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Preface 

This volume belongs to the new Birkhäuser series Research Perspectives Ghent 
Analysis and PDE Center, which is devoted to the publication of extended abstracts 
of seminars, conferences, workshops, and other scientific events related to the Ghent 
Analysis and PDE Center in Belgium. Volumes in this subseries include a collection 
of revised written versions of the communications or short research announcements 
or summaries, grouped by events or by topics. 

The Ghent Analysis and PDE Center provides the atmosphere to do research in 
mathematics that focuses on different areas of analysis as well as the study of partial 
differential equations (PDEs) and their applications. The details and activities of the 
center can be found in the following link: 

https://analysis-pde.org 

The activities of the center have been supported by grants from the Research 
Foundation Flanders (FWO) as well as by the Methusalem programme of Ghent 
University. 

This book provides the most recent results in analysis, PDEs, and geometric 
analysis by some of the leading worldwide experts, prominent junior and senior 
researchers in the latter topics which were invited to be part of the Ghent Analysis 
and PDE Center’ Seminars in the last two years 2021–2022. The contributions are 
from the speakers of the Methusalem Colloquium, the Methusalem Junior seminar, 
and the Geometric Analysis seminar. All of them took place online or in person

v

https://analysis-pde.org
https://analysis-pde.org
https://analysis-pde.org
https://analysis-pde.org


vi Preface

at the Department of Mathematics: Analysis, Logic and Discrete Mathematics at 
Ghent University. Also, we include colloquia and mini-courses from visiting and 
invited guests. In general, those seminars are held in a hybrid form and the venue 
for the in-person form is at Campus Sterre S8 (Ghent University, Belgium). On 
the one hand, we gather the modern developments in these areas by some already 
established and well-known global experts in the fields. On the other hand, we offer 
the opportunity for outstanding young researchers in various areas of analysis and 
PDEs to share their ideas as well as broader mathematical subjects. 

The volume has two main directions, complemented by a few related applied 
aspects: 

1. Geometric analysis. The book includes studies and investigations of modern 
techniques for elliptic and subelliptic PDEs that have been used to establish new 
results in differential geometry and differential topology. These topics involve 
the research in microlocal analysis, geometric analysis, harmonic analysis, and 
related topics. We consider different problems which have relevant geometric 
information for different applications in mathematical physics and other prob-
lems of classification. We also include contributions of several junior and senior 
authors specialised in geometric and topological properties of spaces, such as 
submanifolds of the Euclidean space, Riemannian manifolds, symplectic mani-
folds, and vector bundles. The aforementioned works as well as the fundamental 
works on the index theory, K-theory, and their applications to non-commutative 
geometry, and K-theory, in view of the Atiyah and Singer solution of the Gelfand 
conjecture (their celebrated Atiyah-Singer index theorem), have shown to be 
relevant in different problems of the geometric analysis and for problems of 
classification of manifolds in differential geometry as well as in many other 
contexts of the mathematical physics. 

2. Analysis and PDEs. This part presents recent results in fundamental problems for 
solving partial integro-differential equations in different settings, e.g. Euclidean 
spaces, manifolds, Banach spaces, and many other settings, discussions about the 
global and local solvability by using micro-local and harmonic analysis methods. 
The study of new techniques and approaches, which can either come from the 
physical perspective or the mathematical point of view, is also included. Several 
connected branches arise in this regard. In particular, we focus on approaches of 
spectral theory combined with elliptic operators, the study of higher-order PDEs 
of different types and natures involving classical and well-known operators such 
as Schrödinger-type, Dirac type, Laplace-type, etc., as well as inverse scattering 
problems, nonlinear equations, hyperbolic PDEs, and stability results. Functional 
estimates (global and local), which provide information about the existence, 
uniqueness, large-time behaviour, blow-up, etc., of a solution to a particular 
equation are also of importance here. We also cover some topics in boundary 
problems, dispersive equations, and the differential geometry.
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3. Additionally to the above categories, there will be a section dedicated to applied 
mathematics, where we have some contributions related to other modern aspects 
of applied mathematics with respect to Parkinson’s disease diagnostics as well 
as models of viral infection spreads by using partial differential equations, and a 
statistical problem. 

We are grateful to all the authors who have contributed to this volume. 

Ghent, Belgium Duván Cardona 
Joel Restrepo 

Michael Ruzhansky
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Analysis on Noncompact Manifolds 
and Index Theory: Fredholm Conditions 
and Pseudodifferential Operators 

Ivan Beschastnyi, Catarina Carvalho, Victor Nistor, and Yu Qiao 

Abstract We provide Fredholm conditions for compatible differential operators on 
certain Lie manifolds (that is, on certain possibly non-compact manifolds with nice 
ends). We discuss in more detail the case of manifolds with cylindrical, hyperbolic, 
and Euclidean ends, which are all covered by particular instances of our results. 
We also discuss applications to Schrödinger operators with singularities of the form 
.r−2γ , .γ ∈ R+. 

Keywords Differential operator · Pseudodifferential calculus · Fredholm 
operator · Riemannian manifold · Lie manifold · Manifolds with cylindrical 
ends · Conformally compact manifold · Schrödinger operator 

2020 Mathematics Subject Classification 35J57, 45E10, 47B35 

1 Introduction 

We review in this note an approach to Analysis on non-compact manifolds that is 
based on Lie algebras of vector fields and compactifications of manifolds. This note 
is a revised and enhanced version of the talk delivered by V.N. at the “Methusalem 

I. Beschastnyi 
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Colloquium and Geometric Analysis Seminar,” at Ghent University, in June 2022. 
The mathematical results included here are based, to a large extent, on the paper [4], 
but they are also enhanced by recent results from [3]. Among the questions that we 
will touch upon are:

• the invertibility of differential operators (Hadamard well-posedness),
• the regularity of solutions of elliptic PDEs,
• the construction of the algebras of pseudodifferential operators containing the 

inverses of the elliptic operators in question, and, most notably,
• the Fredholm alternative, the topic around which we organize our paper. 

Informally stated, our main result on the Fredholm alternative is: 

Theorem 1 On a “nice” manifold, an adapted (pseudo)differential operator is 
Fredholm if, and only if, 

(i) it is elliptic and 
(ii) all its “limit operators” are invertible. 

A more formal statement will be included below (Theorem 4). In the above 
result, by “elliptic” we mean a pseudodifferential operator whose principal symbol 
is invertible outside of the zero section. On a compact manifold, there are no “limit 
operators,” and the Fredholm property reduces to ellipticity. In the non-compact 
case, the limit operators do appear and play an important role. The appearance of 
limit operators is thus one of the main differences between the analysis on compact 
and on non-compact manifolds. A large part of this note is devoted to presenting 
a more formal version of the above theorem (Theorem 1), as well as to explaining 
what the statement of that theorem becomes for some standard classes and then for 
some new classes of manifolds. We consider in this regard manifolds that have ends 
that are asymptotically of one of the following forms: 

(i) cylindrical, (ii) hyperbolic, or (iii) Euclidean (more general: conical). 
In particular, we pay special attention to the description and properties of the limit 
operators for these manifolds. The new type of examples is related to Schrödinger 
operators with potentials with non-integer order singularities at the origin. These 
examples rely on a generalization of the setting of [4] that leads to more general 
pseudodifferential calculi [3]. 

Let us stress that, although we are advertising mostly smooth (non-compact) 
manifolds, the results presented here can be useful also for (pseudo)differential 
operators on singular spaces, since one can treat singular spaces by doing analysis 
on their smooth part, which is regarded as a non-compact manifold, possibly with a 
different metric, usually conformally equivalent to the original one. This is the case 
with the passage from a manifold with conical points to a manifold with cylindrical 
ends, which was classically done via the so called “Kondratiev transform” . r = et

and is explained in the text. 
Compared to the original talk, we have removed some repetitions and we have 

included some additional details, examples, and results; we have tried, however, 
to maintain as much as possible the style (and idiosyncrasies) of the original talk.
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In particular, the plan of the presentation is to successively discuss the Fredholm 
alternative and related topics for: 

(i) Smooth, compact manifolds (the classical case). 
(ii) Manifolds with cylindrical ends (an almost classical case). The main examples 

here are the Laplacian in polar and generalized spherical coordinates. 
(iii) Other classes of manifolds, for which we stress the similarities and differences 

to manifolds with cylindrical ends. The main examples here are the Laplacian 
in cylindrical coordinates and in flat, Euclidean coordinates. 

As in the original talk (in any talk, for that matter), it was not realistic to include 
a complete list of references. This is unfortunate, because very many people have 
worked on analysis on non-compact manifolds. Since we are not including enough 
references, let us stress that, unless explicitly stated otherwise, none of the results 
below belong to us. We thank Cipriana Anghel, Sergiu Moroianu, Elmar Schrohe, 
and Jörg Seiler for useful discussions. 

2 Motivation and Some Classical Results 

Let us see what Theorem 1 becomes in some classically well-understood cases, 
namely those of compact manifolds and of manifolds with cylindrical ends. 

2.1 A Classical Case: Smooth, Compact Manifolds 

For pedagogical reasons, it will be useful to recall first the Fredholmness result 
on smooth, compact manifolds without boundary. For simplicity, we will assume 
from now on that all our manifolds are smooth and complete Riemannian (except 
the manifolds with conical points). Thus we can define the Sobolev spaces on 
these manifolds using the powers of the Laplacian. Let P be an order m, classical, 
pseudodifferential operator on a compact manifold . M . Then . P : Hs(M) →
Hs−m(M) is bounded. In general, we will consider operators acting between 
sections of vector bundles E and F . The following result is classical: 

Theorem 2 Assume that . M is smooth, compact, without boundary, and that P is 
an order m, classical, pseudodifferential operator. Then . P : Hs(M;E) → Hs−m

.(M;F) is Fredholm if, and only if, it is elliptic. 

We stress again that, in the compact case, there are no limit operators. As we 
will see in the next subsection, this is not the case in the non-compact case.
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2.2 Motivating Example: Cylindrical Ends 

The simplest, motivating example of a non-compact manifold is that of a manifold 
with cylindrical ends. We begin with three examples before giving the formal 
definition. 

2.2.1 Polar Coordinates 

The Laplacian on . R2 in polar coordinates .(r, θ) is 

. ΔR2u = r−2((r∂r )
2u + ∂2

θ u
)
.

Ignoring .r−2, we obtain the differential operator .(r∂r )
2 + ∂2

θ acting on 
.[0,∞) × S1 ϶ (r, θ), which is a degenerate elliptic differential operator acting on 
a manifold with boundary. We follow Melrose’s observation [10] that this operator 
is generated by the vector fields 

. r∂r and ∂θ ,

which are tangent to the boundary .{0} × S1, an observation that will be useful in 
generalizations. 

This example can be treated with the help of the Kondratiev transform . t = log r,

which transforms .r∂r into . ∂t . The operator .(r∂r )
2 + ∂2

θ then becomes .∂2
t + ∂2

θ . 
Let .Sn−1 be the unit sphere in .Rn. The Kondratiev transform maps the domain 
.(0,∞)×S1 to .R×S1. The advantage of the Kondratiev transform is that the resulting 
operator .∂2

t + ∂2
θ is nothing but .ΔR×S1, the Laplacian for the metric . (dt)2 + (dθ)2

on .R × S1. The Fourier transform in . t maps . ∂t to . iτ and hence it maps .∂2
t + ∂2

θ to 
.−τ 2 + ∂2

θ . In turn, this operator can be understood via the spectral theory of . ∂2
θ on 

. S1, which is well known. Anticipating, .R × S1 is the simplest non-trivial example 
of a “manifold with cylindrical ends.” For general manifolds with cylindrical ends, 
the Fourier transform will be applied not to the operator itself, but rather to its limit 
operators, which are also .R-invariant operators. 

2.2.2 The Black-Scholes Operator 

An example that can be treated similarly is that of 

.∂tu + σ 2

2
(x∂x)

2u +
(
r − σ 2

2

)
x∂xu − ru ,
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the Black-Scholes operator. This example is, in a certain sense, even simpler than 
that of the Laplace operator in polar coordinates, since it is an example in one 
dimension. 

2.2.3 Generalized Spherical Coordinates 

A related example is the Schrödinger operator .ΔRn + Z/ρ on .Rn, . Z ∈ C, in  
(generalized) spherical coordinates .(ρ, x') ∈ (0,∞) × Sn−1: 

. −
(
ΔRn + Zρ−1

)
u = −ρ−2((ρ∂ρ)2u + (n − 2)ρ∂ρu + ΔSn−1u + Zρu

)
.

In this example, the operator is considered on .[0,∞)×Sn−1 and is generated by . ρ∂ρ

and vector fields independent of . ρ (which yield the Laplacian on the sphere .Sn−1). 
The relevant geometry for this operator is again that of manifolds with cylindrical 
ends, since it can be generated by vector fields that are tangent to the boundary 
.{0} × Sn−1 of .[0,∞) × Sn−1. Note that, after ignoring the factor .ρ−2, the resulting 
operator no longer has a singular potential. This example can also be treated via the 
Kondratiev and Fourier transforms. 

2.2.4 Manifolds with Cylindrical Ends 

Let us now describe the general setting encompassing the previous three examples. 
Let . M be a smooth, compact manifold with boundary .∂M and let .r ≥ 0 be a 
smooth function on . M such that .∂M = r−1(0) and .dr /= 0 on . ∂M . Up to  
Lipschitz equivalence, a manifold with cylindrical ends is one that is isometric to 
.M := M \ ∂M endowed with a metric that, near the boundary, is of the form 

.gcyl := dr2

r2
+ h , (1) 

where h is a semi-definite tensor that restricts to a true metric on .∂M . In local 
coordinates .x = (r, x2, . . . , xn) near the boundary, the Sobolev spaces . Hm(M; gcyl)

associated to the metric .gcyl identify with the Babuška-Kondratiev (or weighted 
Sobolev) spaces 

.Km
a (M) := {rα1−a∂αu ∈ L2(M), |α| ≤ m} (2) 

with .a = dim(M)/2. These function spaces (for all a) arise naturally if we study 
the manifold with conical points .M/ ∼, where . ∼ collapses each component of . ∂M

to a point.
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Let us now turn to the definition of differential operators. Assume, first that . M =
[0,∞) × R

n ϶ (r, x') and let .α = (α1, α2, . . . , αn) = (α1, α
') ∈ Z

n+1+ be a generic 
multi-index. Then the “right differential operators” for the cylindrical ends geometry 
are the totally characteristic differential operators P of the form 

.P =
∑

|α|≤m

aα(r, x')(r∂r )
α1∂α'

x' . (3) 

Let us endow M with the metric . (dr)2

r2 + (dx')2. Then, the Laplacian for this metric 
is a totally characteristic differential operator. Furthermore, after the Kondratiev 
transform .r = et , this metric becomes just the usual Euclidean metric on . Rn+1 ϶
(t, x'). On the other hand, the differential operator P becomes 

.P =
∑

|α|≤m

aα(et , x')∂α1
t ∂α'

x' , (4) 

which has the property that its coefficients have limits .aα(0, x') as .t → −∞. This  
leads us to an important new ingredient, namely the “b-normal” (simply, “normal”) 
operator 

.P̃ :=
∑

|α|≤m

aα(0, x')∂α1
t ∂α'

x' , (5) 

obtained by “freezing the coefficients” at .t = −∞. The normal operator is an 
important instance of a “limit operator” mentioned earlier. (Notice that .r∂r was 
replaced with . ∂t , so we have used the Kondratiev transform implicitly.) The Fourier 
transform in t then yields the indicial family . ̂P(τ) := ∑

α aα(0, x')(iτ )α1∂α'
x' .

Similar constructions (. P̃ and . ̂P ) can be defined on any manifold with cylindrical 
ends by localization, and we obtain a normal operator for each connected component 
L of the boundary .∂M of . M . We have the following (almost classical) result 
[7, 11, 15]: 

Theorem 3 Let D be an order m, totally characteristic differential operator on . M . 
The map .D : Hs(M;E, gcyl) → Hs−m(M;F, gcyl) is Fredholm if, and only if, 

(i) it is elliptic and 
(ii) all its normal operators are invertible .Hs(L;E) → Hs−m(L;F). 

An approach to the analysis on manifolds with cylindrical ends is via the b-
calculus of Melrose [10] and Schulze [15]. See also [8].



Non-compact Manifolds 9

3 Fredholm Operators on Manifolds with Nice Ends (Lie 
Manifolds) 

The Laplace operator in cylindrical coordinates in . R3 or the Schrödinger operators 
with singular potentials of the form .Zρ−2γ , .γ ∈ R+ \ {0, 1/2, 1}, do not fit 
into the framework of manifolds with cylindrical ends. This raises the question 
of defining compatible pseudodifferential calculi and obtaining the associated 
Fredholm alternative (or Fredholm conditions) on more general manifolds. It does 
not seem possible to obtain convenient characterizations of Fredholm operators on 
general non-compact manifolds. We will thus restrict ourselves to a class of non-
compact manifolds, which we will call “nice manifolds” for the purpose of this 
paper. This class of manifolds consists of manifolds with nice ends and are, for 
the most part, “Lie manifolds,” a class of manifolds that we introduce next. While 
we do not define precisely which manifolds are nice (this is rather technical, see 
[3, 4]), we do discuss several examples, among which the ones mentioned in the 
introduction, namely manifolds with (asymptotically): cylindrical ends, hyperbolic 
ends, and Euclidean ends. 

3.1 Lie Manifolds 

We now introduce and discuss Lie manifolds, their geometry, and, most importantly, 
their associated differential operators. 

3.1.1 Definition of Lie Manifolds 

Assume that we are given a compact manifold with corners . M , whose interior is 
.M := M \ ∂M , and a subspace 

.V ⊂ Vb(M) := {X ∈ C∞(M; T M) | X tangent to all faces of M} . (6) 

Definition 1 ([1]) The pair .(M,V) is a Lie manifold if: 

(i) .V ⊂ Vb(M) is closed under the Lie bracket .[ , ]; 
(ii) . V is a finitely-generated, projective .C∞(M)–module; 

(iii) .C∞
c (M; T M) ⊂ V (recall that .M := M \ ∂M). 

This definition is based on earlier, similar constructions due to Connes, Cordes, 
Kondratiev, Mazzeo, Mazya, Melrose, Plamenevskij (a relevant old article with 
Mazya is described in [12]), Schrohe, Schulze, Skandalis, and many others. 
Informally, a Lie manifold .(M,V) is a manifold . M with: 

(i) a compactification . M such that .M = M \ ∂M, whose role is to control the 
behavior at infinity of the coefficients of our differential operators, and
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(ii) a Lie algebra of vector fields .V ⊂ Vb on this compactification, whose role is to 
define the “nice” differential operators. 

Remark 1 Let .(M,V) be a Lie manifold. Saying that . V is a projective .C∞(M)-
module means that it is stable under multiplication by functions in .C∞(M) and it has 
a basis around each point of .M. In particular, . V is a complex vector space. Saying 
that .C∞

c (M; T M) ⊂ V means that there are no “obstructions in the interior” for the 
vector fields in . V . Compact (smooth) manifolds and manifolds with cylindrical ends 
are Lie manifolds. These and other examples will be discussed below in Sect. 3.3. 

3.1.2 Lie Manifolds and Geometry 

As in [1], since . V is a projective .C∞(M)-module, the Serre-Swan theorem gives the 
existence of a vector bundle .A → M such that 

.V ≃ 𝚪(M;A) . (7) 

The Lie algebra structure on the sections of A means that it is a Lie algebroid. The  
inclusion .C∞

c (M; T M) ⊂ V means that .A = T M in the interior . M := M \ ∂M

of . M . Thus, once we have chosen a metric on . A, that metric will induce a metric 
on .T M (or, which is the same thing, on . M). A metric obtained in this way will be 
called compatible, and is unique up to Lipschitz equivalence. For a smooth bundle 
.E → M , we define the Sobolev spaces .Hs(M;E) using the powers of the Laplacian 
for any compatible metric. 

3.1.3 Differential Operators 

Our main interest lies in the algebra .DiffV (M), which consists of the differential 
operators generated by .C∞(M) and by derivatives in . V . Given two vector bundles 
.E,F → M , we have a similar definition of .DiffV (M;E,F). All the geometric 
operators on M with a compatible metric will belong to some space of the form 
.DiffV (M;E,F). For instance, the Levi-Civita connection on M extends to a 
differential operator in .DiffV (M;A,A∗ ⊗ A) (an A-connection). Hence, since . M
is compact, its interior M will have bounded curvature (together with its covariant 
derivatives). 

3.2 Formulation of the Main Result: Fredholm Conditions 
on “Nice” Manifolds 

We are now closer to giving a precise statement for the Fredholm conditions in 
Theorem 1. Let .(M,V) be a Lie manifold and .D ∈ DiffV (M;E,F). If  D has order
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m, then it defines a continuous map .D : Hs(M;E) → Hs−m(M;F). To . (M,V)

and . D we associate: 

(i) spaces . Zα , . α ∈ I , the  orbits of . V on . M (they do not dependent on D); 
(ii) isotropy groups . Gα , .α ∈ I , (also independent of . D); and 

(iii) .Gα-invariant differential operator .Dα on . Zα × Gα

as follows. Let .Vx := {X ∈ V| X(x) = 0} and .Ix := {f ∈ C∞(M)| f (x) = 0}, for 
.x ∈ ∂M . Then .Vx/IxV is a Lie algebra and, for .x ∈ Zα , .Gα is the simply-connected 
Lie group that integrates it: 

. Lie(Gα) = Vx/IxV .

For each .α ∈ I , the operator .Dα is obtained by restricting D to the orbit .Zα and 
letting the vector fields act on .Gα via the map .Vx → Lie(Gα). The operators . Dα

are the limit operators. We can now formulate our main result [3, 4]. 

Theorem 4 Let .D ∈ DiffV (M;E,F) be of order m and assume that .(M,V) is 
“nice.” We have that .D : Hs(M;E) → Hs−m(M;F) is Fredholm if, and only if, 
. D is elliptic and all . Dα , .α ∈ I , are invertible. 

Our Lie manifold .(M,V) is nice if there exists a Hausdorff Lie groupoid . G such 
that

• its Lie algebroid .A(G) ≃ A of Eq. (7) (so .𝚪(M;A) = V) and
• . G satisfies the Effros-Hahn conjecture (a statement about .C∗(G) that implies that 

the regular representations of .C∗(G) determine its invertible elements). 

The proof is obtained by considering the norm closure .Ψ
0
(G) of the algebra 

of order zero pseudodifferential operators on . G [3, 4]. Let . K be the algebra of 
compact operators on .L2(M). Recall that an operator is Fredholm if, and only if, 
it is invertible modulo . K. We thus want to characterize the invertible elements of 
.Ψ

0
(G)/K. Since .Ψ

0
(G)/C∗(G) ≃ C(S∗A) via the principal symbol and . G satisfies 

the Effros-Hahn conjecture, in addition to the principal symbol, it is enough to look 
at the regular representations of .C∗(G)/K. Each of these regular representations 
yields a limit operator. This completes the proof. A useful property here is that nice 
manifolds are closed under general blow-ups [3, 4]. 

3.3 Examples and Applications 

The example “zero” is that of a smooth, compact manifold without boundary M . 
Then M is a Lie manifold with .M = M and .V = 𝚪(M; T M) (all smooth vector 
fields on M). In particular, we have .A = T M . The boundary . ∂M := M \ M

is empty, which is consistent with the fact that there are no limit operators. Then 
Theorem 4 becomes simply the (well known) Theorem 2. In all our following
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examples, . M will be a smooth, compact manifold with boundary .∂M and we shall 
concentrate on a tubular neighborhood .U = [0, ϵ) × ∂M ϶ (r, y) of the boundary, 
because the interior .M := M \ ∂M can be treated with classical tools. Here are our 
main three examples: 

(i) Let .V := Vb, the set of smooth vector fields on . M that are tangent to the 
boundary .∂M of . M , as before. We have .Vb = C∞(M)r∂r+∑

C∞(M)∂y on U , 
so the projectivity condition is satisfied and we obtain a Lie manifold .(M,Vb). 
Any metric of the form .g = r−2(dr)2+h as in Eq. (1) will be compatible (with 
the Lie manifold structure) on M , and hence M is a manifold with cylindrical 
ends. The bundle .A = bT M was considered by Melrose. The index set . I
consists of the connected components of .∂M and .Gα = R. The differential 
operators .DiffV (M) are the totally characteristic differential operators on . M
(already discussed) and the limit operators .Dα are the normal operators of D 
defined earlier. 

(ii) Let next .V := V0 := rC∞(M; T M), the set of smooth vector fields on . M that 
vanish at the boundary .∂M of . M . Then . V0 = C∞(M)r∂r + ∑

C∞(M)r∂y

on U , so the projectivity condition is satisfied and, again, .(M,V0) is a Lie 
manifold. The choice of a metric on A (a compatible metric on M) makes the 
interior .M := M \ ∂M of . M a so called  asymptotically hyperbolic manifold, 
since the metric is of the form .g = h

r2 with h a true metric on . M . The orbits 

.Zα ⊂ ∂M are reduced to points (so .I = ∂M) and .Gα = Tα∂M⋊R, which is 
a non-commutative group (obtained as the semi-direct product from the action 
of . R on .Tα∂M by dilations). 

(iii) To round up our podium, let .V := Vsc := rVb ⊂ V0. From example (i), 
we see that .Vsc := C∞(M)r2∂r + ∑

C∞(M)r∂y on U , so the projectivity 
condition is yet again satisfied to yield a Lie manifold .(M,Vsc). Euclidean, 
asymptotically Euclidean, and asymptotically conical spaces are modeled by 
this type of Lie manifolds. The orbits .Zα = {α} are again reduced to points (so 
again .I = ∂M). However, this time, .Gα = Tα∂M×R is commutative. 

The Laplacian .ΔR3u = r−2
[
(r∂r )

2u+∂2
θ u+ (r∂z)

2u
]

in cylindrical coordinates 
.(r, θ, z) ∈ [0,∞) × S1 × R is closely related to the example (ii) above. Ignoring 
the factor . r−2, the relevant operator is generated by the vector fields .r∂r , .∂θ , and 
.r∂z, which are again tangent to the boundary. This example was one of the original 
motivations to considering a framework more general than that of manifolds with 
cylindrical ends. 

We conclude this section with an example that goes even beyond Lie manifolds. 
Namely, let us we consider the Schrödinger operator with potential .V = ρ−2γ V0, 
with . V0 smooth in generalized spherical coordinates .(ρ, x'), .ρ ∈ [0,∞), .x' ∈ Sn−1, 
and .γ ≥ 0: 

.Δ + V = ρ−2[(ρ∂ρ)2 + (n − 2)ρ∂ρ + ΔSn−1 + ρ2−2γ V0
]

(8)
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Let us assume first that .2γ ∈ {0, 1, 2}. Ignoring the factor .ρ−2, the resulting operator 

.(ρ∂ρ)2 + (n − 2)ρ∂ρ + ΔSn−1 + ρ2−2γ V0 (9) 

is in the b-calculus [10, 15]. This property can be used, among other applications, 
to study the domain of .Δ + V and the regularity of its eigenfunctions. If . 2γ ∈ R\

{0, 1, 2}, the operator .Δ + V can still be studied with a modified pseudodifferential 
calculus [3]. For instance, if .γ > 1 and if we write . Δ + V = ρ−2γ

[
(ργ ∂ρ)2 + (n −

1 − γ )ργ−1ργ ∂ρ + ρ2γ−2ΔSn−1 + V0
]
, then the resulting operator 

.(ργ ∂ρ)2 + (n − 1 − γ )ργ−1ργ ∂ρ + ρ2γ−2ΔSn−1 + V0 (10) 

is in the .cγ,γ−1-calculus of [3] (recall that . V0 is smooth in polar coordinates). 
Other examples come from semi-Riemannian and sub-Riemannian geometry [2]. 

4 Pseudodifferential Operators and Problems 

Work related to the algebras .Ψ∞(G) used in the proof of our main result was done 
by Androulidakis, Connes, Debord, Mazzeo, Melrose, Monthubert, Ruzhansky, 
Schrohe, Schulze, Skandalis, and many others. See [1, 5, 6, 9, 13, 14] for references. 
In that case, .Ψ−∞(G) is the algebra generated by the conormal distributions of order 
.−∞ on .A → M . In turn, .Ψm(G) is linearly generated by the conormal distributions 
of order . m on .A → M and by .Ψ−∞(G). A generalization of these algebras in 
contained in [3]. In the case of manifolds with cylindrical ends, we have .V = Vb and 
.Ψ∞(G) consists of the properly supported operators in the b-calculus of Melrose 
and Schulze (and hence, it is a dense algebra in a suitable topology). Similarly, 
for asymptotically hyperbolic manifolds, .V = V0 and .Ψ∞(G) consists of the 
properly supported operators in the 0-calculus of Mazzeo and Schulze. Finally, for 
asymptotically euclidean manifolds, .V = Vsc and .Ψ∞(G) consists of the properly 
supported operators in the SG-calculus of Parenti and Schrohe, the same calculus 
as the “scattering calculus” of Melrose. 

4.1 Problems 

We conclude by formulating two problems. 

Problem 1 (Connes, Bohlen-Schrohe) Find the index of a Fredholm operator 
.D ∈ Ψm(G).
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Problem 2 (Baldare-Benameur-Lesch-V.N., Ruzhansky) Let G be a compact 
Lie group. Let . M be compact smooth connected with a . G action and . E be a .G-
bundle. Let . M be the Albin-Melrose compactification of the principal orbit bundle 
(for the . G) action and . G be its Lie groupoid. Describe .Ψm(M;E)G using . Ψm(G)

and the Ruzhansky calculus. 
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Singular Value Decomposition for the 
X-Ray Transforms on the Reduced 
Heisenberg Group, and a Two-Radius 
Theorem 

Steven Flynn 

Abstract We give an explicit Singular Value Decomposition of the sub-
Riemannian X-ray transform on the Heisenberg group with compact center. By 
studying the singular values, we obtain a two-radius theorem for integrals over 
sub-Riemannian geodesics. We also state intertwining properties of distinguished 
differential operators. We conclude with a description of ongoing work. 

Keywords X-ray Transform · Heisenberg group · Two-radius theorem · 
Sub-Riemannain geometry 

2020 Mathematics Subject Classification 44A12, 53C17, 43A80 

1 Introduction 

The X-ray transform assigns to a function its integrals over closed geodesics. The 
Heisenberg group with its sub-Riemannian structure provides a rich example of such 
integral functionals. Of crucial importance for practical applications of the X-ray 
Transform is its Singular Value Decomposition [6]. 

2 Definitions 

2.1 Heisenberg Group 

The Heisenberg group is .H = C × R with the multiplication law 

. (x + iy, t)(u + iv, s) = (x + u + i(y + v), t + s + 1
2 (xv − yu))
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The reduced Heisenberg group is the quotient of . H by a discrete subgroup of the 
center 

. H := H/𝚪, 𝚪 := {(0, kπ) ∈ C × R : k ∈ Z}.

Heuristically, the harmonic analysis on the Heisenberg group is controlled by the 
center .Z(H) = {0 + 0i} × R. Having compact center, analyis of the reduced 
Heisenberg group resembles that of the circle. 

2.2 X-Ray Transform 

Let .r ∈ Q
+ be a positive rational number. Of interest are curves on . H modeled by 

.γr(s) :=
(√

reis/
√

r , 1
2

√
rs

)
∈ H ∼= C × (R/πZ). (1) 

Take for granted that the set of closed unit speed sub-Riemannian geodesics [7] 
on . H is generated by left translations by .(z, t) ∈ H of the curves . γr above, for 
.r ∈ Q

+. The requirement that r is rational is analogous to the requirement that 
closed geodesics on the flat torus have rational slope. If r were irrational, the curve 
. γr would not be closed, so we ignore that case. 

Indeed, for .r = a/b with .a, b ∈ N
+ coprime, 

. γr is a closed curve in H with period 2π
√

ab.

After one period of . γr with .r = a/b for coprime .(a, b), 

(i) .a ∈ N
+ counts the number of times . γr winds around the . S1 component of . H, 

(ii) .b ∈ N
+ counts the number of counterclockwise rotations made by . γr around 

its central axis. 

Call a the vertical winding number, and b the horizontal winding number of . γr in 
. H. 

Definition 1 For vertical and horizontal winding numbers a and b, and . r = a/b

the X-ray transform 

. Ir : C∞
c (H) → C∞

c (H)

of a compactly supported smooth function .f ∈ C∞
c (H) is 

.Irf (z, t) =
ˆ 2π

√
ab

0
f ((z, t)γr(s)) ds, (z, t) ∈ H. (2) 

We also write .If (r; z, t) := Irf (z, t).
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Remark 1 The operator I is the Heisenberg analog of the X-ray transform on a 
torus. It is related to the X-ray transform on the full Heisenberg group [3] by a type 
of torus-projection operator (as in [5]). 

That . Ir is well-defined is straightforward. By the Cauchy Schwartz Inequality 
and compactness of the domain of integration, . Ir extends to a bounded operator on 
.L2(H). It is a simple matter to extend . Ir to other function spaces, but we focus on 
the . L2 theory. 

The primary concern is injectivity of the X-ray transform. Written as in Eq. (2), 
the X-ray transform is a special case of the Pompeiu Transform [1]. However, to 
the author’s knowlegdge, the special case of integration over left-translates a closed 
sub-Riemannian geodesic has not been considered. 

3 Spectral Decomposition of Ir , I∗
r and I

∗
r Ir 

The spectral decomposition of the X-ray transform . Ir has a continuous part and a 
discrete part respecting the orthogonal decomposition 

.L2(H) ∼= L2(C) ⊕ 0L2(H). (3) 

The substances in the orthogonal decomposition above are 

. L2(C) ∼= {f ∈ L2(H) : f (z, t) = f (z, 0), ∀(z, t) ∈ H}
0L2(H) := {f ∈ L2(H) : π∫

0
f (z, t)dt = 0, ∀z ∈ C}.

Proposition 1 . Ir preserves the orthogonal decomposition above. i.e, 

. Ir : L2(C) → L2(C) Ir : 0L2(H) → 0L2(H).

The continuous part of . Ir is its restriction to .L2(C), which is essentially the mean 
value transform on the plane .MR : L2(C) → L2(C), 

. MRf (z) := 1

2π

ˆ 2π

0
f (z + Reiθ )dθ, f ∈ L2(C).

Theorem 1 The restriction of . Ir to .L2(C) is a scalar multiple of the mean value 
transform. In particular 

.Irf (z) = 2π
√

ab M
√

rf (z), f ∈ L2(C).
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Therefore 

. Irf (z) =
√

ab

2π

ˆ
R2

J0(R|ξ |)f̂ (ξ)eiz·ξ dξ.

Here . J0 is the zeroth order Bessel function defined in (12). 

Proof For .f ∈ L2(C), 

. Ir |L2(C)f (z, t) =
ˆ 2π

√
ab

0
f

(
(z, t)(

√
reis/

√
r , 1

2

√
rs)

)
ds

=
ˆ 2π

√
ab

0
f

(
z + ei

√
rs/

√
r , t + 1

2

√
rs + 1

2

√
rIm

(
zeis/

√
r
))

ds

=
ˆ 2π

√
ab

0
f (z + √

reis/
√

r )ds = √
r

ˆ 2πb

0
f (z + √

reis)ds

= (2πb)
√

rM
√

rf (z) = 2π
√

abM
√

rf (z),

Furthermore 

. 

ˆ
R2

MRg(z)e−iz·ξ dz =
ˆ
R2

1

2π

ˆ 2π

0
g(z + Reiθ )e−iz·ξ dθdz

= 1

2π

ˆ 2π

0
eiReiθ ·ξ dθ

ˆ
R2

g(z)e−iz·ξ dz = J0(R|ξ |)ĝ(ξ)

The result follows. ⨅⨆
We now focus on the Singular Value Decomposition of the discrete part of . Ir . 

Theorem 2 (Spectral Decomposition of . Ir on .
0L2(H)) Fix .r = a/b ∈ Q

+. Then 
for all . j, k = 0, 1, 2, ...

. Irψ
n
jk = √

ab δZ(rn) c(rn, j)ψn
j+r|n|,k

where 

. c(m, j) = 2π

√
j !

(j + m)!m
m/2e−(i+1)πm/2Lm

j (m) , m ∈ N

with .c(−m, j) = c(m, j) and 

.δZ(m) =
{

1 m ∈ Z

0 m /∈ Z

.
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Here .{ψn
jk : n ∈ Z

∗, j, k ∈ N} defined in Eq. (10), is an orthonormal Hilbert 

Basis of .0L2(H). The generalized Laguerre functions are given in (11). 

Proof For .n ∈ Z
∗, j, k ∈ N, r ∈ Q

+, and .(z, t) ∈ H, 

. Irψ
n
jk(z, t) =

√|n|
π

IrM
n
jk(z, t) =

√|n|
π

ˆ 2π
√

ab

0
Mn

jk ((z, t)γr(s)) ds

=
√|n|
π

ˆ 2π
√

ab

0

∞∑
l=0

Mn
jl (γr (s))Mn

lk(z, t)ds, by (9), 

= 
∞∑
l=0

[ˆ 2π
√

ab 

0 
Mn 

j l  (γr(s)) ds

]
ψn 

lk(z, t). 

Now 

. 

ˆ 2π
√

ab

0
Mn

jl (γr(s)) ds =
ˆ 2π

√
ab

0
Mn

jl

(√
reis/

√
r , 1

2

√
rs

)
ds

= √
r

ˆ 2π
√

abr

0
Mn

jl

(√
reis , 1

2 rs
)

ds, via s I→ s
√

r

= √
r

ˆ 2πb

0
ei((j−l)+r|n|)sMn

jl

(√
r, 1

)
ds, by (6) 

= √
ab 
ˆ 2π 

0 
ei(b(j−l)+a|n|)s dsMn 

j l

(√
r, 1

)
, s I→ bs 

= 2π
√

ab [δ0 (b(j − l) + a|n|)] Mn 
j l(

√
r, 0). 

Thus 

. Irψ
n
jk(z, t) = 2π

√
ab

∞∑
l=0

δ(j − l + r|n|)Mn
jl(

√
r, 0)ψn

lk(z, t)

= δZ(rn)(2π
√

ab)Mn
j,j+|n|r (

√
r, 0)ψn

j+|n|r,k(z, t)

as desired. ⨅⨆
Remark 2 In contrast with [3], we see that the spectral decomposition of the X-ray 
transform involves the “Bessel spectrum” (corresponding ot the finite dimensional 
representations of . H). On the full Heisneberg group, this part of the spectrum has 
Plancherel measure zero. See [4] or [8].
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For fixed .r ∈ Q
+, the X-ray transform . Ir is a convolution operator from . L2(H)

to itself. We define the adjoint using the same measure (the Haar measure, which 
here is the Lebesgue measure) on the domain and target space. 

Theorem 3 The formal adjoint .I ∗
r : L2(H) → L2(H) is given by 

. I ∗
r f (z, t) =

ˆ 2π
√

ab

0
f

(
(z, t)γr(s)

−1
)

ds.

Remark 3 Note that .γr(s)
−1 is not a geodesics for the left-invariant metric. In 

particular . Ir is not formally self-adjoint. This fact contrasts with the case for the 
X-ray transform on the torus with a fixed directional parameter, 

Corollary 1 (Spectral Decomposition of . Ir on .
0L2(H)) Fix .r = a/b ∈ Q

+. Then 
for all . j, k = 0, 1, 2, ...

. I ∗
r ψn

jk = √
ab δZ(rn) c(n, j − r|n|)ψn

j−r|n|,k,

with .c(m, j) defined above for .j ≥ 0 and .c(m, j) = 0 for .j < 0. 

Corollary 2 (Spectral Decomposition of . Nr on .0L2(H)) The normal operator 
.Nr := I ∗

r Ir is diagonalized by the basis .{ψn
jk}: 

. Nrψ
n
jk = (ab) δZ(rn) |c(rn, j)|2ψn

jk.

Corollary 3 (Singular Value Decomposition of . Ir ) For .f ∈ 0L2(H), . Irf = Ur ◦
Drf where 

. Drψ
n
jk = s(n, j, r)ψn

jk

Urψ
n
jk = e−πr|n|/2σ(r|n|, j)ψn

j+r|n|,k

where .σ(r|n|, j) = sgn(L
(r|n|)
j (r|n|)) and 

. s(n, j, r) = √
ab δZ(rn) |c(rn, j)|.

It is illuminating to see the action of the X-ray Transform on the (reduced) 
Heisenberg fan, which is the set 

. R := ∪j∈N∗Rj Rj = R+
j ∪ R−

j , R±
j = {(±2n, 2n(2j + 1)) : n ∈ N

+}.

R is the set of pairs of eigenvalues of . L and .−iT (defined in Sect. 4) corresponding 
to the joint eigenvectors .ψn

jk (we omit the part of the Heisenberg fan corresponding 
to the Bessel spectrum): The operator . Ur in the SVD of . Ir acts on the Heisenberg 
fan according to the picture below.
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σ(L) 

σ(−iT ) 

R1 

R2 

R3 
. . .. . .  

−2 −1 0 1 2 

1 
2 
3 
4 
5 
6 
7 
8 

r = 1  
σ(L) 

σ(−iT ) 

R1 

R2 

R3 
. . .. . .  

−2 −1 0 1 2 

1 
2 
3 
4 
5 
6 
7 
8 

r = 1 2 

In the figures above, dashed lines are rays of the Heisenberg fan (on the 
full Heisenberg group). Dots are elements of the Heisenberg fan of . H, each 
.(2n, 2|n|(2j + 1)) corresponding to the subspace .{ψn

jk}k∈N. Arrows represent the 
action of . Ur for .r = 1 and .r = 1/2 in the first and second graphic respectively. 

The following functions appear in the expression for the singular values: 

Definition 2 (Diagonal Laguerre Function) For .x ∈ R and .j ∈ N, call 

. lj (x) = L
(x)
j (x) := 1

2πi

˛
C

(
e−z/(1−z)

1 − z

)x
dz

(1 − z)zj+1

the diagonal Laguerre function of order j . Here  C is a counterclockwise circle 
around the origin not encircling the point .z = 1. 

Next we show that any .L2 function on . H is determined by its integrals over 
geodesics of two .r1, r2 ∈ Q

+ satisfying a compatibility condition. This type of 
results is called a Two-Radius Theorem [2], but a more appropriate name might 
be a “Two-Momenta Theorem," since .λi := 1/

√
rj is the momentum of the sub-

Riemannian geodesic . γrj [7]. 

Corollary 4 (Two-Radius Theorem) Let .f ∈ L2(H) with .Ir1f = Ir2f = 0 for 
some .ri ∈ Q

+. Then .f = 0 provided that 

1. .r1/r2 is not a ratio of roots of diagonal Laguerre functions .lj (x) := L
(x)
j (x) for 

any . j ∈ N

2. .
√

r1/r2 is not a ratio of roots of the Bessel function . J0. 

Proof For and .n ∈ Z
∗ let .s(n, j, r1) and .s(n, j, r2) be the singular values for . ψn

jk

corresponding to . Ir1 and . Ir2 respectively. Then .f = 0 provided that .s(n, j, r1) and 
.s(n, j, r2) are not both zero. We have .s(n, j, r1) = s(n, j, r2) = 0 if and only if . rjn

is a zero of the diagonal Laguerre function . lj for .j = 1, 2. In this case, .r1/r2 is a 
ratio of zeros of Laguerre polynomials. Similarly, .J0(

√
ri |ξ |) vanishes if and only if 

.rj |ξ | is a zero of . J0. Then .r1/r2 is a ratio of zeros of . J0. ⨅⨆
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Remark 4 There is a lof of room to strengthen this result. For example, one may 
consider f in more general function spaces. This is the topic of a future work. 

4 Intertwining Differential Operators 

Note that the standard left-invariant vector fields on . H (or on . H) are  

. X := ∂x − 1

2
y∂t Y := ∂y + 1

2
x∂t T := ∂t .

Also, the standard right-invariant vector fields are 

. X̃ := ∂x + 1

2
y∂t Ỹ := ∂y − 1

2
x∂t T̃ := ∂t .

Let .−L := X2 + Y 2, be the left sub-laplacian, and .−L̃ := X̃2 + Ỹ 2 be the right 
sub-laplacian. Also let .□r = L + rT 2 on . H. 

Proposition 2 For any right-invariant vector field . Ṽ and .f ∈ S(H) we have 

. Ir

(
Ṽ f

)
(z, t) = Ṽ Irf (z, t).

Proof Idea . Ir is a group convolution operator by a compactly supported measure 
on . H: 

. Irf = μr ∗H f

where 

. 

ˆ
H

f dμ=
ˆ 2π

√
ab

0
f (γr(s)) ds = Irf (0).

And for a right-invariant vector field on . H, 

. Ṽ (μr ∗H f ) = μr ∗H
(
Ṽ f

)
.

⨅⨆
Corollary 5 The X-ray transform . Ir commutes with T and the right sub-laplacian: 

. Ir (Tf ) = T (Irf ) Ir

(
L̃f

)
= L̃ (Irf ) .

We use these facts to prove the most interesting intertwining property of . Ir :
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Theorem 4 . Ir intertwines the left sublaplacian . L with the operator . □r on . H: 

. Ir (Lf ) = □r (Irf ) , f ∈ S(H).

We first note the helical symmetry of . Ir . 

Lemma 1 Define the rotation map .R∗
θf (z, t) = f (eiθ z, t). Then a straightforward 

computation gives 

. Ir

(
R∗

θf
) = R∗

θ Irf
(
z, t − 1

2 rθ
)

for .f ∈ C∞
c (G). Differentiating in . θ yields 

. Ir (∂θf )(z, t) = (∂θ − 1
2 rT )Irf (z, t).

Proof of Theorem 4 A straightforward computation gives 

. L̃ − L = 2∂θT .

Thus 

. Ir

(
(L − L̃)f

)
(z, t) = −2

(
∂θ − 1

2 rT
)

T Irf (z, t),

so that 

. Ir (Lf ) = Ir

(
L̃f

)
+ (−2∂θ + r) T Irf = L̃ (Irf ) + (−2∂θ + r) T Irf

=
(
L̃ − 2∂θT + rT 2

)
(Irf ) =

(
L + rT 2

)
(Irf )

=: □r (Irf )

as desired. ⨅⨆
Remark 5 The functions .ψn

jk are joint eigenfunctions of . L and T (see 5). Indeed 

. 

{
Lψn

jk = 2|n|(1 + 2j) ψn
jk

T ψn
jk = 2inψn

jk.

So 

.□rψ
n
jk = 2|n| (1 + 2(j − |n|r)) ψn

jk.
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What’s more the functions .ψn
jk are eigenfunctions of the right sublaplacian . L̃. 

Indeed 

. L̃ψn
jk = 2|n|(1 + 2k)ψn

jk.

5 Ongoing Work 

1. Explicit Inversion formulas. The two-radius theorem implies that a function f ∈ 
L2(H) may be recovered form its X-ray transform If . We can therefore write 
down an inversion formula in terms of the singular values, but it is desirable to 
have a closed form inversion formula. 

2. Chacterize the zeros of the diagonal Laguerre functions. The following conjec-
ture, if true, would imply a one-radius theorem. 

Conjecture 1 The only (j, n) ∈ N × Z∗ for which lj (n) := Ln 
j (n) = 0 is  

(j, n) = (2, 2). 

3. Stability estimates. We would like to know if the recovery of f from If is stable. 
That is, for a suitable choice of Sobolev scale Hs (H) and Hs (H×Q

+) for which 

. ‖f ‖Hs ≤ C‖If ‖
Hs'

We expect that, with respect to a natural choice of Sobolev scale based on the 
intertwining properties above, that I is one half smoothening. That is s' = s + 1 

2 . 
• Non-Euclidea metrics on the base. The geodesics in (1) are determined by lifting 

the Eudliean metric g = dx2 + dy2 from R2 to the horizontal distribution of 
H. What can we say about the X-ray transform associated to the lift of a non-
Euclidean metric from R2 to a sub-Riemannian metric on the Heisenberg group? 

• Can we obtain a similar explicit spectral decomposition for the X-ray transform 
on more general Carnot groups such as the Engel group of free Nilpotent groups? 
Can we state more general two-radius theorems in these cases? 

Appendix 

The proofs of the following results may be found, for example, in [4, 8]
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Entry Functions on the Heisenberg Group 

Consider the family of functions, called matrix coefficients or entry functions 
defined on the Heisenberg group: 

.Mh
jk(z, t) =

⎧⎪⎨
⎪⎩

√
k!
j !

(
+√

hz
)j−k

L
(j−k)
k

(
h|z|2) e−h|z|2/2e2iht j ≥ k√

j !
k!

(
−√

hz
)k−j

L
(k−j)
j

(
h|z|2) e−h|z|2/2e2iht j ≤ k

, (4) 

and .Mh
jk(z, t) = M

|h|
jk (z,−t) for .h < 0. 

The matrix coefficients are joint eigenfunctions of the left sublaplacian . L and the 
Reed vector field T . 

.

{
LMh

jk(z, t) = 2|h| (1 + 2j) Mh
jk(z, t)

T Mh
jk(z, t) = 2ihMh

jk(z, t).
(5) 

Lemma 2 (Useful Properties on .Mh
jk) Let . h > 0

(1) For all . j, k = 0, 1, 2, ...

.Mh
jk(z, t) = M1

jk(
√

hz, ht) (6) 

M−h 
jk  (z, t) = Mh 

jk(z,−t)  

(2) For all . j, j ', k, k' = 0, 1, 2, ...

.

ˆ
C

Mh
jk(z, 0)M

h

j 'k'(z, 0)dz = π

h
δjj 'δkk' . (7) 

(3) For any .m, n ∈ Z
∗ and . j, k = 0, 1, 2, ...

.

ˆ 2π

0
Mn

jk(e
ims, s/2)ds = 2πδ (|n| + m(j − k))Mn

jk(1, 0). (8) 

(4) For all . j, k = 0, 1, 2, ...

.Mh
jk ((w, s)(z, t)) =

∞∑
l=0

Mh
jl(z, t)M

h
lk(w, s), (w, s), (z, t) ∈ H. (9) 

Definition 3 Define the rescaled functions 

.ψn
jk :=

√|n|
π

Mn
jk (10)
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Since .Mn
jk(z, t) = e2intMn

jk(z, 0) we see that t may be taken mod . π . Thus .ψn
jk is a 

function on .L2(H). 

As a consequence of Lemma 2, the set .{ψn
jk} is orthonormal. In fact, more is true 

[8]: 

Theorem 5 The functions .{ψn
jk : n ∈ Z

∗, j, k = 0, 1, 2, ...} are an orthonormal 
basis for .

0L2(H). 

Special Functions 

.

∞∑
j=0

tjL
(α)
j (x) = 1

(1 − t)α+1 e−xt/(1−t), |t | < 1. (11) 

.J0(r) = 1

2π

ˆ 2π

0
eir cos θ dθ (12) 
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Nonlocal Functionals with Non-standard 
Growth 

Minhyun Kim 

Abstract In this note, we review recent progress on the De Giorgi–Nash–Moser 
theory for nonlocal functionals with non-standard growth, which include functionals 
with Orlicz growth, variable exponents, double phase growth, and orthotropic 
structure. Some open problems are suggested. 

Keywords De Giorgi–Nash–Moser theory · Nonlocal functional · Non-standard 
growth 

2020 Mathematics Subject Classification 35B65; 35A15; 47G20 

1 Introduction 

In this note, we summarize recent progress and suggest some open problems in the 
De Giorgi–Nash–Moser theory for nonlocal functionals1 modeled on 

.(1 − s)

¨ |u(x) − u(y)|p
|x − y|n+sp

dy dx, (1) 

where .n ∈ N, .s ∈ (0, 1), and .p ∈ (1,∞), and for their Euler–Lagrange equations. 
Since it is known [4] that (1) converges to the local functional 

.

ˆ
|Du|p dx (2) 

1 Functionals of the form (1) are called nonlocal functionals since the Euler–Lagrange equation of 
(1) is given by the fractional p-Laplace equation .(−Δp)su = 0, which is a nonlocal operator. 
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in various senses as .s ↗ 1, we are particularly interested in regularity estimates 
that are robust in the sense that the constants in the estimates stay uniform as . s ↗
1. Through this, the theories of local and nonlocal functionals are unified. Since 
the theory for nonlocal functionals with standard growth (1) is completed (see, for 
instance, [15, 18, 19, 30, 31]), we focus on the non-standard growth cases. 

Let us recall that the De Giorgi–Nash–Moser theory for the functional (2) has 
been generalized to that for a more general class of local functionals of the form 

.

ˆ
F(x,Du) dx, (3) 

see a survey [37]. The most fundamental example of (3) is, of course, a functional 
with standard growth .F(x, ξ) ∼ |ξ |p, but there is a number of interesting examples 
of functionals with non-standard growth as listed below: .F(x, ξ) = G(|ξ |), 
.F(x, ξ) = |ξ |p(x), .F(x, ξ) = |ξ |p + a(x)|ξ |q , and .F(x, ξ) = ∑n

k=1 |ξk|pi . 
Moreover, these local functionals have recently been extended to nonlocal func-
tionals with non-standard growth. In the following four sections, we study the De 
Giorgi–Nash–Moser theory for nonlocal functionals corresponding to each of these 
examples. 

2 Nonlocal Functionals with Orlicz Growth 

Let G be an Orlicz function with .G(1) = 1. As a nonlocal analogue of the functional 

.

ˆ
G(|Du|) dx, (4) 

we consider 

.(1 − s)

¨
G

( |u(x) − u(y)|
|x − y|s

)
dy dx

|x − y|n . (5) 

It is a natural extension in the sense that (5) converges (and .𝚪-converges) to (4), up  
to constants, as .s ↗ 1 (see [1, 26]). 

The De Giorgi–Nash–Moser theory for the functional (5), and for more general 
functionals with measurable coefficients, is more or less complete. Let us summarize 
results known in the literature. Throughout this section, we fix an open set . Ω in . Rn, 
let .0 < s0 ≤ s < 1 < p ≤ q, and assume that G satisfies 

.pG(t) ≤ tg(t) ≤ qG(t) for t ≥ 0, (6)
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where .g = G'. The Orlicz–Sobolev space .V s,G(Ω|Rn) is defined by 

. V s,G(Ω|Rn)

=
{

u ∈ L0(Rn) : u|Ω ∈ LG(Ω),

¨
(Ωc×Ωc)c

G

( |u(x) − u(y)|
|x − y|s

)
dy dx

|x − y|n < ∞
}

,

where .L0(Rn) denotes the space of all measurable functions on . Rn. The tail term in 
this framework is defined by 

. Tailg(u; x0, R) = Rsg−1
(

(1 − s)Rs

ˆ
Rn\BR(x0)

g

( |u(y)|
|y − x0|s

)
dy

|y − x0|n+s

)

.

We begin with the local boundedness and the weak Harnack inequality. 

Theorem 1 (Local Boundedness [13, Theorem 3.1]) If .u ∈ V s,G(Ω|Rn) is a local 
sub-minimizer of (5), then u is locally bounded from above. Moreover, for any . BR =
BR(x0) ⊂ Ω and .δ ∈ (0, 1), it holds that 

. sup
BR/2

G
(u+

Rs

)
≤ C

 
BR

G
(u+

Rs

)
dx + δG

(
Tailg(u+; x0, R/2)

(R/2)s

)

,

where .C = C(n, s0, q, δ) > 0 is a constant. 

We remark that we only need the second inequality of (6) as an assumption in 
Theorem 1. See [5, 12] for results similar to Theorem 1. 

Theorem 2 (Weak Harnack Inequality [13, Theorem 4.1]) If . u ∈ V s,G(Ω|Rn)

is a local super-minimizer of (5) which is nonnegative in .BR = BR(x0) ⊂ Ω, then 

.

 
BR/2

Gε
( u

Rs

)
dx ≤ C inf

BR/2
Gε

( u

Rs

)
+ CGε

(
Tailg(u−; x0, R)

Rs

)

, (7) 

where .ε ∈ (0, 1) and .C > 0 are constants depending only on n, . s0, p, and q. 

In [13, Theorem 4.1], the left-hand side of (7) is given by the averaged integral 
over . BR . We point out, however, that the integral must be taken over a smaller ball, 
say . BR/2, as in  (7). 

Using Theorems 1 and 2, we obtain the Hölder estimate and the Harnack 
inequality. 

Theorem 3 (Hölder Estimate [12, Theorem 1.1]) If .u ∈ V s,G(Ω|Rn) is a local 
minimizer of (5), then u is locally Hölder continuous in . Ω. Moreover, for any . BR =
BR(x0) ⊂ Ω, it holds that 

. Rα[u]Cα(BR/4)
≤ C‖u‖L∞(BR/2) + Tailg(u; x0, R/2),

where .α ∈ (0, 1) and .C > 0 are constants depending only on n, . s0, p, and q.



30 M. Kim

Theorem 4 (Harnack Inequality [13, Theorem 1.1]) If .u ∈ V s,G(Ω|Rn) is a 
local minimizer of (5) which is nonnegative in .BR = BR(x0) ⊂ Ω, then 

. sup
BR/2

u ≤ C inf
BR/2

u + CTailg(u−; x0, R)

for some .C = C(n, s0, p, q) > 0. 

Note that Theorems 1–4 are generalizations of the results in [34, 36, 38] for local 
functionals. See [5, 7] for results similar to Theorems 3 and 4. 

Theorem 2 with a small exponent .ε ∈ (0, 1) is sufficient to prove Theorem 4, 
but it is of independent interest to find an optimal exponent in Theorem 2. In fact, 
in the standard growth case (.G(t) = tp), the weak Harnack inequality (up to the 
boundary) with an optimal exponent is useful in the study of harmonic functions, 
see [33]. However, it is still open in the Orlicz case. We conjecture that if . 1 < p ≤
min{q, n/s}, then for any .δ ∈ (0, n

n−sp
), it holds that 

.

 
BR/2

gδ
( u

Rs

)
dx ≤ C inf

BR/2
gδ

( u

Rs

)
+ Cgδ

(
Tailg(u−; x0, R)

Rs

)

, (8) 

where C depends on . δ as well. To the best of our knowledge, the Moser iteration 
technique in this framework has not been developed yet. To obtain (8) from (7), one 
may need to investigate the Moser iteration method. 

3 Nonlocal Functionals with Variable Exponent 

In this section, we consider a functional 

.(1 − s)

¨ ( |u(x) − u(y)|
|x − y|s

)p(x,y) dy dx

|x − y|n , (9) 

where .p(x, y) is a variable exponent satisfying .1 < inf p ≤ sup p < ∞. It is known 
[32, Theorem 1.1] that the functional (9) converges to 

. 

ˆ
2π

n−1
2

𝚪(
p̄(x)+1

2 )

𝚪(
n+p̄(x)

2 )

1

p̄(x)
|∇u(x)|p̄(x) dx,

where .p̄(x) = p(x, x), under a log-Hölder-type assumption on .p(x, ·), provided 
that u is sufficiently smooth, say .u ∈ C2

c (Rn). Interestingly, there exists a smooth 
variable exponent p such that the convergence may fail for .u ∈ W 1,p̄(·), see [32, 
Corollary 1.3]. It is worth investigating under what conditions on p the convergence 
might be true for all .u ∈ W 1,p̄(·), or more generally, .u ∈ Lp̄(·).
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The De Giorgi–Nash–Moser theory for the functional (9), and for more general 
functionals with measurable coefficients, is partially established. For instance, the 
local boundedness and the Hölder estimate are known. In what follows, . Ω denotes 
an open subset of . Rn and the function space .V s,p(·,·)(Ω|Rn) is defined by 

. V s,p(·,·)(Ω|Rn)

=
{

u ∈ L0(Rn) : u|Ω ∈ Lp̄(·)(Ω),

¨
(Ωc×Ωc)c

|u(x) − u(y)|p(x,y)

|x − y|n+sp(x,y)
dy dx < ∞

}

.

The following theorems are nonlocal analogues of the results in [24]. 

Theorem 5 (Local Boundedness [10, 39]) Suppose that p is continuous and 
symmetric. If .u ∈ V s,p(·,·)(Ω|Rn) satisfies 

. sup
x∈Ω

ˆ
Rn

u
p(x,y)−1
+ (y)

(1 + |y|)n+sp(x,y)
dy < ∞ (10) 

and is a local sub-minimizer of (9), then u is locally bounded from above in . Ω. 

In [10], the authors also obtain the following uniform estimate: for each . x0 ∈ Ω

with .p(x0, x0) ≤ n/s, there is a radius .R ∈ (0, 1) such that .BR = BR(x0) ⊂ Ω, 
.p+ < p∗− := np−/(n − σp−), and 

. sup
BR/2

u ≤ C

(ˆ
BR

u
p++ dx

) 1
p+ +

(

sup
x∈BR

ˆ
Rn\BR/2

u
p(x,y)−1
+ (y)

|y − x0|n+sp(x,y)
dy

) 1
p+−1

+ 1

(11) 

for any .σ ∈ (0, s), where .p+ = supx,y∈BR
p(x, y) and .p− = infx,y∈BR

p(x, y). 

Theorem 6 (Hölder Estimate [39]) Suppose that p is symmetric and satisfies 

. sup
Br(x0)⊂Ω

sup
x1,x2,y1,y2∈Br(x0)

|p(x1, y1) − p(x2, y2)| ≤ L

log(1/r)
∀r < 1/2

for some . L > 0. If .u ∈ V s,p(·,·)(Ω|Rn) satisfies (10) and is a local minimizer of (9), 
then u is locally Hölder continuous in . Ω. 

Uniform Hölder estimates are known in [10] under an additional assumption on 
p: assume in addition 

. sup
x∈Br ,y∈Bc

r

p(x, y) ≤ sup
x,y∈Br

p(x, y) and inf
x∈Br ,y∈Bc

r

p(x, y) ≤ inf
x,y∈Br

p(x, y)
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for all .Br = Br(x0) ⊂⊂ Ω. Then for each .x0 ∈ Ω with .p(x0, x0) ≤ n/s, there is a 
radius .R ∈ (0, 1) such that .BR = BR(x0) ⊂⊂ Ω, .p+ < p∗−, and 

. Rα[u]Cα(BR/2)
≤ C‖u‖L∞(BR) + Rs + 1

+
(

Rsp̃+ sup
x∈B3R/4

ˆ
Rn\BR

|u(y)|p(x,y)−1

|y − x0|n+sp(x,y)
dy

) 1
p̃+−1

(12) 

for any .σ ∈ (0, s), where .p̃+ = supy∈Bc
R

p(x0, y). The constants . α and C depend 
only on n, s, . σ , .supx∈Ω,y∈Rn p(x, y), .infx∈Ω,y∈Rn p(x, y), R, and L. 

Let us make some remarks. The robustness of uniform estimates (11) and (12) as 
.s ↗ 1 is nowhere written, but the author believes that these estimates can be made 
robust by investigating the dependence of constants on s. Note that a more general 
class of functionals allowing a variable order of differentiability .s(x, y) instead of 
a constant order s is studied in [39]. Finally, we point out that the weak Harnack 
inequality and the Harnack inequality remain open. 

4 Nonlocal Double Phase Functionals 

Another example of a nonlocal functional with non-standard growth is given by 

.

¨ (

(1 − s)
|u(x) − u(y)|p
|x − y|n+sp

+ a(x, y)(1 − t)
|u(x) − u(y)|q
|x − y|n+tq

)

dy dx, (13) 

where .0 < s ≤ t < 1 < p ≤ q < ∞ and a is a measurable function satisfying 
.0 ≤ a(x, y) = a(y, x) ≤ ‖a‖L∞(Rn) < ∞ for all .x, y ∈ R

n. The convergence of 
(13) to the (local) double phase functional as .s = t ↗ 1 is partially known: see [27, 
Theorem 5.73] for the case .q = 2 and [28] for the translation-invariant case, i.e., 
.a(x, y) = a(x + z, y + z) for all z. 

As a generalization of [14, 16], the De Giorgi–Nash–Moser theory for the 
nonlocal functional (13) is studied in [6]. To state the main results in [6], let us 
recall the function spaces 

. A(Ω) =
{
u ∈ L0(Rn) : u|Ω ∈ Lp(Ω),

¨
(Ωc×Ωc)c

H(x, y, |u(x) − u(y)|) dy dx < ∞
}

and 

.L
q−1
sp (Rn) =

{

u ∈ L0(Rn) :
ˆ
Rn

|u(x)|q−1

(1 + |x|)n+sp
dx < ∞

}

,
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where . Ω denotes an open subset of . Rn and 

. H(x, y, τ ) = τp

|x − y|sp + a(x, y)
τq

|x − y|tq .

We refer the reader to [17, 25, 41] for the regularity theory when .t ≤ s. 

Theorem 7 (Local Boundedness [6, Theorem 1.1]) Assume . q ≤ np/(n − sp)

when . sp < n. If .u ∈ A(Ω) ∩ L
q−1
sp (Rn) is a local minimizer of (13), then u is 

locally bounded in . Ω. 

Theorem 8 (Hölder Estimate [6, Theorem 1.2]) Assume that a satisfies 

. |a(x1, y1)−a(x2, y2)| ≤ [a]α(|x1−x2|+|y1−y2|)α ∀(x1, y1), (x2, y2) ∈ R
n×R

n

for some .α > 0, and that .tq ≤ sp+α. If .u ∈ A(Ω)∩L
q−1
sp (Rn) is a local minimizer 

of (13) which is locally bounded in . Ω, then u is locally Hölder continuous in . Ω. 

A couple of remarks are in order. First, the uniform regularity estimates in 
Theorems 7 and 8 are hidden in their proofs, and the robustness of the estimates 
are not investigated. It would be interesting to obtain robust estimates. Second, the 
weak Harnack inequality and Harnack inequality for nonlocal functional (13) are 
open. Note that the Harnack inequality is known for local double phase functional 
[2] and for mixed local and nonlocal double phase functionals [8]. 

5 Nonlocal Functionals with Orthotropic Structure 

In this section, we consider a nonlocal functional 

.

¨
|u(x) − u(y)|p μ(x, dy) dx, (14) 

where . μ is given by a sum of singular measures 

. μ(x, dy) =
n∑

k=1

1 − sk

|xk − yk|1+skp
dyk

∏

i /=k

δxi
(dyi).

Here, .sk ∈ (0, 1) for .k = 1, . . . , n. Since it is the sum of one-dimensional nonlocal 
functionals with standard growth, it is obvious that the functional (14) with . s =
s1 = · · · = sn converges to 

. 

ˆ n∑

k=1

|Dku|p dx

as .s ↗ 1.
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For the functional (14) and more general functionals with measurable coeffi-
cients, the De Giorgi–Nash–Moser theory is partially known [9, 11, 23]. Throughout 
this section, we assume that .s1, . . . , sn ∈ [s0, 1) for some .s0 ∈ (0, 1) and 
.p ∈ (1, n/s̄), where .s̄ = n(

∑
1/sk)

−1 is the harmonic mean of the orders of 
differentiability .s1, . . . , sn. Let .Ω ⊂ R

n be open and define .V μ(Ω|Rn) by 

. V μ(Ω|Rn) =
{
u ∈ L0(Rn) : u|Ω ∈ Lp(Ω),

ˆ
Ω

ˆ
Rn

|u(x) − u(y)|p μ(x, dy) dx < ∞
}

.

We also consider rectangles 

. MR(x) =
n∏

k=1

(
xk − Rsmax/sk , xk + Rsmax/sk

)
,

where .smax = max{s1, . . . , sn}, which take the anisotropy of the functional (14) into 
account. 

Theorem 9 (Weak Harnack Inequality [11, Theorem 1.4]) If .u ∈ V μ(Ω|Rn) is 
a local super-minimizer of (14) which is nonnegative in .MR = MR(x0) ⊂ Ω, then 

. 

( 
MR/2

uε dx

)1/ε

≤ C inf
MR/4

u+C

⎛

⎝Rsmaxp sup
x∈M 15R

16

ˆ
Rn\MR

u
p−1
− (y) μ(x, dy)

⎞

⎠

1
p−1

,

where .ε ∈ (0, 1) and .C > 0 are constants depending only on n, . s0, and p. 

Theorem 10 (Hölder Estimate [11, Theorem 1.5]) If .u ∈ V μ(Ω|Rn) is a local 
minimizer of (14), then u is locally Hölder continuous in . Ω. Moreover, for any 
.MR = MR(x0) ⊂ Ω, it holds that 

.Rα[u]Cα(MR/2)
≤ C‖u‖L∞(Rn), (15) 

where .α ∈ (0, 1) and .C > 0 are constants depending only on n, . s0, and p. 

The local boundedness for local minimizers of (14) is open. Moreover, there may 
be a room to improve the uniform estimate (15) by considering a local .L∞-norm and 
the tail term on the right-hand side instead of the global .L∞-norm. However, it is 
known that one cannot expect the Harnack inequality. See [3] for a counterexample. 

In full generality, one may consider a nonlocal functional 

.

ˆ
Ω

n∑

k=1

(1 − sk)

ˆ
R

|u(x + rek) − u(x)|pk

r1+skpk
dr dx, (16)
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where .sk ∈ (0, 1) and .pk ∈ (1,∞) for .k = 1, . . . , n. We remark that the regularity 
theory for the functional (16) is widely open. Even for a local functional 

. 

ˆ n∑

k=1

|Dku|pk dx,

only a few partial results are known. See, for instance, [20–22, 29, 35, 40]. 
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A Variational Approach to the Hot Spots 
Conjecture 

Jonathan Rohleder 

Abstract We review a recent new approach to the study of critical points of 
Laplacian eigenfunctions. Its core novelty is a non-standard variational principle for 
the eigenvalues of the Laplacians with Neumann and Dirichlet boundary conditions 
on bounded, simply connected planar domains. This principle can be used to provide 
simple proofs of some previously known results on the hot spots conjecture. 

Keywords Laplacian · Eigenfunctions · Hot spots conjecture · Spectral theory 
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1 Introduction 

The hot spots conjecture seems to have been formulated first by Rauch in 1974, 
see Section II.5 in Kawohl’s book [14]. It suggests, in its strongest form, that any 
eigenfunction corresponding to the smallest positive eigenvalue of the Laplacian on 
a bounded domain with Neumann boundary conditions attains its maximum and 
minimum only on the boundary. This would imply that the hottest and coldest spots 
in an insulated body with a “generic” initial heat distribution diverge from each 
other for large time as much as they can, i.e. converge to the boundary; cf. [14]. 

Let us briefly review the major steps forward on this conjecture. First of all, the 
conjecture is true for simple shapes on which the eigenfunctions in question can 
be computed explicitly, such as balls, cubes, equilateral triangles or right isosceles 
triangles. Moreover, there exist by now a few non-trivial results for domains in the 
plane. Bañuelos and Burdzy [2] proved that the conjecture is true for obtuse triangles 
and sufficiently long convex domains with symmetries, and Atar and Burdzy [1] 
showed it for so-called lip-domains, i.e. domains enclosed by the graphs of two 
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Lipschitz continuous functions with Lipschitz constants at most one. Jerison and 
Nadirashvili proved it for domains symmetric w.r.t. both coordinate axes [9] for  
which all horizontal and vertical cross sections are intervals. On the other hand 
Burdzy and Werner [6] and Burdzy [4] constructed counterexamples given by 
certain multiply-connected domains, see also the numerical study [16]. The most 
recent advances include a prove for general triangles by Judge and Mondal [10, 11], 
which was preceeded by Siudeja’s partial result [22]. For further recent related 
results we refer the reader to, e.g., [12, 17, 18, 23, 24]. The conjecture is still open 
for general simply connected domains in the plane, as well as in higher dimensions, 
and is believed to be true at least for convex domains. 

It seems that most proofs of the key results on the hot spots conjecture are 
either based on probabilistic methods, exploiting reflected Brownian motion [1– 
4, 6, 19, 23], or rely on tracing critical points of eigenfunctions under perturbations 
of the domain [9, 10]. The author of this note is suggesting a completely independent 
approach [21], inspired by the following classical observation: as is well known, 
in order to study nodal sets of eigenfunctions, it is convenient to make use of the 
fact that these eigenfunctions are optimizers of certain variational principles. For 
instance, the first non-trivial eigenvalue . μ2 of the Neumann Laplacian .−ΔN on a 
bounded Lipschitz domain . Ω is given by 

.μ2 = min
ψ∈H 1(Ω)\{0}´

Ω ψ=0

´
Ω

|∇ψ |2´
Ω

|ψ |2 , (1) 

and a function . ψ in the Sobolev space .H 1(Ω) with vanishing integral is a minimizer 
of (1) if and only if . ψ is an eigenfunction of .−ΔN corresponding to . μ2. From this  
characterization it can be derived easily that . ψ has precisely two nodal domains; 
see, e.g., [7, Chapter VI, § 6]. Therefore in order to study critical points of . ψ , it  
seems natural to search for variational principles in which the gradient of . ψ , instead 
of . ψ itself, is a minimizer. The following theorem was obtained in [21]. 

Theorem 1 Assume that .Ω ⊂ R
2 is a bounded, simply connected Lipschitz domain 

with piecewise .C∞-smooth boundary and that all its corners, if any, are convex. 
Then 

.μ2 = min
u=(u1

u2
)∈HN\{0}

´
Ω

(|∇u1|2 + |∇u2|2
) − ´

∂Ω
κ
(|u1|2 + |u2|2

)

´
Ω

(|u1|2 + |u2|2
) , (2) 

where .HN consists of all vector fields with components in the Sobolev space . H 1(Ω)

such that their traces satisfy .〈u, ν〉 = 0 a.e. on . ∂Ω, and . κ is the signed curvature on 
. ∂Ω w.r.t. the outer unit normal . ν, defined on all boundary points except corners. The 
minimizers of (2) are precisely the gradients of eigenfunctions . ψ of the Neumann 
Laplacian corresponding to . μ2.
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In the following Sect. 2 we will sketch how this variational principle is obtained; 
it turns out to be a particular case of a min-max principle for all eigenvalues of the 
Laplacians with Neumann and Dirichlet boundary conditions. In the final Sect. 3, 
we explain how several previously known results on the hot spots conjecture can be 
derived in an elementary fashion from Theorem 1. 

2 A Non-standard Variational Principle 

In this section we sketch the construction which leads to Theorem 1. The main idea 
is to construct a self-adjoint operator, acting as the negative Laplacian on vector 
fields, for which .∇ψ is an eigenfunction if . ψ is a non-constant eigenfunction of the 
Neumann Laplacian. 

Let us briefly fix some notation; for more details we refer the reader to [21]. On 
a bounded, connected Lipschitz domain .Ω ⊂ R

2 we denote by .−ΔN the Neumann 
Laplacian, i.e. 

. − ΔNu = −Δu, dom(−ΔN) =
{
u ∈ H 1(Ω) : Δu ∈ L2(Ω), ∂νu|∂Ω = 0

}
,

and by .−ΔD the Dirichlet Laplacian, 

. − ΔDu = −Δu, dom(−ΔD) =
{
u ∈ H 1(Ω) : Δu ∈ L2(Ω), u|∂Ω = 0

}
.

The boundary conditions of the operators have to be understood in an appropriate 
weak sense; .u|∂Ω denotes the trace of u on .∂Ω and .∂νu|∂Ω is the derivative of u 
on the boundary in the direction of the outward pointing normal vector . ν. Both  
operators are unbounded and self-adjoint in .L2(Ω), and their spectra consist of 
isolated eigenvalues of finite multiplicities. Let 

.0 = μ1 < μ2 ≤ μ3 ≤ . . . (3) 

be an enumeration of the eigenvalues of .−ΔN and let 

.λ1 < λ2 ≤ λ3 ≤ . . . (4) 

be the eigenvalues of .−ΔD, both counted according to their multiplicities. The 
eigenfunctions of .−ΔN corresponding to .μ1 = 0 are the constant functions. 

Let us now assume, in addition, that . Ω has a piecewise smooth boundary. In the 
space .L2(Ω)2 of square-integrable two-component vector fields on . Ω we define the 
sesquilinear form 

.a [u, v]=
ˆ

Ω

( 〈∇u1,∇v1〉+〈∇u2,∇v2〉
)−
ˆ

∂Ω

κ〈u, v〉, u=
(

u1

u2

)
, v=

(
v1

v2

)
,
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with domain 

. dom a := HN :=
{
u ∈ H 1(Ω)2 : 〈u|∂Ω, ν〉 = 0 on ∂Ω

}
.

Here we denote by . κ the signed curvature function along the piecewise smooth 
curve .∂Ω w.r.t. the outer unit normal . ν, defined on all points of .∂Ω except possible 
corners; in particular, . κ is bounded and piecewise smooth, with possible jumps at 
the corners. If . Ω is convex then .κ(x) ≤ 0 holds for almost all .x ∈ ∂Ω. 

The sesquilinear form . a is symmetric, semi-bounded, densely defined in . L2(Ω)2

and closed. Hence, by Kato [13, VI, Theorem 2.1] there exists a unique self-adjoint 
operator A in .L2(Ω)2 such that .dom A ⊂ dom a and 

. (Au, v)L2(Ω)2 = a[u, v], u ∈ dom A, v ∈ dom a,

where .(·, ·)L2(Ω)2 stands for the standard inner product in the space . L2(Ω)2. It can  
be computed that the operator A acts as the Laplacian, 

. Au =
(−Δu1

−Δu2

)
, u ∈ dom A,

and its domain consists of sufficiently regular vector fields satisfying the conditions 

. 〈u|∂Ω, ν〉 = 0 and ∂1u2 − ∂2u1 = 0 on ∂Ω,

interpreted in a weak sense; cf. [21, Lemma 3.3 and Remark 3.4]. The operator A 
is intimately related to the operators .−ΔN and .−ΔD in the following way. We are 
imposing here conditions on the domain . Ω which make sure that functions in the 
domains of .−ΔD and .−ΔN belong to the Sobolev space . H 2(Ω). We make use of  
the notation .∇⊥ϕ = (−∂2ϕ, ∂1ϕ)⏉. 

Theorem 2 Assume that .Ω ⊂ R
2 is a bounded Lipschitz domain with piecewise 

.C∞-smooth boundary whose corners are convex. Let A be the self-adjoint operator 
in .L2(Ω)2 associated with the sesquilinear form . a. Moreover, let the eigenvalues 
of .−ΔN be enumerated as in (3) and let .ψ1, ψ2, . . . form an orthonormal basis 
of .L2(Ω) such that .−ΔNψk = μkψk holds for .k = 1, 2, . . . ; analogously let the 
eigenvalues of .−ΔD be enumerated as in (4) and let .ϕ1, ϕ2, . . . be an orthonormal 
basis of .L2(Ω) consisting of corresponding eigenfunctions, .−ΔDϕk = λkϕk for all 
k. Then the following hold. 

(1) For each .k ≥ 2, .∇ψk is nontrivial, belongs to .dom A, and satisfies . A∇ψk =
μk∇ψk . Moreover, the functions . 1√

μk
∇ψk form an orthonormal basis of 

.∇H 1(Ω). 
(2) For each .k ≥ 1, .∇⊥ϕk is nontrivial, belongs to .dom A, and satisfies . A∇⊥ϕk =

λk∇⊥ϕk . Moreover, the functions . 1√
λk

∇⊥ϕk form an orthonormal basis of 

.∇⊥H 1
0 (Ω).
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In particular, if . Ω is simply connected then the spectrum of A coincides with the 
union of the positive eigenvalues of the Neumann and Dirichlet Laplacians, counted 
with multiplicities. 

For a rigorous proof we refer the reader to [21, Theorem 3.2]. For a sketch, let . ψ

be any non-constant eigenfunction of .−ΔN corresponding to an eigenvalue . μ and 
.u = ∇ψ . Then u belongs to .dom A: for the boundary conditions, note that 

. u · ν = ∇ψ · ν = 0 on ∂Ω,

and 

. ∂1u2 − ∂2u1 = ∂1∂2ψ − ∂2∂1ψ = 0

by the Schwartz lemma, and this holds in particular on . ∂Ω. Moreover, it is clear that 

. Au =
(−Δ∂1ψ

−Δ∂2ψ

)
= −∇Δψ = μu.

Similarly, if .−ΔDϕ = λϕ and .u = ∇⊥ϕ, then u satisfies the boundary conditions 
required in .dom A: firstly, 

. u · ν = ∇⊥ϕ · ν = 0 on ∂Ω

as this corresponds to the tangential derivative on .∂Ω and .ϕ = 0 constantly there. 
Secondly, 

. ∂1u2 − ∂2u1 = ∂1∂1ϕ + ∂2∂2ϕ = Δϕ = −λϕ = 0 on ∂Ω,

making use of the differential equation and the boundary condition for . ϕ. It follows 
.A∇⊥ϕ = λ∇⊥ϕ. Furthermore, the proof of the orthonormal basis properties 
mentioned in the theorem is straightforward. 

Let us now assume, in addition, that . Ω is simply connected. Then the famous 
Helmholtz decomposition reads 

. L2(Ω)2 = ∇H 1(Ω) ⊕ ∇⊥H 1
0 (Ω),

see, e.g., [15, Lemma 2.10]. Using this, it follows from Theorem 2 (1) and (2) that 
the spectrum of A consists precisely of all non-trivial eigenvalues of .−ΔN and .−ΔD, 
including multiplicities. As it is well-known that .μ2 < λ1 (see [8, 20]), we obtain 
the following min-max principle. 

Theorem 3 Assume that .Ω ⊂ R
2 is a bounded, simply connected domain with 

piecewise .C∞-smooth boundary and that all corners, if any, are convex. Denote by 

.η1 ≤ η2 ≤ . . .
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the union of the positive eigenvalues of .−ΔN and .−ΔD, counted according to their 
multiplicities. Then 

. ηj = min
F⊂HN subspace

dim F=j

max
u=(u1

u2
)∈F\{0}

´
Ω

(|∇u1|2 + |∇u2|2
) − ´

∂Ω
κ
(|u1|2 + |u2|2

)

´
Ω

(|u1|2 + |u2|2
) .

Especially, the first positive eigenvalue . μ2 of .−ΔN is given by 

.μ2 = min
u=(u1

u2
)∈HN\{0}

´
Ω

(|∇u1|2 + |∇u2|2
) − ´

∂Ω
κ
(|u1|2 + |u2|2

)

´
Ω

(|u1|2 + |u2|2
) . (5) 

Moreover, if . ψ is an eigenfunction of .−ΔN corresponding to . μ2 then the minimum 
in (5) is attained at .u = ∇ψ , and, conversely, each minimizer u of (5) satisfies 
.u = ∇ψ for some .ψ ∈ ker(−ΔN − μ2). 

3 Application to the Hot Spots Conjecture 

In this section we indicate how the variational principle of Theorem 3 can be applied 
to the hot spots conjecture. The first result discussed here was first proven by Atar 
and Burdzy [1] by probabilistic methods. It comprises the class of so-called lip 
domains introduced by Burdzy and Chen in [5]. 

Definition 1 A bounded Lipschitz domain .Ω ⊂ R
2 is called lip domain if 

. Ω =
{
(x, y)⏉ : f1(x) < y < f2(x), x ∈ (a, b)

}
,

where .f1, f2 : [a, b] → R are Lipschitz continuous functions with Lipschitz 
constant at most one such that .f1(x) < f2(x) for all .x ∈ (a, b), . f1(a) = f2(a)

and .f1(b) = f2(b). 

Figure 1 shows a typical lip domain. Other examples include right and obtuse 
triangles (in contrast to acute triangles) or right and obtuse trapezoids (in contrast to 
acute trapezoids). Clearly, lip domains are simply connected. 

Theorem 4 Assume that . Ω is a lip domain with piecewise .C∞-smooth boundary 
whose corners are convex. Then the following assertions hold. 

(1) If . Ω is not a square then the first positive eigenvalue . μ2 of the Neumann 
Laplacian on . Ω is simple, i.e. the corresponding eigenfunction . ψ is unique up 
to scalar multiples. 

(2) If . Ω is not a rectangle then . ψ may be chosen such that its directional derivatives 
in both directions .e1 + e2 and .e1 − e2 are positive inside . Ω, where . e1 and . e2
are the standard basis vectors in . R2. In particular, . ψ does not have any critical 
point inside . Ω and, hence, takes its maximum and minimum on . ∂Ω only.
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Fig. 1 A lip domain 

Ω 

The proof relies on the fact that rotating any lip domain by .π/4 in positive 
direction leads to a domain for which the outer unit normal vector field . ν on the 
boundary satisfies 

.ν(x) ∈ Q2 ∪ Q4, (6) 

that is, .ν(x) belongs to the union of the closed second and fourth quadrants in the 
plane, for almost all .x ∈ ∂Ω. We will now sketch the proof of Theorem 4 assuming 
that . Ω is rotated such that (6) holds for almost all .x ∈ ∂Ω. 

Let . ψ be any eigenfunction of .−ΔN corresponding to . μ2. Then . u = ∇ψ

minimizes (5). Take .v = (|u1|, |u2|)⏉. Then 

. ‖v‖L2(Ω)2 = ‖u‖L2(Ω)2 and a[v] ≤ a[u].

Moreover, the condition (6) guarantees that .v|∂Ω ·ν = 0 holds, since the components 
of .ν(x) have opposite signs for almost all .x ∈ ∂Ω. Hence, .v ∈ HN and v is another 
minimizer of (5), whose components are non-negative everywhere in . Ω. Thus . v ∈
ker(A − μ2) and there exists an eigenfunction . ψ ' of .−ΔN corresponding to the 
eigenvalue . μ2 such that .∇ψ ' = v. However, 

. Δ∂jψ
' = −μ2|uj | ≤ 0, j = 1, 2,

and, thus, the minimum principle for superharmonic functions yields that . vj = ∂jψ
'

is either constantly zero or strictly positive in . Ω, .j = 1, 2. As . ψ ' being constant 
in one direction is only possible if . Ω is a rectangle, the assertion (2) follows. For 
assertion (1), if . ψ and . ψ ' are linearly independent and . Ω is not a square, one 
can construct a linear combination of .∇ψ and .∇ψ ' vanishing at some point in . Ω, 
contradicting the reasoning in the proof of assertion (2). A complete proof can be 
found in [21, Section 4]. 

Theorem 3 can be employed for a more careful analysis of the nodal lines of the 
components of .∇ψ , for an eigenfunction . ψ of .−ΔN. This can be used, for instance, 
to reprove the following theorem of Jerison and Nadirashvili [9, Theorem 1.1].
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Theorem 5 Assume that .Ω ⊂ R
2 has a piecewise .C∞-smooth boundary without 

non-convex corners and is symmetric with respect to both coordinate axes. Further-
more, assume that all vertical and horizontal cross sections of . Ω are intervals and 
that . Ω is not a rectangle. Then the following hold. 

(1) For any eigenfunction . ψ corresponding to . μ2 that is odd w.r.t. x and even w.r.t. 
y, .∂xψ does not have any zero in . Ω; if  . ψ is chosen such that .ψ > 0 if .x > 0, 
then .∂xψ > 0 in . Ω. Moreover, .∂yψ vanishes exactly on the axes. 

(2) For any eigenfunction . ψ corresponding to . μ2 that is even w.r.t. x and odd w.r.t. 
y, .∂yψ does not have any zero in . Ω; if  . ψ is chosen such that .ψ > 0 if .y > 0, 
then .∂yψ > 0 in . Ω. Moreover, .∂xψ vanishes exactly on the axes. 

A proof of Theorem 5 based on Theorem 3 will be published elsewhere. 
It should, finally, be pointed out that the regularity assumptions on .∂Ω in the 

above theorems are stronger than those in [1, 9]. 

Acknowledgments This research is financially supported by grant no. 2022-03342 of the Swedish 
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Endpoint Sobolev Inequalities for Vector 
Fields and Cancelling Operators 
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Abstract The injectively elliptic vector differential operators .A(D) from V to E 
on . Rn such that the estimate 

. ‖D𝓁u‖Ln/(n−(k−𝓁))(Rn) ≤ ‖A(D)u‖L1(Rn)

holds can be characterized as the operators satisfying a cancellation condition 

. 
⋂

ξ∈Rn\{0}
A(ξ)[V ] = {0} .

These estimates unify existing endpoint Sobolev inequalities for the gradient 
of scalar functions (Gagliardo and Nirenberg), the deformation operator (Korn– 
Sobolev inequality by M.J. Strauss) and the Hodge complex (Bourgain and Brezis). 
Their proof is based on the fact that .A(D)u lies in the kernel of a cocancelling 
differential operator. 
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1 Sobolev Inequalities for Vector Fields 

The classical Sobolev inequality [12, 16, 20] states that given .n, k ∈ N \ {0} and 
.p ∈ [1, n

k−𝓁
) there exists a constant .C1 ∈ (0,∞) such that each function . u ∈

C∞
c (Rn,R) satisfies the inequality 

.

(∫

Rn

|D𝓁u| np
n−(k−𝓁)p

)1− (k−𝓁)p
n ≤ C1

∫

Rn

|Dku|p . (1) 

Given linear spaces V and E and a linear differential operator .A(D) of order . k ∈ N\
{0} from V to E on . Rn defined for .u ∈ C∞(Rn, V ) at each .x ∈ R

n by . A(D)u(x) :=
A(Du(x)), where .A ∈ Lin(Link

sym(Rn, V ), E), or equivalently, by 

. A(D)u(x) =
∑

α∈Nn

|α|=k

Aα[∂αu(x)] =
∑

α∈Nn

|α|=k

∂α(Aα[u])(x) ,

with .Aα ∈ Lin(V ,E) for .α = (α1, . . . , αn) ∈ N
n satisfying . |α| := α1 + · · · +

αn = k, the goal of the present work is to determine whether every vector field 
.u ∈ C∞(Rn, V ) satisfies a vector Sobolev inequality 

.

(∫

Rn

|D𝓁u| np
n−(k−𝓁)p

)1− (k−𝓁)p
n ≤ C2

∫

Rn

|A(D)u|p . (2) 

When .p ∈ (1,∞), the injective ellipticity is the key notion to have (2). 

Definition 1 Given .n ∈ N \ {0}, finite-dimensional vector spaces V and E, a  
homogeneous constant coefficient differential operator .A(D) of order . k ∈ N \ {0}
from V to E on . Rn is injectively elliptic whenever for every .ξ ∈ R

n \ {0}, one has 
.ker A(ξ) = {0}. 

If the operator .A(D) is injectively elliptic, we can write in the Fourier domain for 
every . ξ ∈ R

n \ {0}

.F(Dku)(ξ) = ξ⊗k ⊗ A(ξ)†[F(A(D)u)(ξ)] , (3) 

where the Fourier transform .Fu : R
n → V + iV of a Schwartz test function 

.u ∈ S(Rn, V ) is defined for every .ξ ∈ R
n by the integral formula 

. (Fu)(ξ) :=
∫

Rn

e−2πi ξ ·x u(x) dx

and where for each .ξ ∈ R
n \ {0}, .A(ξ)† is the Moore–Penrose generalized inverse 

of .A(ξ): 

.A(ξ)† := (
A(ξ)∗A(ξ)

)−1
A(ξ)∗ , (4)
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with .A(ξ)∗ ∈ Lin(E, V ) the adjoint of .A(ξ). Applying the Parseval identity when 
.p = 2 and a classical multiplier theorem (see for example [21, ch. IV th. 3]) when 
.p ∈ (1,∞) \ {2}, we obtain from (3) the estimate 

.

∫

Rn

|Dku|p ≤ C3

∫

Rn

|A(D)u|p . (5) 

As a consequence of the inequalities (5) and (1), we get that when .p ∈ (1, n
k−𝓁

), the  
estimate (2) holds when the operator .A(D) is injectively elliptic. 

The proof outlined above does not work at all in the endpoint . p = 1. More  
dramatically, Ornstein [17] has proved that if .B(D) is a homogeneous constant 
coefficient differential operator of order k from V to a linear space F on .Rn and 
if for every .u ∈ C∞

c (Rn, V ) the estimate 

.

∫

Rn

|B(D)u| ≤ C4

∫

Rn

|A(D)u| , (6) 

holds, then one can write .B(D) = LA(D), with .L : E → F being a constant-
coefficient linear mapping. 

2 Sobolev Estimates for Cancelling Operators 

Continuing our investigation of the Sobolev-type inequality (2), we will examine 
how badly .A(D)u does not control u beyond Ornstein’s non-estimate (6). In order 
to do this, we can try to have .A(D)u as singular as possible, that is, close to a Dirac 
measure and thus to construct some .u : Rn → V such that, for some fixed vector 
.e ∈ E, 

.A(D)u = eδ0 (7) 

on .Rn in the sense of distributions. Taking the Fourier transform on both sides of 
(7), we get for every . ξ ∈ R

n

.(2πi)kA(ξ)[Fu(ξ)] = e . (8) 

The Eq. (8) will have a solution for every .ξ ∈ R
n if and only if the operator . A(D)

does not satisfy the following cancellation condition, introduced by the author [27]. 

Definition 2 The homogeneous differential operator .A(D) is cancelling whenever 

.

⋂

ξ∈Rn\{0}
A(ξ)[V ] = {0} .
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Thanks to the injective ellipticity of .A(D), .A(ξ)† can be defined by (4) and is 
homogeneous of degree . −k; thanks to a construction [7, lem. 2.1]; [18] based on 
classical constructions in distribution theory and Fourier analysis [13, th. 3.2.3, 
3.2.4, 7.1.18, th. 7.1.16] (see also [29, prop. 2] for a direct self-contained proof), 
one can construct a representation kernel .GA ∈ C∞(Rn \ {0}, Lin(E, V )) such that 
for every .ξ ∈ R

n, 

. FGA(ξ) = (2πi)−k A†(ξ)

and such that for every .x ∈ R
n \ {0} and every .t ∈ R \ {0}, 

. GA(tx) = tn−k
(
GA(x) − ln|t | PA(x)

)
,

where the function .PA : Rn → Lin(E, V ) is a homogeneous polynomial of degree 
.k − n when .k − n ≥ 0 is even, and is 0 otherwise. 

Thanks to Theorem 2, we can now state our main result characterizing endpoint 
Sobolev inequalities [27, prop. 4.6 and 5.5]. 

Theorem 1 Let .n ∈ N \ {0}, let  V and E be finite-dimensional vector spaces and 
let .A(D) be a homogeneous constant coefficient differential operator of order . k ∈
N \ {0} from V to E on . Rn. If .A(D) is injectively elliptic and if .𝓁 ∈ N \ {0} satisfies 
.0 < k − 𝓁 < n, then there exists a constant .C5 ∈ (0,∞) such that for each 
. u ∈ C∞

c (Rn, V )

.

(∫

Rn

|D𝓁u| n
n−(k−𝓁)

)1− k−𝓁
n ≤ C5

∫

Rn

|A(D)[u]| , (9) 

if and only if .A(D) is cancelling. 

The necessity of the cancellation follows essentially by observing that if . e ∈⋂
ξ∈Rn\{0} A(ξ)[V ] \ {0}, then a suitable approximation of .GA[e] by smooth 

functions prevents (9) from holding. 
A first consequence of Theorem 1, is the endpoint Sobolev inequality of Bourgain 

and Brezis [3, 4, cor. 17] (see also [14]): given .m ∈ {1, . . . , n − 1}, for every . u ∈
C∞

c (Rn,
∧m

R
n), 

.

(∫

Rn

|u| n
n−1

)1− 1
n ≤ C

∫

Rn

|du| + |d∗u| (10) 

holds if and only .m /∈ {1, n − 1}. Here .du ∈ C∞
c (Rn,

∧m+1
R

n) and . d∗u ∈
C∞

c (Rn,
∧m−1

R
n) denote respectively the exterior differential and codifferential 

of the differential form u.
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As a second consequence, we have Strauss’s endpoint Korn–Sobolev inequality 
[22]: for every .u ∈ C∞

c (Rn,Rn), one has 

.

(∫

Rn

|u| n
n−1

)1− 1
n ≤ C6

∫

Rn

|Dsymu| , (11) 

where .Dsymu := (Du + (Du)∗)/2 is the symmetric derivative, also known in 
elasticity as the deformation operator. 

3 Duality Estimates for Cocancelling Operators 

The proof of the sufficiency of the cancellation (1) is based on the crucial fact that 
.A(D)u on the right-hand side is not any function, but is constrained to satisfy some 
compatibility conditions. 

Proposition 1 Let .n ∈ N \ {0}, let  V and E be finite-dimensional vector spaces, 
and let .A(D) be a homogeneous constant coefficient differential operator of order 
.k ∈ N \ {0} from V to E on . Rn. If  .A(D) is injectively elliptic, then there exists 
a homogeneous constant coefficient differential operator .L(D) from E to E on . Rn

such that for every .ξ ∈ R
n \ {0}, 

.A(ξ)[V ] = ker L(ξ) . (12) 

The proof of Theorem 1 is based on the definition of .L(D) by requiring that for 
each .ξ ∈ R

n \ {0}, 

.L(ξ) := det
(
A(ξ)∗A(ξ)

) (
idE −A(ξ)(A(ξ)∗A(ξ))−1A(ξ)∗

)
. (13) 

Theorem 1 can be seen as a generalization of the symmetry of second-order 
derivatives 

.∂j (∂iu) = ∂i(∂ju) (14) 

and of the Saint-Venant compatibility conditions for the symmetric derivative 

.∂k𝓁(∂iu
j +∂ju

i)+∂ij (∂ku
𝓁+∂𝓁u

k) = ∂kj (∂iu
𝓁+∂𝓁u

i)+∂i𝓁(∂ku
j +∂ju

k) , (15) 

although the construction of Theorem 1 gives a more complicated operator than 
what appears in (14) and (15). 

The definition of cancelling operator (Theorem 2) and the construction of com-
patibility conditions (Theorem 1) suggest the definition of cocancelling operator.
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Definition 3 Let .n ∈ N \ {0} and let E and F be finite-dimensional vector spaces. 
A homogeneous constant coefficient differential operator .L(D) from E to F on . Rn

is cocancelling whenever 

. 
⋂

ξ∈Rn\{0}
ker L(ξ) = {0} .

The cocancellation condition characterizes the operators for which there is a 
duality estimate with critical Sobolev spaces [26, 27] (see also previous results [3– 
5, 23–25]). 

Theorem 2 Let .n ∈ N \ {0, 1}, let  V and E be finite-dimensional vector spaces, let 
.L(D) be a homogeneous constant coefficient differential operator from E to F on 
. Rn and let .𝓁 ∈ {1, . . . , n − 1}. There exists a constant .C7 ∈ (0,∞) such that for 
every .f ∈ L1(Rn, E) that satisfies .L(D)f = 0 in . Rn in the sense of distributions 
and every .ϕ ∈ C∞

c (Rn, E) one has 

.

∣∣∣
∫

Rn

〈f, ϕ〉
∣∣∣ ≤ C7

∫

Rn

|f |
(∫

Rn

|D𝓁ϕ| n
𝓁

) 𝓁
n

(16) 

if and only if the operator .L(D) is cocancelling. 

Theorem 2 states somehow that with regards to integration against vector fields 
that are in the kernel functions in the homogeneous Sobolev space . Ẇ 𝓁,n/𝓁(Rn, E)

behave as if they were bounded—which is well-known not to be the case. 
The necessity of the cancellation can be seen by noting that if .L(D) was not 

cancelling, then one would have .L(D)(δ0e) = 0 for some .e ∈ E\{0}; approximating 
the measure .δ0e by smooth functions one would deduce from (16) that the Sobolev 
space .Ẇ 𝓁,n/𝓁(Rn,R) would be continuously embedded in .L∞(Rn,R), which is not 
the case when .𝓁 ∈ {1, . . . , n − 1}. 

Assuming that Theorem 2, Theorem 1 can be proved as follows. Noting that the 
operator .L(D) given by Theorem 2 is cocancelling, one gets by Theorem 2 that 
.‖A(D)u‖W−𝓁,n/(n−𝓁) ≤ C8‖A(D)u‖L1 so that a classical multiplier theorem brings 
the conclusion. 

Bourgain and Brezis’s original proof [4] of estimates of the type of theorem 2 
was based on an approximation property for critical Sobolev functions through 
a Littlewood–Paley decomposition, generalizing a similar results in the study of 
the divergence equation [1, 2]; the advantage of their proof compared to the one 
presented below is that it provides much stronger estimates of the form 

.

∣∣∣
∫

Rn

f · ϕ

∣∣∣ ≤ C9‖f ‖L1(Rn)+Ẇ−1,n/(n−1)(Rn)

(∫

Rn

|Dϕ|n
) 1

n
. (17) 

Let us now explain how Theorem 2 can be proved in the case where .L(D) is the 
divergence operator, following [24]. (The reader is referred to [26, 27, 29, 30] for
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the general case.) Without loss of generality, we are going to estimate the integral 

.

∫

Rn

f · en φ , (18) 

for .φ ∈ C∞
c (Rn,R), where . en is the .nth vector in the canonical basis of . Rn. By  

Fubini’s theorem we have 

.

∫

Rn

f · en φ =
∫

R

(∫

Rn−1
f (·, xn) · en φ(·, xn)

)
dxn . (19) 

We are now going to estimate the inner integral on the right-hand side of (19). First,  
we immediately have for each .ψ ∈ C∞(Rn−1,R), 

.

∣∣∣
∫

Rn−1
f (·, xn) · en ψ

∣∣∣ ≤ ‖ψ‖L∞(Rn−1)

∫

Rn−1
|f (·, xn)| . (20) 

On the other hand, by the Gauss–Ostrogradsky divergence theorem, we also have 

. 

∣∣∣
∫

Rn−1
f (·, xn) · en ψ

∣∣∣ =
∣∣∣
∫

Rn−1×(xn,∞)

div(f Ψ)

∣∣∣ ≤ ‖Dψ‖L∞(Rn−1)

∫

Rn

|f | .

(21) 

since .div f = 0. Interpolating between the estimates (20) and (21) and applying the 
Morrey–Sobolev embedding on .Rn−1, we get 

. 

∣∣∣
∫

Rn−1
f (·, xn) · en ψ

∣∣∣ ≤ C10

(∫

Rn−1
|f (·, xn)|

)1−1/n(∫

Rn

|f |
)1/n|ψ |C0,1/n(Rn−1)

≤ C11

(∫

Rn−1
|f (·, xn)|

)1− 1
n
(∫

Rn

|f |
) 1

n
(∫

Rn−1
|Dψ |n

) 1
n

.

(22) 

Combining (19) and (22), we deduce in view of Hölder’s inequality that 

. 

∣∣∣
∫

Rn

f · en φ

∣∣∣≤C11

(∫

Rn

|f |
) 1

n

∫

R

(∫

Rn−1
|f (·, xn)|

)1− 1
n
(∫

Rn−1
|Dφ(·, xn)|n

) 1
n

dxn

≤ C11

∫

Rn

|f |
(∫

Rn

|Dφ|n
) 1

n
.

(23) 

Therefore for any vector . ν ∈ R
n, it follows from (23) that we have proved 

.

∣∣∣
∫

Rn

f · ν φ

∣∣∣ ≤ C11|ν|
(∫

Rn

|f |
)(∫

Rn

|Dφ|n
) 1

n
. (24) 

Decomposing .ϕ = ∑n
j=1 eiφi with .φi := ei · ϕ, we finally obtain (16) from (24).
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Theorem 2 when .L(D) is the divergence is equivalent, thanks to Smirnov’s result 
on the approximation of divergence-free measures [19], to the Bourgain, Brezis and 
Mironescu’s estimate on circulation integrals [5] (see also [23]): if .𝚪 ⊂ R

n is a 
closed curve with tangent vector t and length . |𝚪|, then for every vector field . ϕ ∈
C∞

c (Rn,Rn), one has 

.

∣∣∣
∫

𝚪

〈ϕ, t〉
∣∣∣ ≤ C2|𝚪|

(∫

Rn

|Dϕ|n
) 1

n ; (25) 

the geometric flavour of (25) raises several natural open questions on sharp constants 
in higher dimensions .n ≥ 3 [8]. 

4 Further Results 

The cancellation condition can also be proved to be a necessary and sufficient 
condition for other estimates. 

In the scale of fractional Sobolev spaces, for any injectively elliptic operator 
.A(D) and assuming that .k, 𝓁 ∈ N, .p ∈ (1,∞) and .σ ∈ (0, 1) satisfy . k − n =
𝓁 + σ − n

p
, the estimate 

.

(∫

Rn

∫

Rn

|D𝓁u(y) − D𝓁u(x)|p
|y − x|n+σp

dy dx
) 1

p ≤ C13

∫

Rn

|A(D)[u]| , (26) 

holds for every .u ∈ C∞
c (Rn, V ) if and only if if and only if the operator .A(D) is 

cancelling [27] (see also [29]). 
Similarly, for any injectively elliptic operator .A(D), the Hardy inequality 

.

∫

Rn

|D𝓁u(x)|
|x|k−𝓁

dx ≤ C14

∫

Rn

|A(D)[u]| , (27) 

holds for every .u ∈ C∞
c (Rn, V ) if and only if if and only if .A(D) is cancelling [27] 

(see also [29] for the proof); this results originates in Maz’ya’s work [15] (see also  
[6]). 

Finally, Raiţă [18] has proved that for any injectively elliptic operator .A(D) the 
uniform estimate 

.‖Dn−ku‖L∞(Rn) ≤ C15

∫

Rn

|A(D)[u]| , (28) 

is equivalent to the weak cancellation property that for every . e ∈ E

.

∫

Sn−1
ξ⊗k−nA−1(ξ)[e] dξ = 0 (29) 

(see also [29, §5.4]).
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Endpoint estimates similar to Theorems 1 and 2 can also be obtained on stratified 
homogeneous groups [9, 31], on the hyperbolic plane [10] and on symmetric spaces 
of noncompact type [11]. 

For a more detailed exposition on endpoint Sobolev inequalities and cancelling 
operators, we refer the reader to the quite formal lecture notes [29], their somehow 
more informal counterpart [30] and to the survey article [28]. 
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Scattering of Maxwell Potentials 
on Curved Spacetimes 

Grigalius Taujanskas 

Abstract We report on the recent construction of a scattering theory for Maxwell 
potentials on curved spacetimes (Nicolas and Taujanskas, Conformal scattering of 
Maxwell potentials (2022). arXiv:2211.14579). 
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geometry · Asymptotic analysis 
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1 Introduction 

The study of the asymptotic structure of isolated systems in general relativity has 
been a rich area of research since at least the 1960s. A number1 of landmark results 
[5, 7, 9, 12] have been established, however many important questions, particularly 
regarding the fine asymptotic properties of fields and the rigorous analytic formu-
lations of scattering theories, remain. In particular, it is of interest to study the far-
field regime of massless fields—such as gravity or electromagnetism—on curved 
spacetimes, where they are scattered by background curvature. Since massless fields 
enjoy an essential conformal invariance, Penrose’s conformal method [12] provides 
an excellent conceptual framework to study their scattering and asymptotics. 

In [11] the author and J.-P. Nicolas construct a complete scattering theory for 
Maxwell potentials on a class of curved, non-stationary spacetimes. The scattering 
construction of [11] in principle allows for reasonably general backgrounds: they 

1 Too many to list here, see for example [9] for a more complete bibliography. 
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may contain matter fields,2 as long as the conformal boundary is suitably smooth 
and the spacetime is sufficiently close to Minkowski space.3 In the case of vacuum,4 

a concrete subclass of such spacetimes—to which we refer as Corvino–Schoen– 
Chruściel–Delay (CSCD) spacetimes—may be constructed using the initial data 
gluing theorems of [2–4, 6] for the vacuum Einstein equations, and Friedrich’s 
theorem for the semi-global stability of Minkowski space [7, 8]. This produces 
an infinite-dimensional family of vacuum spacetimes which have good conformal 
compactification properties: they are asymptotically simple in the sense of Penrose 
[12], their null and timelike infinities can be ensured to be . Ck for any integer k, and 
they are exactly Schwarzschildean, or Kerrian, in a neighbourhood of spatial infinity. 
For simplicity, we work with the case of exactly Schwarzschildean spacetimes near 
. i0. CSCD spacetimes are described in more detail below. 

2 Background Spacetimes and Field Equations 

2.1 CSCD Spacetimes 

We work on spacetimes .(M, gab) which are four dimensional, globally hyperbolic, 
asymptotically flat, and arise as developments of the vacuum Einstein equations 

. Ric(g) = 0

from initial data .(hab, κab) on a Cauchy hypersurface .Σ ≃ R
3 such that: 

(i) outside a given compact set .K ⊂ Σ, the data . (hab, κab) = (gSchw
ab (t = 0), 0)

is exactly Schwarzschild at .t = 0, so that the development .(M, gab) is exactly 
Schwarzschild in a neighbourhood of spatial infinity . i0, 

(ii) the data .(hab, κab) is sufficiently close to Minkowskian data in the sense 
required by the theorems of, say, [2], 

(iii) the initial metric .hab satisfies the condition that .‖r2Ric(h)‖L∞(Σ) is not too 
large,5 for r an appropriately defined radial coordinate on . Σ which coincides 
with the standard Schwarzschildean radial coordinate on .Σ \ K .

2 In principle our scattering construction allows for matter fields provided they decay sufficiently 
fast at infinity, specifically that .ĝab□̂Ω ≈ 4∇̂a∇̂bΩ and .Ψ̂0,1,2,3,4 ≈ 0, where . ≈ denotes equality 
on . I . For simplicity, here we report on the vacuum case. 
3 Proximity to Minkowski space allows one to construct a concrete and fairly large class of 
spacetimes on which the scattering theory of [11] holds. However, this is likely not strictly 
necessary provided the spacetime has the correct Penrose diagram, and there may be examples 
of ‘large’ allowable background spacetimes. 
4 In fact, the authors of [2] comment that their constructions should apply to certain non-vacuum 
constraint equations, e.g. the Einstein–Maxwell system. 
5 Condition (iii) is not part of the assumptions of the theorems of Corvino, Schoen, Chruściel and 
Delay, but comes from the construction of the initial potential. See Sect. 4.2. 
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With these conditions, .(M, gab) is then asymptotically simple with a . Ck conformal 
compactification (for some k sufficiently large) at .I ± and . i±. Being exactly 
Schwarzschild in .D+(Σ\K), at . i0 the spacetime is conformally singular. We denote 
the conformally rescaled metric by .ĝab = Ω2gab, where . Ω is the corresponding 
conformal factor. 

2.2 Field Equations 

Maxwell’s equations are conformally invariant and are given by 

. ∇aFab = 0 = ∇[aFbc] ⇐⇒ ∇̂aF̂ab = 0 = ∇̂[aF̂bc],

where . ∇ is the Levi-Civita connection of .gab and . ∇̂ is the Levi-Civita connection 
of . ĝab, and .F̂ab = Fab, i.e. .Fab has conformal weight zero. In terms of the potential 
the equations read 

.□Aa − ∇b(∇aA
a) + RabA

a = 0, (1) 

and, without a choice of gauge, are also conformally invariant provided . Aa is chosen 
to have conformal weight zero. We choose an NP tetrad .(la,ma, m̄a, na) on . M and 
the conformal scaling .(l̂a, m̂a, ¯̂ma, n̂a) = (Ω−2la,Ω−1ma,Ω−1m̄a, na) so that on 
.I + the vector field . na becomes a generator of .I +, and define the components of 
. Aa and . Fab

. 

(
A0 A1 A2

F0 F1 F2

)
=

(
Aal

a Aan
a Aam

a

Fabl
amb 1

2Fab(l
anb + m̄amb) Fabm̄

anb

)
,

with the associated conformal weights inherited from the scaling of the tetrad. 
Moreover, we choose a uniformly timelike vector field . T a , which in the case of 
Minkowski space is exactly .T a = ∂t and in the general case coincides with the 
Schwarzschildean Killing vector field . ∂t in a neighbourhood of . i0; we denote by . A
the projection of . Aa to hypersurfaces orthogonal to . T a , and write .a = T aAa . 

3 Main Results 

The main results of [11] can be summarised in the following theorems. Our tetrad 
is adapted to future null infinity, so the following results are explicitly stated only 
in the case of .I +. The analogous gauge conditions and function spaces on .I − can 
be obtained by interchanging the vector fields . la and . na .
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Theorem 1 Let .(M, gab) = (R4, ηab) be the Minkowski spacetime. Then a finite 
energy solution to (1) admits the gauge 

.∇aA
a = ∇ · A = a = 0, (2) 

and there exist bounded, invertible linear operators 

. T
±
K : Ḣ 1

C(Σ) ⊕ L2
C(Σ) −→ Ḣ1

(I ±)

(A, Ȧ)|Σ I−→ (Â±
0 , Â±

1 , Â±
2 ),

corresponding to the future/past development according to (1) in the gauge (2) on 
. M, which map finite energy Maxwell potential initial data on . Σ to finite energy 
Maxwell potential characteristic data on . I ±. The function spaces above are given 
by 

. Ḣ 1
C(Σ) = {A ∈ Ḣ 1(Σ;R3) : ∇ · A = 0},

L2
C(Σ) = {Ȧ ∈ L2(Σ;R3) : ∇ · Ȧ = 0},

and 

. Ḣ1
(I +) =

{
(Â+

0 , Â+
1 , Â+

2 ) : Â+
0 =

∫ u

−∞
2 Re ð̂ ¯̂

A+
2 du, Â+

1 = 0,

∫
I +

|∂uÂ
+
2 |2 du ∧ dvS2 < ∞

}

≃ Ḣ 1(R;L2(S2)),

and analogously for .Ḣ(I −). Consequently, there exists a bounded, invertible linear 
scattering operator 

. SK = T
+
K ◦ (T−

K)−1 : Ḣ1
(I −) −→ Ḣ1

(I +),

(Â−
0 , Â−

1 , Â−
2 ) I−→ (Â+

0 , Â+
1 , Â+

2 )

which corresponds to the development according to (1) in the gauge (2) of 
.(Â−

0 , Â−
1 , Â−

2 ) from . I −. The subscript K in the above refers to the standard 
timelike Killing field .K = ∂t . 

Moreover, the Morawetz vector field 

.K0 = (t2 + r2)∂t + 2tr∂r ,
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gives rise to a stronger scattering theory given by bounded, invertible linear 
operators .T

±
K0
, where 

. T
+
K0

: r−1Ḣ 1
C(Σ)curl ⊕ r−1L2

C(Σ) −→ u−1Ḣ1
(I +)

and similarly for .T
−
K0
, where 

. r−1Ḣ 1
C(Σ)curl = {A ∈ Ḣ 1(Σ;R3) : ∇ · A = 0, r(∇ × A) ∈ L2(Σ;R3)},

r−1L2
C(Σ) = {Ȧ ∈ L2(Σ;R3) : ∇ · Ȧ = 0, rȦ ∈ L2(Σ;R3)},

and 

. u−1Ḣ1
(I +) =

{
(Â+

0 , Â+
1 , Â+

2 ) : Â+
0 =

∫ u

−∞
2 Re ð̂ ¯̂

A+
2 du, Â+

1 = 0,

∫
I +

(
u2|∂uÂ

+
2 |2 + |ð̂ ¯̂

A+
2 |2

)
du ∧ dvS2 < ∞

}
,

and similarly for .v−1Ḣ1
(I −). The resulting scattering operator 

. SK0 = T
+
K0

◦ (T−
K0

)−1 : v−1Ḣ1
(I −) −→ u−1Ḣ1

(I +)

is linear, bounded, invertible, and maps past asymptotic data .(Â−
0 , Â−

1 , Â−
2 ) to 

future asymptotic data .(Â+
0 , Â+

1 , Â+
2 ) through a development according to (1) in 

the gauge (2). 

Theorem 2 Let .(M, gab) be a CSCD spacetime as described in Sect. 2.1. Then a 
finite energy solution to (1) admits a gauge which satisfies the conditions 

(i) .∇aA
a = 0 in a neighbourhood of . Σ and a neighbourhood of . I +, 

(ii) .a|Σ = 0 = ∇ · A|Σ , and 
(iii) .Â[1]

1 |I + = 0, 

where .Â
[1]
1 = Ω−1Â1, and there exist bounded, invertible linear operators 

. T± : Ḣ 1
C(Σ)curl ⊕ L2(Σ) −→ Ḣ1

(I ±),

(A,∇T A)|Σ I−→ (Â±
0 , Â±

1 , Â±
2 ),

corresponding to the future/past development according to (1) on . M in the above 
gauge, which map finite energy Maxwell potential initial data on . Σ to finite energy 
Maxwell potential characteristic data on . I ±. The function spaces above are given 
by 

.Ḣ 1
C(Σ)curl = {A ∈ Ḣ 1(Σ) : ∇ · A = 0, ∇ × A ∈ L2(Σ)}
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and .Ḣ1
(I ±) as in Theorem 1. Consequently, there exists a bounded, invertible 

linear scattering operator 

. S = T+ ◦ (T−)−1 : Ḣ1
(I −) −→ Ḣ1

(I +)

(Â−
0 , Â−

1 , Â−
2 ) I−→ (Â+

0 , Â+
1 , Â+

2 )

which corresponds to the development of .(Â−
0 , Â−

1 , Â−
2 ) from .I − according to (1) 

on . M in the above gauge. 

4 Remarks 

4.1 Conformal Scale 

The construction of the gauge and the spaces of characteristic data rely on the 
existence of a conformal scale which satisfies a number of conditions. In effect, 
we construct a conformal scale in which .I + is almost as ‘flat’ as in the case of 
Minkowski space, which in general is permitted by the smoothness of the conformal 
boundary and the rapid decay of background matter fields at infinity. In this scale we 
have that the spin coefficients (cf. [13]) . ̂λ, . π̂ , . μ̂, . ̂τ and . γ̂ vanish on .I +, . ̂ν vanishes 
in a neighbourhood of .I +, and . μ̂ is real in a neighbourhood of .I +. Moreover, 
the components .Ф̂21 and .Ф̂22 of the trace-free Ricci tensor of .ĝab vanish on .I +, 
as does the full rescaled Weyl tensor. This conformal scale is the analogue of the 
conformal factor .Ω = r−1 in Minkowski space. 

4.2 Spaces of Data 

The spaces of initial and characteristic data are derived from the (conformally 
covariant) Maxwell stress-energy tensor and a choice of timelike conformal Killing 
field, together with various gauge conditions on the potential. For the space of 
characteristic data (on .I +), the expression for the transverse component .Â+

0 comes 
from the reduction of our gauge to .I +. Precisely, the Lorenz gauge in the physical 
spacetime reduces to the condition .Â1 = 0 on .I + at first order in . Ω, and to the 
condition 

. − f Â
[1]
1 + þ̂'Â0 − 2 Re ð̂ ¯̂

A2 = 0

on .I + at second order in . Ω, for a smooth function f . This becomes an ODE for . Â0
on .I + if we impose the additional gauge condition that .Â[1]

1 = 0 on .I +, which we 
then solve by integrating in the Bondi parameter u, . ̂þ' = ∂u, on .I +. Note that we
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set .Â+
0 to vanish at . i0. If the free data .Â+

2 is smooth and compactly supported, for 

example, then the formula for . Â+
0 , being an integral along .I + of a function which 

decays towards both . i+ and . i0, means that .Â+
0 can be chosen to vanish at either . i0

or . i+, but not both. We expect the difference .Â+
0 |i+ − Â+

0 |i0 to be related to the 
electromagnetic memory effect. This will be explored elsewhere. 

The conditions on the space of initial data are reasonably self-explanatory. What 
is not immediately obvious, however, is that the condition on the background 
spacetime 

.‖r2 Ric(h)‖L∞(Σ) < C−1 (3) 

for some constant C in fact arises from the construction of the initial data. This is due 
to the following reason. On a general (e.g. CSCD) spacetime, even in the gauge (2) 
on . Σ, the canonical energy on . Σ does not define a norm on the potential due to the 
presence of the Ricci curvature of h. One must therefore show that there is a one-to-
one correspondence between finite energy fields .E, B ∈ L2(Σ) and potentials in a 
suitable space by some other means. Essentially, this amounts to solving the elliptic 
system 

. ΔAi + RijAj = −(∇ × B)i

on . Σ. However, the Ricci curvature .Rij = Ric(h)ij on . Σ is in general not positive-
definite, and so standard elliptic theory fails here. Indeed, it is not clear what the 
kernel of the operator from .Ḣ 1(Σ;R3) into .Ḣ−1(Σ;R3), as defined by the left-
hand side of the above equation, is in general. If the assumption (3) on .Ric(h) is 
made, however, then it is possible to ensure, using Hardy’s inequality on . Σ, that 
.‖A‖Ḣ 1(Σ) ≾ ‖B‖L2(Σ), which is then sufficient to control the regularity of the initial 
data. 

4.3 Goursat Problem 

The invertibility of the operators .T± is equivalent to the well-posedness of the 
characteristic initial value problem (or Goursat problem) for (1) from .I ± with 
finite energy characteristic data. The main analytic tool that enables us to solve 
the Goursat problem is Bär and Wafo’s extension (see Theorem 23 in [1]) of a 
theorem due to Hörmander [10], which ensures that this can be done from compactly 
supported data on .I +. Some care is required, however, since the component .Â+

0 is 

not compactly supported even if .Â+
2 ∈ C∞

c (I +). This leads us to solve the Goursat 
problem near . i+ separately, where the solution is pure gauge and we first solve a 
wave equation for the Maxwell field .F̂ab instead. We then recover the potential near 
. i+ using our gauge conditions.
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4.4 Role of Timelike Conformal Symmetry 

As stated in Theorem 1, in the case of Minkowski space one has, in addition to 
the standard timelike Killing field . K = ∂t , the  conformal timelike Killing field 
.K0 = (t2 + r2)∂t + 2tr∂r , known as the Morawetz vector field, the generator 
of ‘inverted time translations’ on . M. Since the Maxwell stress-energy tensor is 
traceless, .K0 also provides a conserved energy which carries different weights, 
.E, B ∈ r−1L2(Σ;R3). At null infinity, while K becomes tangent to .I +, . K0
is transverse to .I +, so the energy on .I + picks up angular derivatives (see the 
definition of the space of scattering data .u−1Ḣ(I +) in Theorem 1). The overall 
result is that the spaces of initial and scattering data with respect to .K0 are strictly 
smaller than with respect to K , resulting in a stronger scattering theory. Loosely 
speaking, .SK therefore decomposes into a ‘direct sum’ which contains .SK0 as a 
factor. 
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Remark on the Ill-Posedness 
for KdV-Burgers Equation in Fourier 
Amalgam Spaces 

Divyang G. Bhimani and Saikatul Haque 

Abstract We have established (a weak form of) ill-posedness for the KdV-Burgers 
equation on a real line in Fourier amalgam spaces .ŵ

p,q
s with .s < −1. The particular 

case .p = q = 2 recovers the result in Molinet and Ribaud (Int. Math. Res. Not. 
2002:1979–2005 (2002)). The result is new even in Fourier Lebesgue space . FL

q
s

which corresponds to the case .p = q(/= 2) and in modulation space .M2,q
s which 

corresponds to the case .p = 2, q /= 2. 

Keywords Korteweg-de Vries-Burgers (KdV-B) equation · Ill-posedness · 
Fourier amalgam spaces · Fourier-Lebesgue spaces · Modulsation spaces 
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1 Introduction 

In this paper we consider the Korteweg-de Vries–Burgers (KdV-B) equation posed 
on the real line: 

.

{

ut + uxxx − uxx + uux = 0

u(0, x) = u0
(t, x) ∈ R × R, (1) 

where . u = u(t, x) ∈ R.

The KdV-B (1) was derived as a model for the propagation of long, weakly 
nonlinear dispersive waves in certain physical contexts when dissipative effects 
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occur (see [6]). Many authors have studied the short and long time behaviours of 
solutions of KdV, KdV-B and several of its variants in the context of Sobolev spaces, 
see e.g. [8, 9] and the references therein. In recent years, there has been a great 
deal of interest in studying dispersive PDEs with Cauchy data in low regularity 
spaces. See e.g. survey article [14]. Recently, in [17] authors have studied KdV 
in modulation spaces, and in [2–4] authors have studied ill-poedesness for wave, 
BBM and NLS in Fourier amalgam spaces, see also [13, 16]. We refer to [1] by  
Bejenaru-Tao for abstract well-posedness and ill-posedness theory. However, we 
note that there are no known well/ill-posedness results for (1) in modulation and 
Fourier amalgam spaces. 

In this note, we would like to initiate the study of ill-posedness for (1) in the realm 
of Fourier amalgam spaces. We now briefly recall these spaces. In order to study 
well-posednes for 1D cubic nonlinear Schrödinger equations, in [11, 12], Oh and 
Forlano have introduced the Fourier amalgam space . ̂wp,q

s (1 ≤ p, q ≤ ∞, s ∈ R) :

. ̂w
p,q
s (R) =

{

f ∈ S '(R) : ‖f ‖ŵ
p,q
s

=
∥

∥

∥

∥

∥

∥χn+Q(ξ)Ff (ξ)
∥

∥

L
p
ξ (R)

〈n〉s
∥

∥

∥

∥

𝓁
q
n(Z)

< ∞
}

where .Q = (−1/2, 1/2] and . F denote the Fourier transform. These spaces 
recapture several known spaces: 

. ̂w
p,q
s (R) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

FL
q
s (R) (Fourier-Lebesgue space) if p = q

M
2,q
s (R) (modulation space) if p = 2

Hs(R) (Sobolev space) if p = q = 2.

See also Remarks 2, 3, 4. We now state our main result. 

Theorem 1 Let .s < −1. Then there does not exist any .T > 0 such that (1) admits a 
unique local solution defined on the interval .[0, T ] and such that the flow-map . u0 I→
u(t), t ∈ [0, T ] is .C2-differentiable at zero from .ŵ

p,q
s (R) to .C([0, T ]; ŵ

p,q
s (R)). 

Theorem 1 is new for .p = q /= 2 and recovers the result of Molinet-Ribaud 
in [8, Theorem 1.2]. The method of proof for Theorem 1 rely on showing the 
“unboundednes” of the second Picard iterate associated with 1- which was initiated 
by Bourgain [7] for KdV and later for mKdV by N. Tzvetkov in [15]. See also [5, 
Section 4] and the references there in for the further comments. 

We plan to address the norm-inflation (the stronger phenomenon than the mere 
ill-poseness) and even the worst situation of norm inflation with infinite loss of 
regularity for (1) in our future works. We note that recently similar questions 
we have already addressed for Hartree, nonlinear Schrödinger, BBM and wave 
equations in [2–4]. We also expect to develop well-posedness theory for (1) in . ̂wp,q

space in the future. 
We conclude this section by following remarks.
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Remark 2 Recall that the Fourier Lebesgue space .FL
q
s is defined by . {f ∈

S '(Rd) : ‖f ‖FL
q
s

:= ‖〈ξ 〉sFf ‖Lq < ∞}. 
Remark 3 For any given function f which is locally in B (Banach space) (i.e, 
.gf ∈ B,∀g ∈ C∞

0 (Rd)), we set .fB(x) = ‖fg(· − x)‖B. The Feichtinger’s [10] 
Wiener amalgam space .W(B,C) endowed with the norm . ‖f ‖W(B,C) = ‖fB‖C.

The Fourier amalgam spaces is a Fourier image of particular Wiener amalgam 
spaces, specifically, . FW(Lp, 𝓁

q
s ) = ŵ

p,q
s .

Remark 4 Let .ρ ∈ S(Rd), .ρ : R
d → [0, 1] be a smooth function satisfying 

.ρ(ξ) = 1 if .|ξ |∞ = max(|ξ1|, ..., |ξd |) ≤ 1
2 and .ρ(ξ) = 0 if .|ξ |∞ ≥ 1. Let . ρn

be a translation of . ρ, that is, .ρn(ξ) = ρ(ξ − n), n ∈ Z
d and denote . σn(ξ) =

ρn(ξ)
∑

𝓁∈Zd ρ𝓁(ξ)
, n ∈ Z

d . Then the frequency-uniform decomposition operators can be 

defined by 

. □n = F−1σnF , n ∈ Z
d .

The modulation .Mp,q
s (Rd) (with .1 ≤ p, q ≤ ∞, s ∈ R) is defined by the norm: 

. M
p,q
s (Rd) =

{

f ∈ S '(Rd) : ‖f ‖M
p,q
s (R) :=

∥

∥

∥‖□nf ‖L
p
x (R) 〈n〉s

∥

∥

∥

𝓁
q
n(Zd )

}

.

2 Proof of Theorem 1 

The integral version of (1) is given by 

.u(t) = S(t)u0 − 1

2

∫ t

0
S(t − τ)∂x[u(τ)]2dτ (2) 

where .{S(t)}t≥0 given by 

.FS(t)u0 = e−tξ2+itξ3Fu0, t ≥ 0 (3) 

is the semi-group associated to the linear part of (1). The proof of Theorem 1 follows 
from the fact that the second Picard iterate (given by (4)) associated to (2) is not 
continuous at zero from .ŵp,q

s (R) to .C([0, T ]; ŵ
p,q
s (R)). We refer to the proof of 

Theorem 1.10 in [5] and the reference therein for detail. 

Proof of Theorem 1 We define the sequence of initial data .{φN }N≥1 by 

. FφN = N
(

χIN
+ χIN

(−ξ)
)

where .IN = [N,N + 2] and .FφN denotes the space Fourier transform of .φN.
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Let us compute .‖φN‖ŵ
p,q
s

. Note that with . Ω = IN ∪ (−IN)

. ‖φN‖ŵ
p,q
s

=
∥

∥

∥

∥

∥

∥χn+Q(ξ)FφN

∥

∥

L
p
ξ (R)

〈n〉s
∥

∥

∥

∥

𝓁
q
n(Z)

= N

∥

∥

∥

∥

∥

∥χn+Q(ξ)χΩ(ξ)
∥

∥

L
p
ξ (R)

〈n〉s
∥

∥

∥

∥

𝓁
q
n(Z)

Now .‖χn+Q(ξ)χΩ(ξ)‖L
p
ξ (R) survives only if . n ∈ G := {m ∈ Z : (m + Q) ∩

Ω /= ∅}, and for these n’s one must have .|n| ∼ N . Since .#(G) ∼ 1 and 
.‖χn+Q(ξ)χΩ(ξ)‖L

p
ξ (R) = ‖χn+Q(ξ)‖L

p
ξ (R) = 1 for almost all .n ∈ G, we conclude 

. ‖φ0,N‖ŵ
p,q
s

= N

∥

∥

∥

∥

∥

∥χn+Q(ξ)χΩ(ξ)
∥

∥

L
p
ξ (R)

〈n〉s
∥

∥

∥

∥

𝓁
q
n(Z)

= N

⎛

⎝

∑

n∈G
‖χn+Q(ξ)χΩ(ξ)‖q

L
p
ξ (R)

〈n〉sq
⎞

⎠

1/q

∼ N(Nsq)1/q = N1+s .

Therefore .‖φN‖ŵ
p,q
−1

∼ 1 and .φN → 0 in .ŵp,q
s (R) for .s < −1. This sequence 

yields a counter example to the continuity of the second iteration of the Picard 
Scheme in .ŵp,q

s (R) for .s < −1 that is given by 

.A2(t, h, h) =
∫ t

0
S(t − τ)∂x[S(τ)h]2dτ (4) 

where .{S(t)}t≥0 is defined in (3). Indeed, computing the space Fourier transform we 
get 

. F(A2(t, φN, φN))(ξ)

=
∫ t

0
e−(t−τ)ξ2+i(t−τ)ξ3

(iξ)[FS(τ)φN ∗ FS(τ)φN ](ξ)dτ

=
∫ t

0
e−(t−τ)ξ2+i(t−τ)ξ3

(iξ)

∫

R

[FS(τ)φN ](ξ − ξ1)[FS(τ)φN ](ξ1)dξ1dτ

=
∫ t

0
e−(t−τ)ξ2+i(t−τ)ξ3

(iξ)

∫

R

e−τ(ξ−ξ1)
2+iτ (ξx i1)

3FφN(ξ − ξ1)

×e−τξ2
1 +iτ ξ3

1 FφN(ξ1)dξ1dτ

=
∫

R

e−tξ2
eitξ3FφN(ξ1)FφN(ξ − ξ1)(iξ)
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×
∫ t 

0 
e−(ξ2 

1 +(ξ−ξ1)
2−ξ2)τ ei(ξ3 

1 +(ξ−ξ1)
3−ξ3)τ dτdξ1 

= e−tξ2 
eitξ3 

(iξ)

∫

R 
FφN(ξ1)FφN(ξ − ξ1) 

e−(ξ2 
1 +(ξ−ξ1)

2−ξ2)t ei3ξξ1(ξ−ξ1)t − 1 

−2ξ1(ξ − ξ1) + i3ξξ1(ξ − ξ1) 
dξ1. 

We note that 

. |F(A2(t, φN, φN))(ξ)|

= N2|ξ |
∣

∣

∣

∣

∣

∫

Kξ

e−(ξ2
1 +(ξ−ξ1)

2)t ei3ξξ1(ξ−ξ1)t − e−ξ2t

−2ξ1(ξ − ξ1) + i3ξξ1(ξ − ξ1)
dξ1

∣

∣

∣

∣

∣

(5) 

where 

. Kξ = {ξ1 : ξ − ξ1 ∈ IN , ξ1 ∈ −IN } ∪ {ξ1 : ξ1 ∈ IN , ξ − ξ1 ∈ −IN }.

Note that for any .ξ ∈ [−1/2, 1/2], one has .|Kξ | ≥ 1 and 

. 

{

3ξξ1(ξ − ξ1) ≤ cN2

2ξ1(ξ − ξ1) ∼ N2
∀ξ1 ∈ Kξ .

Therefore, fixing .0 < t < 1, for .ξ ∈ [−1/2, 1/2], we have 

. Re
(

e−(ξ2
1 +(ξ−ξ1)

2)t)ei3ξξ1(ξ−ξ1)t − e−ξ2t
)

≤ −e−t/4 + e−2(N+2)2t

which leads for .N = N(t) > 0 large enough (so that .e−2(N+2)2t ≤ 1
2e−t/4) to  

.

∣

∣

∣

∣

∣

∫

Kξ

e−(ξ2
1 +(ξ−ξ1)

2)t ei3ξξ1(ξ−ξ1)t − e−ξ2t

−2ξ1(ξ − ξ1) + i3ξξ1(ξ − ξ1)
dξ1

∣

∣

∣

∣

∣

≥ c
e−t/4

N2 . (6) 

Now using the fact .‖an‖𝓁
q
n(Z) ≥ a0 we have 

.‖A2(t, φN , φN)‖ŵ
p,q
s

=
∥

∥

∥

∥

∥

∥χn+Q(ξ)FA2(t, φN, φN)(ξ)
∥

∥

L
p
ξ (R)

〈n〉s
∥

∥

∥

∥

𝓁
q
n(Z)

≥ ∥

∥χ0+Q(ξ)FA2(t, φN, φN)(ξ)
∥

∥

L
p
ξ (R)

=
(

∫

(− 1
2 , 1

2 ]
|FA2(t, φN, φN)(ξ)|pdξ

)1/p

.
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Using (5) and (6) we have 

. ‖A2(t, φN, φN)‖ŵ
p,q
s

≥ cN2 e−t/4

N2

(

∫

(− 1
2 , 1

2 ]
|ξ |pdξ

)1/p

≥ c0

for some positive constant . c0 independent of N and t . 
Since .φN → 0 in .ŵp,q

s (R), for .s < −1, this ensure that, for any fixed .t > 0, the 
map .u0 I→ A2(t, u0, u0) is not continuous at zero from .ŵp,q

s (R) into .ŵp,q
s (R). ⨅⨆
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1 Introduction 

In the paper is demonstrated what happens with a mixed type boundary value 
problem (BVP) for the bi-Laplace equation in a thin layer . Ωε around a surface . C in 
. R3 when the thickness of the layer . Ωε tends to zero: .ε → 0. The described problem 
is reformulated in the variational form and the limit of associated functionals is 
understood in the sense of .𝚪-convergence. The main tool is the representation of 
differential operators with the help of Gunter’s derivatives-the system of tangential 
derivatives .Dj := ∂j − νj ∂ν , .j = 1, 2, 3 on the surface and the normal derivative 
.∂ν := ∑3

j=1 νj ∂j , where .ν = (ν1, ν2, ν3)
⏉ is the unit normal vector field on the 

mid-surface . C. The first-order differential operator .Dj is the directional derivative 
along .πCej , where .πC : R

3 → T C is the orthogonal projection onto the tangent 
plane to surface . C and .e1, . . . , en is the canonical basis in the Euclidean space 
.ej = (δjk)1≤k≤3 ∈ R

3, with .δjk denoting the Kronecker symbol (cf. [7, 10, 12]). 
Calculus of Gunter’s derivatives on a hypersurface allows one to represent 

the most basic partial differential operators (PDO’s), as well as their associated 
boundary value problems on a hypersurface . C globally by means of the standard 
spatial coordinates in . Rn. Such BVPs arise in a variety of situations and have 
many practical applications. See, for example, [11, §72] for the heat conduction by 
surfaces, [2, §10] for the equations of surface flow, [1, 6] for the vacuum Einstein 
equations describing gravitational fields, [14] for the Navier-Stokes equations on 
spherical domains, as well as the references therein. 

A hypersurface . C in . R3 has the natural structure of a 2-dimensional Riemannian 
manifold and the aforementioned PDE’s are not the immediate analogues of the ones 
corresponding to the flat, Euclidean case, since they have to take into consideration 
geometric characteristics of . C such as curvature. Inherently, these PDE’s are 
originally written in local coordinates, intrinsic to the manifold structure of . C. 

The surface gradient .DC := (D1,D2,D3)
⏉ is defined on . C, and has a relatively 

simple structure. In terms of . DC , the Laplace-Beltrami operator on . C simply 
becomes (see [13, pp. 8]) 

.ΔC = D∗
CDC on C (1) 

and the bi-Laplace-Beltrami operator has a following form 

. Δ2
C = ΔC ΔC on C.

Friesecke et al. [9] derived a hierarchy of Plate Models from nonlinear elasticity 
by .𝚪-Convergence.
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In [5] was consider the mixed BVP with zero Dirichlet but non-zero Neumann 
data: 

.

ΔΩε T̃ (X , t) = f (X , t), (X , t) ∈ C × (−ε, ε),

T̃ +(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε),

(∂t T̃ )+(X ,±ε) = q±
ε (X ), X ∈ C.

(2) 

where .±∂t = ∂ν represent the normal derivatives on the surfaces .C × {±ε}. 
Here .C ⊂ S is a smooth subsurface of a closed hypersurface . S with smooth 
nonempty boundary . ∂C. In the investigation we apply that the Laplace operator 
.ΔΩε = ∂2

1 + ∂2
2 + ∂2

3 is represented up to the first order differential operator as 
the sum of the Laplace-Beltrami operator on the mid-surface and the square of the 
transversal derivative 

. ΔΩε T̃ = ΔC T̃ + ∂2
t T̃ + 2HC∂t T̃ .

The Laplace-Beltrami operator .ΔC is defined in (1) and mean curvature . HC(X ) :=
1

2

3∑

k=1

DkNk(X ) of the surface are extended properly from . C (see the forthcoming 

Lemma 5 below). 
Introducing the function .G(X , t) which has the same Dirichlet and Neumann 

traces as T on the .∂C × (−ε, ε) and on the upper and lower surfaces . C × {±ε}
respectively 

.G(X , t) = 1

4ε
(t + ε)2q+

ε (X ) − 1

4ε
(t − ε)2q−

ε (X ), q±
ε ∈ H̃

1(C) (3) 

we can reduce the problem (16) to the following boundary value problem with 
respect to unknown function . T = T̃ − G

.ΔΩεT (X , t) = F(X , t), (X , t) ∈ C × (−ε, ε), . (4) 

T +(X , t)  = 0, (X , t)  ∈ ∂C × (−ε, ε), . (5) 

(∂tT )+(X ,±ε) = 0, X ∈ C. (6) 

where 

. F(X , t) := f (X , t) − 1

4ε

(
(t + ε)2ΔCq+

ε (X ) − (t − ε)2ΔCq−
ε (X )

)
(7)

−H0
C(X )

2ε

(
(t + ε)q+

ε (X ) − (t − ε)q−
ε (X )

) − 1

2ε

(
q+
ε (X ) − q−

ε (X )
)
,

(X , t) ∈ C × (−ε, ε).
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The BVP (4)–(6) is reformulated as the minimization problem for the functional 
which, after scaling (stretching the variable .t = ετ and dividing the entire functional 
by . ε) has the following form 

. Eε(Tε) : =
1∫

−1

∫

C

[
1

2
(DCTε)

2(X , τ ) + 1

2ε2 (∂τ Tε)
2(X , τ )

+Fε(X , τ )Tε(X , τ )] dσdτ (8)

Fε(X , t) := F(X , εt), (X , t) ∈ C × (−ε, ε),

Tε(X , τ ) := T (X , ετ ) , Tε ∈ H̃
1(Ω1, ∂C × (−1, 1)),

Fε ∈ H̃
−1(Ω1), q±

ε ∈ H̃
2(C).

In [5] it was proved that, if 

.P(C) :=
{
T ∈ H

1(Ω1) : T (X , τ ) = TC(X ), TC ∈ H̃
1(C), τ ∈ [−1, 1]

}
, (9) 

. fε(X , t) := f (X , εt) →
ε→0

f 0(X ) in L2(Ω
1),

.q±
ε ∈ H̃

2(C) is uniformly bounded (with respect to . ε) in .H
2(C), and 

. lim
ε→0

q+
ε = lim

ε→0
q−
ε = q0, q0 ∈ L2(C),

1

2ε
(q+

ε − q−
ε ) →

ε→0
q1 in L2(C),

then the functional .Eε(Tε) in (8) .𝚪-converges to the functional 

.E(0)(T ) (10) 

. =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

C

[
〈DCTC(X ),DCTC(X )〉 + 2

(
f 0(X ) − H0

Cq0(X )

− q1(X )
)
TC(X )

]
dσ, T ∈ P(C);

+∞, T /∈ P(C).

In particular, the following Dirichlet boundary value problem on the mid-surface . C

. 

ΔCT (X ) = f 0(X ) − H0
Cq0(X ) − q1(X ), X ∈ C,

T +(X ) = 0, X ∈ ∂C, T ∈ H
1(C), f 0, q0, q1 ∈ L2(C),

is an equivalent reformulation of the minimization problem with the energy 
functional (10).
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In [4] by using the calculus of G. ̈unter’s tangential differential operators on 
hypersurfaces was established Finite Element Method for the considered boundary 
value problem and was found approximate solution in explicit form. 

In the present paper we investigate similar problem for a mixed boundary value 
problem for the bi-Laplacian equation in a thin layer around a surface . C with 
the boundary. We trace what happens in .𝚪-limit when the thickness of the layer 
converges to zero. It is shown how the mixed type boundary value problem (BVP) 
for the bi-Laplace equation in the initial thin layer transforms in the .𝚪-limit sense 
into an explicit Dirichlet BVP for the bi-Laplace-Beltrami equation on the surface. 

2 Auxiliary Materials 

Definition 1 Let k ≥ 1 and ω ⊂ Rn be a compact domain. An Ck-smooth 

hypersurface in Rn is implicitly defined as the set S =
{
X ∈ ω : ΨS(X ) = 0

}

where ΨS : ω → R is Ck-smooth (or Lipschitz smooth) and is regular ∇ Ψ(X ) /= 0. 

ν𝚪(t) is the outer unit normal vector field to the boundary 𝚪 = ∂S, which is 
tangent to S and ν(X ) is the outer unit normal vector field to S. By using implicit 
surface functions gradient we can write the unit normal vector field on the surface 
in explicit form: 

.ν(y) := lim
x→t

(∇ΨS)(x)

|(∇ΨS)(x)| , t ∈ S. (11) 

In applications it is necessary to extend the vector field ν(t) in a neighborhood of 
S, preserving some important features. Here is the precise definition of extension. 

Definition 2 Let S be a surface in Rn with unit normal ν. A vector filed N ∈ 
C1(Ωε ) in a neighborhood Ωε of S, will be referred to as a proper extension if 

N
∣
∣
∣
S 

= ν, it is a unit vector |N | = 1 in Ωε and it is a gradient vector field in the 

neighborhood: ∂jNk(x) = ∂kNj (x) for all x ∈ Ωε , j,  k  = 1, . . . , n.  

In [8] it was proved that the “naive” extension (cf. (11)) ν(t) := (∇ΨS )(x) 
|(∇ΨS )(x)| , x  ∈

Ωε is not proper. 

Corollary 3 For any proper extension N (x), x ∈ Ωε ⊂ Rn of the unit normal 
vector field ν to the surface S ⊂ Ωε the equality ∂NN (x) = 0 holds for all x ∈
Ωε . 

In particular, for the derivatives Dk = ∂k − Nk∂N , k  = 1, . . . , n ,  which 
are extension into the domain Ωε of Günter’s derivatives Dk = ∂k − νk∂ν on 
the surface S, the equalities hold: DkNj = ∂kNj − Nk∂N = ∂kNj , DkNj = 
DjNk, for all j, k = 1, . . . , n.
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Let us consider the system of (n + 1)-vectors 

.d j := ej − NjN , j = 1, . . . , n and d n+1 := N , (12) 

where e1, . . . ,  en is the Cartesian basis in Rn; the first n vectors d 1, . . . ,  d n are 
tangent to the surface C, while the last one d n+1 = N is orthogonal to all 
d 1, . . . ,  d n. 

Definition 4 For a function ϕ ∈ H1(Ωε ) the extended gradient is 

. DΩε ϕ =
{
D1ϕ, ...,Dnϕ,Dn+1ϕ

}⏉ =
n+1∑

j=1

(Djϕ)dj , Dn+1ϕ := ∂N ϕ

(13) 

and for a smooth vector field U = 
n+1∑

j=1 

U0 
j d j ∈ W(Ωε ) the extended divergence is 

.divΩε U :=
n+1∑

j=1

DjU
0
j + H0

C〈N ,U 〉 = −∇∗
ΩεU , (14) 

where H0 
C(X ) = (n − 1)HC(X ), HC(X ) is the extended mean curvature and 

. H0
Ωε(x) :=

n∑

j=1

∂jNj (x) =
n+1∑

j=1

DjNj (x)

=
n∑

j=1

Dj νj (X ) = H0
C(X ), x ∈ Ωε, X = πCx.

Lemma 5 The classical gradient∇ϕ :=
{
∂1ϕ, ..., ∂nϕ

}⏉
, written in the full system 

of vectors
{
d j

}n+1 
j=1 in (12) coincides with the extended gradient DΩε ϕ in (13). 

Similarly, the classical divergence div U := 
n∑

j=1 

∂jUj of a vector field U := 

n∑

j=1 

Uje
j , written in the full system (12), coincides with the extended divergence 

div U = divΩε U in (14). The extended gradient and the negative extended 
divergence are dual to D∗

Ωε = −divΩε and div∗
Ωε = −DΩε respectively.
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The Laplace-Beltrami operator ΔΩε := divΩεDΩε ϕ = −D∗
Ωε

(
DΩεϕ

)
on Ωε, 

written in the full system (12), has the following form 

. ΔΩεϕ =
n∑

j=1

D2
j ϕ + ∂2

N ϕ + H0
C∂N ϕ

=
n+1∑

j=1

D2
j ϕ + H0

CDn+1ϕ , ϕ ∈ H
2(Ωε) (15) 

hence the bi-Laplace-Beltrami operator acquires the following form 

. Δ2ϕ =
n+1∑

k,j=1

D2
kD2

j ϕ +
n+1∑

k=1

D2
k(H0

CDn+1ϕ)

+
n+1∑

j=1

(H0
CDn+1D2

jϕ + H0
CDn+1(H0

CDn+1ϕ)).

Definition and basic properties of 𝚪-convergence can be found in [3]: 

Definition 6 (𝚪-Convergence) We say that a sequence fj : X → R 𝚪-converges 
in X to f∞ : X → R if for all x ∈ X we have 

(i) (lim inf inequality) For every sequence
(
xj

)
converging to x, 

. f∞ (x) ⩽ lim inf
j

fj

(
xj

) ;

(ii) (Recovery sequence) There exists a sequence
(
x0 
j

)
converging to x, such that 

. f∞ (x) ≥ lim sup
j

fj

(
x0
j

)
;

The function f∞ is called the 𝚪-limit of
(
fj

)
and we write f∞ = 𝚪-limj fj .

𝚪-convergence has some “strange” properties, but it is perfectly adapted to the 
problems of mathematical physics. In particular, if ω is a bounded open subset of 
R

n−1, and if f : Rn → R is a strictly-convex function with quadratic growth; that 
is, c1|z|2 − c2 ≤ f (z) ≤ c3

(
1 + |z|2) , for all z ∈ Rn , and all ε >  0 the energy 

functional 

.Eε (u) =
∫

ω×(0,ε)

f (Du) dx defined on W 1,2 (ω × (0, ε)) ,
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𝚪-converges to 

. 𝚪 → lim
ε→0+

1

ε

∫

ω×(0,ε)

f̄ (Du) dx =
∫

ω

f̄
(
D̂u

)
dx̂.

Here x̂ = (x1, ..., xn−1) , x  = (
x̂, xn

)
, D̂u = (D1u, ..., Dn−1u) , Du  =(

D̂u, Dnu
)

and f̄ (z) = min {f (z, b) : b ∈ R} , upon identifying ω × (0, ε) with 

ω×(0, 1) by scaling in the n-th variable and W 1,2 (ω) with the functions in ω×(0, 1) 
independent of the n-th variable. 

3 Variational Formulation of Model Problem and 𝚪

Convergence 

We consider the bi-Laplace equation in “isotropic” medium, with the classical 
mixed boundary conditions on the boundary in the layer domain . Ωε := C × (−ε, ε)

of thickness . 2ε, where .C ⊂ S is a smooth subsurface of a closed hypersurface . S
with smooth nonempty boundary . ∂C. We will investigate the following BVP: 

.

Δ2
Ωεv(X , t) = f (X , t), (X , t) ∈ C × (−ε, ε),

v+(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε),

(∂tv)+(X ,±ε) = 0, X ∈ C × {±ε},
(Δv)+(X , t) = 0 (X , t) ∈ ∂C × (−ε, ε),

(∂tΔv)+(X ,±ε) = h±
ε (X , t) ∈ C × {±ε},

(16) 

where .v ∈ H
2
p(Ωε), h±

ε ∈ H
−3/2
p (C). 

Results on the uniqueness and solvability of the Bi-Laplace equation in a classical 
setting can be found in [15]. 

For the investigation we assume that the bi-Laplace operator .Δ2
Ωε is represented 

by the following sum: 

. Δ2
Ωε ũ = Δ2

C ũ + 2∂2
t ΔC ũ + 2ΔCHC∂t ũ

+4HC∂3
t ũ + 2HCΔC∂t ũ + 4HC∂2

t ũ + ∂4
t ũ,

where .D4 = ∂t . The bi-Laplace-Beltrami operator .Δ2
C and the mean curvature 

.HC(X ) of the surface are extended properly from . C.
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Consider the following auxiliary BVP associated with the BVP (16) 

.

ΔΩεG(X , t) = 1

4ε
(t + ε)2h+

ε − 1

4ε
(t − ε)2h−

ε , (X , t) ∈ C × (−ε, ε),

G±(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε),

(∂tG)±(X ,±ε) = 0, X ∈ C × {±ε},
(17) 

We can reduce the problem (16) to the following boundary value problem with 
an unknown function . u = v − G

. Δ2
Ωεu(X , t) = Δ2

Ωεv(X , t) − ΔΩεΔΩεG := F(X , t), (X , t) ∈ C × (−ε, ε),

u+(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε),

(∂tu)+(X ,±ε) = 0, X ∈ C × {±ε}, (18)

(Δu)+(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε),

(∂tΔu)+(X ,±ε) = 0, X ∈ C × {±ε},

where .u ∈ H
2
p(Ωε), h±

ε ∈ H̃
2(C) and 

. F(X , t) = f (X , t) − 1

4ε

(
(t + ε)2ΔCh+

ε (X ) − (t − ε)2ΔCh−
ε (X )

)
(19)

−H0
C(X )

2ε

(
(t + ε)h+

ε (X ) − (t − ε)h−
ε (X )

) − 1

2ε
(h+

ε (X )

−h−
ε (X )), (X , t) ∈ C × (−ε, ε).

The BVP (18) is reformulated as the minimization problem for the functional 
which, after scaling (stretching the variable .t = ετ and dividing the entire functional 
by . ε) has the following form 

. Eε(uε) :=
1∫

−1

∫

C

[
1

2

⎛

⎝
3∑

j=1

D2
j uε(X , τ ) + 1

ε2
∂2
τ uε(X , τ ) + 1

ε
H0

C∂τuε(X , τ )

⎞

⎠

2

−Fε(X , τ )uε(X , τ )

]

dσdτ, (20)

Fε(X , t) = F(X , εt) = f (X , εt) − ε

4

(
(t + 1)2ΔCh+

ε (X ) − (t − 1)2ΔCh−
ε (X )

)
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−H0 
C(X ) 
2

(
(t + 1)h+

ε (X ) − (t − 1)h−
ε (X )

) − 
1 

2ε 
(h+

ε (X ) − h−
ε (X )), 

uε ∈ H̃
2(Ω1, ∂C × (−1, 1)), Fε ∈ H̃

−2(Ω1), h±
ε ∈ H̃

2(C). 

The problem is: Do these energies defined on thin n-dimensional domains . Ωε

“converge” to an energy defined on the .n − 1 dimensional hypersurface . C (the 
mid-surface of . Ωε) when the domain . Ωε is “squeezed” infinitely in the transversal 
direction to . C? 

The main result of the present investigation is the following Theorem 7. 

Theorem 7 Let .P(C) is defined in (9) and 

. fε(X , t) := f (X , εt) →
ε→0

f 0(X ) in L2(Ω
1),

.h±
ε ∈ H̃

2(C) be uniformly bounded (with respect to . ε) in .H
2(C), and 

. lim
ε→0

h+
ε = lim

ε→0
h−

ε = h0, h0 ∈ L2(C),

1

2ε
(h+

ε − h−
ε ) →

ε→0
h1 in L2(C).

Then the functional .Eε(uε) in (20) .𝚪-converges to the functional 

.E(0)(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫

C

[
⎛

⎝
3∑

j=1

D2
j uC(X )

⎞

⎠

2

+ 2
(
f 0(X ) − H0

Ch0(X )

−h1(X )
)
uC(X )

]

dσ, u ∈ P(C);
+∞, u /∈ P(C).

(21) 

The following Dirichlet boundary value problem on the mid-surface . C

.

Δ2
Cu(X ) = f 0(X ) − H0

Ch0(X ) − h1(X ), X ∈ C,

u+(X ) = 0, X ∈ ∂C,

δ+
C (χ) = 0, χ ∈ ∂C

u ∈ H
2(C), f 0, h0, h1 ∈ L2(C),

(22) 

is an equivalent reformulation of the minimization problem with the energy func-
tional (21).
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Bounded Weak Solutions with Orlicz 
Space Data: An Overview 

David Cruz-Uribe 

Abstract It is well known that non-negative solutions to the Dirichlet problem 
.Δu = f in a bounded domain . Ω, where .f ∈ Lq(Ω), .q > n

2 , satisfy . ‖u‖L∞(Ω) ≤
C‖f ‖Lq(Ω). We generalize this result by replacing the Laplacian with a degenerate 
elliptic operator, and we show that we can take the data f in an Orlicz space . LA(Ω)

that, in the classical case, lies strictly between .L
n
2 (Ω) and .Lq(Ω), .q > n

2 . 

Keywords Orlicz spaces · Degenerate elliptic equations · Bounded solutions · 
A priori estimates 

2000 Mathematics Subject Classification 35B45, 35D30, 35J25, 46E30 

1 Introduction: Uniformly Elliptic Operators 

In this note we survey recent results from [7], done jointly with Scott Rodney. Let . Ω
be a bounded, open, and connected subset of . Rn, let .Q = Q(x) be an .n×n positive 
semi-definite, self-adjoint measurable matrix function, and let v be a non-negative, 
measurable function. (Hereafter, we refer to v as a weight.) We are interested in 
studying solutions of the Dirichlet problem for the elliptic PDE 

.

{− Div (Q∇u) = vf for x ∈ Ω

u = 0 for x ∈ ∂Ω
(1) 

Provided that .v(x) > 0 a.e. we can define the operator 

. Lu = −v−1 Div (Q∇u) ,
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and while this does not make sense if .v(x) = 0 on a set of positive measure, we will 
abuse notation and say that we are interested in solutions of the equation .Lu = f . 
As we will see, there is a close interaction between the matrix Q and the weight v; 
in turn, much of the work on this equation is informed by the theory of weighted 
norm inequalities in harmonic analysis. 

Our work is motivated by earlier results by Fabes et al. [11], Chanillo and 
Wheeden [3], Franchi et al. [12], and Sawyer and Wheeden [18–20]. Our previous 
work with Rodney and Rosta [9, 10] is also relevant. 

Our starting point is the following classical result for uniformly elliptic operators 
due to Trudinger [22] (see also Maz. 'ya [15, 16] and Stampacchia [21]). 

Theorem 1 Let .f ∈ Lq(Ω), .q > n
2 , Q uniformly elliptic, and .v = 1. If  u is a 

non-negative weak solution of (1), then 

. ‖u‖L∞(Ω) ≤ C‖f ‖Lq(Ω).

The standard proof of this result using Moser iteration, and the classical Sobolev 
inequality 

. 

( ∫
Ω

|ψ(x)| 2n
n−2 dx

) n−2
2n ≤ C

( ∫
Ω

| ∇ ψ(x)|2 dx

) 1
2

.

The lower bound for q is closely related to the fact that 

. 
n

2
=

(
n

n − 2

)'

is the dual exponent of the “gain” in the Sobolev inequality. The bound on q in 
Theorem 1 is sharp: if we take Q to be the identity (so the operator becomes the 
Laplacian) and .Ω = B(0, 1), and if we let 

. f (x) = 1

|x|2 log(e + |x|−1)
,

then .f ∈ L
n
2 (Ω) but the solution to .Δu = f is unbounded at the origin. 

Our first result generalizes Theorem 1 by showing that we can get closer to the 
endpoint by passing to a finer scale of spaces. Recall that a Young function . A :
[0,∞) → [0,∞), is an increasing, convex function that satisfies .A(0) = 0 and 
.A(t)/t → ∞ as .t → ∞. We define the Orlicz space .LA(Ω) to consist of all 
measurable functions f such that 

.‖f ‖LA(Ω) = inf

{
λ > 0 :

∫
Ω

A

( |f (x)|
λ

)
dx ≤ 1

}
< ∞.
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If we take .A(t) = t
n
2 log(e + t)q , .q > 0, then for every .ϵ > 0, 

. L
n
2 +ϵ(Ω) ⊊ LA(Ω) ⊊ L

n
2 (Ω).

For more information on Orlicz spaces, see [17]. 

Theorem 2 Let .f ∈ LA(Ω), .A(t) = t
n
2 log(e + t)q , .q > n

2 , Q uniformly elliptic, 
and .v = 1. If  u is a non-negative weak solution of (1), then 

. ‖u‖L∞(Ω) ≤ C‖f ‖LA(Ω).

Theorem 2 is a special case of our main result, Theorem 3 below. It is, however, 
not new: earlier, Cianchi [4] proved it using very different techniques; he also gave 
a better lower bound, proving it for .q > n

2 − 1. The above example shows that this 
bound is sharp. 

2 Degenerate Elliptic Operators 

Our main result is a generalization of Theorem 2 that holds for a large class of 
degenerate elliptic operators. Our approach, following our previous work in [9, 10] 
and the earlier work of Sawyer and Wheeden [19, 20] is to give the broadest possible 
hypotheses on the matrix Q and the weight v for which our results hold. We make 
three critical assumptions:

• .v ∈ L1(Ω);
• .|Q(x)|op = sup{|Q(x)ξ | : ξ ∈ R

n, |ξ | = 1} ≤ kv(x);
• there exists .σ > 1 such that for all .ψ ∈ Lip0(Ω) (that is, compactly supported 

Lipschitz functions) 

. 

( ∫
Ω

|ψ(x)|2σ v(x) dx

) 1
2σ ≤ C

( ∫
Ω

|Q 1
2 (x)∇ ψ(x)|2 dx

) 1
2

.

These hypotheses hold in a number of cases: if we take .v = 1 and let Q be 
uniformly elliptic, the constant k is just the upper bound on the eigenvalues of Q, 
and we can take .σ = n

n−2 and use the classical Sobolev inequality. Fabes et al. [11] 
considered the case when the weight v satisfies the Muckenhoupt . A2 condition, 

. [v]A2 = sup
B

1

|B|
∫

B

v(x) dx
1

|B|
∫

B

v(x)−1 dx < ∞,

where B is any ball, and Q satisfies the degenerate ellipticity condition 

.λv(x)|ξ |2 ≤ 〈Q(x)ξ, ξ 〉 ≤ Λv(x)|ξ |2.
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They proved that in this case the Sobolev inequality holds for .σ = n
n−1 + δ, where 

.δ > 0 depends on n and .[w]A2 . 
Chanillo and Wheeden [3] introduced the concept of 2-admissible pairs. They 

considered matrices Q that satisfy 

. w(x)|ξ |2 ≤ 〈Q(x)ξ, ξ 〉 ≤ v(x)|ξ |2,

where .w, v are weights that satisfy .w(x) ≤ v(x), v doubling, .w ∈ A2, and together 
satisfy a balance condition: there exists .σ > 1 such that given .B1 ⊂ B2 ⊂ Ω, 

.
r(B1)

r(B2)

(
v(B1)

v(B2)

) 1
2σ ≤ C

(
w(B1)

w(B2)

) 1
2

, (2) 

where .r(B) is the radius of the ball B. They proved that in this case a weighted 
Sobolev inequality holds: 

. 

( ∫
Ω

|ψ(x)|2σ v(x) dx

) 1
2σ

≤ C

(∫
Ω

| ∇ ψ(x)|2w(x) dx

) 1
2 ≤

( ∫
Ω

|Q 1
2 (x)∇ ψ(x)|2 dx

) 1
2

.

Explicit examples of weights that satisfy the balance condition (2) can be found 
in [5]. 

The next step is to give a definition of weak solutions that is adapted to our 
operator. We follow the approach developed in [9]. Define the degenerate Sobolev 
space .QH 1

0 (v;Ω) to be the closure of .Lip0(Ω) with respect to the norm 

. ‖ψ‖QH 1
0 (v;Ω) = ‖ψ‖L2(v;Ω) + ‖∇ψ‖L2

Q(Ω)

=
( ∫

Ω

|ψ |2v dx

) 1
2 +

( ∫
Ω

|√Q(x)∇ψ |2 dx

) 1
2

.

Formally, .QH 1
0 (v;Ω) consists of equivalence classes of Cauchy sequences; 

however, we can define a unique pair of functions that is associated with each 
such class. Given a Cauchy sequence .{φk}∞k=1, since both .L2(v;Ω) and .L2

Q(Ω) are 

Banach spaces, the sequence converges to some function u in .L2(v;Ω), and the 
sequence .{∇ φk}∞k=1 converges to some vector-valued function . g in .L2

Q(Ω). We will 
write .∇ u = g and think of it as the weak gradient of u. However, it is important to 
note that in this setting, . g may not be a weak derivative in the classical sense if the 
matrix Q is too degenerate. In [11], the authors give an example of a matrix Q and 
a pair .(u, g) such that u is non-constant, but .g = 0.
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We now define weak solutions of the Dirichlet problem (1) to be any pair . u =
(u,∇ u) ∈ QH 1

0 (v;Ω) that satisfies 

. 

∫
Ω

∇ψ(x) · Q(x)∇u(x) dx =
∫

Ω

f (x)ψ(x)v(x) dx

for every .ψ ∈ Lip0(Ω). 
We can now state our main result. Here .LA(v;Ω) is an Orlicz space defined as 

above but with respect to the measure .v dx. 

Theorem 3 Let Q and v satisfy the above hypotheses with gain .σ > 1 in the 
Sobolev inequality. Let .f ∈ LA(v;Ω), where .A(t) = tσ

'
log(e + t)q , .q > σ '. If  

.u = (u,∇ u) ∈ QH 1
0 (v;Ω) is a non-negative weak solution of (1), then 

. ‖u‖L∞(v;Ω) ≤ C‖f ‖LA(v;Ω).

The proof of Theorem 3 is loosely modeled on one of the proofs of Theorem 1. 
As we noted above, the typical proof of this result uses Moser iteration, but we were 
unable to make it work in our setting. Instead, we used a proof that relied on De 
Giorgi iteration, adapting ideas from the recent work of Korobenko, et al. [14]. 

The first step in the proof is technical: as we noted above, given a pair . (u,∇ u) ∈
QH 1

0 (v;Ω), .∇ u may not be a classical weak derivative. Nevertheless, we need it 
to satisfy many of the same properties; in proving that they do, we make very heavy 
use of the hypothesis that .|Q|op ≤ kv. This should be contrasted with our results 
in [9] which did not require this assumption. 

Given these properties, we can now begin the process of De Giorgi iteration. For 
each .r > 0, define 

. φ = φr(u) = (u − r)+.

Let .S(r) = {x : u(x) > r}. Then we have that 

. (φ,∇φ) = ((u − r)+, χS(r)∇u) ∈ QH 1
0 (Ω).

By the Sobolev inequality we assume to hold, and by the definition of weak solutions 
(using . φ as our test function), we have that 

.‖φ‖2
L2σ (v;Ω)

≤ C0‖f ‖
L(2σ)' (v;Ω)

‖φ‖L2σ (v;S(r)).
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By Hölder’s inequality in the scale of Orlicz spaces, and by the definition of the 
Orlicz norm, for .s > r we have that 

.v(S(s))
1

2σ (s − r) ≤ ‖φ‖L2σ (v;Ω) (3) 

≤ C‖f ‖
L(2σ)' (v;S(r)) 

≤ C‖f ‖LA(v;Ω)‖χS(r)‖LB(v;Ω) 

≤ C‖f ‖LA(v;Ω) 
v(S(r)) 

1 
2σ 

log(e + (v(S(r)))−1) q
(

(2σ)'
σ '

)

If we now define 

. Ck = τ0‖f ‖LA(v;Ω)

(
1 − 1

(k + 1)ϵ

)
,

then to complete the proof we need to show that 

. v(S(τ0‖f ‖LA(v;Ω))) = lim
k→∞ v(S(Ck)) = 0.

To prove this, let .mk = − log(v(S(Ck)); then the above limit is equivalent to 
showing that .mk → ∞ as .k → ∞. 

In inequality (3), let .s = Ck+1, . r = Ck . If we fix .ϵ = q
σ ' − 1 > 0, then 

. mk+1 ≥ log
(ϵτ0

C

)
+ log

(
mk

k + 2

) 2σq

σ '
+ mk.

By induction, we can show that there exists .τ0 > 0 (very large) such that . mk ≥
m0 + k. Therefore, 

. lim
k→∞ mk = ∞.

3 Further Remarks 

Theorem 3 is part of a larger project to develop a theory of existence, uniqueness, 
and regularity for degenerate PDEs. We want to close this note by outlining some 
further directions. Motivated directly by the work in [7], we see three immediate 
problems. First, as we noted, Theorem 2, which is just a special case of Theorem 3, is  
not sharp. We have not, despite repeated efforts, been able to improve our argument. 
Therefore, it is open whether Theorem 3 can be improved so that in the classical 
case we get a sharp result. Second, and perhaps related, our proof uses De Giorgi
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iteration. We originally attempted to use Moser iteration but were not successful. It 
would be interesting to make Moser iteration work in this setting. Towards this end, 
we have generalized the classical identiy 

. lim
p→∞ ‖f ‖Lp(Ω) = ‖f ‖L∞(Ω),

which plays a central role in Moser iteration, to the scale of Orlicz spaces: see [8]. 
Third, the classical result is known for equations with lower order terms, so it should 
be possible to formulate and prove a similar result for degenerate equations. 

Looking beyond this, there are several directions we believe are worth exploring. 
The first is whether we can extend these results to data in other function spaces, 
such as Lorentz spaces, the small Lebesgue spaces (that is, the dual spaces of the 
grand Lebesgue spaces of Iwaniecz and Sbordone–see [2]), or the variable Lebesgue 
spaces. Each of these families of function spaces would provide new insight into the 
behavior of solutions as the data function gets close to the endpoint space. 

Second, we want to examine whether the hypothesis that we have a Sobolev 
inequality with gain . σ can be weakened. Motivated by problems in the study of 
hypoelliptic operators, Korobenko, et al. [14] have introduced Sobolev inequalities 
with gain in the scale of Orlicz spaces: roughly, replacing the .L2σ norm on the 
lefthand side with an Orlicz norm given by .A(t) = t2 log(e + t)σ . We think that it 
is worth exploring whether Theorem 3 can be extended in this direction. 

Third, having given conditions when solutions are bounded, the next step is to 
see whether we can prove regularity of solutions. At the heart of this problem will 
be to determine whether additional hypotheses are required. Preliminary results in 
this direction were obtained in [5, 6]. 

Finally, we are interested in understanding further the hypothesis that a Sobolev 
inequality (either in the scale of Lebesgue or Orlicz spaces) exists. Given a matrix 
Q and a weight v, what are necessary and/or sufficient conditions on the domain 
. Ω for some kind of Sobolev inequality to exist? We are particularly interested in 
generalizing the geometric characterizations in [13] (see also [1]). 
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Recent Progress on the Mathematical 
Theory of Wave Turbulence 

Yu Deng 

Abstract In this note we review some recent progress on the mathematical theory 
of wave turbulence. 

Keywords Wave turbulence theory · Nonlinear dispersive equations · Wave 
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1 Introduction 

In this note we will review some recent works on the mathematical theory of wave 
turbulence, a subject that has seen tremendous progress in the last few years. 

1.1 Description of the Theory 

The wave turbulence theory, or wave kinetic theory, concerns the behavior of 
statistical quantities for nonlinear dispersive equations in the kinetic limit. It is the 
wave analog of the classical kinetic theory for particles, and has played a central 
role in many physical and scientific applications. 

To describe the idea, one starts with an arbitrary dispersive or wave equation as 
a first principle; here we will consider the cubic nonlinear Schrödinger equation, 
which is in some sense the universal Hamiltonian dispsesive PDE [42]. This 
equation is posed on a large (periodic) box .Td

L := [0, L]d , and is viewed as a 
system of interacting waves, which are represented by the Fourier modes of . Td

L. 
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These waves play the role of particles in the classical kinetic theory of Boltzmann, 
while the nonlinear Schrödinger equation replaces the Newtonian dynamics with 
collision. 

Thus, we consider the equation 

.(i∂t + Δ)u = α|u|2u (1) 

on . Td
L, where . α is a parameter measuring the strength of the interaction between 

waves. Note that the Fourier modes are .eik·x for .k ∈ Z
d
L := (L−1

Z)d , so if we  
restrict to unit size frequencies .|k| ∼ 1, then the number of different modes (i.e. 
degree of freedom) is .∼ Ld . 

The initial data of (1) is chosen to be 

.u(0, x) = 1

Ld/2

∑

k∈d
L

û(0, k)e2πik·x; û(0, k) = √
nin(k) · ηk(ω), (2) 

where .ηk(ω) are i.i.d. random variables with .Eηk = 0 and .E|ηk|2 = 1. In particular 
the state of different waves (Fourier modes) are independent initially; this same 
independence assumption is also made in the rigorous derivation of Boltzmann 
equation [25, 33]. 

In practice, the law of .ηk(ω) is usually chosen to be symmetric with respect to 
complex rotations, which is an important physical assumption known as random 
phase. Under this assumption we have that .E|u(0, x)|2 is independent of x and has 
size . ∼1; this is referred to as the (spatially) homogeneous setting. The corresponding 
inhomogeneous setting corresponds to replacing the plane waves .e2πik·x by suitable 
wave packets whose strength depends on x, but this only leads to technical 
differences for the theory. 

1.1.1 Scope of the Theory 

Define the kinetic time scale, or  Van-Hove time, which is 

. Tkin := α−2.

We shall consider the system (1) and (2) in the kinetic limit, i.e. the large box and 
weak nonlinearity limit, where .L → ∞ and . α → 0. We shall assume a  scaling law 
that quantifies the way in which these limits are taken, namely a value . γ ∈ (0,+∞)

such that 

. α ∼ L−γ .

There are also endpoint cases .γ ∈ {0,+∞}, which correspond to taking iterated 
limits, but we will not discuss them here (they are more relevant in the discrete 
setting where . Td

L is replaced by a lattice, see [34]).
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The main predictions of the wave kinetic theory include the followings: 

(1) The wave kinetic equation: the effect of the nonlinear interaction (1) is expected 
to emerge precisely at the kinetic time scale .Tkin, in terms of the variance 
.E|̂u(t, k)|2. This variance, which corresponds to the density function for 
particle systems, satisfies the wave kinetic equation, which is a Boltzmann type 
equation, in the kinetic limit. 

The wave kinetic equation is the central object of the wave kinetic theory; 
for (1) it has the form 

.

{
∂τn(τ, k) = K(n(τ ), n(τ ), n(τ ), k),

n(0, k) = nin(k),
(3) 

where the collision term is 

. K(φ, φ, φ)(k) =
∫

(Rd )3
φ(k)φ(k1)φ(k2)φ(k3)

[
1

φ(k)
− 1

φ(k1)
+ 1

φ(k2)
− 1

φ(k3)

]

× δ(k − k1 + k2 − k3)δ(|k|2 − |k1|2 + |k2|2 − |k3|2)
dk1dk2dk3, (4) 

and . δ is the Dirac . δ function. Then, one major prediction of the wave kinetic 
theory is that 

. lim
L→∞
α∼L−γ

E|̂u(τ · Tkin, k)|2 = n(τ, k) (5) 

for any (small) value of . τ and wave number .k ∈ Z
d
L, where .n(τ, k) is the 

solution to (3). 
(2) Propagation of chaos: note that the Fourier modes of u, which are independent 

at time 0 by (2), will not remain independent for times .t > 0 due to the 
nonlinear interaction (1). However, the physical observation of propagation of 
chaos, which also plays a key role in the classical kinetic theory of Boltzmann, 
predicts that this independence is restored in the kinetic limit, at least up to time 
.Tkin. In other words, for any different wave numbers .kj (1 ≤ j ≤ q), we have  

. lim
L→∞
α∼L−γ

E

[ q∏

j=1

|̂u(τ · Tkin, kj )|2
]

=
q∏

j=1

n(τ, kj ), (6) 

as well as the corresponding results for higher moments.
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(3) Density evolution: note that each Fourier mode .̂u(t, k) is a complex random 
variable which has a density function .ρk(t, v) for .v ∈ R

2. Then, in the kinetic 
limit, this density function is expected to evolve under some linear equation 

. ∂τ ξk = σk(τ )Δvξk − γk(τ )∇v · (vξk); ξk(τ, v) := lim
L→∞
α∼L−γ

ρk(τ · Tkin, v),

where .σk(τ ) and .γk(τ ) are two quantities constructed from the solution . n(τ, k)

to (3). This equation was contained in the original work of Peierls [37], and has 
recently been rediscovered in the physics literature [6, 36]. 

1.1.2 Applications 

The wave kinetic theory was first raised in the work [37] or Peierls in 1929 on 
anharmonic crystals, about fifty years after the works of Boltzmann on classical 
kinetic theory of particles. Since then, it has seen a substantial development, 
especially with the influential works of Hasselmann [29, 30] and Zakharov [44] 
in the 1960s. As of now, this theory has been formalized into a systematic approach 
to understand the effective long-time behavior of large systems of interacting waves 
undergoing weak nonlinear interactions [36, 40, 45], and has been applied in many 
different physical and scientific settings, including for example plasma theory 
[10, 24, 43, 46], water waves [2, 3, 29, 30], and oceanography [27, 32]. 

In particular, the works of Zakharov [44] (see also [45]) introduced the energy 
cascade spectra in wave kinetic theory, now called the Zakharov spectra, which are 
in parallel with the Kolmogorov spectra in hydrodynamic turbulence, and also has 
profound implications. It is for this reason that the wave kinetic theory are also 
referred to as the wave turbulence theory in modern literature. 

1.2 Mathematical Literature 

The famous theorem of Lanford [33] in 1975 (which was rigorously completed by 
Gallagher et al. [25] in 2014) provides the rigorous derivation of the Boltzmann 
equation from Newtonian dynamics. The corresponding result for wave phenomena, 
i.e. the rigorous derivation of the wave kinetic equations (3) from the corresponding 
nonlinear dispersive equations like (1), has been a major open problem of the sub-
ject. Compared to the classical particle counterpart, the mathematical development 
of wave turbulence theory started much later, partly due to lack of the necessary 
mathematical tools. 

One of the earliest works in this direction was Spohn [39], which derived a linear 
kinetic equation from a linear Schrödinger equation with random potential. Later 
works also focus on linear problems, including Erdös and Yau [18] and Erdös et 
al. [19], which extended the derivation to inhomogeneous settings and to longer
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time scales (see also the recent work of Felipe Hernández [31], which provides an 
alternative proof to the result of [19]). 

The next major advancement, which was the first result treating a nonlinear prob-
lem, was Lukkarinen and Spohn [34]. It studied a discrete nonlinear Schrödinger 
equation at equilibrium, i.e. with Gibbs measure initial data, and derived the precise 
asymptotics of time correlations at the kinetic time scale. A later result of Faou [23] 
also studied linearization of the wave kinetic equation around equilibrium (with 
some time-dependent multiplicative noise). 

The first attempt on an off-equilibrium, full nonlinear problem was Buckmaster 
et al. [4], but the time scale reached is much shorter than .Tkin (in fact shorter than 
.T

1/2
kin ). This time scale has been improved in subsequent works [7, 8, 11] by the  

author with Hani and independently by Collot-Germain, but still falls short of . Tkin
just by a little bit (i.e. .T 1−ε

kin for any .ε > 0 depending on the scaling law . γ ). In the 
mean time, the works of Dymov and Kuksin [16, 17] treated formal expansions in 
the wave kinetic context of (1) with additive noise and dissipation. 

Finally, concerning the solution theory to (3), there has been a number of 
important results obtained with exciting recent developments, including local well-
posedness (Germain et al. [26]), existence of weak solutions with blowup (Escobaso 
and Velázquez [20, 21], Cai and Lu [5]) energy-cascade (Soffer and Tran [38]), and 
first mathematical studies on Zakharov spectra (Collot et al. [9]). 

2 Main Results 

In a series of recent works [13–15] (see also the expository note [12]) joint with 
Hani, we have finally completed the rigorous derivation of the wave kinetic equation 
(3) from the dispersive equation (1) at kinetic time scale, together with propagation 
of chaos and all the supplementary results. More precisely, we have the followings: 

Theorem 1 (Deng and Hani [13–15]) Suppose .d ≥ 3 and .0 < γ < 1 (for . γ = 1
we need to replace . Td

L by a generic irrational torus, see [13]). Then, under rotation 
symmetry and suitable integrability conditions for the i.i.d. random variables . ηk , we  
have the followings: 

(1) Derivation of (3): for .0 < τ ⪡ 1 and any wave number k, we have 

. lim
L→∞
α∼L−γ

E|̂u(τ · Tkin, k)|2 = n(τ, k), (7) 

where .n(τ, k) solves the wave kinetic equation (3)–(4);
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(2) Propagation of chaos: for .0 < τ ⪡ 1, different wave numbers .k1, · · · , kq and 
arbitrary positive integers .pj (1 ≤ j ≤ q), we have 

. lim
L→∞
α∼L−γ

E

[ q∏

j=1

|̂u(τ · Tkin, kj )|2pj

]
= lim

L→∞
α∼L−γ

q∏

j=1

E|̂u(τ · Tkin, kj )|2pj ; (8) 

the limit of any other moment that does not have the form (8) is  0. 
(3) Evolution of density: let .ρk(t, v) be the probability density function of the 

random variable .̂u(t, k), then the limit 

.ξk(τ, v) := lim
L→∞
α∼L−γ

ρk(τ · Tkin, v) (9) 

satisfies the linear evolution equation 

.∂τ ξk = σk(τ )Δvξk − γk(τ )∇v · (vξk), (10) 

where the relevant quantities are given by 

. σk(t) = 1

4

∫

(Rd )3
n(t, k1)n(t, k2)n(t, k3)

× δ(k − k1 + k2 − k3)δ(|k|2 − |k1|2 + |k2|2 − |k3|2) dk1dk2dk3, . 

(11) 

γk(t) = 
1 

2

∫

(Rd )3

[
n(t, k1)n(t, k3) − n(t, k2)n(t, k3) − n(t, k1)n(t, k2)

]

× δ(k − k1 + k2 − k3)δ(|k|2 − |k1|2 + |k2|2 − |k3|2) dk1dk2dk3. 
(12) 

2.1 Discussions 

We make a few remarks regarding Theorem 1. First, the range of scaling laws . γ ∈
(0, 1) is optimal (with the genericity condition needed for .γ = 1), which follows 
from a discussion comparing the sets of exact resonances with the set of quasi-
resonances. See the discussion in Section 1.2 of [13] or Section 1.3 of [14]. 

Note that, the range .γ ∈ (0, 1) is the universal range for the Schrödinger equation 
(1). For other dispersive relation, the optimal range may be larger or smaller than 
.(0, 1) depending on the number theoretic properties of that specific dispersive 
relation; however the smaller range .γ ∈ (0, 1/2] seems to be admissible for a large 
class of regular dispersion relations.
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Second, we note that there exist two important scaling laws for the Schrödinger 
problem (1), namely .γ = 1/2 and .γ = 1. The former is the naturally occurring 
scaling law in the inhomogeneous setting, which in some sense corresponds to the 
Boltzmann-Grad scaling law in the theorem of Lanford [25, 33]; the latter naturally 
links (1) to the unit time problem on the unit torus, which in particular plays a key 
role in the study of invariant Gibbs measures for nonlinear Schrödinger equations. 
See the discussion in Section 1.3 of [14] for more details. 

Third, Theorem 1 also contains the rigorous derivation of the wave kinetic 
hierarchy, which applies to the case when the norms of the random variables . ηk

are not necessarily i.i.d. (the arguments are still i.i.d. uniformly distributed). This 
may come from the choice of hybrid random data or super-statistical solutions [22] 
with important physical meanings. Note that the i.i.d. case corresponds to factorized 
solution to the wave kinetic hierarchy, which is given by the solution to (3). We will 
not present the exact form of the hierarchy here, but see Section 1.4 of [15]. 

Finally, Theorem 1 leaves open a few important questions, most notably the 
justification of (3) from (1) for longer times .τ ⪢ 1, and (if applicable) pass 
the blowup time for (3). These are extremely challenging questions (as is the 
counterpart for Lanford Theorem and Boltzmann equation), and would require ideas 
and techniques completely different from the current and earlier works; on the 
other hand they would also have profound implications on the study of long-time 
dynamics of (1) and general nonlinear dispersive equations. See Section 1.5 of [14]. 

2.2 Related Works 

We mention some important works in similar directions that appear around the same 
time or after [13–15]:

• Staffilani and Tran [41] and Hannani et al. [28]: these works concern the 
discrete Zakharov-Kuznetsov equation and derive the corresponding wave kinetic 
equation (first homogeneous and then inhomogeneous) also at the kinetic time 
scale. We remark that these works contain time-dependent noise that provides 
an additional randomization effect for arguments of Fourier modes. At this time, 
these works and [13–15] are the only results that reach the kinetic time .Tkin in 
the non-equilibrium setting.

• Ampatzoglou et al. [1]: this is the first rigorous result obtained in the inhomoge-
neous setting. It concerns a modified quadratic nonlinear Schrödinger equation 
(without noise), and derives the wave kinetic equation at .T 1−ε

kin for arbitrary 
.ε > 0.

• Ma [35]: this concerns also the Zakharov-Kuznetsov equation, but in a continuum 
setting. Note that the nonlinearity contains a loss of derivative, which has to 
be compensated by adding suitable dissipation, leading to new mathematical 
challenges. Here the wave kinetic equation is also derived up to almost optimal 
time scale .T 1−ε

kin .
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2.3 Main Ideas in the Proof 

The proof of Theorem 1 is based on Feynman diagram expansions, and in particular 
very precise controls of terms occurring in the diagrammatic expansion. This 
requires deep understanding of the problem, on both combinatorial and analytical 
aspects. The main difficulty here, caused by the (probabilistic) criticality of the 
equation, comes from the factorial divergence of high order expansions, as well 
as certain specific divergent terms. To overcome this, the following main strategies 
are adapted in [13–15]:

• Classification of diagrams: this leads to the key notions of regular couples [13, 
15], and a complete classification of the diagrams (called couples) using these 
objects.

• Rigidity theorem: this allows to prove that for those diagrams that deviates 
from the set of regular couples, the corresponding contributions are always 
more favorable [13, 14], with extra decay that is comparable to the distance of 
deviation. Here the notion of molecules introduced in [13] plays a fundamental 
role.

• Cancellation: this exhibits the miraculous cancellation structure between terms 
that may show divergence if examined individually [13, 14]. These terms must 
have very special forms that are precisely captured by molecules, and a complete 
classification of them naturally leads to the cancellation. 

Acknowledgments The research is supported in part by NSF Grant DMS-2246908 and Sloan 
Fellowship. 
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Laplace-Beltrami Equation on Lipschitz 
Hypersurfaces in the Generic Bessel 
Potential Spaces 

Roland Duduchava 

Abstract The purpose of the present short note is to expose a new approach to 
the investigation of boundary value problems (BVPs) for the Laplace-Beltrami 
equation on a hypersurface .S ⊂ R

3 with Lipschitz boundary .𝚪 = ∂S , containing 
a finite number of angular points (nodes) . cj of magnitude . αj , .j = 1, 2, . . . , n. 
The Dirichlet, Neumann and mixed type BVPs are considered in a non-classical 
setting when solutions are sought in the generic Bessel potential spaces (GBPS) 

.GH
s
p(S, ρ), .s > 1/p, .1 < p < ∞ with weight .ρ(t) =

n∏

j=1
|t − cj |γj (the definition 

see below). By a localization procedure, the problem is reduced to the investigation 
of model Dirichlet, Neumann and mixed BVPs for the Laplace equation in a planar 
angular domain .Ωαj

⊂ R
2 of magnitude . αj , .j = 1, 2 . . . , n. Further the model 

problem in the GBPS with weight .GH
s
p(Ωαj

, tγj ) is investigated by means of 
Mellin convolution operators on the semi-axes .R+ = (0,∞). Explicit criteria for 
the Fredholm property and the unique solvability of the initial BVPs are obtained 
and singularities of solutions at nodes to the mentioned BVPs are indicated. In 
contrast to the results on the same BVPs in the classical Bessel potential spaces 
.H

s
p(S), the Fredholm property in the GBPS .GH

s
p(S, ρ) with weight is independent 

of the smoothness parameter s and Fredholm conditions as well as singularities of 
solutions are indicated very explicitly. 

Keywords Boundary value problem · Laplace-Beltrami equation · Lipschitz 
hypersurface · Generic bessel potential space · Mellin convolution equation 
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1 Introduction and Formulation of the Main Results 

Let . C be a smooth hypersurface in . R3 with the Lipschitz (piecewise-smooth) 
boundary .𝚪 = ∂C with a finite number of nodes .M𝚪 := {c1, . . . , cn} ⊂ 𝚪 (see 
Fig. 1). The inner angle . αj at the node . cj is .αj ∈ (0, 2π) (no cusps!) 

Let .ν := (ν1, ν2, ν3)
⏉ and .ν𝚪 := (ν𝚪,1, ν𝚪,2, ν𝚪,3)

⏉ be the normal vector fields 
respectively, to the surface . C and to the boundary . 𝚪, (. ν𝚪 is tangential to . C). 

The boundary . 𝚪 is decomposed in two parts .∂C = 𝚪 = 𝚪D ∪ 𝚪N and we study 
the following mixed boundary value problem 

.

⎧
⎪⎪⎨

⎪⎪⎩

ΔCu(t) = f (t), t ∈ C,

u+(s) = g(s), on 𝚪D,

(∂ν𝚪u)+(s) = h(s), on 𝚪N.

(1) 

Here .ΔC := D2
1 +D2

2 +D2
3 is the Laplace-Beltrami operator and .Dj := ∂j − νj ∂ν , 

j=1,2,3 are Günter’s tangential derivatives on the surface (cf. [8]). 
.∂ν𝚪 := ν𝚪,1D1 + ν𝚪,2D2 + ν𝚪,3D3 is the normal derivative on the boundary . 𝚪, 

tangential to the surface . C. 
The pure Dirichlet and pure Neumann problems are particular cases of the BVP 

(1) when, respectively, .𝚪N = ∅ and .𝚪D = ∅. 
In [9] was proved that the Mixed BVP (1) and the pure Dirichlet BVP have 

unique solutions in the classical weak setting: 

. u ∈ GH
1(C), f ∈ G̃H

−1
(C), g ∈ GH

1/2(𝚪D), h ∈ GH
−1/2(𝚪N),

(2) 

while for the solvability of the pure Neumann BVP it’s necessary and sufficient the 
following compatibility condition to hold: 

.(f, 1)C − (h, 1)𝚪 = 0. (3) 

M 
M

�

Fig. 1 Surface .C
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The solvability in the classical setting (2) does not imply the continuity of a 
solution. But from the solvability in the non-classical setting 

. u∈GH
s
p(C, ρ), f ∈GH

s−2
p (C, ρ), g ∈GH

s−1/p
p (𝚪, ρ), h ∈GH

s−1−1/p
p (𝚪, ρ),

(4) 

1 < p  <  ∞, s  >  
1 

p 
, ρ(t)  = 

n∏

j=1 

|t − cj |γj − 1 < γj < p  − 1, j  = 1, . . . , n..  

for .2 < p < ∞, we can enjoy even a Hölder continuity of a solution. Investigation 
of the maximal smoothness of a solution is motivated by applications, e.g. by the 
numerical methods for BVPs. 

To formulate the main theorems we need the following definition. 

Definition 1 The BVP (1) and (4) is Fredholm if the homogeneous problem . f =
g = h = 0 has a finite number of solutions and only a finite number of orthogonality 
conditions on the data .f, g, h ensure the solvability of the BVP. 

To the set of nodes .M𝚪 of the surface . C add all smoothness points on . 𝚪 where 
the Dirichlet and Neumann boundary conditions collide. 

Let .M𝚪 = MDD

⋃
MNN

⋃
MDN , where the sets .MDD , .MNN and . MDN

consist of nodes where, respectively, the Dirichlet, the Neumann and the DIrichlet-
Neumann boundary conditions collide. 

The following is the main result of the present exposition. 

Theorem 2 Let .0 < αj < 2π , .βj = 1 + γj

p
(.0 < βj < 1 due to (4)), . j =

1, 2 . . . , n. The mixed BVP (1) is Fredholm in the setting (4) if and only if: 

.βj = 1 + γ1

p
/= π

2(2π − αj )
,

3π

2(2π − αj )
,

π

2αj

,
3π

2αj

, ∀ cj ∈ MDN, . (5) 

βj = 
1 + γ1 

p
/= π 

2π − αj 
, 

π 
αj 

, ∀ cj ∈ MDD, . (6) 

βj = 
1 + γ1 

p
/= 1 − 

π 
2π − αj 

, 1 − 
π 
αj 

, ∀ cj ∈ MNN. (7) 

If the intervals .

[
1
2 , β1

]
∪ · · · ∪

[
1
2 , βn

]
does not contain singular points listed (a) 

in (5), (b) in  (6), (c) in  (7), then the corresponding (a) the Mixed BVP (1), (b) the  
pure Dirichlet BVP (.𝚪N = ∅), (c) the pure Neumann BVP (.𝚪D = ∅), has a unique 
solutions in the setting (4) with the additional compatibility condition (3) for the 
pure Neumann BVP. 

Remark 3 As it follows from the foregoing theorem, the Fredholm property and 
solvability of BVP (1) in the setting (4) is independent of the smoothness parameter
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.s > 0. This property has the following consequence: If the mixed BVP (1) in the 
setting (4) is Fredholm for some .s ∈ R, .1 < p < ∞, the data of BVP are infinitely 
smooth and the BVP has a solution .u(x), this solution is “infinitely smooth” in the 

sense that the “weighted derivatives” .Dm1
1,0D

m2
2,0D

m3
3,0u(x), where . Dk,0 :=

n∏

j=1
(t −

cj )Dk , belong to the space .Lp(C, ρ) for all .m1,m2,m3 = 1, 2, . . .. 

Remark 4 It is well known that solutions to the BVP (1) and (4) have siongularities 
at the nodes .c1, . . . , cn and these singularities depend on which boundary conditions 
collide there. If . sj denotes the singularity of a solution at . cj (i.e. . (x − cj )

sj u ∈
∩p>1Lp(Ucj

) for some neighbourhood .Ucj
⊂ C of . cj ), than .sjp +γj = −1, which 

gives .sj = −(γj +1)/p = −βj . Therefore, due to (5) and (7), a solution to the BVP 
(1) and (4) has the following singularities (we did not take into account logarithmic 
factors): 

. sj = π

2(2π − αj )
,

3π

2(2π − αj )
,

π

2αj

,
3π

2αj

, for cj ∈ MDN,

sj = π

2π − αj

,
π

αj

, for cj ∈ MDD, (8)

sj = 1 + γ1

p
/= 1 − π

2π − αj

, 1 − π

αj

, for cj ∈ MNN.

2 Generic Bessel Potential Spaces and Mellin Convolutions 

It is well known that the half axes .R+ = (0,∞) is a Lie group and Haar measure 

on .R+ is . 
dt

t
. The group Fourier transformation on .R+ coincides with the Mellin 

transformation . M and .M−1 is its inverse: 

. Mβψ(ξ) :=
∞∫

0

tβ−iξψ(t)
dt

t
, ξ ∈ R,

M−1
β ϕ(t) := 1

2π

∞∫

−∞
t iξ−βϕ(ξ) dξ, t ∈ R

+.

Generator of the Lie algebra-the generic differenrial operator is .Dϕ(t) := t
dϕ(t)

dt
.
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If .g ∈ L∞(R) is an essentially bounded measurable .N × N matrix function, the 
Mellin convolution operator .M0

g is defined as follows (cf. [3]) 

. M0
gϕ(t) := M−1

β gMβϕ(t) = 1

2π

∞∫

−∞
g(ξ)

∞∫

0

( t

τ

)iξ−β

ϕ(τ)
dτ

τ
dξ, ϕ ∈ S(R+),

where .S(R+) is the Schwartz space of fast decaying smooth functions on . R+. The  
function .g(ξ) is usually referred to as a symbol of the Mellin convolution operator 
.M0

g and this operator is represented also in the form (cf. [3]) 

. M0
gϕ(t) =

∞∫

0

k
( t

τ

)
ϕ(τ)

dτ

τ
, g(ξ) := (Mβk)(ξ).

Here .k(x) is a generalized Hörnmander’s kernel. In particular, if .k ∈ L1(R
+, tγ ), 

.β := γ + 1

p
, than the symbol is a regular (even continuous) function and belongs to 

the Wiener algebra .g ∈ W(R). The latter is defined as follows 

. W(R) := {
g(ξ) = c + (Mβk)(ξ), c = const, k ∈ L1(R

+, tγ )
}
, β := γ + 1

p

and is endowed with the reduced norm .‖g|W(R)‖ = |c| + ‖k|L1(R
+, tγ )‖. 

Let .1 ⩽ p ⩽ ∞, s ∈ R, 0 < β < 2. By analogy with the Bessel potential space 
.H

s
p(R) on the real axes (Lie group) . R, endowed with the norm 

. ‖ψ |Hs
p(R)‖ := ‖F−1〈ξ 〉sFψ |Lp(R)‖ = ‖W 0〈·〉s ψ |Lp(R)‖,

〈ξ 〉s := (1 + |ξ |2)s/2,

we define the generic Bessel potential space .GH
s
p(R+, tγ dt/t) = GH

s
p(R+, tγ ) on 

the half axes (Lie group) . R+, endowed with the norm 

.‖ψ |GH
s
p(R+, tγ )‖ := ‖M0〈·〉s ψ |Lp(R+, tγ )‖,

‖ϕ |Lp(R+, tγ )‖ :=
[∫ ∞

0
|ϕ(t)|ptγ dt

]1/p
.
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For an integer .s = m = 1, 2, . . . the space .GH
m
p (R+, tγ ) is isomorphic to the 

generic Sobolev space .GW
m
p (R+, tγ ), where functions have the finite norm 

. ‖ϕ |GW
m
p (R+, tγ )‖ :=

[
m∑

k=0

‖Dkϕ |Lp(R+, tγ )‖p

]1/p

, Dϕ(t) := t
dϕ(t)

dt
.

The generic Sobolev-Slobodecki space .GW
s
p(R+, tγ ) can be defined either as the 

trace space of .GH
s+1/p
p (Ωα, tγ ) on . R+ or as the pull-back space of corresponding 

Sobolev-Slobodecki space on the real axes .W
s
p(R) under the transformation 

.− ln t : R
+ → R. 

The spaces .GH
s
p(C, ρ), .GH

s
p(𝚪, ρ), .GW

s
p(C, ρ), .GH

s
p(𝚪, ρ) are defined by the 

standard local diffeomorphisms of .C → Ωαj
and of .𝚪 → 𝚪αj

and a decomposition 
of identity. 

Theorem 5 (cf. [3]) Convolution operator .M0
aβ

extends to a bounded operator 

.

M0
aβ

: GH
s
p(R+, tγ ) → GH

s−r
p (R+, tγ ),

: GW
s
p(R+, tγ ) → GW

s−r
p (R+, tγ )

(9) 

for arbitrary .s ∈ R, .1 < p < ∞, .−1 < γ < p − 1, if and only if the symbol 

.aβ(ξ) =
∞∫

0

tβ−iξ k(t)
dt

t
, ξ ∈ R, 0 < β := γ + 1

p
< 1, (10) 

where .k(t) is the Hörmander’s kernel of the operator .M0
aβ

, belongs to the .Lp-
multiplier class .aβ ∈ Mp(R). The boundedness in (9) is independent of .s ∈ R. 

The .Lp-multiplier class .Mp(R) contains all functions of bounded variation from 
.V1(R) and the Wiener functions from .W(R). 

Theorem 6 (cf. [3]) Let .1 < p < ∞, .s, r ∈ R. The convolution operator .M0
aβ

in 
(9) is Fredholm if only the shifted symbol is elliptic 

. inf
ξ∈R

∣
∣
∣det a

(−r)
β (ξ)

∣
∣
∣ > 0, a

(−r)
β (ξ) := 〈ξ 〉−raβ(ξ). (11) 

If the symbol has bounded variation .a(−r)
β ∈ V1(R) or belongs to the Wiener class, 

.a
(−r)
β ∈ W(R), the ellipticity of the symbol (11) is sufficient for .M0

a to be invertible 

in the setting (9) and the inverse operator is .M0
a−1
β

.
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3 Localization and the Model Problems, Proof of the Main 
Result

Ωα be a model domain, an angle of magnitude α with the vertex at 0 (see Fig. 2) 
and consider the following model Mixed, Dirichlet and Neumann BVPs: 

. 

⎧
⎪⎪⎨

⎪⎪⎩

Δu(x) = f (x), x ∈ Ωαj
,

u+(t) = g(t), on R
+,

(∂x2u)+(t) = h(t), on Rαj
.

f ∈ GH
s−2
p (Ωαj

, tγj ),

g ∈ GH
s−1/p
p (R+, tγj ),

h ∈ GH
s−1−1/p
p (Rαj

, tγj )

(12)

for a node cj ∈ MDN.

. 

{
Δu(x) = f (x), x ∈ Ωαj

, f ∈ GH
s−2
p (Ωαj

, tγj ),

u+(t) = g(t), on 𝚪αj
, g ∈ GH

s−1/p
p (𝚪αj

, tγj )
(13)

for a node cj ∈ MDD,

. 

{
Δu(x) = f (x), x ∈ Ωαj

, f ∈ GH
s−2
p (Ωαj

, tγj ),

(∂x2u)+(t) = h(t), on 𝚪αj
. h ∈ GH

s−1−1/p
p (𝚪αj

, tγj )
(14)

for a node cj ∈ MNN,

Theorem 7 (Local Principle; cf. [1]) The initial mixed boundary value problem 
(1) in the setting (5) is Fredholm if and only if 

• the BVP (12) are Fredholm at all nodes cj ∈ MDN ; 
• the BVP (13) are Fredholm at all nodes cj ∈ MDD; 
• the BVP (14) are Fredholm at all nodes cj ∈ MNN . 

Fig. 2 Model domain Ωα
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Theorem 8 (cf. [5, 7, 9]) The mixed, Dirichlet and Neumann boundary value 
problems (12), (14) and (14) respectively, have at most one solution in the space 
GH

1(Ωαj ) (the classical setting). 

Proof of Theorem 2 Due to Theorem 7 Fredholmness of the BVP (1) follows from 
the Fredholmness of all local representatives (12)–(14) at all nodes cj ∈ Mγ . 

Any solution to the mixed BVPs (12)–(14) is represented by the formula 

. u(x) = NCf (x) + W𝚪u+(x) − V 𝚪[∂νu]+(x),

where u+ is the Dirichlet and [∂νu]+ is the Neumann trace of the solution u on the 
boundary and NC is the Newtons, V 𝚪 is the Single layer and W𝚪 is the Double 
layer potentials. To find the missing Dirichlet data ϕ = u+ ∈ GW s−1/p 

p (Rα, tγj ) 
for the Neumann BVP on Rα or find the missing Neumann data ψ = (∂νu)+ ∈ 
GW s−1/p−1 

p (R+, tγj ) for the Dirichlet BVP on R+, we apply the Plemelji formulae 
and derive the corresponding system of boundary pseudodifferential equations (the 
potential method). 

Now let us derive solvability conditions of BVPs (12)–(14). Let us start with the 
model Mixed BVP (12). 

After some simplifications the obtained system is reduced to the following 
equivalent system of boundary integral equations (see [7, § 3] for details) 

.ADNΨ :=
⎡

⎢
⎣

I
1

2

[
K1

e
iαj

+ K1
e
i(2π−αj )

]

1

2

[
K1

e
iαj

+ K1
e
i(2π−αj )

]
I

⎤

⎥
⎦Ψ = G,

Ψ = (Ψ1, Ψ2)
⏉, G  = (G1,G2)

⏉,∈ GW s−1/p 
p (R+,βj ) and 

. K1
eiωψ(t) := 1

π

∫ ∞

0

ψ(τ)dτ

t − eiωτ
, 0 < ω < π.

The derived system is a Mellin convolution and the symbol of K1 
eiω (the Mellin 

transformMβj of the kernel) is (cf. [2, (9)])  

. K1
eiω (ξ) = ei(ω−π)(βj −iξ)

sinπ(βj − iξ)
, βj = γj + 1

p
, 0 < ω < π,

the symbol of ADN is 

.ADN(ξ) =

⎡

⎢
⎢
⎣

1
cos(π − αj )(βj − iξ)

sinπ(βj − iξ)
cos(π − αj )(βj − iξ)

sinπ(βj − iξ)
1

⎤

⎥
⎥
⎦
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and 

. detADN(ξ) = 1 − cos2(π − αj )(βj − iξ)

sin2 π(βj − iξ)

= cos2 π(βj − iξ − 1/2) − cos2(π − αj )(βj − iξ)

sin2 π(βj − iξ)

= cos(2π − αj )(βj − iξ) cosαj (βj − iξ)

sin2 π(βj − iξ)
, cj ∈ MDN. (15) 

For the node cj ∈ MDD the equivalent system of boundary integral equation to 
BVP (13) is (see [5, § 3] for details) 

. ADDΨ :=
⎡

⎢
⎣

I
1

2i

[
K1

e
iαj

− K1
e
i(2π−αj )

]

1

2i

[
K1

e
iαj

− K1
e
i(2π−αj )

]
I

⎤

⎥
⎦ Ψ =F,

whereΨ = (Ψ1, Ψ2)
⏉, F  = (F1, F2)

⏉, ∈ GW s−1/p 
p (R+,γj ). The symbol of ADD 

is 

. ADD(ξ) =

⎡

⎢
⎢
⎣

1 − sin(π − αj )(βj − iξ

sinπ(βj − iξ)

− sin(π − αj )(βj − iξ)

sinπ(βj − iξ)
1

⎤

⎥
⎥
⎦ ,

detADD(ξ) = 1 − sin2(π − αj )(βj − iξ)

sin2 π(βj − iξ)

= sin2 π(βj − iξ) − sin2(π − αj )(βj − iξ)

sin2 π(βj − iξ)

= sin(2π − αj )(βj − iξ) sinαj (βj − iξ)

sin2 π(βj − iξ)
, cj ∈ MDD. (16) 

For the node cj ∈ MNN  the equivalent system of boundary integral equations to 
BVP (14) is (see [5, § 3] for details) 

.ANNΨ :=
⎡

⎢
⎣

I
1

2i

[
eiαj K1

e
iαj

− e−iαj K1
e
i(2π−αj )

]

1

2i

[
eiαj K1

e
iαj

− e−iαj K1
e
i(2π−αj )

]
I

⎤

⎥
⎦Ψ =H,
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where Ψ = (Ψ1, Ψ2)
⏉, H  = (H1,H2)

⏉,∈ GW s−1/p 
p (R+,βj ). If we replace 

e−iαj = −e−i(αj −π)  and eiαj = −ei(αj −π), the symbol of ANN  acquires the 
following form: 

. ANN(ξ) =

⎡

⎢
⎢
⎣

1 − sin(π − αj )(βj − iξ − 1)

sinπ(βj − iξ)

− sin(π − αj )(βj − iξ − 1)

sinπ(βj − iξ)
1

⎤

⎥
⎥
⎦ ,

detANN(ξ) = 1 − sin2(π − αj )(βj − iξ − 1)

sin2 π(βj − iξ)

= sin(2π − αj )(βj − iξ − 1) sinαj (βj − iξ − 1)

sin2 π(βj − iξ − 1)
. (17) 

From Theorem 6 follows: 

• BVP (12) is Fredholm iff (cf. (16)) (2π − αj )βj , αjβj /= (k + 1/2)π , k = 
0, ±1, . . .  ∀ cj ∈ MDN ; 

• BVP (13) is Fredholm iff (cf. (16)) (2π − αj )βj , αjβj /= kπ , k = 0,±1, . . .  
∀ cj ∈ MDD; 

• BVP (14) is Fredholm iff (cf. (17)) (2π − αj )(βj − 1), αj (βj − 1) /= kπ , 
k = 0,±1, . . .  ∀ cj ∈ MNN . 

To check the unique solvability property of the Dirichlet, Neumann and Mixed 
type BVPs, stated in Theorem 2, we pick up the  intervals  I 0 DN , I 0 D and I

0 
N , described 

in Theorem 2. The corresponding BVPs are Fredholm for the parameter (γ + 1)/p 
from these intervals and for γ = 0, p = 2, s = 1 (s can be arbitrary), which 
corresponds to the classical setting of the BVPs, are uniquelly solvable (with the 
compatibility condition (3) in case of the Neumann BVP). Then, due to [4, Corollary 
6.3] (also see [2, Corollary 5.6]), the DIrivhlet, Neumann and Mixed type BVPs 
have unique solutions for all values of the parameter (1 + γ )/p  from the intervals 
I 0 DN , I 0 D and I

0 
N , respectively. █
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On the Convergence Fourier Series and 
Greedy Algorithm by Multiplicative 
System 

M. G. Grigoryan, T. M. Grigoryan, and L. S. Simonyan 

Abstract In this work we discuss the behavior of Fourier coefficients with respect 
to the multiplicative system (Vilenkin system), as well as convergence of the 
Fourier series and gredy algorithm with respect to the multiplicative system after 
modification of functions. 

Keywords Fourier series · Multiplicative Systems · Greedy algorithm 

2020 Mathematics Subject Classification 42A16, 42A10, 42A15 

1 Introduction 

Let .|E| be the Lebesgue measure of a measurable set .E ⊆ [0, 1) (or . E ⊆
[0, 1)×[0, 1) = [0, 1)2), and let .Lr[0, 1), . r ≥ 1, be the class of all those measurable 
functions .f (x) on .[0, 1) such that 

. 

∫ 1

0
|f (x)|rdx < ∞ .

Let .μ(x) be a positive Lebesgue-measurable function (weight function) defined 
on .[0, 1). By  .Lr

μ[0, 1) we denote the space of all measurable functions on . [0, 1)
with the norm 

. ‖.‖L
p
μ

=
(∫ 1

0
|.|r μ(x)dx

) 1
r

< ∞ : r ∈ [1,∞).
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In the sequel, we will accept the terms “measure” and “measurable” in sense of 
Lebesgue. 

Recall the definition of multiplicative systems (see [6]) (systems of Vilenkin) 
of functionsS. Consider the arbitrary sequence of natural numbers . P ≡
{p1, p2, . . . , pk, . . .} where .pj ≥ 2 for all .j ∈ N. We set  

. m0 = 1, mk =
k∏

j=1

pj , k ∈ N

It is not difficult to notice that for each point .x ∈ [0, 1) and for any . n ∈
[mk,mk+1) ∩ N, k ∈ N, there exist numbers .xj , αj ∈ {0, 1, . . . pj − 1} such that 

. n =
k∑

j=1

αjmj−1 and x =
∞∑

j=1

xj

mj

, (P -order expansions).

Note that all points of type . l
mk

with .l, k ∈ N; 0 ≤ l ≤ mk −1, have two different 
expansions: finite and infinite, and to have only unique expansions we take only 
finite expansions for such points. As a result we get the correspondences 

. n → {α1, α2, . . . , αk}, x → {x1, x2, . . . , xk, . . .}.

The multiplicative system (Vilenkin system) for sequence P is defined as 
follows: 

. V0(x) ≡ 1; Vn(x) = exp
(
2πi

k∑
j=1

αj

xj

pj

)
.

The expression we can change to the form 

. Vn(x) = exp
(
2πi

k∑
j=1

αj

xj

pj

)
=

k∏
j=1

(
exp

(
2πi

xj

pj

))αj

.

From this it follows 

. Vmj−1(x) = exp
(
2πi

xj

pj

)
, .

and for the n-th function we obtain the expression 

.Vn(x) =
k∏

j=1

(Vmj−1(x))αj .
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It is not difficult to notice that 

. 

1∫

0

Vn(t)Vk(t)dt =
{
1, if k = n;
0, if k /= n,

where z denotes the complex conjugate of z.

Let .V = {Vk(x)}—be eiter unboundet or boundet Vilenkin system and let .f (x) be 
a real valued function from .Lr [0, 1), r ≥ 1 and let .cn(f ) be the Fourier-Vilenkin 
coefficients of function f , that is 

. ck(f ) =
∫ 1

0
f (x)Vk(t)dx .

We denote by .SN(x, f ) − N -th partial summ of Fourier-Vilenkin series of 
function .f (x), that is 

. SN(x, f ) =
N∑

k=0

ck(f )Vk(x) .

The spectrum of .f (x) (denoted by .spec(f )) is the support of .ck(f ), i.e. the set 
of integers where .ck(f ) is non-zero, that is 

. spec(f ) = {k ∈ N, ck(f ) /= 0}.

It’s obvious that systems corresponding to different sequences .{pk}, differ from  
each other (in case .P ≡ {2, 2, . . . , 2, . . .} Vilenkin system coincides with the Walsh 
system (see [25]). In case .sup{pk} = ∞ (.sup{pk} < ∞) the system .{Vn(x)} is said 
to be unbounded (accordingly bounded). 

The theory of such systems have been introduced by N. Ya. Vilenkin [24] in  
1946. Then there are interesting results for Vilenkin system (see [24, 26, 28]). 

In case of bounded Vilenkin systems it is known that if f is a function of bounded 
variation then .cn(f ) = O(n−1), and if .f ∈ Lip α it is true .cn(f ) = O(n−α). 
In contrast with this note that in case of unbounded Vilenkin systems certain 
basic properties of classical orthonormal systems no longer hold, for instance if 
.lim suppn = ∞, then .lim sup n|cn(ψ)| = ∞ where .ψ(x) = x − [x]. Moreover, 
there exists .f0 ∈ Lip α such that .lim sup n|cn(f0)| = ∞. 

In 1957 C. Watari [26] proved that the bounded Vilenkin system is basis in the 
spaces .Lr[0, 1) for all . r > 1, that is, any function .f (x) ∈ Lr [0, 1) can be uniquely 
represented by the series .

∑∞
k=0 ck(f )Vk(x) which converges to f in the .Lr [0, 1)-

norm. 
Then, in 1976, W.S. Young [28] for arbitrary sequence .{pk} (i.e. both for bounded 

and unbounded Vilenkin systems) established the basicity of Vilenkin system in . Lr

when .r > 1.
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Note that the following problem remains open: Is the Fourier series of function 
from .L2[0, 1) with respect to the unbounded Vilenkin systems convergent almost 
everywhere or no ( in [1] P. Billard established that this problem has a positive 
answer for the Walsh system) ? 

Note also that in for the unbounded Vilenkin systems [16] is proved 

Theorem 1 Let .V = {Vk(x)} -be eiter unboundet or boundet Vilenkin system. Then 
for any .ϵ > 0 there exists a measurable set .E ⊂ [0, 1] of measure .|E| > 1− ϵ such 
that for each function .f ∈ L1[0, 1] one can find a function .g ∈ L1[0, 1) equal 
to .f (x) on E and such that the sequence .{|ck(g)| , k ∈ spec(g)} is monotonically 
decreasing. 

Now we recall the definition of the greedy algorithm. 
Let .Ψ = {ψn}∞n=1 be a normalized basis in Banach space X. Then for each 

element .f ∈ X there exists a unique series by system .{ψn}∞n=1 converging to f in 
the norm of space X: 

. f =
∞∑

n=0

cn(f )ψn ,

Let an element .f ∈ X be given. We call a permutation .σ = {σ(n)}∞n=1 of 
nonnegative integers decreasing and write .σ ∈ D(f,Ψ ), if  

. |cσ(n)(f )| ≥ |cσ(n+1)(f )|, n = 1, 2, ... .

In the case of strict inequalities here .D(f,Ψ ) consists of only one permutation. 
We define the m-th greedy approximant of f with regard to the basis . Ψ

corresponding to a permutation .σ ∈ D(f,Ψ ) by formula 

. Gm(f ) := Gm(f,Ψ, σ ) :=
m∑

n=1

cσ(n)(f )ψσ(n) .

We say that the greedy approximant of element f by system . Ψ converges, if for 
some .σ ∈ D(f,Ψ ) we have 

. lim
m→∞ ‖Gm(f,Ψ, σ ) − f ‖X = 0 .

Greedy algorithms in Banach spaces with respect to normalized bases have 
been investigated by Temlyakov, DeVore, Konyagin, Wojtaszczyk, Korner and other 
authors . 

Greedy algorithms in Banach spaces with respect to normalized bases have been 
considered in [2–4, 7, 8, 10, 12, 13, 17, 18, 20, 21] and [27] 

Here we present results having a direct bearing on the present work.
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In [21] T.W. Korner answering a question raised by Carleson and Coifman 
constructed a continuous function, whose greedy algorithm with respect to the 
trigonometric systems diverges almost everywhere. 

In [23] V.N. Temlyakov constructed a function f that belongs to any . Lr , . 1 ≤ r <

2 ( respectively .r > 2), whose greedy algorithm with respect to the trigonometric 
system diverges in measure ( respectively in . Lr , .r > 2 ). 

In [7] R. Gribonval and M. Nielsen proved that for any .r /= 2 there exists a 
function from .Lr [0, 1], whose greedy algorithm with respect to the Walsh system 
diverges in .Lr [0, 1]. 

In [10] M. G. Grigorian and A. A. Sargsyan, constructed a continuous function 
f .∈ C[0, 1], whose greedy algorithm with respect to the Faber-Shauder system 
diverges in measure. 

The following question arises here. 

Question 1 Does there exist a set e of arbitrarily small measure such that, after 
modifying the values of an arbitrar function in .Lr [0, 1], .r > 1 on e, the greedy algo-
rithms for the modified function with respect to the classica (trigonometric,Walsh 
and Haar, Faber-Shauder,...) systems converge to it (almost everywhere, in the norm 
of .Lr [0, 1], uniformly)? 

Note that the results obtained in the framework of this direction we have been 
published in papers [5, 8, 9, 12–14, 16, 17] and [19]. 

It is important to note that, as was shown in the article [17] by M. G. Grigoryan, 
K. S. Kazaryan and F. Soria, there exist a complete orthonormal system .{ϕk(x)} and 
a function .f (x) ∈ Lr [0, 1], r > 2, such that if g(x) is any function in .Lr [0, 1] with 
measure 

. mes{x ∈ [0, 1] ; f (x) = g(x)} > 0 ,

then it’s greedy algorithm with respect to the system .{ϕk(x)} diverges in .Lr [0, 1]. 

2 New Results: (Theorems) 

The following theorems are true 

Theorem 2 Let .V = {Vk(x)}—be boundet multiplicative system. Then for each 
.0 < ϵ < 1 there exist a measurable set .E ⊂ [0, 1], with measure .|E| > 1 − ϵ and 
a weight function .μ(x); 0 < μ(x) ≤ 1; μ(x) = 1 on E such that for every . r ∈
[1,∞) and for each .f (x) ∈ Lr

μ[0, 1] there is a function . g(x) ∈ L1[0, 1] ∩ Lr
μ[0, 1]

coinciding with .f (x) on E the the Fourier series and greedy algorithm of .g(x) with 
respect to the multiplicative system and the sequence .{|ck(g)| , k ∈ spec(g)} is 
monotonically decreasing. 

Theorem 3 Let .V = {Vk(x)}—be boundet multiplicative system. Then for any . ϵ >

0 there exists a measurable set .E ⊂ [0, 1], with measure .|E| > 1 − ϵ such that
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for any function .f (x) ∈ L1[0, 1) one can find a function .g(x) ∈ L1[0, 1) equal to 
.f (x) on E such that its the Fourier series and greedy algorithm with respect to the 
.{Vk}∞k=0 system converges to it both in the . L1 norm and almost everywhere on [0, 
1] and the sequence .{|ck(g)| , k ∈ spec(g)} is monotonically decreasing. 
Theorem 4 Let .V = {Vk(x)}—be eiter unboundet or boundet Vilenkin system. 
Then there exists such a (universal) function .U ∈ L1[0, 1) with strictly decreasing 
Fourier —Vilenkin coefficients, with the follwing property: for any .ϵ > 0 there 
exists a measurable set .E ⊂ [0, 1] of measure .|E| > 1 − ϵ such that for each 
function .f ∈ L1[0, 1] one can find a function .g ∈ L1[0, 1) equal to .f (x) on E and 
.{|ck(g)| = ck(U), k ∈ spec(g)} . 

Note that these theorems for the Walsh system were proved in [5] and [9]. 
Note also that D. E. Menshov [21] obtained the following result: 
Let .f (x) be an almost everywhere finite measurable function on .[0, 2π ]. Then 

for each .ϵ > 0 one can define a continuous function .g(x) coinciding with .f (x) on 
a subset E of measure .|E| > 2π − ϵ such that its Fourier series with respect to the 
trigonometric system converges uniformly on .[0, 2π ]. 

The following problem remains open: 

Question 2 Is the theorem 2 true for the trigonometric system? 

Question 3 Is the theorem 3 true for the unboundet Vilenkin system? 
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Asymptotics of Harmonic Functions in 
the Absence of Monotonicity Formulas 

Zongyuan Li 

Abstract In this article, we study the asymptotics of harmonic functions. In 
literature, one typical method is by proving the monotonicity of a version of rescaled 
Dirichlet energies, and use it to study the renormalized solution—the Almgren’s 
blowup. However, such monotonicity formulas require strong smoothness assump-
tions on domains and operators. We are interested in the cases when monotonicity 
formulas are not available, including variable coefficient equations with unbounded 
lower order terms, Dirichlet problems on rough (non-. C1) domains, and Robin 
problems with rough Robin potentials. 

Keywords Unique continuation · Asymptotic expansion · Doubling index · 
Almgren’s monotonicity formula 

2010 Mathematics Subject Classification 35J15, 35J25, 35B40 

1 Introduction 

We discuss asymptotics of solutions to elliptic equations near both interior and 
boundary points. Let us start from a simple case. Consider a harmonic function 
u in a bounded domain .Ω ⊂ R

d . Near an interior point .x0 ∈ Ω, we know that u is 
analytic: 

. u =
∑

α

Dαu(x0)

α! (x − x0)
α =

∑

k

Pk(x − x0)

= PN(x − x0) + O(|x − x0|N+1). (1) 
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Fig. 1 Nodal set of . Re(z/ log z)

Here . Pk is a homogeneous harmonic polynomial of degree k and .PN represents the 
leading term. As is commonly known, expansion formulas like (1) can be useful, 
which are, however, not always available in the presence of variable coefficient 
operators or rough domains. For instance, under polar coordinates .(r, θ) of . R2, 
consider 

.u = Re
reiθ

log(reiθ )
, r > 0, θ /= π. (2) 

One can see that u is harmonic in the enclosed region in Fig. 1, and equals to zero 
on the boundary given by .r = eθ tan θ , except at .(r, θ) = (1, 0) where u has a pole. 
Clearly it is impossible to write down an expansion like (1), due to the presence of 
the log drift. 

To capture the asymptotics of functions like (2), one typically uses the “Alm-
gren’s blowup”—the rescaled limit as .λ → 0 of 

.uλ(·) = u(λ·)/(

 
∂Bλ

|u|2)1/2. (3) 

For u in (2), one can simply see that .(
ffl
∂Bλ

|u|2)1/2 ≈ λ log(λ) and . uλ → Cr cos(θ)

as .λ → 0, where C is a normalizing factor. 
Actually the convergence in the above example is guaranteed by a general 

theorem—Almgren’s monotonicity formulas on convex domains. Let us describe 
the motivation and method. In general, one hopes to prove that the family 
.{uλ(·)}λ∈(0,1) is compact in certain space. For this, we bound a rescaled Dirichlet 
energy 

.F(r) = rD(r)

H(r)
= r

´
Br

|∇u|2´
∂Br

|u|2 . (4)
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In [3], Almgren observed that if .Δu = 0 in . B1, .F(r) is monotonically increasing for 
.r ∈ (0, 1). From this, .{uλ}λ∈(0,1) is uniformly bounded in . H 1, and hence is compact 
in . L2. In literature, a quantity like (4) is usually called a (generalized) Almgren’s 
frequency. Its monotonicity property play an important role in blowup analysis. In 
this work, we are interested in three more general problems. 

Variable Coefficient Equations, Interior 

. Di(aijDju + biu) + WiDiu + V u = 0 in B1,

where .aij are symmetric, bounded, and uniformly elliptic. In [7], Garofalo-Lin 
proved that if .aij ∈ C0,1, bi = 0,Wi, V ∈ L∞, a modified version of F in (4) 
is almost monotone, and hence, is bounded. The condition .aij ∈ C0,1 cannot be 
improved, due to the classical counterexample in unique continuation. Later, we 
will discuss the cases with unbounded .bi,Wi, V . 

Dirichlet Problem, Boundary Suppose .Ω ⊂ R
d and .0 ∈ ∂Ω. Consider 

.

{
Δu = 0 in Ω ∩ B1,

u = 0 on ∂Ω ∩ B1.
(5) 

When . Ω is half space or a cone, the monotonicity formula holds. For curved 
domains, in [1, 2, 12], certain variations of F in (4) were proved to be almost 
monotone on .C1,1, convex, and .C1,Dini domains, respectively. Some discussions on 
. C1 domains were also made in [14]. It is worth mentioning that, the continuity of 
the normal direction .n|∂Ω is essential in deriving the monotonicity formula, which 
is not available for rough domains, for instance general Lipschitz domains. 

Neumann and Robin Problem, Boundary Suppose .Ω ⊂ R
d and .0 ∈ ∂Ω. 

Consider 

.

{
Δu = 0 in Ω ∩ B1,

∂u
∂n

= ηu on ∂Ω ∩ B1.
(6) 

Again, when . Ω is half space or a cone and when .η = 0 (Neumann), the monotonicity 
formula holds. In [1, 6], this was further generalized to the case when . ∂Ω ∈ C1,1

and .η ∈ C0,1 (or .η ∈ W 1,1 with some pointwise control on . ∇η). See also a sharp 
quantitative version in [11]. In all these works, the differentiability of . η cannot be 
dropped, which leaves the asymptotic analysis of (6) with rough . η widely open, even 
in the case when . η is non-negative and bounded. For instance, see the open question 
in [4].



128 Z. Li

2 Alternative for Motonicity Formula: Convergence of 
Doubling Index 

Robin Problems and Variable Coefficient Equations In a recent work, we prove 
the following. 

Theorem 1 ([10], Theorem 1.1 (b)) Let .Ω(⊂ R
d) ∈ C1,1, .d ≥ 2, and . η ∈

Lp(∂Ω) for some .p > d − 1. Then for any nontrivial solution .u ∈ H 1 to (6), 
we have 

. dim({u = 0} ∩ ∂Ω) ≤ d − 2.

Such estimate relies on blowup analysis near boundary points. However, as men-
tioned before, monotonicity formulas (the usual tool) are only proved when . η is 
differentiable and .∂Ω ∈ C1,1. This requires us to design more robust methods for 
blowup analysis. It turns out the Federer’s dimension reduction argument, which we 
used to prove Theorem 1, only needs the following: 

(a) a uniform . C0 estimate for the “rescaled” boundary value problems; 
(b) compactness of the blowup sequence (3), as .λ → 0; 
(c) the homogeneity of the blowup limit of (3), along subsequences. 

In [10], (a) was achieved by a De Giorgi-type estimate. For (b) and (c), which are 
typically proved via monotonicity formula, we prove the following alternative. 

Lemma 2 Let u ∈ H 1 be a weak solution to (6) with 

.∂Ω ∈ C1 and η ∈ Ld−1+ε(∂Ω). (7) 

Then, 

. log2

(ffl
B2r∩Ω

|u|2ffl
Br∩Ω

|u|2
)1/2

→ N ∪ {+∞}, as r → 0.

Remark 3 The condition (7) appears naturally after scaling: if u solves (6), then 
uλ solves 

. Δuλ = 0 in Ωλ = (Ω ∩ Bλ)/λ, ∂uλ/∂n = λη(λ·)uλ on (∂Ω ∩ Bλ)/λ.

From (7), λη(λ·) converges to 0 in a proper space and Ωλ converges to Rd+ ∩ B1. 

Here in Lemma 2, we study an averaged version of the doubling index 

.N(r) := log2

(
ffl
∂B2r

|u|2)1/2

(
ffl
∂Br

|u|2)1/2
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instead of the frequency F(r). Note that when u is exactly a homogeneous 
polynomial of degree k, N(r)  ≡ k. Hence, Lemma 2 can be interpreted as “the 
existence of the limiting homogeneity”. Simple computation shows for harmonic 
functions, near an interior point 

. N(r) =
ˆ 2r

r

F (s)

s
ds.

Hence, the monotonicity of F implies the convergence of N , as  r → 0. However, the 
condition in Lemma 2 is much weaker than that of a monotonicity formula—recall 
in [1, 6, 11], it was required that ∂Ω ∈ C1,1 and η is differentiable. Hence, we expect 
the conclusion of Lemma 2 can serve as a more robust tool in blowup analysis. 
Indeed, in [10], we obtain the asymptotic behavior of solutions to Robin/Neumann 
problems on C1 domains. 

The proof of Lemma 2 borrows ideas of Lin-Shen [13] when studying homoge-
nization. Essentially, it is relies on fact that the monotonicity formula of harmonic 
functions has a rigidity property. 

Lemma 4 Suppose u is a harmonic function in B+ 
1 satisfying ∂u/∂n = 0 on the 

flat portion of the boundary. Then its Almgren’s frequency F ((4)) is either strictly 
increasing for r ∈ (0, 1), or for  some  k ∈ N, F ≡ k/ log 2 and u is a homogeneous 
harmonic polynomial of degree k. 

From Lemma 4, it can be shown that for any non-integer real number μ, as  r 
decreases, after certain small scale, the doubling index N(r)  of u can no longer 
jump from below μ to above. Hence, N(r)  is trapped near an integer, from which 
Lemma 2 follows. 

Dirichlet Problem Near a Conical Point 
In a recent joint work with Dennis Kriventsov, we also study the boundary 
asymptotics of harmonic functions under Dirichlet boundary conditions. Our study 
is closely related to a long-standing conjecture. 

Conjecture 5 Suppose u ∈ H 1 is a weak solution to (5) on a Lipschitz domain Ω. 
Then, if {∂u/∂n = 0} ∩ ∂Ω has a postive surface measure, we must have u ≡ 0. 

The conjectured was proved in the case when Ω ∈ C1,1, C1,Dini , and C1 in 
[2, 12], and [1], via some variants of Almgren’s monotonicity formulas. For such 
formulas, the continuity of n|∂Ω seems inevitable, which is typically not true on 
general Lipschitz domains. We aim to discover the case when n is not continuous. 
A point x0 ∈ ∂Ω is called conical, if 

. 
Ω − x0

r
→ 𝚪x0 = cone.

Clearly, all differentiable boundary points are conical with 𝚪 being the tangent 
plane. Moreover, any boundary point of a convex domain is conical, due to the 
monotonicity. In [9], we prove the following.
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Theorem 6 ([9]) Suppose 0 ∈ ∂Ω is a conical point and u ∈ H 1 is a nontrivial 
solution to (5). Then the limiting homogeneity of u exists. That is, 

. log2

(
ffl
∂B2r∩Ω

|u|2)1/2

(
ffl
∂Br∩Ω

|u|2)1/2
→ {μj }j ∪ {+∞} as r → 0,

where μj are numbers determined by the spectrum of Δ on the limit cone 𝚪. 

It is worth mentioning that, in our theorem only an one-point condition at 0 ∈ ∂Ω is 
assumed—no smoothness of Ω is needed. 

3 Uniqueness of Blowup and Expansion Formula 

It is not difficult to check that the “asymptotic homogeneity” in Lemma 2 and 
Theorem 6 combined with strong unique continuation properties implies the 
existence of (subsequence) limit in (3). It is naturally to ask 

Problem 1 When is the subsequence limit in (3) unique? 

One the one hand, naturally one may further ask. 

Problem 2 Does a monotonicity formula, which guarantees the existence of 
blowup limits, also guarantees the uniqueness of such limit? 

The answer is yes when the dimension is two. This is simply due to the fact 
that in 2D, all eigenspaces of the Laplace operator are one-dimensional. In higher 
dimension, the answer is no in general. In [9], we constructed a convex domain 
. Ω and a harmonic function u vanishing locally on the boundary. From [2], 
the Almgren’s monotonicity formula holds due to the convexity of the domain. 
However, along different subsequences, the blowup limits can be different. Actually, 
our .{uλ}λ∈(0,1) rotates within a two-dimensional eigenspace. 

On the other hand, clearly an expansion formula like (1) leads to the uniqueness 
of blowup limit. One can simply see that the limit has to be exactly the leading 
term .PN up to normalization. For Dirichlet problems, in [9] we prove that a slightly 
stronger condition than “conical”—the Hölder conical, will lead to an expansion 
formula. A point .x0 ∈ ∂Ω is called Hölder conical, if for a cone . 𝚪x0 , 

. 
dist((Ω − x0) ∩ Br, 𝚪x0)

r
≤ Crα, for some α > 0.

Theorem 7 ([9]) Suppose .0 ∈ ∂Ω is Hölder conical. Then for any non-trivial 
solution u to (5), either .u = O(|x|N) for all .N > 0, or there exists a homogeneous 
harmonic polynomial P on the cone . 𝚪, such that 

.u(x) = P(x)(1 + O(|x|ε)).
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An interior version was proved in [5] for higher order elliptic equations with 
scaling subcritical lower order terms. See also [8]. For Neumann and Robin 
problems, similar results are expected. For instance, (6) near an .α-conical boundary 
point, with .η ∈ Ld−1+ε(∂Ω). 

Acknowledgments Z. Li was partially supported by an AMS-Simons travel grant. 
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Semiregular Non-commutative Harmonic 
Oscillators: Some Spectral Asymptotic 
Properties 

Marcello Malagutti and Alberto Parmeggiani 

Abstract The study is devoted to spectral analysis of systems of PDEs, namely, 
a class of systems containing certain quantum optics models such as the Jaynes-
Cummings model. More in detail, the research deals with spectral Weyl asymptotics 
for a semiregular system, extending to the vector-valued case results of Helffer and 
Robert, and more recently of Doll, Gannot and Wunsch. 

Keywords Spectral theory and eigenvalue problems for PDEs · 
Non-commutative harmonic oscillators · Weyl-calculus 
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81Q10 

1 Introduction 

In this paper we deal with the determination of asymptotic spectral properties 
of a class of pseudodifferential systems containing model relevant in Quantum 
Optics like the Jaynes-Cummings model (see Sect. 3.1). The main class analyzed 
is the one of Semiregular Metric Global Elliptic Systems (SMGES). Namely, 
we are considering those global semiregular (see Sect. 4.1) systems with scalar 
elliptic principal symbol such that there is not only a positively homogeneous 
of order 0 unitary matrix-valued function whose conjugation diagonalizes both 
the principal and semiprincipal symbol but also separation of the eigenvalues for 
the semiprincipal symbol. Namely, the object of the study is the spectral Weyl 
asymptotics for a semiregular global system, extending to the vector-valued case 
results of Helffer and Robert [3], and more recently of Doll, Gannot and Wunsch 
[2]. The investigation starts by defining the class of systems we will be concerned 
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with here. Then, we recall the Jaynes-Cummings model and its variations to 
include the cases of atoms with several energetic levels. Actually, it is possible 
to associate such systems describing quantum Physics phenomena with models 
concerning geometrical complexes of vector-valued differential forms. Hence, likely 
higher Lie groups of symmetries could be introduced in the theory. After that, we 
state a decoupling theorem in the semiregular case, that leads to a method for a 
pseudodifferential block-reduction of the systems in the class under study. This 
reduction is the primary object to obtain a parametrix of the Schrödinger flow 
associated with the considered system, which, really, is the fundamental tool to 
investigate for achieving the Weyl asymptotics we are looking for. Finally, the Weyl 
asymptotic results are stated: with the first one we generalize the scalar asymptotics 
due to Helffer and Robert to our class of systems, while with the second we achive 
a smaller error term under the hypothesis that the angular gradients of the X-
ray transform of the eigenvalues of the semiprincipal symbol vanish to infinite 
order exactly on a subset of measure zero of .S2n−1. Similarly to the approach 
of Doll, Gannot and Wunsch [2] these asymptotics are obtained by a reduced 
propagator computation: here the use of the decoupling theorem is essential. In truth 
to generalize to systems is not trivial, since we need to conjugate the Fourier integral 
operators (FIOs) with quadratic phases by the pseudodifferential decoupler, with no 
property loss of the symbol-calculus. To overcome this crucial step we consider the 
approach of Doll and Zelditch [1] which, however, needs to be revised to fit our 
case. 

2 Non-commutative Harmonic Oscillators (NCHOs) 

Let us introduce the Non-Commutative Harmonic Oscillators (NCHOs). 

Definitions 2.1 A Non-Commutative Harmonic Oscillator (NCHO) is the Weyl-
quantization .aw(x,D) of an .N × N system of the form 

. a(x, ξ) = a2(x, ξ) + a0, (x, ξ) ∈ R
n × R

n = T ∗
R

n,

where .a2(x, ξ)is an .N × N matrix whose entries are homogeneous polynomials of 
degree 2 in the .(x, ξ) variables, and . a0 is a constant .N × N matrix. (Introduced by 
A. Parmeggiani and M. Wakayama in [11, 12].) 

Therefore it can also be said that an NCHO comes from the Weyl-quantization of a 
matrix-valued quadratic form in .(x, ξ) adding a constant matrix term. 

Remark A. Parmeggiani and M. Wakayama choose the name NCHO for two main 
reasons: 

. − the fact that a scalar harmonic oscillator is a single quadratic form in .(x, ξ); 

. − the two levels of non-commutativity that we have to deal with when studying 
these systems: one due to the matrix-valued nature of the symbol of the system,
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and the other to the Weyl-quantization rule 

. xkξj ↔ (xkDxj
+ Dxj

xk)/2, (where D = −i∂),

reflected through symplectic geometry by the Poisson-bracket relations 

. 
{
ξj , xk

} = δjk, 1 ≤ j, k ≤ n.

Definitions 2.2 A NCHO .aw(x,D) is said to be elliptic when 

. a2 is a N × N matrix and det a2(x, ξ) behaves exactly like (|x|2 + |ξ |2)N

for .|(x, ξ)| large. 

When . a2 and . a0 are Hermitian matrices, the operator .aw(x,D) is “formally 
self-adjoint” (i.e. symmetric on .S(Rn;CN)). Moreover if in addition .aw(x,D) is 
positive elliptic (i.e. the matrix .a2(x, ξ) is positive definite for .(x, ξ) /= (0, 0)), 
then it is self-adjoint as an unbounded operator in .L2(Rn;CN) with a discrete real 
spectrum. 

Remark We note that while scalar harmonic oscillators have been deeply studied, 
very little has been investigated about the spectral properties of selfadjoint elliptic 
systems, even in the basic case of NCHOs. 

The system written below is a particularly important example of NCHO 

. Qw
(α,β)(x,D) =

⎡

⎣
α

(
− ∂2

x

2 + x2

2

)
−

(
x∂x + 1

2

)

x∂x + 1
2 β

(
− ∂2

x

2 + x2

2

)

⎤

⎦ , x ∈ R, α, β ∈ C.

This is the Weyl-quantization of the matrix 

. Q(α,β)(x, ξ) =
⎡

⎣
α

(
ξ2+x2

2

)
−ixξ

ixξ β
(

ξ2+x2

2

)

⎤

⎦ , (x, ξ) ∈ R × R,

introduced by Parmeggiani and Wakayama [11, 12]. When .α, β > 0 with . αβ >

1, the system is positive elliptic, self-adjoint, and so it has a discrete spectrum in 
.L2(R;C2), and a very rich and remarkable structure. 

It is worth remarking that in [12] the eigenvalues are described in terms 
of a scalar three-term recurrence, that means in terms of a continued fraction 
(nevertheless, it is very difficult to get a direct and explicit expression of them). 

In addition we mention that it can be worth to underline that when .α = β > 1, 
.Qw

(α,α)(x,D) is unitarily equivalent [11, 12] to a scalar harmonic oscillator times 
the identity .2 × 2 matrix, hence its spectral properties are governed by the tensor 
product of the oscillator representation and the 2-dimensional trivial representation
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of .sl2(R) [5], i.e. one has matrix-valued creation/annihilation operators that can be 
used to “construct” the spectrum. 
Therefore, when .α, β > 0 and .αβ > 1, we have that .Qw

(α,β)(x,D) can be seen as a 
matrix-valued deformation of the scalar harmonic oscillator. In the case of . α /= β

and .α, β > 0 it was proved by Parmeggiani in [9] (Theorem 4.4, pp. 351–353) that 
.Qw

(α,β)(x,D) does not admit creation/annihilation operators. 
Finally it can be worth underlined that a motivation for investigating systems 

like .Qw
(α,β)(x,D) originates from PDEs, that is from the study of a-priori lower 

bound estimates, such as Melin’s or Hörmander’s or Fefferman-Phong’s, for 
pseudodifferential systems (see [6], and also [7, 8] and references therein). 

3 Jaynes-Cumming Model Hamiltonian Analytical Study 

We give here a few examples of semiregular (see Sect. 4.1) NCHOs in the class 
SMGES, relevant to Quantum Optics (see [13]), that serve as a model of the class 
we consider in this work. 

It will be convenient to use the following notation. We denote by .σ j , . j =
0, . . . , 3, the Pauli-matrices, i.e. 

. σ 0 = I2, σ 1 =
[

0 1
1 0

]
, σ 2 =

[
0 −i

i 0

]
, σ 3 =

[
1 0
0 −1

]
,

and 

. σ± = 1

2
(σ 1 ± iσ 2).

Let .〈·, ·〉 be the canonical Hermitian product in .C
N, and .e1, . . . , eN be the canonical 

basis of .CN. Let 

. Ejk := e∗
k ⊗ ej , 1 ≤ j, k ≤ N,

be the basis of .MN(C) = gl(N,C), where .Ejk acts on .CN as 

. Ejkw = 〈w, ek〉ej , w ∈ C
N.

Hence we have the relation 

.EjkEhm = (e∗
k ⊗ ej )(e

∗
m ⊗ eh) = e∗

k (eh)(e
∗
m ⊗ ej ) = 〈eh, ek〉(e∗

m ⊗ ej ) = δhkEjm.
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We also let, for .X = (x, ξ) ∈ R
n × R

n = R
2n, 

. ψj (X) := xj + iξj√
2

, 1 ≤ j ≤ n,

so that .ψw
j (x,D) is the annihilation operator and .ψw

j (x,D)∗ = (ψ̄j )
w(x,D) is the 

creation operator, with respect to the j -th variable. Hence, with . p2(X) = |X|2/2
being the (standard) harmonic oscillator, 

. 

n∑

j=1

ψw
j (x,D)∗ψw

j (x,D) = pw
2 (x,D) − n

2
.

We will also have to consider .2N × 2N matrices of the form .σ j ⊗Ejk, in which 
case the product is given by 

. (σ j ⊗ Ehk)(σ j ' ⊗ Eh'k') = σ jσ j ' ⊗ EhkEh'k' ,

and the action on a vector .w ∈ C
2N , written as 

. w =
N∑

j=1

[
w2j−1

w2j

]
⊗ ej ,

given by 

. (σm ⊗ Ehk)w =
N∑

j=1

(σm

[
w2j−1

w2j

]
) ⊗ (Ehkej ).

We next list a few important models due to Jaynes and Cummings. 

3.1 The JC-Model by Semiregular NCHOs 

This is the model of a two-level atom in one cavity, given by the .2×2 system in one 
real variable . x ∈ R

. Aw(x,D) = αpw
2 (x,D)I2 + β

(
σ+ψw(x,D)∗ + σ−ψw(x,D)

)
+ γσ 3,

α > 0, β, γ ∈ R,

where the atom levels are given by .±γ.
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3.2 The JC-Model for One Atom with N -Level and One 
Cavity-Mode in the 𝚵-Configuration 

In this case we consider, for .α > 0, .β1, . . . , βN−1 ∈ R \ {0}, .γ1, . . . γN ∈ R with 
.γ1 < γ2 < . . . < γN , the .N × N system in . R given by 

. Aw(x,D) =αpw
2 (x,D)IN + 1

2

N−1∑

k=1

βk

(
ψw(x,D)∗Ek,k+1 + ψw(x,D)Ek+1,k

)

+
N∑

k=1

γkEkk.

In this case the atom levels are given by the . γk.

3.3 The JC-Model for an N -Level Atom and n = N − 1 
Cavity-Modes in the 𝚵-Configuration 

In this case, for .α > 0, .β1, . . . βN−1 ∈ R \ {0}, .γ1, . . . γN−1 ∈ R with . γ1 ≤ γ2 ≤
. . . ≤ γN−1, we consider the .N × N system in . Rn, .n = N − 1, given by 

. Aw(x,D) = αpw
2 (x,D)IN

+
N−1∑

k=1

βk

(
ψw

k (x,D)∗Ek,k+1 + ψw
k (x,D)Ek+1,k

)
+

N−1∑

k=1

γkEk+1,k+1.

In this case, the levels of the atom are given by 0 and the . γk.

3.4 The JC-Model for an N -Level Atom and n = N − 1 
Cavity-Modes in the

∧
-Configuration 

In this case, for .α > 0, .β1, . . . βN−1 ∈ R \ {0}, .γ1, . . . γN−1 ∈ R with . γ1 ≤ γ2 ≤
. . . ≤ γN−1, we consider the .N × N system in . Rn, .n = N − 1, given by 

.Aw(x,D) = αpw
2 (x,D)IN

+
N−1∑

k=1

βk

(
ψw

k (x,D)∗Ek,N + ψw
k (x,D)EN,k

)
+

N−1∑

k=1

γkEk+1,k+1.
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In this case, the levels of the atom are given by 0 and the . γk.

3.5 The JC-Model for an N -Level Atom and n = N − 1 
Cavity-Modes in the So-Called

∨
-Configuration 

In this case, for .α > 0, .β1, . . . βN−1 ∈ R \ {0}, .γ1, . . . γN−1 ∈ R with . γ1 ≤ γ2 ≤
. . . ≤ γN−1, we consider the .N × N system in . Rn, .n = N − 1, given by 

. Aw(x,D) = αpw
2 (x,D)IN

+
N−1∑

k=1

βk

(
ψw

k (x,D)∗E1,k+1 + ψw
k (x,D)Ek+1,1

)
+

N−1∑

k=1

γkEk+1,k+1.

In this case, the levels of the atom are given by 0 and the . γk.

4 The Asymptotics of the Eigenvalues Counting Function 

In this section we start defining the class of systems we will be concerned with here 
(see Sect. 4.2). Next, we state the decoupling theorem, which shows that for the 
class we consider here it is possible to obtain a pseudodifferential block-reduction 
of the system (see Sect. 4.2). This is fundamental in the study of a parametrix of 
the Schrödinger flow associated with our system, which in turns is the basic object 
to study for obtaining the Weyl asymptotics we are interested in. Finally, we state 
the Weyl asymptotic results: the first one extending to our class of systems the 
asymptotics due to Helffer and Robert [3], and the second presenting a better error 
term when the angular gradients of the X-ray transform of the semiprincipal symbol 
eigenvalues vanish to infinite order exactly on a subset of measure zero of . S2n−1

(see Sect. 4.3). 

4.1 The Semiregular Metric Globally Elliptic System Class 
(SMGES Class) 

We will be using the following notation for the Hörmander metric and admissible 
weight (see Hörmander [4]): with .X = (x, ξ), .Y = (y, η) etc. belonging to the 
phase-space .Rn × R

n, and .m(X) := 〈X〉 = (1 + |X|2)1/2 the usual “Japanese 
bracket”, we consider the Hörmander metric .gX = |dX|2/m(X)2. Then m is an 
admissible function (and so is .mμ for any given .μ ∈ R), and we may exploit the full 
power of the Weyl-Hörmander pseudodifferential calculus.
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We will write .Ṙ2n for . Rn × R
n \ {(0, 0)}.

Definitions 4.1 Let .MN denote the algebra of .N × N complex matrices. A 
symbol .a ∈ S(mμ, g;MN) is said to be semiregular (see Remark 3.2.4 of [10]) 
if it possesses an asymptotic expansion .

∑
j≥0 aμ−j in isotropic (i.e. positively 

homogenous and smooth outside the origin) terms .aμ−j positively homogeneous 
of degree .μ − j . 
In other words, a matrix-symbol a of order . μ is semiregular if . a = a(0) + a(1),

where .a(0) ∈ Scl(m
μ, g;MN) and .a(1) ∈ Scl(m

μ−1, g;MN). We write . a ∈
Ssreg(m

μ, g;MN).

The terms . aμ, .aμ−1 and .aμ−2 are called the principal symbol, the semiprincipal 
symbol and the subprincipal symbol, respectively, of the operator .aw(x,D). 

Hence, .a ∈ Ssreg(m
μ, g;MN) if and only if there exists a sequence . (aμ−j )j≥0

.⊂ C∞(Ṙ2n;MN) where .aμ−j is positively homogeneous of degree .μ − j (in X) 
and, for an excision function . χ , 

. a − χ

N∑

j=0

aμ−j ∈ S(mμ−(N+1), g;MN), ∀N ∈ Z+.

As usual, we write 

. a ∼
∑

j≥0

aμ−j .

We are now in a position to introduce the class of systems we are interested in. 

Definitions 4.2 We say that an .N × N symbol .a ∈ Ssreg(m
μ, g;MN) is a 

semiregular metric globally elliptic system (SMGES for short) of order . μ, when 

. a(X) = a(X)∗ = pμ(X)IN +aμ−1(X)+aμ−2(X)+Ssreg(m
μ−3, g;MN), X /= 0,

where:

• .pμ ∈ C∞(Ṙ2n;R) is positively homogeneous of degree . μ and such that . |X|μ ≈
pμ(X) for all .X /= 0;

• .aμ−1 = a∗
μ−1 is such that there exists .r ≥ 1 and .e0 ∈ C∞(Ṙ2n;MN) unitary 

and positively homogeneous of degree 0 such that 

. e0(X)∗aμ−1(X)e0(X) = diag(λμ−1,j (X)INj
; 1 ≤ j ≤ r), X /= 0

where .N = N1 + N2 + . . . + Nr and .λμ−1,j ∈ C∞(Ṙ2n;R) are positively 
homogeneous of degree .μ − 1 and such that 

.j < k =⇒ λμ−1,j (X) < λμ−1,k(X), ∀X /= 0.



Semiregular NCHOs: Spectral Asymptotic Properties 141

4.2 The Decoupling Theorem 

Let us state here a decoupling theorem for classes of semiregular global pseudodif-
ferential systems from our class SMGES (that is, of the Jaynes-Cummings kind). 

Theorem 4.3 Let .μ > 0, and let . A = A∗ ∼ ∑
j≥0 aμ−j ∈ Ssreg(m

μ, g;MN).

Suppose .aμ = pμIN with .pμ ∈ Scl(m
μ, g), and that .aμ−1, for  some . e0 ∈ C∞(R2n\

{0};MN) positively homogenous of degree 0 and such that .e0e
∗
0 = e∗

0e0 = IN , 
.X /= 0, can be written as 

. aμ−1 = e0bμ−1e
∗
0, where bμ−1 = b∗

μ−1 =
[

λμ−1,1 0
0 λμ−1,2

]
, X /= 0,

where .λμ−1,j ∈ C∞(R2n \ {0};MNj
), .j = 1, 2 and .N = N1 + N2, are positively 

homogeneous of degree .μ − 1, and are such that 

. Spec(λμ−1,1(X)) ∩ Spec(λμ−1,2(X)) = ∅, ∀X ∈ R
2n, |X| = 1.

Then there exists .E ∈ Ssreg(1, g;MN) with .E ∼ ∑
j≥0 e−j and principal symbol 

. e0 (hence .e−k ∈ C∞(R2n \ {0};MN) is positively homogeneous of degree . −k) such  
that 

.Ew(x,D)∗Ew(x,D) − I, Ew(x,D)Ew(x,D)∗ − I ∈ S(m−∞, g;MN), (1) 

and 

.Ew(x,D)∗Aw(x,D)Ew(x,D) − Bw(x,D) ∈ S(m−∞, g;MN), (2) 

where the symbol .B ∼ ∑
j≥0 bμ−j ∈ Ssreg(m

μ, g;MN) is blockwise diagonal, with 

. bμ−j (X) =
[

bμ−j,1(X) 0
0 bμ−j,2(X)

]
,∀X /= 0,∀j ≥ 0,

the blocks .bμ−j,k being of sizes .Nk × Nk, .k = 1, 2, with 

.bμ = aμ = pμIN, bμ−1 =
[

λμ−1,1 0
0 λμ−1,2

]
, X /= 0.
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4.3 The Weyl Law 

Now we study the spectral Weyl asymptotics for a class of semiregular systems, 
extending to the vector-valued case results of Helffer and Robert [3], and more 
recently of Doll et al. [2]. Actually, the asymptotics by Doll, Gannot and Wunsch 
is more precise (that is why we call it refined) than the classical result by Helffer 
and Robert but deal with a less general class of systems since an hypothesis on 
the measure of the subset of .S2n−1 on which the angular gradients of the X-ray 
transform of the semiprincipal symbol eigenvalues vanish to infinite order. 

Theorem 4.4 (Weyl Law) Let .A = A∗, with . A ∼ ∑
j≥0 a2−j ∈ Ssreg(m

2, g;MN),

be a second-order SMGES, with principal symbol .p2IN , . p2 being the harmonic 
oscillator. Adopting the notation used in Definition 4.2, we hence denote by . λ1,j ,

(with multiplicity . Nj ), .1 ≤ j ≤ r , the eigenvalues of the semiprincipal part. Then, 
if .ρ ∈ S(R) is chosen such that . ρ̂ has compact support in .(−ε, ε) for a sufficiently 
small .ε > 0 and .ρ̂ = 1 on a neighborhood of 0, as . λ → +∞

. (N ∗ ρ)(λ) =
⎛

⎝
r∑

j=1

(
Nj

(2π)n

ˆ
p2+λ1,j ≤λ

dX

)

− (2π)−n

ˆ
p2=λ

Tr (a0)
ds

|∇p2|

⎞

⎠

+ O(λn−3/2), (3) 

(recall that . Tr is the matrix trace). 
Therefore, as . λ → +∞

. N(λ) =
(

N

(2π)n

ˆ
p2≤1

dX

)
λn −

(
(2π)−n

ˆ
p2=1

Tr (a1)
ds

|∇p2|
)

λn−1/2 + O(λn−1).

(4) 

We finally state the refined asymptotics of .N(λ) for a positive . ψdo system 
.Aw satisfying the hypotheses of Theorem 4.4 and a condition on the measure of 
the subset of .S2n−1 on which the angular gradients of the X-ray transform of the 
semiprincipal symbol eigenvalues of .Aw vanish to infinite order. 

Theorem 4.5 (Refined Weyl Law) Let .A = A∗ ∈ Ssreg(m
2, g;MN) be a second-

order SMGES satisfying the hypotheses of Theorem 4.4. If for all . 1 ≤ j ≤ r

. Π2π,j :=
{
ω ∈ S

2n−1; ∂α
ω

ˆ 2π

0
(λ1,j ◦ exp tHp2)(ω)dt = 0, ∀α ∈ N

2n−1 \ {0}
}

(5) 

has measure zero.
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then we have the following asymptotics, as . λ → +∞

. N(λ) = (2π)−n

⎛

⎝
r∑

j=1

(

Nj

ˆ
p2+λ1,j ≤λ

dX

)

−
ˆ

p2=λ

Tr (a0)
ds

|∇p2|

⎞

⎠ + o(λn−1).

(6) 
In particular,as . λ → +∞

.

N(λ) = (2π)−n
(
Nλn

ˆ
p2≤1

dX − λn−1/2
ˆ

p2=1
Tr(a1)

ds

|∇p2|

+ λn−1
ˆ

p2=1

(n

2
Tr(a2

1) − Tr(a0)
) ds

|∇p2|
)

+ o(λn−1).

(7) 

Detailed proofs of all the above results can be found in [14]. 

References 

1. M. Doll, S. Zelditch, Schrödinger trace invariants for homogeneous perturbations of the 
harmonic oscillator. J. Spectr. Theory 10, 1303–1332 (2020). https://doi.org/10.4171/JST/328 

2. M. Doll, O. Gannot, J. Wunsch, Refined Weyl law for homogeneous perturbations of the 
harmonic oscillator. Commun. Math. Phys. 362(1), 269–294 (2018). https://doi.org/10.1007/ 
s00220-018-3100-5 

3. B. Helffer, D. Robert, Comportement asymptotique précisé du spectre d’opérateurs glob-
alement elliptiques dans Rn. Sém. Équ. aux dérivées Partielles (Polytechnique) 2, 1–22 
(1980–1981) 

4. L. Hörmander, The Analysis of Linear Partial Differential Operators III. Classics in Mathe-
matics (Springer, Berlin, 2007) 

5. R. Howe, E.C. Tan, Non-Abelian Harmonic Analysis. Applications of SL(2, R) (Springer, 
Berlin, 1992) 

6. C. Parenti, A. Parmeggiani, Lower bounds for systems with double characteristics. J. Anal. 
Math. 86, 49–91 (2002) 

7. A. Parmeggiani, On the Fefferman-Phong inequality for systems of PDEs, in Phase Space 
Analysis of Partial Differential Equations. Progress in Nonlinear Differential Equations and 
their Applications, vol. 69 (Birkhäuser Verlag, Basel, 2006), pp. 247–266 

8. A. Parmeggiani, On positivity of certain systems of partial differential equations. Proc. Natl. 
Acad. Sci. USA 104, 723–726 (2007) 

9. A. Parmeggiani, On the spectrum of certain non-commutative harmonic oscillators and 
semiclassical analysis. Commun. Math. Phys. 279(2), 285–308 (2008). https://doi.org/10.1007/ 
s00220-008-0436-2 

10. A. Parmeggiani, Spectral Theory of Non-commutative Harmonic Oscillators: An Introduction. 
Lecture Notes in Mathematics, vol. 1992 (Springer, Berlin, 2010). xii+254pp. https://doi.org/ 
10.1007/978-3-642-11922-4 

11. A. Parmeggiani, M. Wakayama. Oscillator representations and systems of ordinary differential 
equations. Proc. Nat Acad. Sci. USA 98, 2630 (2001). https://doi.org/10.1073/pnas.98.1.26 

12. A. Parmeggiani, M. Wakayama, Non-commutative harmonic oscillators-I, -II. Forum Math. 
14, 539–604 ibid. 669–690 (2002). https://doi.org/10.1515/form.2002.025 and https://doi.org/ 
10.1515/form.2002.029

https://doi.org/10.4171/JST/328
https://doi.org/10.4171/JST/328
https://doi.org/10.4171/JST/328
https://doi.org/10.4171/JST/328
https://doi.org/10.4171/JST/328
https://doi.org/10.4171/JST/328
https://doi.org/10.4171/JST/328
https://doi.org/10.1007/s00220-018-3100-5
https://doi.org/10.1007/s00220-018-3100-5
https://doi.org/10.1007/s00220-018-3100-5
https://doi.org/10.1007/s00220-018-3100-5
https://doi.org/10.1007/s00220-018-3100-5
https://doi.org/10.1007/s00220-018-3100-5
https://doi.org/10.1007/s00220-018-3100-5
https://doi.org/10.1007/s00220-018-3100-5
https://doi.org/10.1007/s00220-018-3100-5
https://doi.org/10.1007/s00220-008-0436-2
https://doi.org/10.1007/s00220-008-0436-2
https://doi.org/10.1007/s00220-008-0436-2
https://doi.org/10.1007/s00220-008-0436-2
https://doi.org/10.1007/s00220-008-0436-2
https://doi.org/10.1007/s00220-008-0436-2
https://doi.org/10.1007/s00220-008-0436-2
https://doi.org/10.1007/s00220-008-0436-2
https://doi.org/10.1007/s00220-008-0436-2
https://doi.org/10.1007/978-3-642-11922-4
https://doi.org/10.1007/978-3-642-11922-4
https://doi.org/10.1007/978-3-642-11922-4
https://doi.org/10.1007/978-3-642-11922-4
https://doi.org/10.1007/978-3-642-11922-4
https://doi.org/10.1007/978-3-642-11922-4
https://doi.org/10.1007/978-3-642-11922-4
https://doi.org/10.1007/978-3-642-11922-4
https://doi.org/10.1007/978-3-642-11922-4
https://doi.org/10.1007/978-3-642-11922-4
https://doi.org/10.1073/pnas.98.1.26
https://doi.org/10.1073/pnas.98.1.26
https://doi.org/10.1073/pnas.98.1.26
https://doi.org/10.1073/pnas.98.1.26
https://doi.org/10.1073/pnas.98.1.26
https://doi.org/10.1073/pnas.98.1.26
https://doi.org/10.1073/pnas.98.1.26
https://doi.org/10.1073/pnas.98.1.26
https://doi.org/10.1073/pnas.98.1.26
https://doi.org/10.1515/form.2002.025
https://doi.org/10.1515/form.2002.025
https://doi.org/10.1515/form.2002.025
https://doi.org/10.1515/form.2002.025
https://doi.org/10.1515/form.2002.025
https://doi.org/10.1515/form.2002.025
https://doi.org/10.1515/form.2002.025
https://doi.org/10.1515/form.2002.025
https://doi.org/10.1515/form.2002.029
https://doi.org/10.1515/form.2002.029
https://doi.org/10.1515/form.2002.029
https://doi.org/10.1515/form.2002.029
https://doi.org/10.1515/form.2002.029
https://doi.org/10.1515/form.2002.029
https://doi.org/10.1515/form.2002.029
https://doi.org/10.1515/form.2002.029


144 M. Malagutti and A. Parmeggiani

13. B.W. Shore, P.L. Knight. The Jaynes-Cummings model. J. Modern Opt. 40(7), 1195–1238 
(1993). https://doi.org/10.1080/09500349314551321 

14. M. Malagutti, A. Parmeggiani. Spectral Asymptotic Properties of Semiregular Non-
Commutative Harmonic Oscillators. to appear in Commun. Math. Phys. (2024). https://doi. 
org/10.1007/s00220-024-04934-7

https://doi.org/10.1080/09500349314551321
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1007/s00220-024-04934-7
https://doi.org/10.1007/s00220-024-04934-7
https://doi.org/10.1007/s00220-024-04934-7
https://doi.org/10.1007/s00220-024-04934-7
https://doi.org/10.1007/s00220-024-04934-7
https://doi.org/10.1007/s00220-024-04934-7
https://doi.org/10.1007/s00220-024-04934-7
https://doi.org/10.1007/s00220-024-04934-7
https://doi.org/10.1007/s00220-024-04934-7


Global Compactness, Subcritical 
Approximation of the Sobolev Quotient, 
and a Related Concentration Result in 
the Heisenberg Group 

Giampiero Palatucci, Mirco Piccinini, and Letizia Temperini 

Abstract We investigate some effects of the lack of compactness in the critical 
Sobolev embedding in the Heisenberg group. 

Keywords Sobolev embeddings · Heisenberg group · CR Yamabe · Global 
compactness · Profile decompositions · Green’s function 

2010 Mathematics Subject Classification 35R03, 46E35, 35J08, 35A15 

1 Critical Sobolev Embeddings in the Heisenberg Group 

Let .Hn := (Cn × R, ◦, δλ) be the usual Heisenberg-Weyl group, endowed with the 
group multiplication law . ◦, 

. ξ ◦ ξ ' :=
(
x + x', y + y', t + t ' + 2〈y, x'〉 − 2〈x, y'〉

)

for .ξ := (x + iy, t) and .ξ ' := (x' + iy', t ') ∈ Rn × Rn × R, whose group of 
non-isotropic dilations .{δλ}λ>0 on .R2n+1 is given by 

.ξ I→ δλ(ξ) := (λx, λy, λ2t). (1) 

Consider the standard Folland-Stein-Sobolev space .S1
0(Hn) defined as the com-

pletion of .C∞
0 (Hn) with respect to the homogeneous subgradient norm .‖DH · ‖L2 , 

where the horizontal (or intrinsic) gradient .DH is given by 

. DH u(ξ) := (
Z1u(ξ), . . . , Z2nu(ξ)

)
,

G. Palatucci (�) · M. Piccinini · L. Temperini 
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy 
e-mail: giampiero.palatucci@unipr.it; mirco.piccinini@unipr.it; letizia.temperini@outlook.it 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
D. Cardona et al. (eds.), Extended Abstracts 2021/2022, Research Perspectives 
Ghent Analysis and PDE Center 3, https://doi.org/10.1007/978-3-031-48579-4_15

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48579-4protect T1	extunderscore 15&domain=pdf

 885 56845 a 885 56845 a
 
mailto:giampiero.palatucci@unipr.it
mailto:giampiero.palatucci@unipr.it
mailto:giampiero.palatucci@unipr.it

 12389
56845 a 12389 56845 a
 
mailto:mirco.piccinini@unipr.it
mailto:mirco.piccinini@unipr.it
mailto:mirco.piccinini@unipr.it

 22169 56845 a 22169
56845 a
 
mailto:letizia.temperini@outlook.it
mailto:letizia.temperini@outlook.it
mailto:letizia.temperini@outlook.it
https://doi.org/10.1007/978-3-031-48579-4_15
https://doi.org/10.1007/978-3-031-48579-4_15
https://doi.org/10.1007/978-3-031-48579-4_15
https://doi.org/10.1007/978-3-031-48579-4_15
https://doi.org/10.1007/978-3-031-48579-4_15
https://doi.org/10.1007/978-3-031-48579-4_15
https://doi.org/10.1007/978-3-031-48579-4_15
https://doi.org/10.1007/978-3-031-48579-4_15
https://doi.org/10.1007/978-3-031-48579-4_15
https://doi.org/10.1007/978-3-031-48579-4_15
https://doi.org/10.1007/978-3-031-48579-4_15


146 G. Palatucci et al.

with .Zj := ∂xj
+ 2yj ∂t , .Zn+j := ∂yj

− 2xj ∂t for .1 ≤ j ≤ n, and .T := ∂t being the 
Jacobian base of the Heisenberg Lie algebra. 

As well known, the following Sobolev-type inequality holds for some positive 
constant . S∗, 

.‖u‖2∗
L2∗ ≤ S∗‖DH u‖2∗

L2 , ∀u ∈ S1
0(Hn) , (2) 

where .2∗ = 2∗(Q) := 2Q/(Q − 2) is the Folland-Stein-Sobolev critical exponent, 
depending on the homogeneous dimension .Q := 2n+2 of the Heisenberg group . Hn. 

The validity of (2) is equivalent to show that the constant . S∗ defined in the 
following maximization problem, 

.S∗ := sup

{ˆ
Hn

|u(ξ)|2∗
dξ : u ∈ S1

0(Hn),

ˆ
Hn

|DH u(ξ)|2dξ ≤ 1

}
, (3) 

is finite. The explicit form of the maximizers has been showed, amongst other 
results, in the breakthrough paper by Jerison and Lee [9], together with the 
computation of the optimal constant in (3). 

For any bounded domain .Ω ⊂ Hn, consider now 

.S∗
Ω := sup

{ˆ
Ω

|u(ξ)|2∗
dξ : u ∈ S1

0(Ω),

ˆ
Ω

|DH u(ξ)|2dξ ≤ 1

}
, (4) 

where the Folland-Stein-Sobolev space .S1
0(Ω) is given by the closure of . C∞

0 (Ω)

with respect to the homogeneous subgradient norm in . Ω. One can check that 
.S∗

Ω ≡ S∗ via a standard scaling argument, and thus—in view of the explicit form of 
the optimal functions in (3)—the variational problem (4) has no maximizers. The 
situation changes drastically for the subcritical embeddings: . S1

0(Ω) →ͨ L2∗−ε(Ω)

is compact (for each .0 < ε < 2∗ − 2), and this guarantees the existence of a 
maximizer .uε ∈ S1

0(Ω) for 

.S∗
ε := sup

{ˆ
Ω

|u(ξ)|2∗−ε dξ : u ∈ S1
0(Ω),

ˆ
Ω

|DH u(ξ)|2dξ ≤ 1

}
. (5) 

Such a dichotomy can be also found in the Euler-Lagrange equation for the energy 
functionals in (5); that is, 

. − ΔH uε = λ|uε|2∗−ε−2uε in (S1
0(Ω))', (6) 

where . λ is a Lagrange multiplier, and .ΔH := ∑2n
j=1 Z2

j is the standard Kohn 
Laplacian (or sub-Laplacian) operator. While when .ε > 0 it has a solution . uε, 
the problem above becomes very delicate when .ε = 0: one falls in the CR Yamabe 
equation realm, and even the existence of the solutions is not granted. In view of 
such a qualitative change when .ε = 0

(
in both (5) and (6)

)
, it sounds natural 

to analyze the asymptotic behavior as . ε goes to 0 of both the subcritical Sobolev
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constant . S∗
ε in the Heisenberg group given in (6) and of the corresponding optimal 

functions . uε of the embedding .S1
0(Ω) →ͨ L2∗−ε(Ω). This is the aim of papers [15] 

and [17], whose main results will be stated in the rest of the present note. 

2 Subcritical Approximation of the Sobolev Quotient 

Our first result is the subcritical approximation of the Sobolev embedding . S∗ in the 
Heisenberg group described below. 

Theorem 1 (See Theorem 1.1 in [17]) Let .Ω ⊆ Hn be a bounded domain, and 
denote by .M(Ω) the set of nonnegative Radon measures in . Ω. Let .X = X(Ω) be 
the space 

. X :=
{
(u, μ) ∈ S1

0(Ω) × M(Ω) : μ ≥ |DH u|2dξ, μ(Ω) ≤ 1
}
,

endowed with the product topology . T such that 

.(uk, μk)
T→ (u, μ)

def⇔
{

uk ⇀ u in L2∗
(Ω),

μk
∗
⇀ μ inM(Ω).

(7) 

Let us consider the following family of functionals, 

. Fε(u, μ) :=
ˆ

Ω

|u|2∗−εdξ ∀(u, μ) ∈ X .

Then, as .ε → 0, the  .𝚪+-limit of the family of functionals . Fε with respect to the 
topology . T given by (7) is the functional . F defined by 

. F(u, μ) =
ˆ

Ω

|u|2∗
dξ + S∗

∞∑
j=1

μ
2∗
2

j ∀(u, μ) ∈ X.

Here . S∗ is the best Sobolev constant in . Hn, .2∗ = 2Q/(Q − 2) is the Folland-Stein-
Sobolev critical exponent, and the numbers . μj are the coefficients of the atomic part 
of the measure . μ. 

In order to prove such a result in the very general situation considered here, and 
thus requiring no additional regularity assumptions nor special geometric features 
on the domains, we attack the problem pursuing a new approach and for this we 
rely on De Giorgi’s .𝚪-convergence techniques. This is in the same spirit of previous 
results regarding the classical Sobolev embedding in the Euclidean framework, as 
seen in [1, 12, 13], though the core of the proof in [17] goes in a very different line 
because the optimal recovery sequences have been concretely constructed whereas
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in all the aforementioned Euclidean papers such an existence result has been proven 
via compactness and locality properties of the .𝚪-limit energy functional. In this 
respect, the adopted strategy is surprisingly close to that in the fractional Sobolev 
spaces framework [18, 20], but various differences evidently arose because of the 
natural discrepancy between the involved frameworks. 

It could be interesting to investigate whether or not the techniques introduced 
in [17] and [20] could be combined with the estimates involving the “nonlocal tail” 
in the Heisenberg framework firstly introduced in [14] in order to prove a similar 
result for fractional Folland-Stein-Sobolev spaces; see also [11, 16, 21]. 

As a corollary of Theorem 1, one can deduce that the sequences of maxi-
mizers .{uε} for the subcritical Sobolev quotient . S∗

ε concentrates energy at one 
point .ξo ∈ Ω, and this is in clear accordance with the analogous result in the 
Euclidean case. 

Theorem 2 (See Theorem 1.2 in [17]) Let .Ω ⊂ Hn be a bounded domain and 
let .uε ∈ S1

0(Ω) be a maximizer for . S∗
ε . Then, as .ε = εk → 0, up to subsequences, 

we have that there exists .ξo ∈ Ω such that 

. uk = uεk
⇀ 0 in L2∗

(Ω),

and 

. |DH uk|2dξ
∗
⇀ δξo inM(Ω),

with . δξo being the Dirac mass at . ξo. 

3 Struwe’s Global Compactness in the Heisenberg Group 

Since the seminal paper [23] by Struwe, the celebrated Global Compactness in 
the Sobolev space .H 1 have become a fundamental tool in Analysis which have 
been proven to be crucial in order to achieve various existence results, as e. g. 
for ground states solutions for nonlinear Schrödinger equations, for prescribing Q-
curvature problems, for solutions of Yamabe-type equations in conformal geometry, 
for harmonic maps from Riemann surfaces into Riemannian manifolds, for Yang-
Mills connections over four-manifolds, and many others. The involved literature is 
really too wide to attempt any reasonable account here. In Theorem 3 below, we will 
state the counterpart of Struwe’s Global Compactness in the Heisenberg framework. 

In order to precisely state such a result, consider for any fixed .λ ∈ R the problem, 

. − ΔH u − λu − |u|2∗−2u = 0 in (S1
0(Ω))', (Pλ)
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together with its corresponding Euler–Lagrange energy functional . Eλ : S1
0(Ω) → R

given by 

. Eλ(u) = 1

2

ˆ
Ω

|DH u|2 dξ − λ

2

ˆ
Ω

|u|2 dξ − 1

2∗

ˆ
Ω

|u|2∗
dξ.

Consider also the following limiting problem, 

. − ΔH u − |u|2∗−2u = 0 in (S1
0(Ωo))

', (P0) 

where . Ωo is either a half-space or the whole . Hn; i. e., the Euler-Lagrange equation 
which corresponds to the energy functional .E∗ : S1

0(Ωo) → R, 

. E∗(u) = 1

2

ˆ
Ωo

|DH u|2 dξ − 1

2∗

ˆ
Ωo

|u|2∗
dξ.

Theorem 3 (See Theorem 1.3 in [17]) Let .{uk} ⊂ S1
0(Ω) be a Palais-Smale 

sequence for . Eλ; i.e., such that 

. Eλ(uk) ≤ c for all k,

dEλ(uk) → 0 as k → ∞ in (S1
0(Ω))'.

Then, there exists a (possibly trivial) solution .u(0) ∈ S1
0(Ω) to (Pλ) such that, up to 

a subsequence, we have 

. uk ⇀ u(0) as k → ∞ in S1
0(Ω).

Moreover, either the convergence is strong or there is a finite set of indexes . I =
{1, . . . , J } such that for all .j ∈ I there exist a nontrivial solution . u(j) ∈ S1

0(Ω
(j)
o )

to (P0) with .Ω(j)
o being either a half-space or the whole . Hn, a sequence of 

nonnegative numbers .{λ(j)
k } converging to zero and a sequences of points . {ξ (j)

k } ⊂ Ω

such that, for a renumbered subsequence, we have for any . j ∈ I

. u
(j)
k (·) := λ

(j)
k

Q−2
2

uk

(
τ
ξ

(j)
k

(
δ
λ

(j)
k

(·))) ⇀ u(j)(·) in S1
0(Hn) as → ∞.

In addition, as .k → ∞ we have 

. uk(·) = u(0)(·) +
J∑

j=1

λ
(j)
k

2−Q
2

uk

(
δ

1/λ
(j)
k

(
τ−1

ξ
(j)
k

(·))) + o(1) in S1
0(Hn);

∣∣∣∣∣log
λ

(i)
k

λ
(j)
k

∣∣∣∣∣ +
∣∣∣∣δ1/λ

(j)
k

(
ξ

(j)
k

−1 ◦ ξ
(i)
k

)∣∣∣∣
Hn

→ ∞ for i /= j, i, j ∈ I;
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‖uk‖2 
S1 

0 
= 

J∑
j=1

‖u(j)‖2 
S1 

0 
+ o(1); 

Eλ(uk) = Eλ(u
(0) ) + 

J∑
j=1 

E∗(u(j) ) + o(1) 

In the display above, given .ξ ' ∈ Hn, we denoted by . τξ ' the left translation defined 
by .τξ '(ξ) := ξ ' ◦ ξ for all .ξ ∈ Hn. 

The original proof by Struwe in [23] consists in a subtle analysis concerning 
how the Palais-Smale condition does fail for the functional . E∗, based on rescaling 
arguments, used in an iterated way to extract convergent subsequences with non-
trivial limit, together with some slicing and extension procedures on the sequence 
of approximate solutions to (Pλ). Such a proof revealed to be very difficult to 
extend to different frameworks, and the aforementioned strategy seems even more 
cumbersome to be adapted to the Heisenberg framework considered here. For this, 
we completely changed the approach to the problem, and we proved how to deduce 
the results in Theorem 3 in quite a simple way by means of the so-called Profile 
Decomposition, firstly proven by Gérard [6] for bounded sequences in the fractional 
Euclidean space . Hs , and extended to the Heisenberg framework by Benameur [2]. 
This is in clear accordance with the strategy in [19]; see the related result in the 
fractional Heisenberg framework in [7]. 

Remark 4 The limiting domain .Ωo in Theorem 3 can be either the whole . Hn

or a half-space. On the contrary, in the original proof in the Euclidean case 
by Struwe [23] one can exclude the existence of nontrivial solutions to the limiting 
problem in the half-space by Unique Continuation and Pohozaev’s Identity. Such a 
possibility can not be a priori excluded in the sub-Riemannian setting, even in the 
very special case when a complete characterization of the limiting set is possible 
under further regularity assumptions on . Ω. Indeed, in the Heisenberg framework, a 
very few nonexistence results are known, basically only in the case when the domain 
reduces to a half-plane parallel or perpendicular to the group center; see [4]. We also 
refer to the last paragraphs in [17, Section 5] for further details. 

4 Asymptotics of the Optimal Functions 

We present an asymptotic control of the maximizing sequence . uε for . S∗
ε in (5) via 

the Jerison and Lee extremals. This is shown in Theorem 5 below, which will be 
one of the key in the proof of the localization of the concentration result presented 
in Sect. 5 below and it could be also useful to investigate further properties related 
to subcritical Folland-Stein-Sobolev embeddings.
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Theorem 5 (See Theorem 1.2 in [15]) Let .Ω ⊂ Hn be a smooth bounded domain 
such that 

. lim inf
ρ→0

|(Hn \ Ω) ∩ Bρ(ξ)|
|Bρ(ξ)| > 0 ∀ξ ∈ ∂Ω.

Then, for each .0 < ε < 2∗ − 2 letting .uε ∈ S1
0(Ω) being a maximizer for . S∗

ε , there 
exist .{ηε} ⊂ Ω, .{λε} ⊂ R+ such that, up to choosing . ε sufficiently small, we have 
that 

. uε ≲ Uλε,ηε on Ω,

where .Uλε,ηε = U
(
δ1/λε

(
τηε (ξ)

))
are the Jerison and Lee extremal functions, and 

the sequences .{ηε} and .{λε} satisfy 

. ηε ∼ ξo and λε
ε ∼ 1 as ε ↘ 0,

with . ξo being the concentration point given in Theorem 2. 

The result in Theorem 5 above reminds to the literature following the pioneering 
work in the Euclidean framework due to Aubin and Talenti, and in such a framework 
it is fundamental in the proof of a precise conjecture about the localization of the 
concentration point . ξo given in Corollary 2 by Han in [8]. In the proof of Theorem 5 
in [15] in the sub-Riemannian framework we are dealing with, one has also to 
deal with the fact that, in strong contrast with the Euclidean setting, the Jerison 
and Lee extremals cannot be reduced to functions depending only on the standard 
Korányi gauge. For this, such a proof will require a delicate strategy which makes 
use and refines the concentration result obtained via the .𝚪-convergence result in 
Theorem 1 in order to detect the right involved scalings . ηε and . λε. Also the Global 
Compactness-type result presented in Sect. 3 is needed. 

5 Localization of the Energy Concentration 

A natural question arises: can the blowing up be localized; i.e., is the concentration 
point . ξo in Theorem 2 in Sect. 2 related in a specific way to the geometry of the 
domain . Ω ? 

In the Euclidean framework, under standard regularity assumptions, Han [8] 
and Rey [22] proved the connection with the Green function associated to the 
domain . Ω by answering to a famous conjecture by Brezis and Peletier [3], who 
had previously investigated the spherical domains setting. The involved proofs 
strongly rely on the regularity of Euclidean domains, which is in clear contrast with 
the complexity of the underlying sub-Riemannian geometry here; as well-known, 
even if the domain . Ω is smooth, the situation is drastically different because of
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the possible presence of characteristic points on the boundary . ∂Ω. From one side, 
near those characteristic points—as firstly discovered by Jerison—even harmonic 
functions on the Heisenberg group can encounter a sudden loss of regularity; from 
the other side, one did not want to work in the restricted class of domains not 
having characteristic points. In order to deal with those specific difficulties, it is 
thus quite natural to work under the assumption that the domain . Ω is geometrical 
regular near its characteristic set as given by Definition 7 below. In forthcoming 
Theorem 8 we state the expected localization result for the concentration point . ξo of 
the maximizing sequence . uε in terms of the Green function associated with the 
domain . Ω, in turn establishing the validity of the aforementioned Brezis-Peletier 
conjecture in the Heisenberg group. 

As customary, denote by . D the infinitesimal generator of the one-parameter 
group of non-isotropic dilations .{δλ}λ>0 in (1); that is, 

.D :=
n∑

j=1

(
xj ∂xj

+ yj ∂yj

) + 2t∂t . (8) 

Definitions 6 (.δλ-Starlike Sets) Let . Ω be a . C1 connected open set of .Hn contain-
ing the group identity . e. We say that . Ω is .δλ-starlike (with respect to the identity . e) 
along a subset .K ⊆ ∂Ω if 

. 〈D, n〉(η) ≥ 0,

at every .η ∈ K; in the display above . n indicates the exterior unit normal to . ∂Ω. 
We say that . Ω is uniformly .δλ-starlike (with respect to the identity . e) along K if 

there exists .αΩ > 0 such that, at every .η ∈ K , 

. 〈D, n〉(η) ≥ αΩ.

A domain as above . Ω is .δλ-starlike (uniformly .δλ-starlike, respectively) with respect 
to one of its point .ζ ∈ Ω along K if .τζ−1(Ω) is .δλ-starlike (uniformly .δλ-starlike, 
respectively) with respect to the origin along .τζ−1(K). 

Given a domain .Ω ⊂ Hn, we recall that its characteristic set . ΣΩ,DH
, the  

collection of all its characteristic point, is given by 

. ΣΩ,DH
:=

{
ξ ∈ ∂Ω | Zj (ξ) ∈ Tξ (∂Ω), for j = 1, . . . , 2n

}
.

We now recall the definition of regular domains in accordance with the by-now 
classical paper [5]. 

Definitions 7 (See Definition 2.2 in [15]) A smooth domain .Ω ⊂ Hn such that . ∂Ω

is an orientable hypersurface is “geometrical regular near its characteristic set” if 
the following conditions hold true,
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(. Ω1) There exist .Ф ∈ C∞(Hn), .cΩ > 0 and .ρΩ ∈ R such that 

. Ω := {
Ф < ρΩ

}
, and |DФ| ≥ cΩ.

(. Ω2) For any .ξ ∈ ∂Ω it holds 

. lim inf
ρ→0+

|(Hn
\ Ω) ∩ Bρ(ξ)|
|Bρ(ξ)| > 0.

(. Ω3) There exist .MΩ such that 

. ΔH Ф ≥ 4|z|
MΩ

〈DH Ф,DH |z|〉 in ω,

where . ω is an interior neighborhood of .ΣΩ,DH
. 

(. Ω4) . Ω is .δλ-starlike with respect to one of its point .ζo ∈ Ω and uniformly .δλ-
starlike with respect to . ζo along .ΣΩ,DH

. 

We are finally in the position to state the localization result. 

Theorem 8 (See Theorem 1.3 in [15]) Consider a bounded domain . Ω ⊂ Hn

geometrical regular near its characteristic set, and let .uε ∈ S1
0(Ω) be a maximizer 

for . S∗
ε . Then, up to subsequences, . uε concentrates at some point .ξo ∈ Ω such that 

.

ˆ
∂Ω

|DH GΩ(·, ξo)|2〈D, n〉 dH Q−2 = 0, (9) 

with .GΩ(·; ξo) being the Green function associated to . Ωwith pole in . ξo, and . D being 
the infinitesimal generator of the one-parameter group of non-isotropic dilations in 
the Heisenberg group defined in (8). 

The proof can be found in [15]; it involves all the results stated in the preceding 
sections together with other general tools in the sub-Riemaniann framework, as e.g., 
maximum principles, Caccioppoli-type estimates, H -Kelvin transform, boundary 
Schauder-type regularity estimates, as well as with a fine boundary analysis of the 
solutions to subcritical Yamabe equations. We refer also to the interesting related 
result in [10] in the case of domains with no characteristic points. 
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Abstract In this paper we discuss an analogy of the Carleson-Hunt theorem with 
respect to Vilenkin systems. In particular, we investigate the almost everywhere 
convergence of Vilenkin-Fourier series of .f ∈ Lp(Gm) for .p > 1 in case the 
Vilenkin system is bounded. Moreover, we state an analogy of the Kolmogorov 
theorem for .p = 1 and construct a function .f ∈ L1(Gm) such that the partial sums 
with respect to Vilenkin systems diverge everywhere. 
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1 Introduction 

In 1947 Vilenkin [53, 54] investigated a group . Gm, which is a direct product of 
the additive groups .Zmk

:= {0, 1, . . . , mk − 1} of integers modulo . mk , where 
.m := (m0,m1, . . .) are positive integers not less than 2, and introduced the Vilenkin 
systems .{ψj }∞j=0. These systems include as a special case the Walsh system, when 
. m ≡ 2.

The classical theory of Hilbert spaces (see e.g the books [49] and [52]) certifies 
that if we consider the partial sums .Snf := ∑n−1

k=0 f̂ (k) ψk, with respect to Vilenkin 
systems, then .‖Snf ‖2 ≤ ‖f ‖2 . In the same year 1976 Schipp [37], Simon [43] and 
Young [58] (see also the book [41]) generalized this inequality for .1 < p < ∞: 
there exists an absolute constant .cp, depending only on . p, such that 

. ‖Snf ‖p ≤ cp ‖f ‖p , when f ∈ Lp(Gm).

It follows that for every .f ∈ Lp(Gm) with .1 < p < ∞, . ‖Snf − f ‖p → 0,

. as n → ∞. The boundedness does not hold for .p = 1, but Watari [55] (see 
also Gosselin[18], Young[58]) proved that there exists an absolute constant . c such 
that, for .n = 1, 2, . . . , the weak type estimate . yμ {|Snf | > y} ≤ c ‖f ‖1 , f ∈
L1(Gm), y > 0 holds. 

The almost-everywhere convergence of Fourier series for .L2 functions was 
postulated by Luzin [30] in 1915 and the problem was known as Luzin’s conjecture. 
Carleson’s theorem is a fundamental result in mathematical analysis establishing 
the pointwise (Lebesgue) almost everywhere convergence of Fourier series of . L2
functions, proved by Carleson [8] in 1966. The name is also often used to refer to 
the extension of the result by Hunt [20] which was given in 1968 to .Lp functions 
for .p ∈ (1,∞) (also known as the Carleson-Hunt theorem). 

Carleson’s original proof is exceptionally hard to read, and although several 
authors have simplified the arguments there are still no easy proofs of his theorem. 
Expositions of the original Carleson’s paper were published by Kahane [22], 
Mozzochi [31], Jorsboe and Mejlbro [21] and Arias de Reyna [35]. Moreover, 
Fefferman [14] published a new proof of Hunt’s extension, which was done by 
bounding a maximal operator . S∗ of partial sums, defined by . S∗f := supn∈N |Snf | .
This, in its turn, inspired a much simplified proof of the . L2 result by Lacey and 
Thiele [28], explained in more detail in Lacey [26]. In the books Fremlin [15] and 
Grafakos [17] it was also given proofs of the Carleson’s theorem. An interesting 
extension of Carleson-Hunt result much more closer to . L1 space then .Lp for any 
.p > 1 was done by Carleson’s student Sjölin [47] and later on, by Antonov [2]. 
Already in 1923, Kolmogorov [24] showed that the analogue of Carleson’s result 
for .L1 is false by finding such a function whose Fourier series diverges almost 
everywhere (improved slightly in 1926 to diverging everywhere). This result indeed 
inspired many authors after Carleson proved positive results in 1966. In 2000, 
Kolmogorov’s result was improved by Konyagin [25], by finding functions with 
everywhere-divergent Fourier series in a space smaller than . L1, but the candidate
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for such a space that is consistent with the results of Antonov and Konyagin is still 
an open problem. 

The famous Carleson theorem was very important and surprising when it was 
proved in 1966. Since then this interest has remained and a lot of related research has 
been done. In fact, in recent years this interest has even been increased because of the 
close connections to e.g. scattering theory [32], ergodic theory [12, 13], the theory 
of directional singular integrals in the plane [3, 9, 11, 27] and the theory of operators 
with quadratic modulations [29]. We refer to [26] for a more detailed description of 
this fact. These connections have been discovered from various new arguments and 
results related to Carleson’s theorem, which have been found and discussed in the 
literature. We mean that these arguments share some similarities, but each of them 
has also a distinct new ideas behind, which can be further developed and applied. 
It is also interesting to note that, for almost every specific application of Carleson’s 
theorem in the aforementioned fields, mainly only one of these new arguments was 
used. 

The analogue of Carleson’s theorem for Walsh system was proved by Billard [4] 
for .p = 2 and by Sjölin [46] and Demeter [10] for .1 < p < ∞, while for bounded 
Vilenkin systems by Gosselin [18]. Schipp [38, 39] (see also [40, 56]) investigated 
the so called tree martingales and generalized the results about maximal function, 
quadratic variation and martingale transforms to these martingales and also gave a 
proof of Carleson’s theorem for Walsh-Fourier series. A similar proof for bounded 
Vilenkin systems can be found in Schipp and Weisz [40, 56]. In each proof, it was 
proved that the maximal operator of the partial sums is bounded on .Lp(Gm), i.e., 

. 
∥
∥S∗f

∥
∥

p
≤ cp ‖f ‖p , as f ∈ Lp(Gm), 1 < p < ∞.

A recent proof of almost everywhere convergence of Vilenkin-Fourier series was 
given by Persson, Schipp, Tephnadze and Weisz [33] (see also the book [34]) in 
2022. Convergence of subsequences of Vilenkin-Fourier series were considered in 
[6, 7, 50, 51]. 

Stein [48] constructed an integrable function whose Walsh-Fourier series 
diverges almost everywhere. Later on Schipp [36, 41] proved that there exists 
an integrable function whose Walsh-Fourier series diverges everywhere. Kheladze 
[23] proved that for any set of measure zero there exists a function in . f ∈ Lp(Gm)

.(1 < p < ∞) whose Vilenkin-Fourier series diverges on the set, while the result 
for continuous or bounded functions was proved by Harris [19] or Bitsadze [5]. 
Simon [44] constructed an integrable function such that its Vilenkin-Fourier series 
diverges everywhere. Generalization of results by Simon [44] and Kheladze [23] 
can be found in [33, 34].
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2 Preliminaries 

Denote by .N+ the set of the positive integers, .N := N+ ∪ {0}. Let . m := (m0,

.m1, . . .) be a sequence of the positive integers not less than 2. Define the group . Gm

as the complete direct product of the the additive group . Zmk
:= {0, 1, . . . , mk − 1}

of integers modulo with the product of the discrete topologies of .Zmj
‘s. The direct 

product . μ of the measures .μk ({j}) := 1/mk(j ∈ Zmk
) is the Haar measure on 

.Gm with .μ (Gm) = 1. In this paper we discuss bounded Vilenkin groups, i.e. the 
case when .supn mn < ∞. The elements of .Gm are represented by sequences . x :=(
x0, x1, . . . , xj , . . .

) (
xj ∈ Zmj

)
. It is easy to give a base for the neighborhood of 

. Gm :

. I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1},

where .x ∈ Gm, .n ∈ N. Denote .In := In (0) for .n ∈ N+, and .In := Gm . \ . In. 
If we define the so-called generalized number system based on m by 

. M0 := 1, Mk+1 := mkMk (k ∈ N),

then every .n ∈ N can be uniquely expressed as .n = ∑∞
j=0 njMj , where . nj ∈ Zmj

.(j ∈ N+) and only a finite number of . nj ‘s differ from zero. 
We define the generalized Rademacher functions, by . rk (x) : Gm → C,

. rk (x) := exp (2πıxk/mk) ,
(
ı2 = −1, x ∈ Gm, k ∈ N

)
.

Now, define the Vilenkin system . ψ := (ψn : n ∈ N) on .Gm as: 

. ψn(x) :=
∞∏

k=0

r
nk

k (x) , (n ∈ N) .

The Vilenkin system is orthonormal and complete in .L2 (Gm) (see e.g. [1]). 
If .f ∈ L1 (Gm), we can define the Fourier coefficients, the partial sums of the 

Fourier series, the Dirichlet kernels with respect to the Vilenkin system as: 

.f̂ (n) :=
ˆ

Gm

f ψndμ, (n ∈ N) , Snf :=
n−1∑

k=0

f̂ (k) ψk and

Dn :=
n−1∑

k=0

ψk, (n ∈ N+)
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respectively. Recall that (see e.g. Simon [42, 45] and Golubov et al. [16]) 

.

mk−1∑

s=0

rs
k (x) =

{
mk, if xk = 0,

0, if xk /= 0,
and DMn (x) =

{
Mn, if x ∈ In,

0, if x /∈ In.
(1) 

A function P is called Vilenkin polynomial if . P = ∑n
k=0 ckψk.

3 On Martingale Inequalities 

The .σ -algebra generated by the intervals .{In (x) : x ∈ Gm} will be denoted by . Fn

.(n ∈ N). If . F denotes the set of Haar measurable subsets of . Gm, then obviously 

.Fn ⊂ F . By a Vilenkin interval we mean one of the form . In(x), n ∈ N, x ∈
Gm. The conditional expectation operators relative to .Fn are denoted by . En. An  
integrable sequence .f = (fn)n∈N is said to be a martingale if . fn is .Fn-measurable 
for all .n ∈ N and .Enfm = fn in the case .n ≤ m. We can see that if .f ∈ L1(Gm), 
then .(Enf )n∈N is a martingale. Martingales with respect to .(Fn, n ∈ N) are called 
Vilenkin martingales. It is easy to prove (see e.g. Weisz [56, p.11]) that the sequence 
.(Fn, n ∈ N) is regular, i.e., for all non-negative Vilenkin martingales .(fn), 

.fn ≤ Rfn−1 where R := max
n∈N

mn, n ∈ N. (2) 

Using (1), we can prove that .Enf = SMnf for all .f ∈ Lp(Gm) with . 1 ≤ p ≤ ∞
(see e.g. [56]). By the well known martingale theorems, this implies that 

.
∥
∥SMnf − f

∥
∥

p
→ 0, as n → ∞ for all f ∈ Lp(Gm) when p ≥ 1. (3) 

For a Vilenkin martingale .f = (fn)n∈N, the maximal function . f ∗ is defined by 
.f ∗ := supn∈N |fn| . For a martingale .f = (fn)n≥0 let . dnf = fn − fn−1 (n ≥ 0)

denote the martingale differences, where .f−1 := 0. The square function and the 
conditional square function of f are defined by 

. S(f ) :=
( ∞∑

n=0

|dnf |2
)1/2

and s(f ) :=
(

|d0f |2 +
∞∑

n=0

En|dn+1f |2
)1/2

.

We have shown the following theorem in [56]: 

Theorem 9 If .0 < p < ∞, then .‖f ∗‖p ∼ ‖S(f )‖p ∼ ‖s(f )‖p . If in addition 
.1 < p ≤ ∞, then .‖f ∗‖p ∼ ‖f ‖p .
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4 a.e. Convergence of Vilenkin-Fourier Series 

We introduce some notations. For .j, k ∈ N we define the following subsets of . N :

. I k
jMk

:= [jMk, jMk + Mk) ∩ N and I := {I k
jMk

: j, k ∈ N}.

We introduce also the partial sums taken in these intervals: 

. sIk
jMk

f :=
∑

i∈I k
jMk

f̂ (i)ψi.

For simplicity, we suppose that .f̂ (0) = 0. In [57] was proved that, for an arbitrary 
.n ∈ I k

jMk
, .sIk

jMk

f = ψnEk(f ψn). For .n = ∑∞
j=0 njMj (0 ≤ nj < mj ), we define 

.n(k) :=
∞∑

j=k

njMj , I k
n(k) = [

n(k), n(k) + Mk

)
(n ∈ N). (4) 

Let 

. T If := T
Ik
n(k)f :=

∑

[n(k+1),n(k))⊃J∈I
|J |=Mk

sJ f, for I = I k
n(k).

Lemma 10 For all .n ∈ N and .I k
n(k) defined in (4), we have that 

. Snf =
∞∑

k=0

T
Ik
n(k)f = ψn

∞∑

k=0

nk−1∑

l=0

r
nk−l
k Ek

(
dk+1(f ψn)r

nk−l
k

)
,

Lemma 11 For all .k, n ∈ N, the following inequality holds: 

. |T Ik
n(k)f | ≤ REk

(
|s

Ik+1
n(k+1)

f − sIk
n(k)

f |
)

, where R := max(mn, n ∈ N).

Lemma 12 For all .n ∈ N, .
(
ψnT

Ik
n(k)f

)

k∈N is a martingale difference sequence 

with respect to .(Fk+1)k∈N. 

Let I , J , K denote some elements of . I. Let . FK := Fn and EK := En if |K| =
Mn. Assume that .ϵ = (ϵK,K ∈ I) is a sequence of functions such that . ϵK is . FK

measurable. Set 

.Tϵ;I,J f :=
∑

I⊂K⊂J

ϵKT Kf, T ∗
ϵ;I f := sup

I⊂J

|Tϵ;I,J f |, T ∗
ϵ f := sup

I∈I
|T ∗

ϵ;I f |.
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If .ϵK(t) = 1 for all .K ∈ I and .t ∈ Gm, then we omit the notation . ϵ and write simply 
.TI,J f , .T ∗

I f and . T ∗f . For .I ∈ I with .|I | = Mn, let .I+ ∈ I such that .I ⊂ I+ and 
.|I+| = Mn+1. Moreover, let .I− ∈ I denote one of the sets .I− ⊂ I with . |I−| =
Mn−1. Note that .FI− = Fn−1 and .EI− = En−1 are well defined. We introduce 
the maximal functions . s∗

I and . s∗ by . s∗
I f := supK⊂I EK−|sKf | and s∗f :=

supI∈I s∗
I f. Since .|sI+f | is .FI+ measurable, by the regularity condition (2), we  

conclude that . |sI+f | ≤ REI |sI+f | ≤ Rs∗
I+f.

Lemma 13 For any real number .x > 0 and .K ∈ I, let . ϵK := χ{t∈Gm:x<s∗
K+f (t)≤2x}

and .αK := χ{t∈Gm:s∗
Kf (t)>x,s∗

I f (t)≤x,I⊂K}. Then 

. T ∗
ϵ f ≤ 2 sup

K∈I
αKT ∗

ϵ;Kf + 4R2xχ{t∈Gm:s∗f (t)>x}.

Now we introduce the quasi-norm .‖ · ‖p,q .(0 < p, q < ∞) by 

. ‖f ‖p,q := sup
x>0

x

⎛

⎝
ˆ

Gm

(
∑

I∈I
αI

)p/q

dμ

⎞

⎠

1/p

,

where . αI is defined in Lemma 13. Observe that . αI can be rewritten as 

.αI := χ{t∈Gm:EI−|sI f (t)|>x,EJ−|sJ f (t)|≤x,J⊂I }. (5) 

Denote by .P p,q the set of functions .f ∈ L1 which satisfy .‖f ‖p,q < ∞. For  
.q = ∞, 

. ‖f ‖p,∞ := sup
x>0

x

(ˆ
Gm

(

sup
I∈I

αI

)p

dμ

)1/p

(0 < p < ∞).

It is easy to see that 

. ‖f ‖p,∞ ≤ ‖f ‖p,q (0 < q < ∞) and ‖f ‖p,∞ = sup
x>0

xμ(s∗f > x)1/p.

Lemma 14 Let .max(1, p) < q < ∞, .f ∈ P p,q and .x, z > 0. Then 

.μ

(

sup
I∈I

αIT
∗
ϵ;I f > zx

)

≤ Cp,qz−qx−p‖f ‖p
p,q, where αI is defined in Lemma 13. 

Lemma 15 Let .max(1, p) < q < ∞ and .f ∈ P p,q . Then 

. sup
y>0

ypμ
(
T ∗f > (2 + 8R2)y

)
≤ Cp,q‖f ‖p,q .
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Let . Δ denote the closure of the triangle in . R2 with vertices .(0, 0), .(1/2, 1/2) and 
.(1, 0) except the points .(x, 1 − x), .1/2 < x ≤ 1. 

Lemma 16 Suppose that .1 < p, q < ∞ satisfy .(1/p, 1/q) ∈ Δ. Then, for all 
.f ∈ Lp, we have . ‖f ‖p,q ≤ Cp,q‖f ‖p.

Now we are ready to formulate our first main result. 

Theorem 17 Let .f ∈ Lp(Gm), where .1 < p < ∞. Then 

. 
∥
∥S∗f

∥
∥

p
≤ cp ‖f ‖p , where S∗f := sup

n∈N
|Snf | .

The next norm convergence result follow from Theorem 17. 

Theorem 18 Let .f ∈ Lp(Gm), 1 < p < ∞. Then .‖Snf − f ‖p → 0, . as n →
∞.

Our announced Carleson-Hunt type theorem reads: 

Theorem 19 Let .f ∈ Lp(Gm), where .p > 1. Then . Snf → f, a.e., as n → ∞.

5 Almost Everywhere Divergence of Vilenkin-Fourier Series 

A set .E ⊂ Gm is called a set of divergence for .Lp(Gm) if there exists a function 
.f ∈ Lp(Gm) whose Vilenkin-Fourier series diverges on . E.

Lemma 20 If E is a set of divergence for .L1(Gm), then there is a function . f ∈
L1(Gm) such that .S∗f = ∞ on . E.

Lemma 21 A set .E ⊆ Gm is a set of divergence for .L1(Gm) if and only if there 
exist Vilenkin polynomials .P1, P2, . . . , such that . 

∑∞
j=1 ‖Pj‖1 < ∞ and

. sup
j∈N+

S∗Pj (x) = ∞ (x ∈ E).

Corollary 22 If .E1, E2, . . . are sets of divergence for .L1(Gm), then . E := ∪∞
n=1En

is also a set of divergence for . L1(Gm).

Theorem 23 If .1 ≤ p < ∞ and .E ⊆ Gm is a set of Haar measure zero, then E is 
a set of divergence for . Lp(Gm).

Theorem 24 There is a function .f ∈ L1(Gm) whose Vilenkin-Fourier series 
diverges everywhere. 

Remark 25 For details of the above statements we refer to [33, 34].
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Self-Similar Gravitational Collapse for 
Polytropic Stars 

Matthew Schrecker 

Abstract We describe the construction of self-similar solutions to the gravitational 
Euler-Poisson equations for polytropic gases, providing exact self-similar profiles 
for the gravitational collapse of stars. These results are based on joint work with 
Guo et al. (Arch. Rat. Mech. Anal. 246:957–1066, 2022). 

Keywords Singularity formation · Gravitational collapse · Euler-Poisson · 
Non-linear PDE 

Mathematics Subject Classification 85A05, 35Q31, 35Q85 

1 Introduction 

The rigorous description of the collapse of a star under its own gravity is a 
fundamental mathematical and physical problem, described by the gravitational 
Euler-Poisson system. Stellar collapse is an important stage in understanding both 
the formation and the death of stars. The self-similarity hypothesis suggests that, 
in certain cases, on approach to collapse, the star should adopt an approximately 
self-similar form, with the intertwining of spatial and time scales dictated by the 
scaling symmetries of the underlying physical system (see, for example [9]). In 
recent work, jointly with Guo et al. [7], we have rigorously constructed exactly 
self-similar solutions to the Euler-Poisson system for the full range of supercriticial 
exponents. 
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In spherical symmetry, in three spatial dimensions, the (isentropic) gravitational 
Euler-Poisson equations take the form 

.∂tρ + ∂r(ρu) + 2

r
ρu = 0, . (1) 

ρ
(
∂tu + u∂ru

) + ∂rp + 
1 

r2 ρm = 0, (2) 

where the density . ρ and radial velocity u are functions only of time t and radial 
distance . r = |x|. The mass  m is determined through the relation 

.m(t, r) = 4π

ˆ r

0
s2ρ(t, s) ds, (3) 

corresponding to the radial component of the gravitational force field . ∇φ, where . φ
is the gravitational potential determined through the Poisson equation 

. Δφ = 4πρ, lim|x|→∞ φ(t, x) = 0.

To close the system of equations, we require an equation of state for the pressure p, 
which we choose using the usual polytropic relation 

.p = p(ρ) = κργ , γ ∈
(

1,
4

3

)
, κ > 0. (4) 

The main result of the paper [7], roughly stated, is then 

Theorem 1 (Main Theorem, Rough Version) For all .γ ∈ (1, 4
3 ), there exists a 

smooth initial data pair .(ρ0(r), u0(r)), defined on .[0,∞), with .ρ0(r) → 0 as . r →
∞ such that the system (1)–(2) with initial data .(ρ, u)|t=−1 = (ρ0, u0) has a smooth 
solution .(ρ(t, r), u(t, r)) for .t ∈ (−1, 0) such that, at the spatial origin .r = 0, the  
density .ρ(t, 0) → ∞ as .t → 0−. For all .r > 0, the limits of .ρ(t, r) and .u(t, r) exist 
as .t → 0− and define smooth functions .ρ(0, r), u(0, r) on .(0,∞). 

As advertised above, we seek this claimed solution through self-similarity. To make 
this notion precise, we first observe that the system of Eqs. (1)–(2) is invariant under 
the scaling 

.

ρ(t, r) I→ λ
− 2

2−γ ρ
( t

λ
1

2−γ

,
r

λ

)
,

u(t, r) I→ λ
− γ−1

2−γ u
( t

λ
1

2−γ

,
r

λ

)
.

(5)
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This motivates the definition of a self-similar variable 

.y = r√
κ(−t)2−γ

(6) 

and the ansatz 

.

ρ(t, r) = (−t)−2ρ̃(y),

u(t, r) = √
κ(−t)1−γ ũ(y).

(7) 

Substituting this ansatz into the spherically symmetric Euler-Poisson system, 
defining a new unknown 

.ω(y) = ũ(y)

y
+ 2 − γ, (8) 

and dropping the . ∼ notation yields, after rearrangement, the self-similar system 

.

ρ' =
yρ

(
2ω2 + (γ − 1)ω − 4πρω

4−3γ
+ (γ − 1)(2 − γ )

)

γργ−1 − y2ω2
,

ω' = 4 − 3γ − 3ω

y
−

yω
(

2ω2 + (γ − 1)ω − 4πρω
4−3γ

+ (γ − 1)(2 − γ )
)

γργ−1 − y2ω2 .

(9) 

It is then clear that any smooth solution of (9) with .ρ(0) > 0 and . ρ(y) → ∞
as .y → ∞ gives a collapsing solution of the original system (1)–(2) with density 
blowup at the origin at time .t = 0. 

Seminal work of Larson and Penston [10, 14] offered a numerical solution to this 
system in the case .γ = 1 (so-called isothermal stars), describing self-similar stellar 
collapse. However, two fundamental quantities formally conserved along solutions 
of the system are the total mass and energy, defined by 

. 

M[ρ] = 4π

ˆ ∞

0
ρr2 dr,

E[ρ, u] = 4π

ˆ ∞

0

(1

2
ρu2 + 1

γ − 1
ργ − 1

8π
|∂rφ|2

)
r2 dr.

In the isothermal setting, the self-similar ansatz of Larson and Penston leads 
to solutions of infinite mass and energy, as can be seen either directly from 
the asymptotics of the Larson–Penston solution, or predicted from the scaling 
relation (5). Indeed, one checks easily that 

.M[ρλ] = λ
4−3γ
2−γ M[ρ], E[ρλ, uλ] = λ

6−5γ
2−γ E[ρ, u].
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Thus .γ = 4
3 is the mass-critical exponent and .γ = 6

5 is the energy-critical exponent. 
This observation led Yahil [15] to construct finite energy numerical solutions in 
the range .γ ∈ ( 6

5 , 4
3 ) and, for this range of . γ , these are the solutions rigorously 

constructed in Theorem 1. 
A key difficulty in solving this ODE system rigorously is the presence of 

singularities in the system. As well as the regular singular point at the origin (due 
to the radial symmetry assumption), there is an a priori  unknown further singularity 
whenever .γργ−1 − y2ω2 = 0. At such a point, the relative speed .yω is exactly the 
speed of sound in the gas, .

√
p'(ρ), motivating the following definition. 

Definitions 2 Let .(ρ, ω) be a .C1 solution of system (9) on an open interval . I ⊂
(0,∞). A point .y∗ ∈ I is called a sonic point if 

. γρ(y∗)γ−1 − y2∗ω(y∗)2 = 0.

A sonic point . y∗ for the self-similar system corresponds to a backwards acoustic 
cone emanating from the spatio-temporal origin .(t, r) = (0, 0) in physical variables. 
Although the location of a sonic point is a priori  unknown, the necessity of the 
existence of at least one such point is given by the physical asymptotic and boundary 
conditions at infinity and the origin. As we are looking for smooth solutions with 
positive density at the origin and density tending to zero at infinity, a simple Taylor 
expansion shows that we require 

.

ρ(0) > 0, ω(0) = 4 − 3γ

3
,

ρ(y) ∼ y
− 2

2−γ as y → ∞, lim
y→∞ ω(y) = 2 − γ.

(10) 

The intermediate value theorem then immediately gives the existence of at least one 
sonic point for any smooth solution. 

We can now state the main result of [7] rigorously. 

Theorem 3 ([7, Theorem 1.3]) Let .γ ∈ (
1, 4

3

)
. Then there exists a global, real-

analytic solution .(ρ, ω) of (9), (10) with a single sonic point .y∗ ∈ (0,∞) and 
satisfying the natural, physical conditions 

.ρ(y) > 0 for all y ∈ [0,∞), −2

3
y < u(y) < 0 for all y ∈ (0,∞). (11) 

It should be noted that such collapse solutions are not expected for . γ > 4
3 , the  

mass-subcritical regime. In this range, it has been shown that no collapsing solutions 
of finite mass and energy can exist, see [3]. In the mass-critical case, .γ = 4

3 , 
there is a famous family of solutions due to Goldreich and Weber, [4], which can 
either collapse or expand. These solutions are found using an effective separation of 
variables, allowing for the solution to be found as a time-modulated spatial profile 
satisfying a Lane-Emden type equation. In contrast, the solutions found in this work



Self-Similar Gravitational Collapse 173

involve the careful balancing of all three main forces in the system: inertia, pressure 
and gravity. 

In the isothermal case, .γ = 1, the problem of existence of the Larson–Penston 
collapsing solutions was solved by Guo–Hadžić–Jang [6], who developed a delicate 
shooting argument based on the existence of local, smooth solutions around a 
candidate sonic point. In this case, the system (9) simplifies, and a less refined 
analysis is required to demonstrate the existence of the solutions. 

More recently, the same authors have constructed exact self-similar blowup 
solutions to the Einstein-Euler equations in general relativity, [8]. This work con-
structs a smooth, self-similar spacetime with singularity (in both curvature and fluid 
variables) at a centre of symmetry. From this singularity, a null geodesic emanates 
and escapes to null infinity. To ensure the spacetime is physically meaningful, 
the spacetime is flattened far from the centre of symmetry to ensure that it is 
asymptotically flat. This therefore gives an example of a naked singularity for the 
Einstein-Euler equations. 

We mention also the existence of collapsing (or imploding) self-similar solutions 
of the Euler equations without gravity, which were found recently by Merle et al. 
[12]. These solutions were constructed using a careful phase portrait analysis, based 
on an autonomous self-similar ODE system. The same authors proved the finite 
co-dimension stability of these solutions within the class of radially symmetric 
solutions, [13]. Later numerical work, [1] suggests that the finite co-dimension is 
positive, i.e. these solutions are unstable to generic radial perturbations. 

In contrast, it is widely expected that the Larson-Penston and Yahil solutions are 
in fact stable in the class of radial solutions, based on numerical investigations, see 
[11]. The smoothness of the underlying self-similar profile appears to be essential 
for the stability properties, both for the full stability of the gravitational collapse and 
the finite co-dimensional stability of the gas flows. 

2 Strategy of Proof 

Before offering an outline of the proof, we first observe that there are two explicit 
solutions to the system (9), the Friedmann solution 

. ωF = 4 − 3γ

3
, ρF = 1

6π
,

and the far-field solution 

. ωf = 2 − γ, ρf = ky
− 2

2−γ , where k =
( γ (4 − 3γ )

2π(2 − γ )2

) 1
2−γ

.

The Friedmann solution satisfies the boundary condition at the origin, but not at 
infinity, and the far-field solution satisfies the asymptotic condition as .y → ∞, but
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fails to be regular at the origin, compare (10). We find that these solutions each have 
a unique sonic point, .yF (γ ), .yf (γ ), respectively, with .0 < yf (γ ) < yF (γ ) < ∞, 
defined by 

. yF (γ ) = 3

4 − 3γ

√
γ

(6π)(γ−1)
, yf (γ ) =

√
γ

2 − γ

(4 − 3γ

2π

) γ−1
2

. (12) 

Thus, for each .γ ∈ (1, 4
3 ), the interval .[yf (γ ), yF (γ )] is compact and we search 

for our solution with a sonic point in the open range .(yf , yF ) (we henceforth drop 
explicit dependence on . γ ). 

The proof broadly proceeds in four steps. The first step is to construct local 
solutions around any candidate sonic point .y∗ ∈ [yf , yF ]. This is based on a Taylor 
expansion argument to solve for 

.ρ(y; y∗) =
∞∑

n=0

ρn(y∗)(y − y∗)n, ω(y; y∗) =
∞∑

n=0

ωn(y∗)(y − y∗)n. (13) 

The order zero coefficients are determined from (9) by solving the pair of nonlinear 
equations 

. γρ
γ−1
0 − y2∗ω2

0 = 0, 2ω2
0 + (γ − 1)ω0 − 4πρ0ω0

4 − 3γ
+ (γ − 1)(2 − γ ) = 0.

This gives, for each .y∗ ∈ [yf , yF ], a unique choice .(ρ0(y∗), ω0(y∗)), with . ω0(yf ) =
2 − γ and .ω0(yF ) = 4−3γ

3 . A selection principle is necessary to determine the first 
order coefficients (for which there are two possible choices for every .y∗ ∈ [yf , yF ]) 
and then a recurrence relation is used to determine the higher order coefficients. 
Through combinatorial bounds, these formal series are shown to converge in some 
neighbourhood of . y∗ and give a local, real-analytic solution of (9). 

The second step is to extend the local solution to the right on the interval 
.(y∗,∞). This can be done for all .y∗ ∈ [yf , yF ], and the argument is based on 
the construction of dynamical invariances for the flow, using the precise structure 
of the non-linearities. To close some of the estimates, it is necessary to verify the 
sign of certain explicit (but high order) polynomial functions of . γ and . ω. This is  
achieved via the use of interval arithmetic, a rigorous computer-assisted form of 
proof that has attracted increasing attention in the PDE community in recent years 
(see, for example, [2, 5]). 

The third step is the most difficult, and contains the key new ideas of the paper. 
This is to extend the local solution to the left onto the interval .(0, y∗). For a general 
. y∗, the solution will not extend smoothly all the way to the origin, and so we here 
develop a shooting argument in order to find a critical . ȳ∗ for which the solution 
does connect. The central difficulty is that the invariant region arguments used in 
extending to the right all fail in this direction, which is an unstable direction for the
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flow. Instead, we rely on a new monotonicity lemma, which allows us to obtain the 
necessary control on the solutions. 

To be more precise, we observe that the solution needs to connect to the value 
.
4−3γ

3 at the origin in order to extend smoothly, and, for . y∗ close to . yF , the solution 
obtained by Taylor expansion around . y∗ will quickly decrease below this value. We 
therefore define the shooting set Y to be the set of candidate sonic points . y∗ for 
which the solution to the left intersects this value: 

. Y =
{
y∗ ∈ (yf , yF ) | for all ỹ∗ ∈ [y∗, yF ),

there exists y such that ω(y; ỹ∗) = 4 − 3γ

3

}

and search for the critical . ȳ∗ as the infimum of Y . 
Due to the instability of the flow to the left and the possibility of hitting a second 

sonic point, it is hard to achieve uniform convergence estimates. Instead, we prove 
the key monotonicity lemma. First, for each .y∗ ∈ Y , we define the critical time 
.yc(y∗) as the first touching time 

. yc(y∗) = inf
{
y | ω(ỹ; y∗) >

4 − 3γ

3
for all ỹ ∈ (y, y∗)

}
.

Lemma 4 Let .γ ∈ (1, 4
3 ). For all .y∗ ∈ Y , the solution . (ρ(·; y∗), ω(·; y∗))

defined by the formal Taylor expansion (13) and extended to the left on the interval 
.[yc(y∗), y∗] satisfies the strict monotonicity condition 

. ω'(y; y∗) > 0 for all y ∈ [yc(y∗), y∗].

With this monotonicity, we achieve sufficient control of the flow in order to establish 
that the solution associated to . ȳ∗ exists on the interval .(0, ȳ∗), in particular ruling 
out the existence of another sonic point on this interval. 

The final step is to show that this solution connects smoothly to the origin. The 
monotonicity simplifies many arguments, avoiding the need for the complicated 
topological upper- and lower-solution arguments required in [6]. This allows us to 
show that .ω(y; ȳ∗) → 4−3γ

3 as .y → 0, while the density remains bounded. By a 
further Taylor expansion at the origin and a local uniqueness result, we show that 
the solution is in fact locally analytic, completing the proof of Theorem 3. 

Acknowledgments M. Schrecker’s research is supported by the EPSRC Post-doctoral Research 
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Abstract This survey summarises a presentation recently given by the author at 
the Ghent Methusalem Junior Analysis Seminar. The talk discussed the recent result 
of Enciso et al. (Controllability of parabolic equations with inverse square infinite 
potential wells via global Carleman estimates. Preprint, 2021), joint with Alberto 
Enciso (ICMAT) and Bruno Vergara (Brown), as well as the main ideas of its proof. 

In Enciso et al. (Controllability of parabolic equations with inverse square infinite 
potential wells via global Carleman estimates. Preprint, 2021), we consider heat 
operators on a bounded convex domain, with a critically singular potential diverging 
as the inverse square of the distance to the boundary of the domain. We address the 
problem of boundary null controllability—whether one can drive the solution from 
any initial data to zero via suitable boundary data. We establish a null control result 
for such operators in all spatial dimensions, in particular providing the first result 
in more than one spatial dimension. The key step in the proof is a novel global 
Carleman estimate that captures both the relevant boundary asymptotics and the 
appropriate energy for this problem. 
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1 Critically Singular Heat Equations 

Let .Ω ⊆ R
n be a bounded domain, with a sufficiently regular boundary .𝚪 := ∂Ω, 

and fix .T > 0. In this article, we will primarily consider the following PDE and 
data: 

. − ∂tv + (Δ + σd−2)v = Y · ∇v + W v on (0, T ) × Ω, (1) 

v|t=0 = v0 on Ω, 

Dσ v = f on (0, T  ) × 𝚪. 

Here, .d := d(·, 𝚪) denotes the distance to the boundary . 𝚪, so the first line of (1) 
gives a heat equation with a singular potential diverging as an inverse square at 
the hypersurface . 𝚪. Moreover, .σ ∈ R is a parameter measuring the strength of 
the singular potential, while .Y : Ω → R

n and .W : Ω → R represent (time-
independent) lower-order coefficients that are less singular at . 𝚪. The second part 
of (1) represents the initial data for the singular heat equation, while .Dσ v is an 
appropriately defined Dirichlet data, which will be described in more detail later. 

Our main objective is to investigate the following control-theoretic problem 
for (1): 

Problem 1 (Boundary Null Controllability) Given any .T > 0 and initial data . v0, 
does there exist boundary data f such that the solution v of (1) satisfies .v|t=T = 0? 
In other words, can solutions of the singular heat equation of (1) be driven, through 
an appropriate Dirichlet boundary control, from any initial state to the equilibrium 
state in any finite time? 

Remark 2 A closely related question is interior controllability, which is similar to 
Problem 1, except that the control is imposed through an additional forcing term 
supported on subdomain .(0, T ) × ω, for  some  .ω ⊆ Ω, rather than via boundary 
data. 

When .σ = 0, our setting (1) reduces to classical heat equations, for which 
there is extensive literature on Problem 1; see, for instance, [15, 33] for wide-
ranging surveys. Roughly speaking, the methods used split into two categories. First, 
there are spectral or Fourier methods, which tend to yield the strongest results, but 
only for very specific lower-order coefficients Y , W (for which one has detailed 
information on the spectrum of the full linear operator). Next, there are also results 
obtained via Carleman estimates, which, while slightly less optimal, are robust in 
that they apply to a wide class of Y , W . As a result, the latter also has the benefit of 
being applicable to nonlinear equations through an iteration procedure. 

On the other hand, when .σ /= 0, the factor .σd−2 in (1) can be seen as an infinite 
potential well. Such a quantity also show up naturally in geometric settings—for 
example, the Laplace-Beltrami operator on a hyperbolic or asymptotically hyper-
bolic manifold gains such a singular potential after a conformal compactification 
that makes its boundary finite [24, 32].
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Such a potential .σd−2 introduces numerous novel difficulties, since it has the 
same scaling as . Δ, and hence it has to be treated as a “principal” term (unlike Y , 
W ); thus, we refer to .σd−2 as critically singular. One consequence of this is that 
solutions v to (1) have radically different boundary asymptotics. More specifically, 
v behaves near . 𝚪 like specific powers of d: 

.v ∼𝚪 dκvD + d1−κvN , κ := 1−√
1−4σ
2 , σ ≤ 1

4 . (2) 

Consequently, our notions of Dirichlet and Neumann data for (1) must be amended 
to capture the expected branches . vD and . vN . For this, the appropriate quantities are 
given by 

.Dσ φ := d−κφ|(0,T )×𝚪 , Nσ φ := d2κ∇d · ∇(d−κφ)|(0,T )×𝚪 , (3) 

representing the Dirichlet and Neuman traces, respectively. 

Remark 3 A more subtle issue is that for .σ /= 0, the natural energy spaces now 
have fractional regularity depending on . σ . However, we will avoid this issue in this 
article. 

Remark 4 Note it is especially natural to consider nonzero Y and W in our 
context, since d generally fails to be regular away from . 𝚪, hence nontrivial (and 
irregular) lower-order coefficients are needed merely to study smooth operators of 
the form (1). 

Remark 5 Of particular importance are the thresholds .σ = 1
4 and .σ = − 3

4 , as  
well-posedness for (1) breaks down when .σ > 1

4 [3, 5], while the Dirichlet branch 
.dκvD /∈ L2(Ω) when .σ ≤ − 3

4 . It is also known—see [2]—that null boundary 
controllability fails for .σ = 1

4 . 

2 Existing Results 

The literature for (1) is much sparser than for the classical heat equation. Moreover, 
a vast majority of results for singular heat equations have focused instead on 
potentials .σ |x − x0|−2 that diverge only at a single point .x0 ∈ Ω̄; see, for instance, 
[1, 8, 11, 14, 31] and references within. In order to keep this survey concise, here 
we will restrict our discussions only to the relatively few null controllability results 
that exist for (1) itself and its special cases. 

In one spatial dimension, where we can set .Ω := (0, 1)without loss of generality, 
there are numerous results treating the singular heat operator 

. − ∂t + ∂2x + σx−2. (4)
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(Note this is not quite a special case of (1), since the potential diverges only at 
.x = 0 and not at .x = 1.) For instance, interior null controllability results for (4) 
were established in [6, 7, 10, 23], while boundary null controllability results for (4) 
were obtained in [2, 9, 10, 17]. 

Of particular relevance is the result of Biccari [2], which established boundary 
null controllability at .x = 0 for (4) with .− 3

4 < σ < 1
4 . As the proof applied 

the moment method, a Fourier-based technique that relied strongly on the precise 
spectral decomposition of the operator, the results of [2] do not readily extend to 
more general settings, for instance: 

• Singular heat Eq. (1) in higher spatial dimensions. 
• Equation (4) with lower-order coefficients .Y,W /= 0. 
• Equation (4), but with a potential that is singular at both .x = 0 and .x = 1. 

These were listed as open problems in [2, Section 8] and serve as key motivations for 
our result. Finding Carleman estimates for (4) was also highlighted as an especially 
challenging problem. 

Now, for higher dimensions .n > 1, the only null controllability results for (1) 
have been with interior controls. In particular, Biccari and Zuazua [3] proved interior 
null controllability for (1) using Carleman estimates. However, the results of [3] do  
not yield boundary controllability, as their Carleman estimates do not capture the 
natural Neumann trace (3) at the boundary. 

3 The Main Result 

Before stating the main result of [13] and this article, let us first roughly describe 
the assumptions we impose on the lower-order coefficients Y , W in (1): 

• Y , W should be regular near . 𝚪 (in particular, .Y ∈ C3 and .dW ∈ C2). 
• Y , W can be rougher away from . 𝚪 (in particular, .Y ∈ C1 and .W ∈ L∞). 

In particular, regularity near . 𝚪 is needed for our setting to be well-posed in the 
context of the Hilbert uniqueness method. On the other hand, since .σd−2 can be 
rough away from . 𝚪, then we must require this also from Y and W in order to treat 
smooth operators. 

The main boundary null control result, joint with Enciso and Vergara, is then the 
following: 

Theorem 6 ([13], Theorem 4.6) Assume the setting of (1), with Y and W satisfy-
ing the above. In addition, suppose .− 3

4 < σ < 0, and suppose . 𝚪 is a . C4 and convex 
(having strictly positive second fundamental form) hypersurface. Then, given any 
.T > 0 and .v0 ∈ H−1(Ω), there exists .f ∈ L2((0, T ) × 𝚪) such that the solution v 
of (1) satisfies .v|t=T = 0. 

To the author’s best knowledge, Theorem 6 is the first boundary null control-
lability result for (1) when .n > 1, as well as the first result in any dimension for
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nontrivial Y , W . When .n = 1, Theorem 6 also positively addresses the variant 
of (4) in which the potential diverges at both .x = 0 and .x = 1. Furthermore, [13] 
provides the first proof of boundary null control for (1) using Carleman estimates, 
which hence allows us to treat general Y , W . 

Remark 7 On the other hand, the proof of Theorem 6 breaks down if .σ ≤ − 3
4 or 

.σ ≥ 0. While .σ = 0 is just the classical heat equation, Theorem 6 does fail to treat 
the range .0 < σ < 1

4 , within which one still has boundary null control for (4) from 
[2]. 

4 The Hilbert Uniqueness Method 

The overall framework for proving Theorem 6 is based on duality and is now widely 
used in the control theory of PDEs. Early versions of this approach were due to 
Russell [26, 27]. More modern treatments, usually known as the Hilbert uniqueness 
method (HUM) of Lions  [22], also allow for one to characterise the desired control 
variationally; see [33]. 

Though there is not enough space to cover this approach in detail, here we simply 
stress that the key observation behind this framework is that the null controllability 
of (1) is equivalent to a quantitative uniqueness, or observability, statement for a 
dual problem. More specifically, this dual problem consists of the adjoint equation— 
a backwards singular heat equation: 

.∂tu + (Δ + σd−2)u = X · ∇u + V u on (0, T ) × Ω, (5) 

u|t=T = uT on Ω, 

Dσ u = 0 on  (0, T  ) × 𝚪. 

Here, (5) is solved backwards in time, with homogeneous Dirichlet data. Fur-
thermore, we can impose the same assumptions for X and V as for Y and V in 
Theorem 6. 

The first task at hand is to obtain a viable well-posedness theory for both (1) 
and (5) in dual spaces. Such theories are well-known for .σ = 0, see  [25, 33], but for 
Theorem 6, we must further adapt the theory to treat the cases .σ /= 0. Much of the 
treatment of (5) is based on the approach taken in [3], however in [13] we further 
extend the analysis to (1) in dual spaces. Without going into details, the upshot of 
this well-posedness analysis is as follows: 

• The dual theories for (5) and (1) hold for .− 3
4 < σ < 1

4 . 
• For the observability side (5), one has well-posedness with .uT ∈ H 1

0 (Ω). 
• For the control side (1), one has well-posedness with .v0 ∈ H−1(Ω) and . f ∈

L2((0, T )×𝚪). (In particular, here .H−1(Ω) is the Hilbert space dual of .H 1
0 (Ω).)
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In particular, these well-posedness theories lead to the specific spaces .H−1(Ω) and 
.L2((0, T ) × 𝚪) in the statement of Theorem 6. For details, see the discussions in 
[13, Sections 3–4]. 

With the well-posedness theories in place, the standard HUM machinery then 
yields that null controllability of (1) would follow—and hence the proof of 
Theorem 6 would be complete—if one can establish the following estimates on 
the observability side: 

Proposition 8 For any solution u of (5), the Neumann trace .Nσ u is well-defined 
and finite as an element of .L2((0, T ) × 𝚪). Furthermore, the following estimates 
hold for u: 

.‖u|t=0‖H 1(Ω) ≲ ‖Nσ u‖L2((0,T )×𝚪) ≲ ‖uT ‖H 1(Ω). (6) 

(Here, the constants of the inequalities are independent of . uT and u.) 

See, for instance, [33] for details of this HUM machinery. For our purposes, to 
complete the proof of Theorem 6, it suffices to establish the two estimates in (6). 

The second estimate in (6), the upper bound for .Nσ u, is a consequence of the 
regularity theory of (5). When .σ = 0, such an estimate is standard and follows by 
applying a trace estimate, 

. ‖N0u‖L2((0,T )×𝚪) ≲ ‖u‖L2(0,T ;H 2(Ω)),

and then applying the usual smoothing and energy estimates to control the above by 
. uT . With a bit of work, the above can be adapted to (5) in the range .− 3

4 < σ < 1
4 by 

using the appropriate weighted spaces; for details of this process, see [13, Section 
3.3], 

The more interesting part is the first estimate in (6)—the so-called observability 
estimate. (The meaning is that one can determine everything about the solution u 
by observing .Nσ u.) When .σ = 0, a well-known approach is to derive a global 
Carleman estimate for (5) to bound 

. ‖N0u‖L2((0,T )×𝚪) ≳ ‖u‖L2(0,T ;H 1(Ω)),

from which the observability estimate follows via a standard energy inequality. 
The key step of the proof of Theorem 6 is to obtain, for the first time, a global 

Carleman estimate for (5) that yields the above observability estimate in the range 
.− 3

4 < σ < 0. This serves as the main novelty of [13] and opens the doors for 
treating (1) using Carleman estimate methods. In the following section, we narrow 
our focus to this Carleman estimate.



Control of Parabolic Equations 183

5 The Global Carleman Estimate 

Carleman estimates have been an indispensible tool in the study of unique contin-
uation for a wide variety of PDEs; see, for instance, [18, 21]. They have also been 
applied to a variety of topics within PDEs, such as control theory [15, 16, 30] and 
inverse problems [4, 19]. 

In the context of Theorem 6, in particular of observability estimates for (5), we  
wish to prove a global Carleman estimate that has, very roughly, the following form: 

.C'λ
ˆ

(0,T )×𝚪

(Nσ u)2 +
ˆ

(0,T )×Ω

e−2λF (∂tu + Δu + σd−2u)2 (7) 

≥ Cλ 
ˆ 

(0,T )×Ω

e−2λF (|∇u|2 + d−2u2). 

Note (7) is a spacetime integral estimate with some additional features. Here, . F :
(0, T ) × Ω → R is a weight function—depending on the PDE, the geometry of 
the domain, and the problem at hand—that is specially chosen so that (7) holds. 
Moreover, .λ ⪢ 1 is an additional parameter in (7) that must be sufficiently large 
but can otherwise be freely chosen. Finally, C and . C' are positive constants that are, 
crucially, independent of u and . λ. 

To see how (7) leads to observability, we apply (7) to a solution u of (5), which 
yields 

. C'λ
ˆ

(0,T )×𝚪

(Nσ u)2 +
ˆ

(0,T )×Ω

e−2λF (X · ∇u + V u)2

≥ Cλ

ˆ
(0,T )×Ω

e−2λF (|∇u|2 + d−2u2).

By taking . λ sufficiently large, the second term on the left-hand side of the above can 
be absorbed into the right, and we obtain an estimate of the form 

. ‖Nσ u‖L2((0,T )×𝚪) ≳ ‖u‖L2(0,T ;H 1(Ω)),

from which observability follows via an additional energy estimate. 
As for how such an estimate (7) is proved, one begins this process by conjugating 

the PDE with the exponential weight .e−λF , starting with an expression of the form 

.

ˆ
(0,T )×Ω

[e−λF (∂t + Δ + σd−2)(eλF w)] · Sw, w := e−λF , (8) 

where S is an appropriately chosen multiplier approximately of the form 

.Sw := ∂tw + λ∇F · ∇w + . . . .
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One then expands (8) and integrates by parts repeatedly. Roughly speaking, if 
an appropriate F is chosen, then after an extensive amount of computations, the 
boundary terms obtained will capture the Neumann trace .(Nσ u)2, and the bulk terms 
will be dominated by a positive .H 1-norm of u, as in the right-hand side of (7). By  
taking . λ large enough, then this leading positive term will be large enough to absorb 
other lower-order terms that have no sign. 

Remark 9 See [13, Section 2] for detailed computations behind the Carleman 
estimate for Theorem 6, as well as for the precise form of the Carlmeman estimate. 

Below, we outline the main ideas and novelties behind the proof of our new 
global Carleman estimate. We begin with the Carleman estimate of Biccari and 
Zuazua [3], which was used to prove interior controllability for (1). There, the 
authors used a weight F roughly of the form 

.F(t, x) ≈ 1
t3(T −t)3

(
C − [d(x)]2 − [

d(x)ed(x)
]s), (9) 

where C is a constant and .s ⪢ 1 is a large exponent. (The factors of .t−1 and 
.(T − t)−1 in (9) are standard; these force the weight .e−λF to vanish at .t = 0 and 
.t = T , thereby avoiding any boundary terms there.) However, this choice (9) does 
not suit our purposes, as performing the above-mentioned computations with this 
F fails to capture the Neumann trace at the boundary. Moreover, using this F only 
leads to control for the spacetime .L2-norm of u, but not the full .H 1-norm, as terms 
containing .|∇u|2 are accompanied by a weight vanishing at . 𝚪. 

Thus, the first idea is that F needs to contain a special power of d in order to 
capture the Neumann data. For this, we instead consider F of the form 

.F(t, x) := 1
t (T −t)

(
1

1+2κ [d(x)]1+2κ + β

)
, β > 0, (10) 

where . κ is as in (2). Then, integrating by parts using F as in (10), we can see (after 
many computations) that one indeed recovers the .L2-norm of .Nσ u at the boundary. 

Remark 10 Technically, we must also ensure that only the Neumann data is 
captured at the boundary. For this, one must also show in the setting of (5) that 
(see [13, Section 3.3]) 

. d−1+κu|𝚪 = Nσ u,
ˆ

(0,T )×𝚪

e−2λF ∂t (Dσ u)Nσ u = 0.

Taking F as in (10), however, exposes an even more basic issue—that d, and 
hence F , fails to be regular away from . 𝚪. This would prevent us from performing 
the needed integrations by parts away from . 𝚪. Thus, we must also  alter d so that it 
is better behaved away from . 𝚪. Such a function is constructed [13, Section 2.1], and 
we summarise its main features below:
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Proposition 11 There exists a boundary-defining function .0 < y ∈ C4(Ω) such 
that: 

• y coincides with d near . 𝚪. 
• . −y is almost everywhere convex on . Ω (i.e. .−∇2y ≥ −ε). 
• y has a unique critical point .x∗ ∈ Ω. 

The idea is then to replace d by y in our definition of F : 

.F(t, x) := 1
t (T −t)

(
1

1+2κ [y(x)]1+2κ + β

)
, β > 0, (11) 

For similar reasons, one also replaces the singular heat operator by a smoother 
variant: 

. ∂t + Δ + σd−2 → ∂t + Δ + σy−2.

Using F as in (11), one still recovers the Neumann trace at the boundary, since 
.y = d near . 𝚪. Also, since y is sufficiently regular, the computations can now be 
performed on all of . Ω. 

Remark 12 The .C4-regularity of y is due to the assumption that . 𝚪 is . C4. The only 
significance of . C4 is that one takes 4 derivatives of y in the ensuing computations, 
although this is unlikely to be optimal. Similarly, the near-convexity of .−y is a 
consequence of . 𝚪 being convex. 

Furthermore, using the near-convexity of . −y, we see (after many computations) 
that the full .Ḣ 1-norm of u can be controlled when .− 3

4 < σ < 0, and we obtain an 
inequality of the form 

.C'λ
ˆ

(0,T )×𝚪

(Nσ u)2 +
ˆ

(0,T )×Ω

e−2λF (∂tu + Δu + σy−2u)2 (12) 

≥ Cλ 
ˆ 

(0,T )×Ω

e−2λF . . . |∇u|2 + Cλ3 
ˆ 

(0,T )×[Ω\Bδ(x∗)] 
e−2λF . . . u2 

− C∗λ2 
ˆ 

(0,T )×Bδ(x∗) 
e−2λF . . . u2. 

(Here, . . . . denotes some additional weights that are omitted for brevity, and . Bδ(x∗)
is a sufficiently small ball around . x∗.) Note, most alarmingly, that (12) fails to 
control the .L2-norm, since one has .L2-positivity only away from the critical point 
of y. The reason is that the weights “. . . . ” in the positive .L2-terms contain a factor 
of .|∇y|2, which vanishes at . x∗. 

The above yields what turns out to be the most signficant obstacle. The idea 
for overcoming this is to construct instead two boundary-defining functions . y1 and 
. y2, with distinct critical points .x∗,1 /= x∗,2. One can then obtain partial Carleman
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estimates from both . y1 and . y2 via the weight (11), and then sum both estimates 
together. Observe then that: 

• Near . x∗,1, the  .L2-contribution from the .y1-estimate is negative, but this is 
overtaken by a positive .L2-contribution from the .y2-estimate. 

• Near . x∗,2, the  .L2-contribution from the .y2-estimate is negative, but this is 
overtaken by a positive .L2-contribution from the .y1-estimate. 

In particular, in both points above, the positive term dominates, since it comes with 
a larger power of . λ. Yet another concern lies with the exponentials .e−2λF1 and 
.e−2λF2 in the partial estimates (12). However, by a careful choice of constants . β1, β2
from (11), one can ensure that near each critical point . x∗,j , the exponential weight 
from the positive term is the largest. 

Remark 13 Similar methods involving adding two Carleman estimates with dif-
ferent weights were used in [20, 28], in the context of controllability for wave 
equations. 

From the above analysis, we now obtain our desired Carleman estimate: 

Theorem 14 (Global Carleman Estimate) If .− 3
4 < σ < 0, then the following 

holds: 

.C'λ
ˆ

(0,T )×𝚪

(Nσ u)2 +
2∑

j=1

ˆ
(0,T )×Ω

e−2λFj (∂tu + Δu + σy−2
j u)2 (13) 

≥ Cλ 
2∑

j=1 

ˆ 
(0,T )×Ω

e−2λFj (|∇u|2 + y−2 
j u2). 

See [13, Theorem 2.9] for the precise statement and proof. In particular, (13) is 
sufficient to obtain the desired observability estimate for (5) and complete the proof 
of Theorem 6. 

6 Additional Remarks 

We conclude the article with a few final remarks related to Problem 1 and 
Theorem 6: 

Remark 15 A natural question is whether some variant of Theorem 6 could 
still hold when . 𝚪 is not convex. Although convexity was crucial in the proof of 
Theorem 14 in order to control the .Ḣ 1-norm, it turns out that one can still obtain 
a similar Carleman estimate localised near . 𝚪 even when . 𝚪 fails to be convex. 
One consequence of this is that for general . 𝚪, one can still obtain an approximate 
boundary controllability result (i.e. that one can steer the solution arbitrarily close 
to any final state); this has recently been established, jointly with Vergara, in [29].
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Remark 16 We conjecture that boundary null controllability for (1) still holds 
when .0 < σ < 1

4 . The Carleman estimate of (13) seemingly fails in this range, 
while the natural energy space for (5) is a fractional . Hs , for  some .s < 1. Thus, one 
likely needs to obtain an analogous Carleman estimate in weaker, fractional Sobolev 
norms, which significantly complicates the analysis. 

Remark 17 Finally, [12] obtained a similar observability estimate for singular 
wave equations, 

. − ∂2t u + (Δ + σd−2)u = X · ∇u + V u,

but only when the domain . Ω is a disk. It would be interesting to see whether the 
techniques here can be used to extend the result of [12] to more general convex 
domains. 
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4. A.L. Bukhgeĭm, M.V. Klibanov, Uniqueness in the large of a class of multidimensional inverse 
problems. Dokl. Akad. Nauk SSSR 260, 269–272 (1981) 

5. X. Cabré, Y. Martel, Existence versus explosion instantée pour des équations de la chaleur 
linéaires avec potentiel singulier. C. R. Math. Sci. Acad. Sci. Paris 329, 973–978 (1999) 

6. P. Cannarsa, P. Martinez, J. Vancostenoble, Null controllability of degenerate heat equations. 
Adv. Differ. Equ. 10, 153–190 (2005) 

7. P. Cannarsa, P. Martinez, J. Vancostenoble, Carleman estimates for a class of degenerate 
parabolic operators. SIAM J. Control Optim 47, 1–19 (2008) 

8. P. Cannarsa, P. Martinez, J. Vancostenoble, Carleman estimates and null controllability for 
boundary-degenerate parabolic operators. C. R. Acad. Sci. Paris, Serie I 347, 147–152 (2009) 

9. P. Cannarsa, P. Martinez, J. Vancostenoble, The cost of controlling weakly degenerate parabolic 
equations by boundary controls. Mat. Control Relat. Fields 7, 171–211 (2017) 

10. P. Cannarsa, P. Martinez, J. Vancostenoble, The cost of controlling strongly degenerate 
parabolic equations by boundary controls. ESAIM: Control Optim. Calc. Var. 26, 50pp. (2020) 

11. C. Cazacu, Controllability of the heat equation with an inverse-square potential localized on 
the boundary. SIAM J. Control Optim. 52, 2055–2089 (2014) 

12. A. Enciso, A. Shao, B. Vergara, Carleman estimates with sharp weights and boundary 
observability for wave operators with critically singular potentials. J. Eur. Math. Soc. 23, 3459– 
3495 (2021) 

13. A. Enciso, A. Shao, B. Vergara, Controllability of parabolic equations with inverse square 
infinite potential wells via global Carleman estimates. Preprint (2023). arXiv:2112.04457 

14. S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-
square potential. Commun. Partial Differ. Equ. 33, 1996–2019 (2008)



188 A. Shao

15. A.V. Fursikov, O.Y. Imanuvilov, Controllability of Evolution Equations. Lecture Notes Series, 
vol. 34 (Seoul National University, Research Institute of Mathematics, Global Analysis 
Research Center, Seoul, 1996) 

16. X. Fu, Q. Lü, X. Zhang, Carleman Estimates for Second Order Partial Differential Operators 
and Applications (Springer, Berlin, 2019) 

17. M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equa-
tions. SIAM J. Control Optim. 52, 2037–2054 (2014) 

18. L. Hörmander, The Analysis of Linear Partial Differential Operators IV (Springer-Verlag, 
Berlin, 1985) 

19. M.V. Klibanov, Inverse problems and Carleman estimates. Inverse Problems 8, 575 (1992) 
20. V.K. Jena, Carleman estimate for ultrahyperbolic operators and improved interior control for 

wave equations. J. Differ. Equ. 302, 273–333 (2021) 
21. N. Lerner, Carleman Inequalities: An Introduction and More (Springer, Berlin, 2019) 
22. J.L. Lions, Controlabilité exacte perturbations et stabilisation de systèmesdistribués (Masson, 

Paris, 1988) 
23. P. Martinez, J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat 

equations. J. Evol. Equ. 6, 325–362 (2006) 
24. R. Mazzeo, R. Melrose, Meromorphic extension of the resolvent on complete spaces with 

asymptotically constant negative curvature. J. Funct. Anal. 75, 260–310 (1987) 
25. J.-P. Raymond, Optimal control of partial differential equations. Lecture Notes (2004). https:// 

www.math.univ-toulouse.fr/~raymond/book-ficus.pdf 
26. D.L. Russell, Boundary value control of the higher-dimensional wave equation. SIAM J. 

Control 7, 29–42 (1971) 
27. D.L. Russell, Boundary value control theory of the higher-dimensional wave equation. II. 

SIAM J. Control 7, 401–419 (1971) 
28. A. Shao, On Carleman and observability estimates for wave equations on time-dependent 

domains. Proc. Lond. Math. Soc. 119, 998–1064 (2019) 
29. A. Shao, B. Vergara, Approximate boundary controllability for parabolic equations with inverse 

square infinite potential wells. Preprint (2023). arXiv:2311.01628 
30. D. Tataru, A-priori estimates of Carleman’s type in domains with boundaries. J. Math. Pures 

Appl. 73, 355–387 (1994) 
31. J. Vancostenoble, E. Zuazua, Null controllability for the heat equation with singular inverse-

square potential. J. Funct. Anal. 254, 1864–1902 (2008) 
32. C.M. Warnick, The massive wave equation in asymptotically AdS spacetimes. Commun. Math. 

Phys. 321, 85–111 (2013) 
33. E. Zuazua, Controllability of Partial Differential Equations, 3rd cycle (Castro Urdiales, 

Espagne, 2006)

https://www.math.univ-toulouse.fr/~raymond/book-ficus.pdf
https://www.math.univ-toulouse.fr/~raymond/book-ficus.pdf
https://www.math.univ-toulouse.fr/~raymond/book-ficus.pdf
https://www.math.univ-toulouse.fr/~raymond/book-ficus.pdf
https://www.math.univ-toulouse.fr/~raymond/book-ficus.pdf
https://www.math.univ-toulouse.fr/~raymond/book-ficus.pdf
https://www.math.univ-toulouse.fr/~raymond/book-ficus.pdf
https://www.math.univ-toulouse.fr/~raymond/book-ficus.pdf
https://www.math.univ-toulouse.fr/~raymond/book-ficus.pdf
https://www.math.univ-toulouse.fr/~raymond/book-ficus.pdf


On Geometric Estimates for Some 
Problems Arising from Modeling Pull-in 
Voltage in MEMS 

Durvudkhan Suragan and Dongming Wei 

Abstract In this paper, we prove that the pull-in voltage of the multidimensional 
MEMS (micro-electro mechanical systems) problem on the whole space . Rd , d ≥ 3,
is minimized by symmetrizing the permittivity profile. The proof relies on Talenti’s 
comparison principle. 

Keywords MEMS problem · Pull-in voltage · Newton potential · Talenti’s 
comparison principle · Geometric estimate 

2000 Mathematics Subject Classification 47J10, 35J60 

1 Introduction 

Let us recall the second order differential equation with the singular nonlinearity 
modeling stationary MEMS (micro-electro mechanical systems): 

.

{
−Δu(x) = λ

f (x)

(1−u(x))2
, 0 ≤ u(x) < 1, x ∈ Ω ⊂ R

d , d ≥ 1,

u(x) = 0, x ∈ ∂Ω.
(1) 

Here f describes the varying permittivity profile of the elastic membrane with 
.f ∈ Cα(Ω̄) for some .α ∈ (0, 1], 0 ≤ f ≤ 1, and .f /≡ 0. The Dirichlet pull-in 
voltage is defined as 

. λ∗(Ω, f ) = sup{λ > 0 | (1.1) possesses at least one classical solution}.

For the Dirichlet pull-in voltage the following inequality holds: 
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Theorem 1 (Proposition 2.2.1 [1]) A ball B (with the symmetrized permittivity 
profile) is a minimizer of the Dirichlet pull-in voltage among all domains of given 
volume, i.e., 

. λ∗(B, f ∗) ≤ λ∗(Ω, f )

for an arbitrary domain .Ω ⊂ R
d with .|Ω| = |B|, where . | · | is the Lebesgue measure 

in .R
d , d ≥ 1. Here . f ∗ is the symmetric decreasing rearrangement of f . 

In the present paper, we consider a similar stationary MEMS problem, but in the 
infinity domain, that is, on the whole space . Rd : 

.

{
−Δu(x) = λ

f

(1−u(x))2
, 0 ≤ u(x) < 1, x ∈ R

d , d ≥ 3,

u(x) −→ 0, |x| −→ ∞,
(2) 

where .λ > 0 and .f = 1 with . supp f ⊂ Ω ⊂ R
d .

To analyse the main difference between the problems (1) and (2), let us briefly 
discuss linear analogues of these problems. A linear analogue of Theorem 1 is 
so called the Rayleigh-Faber-Krahn inequality. To recall it let us consider the 
minimization problem of the first eigenvalue of the Laplacian with the Dirichlet 
boundary condition (among domains of a given volume): 

.

{−Δu(x) = λDu(x), x ∈ Ω ⊂ R
d ,

u(x) = 0, x ∈ ∂Ω.
(3) 

The famous Rayleigh-Faber-Krahn inequality asserts that 

. λD
1 (B) ≤ λD

1 (Ω),

for any . Ω with .|Ω| = |B|, where .B ⊂ R
d is a ball and . | · | is the Lebesgue measure 

in . Rd . Note that an analogue of the Rayleigh-Faber-Krahn inequality for general 
convolution type integral operators were given in [5] (see also [6]). 

Similarly, we can consider a linear version of the problem (2): 

. − Δu(x) = μu(x), x ∈ Ω ⊂ R
d , (4) 

with the nonlocal integral boundary condition 

. − 1

2
u(x) +

ˆ
∂Ω

∂εd(x − y)

∂ny

u(y)dSy −
ˆ

∂Ω

εd(x − y)
∂u(y)

∂ny

dSy = 0, x ∈ ∂Ω,

(5) 

where . εd is the fundamental solution of the Laplacian and . ∂
∂ny

denotes the outer 
normal derivative at a point y on the boundary . ∂Ω. The spectral problem (4)–(5) is
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equivalent (see [3]) to 

.u(x) = μ

ˆ
Ω

εd(x − y)u(y)dy, x ∈ Ω ⊂ R
d . (6) 

This also means 

Lemma 2 [3] The problem (2) is equivalent to the nonlinear integral problem 

.u(x) = λ

ˆ
Ω

εd(x − y)
1

(1 − u(y))2
dy, 0 ≤ u(x) < 1. (7) 

In Sect. 2 we briefly discuss some preliminary results, in particular, we recall 
the celebrated Talenti comparison principle [7], which states that the symmetric 
decreasing rearrangement (Schwarz rearrangement) of the Newtonian potential 
of a charge distribution is pointwise smaller than the potential resulting from 
symmetrizing the charge distribution itself. Main results of this paper and their 
proofs will be given in Sect. 3. Talenti’s comparison principle plays a key role in 
the proofs. 

2 Preliminaries 

Let . Ω be a measurable bounded domain of . Rd . An open ball (with origin 0) . Ω∗ is 
called a symmetric rearrangement of . Ω if .|B| = |Ω| and 

. Ω∗ = B =
{
x ∈ R

d | σd |x|d < |Ω|
}

,

where .σd = 2π
d
2

𝚪( d
2 )

is the surface area of the unit ball in . Rd . Let  u be a nonnegative 
measurable function vanishing at infinity in the sense that all of its positive level 
sets have a finite measure, i.e., 

. Vol ({x|u(x) > t}) < ∞, ∀t > 0.

To define a symmetric decreasing rearrangement of u one uses (see, for example [4]) 
the layer-cake decomposition, which expresses a nonnegative function u in terms of 
its level sets in the following way 

.u(x) =
ˆ ∞

0
χ{u(x)>t}dt,
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where . χ is the characteristic function. Let u be a nonnegative measurable function 
vanishing at infinity. Then 

.u∗(x) =
ˆ ∞

0
χ{u(x)>t}∗dt (8) 

is called a symmetric decreasing rearrangement of the function u. Note that 
the symmetric decreasing rearrangement is also sometimes called the Schwarz 
rearrangement. The simple definition (8) can be useful in many proofs, for example, 
if .0 ≤ v(x) − u(x), ∀x ∈ R

d , then we directly get 

. u∗(x) =
ˆ ∞

0
χ{u(x)>t}∗dt ≤

ˆ ∞

0
χ{v(x)>t}∗dt = v∗(x), ∀x ∈ R

d .

That is, if 

. 0 ≤ u(x) ≤ v(x), ∀x ∈ R
d ,

then 

. 0 ≤ v∗(x) − u∗(x), ∀x ∈ R
d .

Theorem 3 (Talenti’s Comparison Principle for the Laplacian ) Consider a 
(smooth) nonnegative function f with .suppf ⊂ Ω ⊂ R

d , d ≥ 3, for a bounded set 
. Ω, and its symmetric decreasing rearrangement . f ∗. If solutions u and v of 

. − Δu = f, −Δv = f ∗,

vanish at infinity, then 

. u∗(x) ≤ v(x), ∀x ∈ R
d .

Note that u and v exist, and are uniquely determined by the equation, i.e. 

. u(x) =
ˆ

Ω

εd(x − y)f (y)dy

and 

. v(x) =
ˆ

B

εd(x − y)f ∗(y)dy,

where .εd(·) is the fundamental solution of the Laplacian, that is, 

.εd(x − y) = 1

(d − 2)σd |x − y|d−2 , d ≥ 3,
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and . σd is the surface area of d-dimensional unit ball. They are nonnegative since 
the fundamental solution is nonnegative. The inequality also holds for nonnegative 
measurable functions f vanishing when .|x| → ∞. It is also known that the 
fundamental solution .σd, d ≥ 3, does not change its formula under the symmetric 
decreasing rearrangement, see e.g. Lieb and Loss [4]. 

3 The Pull-in Voltage for the Newtonian Potential 

We consider the pull-in voltage for the stationary deflection of an infinity elastic 
membrane satisfying 

.

{
−Δu(x) = λ

f (x)

(1−u(x))2
, 0 ≤ u(x) < 1, x ∈ R

d , d ≥ 3,

u(x) −→ 0, |x| −→ ∞,
(9) 

where .λ > 0 is the applied voltage and the permittivity profile f is a constant with 
finite support, that is, .f = 1 in . Ω with . supp f ⊂ Ω ⊂ R

d .

As usual, the pull-in voltage is defined as 

. λ∗(Ω) = sup{λ > 0 | (3.1) possesses at least one classical solution}.

Theorem 4 There exists a positive pull-in voltage .λ∗ < ∞ such that 

(a) For any .λ < λ∗, there exists at least one solution of (9). 
(b) For any .λ > λ∗, there is no solution of (9). 

Proof of Theorem 4 By using Lemma 2, problem (9) is equivalent to the nonlinear 
integral problem (7). Thus, since (7) has the trivial solution .u = 0 with .λ = 0, by  
the implicit function theorem (7) has a solution. In addition, since the fundamental 
solution . εd is positive, the integral on the right hand sight of (7) is positive. This 
means that . λ must be positive, that is, .0 < λ < λ∗. Now we need to show that 
.λ∗ < ∞. Let .0 ≤ u(x) < 1 be a solution of (7). We also use the following known 
fact: The first eigenvalue . μ1 of the spectral problem 

.φ1(x) = μ1

ˆ
Ω

εd(x − y)φ1(y)dy (10) 

is simple and positive as well as the corresponding eigenfunction . φ1 can be chosen 
positive. Thus, let us multiply (7) by . φ1 and integrate over . Ω, then we have 

.

ˆ
Ω

u(x)φ1(x)dx = λ

ˆ
Ω

ˆ
Ω

εd(x − y)
1

(1 − u(y))2
dyφ1(x)dx, 0 ≤ u(x) < 1.
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By (10) we obtain 

. 

ˆ
Ω

u(x)φ1(x)dx = λ

μ1

ˆ
Ω

φ1(y)

(1 − u(y))2
dy, 0 ≤ u(x) < 1,

that is, 

. λ = μ1
´
Ω

u(x)φ1(x)dx´
Ω

φ1(y)

(1−u(y))2
dy

≤ μ1
´
Ω

φ1(x)dx´
Ω

φ1(y)dy
.

This means 

.λ∗ ≤ μ1
´
Ω

φ1(x)dx´
Ω

φ1(y)dy
< ∞, (11) 

and there is no solution of (7) for any .λ > λ∗. By the definition of . λ∗ for any 
.λ ∈ (0, λ∗) there exists .λ̃ ∈ (λ, λ∗) for which (7) has a solution . uλ̃, that is, 

. uλ̃(x) = λ̃

ˆ
Ω

εd(x − y)
1

(1 − uλ̃(y))2
dy ≥ λ

ˆ
Ω

εd(x − y)
1

(1 − uλ̃(y))2
dy,

(12) 

This also means that . uλ̃ is a supsolution of (12) for the parameter . λ. On the other 
hand, since 

.0 ≤ λ

ˆ
Ω

εd(x − y)dy, (13) 

.u ≡ 0 is a subsolution of 

.uλ̃(x) ≤ λ

ˆ
Ω

εd(x − y)
1

(1 − uλ̃(y))2
dy. (14) 

Therefore, by the method of sub- and supsolutions (see the proof of [1, Theorem 
2.1.1]) we prove existence of a solution . uλ of (7) for any .λ ∈ (0, λ∗). ⨅⨆
Now we are ready to prove the following result. 

Theorem 5 We have 

. λ∗(f ∗) ≤ λ∗(f )

for the constant permittivity profile .f = 1 in a smooth bounded domain . Ω satisfying 
the assumption .supp f ⊂ Ω ⊂ R

d , d ≥ 3.
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Proof of Theorem 5 Let u be any positive solution of (7). Define the sequence (the 
Picard iteration scheme) 

.um(x) = λ

ˆ
Rd

εd(x − y)
f (y)

(1 − um−1(y))2
dy, u0(x) ≡ 0, m = 1, 2, . . . , (15) 

with .f = 1 and .supp f ⊂ Ω. We have .u > u0 ≡ 0 and whenever .u ≥ um−1, then 

. u(x) − um(x) = λ

ˆ
Rd

εd(x − y)f (y)

(
1

(1 − u(y))2
− 1

(1 − um−1(y))2

)
dy ≥ 0,

for all .x ∈ R
d , that is, .1 > u ≥ um in . Rd for each .m ≥ 0. Moreover, from (15) 

it is straightforward to see that the sequence .{um} is monotone increasing. Thus, it 
converges uniformly to a positive solution . uλ satisfying .u ≥ uλ in . Rd . Consider the 
following two sequences 

.un(x) = λ

ˆ
Rd

εd(x − y)
f (y)

(1 − un−1(y))2
dy, u0(x) ≡ 0, n = 1, 2, . . . , (16) 

with .supp f ⊂ Ω, and 

.vn(x) = λ

ˆ
Rd

εd(x − y)
f ∗(|y|)

(1 − vn−1(y))2
dy, v0(x) ≡ 0, n = 1, 2, . . . . (17) 

We have 

. − Δu1 = λf, −Δv1 = λf ∗,

therefore, by Talenti’s comparison principle for the Laplacian (see Theorem 3) we  
obtain 

.u∗
1(r) ≤ v1(r), ∀r ∈ [0,∞). (18) 

Note that here we have radial . v1 since . f ∗ is radial. We also have 

. − Δu2 = λ
f

(1 − u1)2
(19) 

and 

. − Δv2 = λ
f ∗

(1 − v1)2
. (20)
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Furthermore, by induction as in the proof of [1, Proposition 2.2.1], for all n we get 

.u∗
n(r) ≤ vn(r), ∀r ∈ [0,∞). (21) 

Since .max
B

u∗
n = max

Ω
un, it means that for a given . λ if .{vn} converges, then the 

sequence .{un} is also convergent. Theorem 5 is proved. ⨅⨆
We have the following upper bound for the pull-in voltage (for the non-constant 

permittivity profile): 

Theorem 6 Let f be an integrable function with .supp f ⊂ Ω ⊂ R
d , d ≥ 3. Let 

.μ1(Ω) be the first eigenvalue of the Newtonian potential (10) in . Ω. Then 

.λ∗(f ) ≤ 4μ1(Ω)

27
(inf

Ω
f )−1. (22) 

Proof of Proposition 22 As in the proof of Theorem 4, for any .λ ∈ (0, λ∗) we have 

. 

ˆ
Ω

u(x)φ1(x)dx = λ

μ1

ˆ
Ω

φ1(y)f (y)

(1 − u(y))2
dy, 0 ≤ u < 1.

Since .u(1 − u)2 ≤ 4
27 we obtain 

. 

ˆ
Ω

u(x)φ1(x)dx = λ

μ1

ˆ
Ω

u(y)φ1(y)f (y)

u(y)(1 − u(y))2
dy ≥

27λ inf
Ω

f

4μ1

ˆ
Ω

u(y)φ1(y)dy

proving the inequality (22). ⨅⨆
Note that, moreover, one can prove other upper estimates of the pull-in voltage 

that depends on the global properties of the (non-constant) permittivity profile. For 
instance, for the Dirichlet case (see, e.g. [2]) we have the estimate 

.(λD)∗(f ) ≤ 4μD
1 (Ω)

3

´
Ω

φD
1 (x)dx´

Ω
φD
1 (y)f (y)dy

, (23) 

where . μD
1 and . φD

1 are the first eigenvalue and the first eigenfunction of the Dirichlet 
Laplacian, respectively. 
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A Note on Fractional Powers of the 
Hermite Operator 

Sundaram Thangavelu 

Abstract We give a very short proof of a result proved by Cappiello-Rodino-Toft 
on the Weyl symbol of the inverse of the Harmonic oscillator. We also extend their 
results to fractional powers. 

Keywords Hermite operator · Fractional powers · Weyl transform · 
Pseudo-differential operators 

2010 Mathematics Subject Classification Primary: 35Q40, 35S05, 46F05; 
Secondary: 33C10, 30G 

1 Introduction 

As is well known the spectrum of the operator . H consists of .(2k + n), k ∈ N and 
hence it is invertible. The formal inverse can be written in terms of the spectral 
theorem by 

. H−1 =
∞∑

k=0

(2k + n)−1Pk
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where . Pk are the orthogonal projections associated to the eigenspaces corresponding 
to the eigenvalues .(2k + n). However, it is known that .H−1 is a pseudo-differential 
operator with a symbol .b(x, ξ) in the Weyl calculus. Thus 

. H−1ϕ(ξ) = (2π)−n

ˆ
Rn

ˆ
Rn

ei(ξ−η)·yb(
ξ + η

2
, y)ϕ(η)dydη

for .ϕ ∈ L2(Rn). In [1] the authors have obtained the following explicit expression 
for the symbol .b(x, ξ) when the dimension . n is even. 

Theorem 1 (Cappiello-Rodino-Toft) Let .b2n(x, ξ) stand for the Weyl symbol of 
.H−1 on .R

2n. Then one has the explicit formula 

. b2n(x, ξ) =
n−1∑

j=0

(n + j − 1)!
(n − 1)!j ! (−1)j (2j)!1 − p2j (|x|2 + |ξ |2)e−(|x|2+|ξ |2)

(|x|2 + |ξ |2)2j+1

where .pj (t) are the Taylor polynomials of the function . e−t about . t = 0.

The proof given in [1] is quite long and based on the fact that the symbol . b satisfies 
a partial differential equation. In this note, the above theorem becomes an easy 
consequence of an integral representation for the symbol . b which is based on the 
formula 

. H−1 =
ˆ ∞

0
e−tH dt

and the fact that .e−tH is a pseudodifferential operator with an explicit symbol. In 
the same paper [1] the authors have proved the following result giving estimates on 
the derivatives of the symbol . b of . H−1.

Theorem 2 The following estimates on the Weyl symbol .b(x, ξ) of the operator 
.H−1 are valid: there exists a constant .C > 0 such that for any .α ∈ N

2n and 
. r ∈ [0, 1]

. |∂α
x,ξ b(x, ξ)| ≤ C|α|+1(α!)(r+1)/2(|x|2 + |ξ |2)−1−(r/2)|α|.

In this note we give a short proof of the above theorem. Actually we can consider 
.H−s for any .s > 0 and prove similar estimates for the Weyl symbol . bs of the 
operator .H−s . We will also say something about conformally invariant fractional 
powers .H−s studied in the literature.
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2 Fractional Powers H−s of the Hermite Operator 

In this section we consider fractional powers of the Hermite operator . H = −Δ+|x|2
on .Rn. We first consider the negative powers .H−s where .s ≥ 0 which are given in 
terms of the Hermite semigroup .e−tH via the Gamma integral: 

. H−sf (x) = 1

𝚪(s)

ˆ ∞

0
e−tH f (x)ts−1dt.

The kernel of the semigroup .e−tH is explicitly known and is given in terms of the 
Mehler’s formula for the Hermite functions, see [6]. However, we can also write 
.e−tH as the Weyl transform of a function on . Cn which allows us to realise .e−tH and 
hence .H−s as a pseudo-differential operator. Recall that the Weyl transform . W(F)

of a function . F on . Cn is defined by 

. W(F)ϕ =
ˆ
Cn

F (z)π(z)ϕdz

for .ϕ ∈ L2(Rn). Here, .π(z) is the projective representation of . Cn which is closely 
related to the Schrödinger representations of the Heisenberg group. It is given 
explicitly by 

. π(x + iy)ϕ(ξ) = ei(x·ξ+ 1
2 x·y)ϕ(ξ + y).

It turns out that .W(F) is an integral operator with kernel 

. KF (ξ, η) =
ˆ
Rn

e
i
2 x·(ξ+η)F (x, η − ξ)dx

where by abuse of notation we have written .F(x, y) in place of .F(x+iy). If . F̃ (ξ, y)

stands for the inverse Fourier transform of .F(x, y) in the first set of variables, then 
we have .KF (ξ, η) = F̃ (

ξ+η
2 , η − ξ). By letting .b(ξ, η) stand for the full inverse 

Fourier transform of . F in both variables we can write .W(F) as 

. W(F)ϕ(ξ) = (2π)−n

ˆ
Rn

ˆ
Rn

ei(ξ−η)·yb(
ξ + η

2
, y)ϕ(η)dydη.

Thus we see that the Weyl transform .W(F) is a pseudo-differential operator in the 
Weyl calculus with symbol . b(x, ξ).

We now make use of the well known fact that .e−tH = W(pt ) where 

.pt (z) = cn(sinh t)−ne− 1
4 (coth t)|z|2
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is the heat kernel associated to the so called special Hermite opereator, see e.g. [6]. 
In view of the relation between a function . F and the Weyl symbol of . W(F), we  
observe that the Weyl symbol of the Hermite semigroup .e−tH is given by the func-
tion .at (x, ξ) = cn(cosh t)−ne−(tanh t)(|x|2+|ξ |2). As .𝚪(s)H−s = ´∞

0 t s−1e−tH dt the 
Weyl symbol of .H−s is given by 

. bs(x, ξ) = cn

𝚪(s)

ˆ ∞

0
t s−1(cosh t)−ne−(tanh t)(|x|2+|ξ |2)dt.

By taking .s = 1 and making a change of variables we see that the Weyl symbol 
.b(x, ξ) of .H−1 is given by 

. b(x, ξ) = cn

ˆ 1

0
(1 − t2)n/2−1e−t (|x|2+|ξ |2)dt.

It is an easy matter to prove Theorem 1. 

Proof of Theorem 1 Let .b2n stands for the Weyl symbol of .H−1 on .R2n given by 
the above expression. Then expanding .(1− t2)n−1 and making a change of variables 
we get 

. b2n(x, ξ) =
n−1∑

j=0

(n + j − 1)!
j !(n − 1)! (−1)j

(ˆ (|x|2|+|ξ |2)

0
t2j e−t dt

)
(|x|2 + |ξ |2)−2j−1.

The proof is completed by showing that . 1
j !
´ a

0 tj e−t dt = 1 − e−apj (a) where . pj

are the Taylor polynomials of .e−t . But this follows immediately by induction. 
In [1] the authors have studied .H−1 as a pseudo-differential operator. For the 

Weyl symbol .b(x, ξ) of .H−1 the authors have proved the estimate 

. |∂α
x,ξ b(x, ξ)| ≤ C|α|+1(α!)(r+1)/2(|x|2 + |ξ |2)−1−(r/2)|α|

for some constant . C which is independent of .α ∈ N
2n and .r ∈ [0, 1]. The proof 

given in [1] is quite long and uses several results from microlocal analysis. Here we 
give a very short proof of the same. ⨅⨆
Theorem 3 For .0 < s ≤ 1 we have the following estimates on the Weyl symbol 
.bs(x, ξ) of the operator .H−s: there exists a constant constant .C > 0 such that for 
all .α ∈ N

2n and . r ∈ [0, 1]

.|∂α
x,ξ bs(x, ξ)| ≤ C|α|+1(α!)(r+1)/2(|x|2 + |ξ |2)−s−(r/2)|α|.
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Proof We make use of some properties of the Hermite functions on .Rn. Recall that 
Hermite polynomials .Hk(t) on the real line are defined by the equation 

. Hk(t) = (−1)ket2 dk

dtk
e−t2

and the normalised Hermite functions are given by . hk(t) = (2kk!√π)−1/2Hk(t)

e− 1
2 t2

. It is then well known that .hk(t) are bounded functions uniformly in . k. The 
multi-dimensional Hermite functions .Hα(x), x ∈ R

n, α ∈ N
n are defined by taking 

tensor products. Thus the .2n-dimensional Hermite polynomials .Hα, α ∈ N
2n are 

defined by the equation 

. Hα(x, ξ)e−(|x|2+|ξ |2) = (−1)|α|∂α
x,ξ e

−(|x|2+|ξ |2).

Therefore, from the integral representation for . bs we obtain the relation 

. ∂α
x,ξ bs(x, ξ) = (−1)|α| cn

𝚪(s)

ˆ ∞

0
t s−1

× (cosh t)−n(tanh t)
1
2 |α|Hα((tanh t)1/2(x, ξ))e−(tanh t)(|x|2+|ξ |2)dt.

We now make use of the fact that the normalised Hermite functions . Фα(x, ξ)

defined by 

. Фα(x, ξ) = (2|α|(α!)πn)−1/2Hα(x, ξ)e− 1
2 (|x|2+|ξ |2)

are uniformly bounded (which follows from the fact that .hk(t) are uniformly 
bounded). This leads to the estimate 

. |∂α
x,ξ bs(x, ξ)| ≤ Cn2

1
2 |α|(α!)1/2̂

∞

0
t s−1(cosh t)−n(tanh t)

1
2 |α|e− 1

2 (tanh t)(|x|2+|ξ |2)dt.

In order to estimate the integral appearing above, we write it as 

. I =
ˆ ∞

0
Πn

j=1t
(s−1)/n(cosh t)−1(tanh t)

1
2 αj e− 1

2n
(tanh t)(|x|2+|ξ |2)dt.

Applying generalised Holder’s inequality, we are led to estimating . I ≤ Πn
j=1I

1/n
j

where 

.Ij =
ˆ ∞

0
t s−1(cosh t)−n(tanh t)

n
2 αj e− 1

2 (tanh t)(|x|2+|ξ |2)dt.
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Assuming .s = 1 and making a change of variables, we have to estimate the integral 

. J =
ˆ 1

0
(1 − t2)n/2−1tnk/2e− n

2 ta2
dt.

Further assuming that .n ≥ 2 we get two kinds of estimates for . J. Namely, . J ≤
Ca−2 and .J ≤ C𝚪(1 + (nk)/2)a−2−nk. These estimates immediately lead to the 
estimates .I ≤ C(|x|2 + |ξ |2)−1 and 

. I ≤ C|α|(α!)1/2(|x|2 + |ξ |2)−1−(1/2)|α|

where we have used Stirling’s formula to estimate the Gamma function. Thus we 
have proved 

. |∂α
x,ξ bs(x, ξ)| ≤ C|α|(α!)1/2(|x|2 + |ξ |2)−1

as well as 

. |∂α
x,ξ bs(x, ξ)| ≤ C|α|(α!)(|x|2 + |ξ |2)−1−(1/2)|α|.

Interpolation now gives the required estimate when .s = 1. When .0 < s < 1, we are 
led to estimate the integrals 

. 

ˆ ∞

0
t s−1(cosh t)−n(tanh t)

1
2 |α|e− 1

2 (tanh t)(|x|2+|ξ |2)dt.

As .tanh t behaves like . t for . t small and is dominated by . t for .t ≥ 1 and since 
.s − 1 < 0 we can bound the above integral by 

. 

ˆ ∞

0
(tanh t)s−1(cosh t)−n(tanh t)

1
2 |α|e− 1

2 (tanh t)(|x|2+|ξ |2)dt.

This can be estimated as before yielding the required estimate. 
⨅⨆

3 More on Fractional Powers of the Hermite Operator 

As noted elsewhere, it is sometimes more convenient to use a variant of the 
fractional power. At least in the case of the sublaplacian . L on the Heisenberg group 
. Hn , it has turned out to be more natural and fruitful to use the conformally invariant
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fractional power . Ls instead of the pure fractional power . Ls , see [5] for the definition. 
For the case of the Hermite operator it amounts to replace . Hs by the operator defined 
by 

. Hsϕ =
∞∑

k=0

𝚪( 2k+n+1+s
2 )

𝚪( 2k+n+1−s
2 )

Pkϕ

where . Pk are the spectral projections associated to . H. In view of Stirling’s formula 
for the Gamma function, it follows that .Hs differs from the pure power .Hs by a 
bounded operator .Us. Indeed, if we let 

. Usϕ =
∞∑

k=0

𝚪( 2k+n+1+s
2 )

𝚪( 2k+n+1−s
2 )

(2k + n)−sPkϕ

then clearly, . Us is bounded on .L2(Rn) and .Hs = UsH
s. We also note that . H−1

s =
H−s . Using the connection between . Ls and . Hs we can obtain an explicit formula 
for the Weyl symbol of . H−1

s .

We make use of several known facts: first of all we recall (see [6]) that . Pk =
(2π)−nW(ϕk) where .ϕk(z) = Ln−1

k ( 1
2 |z|2)e− 1

4 |z|2 are the Laguerre functions of 
type .(n − 1) on .Cn. Here .Lα

k (r) are Laguerre polynomials of type . α. Thus if we let 

. Fs(z) = (2π)−n
∞∑

k=0

𝚪( 2k+n+1−s
2 )

𝚪( 2k+n+1+s
2 )

ϕk(z)

then it follows that .H−1
s = W(Fs). The function . Fs is known explicitly. To see this, 

let .ϕα
k (r) = Lα

k (r2)e− 1
2 r2

be Laguerre functions of type . α. Let .Kν(r) stands for the 
Macdonald function of type . ν defined by the Sommerfeld integral (see [4] p.226) 

. Kν(r) = 1

2
(
r

2
)ν
ˆ ∞

0
e−(t+ r2

4t
)t−ν−1dt.

Then the function .Gα,σ (r) defined by 

. Gα,σ (r) = 2α+σ 𝚪(α−σ
2 )√

π𝚪(σ)
r−α−1+σ K(α+1−σ)/2(

1

2
r2)

can be expanded in terms of the functions .ϕα
k . In [2] the authors have shown that 

.Gα,σ (r) = 2

𝚪(α + 1)

∞∑

k=0

𝚪( 2k+α+1+1−σ
2 )

𝚪( 2k+α+1+1+σ
2 )

ϕα
k (r).
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Thus we see that, by choosing .α = n − 1 and .σ = s, the function . Fs is explicitly 
given by 

. Fs(z) = cn,s |z|−n+sK(n−s)/2(
1

4
|z|2)

where .cn,s is an explicit constant. Finally the Weyl symbol of .H−1
s is given by 

. bs(x, ξ) = (2π)−n

ˆ
R2n

Fs(u + iv)e−i(x·u+ξ ·v)dudv.

Theorem 4 For .0 < s ≤ 1 the Weyl symbol of .H−1
s is given explicitly by 

. bs(x, ξ) = cn,s

ˆ 1

0
e−a(|x|2+|ξ |2)as−1(1 − a2)

(n−s−1)
2 da.

Moreover, the following estimates are valid: 

. |∂α
x,ξ bs(x, ξ)| ≤ C|α|+1(α!)(r+1)/2(|x|2 + |ξ |2)−s−(r/2)|α|

for some constant . C which is independent of .α ∈ N
2n and . r ∈ [0, 1].

Proof In order to get the integral representation for .bs(x, ξ) we make use of the 
Poisson integral representation of . Kν : ( see [4], p.223) 

. Kν(r) =
√

π√
2𝚪(ν + 1/2)

r−1/2e−r

ˆ ∞

0
e−t t ν−1/2(1 + t/(2r))ν−1/2dt.

Recalling the formula for .Fs(z) in terms of .K(n−s)/2(
1
4 |z|2) and using the fact that 

the Fourier transform of .e−t |z|2 is a constant multiple of .t−ne− 1
4t

|z|2 we see that, 
after a change of variables, 

. bs(x, ξ) = cn,s

ˆ 1

0
e−a(|x|2+|ξ |2)as−1(1 − a2)

(n−s−1)
2 da.

We observe that the above expression coincides with the formula we got for . b1
earlier. Estimating derivatives of . bs is done as in the case of .s = 1. We leave the 
details to the reader. 

⨅⨆
Remark 5 The integral representation for . bs can also be obtained easily by making 
use of the numerical identity (see [3, p. 382, 3.541.1]) 

.

ˆ ∞

0
e−μt sinhν βt dt = 1

2ν+1

𝚪
(

μ
2β

− ν
2

)
𝚪(ν + 1)

𝚪
(

μ
2β

+ ν
2 + 1

) ,
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which is valid for .Re β > 0, .Re ν > −1, .Re μ > Re βν. The proof given above has 
the added advantage that the Fourier transform of . bs is given explicitly. Indeed, we 
have 

. 

ˆ
R2n

bs(x, ξ)e−i(y·x+ξ ·η)dxdξ = Cn,s(|y|2+|η|2)−(n−s)/2K(n−s)/2(
1

4
(|y|2+|η|2)).

Since .Kν is a linear combination of the modified Bessel functions . Iν and .I−ν, (see 
[4], p.224), the above is an explicit formula for the Fourier transform of . bs.
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of Generalized Functions 
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Abstract We consider a non-standard version of Egorov’s algebra of generalized 
functions, with improved properties of the generalized scalars and the embedding of 
Schwartz distributions compared with the original standard Egorov’s version. The 
embedding of distributions is similar to, but different from author’s works in the 
past and independently done by Hans Vernaeve. 
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1 Introduction 

Egorov’s article (Egorov [2]) on algebra .G(Ω) on generalized functions was 
published relatively soon after the arrival of Colombeau theory of generalized 
functions (Colombeau [1]) and from the very beginning it was treated from the 
mathematical community in close comparison with Colombeau theory. One striking 
difference in this comparison is the simplicity of Egorov construction: Unlike 
in Colombeau construction, all representatives of the generalized functions are 
moderate and the ideal is relatively simple (even trivial in the case of generalized 
scalars). This simplicity of Egorov’s construction is particularly advantageous when 
one is trying to define composition between generalized functions or generalized 
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functions on a manifold. In addition to the general theory, numerous interesting 
applications of the theory to partial differential equations appear in (Egorov [2]). 
In spite of all of these, Egorov’s theory was mostly ignored from mathematical 
community dealing with non-linear theories of generalized functions (standard and 
non-standard alike) - for one and one reason only: the embedding of Schwartz 
distribution into Egorov algebra .G(Ω) is not of Colombeau type in the sense that 
the product on .G(Ω), if restricted to smooth functions in .E(Ω), reduces to classical 
product only for constant functions. We summarize this in . C ⊂ D'(Ω) ⊂ G(Ω)

(compared with .E(Ω) ⊂ D'(Ω) ⊂ G(Ω) in Colombeau theory). The purpose of this 
article is to improve the properties of the generalized scalars and the embedding of 
the distributions as much as possible, while preserving the rest of the attractiveness 
features of Egorov approach including its simplicity. 

The non-standard version of Egorov algebra .∗̂E(Ω) of generalized functions had 
been studied in the past under the notation .A(Ω) in (Todorov [11], p. 680–684) 
and under the notation .∗C∞(Ω)|ns(∗Ω) in (Vernaeve [13]). For convenience of 
the reader we give an independent presentation in Sect. 3. One reason to involve 
non-standard analysis into non-linear theory of generalized functions (Egorov or 
Colombeau theories alike) is to improve the properties of generalized scalars 
(defined as generalized functions with zero gradient). The sets of generalized scalars 
in both Egorov and Colombeau algebras are rings with zero divisors. In contrast, 
the sets of scalars, .∗R and . ∗C, of the algebra .∗̂E(Ω) are fields, real closed and 
algebraically closed, respectively. 

In Sect. 4 we discuss the existence of a particular non-standard delta-function in 
the space .

∗D(Rd), slightly modifying some results in Todorov [9, 10]. Here . ∗D(Rd)

stands for the non-standard extension of the space of test functions .D(Rd). 
In Sect. 5 we define a particular embedding .ιΩ : D'(Ω) → ∗̂E(Ω) of the 

space of Schwartz distributions. The embedding . ιΩ is similar to, but different the 
embedding of distributions in (Vernaeve [13]); we make a short comparison below. 
The properties of . ιΩ are described in Theorem 6, but the differences with the 
previous works are best visible in Corollary 8. In short, the product in .∗̂E(Ω) reduces 
to the classical (pointwise) product on the ring .C[Ω] of polynomials (not on the 
whole .E(Ω)) and in a weaker sense on the ring .C(Ω) of continuous functions. This 
is an improvement relative to Egorov theory (Egorov [2]), where the product in 
Egorov’s algebra .G(Ω) reduces to the classical (pointwise) product only on . C (if 
complex numbers are treated as constant functions in .E(Ω)). We should mention 
that in both .G(Ω) and .∗̂E(Ω) there is one more embedding (in addition to what we 
discussed above) of .E(Ω) as a differential subalgebra; in our text it appears under 
notation . σ (see the end of Definition 1 and Corollary 8). 

In Sect. 6 we introduce a differential subalgebra .̂Rρ(Ω) of .∗̂E(Ω), which is 
similar to, but different from the algebra .G∞(Ω) of regular generalized functions 
introduced and study in (Oberguggenberger [6, 7]) within (standard) Colombeau 
theory (Colombeau [1]). The algebra .̂Rρ does not contain the counterexample 
constructed in Vernaeve [15]) and in that way we remove the obstacles to developing 
a regularity methods in non-standard setting.
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We shortly compare our approach based on the algebra .∗̂E(Ω) with Hans Ver-
naeve’s work on his algebra .∗E(Ω)|ns(∗Ω) in (Vernaeve [13]). We should mention 
that Vernaeve translated his theory also in standard setting (Vernaeve [14]).

• The algebra .∗̂E(Ω) defined here and Vernaeve’s algebra .∗E(Ω)|ns(∗Ω) (Ver-
naeve [13]) are the same: .∗̂E(Ω) = ∗E(Ω)|ns(∗Ω) and .μ(Ω) = ns(∗Ω). So, the 
scalars, . ∗C and . ∗R, are also the same. The difference is only in the embeddings 
of the space of distributions.

• Vernaeve’s embedding is of Colombeau type in the sense that, the product on 
.
∗E(Ω)|ns(∗Ω) reduces on .E(Ω) to the usual classical product between smooth 
functions - very much like in Colombeau theory (Colombeau [1]) as well as in 
its non-standard versions (Oberguggenberger and Todorov [8] and Todorov and 
Vernaeve [12]). Unfortunately, Vernaeve’s embedding is defined for convex open 
sets . Ω only. Hence, the family of spaces of distributions .{D'(Ω)}Ω∈T d fails to be 
a subsheaf of .{∗E(Ω)|ns(∗Ω)}Ω∈T d , where .T d stands for the usual topology on 
. Rd . Consequently, the embedding in Vernaeve’s approach does not, in general, 
preserve the supports of distributions.

• In contrast to the above, our embedding . ιΩ is not of Colombeau type - the  
product in .∗̂E(Ω) generalizes the classical product on the ring of polynomials 
.C[Ω] only, not on the whole space .E(Ω) (and also on the ring of continuous 
functions .C(Ω) in a weaker sense - after the restriction of the functions to . Ω). 
However, our embedding is well-defined for any open set . Ω of . Rd , the family 
.{D'(Ω)}Ω∈T d is a subsheaf of .{∗̂E(Ω)}Ω∈T d . Consequently, . ιΩ preserves the 
support of distributions (very much like in Egorov and Colombeau algebras). 
Whether the “trade-off” is worth doing, remains to be seen.

• The question for defining a Colombeau type of embedding of Schwartz’s distribu-
tions into .∗̂E(Ω) or .∗E(Ω)|ns(∗Ω) for every open set . Ω of . Rd , which preserves 
the support of distributions, remains open (with or without the requirement on 
the generalized scalars to be fields). 

2 Notations and Set-Theoretical Framework

• If Ω is an open subset of Rd , we denote by C(Ω) the space continuous functions 
from Ω to C. Similarly, we write E(Ω) = C∞(Ω), D(Ω) = C∞

0 (Ω), Lloc(Ω), 
D'(Ω) and E '(Ω) for the popular classes of functions and distributions. The 
Schwartz embedding SΩ : Lloc(Ω) I→ D'(Ω) is defined by 〈SΩ(f ), ϕ

〉 =´
Ω

f (x)ϕ(x) dx for all ϕ ∈ D(Ω) (Vladimirov [16]). In addition, we let C[Ω] =  
C[x1, . . . , xd ] ⇂Ω, where C[x1, . . . , xd ] stands for the ring of polynomials in d-
many variables with coefficients in C and ⇂ stands for the point-wise restriction.

• Our framework is a c+-saturated ultrapower non-standard model with the set of 
individuals R, where c = card R. For a presentation of the topic we refer to 
(Lindstrøm [4], Loeb and Wolff [5]) and/or (the Appendix in Todorov [11]). If S 
is a set (in the superstructure of R), we write ∗S for the non-standard extension of
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S. In particular, ∗N, ∗R, ∗C, ∗Rd , ∗Ω, ∗Lloc(Ω), ∗C(Ω), ∗D(Ω), ∗E(Ω), ∗D'(Ω). 
etc., are the non-standard extensions of N, R, C, Rd , Ω, Lloc(Ω), C(Ω), 
D(Ω), E(Ω),D'(Ω). etc., respectively. Recall that ∗R is c+–saturated real closed 
(non-Archimedean) field of cardinality c+, which contains R as a subfield. Also,
∗
C is an algebraically closed field containing C as a subfield and we have the 

usual connection ∗
C = ∗

R(i). Notice that ∗E(Ω) and ∗D(Ω) are differentia 
algebras over the field ∗C. Also, ∗

C is a differential subring of ∗E(Ω) (if the 
elements of ∗C are treated as constant functions). We should mention that the 
functions in ∗E(Ω) are mapping from ∗Ω to ∗C (not from Ω to ∗C) and similarly 
for the rest of the spaces.

• If X ⊆ Rd , we let  μ(X) = {x + dx : x ∈ X, dx ∈ ∗Rd , dx  ≈ 0} for the set 
of near-standard points of ∗X. Here  dx ≈ 0 means that ||dx|| is an infinitesimal 
in ∗R. If f ∈ ∗E(Ω), then the following are equivalent: (a) f ⇂ μ(Ω) = 0; (b) 
f⇂∗K = 0 for all K ⋐ Ω. 

3 Non-Standard Version of Egorov Algebra ∗̂E(Ω) 

Definition 1 (Non-Standard Version of Egorov Algebra) Let Ω be an open set 
of Rd . 

1. We let ∗̂E(Ω) = ∗E(Ω)/N (Ω), where N (Ω) = {f ∈ ∗E(Ω) : f⇂μ(Ω) = 0}. 
2. We supply ∗̂E(Ω) with the operations of a differential algebra over the field ∗C 

with the operations inherited from ∗E(Ω). 
3. For every f ∈ ∗E(Ω) we let ̂f = f + N (Ω) or ̂f = f ⇂ μ(Ω) and refer to ̂f 

as a generalized function on Ω. By exception, we shall write simply c instead 
of ĉ in the particular case c ∈ ∗

C (if c is treated as a constant function in 
∗E(Ω)). If S ⊆ ∗E(Ω), we let ̂S = { ̂f : f ∈ S}. In particular, ∗̂E(Ω) = ∗̂E(Ω),
N̂ (Ω) = {0}, ∗̂C = ∗

C and ∗̂R = ∗
R. 

4. For every ̂f ∈ ̂E(Ω) we define ̂f : μ(Ω) I→ ∗
C by ̂f (ξ)  = ∗f (ξ). 

5. Let O be an open subset of Ω and ̂f ∈ ∗̂E(Ω). We define the restriction ̂f ⇂O ∈
∗̂E(O) by ̂f ⇂O = f̂⇂∗O. We say that ̂f vanishes on O if ̂f ⇂O = 0 in ∗̂E(O). 
The support supp( ̂f )  of ̂f is the the complement to Ω of the largest open subset 
of Ω, on which ̂f vanishes. 

6. Let X be a Lebesgue measurable subset of Rd whose closure is a compact subset 
of Ω. We define a (Lebesgue) integral of ̂f ∈ ∗̂E(Ω) over X with values in ∗C 
by the formula 

´ 
X

̂f (x)  dx  = 
´ 

∗X f (ξ)  dξ . 
7. We define the pairing between ∗̂E(Ω) and D(Ω) by 〈 ̂f , ϕ〉 =  ́

 
∗Ω f (ξ)  ∗ϕ(ξ) dξ 

for all ̂f ∈ ∗̂E(Ω) and all ϕ ∈ D(Ω), where ∗ϕ stands for the non-standard 
extension of ϕ. 

8. We say that two generalized functions ̂f , ĝ ∈ ∗̂E(Ω) are weakly equal or 
associated, and write ̂f ∼= ĝ, if 〈 ̂f , ϕ〉 = 〈ĝ, ϕ〉 for all ϕ ∈ D(Ω). 

9. We define standard embedding σ : E(Ω) → ∗E(Ω) by σ(f  )  = ∗̂f = ∗f↾μ(Ω).
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Theorem 2 (Basic Properties of ∗̂E(Ω)) 

(i) ∗̂E(Ω) is a differential algebra over the field ∗C. Also, the mapping f + 
N (Ω) I→ f ⇂ μ(Ω) from ∗E(Ω)/N (Ω) onto {f ⇂ μ(Ω) : f ∈ ∗E(Ω)} is a 
differential algebra isomorphism (justifying the notation ̂f = f⇂μ(Ω) used in 
advance). 

(ii) ∗
C = { ̂f ∈ ∗̂E(Ω) : ∇ ̂f = 0} for every open connected subset Ω of Rd . 

(iii) The family {∗̂E(Ω)}Ω∈T d , is a sheaf of differential algebras on Rd , where T d 

stands for the usual topology on Rd . 
(iv) σ [E(Ω)] is a differential C-subalgebra of ∗̂E(Ω), isomorphic of E(Ω). Also,´ 

X σ(f )(v) dx = 
´ 
X f (x)  dx  for all f ∈ E(Ω) and all Lebesgue measurable 

subset X of Rd with compact closure in Ω. Moreover, {σ [E(Ω)]}Ω∈T d is a 
subsheaf of {∗̂E(Ω)}Ω∈T d . 

Proof For the proof we refer to (Todorov [11], §5) or/and (Vernaeve [13]). ⨅⨆

4 Non-Standard Delta-Function 

We discuss the existence of a particular non-standard delta-function . Δ in the space 
.
∗D(Rd), the non-standard extension .D(Rd). In this section we slightly modify 
similar results in Todorov [9, 10]. 

Lemma 3 (Non-Standard Delta-Function) For every .d ∈ N there exists (not 
necessarily unique) .Δ ∈ ∗D(Rd) such that .Δ(ξ) = 0 for all infinitely large and 
for all finite, but non-infinitesimal .ξ ∈ ∗

R
d and such that . ́ ∗Rd Δ(ξ) ∗ϕ(ξ) dξ =´

∗Rd Δ(−ξ) ∗ϕ(ξ) dξ = ϕ(0) for all continuous functions .ϕ ∈ C(Rd). We let  
.ρ = ∗sup

{||ξ || : ξ ∈ ∗
R

d , Δ(ξ) /= 0
}

for the radius of support of . Δ. Moreover, for 
each open .Ω ⊆ R

d and each .ε ∈ ∗
R+ we let 

. Ωε = {ξ ∈ ∗Ω : dist(ξ, ∂Ω) ≥ ε & dist(ξ, 0) ≤ 1/ε},

and define .ΠΩ : ∗
R

d I→ ∗
C by the formula .ΠΩ(ξ) = ´

Ω3ρ
Δ(ξ − η) dη. 

Theorem 4 (Regularization in .
∗E(Ω)) Let . Ω and . Δ be as in Lemma 3. Then: 

(i) .
∗f ✶ Δ ∈ ∗E(Rd) for every .f ∈ C(Rd). Here .

∗f ✶ Δ : ∗
R

d → ∗
C is defined by 

.(∗f ✶ Δ)(ξ) = ´∗Rd
∗f (η)Δ(ξ − η) dη. Moreover, .∗f ✶ Δ is an extension of f 

from . Rd to .
∗
R

d , in symbol, .(∗f ✶ Δ)⇂ Rd = f . 
(ii) .

∗P ✶ Δ = ∗P for all polynomials .P ∈ C[Ω]. 
(iii) . ρ is a positive infinitesimal in . ∗R and .μ(Ω) ⊆ Ω2ρ ⊂ Ωρ ⊆ ∗Ω. 
(iv) .ΠΩ ∈ ∗D(Ω), .ΠΩ⇂μ(Ω) = 1. Moreover, .supp(ΠΩ) = Ω2ρ . 
(v) .ΠΩ(∗T ✶ Δ) ∈ ∗D(Ω) for all .T ∈ D'(Ω). 

Proof For (i) and (ii) we refer to (Todorov [10], where the results are based on 
infinite-dimensional linear algebra and saturation principle in non-standard analysis
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(Lindstrøm [4] and/or Loeb and Wolff [5]). The fact that . ρ is an infinitesimal follows 
by underflow principle (Lindstrøm [4]). For the standard counterpart of the rest we 
refer to (Vladimirov [16], §4.6). ⨅⨆

5 Embedding of Distributions Into ∗̂E(Ω) 

Although the mapping .T → ΠΩ(∗T ✶ Δ) from .D'(Ω) to .∗E(Ω) (Theorem 4) is  
injective, it does not commute with the partial derivatives . ∂α in .∗E(Ω). Moreover, 
the family .{∗E(Ω)}Ω∈T d is not a sheaf on . Rd . Thus .∗E(Ω) cannot be treated as an 
algebra of generalized functions on . Rd we are looking for; we return to the algebra 
.∗̂E(Ω) defined in Sect. 3. 

Definition 5 (Embedding of Distributions in .∗̂E(Ω)) Let . Ω and . Δ be chosen (and 
fixed) as in Lemma 3. We define .ιΩ : D'(Ω) I→ ∗̂E(Ω) by .ιΩ(T ) = ̂ΠΩ(∗T ✶ Δ) or 
equivalently, by .ιΩ(T ) = ΠΩ(∗T ✶Δ)⇂μ(Ω). Here .

∗T ✶Δ : ∗Ω → ∗
C is defined by 

.(∗T ✶Δ)(ξ) = 〈∗T (η),Δ(ξ −η)〉 on the ground of transfer principle (Lindstrøm [4] 
and/or Loeb and Wolff [5]). 

Theorem 6 (Properties of the Embedding) 

(i) . ιΩ commutes with the partial derivatives on .D'(Ω). Moreover, . 〈ιΩ(T ), ϕ〉 =
〈T , ϕ〉 for all .ϕ ∈ D(Ω) (Definition 1). Consequently, . ιΩ is injective and 
.ιΩ[D'(Ω)] is a differential .C-vector subspace of .∗̂E(Ω). 

(ii) .(ιΩ ◦SΩ)[D(Ω)], .(ιΩ ◦SΩ)[E(Ω)], .(ιΩ ◦SΩ)[C(Ω)] and .(ιΩ ◦SΩ)[Lloc(Ω)] are 
.C-vector subspaces of .∗̂E(Ω). Moreover, .(ιΩ ◦SΩ)[D(Ω)] and . (ιΩ ◦SΩ)[E(Ω)]
are differential .C-vector subspaces of .∗̂E(Ω). Also, we have . (ιΩ ◦ SΩ)(f ) ∼=
σ(f ) for all .f ∈ E(Ω) (Definition 1). 

(iii) .(ιΩ ◦ SΩ)(P ) = σ(P ) for all polynomials .P ∈ C[Ω]. Consequently, . (ιΩ ◦
SΩ)

[

C[Ω]] is a differential subring (a differential .C-subalgebra) of .∗̂E(Ω), 
which is isomorphic to .C[Ω]. We summarize these in the chain of embeddings: 
.C[Ω] ⊂ D'(Ω) ⊂ ∗̂E(Ω), after dropping . ιΩ. 

(iv) The family .
{

ιΩ[D'(Ω)]}
Ω∈T d is subsheaf of .{∗̂E(Ω)}Ω∈T d on . Rd . Conse-

quently, .supp(T ) = supp(ιΩ(T )) for all .T ∈ D'(Ω). 
(v) Let .f ∈ C(Ω) be continuous function. Then .(ιΩ ◦ SΩ)(f ) is an extension of 

f (from . Ω to .μ(Ω), i.e. .(ιΩ ◦ SΩ)(f )(x) = f (x) for all .x ∈ Ω. In particular, 
.∂α (ιΩ ◦ SΩ)(f )(x) = ∂αf (x) for all .f ∈ E(Ω), all .α ∈ N

d
0 and all .x ∈ Ω. 

(vi) Let X and Y be two open subsets of . Rd and .θ ∈ Diff(X, Y ). Let the mapping 
.T → T (θ), from  .D'(X) to .D'(Y ), stands for the change of variables in the 
sense of distribution theory (Hörmander [3], §6.3–§6.4) and (Vladimirov [16], 
p.26). We define .θ∗ : ∗̂E(X) → ∗̂E(Y ) by .θ∗( ̂f ) = (f ◦ ∗θ−1) ⇂ μ(Y ), 
where .∗θ−1 stands for the non-standard extension of . θ−1. Then . θ∗(ιX(T )) ∼=
ιY (T (θ)) for all .T ∈ D'(X). 

Proof Relatively straightforward consequences from Theorem 4. ⨅⨆



Non-Standard Version of Egorov Algebra 215

Examples 7 (Some Particular Generalized Functions in .∗̂E(Ω)) 

(i) .ιRd (δ) = ̂Δ and more generally, .ιRd (∂αδ) = ̂∂αΔ for all .α ∈ N
d
0 . We write 

these more casually as .∂αδ ∈ ∗̂E(Rd). 
(ii) .(̂Δ)n ∈ ∗̂E(Rd) for all .n ∈ N, since .∗̂E(Rd) is an algebra. We write this more 

casually as .δn ∈ ∗̂E(Rd). 
(iii) Let .f : C I→ C stand for .f (z) = ez. Clearly, .ex+iy ∈ E(R2). Thus . eΔ ∈

∗E(R2) (we skip the asterisk in front of . ∗ez) and .̂eΔ ∈ ∗̂E(R2). We write more 
causally, .eδ ∈ ∗̂E(R2). Notice that . eδ makes sense as well in (Egorov [2]), 
but not in Colombeau algebra, since .ex+iy is non-moderate in the variable x 
(Colombeau [1]). 

(iv) Let temporarily write .Δd instead of . Δ indicating that .Δd ∈ ∗D(Rd). Let  
.(e1, e2, . . . , ed) be the standard basis for . Rd . Then .̂Δd ⇂ span(en) ∼= ̂Δ1, 
where .̂Δd ⇂ span(en) := Δd ⇂ μ(span(en)). Notice that .span(en) is a smooth 
submanifold (not open subset) of . Rd . 

Very much like in Colombeau and Egorov theories, Schwartz distribution can 
be multiplied within .∗̂E(Ω), since the latter is a differential (commutative and 
associative) algebra. How good (or bad) is this product? In a lack of compelling 
applications to other branches of mathematics or physics, we making our judgement 
mostly by applying this product to the .ιΩ-images in .∗̂E(Ω) of the classical functions. 
Here is our test: 

Corollary 8 (Multiplication of Classical Functions) 

(i) The product in the algebra .∗̂E(Ω), if restricted to .C[Ω] (more precisely, on 
.(ιΩ ◦ SΩ)

[

C[Ω]]), coincides with the usual product between polynomials, i.e. 
for every .P,Q ∈ C[Ω] we have 

. (ιΩ ◦ SΩ)(PQ) = (ιΩ ◦ SΩ)(P ) · (ιΩ ◦ SΩ)(Q).

(ii) .(ιΩ ◦ SΩ)
[

C[Ω]] = σ
[

C[Ω]] = σ [E(Ω)] ∩ (ιΩ ◦ SΩ)[E(Ω)]. 
(iii) For every two continuous functions .f, g ∈ C(Ω) and for all (standard) . x ∈ Ω

we have .(ιΩ ◦ SΩ)(fg)(x) = (ιΩ ◦ SΩ)(f )(x) · (ιΩ ◦ SΩ)(g)(x) = f (x)g(x). 
(iv) .ιΩ(f T ) ∼= σ(f ) ιΩ(T ) (Definition 1) for all .f ∈ E(Ω) and all .T ∈ D'(Ω), 

where the product f T  is in the sense of distribution theory (Vladimirov [16], 
§1.10). In particular, .ιΩ(P T ) ∼= (ιΩ ◦ SΩ)(P ) ιΩ(T ) for all polynomials 
.P ∈ C[Ω] and all .T ∈ D'(Ω). 

6 Regular Algebra 

The algebra .̂Rρ(Ω) defined below is similar, but different from the algbra . G∞(Ω)

introduced and study in (Oberguggenberger [6], [7]). We should mention that . ̂Rρ

does not contain the counterexample in Vernaeve [15]).
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Definition 9 (Regular Algebra) Let . Ω and . Δ be chosen (and fixed) as in 
Lemma 3. Let .

σE(Ω) = {∗f : f ∈ E(Ω)} and . Mρ = {ξ ∈ ∗
C : |ξ | ≤

ρ−n for some n ∈ N}. Let .Rρ(Ω) denote the subring of .∗E(Ω) generated by 
.
σE(Ω) ∪ Mρ , in symbol, .Rρ(Ω) = σE(Ω)(Mρ). The algebra of .ρ-regular 
functions is defined by .̂Rρ(Ω) = { ̂f : f ∈ Rρ(Ω)} or equivalently, by 
.̂Rρ(Ω) = {f⇂μ(Ω) : f ∈ Rρ(Ω)}. 
Theorem 10 Under the assumption of the above definition we have: 

(i) . ̂Rρ is a differential .C-subalgebra of .∗̂E(Ω). 
(ii) If . ̂f ∈ ̂Rρ(Ω), then .(∀ξ ∈ μ(Ω))(∃n ∈ N)(∀α ∈ N

d
0)(|∂α

̂f (ξ)| ≤ ρ−n). 
(iii) .̂Rρ(Ω) ∩ ιΩ[D'(Ω)] = (ιΩ ◦ SΩ)[C[Ω]]. 
Proof We leave the verification to the reader. ⨅⨆
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Density Conditions for Coherent State 
Subsystems of Nilpotent Lie Groups 

Jordy Timo van Velthoven 

Abstract The aim of this note is to present recent work on density conditions 
for spanning properties of coherent state subsystems for nilpotent Lie groups and 
provide context. 

Keywords Coherent state · Density condition · Nilpotent Lie group 
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1 Introduction 

A common procedure for the construction of coherent states is through a group-
theoretic method. Constructed in this manner, a coherent state system is a subset of 
the orbit of a vector under an irreducible unitary representation. The most classical 
example of such a coherent state system is the nowadays called Gabor or Weyl-
Heisenberg system in .L2(R), 

. 
{
e2πiξ ·g(· − x) : (x, ξ) ∈ R

2},

which arises from a function .g ∈ L2(R) through the action of the Schrödinger 
representation of the Heisenberg group. Gabor systems form a classical object of 
study in several areas of mathematics, ranging from complex and harmonic analysis 
to mathematical physics, see, e.g., the books [16, 20, 32, 35, 39]. 

Recently, there has also been a considerable interest in various aspects of 
coherent state systems arising from other nilpotent Lie groups, see, e.g., [5, 6, 
12, 18, 19, 21, 23, 29, 30]. The aim of this note is to survey recent results on 
density conditions for spanning properties of such coherent states and to discuss 
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the interrelation of these various conditions. Most of the presented results are well-
known for Gabor systems (cf. the survey [24]), but require other proof methods for 
general (classes of) nilpotent Lie groups. For example, a powerful technique for 
studying Gabor systems is the comparison with a “reference system” (cf. [2, 3, 34]), 
which are unknown to exist for other nilpotent Lie groups. Some related open 
problems are stated in Sect. 5. 

2 Coherent State Systems for Nilpotent Lie Groups 

This section provides the basic notions on representations of nilpotent Lie groups 
and associated coherent states; see the books [10, 32] for more details. 

Let N be a connected, simply connected nilpotent Lie group and let .(π,H) be 
an irreducible unitary representation of N . As . π is irreducible, there exists a unitary 
character .χπ of the center .Z = Z(N) of N such that .π(x) = χπ(x) · IH for all 
.x ∈ Z. In particular, this implies that, given .f, g ∈ H, the map .x I→ |〈f, π(x)g〉|2 is 
a well-defined function on the quotient group .N/Z. Additionally, it will be assumed 
that .(π,H) is square-integrable modulo the center .Z = Z(N) of N , i.e., there exists 
nonzero .g ∈ H such that 

. 

ˆ
N/Z

|〈g, π(x)g〉|2 dμN/Z(x) < ∞,

where .μN/Z denotes Haar measure on .N/Z. 
For the construction of coherent states, let .s : N/Z → N be a smooth cross-

section of the canonical projection .q : N → N/Z, i.e., .q ◦ s = idN/Z , and define 

. ρ := π ◦ s : N/Z → U(H).

Then the pair .(ρ,H) is an irreducible, square-integrable projective unitary repre-
sentation of .G := N/Z; in particular, it satisfies 

.ρ(xy) = σ(x, y)ρ(x)ρ(y), x, y ∈ G, (1) 

for a smooth function .σ : G × G → T, called the cocycle of . ρ. 
Following [28, 31], a coherent state system based on .G = N/Z is an orbit 

. ρ(G)g = {ρ(x)g : x ∈ G}

of a vector .g ∈ H.
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By the orthogonality relations for square-integrable representations [27], there 
exists a unique constant .dρ > 0, called the formal degree, such that 

.

ˆ
G

|〈f, ρ(x)g〉|2 dμG(x) = d−1
ρ ‖f ‖2

H‖g‖2
H (2) 

for all .f, g ∈ H. 
The relation (2) implies, in particular, that the coherent state system .ρ(G)g is 

overcomplete, in the sense that it remains complete even after the removal of an 
arbitrary element. The aim of this note is to provide an overview of quantitative 
sufficient and necessary conditions on a discrete subset .Λ ⊆ G such that the 
associated subsystem of coherent states, 

. ρ(Λ)g = {ρ(λ)g : λ ∈ Λ},

remains complete in . H (cf. [31]) or even forms a frame for . H (cf. [11]), i.e., there 
exist .A,B > 0, called frame bounds, such that 

. A‖f ‖2
H ≤

∑

λ∈Λ

|〈f, ρ(λ)g〉|2 ≤ B‖f ‖2
H for all f ∈ H.

Most of the presented results also admit dual statements for minimal systems and 
Riesz sequences. These statement can be found in the same references. 

3 Density Conditions for Lattice Subgroups 

A lattice in G is a discrete subgroup .𝚪 ⊆ G whose quotient .G/𝚪 is compact. 
Equivalently, a discrete subgroup .𝚪 ⊆ G is a lattice if there exists a relatively 
compact fundamental domain, i.e., a relatively compact set .Ω ⊆ G such that . γΩ ∩
γ 'Ω = ∅ for all . γ /= γ '. The  covolume of a lattice . 𝚪 is defined by . vol(G/𝚪) :=
μG(Ω) and independent of the choice of fundamental domain . Ω. The reciprocal of 
the covolume is often referred to as the density of a lattice. 

The following fundamental result provides a necessary condition on the density 
of a lattice admitting a complete system in its orbit. The theorem was first shown in 
[6, Theorem 3]. 

Theorem 1 Let .𝚪 ⊆ G be a lattice. If there exists .g ∈ H such that .ρ(𝚪)g is 
complete, then .vol(G/𝚪)dρ ≤ 1. 

Remark 2 The value of the covolume .vol(G/𝚪) and the formal degree . dρ depend 
on the choice of Haar measure on G, but their product does not. 

The original proof of Theorem 1 given in [6] relies on advanced techniques on 
group von Neumann algebras. Recently, more elementary proofs were given in [14, 
37].
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Theorem 1 is sharp, in the sense that for a general vector .g ∈ H the necessary 
condition .vol(G/𝚪)dρ ≤ 1 cannot be improved. This is shown by the following 
theorem [6, Theorem 3]; see also [15]. 

Theorem 3 Let .𝚪 ⊆ G be a lattice. If .vol(G/𝚪)dρ ≤ 1, then there exists . g ∈ H
such that .ρ(𝚪)g forms a frame for . H. 

The existence claim in Theorem 3 is not accompanied by constructions of explicit 
vectors nor does it guarantee additional regularity properties of the vector than 
membership in . H. However, under additional assumptions on the lattice, it was 
shown in [5] that a generating vector can be chosen to be in the space .H∞ consisting 
of smooth vectors of . ρ, i.e., vectors .g ∈ H such that the orbit map .x I→ ρ(x)g is 
smooth. For stating this result, a pair .(𝚪, σ ) consisting of a lattice . 𝚪 and a cocycle 
. σ as in (1) is said to satisfy Kleppner’s condition if the conjugacy class . {γ γ0γ

−1 :
γ ∈ 𝚪} of an element .γ0 ∈ 𝚪 \ {e} is infinite whenever .σ(γ0, γ ) = σ(γ, γ0) holds 
for all .γ ∈ 𝚪 commuting with . γ0. 

Theorem 4 Let .𝚪 ⊆ G be a lattice such that .(𝚪, σ ) satisfies Kleppner’s condition. 
If .vol(G/𝚪)dρ < 1, then there exists .g ∈ H∞ such that .ρ(𝚪)g forms a frame for 
. H. 

Note that, in contrast to Theorem 3, the sufficient density condition in Theorem 4 
is a strict inequality. For the nonexistence of smooth frames at the critical density 
.vol(G/𝚪)dρ = 1, see Theorem 8. 

4 Necessary Density Conditions for Irregular Point Sets 

This section contains various density theorems for coherent state subsystems asso-
ciated to nonlattice index sets. The notion of density appearing in these theorems is 
the so-called Beurling density, which will be described next. 

Following [33], a sequence .(Kn)n∈N of nonnull compact subsets .Kn ⊆ G is said 
to be a strong Følner sequence if it satisfies 

. lim
n→∞

μG(KnK ∩ Kc
nK)

μG(Kn)
= 0

for all compact sets .K ⊆ G. Examples of strong Følner sequences include 
sequences of balls .(Brn(e))n∈N with .rn → ∞ associated to a word metric, 
Riemannian metric or Carnot-Carathéodory metric on G, cf. [8]. Given any strong 
Følner sequence .(Kn)n∈N, the associated (lower) Beurling density of a set . Λ ⊆ G

is given by 

.D−(Λ) = lim inf
n→∞ inf

x∈G

#(Λ ∩ xKn)

μG(Kn)
.
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The Beurling density of a set is independent of the choice of strong Følner sequence, 
see [33, Proposition 5.14]. In particular, if .𝚪 ⊆ G is a lattice, then 

. D−(𝚪) = vol(G/𝚪)−1,

see, e.g., [33, Section 6]. 

4.1 Approximate Lattices 

For a general discrete set .Λ ⊆ G and a vector .g ∈ H, there are no necessary 
density conditions (involving Beurling densities) for .ρ(Λ)g to be complete. Namely, 
as shown in [36, 38], there are complete Gabor systems for which the Beurling 
density of its index set is zero. However, an extension of Theorem 1 to so-called 
approximate lattices [7] was recently obtained in [14]. 

A set .Λ ⊆ G is called a Delone set if there exist a compact set .K ⊆ G such that 
.ΛK = G and an open set .U ⊆ G such that .#(Λ∩xU) ≤ 1 for all .x ∈ G. A Delone 
set . Λ is called a k-approximate lattice (.k ∈ N) if it additionally satisfies 

(a1) The identity .e ∈ G is contained in . Λ; 
(a2) .Λ−1 = Λ; 
(a3) there exists a finite .F ⊆ G of cardinality .#F ≤ k such that .Λ2 ⊆ FΛ. 

Note that a lattice is precisely a 1-approximate lattice. 
The following theorem is the main result of [14]. 

Theorem 5 Let .Λ ⊆ G be a k-approximate lattice. If there exists .g ∈ H such that 
.ρ(Λ)g is complete in . H, then 

. D−(Λ) ≥ dρ/k.

Theorem 5 is optimal in the sense that .D−(Λ) could be arbitrary small while 
. dρ = 1, cf. [14, Proposition 3.7]. 

4.2 General Point Sets 

This subsection contains various results on the density of frames .ρ(Λ)g for general 
point sets .Λ ⊆ G. In order to state these results, an additional condition on the 
generating vector .g ∈ H is required. 

Given .p ∈ {1, 2} and a symmetric compact unit neighborhood .Q ⊆ G, define 

.Bp :=
{
g ∈ H :

ˆ
G

sup
y∈Q

|〈g, π(xy)g〉|p dμG(x) < ∞
}
.
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Then .Bp is independent of the choice of defining neighbourhood, and .B1 ⊆ B2. 
In particular, the space of smooth vectors .H∞ is contained in . B1, and hence .Bp is 
norm dense in . H. 

The following theorem was first shown in [18]; see also [9, 13, 14]. 

Theorem 6 Let .Λ ⊆ G. If there exists .g ∈ B2 such that .ρ(Λ)g is a frame for . H, 
then .D−(Λ) ≥ dρ . 

Theorem 6 provides a strong necessary condition on a discrete set admitting a 
frame. If, under the same hypotheses as Theorem 6, the system .ρ(Λ)g is even an 
orthonormal (or Riesz) basis, then necessarily .D−(Λ) = dρ , cf. [9, 13, 14, 18]. In 
particular, a frame .ρ(Λ)g with .g ∈ B2 and .D−(Λ) > dρ is overcomplete. 

A criterion for a frame under which a set of positive density can be removed yet 
leave a frame is given by the following theorem from [9]. 

Theorem 7 Suppose .ρ(Λ)g is a frame for . H with .g ∈ B1 and .D−(Λ) > dρ . Then 
there exists .Λ' ⊆ Λ with .D−(Λ') > 0 such that .{ρ(λ)g}λ∈Λ\Λ' is a frame for . H. 

The last presented result is a theorem asserting that the strict density inequality 
appearing in Theorem 7 is automatic for frames .ρ(Λ)g with a vector .g ∈ B1. See 
[17] for the definition of a homogeneous (nilpotent) group. 

Theorem 8 Let G be a homogeneous group and let . Λ ⊆ G. If .ρ(Λ)g is a frame 
for . H with .g ∈ B1, then .D−(Λ) > dρ . 

In particular, if .ρ(Λ)g is an orthonormal basis for . H, then .g /∈ B1. 

Theorem 8 is proved in [23], and forms an extension of a corresponding result 
for Gabor systems [1, 22]. 

5 Open Problems and Questions 

This section contains four open problems on density conditions for coherent state 
subsystems of nilpotent Lie groups. 

The first question concerns the validity of Theorem 3 without Kleppner’s 
condition. 

Question 9 Given a lattice .𝚪 ⊆ G satisfying .vol(G/𝚪)dρ < 1, does there exist 
.g ∈ H∞ such that .ρ(𝚪)g is a frame for . H? 

Question 9 is still open in the special case of Gabor systems. See [25, 26] for  
related sufficient density conditions in this setting. 

Second, the question whether Theorem 6 is still valid for frames .ρ(Λ)g for . H
with generating vector .g /∈ B2. 

Question 10 Given a frame .ρ(Λ)g for . H with .g /∈ B2, is it necessary that . D−(Λ) ≥
dρ?
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The additional condition .g ∈ B2 in Theorem 6 is known to be unnecessary 
for Gabor systems [34] and more generally for groups G with an invariant 
neighbourhood [13], so for these cases Question 10 is true. 

The third question concerns a quantitative version of Theorem 7. 

Question 11 Let .ε > 0. Given a frame .ρ(Λ)g for . H with .g ∈ B1 and .D−(Λ) > dρ , 
does there exist .Λ' ⊆ Λ such that 

. (1 + ε)dρ ≥ D−(Λ \ Λ') ≥ dρ

and .(ρ(λ)g)λ∈Λ\Λ' is still a frame for . H? 

Question 11 has an affirmative answer for Gabor systems, cf. [4]. A positive 
answer to Question 11 would show, in particular, that the strict density conditions 
of Theorem 8 are optimal. 

Lastly, the question whether Theorem 8 remains valid for general (nonhomoge-
neous) nilpotent Lie groups. 

Question 12 Given a frame .ρ(Λ)g for . H with .g ∈ B1, is it necessary that . D−(Λ) >

dρ?
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Riemannian Symmetric Spaces of 
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Abstract We present a summary of recent advances in the Strichartz inequality 
and the smoothing property on non-compact type and general rank Riemannian 
symmetric spaces. 

Keywords Dispersive equation · Non-compact symmetric space · Strichartz 
inequality · Smoothing property 
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1 Introduction 

Two primary instruments for addressing non-linear dispersive equations are the 
Strichartz inequality and the smoothing property. Both these estimates necessitate 
an exploration of the solution for the corresponding linearized equation within the 
space-time mixed Lebesgue norm. In the Euclidean setting, the estimates discussed 
have been extensively covered in the existing literature. We recommend referring 
to [8, 17] for a more comprehensive review. In this brief note, we aim to highlight 
recent progress concerning these estimates in non-compact Riemannian symmetric 
spaces. These spaces are Riemannian manifolds with non-positive sectional cur-
vature and grow exponentially fast to infinity. In particular, the techniques of the 
Fourier analysis are available in such a context. 

Notation We utilize standard notation, which can be found in [9] for more  
explanation. Let . X be a symmetric space of rank .𝓁 ≥ 1, dimension .n ≥ 2, and 
pseudo-dimension .ν ≥ 3. We denote by . Δ the Laplace-Beltrami operator on . X
and .|ρ|2 the bottom of its .L2-spectrum. Let . a be the Cartan subspace which is a 
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flat submanifold of . X. Recall that the dimension of . a is . 𝓁, that is the rank of . X. 
Throughout this note, we denote by .C > 0 a constant independent of variables. 

2 Strichartz Inequality 

To provide a simplified perspective, we consider the free Schrödinger equation as 
an elementary model. Consider the homogeneous Cauchy problem 

.(i∂t + Δx) u(t, x) = 0, u(0, x) = f (x). (1) 

The Strichartz inequality aims to establish a relationship between the initial data 
.f (x) and the solution .u(t, x) = eitΔf (x) to the Eq. (1). It seeks to identify suitable 
pairs .(p, q) for which the following inequality holds: 

.‖u‖L
p
t (R;L

q
x(X)) =

{ˆ
R

dt ‖eitΔf ‖p

Lq(X)

}1/p ≤ C ‖f ‖L2(X). (2) 

In the Euclidean setting, the explicit expression of the convolution kernel of 
the Schrödinger propagator directly implies the .L1-.L∞ dispersive property. This 
property plays a central role in establishing the Strichartz inequality through the use 
of the .T T ∗ duality argument. However, it is not always possible to expect such an 
explicit expression on more general manifolds, even in symmetric spaces where the 
Fourier analysis techniques are available. In fact, by using the inverse formula of the 
spherical Fourier-Helgason transform, one can write the Schrödinger kernel as 

. st (x) = C e−it |ρ|2
ˆ
a

dλ |c(λ)|−2 ϕλ(x) e−it |λ|2 ,

where .c(λ) is the so-called Harish-Chandra function and .ϕλ(x) is the spherical 
function which plays a similar role as the exponential factor in the Euclidean Fourier 
transform. In harmonic analysis of higher rank symmetric spaces, one of the well-
known difficulties arises from the fact that the Plancherel density .|c(λ)|−2 is not 
always a differential symbol. A recent breakthrough [3] has successfully tackled 
this difficulty. The authors introduced a novel spectral decomposition method that 
divides the Cartan subspace . a into distinct subcones. Within each subcone, the 
Plancherel density behaves as if it were a symbol along a well-chosen direction. 
Together with an explicit Hadamard parametrix and the stationary phase method, the 
authors in [5] have established the following pointwise estimate for the Schrödinger 
kernel: 

.|st (x)| ≤ C (1 + |x|)M ϕ0(x)

⎧
⎨
⎩

|t |− n
2 if 0 < |t | < 1,

|t |− ν
2 if |t | ≥ 1,

(3)
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for some constants .C > 0 and .M > 0. Unlike the kernel estimate in the Euclidean 
setting, the decay at the large time in estimate (3) is solely determined by the 
pseudo-dimension . ν, rather than the dimension of the manifold n. By leveraging 
the Kunze-Stein phenomenon in conjunction with estimate (3), one derives the 
following stronger dispersive property: 

.‖eitΔ‖
Lq'

(X) → Lq(X)
≤ C

⎧⎨
⎩

|t |−( 1
2 − 1

q
)n if 0 < |t | < 1,

|t |− ν
2 if |t | ≥ 1,

(4) 

where the dispersion in large time is independent of the index . q ≥ 2. This  
phenomenon was initially discovered in the context of real hyperbolic spaces, which 
are non-compact symmetric spaces of rank one, see [1, 6, 10]. In these spaces, the 
pseudo-dimension is consistently equal to 3, and the challenge mentioned earlier 
regarding the behavior of the Plancherel density does not arise. See also [4] for  
results on Damek-Ricci spaces, which include all the symmetric spaces of rank one, 
and [7] where the author have obtained an improved Strichartz inequality without 
using the spherical Fourier analysis in a class of manifolds including the hyperbolic 
space and the Damek-Ricci space. 

Once the dispersive property is established, the Strichartz inequality can be 
deduced through the standard duality argument. Thanks to the stronger dispersive 
estimate (4), a wide range of pairs .(p, q) can satisfy the Strichartz inequality (2). 

Theorem 1 The Strichartz inequality (2) holds for all .(p, q) belongs to the 
admissible triangle 

.

{( 1

p
,

1

q

)
∈

(
0,

1

2

]
×

(
0,

1

2

) ∣∣∣ 2

p
+ n

q
≥ n

2

} ⋃ {(
0,

1

2

)}
. (5) 

Note that in symmetric spaces, the admissible set is significantly larger than in 
the Euclidean setting. The latter corresponds only to the lower edge of the triangle 
shown in Fig. 1. The enlarged admissible set in symmetric spaces can be attributed 
to the stronger dispersive property arising from the large-scale geometry inherent in 
these spaces. 

By using a similar argument, it is possible to derive an improved Strichartz 
inequality for the non-homogeneous linear Schrödinger equation, that is Eq. (1) 
with a linear forcing term on the right-hand side. This improved inequality, when 
combined with the fixed-point argument, enables one to prove the stronger global 
well-posedness and scattering results in the analysis of the corresponding non-linear 
Schrödinger equation, see [1, 5, 10]. Similar results also hold for the wave equation, 
see, for instance, [2, 3, 14, 18, 19].
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Fig. 1 Admissible triangle in 
dimension . n ≥ 3

1 
p 

1 
q 

1 
2 

1 
2 − 1 n 

0 1 
2 

1 
p = n 2 

1 
2 − 1 q

)

3 Smoothing Property 

It is known that the Schrödinger propagator .eitΔ preserves the . L2 norm for each 
fixed time .t ∈ R. Hence, the inequality (2) cannot hold for any .2 ≤ p < ∞ when 
.q = 2 (see the red dashed edge in Fig. 1). The smoothing property refers to the .L2-
. L2 space-time estimate, which enables one to gain extra regularity in comparison to 
the initial data. Recently, in [13], various types of smoothing properties have been 
established for the Cauchy problem involving the more general m-order operator 
.Dm = (−Δ − |ρ|)m/2, namely, 

.(i∂t − Dm) u(t, x) = 0, (6) 

Theorem 2 Suppose that .m > 0 and .A(x,D) is defined as one of the following 

(I) .A(x,D) = |x|α− m
2 Dα; .m−3

2 < α < m−1
2 if .𝓁 = 1 or . m−min{n,ν}

2 < α < m−1
2

if .𝓁 ≥ 2, 

(II) .A(x,D) = 〈x〉−sD
m−1

2 ; .s > 1
2 and .m > 0, 

(III) .A(x,D) = 〈x〉−s〈D〉m−1
2 ; .s ≥ m

2 and .1 < m < ν. 

Then, the solution to the Cauchy problem (6) satisfies the smoothing property: 

. ‖A(x,Dx) u‖L2(Rt×X) ≲ ‖u0‖L2(X).

The type (II) and (III) estimates have been partially derived in [11]. Notably, the 
regularity condition of the type (III) estimate relies solely on the pseudo-dimension 
. ν, in contrast to the Euclidean setting where it depends on the manifold dimension. 
It is worth noting that this range of regularity is optimal, as the type (III) estimate 
fails for all .m ≥ ν. The type (I) estimate is also optimal in the case where the 
homogeneous space .X = G/K involves a complex G. In such a case, the manifold
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dimension and the pseudo-dimension coincide, the type (I) estimate fails for any 
.α ≤ (m − ν)/2 or .α ≥ (m − 1)/2. 

An interesting observation arises in the case where . X has rank one (then the 
pseudo-dimension .ν = 3). For instance, consider the Schrödinger equation (.m = 2) 
on a 2-dimensional hyperbolic plane, the above theorem shows that . A(x,D) =
|x|−1 satisfies the smoothing property. It is known that the weight .|x|−1 does not 
enjoy such a property on a Euclidean plane, see for instance [12, 15, 16]. Such 
differences highlight the particular geometry at infinity of the hyperbolic plane in 
comparison to the Euclidean setting. 

4 Conclusion 

There are several open questions that require further investigation. Firstly, it remains 
unclear whether the regularity condition of the type (I) estimate is sharp for higher 
ranks. It is expected that it depends solely on the pseudo-dimension, similar to 
the type (III) estimate. Additionally, in the non-linear PDE studies, it is crucial 
to establish smoothing properties for (6) with a linear forcing term, which has 
been partially accomplished in [11]. By utilizing the arguments presented therein, 
in conjunction with the improved Stein-Weiss inequality derived in [13], one can 
obtain the necessary estimates to analyze the corresponding non-linear equations. 
Furthermore, it is also natural to look for the geometric conditions under which 
the discrete group should satisfy in order to obtain similar results on corresponding 
locally symmetric spaces with regard to the Strichartz inequality. 
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1 Compact Globally Symmetric Spaces 

Compact globally symmetric spaces are compact Riemannian manifolds whose 
geodesic symmetries are global isometries. Despite this seemlingly simple descrip-
tion of them, they are very rigid structures. Through the fundamental theory of 
Cartan-Weyl on classification and representations of compact Lie groups, (simply 
connected) compact globally symmetric spaces can be classified in terms of 
certain combinatorial structures called the Satake diagrams, and a basic spectral 
decomposition of the space of square-integrable functions as acted upon by the 
isometry group can be obtained. We briefly describe this spectral decomposition, 
based on which we unfold this paper. 

Let .X = U/K be a compact globally symmetric space (CGSS), realized as the 
quotient of the compact isometry group U by a certain subgroup K of U . X is 
canonically equipped with a U -invariant measure and so one may consider the space 
.L2(X) of square integrable functions with respect to this measure. Under the action 
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of U by translation, .L2(X) disintegrate into a direct sum of spherical representations 
of U so that one may write 

.f =
∑

λ∈Λ+
fλ, f ∈ L2(X), (1) 

where .Λ+ is the set of isomorphism classes of spherical representations of U with 
respect to K , and . fλ lies in the representation space .L2

λ(X) (consisting of smooth 
functions) of finite dimension . dλ corresponding to .λ ∈ Λ+. .Λ+ has the structure 
of being the Weyl chamber part of a lattice .Λ ∼= Z

r of a Euclidean space . Rr acted 
upon by a Weyl group, with r being the rank of the X, i.e., the maximal dimension 
of a flat totally geodesic submanifold of X. We let  d denote the dimension of X 
throughout the paper. 

2 Eigenfunction Bounds and Spherical Functions 

It turns out there is another description of the above spectral decomposition of 
.L2(X) using differential calculus. As a Riemannian manifold, X is equipped with 
the Laplace-Beltrami differential operator (or simply the Laplacian) .ΔX which 
plays important roles in the analysis of X. But .ΔX is only a special element of 
the ring .D(X) of U -invariant differential operators on X. A fundamental theorem 
is that .D(X) as an algebra is commutative and isomorphic to a polynomial ring 
.C[Z1, . . . , Zr ]. Simultaneously diagonalizing all elements of .D(X) as unbounded 
operators on .L2(X) yields exactly (1). In other words, each . fλ in (1) is a joint 
eigenfunction of .D(X), so that 

. Dfλ = 𝚪(D)(λ)fλ, D ∈ D(X).

Here .𝚪 : D(X) → C[Z1, . . . , Zr ] is an appropriately chosen isomorphism of .C-
algebras, and .𝚪(D)(λ) is the evaluation of the polynomial .𝚪(D) at .λ ∈ Λ+ ⊂ Z

r . 
In particular, f is an eigenfunction of the Laplacian .ΔX of eigenvalue .−N2 if and 
only if there exists .λ ∈ Λ+ such that .𝚪(ΔX)(λ) = −N2, and that 

.f =
∑

𝚪(ΔX)(λ)=−N2

fλ. (2) 

A major problem of analysis on manifolds is estimating .Lp norms of Laplacian 
eigenfunctions in terms of their Laplacian eigenvalues. Equation (2) tells that this 
problem posed on CGSSs is closely related to the problem of estimating . Lp norms 
of joint eigenfunctions, for which we have a precise conjecture due to Marshall [6].
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Conjecture 1 Let . ψ be a joint eigenfunction on an irreducible CGSS of Laplacian 
eigenvalue .−N2 ≤ −1. Then 

.‖ψ‖Lp(X) ≤
⎧
⎨

⎩
CN

d−r
2 − d

p ‖ψ‖L2(X), if p >
2(d+r)
d−r

,

CN
d−r

2

(
1
2 − 1

p

)

‖ψ‖L2(X), if 2 ≤ p <
2(d+r)
d−r

.
(3) 

Marshall in [6] established this conjecture under a regularity condition on the 
spectral parameter . λ of . ψ , that . λ stays a certain distance away from the walls of 
the Weyl chamber. He also showed that either of the two pieces of the bound (3) 
is saturated on any CGSS. The piece for .p >

2(d+r)
d−r

is saturated by spherical 
functions, which are K-invariant joint eigenfunctions. With the results of [11] on  
compact Lie groups in mind, we also conjecture the following bounds on general 
spherical functions. 

Conjecture 2 Let . ψ be a spherical function of Laplacian eigenvalue .−N2 ≤ −1 on 
an irreducible CGSS. Then 

.‖ψ‖Lp(X) ≤
{

CN
d−r

2 − d
p ‖ψ‖L2(X), if p > 2d

d−r
,

C, if 2 ≤ p < 2d
d−r

.
(4) 

Spherical functions are important, as they also appear as convolution kernels for 
the projection operators .L2(X) → L2

λ(X), .f I→ fλ. There is a unique spherical 
function . ψλ of spectral parameter . λ which evaluates to be one at the identity coset. 
Then 

. fλ = f ∗ (dλψλ).

On the other hand, the other piece of (3) for .2 ≤ p <
2(d+r)
d−r

is saturated by the 
higher-rank Gaussian beam functions . eλ, which corresponds to the highest weight 
vector for the spherical representation of parameter . λ. The reader may wonder if 
there are any relations between spherical functions . ψλ and Gaussian beams . eλ, and 
indeed there are. First, the integral formula holds 

.ψλ(x) =
ˆ

K

eλ(k
−1x) dk. (5) 

There is a way to rewrite this formula into a more complicated one, replacing the 
integrand .eλ(kx) by a globally defined exponential function with explicit phrase 
[3], which can then be applied nicely to establish certain Laplacian eigenfunction 
bounds on CGSSs [9]. Furthermore, one can develop a finer Fourier theory than (1) 
at least locally. For smooth functions f supported in a small neighborhood .Xo of
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the identity coset, a Helgason-Fourier transform .f̃ (λ, k) of f may be defined [4] so  
that the following Poisson integral formula holds 

.fλ(x) = dλ

ˆ
K

f̃ (λ, k)eλ(k
−1x) dk, x ∈ Xo. (6) 

Question 3 Can (6) be globalized? 

For rank-one spaces, this question was answered in the positive by Sherman [7]. 
A answer in the positive for general higher rank spaces could be useful to bound 
joint eigenfunctions and establish unconditionally Conjecture 1. 

Straightforwardly combing (2) with standard estimate of representations of an 
integer by a positive definite integral quadratic form, one could get certain estimates 
on Laplacian eigenfunctions, which are however never sharp. A major open question 
is as follows. 

Question 4 Let f be a Laplacian eigenfunction of eigenvalue .−N2 ≤ −1 on an 
(irreducible) CGSS. Consider bound of the form 

. ‖f ‖Lp(X) ≤ CNs(p)‖f ‖L2(X).

What is the sharp exponent .s(p) for all .p ≥ 2? 

For partial progress to this question, we refer the reader to our works [9, 11]. 

3 NLS on CGSSs 

The eigenfunction bounds as explained in the previous section are closedly related 
to solving the following initial value problem for the nonlinear Schrödinger equation 

. 

{
i∂tu + Δu = ±|u|β−1u, u = u(t, x), t ∈ R, x ∈ X,

u(0, x) = u0(x) ∈ Hs(X), x ∈ X.

Pretending X to be . Rd , one has the scaling symmetry . u(t, x) I→ λ
2

β−1 u(λ2t, λx)

for the solutions, and the .Hs-norm of the initial data is invariant under this scaling 
symmetry if and only if 

. s = sc := d

2
− 2

β − 1
,

and in this case the IVP is called of critical regularity. Solving the IVP of critical 
regularity (.s = sc) or of subcritical regularity for the full range .s > sc of Sobolev 
exponent usually requires establishing scale invariant Strichartz estimate for the
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linear Schödinger propagator, for which we formulate the following open question. 
Let I be a finite time interval. 

Question 5 Consider Strichartz estimate of the form 

.‖eitΔf ‖Lp(I×X) ≤ C‖f ‖Hs(p)(X) (7) 

on an (irreducible) CGSS. What is the optimal range of p for which the above 
estimate holds with the scale invariant exponent .s(p) = d

2 − d+2
p

? Futhermore, 
what is the optimal Sobolev exponent .s(p) for all .p ≥ 2? 

We refer the reader to our works [8–11] for progress towards this question. 
Through the works of Burq-Gérard-Tzvetkov [1, 2], in addition to the linear 
Strichartz estimate (7), bilinear or multilinear Strichartz versions would also be need 
to treat the IVPs of critical regularity. We now focus on bilinear estimates tailored 
for the case .β = 3. For this we formulate the following conjecture, inspired by the 
works of Burq-Gérard-Tzvetkov [1, 2] as well as Herr-Strunk [5]. 

Conjecture 6 Suppose the rank of X is at least two. Let . ui be functions on X with 
localized Laplacian spectrum so that .1[Ni,2Ni ](

√−Δ)ui = ui , .i = 1, 2. Suppose 
.N1 ≥ N2 ≥ 1. 

(i) Suppose the dimension of each irreducible factor of X is at least 3. Then 

. ‖eitΔu1 eitΔu2‖L2(I×X) ≤ CεN
d
2 −1+ε

2 ‖u1‖L2(X)‖u2‖L2(X).

This would imply local well-posedness of the IVP for .s > sc = d
2 − 1 (.β = 3). 

(ii) Suppose the dimension of each irreducible factor of X is at least 4. Then there 
exists .δ > 0 such that 

. ‖eitΔu1 eitΔu2‖L2(I×X) ≤ C

(
N2

N1
+ 1

N2

)δ

N
d
2 −1

2 ‖u1‖L2(X)‖u2‖L2(X).

This would imply local well-posedness for .s = sc = d
2 − 1 (.β = 3). 

In [9] we established this conjecture when X is a product of rank-one CGSSs. 
We reduced the above conjecture to bilinear estimates for joint eigenfunctions, for 
which we conjecture the following. 

Conjecture 7 Suppose the rank of X is at least two. Let . fi be joint eigenfunctions 
of the ring of invariant differential operators of Laplacian eigenvalue .−N2

i ≤ −1, 
.i = 1, 2. 

(i) Suppose the dimension of each irreducible factor of X is at least 3. Then 

.‖f1 · f2‖L2(X) ≤ Cε(min(N1, N2))
d
2 −r+ε‖f1‖L2(X)‖f2‖L2(X).
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(ii) Suppose the dimension of each irreducible factor of X is at least 4.Then 

. ‖f1 · f2‖L2(X) ≤ C(min(N1, N2))
d
2 −r‖f1‖L2(X)‖f2‖L2(X).

Note that when .f1 = f2, the estimates in the above conjecture reduce to the . L4

case of the bounds (3) of Marshall. 

4 Conclusion 

Compact globally symmetric spaces, as classical objects in differential geomety, 
still carry a lot of fundamental open questions in their analysis, such as bound of 
spherical functions, bound of joint eigenfunctions of invariant differential operators, 
bound of Laplacian eigenfunctions, Strichartz estimate, and globalization of Poisson 
integrals. These questions are closedly related, and resolution of them will for sure 
deepen our understanding of CGSSs and open new routes for analysis on general 
compact manifolds. 
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Applied Mathematics



On Empirical Bayes Approach to Inverse 
Problems 

E. Belitser 

Abstract Inverse problems arise naturally in many scientific disciplines, such as 
physics, imaging, tomography, medicine, material sciences and engineering, when 
one wants to extract information from indirect and noisy measurements. Observed 
are noisy results of certain (forward) operator evaluated at an element from certain 
Hilbert space. The general objective is to recover that element using the observed 
data. Some important inverse problems arise in the area of partial differential 
equations (PDEs) which describe some physical systems. We consider the inverse 
problem in a statistical setting and apply an empirical Bayes approach. We address 
the issue of (local) optimality in the framework of oracle inequalities which is 
stronger than the traditional minimax (global) optimality. The Bayesian modeling 
allows to solve a local version of the problem in the oracle formulation, leading 
to intrinsically adaptive results, i.e., we establish the optimality of the proposed 
procedure without knowledge of the smoothness/sparsity structure of the underlying 
function of interest. 

Keywords Empirical Bayes · Inverse problem · Oracle rate · PDE · Posterior 
contraction 

2000 Mathematics Subject Classification 35Q62, 62C05, 62C10 

1 Introduction 

Inverse problems arise naturally in many scientific disciplines, such as physics, 
imaging, tomography, medicine, material sciences and engineering, when one wants 
to extract information from indirect measurements. The general inverse problem 
consists of the solution f of the equation .G(f ) = y, where operator . G maps a subset 
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of one Banach space to another Banach space. Here we assume more structure by 
letting the involved spaces to be Hilbert. Inverse problems can be ill-posed: there 
may be no solution, or the solution may not be unique and may depend sensitively 
on y; cf.  [6, 18]. We study the inverse problem from the statistical perspective, 
namely, we observe typically noisy results of certain (forward) operator evaluated at 
an element from certain Hilbert space; cf. [4, 5, 8, 9, 15, 17]. The measurement errors 
are modeled as independent random elements of an appropriate Hilbert space. Each 
error being itself a superposition of many independent random effects, a Gaussian 
model for the errors would be reasonable in view of the central limit theorem. 

Formally, let .G : HX I→ HY , where . G is an operator mapping separable 
Hilbert space .HX to another separable Hilbert space . HY . In practice observations 
are typically discrete, as a sample at a number of ‘design points’, but we adopt the 
paradigm ‘first regularization, then discretization’, so we formulate the problem in 
general functional form. For .f ∈ HX, we observe 

.Y = G(f ) + εξ, (1) 

in the sense that .Y (g) = 〈G(f ), g〉+ εξ(g), .g ∈ HY , where .ε > 0 is the noise level, 
. ξ is Gaussian white noise on . HY , i.e., .ξ : HY → R is a linear mapping on . HY such 
that .ξ(g) ∼ N(0, ‖g‖2) and .Cov(ξ(g), ξ(g)) = 〈g, g'〉 for any .g, g' ∈ HY , . ‖ · ‖
and .〈·, ·〉 denote the norm and scalar product in . HY (or in . HX, this should always 
be clear from the context). The sequence version of (1) is obtained by taking an 
orthonormal basis .(φk)k∈N in . HY : 

.Yk = gk(f ) + εξk, k ∈ N, (2) 

where .Yk = Y (φk), .gk(f ) = 〈G(f ), φk〉, .ξk
ind∼ N(0, 1). We refer to Y as data and 

the goal is (for now loosely formulated) to recover .f ∈ HX using the data. Typically, 
the problem is studied in asymptotic regime .ε → 0, but, whenever possible, we 
prefer non-asymptotic characterizations as asymptotic claims would follow from it. 
Noise level . ε in model (2) can be associated to sample size n in some other related 
statistical models as .ε2 = n−1. 

In this note we focus on the case when . G is a continuous linear operator 
and .G∗G is compact (. G∗ stands for the adjoint of . G). Examples of the operator 
. G (for appropriate functional spaces .HX,HY ) include various integral operators 
(in particular, convolution operator, Radon transform, etc.), fractional derivatives 
(including negative ones). Some important inverse problems arise in the area of 
PDEs and ODEs. The observations in such systems are the noisy solutions of a PDE 
and the object of interest is, for example, a functional parameter of the equation 
(say, functional coefficient). A couple interesting examples motivated by the PDEs 
are provided in Sect. 3. The case of non-linear . G is briefly discussed also in Sect. 3. 

The case of linear compact . G is relatively well investigated in the literature; 
cf. [1, 2, 4, 5, 12]. The main feature in this case is that the effect of operator . G
(how ill-posed it is) can be explicitly expressed in terms of the behavior of the
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eigenvalues of .G∗G. However, one problem is that one typically needs to impose 
the smoothness assumptions of the underlying functional parameter .f ∈ HX in 
terms of the Fourier coefficients .{fk}k∈N with respect to the orthonormal basis 
of the eigenfunctions of .G∗G, e.g., Sobolev ellipsoid of smoothness .α > 0: 
.f ∈ Eα = {f ∈ HX : ∑

k∈N k2αf 2
k ≤ Q}. Precisely, if the eigenvalues of 

.G∗G behave like .λk ≍ k−2β , then the minimax risk for estimating f is of the 
order .R(Eα) = inf

f̂
supf ∈Eα

Eθ‖f̂ − f ‖2 ≍ ε4α/(2α+2β+1) (in asymptotic regime 

.ε → 0), the infimum is taken over all estimators .f̂ = f̂ (Y ), measurable functions 
of the observed data. The minimax risk .R(Eα) measures the statistical difficulty 
of estimating uniformly over the class . Eα . The rate exhibits explicitly the effect of 
smoothness . α of f and ill-posedness . β of the operator . G. 

We tackle the above mentioned problem of smoothness assumption on f by 
providing local results of oracle type in this note. A local result basically asserts that 
the method is locally adaptive in the sense that no specific smoothness (or sparsity) 
assumption on f is imposed, instead, the procedure is shown to utilise as much of 
the smoothness as there is in f : if the true f is ‘well approximated’ by a smooth 
function .fappr , the procedure provides the estimation quality as good as one would 
have for that smooth function .fappr . The idea is to slice the ‘big’ space .HX ϶ f in 
layers .HX = ∪S∈SFS , where . S is a family of structures S, and then show that the 
procedure ‘mimics the oracle’ over family . S. This means roughly that our procedure 
performs as good as for the best (oracle) choice of structure .S0 ∈ S, which the 
oracle would take by using the knowledge of the true f . Another interesting notion 
is covering smoothness scales by the oracle over a family of structures, introduced 
and discussed in [2]. For example, if we knew that f has certain smoothness, say, . α, 
then there exists an .S0 ∈ S such that the performance over the layer .FS0 is always 
not worse than over the set of all functions of smoothness . α. This means that the 
local result in terms of oracle is genuinely adaptive: if f is .α-smooth (and . α is 
unknown to the observer), mimicking oracle guarantees that we always provide at 
least the quality for estimating .α-smooth functions. 

We apply the Bayesian approach. Bayesian methods are widely used for inverse 
problems, we refer to [20] for an extensive overview on the topic; see also [1, 2, 
7, 10–14, 16, 19, 21]. Basically, when formulated in a Bayesian fashion, a wide 
range of inverse problems can be treated within a common mathematical framework, 
with a certain well-posedness that stems from this. The point is that, when applying 
Bayesian approach, even if the operator may not be invertible, the posterior for 
the unknown (possibly infinite-dimensional) functional parameter may still be well 
defined, thus in doing so regularizing the problem even if it was originally ill-posed. 
This well-posedness implied by the Bayesian method provides the basis for some 
useful stability and approximation results, including some specific algorithms used 
when adopting the Bayesian approach to inverse problems, e.g., MCMC methods, 
filtering and the variational approach. 

We propose a hierarchical prior, namely, first, given structure S, we put a prior on 
f conjugate to the model, next, instead of putting a prior on the family of structures 
. S, we propose a data dependent choice . Ŝ of the structure (which we can use for
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model selection problem) and use it in the resulting posterior for f and in the 
construction of an estimator of f . This is a version of the  empirical Bayes approach. 
The performance of this resulting empirical Bayes posterior is measured from the 
frequentists perspective: the rate with which the posterior concentrates around the 
‘true’ .f ∈ HX when the data is assumed to come from the model (2) with the true f . 
The distinctive feature of our approach is that the established concentration posterior 
rate is local, i.e., it depends on the ‘true’ f , hence intrinsically adaptive. Global 
results over suitable scale of smoothness classes follows from our local result: if f 
happens to be .α-smooth (. α is not known to the observer), the local rate is always 
not worse than the optimal rate over the class of .α-smooth functions. The posterior 
can further be used to construct point estimators of f (also of the local rate), e.g., 
the posterior expectation. 

2 Compact G∗G, Inverse Signal-in-White-Noise Model 

Coming back to model (2), suppose that .G∗G (. G∗ stands for the adjoint of . G) is  
a compact operator so that it has a complete orthonormal system of eigenvectors 
.(ψk)k∈N in .HX with corresponding eigenvalues .λk > 0, i.e., .G∗Gψk = λiψi . 
Then .(φk)k∈N, with .φk = λ

−1/2
k Gψk , is an orthonormal basis in . HY , and . G∗φk =

λ
−1/2
k G∗Gψk = λ1/2ψk , which we now going to use in (2). Denoting by . fk =

〈f,ψk〉 the Fourier coefficient of f with respect to .(ψk)k∈N, we have  . G∗Gf =
G∗G

∑
k∈N fkψk = ∑

k∈N λkfkψk . Finally we obtain (2) with . gk(f ) = 〈Gf, φk〉 =
λ

−1/2
k 〈Gf,Gψk〉 = λ

−1/2
k 〈G∗Gf,ψk〉 = λ

1/2
k fk: with .κk = λ

−1/2
k , 

.Yk = fk/κk + εξk, or, equivalently, Xk = fk + εκkξk, k ∈ N, (3) 

where .Xk = κkYk , the underlying signal .θ = (fk)k∈N ∈ 𝓁2, the noises . ξk
ind∼

N(0, 1). Since the sequence .λk > 0 can only have one accumulation point equal to 
zero, without loss of generality we can assume .κk ≥ 1. 

Model (3) is known to be the sequence version of the inverse signal-in-white-
noise model. This model is often considered for the estimation inference in the 
inverse problem literature, cf. [4, 18]. It captures many of the conceptual issues 
associated with nonparametric estimation. 

Introduce the notion of structure: the structure .S = (n, In) is a pair consisting 
of .n ∈ N0 = {0} ∪ N and a set .In ⊆ [n] ≡ {1, . . . , n}, with the convention that 
.In = ∅ if .n = 0 in the pair. The family of all possible structures is denoted by 
.S = {S = (n, In), n ∈ N0, In ⊆ [n]}. We say that the underlying signal f has 
structure .S = (n, In) if .f = ∑

k∈In
fkψk = fS ∈ LS ⊂ HX, where . LS is the 

.|In|-dimensional linear subspace spanned by .(ψk)k∈In and . fS is the projection of f



On Empirical Bayes Approach to Inverse Problems 247

onto . LS . Or, we say that f has approximately structure S if .‖f − fS‖2 is ‘small’. 
Introduce the oracle rate of structure S at f (i.e., the rate is local) as 

. r(f, S) = ‖f − fS‖2 + ε2PG(S) =
∑

k>n

f 2
k +

∑

k∈I c
n

f 2
k + ε2 log( en

|In| )
∑

k∈In

κ2
k ,

where the first term .‖f − fS‖2 reflects the approximation error of layer . LS and 
the second (penalty) term .ε2PG(S) describes its complexity and the level of ill-
posedness of operator . G. For a fine tuning in further constructions, we could 
introduce different weights of the two terms by setting a constant . 𝜘 ' in front 
of the penalty, but not in this note. Basically, we slice the original ‘big’ space 
.HX = ∪S∈SLS in ‘layers’ . LS indexed by structures .S ∈ S, and the oracle strucure 
repreresent the best trade-off between the ability of the layer .LSo to approximate 
(f ) and the complexity of . LSo . 

Using .r(f, S) defined above, for any .f ∈ HX define further the oracle rate as 

. r(f ) = min
S∈S r(f, S) = r(f, So).

The structure .So = So(f ) = (no, Ino) (take any if there are many) where the 
minimum of .r(θ, S) is achieved is called the oracle structure (or just the oracle). 

2.1 Constructing an Empirical Bayes Posterior 

Abusing slightly notation, set .f = (fk)k∈N, then Fourier coefficients of f with 
respect to the basis .(ψk)k∈N. Introduce the hierarchical prior . Π: for an .S ∈ S, 
.S = (n, In), .n ∈ N, .In ⊆ [n], 

.f |S ∼ ΠS,μ(S) =
⊗

k

N
(
μk(S), τ 2k (S)

)
, (4) 

where .μ(S) = (μk(S), k ∈ [n]) with .μk(S) = μS,k1{k ∈ In}, . τ 2k (S) = ε2κ2
k 1{k ∈

In}. The idea of structure .S = (n, In) is to model in the prior the truncating level n 
and the sparsity pattern . In. Let .ϕ(x, μ, σ 2) denote the normal density at point x with 
mean . μ and variance . σ 2. Prior  (4) is conjugate to model (3) yielding immediately 
the corresponding posterior 

. ΠS,μ(·|X) =
⊗

k

N

(
τ 2k (S)X2

k + εκ2
k μk(S)

εκ2
k + τ 2k (S)

,
εκ2

k τ 2k (S)

εκ2
k + τ 2k (S)

)

.

If we would put a prior . λS on .S ∈ S, then the resulting two-level prior would have 
led to the corresponding marginal .PX,μ(X) = ∑

S∈S λS

∏
k ϕ

(
Xk,μk(S), τ 2k (S) +
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ε2κ2 
k

)
. Even without specifying the prior . λS , we can easily derive the estimator of 

the parameter .μ = (μ(S), S ∈ S) by maximizing the marginal .PX,μ(X)with respect 
to . μ: .μ̂ = (μ̂(S), S ∈ S), .μ̂k(S) = Xk1{k ∈ In}, .k ∈ N. Substituting .μ̂(S) into the 
expression for posterior .ΠS,μ(·|X) yields the so called empirical Bayes posterior 
with respect to .μ(S): . ΠS(·|X) = ⊗

k N
(
Xk1{k ∈ In}, 1

2ε
2κ2

k 1{k ∈ In}
)
.

We continue to use the empirical Bayes strategy also with respect to the choice of 
structure S. Namely, the data-dependent choice of structure is based on the following 
criterion: for .𝜘 > 0, 

. Ŝ = Ŝ𝜘 = argmax
S∈S

{ ∑

k∈In

(
X2

k − 𝜘ε2κ2
k log(

en
|In| )

)}
.

A motivation for this criterion can be provided by connecting to model selection 
problems addressed by the penalization methodology. Here we confine ourselves to 
mentioning that the above criterion is an extension of the idea of risk hull method 
proposed in [5]. Plugging in .Ŝ = (n̂, În̂) in .ΠS(·|X) results in the empirical Bayes 
posterior 

.Π(·|X) = Π
Ŝ
(·|X) =

⊗

k

N
(
Xk1{k ∈ În̂}, 1

2ε
2κ2

k 1{k ∈ În̂}
)
. (5) 

To estimate f , we take the expectation with respect to the posterior .Π(·|X): 

.f̂k = EΠ(·|X)(fk) = Xk1{k ∈ În̂}, k ∈ N. (6) 

Some constants in the sequel depend on . 𝜘, but we will omit this dependence. 

2.2 Main Result 

Here we formulate the main result for the observation model (3). For any .f ∈ HX, 
introduce the quantity .v(f ) = ε2 log( en

|Io| )
∑

k∈Io
κ2
k , where .Io = Io(f ) is the oracle 

sparsity pattern coming from the oracle structure .So(f ) = (no, Io) pertinent to f . 
This is a part of the complexity term of the oracle rate, note that .v(f ) ≤ r(f ). 

Theorem 1 Consider model (3). Let the empirical Bayes posterior . Π(·|X)

and the estimator . f̂ be defined by (5) amd (6) respectively. Then there exist 
.C0, C1, c0, C3, C4, c1 > 0 such that for any .f0 ∈ HX and any . M > 0

.Ef0Π
(‖f − f0‖2 ≥ C0r(f0) + Mvo(f0)|X

) ≤ C1e
−c0M,

Pf0

(‖f̂ − f0‖2 ≥ C2r(f0) + Mvo(f0)
) ≤ C3e

−c1M.
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Let us consider an example. By .C, c denote generic constants varying from line to 
line. Suppose, f is Sobolev .α-smooth in the sense that it belongs to the Sobolev 
ellipsoid of smoothness .α > 0: .f ∈ Eα = {f ∈ HX : ∑

k∈N k2αf 2
k ≤ Q} and 

the eigenvalues of .G∗G behave like .λk ≍ k−2β , i.e., .κ2
k ≍ k2β . Then the minimax 

risk for estimating f is known to be of the order . R(Eα) = inf
f̂
supf ∈Eα

Eθ‖f̂ −
f ‖2 ≍ ε4α/(2α+2β+1) (in the asymptotic regime .ε → 0). Our local result delivers 
this as a consequence. Indeed, take the structure .S0 = (Nε, [Nε]), where . Nε =
⎿ε2/(2α+2β+1)⏌. Next we evaluate 

. r(f ) ≤ r(f, S0) =
∑

k>Nε

f 2
k + ε2

Nε∑

k=1

κ2
k ≤ Q

N2α
ε

+ Cε2N2β+1
ε ≤ cε4α/(2α+2β+1).

The last relation, the second claim of the theorem and the fact .v(f0) ≤ r(f0) imply 
the oracle and global optimal estimation results in expectation 

. Ef0‖f̂ − f0‖2 =
ˆ ∞

0
Pf0(‖f̂ − f0‖2 ≥ t)dt ≤ C2r(f0) + C3

ˆ +∞

0
e−c1u/v(f0)du

= C2r(f0) + C3v(f0)
c1

≤ Cr(f0) ≤ cε4α/(2α+2β+1).

We emphasize that the scope of our local results is much broader than the above 
example might suggest. Typically, in the literature, particular situations in global 
settings are studied: e.g., the case .f ∈ Eα and .κ2

k ≍ k2β is called mildly ill-posed 
case for the scale of Sobolev ellipsoids .{Eα, α > 0}. But then there are separate 
global results for the so called severely ill-posed cases such as .κ2

k ≍ eβkγ
for some 

.β, γ > 0, Sobolev hyper-rectangles, super-smooth scales of analytic ellipsoids, 
Besov classes, .𝓁p-bodies, tale classes, general ellipsoids, general hyper-rectangles, 
etc. Our local result covers all these cases at once, in fact it covers the global results 
for all scales .{Fα, α ∈ A} simultaneously for which we establish that the local 
(oracle) rate is dominated by the minimax rate over classes . Fα , i.e., when we have 
.r(f ) ≤ cR(Fα) for all .f ∈ Fα and .α ∈ A. 

Another novel aspect of our approach is that the oracle . So, next to the best 
smoothness structure (modeled by . no), also contains the best sparsity structure 
(modeled by the sparsity pattern . Io). Exactly, assume that . f ∈ 𝓁0[pε,Nε] =
{(fk)k∈N : ∑Nε

k=1 1{fk /= 0} ≤ pε, fk = 0, k > Nε}, where .Nε ∈ N, .pε ∈ [Nε], 
which can be seen as at an extension of the traditional sparsity class with additional 
‘cut-off’ parameter . Nε, introduced to connect an infinite dimensional setting to the 
standard high-dimensional sparsity setting. Let .Iκ = Iκ(Nε, pε,G) be such that 
.
∑

k∈Iκ
κ2
k = maxI⊆[Nε],|I |≤pε

∑
k∈I κ2

k . If there are multiple minimizers, we take 
for example the one with the smallest cardinality and the smallest sum of indices. 
Then Theorem 1 delivers an oracle rate .r(f ) for which we can show 

.r(f ) ≤ Cε2 log( eNε|Iκ | )
∑

k∈Iκ

κ2
k .
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Considering the case of .Nε = n, .κk = 1, .k ∈ [n] (i.e., ‘direct problem’ instead of 
inverse problem), leads to the classical high-dimensional framework with a sparse 
signal .f ∈ 𝓁0[p] = {(fk)k∈[n] : ∑

k∈[n] 1{fk /= 0} ≤ p}. The minimax estimation 
rate over .𝓁0[p] in the direct problem is known to be .ε2p log( en

p
), which is covered 

by our local oracle rate: .r(f ) ≤ Cε2p log( en
p

) as it follows from the last display. 

3 Further Discussion 

3.1 Uncertainty Quantification (UQ) Problem 

Here we only shortly mention the uncertainty quantification (UQ) problem, this 
problem will be studied in detail elsewhere. Namely, the Bayesian approach allows 
to tackle the UQ problem which is in general a much more delicate than the 
estimation problem. This is because of the so called deceptiveness phenomenon 
which is in detain discussed in [2, 3]. The local nature of our Bayesian approach 
allows to address the more refined local version of the UQ problem; cf. [2, 3]. 

3.2 The Case of Non-Linear G 

The literature on the non-linear operator . G is much more limited, and we are not 
aware of any general universal approach to such situation, only some situation-
specific methods have been developed. One useful strategy based on the modulus 
of continuity for the operator . G stems from the idea in [12]. We speculate that the 
next step would be to develop a local version of this method. Such a method can 
lead to locally optimal procedure in some situations, but in general would give no 
guarantee for optimality. On the other hand, at least it provides some claims on the 
quality of the resulting (Bayesian) procedure. 

3.3 Examples of Inverse Problems Originated from PDEs 

In case of an inverse problem originating from PDE(s), typically some partial 
differential operator . Lf acting on .f : D I→ R is given, where f is the unknown 
functional parameter of interest defined on some regular bounded domain .D ⊆ R

d , 
. ∂D denotes the boundary of . D. Data is given in the form of some solution u of an 
operator equation .F(Lf , u) = 0 subject to some boundary conditions. We adopt the 
usual notation conventions of partial derivatives, like . ut , . uxx , etc;  . ∇ is the gradient 
and . ∇· is the divergence operator.
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3.3.1 Heat Equation: Recovery of Initial Condition 

Consider a problem of recovering the initial condition for the heat equation; cf. [13]. 
Specifically, assume we observe noisy observations of the solution u to the Dirichlet 
problem for the heat equation 

. ut (x, t) = uxx(x, t), u(x, 0) = f (x), u(0, t) = u(1, t) = 0,

where u is defined on .[0, 1] × [0, T ] and the function .f ∈ L2[0, 1] satisfies . f (0) =
f (1) = 0. The goal is to recover the initial condition f in the asymptotics .ε → 0. 

It is known that the solution of the above boundary problem can be represented as 
.u(x, t) = √

2
∑

k∈N fke
−k2π2t sin(kπx), where the . fk’s are the Fourier coefficients 

of f in the basis .(φk)k∈N of eigenfunctions .φk = √
2 sin(kπx) of . G on .L2[0, 1], 

and the corresponding eigenvalues are .κk = ek2π2T , .k ∈ N. Thus .Gf = u(·, T ) is 
linear, and we are in the setting (3). In view of exponential behavior of the . κk’s, one 
speaks of severely ill-posed inverse problem. Assuming a Sobolev .α-smoothness, 
i.e., .f ∈ Eα , the reader is invited to derive that Theorem 1 yields the oracle rate 
.r(θ) ≤ c

[
log(ϵ−2)

]α , the right hand side being known the optimal (minimax) rate 
over Sobolev .α-smooth functions for the severely ill-posed inverse problem. 

3.3.2 Elliptic PDE: Recovery of a Functional Coefficient 

Let the operator . G (non-linear this time) be described as .uf = Gf , a solution of 
elliptic PDE 

.Lf u = ∇ · (f1∇u) − f0u = 0 on D, and u = g on ∂D. (7) 

Here . f1 models the coefficient of the PDE and . f0 is a potential term. We can treat 
either . f0 or . f1 as the unknown f of interest (assuming the other one known). If a 
sufficiently smooth ‘source’ function . f0 is given and .g = 0, the problem of recovery 
of the unknown . f1 (under some mild regularity conditions and .f ≥ k0 > 0) has 
been considered by Stuart [20], Vollmer [21], and Giordano and Nickl [7]. The case 
.f1 = 1/2 becomes a steady state Schrödinger equation, the problem of recovery of 
. f0 in this case is studied in [17]. 

Under suitable conditions the map .f I→ uf is injective and we arrive at the 
problem of recovery of function f given the solution .uf = Gf of the above PDE, 
corrupted by additive Gaussian white noise as in (1).
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3.3.3 Parabolic PDE: Recovery of a Functional Coefficient 

Introduce now some time evolution dynamics on a time interval .[0, T ] to the 
previous example by considering solutions .u(x, t) to the parabolic PDE (the heat 
equation) 

. ut (x, t) − Lf u(x, t) = 0 for all (x, t) ∈ D × [0, T ],

subject to an initial condition .u(·, 0) = u0 and some boundary condition . u = g

on .∂D × (0, T ), where . Lf is given by (7) and g and . u0 are sufficiently smooth 
boundary and initial value functions respectively. Either . f0 or . f1 can be the 
unknown functional parameter f of interest, which we wish to recover on the basis 
of observed noisy solution .uf = Gf of the PDE, as in (1). . G is in general non-linear. 

If .f1 = 1/2 and the functional parameter of interest is .f = f0, we obtain 
reaction-diffusion type of equation which can be used to describe ecological system 
with u being density of prey and f describing resources or the effect of predators. 
Under mild conditions providing .u > 0, we can write the inverse operator . f =
uxx−2ut

2u . The Bayesian approach for this situation is studied in [10] for discrete 
formulation. 
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The Interferon Influence on the Infection 
Wave Propagation 

A. Mozokhina and V. Volpert 

Abstract Viral infection spreads in the infected tissue or in cell culture as a 
reaction-diffusion wave due to virus replication in the infected cells and its transport 
between the cells. The speed of wave propagation correlates with the virus virulence 
and the severity of the disease, while the total viral load with its infectivity, that is, 
the rate of transmission from infected to uninfected individuals. The first barrier to 
the progression of viral infection after its penetration into the organism is provided 
by the innate immune response mediated mainly by immune cells and interferon. 
The effectiveness of this response determines whether infection progression in 
the organism will be stopped at this stage or it will further develop stimulating 
the adaptive immune response. The interferon mediated immune response down-
regulates virus penetration in the host cells and its replication inside the cells. In 
this work, we consider the interferon influence on the infection spreading in the 
tissue, and on virus infectivity and virulence. 

Keywords Viral infection · Immune response · Interferon · Reaction-diffusion 
equations · Wave speed · Viral load 

Mathematics Subject Classification 92D30, 35Q92, 92D25 

1 Introduction 

At the end of 2019, a new respiratory disease, which later became known as 
COVID-19, was detected in the Chinese city of Wuhan. The nonspecific nature 
of the symptoms, the long incubation period compared to the infectious time, 
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the spread mainly by airborne droplets and the high contagiousness of the virus 
determined its rapid spread around the world, and turned into a pandemic. This 
disease has not yet been completely eliminated and continues to have an impact on 
various aspects of the life of the society. There were other widespread epidemics 
induced by respiratory virus infections, such as Spanish influenza in the first 
quarter of twentieth century, Middle East respiratory syndrome (MERS) in 2012, 
severe acute respiratory syndrome (SARS) in the beginning of the twenty-first 
century, and the annual flu epidemics. Our knowledge about the pathogenesis, 
epidemical, and immunological aspects of respiratory viral infections is still not 
comprehensive enough. Mathematical modelling of viral infections can help in their 
further understanding and characterization. 

It has been shown in [3, 4] that infection spreads in cell culture as a reaction-
diffusion wave. The main characteristics of infection progression are the virus 
replication number, the speed of wave propagation, and the total viral load. The 
virus replication number determines whether the infection spreads in cell culture, or, 
mathematically, whether the wave solution can exist. The speed of wave propagation 
corresponds to the severity of the disease as it determines how fast the infection 
spreads in the tissue or in the cell culture, and correspondingly, how much tissue will 
be damaged at given time. The total viral load, i.e., the total amount of extracellular 
virus for respiratory virus infections determines its infectivity through the amount of 
virus particles in airborne droplets. In [3], some estimates of all these characteristics 
were obtained. In this work, we evaluate the dependence of these characteristics on 
the parameters of innate immune response, namely, on the interferon (IFN) system. 

After the virus enters the organism and starts releasing its genetic material, cells 
of the organism recognize a pathogen and activate the interferon (IFN) system. 
Interferon (IFN) is a collective name for macro-molecules which induce production 
of proteins suppressing virus replication in different ways. There are three types of 
IFNs: IFN-I, IFN-II, and IFN-III, which differ from each other by their molecular 
structure, cells producing them and production rate [5]. Produced IFNs activate IFN-
stimulated genes (ISGs) in infected cells and in uninfected cells nearby [7] inducing 
production of proteins which directly suppress different stages of virus replication 
and penetration into cells. Interestingly, IFNs do not influence virus replication 
directly, they do it through the activation of ISGs and subsequent production of 
proteins. The ISGs induced by IFN-I and IFN-II partially overlap [5], so they 
lead (partially) to the production of the same proteins, and thus we can ignore the 
difference between IFNs of different types at least at the first stages of modelling. 

ISGs encode a variety of antiviral proteins with diverse modes of action [6– 
8]. In the infected cells, these proteins lead to reducing/stopping virus replication 
including down-regulation of viral transcription, translation, assembly, viral RNA 
synthesis, and cell exit. In the uninfected cells, the ISGs proteins lead to impeded 
virus entry into the cell reducing the rate of cell infection. In turn, in evolutionary 
process, most of viruses have developed strategies of countering the IFN system. 
These strategies include blocking IFN induction/expression, acting on IFN binding 
receptors, perturbation of the intracellular IFN signaling pathway, directly down-
regulating the level of expression of ISGs [6].
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In the current work, we investigate the influence of this mutual counteraction of 
IFN system and virus on the basic characteristics of the infection spreading in the 
tissue or cell culture with one-dimensional reaction-diffusion models. 

2 IFN Action in Infected Cells 

In the first model, we address the IFN action only in infected cells. We consider the 
following system of equations: 

.
∂U

∂t
= −aUV,

∂I

∂t
= aUV − βI, (1) 

.
∂V

∂t
= D1

∂2V

∂x2
+ b1

1 + k1C
Iτ1−σ1V,

∂C

∂t
= D2

∂2C

∂x2
+ b2

1 + k2V
Iτ2−σ2C. (2) 

Here U is the concentration of uninfected cells, I is the concentration of infected 
cells, V is the virus concentration, and Z is the IFN concentration. As a result of 
virus penetration, uninfected cells become infected, as described by the bilinear 
term in right-hand sides of Eq. (1). The last term in the right-hand side of the 
second equation in (1) describes death of infected cells, which is supposed to be 
significantly faster than for uninfected cells, the latter being ignored. Equation (2) 
describe the virus and IFN dynamics: both diffuse in the extracellular space, they 
are produced by infected cells and both are neutralised/degrade with rates . σ1 and . σ2, 
respectively. Virus production is down-regulated by the IFN and, vice versa, the IFN 
production is down-regulated by virus. This behaviour is taken into account in the 
inverse dependence of virus and IFN production rates on IFN and virus respectively 
in the second terms of right-hand sides of Eq. (2). In (2), time delay is taken into 
account as .Iτi

(x, t) = I (x, t−τi), where . τi is the time intervals after which infected 
cells start to produce virus/IFNs. 

There is a family of stationary points of this system .(U0, I = 0, V = 0, C = 0), 
where .U0 = U(0) is the initial concentration of uninfected cells. The stationary 
point .(U0, 0, 0, 0) corresponds to the uninfected, or healthy, state: in this state, 
there is no infection. Stability of this point can be determined by linearization. The 
linearized kinetic system about .(U0, 0, 0, 0) has the following form 

.
dU

dt
= −aU0V,

dI

dt
= aU0V −βI,

dV

dt
= b1I −σ1V,

dC

dt
= b2I −σ2C, (3) 

and the stability condition of the stationary point is given by the inequality: 

.R0 = ab1U0

βσ1
< 1. (4) 

Here . R0 is the virus replication number, it is the same as for the system without 
IFN considered in [3]. The condition for infection spreading is .R0 > 1 (Fig. 1a), 
as otherwise the healthy state is stable, and infection decays. If .R0 > 1, then the
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healthy state loses its stability, and a travelling wave solution of system (1)–(2) can 
exist. Its existence is proved in [1] under some additional assumptions. 

In the case of wave existence, the lower estimate of the wave speed c for 
system (1)–(2) is given by the following inequality [2] 

.c ≥ c0 =
√

min
μ>μ0

D1μ2(μ + β)

(μ + σ1)(μ + β) − au0b1e−μτ1
, (5) 

where .μ0 > 0 is the value for which the denominator vanishes. This speed equals 
the wave speed in the system without IFN considered in [3]. Since the wave speed 
correlates with the severity of the disease, we conclude that it is not influenced by 
the local IFN production. However, IFN decreases viral load [2]. 

In model (1)–(2), the IFN influence only on infected cells is considered. The 
analysis of the results shows that IFN reduces the virus infectivity, but it does 
not change the conditions of infection emergence (. R0), neither the severity of the 
disease (wave speed c). 

3 IFN Action in Uninfected Cells 

In the next model, we add the IFN action on uninfected cells resulting in the devel-
oping of the so-called antiviral state [7]. In the antiviral state, virus penetratation 
into uninfected cell is reduced, and the rate of cell infection decreases: 

.
∂U

∂t
= − a

1 + k3C
UV,

∂I

∂t
= a

1 + k3C
UV − βI, (6) 

. 
∂V

∂t
= D1

∂2V

∂x2
+ b1

1 + k1C
Iτ1 − σ1V,

∂C

∂t
= D2

∂2C

∂x2
+ b2

1 + k2V
Iτ2 − σ2C.

This behaviour is taken into account in Eq. (6) by means of the inverse dependence 
of the rate of cell infection on the IFN concentration. Equations for the virus and 
IFN concentrations remain the same. 

As before, this system has a stationary point . (U = U0, I = 0, V = 0, C =
0), where .U0 = U(0) is the initial concentration of uninfected cells. The stability 
condition is also given by inequality (4). Hence, the antiviral state of uninfected 
cells does not influence the condition of infection emergence. Transition to the wave 
variable and linearization about the stationary point .(U0, 0, 0, 0) are the same as for 
system (1)–(2). Therefore, the estimate of the wave speed is given by (5). 

We expect that the total viral load in this system is less than in system (1)–(2) 
since the rate of cell infection is down-regulated by interferon. Hence, the antiviral 
state of uninfected cells does not influence the conditions of infection emergence 
and the disease severity, but it reduces the virus infectivity. 

We take into account in Eq. (6) the IFN inhibition of cell infection. However, 
virus can down-regulate the IFN action. In this case, the factor .a/(1 + k3C) is
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replaced by the following expression: 

.
a

1 + k3
1+k4V

C
= a + k5V

1 + k3C + k4V
, (7) 

where .k5 = ak4. In this case, the stationary points and the linearized system do 
not change. Therefore, the virus replication number and the wave speed remain the 
same as before. 

4 IFN Redistribution 

Further, we consider the influence of IFN redistribution by blood circulation. After 
its production, IFN is quickly delivered in the infected tissue by the circulatory sys-
tem. The characteristic time for this delivery is much less than the characteristic time 
of the infection progression. Therefore, we can suppose that the IFN concentrations 
is space-independent: 

.
∂U

∂t
= −aUV,

∂I

∂t
= aUV − βI,

∂V

∂t
= D1

∂2V

∂x2 + b1

1 + k1Z
Iτ − σ1V, (8) 

.
dZ

dt
= b2J (I)e−k2J (V ) − σ2Z. (9) 

Here 

. J (I) =
ˆ ∞

−∞
I (x, t)dx, J (V ) =

ˆ ∞

−∞
V (x, t)dx,

and .Z = Z(t) is the total IFN concentration. Here we assume that the total 
concentration of IFN in the infection area is directly proportional to the total 
concentration of infected cells, and it is inversely proportional to the total virus 
concentration. This system also has the stationary point .(U0, V = 0, I = 0, Z = 0), 
where . U0 is the initial concentration of uninfected cells. This point corresponds to 
the absence of the disease. 

In this case, we obtain a coupled system of equations for the total viral load . J (V )

and the minimal wave speed c [2]: 

.J (v) = cu0

βσ1

(
b1 − αJ (v)e−k2J (v)

)
, (10) 

.c20 = min
μ>μ0

Dμ2(μ + β)

(μ + β)(μ + σ1) − ab(J )u0e−τμ
. (11) 

In this case, both the viral load and the wave speed decrease with stronger 
IFN response, i.e., with increasing IFN production or decreasing its degradation 
(Fig. 1b). Analytical results on the wave speed shown in Fig. 1b are in agreement 
with the numerical simulations [2]. The dependence of the total viral load on
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a) 

b) 

Fig. 1 Calculations of the systems with IFN: (a) in system (1)–(2), the concentrations of the 
uninfected cells U , infected cells I , virus  V , and  IFN  C propagate as a wave from the left to 
the right with time. All values are normalized by their maximum: .Umax = 1, .Imax = 0.76, 
.Vmax = 163,729, .Cmax = 1.015. (b) In system (8)–(9), the dependence of the wave speed on 
the parameters of IFN production and its influence on infection. The wave speed is determined by 
formulas (10) and  (11). The values of parameters are as follows: . a = 0.01, b1 = 80,000, β =
0.1, σ1 = 0.1, D1 = 0.001, τ = 10. IFN-related parameters are . b2 = 13.5, σ2 = 3.5, k2 =
10−5, k1 = 1, .τ1 = 10, .τ2 = 5, in b) the the normalized values of parameters are indicated on the 
horizontal axis. The initial conditions are .U0 = 1, V (0) = 5000, C(0) = I (0) = 0. Wave speed 
is measured in .cm/h and the total viral load .J (V ) is measured in .copy/cm2
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the parameters of IFN is similar to the dependence of the wave speed on these 
parameters. These results show that in the case of fast distribution of IFN in the 
infection site, both the infectivity and the severity of the disease decrease. 

5 Conclusions and Perspectives 

In this paper, the influence of the IFN production on the basic characteristics of 
respiratory viral infections are investigated with mathematical models taking into 
account antiviral influence of IFN on infected and uninfected cells, and also the 
counteraction of infection on the IFN production. Modelling results show that the 
IFN influence on infected cells and the antiviral state in uninfected cells do not 
reduce the severity of the disease induced by infection. However, both of them 
reduce virus infectivity. The severity of the disease decreases if IFN redistribution 
by the blood circulation is considered. From these results, we can conclude that 
the essential role in disease resolving plays not the IFN production itself but 
rather its efficient distribution in the infection site. Thus, the therapeutic methods 
of improving the blood circulation and resolving swelling can help in reducing 
severity of the respiratory viral disease. These modeling results bring new insights 
on the role of the blood circulatory system in the immune response. They open new 
perspectives in treatment of viral infections by means of the enhancement of the 
immune response due to intensification of the circulatory system. 

Acknowledgments This work is supported by the Ministry of Science and Higher Education of 
the Russian Federation (project number FSSF-2023-0016). 
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Machine Learning-Based Analysis 
of Human Motions for Parkinson’s 
Disease Diagnostics 

S. Nõmm 

Abstract Body language is known to be a powerful medium for carrying infor-
mation about the mental and physical states of a human being. In medicine, 
visual observations were used by physicians to base the diagnosis on diseases that 
affect human motor functions. In neurology, different motor tests have been used 
for more than a century to diagnose cognitive and neurodegenerative disorders 
such as Parkinson’s disease or Alzheimer’s disease. Technological advances in 
motion acquisition techniques have made it possible to register human movement 
parameters in a way that is invisible to the naked eye. Coupled with advances 
in machine learning, this has sparked studies that have focused on supporting 
diagnostics on the basis of human motion analysis. The talk delivered in the 
colloquium summarises the research of our workgroup in this area. 

Keywords Parkinson’s disease · Machine learning · Human motion analysis 

Mathematics Subject Classification 93B15, 93C55, 93B05 

1 Introduction 

The talk provides an overview of the activities of the research group aiming to 
develop a workflow that includes hardware and software to register and analyse 
human motions observed during the test battery with the goal of supporting the 
diagnosis of Parkinson’s disease. Both the battery and the analysis are chosen with 
respect to the disease or disorder of interest. There are three main motivating factors 
to support the digitisation of motor testing procedures. The first is that the machine 
is able to record the motion parameters that are invisible to the naked eye. The 
second is that human evaluation inevitably brings about a subjective component. 
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The third is the natural ability of the machine to save the recording for future 
studies. The classic machine learning workflow combined with the hardware for 
motion acquisition answers the main goal of the research, whereas individual steps 
of it have to be tuned for the task. This particularly concerns the steps of feature 
engineering and result interpretation. The main novel component is the set of 
integral-like parameters called the motion mass. Using the feature sets based on the 
motion-mass concept, we have received results that in some aspects exceed those 
previously published in the area. More precisely, the talk summarises the following 
results. In the area of gross motor analysis [6] where the concept of motion mass has 
been introduced, [3] describes the clinical application of first-generation prototypes, 
[4] has demonstrated the applicability of the method for gait analysis, and [12] 
demonstrated relations between human motions and the level of skin conductivity, 
which in turn is used to describe the level of emotional arousal. In the area of fine 
motor movements, [8] has adapted motion mass parameters for the fine motor case, 
[7] has demonstrated applicability of the approach for the analysis of Peupelreuter’s 
test of overlapping contours, [9] the first step in using deep learning and explainable 
artificial intelligence approaches for the analysis of Luria’s alternating series tests 
[2], finally [13] has performed targeted feature selection for the analysis of spiral 
drawing test. 

2 Problem Statement 

The problem is to provide a binary classifier that answers the question of whether 
the motor test was performed by a patient with PD or a healthy control subject (HC). 
Applying the machine learning workflow, one needs to solve two problems specific 
to the current task. The first is the design and selection of features. The second is 
the interpretation of the results in terms of the particular medical area. 

3 Proposed Solution 

This problem is solved for gross motor movements, when limb motions are 
analysed, or fine motor movements are observed during drawing and writing tests. 
For both cases, different motion capture technologies may be used. In the gross 
motor case stickman-like body model, depicted in Fig. 1 is usually provided in the 
form of points that describe the coordinates of the joints in four-dimensional space, 
where the fourth dimension is time. In the fine motor case, drawing and writing 
tests are usually performed using a digital table or a tablet PC that allows one to 
record the coordinates of the stylus tip and pressure applied to the screen. On the 
basis of this information, numerous features describing the kinematic and pressure 
parameters are computed.
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2m 1.5m 

Fig. 1 Experimental setting [4] 

3.1 Motion Mass 

Motion mass parameters were introduced in [6] as measures of amount and 
smoothness of movement. Subsequently, the concept was extended to [4]. For the 
set of human body joints .J = {j1, . . . jn} trajectory mass . LJ , the acceleration mass 
.AJ and the combined Euclidean distance .EJ are defined as follows: 

. AJ =
∑

j∈J

tm∑

t=1

ajt

LJ =
∑

j∈J

lj

. EJ =
∑

j∈J

sj

where . ajt is the acceleration of the joint j observed at time t , . lj is the trajectory 
length followed by the joint j during action (motion), and . sj is the length of the 
straight line segment that connects the positions of the joint j at the beginning 
and at the end of the experiment. The fourth parameter was the length of the time 
interval in which the motion took place. The trajectory mass explains the amount 
of motion, and the acceleration mass describes the smoothness of the motion. 
Euclidean distance and time were included as references, allowing us to normalise 
the acceleration and trajectory masses. 

Adaptation of the motion-mass parameters for the case of drawing and writing 
tests has resulted in a larger number of parameters, which in turn was reflected 
by the number of features to be associated with the tests. The first adaptation was 
proposed in [8] later extended by Nõmm et al. [7, 9] and was adapted for cases 
related to tremors in [13]. Furthermore, [13] proposes to extend the set of features 
by complementing the velocity and acceleration with those based on higher-order
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(a) 

Fig. 2 A visual representation of the differential and angular features [13]. (a) demonstrates how 
kinematic features are computed, and (b) demonstrates the meaning of geometric features 

derivatives known as jerk, snap, crackle, pop, snatch, and shake. Geometry-based 
features, such as angular velocities and their derivatives, are also introduced. 
Figure 2 illustrates the meaning of features based on geometry and kinematics. 

3.2 Machine Learning Workflow 

Computations of motion mass and other parameters that describe kinematic and 
pressure characteristics of fine motor motions may be considered the feature 
engineering step. Then the classical machine learning workflow was applied. We 
used the Fischer score and the XG Boost for feature selection. The nested cross-
validation approach was used. The performance of statistical classifiers, such as 
decision trees, k-nearest neighbours, support vector machines, boosted trees, and 
random forest, was then evaluated. The interested reader is referred to [5, 9, 13] and 
[4] for a detailed presentation and discussion of the results achieved. 

4 Discussion 

Proposed motion acquisition techniques coupled with statistical classifiers have 
demonstrated highly accurate prediction results that allow the application of clinical 
testing permits. However, the purely numerical approach does not take into account 
the geometric properties of the drawn contours or the trajectories of the joints. 
This causes the gap between the modus operandi used by medical professionals 
and the output of diagnostic support systems. On the one hand, applications of 
deep learning, such as [1] may be seen to mimic the human practitioner, but then
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kinematic and pressure information can be lost. The results of [11] are based on 
altering the colour of the drawn contours to encode the pressure or the kinematic 
parameter. Later, [10] and [14] have extended the procedure, altering not only the 
colour but also the thickness of the lines to encode two parameters that describe the 
pressure and kinematic properties of the motions. 

5 Conclusions 

During the recent time, machine learning-powered analysis of human motions to 
support the diagnostic process has developed into the strong direction of research in 
the areas of machine learning and artificial intelligence. There are three main sub-
directions that need to be investigated. The first is transparency, the second is data 
augmentation, and the last is semantic analysis of the drawing tests. 

Acknowledgments This work in the project “ICT programme” was supported by the European 
Union through the European Social Fund. 
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