–121. Springer, Cham (2014). https://doi.org/10.
1007/978-3-662-44774-1 8

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. Commun. ACM 59(4), 76–84 (2016)

3. Asharov, G.: Towards characterizing complete fairness in secure two-party compu-
tation. In: Lindell, Y. (ed.) Theory of Cryptography - 11th Theory of Cryptography
Conference, TCC 2014, San Diego, CA, USA, 24–26 February 2014, Proceedings.
LNCS, vol. 8349, pp. 291–316. Springer, Cham (2014). https://doi.org/10.1007/
978-3-642-54242-8 13

4. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization
of fairness in secure two-party computation of boolean functions. In: Dodis, Y.,
Nielsen, J.B. (eds.) Theory of Cryptography - 12th Theory of Cryptography Confer-
ence, TCC 2015, Warsaw, Poland, 23–25 March 2015, Proceedings, Part I. LNCS,
vol. 9014, pp. 199–228. Springer, Cham (2015). https://doi.org/10.1007/978-3-662-
46494-6 10

https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-642-54242-8_13
https://doi.org/10.1007/978-3-642-54242-8_13
https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-662-46494-6_10

438 R. Kumaresan et al.

5. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
CCS 1997, Proceedings of the 4th ACM Conference on Computer and Communi-
cations Security, Zurich, Switzerland, 1–4 April 1997, pp. 7–17 (1997)

6. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE J. Sel. Areas Commun. 18(4), 593–610 (2000)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, 2–4 May
1988, Chicago, Illinois, USA, pp. 1–10 (1988)

8. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) Advances in Cryptology - CRYPTO 2014–34th Annual
Cryptology Conference, Santa Barbara, CA, USA, 17–21 August 2014, Proceed-
ings, Part II. LNCS, vol. 8617, pp. 421–439. Springer, Cham (2014). https://doi.
org/10.1007/978-3-662-44381-1 24

9. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) Advances in Cryp-
tology - CRYPTO 2000, 20th Annual International Cryptology Conference, Santa
Barbara, California, USA, 20–24 August 2000, Proceedings. LNCS, vol. 1880, pp.
236–254. Springer, Cham (2000). https://doi.org/10.1007/3-540-44598-6 15

10. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, 19–23 August 2001, Proceedings.
LNCS, vol. 2139, pp. 19–40. Springer, Cham (2001). https://doi.org/10.1007/3-
540-44647-8 2

11. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) Theory of Cryptography, Second Theory of Cryp-
tography Conference, TCC 2005, Cambridge, MA, USA, 10–12 February 2005,
Proceedings. LNCS, vol. 3378, pp. 150–168. Springer, Cham (2005). https://doi.
org/10.1007/978-3-540-30576-7 9

12. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC, pp. 494–503 (2002)

13. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, 2–4 May 1988, Chicago, Illinois, USA, pp. 11–19 (1988)

14. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair
world: fair multiparty computation from public bulletin boards. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, 30 October–3 November 2017, pp. 719–728 (2017)

15. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, 28–30 May 1986, Berkeley, California, USA, pp. 364–369
(1986)

16. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure mul-
tiparty computation. J. Cryptology 30(4), 1157–1186 (2017)

17. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

18. Fitzi, M., Garay, J.A., Maurer, U.M., Ostrovsky, R.: Minimal complete primitives
for secure multi-party computation. J. Cryptology 18(1), 37–61 (2005)

19. Garay, J.A., Jakobsson, M.: Timed release of standard digital signatures. In:
Blaze, M. (ed.) Financial Cryptography, 6th International Conference, FC 2002,
Southampton, Bermuda, 11–14 March 2002, Revised Papers. LNCS, vol. 2357, pp.
168–182. Springer, Cham (2002). https://doi.org/10.1007/3-540-36504-4 13

https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-540-30576-7_9
https://doi.org/10.1007/978-3-540-30576-7_9
https://doi.org/10.1007/3-540-36504-4_13

Synchronizable Fair Exchange 439

20. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. J. Cryptology 24(4), 615–658 (2011)

21. Garay, J.A., Pomerance, C.: Timed fair exchange of standard signatures: (extended
abstract). In: Wright, R.N. (ed.) Financial Cryptography, 7th International Con-
ference, FC 2003, Guadeloupe, French West Indies, 27–30 January 2003, Revised
Papers. LNCS, vol. 2742, pp. 190–207. Springer, Cham (2003). https://doi.org/10.
1007/978-3-540-45126-6 14

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, New York,
USA, pp. 218–229 (1987)

23. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM 58(6), 24:1–24:37 (2011)

24. Gordon, S.D., Ishai, Y., Moran, T., Ostrovsky, R., Sahai, A.: On complete primi-
tives for fairness. In: Micciancio, D. (ed.) Theory of Cryptography, 7th Theory of
Cryptography Conference, TCC 2010, Zurich, Switzerland, 9–11 February 2010,
Proceedings. LNCS, vol. 5978, pp. 91–108. Springer, Cham (2010). https://doi.
org/10.1007/978-3-642-11799-2 7

25. Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without
an honest majority. In: Reingold, O. (ed.) Theory of Cryptography, 6th Theory
of Cryptography Conference, TCC 2009, San Francisco, CA, USA, 15–17 March
2009, Proceedings. LNCS, vol. 5444, pp. 19–35. Springer, Cham (2009). https://
doi.org/10.1007/978-3-642-00457-5 2

26. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In:
Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010, 29th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Monaco/French Riviera, 30 May–3 June 2010, Proceedings. LNCS, vol. 6110, pp.
157–176. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-13190-5 8

27. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
San Diego, California, USA, 11–13 June 2007, pp. 11–20 (2007)

28. Kumaresan, R., Raghuraman, S., Sealfon, A.: Synchronizable exchange. IACR
Cryptol. ePrint Arch. 976 (2020)

29. Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to secure
computation with penalties. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, 24–28 October 2016,
pp. 406–417 (2016)

30. Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and coalition-
safe cheap talk. In: Proceedings of the Twenty-Third Annual ACM Symposium
on Principles of Distributed Computing, PODC 2004, St. John’s, Newfoundland,
Canada, 25–28 July 2004, pp. 1–10 (2004)

31. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) Advances in Cryptology -
CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, 18–22 August 2002, Proceedings. LNCS, vol. 2442, pp. 111–126.
Springer, Cham (2002). https://doi.org/10.1007/3-540-45708-9 8

https://doi.org/10.1007/978-3-540-45126-6_14
https://doi.org/10.1007/978-3-540-45126-6_14
https://doi.org/10.1007/978-3-642-11799-2_7
https://doi.org/10.1007/978-3-642-11799-2_7
https://doi.org/10.1007/978-3-642-00457-5_2
https://doi.org/10.1007/978-3-642-00457-5_2
https://doi.org/10.1007/978-3-642-13190-5_8
https://doi.org/10.1007/3-540-45708-9_8

440 R. Kumaresan et al.

32. Pass, R., Shi, E., Tramèr, F.: Formal abstractions for attested execution secure pro-
cessors. In: Coron, J.S., Nielsen, J. (eds.) Advances in Cryptology - EUROCRYPT
2017–36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, 30 April–4 May 2017, Proceedings, Part
I. LNCS, vol. 10210, pp. 260–289. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 10

33. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) Advances in
Cryptology - EUROCRYPT 2003, International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland, 4–8 May 2003, Pro-
ceedings. LNCS, vol. 2656, pp. 87–105. Springer, Cham (2003). https://doi.org/
10.1007/3-540-39200-9 6

34. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, 14–17 May 1989, Seattle, Washington, USA,
pp. 73–85 (1989)

35. Raghuraman, S., Yang, Y.: Just how fair is an unreactive world. IACR Cryptol.
ePrint Arch. 2022, 1655 (2022)

36. Sinha, R., Gaddam, S., Kumaresan, R.: LucidiTEE: policy-based fair computing
at scale. IACR Cryptol. ePrint Arch. 2019, 178 (2019)

37. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27–29
October 1986, pp. 162–167 (1986)

https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/3-540-39200-9_6
https://doi.org/10.1007/3-540-39200-9_6

DORAM Revisited: Maliciously Secure
RAM-MPC with Logarithmic Overhead

Brett Falk1 , Daniel Noble1(B) , Rafail Ostrovsky2 , Matan Shtepel1 ,
and Jacob Zhang2

1 University of Pennsylvania, Philadelphia, USA
{fbrett,dgnoble}@seas.upenn.edu, matan.shtepel@ucla.edu

2 UCLA, Los Angeles, USA
rafail@cs.ucla.edu, jacobzhang@g.ucla.edu

Abstract. Distributed Oblivious Random Access Memory (DORAM)
is a secure multiparty protocol that allows a group of participants hold-
ing a secret-shared array to read and write to secret-shared locations
within the array. The efficiency of a DORAM protocol is measured by
the amount of communication required per read/write query into the
array. DORAM protocols are a necessary ingredient for executing Secure
Multiparty Computation (MPC) in the RAM model.

Although DORAM has been widely studied, all existing DORAM
protocols have focused on the setting where the DORAM servers are
semi-honest. Generic techniques for upgrading a semi-honest DORAM
protocol to the malicious model typically increase the asymptotic com-
munication complexity of the DORAM scheme.

In this work, we present a 3-party DORAM protocol which requires
O((κ+D) log N) communication per query, for a database of size N with
D-bit values, where κ is the security parameter. Our hidden constants
in the big-O nation are small. We show that our protocol is UC-secure
in the presence of a malicious, static adversary. This matches the com-
munication complexity of the best semi-honest DORAM protocols, and
is the first malicious DORAM protocol with this complexity.

1 Introduction

In this work, we develop the first Distributed Oblivious RAM (DORAM) proto-
col secure against malicious adversaries while matching the communication and
computation costs of the best-known semi-honest constructions.

Poly-logarithmic overhead Oblivious RAM (ORAM) [Ost90,Ost92,GO96]
was developed to allow a client to access a database held by an untrusted server,

M. Shtepel–Work done while at UCLA.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-48615-9 16.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 441–470, 2023.
https://doi.org/10.1007/978-3-031-48615-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_16&domain=pdf
http://orcid.org/0000-0002-4344-7406
http://orcid.org/0000-0001-9449-159X
http://orcid.org/0000-0002-1501-1330
http://orcid.org/0000-0003-1296-0984
https://doi.org/10.1007/978-3-031-48615-9_16
https://doi.org/10.1007/978-3-031-48615-9_16

442 B. Falk et al.

while hiding the client’s access pattern from the server itself with poly-log over-
head. In this work, we focus on Distributed Oblivious RAM, which allows a group
of servers to access a secret-shared array at a secret-shared index. The secret-
shared index can be conceptualized as coming either from an external client or
as the output of a previous secure computation done by the servers.

The efficiency of an ORAM protocol is usually measured by the (amortized)
number of bits of communication required to process a single query. If privacy
were not an issue, in order to retrieve a single D-bit entry from a table of size
N , the client would need to send a log(N)-bit index, and receive a D-bit value,
so the communication would be log(N) + D. In order to make the queries obliv-
ious, it is known that a multiplicative communication overhead of Ω(log(N)) is
required [GO96,LN18]. That is, the optimal communication in the traditional,
passive-server ORAM setting is Ω((D + log N) log N).1 Several ORAM proto-
cols have achieved this “optimal” communication complexity (in slightly different
settings). [LO13] achieved logarithmic amortized overhead in the two-server set-
ting (Fig. 1b), OptORAMa [AKL+20] achieved amortized logarithmic overhead
in the single-server setting (Fig. 1a) with constant > 2228 hidden by the big-O
notation. The constant was later reduced to 9405 in [DO20] and de-amortized in
[AKLS21]. However, despite all these improvements, these works are of only the-
oretical interest, due to large constants. In Appendix A.4 we discuss why none of
these semi-honest constructions can be näıvely compiled to a maliciously secure
DORAM without asymptotic blowup. When a DORAM can store N , D-bit ele-
ments with security parameter is κ, we prove the following theorem:

Theorem 1 (Malicious DORAM, Informal). If Pseudo-Random Functions
exist with O(κ + l) circuit size (where l is the number of input bits and κ is the
computational security parameter), then there exists a (3,1)-malicious DORAM
scheme (see Definition 2) with O((κ + D) log N) communication complexity
between the servers per each query.

The best DORAMs in the semi-honest model have either O((κ+D) log(N))
[LO13,FNO22] or O((log2(N)+D) log(N)) [WCS15] communication complexity
per query. Which of these is better depends on the parameter choices. If D is
large (Ω(log2(N) + κ)) they are equally good. If D is small, [LO13,FNO22]
are better when log(N) = ω(

√
κ) and [WCS15] is better otherwise. Thus, our

server-to-server communication overhead of O((κ+D) log(N)) matches the best
communication complexity of the best DORAM protocols in the semi-honest
model [FNO22,LO13], achieving security against malicious adversaries with no
asymptotic increase in communication costs.

Note that a non-private solution would still require communicating
Θ(log(N) + D) bits to simply send the secret-shared query and secret-shared
response. Thus, our cost of Θ((κ + D) log(N)) has logarithmic overhead when

1 Most ORAM works assume D = Ω(log N), so O((D + log N) log N) = O(D log N)
which is described as a logarithmic “overhead” or a logarithmic “blowup” over O(D)
communication needed to make a query in the insecure setting.

DORAM Revisited: Maliciously Secure RAM-MPC 443

the block size, D = Ω(κ). Our title refers to this (common) scenario. If D = o(κ),
the overhead is Θ(log(N)κ/D).

As we discuss below, one of the main motivations for studying DORAM is
in service of building efficient, secure multiparty computation (MPC) protocols
in the RAM model of computation.

Fig. 1. Abstract view of different ORAM “flavors” in the client-server model. In client-
server ORAM the client and the server communicate over many rounds. In multiserver
ORAM the client communicates with each server individually over many rounds. In
DORAM, the client communicates a secret shared query to the servers, the DORAM
servers communicate among themselves for several rounds, and respond to the client.
The client’s work is the lowest in the DORAM setting.

1.1 MPC in the RAM Model

Secure Multiparty Computation (MPC) protocols enable a set of mutually dis-
trusting parties, P1, ..., Pn, with private data x1, ..., xn to compute an agreed-
upon (probabilistic) polynomial-time function, f , in such a way that each player
learns the output, f(x1, ..., xn), but no additional information about the other
participants’ inputs [Yao82,Yao86,GMW87,CCD88].

The majority of MPC protocols work in the circuit model of computation
[Vol99], where the functionality, f , is represented as a circuit (either a boolean
circuit, or an arithmetic circuit over a finite field F). Computing in the circuit
model has been advantageous for MPC protocols because circuits are naturally
oblivious, i.e., the sequence of operations needed to compute f is independent of
the private inputs x1, . . . , xn. This reduces the problem of securely computing
an arbitrary function, f , to the problem of securely computing a small set of
universal gates (e.g. AND and XOR).

Although the circuit model of computation is convenient for MPC, many
common functionalities cannot be represented by compact circuits, which means
generic circuit-based MPC protocols cannot compute them efficiently. A simple
database lookup highlights the inefficiency of the circuit model. Consider the
function R(i, y1, . . . , yN) = yi, which outputs the ith element in a list or the

444 B. Falk et al.

function W (i, Y, y1, . . . , yN) which produces no output but sets yi = Y . These
functionalities can run in constant time in the RAM-model of computation, but
in the circuit model, both R and W have circuit complexity O(N).

In contrast to circuit-based MPC protocols, RAM-MPC framework [OS97]
provides a method of securely computing functions specified in the RAM model
of computation. Efficiency is often a barrier to the deployment of MPC protocols
in practice, and compilation from RAM model into circuits hurts the efficiency
of programs which use random access. Thus, RAM-MPC is a critical step in
making general-purpose MPC protocols that are efficient enough for practical
applications.

1.2 Building RAM-MPC

One method for building RAM-MPC is to use a generic (circuit-model) MPC
protocol to simulate the client for a client-server ORAM protocol [OS97]. For the
purpose of running ORAM clients under MPC, various “MPC friendly” ORAM
protocols have been developed. For example, [WCS15] developed circuit ORAM,
an ORAM maintaining the stringent one-trusted-client one-untrusted-server
security model of traditional ORAM while decreasing the circuit-complexity of
the client. Another example of such efforts, are multi-server ORAM protocols
where the trusted client’s data is shared and accessed across multiple servers.
Assuming some fraction of the servers are honest [OS97,GKK+12,GKW18,
KM19] these works shift some of the communication burden to servers. These
multi-server ORAMs can also be adapted to the MPC context by simulating the
client using (circuit-based) MPC, allowing the MPC participants to play the role
of the additional ORAM servers. Some of these protocols have been implemented
[GKK+12,LO13,ZWR+16,WHC+14,Ds17].

A recent direction in the search for MPC-friendly ORAMs is Distributed
ORAM (DORAM). In a DORAM protocol, both the index i and the database
y1, . . . , yN are secret shared among a number of servers. The goal of the protocol
is to obtain a secret-sharing of yi at minimal communication between the servers
while not exposing any information about i or y1, . . . , yN . DORAM has been
widely studied in the semi-honest model [LO13,GHL+14,FJKW15,ZWR+16,
Ds17,JW18,BKKO20,FNO22,JZLR22,VHG22]. These works have taken several
interesting approaches, emphasizing different parameters, and often presenting
implementations [ZWR+16,Ds17,VHG22,JZLR22].

In this paper, we study DORAM in the malicious model. In particular, we
provide the first DORAM protocol that provides security against malicious
adversaries while matching the asymptotics of the best-known semi-honest con-
struction. We use the generic transformation to compile our DORAM into RAM-
MPC, giving RAM-MPC which is secure against malicious adversaries with an
asymptotic cost on par with the best existing semi-honest constructions.

DORAM Revisited: Maliciously Secure RAM-MPC 445

2 Notation and Definitions

We denote the 3 parties as P0, P1, P2, and use F2l to denote the finite field of 2l

elements. For x = x0 . . . xn−1 = x ∈ F
n we let x[i : j] = xi . . . xj . For a ∈ Z

+,
[a] represents the set {1, . . . , a}. For any set S, x ∈R S represents choosing x
uniformally at random from S.

N is the number of elements in the DORAM. Each element stored in the
DORAM is a pair (X,Y), where X ∈ [N] is the “virtual index” of the D-bit
payload, Y . We assume that only indices in the range [N] are queried. We use
⊥ /∈ [N] ∪ {0, 1}D to represent a reserved null-value. κ is the computational
security parameter and σ is a statistical security parameter. Since we want to
achieve failures with probability negligible in N , we must have both κ, σ =
ω(log N).

The primary secret-sharing our protocol uses is (3, 1) Replicated Secret Shar-
ing (RSS) (also called a CNF sharing [CDI05]). [[x]] denotes a RSS of a variable
x. In a (3, 1) RSS sharing, each party holds two shares of an additive sharing:

Definition 1 (replicated secret sharing). Let x, x(0), x(1), x(2) ∈ F s.t x(0)+
x(1) + x(2) = x. we say that P0, P1, P2 hold a replicated secret sharing of x if Pi

hold all x(j) s.t j �= i.

We also use two-party additive sharings. [x](i,j) denotes an additive sharing
of x held by parties Pi and Pj , that is Pi holds x(i) and Pj holds x(j) where
x(i) + x(j) = x.

We use standard Boolean operators (∧, ∨, ¬). We also represent by x
?= y

the Boolean-output operation that outputs 1 if x equals y and 0 otherwise, and
use (b?x : y) to represent an if-then-else statement which evaluates to x if b, and
y otherwise.

Fig. 2. FDORAM: The DORAM functionality

In this work, we define security using the Universal Composability (UC)
framework [Can01], which allows us to formally define DORAM.

Definition 2 (DORAM). A protocol, Π, is said to be a UC maliciously-
secure (n, t)-Distributed ORAM protocol if for all N,D, κ ∈ Z

+, Π UC-realizes
the DORAM functionality (Fig. 2).

446 B. Falk et al.

3 Related Work

In this section we present a brief overview of related work; Appendix A contains
a more detailed discussion.

Many DORAMs start with a client-server ORAM and simulate the client
inside of a secure computation. This was the approach taken by [WCS15] and
[ZWR+16]. The generic MPC can be achieved from Garbled Circuits (GC),
which allows for 2 parties, low round complexity, but requires Θ(κ) communica-
tion for each AND gate. Alternatively, it can be achieved using honest-majority
secret-sharing approaches derived from the BGW protocol [BOGW88], which
have Θ(1) communication per AND gate, but need 3 parties and more rounds.

Similarly it is also possible to convert a multi-server ORAM, such as [LO13]
to a DORAM, again by simulating the client inside of a secure computation, and
having each server run by a different party.

Other protocols build DORAM directly. This includes [Ds17,HV20,FJKW15,
JW18,BKKO20,VHG22,FNO22]. This allows use of techniques that are not
applicable for client server ORAMs, such as Function Secret Sharing (FSS),
Secret-Shared PIR (SS-PIR) and efficient shuffles.

Table 1 presents these protocols, with their communication costs. Our com-
munication cost is asymptotically identical to [FNO22] and a BGW-style
instance of [LO13]. Depending on the relationship between κ and log(N) it may
be either asymptotically better or worse than a BGW-style instance of [WCS15].
For small block sizes the communication cost is strictly better than all previous
protocols. Unlike all previous protocols, it is secure against malicious adversaries.

Table 1. Complexity of DORAM protocols. N denotes the number of records, κ is a
cryptographic security parameter, σ is a statistical security parameter, and D is the
record size.

Protocol Communication Parties Security

Circuit ORAM [WCS15] (GC) O
(
κ log3 N + κD log N

)
2 Semi-Honest

Square-root ORAM [ZWR+16] (GC) O
(
κD

√
N log3 N

)
2 Semi-Honest

FLORAM [Ds17] O
(√

κDN log N
)

2 Semi-Honest

[HV20] O
(√

κDN log N
)

2 Semi-Honest

Circuit ORAM [WCS15] (BGW) O
(
log3 N + D log N

)
3 Semi-Honest

[LO13] (BGW) O ((κ + D) log N) 3 Semi-Honest

[FJKW15] O
(
κσ log3 N + σD log N

)
3 Semi-Honest

[JW18] O
(
κ log3 N + D log N

)
3 Semi-Honest

[BKKO20] O
(
D

√
N

)
3 Semi-Honest

DuORAM [VHG22] O (κ · D · log N) 3 Semi-Honest

[FNO22] O ((κ + D) log N) 3 Semi-Honest

Our protocol O ((κ + D) log N) 3 Malicious

DORAM Revisited: Maliciously Secure RAM-MPC 447

4 Technical Overview

Our protocol is based on the Hierarchical solution [Ost90]. While this technique
has primarily been applied in many client-server ORAMs [GMOT12,KLO12,
LO13,PPRY18,AKLS21], we, like several other works [KM19,FNO22], apply it
to DORAMs. Before understanding our protocol, it is important to understand
the Hierarchical solution in general.

The Hierarchical Solution in Client-Server ORAM: A client-server
ORAM must ensure that the physical access pattern on the server is (compu-
tationally) independent of the client’s queries, regardless of the query sequence.
Let us first consider a slightly weaker primitive: a protocol in which the access
pattern on the server is (computationally) independent of the client’s queries
provided each item is queried at most once. This primitive is called an Oblivious
Hash Table (OHTable) and is much easier to instantiate. Most common hash
tables become oblivious when the hash functions themselves are pseudorandom.
If the hash table can also be constructed on the server in a way that leaks no
information about the contents, or their relation to any later queries, then a full
OHTable protocol has been achieved.

An OHTable may seem significantly weaker that an ORAM, but in fact an
ORAM of size N can be constructed using only Θ(log(N)) OHTables through a
recursive construction known as the “hierarchical solution”, first introduced in
[Ost90]. Assume we have access to a sub-ORAM of capacity N/2. The protocol
then stores all N elements in a single OHTable, and each time an item is accessed,
the item is cached in the sub-ORAM. When an item is queried, the sub-ORAM
is queried first. If the item is not in the sub-ORAM, it has not been queried in
the OHTable, so it can be queried in the OHTable and this will not be a repeated
query into the OHTable. On the other hand, if the item is in the sub-ORAM,
we must still query the OHTable, but in this case, we query random locations in
the OHTable (independent of the client’s query). This ensures that if the client
makes at most N/2 queries, no element is ever queried twice in the OHTable,
and the security of the OHTable is preserved. When the sub-ORAM becomes
full, its contents can be extracted, as well as the contents of the OHTable, and
the OHTable can be rebuilt, with new secret keys for the PRF/hash functions. If
the sub-ORAM is implemented recursively, this results in Θ(log(N)) OHTables,
and a small base-case. Typically we conceptualize the OHTables as arranged
vertically in a “hierarchy” of levels of geometrically increasing size, labeled from
Level 0, the base-case, also called the cache, to the largest level of size N . The
cache could be of constant size, though it is often of size Θ(log(N)) and in our
work is larger (of size Θ(κ) = ω(log N)). Since the cache is very small it can be
implemented using a less efficient “ORAM.”

OMaps: Actually, the recursive construction requires the sub-ORAMs to be
slightly more versatile than an ORAM. Notice that the sub-ORAM has capacity
N/2 but may be required to store elements from the index space [N]. The ORAM
definition requires the size of the ORAM to be the same size as the index space.

448 B. Falk et al.

To implement the recursive hierarchical construction, the sub-ORAMs really
need to implement an Oblivious Map (OMAP). An OMap is essentially just an
ORAM for storing key-value pairs instead of index-value pairs. The OMap func-
tionality is defined formally in Fig. 3. Note that most existing ORAM protocols
actually instantiate the slightly stronger OMap functionality.

Fig. 3. OMap Functionality

Cuckoo Hashing: ORAMs and DORAMs often use Cuckoo Hashing [PR01]
to implement OHTables (e.g. [PR10,GMOT12,LO13,KM19,PPRY18,AKL+20,
FNO22].) In Cuckoo Hashing, there are 2 hash tables, and each item can be
stored in one location in each table. This makes oblivious queries efficient. The
hash output for each table can be revealed and both locations accessed. However,
cuckoo hashing has a non-negligible failure probability. To alleviate this, items
which are unable to be stored can be placed in a super-constant sized “stash”.

Unfortunately, the cuckoo stash introduces some problems in the ORAM
setting. To handle the cuckoo stashes, a standard approach to use a weaker
OHTable which rejects a fixed number of stash elements, and store this stash in
the sub-ORAM [KLO12]. There are two challenges with this approach. First, if
the table is small (say Θ(log(N))), the probability of a build failure is no longer
negligible in N . We address by making our smallest OHTable of size Θ(κ), thanks
to our efficient QuietCache. The second problem is more subtle. The first time a
stashed item is queried, it will always be found in the sub-ORAM, and random
locations will be queried in the OHTable. This effectively resamples the locations
that will be queried in the OHTables, which can leak information about whether
the queried items were stored in the table. We use the Alibi technique [FNO21]
to solve this. When a stash item is placed in the sub-ORAM during builds, it is
tagged with a bit to show that the item should still be queried in the OHTable
during a query. See Supplementary Material B for more details.

The Hierarchical Solution for DORAMs: Distributed ORAMs can also
be built using the Hierarchical solution. Distributed Oblivious Hash Tables
(DOHTables) are multi-party protocols that implement a dictionary data struc-
ture, subject to the fact that no adversarially-controlled subset of parties can

DORAM Revisited: Maliciously Secure RAM-MPC 449

learn anything about the query pattern from their views of the protocol, pro-
vided each item is queried at most once. Like before, we can cache responses
of queries to a large DOHTable in a sub-DORAM and query the sub-DORAM
first. If the item is not found in the sub-DORAM, the item is queried at the
DOHTable; if it is found, the parties execute a protocol that is indistinguish-
able from a real, unique query to the DOHTable. By recursively implementing
the sub-DORAMs using this technique, a DORAM can be constructed using
Θ(log(N)) DOHTables.

Overview of Our Solution: One approach to building DORAM is to take
an existing ORAM and simulate the client inside of a secure computation (e.g.
[WCS15]). We depart from this approach, noting that DORAM actually allows
for many efficiency improvements that would not be possible in a classic client-
server ORAM. While DORAM has no trusted client, it does have multiple
non-colluding servers which perform local computation and can communicate
between each other. In particular, we examine the (3,1)-setting, where there are
3 servers and at most one corruption. This allows us to do many things more
efficiently than in the client-server ORAM setting.

1. Efficient Shuffles: In the (3,1) setting, similar to [LWZ11] we can secret-
share a list between 2 parties. These parties can then shuffle the list using a
permutation known to them but not the third party. If this process is repeated 3
times, with parties taking turns to be the uninvolved party, the final permutation
will be unknown to all parties. This allows us to shuffle n items of size D with
Θ(nD) communication and small constants.

While this protocol is simple, its significance can be appreciated when com-
pared to the difficulty of shuffling in the classical ORAM setting. In that setting,
shuffling n items requires Θ(n log(n)D) communication with huge constants, or
Θ(n log2(n)D) communication with small constants. A core insight of recent
ORAM protocols [PPRY18,AKLS21] is that full shuffles can be avoided by re-
using randomness and using oblivious tight compaction instead of shuffles. This
brings the cost down to Θ(nD) but the constants are still impractical [DO20].

2. Efficient multi-select: In the (3, 1) setting, it is possible to evaluate circuits
of AND-depth 1 with communication equal to that of a single AND gate. Using
this, we can construct an efficient multi-select protocol. That is, given n secret-
shared items of size D, we can efficient select the kth item for any secret-shared
k ∈ [n] with only Θ(n + D) communication. (See Sect. 6 for more details.) To
the best of our knowledge, efficient multi-selects have not been used to build
DORAMs prior to our work.

3. Separating Builders from Holders: In the classical ORAM setting, the
server can see the access patterns during both builds and queries to an OHTable.
This creates a problem: for efficiency the possible locations in which an item

450 B. Falk et al.

may be stored are revealed during a query. To ensure security, the build must
obliviously move each item to its correct location. In the (3, 1) setting we can
instead have a single party, the builder, learn the locations in which items in
the table may be stored. This allows the builder to locally and non-obliviously
calculate the allocation of items to locations. After this, the table is secret-shared
between the other 2 parties, called the holders. During a query, the holders (but
not the builder) learn the locations in which the queried item may be stored and
return their shares of the items in these locations. Since the adversary controls
at most one party, it can either learn the physical locations of stored items
(from the builder) or the potential physical locations of queried items (from a
holder) but not both, preventing it from learning information about whether the
queried items were stored in the table. (Our actual protocol, in fact allows the
builder to construct a useful data-structure for set queries entirely by itself, and
secret-share this to the holders. This is then used to build a DOHTable.)

However, in the malicious setting it is difficult to take advantage of these
techniques, especially the technique of separating builders from holders. If the
builder is malicious, how can we ensure that they build data structures correctly?
Naturally, zero knowledge proofs allow the builder to prove any claim, but how
can it do so efficiently? Furthermore, after we secret-share the data-structure
between two holders, how can we guarantee that they provide the correct shares
during reconstruction? (We can use a (3,1) replicated secret sharing (Sect. 2) to
detect modification of shares when all three parties are involved, but this will
not work with only 2 parties.) Similarly, the multi-select and shuffle protocols
described above are only secure against semi-honest adversaries.

Core Contributions: In this paper, we show how to take advantage of the
existence of multiple non-colluding servers even when one of these parties is
malicious. The primary techniques are as follows:

– Proving in zero-knowledge a distributed statement that builder
built data structures correctly: We present a method by which it can
be efficiently verified that the builder has built and secret shared their data
structure correctly to the two holders without revealing any information to
the holders. Our method is linear in the data-structure size and has small
constants.

– Designing QuietCache and restructuring the DORAM hierarchy:
We present a more efficient distributed, oblivious, maliciously-secure cache
protocol, QuietCache (Sect. 6), which serves as a top level of our DORAM
hierarchy. Querying the standard cache used in the literature when it stores
n elements costs O((n + D) log N) communication. For works targeting the
best-known complexity of O((κ + D) log N), this has restricted the size of
the cache to O(log N). Since Cuckoo Hash Tables with a Stash (CHTwS)
of Θ(log N) elements have non-negligible failure probability and, generally
speaking, all efficient-to-query OHTables are based on CHTwS, previous con-
structions had to design a different type of OHTable for small levels (e.g.
[LO13,FNO22]). Unfortunately, we find that a small size maliciously secure

DORAM Revisited: Maliciously Secure RAM-MPC 451

OHTables are difficult to construct. To resolve this, we design QuietCache,
which costs O(n log N + D) communication to query. This allows us to have
a large cache (of size Θ(κ) = ω(log N)), thus completely avoiding the need
for small OHTables.

– Mixing Boolean and F2l secret-sharings: Our solutions to the above require
a combination of large-field arithmetic (for MACs and polynomial equality
checks) and bit-wise operations (for equality tests and PRFs). We therefore
require efficient methods of converting between these two types of secret-
sharing: by using the field F2l we can actually convert between these two
types of sharing for free.

In addition, we design an expanded, versatile Arithmetic Black Box (Sect. 5),
and prove it UC-secure against a (3, 1) malicious adversary. This greatly simpli-
fies our later protocol descriptions and proofs.

5 The Arithmetic Black Box (ABB) Model

In order to simplify our protocol descriptions and analysis we use the Arithmetic
Black Box (ABB) model. In the words of its creators an “ABB can be thought
of as a secure general-purpose computer” [DN03]. The ABB is a reactive func-
tionality that allows secret data to be “stored” and allows other functionalities
to compute on secret data. This will be implemented by the stored values being
secret-shared between parties, but the ABB will extract away these details. Most
functionalities will take as inputs (public) identifiers to secret variables already
stored in the ABB and output (public) identifiers to secret variables added to
the ABB. For instance [[z]] = [[x]] + [[y]] indicates that secret variables x and y
are already stored in the ABB, their sum is computed securely, and the sum is
stored in the ABB under the name z.

We use bit-wise RSS as the underlying secret-sharing scheme for the ABB.
Boolean operations (AND, OR, NOT) are achieved using [FLNW17], and
denoted using standard infix operators (∨, ∧, ¬). For any field F2l l ∈ Z

+ we
support the addition (bitwise XOR) and multiplication using [CGH+18]. Both
of these are (3, 1) UC-maliciously secure protocols. Since we use RSS, we can

Table 2. Communication costs of ABB operations.

ABB operation(s) Communication (bits)

Input(x, Pi)/Output([[x]], Pi)/Mult([[x]], [[y]]) Θ(|x|)
RandomElement(�)/Add([[x]], [[y]])/NOT([[x]]) 0

OR([[x]], [[y]])/AND([[x]], [[y]]) Θ(1)

Equal([[x]], [[y]])/IfThenElse([[b]], [[x]], [[y]]) Θ(|x|)
CreateMAC([[x]])/ CheckMAC([[x]])/PRFEval([[x]], [[k]]) Θ(|x| + κ)

ReplicatedTo2Sharing([[x]], i, j, varNamei,j) Θ(|x|)
2SharingToReplicated([xi,j](i,j), varName) Θ(|x|)
ObliviousShuffle([[X]]) (X ∈ ({0, 1}�)n) Θ(n�)

SilentDotProduct([[X]], [[Y]], [[M]]) (X, Y ∈ ({0, 1}�)n Θ(� + κ)

452 B. Falk et al.

actually switch between viewing an element as a string of bits and as a field
element at no cost.

We extend the ABB to support various functionalities. The full ABB is pre-
sented in Fig. 4, with costs shown in Table 2. In Supplemental Material C, we
show how all of these functionalities are instantiated. Of note, we add func-
tionalities that allow conversion to a 2-sharing. In the context of the ABB, this
means that the variable names are no longer public, but are known to only 2
parties. This, for instance, allows them to access an element of a secret array
using an index known to them, but not the third party. This is critical in allowing
the Holders to store and access data without the Builder learning the accessed
locations.

6 QuietCache: Maliciously-Secure Oblivious Cache
Construction

In this section, we design a novel, distributed, oblivious, “cache” protocol which
we will use to instantiate the topmost level of our hierarchy.

Unlike the OHTables at all other levels of the hierarchy, the cache must allow
items to be queried more than once, since there is no smaller level to which an
item may be moved. Furthermore, it should allow new items to be added without
requiring an expensive rebuild process. We formalize the functionality that the
cache must satisfy as Functionality FOMap, (Fig. 3).

In similar works, the cache is often instantiated by executing a linear-scan
under MPC [FNO22] this has append complexity O(1) and query complexity
O((D + log N)c) where c is the number of elements in the cache.

There is a fundamental tension here regarding the size of the cache. Since
every (D)ORAM query accesses the cache, performing a linear scan of the cache
adds Ω((D + log N)c) to the (D)ORAM query complexity. When c = Ω(log N),
querying the cache becomes the bottleneck for the entire (D)ORAM protocol,
so most (D)ORAM protocols set c = O(1). Unfortunately, there are multiple
problems with a small cache. First, the “cache-the-stash” technique requires a
cache of at least size Ω(log(N)). Second, small cuckoo hash tables always have
a non-negligible probability of build failure [Nob21], and when the cache (L0)
is small, so are the smaller levels in the hierarchy (L1, L2,) For this reason,
many hierarchical (D)ORAM protocols (e.g. [LO13]) are forced to use different
types of tables for the smaller levels of the (D)ORAM hierarchy.

We resolve this tension by designing a novel, distributed, oblivious cache
protocol ΠQuietCache that allows us to increase c to c = κ = ω(log N), while
still maintaining efficient access to the cache. Notably, our protocol requires
O(max D,κ) communication to store a new item and O(D + n log N) communi-
cation to query an item. This will mean that our smallest OHTables will be of
size Ω(κ) = ω(log(N)), allowing them to instantiate cuckoo hash tables with a
stash with at most negligible build failure negligible in N , as required.

Our protocol, ΠQuietCache works as follows. The protocol maintains an array
of all items that have been added (either during initialization or later), with

DORAM Revisited: Maliciously Secure RAM-MPC 453

Fig. 4. Arithmetic Black Box functionality.

454 B. Falk et al.

Fig. 5. ΠQuietCache: Protocol for the cache (implementation of smallest FOMap).

DORAM Revisited: Maliciously Secure RAM-MPC 455

items that were added later appearing later in the array. When a new item is
added, ΠQuietCache does not attempt to delete the old item, but merely places
the new item at the end of the array to indicate it is newer. Authentication
tags are also added to values each time an item is inserted, which will later
allow for efficient queries. To query, we perform a linear scan of the indices,
but not the values. We create a bit-array that is 1 in the location of the array
where the index was most recently added (if any) and 0 elsewhere. Since the
values are all authenticated, we can use our bit-array to very efficiently access
the correct value using FABB.SilentDotProduct (Fig. 4). In the honest-majority
3-party setting, this is very efficient and has essentially the same cost as a single
multiplication. Leveraging the silent dot product is the key trick which enables
ΠQuietCache’s efficiency. Finally, when items need to be extracted we need to
delete old copies of items. We do this using a brute-force check under MPC.

We now show that ΠQuietCache implements FOMap securely.

Proposition 1. Against a static malicious adversary controlling at most one
party out of three, Protocol ΠQuietCache (Fig. 5) UC-realizes functionality
FQuietCache (Fig. 5) with abort in the FABB-hybrid model.

The proof of Proposition 1 is in Appendix G.1. In Appendix H.1 we prove that:

Proposition 2. The communication complexity of ΠQuietCache.Init,ΠQuietCache.
Store,ΠQuietCache.Query,ΠQuietCache.Extract is Θ(κw), O(max D,κ), O(D +
n log N), O(n2 log N + nD), respectively.

7 Maliciously-Secure Oblivious Set Construction

At a high level, our DORAM has a hierarchy of Oblivious Hash Tables (OHTa-
bles), one in each level. It was observed by [MZ14] that once it is known whether
an item is in a given level, it is much easier to access it obliviously. We therefore
adopt the approach of [FNO22] to first have a protocol exclusively to securely
determine whether the item exists at a given level. We call such a protocol a
Distributed Oblivious Set or OSet and we implement (a variant of) this function-
ality in this section. In the next section (Sect. 8) we use this as a sub-protocol
to build (a variant of) an OHTable.

At a high level, ΠOSet obtains efficiency by separating the players into the
roles of “builder” and “holders” [LO13,FNO22]. The Builder constructs a data
structure locally, which is secret-shared between two Holders. The Builder can
learn information about where data is stored in the data structure during a build,
while the Holders can learn the locations that queried items may be located
during queries. If an adversary can only corrupt a single party it therefore is
unable to use this information to learn whether queried items are stored in the
table.

There are two major challenges with this approach. The first is achieving
privacy. The Builder must somehow build the data structures based on knowl-
edge of the locations of items, without learning any information about the items

456 B. Falk et al.

Fig. 6. FOSetand ΠOSet: Functionality and Protocol for a Distributed Oblivious Partial
Set

DORAM Revisited: Maliciously Secure RAM-MPC 457

Fig. 7. FZKPOfValidCHT and ΠZKPOfValidCHT: Functionality and Protocol for verifying
in zero knowledge the correctness of a Cuckoo Hash Table.

458 B. Falk et al.

themselves. The second is ensuring correctness. In the malicious setting, there
must be a method to verify that the Builder constructed data structures cor-
rectly. If the Builder were to place an item in the incorrect location, the protocol
would not find the item during queries.

We address the privacy challenge by storing pseudorandom “tags” (based on
a PRF applied each item) rather than the items themselves. We evaluate the
PRF inside of the ABB, so only the PRF output is revealed to the Builder. The
security of the PRF guarantees that no information about the items themselves
is leaked by their outputs. It also guarantees that collisions occur with negligible
probability, so an item will be in the set only if its PRF is in the set of PRF
evaluations (except with negligible probability).

We address the correctness challenge by the protocol proving, in zero-
knowledge, that the data structure which the Builder constructed and shared is
a valid Cuckoo Hash Table of the underlying data. First, we must prove that
the set of items in the table is equal to the set of items that should be there.
We prove this using a multi-set polynomial equality test. Second, we must prove
that each item is in a correct location. This is done by evaluating the hash func-
tions on each item in the table ensuring that the table location matches one of
these hash functions. While we will describe our verification protocol in terms of
general hash functions, in our case, since the item is itself the output of a PRF,
it actually suffices for our “hash functions” to simply be bit-truncations of the
items. This is very efficient: the bit-truncation itself requires no communication,
after which we can evaluate a standard circuit for an equality test.

Note that we verify the first property using polynomials over large fields
whereas we verify the second property using bitwise operations. We can do this
efficiently due to the fact that we represent data in the field F2� , which is also
a valid Boolean sharing (i.e., over F

�
2) (see Appendix C.1). This allows us to

convert between these sharings for free. We therefore cast the data as a field for
efficient polynomial evaluation, while casting it as a Boolean array for efficient
bit-wise equality testing.

One final challenge in constructing our OSet is handling the stash. We will use
Cuckoo Hashing with a Stash in order to ensure that the build failure probability
is negligible. However, for efficiency, the stashed items will not be part of the
OSet (or OHTable), but will instead be inserted into a sub-DOMap. As such,
we will not implement a full Oblivious Set storing all n items, but a Distributed
Oblivious Partial-Set storing n − s of the n items, and rejecting the s items
in the stash. However, allowing the stash to leave the protocol/functionality is
risky. If information about which queries correspond to stashed items is leaked,
this breaks the obliviousness of queries. For instance, the locations of stashed
elements necessary collide with elements that were stored in the OSet. This
means that if a Holder is corrupted and the environment knows some queries
that correspond to stashed elements, it can conclude that any other query that
accesses the same locations is more likely to have been a member of the set. This
coin has another side to it: if the environment can influence the probability of
a stashed item being queried compared to a stored item it can likewise cause

DORAM Revisited: Maliciously Secure RAM-MPC 459

the accesses to be dependent. (This is exploited for instance by the Alibi attack
(Appendix B) where stash items are never queried, which leaks information
about whether the other queried items were in the set.) Our OSet functionality
will therefore have the limitation that no information about the stash leaves
the ABB outside the protocol, and the calls to build do not depend on which
items were stashed (even conditioned on ABB-revealed values) to avoid leaking
information inside the protocol.

Our OSet also has the limitation that it is only secure if queries are never
repeated. Furthermore, we will need to limit the number of queries to the OSet
data structure. We will later show that the uses of our OSet by the larger protocol
obey all these restrictions. These restrictions are formalized in the following
conditions:

Condition 1 (No Repeats). For all x, Query([[x]], res) is called at most once.

Condition 2 (Limited Queries). Query is called at most n times.

Condition 3 (ABB-Stash Independence). Let stash1, stash2 be two dif-
ferent possible values of stash. The distribution of all outputs of the ABB by
the environment when stash = stash1 must be computationally indistinguishable
from the distribution when stash = stash2.

Condition 4 (Query-Stash Independence). Let stash be the output of
the Build. If x = Xi for any i ∈ [n], the probability that Query(x, res)
occurs/occurred, conditioned on any values revealed by FABB either before or
after, is computationally indistinguishable from independent of stashi.

Our OSet functionality and protocol are presented in Fig. 6. This makes
use of our functionality for verifying, in zero-knowledge, that the Builder (P0)
correctly constructed the Cuckoo Hash table (on the non-stash elements). This
functionality, and the protocol that implements it, are presented in Fig. 7. We
now prove that these protocols correctly implement the desired functionalities.

Proposition 3. Protocol ΠZKPOfValidCHT statistically UC-securely implements
FZKPOfValidCHT in the FABB-hybrid model.

Proof. Note that this protocol makes no assumptions about the parties or the
adversary setting, as all operations are exclusively within the ABB. It inherits
whichever security the ABB is implemented with. Implementing with our ABB
from Fig. 4 yields a 3-party protocol with statistical UC-security with abort
against a malicious adversary statically corrupting one party. Also, note that
this protocol and functionality provide no guarantees that CHT was chosen
uniformly at random from the set of valid CHTs for X, only that it was one
such valid CHT.

By Corollary 1, since ΠZKPOfValidCHT does not reveal any values, it suffices
to prove that the output stored in the ABB is correct (except with negligible
probability).

460 B. Falk et al.

Let f(x) = Π[[a]]∈[[X]]([[a]]−x)−Π[[b]]∈[[CHT]]([[b]]−x). If [[X]] and [[CHT]] contain
the same multiset, then f(x) will be the zero polynomial. Otherwise, it will be a
non-zero polynomial of degree at most 2c. In this case, by the Schwartz-Zippel
Lemma, the probability that f(x) evaluates to 0 on a point chosen randomly
from GF (2�) is at most 2c

2� , which is at most 2−σ. Note that u = v if and only if
f(w) = 0, where w was chosen randomly from GF (2�). Therefore check1 = 1 if
and only if [[X]] = [[CHT]], except with negligible probability.

Now we examine the part of the ΠZKPOfValidCHT that verifies that items are
in the correct locations. If check1 = 1, every item in X is in the table (except
with negligible probability). Assuming this is true, if every item is stored in a
correct location, check2 will evaluate to 1, otherwise it will evaluate to 0. (If
check1 = 0, then it does not matter what check2 evaluates to as varName will
be set to 0.) Therefore varName will be set to 1 if, and only if, all items in X
are stored in CHT at a correct location.

We now prove that ΠOSet realizes FOSet subject to our conditions:

Proposition 4. Against a static malicious adversary controlling at most one
party out of three and an environment satisfying Conditions 1, 2, 3 and 4 Pro-
tocol ΠOSet (Fig. 6) statistically (with failure probability negligible in N) real-
izes functionality FOSet (Fig. 6) with abort in the FABB,FZKPOfValidCHT-hybrid
model.

The proof of Proposition 4 is in Appendix G.2. In Appendix H.2 we prove
that:

Proposition 5. ΠOSet.Build has complexity O(n(κ+D)) and ΠOSet.Query has
complexity O(κ).

8 Maliciously-Secure Oblivious Hash Table Construction

In this section, we build a Distributed Oblivious Hash Table (OHTable) using
the OSet protocol outlined in Sect. 7. The OHTable is a protocol for securely
mapping indices to values provided each item is only queried once.

The purpose of the OSet is to check whether the item being queried is in the
domain of the Hash Table. If so, the item will be accessed in the ABB based
on a public tag (which is a PRF evaluation of the index). If not, a pre-inserted
dummy item will be accessed based on its public tag (which is a PRF evaluation
of a counter). The real items and pre-inserted dummies are shuffled prior to the
tags being revealed, hiding which items are real.

The OHTable’s Query function will also provide a way to do a no-op query
that is indistinguishable from a real query. This will be critical in ensuring the
no-repeats condition is satisfied: when the DORAM is queried multiple times for
an item, it will query the item in the OHTable the first time and henceforth will
ask the OHTable to perform a no-op query. Additionally, our OHTable supports
an Extract functionality which returns (in the ABB) an array of the items which
were not queried (padded to length n with copies of (⊥,⊥)).

DORAM Revisited: Maliciously Secure RAM-MPC 461

Fig. 8. FOHTable and ΠOHTable: Functionality and Protocol for Distributed Oblivious
Partial Hash-Table

462 B. Falk et al.

Since the OHTable uses our OSet construction which generates a stash, our
OHTable will also generate a stash. The stash elements will be not be stored
in the table; they will be rejected and returned by the Build functionality. Like
the OSet, our OHTable will only be secure if stashed items are queried with
probability equal to items stored in the set.

Like our OSet protocol, our OHTable protocol has a limit on the number of
times Query is executed. It has an additional Extract function which must be
called so the OHTable can be rebuilt when this limit has been reached.

Our protocol is subject to similar conditions as that of our OSet protocol, but
with some modifications. While OSet did not allow repeated queries, OHTable
does not allow repeated queries of real items, but does allow repeated queries of
the null-value ⊥, which is used for the no-op queries. Like in the OSet protocol
we need to limit to n queries. We also need independence from the stash, both for
values revealed by the ABB by the environment and for queries to the OHTable.
However in this case, the stash consists of an array of both indices and values.
In addition, we have a condition that the Extract function will only be called
after the queries have been depleted. We formally state our conditions below:

Condition 5 (No Repeats of Real Items). For all x ∈ [N], Query([[x]], res)
is called at most once. (Query([[⊥]], res) may be called many times.)

Condition 6 (Limited Queries). Query is called n − s times.

Condition 7 (ABB-Stash Independence). Let (stashX1, stashY1),
(stashX2, stashY2) be two different possible values of (Xstash, Y stash). The dis-
tribution of all outputs of the ABB by the environment when (Xstash, Y stash) =
(Xstash

1 , Y stash
1) must be computationally indistinguishable from the distribution

when (Xstash, Y stash) = (Xstash
2 , Y stash

2).

Condition 8 (Query-Stash Independence). Let (Xstash, Y stash) be the out-
put of Build. If x = Xi for any i ∈ [n], the probability that Query(x, res) is called
at any time, conditioned on any values revealed by the ABB either before or after,
is computationally indistinguishable from independent of whether x ∈ Xstash.

Condition 9 (Extract at End). The function Extract will only be called at
most once, and only after n − s calls to Query.

We present our OHTable protocol (ΠOHTable) and functionality (FOHTable)
in Fig. 8. We now prove its security. Firstly, we need to demonstrate that if
ΠOHTable is accessed consistently with its conditions, it will also access FOSet in
a manner that is consistent with its conditions. Formally:

Proposition 6. Assuming an environment that follows Conditions 5, 6, 7, 8
and 9 when accessing ΠOHTable, Conditions 1, 2, 3 and 4 will also be satisfied
in calls to FOSet.

The proof is in Appendix G.3

DORAM Revisited: Maliciously Secure RAM-MPC 463

Proposition 7. Assuming an environment that follows Conditions 5, 6, 7,
8 and 9 ΠOHTable is a secure implementation of FOHTable with abort in the
FABB,FOSet-hybrid model in the 3-party setting against one static malicious
adversary, where FOSet is subject to Conditions 1, 2, 3 and 4.

The proof is in Appendix G.4. Finally, in Appendix H.3 we show that:

Proposition 8. ΠOHTable.Build has complexity O(n(κ + D)) and ΠOHTable.
Query has complexity O(κ) and ΠOHTable.Extract has complexity O(nD).

9 Maliciously-Secure Oblivious Map Construction

As noted above, Oblivious Hash Tables (Sect. 8) have multiple limitations (for-
malized by Conditions 5–9). In particular, it does not allow real items to be
queried multiple times and has very particular restrictions about how the stash
is used by the environment. In this section, we present an Oblivious Map (OMap)
construction that removes these limitations.

We will use the hierarchical solution, but with a twist. We will define our
OMap recursively2. An OMap will consist of an Oblivious Hash Table and a
smaller OMap of roughly half the capacity. This implicitly creates a hierarchy of
OHTables, with the levels corresponding to levels of the recursion. Viewing the
hierarchical solution in terms of recursion will make it much simpler to present
our protocols and prove them secure. We will evidently need a base case: we
use ΠQuietCache for this as ΠQuietCache already implements OMap (although it
is only efficient for smaller table sizes). Our OMap will have a limitation that it
can only be queried a certain number of times. Our final ORAM will be able to
remove this limitation by taking advantage of the fact that its capacity is equal
to the size of the index space. Our condition on the order that OMap should be
accessed is formally stated below.

Condition 10 (OMap Call Pattern). First Init([[X]], [[Y]], n) is called, where
len([[X]]) = len([[Y]]) = w ≤ log(N) < κ

4 .
Then there are at most n − w calls to Query([[x]]) each followed immediately by
a call to Add([[x]], [[y]]) (for the same x and some value of y other than ⊥).
Finally, there is a call to Extract.

In more detail, an OMap of capacity n will contain two data objects: an
OHTable with capacity roughly n

2 and a smaller sub-OMap of capacity roughly
n
2 . We first store items in the sub-OMap, until it becomes full. When this hap-
pens, we extract the contents of the sub-OMap and build an OHTable from
its contents. We then initialize a new sub-OMap, in which we store new items.
To avoid querying an item to the OHTable more than once, we first query the
sub-OMap. If the item has already been queried, it will have been re-added
(see Condition 10) and therefore placed in the sub-OMap. If it is found in the

2 Recall that we need to recurse on OMaps rather than ORAMs, since the smaller
levels in the hierarchy need to be able to hold indices from the full space.

464 B. Falk et al.

Fig. 9. Recursive OMap protocol

DORAM Revisited: Maliciously Secure RAM-MPC 465

sub-OMap we therefore do a no-op query to the OHTable. Extract will be called
exactly when the sub-OMap becomes full again, and the contents of both the
OHTable and sub-OMap will be extracted and returned.

Things are complicated slightly by the fact that because of the “cache-the-
stash” technique, our OHTable for storing n elements, actually stores only n− s
elements, and returns a stash of s items which is intended to be “cached.” To
handle this, we increase the capacity of the both the sub-OMap and the OHTable
by s

2 , thus both have a size of n
2 + s

2 . Note that since the OHTable caches s items,
it will only hold n

2 − s
2 real items. This means that each recursive call to the OMap

causes the size to be reduced by slightly less than half; nevertheless as s is very
small relative to n (s = Θ(log(N)) = o(κ) and κ is the size of the base level), the
total recursive depth will still be Θ(log(N)). Additionally, since stashed items
need to be queried in the OHTable with probability equal to stored items, the
OMap will tag stashed items with an Alibi bit (c.f. Appendix B) before placing
them in the sub-OMap. This will slightly increase the size of payloads at smaller
levels of the recursion, but will not affect asymptotic performance.

Our protocol ΠOMap, as well as the functionality FOMap that it implements,
are presented in detail in Figs. 9 and 3 respectively. We next prove the security
of ΠOMap with respect to FOMap. Note that since ΠOMap reveals no values from
the ABB, this security proof is not particular to our 3-party honest-majority
setting. Rather, it applies in any setting given a FABB,FOHTable,FOMap-hybrid
setting, where FOHTable is subject to at most Conditions 5, 6, 7, 8 and 9, and
FOMap is of a smaller capacity and subject to at most Condition 10.

Since ΠOMap does not reveal any values from the ABB, to prove its security
we need only prove two things (see Corollary 1): that the outputs (to the ABB)
are correct and that the conditions on the functionalities it uses are upheld. We
prove these below.

Proposition 9. Assuming an environment that follows Condition 10 and that
n ≥ κ = ω(log(N)), ΠOMap[n,N] is a secure implementation of FOMap[n,N]
in the FABB,FOHTable,FOMap[n

2 + log(N)
2 , N]-hybrid setting, where FOHTable is

subject to Conditions 5, 6, 7, 8 and 9, and FOMap occurs as a single instance of
FOMap[n

2 + log(N)
2 , N] and is subject to Condition 10.

The proof is in Appendix G.5.

Proposition 10. If ΠOMap is implemented with its functionalities instantiated
in the following ways:

– FOMap implemented recursively with ΠOMap for all n ≥ κ and with
ΠQuietCache once n < κ.

– FOHTable implemented using ΠOHTable, which in turn implements FOSet using
ΠOSet

– FABB is implemented as described in Sect. 5

the resulting protocol will have the following costs:

466 B. Falk et al.

– Init : Θ(κw)
– Query: Θ(log(N)(κ + D)
– Add and Extract (combined, amortized over n accesses): Θ(log(N)(κ + D))

The proof is in Appendix H.4

Acknowledgments. Supported in part by ONR under grant N00014-15-1-2750, Rip-
ple Labs Inc., DARPA under Cooperative Agreement HR0011-20-2-0025, the Algorand
Centers of Excellence programme managed by Algorand Foundation, NSF grants CNS-
2001096 and CCF-2220450, US-Israel BSF grant 2015782, Amazon Faculty Award,
Cisco Research Award and Sunday Group. Any views, opinions, findings, conclusions
or recommendations contained herein are those of the author(s) and should not be
interpreted as necessarily representing the official policies, either expressed or implied,
of ONR, Ripple Labs Inc., DARPA, the Department of Defense, the Algorand Foun-
dation, or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes not withstanding any copyright annota-
tion therein.

References

[AKL+20] Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi,
E.: OptORAMa: optimal oblivious RAM. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 403–432. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 14

[AKLS21] Asharov, G., Komargodski, I., Lin, W.-K., Shi, E.: Oblivious RAM
with Worst-Case logarithmic overhead. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12828, pp. 610–640. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84259-8 21

[AKST14] Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious stor-
age. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 131–148.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-
0 8

[ARS+15] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 17

[BBVY21] Banik, S., Barooti, K., Vaudenay, S., Yan, H.: New attacks on LowMC
instances with a single plaintext/ciphertext pair. IACR ePrint 2021/1345
(2021)

[BGI15] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 12

[BIKO12] Beimel, A., Ishai, Y., Kushilevitz, E., Orlov, I.: Share conversion and pri-
vate information retrieval. In: 2012 IEEE 27th Conference on Computa-
tional Complexity, pp. 258–268. IEEE (2012)

[BKKO20] Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party dis-
tributed ORAM. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS,
vol. 12238, pp. 215–232. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57990-6 11

https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-030-84259-8_21
https://doi.org/10.1007/978-3-642-54631-0_8
https://doi.org/10.1007/978-3-642-54631-0_8
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1007/978-3-030-57990-6_11

DORAM Revisited: Maliciously Secure RAM-MPC 467

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: STOC, New
York, NY, USA. ACM (1988)

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145. IEEE (2001)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols. In: STOC (1988)

[CDG+17] Chase, M., et al.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. IACR ePrint 2017/279 (2017)

[CDI05] Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom
secret-sharing and applications to secure computation. In: Kilian, J. (ed.)
TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30576-7 19

[CFP13] Cramer, R., Fehr, S., Padró, C.: Algebraic manipulation detection codes.
Sci. China Math. 56, 1349–1358 (2013)

[CGH+18] Chida, K., et al.: Fast large-scale honest-majority MPC for malicious
adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0 2

[CHL22] Casacuberta, S., Hesse, J., Lehmann, A.: SoK: oblivious pseudorandom
functions. In: EuroS&P, pp. 625–646. IEEE (2022)

[DFK+06] Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally
secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.
1007/11681878 15

[DK12] Drmota, M., Kutzelnigg, R.: A precise analysis of Cuckoo hashing. ACM
Trans. Algorithms (TALG) 8(2), 1–36 (2012)

[DLMW15] Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks
on LowMC. IACR ePrint 2015/418 (2015)

[DN03] Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty
computation from threshold homomorphic encryption. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 15

[DO20] Dittmer, S., Ostrovsky, R.: Oblivious tight compaction in O(n) time with
smaller constant. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS,
vol. 12238, pp. 253–274. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57990-6 13

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

[Ds17] Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS
(2017)

[DvDF+16] Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs,
D.: Onion ORAM: a constant bandwidth blowup oblivious RAM. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
145–174. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49099-0 6

https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-662-49099-0_6

468 B. Falk et al.

[FJKW15] Faber, S., Jarecki, S., Kentros, S., Wei, B.: Three-party ORAM for secure
computation. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 360–385. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 16

[FLNW17] Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure
three-party computation for malicious adversaries and an honest major-
ity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10211, pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56614-6 8

[FNO21] Hemenway Falk, B., Noble, D., Ostrovsky, R.: Alibi: a flaw in Cuckoo-
hashing based hierarchical ORAM schemes and a solution. In: Can-
teaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698,
pp. 338–369. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77883-5 12

[FNO22] Falk, B.H., Noble, D., Ostrovsky, R.: 3-party distributed ORAM from
oblivious set membership. In: Galdi, C., Jarecki, S. (eds.) Security and
Cryptography for Networks. SCN 2022. LNCS, vol. 13409, pp. 437–461.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14791-3 19

[FNR+15] Fletcher, C.W., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket ORAM:
single online roundtrip, constant bandwidth oblivious RAM. IACR ePrint
2015/1065 (2015)

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Gar-
bled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 23

[GI14] Gilboa, N., Ishai, Y.: Distributed point functions and their applications.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 35

[GKK+12] Gordon, S.D., et al.: Secure two-party computation in sublinear (amor-
tized) time. In: CCS (2012)

[GKW18] Gordon, S.D., Katz, J., Wang, X.: Simple and efficient two-server ORAM.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274,
pp. 141–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03332-3 6

[GMOT12] Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.:
Privacy-preserving group data access via stateless oblivious RAM sim-
ulation. In: SODA (2012)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: STOC (1987)

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious RAMs. JACM 43(3), 431–473 (1996)

[Gol87] Goldreich, O.: Towards a theory of software protection and simulation by
oblivious RAMs. In: STOC 1987, pp. 182–194. ACM (1987)

[HV20] Hamlin, A., Varia, M.: Two-server distributed ORAM with sublinear com-
putation and constant rounds. IACR ePrint 2020/1547 (2020)

[IKH+23] Ichikawa, A., Komargodski, I., Hamada, K., Kikuchi, R., Ikarashi, D.:
3-party secure computation for RAMs: optimal and concretely efficient.
IACR ePrint 2023/516 (2023)

https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-030-77883-5_12
https://doi.org/10.1007/978-3-030-77883-5_12
https://doi.org/10.1007/978-3-031-14791-3_19
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-030-03332-3_6
https://doi.org/10.1007/978-3-030-03332-3_6

DORAM Revisited: Maliciously Secure RAM-MPC 469

[IKK+11] Ishai, Y., Katz, J., Kushilevitz, E., Lindell, Y., Petrank, E.: On achieving
the “best of both worlds” in secure multiparty computation. SIAM J.
Comput. 40(1), 122–141 (2011)

[JW18] Jarecki, S., Wei, B.: 3PC ORAM with low latency, low bandwidth, and
fast batch retrieval. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 360–378. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-93387-0 19

[JZLR22] Ji, K., Zhang, B., Lu, T., Ren, K.: Multi-party private function evaluation
for RAM. IACR ePrint 2022/939 (2022)

[KLO12] Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in) security of hash-based
oblivious RAM and a new balancing scheme. In: SODA (2012)

[KM19] Kushilevitz, E., Mour, T.: Sub-logarithmic distributed oblivious RAM
with small block size. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol.
11442, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17253-4 1

[KMW09] Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo
hashing with a stash. SIAM J. Comput. 39, 1543–1561 (2009)

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In: FOCS (1997)

[KS14] Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
506–525. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 27

[Lau15] Laud, P.: Parallel oblivious array access for secure multiparty computation
and privacy-preserving minimum spanning trees. In: PoPETs (2015)

[LIM20] Liu, F., Isobe, T., Meier, W.: Cryptanalysis of full LowMC and LowMC-M
with algebraic techniques. IACR ePrint 2020/1034 (2020)

[LN17] Lindell, Y., Nof, A.: A framework for constructing fast MPC over arith-
metic circuits with malicious adversaries and an honest-majority. In: CCS,
pp. 259–276 (2017)

[LN18] Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound!
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992,
pp. 523–542. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 18

[LO13] Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-
2 22

[LWZ11] Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database
manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol.
7001, pp. 262–277. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-24861-0 18

[Mit09] Mitzenmacher, M.: Some open questions related to Cuckoo hashing. In:
Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 1–10. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0 1

[MV23] Mathialagan, S., Vafa, N.: MacORAMa: optimal oblivious RAM with
integrity. IACR ePrint 2023/083 (2023)

[MZ14] Mitchell, J.C., Zimmerman, J.: Data-oblivious data structures. In: STACS.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

https://doi.org/10.1007/978-3-319-93387-0_19
https://doi.org/10.1007/978-3-319-93387-0_19
https://doi.org/10.1007/978-3-030-17253-4_1
https://doi.org/10.1007/978-3-030-17253-4_1
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1007/978-3-642-04128-0_1

470 B. Falk et al.

[NIS21] NIST. Post-quantum cryptography PQC: Round 3 submissions
(2021). https://csrc.nist.gov/Projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions

[Nob21] Noble, D.: Explicit, closed-form, general bounds for cuckoo hashing with
a stash. IACR ePrint 2021/447 (2021)

[OS97] Ostrovsky, R., Shoup, V.: Private information storage. In: STOC, vol. 97
(1997)

[Ost90] Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC (1990)
[Ost92] Ostrovsky, R.: Software protection and simulation on oblivious RAMs.

Ph.D. thesis, Massachusetts Institute of Technology (1992)
[PPRY18] Patel, S., Persiano, G., Raykova, M., Yeo, K.: PanORAMa: oblivious RAM

with logarithmic overhead. In: FOCS (2018)
[PR01] Pagh, R., Rodler, F.F.: Cuckoo hashing. In: ESA (2001)
[PR10] Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.)

CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 27

[PSSZ15] Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set
intersection using permutation-based hashing. In: USENIX, pp. 515–530
(2015)

[RFK+14] Ren, L., et al.: Ring ORAM: closing the gap between small and large client
storage oblivious RAM. IACR ePrint 2014/997 (2014)

[SVDS+13] Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM
protocol. In: CCS (2013)

[Tof07] Toft, T.: Primitives and applications for multi-party computation. Unpub-
lished doctoral dissertation, University of Aarhus, Denmark (2007)

[VHG22] Vadapalli, A., Henry, R., Goldberg, I.: Duoram: a bandwidth-efficient dis-
tributed ORAM for 2- and 3-party computation. IACR ePrint 2022/1747
(2022)

[Vol99] Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach.
Springer, Cham (1999). https://doi.org/10.1007/978-3-662-03927-4

[WCS15] Wang, X., Chan, H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-
Ostrovsky lower bound. In: CCS (2015)

[WHC+14] Wang, X.S., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: SCORAM:
oblivious RAM for secure computation. In: CCS (2014)

[Yao82] Yao, A.: Protocols for secure computations (extended abstract). In: FOCS
(1982)

[Yao86] Yao, A.: How to generate and exchange secrets. In: FOCS (1986)
[ZWR+16] Zahur, S., et al.: Revisiting square-root ORAM: efficient random access in

multi-party computation. In: S & P (2016)

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-642-14623-7_27
https://doi.org/10.1007/978-3-662-03927-4

3-Party Secure Computation for RAMs:
Optimal and Concretely Efficient

Atsunori Ichikawa1(B), Ilan Komargodski2,3, Koki Hamada1, Ryo Kikuchi1,
and Dai Ikarashi1

1 NTT Social Informatics Laboratories, Tokyo, Japan
{atsunori.ichikawa,koki.hamada,ryo.kikuchi,dai.ikarashi}@ntt.com

2 The Hebrew University of Jerusalem, Jerusalem, Israel
ilank@cs.huji.ac.il

3 NTT Research, Sunnyvale, USA

Abstract. A distributed oblivious RAM (DORAM) is a method for
accessing a secret-shared memory while hiding the accessed locations.
DORAMs are the key tool for secure multiparty computation (MPC) for
RAM programs that avoids expensive RAM-to-circuit transformations.

We present new and improved 3-party DORAM protocols. For a log-
ical memory of size N and for each logical operation, our DORAM
requires O(log N) local CPU computation steps. This is known to
be asymptotically optimal. Our DORAM satisfies passive security in
the honest majority setting. Our technique results with concretely-
efficient protocols and does not use expensive cryptography (such as
re-randomizable or homomorphic encryption). Specifically, our DORAM
is 25X faster than the known most efficient DORAM in the same setting.

Lastly, we extend our technique to handle malicious attackers at the
expense of using slightly larger blocks (i.e., ω((λ + b) log N) vs. λ + b
where b = Ω(log N) is original block size). To the best of our knowledge,
this is the first concretely-efficient maliciously secure DORAM.

Technically, our construction relies on a novel concretely-efficient 3-
party oblivious permutation protocol. We combine it with efficient non-
oblivious hashing techniques (i.e., Cuckoo hashing) to get a distributed
oblivious hash table. From this, we build a full-fledged DORAM using a
distributed variant of the hierarchical approach of Goldreich and Ostro-
vsky (J. ACM ’96). These ideas, and especially the permutation protocol,
are of independent interest.

1 Introduction

Secure multiparty computation (MPC) is a method that enables mutually dis-
trustful parties to jointly compute an arbitrary function over their private inputs.
Since breakthrough feasibility results in the 80s, the quest for practically efficient
MPC protocols is a central research area in cryptography. Efficiency is measured
in terms of local computation and/or communication, as a function of the size
of the representation of the function that needs to be computed.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 471–502, 2023.
https://doi.org/10.1007/978-3-031-48615-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_17&domain=pdf
https://doi.org/10.1007/978-3-031-48615-9_17

472 A. Ichikawa et al.

There are several common ways to represent computation, e.g., the circuit
model or Random Access Memory (RAM) model. Any function can be computed
in either of the models and a representation in one model can be translated to
the other. However, such translations have a cost: a RAM program of size N
can be turned into a circuit of size O(N3 log N) [38]. Therefore, due to efficiency
reasons, it would be highly desirable to be able to perform secure computation
for RAM programs, directly.

This is challenging because MPC protocols need to guarantee, in particular,
that the running time, memory accesses and communication patterns of the par-
ticipants, do not depend on their private inputs. The circuit model guarantees
these properties for free as circuits can be computed in a gate-by-gate fash-
ion, independently of the inputs. In general, RAM programs do not have these
features and therefore some extra work is needed.

There is a generic way to turn any RAM program into another that computes
the same functionality but whose memory accesses do not reveal anything about
the program’s secret inputs. This is called an Oblivious RAM (ORAM), origi-
nally proposed by Goldreich and Ostrovsky [23,24,35]. The traditional setting
for ORAMs is one client and one server. That is, a large memory is stored on
an untrusted server and a client can make accesses to it using a small trusted
memory. Ostrovsky and Shoup [36] observed that by simulating the client of an
ORAM using traditional circuit-based MPC protocol, one can generically get an
MPC for RAM programs. However, designing an efficient ORAM with a client
that is “compatible” with circuit-based MPC is not at all obvious and has been
(so far) sub-optimal in terms of the efficiency of the resulting protocol (see,
e.g., [40]).

Due to the inherent inefficiency of circuit-based MPC for certain computa-
tions, there have been significant efforts in the last decade in building efficient
MPCs for RAM programs, for example [6,9,16,19,33,40]. By now, due to its
relation to oblivious simulation, the common terminology for this problem is
Distributed Oblivious RAM (DORAM)—informally, this is a protocol that
allows parties to collectively maintain and perform reads/writes on a memory
(a formal definition appears in Sect. 3.2).

The complexity measure of DORAMs of interest to us is their computational
overhead. That is, the maximal amount of CPU instructions1 performed by each
of the parties when serving a single logical request.2 Some prior works measure
bandwidth overhead which accounts only for the maximal amount of bits com-
municated between the parties. Computational overhead is harder to optimize
since an upper bound on the computational overhead implies an upper bound
on the communication overhead, i.e., computational overhead ≥ communication
overhead. The other direction is not necessarily true; indeed, some prior works

1 We model parties as RAM machines that can perform word-level addition and stan-
dard Boolean operations at unit cost.

2 As commonly done, we sometimes settle for overhead in an amortized sense, that is,
we measure the average overhead over a sequence of requests. Known schemes can
be made worst-case (“de-amortized”) [5,36].

3-Party Secure Computation for RAMs 473

(e.g., [19]) optimize communication overhead at the expense of increased com-
putational overhead. In this work, we choose the more stringent measure. This
is particularly important if we aim for concretely efficient and practically useful
DORAMs.

Furthermore, we focus on the honest majority setting and more specifically
on the 3-party setting, where at most one server is corrupted. We mention that
there are several schemes in the 2-party setting (e.g., [15,33,40]), but due to
the nature of the dishonest majority setting, existing techniques result with
asymptotically and concretely less efficient schemes than in the 3-party honest
majority setting.

A variant of a scheme due to Lu and Ostrovsky [33], suggested by Faber
et al. [16],3 gives a (3-party) DORAM with O(log N) computational overhead
with block size Ω(log N). While the asymptotical overhead of this construction
is optimal, the concrete efficiency is quite poor. The reason is that their compiler
requires the parties to securely and jointly compute a linear number of encryp-
tions once in a while (which requires a circuit-based secure computation protocol
of AES computation).

Later works attempt to present concretely efficient DORAMs. Wang et al. [40]
and Faber et al. [16] proposed DORAMs with O(log N) computational over-
head, but their block size is Ω(log2 N) which is less standard. Bunn et al. [6]
constructed a DORAM with small concrete constants but poor asymptotic over-
head (Ω(

√
N)). Most recently, Falk et al. [19] reduced the large constant factor

of [16,33] and achieved a scheme with O(log2 N) computational overhead (see
Section 1.4 of full version [26] for details) and O(log N) communication overhead.

Moreover, all of the above schemes only guarantee security against a passive
attacker, i.e., any single server cannot learn any non-trivial information about
the others’ inputs, as long as it follows the prescribed protocol. There are generic
methods to boost security to the more standard setting of active security, where
security holds even if a rouge server arbitrarily deviates from the protocol. How-
ever, these techniques do not preserve efficiency.

The current state of the art for 3-party DORAMs is summarized in Table 1.
This brings us the main problems that we consider in this work:

Is there a 3-party DORAM that is asymptotically optimal in terms of
computational overhead and concretely efficient? Additionally, is there an

efficient actively secure DORAM?

3 The protocol of Lu and Ostrovsky [33] is in the multi-party setting where there
are two non-communicating servers and a single trusted lightweight client (see full
version for details). Faber et al. [16] observed that the client in [33]’s scheme can be
efficiently simulated by an MPC.

474 A. Ichikawa et al.

Table 1. Summary of known 3-party DORAMs in the honest majority setting together
with our own schemes. Let N be the number of input elements and also treated as
the statistical security parameter, b = Ω(log N) be the size of the input element,
and λ be the computational security parameter. The first column points to the paper
that obtained the DORAM. The second column states the communication overhead
of the proposed construction. The third column states the computational overhead of
the proposed construction. The fourth column states whether the security guarantee
is for passive or active attackers. The fifth column mentions the block size used in
the construction. Lastly, the sixth column states whether the hidden constants are
considered large or small.

Ref. Communication Computation Security Block size Hidden const.

[36] O(log3 N) O(log3 N) Passive b Large

[16,33] O(log N) O(log N) Passive λ + b Large

[16,40] O(log N) O(log N) Passive b + Ω(log2 N) Large

[6] O(
√

N) O(
√

N) Passive b Small

[19] O(log N) O(log2 N) Passive λ + b Small

[17]a O(log N) O(log N) Active ω((λ + b) log N) Small

Our O(log N) O(log N) Passive λ + b Small

Our O(log N) O(log N) Active ω((λ + b) log N) Small
a A concurrent work that is realized in a different and independent way from ours.
See also Sect. 2 for the comparison.

1.1 Our Contributions

An Optimal 3-Party DORAM: We present an asymptotically optimal and
concretely efficient 3-party DORAM in the honest majority setting. Specifically,
our DORAM has the computational overhead of O(log N) and the hidden con-
stant is rather small. Our DORAM requires at most 4 log N oblivious pseudoran-
dom function (OPRF) calls per access (amortized). This is about 2 times greater
than that of the DORAM of Falk et al. [19],4 but it is significantly more efficient
than the known optimal DORAM of Lu and Ostrovsky [16,33] that requires at
least 100 log N calls per access (see full version for more details). This protocol
is secure against passive (honest-but-curious) attackers.

A Distributed Oblivious Permutation: Our main technical novelty is a new
(concretely efficient and asymptotically optimal) 3-party oblivious permutation
protocol. Our protocol can apply any permutation to the data with commu-
nication of 4nb + 2n�log n� bits and 12nb + 2n�log n� local CPU computation
steps where n is the number of data elements to be shuffled and b is the bit-
length of each data element. We also construct a procedure to invert that per-
mutation. This procedure requires 8nb + 2n�log n� bits of communication and
19nb + 2n�log n� steps of local computation.
4 Here, we emphasize again that the DORAM of Falk et al. [19] requires O(log2 N)
computational cost in addition to the communication cost. We only have O(log N)
computational cost.

3-Party Secure Computation for RAMs 475

A Distributed Oblivious Hash Table: Our DORAM construction is mod-
ular and, at a high level, is reminiscent of the hierarchical ORAM technique of
Goldreich and Ostrovsky [24]. Recall that [24]’s hierarchical method basically
reduces the problem of maintaining a memory to the problem of building a
static hash table (supporting only lookups after an initial build). To this end,
we implement a concretely efficient distributed oblivious hashing scheme. This
is the first concretely efficient and asymptotically optimal distributed oblivious
hash table construction. To store n data blocks of size b bits into a distributed
hash table, each party needs to perform at most O(n · (λ + b + �log n�)) local
CPU computation steps, and our lookup protocol requires O(λ + b) + O(σ · b)
local CPU computation steps, where the first term is for a lookup in a main
table and the second for a linear scan of a σ-size stash. The storage size of the
hash table is O(nb). We obtain our distributed oblivious hash table by first ran-
domly permuting the data to be hashed (using the above-mentioned permutation
protocol) and then simply invoking an off-the-shelf (non-oblivious) distributed
hashing technique.

Active Security: We extend our passively secure schemes from above to be
actively secure, without hurting efficiency, except that we rely on somewhat
larger blocks. Specifically, we get a 3-party DORAM with O(log N) computa-
tional overhead and block size ω((λ+b) log N). As far as we know, this is the first
result of achieving active security for DORAM with practical efficiency guaran-
tees. We do not know how to achieve similar concrete efficiency guarantees with
logarithmic size blocks and we leave it as an exciting open problem.

1.2 Technical Overview

Before showing the fundamental idea of our schemes, we first revisit the optimal
DORAM of Lu and Ostrovsky [16,33]. Their DORAM consists of a hierarchy
of permuted arrays, i.e., oblivious hash tables, that are managed by multi-party
protocols while hiding access patterns. The fundamental idea of their oblivious
hashing (which comes from the 2-server setting [33]) is as follows. One of the
two servers is the permuter, and the other is the storage. The storage sends all
data that should be permuted to the permuter while rerandomizing, and the
permuter constructs a hash table consisting of the data. The permuter sends the
hash table to the storage while rerandomizing. Now, the storage can explore the
table with a (randomized) query.

Though the storage can observe the access patterns on the table directly in
the above scheme, the access patterns achieve obliviousness against the storage
with non-duplicate access since it does not know the permutation for building
the table. In other words, the table seems to be shuffled from the storage’s point
of view, and hence a single lookup looks completely random. On the other hand,
since the permuter does not observe any access to the table, it never knows the
access patterns even if it knows how to construct the table.

Due to the ingenuity of the server role splitting, they achieved optimal
DORAM with optimal oblivious hashing. However, as Falk et al. [19] pointed

476 A. Ichikawa et al.

out, while this DORAM is asymptotically optimal it is not practically efficient
because of the large frequency of required rerandomizations. Their rerandom-
ization can be implemented by oblivious pseudorandom function (OPRF) in the
context of secure multiparty computation, but as mentioned in [19], the DORAM
of Lu and Ostrovsky requires at least 100 log N OPRFs per access. Falk et al.
improved this by a factor of 50, at the expense of increased local computation
overhead—i.e., O(log2 N) local hash function evaluations per access.

An Oblivious Distributed Permutation Protocol. Our starting point is the
idea of role splitting, but with a novel modification that maintains optimality
and greatly improves practical efficiency. Our fundamental idea is as follows.
Set the role of one of the three servers as the permuter; this server knows a
permutation for hashing. The other two servers will be the storage that holds
data in a secret-shared form. The servers obliviously compute hash values of
all secret-shared data (which can be implemented by ORPFs) and reveal them
to the permuter. The permuter calculates a permutation that sorts the data to
make a hash table. The servers run a role-asymmetric oblivious permutation
to apply the above permutation to the data obliviously. As the output of this
protocol, the two storages obtain a hash table in secret-shared form. Now, the
storages can explore the table with a secret-shared query.

By the description above, only one round of OPRF evaluations is required to
build a hash table. Our permutation protocol is for 3-party computation, and if
one party knows a permutation, it can apply the permutation to a secret-shared
array in linear time while keeping the permutation secret from the other two
parties (see Sect. 5.1 for more details).

From an Oblivious Distributed Permutation to a DORAM. We obtain
a DORAM using only 4 log N OPRF evaluations and optimal computational
complexity per access. This is obtained via the following very useful observations:
(1) given an oblivious permutation protocol, there is an extremely efficient way
to get an oblivious distributed hash table, and (2) given the latter, we can
adapt the hierarchical ORAM framework (or its optimizations) to the distributed
setting. We elaborate on both bullets next. First, we observe that the shuffle-
sort paradigm can be applied to hashing: if data is randomly shuffled, we can
invoke an insecure oblivious hashing algorithm. This allows us to completely get
rid of complicated (distributed) oblivious hashing approaches by first shuffling
the input and then invoking a simple hashing procedure. Concretely, we use
(plain) cuckoo hashing with a stash [30] to achieve constant lookup time (ignoring
scanning a logarithmic-size stash, which we will do once per logical access).

Once we have obtained our distributed hash table, we plug it into the hier-
archical ORAM setting, while extending it to the distributed setting. I.e., we
implement every level in the hierarchy with an oblivious distributed hash table,
as above, and where each level can hold twice more elements than its previous
level. The stashes from all levels are merged into one common stash and scanning
it is done once per lookup.

3-Party Secure Computation for RAMs 477

Maliciously Secure DORAM. In our permutation protocol roles of parties
are asymmetric, and in particular, the permuter has complete control over the
chosen permutation. Thus, it is non-trivial to extend our ideas to the mali-
cious setting. Note that, it is not trivial to compile the known passively secure
DORAMs [16,19,33] to active security despite the existence of actively secure
MPC frameworks [10,20,27,29]. The oblivious hashing of [16,33] highly depends
on oblivious permutation, thus to compile it to active security, one would need an
actively secure variant of their permutation protocol (a task that we achieve as
one of our main technical contributions). Alternatively, extending [19]’s DORAM
to a malicious setting would require some form of an active hash table based on
Bloom filters; this is closer to the strategy employed in the concurrent work
of [17] (see Sect. 2).

To this end, we augment our permutation evaluation protocol to check that
all elements in a hash table are actually in their correct cell. The key insight
is that the correctness of a hash table can be evaluated by hash values of ele-
ments calculated by OPRF whose correctness (in turn) can be guaranteed using
a known actively secure MPC framework. That is, comparing the virtual address
(obtained obliviously by OPRF) and the real address (known by all parties) of
each element in a hash table, the correctness of the table can be achieved regard-
less of whether the permuter is the adversary or not. We observe that any attack
of the permuter can be translated into some form of an additive attack [21,22].
Thus, to achieve malicious security, we incorporate the permutation evaluation
into an efficient evaluation process of security-with-abort MPC (e.g., [10,27,29])
and only need to deal with “additive attacks”. This makes our hash table vali-
dation have almost no effect on overall efficiency except the required increase in
block size.

Organization. We describe our passively secure oblivious permutation and
oblivious hashing protocols in Sect. 5. We combine them to get our passively
secure DORAM in Sect. 6. The actively secure extension is described in Sect. 7.
Due to lack of space, we defer various non-essential or standard parts to the full
version [26].

2 Comparison with [17]

A concurrent and independent work of Falk, Noble, Ostrovsky, Shtepel, and
Zhang [17] achieves very similar results to us (both passive and active DORAMs)
albeit with somewhat different techniques. As opposed to us, they rely and
extend [19]. In particular, they obtain the optimal O(log N) overhead by a new
ω(log N)-size cache that can be accessed efficiently, thereby avoiding the usage
of a hierarchy of Bloom filters for small inputs.

We note that the usage of asymptotically larger than logarithmic size blocks
in the actively secure DORAM is common to both works. For us, it stems from
the usage of MACs that have negligible probability (in N) of being forged. For
them, it stems from the usage of an actively secure MPC by Furukawa et al. [20]
which requires ω(log N) bits of communication per AND gate computation,

478 A. Ichikawa et al.

assuming negl(N) statistical security is required. (The authors of [20] mention
an optimization to perform multiplication in constant time but guaranteeing
security only 2−40.) Overall, treating N (the input size) as the statistical secu-
rity parameter, the complexity of [17]’s DORAM is O((λ + b) log N) · ω(log N).
Alternatively, O(log N) overhead in accesses with block size ω((λ + b) log N),
which is identical to our complexity.

3 Preliminaries

3.1 Secret Sharing Schemes

A (threshold) secret sharing scheme (SSS) is a technique for “splitting” a secret
between a collection of m parties such that a set of parties of some predefined
cardinality, say t + 1 for 1 ≤ t ≤ m − 1, can reconstruct the secret while smaller
sets cannot. A “piece” that is held by a party is called a share. We refer to such
a scheme as (t,m)-SSS. Shamir’s scheme [39] or the so-called replicated secret
sharing scheme [28] are well-known implementations of such schemes.

To share and reconstruct a secret, we introduce three functionalities as fol-
lows. We use the notations [[·]]i to represent the share of party i ∈ [m].

– FShare receives a secret s and distributes the shares among the parties; share
[[s]]i is sent to party i.

– FReveal receives shares [[s]]i from at least t + 1 parties, recovers the secret s,
and sends it to all parties.

– FP
Reveal behaves the same as FReveal except that it sends the recovered secret

s only to parties ∈ P.

Also, we use the notations 〈·〉i∈{0,1} to represent the shares in a (1, 2)-
additive SSS, i.e., a = 〈a〉0 + 〈a〉1 for any secret a. Under Shamir’s SSS [39]
or the replicated SSS [28], any two parties Pi, Pi+1 mod 3 can convert their shares
[[s]]i, [[s]]i+1 mod 3 to 〈s〉0, 〈s〉1 by performing local computation.

We extend the notation to sharing arrays. For an array A of length X, we
denote its x-th element by A[x]. When secret sharing such an array, we denote
its sharing by [[A]] := ([[a0]], . . . , [[aX−1]]) and 〈A〉 = (〈a0〉, . . . , 〈aX−1〉), where
ax = A[x].

For concreteness and clarity of this work, we assume that all shares [[s]] are
of the (1, 3)-replicated SSS on the extension field Z2� as [2,12], i.e., for any
s =

∑�−1
i=0 si2i; si ∈ Z2, its share is of the form [[s]] =

∑�−1
i=0 [[si]]2i. In this setup,

all shares have the following properties.

Linear Homomorphism: The replicated SSS [28], by definition, supports
share-to-share addition by performing only local operations on each party’s
shares. That is, for any a, b, c ∈ Z2� , without any interaction, the parties can
compute

[[a]] + [[b]] = [[a + b]] and c × [[a]] = [[ca]].

3-Party Secure Computation for RAMs 479

We extend the above notation and operations to arrays of secrets. For any
arrays [[A]] = ([[a0]], . . . , [[aX−1]]) and [[B]] = ([[b0]], . . . , [[bX−1]]) where ai, bi ∈ Z2� ,
we denote entry-wise addition as [[A]]+[[B]] := ([[a0]]+[[b0]], . . . , [[aX−1]]+[[bX−1]])
and entry-wise multiplication by a scalar as c× [[A]] := (c× [[a0]], . . . , c× [[aX−1]]).

Bit-Decomposition: Since all shares are of the form [[s]] =
∑�−1

i=0 [[si]]2i where
each [[si]] is a share of the replicated SSS on Z2, parties can perform the bit-
decomposition operation [[s]] → ([[s�−1]], . . . , [[s0]]) by their local conversion.

3.2 Distributed Oblivious RAM

A RAM consists of a memory of N cells and each cell is of size w bits and it
allows for “clients” to perform read and write operations of the form (op, addr, d),
where op ∈ {read,write}, addr ∈ [N] and d ∈ {0, 1}w ∪ {⊥}. If op = read, then
d = ⊥ and the returned value is the content of the block located in logical address
addr in the memory. If op = write, then the memory data in logical address addr
is updated to d. We can think of this as an ideal (reactive) functionality FRAM

that supports the following operation:

FRAM:

– v ← Access(op, addr, d): The input is an operation op ∈ {read,write}, a key
addr ∈ [N], and a value d ∈ {0, 1}w ∪ {⊥}. An internal size N array X,
initialized to all 0s, is maintained. The procedure does:
1. If op = read, then set d∗ = X[addr].
2. If op = write, then set X[addr] = d and d∗ = d.
3. Output d∗.

Distributed Oblivious Simulation. Our goal is to simulate a RAM correctly
while guaranteeing the standard security notion of secure multi-party computa-
tion. Towards this goal, we have m servers that can communicate between them-
selves over a fully connected network in synchronous rounds of communication.
Each server can further perform arbitrary local computation between rounds. We
model each server machine as a RAM. The view of each machine includes the
contents of its own memory and the contents of the incoming messages, where
the latter include addresses of memory cells to access. Such a secure system is
called Distributed Oblivious RAM (DORAM). The security guarantee stipulates
that the view of a colluding subset of dishonest servers cannot learn anything
about the computation being performed, except what is absolutely necessary
(e.g., the length of the computation). We shall consider a passive (semi-honest)
or active (malicious) adversary who controls up to t < m servers.

We shall define distributed oblivious simulation with respect to an arbitrary
(possibly reactive or stateful) functionality. The definition for the RAM func-
tionality will be implied as a special case. For concreteness, it is convenient
(though not necessary) to imagine that the input and RAM state are secret-
shared between the servers, that is, each party holds one out of m shares of the

480 A. Ichikawa et al.

RAM, and operations from a client are also written to each server in a secret
shared fashion. We follow the real-ideal paradigm by defining two “worlds” and
requiring that they are indistinguishable (following, e.g., Canetti [7]).

Definition 3.1 (View). The view of party i consists of its auxiliary input and
randomness followed by the honest input and all the messages sent and received
by the party during the computation. Since we model parties as RAMs, the incom-
ing and outgoing messages contain physical memory locations.

In what follows, we suppress mentioning the auxiliary information to simplify
notation and presentation. All of the definitions and results readily extend to
the setting where auxiliary input is present.

Non-reactive Functionalities. Let F be a non-reactive functionality. Let Π
be a distributed protocol implementing F , C ⊆ [m] be the set of ≤ t corrupted
servers, and Sim be a PPT simulator. Denote C̄ = [m] \ C. We introduce the
following experiments to define active (malicious) security and remark the nec-
essary changes for passive (semi-honest) security.

– RealnrΠ,C,A(λ, {xi}i∈[m]): Run the protocol with security parameter λ, where
honest parties (ones not in C) run the protocol Π honestly with their private
input x∗

i = xi, whereas corrupt parties (ones in C) get the corresponding xi’s
but can deviate from the prescribed protocol arbitrarily, according to A’s
strategy. Let Vi be the view of server i ∈ C throughout the execution and let
yi be the output of some honest party i ∈ C̄. Output ({Vi}i∈C , {yi}i∈C̄).
In the passive (semi-honest) setting, the experiment is the same except that
corrupt parties use x∗

i = xi and they follow the specification of the protocol
(i.e., A is passive).

– IdealnrF,Sim,C,A(λ, {xi}i∈[m]): First, the adversary sees the inputs of corrupted
parties {xi}i∈C and outputs {x∗

i }i∈C that may depend on them. Denote
x∗

i = xi for each i ∈ C̄. Then, we invoke the functionality y1, . . . , ym ←
F(x∗

1, . . . , x
∗
m). Finally, the simulator is executed and the following pair is

outputted (SimA(λ,C, {x∗
i }i∈C), {yi}i∈C̄).

In the passive (semi-honest) setting, the experiment is the same except that
the adversary is passive and uses x∗

i = xi.

A distributed protocol obliviously simulates a functionality F against active
(resp. passive) adversaries if the corrupted servers in the real world have views
that are indistinguishable from their views in the ideal world.

Definition 3.2 (Distributed oblivious simulation of non-reactive func-
tionalities). An m-server protocol Π (t,m)-obliviously simulates F if for
any attacker there exists a PPT simulator Sim such that, for every sub-
set of t passive/active corrupt parties C, any non-uniform PPT adversary
A, and all inputs x0, . . . , xm−1, the distributions RealnrΠ,C,A(λ, {xi}i∈[m]) and
IdealnrF,Sim,C,A(λ, {xi}i∈[m]) are computationally indistinguishable.

Reactive Functionalities. A reactive functionality is one that can be repeat-
edly invoked and it may keep an internal secret state between invocations (a

3-Party Secure Computation for RAMs 481

RAM is, in particular, a reactive functionality). The adversary A chooses the
next operation (op, {xi}i∈[m]) adaptively in each stage. In the real execution, the
corrupt parties may deviate arbitrarily from the prescribed protocol and the goal
is to ensure that they do not learn anything beyond what is absolutely necessary.
That is, we execute the protocol in the presence of the malicious adversary. In
the ideal execution, the adversary obtains inputs {xi}i∈C and may choose new
inputs {x∗

i }i∈C . The new inputs are fed (together with the inputs of the honest
parties) into the functionality F which outputs an output {yi}i∈C̄ . At this point,
using the output of malicious parties, a simulator must simulate the view of the
malicious parties, including their internal state and the obtained messages (and
access pattern) from other servers. The adversary can then choose the next com-
mand, as well as the next input, in an adaptive manner, based on everything it
has seen so far.

Definition 3.3 (Distributed oblivious simulation of a reactive function-
ality). We say that a stateful protocol Π is a (t,m)-distributed oblivious imple-
mentation of the reactive functionality F if there exists a stateful PPT simula-
tor Sim, such that for any non-uniform PPT (stateful) adversary A, the view
of the adversary A in the following two experiments RealΠ,C,A(λ, {xi}i∈[m]) and
IdealF,Sim,C,A(λ, {xi}i∈[m]) is computationally indistinguishable:

RealΠ,C,A(λ, {xi}i∈[m]):
Let (op, {xi}i∈[m]) ← A (

1λ
)
.

Loop while op �= ⊥:
Let x′

i = (op, xi) for each
i ∈ [m].
{Vi}i∈C , {yi}i∈C̄ ←
RealnrΠ,C,A

(
λ, {x′

i}i∈[m]

)
.

(op, {xi}i∈[m]) ←
A (

1λ, {Vi}i∈C , {yi}i∈C̄

)
.

IdealF,Sim,C,A(λ, {xi}i∈[m]):
Let (op, {xi}i∈[m]) ← A (

1λ
)
.

Loop while op �= ⊥:
Let x′

i = (op, xi) for each
i ∈ [m].
{Vi}i∈C , {yi}i∈C̄ ←
IdealnrF,Sim,C,A(λ, {x′

i}i∈[m]).
(op, {xi}i∈[m]) ←
A (

1λ, {Vi}i∈C , {yi}i∈C̄

)
.

4 Secure Computation Building Blocks

Our schemes rely on various existing building blocks from the secure computa-
tion literature. To encapsulate these building blocks, we assume the existence of
an Arithmetic Black Box (ABB) functionality, FABB, which is a (reactive) multi-
party functionality. FABB should consist of functions Mult,Rnd,Reshare,
Eq, IfElse,Bitext,Trunc, and Prf, each listed below.

To simplify the notation, we denote “calling a function p of FABB” as “calling
Fp”, e.g., “parties call FMult” represents that the parties invoke FABB to call
its function Mult with their inputs.

Assuming that all secrets are in Z2b , all implementations we introduce below
consume O(b)-bit communication and O(b) local CPU computation steps except
OPRFs that consume O(λ + b)-bits and steps.

482 A. Ichikawa et al.

Multiplication: Let FMult be a secure multiplication functionality that receives
[[a]] and [[b]] and returns [[ab]]. For the (1, 3)-replicated SSS on the extension field
Z2� , we can use the implementation of Araki et al. [2] or Chida et al. [12]. For
ease of notation, we occasionally denote FMult as [[a]] × [[b]].

Generating Random Shares: Let FRnd be a functionality that requires no
inputs but returns a share [[r]] of a secret random value r. In the (1, 3)-replicated
SSS, since the form of shares is [[a]]i mod 3 = (ai, ai+1); a = a0 +a1 +a2, FRnd is
simply implemented in information-theoretical security as that: Each party Pi

locally generate a random ri, send it to Pi−1 and set [[r]]i as (ri, ri+1). It is also
known that, trading off the information-theoretical security, a pseudorandom r
can be shared without any communication except a pre-computation. This is
called Pseudorandom Secret Sharing (PRSS) [13].

Resharing: Let FReshare be a functionality that receives 〈a〉0 and 〈a〉1, and
returns [[a]]. It can be simply implemented as that the parties Pi0 and Pi1 , who
have 〈a〉0 and 〈a〉1 respectively, secret-shares their shares as [[〈a〉i]] for all parties
and then they observe [[a]] = [[〈a〉0 + 〈a〉1]]. Under the use of PRSS, the slightly
efficient implementation is known [11].

Equality Test: Let FEq be a functionality that receives [[a]] and [[b]] then return
[[c]] where c ∈ {0, 1} is equal to (a =? b). Though there are numerous imple-
mentations of these functionalities, for concreteness, we expect to use the one of
Catrina and de Hoogh [8].

Selection: Let FIfElse be a functionality that receives [[c]], [[t]] and [[f]] such that
c ∈ {0, 1}, and returns [[t]] if c = 1, or [[f]] otherwise. Observe that FIfElse is
equal to f + c(t − f).

Bit Operations: Let FBitext,FTrunc, and FR Shift each be a functionality that
receives shares [[a]], whose bit-representation is a = a� . . . a1, and an integer
i; 1 ≤ i ≤ �, then returns the following output:

– FBitext([[a]], i) → [[ai]] s.t. ai(∈ {0, 1}) is the i-th least significant bit of a.
– FTrunc([[a]], i) → [[a′]] s.t. a′ = a� . . . ai+1 ‖ 0i.
– FR Shift([[a]], i) → [[a′]] s.t. a′ = 0i ‖ a� . . . ai+1.

Using the local bit-decomposition described in Sect. 3.1, FBitext can be imple-
mented straightforwardly as follows: For [[a]] =

∑�−1
i=0 [[ai]]2i, parties extract the

target bit [[ai]], generate [[�0]] =
∑�−1

i=0 [[0]]2i, and compute [[�0]] + ([[ai]]20). FTrunc

and FR Shift can be realized in a similar manner.

Oblivious PRF (OPRF): Let FPrf be a functionality that receives shares
[[sk]] and [[x]] from all parties and sends them [[y]] where y is given by a PRF
Fsk(x). A combination of known oblivious block ciphers [1,12,14,31] and FR Shift

implements FPrf.

3-Party Secure Computation for RAMs 483

5 Efficient Passively Secure Distributed Oblivious
Hashing

A (static) hash table is a data structure supporting three operations Build,
Lookup, and Extract, that realizes the following reactive functionality. The
Build procedure creates an in-memory data structure from an input array I
containing real and dummy elements where each element is a (key, value) pair.
Dummy elements have their key be ⊥. It is assumed that all real elements in
I have distinct keys. The Lookup procedure allows a requestor to look up the
value of a key. A ⊥ symbol is returned if the key is not found or if ⊥ is the
requested key. We say a (key, value) pair is visited if the key was searched
for and found before. Finally, Extract is the destructor and it returns a list
containing unvisited elements padded with dummies to the same length as the
input array I.

The description of this functionality, denoted FHT, is described next:

FHT:

– Build(I): The input is an array I = (a1, . . . , an) containing n elements,
where each ai is either dummy or a (key, value) pair denoted ai = (ki, vi). It
is assumed that keys and values fit into O(1) memory words and that all real
keys are distinct. The procedure does:
1. Initialize the state H = (I,P) where P = ∅.

– Lookup(k): The input is a key k (that might be ⊥, i.e., dummy). The pro-
cedure does:
1. If k ∈ P (i.e., k is a recurring lookup), then halt and return ⊥.
2. If k = ⊥ or k /∈ I, set v∗ = ⊥.
3. Otherwise, set v∗ = v, where v is the value corresponding to k(∈ I).
4. Update P = P ∪ {k}.
5. Output v∗.

– Extract(): The procedure does:
1. Define I′ = {a′

1, . . . , a
′
n} such that: For i ∈ [n], set a′

i = ai if ai = (k, v)
and k /∈ P. Otherwise, set a′

i = ⊥.
2. Output I′.

In this section, we propose a simple (1, 3)-distributed oblivious implemen-
tation of FHT that is inspired by Lu et al. [33]. Since Lu’s DORAM requires
too many (at least 100 log N) OPRF calls for distributed blocks, the practical
computation cost becomes expensive even if the asymptotic overhead is down
to O(log N). To reduce the practical computation complexity without increasing
the asymptotic overhead, we construct a concretely efficient distributed oblivious
hashing from a simple new permutation protocol for 3-party computation.

We present two different oblivious distributed hash table constructions.
One hash table will be very efficient but will only work (i.e., be secure) if
n ∈ Ω(log2 N). The other construction is much simpler and will work for smaller
tables, which is a standard technique from prior works (e.g. [25]). At a very high
level, both hash table constructions work as follows (assuming a permutation
protocol):

484 A. Ichikawa et al.

1. Starting with (1, 3)-shares of input blocks, the parties securely compute (pseu-
dorandom) addresses for the blocks to be placed.

2. The parties divide their roles into one permuter and two storages, and then
only the permuter reveals the addresses of the blocks.

3. The permuter computes a permutation for the blocks, which is a sorting
permutation depending on the addresses.

4. The parties obliviously apply the permutation (that is secret for the storages)
and the storages receive the (1, 2)-shares of the permuted blocks.

5. Now, the permuted blocks can take the form of some hash table (if the per-
mutation is valid), and only the storages can access the table.
(a) If the input array is long enough (say Ω(log2 N)) we can directly apply a

distributed version of Cuckoo hashing. This results with linear time build
and constant time lookup.

(b) Otherwise, if the input array is too short (say O(log2 N)), we use a much
simpler and standard hash table construction (also used by [25,33] in a
similar context). Set � = 3 log N/ log log N . We split the input into N/�
bins each of size � by sending element with key k to bin PRF(k). Overflow-
ing elements are routed to a σ-size stash (we will use σ = log N). Lookup
then costs O(�+σ). Looking forward, we will use this hash table construc-
tion for arrays of size log N, 2 log N, 4 log N, . . . , log2 N and combine all
of their stashes. Since there are O(log log N) such tables and the lookup
cost in each one is O(log N/ log log N), the total cost will be O(log N +σ),
as we want.

5.1 Distributed Oblivious Permutation

As a building block for our distributed oblivious hash table, we first construct an
efficient 3-party secure permutation protocol. The precise functionality that we
implement is described below. This section is devoted to the implementation of
these functionalities via a 3-party protocol where at most one may be corrupted.

FPerm:

1. Receive a permutation π from the permuter P , and receive (1, 3)-shares of an
array [[I]] from all parties.

2. Obtain I, compute π · I, and choose a random string R of the same size as I.
3. Send 〈I′〉0 = R to the first storage S0 and 〈I′〉1 = π · I − R to the second S1.

FUnperm:

1. Receive a permutation π from the permuter P and 2-out-of-2 shares of an
array 〈I〉0, 〈I〉1 from the storages S0, S1.

2. Reconstruct I and compute π−1 · I.
3. Return [[I′]] ← FShare(π−1 · I) for all parties.

3-Party Secure Computation for RAMs 485

Lemma 5.1 (Realization of FPerm). There is a (1,3)-distributed oblivious
implementation, described as Algorithm 1, of FPerm in the presence of a passive
adversary that controls one party. The protocol consumes 4nb+2n�log n� bits of
communication and 12nb + 2n�log n� local CPU computation steps where n is
the number of blocks in the input array and b is the bit-length of each block. It
also consumes 2 communication rounds.

Lemma 5.2 (Realization of FUnperm). There is a distributed 3-party pro-
tocol, described as Algorithm 2, that securely realizes FUnperm in the pres-
ence of a passive adversary that controls one party and in the FReshare-hybrid
model. By composition and using the implementation of FReshare described in
Sect. 4, the protocol consumes 8nb + 2n�log n� bits of communication cost and
19nb + 2n�log n� local CPU computation steps where n is the number of blocks
in the input array and b is the bit-length of each block. It also consumes 3 com-
munication rounds.

Proof of Lemma 5.1. The output of S0 is V and the output of S1 is

Ĩ0 + π1 · Ĩ1 = π · 〈I〉0 − π1 · U − V + π1 ◦ π0 · 〈I〉1 + π1 · U
= π · I − V.

Together, they form a (1, 2)-share of π ·I, as needed for correctness. The claimed
efficiency follows by direct inspection. The strings U and V are each nb bits
long, similarly to Ĩ0 and Ĩ0. The bit-length of π0 and π1 is n�log n�, each.

Algorithm 1. (·, 〈I′〉0, 〈I′〉1) ← ΠPerm((π, [[I]]0), [[I]]1, [[I]]2)
Notation: P is the “permuter” and S0, S1 are two “storages.”
Require: P has a permutation π and each party has shares of an array [[I]].
Ensure: I′ = π · I.
1: P and S0 convert their (1, 3)-shares [[I]]0, [[I]]1 to (1, 2)-shares 〈I〉0, 〈I〉1, respectively.
2: P chooses random strings U,V of the same size as 〈I〉0, and random permutations

π0, π1 s.t. π1 ◦ π0 = π.
3: P sends π0,U,V to S0 and π1,˜I0 := π · 〈I〉0 − π1 · U − V to S1.

4: S0 sends ˜I1 := π0 · 〈I〉1 + U to S1.

5: S0 outputs 〈I′〉0 := V, and S1 outputs 〈I′〉1 := ˜I0 + π1 ·˜I1.

486 A. Ichikawa et al.

Algorithm 2. [[I′]]0, [[I′]]1, [[I′]]2 ← ΠUnperm(π, 〈I〉0, 〈I〉1)
Notation: P is the “permuter” and S0, S1 are two “storages.”
Require: P has a permutation π and S0, S1 have a shares 〈I〉0, 〈I〉1, respectively.
Ensure: I′ = π−1 · I.
1: S1 chooses a random strings U,V of the same size as 〈I〉0.
2: P chooses random permutations π0, π1 s.t. π1 ◦ π0 = π.
3: S1 sends U to P and V to S0. P sends π0 to S0 and π1 to S1.
4: S0 sends ˜I0 := 〈I〉0 + V to P . S1 sends ˜I1 := π−1

1 · (〈I〉1 − V) − U to S0.

5: P computes 〈I′〉0 := π−1 ·˜I0 + π−1
0 · U, and S0 computes 〈I′〉1 := π−1

0 ·˜I1.
6: Parties call FReshare to convert 〈I′〉0, 〈I′〉1 to [[I′]]0, [[I′]]1, [[I′]]2.

For security, observe that the permuter P never receives any message and
does not have any output, and therefore it is trivial to simulate its view. Similarly,
the first storage server S0 only gets one message U,V, π0 (from P), all of which
are uniformly random and independent of the inputs of all parties. The output of
S0 contains V and so overall it is immediate to simulate its view. The only case
remaining is when S1 is corrupted. Its view in the protocol consists of π1, Ĩ0, Ĩ1
which can be simulated by 3 uniformly random strings of appropriate length.
Indeed, Ĩ0 is masked by V and then Ĩ1 is masked by U, all of which are not
known to S1. ��
Proof of Lemma 5.2. Since we are in the FReshare-hybrid model, for correctness
we need to show that 〈I′〉0 + 〈I′〉1 = π−1 · I. Indeed,

〈I′〉0 + 〈I′〉1 = π−1 · (〈I〉0 + V) + π−1
0 · U + π−1

0 · (π−1
1 · (〈I〉1 − V) − U)

= π−1 · I.

The claimed efficiency follows by direct inspection. The strings U and V are
each nb bits long, similarly to Ĩ0 and Ĩ0. The bit-length of π0 and π1 is n�log n�,
each.

For security, if S1 is corrupted, we can easily simulate its view as it does not
receive any message except π1 which is uniformly random and independent of the
other inputs. If P is corrupted, then it again immediately simulates its view since
it only receives U and Ĩ0 := 〈I〉0 + V throughout the execution, both of which
are uniformly distributed (in P ’s view). Lastly, assume that S0 is corrupted. Its
view consists of V, π0 and Ĩ1 := π−1

1 · (〈I〉1 − V) − U. Since it does not know
U, the term Ĩ1 looks completely uniform and therefore the whole view can be
simulated by 3 uniformly random strings of the appropriate length. ��

5.2 Distributed Oblivious Hashing for Short Inputs

Equipped with the above permutation protocols, we present a distributed obliv-
ious hash table for short input. Specifically, the hash table that we give out here
works best when n, the input array size, is O(log2 N). Similar hash was employed
in [25,33] in a similar context.

3-Party Secure Computation for RAMs 487

Consider a balls-into-bins hash table T of size τ with bin size β and a stash
S of size σ. Below, we construct a distributed hash table 〈T〉 and stash [[S]] from
n elements (Algorithm 3), support lookup in the main table (Algorithm 4) and
in the stash (Algorithm 5), and finally deconstruct the structure (Algorithm 6).
We rely on our role-splitting permutation protocols and an OPRFs.

Algorithm 3. π, 〈T〉0,1, [[S]], [[s]], ctr,P ← ΠBuild([[D]]0, [[D]]1, [[D]]2)
Notation: Let P be the permuter and S0, S1 be the storages. Let τ := |T| and σ := |S|

be the size of expected hash table and stash (T,S) storing n items, and let n′ = τ+σ.
Require: Parties have (1, 3)-shares of a dataset [[D]]i∈{0,1,2} = ([[d0]]i, . . . , [[dn−1]]i).
Ensure: S0 and S1 obtain (1, 2)-shares of a balls-into-bins hash table, 〈T〉0 and 〈T〉1,

respectively. P obtains a permutation π, and all parties hold (1, 3)-shares of a stash
[[S]] and a PRF key [[s]]. Parties also hold a query counter ctr, and S0, S1 hold a set
P, as their states.

(Computing pseudorandom addresses for the input data.)
1: Parties call FRnd to generate a random PRF key [[s]].
2: for all i ∈ [n] do
3: Parties call FEq to obtain [[isDummyi]] := [[ki =? ⊥]].
4: Parties call FIfElse to simulate:

If isDummyi = 1, then [[˜ki]] := [[⊥ + i]]; otherwise [[˜ki]] := [[ki]].

5: Parties call FPrf to obtain virtual addresses [[addri]] from ([[s]], [[˜ki]]).

(Building a balls-into-bins hash table via permutation.)
6: Parties call FShare to generate an array [[E]] consisting of n′ − n dummy blocks.

7: Let [[˜D]] := [[D]] ‖ [[E]] be a concatenated dataset.

8: Parties call F{P}
Reveal to reveal to P all addri,0, addri,1 for i ∈ [n].

9: P computes a permutation π : [n′] → [n′] that indicates the bin-placements of

elements. That is, π says where to place ˜D’s elements into T (or S) as indicated by
addri.

10: Parties call FPerm with π and [[˜D]] to make S0 and S1 obtain 〈˜D′〉0 and 〈˜D′〉1
respectively, where ˜D′ = π · ˜D.

11: Each Si for i ∈ {0, 1} organizes the array 〈˜D′〉i into a hash table 〈T〉i and stash

〈S〉i, by separating 〈˜D′〉i into the first τ and the last σ elements.
12: Parties call FReshare to convert 〈S〉0,1 to [[S]].
13: Parties set their state ctr = 0, and S0, S1 allocate an empty set P = ∅.
14: Return π, 〈T〉0,1, [[S]], [[s]], ctr,P

488 A. Ichikawa et al.

Algorithm 4. [[d]], [[found]] ← ΠLookup([[k]], 〈T〉0,1, [[s]], ctr,P)
Notation: Let P be the permuter and let S0, S1 be the storages. Let β and γ be the

bin size and number of bins, respectively, i.e., |T| = τ = βγ.
Require: [[k]] is a (1, 3)-share of an input key to be searched for. Si have the distributed

hash table 〈T〉i and a set P. Parties have (1, 3)-shares of a PRF key [[s]] and a query
counter ctr.

Ensure: d = (k, v), found = 1 if T contains (k, v). Otherwise, d = (0, 0), found = 0.
(Computing pseudorandom addresses to be fetched.)
1: Parties call FEq to obtain [[isDummy]] := [[k =? ⊥]].
2: Parties call FIfElse to simulate:

If isDummy = 1, then set [[˜k]] := [[⊥ + ctr]]; otherwise [[˜k]] := [[k]].

3: Parties call FPrf to obtain [[addr]] from ([[s]], [[˜k]]).

4: Parties call F{S0,S1}
Reveal to recover addr to both S0 and S1. If addr ∈ P, S0 and S1

halt. Otherwise, they update P ← P ∪ {addr}.
(Searching for the table T.)
5: for all i ∈ [β] do
6: Parties call FReshare to convert 〈T[γ · addr + i]〉 to ([[ki]], [[vi]]),

i.e., fetch the i-th element of the addr-th bin.
7: Parties call FEq to obtain [[isQueriedi]] = [[ki =? k]].
8: Parties call FIfElse and FMult to simulate:

If isDummy = 0 and isQueriedi = 1,
then found = 1, [[d]] = ([[ki]], [[vi]]), and 〈T[γ · addr + i]〉 = 〈ddummy〉.

9: Parties increment ctr.
10: Return [[d]], [[found]]

Lemma 5.3. Assume that the input array consists of n ≤ log2 N blocks and
each block is b bits. Also assume that the table size τ = n, the bin size β =
�3 log N/ log log N�, and the stash size σ = �log N�. There exists a distributed 3-
party protocol, described as Algorithms 3, 4, 5, and 6, that securely realizes FHT

in the (FShare,FP
Reveal,FABB,FPerm,FUnperm)-hybrid model and in the presence

of a passive adversary that controls one party.

– The Build procedure consumes O(n(λ + b + log n)) local computation steps.
– The Lookup procedure consumes O((λ + b) log N

log log N) local computation steps.
– The StashSearch procedure consumes O(b log λ) local computation steps.
– The Extract procedure consumes O(nb) local computation steps.

Furthermore, all of the above procedures consume O(1) communication
rounds.

Proof Sketch. We sketch complexity and why the construction is secure for
completeness because this hash table has been used many times in the ORAM
literature. For instance, in our range of parameters, it was directly used in [33,
Section 3.5 of the full version]. Recall that our input is already randomly shuffled
and so which element goes to which bin is completely hidden from the adversary.
Also the bins are padded to their maximum capacity. (Notice that the permuter

3-Party Secure Computation for RAMs 489

Algorithm 5. [[d]], [[found]] ← ΠStashSearch([[k]], [[S]])
Require: [[k]] is a (1, 3)-share of an input key to be searched for, and [[S]] is an array

consisting of σ shares of key-value pairs.
Ensure: d = (k, v), found = 1 if S contains (k, v). Otherwise, d = (0, 0), found = 0.
1: for all ([[ku]], [[vu]])u∈[σ] in [[S]] do
2: Parties call FEq to obtain [[isQueriedu]] = [[ku =? k]].
3: Parties call FIfElse and FMult to simulate:

If isQueriedu = 1, then found = 1, [[d]] = ([[ku]], [[vu]]), and [[S[u]]] = [[ddummy]].

4: Return [[d]], [[found]]

Algorithm 6. [[D]]0, [[D]]1, [[D]]2 ← ΠExtract(π, 〈T〉0,1, [[S]])
Notation: Let P be the permuter and let S0, S1 be the storages.
Require: S0 and S1 have the distributed hash table 〈T〉0,1, respectively. P has the

permutation π and all parties have the distributed stash [[S]].
Ensure: A dataset D contains all real elements in T and S.
1: Each Si converts [[S]] to 〈S〉i and reorganizes an array 〈˜D〉i as ˜D = T‖S.

2: Parties call FUnperm with (π, 〈˜D〉0, 〈˜D〉1) to obtain [[˜D′]]j∈{0,1,2} where ˜D′ = π−1 · ˜D.

3: Let [[D]]j be the first n elements of [[˜D′]]i.
4: Return [[D]]0, [[D]]1, [[D]]2

knows the PRF key and so can pad appropriately but never sees lookup queries.)
Also, by the analysis of [33, Section 3.5 of the full version], except with negligible
probability in N , a σ-size stash suffices to store all overflowing elements and so
the construction is successful. ��

5.3 Distributed Oblivious Hashing for Long Inputs

The idea is simple to describe at a high level: given a set of elements we first
obliviously permute them and then we index the permuted set using a non-
oblivious efficient hashing scheme. For the latter, we use Cuckoo hashing [37], a
hashing paradigm that resolves collisions in a table by using two hash functions
and two tables, cleverly assigning each element to one of the two tables, and
enabling lookup using only two queries. The standard version of Cuckoo hashing
suffers from inverse polynomial probability of build failure which does not suffice
for our application (since we aim for negligible error). To this end, we use a
variant of Cuckoo hashing where items that cannot be stored in one of the two
tables are stored in a (typically small) “stash”. According to Noble [34], for any
number of elements n = ω(log N), there exists Cuckoo hashing that has the
table of size τ = (1 + ε)n and the stash of size σ = Θ(log N) with negligible
failure probability. Henceforth, we specify τ = 2n and σ = �log N� for concrete
efficiency analysis.

To ease presentation of our implementations, we use the following notations
to represent shares of real/dummy blocks.

490 A. Ichikawa et al.

Algorithm 7. π, 〈T〉0,1, [[S]], [[s0]], [[s1]], ctr,P ← ΠBuild([[D]]0, [[D]]1, [[D]]2)
Notation: Let P be the permuter and S0, S1 be the storages. Let τ := |T| and σ := |S|

be the size of expected hash table and stash (T, S) storing n items, and let n′ = τ+σ.
Require: Parties have (1, 3)-shares of a dataset [[D]]i∈{0,1,2} = ([[d0]]i, . . . , [[dn−1]]i).
Ensure: S0 and S1 obtain (1, 2)-shares of Cuckoo hash table, 〈T〉0,1, respectively. P

obtains a permutation π, and all parties hold (1, 3)-shares of a stash [[S]] and PRF
keys [[s0]] and [[s1]]. Parties also hold a query counter ctr, and S0, S1 hold a set P,
as their states.

(Computing pseudorandom addresses for the input data.)
1: Parties call FRnd to generate random PRF keys [[s0]] and [[s1]].
2: for all i ∈ [n] do
3: Parties call FEq to obtain [[isDummyi]] := [[ki =? ⊥]].
4: Parties call FIfElse to simulate:

If isDummyi = 1, then [[˜ki]] := [[⊥ + i]]; otherwise [[˜ki]] := [[ki]].
5: Parties call FPrf to obtain virtual addresses [[addri,0]] and [[addri,1]]

from ([[s0]], [[˜ki]]) and ([[s1]], [[˜ki]]), respectively.

(Building a Cuckoo hash table via permutation.)
6: Parties call FShare to generate an array [[E]] consisting of n′ − n dummy blocks.

7: Let [[˜D]] := [[D]] ‖ [[E]] be a concatenated dataset.

8: Parties call F{P}
Reveal to reveal to P all addri,0, addri,1 for i ∈ [n].

9: P computes a permutation π : [n′] → [n′] that indicates the bin-placements of

Cuckoo hashing. That is, π says where to place ˜D’s elements as indicated by either
addri,0 or addri,1.

10: Parties call FPerm with π and [[˜D]] to make S0 and S1 obtain 〈˜D′〉0 and 〈˜D′〉1
respectively, where ˜D′ = π · ˜D.

11: Each Si for i ∈ {0, 1} organizes the array 〈˜D′〉i into a hash table 〈T〉i and stash

〈S〉i, by separating 〈˜D′〉i into the first τ and the last σ elements.
12: Parties call FReshare to convert 〈S〉0,1 to [[S]].
13: Parties set their state ctr = 0, and S0, S1 allocate an empty set P = ∅.
14: Return π, 〈T〉0,1, [[S]], [[s0]], [[s1]], ctr,P

– Let [[d]] = ([[k]], [[v]]) be a share of a data block that contains shares of a key k
and value v.

– Let [[ddummy]] = ([[⊥]], [[⊥]]) be a share of a dummy block. We assume that ⊥
is a number greater than any real k.

– Let [[D]] = ([[d0]], . . . , [[dn−1]]) be a share of a dataset of size n.

Algorithm 7 constructs 2-out-of-2 shares of a Cuckoo hash table, (〈T〉, 〈S〉),
from 2-out-of-3 shares of a dataset [[D]]. In this protocol, the party assigned
the role of permuter obtains all addresses the data should be placed and then
computes a permutation π that moves the data to (one of) the corresponding
addresses. Now, parties can efficiently convert D into the table (T,S) via FPerm.

Algorithm 8 fetches a queried item from the Cuckoo hash table. The main
part of this protocol is that the parties assigned the role of storage obtain two
addresses of the queried item, access T of the location indicated by them, and
select one out of the two items of T. When the parties receive a dummy query,
random locations of T are fetched.

3-Party Secure Computation for RAMs 491

Algorithm 8. [[d]], [[found]] ← ΠLookup([[k]], 〈T〉0,1, [[s0]], [[s1]], ctr,P)
Notation: Let P be the permuter and let S0, S1 be the storages.
Require: [[k]] is a (1, 3)-share of an input key to be searched for. S0, S1 have the

distributed hash table 〈T〉0,1 and a set P. Parties have (1, 3)-shares of PRF keys
[[s0]], [[s1]] and a query counter ctr.

Ensure: d = (k, v), found = 1 if T contains (k, v). Otherwise, d = (0, 0), found = 0.
(Computing pseudorandom addresses to be fetched.)
1: Parties call FEq to obtain [[isDummy]] := [[k =? ⊥]].
2: Parties call FIfElse to simulate:

If isDummy = 1, then set [[˜k]] := [[⊥ + ctr]]; otherwise [[˜k]] := [[k]].

3: Parties call FPrf to obtain [[addr0]] and [[addr1]] from ([[s0]], [[˜k]]) and ([[s1]], [[˜k]]),
respectively.

4: Parties call F{S0,S1}
Reveal to recover addr0, addr1 to both S0 and S1. If (addr0, addr1) ∈ P,

S0 and S1 halt. Otherwise, they update P ← P ∪ {(addr0, addr1)}.
(Searching for the table T.)
5: for all i = 0, 1 do
6: Parties call FReshare to convert 〈T[addri]〉 to ([[ki]], [[vi]]).
7: Parties call FEq to obtain [[isQueriedi]] = [[ki =? k]].
8: Parties call FIfElse and FMult to simulate:

If isDummy = 0 and isQueriedi = 1,
then found = 1, [[d]] = ([[ki]], [[vi]]), and 〈T[addri]〉 = 〈ddummy〉.

9: Parties increment ctr.
10: Return [[d]], [[found]]

Algorithm 9 is a deconstruction procedure that applies the inverted permu-
tation π−1 to the hash table. This π−1 sorts all real blocks in the hash table into
the order in which they were input to ΠBuild. The stash lookup procedure is the
same as Algorithms 5 and so we reuse the code and avoid repetition.

Lemma 5.4. Assume that the input array consists of n > log2 N blocks
and each block is b bits. There exists a distributed 3-party protocol,
described as Algorithms 5, 7, 8 and 9, that securely realizes FHT in the
(FShare,FP

Reveal,FABB,FPerm,FUnperm)-hybrid model and in the presence of a
passive adversary that controls one party.

– The Build procedure consumes O(n(λ + b + log n)) local computation steps.

Algorithm 9. [[D]]0, [[D]]1, [[D]]2 ← ΠExtract(π, 〈T〉0,1, [[S]])
Notation: Let P be the permuter and let S0, S1 be the storages.
Require: S0 and S1 have the distributed hash table 〈T〉0,1, respectively. P has the

permutation π and all parties have the distributed stash [[S]].
Ensure: A dataset D contains all real elements in T and S.
1: Each Si converts [[S]] to 〈S〉i and reorganizes an array 〈˜D〉i as ˜D = T‖S.

2: Parties call FUnperm with (π, 〈˜D〉0, 〈˜D〉1) to obtain [[˜D′]]j∈{0,1,2} where ˜D′ = π−1 · ˜D.

3: Let [[D]]j be the first n elements of [[˜D′]]i.
4: Return [[D]]0, [[D]]1, [[D]]2

492 A. Ichikawa et al.

– The Lookup procedure consumes O(λ + b) local computation steps.
– The StashSearch procedure consumes O(b log N) local computation steps.
– The Extract procedure consumes O(nb) local computation steps.

Furthermore, all those procedures consumes O(1) communication rounds.

Proof. The proof of security and correctness is given in the full version. We focus
on the efficiency analysis below.

Algorithm 7 consists of O(n) calls of FEq,FIfElse,FPrf,FShare, and FReveal,
and an invocation of FPerm. In Algorithm 8, the parties need to call FMult,
FReshare,FEq,FIfElse,FReveal, and FPrf O(1) times for the table lookup. Algo-
rithm 9 requires FUnperm at once. In addition, all iterative operations in Algo-
rithm 7, 8, and 9 can be performed in parallel. Lastly, the cost of StashSearch
was analyzed in Lemma 5.3. ��

6 Optimal DORAM Against Passive Adversary

In this section, we give our optimal 3-party DORAM that is secure against a
passive adversary who colludes with one of the three servers.

Our DORAM is on the known hierarchical paradigm, i.e. the data structure
is built via a hierarchy of L := �log N − log log N� distributed hash tables and
one top-level array. All levels i = 1, . . . , L in the hierarchy are implemented
using our distributed oblivious hash table FHT from Sects. 5.2 and 5.3. The size
of the stash in our distributed oblivious hash table is set to σ = �log N�. The
top-level array, [[S]], can store up to c = 2σ data blocks. The capacity of level
i ∈ [L] is c2i−1. Each data block may be associated with metadata that is used
to keep track of the location of an element. Specifically, an “augmented data
block” [[d̃i]] := ([[di]], [[lvi]]) consists of the main data block [[di]] = ([[ki]], [[vi]]) and
additional information [[lvi]]; lvi ∈ {0, 1}L−1 that indicates the levels to which
[[d̃i]] is associated.5

The smaller tables of level i = 1 to 2 log log N , i.e., tables that hold up to
log2 N elements, are implemented with our hash table for short inputs (Sect. 5.2).
For them, each instance consists of a single table, split into bins and a stash.
Recall that we merge all stashes of all levels together into one logarithmic-size
stash. Lookup goes into one of the bins and scans it. For the tables holding longer
arrays, from i = 2 log log N + 1 to L, the hash table is implemented with our
hash table for long inputs (Sect. 5.3). Each such hash table consists of two parts:
the main table and a stash. Again, the stashes from all levels are combined into
the top-level array, as commonly done (e.g., in [33]).

Theorem 6.1. There is a 3-party protocol, described as Algorithm 10 and 11,
that securely realizes FRAM in the (FABB,FHT)-hybrid model and in the presence

5 The metadata associated with each data blocks is used to avoid the stash-resampling
attack of [18], same as was done in [3,4,18].

5 Note that if p ≤ log log N , the obtained PRF key is single, [[sp]].

3-Party Secure Computation for RAMs 493

Algorithm 10. [[d]] ← ΠAccess([[op]], [[k]], [[v′]])
Require: The input contains shares of an operation [[op]]; op ∈ {read,write}, key [[k]],

and value [[v′]].
Ensure: d = (k, v) if the ORAM holds (k, v), or d = (k, v′) if op = write. Otherwise,

d = (⊥, ⊥).
(Searching for the top-level array.)

1: Parties run ΠStashSearch([[k]], [[S]]) for the top-level array [[S]] to obtain [[˜d]], [[found]].
(Searching for hash tables in the hierarchy.)
2: for � = 1 to L do
3: Parties call FBitext to obtain [[lv�]] where lv� is the �-th bit of lv of ˜d.
4: Parties call FIfElse and FMult to simulate:

If found = 1 and lv� = 0 then [[˜k]] := [[⊥]], otherwise [[˜k]] := [[k]].

5: Parties call HTi.Lookup([[˜k]]) (only in the main tables, ignoring the stash)

to obtain [[˜di]], [[foundi]] with its state
(〈Ti〉0, 〈Ti〉1, [[si]], ctri,Pi) when 1 ≤ i ≤ log log N , or
(〈Ti〉0, 〈Ti〉1, [[si,0]], [[si,1]], ctri,Pi) when log log N < i.

6: Set [[˜d]] = [[˜d]] + [[˜di]] and [[found]] = [[found]] + [[foundi]].

(Rewriting (if needed) and re-storing the retrieved data.)
7: Parties call FIfElse to simulate: If found = 0 then set [[d]] = [[ddummy]].
8: Parties call FIfElse to simulate: If op = write then set [[d]] = ([[k]], [[v′]]).
9: Parties set [[˜d]] = ([[d]], [[0]]) and concatenate it into the end of the top-level array.

10: If the size of the top-level array is c, parties run ΠReshuffle() to refresh the hierarchy.
11: Return [[d]]

of a passive adversary that controls one party. The construction costs O(log N)
amortized computational overhead and O(log N) communication rounds with λ+
b block size, where b = Ω(log N).

Proof. The proof of security is given in the full version. Correctness is clear
from the algorithms since we are in the FHT-hybrid model,. Indeed, a lookup
is performed through the whole hierarchy and when an element is found, it is
re-inserted into the hierarchy. Hence, we focus on efficiency analysis next.

Algorithm 10 requires one call of ΠStashSearch with input size c, O(L) calls of
FBitext,FIfElse, and FMult, O(log log N) calls to of H.Lookup of the balls-and-
bins-based scheme, calls O(L) calls of H.Lookup (without stash) for the Cuckoo-
hash based scheme, and an invocation of ΠReshuffle, for c = L = O(log N). For
any block size b = Ω(log N) bits, this procedure requires O((λ + b) log N) + C
computational steps where C is the amortized cost of ΠReshuffle. Algorithm 11
costs Hi.Extract for all i = 1, . . . , p, Hp.Build at once, and O(c2p−1) calls
of FTrunc, per c2p−1 access. Hence, its amortized cost can be estimated as
CReshuffle =

∑L
p=1

O(c2p(λ+b))
c2p−1 . ��

Concrete Efficiency. As we mentioned in Sect. 1.1, the overhead claimed above
depends on a small hidden constant. Specifically, our ΠAccess consists of at most
4 log N (amortized) calls of FPrf per access, which is 25 times smaller than the
known optimal DORAM [33]. For a more detailed analysis, see full version [26].

494 A. Ichikawa et al.

Algorithm 11. ΠReshuffle()
Require: p is the level s.t. all HTi<p in the hierarchy is full and HTp is not.
Ensure: All HTi<p in the hierarchy become empty, and HTp becomes full.
(Extracting all the data that needs to be reshuffled.)
1: Allocate an array [[A]] of sufficient capacity and insert all elements of [[S]] to [[A]].
2: For all i = 1, . . . , p − 1, parties call HTi.Extract() with its state (πi, 〈Ti〉0, 〈Ti〉1)

to extract all real elements as [[Di]] and combine them to [[A]] as A = A ‖ Di.

3: For all elements [[˜dj]] = ([[dj]], [[lvj]]) of [[A]], parties call FTrunc to set the p first
indices of lvj to 0.

(Building a new hash table.)
4: Parties call HTp.Build([[A]]) to construct a distributed hash table

(

πp, 〈Tp〉0,1, [[Sp]], [[sp,0]], [[sp,1]], ctr,P
)

. 9

5: Parties set [[S]] as a new top-level array, and for all [[˜du]] = ([[du]], [[lvu]]) of [[S]], call
FEq and FIfElse to simulate:

If ki �=⊥, set [[lvu]] = [[lvu]] + [[1]]2p−1 .

7 Actively Secure Extension

We extend our oblivious hashing and DORAM to be secure against an adversary
that can deviate from the prescribed protocols. Though it is almost feasible by
a generic framework of actively secure MPC, we require a new permutation
(Sect. 7.1) and verifying permutations protocol (Sect. 7.2) in addition.

By known frameworks of actively secure MPC with abort [10,27,29], we
assume that our protocols are in the flow of the following three phases:

– Randomization phase. For any share [[a]], parties compute [[ra]] with ran-
dom secret r and store ([[a]], [[ra]]) as the share of a with a MAC. This r serves
as a blinding factor and is unknown to any party.

– Computation phase. Parties compute a target function F on input
([[a]], [[ra]]) while recording checksums. For example, let F = f0◦f1 and assume
Πf0 ,Πf1 that are protocols used to compute ([[f{0,1}(a)]], [[rf{0,1}(a)]]) from
([[a]], [[ra]]) and are further secure up to additive attacks [21,22]. Now, the par-
ties allocate a set of checksums S = ∅ and perform Πf2 and Πf1 in sequence
to obtain [[F (a)]] while storing all inputs and outputs of the protocols, i.e.,
([[a]], [[ra]]), ([[f2(a)]], [[rf2(a)]]) and ([[F (a)]], [[rF (a)]]), into S.

– Proof phase. To detect cheating, parties evaluate the shares and their MACs
recorded as checksums. Following the above example, the parties generate new
random shares [[ρ0]], [[ρ1]] and [[ρ2]], and compute inner products

[[φ]] = ([[ρ0]] × [[a]] + [[ρ1]] × [[f2(a)]] + [[ρ2]] × [[F (a)]]) and
[[rφ]] = ([[ρ0]] × [[ra]] + [[ρ1]] × [[rf2(a)]] + [[ρ2]] × [[rF (a)]]).

The parties recover [[η]] = [[r]] × [[φ]] − [[rφ]], and if η �= 0 then they abort.

For our DORAM, we should be more concerned about the form of shares
than in the passive security model. Since part of building blocks in Sect. 4, e.g.,

3-Party Secure Computation for RAMs 495

FPrf, requires bit-wise operations, we should assign MACs to bits ab−1, . . . , a0 ∈
Z2, instead of the whole a ∈ Z2b . According to Kikuchi et al. [29], we
can provide a MAC for a bit u ∈ {0, 1} as [[ru]] := ([[rκ−1u]], . . . , [[r0u]])
where each rj is in Z2. To detect cheating with overwhelming probability
1 − negl(N), this κ should be ω(log N). Hence, by encoding ([[a]], [[ra]]) as(
([[ab−1]], . . . , [[a0]]), ([[rab−1]], . . . , [[rab−1]])

)
, the FABB functionality described in

Sect. 4 is also available in active security model.
To simplify the notation, we denote ([[a]], [[ra]]) as [[a]]m in the following.

7.1 Secure Oblivious Permutation up to Additive Attacks

We start with constructing a secure permutation protocol up to additive attacks.
In contrast to Sect. 5.1, we assume that a permutation π provided by one party
has been already separated into π0 and π1 s.t. π = π1 ◦ π0 and shared between
parties. We discuss verification for the permutation π in Sect. 7.2, and here we
focus on cheating on an array that should be permuted.

Our permutation protocol described in Algorithm 1 relies on (semi-)honest
parties and is difficult to convert to be secure up to additive attacks. Instead, we
construct a permutation protocol using a reshare-based shuffling as in Ikarashi
et al. [27]. Let FShuffle be functionality for secure shuffling up to an additive
attack s.t. it receives shares of an array [[I]] and a permutation π from honest
parties and an array Δ of the same size as I from an adversary, then it returns
[[π · I + Δ]]. Now, the following protocol, originally proposed by Laur et al. [32],
is the implementation of FShuffle that costs n calls of FReshare.

[[I′]]0, [[I′]]1, [[I′]]2 ← ΠShuffle((π, [[I]]0), (π, [[I]]1), [[I]]2):

1. P0 and P1 convert their [[I]]i∈{0,1} to 〈I〉i and compute 〈I′〉i = π · 〈I〉i each.
2. Parties call FReshare to obtain [[I′]]{0,1,2} from 〈I′〉{0,1}.
3. Output [[I′]]{0,1,2}.

Algorithm 12. [[I′]]m0 , [[I′]]m1 , [[I′]]m2 ← Πactive
Perm ((π0, π1), [[I]]m0 , [[I]]m1 , [[I]]m2)

Notation: Let P be the permuter and let S0, S1 be the storages. Let S be a set of
checksums.

Require: P has both π0, π1 and [[I]]m0 . Each Si=0,1 has πi and [[I]]mi+1.
Ensure: I′ = π · I and rI′ = π · (rI) where π = π1 ◦ π0.
1: Parties record their input shares into S as S = S ∪ {[[I]]m}, and let [[I′

0]]
m = [[I]]m.

2: for i = 0, 1 do
3: Parties call FShuffle with inputs πi and [[I′

i]]
m to obtain

[[I′
i+1]]

m = [[πi · I′
i]]

m.
4: Parties record their shares into S as S ← S ∪ {[[I′

i+1]]
m}.

5: Parties store [[I′
2]]

m
0 , [[I′

2]]
m
1 , [[I′

2]]
m
2 as [[I′]]m0 , [[I′]]m1 , [[I′]]m2 , respectively.

6: Return [[I′]]m{0,1,2}

496 A. Ichikawa et al.

In Algorithm 12, we describe an actively secure permutation protocol for our
distributed oblivious hashing in the FShuffle-hybrid model. An actively secure
unpermutation protocol, Πactive

Unperm, is achieved from Πactive
Perm straightforwardly,

i.e., parties first compute [[I′]]m = [[π−1
1 · I]]m, then obtain [[I′′]]m = [[π−1

0 · I′]]m.

7.2 Actively Secure Distributed Hashing

Even though an actively secure oblivious hashing can be obtained almost com-
pletely straightforwardly by replacing all functionalities used in our distributed
oblivious hashing (Sect. 5.2 and 5.3) by actively secure ones, it is still not secure
against a corrupted permuter that can input an invalid permutation. We thus
focus on solving this problem. We can say the permutation π is valid if all keys
are always found in their place, whatever π actually is. This means that the
pseudorandom addresses can work as witnesses for the correctness of the hash
table, i.e., we can verify π by checking whether

(one of two pseudorandom addresses computed from a non-dummy key)
− (the actual address where the element resides)

is equal to 0 for all real keys (in Cuckoo hashing). This verification can be done
in the Build procedure as follows: For all real blocks [[di]] located in T[addrri]
and assigned to the pseudorandom addresses ([[addrpi,0]], [[addr

p
i,1]]), parties check

the following equation with uniformly random ρi.

0 =?

∑

i

[[ρi]] × ([[addrpi,0]] − addrri) × ([[addrpi,1]] − addrri). (7.1)

In addition, for efficiency, we combine the above verification with the MAC
verification. Remember that, in the Proof phase for MACs, fresh random shares
[[ρi]] are given for each checksum ([[a]], [[ra]]). Noticing the similarity in the use of
the random ρi, for any r, we can transform Eq. (7.1) as below:

[[r]] ×
∑

i

[[ρi]] × ([[addrpi,0]] × [[addrpi,1]] + (addrri)
2) =?

∑

i

[[ρi]] × ([[r × addrpi,0]] + [[r × addrpi,1]]) × addrri. (7.2)

Now, to make parties evaluate the above equation in the Proof phase, we
propose the following new protocol that checks the consistency between the
virtual address and the actual address of each non-dummy block.

ΠVerPerm2([[addr
p
i,0]]

m, [[addrpi,1]]
m, addrri):

1. At first, parties call the actively secure FMult to obtain

[[addr′i]]
m = ([[addr′i]], [[r × addr′i]]) = [[addrpi,0]]

m × [[addrpi,1]]
m.

[[addrpi,0]]
m, [[addrpi,1]]

m and [[addr′i]]
m are recorded in S as checksums.

3-Party Secure Computation for RAMs 497

2. Parties locally compute below and record [[ver(1)i]]m and [[ver(2)i]]m to S.

[[ver(1)i]]m := ([[addr′i]] + (addrri)
2, ([[r × addrpi,0]] + [[r × addrpi,1]]) × addrri), and

[[ver(2)i]]m := (([[addrpi,0]] + [[addrpi,1]]) × addrri, [[r × addr′i]] + [[r]] × (addrri)
2).

Since whether the permuter has provided a valid permutation is equivalent to
whether addr

(1)
i = addr

(2)
i , the verification for checksums [[ver(1)i]]m and [[ver(2)i]]m

includes Eq. (7.2) and its transformation. Furthermore, since the input and out-
put of FMult, [[addrpi,0]]

m, [[addrpi,1]]
m and [[addr′i]]

m, are recorded as checksums, we
can attribute the attack providing an invalid permutation to an additive attack
that modifies addrri to addrri + δ for some δ.

In addition, we can also achieve a simpler permutation verification protocol
for our balls-into-bins hashing as follows:

ΠVerPerm1([[addr
p
i]]m, addrri):

1. Parties locally compute below and record [[veri]]m to S.

[[veri]]m := ([[addrpi]] − addrri, [[r × addrpi]] − [[r]] × addrri).

Algorithm 13. π0, π1, 〈T〉m0,1, [[S]]m, [[s]]m, ctr,P ← Πactive
Build ([[D]]m)

(Constructing a balls-into-bins hash table.)
1: Parties do the same as Algorithm 3 with actively secure components to obtain

π0, π1, 〈T〉m0,1, [[S]]m, [[s]]m, ctr,P. Note that, in the actively secure variant, once the
original construction permutation π is split into π0, π1; π = π1 ◦π0, each πi should
be held by the storage Si until Extract for the consistency of the permutation.

(Verifying π.)
2: For the virtual addresses [[A]]m = ([[addr0]]

m . . . , [[addrn−1]]
m), which are obtained in

Line 5 of Algorithm 3, parties set [[˜A]]m = [[A ‖ E]]m of size n′ in the same way as

Line 6 and 7 of Algorithm 3. Then, parties run [[˜A′]]m ← Πactive
Perm (π0, π1, [[˜A]]m).

3: for all i ∈ [τ] do
4: Let (〈ki〉m, 〈vi〉m) be the i-th element of 〈T〉m.

5: Let [[˜addr
′
i]]

m be the i-th element of [[˜A′]]m.
6: Let addrri := �i/β� where β is bin size of T.
7: Parties call FReshare, FEq and FIfElse to simulate:

If ki =⊥ then [[addrpi]]m = [[addrri]]
m, otherwise [[addrpi]]m = [[˜addr

′
i]]

m.
8: Parties perform ΠVerPerm1([[addr

p
i]]m, addrri).

9: Return π0, π1, 〈T〉m0,1, [[S]]m, [[s]]m, ctr,P

Now, we can obtain our actively secure Build procedure as Algo-
rithm 13 and 14. Note that new Lookup, StashSearch, and Extract pro-
cedures can be achieved by natural conversion from the passive MPC to active,
thus we skip detailing their pseudocode here.

498 A. Ichikawa et al.

Lemma 7.1. There exists a 3-party distributed balls-into-bins hashing of which
the Build procedure is described in Algorithm 13 and the other procedures are
achieved from the actively secure conversion of Algorithm 4, 5, and 6 that
securely realizes FHT in the (FShare,FP

Reveal,FABB)-hybrid model in the pres-
ence of an active adversary that controls one party.

Assume that the input size n and b′ = b · ω(log N), λ′ = λ · ω(log N).

– The Build procedure consumes O(n(b′ +λ′ + log n)) local computation steps.
– The Lookup procedure consumes O((b′+λ′) log N

log log N) local computation steps.
– The StashSearch procedure consumes O(b′ log N) local computation steps.
– The Extract procedure consumes O(nb′) local computation steps.

Algorithm 14. π0, π1, 〈T〉m0,1, [[S]]m, [[s0]]m, [[s1]]m, ctr,P ← Πactive
Build ([[D]]m)

(Constructing a cuckoo hash table.)
1: Parties do the same as Algorithm 7 with actively secure components to obtain

π0, π1, 〈T〉m0,1, [[S]]m, [[s0]]
m, [[s1]]

m, ctr,P.
(Verifying π.)
2: For the virtual addresses [[A]]m =

(

([[addri,0]]
m, [[addri,1]]

m)
)

i∈[n]
, which are obtained

in Line 5 of Algorithm 7, parties set [[˜A]]m = [[A ‖ E]]m of size n′ in the same way as

Line 6 and 7 of Algorithm 7. Then, parties run [[˜A′]]m ← Πactive
Perm (π0, π1, [[˜A]]m).

3: for all i ∈ [τ] do
4: Let (〈ki〉m, 〈vi〉m) be the i-th element of 〈T〉m.

5: Let ([[˜addr
′
i,0]]

m, [[˜addr
′
i,1]]

m) be the i-th element of [[˜A′]]m.
6: Let addrri := i.
7: Parties call FReshare, FEq and FIfElse to simulate:

If ki =⊥ then ([[addrpi,0]]
m, [[addrpi,1]]

m) = ([[addrri]]
m, [[addrri]]

m),

otherwise ([[addrpi,0]]
m, [[addrpi,1]]

m) = ([[˜addr
′
i,0]]

m, [[˜addr
′
i,1]]

m).
8: Parties perform ΠVerPerm2([[addr

p
i,0]]

m, [[addrpi,1]]
m, addrri).

9: Return π0, π1, 〈T〉m0,1, [[S]]m, [[s0]]
m, [[s1]]

m, ctr,P

Lemma 7.2. There exists a 3-party distributed Cuckoo hashing of which the
Build procedure is described in Algorithm 14 and the other procedures are
achieved from the actively secure conversion of Algorithm 5, 8, and 9 that
securely realizes FHT in the (FShare,FP

Reveal,FABB)-hybrid model in the pres-
ence of an active adversary that controls one party.

Assume that the input size n and b′ = b · ω(log N), λ′ = λ · ω(log N).

– The Build procedure consumes O(n(b′ +λ′ + log n)) local computation steps.
– The Lookup procedure consumes O(b′ + λ′) local computation steps.
– The StashSearch procedure consumes O(b′ log N) local computation steps.
– The Extract procedure consumes O(nb′) local computation steps.

3-Party Secure Computation for RAMs 499

Proof of Lemma 7.1 and 7.2. Since each output of Algorithm 13 and 14 is obtained
from a general actively secure conversion of Algorithm 3 and 7 respectively, the
correctness of them are also given by Lemma 5.3 and 5.4.

In addition, the security of the algorithms is also guaranteed from a known
actively secure MPC and our additional evaluations ΠVerPerm1,ΠVerPerm2.
Though known actively secure MPC frameworks cannot prevent a malicious per-
muter from tampering with a permutation, ΠVerPerm1 and ΠVerPerm2 can detect
blocks that are located in invalid places of a hash table since the checksums pro-
vided in ΠVerPerm1,ΠVerPerm2 cannot be a valid pair of MAC with overwhelming
probability when the adversary that does not know the MAC key r tampers with
the real addresses of the blocks (remember that the virtual addresses, addrpi , are
derived from actively secure OPRFs, and the real addresses, addrri, are the result
of the permutation).

For the efficiency analysis, we show the following claim.

Claim. ΠVerPerm1 and ΠVerPerm2 each consumes O(b′) local computation steps.

This claim is clear from their algorithms, and hence it shows that the additional
O(n) calls of ΠVerPerm1 or ΠVerPerm2 do not affect to the asymptotic cost of
Algorithm 13 or 14, each. ��

7.3 Actively Secure Distributed ORAM

Given our actively secure distributed oblivious hashing, we achieve an actively
secure DORAM.

Theorem 7.3. There exists a 3-party protocol that securely realizes FRAM in the
presence of an active adversary that controls one party. In addition, this imple-
mentation consumes O(log N) amortized overhead and O(log N) communication
rounds with ω((λ + b) log N) block size where b = Ω(log N).

Proof. By straightforward composition, we can replace all functionalities related
to FABB and FHT in Algorithms 10 and 11 with their concrete implementations
and thereby get a concrete actively secure DORAM. For security, we refer to
the full version [26]. Moreover, since the efficiency of each FABB and FHT is
asymptotically the same as in passive security except for the increased block
size, the actively secure DORAM achieves O(log N) overhead using a slightly
larger block size ω((λ + b) log N). ��

8 Conclusion

We proposed an optimal DORAM of O(log N) overhead with small hidden con-
stant, that relies on only 4 log N OPRF calls. The key building block is a novel
3-party permutation protocol, in which parties split their roles into one permuter
that knows the whole permutation and two storages that hold a permuted table.
Since these roles do not overlap, the permuter never observes access patterns to
the permuted table even though it knows the structure of the table.

500 A. Ichikawa et al.

In addition, we extended the above (passively secure) DORAM to an actively
secure one. Since our passively secure construction depends on the permutation
protocol in which one party has full control of a permutation, we additionally
construct a novel protocol to verify the permutation provided by the (possibly
dishonest) party. Then, we achieved an actively secure DORAM of O(log N)
overhead with slightly larger ω((λ + b) log N)-bit block size.

Acknowledgements. We thank Brett Hemenway Falk, Daniel Noble, Rafail Ostro-
vsky, Matan Shtepel, and Jacob Zhang for observing a gap in a previous version of this
work. Ilan Komargodski is the incumbent of the Harry & Abe Sherman Senior Lec-
tureship at the School of Computer Science and Engineering at the Hebrew University.
Research supported in part by an Alon Young Faculty Fellowship, by a grant from the
Israel Science Foundation (ISF Grant No. 1774/20), and by a grant from the US-Israel
Binational Science Foundation and the US National Science Foundation (BSF-NSF
Grant No. 2020643).

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: CCS, pp. 805–
817 (2016)

3. Asharov, G., Komargodski, I., Lin, W., Nayak, K., Peserico, E., Shi, E.: Optorama:
optimal oblivious RAM. J. ACM 70(1), 4:1–4:70 (2023)

4. Asharov, G., Komargodski, I., Lin, W., Peserico, E., Shi, E.: Optimal oblivious
parallel RAM. In: ACM-SIAM Symposium on Discrete Algorithms, SODA, pp.
2459–2521 (2022)

5. Asharov, G., Komargodski, I., Lin, W.-K., Shi, E.: Oblivious RAM with worst-case
logarithmic overhead. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12828, pp. 610–640. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84259-8 21

6. Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party distributed
ORAM. Cryptology ePrint Archive (2018)

7. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

8. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., De Prisco, R. (eds.) SCN, pp. 182–199 (2010)

9. Chan, T.H., Shi, E.: Circuit OPRAM: unifying statistically and computationally
secure ORAMs and OPRAMs. In: TCC, pp. 72–107 (2017)

10. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

11. Chida, K., Hamada, K., Ikarashi, D., Kikuchi, R., Kiribuchi, N., Pinkas, B.: An
efficient secure three-party sorting protocol with an honest majority. Cryptology
ePrint Archive (2019)

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-030-84259-8_21
https://doi.org/10.1007/978-3-030-84259-8_21
https://doi.org/10.1007/978-3-319-96878-0_2

3-Party Secure Computation for RAMs 501

12. Chida, K., Hamada, K., Ikarashi, D., Kikuchi, R., Pinkas, B.: High-throughput
secure AES computation. In: WAHC, pp. 13–24 (2018)

13. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: TCC, pp. 342–362 (2005)

14. Damg̊ard, I., Keller, M.: Secure multiparty AES. In: FC, pp. 367–374 (2010)
15. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS, pp. 523–

535 (2017)
16. Faber, S., Jarecki, S., Kentros, S., Wei, B.: Three-party ORAM for secure compu-

tation. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp.
360–385. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 16

17. Falk, B., Noble, D., Ostrovsky, R., Shtepel, M., Zhang, J.: DORAM revisited:
maliciously secure RAM-MPC with logarithmic overhead. IACR Cryptology ePrint
Archive, p. 578 (2023)

18. Hemenway Falk, B., Noble, D., Ostrovsky, R.: Alibi: a flaw in cuckoo-hashing
based hierarchical ORAM schemes and a solution. In: Canteaut, A., Standaert,
F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 338–369. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-77883-5 12

19. Falk, B.H., Noble, D., Ostrovsky, R.: 3-party distributed ORAM from oblivious
set membership. In: SCN, pp. 437–461 (2022)

20. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

21. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 35

22. Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: STOC, pp. 495–504
(2014)

23. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
rams. In: STOC, pp. 182–194 (1987)

24. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

25. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious ram simulation. In: ICALP, pp. 576–587 (2011)

26. Ichikawa, A., Komargodski, I., Hamada, K., Kikuchi, R., Ikarashi, D.: 3-party
secure computation for rams: optimal and concretely efficient. IACR Cryptology
ePrint Archive, p. 516 (2023)

27. Ikarashi, D., Kikuchi, R., Hamada, K., Chida, K.: Actively private and correct
MPC scheme in t < n/2 from passively secure schemes with small overhead. Cryp-
tology ePrint Archive (2014)

28. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. In: GLOBECOM, pp. 99–102 (1987)

29. Kikuchi, R., et al.: Field extension in secret-shared form and its applications to
efficient secure computation. In: ACISP, pp. 343–361 (2019)

30. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo hashing
with a stash. J. Computing 39(4), 1543–1561 (2009)

31. Laur, S., Talviste, R., Willemson, J.: From oblivious AES to efficient and secure
database join in the multiparty setting. In: ACNS, pp. 84–101 (2013)

https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-030-77883-5_12
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-662-48000-7_35

502 A. Ichikawa et al.

32. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: ISC, pp. 262–277 (2011)

33. Lu, S., Ostrovsky, R.: Distributed oblivious ram for secure two-party computation.
In: TCC, pp. 377–396 (2013). https://eprint.iacr.org/2011/384

34. Noble, D.: Explicit, closed-form, general bounds for cuckoo hashing with a stash.
Cryptology ePrint Archive (2021)

35. Ostrovsky, R.: Efficient computation on oblivious rams. In: STOC, pp. 514–523
(1990)

36. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In:
STOC, pp. 294–303 (1997)

37. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
38. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM

26(2), 361–381 (1979)
39. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
40. Wang, X., Chan, T.H., Shi, E.: Circuit ORAM: on tightness of the goldreich-

ostrovsky lower bound. In: CCS, pp. 850–861 (2015)

https://eprint.iacr.org/2011/384

Author Index

A
Abram, Damiano 286
Agarwal, Amit 158
Alamati, Navid 158
Aldema Tshuva, Eden 65

B
Ball, Marshall 349
Basu, Saugata 319
Beimel, Amos 286
Bienstock, Alexander 349
Blömer, Johannes 380
Bobolz, Jan 380
Bogdanov, Andrej 268
Boyle, Elette 65
Bröcher, Henrik 380

C
Cao, Zhenfu 238
Cohen, Ran 65

D
Das, Sourav 91
Dong, Xiaolei 238

F
Falk, Brett 441
Fernando, Rex 91

H
Hamada, Koki 471
Hazay, Carmit 3, 34

I
Ichikawa, Atsunori 471
Ikarashi, Dai 471
Ishai, Yuval 286

K
Khorasgani, Hamidreza Amini 319
Khurana, Dakshita 158
Kikuchi, Ryo 471

Kohl, Lisa 349
Komargodski, Ilan 91, 471
Kothari, Pravesh K. 268
Kumaresan, Ranjit 411
Kushilevitz, Eyal 286

L
Liu, Yanyi 219

M
Maji, Hemanta K. 319
Mazor, Noam 191
Meyer, Pierre 349
Moran, Tal 65

N
Narayanan, Varun 286
Nguyen, Hai H. 319
Noble, Daniel 441

O
Oshman, Rotem 65
Ostrovsky, Rafail 441

P
Pass, Rafael 191, 219

R
Raghuraman, Srinivasan 158, 411
Rindal, Peter 158
Rosen, Alon 268

S
Sealfon, Adam 411
Segev, Gil 121
Sharabi, Amit 121
Shi, Elaine 91
Shtepel, Matan 441
Soni, Pratik 91

© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 503–504, 2023.
https://doi.org/10.1007/978-3-031-48615-9

https://doi.org/10.1007/978-3-031-48615-9

504 Author Index

V
Venkitasubramaniam, Muthuramakrishnan

3, 34

W
Weiss, Mor 3, 34
Wu, Yusai 238

Y
Yogev, Eylon 121
Yu, Liqing 238
Yu, Yu 238

Z
Zhang, Jacob 441

	 Preface
	 Organization
	 Contents – Part I
	Proofs and Outsourcing
	Beyond MPC-in-the-Head: Black-Box Constructions of Short Zero-Knowledge Proofs
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Related Works
	1.4 Paper Organization

	2 Preliminaries
	2.1 Commitment Schemes
	2.2 Zero-Knowledge Proofs (ZKPs)
	2.3 Interactive Oracle Proofs (IOP)
	2.4 Homomorphic Secret Sharing (HSS)

	3 ZKPs from Game-Based Primitives
	4 Zero-Knowledge Proof Constructions
	4.1 Zero-Knowledge Proofs from Homomorphic Secret Sharing (HSS)
	4.2 Constant-Round ZKPs Approaching Witness Length

	References

	Your Reputation's Safe with Me: Framing-Free Distributed Zero-Knowledge Proofs
	1 Introduction
	1.1 Our Contribution
	1.2 Highlights of Our Techniques
	1.3 Open Problems and Future Directions
	1.4 Paper Organization
	1.5 Related Works

	2 Preliminaries
	2.1 Distributed Zero-Knowledge (dZK) Proofs
	2.2 Secure Multi-Party Computation (MPC) Protocols

	3 Checking Membership in a Robust Code
	4 dZK Proofs from Secure MPC Protocols
	References

	Locally Verifiable Distributed SNARGs
	1 Introduction
	1.1 Background on Distributed Certification
	1.2 Background on Delegation of Computation
	1.3 Our Results

	2 Model and Definitions
	2.1 Locally Verifiable Distributed SNARGs

	3 LVDSNARGs with a Global Prover
	4 LVDSNARGs with a Distributed Prover
	5 Distributed Merkle Trees
	References

	Distributed-Prover Interactive Proofs
	1 Introduction
	1.1 Techniques: Distributed IOPs and Distributed Streaming Polynomial Commitments
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Multilinear Polynomials

	3 Model Definition
	3.1 Succinct Arguments in the MPC Model

	4 Defining Multilinear Polynomial Commitments in the MPC Model
	5 Constructing Succinct Arguments in the MPC Model
	5.1 Tools from Prior Work
	5.2 Notation
	5.3 The Construction
	5.4 From Round Verification to a Full Argument

	6 Constructing Polynomial Commitments in the MPC Model
	6.1 Distributed Streaming Model
	6.2 Our New Construction
	6.3 Proof of Theroem 2

	References

	Rogue-Instance Security for Batch Knowledge Proofs
	1 Introduction
	1.1 Our Contributions

	2 Our Techniques
	2.1 High-Moment Hardness
	2.2 Rogue-Instance Security for Batch Protocols
	2.3 Batching Algebraic Sigma Protocols
	2.4 Non-interactive Batch Arguments
	2.5 General Batch Sigma Protocols
	2.6 Expected Time Hardness Framework

	3 Preliminaries
	3.1 High-Moment Hardness
	3.2 Sigma Protocols
	3.3 Batch Sigma Protocols

	4 Rogue-Instance Security
	4.1 Batch Sigma Protocols

	5 Batching Algebraic Sigma Protocols
	5.1 Algebraic Sigma Protocols
	5.2 The Collision Game
	5.3 Rogue Soundness Error Bound from the Collision Game
	5.4 Algebraic Batch Identification Schemes

	6 Proving Expected-Time Hardness in Generic Models
	6.1 Our Framework

	References

	On Black-Box Verifiable Outsourcing
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Mathematical Preliminaries and Definitions
	2.2 Bit Fixing Random Oracle Model
	2.3 Homomorphic Encryption
	2.4 Random Self Reducibility
	2.5 No-Signaling Prover

	3 Defining Oracle-Aided Batch Verifiable Computation
	4 Protocol for Functions Admitting 1-RSR
	5 Protocol for Functions Admitting K-RSR
	5.1 OBVC with Multiple Provers
	5.2 OBVC with a Single Prover

	6 Impossibility of Oracle-Aided Batch Verifiable Computation
	References

	Theoretical Foundations
	Counting Unpredictable Bits: A Simple PRG from One-Way Functions
	1 Introduction
	2 Proof Overview
	3 Preliminaries
	3.1 Notations
	3.2 One-Way Functions and Pseudorandom Generators
	3.3 Min-Entropy and Extraction

	4 Unpredictable Bits
	5 OWFs Unpredictable Bits
	5.1 Proving Lemma5.3.
	5.2 Proving Theorem 5.1

	6 Bits Unpredictability Random Bits Unpredictability
	6.1 Proving Theorem 6.1

	7 Extracting Pseudorandomness and the Main Theorem
	7.1 Exponentially-Hard OWFs
	7.2 Proving Theorem 7.1
	7.3 Proving Claim 7.6
	7.4 Proving Claim 7.7

	8 Saving Seed Length
	References

	On One-Way Functions and Sparse Languages
	1 Introduction
	1.1 Our Results
	1.2 Proof Overview

	2 OWFs from Avg-Case Hardness of Sparse Languages
	3 Avg-Case Hardness of Sparse Languages from OWFs
	4 Corollaries
	4.1 Kolmogorov Complexity
	4.2 k-SAT
	4.3 t-Clique

	5 OWF from Hardness of Approximating K-Complexity
	References

	Security Proofs for Key-Alternating Ciphers with Non-Independent Round Permutations
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Random Permutation Model, Transcripts and Graph View
	2.3 Two Useful Lemmas

	3 Technical Overview
	3.1 Proof Method of ch9DBLP:journalsspsjocspsChenLLSS18
	3.2 A General Transformation
	3.3 New Proof Strategies

	4 Improved Security Bound of P1P1P1-Construction
	4.1 Comparison of the Results
	4.2 Proof of Theorem 2

	5 Tight Security Bound of t-Round KACSP
	5.1 Case 1: q = (N1/2)
	5.2 Case 2: q = O(N1/2)

	6 Remarks on Other Variants of KACS
	References

	Public-Key Encryption, Local Pseudorandom Generators, and the Low-Degree Method
	1 Introduction
	1.1 Goldreich's Pseudorandom Generator
	1.2 A New Public-Key Encryption Scheme
	1.3 Correctness
	1.4 Security
	1.5 The Low-Degree Method
	1.6 Relation to the ABW Schemes
	1.7 Open Questions

	2 Public Key Encryption
	3 The Low-Degree Method
	4 Planting Hyperloops
	4.1 Expansion of 3-Regular Graphs

	5 Low-Degree Security of Goldreich's Function
	6 The Encryption Scheme
	References

	Cryptography from Planted Graphs: Security with Logarithmic-Size Messages
	1 Introduction
	1.1 Our Results

	2 Overview of Techniques
	2.1 Planted Subgraph Assumptions
	2.2 PSM Protocols with Logarithmic Message-Size
	2.3 Forbidden Graph Secret-Sharing Schemes with Logarithmic Share-Size
	2.4 On Breaking the log n Barrier for 2-out-of-n Secret-Sharing Schemes

	3 Preliminaries
	4 The Planted Subgraph Problem
	4.1 The Planted Clique Assumption
	4.2 The Planted Subgraph Assumption
	4.3 The Planted Subgraph Assumption with Hints

	References

	Multi-party Computation I
	Randomized Functions with High Round Complexity
	1 Introduction
	1.1 Discussion: Interaction in a World Without Security
	1.2 Round Complexity of Deterministic Functions
	1.3 Round Complexity of Randomized Functions with Small Output Set
	1.4 Round Complexity of Randomized Functions (General Case)
	1.5 Overview of the Paper

	2 Our Contributions
	3 Technical Overview of Our Results
	3.1 High-Level Summary of the BKMN Geometric Framework
	3.2 The ``Tartan Square'' Meets Secure Computation
	3.3 Overview: Proof of Theorem 1
	3.4 Overview: Proof of Theorem 2

	4 Lamination Hull
	5 BKMN Geometric Framework: A Formal Introduction
	5.1 An Example

	6 Preliminaries
	6.1 Notations
	6.2 Convex Geometry

	7 Functions with High Round Complexity
	7.1 Proofs of Theorem 3 and Theorem 4
	7.2 Proofs of Claims Needed for Theorem 3
	7.3 Proof of Claims Needed for Lemma2, Lemma3, and Lemma4
	7.4 Properties of the Four Sequences

	8 On the Optimality of Our Constructions
	8.1 Proof of Theorem 5

	References

	Towards Topology-Hiding Computation from Oblivious Transfer
	1 Introduction
	1.1 Our Result

	2 Technical Overview
	2.1 A High-Level Overview
	2.2 Technical Overview of the Core Protocol: Locally Simulatable MPC on a Path

	3 Preliminaries
	3.1 Topology-Hiding Computation (THC)
	3.2 Constant-Overhead Two-Party Computation for Semi-Honest Adversaries
	3.3 Efficiently Invertible from Local Information Functionalities

	4 Locally Simulatable MPC
	4.1 Locally Simulatable Protocols Are Execution-Oblivious

	5 Locally Simulatable Protocol for Directed Paths
	5.1 The Path Protocol

	6 Extension to All Graphs
	References

	On the Impossibility of Surviving (Iterated) Deletion of Weakly Dominated Strategies in Rational MPC
	1 Introduction
	1.1 Our Contribution
	1.2 Consequences
	1.3 The Way Forward for Rational MPC
	1.4 Organization

	2 Discussion of Related Work
	2.1 History of (Iterated) Deletion of Weakly Dominated Strategies
	2.2 In Defense of Weak Domination
	2.3 Alternative Notions

	3 Preliminaries
	3.1 Model of Computation and Communication
	3.2 Secret Sharing
	3.3 Game-Theoretic Notions
	3.4 Rational Secret Reconstruction

	4 Weak Domination in Existing Secret Reconstruction Protocols
	5 Impossibility Results for Surviving Iterated Deletion of Weakly Dominated Strategies
	5.1 Impossibility with Respect to Non-uniform Strategies
	5.2 Impossibility with Respect to Other Settings

	6 Impossibility of Rational Mechanisms for Majority Coalitions
	6.1 Weak Domination for Coalitions
	6.2 An Assumption on the Secret-Sharing Scheme
	6.3 Proving Impossibility

	References

	Synchronizable Fair Exchange
	1 Introduction
	2 Preliminaries
	2.1 Secure Computation
	2.2 The Hybrid Model
	2.3 Fairness Versus Guaranteed Output Delivery

	3 Synchronizable Exchange
	4 Fair Secure Computation in the –Hybrid Model
	4.1 Intuition
	4.2 Protocol
	4.3 Proof Sketch of Security
	4.4 Getting to the –Hybrid Model

	5 Preprocessing
	5.1 Intuition

	References

	DORAM Revisited: Maliciously Secure RAM-MPC with Logarithmic Overhead
	1 Introduction
	1.1 MPC in the RAM Model
	1.2 Building RAM-MPC

	2 Notation and Definitions
	3 Related Work
	4 Technical Overview
	5 The Arithmetic Black Box (ABB) Model
	6 QuietCache: Maliciously-Secure Oblivious Cache Construction
	7 Maliciously-Secure Oblivious Set Construction
	8 Maliciously-Secure Oblivious Hash Table Construction
	9 Maliciously-Secure Oblivious Map Construction
	References

	3-Party Secure Computation for RAMs: Optimal and Concretely Efficient
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Comparison with ch17FalkNOSZ23
	3 Preliminaries
	3.1 Secret Sharing Schemes
	3.2 Distributed Oblivious RAM

	4 Secure Computation Building Blocks
	5 Efficient Passively Secure Distributed Oblivious Hashing
	5.1 Distributed Oblivious Permutation
	5.2 Distributed Oblivious Hashing for Short Inputs
	5.3 Distributed Oblivious Hashing for Long Inputs

	6 Optimal DORAM Against Passive Adversary
	7 Actively Secure Extension
	7.1 Secure Oblivious Permutation up to Additive Attacks
	7.2 Actively Secure Distributed Hashing
	7.3 Actively Secure Distributed ORAM

	8 Conclusion
	References

	Author Index

