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Abstract We describe the construction of self-similar solutions to the gravitational 
Euler-Poisson equations for polytropic gases, providing exact self-similar profiles 
for the gravitational collapse of stars. These results are based on joint work with 
Guo et al. (Arch. Rat. Mech. Anal. 246:957–1066, 2022). 
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1 Introduction 

The rigorous description of the collapse of a star under its own gravity is a 
fundamental mathematical and physical problem, described by the gravitational 
Euler-Poisson system. Stellar collapse is an important stage in understanding both 
the formation and the death of stars. The self-similarity hypothesis suggests that, 
in certain cases, on approach to collapse, the star should adopt an approximately 
self-similar form, with the intertwining of spatial and time scales dictated by the 
scaling symmetries of the underlying physical system (see, for example [9]). In 
recent work, jointly with Guo et al. [7], we have rigorously constructed exactly 
self-similar solutions to the Euler-Poisson system for the full range of supercriticial 
exponents. 
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In spherical symmetry, in three spatial dimensions, the (isentropic) gravitational 
Euler-Poisson equations take the form 

.∂tρ + ∂r(ρu) + 2

r
ρu = 0, . (1) 

ρ
(
∂tu + u∂ru

) + ∂rp + 
1 

r2 ρm = 0, (2) 

where the density . ρ and radial velocity u are functions only of time t and radial 
distance . r = |x|. The mass  m is determined through the relation 

.m(t, r) = 4π

ˆ r

0
s2ρ(t, s) ds, (3) 

corresponding to the radial component of the gravitational force field . ∇φ, where . φ
is the gravitational potential determined through the Poisson equation 

. Δφ = 4πρ, lim|x|→∞ φ(t, x) = 0.

To close the system of equations, we require an equation of state for the pressure p, 
which we choose using the usual polytropic relation 

.p = p(ρ) = κργ , γ ∈
(

1,
4

3

)
, κ > 0. (4) 

The main result of the paper [7], roughly stated, is then 

Theorem 1 (Main Theorem, Rough Version) For all .γ ∈ (1, 4
3 ), there exists a 

smooth initial data pair .(ρ0(r), u0(r)), defined on .[0,∞), with .ρ0(r) → 0 as . r →
∞ such that the system (1)–(2) with initial data .(ρ, u)|t=−1 = (ρ0, u0) has a smooth 
solution .(ρ(t, r), u(t, r)) for .t ∈ (−1, 0) such that, at the spatial origin .r = 0, the  
density .ρ(t, 0) → ∞ as .t → 0−. For all .r > 0, the limits of .ρ(t, r) and .u(t, r) exist 
as .t → 0− and define smooth functions .ρ(0, r), u(0, r) on .(0,∞). 

As advertised above, we seek this claimed solution through self-similarity. To make 
this notion precise, we first observe that the system of Eqs. (1)–(2) is invariant under 
the scaling 

.

ρ(t, r) I→ λ
− 2

2−γ ρ
( t

λ
1

2−γ

,
r

λ

)
,

u(t, r) I→ λ
− γ−1

2−γ u
( t

λ
1

2−γ

,
r

λ

)
.

(5)
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This motivates the definition of a self-similar variable 

.y = r√
κ(−t)2−γ

(6) 

and the ansatz 

.

ρ(t, r) = (−t)−2ρ̃(y),

u(t, r) = √
κ(−t)1−γ ũ(y).

(7) 

Substituting this ansatz into the spherically symmetric Euler-Poisson system, 
defining a new unknown 

.ω(y) = ũ(y)

y
+ 2 − γ, (8) 

and dropping the . ∼ notation yields, after rearrangement, the self-similar system 

.

ρ' =
yρ

(
2ω2 + (γ − 1)ω − 4πρω

4−3γ
+ (γ − 1)(2 − γ )

)

γργ−1 − y2ω2
,

ω' = 4 − 3γ − 3ω

y
−

yω
(

2ω2 + (γ − 1)ω − 4πρω
4−3γ

+ (γ − 1)(2 − γ )
)

γργ−1 − y2ω2 .

(9) 

It is then clear that any smooth solution of (9) with .ρ(0) > 0 and . ρ(y) → ∞
as .y → ∞ gives a collapsing solution of the original system (1)–(2) with density 
blowup at the origin at time .t = 0. 

Seminal work of Larson and Penston [10, 14] offered a numerical solution to this 
system in the case .γ = 1 (so-called isothermal stars), describing self-similar stellar 
collapse. However, two fundamental quantities formally conserved along solutions 
of the system are the total mass and energy, defined by 

. 

M[ρ] = 4π

ˆ ∞

0
ρr2 dr,

E[ρ, u] = 4π

ˆ ∞

0

(1

2
ρu2 + 1

γ − 1
ργ − 1

8π
|∂rφ|2

)
r2 dr.

In the isothermal setting, the self-similar ansatz of Larson and Penston leads 
to solutions of infinite mass and energy, as can be seen either directly from 
the asymptotics of the Larson–Penston solution, or predicted from the scaling 
relation (5). Indeed, one checks easily that 

.M[ρλ] = λ
4−3γ
2−γ M[ρ], E[ρλ, uλ] = λ

6−5γ
2−γ E[ρ, u].
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Thus .γ = 4
3 is the mass-critical exponent and .γ = 6

5 is the energy-critical exponent. 
This observation led Yahil [15] to construct finite energy numerical solutions in 
the range .γ ∈ ( 6

5 , 4
3 ) and, for this range of . γ , these are the solutions rigorously 

constructed in Theorem 1. 
A key difficulty in solving this ODE system rigorously is the presence of 

singularities in the system. As well as the regular singular point at the origin (due 
to the radial symmetry assumption), there is an a priori  unknown further singularity 
whenever .γργ−1 − y2ω2 = 0. At such a point, the relative speed .yω is exactly the 
speed of sound in the gas, .

√
p'(ρ), motivating the following definition. 

Definitions 2 Let .(ρ, ω) be a .C1 solution of system (9) on an open interval . I ⊂
(0,∞). A point .y∗ ∈ I is called a sonic point if 

. γρ(y∗)γ−1 − y2∗ω(y∗)2 = 0.

A sonic point . y∗ for the self-similar system corresponds to a backwards acoustic 
cone emanating from the spatio-temporal origin .(t, r) = (0, 0) in physical variables. 
Although the location of a sonic point is a priori  unknown, the necessity of the 
existence of at least one such point is given by the physical asymptotic and boundary 
conditions at infinity and the origin. As we are looking for smooth solutions with 
positive density at the origin and density tending to zero at infinity, a simple Taylor 
expansion shows that we require 

.

ρ(0) > 0, ω(0) = 4 − 3γ

3
,

ρ(y) ∼ y
− 2

2−γ as y → ∞, lim
y→∞ ω(y) = 2 − γ.

(10) 

The intermediate value theorem then immediately gives the existence of at least one 
sonic point for any smooth solution. 

We can now state the main result of [7] rigorously. 

Theorem 3 ([7, Theorem 1.3]) Let .γ ∈ (
1, 4

3

)
. Then there exists a global, real-

analytic solution .(ρ, ω) of (9), (10) with a single sonic point .y∗ ∈ (0,∞) and 
satisfying the natural, physical conditions 

.ρ(y) > 0 for all y ∈ [0,∞), −2

3
y < u(y) < 0 for all y ∈ (0,∞). (11) 

It should be noted that such collapse solutions are not expected for . γ > 4
3 , the  

mass-subcritical regime. In this range, it has been shown that no collapsing solutions 
of finite mass and energy can exist, see [3]. In the mass-critical case, .γ = 4

3 , 
there is a famous family of solutions due to Goldreich and Weber, [4], which can 
either collapse or expand. These solutions are found using an effective separation of 
variables, allowing for the solution to be found as a time-modulated spatial profile 
satisfying a Lane-Emden type equation. In contrast, the solutions found in this work
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involve the careful balancing of all three main forces in the system: inertia, pressure 
and gravity. 

In the isothermal case, .γ = 1, the problem of existence of the Larson–Penston 
collapsing solutions was solved by Guo–Hadžić–Jang [6], who developed a delicate 
shooting argument based on the existence of local, smooth solutions around a 
candidate sonic point. In this case, the system (9) simplifies, and a less refined 
analysis is required to demonstrate the existence of the solutions. 

More recently, the same authors have constructed exact self-similar blowup 
solutions to the Einstein-Euler equations in general relativity, [8]. This work con-
structs a smooth, self-similar spacetime with singularity (in both curvature and fluid 
variables) at a centre of symmetry. From this singularity, a null geodesic emanates 
and escapes to null infinity. To ensure the spacetime is physically meaningful, 
the spacetime is flattened far from the centre of symmetry to ensure that it is 
asymptotically flat. This therefore gives an example of a naked singularity for the 
Einstein-Euler equations. 

We mention also the existence of collapsing (or imploding) self-similar solutions 
of the Euler equations without gravity, which were found recently by Merle et al. 
[12]. These solutions were constructed using a careful phase portrait analysis, based 
on an autonomous self-similar ODE system. The same authors proved the finite 
co-dimension stability of these solutions within the class of radially symmetric 
solutions, [13]. Later numerical work, [1] suggests that the finite co-dimension is 
positive, i.e. these solutions are unstable to generic radial perturbations. 

In contrast, it is widely expected that the Larson-Penston and Yahil solutions are 
in fact stable in the class of radial solutions, based on numerical investigations, see 
[11]. The smoothness of the underlying self-similar profile appears to be essential 
for the stability properties, both for the full stability of the gravitational collapse and 
the finite co-dimensional stability of the gas flows. 

2 Strategy of Proof 

Before offering an outline of the proof, we first observe that there are two explicit 
solutions to the system (9), the Friedmann solution 

. ωF = 4 − 3γ

3
, ρF = 1

6π
,

and the far-field solution 

. ωf = 2 − γ, ρf = ky
− 2

2−γ , where k =
( γ (4 − 3γ )

2π(2 − γ )2

) 1
2−γ

.

The Friedmann solution satisfies the boundary condition at the origin, but not at 
infinity, and the far-field solution satisfies the asymptotic condition as .y → ∞, but



174 M. Schrecker

fails to be regular at the origin, compare (10). We find that these solutions each have 
a unique sonic point, .yF (γ ), .yf (γ ), respectively, with .0 < yf (γ ) < yF (γ ) < ∞, 
defined by 

. yF (γ ) = 3

4 − 3γ

√
γ

(6π)(γ−1)
, yf (γ ) =

√
γ

2 − γ

(4 − 3γ

2π

) γ−1
2

. (12) 

Thus, for each .γ ∈ (1, 4
3 ), the interval .[yf (γ ), yF (γ )] is compact and we search 

for our solution with a sonic point in the open range .(yf , yF ) (we henceforth drop 
explicit dependence on . γ ). 

The proof broadly proceeds in four steps. The first step is to construct local 
solutions around any candidate sonic point .y∗ ∈ [yf , yF ]. This is based on a Taylor 
expansion argument to solve for 

.ρ(y; y∗) =
∞∑

n=0

ρn(y∗)(y − y∗)n, ω(y; y∗) =
∞∑

n=0

ωn(y∗)(y − y∗)n. (13) 

The order zero coefficients are determined from (9) by solving the pair of nonlinear 
equations 

. γρ
γ−1
0 − y2∗ω2

0 = 0, 2ω2
0 + (γ − 1)ω0 − 4πρ0ω0

4 − 3γ
+ (γ − 1)(2 − γ ) = 0.

This gives, for each .y∗ ∈ [yf , yF ], a unique choice .(ρ0(y∗), ω0(y∗)), with . ω0(yf ) =
2 − γ and .ω0(yF ) = 4−3γ

3 . A selection principle is necessary to determine the first 
order coefficients (for which there are two possible choices for every .y∗ ∈ [yf , yF ]) 
and then a recurrence relation is used to determine the higher order coefficients. 
Through combinatorial bounds, these formal series are shown to converge in some 
neighbourhood of . y∗ and give a local, real-analytic solution of (9). 

The second step is to extend the local solution to the right on the interval 
.(y∗,∞). This can be done for all .y∗ ∈ [yf , yF ], and the argument is based on 
the construction of dynamical invariances for the flow, using the precise structure 
of the non-linearities. To close some of the estimates, it is necessary to verify the 
sign of certain explicit (but high order) polynomial functions of . γ and . ω. This is  
achieved via the use of interval arithmetic, a rigorous computer-assisted form of 
proof that has attracted increasing attention in the PDE community in recent years 
(see, for example, [2, 5]). 

The third step is the most difficult, and contains the key new ideas of the paper. 
This is to extend the local solution to the left onto the interval .(0, y∗). For a general 
. y∗, the solution will not extend smoothly all the way to the origin, and so we here 
develop a shooting argument in order to find a critical . ȳ∗ for which the solution 
does connect. The central difficulty is that the invariant region arguments used in 
extending to the right all fail in this direction, which is an unstable direction for the
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flow. Instead, we rely on a new monotonicity lemma, which allows us to obtain the 
necessary control on the solutions. 

To be more precise, we observe that the solution needs to connect to the value 
.
4−3γ

3 at the origin in order to extend smoothly, and, for . y∗ close to . yF , the solution 
obtained by Taylor expansion around . y∗ will quickly decrease below this value. We 
therefore define the shooting set Y to be the set of candidate sonic points . y∗ for 
which the solution to the left intersects this value: 

. Y =
{
y∗ ∈ (yf , yF ) | for all ỹ∗ ∈ [y∗, yF ),

there exists y such that ω(y; ỹ∗) = 4 − 3γ

3

}

and search for the critical . ȳ∗ as the infimum of Y . 
Due to the instability of the flow to the left and the possibility of hitting a second 

sonic point, it is hard to achieve uniform convergence estimates. Instead, we prove 
the key monotonicity lemma. First, for each .y∗ ∈ Y , we define the critical time 
.yc(y∗) as the first touching time 

. yc(y∗) = inf
{
y | ω(ỹ; y∗) >

4 − 3γ

3
for all ỹ ∈ (y, y∗)

}
.

Lemma 4 Let .γ ∈ (1, 4
3 ). For all .y∗ ∈ Y , the solution . (ρ(·; y∗), ω(·; y∗))

defined by the formal Taylor expansion (13) and extended to the left on the interval 
.[yc(y∗), y∗] satisfies the strict monotonicity condition 

. ω'(y; y∗) > 0 for all y ∈ [yc(y∗), y∗].

With this monotonicity, we achieve sufficient control of the flow in order to establish 
that the solution associated to . ȳ∗ exists on the interval .(0, ȳ∗), in particular ruling 
out the existence of another sonic point on this interval. 

The final step is to show that this solution connects smoothly to the origin. The 
monotonicity simplifies many arguments, avoiding the need for the complicated 
topological upper- and lower-solution arguments required in [6]. This allows us to 
show that .ω(y; ȳ∗) → 4−3γ

3 as .y → 0, while the density remains bounded. By a 
further Taylor expansion at the origin and a local uniqueness result, we show that 
the solution is in fact locally analytic, completing the proof of Theorem 3. 
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