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Abstract In this paper we discuss an analogy of the Carleson-Hunt theorem with 
respect to Vilenkin systems. In particular, we investigate the almost everywhere 
convergence of Vilenkin-Fourier series of .f ∈ Lp(Gm) for .p > 1 in case the 
Vilenkin system is bounded. Moreover, we state an analogy of the Kolmogorov 
theorem for .p = 1 and construct a function .f ∈ L1(Gm) such that the partial sums 
with respect to Vilenkin systems diverge everywhere. 
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1 Introduction 

In 1947 Vilenkin [53, 54] investigated a group . Gm, which is a direct product of 
the additive groups .Zmk

:= {0, 1, . . . , mk − 1} of integers modulo . mk , where 
.m := (m0,m1, . . .) are positive integers not less than 2, and introduced the Vilenkin 
systems .{ψj }∞j=0. These systems include as a special case the Walsh system, when 
. m ≡ 2.

The classical theory of Hilbert spaces (see e.g the books [49] and [52]) certifies 
that if we consider the partial sums .Snf := ∑n−1

k=0 f̂ (k) ψk, with respect to Vilenkin 
systems, then .‖Snf ‖2 ≤ ‖f ‖2 . In the same year 1976 Schipp [37], Simon [43] and 
Young [58] (see also the book [41]) generalized this inequality for .1 < p < ∞: 
there exists an absolute constant .cp, depending only on . p, such that 

. ‖Snf ‖p ≤ cp ‖f ‖p , when f ∈ Lp(Gm).

It follows that for every .f ∈ Lp(Gm) with .1 < p < ∞, . ‖Snf − f ‖p → 0,

. as n → ∞. The boundedness does not hold for .p = 1, but Watari [55] (see 
also Gosselin[18], Young[58]) proved that there exists an absolute constant . c such 
that, for .n = 1, 2, . . . , the weak type estimate . yμ {|Snf | > y} ≤ c ‖f ‖1 , f ∈
L1(Gm), y > 0 holds. 

The almost-everywhere convergence of Fourier series for .L2 functions was 
postulated by Luzin [30] in 1915 and the problem was known as Luzin’s conjecture. 
Carleson’s theorem is a fundamental result in mathematical analysis establishing 
the pointwise (Lebesgue) almost everywhere convergence of Fourier series of . L2
functions, proved by Carleson [8] in 1966. The name is also often used to refer to 
the extension of the result by Hunt [20] which was given in 1968 to .Lp functions 
for .p ∈ (1,∞) (also known as the Carleson-Hunt theorem). 

Carleson’s original proof is exceptionally hard to read, and although several 
authors have simplified the arguments there are still no easy proofs of his theorem. 
Expositions of the original Carleson’s paper were published by Kahane [22], 
Mozzochi [31], Jorsboe and Mejlbro [21] and Arias de Reyna [35]. Moreover, 
Fefferman [14] published a new proof of Hunt’s extension, which was done by 
bounding a maximal operator . S∗ of partial sums, defined by . S∗f := supn∈N |Snf | .
This, in its turn, inspired a much simplified proof of the . L2 result by Lacey and 
Thiele [28], explained in more detail in Lacey [26]. In the books Fremlin [15] and 
Grafakos [17] it was also given proofs of the Carleson’s theorem. An interesting 
extension of Carleson-Hunt result much more closer to . L1 space then .Lp for any 
.p > 1 was done by Carleson’s student Sjölin [47] and later on, by Antonov [2]. 
Already in 1923, Kolmogorov [24] showed that the analogue of Carleson’s result 
for .L1 is false by finding such a function whose Fourier series diverges almost 
everywhere (improved slightly in 1926 to diverging everywhere). This result indeed 
inspired many authors after Carleson proved positive results in 1966. In 2000, 
Kolmogorov’s result was improved by Konyagin [25], by finding functions with 
everywhere-divergent Fourier series in a space smaller than . L1, but the candidate
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for such a space that is consistent with the results of Antonov and Konyagin is still 
an open problem. 

The famous Carleson theorem was very important and surprising when it was 
proved in 1966. Since then this interest has remained and a lot of related research has 
been done. In fact, in recent years this interest has even been increased because of the 
close connections to e.g. scattering theory [32], ergodic theory [12, 13], the theory 
of directional singular integrals in the plane [3, 9, 11, 27] and the theory of operators 
with quadratic modulations [29]. We refer to [26] for a more detailed description of 
this fact. These connections have been discovered from various new arguments and 
results related to Carleson’s theorem, which have been found and discussed in the 
literature. We mean that these arguments share some similarities, but each of them 
has also a distinct new ideas behind, which can be further developed and applied. 
It is also interesting to note that, for almost every specific application of Carleson’s 
theorem in the aforementioned fields, mainly only one of these new arguments was 
used. 

The analogue of Carleson’s theorem for Walsh system was proved by Billard [4] 
for .p = 2 and by Sjölin [46] and Demeter [10] for .1 < p < ∞, while for bounded 
Vilenkin systems by Gosselin [18]. Schipp [38, 39] (see also [40, 56]) investigated 
the so called tree martingales and generalized the results about maximal function, 
quadratic variation and martingale transforms to these martingales and also gave a 
proof of Carleson’s theorem for Walsh-Fourier series. A similar proof for bounded 
Vilenkin systems can be found in Schipp and Weisz [40, 56]. In each proof, it was 
proved that the maximal operator of the partial sums is bounded on .Lp(Gm), i.e., 

. 
∥
∥S∗f

∥
∥

p
≤ cp ‖f ‖p , as f ∈ Lp(Gm), 1 < p < ∞.

A recent proof of almost everywhere convergence of Vilenkin-Fourier series was 
given by Persson, Schipp, Tephnadze and Weisz [33] (see also the book [34]) in 
2022. Convergence of subsequences of Vilenkin-Fourier series were considered in 
[6, 7, 50, 51]. 

Stein [48] constructed an integrable function whose Walsh-Fourier series 
diverges almost everywhere. Later on Schipp [36, 41] proved that there exists 
an integrable function whose Walsh-Fourier series diverges everywhere. Kheladze 
[23] proved that for any set of measure zero there exists a function in . f ∈ Lp(Gm)

.(1 < p < ∞) whose Vilenkin-Fourier series diverges on the set, while the result 
for continuous or bounded functions was proved by Harris [19] or Bitsadze [5]. 
Simon [44] constructed an integrable function such that its Vilenkin-Fourier series 
diverges everywhere. Generalization of results by Simon [44] and Kheladze [23] 
can be found in [33, 34].



160 L.-E. Persson et al.

2 Preliminaries 

Denote by .N+ the set of the positive integers, .N := N+ ∪ {0}. Let . m := (m0,

.m1, . . .) be a sequence of the positive integers not less than 2. Define the group . Gm

as the complete direct product of the the additive group . Zmk
:= {0, 1, . . . , mk − 1}

of integers modulo with the product of the discrete topologies of .Zmj
‘s. The direct 

product . μ of the measures .μk ({j}) := 1/mk(j ∈ Zmk
) is the Haar measure on 

.Gm with .μ (Gm) = 1. In this paper we discuss bounded Vilenkin groups, i.e. the 
case when .supn mn < ∞. The elements of .Gm are represented by sequences . x :=(
x0, x1, . . . , xj , . . .

) (
xj ∈ Zmj

)
. It is easy to give a base for the neighborhood of 

. Gm :

. I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1},

where .x ∈ Gm, .n ∈ N. Denote .In := In (0) for .n ∈ N+, and .In := Gm . \ . In. 
If we define the so-called generalized number system based on m by 

. M0 := 1, Mk+1 := mkMk (k ∈ N),

then every .n ∈ N can be uniquely expressed as .n = ∑∞
j=0 njMj , where . nj ∈ Zmj

.(j ∈ N+) and only a finite number of . nj ‘s differ from zero. 
We define the generalized Rademacher functions, by . rk (x) : Gm → C,

. rk (x) := exp (2πıxk/mk) ,
(
ı2 = −1, x ∈ Gm, k ∈ N

)
.

Now, define the Vilenkin system . ψ := (ψn : n ∈ N) on .Gm as: 

. ψn(x) :=
∞∏

k=0

r
nk

k (x) , (n ∈ N) .

The Vilenkin system is orthonormal and complete in .L2 (Gm) (see e.g. [1]). 
If .f ∈ L1 (Gm), we can define the Fourier coefficients, the partial sums of the 

Fourier series, the Dirichlet kernels with respect to the Vilenkin system as: 

.f̂ (n) :=
ˆ

Gm

f ψndμ, (n ∈ N) , Snf :=
n−1∑

k=0

f̂ (k) ψk and

Dn :=
n−1∑

k=0

ψk, (n ∈ N+)
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respectively. Recall that (see e.g. Simon [42, 45] and Golubov et al. [16]) 

.

mk−1∑

s=0

rs
k (x) =

{
mk, if xk = 0,

0, if xk /= 0,
and DMn (x) =

{
Mn, if x ∈ In,

0, if x /∈ In.
(1) 

A function P is called Vilenkin polynomial if . P = ∑n
k=0 ckψk.

3 On Martingale Inequalities 

The .σ -algebra generated by the intervals .{In (x) : x ∈ Gm} will be denoted by . Fn

.(n ∈ N). If . F denotes the set of Haar measurable subsets of . Gm, then obviously 

.Fn ⊂ F . By a Vilenkin interval we mean one of the form . In(x), n ∈ N, x ∈
Gm. The conditional expectation operators relative to .Fn are denoted by . En. An  
integrable sequence .f = (fn)n∈N is said to be a martingale if . fn is .Fn-measurable 
for all .n ∈ N and .Enfm = fn in the case .n ≤ m. We can see that if .f ∈ L1(Gm), 
then .(Enf )n∈N is a martingale. Martingales with respect to .(Fn, n ∈ N) are called 
Vilenkin martingales. It is easy to prove (see e.g. Weisz [56, p.11]) that the sequence 
.(Fn, n ∈ N) is regular, i.e., for all non-negative Vilenkin martingales .(fn), 

.fn ≤ Rfn−1 where R := max
n∈N

mn, n ∈ N. (2) 

Using (1), we can prove that .Enf = SMnf for all .f ∈ Lp(Gm) with . 1 ≤ p ≤ ∞
(see e.g. [56]). By the well known martingale theorems, this implies that 

.
∥
∥SMnf − f

∥
∥

p
→ 0, as n → ∞ for all f ∈ Lp(Gm) when p ≥ 1. (3) 

For a Vilenkin martingale .f = (fn)n∈N, the maximal function . f ∗ is defined by 
.f ∗ := supn∈N |fn| . For a martingale .f = (fn)n≥0 let . dnf = fn − fn−1 (n ≥ 0)

denote the martingale differences, where .f−1 := 0. The square function and the 
conditional square function of f are defined by 

. S(f ) :=
( ∞∑

n=0

|dnf |2
)1/2

and s(f ) :=
(

|d0f |2 +
∞∑

n=0

En|dn+1f |2
)1/2

.

We have shown the following theorem in [56]: 

Theorem 9 If .0 < p < ∞, then .‖f ∗‖p ∼ ‖S(f )‖p ∼ ‖s(f )‖p . If in addition 
.1 < p ≤ ∞, then .‖f ∗‖p ∼ ‖f ‖p .
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4 a.e. Convergence of Vilenkin-Fourier Series 

We introduce some notations. For .j, k ∈ N we define the following subsets of . N :

. I k
jMk

:= [jMk, jMk + Mk) ∩ N and I := {I k
jMk

: j, k ∈ N}.

We introduce also the partial sums taken in these intervals: 

. sIk
jMk

f :=
∑

i∈I k
jMk

f̂ (i)ψi.

For simplicity, we suppose that .f̂ (0) = 0. In [57] was proved that, for an arbitrary 
.n ∈ I k

jMk
, .sIk

jMk

f = ψnEk(f ψn). For .n = ∑∞
j=0 njMj (0 ≤ nj < mj ), we define 

.n(k) :=
∞∑

j=k

njMj , I k
n(k) = [

n(k), n(k) + Mk

)
(n ∈ N). (4) 

Let 

. T If := T
Ik
n(k)f :=

∑

[n(k+1),n(k))⊃J∈I
|J |=Mk

sJ f, for I = I k
n(k).

Lemma 10 For all .n ∈ N and .I k
n(k) defined in (4), we have that 

. Snf =
∞∑

k=0

T
Ik
n(k)f = ψn

∞∑

k=0

nk−1∑

l=0

r
nk−l
k Ek

(
dk+1(f ψn)r

nk−l
k

)
,

Lemma 11 For all .k, n ∈ N, the following inequality holds: 

. |T Ik
n(k)f | ≤ REk

(
|s

Ik+1
n(k+1)

f − sIk
n(k)

f |
)

, where R := max(mn, n ∈ N).

Lemma 12 For all .n ∈ N, .
(
ψnT

Ik
n(k)f

)

k∈N is a martingale difference sequence 

with respect to .(Fk+1)k∈N. 

Let I , J , K denote some elements of . I. Let . FK := Fn and EK := En if |K| =
Mn. Assume that .ϵ = (ϵK,K ∈ I) is a sequence of functions such that . ϵK is . FK

measurable. Set 

.Tϵ;I,J f :=
∑

I⊂K⊂J

ϵKT Kf, T ∗
ϵ;I f := sup

I⊂J

|Tϵ;I,J f |, T ∗
ϵ f := sup

I∈I
|T ∗

ϵ;I f |.
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If .ϵK(t) = 1 for all .K ∈ I and .t ∈ Gm, then we omit the notation . ϵ and write simply 
.TI,J f , .T ∗

I f and . T ∗f . For .I ∈ I with .|I | = Mn, let .I+ ∈ I such that .I ⊂ I+ and 
.|I+| = Mn+1. Moreover, let .I− ∈ I denote one of the sets .I− ⊂ I with . |I−| =
Mn−1. Note that .FI− = Fn−1 and .EI− = En−1 are well defined. We introduce 
the maximal functions . s∗

I and . s∗ by . s∗
I f := supK⊂I EK−|sKf | and s∗f :=

supI∈I s∗
I f. Since .|sI+f | is .FI+ measurable, by the regularity condition (2), we  

conclude that . |sI+f | ≤ REI |sI+f | ≤ Rs∗
I+f.

Lemma 13 For any real number .x > 0 and .K ∈ I, let . ϵK := χ{t∈Gm:x<s∗
K+f (t)≤2x}

and .αK := χ{t∈Gm:s∗
Kf (t)>x,s∗

I f (t)≤x,I⊂K}. Then 

. T ∗
ϵ f ≤ 2 sup

K∈I
αKT ∗

ϵ;Kf + 4R2xχ{t∈Gm:s∗f (t)>x}.

Now we introduce the quasi-norm .‖ · ‖p,q .(0 < p, q < ∞) by 

. ‖f ‖p,q := sup
x>0

x

⎛

⎝
ˆ

Gm

(
∑

I∈I
αI

)p/q

dμ

⎞

⎠

1/p

,

where . αI is defined in Lemma 13. Observe that . αI can be rewritten as 

.αI := χ{t∈Gm:EI−|sI f (t)|>x,EJ−|sJ f (t)|≤x,J⊂I }. (5) 

Denote by .P p,q the set of functions .f ∈ L1 which satisfy .‖f ‖p,q < ∞. For  
.q = ∞, 

. ‖f ‖p,∞ := sup
x>0

x

(ˆ
Gm

(

sup
I∈I

αI

)p

dμ

)1/p

(0 < p < ∞).

It is easy to see that 

. ‖f ‖p,∞ ≤ ‖f ‖p,q (0 < q < ∞) and ‖f ‖p,∞ = sup
x>0

xμ(s∗f > x)1/p.

Lemma 14 Let .max(1, p) < q < ∞, .f ∈ P p,q and .x, z > 0. Then 

.μ

(

sup
I∈I

αIT
∗
ϵ;I f > zx

)

≤ Cp,qz−qx−p‖f ‖p
p,q, where αI is defined in Lemma 13. 

Lemma 15 Let .max(1, p) < q < ∞ and .f ∈ P p,q . Then 

. sup
y>0

ypμ
(
T ∗f > (2 + 8R2)y

)
≤ Cp,q‖f ‖p,q .
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Let . Δ denote the closure of the triangle in . R2 with vertices .(0, 0), .(1/2, 1/2) and 
.(1, 0) except the points .(x, 1 − x), .1/2 < x ≤ 1. 

Lemma 16 Suppose that .1 < p, q < ∞ satisfy .(1/p, 1/q) ∈ Δ. Then, for all 
.f ∈ Lp, we have . ‖f ‖p,q ≤ Cp,q‖f ‖p.

Now we are ready to formulate our first main result. 

Theorem 17 Let .f ∈ Lp(Gm), where .1 < p < ∞. Then 

. 
∥
∥S∗f

∥
∥

p
≤ cp ‖f ‖p , where S∗f := sup

n∈N
|Snf | .

The next norm convergence result follow from Theorem 17. 

Theorem 18 Let .f ∈ Lp(Gm), 1 < p < ∞. Then .‖Snf − f ‖p → 0, . as n →
∞.

Our announced Carleson-Hunt type theorem reads: 

Theorem 19 Let .f ∈ Lp(Gm), where .p > 1. Then . Snf → f, a.e., as n → ∞.

5 Almost Everywhere Divergence of Vilenkin-Fourier Series 

A set .E ⊂ Gm is called a set of divergence for .Lp(Gm) if there exists a function 
.f ∈ Lp(Gm) whose Vilenkin-Fourier series diverges on . E.

Lemma 20 If E is a set of divergence for .L1(Gm), then there is a function . f ∈
L1(Gm) such that .S∗f = ∞ on . E.

Lemma 21 A set .E ⊆ Gm is a set of divergence for .L1(Gm) if and only if there 
exist Vilenkin polynomials .P1, P2, . . . , such that . 

∑∞
j=1 ‖Pj‖1 < ∞ and

. sup
j∈N+

S∗Pj (x) = ∞ (x ∈ E).

Corollary 22 If .E1, E2, . . . are sets of divergence for .L1(Gm), then . E := ∪∞
n=1En

is also a set of divergence for . L1(Gm).

Theorem 23 If .1 ≤ p < ∞ and .E ⊆ Gm is a set of Haar measure zero, then E is 
a set of divergence for . Lp(Gm).

Theorem 24 There is a function .f ∈ L1(Gm) whose Vilenkin-Fourier series 
diverges everywhere. 

Remark 25 For details of the above statements we refer to [33, 34].
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